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Preface

On behalf of the Program Committee, it is our pleasure to present the pro-
ceedings of the 12th International Symposium on Recent Advances in Intrusion
Detection systems (RAID 2009), which took place in Saint-Malo, France, during
September 23–25. As in the past, the symposium brought together leading re-
searchers and practitioners from academia, government, and industry to discuss
intrusion detection research and practice. There were six main sessions present-
ing full research papers on anomaly and specification-based approaches, malware
detection and prevention, network and host intrusion detection and prevention,
intrusion detection for mobile devices, and high-performance intrusion detec-
tion. Furthermore, there was a poster session on emerging research areas and
case studies.

The RAID 2009 Program Committee received 59 full paper submissions from
all over the world. All submissions were carefully reviewed by independent re-
viewers on the basis of space, topic, technical assessment, and overall balance.
The final selection took place at the Program Committee meeting on May 21
in Oakland, California. In all, 17 papers were selected for presentation and pub-
lication in the conference proceedings. As a continued feature, the symposium
accepted submissions for poster presentations which have been published as ex-
tended abstracts, reporting early-stage research, demonstration of applications,
or case studies. Thirty posters were submitted for a numerical review by an
independent, three-person sub-committee of the Program Committee based on
novelty, description, and evaluation. The sub-committee recommended the ac-
ceptance of 16 of these posters for presentation and publication.

The success of RAID 2009 depended on the joint effort of many people.
We would like to thank all the authors of submitted papers. We would also
like to thank the Program Committee members and additional reviewers, who
volunteered their time to evaluate the numerous submissions. In addition, we
would like to thank the General Chair, Ludovic Me, for handling the conference
arrangements, Davide Balzarotti, for handling the publication, Corrado Leita
for publicizing the conference, Christophe Bidan for finding sponsors for the
conference, and SUPELEC for hosting the conference website. We would also
like to thank our sponsors, DCSSI, INRIA Grand Est, EADS, Alcatel Lucent
and Fondation Michel Metivier.

July 2009 Engin Kirda
Somesh Jha
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Grégoire Jacob, Hervé Debar, and Eric Filiol

Automatic Generation of String Signatures for Malware Detection . . . . . . 101
Kent Griffin, Scott Schneider, Xin Hu, and Tzi-cker Chiueh

PE-Miner: Mining Structural Information to Detect Malicious
Executables in Realtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, and
Muddassar Farooq

Network and Host Intrusion Detection and
Prevention

Automatically Adapting a Trained Anomaly Detector to Software
Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Peng Li, Debin Gao, and Michael K. Reiter

Towards Generating High Coverage Vulnerability-Based Signatures
with Protocol-Level Constraint-Guided Exploration . . . . . . . . . . . . . . . . . . 161

Juan Caballero, Zhenkai Liang, Pongsin Poosankam, and Dawn Song



XII Table of Contents

Automated Behavioral Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
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Panacea: Automating Attack Classification for
Anomaly-Based Network Intrusion Detection

Systems�

Damiano Bolzoni1, Sandro Etalle1,2, and Pieter H. Hartel1

1 University of Twente, Enschede, The Netherlands
2 Eindhoven Technical University, The Netherlands

{damiano.bolzoni,pieter.hartel}@utwente.nl, s.etalle@tue.nl

Abstract. Anomaly-based intrusion detection systems are usually crit-
icized because they lack a classification of attacks, thus security teams
have to manually inspect any raised alert to classify it. We present a new
approach, Panacea, to automatically and systematically classify attacks
detected by an anomaly-based network intrusion detection system.

Keywords: attack classification, anomaly-based intrusion detection
systems.

One of the often cited weaknesses of anomaly-based intrusion detection systems
(ABSs) is the fact that they cannot classify the attacks they detect (Ghosh and
Schwartzbard [1] and Robertson et al. [2]). The lack of an attack classification
affects the overall usability of an ABS, because security teams have to manually
process each alert the ABS raises in order to assess the impact of the detected
attack, and to handle the alert.

Today, security teams faces two main challenges. First, because the most
harmful attacks currently consist of several stages (Ning et al. [3]), security
teams need to detect an attack at the earliest stage, in order to stop it. Secondly,
because of the activities conducted by automatic scanners, BOTnets, and script-
kiddies the number of security alerts has increased over the years. Although true
positives when detected by an IDS, these kinds of activities cannot normally be
considered a serious threat, i.e., they are “non-relevant” events (e.g., a remote
automatic scanner attempting to replicate a 5-year old attack against a now-
secure PHP script).

A number of automatic techniques to perform alert correlation have been
proposed (Cuppens and Ortalo [4], Debar and Wespi [5], Ning and Xu [6] and
Valeur et al. [7]), in order to detect attacks at an early stage, or lower the false
and the non-relevant alert rates. However, such techniques require a good deal of

� This research is supported by the research program Sentinels
(http://www.sentinels.nl). Sentinels is being financed by Technology Founda-
tion STW, the Netherlands Organization for Scientific Research (NWO), and the
Dutch Ministry of Economic Affairs.

E. Kirda, S. Jha, and D. Balzarotti (Eds.): RAID 2009, LNCS 5758, pp. 1–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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information (apart from the usual IP addresses and TCP ports) to be effective:
the attacks that triggered the alerts must be classified.

By classifying an attack (e.g., buffer overflow, SQL Injection), it is also possible
to set default actions for handling a certain alert. The alert could (1) trigger
automatic countermeasures, e.g., either because an early attack stage has been
detected or because the attack class is considered to have a great impact on the
security. Alternately, the alert could be (2) forwarded for manual handling or
(3) filtered and stored for later analysis (i.e., correlation) and statistics.

Determining the class of an attack is trivial for an alert generated by a
signature-based IDS (SBS), like Snort [8,9]. Each signature is the result of an
analysis of the corresponding attack conducted by experts: the attack class is
manually assigned during the signature development process (i.e., the alert class
is included in the signature). Thus, security teams usually do not need to further
process the alert to assign a class, and they can set precisely a standard action
for the system to execute when such an alert is triggered.

Problem. When an ABS raises an alert, it cannot associate the alert with an
attack class. The system detects an anomaly, but it has too little information
(typically only source and destination IP addresses and TCP ports) to determine
the attack class. No automatic or semi-automatic approach is currently available
to classify anomaly-based alerts. Thus, any anomaly-based alert must be man-
ually processed to identify the alert class, increasing the workload of security
teams. A solution to automate the classification of anomaly-based alerts is to
employ some heuristics (e.g., see Robertson et al. [2]) to analyse the anomaly-
based alert for features of well-known attacks. Although this approach could lead
to good results, it totally relies on the manual implementation of the heuristics
(which could be a labour intensive task), and on the expertise of the operator.

Contribution. In this paper we present Panacea, a simple, yet effective, system
that uses machine learning techniques to automatically and systematically clas-
sify attacks detected by a payload-based ABS (and consequently the generated
alerts as well). The basic idea is the following. Attacks that share some common
traits, i.e., some byte sequences in their payloads, are usually in the same class.
Thus, by extracting byte sequences from an alert payload (triggered by a certain
attack), we can compare those sequences to previously collected data with an
appropriate algorithm, find the most similar alert payload, and then infer the
attack class from the matching alert payload class.

To the best of our knowledge, Panacea is the first system proposed that:

– Automatically classifies attacks detected by an ABS, without using pre-
determined heuristics;

– Does not need manual assistance to classify attacks (with some exceptions
to be described in Section 1.1).

Panacea requires a training phase for its engine to build the attack classifier.
Once the training phase is complete, Panacea classifies any attack detected by
the ABS automatically. Here we consider only attacks that target networks,
however it is possible to extend the approach to include host-based IDSs too.
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Limitation of the approach. Panacea analyses the generated alert payload to
build its classification model. Thus, any alert generated by attacks/activities that
do not involve a payload (e.g., a port scan or a DDoS) cannot be automatically
classified. As most of the harmful attacks inject some data in target systems, we
do not see this as a serious limitation.

This paper is organized as follows. In Section 1 we present the architecture
of Panacea, we detail its components, the way they interact and the data they
exchange (Section 1.1). In Section 1.2, we summarise the machine learning algo-
rithms that Panacea uses to classify the alerts. In Section 2 we show the results
of the benchmarks. Section 3 presents related work, while Section 4 concludes.

1 Architecture

Panacea consists of two interacting components: the Alert Information Extractor
(AIE) and the Attack Classification Engine (ACE). The AIE receives alerts
from the IDS(s), processes the payload, and extracts significant information,
outputting alert meta-information. This meta-information is then passed to the
ACE that automatically determines the attack class. The classification process
goes through two main stages. First, the ACE is trained with several types of
alert meta-information to build a classification model. The ACE is fed alert meta-
information and the corresponding attack class. The attack class information can
be provided in several ways, either manually by an operator or automatically by
extracting additional information from the original alert (only when the alert
has been raised by an SBS). Secondly, when the training is completed, the ACE
is ready to classify new incoming alerts automatically. We now describe each
component and the working modes of Panacea in detail. Figure 1 depicts Panacea
and its internal components.

Fig. 1. An overview of the Panacea architecture and the internal components
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1.1 Alert Information Extractor

The first component we examine is the AIE. The extraction of relevant infor-
mation from alert payloads is a crucial step, as it is the basis for attack class
inference. Requirements for this phase are that the extraction function should
capture enough features from the original information (i.e., the payload) to dis-
tinguish alerts belonging to different classes, and it should be efficient w.r.t. the
required memory space. We now describe the analysis techniques we have chosen.

Extracting and storing relevant information. N-gram analysis [10] allows
one to capture features of data in an efficient way, and it has been used before in
the context of computer security to detect attacks (Forrester and Hofmeyr [11],
Wang and Stolfo [12]). N-gram analysis is a suitable technique to capture data
features also for the problem of attack classification, and the AIE employs such
a technique to extract relevant information from alert payloads.

As Wang et al. note [13], by using higher order n-grams (i.e., n-grams where
n > 1) it is possible to capture more data features and to achieve a more precise
analysis. One has to consider that the whole feature space size of a higher-
order n-gram is 256n (where n is the n-gram order). The comparison of byte
frequency values becomes quickly infeasible, also for values of n such as 3 or
4, because the space needed to store average and standard deviation values for
each n-gram grows exponentially (e.g., 640GB would be needed to store 5-grams
statistics). Although a frequency-based n-gram analysis may seem to model data
distribution accurately, Wang et al. experimentally show that a binary-based n-
gram analysis is more precise in the context of network data analysis. In practice,
the fact that a certain n-gram has occurred is stored, rather than computing
average byte frequency and standard deviation statistics. The reason why the
binary approach performs better is that high-order n-grams are more sparse than
low-order n-grams, thus it is more difficult to gather accurate byte-frequency
statistics as the order increases. This approach has an additional advantage,
other than being more precise. Because less information is required, it requires
less space in memory, and we can consider higher-order n-grams (such as 5).
We now present the data structure used by the AIE to store the extracted
information.

Bloom filter. A Bloom filter [14] (BF) is a method to represent a set of S elements
(n-grams in our embodiment) in a smaller space. Formally, a BF is a pair 〈b, H〉
where b is a bit map of l bits, initially all set to 0, and H is a set of k independent
hash functions h1 . . .hk. H determines the storage of b in such a way that, given
an element s in S: ∀hk, bi = 1 ⇐⇒ hk(s) mod l = i. In other words, for each
n-gram s in S, and for each hash function hk, we compute hk(s) mod l, and we
use the resulting value as index to set to 1 the bit in b corresponding to it. When
checking for the presence of a certain element s, the element is considered to
be stored in the BF if: ∀hk, bhk(s) mod l = 1. Because of the n-gram sparsity, a
BF with a size of 10KB is sufficiently large to store the alert meta-information
resulting from 5-grams analysis.
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(a) Inserting n-gram “abcde”

(b) Inserting n-gram “pqrst”

Fig. 2. Examples of inserting two different 5-grams. H1, H2 and H3 represent different
hash functions.

A BF employs k different hash functions at the same time to decrease the
probability of a false positive (the opposite situation, a false negative, cannot
occur). False positives occur when all of the bit positions calculated for a given
element have been set to 1 when inserting previous elements, due to the collisions
generated by hash functions. The false positive rate for a given BF is (1−e

kn
l )k,

where n is the number of elements already stored.

Operational modes. The AIE not only extracts information from alerts as
described above, but it is also responsible for forwarding the attack class in-
formation to the classification engine, when the latter is in training mode. The
attack class can be provided either automatically or manually. In case an SBS
is deployed next to the ABS and it is monitoring the same data, it is possible to
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Fig. 3. Example of a false positive. The element “zxcvb” has not been inserted in the
Bloom filter. Due to the collisions generated by the hash functions, the test for its
presence returns “true”.

feed the ACE during training both the payload and the attack class of any alert
generated by the SBS. We define this as the automatic mode, since no human
operator is required to carry out the attack classification. A human operator
can classify the alerts raised by the ABS (in a manner consistent with the SBS
classification), hence integrating those with the alerts raised by the ABS during
the ACE training. We call this the semi-automatic mode. The last possible op-
erative mode is the manual mode. In this case, any alert is manually classified
by an operator.

Each mode presents advantages and disadvantages. In automatic mode, the
workload is low, but on the other hand the classification accuracy is likely to
be low as well. In fact, the SBS and the ABS are likely to detect different
attacks, hence the classification engine could be trained to correctly classify
only a subset of the ABS alerts. The manual mode requires human intervention
but it is likely to produce better results, since each alert is consistently classified.
We assume that the alerts raised by the SBS and ABS have already been verified
and any false positive alert has already been purged (e.g., using ALAC [15] or
our ATLANTIDES [16]).

1.2 Attack Classification Engine

The ACE includes the algorithm used to classify attacks. Since we are aware
of the attack class information, we consider only supervised machine learning
algorithms. These algorithms generally achieve better results than unsupervised
algorithms (where the algorithm, e.g. K-medoids, deduces classes by measuring
inter-data similarity). The classification algorithm must meet several require-
ments, namely:
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– support for multiple classes, as alerts fall in several classes;
– classification of high-dimensional data, since each bit of the BF data struc-

ture the ACE receives in input is seen as a dimension of analysis;
– fast training (the reason for this will be clarified later) and classification

phases;
– (optional) estimate classification confidence when in classification phase.

We consider the last requirement optional, as it does not directly influence the
quality of the classification, though it is useful to improve the system usability.
Confidence measures the likelihood of having a correct classification for a given
input. Users can instruct the system to forward any alert whose confidence value
is lower than a given threshold for manual classification, hence reducing the prob-
ability of misclassification (at the price of an increased workload, see Section 2.7).

We chose two algorithms for our experiments: (1) Support Vector Machines
(SVM) and (2) the RIPPER rule learner. These algorithms implement super-
vised techniques, their training and classification phases are fast and handle
high-dimensional data. Both algorithms perform non-incremental learning. A
non-incremental algorithm iterates on samples several times to build the best
classification model by minimizing the classification error. The whole training
set is then needed at once, and additional samples cannot be incorporated in the
classification model unless the training phase is run from scratch. On the other
hand, an incremental algorithm can modify the model after the main training
phase as new samples become available. An incremental algorithm usually per-
forms worse than a non-incremental algorithm, because the model is not re-built.
Thus, a non-incremental algorithm is the best choice to perform an accurate clas-
sification. However, because it is highly unlikely that we can collect all alerts for
training at once the choice of non-incremental algorithms could be seen as a
limitation of our system.

In practice, thanks to the limited BF memory size, we can store a huge num-
ber of samples and, by applying a “batch training”, we can simulate incremental
learning in non-incremental algorithms. As new training samples become avail-
able, we add them to the batch training set and build the classifier using the
entire set only when a certain number of samples is reached. Then, the classifier
is re-built with the set of “batches” available at that time. Because both SVM
and RIPPER are fast in training, there are no computational issues.

We chose SVM and RIPPER, not only because they meet the requirements,
but for two additional reasons. First, they yield high-quality classifications.
Meyer et al. [17] test the SVM against several other classification algorithms
(available from the R project [18]) on real and synthetic data sets. An SVM
outperforms competitors in 50% of tests and ranks in the top 3 in 90% of them.
RIPPER has been used before in the context of intrusion detection (e.g., on data
relative to system calls and network connections [19,20]) with good results. Sec-
ondly, because they approach the classification problem differently (geometric
for SVM, and rule-based for RIPPER), the algorithms are supposed to compen-
sate for each others weaknesses. Hence, we can evaluate which algorithm is more
suitable in different contexts. We will now provide some detail on the algorithms.
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Fig. 4. Hyperplanes in a 2-dimensional space. H1 separates samples sets with a small
margin, H2 does that with the maximum margin. The example refers to linearly sepa-
rable data. The support vectors are shown with a thicker border.

Support Vector Machines. (Vapnik and Lerner [21]) is a set of supervised
learning methods used for classification. In the original formulation, an SVM is a
binary classifier. It uses a non-linear mapping to transform the original training
data into a higher dimension. Then, it searches for the linear optimal separating
hyperplane, i.e., a plane that separates the samples of one class from another.
An SVM uses “support vectors” and “margins” to find the optimal hyperplane,
i.e., the plane with the maximum margin.

The original SVM algorithm has been modified to classify non-linear data and
to use multiple classes. Boser et al. [22] introduce non-linear data classification by
using kernel functions (i.e., non-linear functions). To support multiple classes,
the problem is reduced to multiple binary sub-problems. Given m classes, m
classifiers are trained, one for each class. Any test sample is assigned to the class
corresponding to the largest positive distance.

RIPPER. (Cohen [23]) is a fast and effective rule induction algorithm. RIPPER
uses a set of IF-THEN rules. An IF-THEN rule is an expression in the form
IF <condition> THEN <conclusion>. The IF-part of a rule is called the rule
antecedent. The THEN-part is the rule consequent. The condition consists of one
or more attribute tests, that are logically ANDed. A test ti is in the form ti = v
for categorical attributes (where v is a categorical label) or either ti ≥ θ or ti ≤ θ
for numerical attributes (where θ is a numerical value). The conclusion contains
a class prediction. If, for a given input, the condition (i.e., all of the attribute
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tests) holds true, then the rule antecedent is satisfied and the corresponding
class in the conclusion is returned (the rule is said to “cover” the input). Since
RIPPER employs ordered rules, when a match occurs, the algorithm does not
evaluate other rules. Some examples of rules are:

IF bf [i] = 1 AND . . . AND bf [k] = 1 THEN class = cross-site scripting
IF bf [l] = 1 AND . . . AND bf [n] = 1 THEN class = sql injection

RIPPER builds the rule set for a certain class SCi as follows. The training data
set is split into two sets, a pruning and a growing sets. The classifier is built
using these two sets by repeatedly inserting rules starting from an empty rule
set (the growing set). The algorithm heuristically adds one condition at a time
until the rule has no error rate on the growing set. RIPPER implements also an
optimisation phase, in order to simplify the rule set.

When multiple classes C1 . . . Cn are used, RIPPER sorts classes on a sample
frequency basis and induces rules sequentially from the least prevalent class
SC1 to the second most prevalent class SCn−1. The most prevalent class SCn

becomes the default class, and no rule is induced for it (thus, in case of a binary
classification, RIPPER induces rules for the minority class only).

1.3 Implementation

We have implemented a prototype of Panacea to run our experiments. The pro-
totype is written in Java, since we link to the libraries provided by the Weka
platform [24]. Weka is a well-known collection of machine learning algorithms,
and it contains an implementation of both SVM and RIPPER. Weka provides
also a comprehensive framework to run benchmarks on several data sets under
the same testing conditions. The attacks samples generated by network IDSs, in
the form of alerts, are stored in a database that the system fetches to extract
the alert payload information.

2 Benchmarks

Public data sets for benchmarking IDSs are scarce. It is even more difficult to
find a suitable data set to test Panacea, since no research has systematically
addressed the problem of (semi)automatically classifying attacks detected by an
ABS before. Hence, we have collected three different data sets (referred to as
DSA, DSB and DSC , see below for a description of the data sets) to evaluate
the accuracy of Panacea. These data sets are used to evaluate the accuracy of
Panacea in different scenarios: (1) when working in automatic mode (DSA), (2)
when using an ad hoc taxonomy and the manual mode (DSB) and (3) when
classifying unknown attacks (e.g., generated by two ABSs), having trained the
system with alerts from known attacks (DSB and DSC).

In the literature there are several taxonomies and classifications of security
events. For instance, Howard [25], Hansman and Hunt [26], and the well-known
taxonomy used in the DARPA 1998 [27] and 1999 [28] data sets. Only the latter
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classification has been used in practice (in spite of its course granularity, as it
contains only four classes which are unsuitable to classify modern attacks). In our
experiments, we use the Snort classification for benchmarks with DSA (see [29]
for a detailed taxonomy) and the Web Application Security Consortium Threat
Classification [30] for benchmarks with DSB and DSC .

To evaluate the accuracy of the classification model, we use two approaches.
For test (1) and (2), we employ cross-validation. In cross-validation, samples
are partitioned into sub-sets. The analysis is first performed on a single sub-set,
while the other sub-set(s) are retained to validate the initial analysis. In k-fold
cross-validation, the samples are partitioned into k sub-sets. A single sub-set is
retained as the validation data for testing the model, and the remaining k − 1
sub-sets are used as training data to build the model. The process is repeated k
times (the “folds”), using each of the k sets exactly once to validate the model.
Usually the k fold results are combined (e.g., averaged) to generate a single
estimation. The advantage of this method is that all of the samples are used
for both training and validation, and each sample is used for validation exactly
once. We use 10 folds in our experiments, which is a standard value, used in the
Weka testing environment too.

For test 3), we use one of DSB and DSC for training and the other for testing.
The accuracy is evaluated by counting the number of correctly classified attacks.

2.1 Data Sets

DSA. contains alerts raised by Snort (see Table 1 for alert figures). To collect
the largest number of alerts possible, we have used several tools to automatically
inject attack payloads (Nessus [31] and a proprietary vulnerability assessment
tool). Attacks have been directed against a system running some virtual machines
with both Linux- and Windows-based installations, which expose several services
(e.g., web server, DBMS, web proxy, SMTP and SSH). We collected more than
3200 alerts in total, classified in 14 different (Snort) attack classes. However,
some classes have few alerts, thus we select only classes with at least 10 alerts.
This data set (and DSB as well) is synthetic. We do not see this as a limitation
since the alerts cover multiple classes and trigger a large number of different
signatures. We test how the system behaves in automatic mode, the whole set
being generated by Snort.

DSB. contains a set of more than 1400 Snort alerts related to web attacks
(Table 2 provides alert details). To generate this data set, we have used Nes-
sus, Nikto [32] (a web vulnerability scanner), and we have manually injected
attack payloads collected from the well-known site Milw0rm, that hosts a large
collection of web exploits [33]. The attack classification has been performed man-
ually (manual mode), since Snort does not provide a fine-grained classification of
web-related attacks (alerts are allocated to different classes with other alerts, see
Table 1). Attacks have been classified according to the Web Application Security
Consortium Threat Classification [30].
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Table 1. DSA (alerts raised by Snort): attack classes and samples. It is not surpris-
ing that web-related attacks account for more than 50%, since most Snort signatures
address web vulnerabilities. ∗ marks classes that contain web-related attacks.

Attack Class Description # of samples

attempted-recon∗ Attempted information leak 1379
web-application-attack∗ Web application attack 1032

web-application-activity∗ Access to a potentially 599
vulnerable web application

unknown Unknown traffic 66
attempted-user∗ Attempted user privilege gain 45

misc-attack Miscellaneous attack 44

attempted-admin
Attempted administrator

32
privilege gain

attempted-dos Attempted Denial of Service 14
bad-unknown Potentially bad traffic 13

Table 2. DSB : attack classes and samples. Attacks have been classified according to
the Web Application Security Consortium Threat Classification.

Attack Class # samples

Path Traversal 931
Cross-site Scripting 399

SQL Injection 73
Buffer Overflow 8

Table 3. DSC : attack classes and samples. Attacks have been classified according to
the Web Application Security Consortium Threat Classification.

Attack Class # samples

Path Traversal 53
Cross-site Scripting 27

SQL Injection 16
Buffer Overflow 4

DSC is a collection of alerts generated over a period of 2 weeks by two ABSs, i.e.,
our POSEIDON [34] and Sphinx [35]. POSEIDON is a general-purpose anomaly-
network-based IDS, which uses a combination of a neural network with the well-
know algorithm PAYL [12] to analyse network data and detect attacks. Sphinx is
a web- anomaly-based IDS, which analyses HTTP request parameters and which
detects data-flow [36] attacks. We recorded network traffic directed to a main
web server of the university network, and did not inject any attack. Afterwards,
we processed this data with POSEIDON and Sphinx to generate alerts. The
inspection of alerts and the classification of attacks has been performed manually
(using the same taxonomy we apply for DSB). The data set consists of a set of
100 alerts, and Table 3 reports attack details.
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2.2 Tests with DSA

We use DSA to validate the general effectiveness of our approach. There are
three factors which influence the classification accuracy, namely: (1) the number
of alerts processed during training, (2) the length of n-grams used, and (3) the
classification algorithm selected. This preliminary test aims to identify which
parameter combination(s) results in the most accurate classification.

Testing methodology. We proceed with a 3-step approach. First, we want
to identify an adequate number of samples required for training: in fact, a too
low number of samples could generate an inaccurate classification. On the other
hand, while it is generally a good idea to have as many training samples as
possible, after some point the benefit from adding additional information could
become negligible. Secondly, we want to identify the best n-gram length. Short
n-grams are likely to be shared among many attack payloads, and the attack di-
versification would be poor (i.e., a number of different attacks contains the same
n-grams). On the other hand, long n-grams are unlikely to be common among
attack payloads, hence it would be difficult to predict a class for a new attack
that does not share a sufficient number of long n-grams. Finally, we analyse how
the classification algorithms work by analysing the overall classification accuracy
(i.e., considering all of the attack classes) and the per-class accuracy. The two
algorithms approach the classification problem in two totally different ways, and
each of them could be performing better under different circumstances.

To avoid bias by choosing a specific attack, we randomly select alerts in the
sub-sets. In fact, by selecting alerts for training in the same order they have been
generated (as opposed to random), we could end up with few (or no) samples
in certain classes, hence influencing the accuracy rate (i.e., a too good, or bad,
value). To enforce randomness, we also run several trials (five) with different
sub-sets and calculate the average accuracy rate. Table 4 reports benchmark
results (the percentage of correctly classified attacks) for SVM and RIPPER.

Discussion. Tests with DSA indicate that the approach is effective in classifying
attacks. As the number of training samples increases, accuracy increases as well
for both algorithms. Also the n-gram length directly influences the classification.

Table 4. Test results on DSA with SVM and RIPPER. We report the average percent-
age of correctly classified attacks of five trials. As the number of samples in the testing
sub-set increases, the overall effectiveness increases as well. Longer n-grams generally
produce better results, up to length 3. SVM performs better than RIPPER by a narrow
margin.

SVM
n-gram length

RIPPER
n-gram length

# samples 1 2 3 4 1 2 3 4
1000 62.6% 76.8% 77.3% 76.7% 66.1% 75.9% 76.2% 75.7%
2000 65.9% 78.6% 78.9% 77.7% 69.4% 76.7% 76.9% 76.4%
3000 66.3% 79.4% 79.6% 78.6% 72.7% 77.2% 77.5% 76.9%



Panacea: Automating Attack Classification 13

Table 5. Per-class detailed results on DSA, using 3-grams. We report the average
percentage of correctly classified attacks of five trials. RIPPER performs better than
SVM in classifying all attacks, .

SVM RIPPER
# of samples # of samples

Attack Class 1000 2000 3000 1000 2000 3000
attempted-recon 90.9% 90.5% 90.7% 90.4% 93.9% 94.0%
web-application-attack 79.8% 89.0% 88.8% 97.4% 98.8% 99.1%
web-application-activity 80.8% 81.2% 80.9% 93.7% 96.1% 95.8%

The number of correctly classified attacks increases as n-grams get longer, up to
3-grams. N-grams of length 4 produce a slightly worse classification, and the same
happens for 1-grams (which achieve the worst percentages). SVM and RIPPER
present similar accuracy rates on 3-grams, with the former being slightly better.
However, if we perform an analysis based on per-class accuracy (see Table 5),
we observe that, although both classification algorithms score high on accuracy
level for the three most populated classes, RIPPER is far more precise than SVM
(in once case, the “web-application-activity” class, by nearly 15%).

When we look at the overall accuracy rate, averaged among the 9 classes, for
DSA, SVM performs better because of the classes with few alerts. If we zoom
into the classes with a significant number of samples, we observe an opposite
behaviour. This means that, with a high number of samples, RIPPER performs
better than SVM.

In Table 5, a sub-set with fewer samples seems to achieve better results
(although percentages differ by a narrow margin), when considering the same
algorithm. This happens for SVM once when using 1000 training samples
(“attempted-recon” class) and twice when using 2000 training samples (“web-
application-attack” and “web-application-activity” classes). When using 2000
training samples, RIPPER performs best in the “web-application-activity” class.
The reason for this is that alerts in the sub-sets are randomly chosen, thus a
class could have a different number of samples among trials.

2.3 Tests with DSB

DSB is used to validate the manual mode and the use of an ad hoc classifica-
tion. To perform the benchmarks, we use the same n-gram length that achieves
the best results in the previous test. Table 6 details our findings for SVM and
RIPPER.

Discussion. The test results on DSB show that Panacea is effective also when
using a user-defined classification, regardless of the classification algorithm is
chosen. Regarding accuracy rates, RIPPER shows a higher accuracy for most
classes, although SVM scores the best classification rate (by a narrow margin).

Only the “buffer overflow” class has a low classification rate. Both algorithms
have wrongly classified most of buffer overflow attacks in the “path traversal”
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Table 6. Test details (percentage of correctly classified attacks) on DSB with SVM and
RIPPER. RIPPER achieves better accuracy rates for the two most numerous classes,
although by a narrow margin. We observe the same trend for the rates reported in
Table 5.

Attack Class SVM RIPPER

Path Traversal 98.6% 99.1%
Cross-site Scripting 97.5% 98.4%
SQL Injection 97.6% 96.2%
Buffer Overflow 37.5% 37.5%
Percentage of total attacks

98.0% 97.7%
correctly classified

class. This is because (1) the number of samples is lower than for the other
classes, which are at least 10 times more numerous, and 2) a number of the
path traversal attacks present some byte encoding that resembles byte values
typically used by some buffer overflow attack vectors. In the case of RIPPER,
the “path traversal” class has the highest number of samples, hence no rule is
induced for it and any non-matching samples is classified in this class.

2.4 Tests with DSC

An ABS is supposed to detect previously-unknown attacks, for which no sig-
nature is available yet. Hence, we need to test how Panacea behaves when the
training is accomplished using mostly alerts generated by an SBS but afterwards
Panacea processes alerts generated by an ABS. For this final test we simulate
the following scenario. A user has manually classified alerts generated by an SBS
during the training phase (DSB) and she uses the resulting model to classify un-
known attacks, detected by two different ABSs (POSEIDON and Sphinx). Since
we collected few buffer overflow attacks, we use the Sploit framework [37] to
mutate some of the original attack payloads and increase the number of samples
for this class, introducing attack diversity at the same time. Thus, we obtain
additional training samples with a different payload. Table 7 shows the percent-
age of correctly classified attacks by SVM and RIPPER. For the buffer overflow
attacks, we report accuracy values for the original training set (i.e. representing
real traffic) and the “enlarged” training set (in brackets).

Discussion. Tests on DSC show that the SVM performs better than RIPPER
when classifying attack instances that have not been observed before. The accu-
racy rate for the “buffer overflow” class is the lowest, and most of the misclassified
attacks have been classified in the “path traversal” class (see the discussion of
benchmarks for DSB). However, with a higher number of training samples (gen-
erated by using Sploit), the accuracy rate increases w.r.t. previous tests. This
suggest that, with a sufficient number of training samples, Panacea achieves high
accuracy rates.
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Table 7. Test details (percentage of correctly classified attacks) on DSC with SVM
and RIPPER. SVM perform better than RIPPER in classifying any attack class. For
the “buffer overflow” class and the percentage of total attacks correctly classified we
report (in brackets) the accuracy rates when Panacea is trained with additional samples
generated using the Sploit framework.

Attack Class SVM RIPPER

Path Traversal 98.1% 94.4%
Cross-site Scripting 92.6% 88.9%
SQL Injection 100.0% 87.5%
Buffer Overflow 50.0% (75.0%) 25.0% (50.0%)
Percentage of total attacks

92.0% (93.0%) 89.0% (91.0%)
correctly classified

2.5 Summary of Benchmark Results

From the benchmarks results, we can draw some conclusions after having ob-
served the following trends:

– The classification accuracy is always higher than 75%.
– SVM performs better than RIPPER when considering the classification ac-

curacy for all classes, when not all of them have more than 50-60 samples
(DSA, DSB and DSC).

– RIPPER performs better than SVM when the class has a good deal of train-
ing samples, i.e., at least 60-70 in our experiments (DSA and DSB).

– SVM performs better than RIPPER when the class presents high diversity
and attacks to classify have not been observed during training (DSC).

We can conclude that SVM works better when a few alerts are available for
training and when attack diversity is high, i.e., the training alert samples differ
from the alerts received when in classification phase. On the other hand, RIPPER
shows to be more accurate when trained with a high number of alerts.

2.6 System Performance

In Section 1.2 we introduce the requirement of a fast training phase for the clas-
sification algorithm. During our benchmarks both SVM and RIPPER proved
to satisfy such a requirement. As the BF data size is constant (and it is not
related to the n-gram length), the training time depends on the number of alerts
processed. Benchmarks have been performed on a machine with an Intel Core 2
CPU at 1.8Ghz and 2Gb of memory. The reported figures refer to benchmarks
with DSA, and are averaged values over five trials. RIPPER is the fastest algo-
rithm and the time required for training grows linearly. When 1000 alerts are
used for training, RIPPER completes the training phase in 8.9 seconds and SVM
in 11.8 seconds. 3000 alerts are processed in 25.9 seconds by RIPPER and in 39.7
seconds by SVM. While retraining, Panacea can use the old classifier instance
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while it builds the new classifier (and the required time is short enough to allow
batch processing of a large number of alerts).

A fast classification phase is also desirable, in order to select an appropriate
action to handle any alert as soon as it is raised. We report figures for benchmarks
with data set DSC , since for DSA and DSB we use the cross-validation testing
(where multiple scans of the set are performed). When 1500 alerts are used for
training, RIPPER classifies 100 alerts in 0.9 seconds and SVM in 1.3 seconds.
Thus, Panacea would be able to process up to 300.000 alerts per hour, a rate
that is hardly seen even in large networks.

2.7 Evaluating Confidence

However good Panacea is, the system is not error-free. The consequences of
a misclassification can have a direct impact on the overall security. Think of
a buffer overflow attack, for which usually countermeasures must take place
immediately (because of the possible consequences), that is misclassified as a
path traversal attack, for which the activation of countermeasures can be delayed
(e.g., after other actions taken by the attacker). This event occurs often in our
benchmarks when the system selects the wrong class. Both SVM and RIPPER
can generate a classification confidence value for each attack. This value can be
used to evaluate the accuracy of the classification. The lower the classification
value is (in a range from 0.0 to 1.0), the more likely the classification is wrong
(see Table 8 for average confidence values for DSC).

The confidence value can be taken into consideration to detect possible mis-
classification. Users can set a minimum confidence value (e.g., 0.5). Any alert
with a lower confidence value is forwarded to a human operator for manual clas-
sification. With this additional check, we are able to increase the percentage of
total attacks correctly classified up to 95% for SVM and 94% for RIPPER (when
using the standard training set, without additional training samples generated

Table 8. Effects of confidence evaluation for DSC , when Panacea is trained with the
standard DSB . When considering the classification confidence to forward alerts for
manual classification, the human operator classification increases by 3% and 5% the
overall accuracy rate by inspecting 10 and 13 alerts, out of 100, when Panacea uses
SVM and RIPPER respectively.

SVM RIPPER

Average confidence value for correctly classified attacks 0.75 0.62
Average confidence value for misclassified attacks 0.37 0.43
Percentage of total attacks correctly classified without 92.0% 89.0%
confidence evaluation
Percentage of total attacks correctly classified with 95.0% 94.0%
confidence evaluation
# of alerts forwarded for manual classification 10/100 13/100
# of forwarded attacks that were actually wrongly classified 3/10 5/13
# of forwarded attacks that were actually correctly classified 7/10 8/13
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Table 9. Actions that users have to take with or without Panacea w.r.t. alert classifi-
cation for each data set we use during benchmarks.

User actions

Without Panacea With Panacea

DSA Classify any alert No action to take
DSB Classify any alert Classify alerts used during training

DSC Classify any alert No action to take
(alerts have been previously classified)

with Sploit). The additional workload involves also the manual classification of
alerts which have been correctly classified by the system but whose confidence
value is lower than the set threshold. However, less than 10 alerts (out of 100)
have been forwarded for manual classification when this action was not needed.
Table 8 reports the details regarding the evaluation of the confidence value.

2.8 Usability in Panacea

Panacea aims not only to provide automatic attack classification for an ABS, but
to improve usability as well. In automatic mode, Panacea performs an accurate
classification (more than 75% of correctly classified attacks). In semi-automatic
and manual modes, users actively take part in the classification process: how-
ever, users are requested to provide a limited input (i.e., a class label). Panacea
classifies attacks systematically and automates (1) the extraction of relevant in-
formation used to distinguish an attack class from another and (2) the update of
the classification model. These tasks are usually left to the user’s experience and
knowledge, thus they can be error-prone and not comprehensive. Table 9 reports
actions that users have to take with and without the support of Panacea.

3 Related Work

Although the lack of attack classification is a well-known issue in the field of
anomaly-based intrusion detection, little research has been done on this topic.

Robertson et al. [2] suggest to use heuristics to infer the class of (web-based)
attacks. This approach has several drawbacks. Users have to generate heuristics
(e.g., regular expressions) to identify attack classes. They have to enumerate all
of the possible attack variants, and update the heuristics each time a new attack
variation is detected. This is a time consuming task. Panacea can operate in an
automatic way, by extracting attack information from any SBS, or employ an
ad-hoc classification, with the user providing only the attack class.

Wang and Stolfo [12] use a “Z-String” to distribute among other ABSs attack
payloads to enhance detection. A Z-String contains the information resulting
from the n-gram analysis of the attack payload. Once a certain payload has been
flagged as malicious, the corresponding Z-String can be distributed to other IDSs
to detect the attack also, and stop it at an early stage (think of a worm). If some
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traffic matches a certain Z-String, that data is likely to be a real attack. Although
a Z-String is not used for attack classification, by attaching a class label it would
be possible to classify each attack. However, this approach is not systematic, as
each attack that does not exactly match any Z-String would have to be manually
classified. A Z-String is based on a frequency-based n-gram analysis, thus an
exact match could be difficult to achieve. On the other hand, Panacea applies
a systematic classification using the more precise binary-based n-gram analysis.
Panacea can also use as a source of information the alerts generated by an SBS,
and not only by an ABS.

4 Conclusion

We present Panacea, a system that automatically and systematically classifies
attacks detected by a payload-based ABS (and consequently classifies the gener-
ated alerts). Panacea extracts information from alerts during a training phase,
then predicts the attack class for new alerts. The alerts used to train the classifi-
cation engine can be generated by an SBS as well as an ABS. In the former case,
no manual intervention is requested (the system operates in automatic mode),
as Panacea automatically extracts the attack class from the alert. In the latter
case, the user is required to provide the attack class for each alert used to train
the classification engine.

Panacea improves the usability and makes it possible to integrate anomaly-
based with signature-based IDSs. Benchmarks show that the approach is effective
in classifying attacks, even those that have not been detected before (and not
used for training). Although Panacea works in an automatic way, users can
employ ad-hoc classifications, and even manually tune the engine for more precise
classifications.

Future work. Panacea can use different algorithms to classify alerts. The bench-
marks with SVM and RIPPER, which approach the classification problem in
two different ways, show that each algorithm has its strong points, depending
on the circumstances. A possible extension is to use a cascade of SVM and RIP-
PER, in order to increase the overall accuracy. We would then use SVM for early
classification (when the number of samples is low, and when RIPPER does not
perform well), then, when the number of alerts increases, we can train RIPPER,
thanks to the batch training mode, and use it for classification as well (RIPPER
performs better than SVM when the number of training samples is high).
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Abstract. Because of the ad hoc nature of web applications, intrusion
detection systems that leverage machine learning techniques are particu-
larly well-suited for protecting websites. The reason is that these systems
are able to characterize the applications’ normal behavior in an auto-
mated fashion. However, anomaly-based detectors for web applications
suffer from false positives that are generated whenever the applications
being protected change. These false positives need to be analyzed by
the security officer who then has to interact with the web application
developers to confirm that the reported alerts were indeed erroneous
detections.

In this paper, we propose a novel technique for the automatic detection
of changes in web applications, which allows for the selective retraining
of the affected anomaly detection models. We demonstrate that, by cor-
rectly identifying legitimate changes in web applications, we can reduce
false positives and allow for the automated retraining of the anomaly
models.

We have evaluated our approach by analyzing a number of real-world
applications. Our analysis shows that web applications indeed change
substantially over time, and that our technique is able to effectively de-
tect changes and automatically adapt the anomaly detection models to
the new structure of the changed web applications.

Keywords: Anomaly Detection, Web Application Security, Concept
Drift, Machine Learning.

1 Introduction

According to a recent study by Symantec [1], web vulnerabilities represent 60%
of all reported security flaws. In particular, site-specific vulnerabilities (i.e., those
that affect custom web applications) are receiving increased attention from online
criminals [2,3]. This is because by exploiting a single vulnerability in a popular
site (e.g., a social networking site or a high-traffic portal), an attacker can infect
a large number of end hosts by spreading malware via web browser exploits
(e.g., drive-by download attacks). Therefore, there is a need for security tools
and techniques to protect web applications and deal with their ad hoc, dynamic
nature.
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Anomaly-based intrusion detection techniques have been shown to be effec-
tive in protecting web applications against attacks [4,5,6,7,8]. In contrast to mis-
use detection systems, which contain fingerprints of all known attacks patterns,
anomaly-based detectors leverage models of the normal behavior of the mon-
itored web applications to detect attacks, under the assumption that attacks
cause anomalies, and anomalies are always associated with malicious activity.
Besides an initial configuration, these tools typically neither require mainte-
nance nor manual updates to provide protection. For these reasons, they have
the advantage of offering a black-box solution to web application security, even
against 0-day exploits and site-specific attacks. Some anomaly-based web at-
tack detection techniques are mature enough to be implemented in commercial
tools [9,10,11].

A class of anomaly detectors for web applications leverages machine learning
techniques to automatically build models of the normal behavior of the moni-
tored web applications. In this context, the term normal behavior generally refers
to a set of characteristics (e.g., the distribution of the characters of string pa-
rameters, the mean and standard deviation of the values of integer parameters)
extracted from HTTP messages that are observed during normal operation. De-
tection is performed under the assumption that attacks cause significant changes
(i.e., anomalies) in the application behavior. Thus, any activity that does not fit
the expected, learned models is flagged as malicious. Obviously, the detection
accuracy strongly depends upon the quality of the models that describe the nor-
mal behavior. On one hand, over-specialization can lead to false positives [12,13];
on the other hand, over-generalization often results in false negatives [14,15,16].

One issue that has not been well-studied is the difficulty of adapting to changes
in the behavior of the protected applications. By behavior of a web application,
we refer to the features and the functionalities that the application offers and, as
a consequence, the content of the inputs (i.e., the requests) that it process and
the outputs (i.e., the responses) that it produces. This is an important problem
because today’s web applications are user-centric. That is, the demand for new
services causes continuous updates to an application’s logic and its interfaces.

Our analysis reveals that significant changes in the behavior of web applica-
tions are frequent. We refer to this phenomenon as web application concept drift.
In the context of anomaly-based detection, this means that legitimate behavior
might be misclassified as an attack after an update of the application, causing
the generation of false positives. Normally, whenever a new version of an appli-
cation is deployed in a production environment, a coordinated effort involving
application maintainers, deployment administrators, and security experts is re-
quired. That is, developers have to inform administrators about the changes that
are rolled out, and the administrators have to update or re-train the anomaly
models accordingly. Otherwise, the amount of false positives will increase sig-
nificantly. We propose a solution that makes these tedious tasks unnecessary.
Our technique examines the responses (HTML pages) sent by a web applica-
tion. More precisely, we check the forms and links in these pages to determine
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when new elements are added or old ones removed. This information is leveraged
to identify legitimate changes.

Our technique recognizes when anomalous inputs (i.e., HTTP requests) are
due to previous, legitimate updates (changes) in a web application. In such cases,
false positives are suppressed by automatically and selectively re-training mod-
els. Moreover, when possible, model parameters can be automatically updated
without requiring any re-training. Often, a complete re-training would be ex-
pensive in terms of time; typically, it requires O(P ) where P represents the
number of HTTP messages required to train a model. More importantly, such
re-training is not always feasible since new, attack-free training data is unlikely
to be available immediately after the application has changed. In fact, to collect
a sufficient amount of data the new version of the application must be executed
and real, legitimate clients have to interact with it in a controlled environment.
Clearly, this task requires time and efforts. More importantly, those parts that
have changed in the application must be known in advance.

Our approach takes a different perspective. We focus on the fundamental
problem of detecting those parts of the application that have changed and that
will cause false positives if no re-training is performed. Therefore, our technique
is agnostic with respect to the specific training procedure, which can be different
from the one we propose.

In summary, this paper proposes a set of change detection techniques to ad-
dress the concept drift problem by treating the protected web applications as
oracles. We show that HTTP responses contain important insights that can be
effectively leveraged to update previously learned models to take changes into
account. The results of applying our technique on real-world data show that
learning-based anomaly detectors can automatically adapt to changes, and by
doing this, are able to reduce their false positive rate without decreasing their
detection accuracy.

In this paper, we make the following contributions.

– We detail the problem of concept drift in the context of web applications,
and we provide evidence that it occurs in practice, motivating why it is a
significant problem for deploying learning-based anomaly detectors in the
real world.

– We present novel techniques based on HTTP response models that can be
used to distinguish between legitimate changes in web applications and web-
based attacks.

– We evaluate a tool incorporating these techniques over an extensive real-
world data set, demonstrating its ability to deal with web application concept
drift and reliably detect attacks with a low false positive rate.

2 Concept Drift

To introduce the idea of concept drift, we will use a generalized model of learning-
based anomaly detectors of web attacks. This model is based on the system pre-
sented in [5], but it is general enough to be adapted to virtually any learning-based
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anomaly detector for web applications. Also, we show that concept drift is a prob-
lem that exists in the real world, and we motivate why it should be addressed.
Unless differently stated, we use the shorthand term anomaly detector to refer to
anomaly-based detectors that leverage unsupervised machine learning techniques.

2.1 Anomaly Detection for Web Applications

An anomaly detector builds models of normal behavior by observing HTTP mes-
sages exchanged between servers and clients. The traffic directed to the server
running a certain web application (e.g., an e-commerce application or a blog)
can be organized into paths, or resources, R = {r1, r2, . . . , rj , . . . }. Each resource
corresponds to a different software module of the application (e.g., an account
manager, a search component). Each resource rj responds to requests, or queries,
Q = {qj,1, qj,2, . . . , qj,i, . . . } that contain sets of name-value parameters transmit-
ted by the client as part of the HTTP request. Each query qj,i is abstracted as a
tuple qj,i = 〈rj , Pq〉, where Pq = {(p1, v1), (p2, v2), . . . , (pk, vk)} ⊆ Pj , and Pj =
P (rj) is the set of all the parameters handled by rj . For instance, the request
‘GET /page?id=21&uid=u43&action=del’ contains the resource r1 = ‘/page’
and the parameters Pq = {〈p1 = id, v1 = 21〉, 〈p2 = uid, v2 = ‘u43’〉, 〈p3 =
action, v3 = ‘del’〉}. Typically, an anomaly detector would use different mod-
els to capture legitimate values associated with each parameter.

In addition to requests, the structure of user sessions can be taken into ac-
count to model the normal states of a server-side application. In this case, the
anomaly detector does not consider individual requests independently, but mod-
els their sequence. This model captures the legitimate order of invocation of the
resources, according to the application logic. An example is when a user is re-
quired to invoke an authentication resource (e.g., /user/auth) before requesting
a private page (e.g., /user/profile). In [5], a session S is defined as a sequence
of resources in R. For instance, given R = {r1, r2, . . . , r10}, a sample session is
S = 〈r3, r1, r2, r10, r2〉.

Finally, HTTP responses that are returned by the server can also be modeled.
For example, in [5], a model m(doc) is presented that takes into account the
structure of documents (e.g., HTML, XML, and JSON) in terms of partial trees
that include security-relevant nodes (e.g., <script /> nodes, nodes containing
DOM event handlers, and nodes that contain sensitive data such as credit card
numbers). These trees are iteratively merged as new documents are observed,
creating a superset of the allowed document structure and the positions within
the tree where client-side code or sensitive data may appear.

During the learning (or training) phase, given a training set of queries Q
and the corresponding responses, the model parameters are estimated and ap-
propriate anomaly thresholds are calculated. More precisely, each parameter of
a resource ri is associated with a set of models; this set of models is called a
profile: c(·) = 〈m1, m2, . . . , mu〉. The specific models in c(·) and the strategy to
combine their output determine the classes of attacks that can be detected. The
interested reader is referred to [5,8,17] for more details.
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During detection, for each new request q and corresponding response, the
database of profiles is used to calculate an aggregated anomaly score, which
takes into account the anomaly score of the request or the response according to
all the applicable models. In general, an alert is raised if the aggregated anomaly
score is above the threshold learned during training.

In this work, the set of models implemented in webanomaly [5] is used to show
how anomaly detectors can be improved to cope with the problem of concept
drift. However, the techniques we propose in this work can be easily applied to
other anomaly-based detectors.

2.2 Web Applications Are Not Static

In machine learning, changes in the modeled behavior are known as concept
drift [18]. Intuitively, the concept is the modeled phenomenon (e.g., the struc-
ture of requests to a web server, the recurring patterns in the payload of network
packets). Thus, variations in the main features of the phenomena under consid-
eration result in changes, or drifts, in the concept.

Although the generalization and abstraction capabilities of modern learning-
based anomaly detectors are resilient to noise (i.e., small, legitimate variations in
the modeled behavior), concept drift is difficult to detect and to cope with [19].
The reason is that the parameters of the models may stabilize to different values.
For instance, a string length model could calculate the sample mean and variance
of the string lengths that are observed during training. Then, during detection,
the Chebyshev inequality is used to detect strings with lengths that significantly
deviate from the mean, taking into account the observed variance. Clearly, small
differences in the lengths of strings will be considered normal. On the other hand,
the mean and variance of the string lengths can completely change because of
legitimate and permanent modifications in the web application. In this case, the
normal mean and variance will stabilize, or drift, to completely different values.
If appropriate re-training or manual updates are not performed, the model will
classify benign, new strings as anomalous. This might be a human-intensive
activity requiring substantial expertise. Therefore, having an automated, black-
box mechanism to adjust the parameters is clearly very desirable.

Changes in web applications can manifest themselves in several ways. In the
context of learning-based detection of web attacks, those changes can be catego-
rized into three groups: request changes, session changes, and response changes.

Request changes. Changes in requests occur when an application is upgraded
to handle different HTTP requests. These changes can be further divided into
two groups: parameter value changes and request structure changes. The former
involve modifications of the actual value of the parameters, while the latter
occur when parameters are added or removed. Parameter renaming is the result
of removal plus addition.

Example. A new version of a web forum introduces internationalization (I18N)
and localization (L10N). Besides handling different languages, I18N and L10N
allow several types of strings to be parsed as valid dates and times. For instance,
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valid strings for the datetime parameter are ‘3 May 2009 3:00’, ‘3/12/2009’,
‘3/12/2009 3:00 PM GMT-08’, ‘now’. In the previous version, valid date-time
strings had to conform to the regular expression ‘[0-9]{1,2}/[0-9]{2}/[0-
9]{4}’. A model with good generalization properties would learn that the field
datetime is composed of numbers and slashes, with no spaces. Thus, other
strings such as ‘now’ or ‘3/12/2009 3:00 PM GMT-08’ would be flagged as
anomalous. Also, in our example, tz and lang parameters have been added to
take into account time zones and languages. To summarize, the new version
introduces two classes of changes. Clearly, the parameter domain of datetime
is modified. Secondly, new parameters are added.

Changes in HTTP requests directly affect the request models. First, parameter
value changes affect any models that rely on the parameters’ values to extract
features. For instance, consider two of the models used in the system described in
[5]: m(char) and m(struct). The former models the strings’ character distribution
by storing the frequency of all the symbols found in the strings during training,
while the latter models the strings’ structure as a stochastic grammar, using a
Hidden Markov Model (HMM). In the aforementioned example, the I18N and
L10N introduce new, legitimate values in the parameters; thus, the frequency
of numbers in m(char) changes and new symbols (e.g., ‘-’, ‘[a-zA-Z]’ have to
be taken into account. It is straightforward to note that m(struct) is affected in
terms of new transitions introduced in the HMM by the new strings. Secondly,
request structure changes may affect any type of request model, regardless of the
specific characteristics. For instance, if a model for a new parameter is missing,
requests that contain that parameter might be flagged as anomalous.

Session changes. Changes in sessions occur whenever resource path sequences
are reordered, inserted, or removed. Adding or removing application modules
introduces changes in the session models. Also, modifications in the application
logic are reflected in the session models as reordering of the resources invoked.

Example. A new version of a web-based community software grants read-only
access to non-authenticated users, allowing them to display contents previ-
ously available to subscribed users only. In the old version, legitimate sequences
were 〈/site, /auth, /blog〉 or 〈/site, /auth, /files〉, where /site indicates the
server-side resource that handles the public site, /auth is the authentication re-
source, and /blog and /fileswere formerly private resources. Initially, the prob-
ability of observing /auth before /blog or /files is close to one (since users need
to authenticate before accessing private material). This is no longer true in the new
version, however, where /files|/blog|/auth are all possible after /site.

Changes in sessions impact all models that rely on the sequence of resources
that are invoked during the normal operation of an application. For instance,
consider the model m(sess) described in [5], which builds a probabilistic finite
state automaton that captures sequences of resource paths. New arcs must be
added to take into account the changes mentioned in the above example. These
types of models are sensitive to strong changes in the session structure and
should be updated accordingly when they occur.
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Response changes. Changes in responses occur whenever an application is
upgraded to produce different responses. Interface redesigns and feature addition
or removal are example causes of changes in the responses. Response changes are
common and frequent, since page updates or redesigns often occur in modern
websites.

Example. A new version of a video sharing application introduces Web 2.0 fea-
tures into the user interface, allowing for the modification of user interface ele-
ments without refreshing the entire page. In the old version, relatively few nodes
of documents generated by the application contained client-side code. In the new
version, however, many nodes of the document contain event handlers to trigger
asynchronous requests to the application in response to user events. Thus, if a
response model is not updated to reflect the new structure of such documents,
a large of number of false positives will be generated due to legitimate changes
in the characteristics of the web application responses.

2.3 Prevalence of Concept Drift

To understand whether concept drift is a relevant issue for real-world websites,
we performed three experiments. For the first experiment, we monitored 2,264
public websites, including the Alexa Top 500 and other sites collected by querying
Google with popular terms extracted from the Alexa Top 500. The goal was
to identify and quantify the changes in the forms and input fields of popular
websites at large. This provides an indication of the frequency with which real-
world applications are updated or altered.

Once every hour, we visited one representative page for each of the 2,264
websites. In total, we collected 3,303,816 pages, comprising more than 1,390
snapshots for each website, between January 29 and April 13, 2009. One
tenth of the representative pages were manually selected to have a signifi-
cant number of forms, input fields, and hyperlinks with parameters (e.g., <a
href="/login?anon=true&lang=en" />). By doing this, we gathered a consid-
erable amount of information regarding the HTTP messages generated by some
applications. Examples of these pages are registration pages, data submission
pages, or contact form pages. For the remaining websites, we simply used their
home pages.

For each website w, each page sample crawled at time t is associated with a tu-
ple |F |(w)

t , |I|(w)
t , the cardinality of the sets of forms and input fields, respectively.

By doing this, we collected samples of the variables |F |w = |F |wt1 , . . . , |F |wtn
,

|I|w = |I|wt1 , . . . , |I|wtn
, with 0 < n <∼ 1, 390. Figure 1 shows the relative frequency

of the variables XI = stdev(|I|(w1)), . . . , stdev(|I|(wk)) and XF = stdev(|F |(w1)),
. . . , stdev(|F |(wk)). This demonstrates that a significant amount of websites ex-
hibit variability in the response models, in terms of elements modified in the
pages, as well as request models, in terms of new forms and parameters. In addi-
tion, we estimated the expected time between changes of forms and inputs fields,
E[TF ] and E[TI ], respectively. In terms of forms, 40.72% of the websites drifted
during the observation period. More precisely, 922 out of 2,264 websites have a
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Fig. 1. Relative frequency of the standard deviation of the number of forms (a) and
input fields (c). Also, the distribution of the expected time between changes of forms
(b) and input fields (d) are plotted. A non-negligible portion of the websites exhibits
changes in the responses.

finite E[TF ]. Similarly, 29.15% of the websites exhibited drifts in the number of
input fields, i.e., E[TI ] < +∞ for 660 websites. Figure 1 shows the relative fre-
quency of (b) E[TF ], and (d) E[TI ]. E[TF ]. This confirms that a non-negligible
portion of the websites exhibit significantly frequent changes in the responses.

For the second experiment, we monitored in depth three large, data-centric
web applications over several months: Yahoo! Mail, YouTube, and MySpace. We
dumped HTTP responses captured by emulating user interaction using a custom,
scriptable web browser implemented with HtmlUnit. Examples of these interac-
tions are as follows: visit the home page, login, browse the inbox, send messages,
return to the home page, click links, log out. Manual inspection revealed some
major changes in Yahoo! Mail. For instance, the most evident change consisted of
a set of new features added to the search engine (e.g., local search, refined address
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Fig. 2. Lines of codes in the repositories of PhpBB, WordPress, and Movable Type, over
time. Counts include only the code that manipulates HTTP responses, requests and
sessions.

field in maps search), which manifested themselves as new parameters found in
the web search page (e.g. to take into account the country or the ZIP code). User
pages of YouTube were significantly updated with new functionalities between
2008 and 2009. For instance, the new version allows users to rearrange widgets
in their personal pages. To account for the position of each element, new param-
eters are added to the profile pages and submitted asynchronously whenever the
user drags widgets within the layout. The analysis on MySpace did not reveal
any significant change. The results of these two experiments show that changes
in server-side applications are common. More importantly, these modifications
often involve the way user data is represented, handled, and manipulated.

For the third experiment, we analyzed changes in the requests and sessions
by inspecting the code repositories of three of the largest, most popular open-
source web applications: WordPress, Movable Type, and PhpBB. The goal was to
understand whether upgrading a web application to a newer release results in
significant changes in the features that are used to determine its behavior. In this
analysis, we examined changes in the source code that affect the manipulation of
HTTP responses, requests, and session data. We used StatSVN, an open-source
tool for tracking and visualizing the activity of SVN repositories (e.g., the
number of lines changed or the most active developers). We modified StatSVN
to incorporate a set of heuristics to compute approximate counts of the lines of
code that, directly or indirectly, manipulate HTTP session, request or response
data. In the case of PHP, examples representative of such lines include, but
are not limited to, REQUEST| SESSION| POST| GET|session |http |strip -
tags|addslashes. In order to take into account data manipulation performed
through library functions (e.g., WordPress’ custom Http class), we also generated
application-specific code patterns by manually inspecting and filtering the core
libraries. Figure 2 shows, over time, the lines of code in the repositories of Ph-
pBB, WordPress, and Movable Type that manipulate HTTP responses, requests
and, sessions. These results show the presence of significant modifications in
the web application in terms of relevant lines of code added or removed. More
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importantly, such modifications affect the way HTTP data is manipulated and,
thus, impact request, response or session models.

The aforementioned experiments confirm that the class of changes we de-
scribed in Section 2.2 is common in real-world web applications. Therefore, we
conclude that anomaly detectors for web applications must incorporate proce-
dures to prevent false alerts due to concept drift. In particular, a mechanism is
needed to discriminate between legitimate and malicious changes, and respond
accordingly.

3 Addressing Concept Drift

In this section, we first present our technique to distinguish between legitimate
changes in web application behavior and evidence of malicious behavior. We then
discuss how a web application anomaly detection system can effectively handle
legitimate concept drift.

3.1 The Web Application as Oracle

The body of HTTP responses contains a set of links Li and forms Fi that refer
to a set of target resources. Each form also includes a set of input fields Ii.
In addition, each link li,j ∈ Li and form fi,j ∈ Fi has an associated set of
parameters.

From a resource ri, the client clicks upon a link li,j or submits a form fi,j .
Either of these actions generates a new HTTP request to the web application
with a set of parameter key-value pairs, resulting in the return of a new HTTP
response to the client, ri+1, the body of which contains a set of links Li+1 and
forms Fi+1. This process continues until the session has ended (i.e., either the
user has explicitly logged out, or a timeout has occurred).

Our key observation is that, at each step of a web application session, the
set of potential target resources is given exactly by the content of the current
resource. That is, given ri, the associated sets of links Li and forms Fi directly
encode a significant sub-set of the possible ri+1. Furthermore, each link li,j and
form fi,j indicates a precise set of expected parameters and, in some cases, the
set of legitimate values for those parameters that can be provided by a client.

Example. Consider a hypothetical banking web application, where the cur-
rent resource ri = /account presented to a client is an account overview
containing a set of links Li = {/account/history?aid=328849660322, /ac-
count/history?aid=446825759916, /account/transfer, /logout} and forms
(represented as their target action) Fi = {/feedback, /search}.

From Li and Fi, we can deduce the set of legal candidate resources for the
next request ri+1. Any other resource would, by definition, be a deviation from
a legal session flow through the web application as specified by the application
itself. For instance, it would not be expected behavior for a client to directly ac-
cess /account/transfer/submit (i.e., a resource intended to submit an account
funds transfer) from ri. Furthermore, for the resource /account/history, it is
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clear that the web application expects to receive a single parameter aid with an
account number as an identifier.

In the case of the form with target /feedback, let the associated input ele-
ments be:

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

</select>

<textarea name="message" />

It immediately follows that any invocation of the /feedback resource from ri

should include the parameters subject and message. In addition, the legal set
of values for the parameter subject is given by enumerating the enclosed <op-
tion /> tags. Similarly, valid values for the new tz and datetime parameters
mentioned in the example of Section 2.2 can be inferred. Any deviation from
these specifications could be considered evidence of malicious behavior.

We conclude that the responses generatedbyawebapplication constitute a spec-
ification of the intended behavior of clients and the expected inputs to an applica-
tion’s resources. As a consequence, when a change occurs in the interface presented
by a web application, this will be reflected in the content of its responses. There-
fore, as detailed in the following section, our anomaly detection system performs
response modeling to detect and adapt to changes in monitored web applications.

3.2 Adaptive Response Modeling

In order to detect changes in web application interfaces, the response modeling
of webanomaly has been augmented with the ability to build Li and Fi from the
HTML documents returned to a client. The approach is divided into two phases.

Extraction and parsing. The anomaly detector parses each HTML document
contained in a response issued by the web application to a client. For each <a />
tag encountered, the contents of the href attribute is extracted and analyzed.
The link is decomposed into tokens representing the protocol (e.g., http, https,
javascript, mailto), target host, port, path, parameter sequence, and anchor.
Paths are subject to additional processing; for instance, relative paths are nor-
malized to obtain a canonical representation. This information is stored as part
of an abstract document model for later processing.

A similar process occurs for forms. When a <form /> tag is encountered, the
action attribute is extracted and analyzed as in the case of the link href at-
tribute. Furthermore, any <input />, <textarea />, or <select /> and <op-
tion /> tags enclosed by a particular <form /> tag are parsed as parameters
to the corresponding form invocation. For <input /> tags, the type, name, and
value attributes are extracted. For <textarea /> tags, the name attribute is
extracted. Finally, for <select /> tags, the name attribute is extracted, as well
as the content of any enclosed <option /> tags. The target of the form and its
parameters are recorded in the abstract document model as in the case for links.
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Client Anomaly detector Web app. server

qi

Parsing

Change or attack?

Li, Fi

qi

respirespi
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Fig. 3. A representation of the interaction between the client and the web application
server, monitored by a learning-based anomaly detector. After request qi is processed,
the corresponding response respi is intercepted and link Li and forms Fi are parsed to
update the request models. This knowledge is exploited as a change detection criterion
for the subsequent request qi+1.

Analysis and modeling. The set of links and forms contained in a response
is processed by the anomaly engine. For each link and form, the corresponding
target resource is compared to the existing known set of resources. If the resource
has not been observed before, a new model is created for that resource. The
session model is also updated to account for a potential transition from the
resource associated with the parsed document and the target resource by training
on the observed session request sequence.

For each of the parameters parsed from links or forms contained in a response,
a comparison with the existing set of known parameters is performed. If a pa-
rameter has not already been observed (e.g., the new tz parameter), a profile is
created and associated with the target resource model.

Any values contained in the response for a given parameter are processed
as training samples for the associated models. In cases where the total set of
legal parameter values is specified (e.g., <select /> and <option /> tags), the
parameter profile is updated to reflect this. Otherwise, the profile is trained on
subsequent requests to the associated resource.

As a result of this analysis, the anomaly detector is able to adapt to changes
in session structure resulting from the introduction of new resources. In addition,
the anomaly detector is able to adapt to changes in request structure resulting
from the introduction of new parameters and, in a limited sense, to changes in
parameter values.

3.3 Advantages and Limitations

Due to the response modeling algorithm described in the previous section, our
web application anomaly detector is able to automatically adapt to many com-
mon changes observed in web applications as modifications are made to the
interface presented to clients. Both changes in session and request structure
such as those described in Section 2.2 can be accounted for in an automated
fashion. For instance, the I18N and L10N modification of the aforementioned
example is correctly handled as it consists in an addition of the tz parameter
and a modification of the datetime parameter. Furthermore, we claim that web
application anomaly detectors that do not perform response modeling cannot
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reliably distinguish between anomalies caused by legitimate changes in web ap-
plications and those caused by malicious behavior. Therefore, as will be shown
in Section 4, any such detector that solely monitors requests is more prone to
false positives in the real world.

Clearly, the technique relies upon the assumption that the web application
has not been compromised. Since the web application, and in particular the doc-
uments it generates, is treated as an oracle for whether a change has occurred, if
an attacker were to compromise the application in order to introduce a malicious
change, the malicious behavior would be learned as normal by our anomaly de-
tector. Of course, in this case, the attacker would already have access to the web
application. However, we remark that our anomaly detector observes all requests
and responses to and from untrusted clients, therefore, any attack that would
compromise response modeling would be detected and blocked. For example, an
attacker could attempt to evade the anomaly detector by introducing a malicious
change in the HTTP responses and then exploits the change detection technique
that would interpret the new malicious request as a legit change. For instance,
the attacker could incorporate a link that contain a parameter used to inject the
attack vector. To this end, the attacker would have to gain control of the server
by leveraging an existing vulnerability1 of the web application (e.g., a buffer
overflow, a SQL injection). However, the HTTP requests used by the attacker
to exploit the vulnerability will trigger several models (e.g., the string length
model, in the case of a buffer overflow) and, thus, will be flagged as anomalous.
In fact, our technique does not alter the ability of the anomaly detector to detect
attacks. On the other hand, it avoids many false positives, as demonstrated in
Section 4.2.

Besides the aforementioned assumptions, three limitations are important to
note. First, the set of target resources may not always be statically derivable from
a given resource. For instance, this can occur when client-side scripts are used
to dynamically generate page content, including links and forms. Accounting
for dynamic behavior would require the inclusion of script interpretation. This,
however, has a high overhead, is complex to perform accurately, and introduces
the potential for denial of service attacks against the anomaly detection system.
For these reasons, we have not included such a component in the current system,
although further research is planned to deal with dynamic behavior. Moreover,
as Section 4 demonstrates, the proposed technique performs well in practice.

Second, the technique does not fully address changes in the behavior of in-
dividual request parameters in its current form. In cases where legitimate pa-
rameter values are statically encoded as part of an HTML document, response
modeling can directly account for changes in the legal set of parameter values.
Unfortunately, in the absence of any other discernible changes in the response,
changes in parameter values provided by clients cannot be detected. However,
heuristics such as detecting when all clients switch to a new observable behavior
in parameter values (i.e., all clients generate anomalies against a set of models in

1 The threat model assumes that the attacker can interact with the web application
only by sending HTTP requests.
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a similar way) could serve as an indication that a change in legitimate parameter
behavior has occurred.

Third, the technique cannot handle the case where a resource is the result of
a parametrized query and the previous response has not been observed by the
anomaly detector. In our experience, however, this does not occur frequently in
practice, especially for sensitive resources.

4 Evaluation

In this section, we show that our techniques reliably distinguish between le-
gitimate changes and evidence of malicious behavior, and present the resulting
improvement in terms of detection accuracy.

The goal of this evaluation is twofold. We first show that concept drift in mod-
eled behavior caused by changes in web applications results in lower detection
accuracy. Second, we demonstrate that our technique based on HTTP responses
effectively mitigates the effects of concept drift. In both the experiments, the
testing data set includes samples of the most common types of attacks against
web applications such as cross-site scripting (XSS) (e.g., CVE-2009-0781), SQL
injections (e.g., CVE-2009-1224), and command execution exploits (e.g., CVE-
2009-0258) that are reflected in request parameter values. In particular, we in-
cluded a total of 1000 attacks, comprised of 400 XSS attacks, 400 SQL injections,
and 200 command injections. The XSS attacks are variations on those listed in
[20], the SQL injections were created similarly from [21], and the command exe-
cution exploits were variations of common command injections against the Linux
and Windows platforms.

In both experiments, webanomaly was evaluated on a data set consisting of
HTTP traffic drawn from real-world web applications. This data was obtained
from several monitoring points at both commercial and academic sites. For each
application, the full contents of each HTTP connection observed over a period of
several months were recorded. The resulting flows were filtered using signature-
based techniques to remove known attacks, and then partitioned into distinct
training and test sets. In total, the data set contains 823 unique web applications,
36,392 unique resource paths, 16,671 unique parameters, and 58,734,624 HTTP
requests.

4.1 Effects of Concept Drift

In the first experiment, we demonstrate that concept drift as observed in real-
world web applications results in a significant negative impact on false positive
rates. First, webanomaly was trained on an unmodified, filtered data set. Then,
the detector analyzed a test data set Q to obtain a baseline ROC curve.

After the baseline curve had been obtained, the test data set was processed to
introduce new behaviors corresponding to the effects of web application changes,
such as upgrades or source code refactoring, obtaining Qdrift. In this manner, the
set of changes in web application behavior was explicitly known. In particular, as
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Table 1. Reduction in the false positive rate due to HTTP response modeling for
various types of changes

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

detailed in Table 1, 6,749new session flowswere createdby introducing requests for
new resources and creating request sequences for both new and known resources
that had not previously been observed. Also, new parameter sets were created
by introducing 6,750 new parameters to existing requests. Finally, the behavior
of modeled features of parameter values was changed by introducing 5,785 muta-
tions of observed values in client requests. For example, each sequence of resources
〈/login, /index, /article〉might be transformed to 〈/login, /article〉. Sim-
ilarly, each request like /categories found in the traffic might be replaced with
/foobar. For new parameters, a set of link or form parameters might be updated
by changing a parameter name and updating requests accordingly.

It must be noted that in all cases, responses generated by the web application
were modified to reflect changes in client behavior. To this end, references to new
resources were inserted in documents generated by the web application, and both
links and forms contained in documents were updated to reflect new parameters.

webanomaly – without the HTTP response modeling technique enabled – was
then run over Qdrift to determine the effects of concept drift upon detector
accuracy. The resulting ROC curves are shown in Figure 4a. The consequences
of web application change are clearly reflected in the increase in false positive
rate for Qdrift versus that for Q. Each new session flow and parameter manifests
as an alert, since the detector is unable to distinguish between anomalies due to
malicious behavior and those due to legitimate change in the web application.

4.2 Change Detection

The second experiment quantifies the improvement in the detection accuracy
of webanomaly in the presence of web application change. As before, the detec-
tor was trained over an unmodified filtered data set, and the resulting profiles
were evaluated over both Q and Qdrift. In this experiment, however, the HTTP
response modeling technique was enabled.

Figure 4b presents the results of analyzing HTTP responses on detection ac-
curacy. Since many changes in the behavior of the web application and its clients
can be discovered using our response modeling technique, the false positive rate
for Qdrift is greatly reduced over that shown in Figure 4a, and approaches that
of Q, where no changes have been introduced. The small observed increase in
false positive rate can be attributed to the effects of changes in parameter val-
ues. This occurs because a change has been introduced into a parameter value
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Fig. 4. Detection and false positive rates measured on Q and Qdrift, with HTTP re-
sponse modeling enabled in (b)

submitted by a client to the web application, and no indication of this change
was detected on the preceding document returned to the client (e.g., because no
<select /> were found).

Table 1 displays the individual contributions to the reduction of the false pos-
itive rate due to the response modeling technique. Specifically, the total number
of anomalies caused by each type of change, the number of anomalies erroneously
reported as alerts, and the corresponding reduction in the false positive rate is
shown. The results displayed were generated from a run using the optimal op-
erating point (0.00144, 0.97263) indicated by the knee of the ROC curve in
Figure 4b. For changes in session flows and parameters sets, the detector was
able to identify an anomaly as being caused by a change in web application be-
havior in all cases. This resulted in a large net decrease in the false positive rate
of the detector with response modeling enabled. The modification of parame-
ters is more problematic, though; as discussed in Section 3.3, it is not always
apparent that a change has occurred when that change is limited to the type of
behavior a parameter’s value exhibits.

From the overall improvement in false positive rates, we conclude that HTTP
response modeling is an effective technique for distinguishing between anomalies
due to legitimate changes in web applications and those caused by malicious
behavior. Furthermore, any anomaly detector that does not do so is prone to
generating a large number of false positives when changes do occur in the mod-
eled application. Finally, as it has been shown in Section 2, web applications
exhibit significant long-term change in practice, and, therefore, concept drift is
a critical aspect of web application anomaly detection that must be addressed.

5 Related Work

Anomaly-based IDSs have evolved considerably after Denning’s seminal paper
on intrusion detection [22]. Besides network-based detection [23], anomaly-based
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techniques have been also exploited to protect the operating system. In [24],
the normal behavior of applications is captured by modeling system call se-
quences [25,26] along with features of their arguments. In [27], a mixture of
machine learning techniques is exploited to detect anomalous system calls in
the Linux kernel. Ad-hoc distances between system calls are defined to perform
clustering in order to identify natural classes of similar calls. The reduced size
of the clustered input makes the training of Markov chains efficient. The behav-
ior of each host application is modeled as Markov chains on which probabilistic
thresholds are calculated to detect misbehaving sequences.

PAYL [28] is a network-based anomaly detection system. It creates models of
each service’s normal behavior by recording byte frequencies of network streams.
This approach has been further explored in [29], where higher-order n-grams are
used instead of frequencies. Instead, [30] exploits self-organizing maps to classify
the payload of IP frames in order to separate normal packets from malicious
ones.

Anomaly-based detectors of web attacks have been first proposed in [5], where
a multi-model approach to characterizing the normal behavior of web application
parameters is proposed.

A tool to protect against code-injection attacks has been recently proposed
in [17]. The approach exploits a mixture of Markov chains to model legitimate
payloads at the HTTP layer. The computational complexity of n-grams with
large n is solved using Markov chain factorization, making the system algorith-
mically efficient.

HTTP responses are exploited in [8]. Besides other features, the DOM is
modeled to enhance the detection capabilities of SQL injection and cross-site
scripting attacks. The fact that it relies on HTTP responses makes this approach
similar to ours. However, we exploit HTTP responses to detect changes and
update other anomaly models accordingly, instead of modeling responses per se.

A complementary tool is proposed in [6], where an approach to improve the
explanatory power of anomaly-based detectors is proposed along with a cluster-
ing and classification methodology to reduce their false positive rate. Another
technique to increase detection accuracy is presented in [31], where Bayesian
networks are exploited to combine models and define inter-model dependencies.
The resulting system shows a significant reduction in false alerts.

Reduction of false positives in anomaly detection systems has also been stud-
ied in [13]. Similar behavioral profiles for individual hosts are grouped together
using a k-means clustering algorithm. However, the distance metric used was
not explicitly defined. Coarse network statistics such as the average number of
hosts contacted per hour, the average number of packets exchanged per hour,
and the average length of packets exchanged per hour are all examples of metrics
used to generate behavior profiles. A voting scheme is used to generate alerts,
in which alert-triggering events are evaluated against profiles from other mem-
bers of that cluster. Events that are deemed anomalous by all members generate
alerts.
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6 Conclusions

In this work, we have identified the natural dynamicity of web applications as an
issue that must be addressed by modern anomaly-based web application anomaly
detectors in order to prevent increases in the false positive rate whenever the
monitored web application is changed. We refer to this frequent phenomenon
the web application concept drift.

We propose the use of novel HTTP response modeling techniques to discrim-
inate between legitimate changes and anomalous behaviors in web applications.
More precisely, responses are analyzed to find new and previously unmodeled pa-
rameters. This information is extracted from anchors and forms elements, and
then leveraged to update request and session models. We have evaluated the
effectiveness of our approach over an extensive real-world data set of web appli-
cation traffic. The results show that the resulting system can detect anomalies
and avoid false alerts in the presence of concept drift.

As future work, we plan to investigate the potential benefits of modeling the
behavior of JavaScript code, which is becoming increasingly prevalent in modern
web applications. Also, additional, richer, and media-dependent response models
must be studied to account for interactive client-side components, such as Adobe
Flash and Microsoft Silverlight applications.
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Abstract. The deployment and use of Anomaly Detection (AD) sensors often
requires the intervention of a human expert to manually calibrate and optimize
their performance. Depending on the site and the type of traffic it receives, the
operators might have to provide recent and sanitized training data sets, the char-
acteristics of expected traffic (i.e. outlier ratio), and exceptions or even expected
future modifications of system’s behavior. In this paper, we study the potential
performance issues that stem from fully automating the AD sensors’ day-to-day
maintenance and calibration. Our goal is to remove the dependence on human op-
erator using an unlabeled, and thus potentially dirty, sample of incoming traffic.

To that end, we propose to enhance the training phase of AD sensors with a
self-calibration phase, leading to the automatic determination of the optimal AD
parameters. We show how this novel calibration phase can be employed in con-
junction with previously proposed methods for training data sanitization resulting
in a fully automated AD maintenance cycle. Our approach is completely agnostic
to the underlying AD sensor algorithm. Furthermore, the self-calibration can be
applied in an online fashion to ensure that the resulting AD models reflect changes
in the system’s behavior which would otherwise render the sensor’s internal state
inconsistent. We verify the validity of our approach through a series of exper-
iments where we compare the manually obtained optimal parameters with the
ones computed from the self-calibration phase. Modeling traffic from two differ-
ent sources, the fully automated calibration shows a 7.08% reduction in detection
rate and a 0.06% increase in false positives, in the worst case, when compared to
the optimal selection of parameters. Finally, our adaptive models outperform the
statically generated ones retaining the gains in performance from the sanitization
process over time.

Keywords: anomaly detection, self-calibrate, self-update, sanitization.

1 Introduction

In recent years, network anomalies such as flash crowds, denial-of-service attacks, port
scans and the spreading of worms and botnets pose a significant threat for large-scale
networks. The capability to automatically identify and diagnose anomalous behavior
both in the network and on the host is a crucial component of most of the defense and
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failure recovery systems currently deployed in enterprises and organizations. Indeed,
Anomaly Detection (AD) sensors are becoming increasingly popular: host-based [24]
and network-based [21, 25, 17, 16, 30] intrusion detection systems rely heavily on AD
components to maintain their high detection rates and minimize the false positives even
when other, non-AD sensors are involved in the detection process.

A major hurdle in the deployment, operation, and maintenance of AD systems is
the calibration of these sensors to the protected site characteristics and their ability to
“adapt” to changes in the behavior of the protected system. Our aim is to automatically
determine the values of the critical system parameters that are needed for both training
and long-term operation using only the intrinsic properties of existing behavioral data
from the protected host. To that end, we first address the training stage and calibration
of the AD sensor. We use an unlabeled, and potentially dirty sample of the training set to
construct micro datasets. On one hand, these datasets have to be large enough to generate
models that capture a local view of normal behavior. On the other hand, the resulting
micro-models have to be small enough to fully contain and minimize the duration of
attacks and other abnormalities which will appear in a minority of the micro datasets.
To satisfy this trade-off, we generate datasets that contain just enough data so that the
arrival rate of new traffic patterns is stable. The micro-models that result from each data
set are then engaged in a voting scheme in order to remove the attacks and abnormalities
from the data. The voting process is automatically adapted to the characteristics of the
traffic in order to provide separation between normal and abnormal data.

The second objective is to maintain the performance level of the AD sensors over a
medium or long time horizon, as the behavior of the protected site undergoes changes or
evolution. This is not an easy task [21] because of the inherent difficulty in identifying
the rate of change over time for a particular site. However, we can “learn” this rate by
continuously building new micro-models that reflect the current behavior of the system:
every time a new model is added to the voting process, an old model is removed in an
attempt to adapt the normality model to the observed changes. Without this adaptation
process, legitimate changes in the systems are flagged as anomalous by the AD sensor
leading to an inflation of alerts. In contrast, our framework was shown to successfully
adapt to modifications in the behavior of the protected system. Finally, our approach
is agnostic to the underlying AD sensor, making for a general framework that has the
potential to improve the general applicability of AD in the real world.

1.1 Contributions

Our target is to create a fully automated protection mechanism that provides a high
detection rate, while maintaining a low false positive rate, and also adapts to changes
in the system’s behavior. In [5, 4], we have explored the basic problem and proposed
the sanitization techniques for multiple sites using empirically determined parameters.
We also presented a distributed architecture for coping with long-lasting attacks and
a shadow sensor architecture for consuming false positives (FP) with an automated
process rather than human attention.

Here, we apply those insights to the problem of providing a run-time framework
for achieving the goals stated above. This is a significant advance over our prior work
which, while not requiring a manually cleaned data set for training, relied on empirically
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determined parameters and human-in-the-loop calibration methods. Along these lines,
our current work provides the following contributions:

– Identifying the intrinsic characteristics of the training data, such as the arrival rate
of new content and the level of outliers (i.e. self-calibration)

– Cleansing a data set of attacks and abnormalities by automatically selecting an
adaptive threshold for the voting method presented previously based on the char-
acteristics of the observed traffic resulting in a sanitized training data set (i.e. auto-
matic self-sanitization)

– Maintaining the performance we gained by applying the sanitization methods be-
yond the initial training phase and extending them throughout the lifetime of the
sensor by continuously updating the self-calibrated and self-sanitized model (i.e.
self-update)

2 Ensemble Classifier Using Time-Based Partitions

In [5, 4], we focused on methods for sanitizating the training data sets for AD sensors.
This resulted in better AD sensor performance (i.e. higher detection rate while keeping
the false positives low). Here, we attempt to fully automate the construction of those
models by calibrating the sanitization parameters using the intrinsic properties of the
training data. We briefly describe the sanitization technique and the empirical param-
eters that it requires in order to operate optimally. Indeed, to cleanse the training data
for any AD sensor, we harnessed the idea of an “ensemble classifier”, defined by [6]
as “a set of classifiers whose individual decisions are combined in some way (typically
by weighted or unweighted voting) to classify new examples.” One option for gener-
ating such an classifier ensemble is to peruse the available training data by splitting
them into smaller data sets used to train instances of the AD sensor. The inherent as-
sumption is that attacks and abnormalities are a minority compared to the entire set
of training data. This is certainly true for training sets that span a long period of time.
Therefore, we proposed the use of time-delimited slices of the training data. Indeed,
consider a large training data set T partitioned into a number of smaller disjoint subsets
(micro-datasets):

T = {md1, md2, . . . , mdN}, (1)

where mdi is the micro-dataset starting at time (i− 1) ∗ g and, g is the granularity for
each micro-dataset.

We can now apply a given anomaly detection algorithm. We define the model func-
tion AD to be:

M = AD(T ), (2)

where AD can be any chosen anomaly detection algorithm, T is the training data set,
and M denotes the model produced by AD for the given training set. This formulation
enables us to maintain the stated principle of being agnostic to the inner workings of
the AD sensor - we treat it as a black box whose first task is to output a normality model
for a data set provided as input.
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We use each of the “epochs” mdi to compute a micro-model Mi = AD(mdi) and
generate the classifier ensemble. We posit that each distinct attack will be concentrated
in (or around) a certain time period, affecting only a small fraction of the micro-models:
Mj computed for time period tj may be poisoned, having modeled the attack vector
as normal data, but model Mk computed for time period tk, k �= j is likely to be
unaffected by the same attack. We use this ensemble classifier for identifying attacks
and abnormalities in the data. Our expectation is that the ensemble will be a more
efficient tool that the sum of its parts, with the effects of attacks and other abnormalities
contained in individual micro-models rather than contaminating the entire data set.

A key parameter of the aforementioned sanitization method is the automatic selection
of the optimal time granularity for different training data sets. Intuitively, choring a
smaller value of the time granularity g always confines the effect of an individual attack
to a smaller neighborhood of micro-models. However, excessively small values can lead
to under-trained models that also fail to capture the normal aspects of system behavior.
One method that ensures that the micro-models are well-trained is based on the rate at
which new content appears in the training data [30]. This has the advantage of relying
exclusively on intrinsic properties of the training data set. By applying this analysis, we
can then identify for each mdi the time granularity that ensures a well-trained micro-
model and thus attaining a balance between the two desiderata presented above.

We consider the training data set as a sequence of high-order n-grams (therefore a
stream of values from a high-dimensional alphabet). When processing this data, for any
time window twi, we can estimate the likelihood Li of the system seeing new n-grams,
and therefore new content, in the immediate future based on the characteristics of the
traffic seen so far:

Li =
ri

Ni
, (3)

where ri is the number of new unique n-grams in the time window twi and Ni is the
total number of unique n-grams seen between tw0 and twi.

Assuming that the data processed by the system is not random, the value of Li de-
creases much faster than the time necessary to exhaust the space of possible n-grams.
We are interested in determining the stabilization point for which the number of new
grams appears at a low rate, thus looking for the the knee of the curve. In order to detect
the stabilization point, we use the linear least squares method over a sliding window of
points (in our experiments we use 10 points) to fit a line, L′

i(t) = a + b ∗ t. When the
regression coefficient b approaches zero (0), we consider that the input has stabilized as
long as the standard deviation of the likelihood is not significant. In our experiments,
we discovered that we can relax the above assumptions to an absolute value lower than
0.01 for the regression coefficient b while the standard deviation of the likelihood is
less than 0.1. The time interval between tw0 and twi is then set as the desired time
granularity for computing the micro-models as described above.

Our experimental corpus, used throughout the experiments in this paper, consists of
500 hours of real network traffic from each of two hosts, www1 and lists. www1 is a
gateway to the homepages of students in the Computer Science Department running
several dozen different scripts, while lists hosts the Computer Science Mailing Lists.
The two servers exhibit different content, diversity and volume of data. We partitioned
the data into three separate sets: two used for training and one used for testing. The
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Fig. 1. Time granularity detection(|tw| = 600s): a) first 10 micro-models (after each model, L is
reset); b) zoom on the first model
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Fig. 2. Automatically determined time granularity

first 300 hours of traffic in each set was used to build micro-models. Figure 1 shows the
granularity detection method used to characterize both data sets. Figure 1 (a) presents
the time granularity for the first ten micro-models. L is reset immediately after a stabi-
lization point is found, and we begin to generate a new model. At a first glance, both
sites display similar behavior, with the level of new content stabilizing within the first
few hours of input traffic. However, they do not exhibit the same trend in the likelihood
distribution, Lwww1 presenting more fluctuations. Figure 1 (b) presents a zoom on the
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first micro-model time granularity detection. The solid lines show the evolution of the
Li likelihood metric over time(we use n-grams of size n=5). The dotted lines show the
linear least squares approximation for the stabilization value of twi, which is used to
compute the time granularity gi.

Figure 2 illustrates the automatically generated time granularities over the first 300
hours of traffic for both www1 and lists. The average value for www1 is g = 8562s
(≈ 2 hours and 22 minutes), while the standard deviation is 1300s (≈ 21 minutes). For
lists the average time granularity is g = 8452s (≈ 2 hours and 20 minutes), while the
standard deviation is 819.8s (≈. 13 minutes). In the next section, we will present an
extensive comparison between the performance of the sanitized models that use the au-
tomated parameters versus the ones built using the empirically determined parameters.

3 Adaptive Training Using Self-sanitization

Once the micro-models are built, they can be used, together with the chosen AD sensor,
as a classifier ensemble: a given network packet, which is to be classified as either
normal or anomalous, can be tested, using the AD sensor, against each of the micro-
models. One possibility would be to apply this testing scheme to the same data set that
was used to build the micro-models (we call this process introspection). Another option
is to apply the micro-model testing to a second set of the initially available traffic, of
smaller size. The ultimate goal is to effectively sanitize the training data set and thus
obtain the clean training data set needed for anomaly detection.

Once again, we treat the AD sensor at a general level, this time considering a generic
TEST function. For a packet Pj part of the tested data set, each individual test against
a micro-model results in a label marking the tested packet either as normal or abnormal:

Lj,i = TEST (Pj, Mi) (4)

where the label, Lj,i, has a value of 0 if the model Mi deems the packet Pj normal, or
1 if Mi deems it abnormal. However, these labels are not yet generalized; they remain
specialized to the micro-model used in each test. In order to generalize the labels, we
process each labeled data set through a voting scheme, which assigns a final score to
each packet:

SCORE(Pj) =
1
W

N∑
i=1

wi · Lj,i (5)

where wi is the weight assigned to model Mi and W =
∑N

i=1 wi. We have investi-
gated two possible strategies: simple voting, where all models are weighted identically,
and weighted voting, which assigns to each micro-model Mi a weight wi equal to the
number of packets used to train it. In our previous work we observed that the weighted
version performs slightly better, so throughout this paper we will use the weighted vot-
ing scheme.

The set of micro-models is now ready to be used as an overall packet classifier. Recall
our assumption that only a minority of the micro-models will be affected by any given
attack or anomaly. Based on the overall score assigned by the set of micro-models, we
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split the training data into two disjoint sets: Tsan, containing the packets deemed as
normal, and Tabn, containing the abnormalities/attacks:

Tsan =
⋃
{Pj | SCORE(Pj) ≤ V } (6)

Tabn =
⋃
{Pj | SCORE(Pj) > V }, (7)

where V is a voting threshold used to differentiate between the two sets. Next we will
present our method for automatically computing the value of V that effectively provides
this separation, based on the characteristics of the traffic. Once the disjoint data sets are
constructed, we can apply the modeling function of the AD sensor and obtain compact
representations of both normal and abnormal traffic:

Msan = AD(Tsan) (8)

Mabn = AD(Tabn) (9)

3.1 Voting Threshold Detection

Our goal is to automatically determine the voting threshold, V . In order to establish an
effective value for it, we must first analyze the impact of the voting threshold on the
number of packets that are deemed normal. The extreme values have an obvious effect:
a threshold of V = 0 (very restrictive) means that a packet must be approved by all
micro-models in order to be deemed normal. In contrast, a threshold of V = 1 (very
relaxed) means that a packet is deemed as normal as long as it is accepted by at least one
micro-model. In general, for a given value Vi we define P (Vi) as the number of packets
deemed as normal by the classifier (SCORE(Pj) < Vi). The behavior of this function
for intermediate values of Vi is highly dependent on the particular characteristics of the
available data. For a particular data set, we can plot the function P (V ) by sampling the
values of V at a given resolution; the result is equivalent to the cumulative distribution of
the classification scores over the entire data set. This analysis can provide insights into
three important aspects of our problem: the intrinsic characteristics of the data (number
and relevance of outliers), the ability of the AD sensor to model the differences in the
data, and the relevance of the chosen time granularity.

To illustrate this concept, we will use as an example the www1 data set and the
Anagram [30] sensor. Figure 3 shows the result of this analysis for time granularity
ranging from 1 to 100 hours. We notice that, as the time granularity increases, the plot
“flattens” towards its upper limit: the classifier loses the ability to discriminate as the
micro-models are fewer in number and also more similar between themselves. We also
notice that for V very close to 1, all the plots converge to similar values; this is an
indicator of the presence of a number of packets that are highly different from the rest
of the data in the set.

Intuitively, the optimal voting threshold V is the one that provides the best separation
between the normal data class and the abnormal class. The packets that were voted nor-
mal for V = 0 are not of interest in the separation problem because they are considered
normal by the full majority of the micro-models and the choice of V does not influence
them. So the separation problem applies to the rest data for which V > 0; thus, we
normalize P (V ) as follows:
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Fig. 3. Impact of the voting threshold over the number of packets deemed as normal for different
time granularities

p(Vi) =
P (Vi)− P (0)
P (1)− P (0)

(10)

The separation problem can be now considered as the task of finding the smallest thresh-
old (minimize V ) that captures as much as possible of the data (maximize p(V )). There-
fore, if the function p(V )−V exhibits a strong global maximum, these two classes can
be separated effectively at the value that provides this maximum.

We have applied this method to both data sets considered in this paper, using Anagram.
The profiles of both p(V ) (solid lines) and p(V )− V (dotted lines) are shown in Figure
4. In each case, we have marked the value of V that maximizes p(V )−V . In both graphs,
the maximum of p(V )− V corresponds to a “breaking point” in the profile of p(V ) (in
general, any changes in the behavior of p(V ) are identified by local maxima or minima of
p(V )−V ). The value of the global maximum can be interpreted as a confidence level in
the ability of the micro-model classifier to identify outliers, with larger values indicating
a high discriminative power between the normal data and the abnormalities/attacks. A
low value (and therefore a profile of p(V ) following the x = y line) shows that the two
classes are not distinct. This can be indicative of a poorly chosen time granularity, an
AD sensor that is not sensitive to variations in the data set, or both. We consider this to
be a valuable feature for a system that aims towards fully autonomous self-calibration:
failure cases should be identified and reported to the user rather than silently accepted.

Once the value of the voting threshold V has been determined, the calibration process
is complete. We note that all the calibration parameters have been set autonomously
based exclusively on observable characteristics of the training data. The process can
therefore be seen as a method for characterizing the combination of AD sensor - training
data set, and evaluating its discriminative ability.
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Fig. 4. Determining the best voting threshold for: (a) www1; (b) lists

3.2 Analysis of Self-sanitization Parameters

To evaluate the quality of the models built using the automatically determined saniti-
zation parameters, we compare their performance against the performance of the san-
itized models built using empirically determined parameters. There is a fundamental
difference between the two types of models: for the first one the sanitization process
is completely hands-free, not requiring any human intervention, while for the latter,
exhaustive human intervention is required to evaluate the quality of the models for dif-
ferent parameter values and then to decide on the appropriate parameter values.

There are two parameters of interest in the sanitization process: the set of values for
the time granularity and the voting threshold. We will therefore compare the models
built using empirically determined parameters against the models built using:

– a fixed time granularity and automatically determined voting threshold;
– automatically determined time granularities and fixed voting threshold;
– both time granularity and voting threshold determined automatically.

Figures 5 and 6 present the false positive and detection rates for models built using
different sanitization parameters. The traffic contains instances of phpBB forum attacks
(mirela, cbac, nikon, criman) for both hosts that are analyzed.1 Each line shows the re-
sults obtained as the voting threshold was sampled between 0 and 1, with the granularity
value either fixed at a given value (usually 1, 3 or 6 hours) or computed automatically
using the method described earlier.

1 Throughout the paper, we refer to detection and false alert rates as rates determined for a
specific class of attacks that we observed in these data sets. We note that discovering ground
truth for any realistic data set is currently infeasible.
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We note that the time granularity values empirically found to exhibit high perfor-
mance were 1-, 3- and 6-hour for www1, respectively 3-hour for lists. For each of these
values, we analyzed the performance of the models built with an automatically deter-
mined voting threshold. For each line representing a given granularity value, the trian-
gular markers represent the results obtained with the automatically determined voting
threshold. We observe that the voting threshold is placed in the safety zone for which
the 100% detection rate is maintained for both www1 and lists, while exhibiting a low
false positive rate (< 0.17%).
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Table 1. Empirically vs. automatically determined parameters

Parameters www1 lists
FP(%) TP(%) FP(%) TP(%)

N/A(no sanitization) 0.07 0 0.04 0
empirical 0.10 100 0.10 100
fully automated 0.16 92.92 0.10 100

In the case of automated time granularity (the actual values are presented in fig-
ure 2), we initially explored the performance of the models determined for different
values of the voting threshold, ranging from 0 to 1, with a step of 0.1. In figure 5, for
the same fixed threshold, the detection rate is 94.94% or 92.92% compared to the 3-
hour granularity (empirical optimal - 100%), while maintaining a low false positive rate
(< 0.17%). In figure 6, the results are almost identical to the empirically determined
optimal (3-hour granularity).

When we use both the set of time granularities and the voting threshold determined
automatically, the system is fully autonomous. In figures 5 and 6, this is indicated by
replacing the triangular marker with a star-shaped one. Table 1 also summarizes the val-
ues of false positive (FP) and true positive (TP) for the fully automated sanitized model,
the empirical optimal sanitized model and the non-sanitized model. With automated pa-
rameters, for lists we achieve the same values as in the case of empirically determined
parameters, while for www1 the values differ, but we observe that in the absence of the
sanitization process the detection rate would be 0. The most important aspect is that the
fully-automated sanitization still significantly improves the quality of the AD models
while setting its parameters based only on the intrinsic characteristics of the data and
without any user intervention.

4 Self-updating Anomaly Detection Models

We presented a method that generates automatically self-sanitized AD models. How-
ever, the way users interact with systems can evolve over time [9], as can the systems
themselves. As a result, the AD models that once represented the normal behavior of
a system can become obsolete over time. Therefor, the models need to adapt to this
phenomenon, usually referred to as concept drift. As shown in [18], online learning can
accommodate changes in the behavior of computer users. Here, we also propose to use
an online learning approach to cope with the concept drift, in the absence of ground
truth.

Our approach is to continuously create micro-models and sanitized models that in-
corporate the changes in the data. An aging mechanism can be applied in order to limit
the size of the ensemble of classifiers and also to ensure that the most current data is
modeled. When a new micro-model, μMN+1 is created, the oldest one, μM1, is no
longer used in the voting process (see figure 7). The age of a model is given by the time
of its creation.

Every time a new micro-model is generated, a new sanitized model is created as
well. In the previous section, we used the micro-models in a voting scheme on a second
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μMN+1μM1 μM2 μMNμM3 μM4 μMN-1………. μMN+1

Fig. 7. Incremental learning aging the oldest micro-model

data set, which was processed into a sanitized and an abnormal model. For the online
sanitization we will use what we call introspection: the micro-models are engaged in
a voting scheme against their own micro-datasets2. This alternative gives us the ability
to apply the self-sanitization processes in an online fashion, without having to also
maintain a second dataset strictly for model creation. When a new sanitized model is
built, it is immediately used for testing the incoming traffic until a new sanitized model
is built.

Concept drift appears at different time scales and our micro-models span a particular
period of time. Thus, we are limited in observing drift that appears at scales that are
larger than the time window covered by the micro-datasets. Any changes that appear
inside this time window are susceptible to being rejected by the voting process rather
than being accepted as legitimate evolution of the system. In our online sanitization
experiments we use 25 classifiers in the voting process (covering ≈ 75 hours of real
time traffic) such that we can adapt to drifts that span more than 75 hours of traffic.

We cannot distinguish between a legitimate change and a long-lasting attack that
slowly pollutes the majority of the micro-models. A well-crafted attack can potentially
introduce malicious changes at the same or even smaller rate of legitimate behavioral
drift. As such, it can not be distinguished using strictly introspective methods that ex-
amine the characteristics of traffic. However, the attacker has to be aware, guess, or
brute-force the drift parameters to be successful with such an attack. In previous work
[4], we presented a different type of information that can be used to break this dilemma:
alert data from a network of collaborative sites. Another potential solution that we in-
tend to explore as future work, is to employ as feedback information the error responses
returned by the system under protection (e.g. the HTTP reply as an error page). We plan
to explore the conjecture that we can indeed ferret out attacks of certain classes by ob-
serving the error responses returned from different sub-systems or software modules.

4.1 Self-update Model Evaluation

To illustrate the self-update modeling, we first apply the online sanitization process for
the first 500 hours of traffic using Anagram as the base sensor. Figures 2 and 8 present
the fully automated sanitization parameters: the time granularity for each micro-model
used in the creation of the new sanitized models, respectively the voting threshold for
each newly created sanitized model.

If we didn’t employ a model update mechanism, a sanitized model would be built
only once. Thus, we call the first sanitized model a static sanitized model. Because

2 We recall that we define a micro-dataset as the training dataset used for building a micro-
model.
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Fig. 9. Alert rate for www1: (a) both binary and ascii packets; (b) ascii packets

in the online sanitization process, the models change continuously we consider them
dynamic sanitized models. To analyze how the online sanitization performs, in figure 9
we compare the static sanitized model alert rate against the dynamic sanitized models
alert rate for www1.

Figure 9 (a) presents the total number of alerts for each micro-dataset tested with
both the static and dynamic models. We first notice that, for a few micro-dates the alert
rate reaches levels up to 30% for both model types. After analyzing the alert data, we
determined that the high alert rate was generated not by abrupt changes in the system’s
behavior, but rather by packets containing binary media files with high entropy. This
type of data would be considered anomalous by AD sensors such as Anagram. Thus
the recommendation is to divert all the media traffic to specialized detectors which can
detect malicious content inside binary media files. Figure 9 (b) presents the alert rate
after ignoring the binary packets. We can observe that there is no significant difference
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Table 2. Static model vs. dynamic models alert rate

Model www1 lists
FP(%) TP(%) FP(%) TP(%)

static model 0.61 94.68 0.13 100
dynamic models 0.62 98.37 0.26 100

(a) (b)

Fig. 10. Concept drift detection for www1 - alert rate for (a) both binary and ascii packets; (b)
ascii packets. Vertical lines mark the boundary between new and old traffic.

between the alert rate exhibited by the static and dynamic sanitized models. Thus we
can conclude that there are no fundamental changes over the 500 hour period.

In terms of performance, table 2 presents both the false positive rate (including the
binary packets) and the detection rate for www1 and lists. Abrupt changes in the voting
threshold (as shown in figure 8) determine the creation of more restrictive models, thus
the increase in the detection rate and/or the false positive rate. For www1 the signal-to-
noise ratio (i.e. TP/FP) is improved from 155.21 to 158.66, while for lists it decreases
from 769.23 to 384.61.

We also investigated concept drift appearing at larger scale such as weeks and months,
as opposed to days. For this, we tested our method for traffic from the same site, collected
at months difference. Figure 10 presents the alert rate for both static and dynamic mod-
els, with and without the binary packets. Vertical lines mark the boundary between new
and old traffic. We can observe that when changes happen in the system, the alert rate
increases for both static and dynamic models. After the dynamic models start updating
to the new data, there is a drop in the alert rate, back to levels below 1%. For the static
model, the alert rate stays at about 7%, demonstrating the usefulness of a self-updating
sanitization process.

Figure 11 presents the raw number of alerts that our system returns on an hourly ba-
sis. We note that spikes in the number of alerts can render manual processing
difficult, especially when there are changes in the system under protection and the mod-
els gradually adapt to the new behavior. However, manual processing of alerts is not the
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Fig. 11. Number of ASCII alerts per hour for www1. The vertical line marks the boundary be-
tween new and old traffic.

intended usage model for our framework; our ultimate goal is to build a completely
hands-free system that can further identify the true attacks from the false positives. In
previous work [4] we have proposed using a shadow sensor architecture such as the
ones presented in [22,1] to automatically consume and validate the false positives. Our
study of computational performance presented in [4] shows that, with this architecture,
the false positives can be consumed automatically and neither damage the system under
protection nor flood an operational center with alarms.

4.2 Computational Performance Evaluation

To investigate the feasibility of our online technique we have to analyze the computa-
tional overhead that it implies. Ignoring the initial effort of building the first batch of
micro-models and the sanitized model, we are interested in the overhead introduced by
the model update process. Table 3 presents a breakdown of the computational stages of
this process.

The overhead has a linear dependency on the number and the size of the micro-
models. For www1, we used 25 micro-models per sanitization process and the size of
a micro-model was on average 483 KB (trained on 10.98 MB of HTTP requests). The
experiments were conducted on a PC with a 3GHz Intel(R) Xeon(R) CPU with 4 cores
and 16G of RAM, running Linux. This level of performance is sufficient for monitoring
and updating models on the two hosts that we tested in this paper, as it exceeds the
arrival rate of HTTP requests. In the case of hosts displaying higher traffic bandwidth,
we can also exploit the intrinsic parallel nature of the computations in order to speed
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Table 3. Computational performance for the online automated sanitization for www1

Task Time to process

build and save a new micro-model 7.34 s
test its micro-dataset against the older micro-models 1 m 12 s
test the old micro-datasets against the new micro-model 1 m 58 s
rebuild and save the sanitized model 3 m 03 s

up the online update process: multiple datasets can be tested against multiple models in
parallel, as the test for each dataset-model pair is an independent operation. In future
work, we will implement a parallel version of this algorithm to test these assumptions.

5 Related Work

We have previously explored the feasibility of sanitizing training datasets using empir-
ically determined parameters [5, 4]. This paper presents methods that make the process
automatic, by generating the sanitization parameters based only on the intrinsic charac-
teristics of the data and by also coping with concept drift. The sanitization process can
be viewed as an ensemble method [6] with the restriction that our work is an unsuper-
vised learning technique. We generate AD models from slices of the training data, thus
manipulating the training examples presented to the learning method. Bagging predic-
tors [2] also use a learning algorithm with a training set that consists of a sample of
m training examples drawn randomly for the initial data set. ADABoost [11] gener-
ates multiple hypothesis and maintains a set of weights over the training example. Each
iteration invokes the learning algorithm to minimize the weighted error and returns a
hypothesis, which is used in a final weighted vote.

MetaCost [7] is an algorithm that implements cost-sensitive classification. Instead
of modifying an error minimization classification procedure, it views the classifier as a
black box, the same as we do, and wraps the procedure around it in order to reduce the
loss. MetaCost estimates the class probabilities and relabels the training examples such
that the expected cost of predicting new labels is minimized. Finally it builds a new
model based on the relabeled data. JAM [27] focuses on developing and evaluating a
range of learning strategies for fraud detection. That work presents methods for “meta-
learning” by computing sets of “base classifiers” over various partitions or sampling of
the training data. The combining algorithms proposed are called “class-combiner” or
“stacking” and they are built based on work presented in [3] and [31]. For more de-
tails on meta-learning techniques we can also refer the reader to a more comprehensive
survey [23].

The perceived utility of anomaly detection is based on the assumption that malicious
inputs rarely occur during the normal operation of the system. Because a system can
evolve over time, it is also likely that new non-malicious inputs will be seen [10]. Per-
haps more troubling, Fogla and Lee [8] have shown how to evade anomaly classifiers
by constructing polymorphic exploits that blend with normal traffic (a sophisticated
form of mimicry attack [28]), and Song et al. [26] have improved on this technique and
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shown that content–based approaches may not work against all polymorphic threats,
since many approaches often fix on specific byte patterns [19].

The problem of determining anomaly detection parameters have been studied before.
Anagram [30] determines the model stability automatically based on the rate at which
new content appears in the training data. pH [24] proposes heuristics for determining
an effective training time, minimizing the human intervention as well. Payl [29] has a
calibration phase for which a sample of test data is measured against the centroids and
an initial threshold setting is chosen. The thresholds are updated throughout a subse-
quent round of testing. In [17], the authors propose a web-based anomaly detection
mechanism, which uses a number of different models to characterize the parameters
used in the invocation of the server-side programs. For these models, dynamic thresh-
olds are generated in the training phase, by evaluating the maximum score values given
on a validation dataset. PCA-based techniques for detecting anomalous traffic in IP net-
works became popular in the past years. [21] talks about the difficulty of tuning the
parameters for these techniques and discusses pollution of the normal subspace.

The concept of updating an AD sensor in order to mirror valid changes in the pro-
tected system’s behavior is discussed in [18]. Most publications which propose updat-
ing the model after significant changes to the environment, data stream, or application
use supervised learning techniques, such as [12]. Methods of this type maintain an adap-
tive time window on the training data [14], select representative training examples [13],
or weigh the training examples [15]. The key idea is to automatically adjust the win-
dow size, the example selection, and the example weighting, respectively, so that the
estimated generalization error is minimized. Consequently, these methods assume the
existence of labeled data which is not the case for the applications that we interested
in analyzing. It seems that anomaly detectors would benefit from an additional source
of information that can confirm or reject the initial classification, and Pietraszek [20]
suggests using human–supervised machine learning for such tuning.

6 Conclusions and Future Work

Anomaly detection sensors have become an integral part of the network and host-
based defenses both for large-scale network and individual users. Currently, AD sen-
sors require human operators to perform initial calibration of the training parameters to
achieve optimal detection performance and minimize the false positives. In addition, as
the protected system evolves over time, the sensor’s internal state becomes more and
more inconsistent with the protected site. This discrepancies between the initial normal-
ity model and the current system behavior eventually renders the AD sensor unusable.

To amend this, we propose a fully automated framework that allows the AD sensor to
adapt to the characteristics of the protected host during the training phase. Furthermore,
we provide an online method to maintain the state of the sensor, bounding the deviations
due to content or behavioral modifications that are consistent over a period of time.
Without this adaptation process and the generation of new normality models which we
call “dynamic”, legitimate changes in the systems are flagged as anomalous by the AD
sensor leading to an inflation of alerts. Our experimental results show that, compared
to the manually obtained optimal parameters, the fully automated calibration has either
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identical, or slightly reduced (by 7.08%) detection rate and a 0.06% increase in false
positives. Furthermore, over a very large time window, our dynamic model generation
maintains a low alert rate (1%) as opposed to a 7% for a system without updates.

We believe that our system can help alleviate some of the challenges faced as anomaly
detection is increasingly relied upon as a first-class defense mechanism. AD sensors can
help counter the threat of zero-day and polymorphic attacks; however, the reliance on
user input is a potential roadblock to their application outside of the lab and into com-
mercial off-the-shelf software. In this paper we have taken a number of steps towards
AD sensors that enable true hands-free deployment and operation.

In the future, we intend to establish this feature of our framework by using more
sensors, that either model data in a different way (e.g. Payl [29], libanomaly [17], Spec-
trogram [25]) or target different applications (e.g. pH [24]). Despite the best efforts of
the research community, no AD sensor has been proposed to date that can detect all
attack types while maintaining a low alert rate. A possible option, which we intend to
further explore in the future, is to combine the strengths of multiple sensors under a
general and unified framework, following the directions traced out in this study.

Finally, the methods presented harness the information contained in the traffic (or
behavior in general) of the protected host. Large-scale implementations of AD systems
can further benefit by exchanging data, such as micro-models or sanitized and abnormal
models, across different sites. Therefore, the temporal dimension of our online sanitiza-
tion process can be complemented by a spatial one. We are currently in the process of
establishing an information exchange framework that can facilitate these experiments;
we plan to report these result in a future study.
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Abstract. Our work proposes a generic architecture for runtime monitoring and
optimization of IDS based on the challenge insertion. The challenges, known in-
stances of malicious or legitimate behavior, are inserted into the network traffic
represented by NetFlow records, processed with the current traffic and the sys-
tem’s response to the challenges is used to determine its effectiveness and to
fine-tune its parameters. The insertion of challenges is based on the threat models
expressed as attack trees with attached risk/loss values. The use of threat model
allows the system to measure the expected undetected loss and to improve its
performance with respect to the relevant threats, as we have verified in the exper-
iments performed on live network traffic.

1 Introduction

One of the principal problems of the intrusion detection systems based on the anomaly
detection [1] principles is their error rate, both in terms of false negatives (undetected
attacks) and false positives, i.e. legitimate traffic labeled as malicious. This problem is
amplified by the fact that the sensitivity (and consequently the error rate) varies dy-
namically as a function of the background traffic. For example, an attack that would be
easily discovered in the lower nighttime traffic will pass undetected during the day, on
the system with identical settings. In this work, we address the problem of correct IDS
monitoring and dynamic reconfiguration, in order to provide the operators with:

– an estimate of system sensitivity/error rate, given the current network traffic and a
threat model, and

– autonomous system reconfiguration, based on the system monitoring and the threat
model.

In order to perform these tasks, we use the concept of challenges [2] (or fault injection)
from the field of autonomic computing, which allows us to measure the response of the
system with respect to a small subset of challenges, known instances of malicious or
legitimate behavior, inserted into the traffic observed on the network. The response of
the system and its individual components to the inserted challenges is used to determine
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Fig. 1. Adaptation process overview

its current error rate in terms of estimated ratio of false positives/false negatives (see
Fig. 1). It is also used to adapt the system behavior and to select and/or create optimal
system settings.

This generic concept is verified by its integration with the CAMNEP intrusion de-
tection system [3][4], which is based on a multi-stage combination of several network
behavior analysis algorithms processing the NetFlow [5] data. In Section 2, we briefly
discuss the relevant properties of the CAMNEP system, which was augmented with
the processes described in this paper. Then, we present the self-adaptive architecture
integrated with the underlying system and discuss the crucial elements of the architec-
ture (Section 3), such as dynamic classifier selection and optimization of number of
challenges and their composition. These sections describe the core contribution of this
work.

2 CAMNEP System

The self-optimization techniques presented in this paper were integrated with the CAM-
NEP network intrusion detection system [3], based on the Network Behavior Analysis
(NBA) approach [6]. This system processes NetFlow/IPFIX data provided by routers
or other network equipment and uses this information to identify malicious traffic by
means of collaborative, multi-algorithm anomaly detection. The system uses the multi-
algorithm and multi-stage approach to optimize the error rate, while not compromising
the performance of the system. The self-monitoring and self-adaptation techniques are
very relevant in this context, as they allow to improve the error rate with only a minimal
and controllable impact on its efficiency.

The NetFlow network traffic data is structured in records, and each record describes
one flow. A flow can be described as an unidirectional component of TCP connection
(or its UDP/ICMP equivalent) and contains all packets with the same source IP, desti-
nation IP, source and destination port and protocol (TCP/UDP/ICMP). A flow record
contains this basic information, as well as other information, such as the number of
packets/bytes transferred, duration and TCP flags encountered in the packets of the
flow. The flow records are aggregated over a predefined observation period (typically
1-5 minutes). When the observation period elapses, the data is read out for analysis, and
a new observation period begins.
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The system contains two principal classes of classifying agents, which are able to
evaluate the received traffic:

Detection agents (agents A and B in Fig. 2) analyze raw network flows by their anomaly
detection algorithms, exchange the anomalies between them and use the aggregated
anomalies to build and update the long-term anomaly associated with the abstract traf-
fic classes built by each agent. These traffic classes describe various behaviors, as they
can be distinguished based on the features used by the anomaly detection methods in-
tegrated into the system. Each detection agent uses one of the five anomaly detection
methods listed herein. Each of the methods works with a different traffic model based on
a specific combination of aggregate traffic features, such as: (i) entropies of flow char-
acteristics for individual source IP addresses [7], (ii) deviation of flow entropies from
the PCA-based prediction model of individual sources [8], (iii) deviation of traffic vol-
umes from the PCA-based prediction for individual major sources [9], (iv) rapid surges
in the number of flows with given characteristics from the individual sources [10] and
(v) ratios between the number of destination addresses and port numbers for individual
sources [11].

All detection agents map the same flows, together with the shared evaluation of these
events, the aggregated immediate anomaly of these events determined by their anomaly
detection algorithms, into the traffic clusters built using different features/metrics, thus
building the aggregate anomaly hypothesis based on different premises. The aggregated
anomalies associated with the individual traffic classes are built and maintained using
the classic trust modeling techniques (not to be confused with the way trust is used
in this work). The detection agents evaluate the anomaly of each network flow on the
whole [0,1] interval, and the output of the detection agents is integrated by the aggrega-
tion agents.

Aggregation agents α1 from the set A = {α1, . . . , αg} represent the various aggrega-
tion operators used to build the joint conclusion regarding the normality/anomaly of the
flows from the individual opinions provided by the detection agents. Each agent uses a
distinct averaging operator (based on order-weighted averaging [12] or simple weighted
averaging) to perform the Rgdet → R transformation from the gdet-dimensional space
to a single real value, thus defining one composite system output that integrates the
results of several detection agents. The aggregation agents also dynamically determine
the threshold values used to transform the continuous aggregated anomaly value in the
[0, 1] interval into the crisp normal/anomalous assessment for each flow. The value of
the threshold is either relative (i.e. leftmost part of the distribution) or absolute, based
on the evaluation of the agent’s response to challenges.

The detection and aggregation agents annotate the individual flows ϕ with a contin-
uous anomaly/normality value in the [0, 1] interval, with the value 1 corresponding to
perfectly normal events and the value 0 to completely anomalous ones. This continuous
anomaly value describes an agent’s opinion regarding the anomaly of the event, and
the agents apply adaptive or predefined thresholds to split the [0, 1] interval into the
normal and anomalous classes. The threshold applied (and dynamically maintained) by
the aggregation agents divides the flows into two classes: normal and anomalous. The
anomalous flows are those whose anomaly falls below the threshold, while the normal
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Fig. 2. Adaptation process in the CAMNEP system

flows are those, whose anomaly is above the threshold. This distinction allows us to
introduce the components of the error rate. False Positives (FP) are the legitimate flows
classified as anomalous, while the False Negatives (FN) are the malicious flows clas-
sified as normal. Most standalone NBA methods suffer from a very high rate of false
positives, which makes them unpractical for deployment. The static multi-stage pro-
cess of the original CAMNEP system already removes a large part of false positives,
while not increasing the rate of false negatives, and the goal of the self-optimization
techniques is to further improve the effectiveness of the system.

3 IDS Monitoring Architecture

The monitoring and adaptation components of the CAMNEP system implement the
high-level functional schema introduced in Fig. 1. The reconfiguration action (as shown
in Fig. 1) is the identification of the optimal anomaly aggregation function that achieves
the best separation between the legitimate and malicious challenges. Assuming that
these challenges are representative of the traffic in the network and the expected attacks,
such aggregation should also optimize the performance against the actual threats in the
current network traffic. The adaptation process also provides the user with the estimates
of system detection effectiveness against the threats defined in the threat model, as it
presents the effectiveness values for the currently selected aggregation function.
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The background traffic is one of the adaptation process indirect inputs, as it influ-
ences the performance of the individual anomaly detection algorithms. As the network
traffic is highly unpredictable, it is very difficult to predict which aggregation function
will be chosen, especially given the fact that the challenges are selected from the DB
using a stochastic process with a pseudo-random generator unknown to a potential at-
tacker. The attacker therefore faces a dynamic IDS system that unpredictably switches
its detection profile between several different profiles with utility (i.e. detection per-
formance) values close to the optimum, and has to operate in a manner which would
evade any of these profiles. This unpredictability, together with the additional robust-
ness achieved by the use of multiple algorithms, makes the IDS evasion a much more
difficult task than simply avoiding a single intrusion detection method[13].

The self-adaptation process (detailed in Fig. 2) is based on the insertion of challenges
into the background of network flow data observed by the system. The challenges are
represented as sets of NetFlow records, corresponding to classified incidents observed
in the past. These records are generated by short lived, challenge specific challenge
agents and are mixed with the background traffic, so that they cannot be distinguished
from the background by the detection/aggregation agents. They are processed together
with the rest of the traffic, used to update the anomaly detection mechanism data and
trust models of individual detection agents and are evaluated with the rest of the traffic.
Once the processing is completed, the challenge flows are re-identified by their respec-
tive challenge agents, removed from the user output and the anomaly attributed to these
flows by individual aggregation agents is used to evaluate these agents and to select the
optimal output agent for the current network conditions.

There are two broad types of challenges. The malicious challenges correspond to
known attack types, while the legitimate challenges represent known instances of legit-
imate events that tend to be misclassified as anomalous. We further divide the malicious
challenges into broad classes (denoted AC1, . . . , ACk, . . . ) characterized by the type
of the attack, such as fingerprinting/vertical scan, horizontal scan, password brute forc-
ing, etc. These classes are used to make the connection between the threat models in
Section 4.1 and the challenge selection. With respect to each of these attack classes,
we characterize each aggregation agent by a probability distribution, empirically esti-
mated from the continuous anomaly values attributed to the challenges from this class,
as we can see in Fig. 3. We also define a single additional distribution for all legitimate
challenges.

We assume that the anomaly values of both the legitimate and all types of malicious
challenges define normal distributions, with the parameters x̄k and σk

x for the k-th class
ACk of malicious challenges and ȳ and σy for the legitimate ones1. The distance be-
tween the estimated mean values of both distributions (x̄k and ȳ), normalized with
respect to the values σk

x and σy represents the quality of the aggregation agent with
respect to a given attack class. The effectiveness of the agent, defined as an ability to
distinguish between the legitimate events and the attacks is defined as a weighted aver-
age of the effectiveness with respect to individual classes and will be estimated by the

1 Normality of both distributions is not difficult to achieve, provided that the attack classes
are properly defined and that the challenge samples in these classes are well selected, i.e.
comparable in terms of size and other parameters.
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Fig. 4. Example Structure of an Attack Tree

trust modeling approach introduced in Sect. 5. In order to perform the above-described
self-adaptation process, we need to address three important issues:

– offline selection of appropriate challenges and estimation of their relative impor-
tance (Sections 4 and 4.3),

– dynamic selection of the optimal aggregation agent to be used as a system output
(Section 5), and

– dynamic determination of the optimal number of challenges.

4 Threat-Based Approach to Challenge Selection

In this section, we will present a method for challenge selection based on explicit threat
modeling. We define a set T = {T1, . . . , Tm} of relevant threats as identified by the
network administrator. Each threat is described by an attack tree, which specifies the
adversary’s attacks necessary to realize the threat. For each threat Ti, the system ad-
ministrator has specified the expected damage D(Ti), which would be caused should
the attacker realize the threat. Our system uses challenges to evaluate its internal com-
ponents in terms of accuracy and selects the most accurate component. Each challenge
tests for a specific class of attacks. Therefore, the detection of threats can be directed
by prioritizing those challenges that test for the most damaging threats.

In the following, we shortly review the concept of attack trees (Sect. 4.1) and show
how they can be formulated in propositional calculus (Sect. 4.2). The latter allows us
to minimize attack trees, and so bring them into an expedient form for further process-
ing. We use the minimized attack trees to determine the composition of challenges for
evaluating the internal components (Sect. 4.3).



Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 67

4.1 Attack Trees

Attack trees depict how an attacker can attain a certain goal, e.g., to gain unauthorized
access to a system resource. This overall goal constitutes a threat to a security system
and builds the root of an attack tree.

The attack tree shows the alternative ways of how an attacker can reach the root,
and so realize the threat. As formalized in [14], an attack tree is composed of AND
and OR branches. Figure 4 shows a simple example of an attack tree structure. In this
figure, the branch with a connectional arc depicts an AND branch, all other branches
are OR branches. To reach the root, the attacker has to conduct a series of basic network
attacks, e.g., “horizontal scan”, which we call the atomic attacks. These atomic attacks
constitute the leafs of an attack tree. An attacker ”reaches” a leaf if he conducts the
corresponding attack. Then, either if all children of a node with an AND branch are
reached, then the node itself is reached. Similarly, an OR branched node is reached,
if at least one of its children is reached. This way, starting at the leafs by conducting
atomic attacks, an attacker can work its way up to the root. For our example in Fig. 4,
the attacker can for instance reach the root by performing the attacks A3 and A2.

The principal advantages of the attack tree formalism are its simplicity, relatively
high expressivity, and generality: an attack tree-level description of the threat is easily
transferable between the networks and can be thus reused.

4.2 Attack Trees in Propositional Logic

We can say, an attacker can reach the root node by reaching specific subsets of the leafs.
In this section we show how these specific subsets can be identified and minimized in
a neat manner. First, we represent an attack tree in propositional logic. A formula cor-
responding to a tree should become true iff the main goal in the attack tree is attained.
To build such a formula, we first create a literal for each atomic attack. Now, we suc-
cessively go through the tree (starting from the root node), and connect all children of
a node by the appropriate logic operation (OR for disjunctive branches, AND for con-
junctive branches). Parentheses are used to group the children together. For the example
tree shown in Fig. 4 this results in the formula:

(A1) ∨ ((A3 ∨A4) ∧ (A2)) . (1)

A formula is in Disjunctive Normal Form (DNF) iff it is a disjunction of conjunctive
clauses. A formula is canonical, if all clauses contain all variables. We can bring any
formula into canonical DNF by building a truth table that contains all variables, and
taking all rows that evaluate to true as clauses. For our toy example in Fig. 4 that would
result in:

(A1 ∧A2 ∧A3 ∧A4) (2)

∨(A1 ∧A2 ∧A3 ∧ ¬A4) (3)

∨(A1 ∧A2 ∧ ¬A3 ∧A4) (4)

∨ . . . (5)
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Having an attack tree in canonical DNF, we can say, that an attacker realizes the threat
if he succeeds to make at least one clause true. However, there is still much redundancy
in the formula. For example, lines 2 and 3 together are logically equivalent to A1 ∧
A2 ∧ A3. To remove all redundancy from the formula, we simply apply the Quine-
McCluskey algorithm [15]. Note that when simplifying attack tree formulas, clauses
will only contain positive literals. For the attack tree in Fig. 4, we finally get:

(A1) ∨ (A3 ∧A2) ∨ (A4 ∧A2) . (6)

A formula in DNF can be written as a set of clauses {C1, C2, . . . }where each clause Ci

is a set of positive literals {li1, li2, . . . }. We will write F (T ) for the minimal formula
in DNF that corresponds to attack tree T . The attack tree from Fig. 4 can be formalized
as:

F (T ) = {{A1}, {A2, A3}, {A2, A4}} . (7)

4.3 Attack Tree Valuation

In this section, we first show how different attack classes can be prioritized, depending
on the expected damage of the successful attacks, i.e. the attack tree root being attained
by the adversary. We then show how the resulting priorities can be used to determine
the composition of challenges for adapting the IDS. Finally, we exemplify the procedure
with an example for a specific attack tree.

We assume, that a set of n detectable attacks A = {A1, . . . , An} and general net-
work conditions are known to the configured IDS. These attacks are classified into K
attack classes {AC1, . . . , ACK}, with

⋃
k ACk = A. We don’t require that all attacks

in an attack class are known, as the system is able to assess its effectiveness against
the attacks inserted into the traffic in real-time. However, we require a sufficient set of
attacks for each attack class, in order to use these samples as challenges.

The problem now is to prioritize the detection of attack classes. To this end, the
following criteria should be fulfilled:

Attack trees: An attacker has a certain goal (which determines the attack tree T ). At-
tack trees that cause more damage should be prioritized.

Clauses: An attacker tries to make one clause true in a chosen formula F (T ). Any
clause made true causes the same damage D(T ). So each clause is assigned the
same priority.

Literals: For making a chosen clause true, an attacker needs to make true all literals
in this clause to cause damage D(T ). Therefore, all literals belonging to the same
clause should be equally prioritized.

To fulfill the last two criteria, we compute the priority of an attack Ai within a tree Tj

as follows:

P (Ai, Tj) :=
1

|F (Tj)|
∑

Ck∈F (Tj),
with Ai∈Ck

1
|Ck|

. (8)
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The reader can easily verify that if Ai is not in Tj , then its priority within the tree is
zero. Also, the sum of all priorities of the attacks in the tree is 1. To fulfill the first
criterion, we additionally weight each tree Tj according to the damage D(Tj) and get
the final priority for an attack Ai by summing over all attack trees:

P (Ai) :=
1∑

Tj∈T D(Tj)
·

∑
Tk∈T

D(Tk) · P (Ai, Tk) . (9)

Because of the normalization, again the priorities of all attacks sum up to 1. Hence, we
can use these priorities to directly determine the ratio of challenges to test the respective
attacks.

Procedure. In order to calculate the priorities of the attacks in A, we propose the
following procedure:

1. For each tree Ti ∈ T do:
(a) Prune all impossible and non-detectable attacks from the tree.
(b) Build F (Ti): Transform the tree into a logical formula, bring it into DNF and

minimize it (as in Sect. 4.2).
2. Compute P (Ai) for each attack Ai as shown in formula (9).
3. For each attack class AC, add the priorities for all attacks in that class:

P (AC) =
∑

Ai∈AC

P (Ai) . (10)

The ratio P (AC) is a proportion of challenges from the class AC, and we will use
it to as a weight in Eq. 22.

Example. In this section we show how the priorities are computed for a set of two very
simple example attack trees T1 and T2 shown in Fig. 5 and 6 respectively. We estimate
the damages of the trees to be D(T1) = 900 and D(T2) = 100. The minimal formulas
in DNF for the two attack trees are:

F (T1) ={{A1, A2, A3}, {A1, A4, A5}} , (11)

F (T2) ={{A6}, {A7}, {A8}} . (12)

server takeover

A1 ·

·

A2 A3

·

A4 A5

attack description attack class
A1 horizontal scan AC1

A2 fingerprinting AC2

A3 buffer overflow AC3

A4 SSH brute force request AC4

A5 SSH brute force response AC4

Fig. 5. Example Attack Tree T1
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file sharing

A6 A7 A8

attack description attack class
A6 download AC5

A7 upload AC5

A8 directory node AC5

Fig. 6. Example Attack Tree T2

We can now compute P (Ai, Tj) for all attacks. Clearly P (A1, T2) = 0, so let us look
at P (A1, T1):

P (A1, T1) =
1

|F (T1)|

(
1
|C1|

+
1
|C2|

)
=

1
2

(
1
3

+
1
3

)
=

1
3

. (13)

Analogously we obtain:

P (A2, T1) = P (A3, T1) = P (A4, T1) = P (A5, T1) =
1
2
∗ 1

3
=

1
6

. (14)

For attack tree T2 we get:

P (A6, T2) = P (A7, T2) = P (A8, T2) =
1
3

. (15)

Now, combining the two trees according to their expected damage, we obtain:

P (A1) =
D(T1)

D(T1) + D(T2)
· P (A1, T1) =

9
10

· 1
3

=
3
10

. (16)

In the same way, we obtain for the other attacks:

P (A2) = P (A3) = P (A4) = P (A5) =
3
20

, P (A6) = P (A7) = P (A8) =
1
30

.

(17)

Finally, we can compute the attack class priorities:

P (AC1) =
3
10

, P (AC2) = P (AC3) =
3
20

, P (AC4) =
3
10

, P (AC5) =
1
10

. (18)

5 Dynamic Aggregation Agent Selection

The insertion of challenges into the real traffic is not only a difficult problem from the
technical perspective (due to the high volume of events processed in near-real-time and
hard performance limitations of the system), but can also influence the effectiveness of
the aggregation agents based on anomaly detection approaches. As these agents are not
able to distinguish the challenges from the real events, the challenges are included in
their traffic model, making it less representative of the background traffic and therefore
reducing its predictive ability.
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In this section, we present a trust-based algorithm which dynamically determines the
best aggregation agent and also the optimal number of challenges necessary for the re-
liable identification of the best aggregation agent, while taking into account the: (i) past
effectiveness of the individual aggregation agents and (ii) number of aggregation agents
and the perceived differences in their effectiveness. We decided to use a trust-based ap-
proach for evaluating the aggregation agents, because it not only eliminates the noise in
the background traffic and randomness of the challenge selection process, but accounts
for the fact that attackers might try to manipulate the system by inserting misleading
traffic flows. An attacker could insert fabricated flows [13] hoping they would cause
the system to select an aggregation agent that is less sensitive to the threat the attacker
actually intends to realize. When using trust, one tries to avoid this manipulation by
dynamically adapting to more recent actions of an attacker.

For each time step i ∈ N, the algorithm proceeds as follows:

1. Let each aggregation agent classify a set of challenges from different attack classes
and selected legitimate challenges.

2. Update the trust value of each aggregation agent, based on its performance on the
challenges in time step i.

3. Accept the output of the aggregation agent with the highest trust value as classifi-
cation of the remaining events of time step i.

As we have stated above, we challenge detection and aggregation agents in each time
step i with the sets of flows for which we already know the actual class, i.e. whether
they are malicious or legitimate. So, we challenge an aggregation agent α with a set of
malicious events, belonging to K attack classes and a set of legitimate events drawn
from a single class. With respect to each class of attacks k, the performance of the
agent is described by a mean and a standard deviation: (x̄k, σk

x) for the set of malicious
challenges and (ȳ, σy) for the set of legitimate challenges. Both means lie in the interval
[0, 1], and x̄k close to 0 and ȳ close to 1 signify accurate classifications of the agent
respectively (see Fig. 7). Based on this performance in time step i, we define the trust

Fig. 7. Performance measures used for computing one trust experience
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experience ti,kα with that aggregation agent α as follows:

ti,kα =
ȳ − x̄k

σy + σk
x

. (19)

The intention behind this formula is that an agent is more trustworthy, if its classifi-
cations are more accurate (x̄k is low and ȳ is high), and more precise (the standard
deviations are low). Note that ti,kα lies in (−∞,∞); however ti,kα will rarely be negative
in practice.

To get the attack-class specific trust value T k
α for an agent α, we aggregate the past

trust experiences with that agent regarding the challenges from class k:

T k
α =

∑
i

wi ∗ ti,kα , (20)

where wi are weights that allow recent experiences a higher impact. This is done be-
cause older experiences are expected to be less significant than more recent ones. In
our current system, the weights decrease exponentially. The system receives the input
events in 5 minute batches, and assigns the same weight to all events in each batch. The
weight of the challenges from the batch i is determined as:

wi =
1
W

e(j−i) ln(0.1)
4 , (21)

where the j denotes the current time step, and the value of the coefficient ln(0.1)
4 was

selected so that challenges from the fifth batch (the oldest one being used) are assigned
a weight of 0.1 before the normalization. The normalization is performed simply by di-
viding all weights by the sum of their un-normalized values W to ensure that

∑
wi = 1.

We are currently using the challenges from the last 5 batches, meaning that the (j − i)
part of the exponent takes the values between 0 and 4. Please note that the specific as-
signment of weights wi is highly domain specific, and is only included as an illustration
of the general principle.

The final trust value T i
α for the aggregation agent α is determined as a linear combi-

nation of the partial, attack class-specific values T k
α :

T i
α =

K∑
k=1

P (ACk) · T k
α , (22)

where the weights P (ACk) attributed to the trustworthiness of the individual classes
are derived from Eq. 10.

5.1 Optimizing Number of Challenges

The number of challenges used as basis for the computation of the trust experiences ti,kα

should be as small as possible while at the same time providing accurate results for the
trust experiences. This means that we want to know the minimum number of challenges
n for computing x̄k and ȳ which gives certain guarantees about the estimation of the
actual means μxk and μy (estimated by x̄k and ȳ respectively).
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Guaranteeing margin of error m. At the outset, let us make two reasonable assump-
tions. First, we assume that the samples are normally distributed. This is the common
assumption if nothing is known about the actual underlying probability distribution.
Second, as suggested in [16], we assume the sample standard deviations which we
found in past observations to be the actual standard deviations σk

x and σy . Then, the fol-
lowing formula gives us the number of challenges n that guarantees a specified margin
of error m when estimating μxk (or μy analogously) [16]:

n =
(

z∗σk
x

m

)2

, (23)

where the critical value z∗ is a constant that determines how confident we can be. Com-
mon critical values z∗ are 1.645 for 90%, 1.960 for 95% and 2.576 for 99%. More
specifically, the integral of the standard normal distribution in the range [−z∗, z∗] equals
the respective confidence level. If z∗ is for instance chosen for a confidence level of
99%, we know that if we use n challenges for computing x̄k, the actual mean μxk will
lie in the interval x̄k ±m with the probability of 0.99.

Choosing margin of error m. The margin of error m is chosen such that we can be
confident that the order of the first two most trustworthy agents is confirmed. In turn,
this confirms that the selection of the first agent is the best choice. Let us call the first
and the second agent α1 and α2 respectively, so we have Tα1 ≥ Tα2 . We want to make
sure that for the next trust experience this order is not reversed by chance. Recall that a
trust experience tα is defined as the difference between ȳ and x̄k weighted by the sum
of the corresponding standard deviations (see formula (22)). As we use 2 ∗n challenges
to find ȳ and x̄k respectively, the overall margin of error for the difference of ȳ and x̄k

will not be higher than 2 ∗ m. The largest margin of error m′ for which tα1 ≥ tα2 is
still true (with the given confidence), must therefore fulfill the equation where tα1 takes
the lowest and tα2 the highest possible value.

tα1 ≥
ȳ1 − x̄k

1 − 2m′

σy1 + σx1
k︸ ︷︷ ︸

=:a

=
ȳ2 − x̄k

2 + 2m′

σy2 + σx2
k︸ ︷︷ ︸

=:b

≥ tα2 , (24)

where the inner equation can be solved to give:

m′ =
(tα1 − tα2)ab

2(a + b)
=

b(ȳ1 − x̄k
1)− a(ȳ2 − x̄k

2)
2(a + b)

. (25)

So, a choice of m with the constraint m ≤ m′, guarantees with the specified confidence
that we will get tα1 ≥ tα2 — in the case that this is the true order. To limit the number
of challenges, we choose the maximal margin of error m that fulfills this constraint,
which is given by m := m′. We also impose an additional lower bound on m, in order
to prevent the number of challenges to grow disproportionally when the differences
between the agent’s trustworthiness with respect to this specific attack class ACk are
insignificant.
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6 Experimental Evaluation

In the experimental part of our work, we evaluate two aspects of the mechanism: its
ability to effectively reduce the number of false positives, while relying on an acceptable
number of challenges, and its ability to selectively identify the events relevant to the
priority threats as specified by the system administrator.

All the experiments were conducted on a university network, on the background
of the regular network traffic. This background traffic contains roughly 10% of mali-
cious flows, principally related to scanning, peer-to-peer activity, botnet propagation
and brute force attacks on passwords, in no particular order.

In the first series of experiments, we test the ability of the suggested mechanism to
produce the classifications with a reasonable error rate as expressed in terms of false
positives and false negatives. To evaluate the error rate, we have manually classified the
traffic from a significant subset of active hosts on the network. This classified traffic
is then used to gauge the effectiveness of the method. The system observed about 80
000 flows every 5 minutes, with roughly 20 000 flows being malicious, and that the
evaluation was performed over about seventy 5-minute long observation intervals. The
system contained 30 aggregation agents, each of them averaging the opinions of the 5
underlying detection agents as described in Section 2.

In Fig. 8, we can see the number of challenges as it evolves over time. At the begin-
ning, the system works with a fixed number of challenges, in order to let the anomaly
detection methods in the detection agents adapt to the traffic. Once all the detection
agents start (at step 5, after 25 minutes), the system starts to progressively insert more
challenges, in order to build an initial assessment of all classifier agents. The number
of challenges peaks at around the step 14, when it reaches 100 (all challenges com-
bined). Once a user agent has built the initial trustworthiness for all agents, the num-
ber of challenges decreases until it levels out at around 40 (legitimate and malicious
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Table 1. Results of static system with arithmetic average (top line) compared to the selection of a
single aggregation agent (middle part) and the dynamic self-adaptation mechanism described in
this paper. Values are averaged to obtain the expected error numbers for one observation period.

Result False Negat. [# sources] False Posit. [# sources]

Arithmetic average 14.7 12.5

Average for aggregation fct. 13.1 24.3
Min FP for aggregation fct. 14.5 5.3
Min FN for aggregation fct. 9.8 125.2
Best aggregation fct. 13.7 5.7

Adaptive aggregation selection 14.0 3.1

challenges combined), where it fluctuates until the end of experiment. However, there
are two notable increases to explain: between steps 30 and 40, and after step 60.

These increases can be easily explained when looking at Fig. 9, which shows the
number of false positives in terms of unique source IP addresses. During these time
intervals, we can notice that the choice of an appropriate aggregation agent has a huge
impact on the quality of results, and that the adapted system is able to minimize the
number of false positives. The number of challenges is lower between steps 40 and
60, when all agents provide similar results, and increases again around 60, where the
performance of the aggregation agents varies somewhat more. On the other hand, we
can see that the user agent did not manage to avoid a spike in false positives around the
step 20, when it did not yet have a representative trust model.

The results shown in Fig. 9 are summarized in Table 1. We can see that the challenge-
based, dynamic adaptation mechanism clearly outperforms the simple arithmetic aver-
age aggregation, which is the optimal selection when we have no information regarding
the detection agent’s performance. It also outperforms any single aggregation function
selected using the a-posteriori knowledge from the pool of all 30 functions. All the
methods have a comparable rate of false negatives, but differ in the rate of false posi-
tives, where the dynamic selection clearly outperforms the best aggregation functions.
The relatively important margin of separation between the dynamic selection and best
false positives of any single aggregation is given by the fact that the dynamic selection
can avoid relatively high number of false positives during the periods when the indi-
vidual aggregation functions differ in performance, such as around the sets 30-40. This
further underlines the importance of the adaptive rate of challenge insertion, which
allows fast identification of the optimal system output during the changes of system
characteristics.

In Fig. 10, we can see the dynamics of the aggregation operator/agent selection over
time. With an exception of the initial 6 intervals, when the operator #0 (arithmetic av-
erage) is selected by default, the system dynamically selects between the remaining
operators, with about half of the selections being the operators #23 and #24. Both
these operators include OWA as well as anomaly-detection-method-based weight av-
erage portion. They are identical in the fixed part, where they attribute the weight 0.33
to each of the agents Xu [7], MINDS [10] and TAPS [11]. The operators differ in the
OWA part, where the first one builds its opinion from the three lowest anomaly values,
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Fig. 10. Selected aggregation agent (identified by the ID number on axis y) for each time step

while the second considers the third and fourth anomaly values. The weights of the
detection-method-based averaging and order weighted averaging parts are 0.5 for both
operators. It is interesting to note that the system managed to pick the three methods
with the most diverse set of anomaly detection features (in the fixed part), consistently
with basic ensemble classification [17] principles. The quality of this result is there-
fore based not only on the absolute quality of underlying detection methods, but also
benefits from the diversity of the anomaly detection methods.

In the above-described experiments, the challenges were inserted uniformly, regard-
less of the attack type. In the following, we will try to measure the effects of challenge
insertion in terms of system sensitivity with respect to specific attacks. To do so, we
have used the simple server compromise attack tree specified in Fig. 5 to generate the
challenges optimizing the system, and we have then attempted to compromise one of the
hosts on our network using the standard security tools, such as nmap or metasploit.
The attacks were repeated several times, with changes in speed, tools settings and in-
tensity. We have observed that the system selected the aggregation functions that were
able to maximize the likelihood of detection of various stages involved in the server
exploit attacks. The anomaly values attributed to horizontal sans, fingerprinting and
vertical scans have increased considerably, making them far more likely to be detected.
The most dramatic change of behavior was related to the password brute force breaking
attempts. These were undetectable with the baseline system configuration, but became
detectable with the case-specific system configuration. Buffer overflow attacks were un-
detectable regardless of the aggregation function, as they are nearly impossible to detect
with NBA methods due to the low volumes of traffic involved.

In Table 2, we present the effects of threat model-based adaptation in the traffic used
in the first series of experiments. This data set does not match the model at all and
provides a good worst case example. We can see that the number of alerts (typically
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Table 2. Effects of scenario specific selection on alert numbers in unrelated traffic. Obtained over
72 observation intervals 5 minutes long.

Result [# alerts] False Negatives False Positives True Positives

Neutral challenge insertion 39 201 146
Case-specific insertion 37 249 161

greater than the number of malicious sources used in Table 1) generated by the system
has grown, and that the number of false positives increased by about 50. The number of
alerts classified as true positives have increased as well (by 15), and the number of false
negatives decreased by 2. Note that the total number of alerts is not necessarily identi-
cal due to the possible alert fragmentation. Overall, we can see that in order to detect
the attacks crucial in the server compromise scenario (e.g. password bruteforcing), the
system was able to increase its sensitivity and to find a new equilibrium with different
detection profile. It shall be also noted that most of the false positives are repetitive
occurrences of traffic structures that are difficult to predict, and that about 80% of them
can be eliminated with less than 20 rules in the alert processing engine.

7 Related Work

In literature, more sophisticated formalisms than attack trees have been proposed for
modeling attack structures, e.g., attack graphs [18] and attack grammars [19]. However,
for our purposes, we do not need to account for the order in which plans of attacks
are carried out or the relations between attacks, and hence, the attack tree formalism is
sufficiently rich.

In desktop grid computing, spot-checking [20,21] is used to make sure that hosts to
which a computation has been outsourced, return correct results. To this end, indistin-
guishable challenges for which the correct answer is already known are interspersed
with actual requests. For a spot-checking approach, where challenges are merged into
a vector among a set of real requests, Staab et al. [2] showed how to determine an op-
timal number of challenges for a given number of real requests. They focused on the
case where the answer to a challenge or a real request is binary. This was extended in
our work, where we handle the continuous case.

The use of ensemble classification approaches [22] is functionally equivalent to our
approach, but with extremely strong assumptions. It requires a pre-classified training
data set and don’t dynamically adapt system to the changing conditions.

Ghanbari and Amza [23] train belief networks that represent complex systems by
injecting failures. At the outset, experts model a belief network that describes the de-
pendencies within a system. The inserted failures then change the prior beliefs of the
experts to form better estimates. Through fault injection, the dependencies between the
variables in the belief network become evident, and so the overall system can be trained.
Opposed to that, we inject challenges to evaluate classification components in terms of
accuracy in order to select the most accurate one.



78 M. Rehák et al.

8 Conclusion

Our work presented in this paper aims to close the gap between security policies and
formal threat models and the practice of IDS deployment. To achieve this objective, we
have designed a runtime adaptation and monitoring framework running on the top of
the IDS. It evaluates the performance with respect to the threat models, that are defined
as attack trees, with a value assigned to the achievement the objective (root) of the each
tree. Objective value can be defined in two manners. In a decision theoretical paradigm,
we will aim to minimize our loss by associating an estimate of our loss (or risk) with the
achievement of each attack tree root. In the game theoretic model, the value of the attack
tree would reflect its value for the attacker. This second option allows us to differentiate
between different types of attackers, with different technical capabilities represented by
trees with growing complexity and corresponding risk values.

Either type of the threat/risk model can be used as an input for the online monitor-
ing and adaptation process, which is able to evaluate the probability that an attack as
defined by the attack tree would pass undetected. This results in an estimate of the ex-
pected undetected loss, given the current traffic status. This value is also a basis for
system adaptation, as the system dynamically reconfigures itself in order to minimize
the undetected loss value. The adaptation is based on the evaluation of system response
with respect to a set of challenges, pre-classified recorded samples of the past traffic
modified to fit the current traffic. The adaptation components of the system use the
threat model to define the optimal mix of challenges to insert, in order to align the sys-
tem performance with the threat models. It is also able to dynamically adjust the number
of challenges to insert in response to changing traffic characteristics. The experiments
performed with the system show that the dynamic selection of the optimal aggregation
function in the CAMNEP system can significantly reduce the number of false positives
and that the targeted insertion of challenges selected according to threat models can
influence the system sensitivity to reflect the risks associated with each attack type.

The principal limitations of the work are related to the detection capabilities of the
individual detection agents aggregated in the system. Using the assumption of classifier
diversity [24], we know that the statistical performance of the combined classifier can be
significantly better than the performance of individual classifiers. However, the system
can not detect (i.e. separate from the traffic) the attacks that none of the individual
algorithms can robustly detect.

In our future work, we plan to improve the attack modeling capabilities by inclusion
plan-based attack modeling, and to integrate the outputs of the adaptation layer with the
alert fusion and correlation capabilities of the system. This combination assess which
attack stages are unlikely to be detected, and can use this information to improve the
alert correlation [25].
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Abstract. Most behavioral detectors of malware remain specific to a
given language and platform, mostly executables for Windows. The ob-
jective of this paper is to define a generic approach for behavioral de-
tection based on two layers respectively responsible for abstraction and
detection. The abstraction layer is specific to a platform and a language.
It interprets the collected instructions, API calls and arguments and clas-
sifies these operations, as well as the objects involved, according to their
purpose in the malware lifecycle. The detection layer remains generic and
interoperable with different abstraction components. It relies on paral-
lel automata parsing attribute-grammars where semantic rules are used
for object typing (object classification) and object binding (data-flow).
Theoretical results are first given with respect to the grammatical con-
straints weighting on the signature construction as well as to the resulting
complexity of the detection. For experimentation purposes, two abstrac-
tion components have then been developed: one processing system call
traces and the other processing the VBScript interpreted language. Ex-
perimentations have provided promising detection rates, in particular for
scripts (89%), with almost no false positives. In the case of process traces,
the detection rate remains significant (51%) but could be increased by
sophisticated collection tools.

Keywords: Malware, Behaviors, Attribute-Grammars, Interpretation.

1 Introduction

Malware behavioral detection should theoretically be able to detect, if not inno-
vative malware, at least unknown malware reusing variations of known
techniques. However, most current behavioral detectors rely on specific char-
acteristics, allowing evasion through simple functional modifications. This ar-
ticle aims to provide generic grammars modeling malicious behaviors in order
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to build efficient and resilient detection automata. Deterministic finite automata
are attractive because their linear complexity remains acceptable for operational
deployment. In 1995, [1] already used automata to describe the alternative se-
quences of operations making up malicious behaviors. Since then, researches
focusing on the notion of data flow has led to the apparition of tainting tech-
niques to detect malicious uses of data [2]. Control of the data flow has exhibited
significant successes and is now broadly used, in intrusion detection [3] or mal-
ware behavior extraction [4]. These articles use automata to model the sequences
of system calls constituting respectively attacks and behaviors. The data flow
is then captured by analysis of the parameters collected along the calls. On
this principle, [5] focuses on self-reproduction as the discriminating behavior for
detection.

Similarly, our approach of behavioral detection combines automata and data
flow control. The model easily supports multiple behaviors. In fact, malicious be-
haviors are described by attribute-grammars. Syntactic rules describe the possi-
ble combinations of operations making up the behavior, whereas, semantic rules
both control the data flow between the involved objects, and associate them
with a potential purpose in the malware lifecycle (installation, communication,
execution). The detection process is finally achieved by parsing execution traces
to check for the satisfaction of the grammatical behavior descriptions.

Abstraction is needed to translate observed traces into the behavioral model
for detection. By a layered architecture, [6] addresses the semantic gap existing
between the system call traces, understandable by OS specialists, and high-level
behaviors. Similarly, our abstraction layer provides generic descriptions where
the processed data get detached from the specificities of the platform and the
programming language. In fact, the graph-based formalism in [6] is in many
ways equivalent to the grammatical formalism provided here. In effect, AND/OR
graphs may be expressed by the semantic rules of attribute-grammars. Relying
on a well-established formalism, these grammars provide theoretical results in
terms of complexity which also hold for the approach from [6]. In addition, the
present article provides different behaviors, assessed on larger test pools.

With regards to the operations for language abstraction, the identification of
the system objects with a potential use for malware and the generation of the
grammatical behavior descriptions, they all require an initial configuration step
as described in Fig.1. Contrary to other methods, the configuration focuses both
on critical objects, which remain enumerable in a standard environment, and
innovative malware, which are scarce among the numerous variants of known
malware. In a few words, this paper introduces the following contributions:

– A model of malicious behaviors using attribute-grammars with semantic for
object binding (data flow control) and typing (object purposes for malware).

– An abstraction layer to translate observed traces into the model, detaching
detection from the specificities of platforms and programming languages,
with two proofs of concept to analyze executable traces and scripts.

– Some generic automata for behavior detection with an assessment from per-
spectives theoretical (complexity) and operational (coverage, performance).
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Fig. 1. Configuration and detection processes

The article is articulated as follows. Section 2 introduces the behavioral model
based on attribute-grammars. Section 3 presents the abstraction process from
the collected data to the model. Section 4 describes the detection process. An
implementation is given in Section 5 whose results are commented in Section 6.

2 Grammatical Formalization of Behaviors

From a theoretical perspective, an attribute-grammar (Definition 1) is a Context-
Free Grammar (CFG) enriched with semantic attributes and rules [7]. In the for-
malism, each start symbols begins the description of a new malicious behavior.
The terminal symbols of the grammar then correspond to the basic operations
making up the behavior whereas the production rules describe their different
combinations to achieve the behavior. As stated in [8,9], basic operations even-
tually refer to data collected through the abstraction layer (instructions, API
calls, parameters). These common principles are kept along the formalization.

Definition 1. An attribute-grammar GA is a triplet <G, D, E> where:
- G is originally a context-free grammar <V, Σ, S, P>,
- att :X ∈ {V ∪Σ} → att(X)∈Att∗ is an assignment function for attributes and
D=∪α∈AttDα their set of values,
- E is a set of semantic rules such as for any production of P , there is at most one
rule per variable of the form Y.α = f(Y1.α1...Yn.αn) with f : Dα1×...×Dαn →Dα.

2.1 Malicious Behavior Language

A generic programming language is required to describe malicious behaviors:
the Malicious Behavior Language (MBL) has been designed to this purpose. Its
syntax and operational semantics are given in [8]. Most malicious behaviors can
be described by sub-grammars of the MBL generative grammar. The language
principles are object-oriented according to the encapsulation in Fig.2. It provides
internal operations: arithmetic and control operations guaranteeing Turing com-
pleteness, as well as interactions to interface with external objects: commands
(open, create, close, delete, execute) or inputs/outputs (send, receive).

On top of the syntax for operations and interactions, a type system has
been provided for the external objects. These objects are typed according to
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Fig. 2. Malware object encapsulation Fig. 3. Object type poset

their potential use in the malware lifecycle: permanent objects (obj perm), tem-
porary objects (obj temp), booting objects (obj boot), communicating objects
(obj com), self-reference (this). A partial order has been defined on these types
according to their subset inclusion, as shown in the Hasse Diagram of Fig.3.
These inclusions correspond to object specializations. This type system can be
deployed thanks to the semantic attributes enriching attribute-grammars. In
fact, semantic attributes and rules can have several purposes:

Object binding: Object binding identifies the different object instances, and
guarantees they are coherently used. It is achieved by affecting specific
attributes called identifiers to the terminal symbols representing objects (de-
noted objId where Id is an abbreviation for Identifier). Considering interac-
tions, the binding constrains the data-flow between objects. The data flow is
critical in behaviors such as duplication where data transfers are involved.

Object typing: A type attribute can also be affected to a given object (de-
noted objTp where Tp is an abbreviation for Type). Types are attached
to objects according to their potential use. They are critical to distinguish
certain malicious purposes such as booting objects in the case of residency
or communicating objects in the case of propagation. Additional character-
ization of the objects can be achieved through additional attributes. For
example, an attribute can store the object nature (denoted objNat): vari-
able, file, registry key, network socket, mail, etc.

2.2 Descriptions of Malicious Behaviors

Four behaviors are examined: duplication, propagation, residency (automatic
start) and overinfection tests (avoiding reinfection of an infected system). Be-
cause their whole descriptions would be too tedious, only two extracts of the most
prevalent ones are covered: duplication and propagation. Their descriptions, as
well as additional behaviors, had been generated in [8], by manual analysis of a
malware pool. Since these descriptions convey the most generic features of the
malicious behaviors, manual generation can be considered more easily than for
the binary signatures of scanners.

Duplication. Duplication is achieved by copying code from the self-reference to
a permanent object. It is described below by syntactic production rules (grey)
and their related semantic rules (white). The syntactic derivations correspond
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to different duplication techniques: only single-block read/write is described
above, but the complete description also supports interleaved read/write and
direct copy. The semantic rules guarantee the data-flow through a same variable
between read and write interactions (Binding: <Write>.varId= <Read>.varId).
They also guarantee the behavior maliciousness by constraining read interac-
tions to refer to the self-reference (Typing: <Duplicate>.srcTp = this).

(i) <Duplicate> ::= <Create><Open>
<Read><Write>

| <Open><Create>
<Read><Write>

| <Open><Read>
<Create><Write>

{ <Duplicate>.srcId = <Open>.objId
<Duplicate>.srcTp = this
<Duplicate>.targId = <Create>.objId
<Duplicate>.targTp = obj perm
<Open>.objTp = <Duplicate>.srcTp
<Create>.objTp = <Duplicate>.targTp
<Read>.objId = <Duplicate>.srcId
<Read>.objTp = <Duplicate>.srcTp
<Write>.objId = <Duplicate>.targId
<Write>.objTp = <Duplicate>.targTp
<Write>.varId = <Read>.varId }

(ii) <Create> ::= create object;
{ <Create>.objId = object.objId

object.objTp = <Create>.objTp }
(iii) <Open> ::= open object;
{ <Open>.objId = object.objId

object.objTp = <Open>.objTp }
(iv) <Read> ::=

receive object1 ← object2;
{ <Read>.varId = object1.objId

object1.objTp = var
object2.objId = <Read>.objId
object2.objTp = <Read>.objTp }

(v) <Write> ::=
send object1 → object2;

{ <Write>.varId = object1.objId
object1.objTp = var
object2.objId = <Write>.objId
object2.objTp = <Write>.objTp }

Propagation. Propagation differs from duplication by a different target. The
malware code is copied from the self-reference to a communicating object. Con-
sequently, it shows syntactic similarities with duplication, except adjustments
to insert a format process. The main differences thus lie in adaptations of the
semantic rules. Illustrating typing, the permanent type of the target is replaced
by the communicating type (<Propagate>.targTp= obj com). A communicating
object can either be a network connection, a mail or a shared file. The second
modification specifies, by a disjunction of semantic equations, that the propaga-
tion source can be either the self-reference or the result of a previous duplication
(<Propagate>.srcTp= this or <Propagate>.srcId=<Duplicate>.targId).

(i) <Propagate> ::= <Open><Read><Transmit>
| <Read><Open><Transmit>

{ <Propagate>.srcId = <Read>.objId
(<Propagate>.srcTp = this ∨ <Propagate>.srcId = <Duplication>.targId)
<Propagate>.targId = <Open>.objId
<Propagate>.targTp = obj com
... }

(ii) <Transmit> ::= <Format><Write> | <Write>

3 Model Translation by Abstraction

In the context of behavioral detection, a trace conveying the actions of the moni-
tored program is statically or dynamically collected. Depending on the collection
mechanism, completeness of the data and its nature vary greatly, from simple
instructions to system calls along with their parameters. The trace remains spe-
cific to a given platform and to the language in which the program has been
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coded (native, interpreted, macros). An abstraction layer is thus required for
translation into the behavioral language from Section 2. Translation of basic in-
structions, either arithmetic (move, addition, subtraction...) or control related
(conditional, jump...), into operations of the language is an obvious mapping, not
requiring further explanation. On the opposite, translation of API calls and their
parameters into interactions and objects from the language is detailed thereafter.

3.1 API Calls Translation

For a program to access services and resources, the Application Programming
Interfaces (APIs) constitute a mandatory point enforcing security and consis-
tency [10]. API calls are also denoted system calls when accessing services from
the operating system. For each programming language, the set of available APIs
can be classified into distinct interaction classes. This set being finite and sup-
posedly stable, the translation is defined as a mapping over the interaction
classes, the completeness of the process being guaranteed. Table 1 provides a
mapping for APIs subsets from Windows [11] and VBScript. The table is re-
fined according to the nature of the manipulated objects. The API name, on
its own, is not always sufficient to determine its interaction class. For exam-
ple, network devices and files use common APIs; the distinction is made on their
path (\device\Afd\Endpoint). Sending, receiving packets then depends on control
codes transmitted to NtDeviceIoControlFile (IOCTL AFD RECV, IOCTL AFD SEND). If
required, specific call parameters constitute additional mapping inputs:
{API name} × ({Parameters} ∪ {ε}) → {Interaction class}.

3.2 Parameters Interpretation

In the context of interactions, parameters are important factors to identify the
involved objects and assess their criticality through typing. Parameters interpre-
tation thus complements the initial abstraction from the platform and language
obtained through API translation. Due to their varying nature, parameters can

Table 1. Mapping Windows Native and VBScript APIs to interaction classes
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Fig. 4. Character strings interpretation

not be translated by a simple mapping. Decision trees are more adaptive tools,
capable of interpreting parameters according to their representation:

Simple integers: Integer attributes are mainly constants specific to an associ-
ated API. They may condition the interpretation of its interaction class.

Address and Handles: Addresses and handles identify the different objects
appearing in the collected traces. They are particularly useful to study the
data flow between objects. Considering a variable, it is represented by its
address av and its size sv. Every address a such as av ≤ a ≤ av +sv will refer
to the same variable. Certain addresses with important properties may be
refined by typing: import tables, services table, entry points. These specific
addresses may be interpreted by decision trees partitioning the address space.

Character strings: String parameters contain the richer information. Most of
these parameters are paths satisfying a hierarchical structure where every
element is important: from the root identifying drives, drivers and registry,
passing by the intermediate directories providing object localization, until
the real name of the object. This hierarchical structure is well adapted for a
progressive analysis embedded in a decision tree. A progressive interpretation
of the path elements is shown in Fig.4 with basic examples for Windows and
Linux platforms.

3.3 Decision Trees Generation

Building decision trees requires a precise identification of the critical resources
of a system. Our methodology proceeds by successive layers: hardware, oper-
ating system and applications. For each layer, we define a scope encompassing
the significant components; the resources involved either in the installation, the
configuration or the use of these components are monitored for potential misuse:

Hardware layer: For the hardware layer, the scope can be restricted to the
interfaces open to external locations (Network, CD, USB). The key resources
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to monitor are the drivers used to communicate with these interfaces as well
as additional configuration files (e.g. Autorun.inf files impacting booting).

Operating system layer: OS configuration is critical but unfortunately dis-
persed in various locations (e.g. files, registry, structures in memory). How-
ever, most of the critical resources are already well identified, such as the
boot sequence or the intermediate structures used to access the provided
services and resources (e.g. file system, process table, system call table).

Applicative layer: It is obviously impossible to consider all existing applica-
tions. To restrict the scope, observing malware propagation and interoper-
ability constraints, the analysis is limited to connected and widely deployed
applications (web browsers,messaging,mail, peer-to-peer, IRC clients). Again
are considered resources involved in communication (connections, transit lo-
cations) as well as in configuration (application launch).

Identification of the critical resources potentially used by malware is a manual,
but necessary, configuration step. We believe however that it is less cumbersome
than analyzing the thousands of malware discovered every day, for the follow-
ing reasons. First, critical resources of a given platform are known and limited;
they can thus be enumerated. Their name and location can then be retrieved
in a partially automated way (e.g. listing connected drives, recovering peer-to-
peer clients and their shared folders). In fact, full automation of the parameter
interpretation may be hard to achieve. In [12], an attempt was made to fully au-
tomate their analysis for anomaly-based intrusion detection. The interpretation
relied on deviations from a legitimate model based on string length, character
distribution and structural inference. These factors are significant for intrusions
which mostly use misformatted parameters to infiltrate through vulnerabilities.
It may prove less efficient with malware since they can use legitimate param-
eters, at least in appearance. Moreover, the real purpose of these parameters
would still be unexplained; an additional analysis would be required for type
affectation. Thus, interpretation by decision trees with automated configuration
seems a good trade off between automation and beforehand manual analysis.

4 Detection Using Parsing Automata

Detecting malicious behaviors may be reduced to parsing their grammatical de-
scriptions. To achieve syntactic parsing and attribute evaluation in a single pass,
the attribute-grammars must be both LL grammars and L-attribute grammars:
attribute dependency is only allowed from left to right in the production rules.
These properties are not necessarily satisfied by the MBL generative grammar
but they prove true for the sub-grammars describing the malicious behaviors.
Therefore, detection can be implemented by LL-parsers, capable of building,
from top to down, the annotated leftmost-derivation trees. Basically, LL-parsers
are pushdown automata enhanced with attribute evaluation (Definition 2).

Definition 2. A LL-parser is a particular pushdown automaton A that can be
built as a ten-tuple <Q, Σ, D, Γp, Γs, δ, q0, Zp,0, Zs,0, F > where:
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- Q is the finite set of states, and F ⊂ Q is the subset of accepting states,
- Σ is the alphabet of input symbols and D is the set of values for attributes,
- Γp / Γs are the parsing / semantic stack alphabets,
- q0 ∈ Q is the initial state and Zp,0 / Zs,0 are the stacks start symbols,
- δ is the transition function defining the production rules and semantic routines,
of the form: Q× ({Σ ∪ ε}, D∗)× (Γp, Γs) → Q× ({Γp ∪ ε}, Γs).

Several behaviors are monitored in parallel by dedicated automata. Each au-
tomaton Ak parses several instances of the behavior, storing its progress in in-
dependent derivations (triple made up of a state qk and parsing and semantic
stacks Γpk, Γsk). For each collected events ei containing input symbols and se-
mantic values, all the parsing parallel automata progress along their derivations.
When an irrelevant input is read (an operation interleaved inside the behavior
for example), this input is dropped instead of causing an error state. The global
procedure is defined in the Algorithms 1 and 2 with an explicative figure.

Algorithm 1. A.ll-parse(e,Q,Γp,Γs)
1: if e, Q, Γp, Γs match a transition T ∈ δA then
2: if e introduces a possible ambiguity then
3: duplicate state and stack triple (Q,Γp, Γs).
4: end if
5: Compute transition T to update (Q,Γp, Γs).
6: if Q is an accepting state Q ∈ FA then
7: Malicious behavior detected.
8: else
9: ignore e.

10: end if
11: end if

Algorithm 2. BehaviorDetection(e1,...,et)
Require: events ei are couples of symbol and semantic values: ({Σ ∪ ε}, D∗).
1: for all collected events ei do
2: for all the automata Ak such as 1 ≤ k ≤ n do
3: mk = current number of parallel derivations handled by Ak.
4: for all state and stack triple (Qk,j , Γpk,j , Γsk,j) such as 1 ≤ j ≤ mk do
5: Ak.ll-parse(ei, Qk,j , Γpk,j , Γsk,j)).
6: end for
7: end for
8: end for

4.1 Semantic Prerequisites and Consequences

The present detection method can be related to scenario recognition in intrusion
detection. An intrusion scenario is defined as a sequence of dependent attacks
[13]. For each attack to occur, a set of prerequisites or preconditions must be
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satisfied. Once completed, new consequences are introduced, also called postcon-
ditions. In [14], isolated alerts are correlated into scenarios by parsing attribute-
grammars annoted with semantic rules to guarantee the flow between related
alerts. Similarly, a malicious behavior is a sequence where each operation pre-
pares for the next one. In a formalization by attribute grammars, the sequence
order is led by the syntax whereas prerequisites and consequences are led by
semantic rules of the form Yi.α = f(Y1.α1...Yn.αn) (Definition 1).

Checking prerequisites: Prerequisites are defined by specific semantic rules
where the left-side attributes of the equations are attached to terminal sym-
bols (Yi ∈ Σ). During parsing, semantic values are collected along input
symbols. These values are compared to values computed using inherited and
already synthesized attributes. This comparison corresponds to the matching
step performed on the semantic stack Γs during transitions from δ.

Evaluating consequences: When the left-side attribute is attached to a non-
terminal (Yi∈V ) and right-side attributes are valued, the attribute is evalu-
ated. During transitions from δ, the evaluation corresponds to the reduction
step where the computed value is pushed on the semantic stack Γs.

4.2 Ambiguity Support

All events are fed to the behavior automata. However, some of them may be
unrelated to the behavior or unuseful to its completion. Unrelated events do not
match any transition and are simply dropped. This is insufficient for unuseful
events raising ambiguities: they may be related to the behavior but parsing them
makes the derivation fail unpredictably. Let us take an explicit example for du-
plication. After opening the self-reference, two files are consecutively created.
If duplication is achieved between the self-reference and the first file, parsing
succeeds. If duplication is achieved with the second one, parsing fails because
the automaton has progressed beyond the state of accepting a second creation.
Similar ambiguities may be observed along the variable affectations which alter
the data-flow. The algorithm should thus be able to manage the different objects
and variables combinations. Ambiguities are handled by the detection algorithm
using derivation duplicates. Before transition reduction, if the operation is po-
tentially ambiguous, the current derivation is copied in a new triple containing
the current state and the parsing and semantic stacks. This solution handles
the combinations of events without backtracking. To come back and forth in the
derivation trees would have proved too cumbersome for real-time detection.

4.3 Time and Space Complexity

LL-parsing is linear in function of the number of symbols. Parallelism and ambi-
guities increase the complexity of the detection algorithm. Let us consider calls
to the parsing procedure as the reference operation. This procedure is decom-
posed in three steps: matching, reduction and accept (two comparisons and a
computation). In the worst case scenario, all events are related to the behavior
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automata and all these events introduce ambiguities. In the best case scenario,
no ambiguity is raised. Resulting complexities are given in Proposition 1.

Proposition 1. In the worst case, behavioral detection using attributed automata
has a time complexity in ϑ(k(2n−1)) and a space complexity in ϑ(k2n(2s)) where k
is the number of automata, n is the number of input symbol and s is the maximum
stack size. In the best case, time complexity drops to linear time ϑ(kn) and space
complexity becomes independent from the number of inputs ϑ(k2s).

The worst case complexity is important but it quickly drops as the number
of ambiguous events decreases. The experimentations in Section 6 show that
the ratios of ambiguous events are limited and the algorithm offers satisfactory
performances. Based on these ratios, a new assessment of the average practical
complexity is provided. Besides, these experimentations also show that impor-
tant ratios of ambiguous events are already a sign of malicious activity.

Proof. In a best case scenario, the number of derivation for each automaton
remains constant. Considering the worst case scenario, all events are potentially
ambiguous for all the current derivations. Technically, ambiguities multiply by
two the number of derivations at each iteration of the main loop. Consequently,
each automaton handles 2i−1 different derivations at the ith iteration. The time
complexity is then equivalent to the number of calls to the parsing procedure:

(1) k + 2k + ... + 2n−1k = k(1 + 2 + ... + 2n−1) = k(2n − 1)

The maximum number of derivations is reached after the last iteration where all
automata manage 2n parallel derivations. Each derivation is stored in two stacks
of size s. This moment coincide with the maximum memory occupation:

(2) k2n(2s).

5 Prototype Implementation

The prototype includes the aforementioned two layers: a specific collection and
abstraction layer and a generic detection layer. The overall architecture is de-
scribed in Fig.5. Components of the abstraction layer interpret the specificities
of the languages whereas the common object classifier interprets the specificities
of the platform. As a proof of concept, abstraction components have been imple-
mented for two languages: native code of PE executables and interpreted Visual
Basic Script. Above abstraction, the detection layer based on parallel behavioral
automata parses the interpreted traces independently from their original source.

5.1 Analyzer of Process Traces

Process traces provide useful information about the system activity of an exe-
cutable. The detection method could be deployed in real-time but for a greater
easiness, the experimentations were led off-line. The process traces were thus col-
lected beforehand inside a virtual environment to avoid any risk of infection. The
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Fig. 5. Multi-layer architecture Fig. 6. Collection environment for API calls

prototype deploys an existing tool called NtTrace to collect Windows native calls,
their arguments and returned values [15]. The main point with dynamic collection
mechanisms (real-time or emulation based) is that most behaviors are conditioned
by external objects and events: available target for infection or listening servers
for network propagation. In order to increase the mechanism coverage and col-
lect conditioned behaviors, the virtual environment from Fig.6 has been deployed
over Qemu [16]. Windows XP was installed on the drive image and useful services
and resources were configured: system time, ISP account, Mail and P2P clients,
potential targets (.exe, .jpg, .html). Outside the virtual machine, emulations of
DNS and SMTP servers have been deployed to establish connections and capture
a network activity at the system call level. The weight of the platform and its con-
figuration may seem important but notice that simple call interception would be
sufficient in a real-time deployment without any need for a virtual environment.

Translation is then deployed line by line on the collected traces. It directly
implements the results from Section 3 for API call translation and parameter
interpretation. Only a selection of APIs is classified by mappings; the others are
ignored until their future integration. An object classifier, embedding decision
trees specifically crafted for a Windows configuration as in Fig.4, is then called
on the parameters. During the process, sequences of identical or combined calls
are detected and formatted into loops in order to compress the resulting logs.
Looking specifically at creation and opening interactions, when resolved, a cor-
respondence is established between the names of objects and their references
(addresses, handles). Following interactions check for these references for inter-
pretation. Conversely, on deletion or closing, this correspondence is destroyed
for the remainder of the analysis. Names and identifiers must be unlinked since
a same address or handle number could be reused for a different object.

5.2 Analyzer of Visual Basic Scripts

No collection tool similar to NtTrace was available for VBScript. We have thus
developed our own collection tool, directly embedding the abstraction layer. VB-
Script being an interpreted language, its static analysis is simpler than native
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code because of the visibility of the source but also because of some integrated
safety properties: no direct code rewriting during execution and no arbitrary
transfer of the control flow [17]. For these reasons, path exploration becomes
conceivable. The interest of the static approach with respect to the dynamic one
used for process traces lies in the coverage of the collected data. In effect, the
different potential actions corresponding to the different execution paths will be
monitored. In addition, the visibility over the internal data flow will be increased
likewise. By comparison, the results of the experimentations will eventually be
a good indicator of the impact of the collection mechanism on detection.

Basically, the VBScript analyzer is a partial interpreter using static analysis
for path exploration. The analyzer is divided into three parts:

1) Static analyzer: The static analyzer heavily depends on the syntactic spec-
ifications of the VBScript language [18]. The script is first parsed to localize the
main, the local functions and procedures, as well as to retrieve their signature.
Its structure is then parsed by blocks to recover information about the declared
variables and instantiated managers (file system, shell, network, mail). In ad-
dition, the analyzer also deploys code normalization to remove the syntactic
shortcuts provided by VBScript, but most critically to thwart obfuscation. By
normalization, the current version can handle certain categories of obfuscation
such as integer encoding, string splitting or string encryption.

2) Dynamic interpreter: A partial interpreter has been defined to explore the
different execution paths. It is only partial in the sense that the script code is not
really executed. Only significant operations and dependencies are collected. To
support path exploration, the analyzer handles conditional and loop structures,
but also calls to local functions and procedures. Inside these different blocks, each
line is processed to retrieve the monitored API calls manipulating files, registry
keys, network connections or mails. Calls interpretation is deployed by mapping
as previously defined. Affectations, impacting the data-flow, are thereby also
monitored. Additional analysis is then deployed to process the expressions used
as call arguments, or affected values. In order to control the data-flow, object
references and aliases must be followed up through the processing of expressions:
- Local function/procedure calls: linking signature with the passed parameters,
- Monitored API calls: creating objects or updating their type and references,
- Variable affectations: linking variables with values,
- Calls to execute: evaluating expressions as code.

3) Object classifier: The previous classifier has been reused, as in Fig.5. Scripts
being based on strings, the address classifier part is unused. The string classifier
has been extended to best fit the script particularities, with new constants for
the self-reference for example ("Wscript.ScriptName","ScriptFullName").

5.3 Detection Automata

The transitions corresponding to the different grammar production rules have di-
rectly been coded in a prototype similarly to the algorithms from Section 4. Only
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two enhancements have been brought to the algorithm in order to increase the
performance. A first mechanism avoids duplicate derivations. Coexisting identi-
cal derivations artificially increase the number of iterations without identifying
other behaviors than the ones already detected. The second enhancement is re-
lated to the close and delete interactions. Once again, in order to decrease the
number of iterations, the derivations where no interaction intervene between the
opening/creation and the closing/deletion of an object, are destroyed. These two
mechanisms have proved helpful in regulating the number of parallel derivations.

6 Experimentation and Discussions

For experimentation, hundreds of samples have been gathered, the pool being
divided into two categories: Portable Executables and Visual Basic Scripts. For
each category, about 50 legitimate samples and 200 malware were considered.
According to the repartition in Fig.7, different types of legitimate applications,
selected from an healthy system, and malware, downloaded from repositories
[19,20], have been considered.

1) Coverage: The experimentation has provided significant detection rates with
51% for PE executables and up to 89% for VB Scripts. Results, behavior by be-
havior, are described in Tables 2 and 3. Duplication is the most significant ma-
licious behavior. However the additional behaviors, and in particular residency,
have detected additional malware where duplication was missed. False positives
are almost inexistent according to Tables 4 and 5. The only false positive, related
to residency, can be easily explained: the script was a malware cleaner reinitial-
izing the browser start page to clear the infection. On the opposite, important
false negative spikes can be localized in the PE results (Table 2): the low de-
tection rates for duplication of Viruses and propagation of Net/Mail Worms are
explained by limitations in the collection mechanisms that are assessed in 2).

Comparing VB scripts and PE traces, the false negatives are fewer for VB
scripts. Path exploration and affectation monitoring implemented in the ana-
lyzer provide a greater coverage. The remaining false negatives are explained
by the encryption of the whole malware body which is not supported yet and
the cohabitation in a same script of JavaScript and VBScript which makes the
syntactic analysis fail. Code localization mechanism could solve the problem.
For the analyzer of process traces, the detection rates observed for duplication
are consistent with existing works [5]. The real enhancements are twofolds: the

Fig. 7. Repartition of the test pool
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Table 2. PE Malware detection. (EmW=Email Worms, P2PW= P2P Worms, V= Virii,
NtW=Net Worms, Trj =Trojans, Eng=Functional Polymorphic Engine)

Behaviors EmW P2PW V NtW Trj Global Eng
Duplication 41(68,33%) 31(77,5%) 15(18,29%) 8(53,33%) 6(30%) 46,54% 30(100%)
direct copy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 8(26,67%)
single read/write 41(68,33%) 30(75%) 14(17,07%) 8(53,33%) 6(30%) 45,63% 12(40%)
interleaved r/w 9(15%) 3(7,5%) 3(3,66%) 3(0,2%) 0(0%) 8,29% 10(33,3%)
Propagation 4(6,67%) 19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,44% 17(56,7%)
direct copy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
single read/write 4(6,67%) 19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,44% 17(56,7%)
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
Residency 36(60%) 22(55%) 5(60,98%) 6(40%) 9(45%) 35,94% 30(100%)
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
Global detection 43(71,67%) 33(82,50%) 16(19,51%) 8(53,33%) 11(55,00%) 51,15% 30(100%)

Table 3. VBS Malware detection. (EmW=Email Worms, FdW=Flash Drive Worms,
IrcW= IRC Worms, P2PW=P2P Worms, V=Viruses, Gen =Generators variants)

Behaviors EmW FdW IrcW P2PW V Gen Global
Nb string ciphered 1/51 0/4 1/26 0/30 3/61 10/30 15/202
Nb body ciphered 4/51 0/4 0/26 1/30 2/61 0/30 7/202
String encryption 1(100%) 0 0 0(0%) 2(66,67%) 10(100%) 86,67%
Duplication 43(84,31%) 4(100%) 20(76,96%) 22(73,33%) 44(72,13%) 30(100%) 80,70%
direct copy 41(80,39%) 4(100%) 20(76,96%) 22(73,33%) 25(40,98%) 30(100%) 70,30%
single read/write 8(15,69%) 0(0%) 4(15,38%) 3(10%) 21(34,43%) 0(0%) 17,82%
interleaved r/w 1(1,96%) 0(0%) 0(0%) 0(0%) 8(13,11%) 0(0%) 4,46%
Propagation 33(64,71%) 3(75%) 5(19,23%) 25(83,33%) 5(8,20%) 30(100%) 49,99%
direct copy 33(64,71%) 3(75%) 4(15,38%) 25(83,33%) 3(4,92%) 30(100%) 48,52%
single read/write 3(5,88%) 0(0%) 2(7,69%) 1(3,33%) 2(3,28%) 0(0%) 3,96%
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 32(62,75%) 4(100%) 20(76,92%) 18(60,00%) 20(32,79%) 30(100%) 61,39%
Overinfection test 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%
conditional 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Global detection 46(90,20%) 4(100%) 25(96,15%) 27(90,00%) 50(81,97%) 30(100%) 90,09%

Table 4. PE Legitimate Samples. (Com=Communication & Exchange Applications,
MM=Multimedia Apps, Off=Office Apps, Sec=Security Tools, SysU=System & Utilities)

Behaviors PE PE PE PE PE PE
ComE MM Off Sec SysU Global

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Global detection 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Table 5. VBS Legitimate Samples. (EmM=Email Managers, InfC=Information Collectors,
Enc=Encoders, DfE=Disk & File Explorers, MwC=Malware Cleaners, RegR=Registry Repairs)

Behaviors VBS VBS VBS VBS VBS VBS VBS
EmM InfC Enc DfE MwC RegR Global

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 1(12,50%) 0(0%) 1,67%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Global detection 0(0%) 0(0%) 0(0%) 0(0%) 1(12,5%) 0(0%) 1,67%
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parallel detection of additional behaviors described in the same language, and
the possibility to feed detection with traces from other sources such as those com-
ing from the script analyzer. Additional tests in Table 2 have been led using the
functional polymorphic engine from [9]. For comparison with actual antivirus
products, confronted to the engine, the detection rates were between 15% for
most of them, up to 90% for others, but with numerous false positives.

2) Limitations in trace collection: A significant part of the missed behaviors
are due to limitations in the collection coverage. However, thanks to the layer-
based approach, collection and abstraction can be improved for a given platform
or language without modifying the upper detection layer.

With regards to dynamic analysis (PE traces), the first reason for missed
detections is related to the configuration of the simulated environment. The
simulation must seem as real as possible to satisfy the execution conditions of
malware. Problems can reside in the software configuration. 65% of the tested
Viruses (53/82) did not execute properly: invalid PE, access violations, excep-
tions. These failures may be explained by the detection of virtualization or anti-
debug techniques thwarting dynamic analysis. Problems can also come from the
simulated network. Considering worms, their propagation is conditioned by the
network configuration. 75% of the Mail Worms (45/60) did not show any SMTP
activity because of unreachable servers. Likewise, Net Worms propagate through
vulnerabilities only if a vulnerable target is reachable, explaining that 93% of
them did not propagate (14/15). All actions conditioned by the simulation con-
figuration are difficult to observe: a potential solution could be forced branching.
Notice that this discussion makes sense for off-line analysis but is less of a prob-
lem in real-time conditions where we are only interested in the malicious actions
effectively performed.

Beyond configuration, the level of the collection can also explain the failures.
With a low level collection mechanism, the visibility over the performed actions
and the data flow is increased. All flow-sensitive behaviors such as duplication
can be missed because of breakdowns in the data flow. Such breakdowns can
find their origin sometimes in non monitored system calls and for the most part
in the intervention of intermediate buffers where all operations are executed in
memory. These buffers are often used in code mutation (polymorphism, meta-
morphism). 12% of additional virus duplications (10/82) were missed because of
data flow breakdowns. The problem is identical with Mail Worms where 8% of
the propagations (5/60) were missed because of intermediate buffers intervening
in the Base64 encoding. These problems do not come from the behavioral de-
scriptions but from NtTrace which does not capture processor instructions. More
complete collection tools either collecting instructions [21] or deploying tainting
techniques [22] could avoid these breakdowns in the data flow.

With regards to static analysis (VB scripts), the interpreted language implies a
different context where branching exploration is feasible and the whole data flow
is observable. Implemented in the script analyzer, these features compensate for
the drawbacks of NtTrace and eventually result in better detection rates. How-
ever, contrary to the restricted number of system calls, VBScript offers numerous
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services. A same operation can be achieved using different managers or interfacing
with different Microsoft applications. Additional features could be monitored for
a greater coverage: accesses to Messenger, support of the Windows Management
Instrumentation (WMI). Moreover, like any other static analysis, script analysis is
hindered by encryption and obfuscation. The current version of the analyzer only
partially handles these techniques; code encryption is missing for example. Static
analysis of scripts is nevertheless easier to consider because no prior disassembly
is required and some security locks ease the analysis.

3) Behavior relevance: In addition to data collection, the behavioral model
itself must be assessed. The relevance of each behavior must be individually as-
sessed by checking the coverage of its grammatical model. Some behaviors such
as duplication, propagation and residency are obviously characteristic to mal-
ware. Duplication and propagation are discriminating enough for detection. On
the other hand, residency is likely to occur in legitimate programs, during in-
stallations for example. To avoid certain false positives, its description could be
refined , using additional constraints on the value written to the booting object:
the value should refer to the program itself or to one of its duplicated versions.
On the other hand, the overinfection model does not seem completely relevant.
The problem comes from a description that includes too many restraints limiting
its detection. In particular, the conditional structure intervening in the model
can not be detected in system call traces. Its generalization could increase detec-
tion but the risk of confusion with legitimate error handling would also increase.

4) Performance: Table 6 measures the performances of the different prototype
components. Considering abstraction, the analysis of PE traces is the most time
consuming. The analyzer uses lots of string comparisons which could be avoided
by replacing the off-line analysis by hooking in rel-time for immediate transla-
tion. On the other hand, the VBScript analyzer offers satisfying performances.
With regards to the detection automata, the performances are also satisfying
compared with the worst case complexity. The detection speed remains far be-
low a half second in more than 90% of the cases; the remaining 10% were all
malware. The implementation has also revealed that the required space for the
derivation stacks was very low, with a maximal stack size of 7. In addition, the
number of ambiguities has been measured. If ne denotes the number of events
and na the number of ambiguities, in the worst case, we would have na = 2ne .
But by experience: na << 2ne and na << n2

e and na ≈ αne.

This approximation provides a practical complexity in ϑ(kα(n2+n
2 ))

which is more worth considering. Moreover, the algorithm can easily be
parallelized in multi-core architectures. Figures 8 and 9 provide graphs of the
collected α ratios. It can be observed that above a certain threshold, an
important ambiguity ratio α is already a sign of malicious activity.
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Table 6. Compared performances on mono and multi-core architectures

NtTrace Analyzer
Data reduction from PE traces to logs
Total size: 351Mo Average: 1,3Mo/Trace
Reduced logs: 11Mo Reduction ratio: 29
Execution speed
Core M 1,4GHz Dual core 2,6GHz
1,48 s/trace 0,34 s/trace
VB Script Analyzer
Data reduction from VB scripts to logs
Total size: 1842Ko Average: 7Ko/Script
Reduced logs: 298Ko Reduction ratio: 6
Execution speed
Core M 1,4GHz Dual core 2,6GHz
0,042 s/script 0,016 s/script
+0,50 s/ciphered line +0,21 s/ciphered line
Detection Automata
Execution speed
Core M 1,4GHz Dual core 2,6GHz
NT: 0,44 s/log NT: 0,14 s/log
VBS: 0,002 s/log VBS: <0,001 s/log

Fig. 8. Ambiguity ratios (α) for PE samples

Fig. 9. Ambiguity ratios (α) for VB scripts
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7 Conclusions

Detection by attribute automata provides a good coverage of malware using
known techniques with 51% of detected PE malware and 89% of VB Scripts
malware. The grammatical approach offers a synthetic vision of malicious be-
haviors. Indeed, only four generic, human-readable, behavioral descriptions have
resulted in these detection rates. Unknown malware using variations from these
known behaviors should be detected thanks to the abstraction process. In case
of innovative techniques, this approach eases the update process. The segmen-
tation between abstraction and detection enables independent updates: in the
grammatical descriptions for generic procedures (infrequent), or in the abstrac-
tion components for vulnerable objects and APIs. Up until now, the generation
of the behavioral descriptions is still manual but the process could be combined
with the identification of malicious behaviors by differential analysis proposed
by Christodorescu et al. [4]. The experimentations have also stressed the im-
portance of data collection in the detection process. Collection mechanisms are
already an active research field and future work can be testing more adapted
collection tools deploying tainting.
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Abstract. Scanning files for signatures is a proven technology, but ex-
ponential growth in unique malware programs has caused an explosion
in signature database sizes. One solution to this problem is to use string
signatures, each of which is a contiguous byte sequence that potentially
can match many variants of a malware family. However, it is not clear
how to automatically generate these string signatures with a sufficiently
low false positive rate. Hancock is the first string signature generation
system that takes on this challenge on a large scale.

To minimize the false positive rate, Hancock features a scalable model
that estimates the occurrence probability of arbitrary byte sequences in
goodware programs, a set of library code identification techniques, and
diversity-based heuristics that ensure the contexts in which a signature
is embedded in containing malware files are similar to one another. With
these techniques combined, Hancock is able to automatically generate
string signatures with a false positive rate below 0.1%.

Keywords: malware signatures, signature generation, Markov model,
library function identification, diversity-based heuristics.

1 Introduction

Symantec’s anti-malware response group receives malware samples submitted
by its customers and competitors, analyzes them, and creates signatures that
could be used to identify instances of them in the field. The number of unique
malware samples that Symantec receives has grown exponentially in the recent
years, because malware programs are increasingly customized, targeted, and in-
tentionally restricted in distribution scope. The total number of distinct malware
samples that Symantec observed in 2008 exceeds 1 million, which is more than
the combined sum of all previous years.

Although less proactive than desired, signature-based malware scanning is
still the dominant approach to identifying malware samples in the wild because
of its extremely low false positive (FP) rate, i.e., the probability of mistaking
a goodware program for a malware program is very low. For example, the FP
rate requirement for Symantec’s anti-malware signatures is below 0.1%. Most
signatures used in existing signature-based malware scanners are hash signatures,
each of which is the hash of a malware file. Although hash signatures have a
low false positive rate, the number of malware samples covered by each hash
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signature is also low – typically one. As a result, the total size of the hash
signature set grows with the exponential growth in the number of unique malware
samples. This creates a signature distribution problem for Symantec: How can
we distribute these hash-based malware signatures to hundreds of millions of
users across the world several dozen times per day in a scalable way?

One possible solution is to replace hash signatures with string signatures, each
of which corresponds to a short, contiguous byte sequence from a malware bi-
nary. Thus, each string signature can cover many malware files. Traditionally,
string signatures are created manually because it is difficult to automatically de-
termine which byte sequence in a malware binary is less FP-prone, i.e., unlikely
to appear in any goodware program in the world. Even for manually created
string signatures, it is generally straightforward for malware authors to evade
them, because they typically correspond to easy-to-modify data strings in mal-
ware binaries, such as names of malware authors, special pop-up messages, etc.

Hancock is an automatic string signature generation system developed in
Symantec Research Labs that automatically generates high-quality string sig-
natures with minimal FPs and maximal malware coverage. i.e. The probability
that a Hancock-generated string signature appears in any goodware program
should be very, very low. At the same time each Hancock-generated string sig-
nature should identify as many malware programs as possible. Thus, although
one string signature takes more space than one hash signature, it uses far less
space than all of the hash signatures it replaces.

Given a set of malware samples, Hancock is designed to create a minimal
set of N -byte sequences, each of which has a sufficiently low false positive rate,
that collectively cover as large a portion of the malware set as possible. Based on
previous empirical studies, Hancock sets N to 48. It uses three types of heuristics
to test a candidate signature’s FP rate: probability-based, disassembly-based,
and diversity-based. The first two filter candidate signatures extracted from
malware files and the last selects good signatures from among these candidates.

Hancock begins by recursively unpacking malware files using Symantec’s un-
packing engine. It rejects files that are packed and cannot be unpacked, according
to this engine, PEiD [1], and entropy analysis, and stores 48-byte sequences from
these files in a list of invalid signatures. Hancock does this because signatures
produced on packed files are likely to cover the unpacking code. Blacklisting
certain packers should only be done explicitly by a human, rather than through
automated signature generation.

Hancock then examines every 48-byte code sequence in unpacked malware
files. It finds candidate signatures using probability-based and disassembly-based
heuristics: it filters out byte sequences whose estimated occurrence probability
in goodware programs, according to a pre-computed goodware model, is above
a certain threshold; that are considered a part of library functions; or whose as-
sembly instructions are not sufficiently interesting or unique, based on heuristics
that encode malware analysts’ selection criteria. It examines only code so that
disassembly-based heuristics can work and because malware authors can more
easily vary data.
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Among those candidate signatures that pass the initial filtering step, Hancock
further applies a set of selection rules based on the diversity principle: If the
set of malware samples containing a candidate signature are similar, then they
are less FP-prone. A candidate signature in a diverse set of malware files is
more likely to be a part of a library used by several malware families. Though
identifying several malware families seems like a good idea, if a signature is part
of library code, goodware files might use the same library. On the other hand, if
the malware files are similar, they are more likely to belong to one family and
the candidate signature is more likely to be code that is unique to that family.

Finally, Hancock is extended to generate string signatures that consist of mul-
tiple disjoint byte sequences rather than only one contiguous byte sequence.
Although multi-component string signatures are more effective than single-
component signatures, they also incur higher run-time performance overhead
because individual components are more likely to match goodware programs.
In the following sections, we will describe the signature filter algorithms, the
signature selection algorithms, and the multi-component generalization used in
Hancock.

2 Related Work

Modern anti-virus software typically employ a variety of methods to detect
malware programs, such as signature-based scanning [2], heuristic-based detec-
tion [3], and behavioral detection [4]. Although less proactive, signature-based
malware scanning is still the most prevalent approach to identify malware be-
cause of its efficiency and low false positive rate. Traditionally, the malware
signatures are created manually, which is both slow and error-prone. As a re-
sult, efficient generation of malware signatures has become a major challenge for
anti-virus companies to handle the exponential growth of unique malware files.
To solve this problem, several automatic signature generation approaches have
been proposed.

Most previous work focused on creating signatures that are used by Network
Intrusion Detection Systems (NIDS) to detect network worms. Singh et al. pro-
posed EarlyBird [5], which used packet content prevalence and address dispersion
to automatically generate worm signatures from the invariant portions of worm
payloads. Autograph [6] exploited a similar idea to create worm signatures by
dividing each suspicious network flow into blocks terminated by some breakmark
and then analyzing the prevalence of each content block. The suspicious flows are
selected by a port-scanning flow classifier to reduce false positives. Kreibich and
Crowcroft developed Honeycomb [7], a system that uses honeypots to gather
inherently suspicious traffic and generates signatured by applying the longest
common substring (LCS) algorithm to search for similarities in the packet pay-
loads. One potential drawback of signatures generated from previous approaches
is that they are all continuous strings and may fail to match polymorphic worm
payloads. Polygraph [8] instead searched for invariant content in the network
flows and created signatures consisting of multiple disjoint content substrings.
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Polygraph also utilized a naive Bayes classifier to allow the probabilistic match-
ing and classification, and thus provided better proactive detection capabilities.
Li et al. proposed Hasma [9], a system that used a model-based algorithm to
analyze the invariant contents of polymorphic worms and analytically prove
the attack-resilience of generated signatures. PDAS (Position-Aware Distribu-
tion Signatures) [10] took advantage of a statistical anomaly-based approach to
improve the resilience of signatures to polymorphic malware variants. Another
common method for detecting polymorphic malware is to incorporate semantics-
awareness into signatures. For example, Christodorescu et al. proposed static
semantics-aware malware detection in [11]. They applied a matching algorithm
on the disassembled binaries to find the instruction sequences that match the
manually generated templates of malicious behaviors, e.g., decryption loop. Yeg-
neswaran et al. developed Nemean [12], a framework for automatic generation
of intrusion signatures from honeynet packet traces. Nemean applied cluster-
ing techniques on connections and sessions to create protocol-semantic-aware
signatures, thereby reducing the possibility of false alarms.

Hancock differs from previous work by focusing on automatically generating
high-coverage string signatures with extremely low false positives. Our research
was based loosely on the virus signature extraction work [13] by Kephart and
Arnold, which was commercially used by IBM. They used a 5-gram Markov chain
model of good software to estimate the probability that a given byte sequence
would show up in good software. They tested hand-generated signatures and
found that it was quite easy to set a model probability threshold with a zero false
positive rate and a modest false negative rate (the fraction of rejected signatures
that would not be found in goodware) of 48%. They also generated signatures
from assembly code (as Hancock does), rather than data, and identified candidate
signatures by running the malware in a test environment. Hancock does not do
this, as dynamic analysis is very slow in large-scale applications.

Symantec acquired this technology from IBM in the mid-90s and found that
it led to many false positives. The Symantec engineers believed that it worked
well for IBM because IBM’s anti-virus technology was used mainly in corporate
environments, making it much easier for IBM to collect a representative set of
goodware. By contrast, signatures generated by Hancock are mainly for home
users, who have a much broader set of goodware. The model’s training set cannot
possibly contain, or even represent, all of this goodware. This poses a significant
challenge for Hancock in avoiding FP-prone signatures.

3 Signature Candidate Selection

3.1 Goodware Modeling

The first line of defense in Hancock is a Markov chain-based model that is trained
on a large goodware set and is designed to estimate the probability of a given
byte sequence appearing in goodware. If the probability of a candidate signature
appearing in some goodware program is higher than a threshold, Hancock rejects
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it. Compared with standard Markov models, Hancock’s goodware model has two
important features:

– Scalable to very large goodware set. Symantec regularly tests its anti-
virus signatures against several terabytes of goodware programs. A standard
Markov model uses linear space [14] in the training set size, with a large con-
stant factor. Hancock’s goodware model focuses only on high-information-
density byte sequences so as to scale to very large goodware training sets.

– Focusing on rare byte sequences. For a candidate signature to not cause
a false positive, its probability of appearing in goodware must be very, very
low. Therefore, the primary goal of Hancock’s model is to distinguish between
low-probability byte sequences and very rare byte sequences.

Basic Algorithm. The model used in Hancock is a fixed-order 5-gram Markov
chain model, which estimates the probability of the fifth byte conditioned on the
occurrence of the preceding four bytes. Training consists of counting instances
of 5-grams – 5-byte sequences – as well as 4-grams, 3-grams, etc. The model
calculates the probability of a 48-byte sequence by multiplying estimated prob-
abilities of each of the 48 bytes. A single byte’s probability is the probability of
that byte following the four preceding bytes. For example, the probability that
“e” follows “abcd” is

p(e|abcd) =
count(abcde)
count(abcd)

∗ (1− ε(count(abcd))) + p(e|bcd) ∗ ε(count(abcd))

In this equation, count(s) is the number of occurrences of the byte sequence s
in the training set. We limit overtraining with ε(count(s)), the escape mass of
s. Escape mass decreases with count. Empirically, we found that a good escape
mass for our model is ε(c) =

√
32√

32+
√

c
.

Model Pruning. The memory required for a vanilla fixed-order 5-gram model
is significantly greater than the size of the original training set. Hancock re-
duces the memory requirement of the model by incorporating an algorithm that
prunes away less useful grams in the model. The algorithm looks at the relative
information gain of a gram and eliminates it if its information gain is too low.
This allows Hancock to keep the most valuable grams, given a fixed memory
constraint.

Consider a model’s grams viewed as nodes in a tree. The algorithm considers
every node X , corresponding to byte sequence s, whose children (corresponding
to sσ for some byte σ) are all leaves. Let s′ be s with its first byte removed.
For example, if s is “abcd”, s′ is “bcd”. For each child of X , σ, the algorithm
compares p(σ|s) to p(σ|s′). In this example, the algorithm compares p(e|abcd) to
p(e|bcd), p(f|abcd) to p(f|bcd), etc. If the difference between p(σ|s) and p(σ|s′)
is smaller than a threshold, that means that X is does not add that much value
to σ’s probability and the node σ can be pruned away without compromising
the model’s accuracy.
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To focus on low-probability sequences, Hancock uses the difference between
the logs of these two probabilities, rather than that between their raw probability
values. Given a space budget, Hancock keeps adjusting the threshold until it hits
the space target.

Model Merging. Creating a pruned model requires a large amount of interme-
diate memory, before the pruning step. Thus, the amount of available memory
limits the size of the model that can be created. To get around this limit, Han-
cock creates several smaller models on subsets of the training data, prunes them,
and then merges them.

Merging a model M1 with an existing model M2 is mostly a matter of adding
up their gram counts. The challenge is in dealing with grams pruned from M1
that exist in M2 (and vice versa). The merging algorithm must recreate these
gram counts in M1. Let sσ be such a gram and let s′ be s with its first byte
removed. The algorithm estimates the count for sσ as count(s) ∗ p(σ|s′). Once
these pruned grams are reconstituted, the algorithm simply adds the two models’
gram counts.

Experimental Results. We created an occurrence probability model from a
1-GByte training goodware set and computed the probability of a large number
of 24-byte test sequences, extracted from malware files. We checked each test
byte sequence against a goodware database, which is a large superset of the
training set, to determine if it is a true positive (a good signature) or a false
positive (which occurs in goodware). In Figure 1, each point in the FP and TP
curves represents the fraction (Y axis value) of test byte sequences whose model
probability is below the X axis value.

As expected, TP signatures have much lower probabilities, on average, than
FP signatures. A small number of FP signatures have very low probabilities –
below 10−60. Around probability 10−40, however, the model does provide excel-
lent discrimination power, rejecting 99% of FP signatures and accepting almost
half of TP signatures.

Fig. 1. Fractions of FP and TP sequences
with probabilities below the X value

Fig. 2. TP rate comparison between
models with varying pruning thresholds
and varying training set sizes
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To evaluate the effectiveness of Hancock’s information gain-based pruning
algorithm, we used two sets of models: non-pruned and pruned. The former were
trained on 50 to 100 Mbytes of goodware. The latter were trained on 100 Mbytes
of goodware and pruned to various sizes. For each model, we then computed its
TP rate at the probability threshold that yields a 2% FP rate. Figure 2 shows
these TP rates of goodware models versus the model’s size in memory. In this
case, pruning can roughly halve the goodware model size while offering the same
TP rate as the pruned model derived from the same training set.

3.2 Library Function Recognition

A library is a collection of standard functions that implement common operations,
such as file IO, string manipulation, and graphics. Modern malware authors use
library functions extensively to simplify development, just like goodware authors.
By construction, variants of a malware family are likely to share some library func-
tions. Because these library functions also have a high probability of appearing in
goodware, Hancock needs to remove them from consideration when generating
string signatures. Toward this goal, we developed a set of library function recog-
nition techniques to determine whether a function in a malware file is likely to be
a library function or not.

A popular library identification technique is IDA Pro’s Fast Library Iden-
tification and Recognition Technology (FLIRT) [15], which uses byte pattern
matching algorithms (similar to string signature scanning) to quickly determine
whether a disassembled function matches any of the signatures known to IDA
Pro.1 Although FLIRT is very accurate in pinpointing common library func-
tions, it still needs some improvement to suit Hancock’s needs. First, FLIRT is
designed to never falsely identify a library. To achieve this, FLIRT first tries to
identify the compiler type (e.g., Visual C++ 7.0, 8.0, Borland C++, Delphi, etc.)
of a disassembled program and applies only signatures for that compiler. For ex-
ample, vcseh signatures (Structured Exception Handling library signatures) will
only be applied to binary files that appear to have been compiled with Visual
C++ 7 or 8. This conservative approach can lead to false negatives (a library
function not identified) because of failure in correctly detecting the compiler
type. In addition, because FLIRT uses a rigorous pattern matching algorithm
to search for signatures, small variation in libraries, e.g., minor changes in the
source code, different settings in compiler optimization options or use of different
compiler versions to build the library, could prevent FLIRT from recognizing all
library functions in a disassembled program.

In contrast to FLIRT’s conservative approach, Hancock’s primary goal is to
eliminate false positive signatures. It takes a more aggressive stance by being
willing to mistake non-library functions for library functions. Such misidentifi-
cation is acceptable because it prevents any byte sequence that is potentially

1 IDA Pro ships with a database of signatures for about 120 libraries associated with
common compilers. Each signature corresponds to a binary pattern in a library
function.
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associated with a library function from being used as a malware signature. We
exploited this additional latitude with the following three heuristics:

Universal FLIRT Heuristic. This heuristic generalizes IDA Pro’s FLIRT
technique by matching a given function against all FLIRT signatures, regardless
of whether they are associated with the compiler used to compile the function.
This generalization is useful because malware authors often post-process their
malware programs to hide or obfuscate compiler information in an attempt to
deter any reverse engineering efforts. Moreover, any string signatures extracted
from a function in a program compiled by a compiler C1 that looks like a li-
brary function in another compiler C2 are likely to cause false positives against
programs compiled by C2 and thus should be rejected.

Library Function Reference Heuristic. This heuristic identifies a library
function if the function is statically called, directly or indirectly, by any known
library function. The rationale behind this heuristic is that since a library cannot
know in advance which user program it will be linked to, it is impossible for
a library function to statically call any user-written function, except callback
functions, which are implemented through function pointers and dynamically
resolved. As a result, it is safe to mark all children of a library function in its
call tree as library functions. Specifically, the proposed technique disassembles
a binary program, builds a function call graph representation of the program,
and marks any function that is called by a known library function as a library
function. This marking process repeats itself until no new library function can
be found.

In general, compilers automatically include into an executable binary certain
template code, such as startup functions or error handling, which IDA Pro also
considers as library functions as well. These template functions and their callees
must be excluded in the above library function marking algorithm. For example,
the entry point function start and mainCRTstartup in Visual C++-compiled
binaries are created by the compiler to perform startup preparation (e.g., execute
global constructors, catch all uncaught exceptions) before invoking the user-
defined main function.

3.3 Code Interestingness Check

The code interestingness check is designed to capture the intuitions of Symantec’s
malware analysis experts about what makes a good string signature. For the most
part, these metrics identify signatures that are less likely to be false positives.
They can also identify malicious behavior, though avoiding false positives is the
main goal. The code interestingness check assigns a score for each “interesting”
instruction pattern appearing in a candidate signature, sums up these scores, and
rejects the candidate signature if its sum is below a threshold, i.e. not interesting
enough. The interesting patterns used in Hancock are:

– Unusual constant values. Constants sometimes have hard-coded values
that are important to malware, such as the IP address and port of a command
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and control server. More importantly, if a signature has unusual constant
values, it is less likely to be a false positive.

– Unusual address offsets. Access to memory that is more than 32 bytes
from the base pointer can indicate access to a large class or structure. If
these structures are unique to a malware family, then accesses to particular
offsets into this structure are less likely to show up in goodware. This pattern
is not uncommon among legitimate Win32 applications. Nonetheless, it has
good discrimination power.

– Local or non-library function calls. A local function call itself is not
very distinctive, but the setup for local function calls often is, in terms of
how it is used and how its parameters are prepared. In contrast, setup for
system calls is not as interesting, because they are used in many programs
and invoked in a similar way.

– Math instructions. A malware analyst at Symantec noted that malware
often perform strange mathematical operations, to obfuscate and for various
other reasons. Thus, Hancock looks for strange sequences of XORs, ADDs,
etc. that are unlikely to show up in goodware.

4 Signature Candidate Filtering

Hancock selects candidate signatures using techniques that assess a candidate’s
FP probability based solely on its contents. In this section, we describe a set
of filtering techniques that remove from further consideration those candidate
signatures that are likely to cause a false positive based on the signatures’ use
in malware files.

These diversity-based techniques only accept a signature if it matches variants
of one malware family (or a small number of families). This is because, if a byte
sequence exists in many malware families, it is more likely to be library code –
code that goodware could also use. Therefore, malware files covered by a Hancock
signature should be similar to one another.

Hancock measures the diversity of a set of binary files based on their byte-
level and instruction-level representations. The following two subsections de-
scribe these two diversity measurement methods.

4.1 Byte-Level Diversity

Given a signature, S, and the set of files it covers, X, Hancock measures the
byte-level similarity or diversity among the files in X by extracting the byte-level
context surrounding S and computing the similarity among these contexts.
More concretely, Hancock employs the following four types of byte-level
signature-containing contexts for diversity measurement.

Malware Group Ratio/Count. Hancock clusters malware files into groups
based on their byte-level histogram representation. It then counts the number
of groups to which the files in X belong. If this number divided by the number
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of files in X exceeds a threshold ratio, or if the number exceeds a threshold
count, Hancock rejects S. These files cannot be variants of a single malware
family, if each malware group indeed corresponds to a malware family.

Signature Position Deviation. Hancock calculates the position of S within
each file in X, and computes the standard deviation of S’s positions in these
files. If the standard deviation exceeds a threshold, Hancock rejects S, because
a large positional deviation suggests that S is included in the files it covers for
very different reasons. Therefore, these files are unlikely to belong to the same
malware family. The position of S in a malware file can be an absolute byte
offset, which is with respect to the beginning of the file, or a relative byte offset,
which is with respect to the beginning of the code section containing S.

Multiple Common Signatures. Hancock attempts to find another common
signature that is present in all the files in X and is at least 1 Kbyte away from
S. If such a common signature indeed exists and the distance between this
signature and S has low standard deviation among the files in X, then Hancock
accepts S because this suggests the files in X share a large chunk of code
and thus are likely to be variants of a single malware family. Intuitively, this
heuristic measures the similarity among files in X using additional signatures
that are sufficiently far away, and can be generalized to using the third or fourth
signature.

Surrounding Context Count. Hancock expands S in each malware file in
X by adding bytes to its beginning and end until the resulting byte sequences
become different. For each such distinct byte sequence, Hancock repeats the same
expansion procedure until the expanded byte sequences reach a size limit, or
when the total number of distinct expanded byte sequences exceeds a threshold.
If this expansion procedure terminates because the number of distinct expanded
byte sequences exceeds a threshold, Hancock rejects S, because the fact that
there are more than several distinct contexts surrounding S among the files in
X suggests that these files do not belong to the same malware family.

4.2 Instruction-Level Diversity

Although byte-level diversity measurement techniques are easy to compute and
quite effective in some cases, they treat bytes in a binary file as numerical
values and do not consider their semantics. Given a signature S and the set
of files it covers, X, instruction-level diversity measurement techniques, on the
other hand, measure the instruction-level similarity or diversity among the files
in X by extracting the instruction-level context surrounding S and computing
the similarity among these contexts.

Enclosing Function Count. Hancock extracts the enclosing function of S in
each malware file in X, and counts the number of distinct enclosing functions.
If the number of distinct enclosing functions of S with respect to X is higher
than a threshold, Hancock rejects S, because S appears in too many distinct
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contexts among the files in X and therefore is not likely to be an intrinsic part
of one or a very small number of malware families. To determine if two enclosing
functions are distinct, Hancock uses the following three identicalness measures,
in decreasing order of strictness:

– The byte sequences of the two enclosing functions are identical.
– The instruction op-code sequences of the two enclosing functions are identi-

cal. Hancock extracts the op-code part of every instruction in a function, and
normalizes variants of the same op-code class into their canonical op-code.
For example, there are about 10 different X86 op-codes for ADD, and Han-
cock translates all of them into the same op-code. Because each instruction’s
operands are ignored, this measure is resistant to intentional or accidental
polymorphic transformations such as re-locationing, register assignment, etc.

– The instruction op-code sequences of the two enclosing functions are iden-
tical after instruction sequence normalization. Before comparing two op-
code sequences, Hancock performs a set of de-obfuscating normalizations
that are designed to undo simple obfuscating transformations, such as re-
placing “test esi, esi” with “or esi, esi”, replacing “push ebp; mov
ebp, esp” with “push ebp; push esp; pop ebp”, etc.

5 Multi-Component String Signature Generation

Traditionally, string signatures used in AV scanners consist of a contiguous se-
quence of bytes. We refer to these as single-component signature (SCS). A nat-
ural generalization of SCS is multi-component signatures (MCS), which consist
of multiple byte sequences that are potentially disjoint from one another. For
example, we can use a 48-byte SCS to identify a malware program; for the same
amount of storage space, we can create a two-component MCS with two 24-byte
sequences. Obviously, an N -byte SCS is a special case of a K-component MCS
where each component is of size N

K . Therefore, given a fixed storage space budget,
MCS provides more flexibility in choosing malware-identifying signatures than
SCS, and is thus expected to be more effective in improving coverage without
increasing the false positive rate.

In the most general form, the components of a MCS do not need to be of
the same size. However, to limit the search space, in the Hancock project we
explore only those MCSs that have equal-sized components. So the next ques-
tion is how many components a MCS should have, given a fixed space budget.
Intuitively, each component should be sufficiently long so that it is unlikely to
match a random byte sequence in binary programs by accident. On the other
hand, the larger the number of components in a MCS, the more effective it is
in eliminating false positives. Given the above considerations and the practical
signature size constraint, Hancock chooses the number of components in each
MCS to be between 3 and 5.

Hancock generates the candidate component set using a goodware model and
a goodware set. Unlike SCS, candidate components are drawn from both data
and code, because intuitively, combinations of code component signatures and
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data component signatures make perfectly good MCS signatures. When Han-
cock examines an N

K -byte sequence, it finds the longest substring containing this
sequence that is common to all malware files that have the sequence. Hancock
takes only one candidate component from this substring. It eliminates all se-
quences that occur in the goodware set and then takes the sequence with the
lowest model probability. Unlike SCS, there is no model probability threshold.

Given a set of qualified component signature candidates, S1, and the set of
malware files that each component signature candidate covers, Hancock uses
the following algorithm to arrive at the final subset of component signature
candidates used to form MCSs, S2:

1. Compute for each component signature candidate in S1 its effective coverage
value, which is a sum of weights associated with each file the component
signature candidate covers. The weight of a covered file is equal to its coverage
count, the number of candidates in S2 already covering it, except when the
number of component signatures in S2 covering that file is larger than or
equal to K, in which case the weight is set to zero.

2. Move the component signature candidate with the highest effective cover-
age value from S1 to S2, and increment the coverage count of each file the
component signature candidate covers.

3. If there are still malware files that are still uncovered or there exists at least
one component signature in S1 whose effective coverage value is non-zero,
go to Step 1; otherwise exit.

The above algorithm is a modified version of the standard greedy algorithm for
the set covering problem. The only difference is that it gauges the value of each
component signature candidate using its effective coverage value, which takes
into account the fact that at least K component signatures in S2 must match a
malware file before the file is considered covered. The way weights are assigned
to partially covered files is meant to reflect the intuition that the value of a
component signature candidate to a malware file is higher when it brings the
file’s coverage count from X − 1 to X than that from X − 2 to X − 1, where X
is less than or equal to K.

After S2 is determined, Hancock finalizes the K-component MCS for each
malware file considered covered, i.e., whose coverage count is no smaller than
K. To do so, Hancock first checks each component signature in S2 against a
goodware database, and marks it as an FP if it matches some goodware file
in the database. Then Hancock considers all possible K-component MCSs for
each malware file and chooses the one with the smallest number of components
that are an FP. If the number of FP components in the chosen MCS is higher
than a threshold, TFP , the MCS is deemed as unusable and the malware file is
considered not covered. Empirically, T is chosen to be 1 or 2. After each malware
file’s MCS is determined, Hancock applies the same diversity principle to each
MCS based on the malware files it covers.
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6 Evaluation

6.1 Methodology

To evaluate the overall effectiveness of Hancock, we used it to generate 48-
byte string signatures for two sets of malware files, and use the coverage and
number of false positives of these signatures as the performance metrics. The
first malware set has 2,363 unpacked files that Symantec gathered in August
2008. The other has 46,288 unpacked files (or 112,156 files before unpacking)
gathered in 2007-2008. The goodware model used in initial signature candidate
filtering is derived from a 31-Gbyte goodware training set. In addition, we used
another 1.8-Gbyte goodware set to filter out FP-prone signature candidates. To
determine which signatures are FPs, we tested each generated signature against
a 213-Gbyte goodware set. The machine used to perform these experiments has
four quad-core 1.98-GHz AMD Opteron processors and 128 Gbytes of RAM.

6.2 Single-Component Signatures

Because almost every signature candidate selection and filtering technique in
Hancock comes with an empirical threshold parameter, it is impossible to present
results corresponding to all possible combinations of these parameters. Instead,
we present results corresponding to three representative settings, which are
shown in Table 1 and called Loose, Normal and Strict. The generated signa-
tures cover overlapping sets of malware files.

To gain additional assurance that Hancock’s FP rate was low enough, Syman-
tec’s malware analysts wanted to see not only zero false positives, but also that
the signatures look good – they look like they encode non-generic behavior that
is unlikely to show up in goodware. To that end, we manually ranked signatures
on the August 2008 malware set as good, poor, and bad.

To get a rough indication of the maximum possible coverage, the last lines
in tables 2 and 3 show the coverage of all non-FP candidate signatures. The
probability-based and dissassembly-based heuristics were still enabled with
Loose threshold settings.

These results show not only that Hancock has a low FP rate, but also that
tighter thresholds can produce signatures that look less generic. Unfortunately,
it can only produce signatures to cover a small fraction of the specified malware.

Several factors limit Hancock’s coverage:

– Hancock’s packer detection might be insufficient. PEiD recognizes many
packers, but by no means all of them. Entropy detection can also be fooled:

Table 1. Heuristic threshold settings

Threshold Model Group Position # common Interestingness Minimum
setting probability ratio deviation signatures coverage

Loose -90 0.35 4000 1 13 3
Normal -90 0.35 3000 1 14 4
Strict -90 0.35 3000 2 17 4
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Table 2. Results for August 2008 data

Threshold Cover- # Good Poor Bad
setting age FPs sig.s sig.s sig.s

Loose 15.7% 0 6 7 1
Normal 14.0% 0 6 2 0
Strict 11.7% 0 6 0 0
All non-FP 22.6% 0 10 11 9

Table 3. Results for 2007-8 data

Threshold Coverage Sig.s FPs

Loose 14.1% 1650 7
Normal 11.7% 767 2
Normal, pos. 11.3% 715 0
deviation 1000
Strict 4.4% 206 0
All non-FP 31.7% 7305 0

some packers do not compress the original file’s data, but only obfuscate
it. Diversity-based heuristics will probably reject most candidate signatures
extracted from packed files. (Automatically generating signatures for packed
files would be bad, anyway, since they would be signatures on packer code.)

– Hancock works best when the malware set has many malware families and
many files in each malware family. It needs many families so that diversity-
based heuristics can identify generic or rare library code that shows up in
several malware families. It needs many files in each family so that diversity-
based heuristics can identify which candidate signatures really are charac-
teristic of a malware family. If the malware sets have many malware families
with only a few files each, this would lower Hancock’s coverage.

– Malware polymorphism hampers Hancock’s effectiveness. If only some code
is polymorphic, Hancock can still identify high coverage signatures in the
remaining code. If the polymorphic code has a relatively small number of
variations, Hancock can still identify several signatures with moderate cov-
erage that cover most files in the malware family. If all code is polymorphic,
with a high degree of variation, Hancock will cover very few of the files.

– Finally, the extremely stringent FP requirement means setting heuristics to
very conservative thresholds. Although the heuristics have good discrimina-
tion power, they still eliminate many good signatures. e.g. The group count
heuristic clusters malware into families based on a single-byte histogram.
This splits most malware families into several groups, with large malware
families producing a large number of groups. An ideal signature for this
family will occur in all of those groups. Thus, for the sake of overall discrim-
ination power, the group count heuristic will reject all such ideal signatures.

Sensitivity Study. A heuristic’s discrimination power is a measure of its ef-
fectiveness. A heuristic has good discrimination power if the fraction of false
positive signatures that it eliminates is higher than the fraction of true positive
signatures it eliminates. These results depend strongly on which other heuristics
are in use. We tested heuristics in two scenarios: we measured their raw discrim-
ination power with other heuristics disabled; and we measured their marginal
discrimination power with other heuristics enabled with conservative thresholds.

First, using the August 2008 malware set, we tested the raw discrimination
power of each heuristic. Table 4 shows the baseline setting, more conservative



Automatic Generation of String Signatures for Malware Detection 115

Table 4. Raw Discrimination Power

Heuristic FPs Cov. DP

Max pos. deviation 41.7% 96.6% 25
(from ∞ to 8,000)
Min file coverage 6.0% 83.3% 15
(from 3 to 4)
Group ratio 2.4% 74.0% 12
(from 1.0 to .6)
Model log probability 51.2% 73.7% 2.2
(from -80 to -100)
Code interestingness 58.3% 78.2% 2.2
(from 13 to 15)
Multiple common sig.s 91.7% 70.2% 0.2
(from 1 to 2)
Universal FLIRT 33.1% 71.7% 3.3
Library function 46.4% 75.7% 2.8
reference
Address space 30.4% 70.8% 3.5

Table 5. Marginal Discrimination Power

Heuristic FPs Coverage

Max pos. deviation 10 121%
(from 3,000 to ∞)
Min file coverage 2 126%
(from 4 to 3)
Group ratio 16 162%
(from 0.35 to 1)
Model log probability 1 123%
(from -90 to -80)
Code interestingness 2 226%
(from 17 to 13)
Multiple common 0 189%
sig.s (from 2 to 1)
Universal FLIRT 3 106%
Library function 4 108%
reference
Address space 3 109%

setting, and discrimination power for each heuristic. The library heuristics (Uni-
versal FLIRT, library function reference, and address space) are enabled for the
baseline test and disabled to test their own discrimination powers. Using all
baseline settings, the run covered 551 malware files with 220 signatures and 84
false positives. Discrimination power is calculated as log FPsi

FPsf

/
log Coveragei

Coveragef
.

Table 4 shows most of these heuristics to be quite effective. Position deviation
and group ratio have excellent discrimination power (DP); the former lowers
coverage very little and the latter eliminates almost all false positives. Model
probability and code interestingness showed lower DP because their baseline
settings were already somewhat conservative. Had we disabled these heuristics
entirely, the baseline results would have been so overwhelmed with false positives
as to be meaningless. All four of these heuristics are very effective.

Increasing the minimum number of malware files a signature must cover elim-
inates many marginal signatures. The main reason is that, for lower coverage
numbers, there are so many more candidate signatures that some bad ones will
get through. Raising the minimum coverage can have a bigger impact in combi-
nation with diversity-based heuristics, because those heuristics work better with
more files to analyze.

Requiring two common signatures eliminated more good signatures than false
positive signatures. It actually made the signatures, on average, worse.

Finally, the library heuristics all work fairly well. They each eliminate 50% to
70% of false positives while reducing coverage less than 30%. In the test for each
library heuristic, the other two library heuristics and basic FLIRT functionality
were still enabled. This shows that none of these library heuristics are redundant
and that these heuristics go significantly beyond what FLIRT can do.
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Marginal Contribution of Each Technique. Then we tested the effective-
ness of each heuristic when other heuristics were set to the Strict thresholds
from table 1. We tested the tunable heuristics with the 2007-8 malware set with
Strict baseline threshold settings from table 1. Testing library heuristics was
more computationally intensive (requiring that we reprocess the malware set),
so we tested them on August 2008 data with baseline Loose threshold settings.
Since both sets of baseline settings yield zero FPs, we decreased each heuristic’s
threshold (or disabled it) to see how many FPs its conservative setting elimi-
nated and how much it reduced malware coverage. Table 5 shows the baseline
and more liberal settings for each heuristic. Using all baseline settings, the run
covered 1194 malware files with 206 signatures and 0 false positives.

Table 5 shows that almost all of these heuristics are necessary to reduce the FP
rate to zero. Among the tunable heuristics, position deviation performs the best,
eliminating the second most FPs with the lowest impact on coverage. The group
ratio also performs well. Requiring a second common signature does not seem to
help at all. The library heuristics perform very well, barely impacting coverage at
all. Other heuristics show significantly decreased marginal discrimination power,
which captures an important point: if two heuristics eliminate the same FPs,
they will show good raw discrimination power, but poor marginal discrimination
power.

6.3 Single-Component Signature Generation Time

The most time-consuming step in Hancock’s string signature generation process
is goodware model generation, which, for the model used in the above exper-
iments, took approximately one week and used up all 128 GBytes of available
memory in the process of its creation. Fortunately, this step only needs to be
done once. Because the resulting model is much smaller than the available mem-
ory in the testbed machine, using the model to estimate a signature candidate’s
occurrence probability does not require any disk I/O.

The three high-level steps in Hancock at run time are malware pre-processing
(including unpacking and disassembly), picking candidate signatures, and apply-
ing diversity-based heuristics to arrive at the best ones. Among them, malware
pre-processing is the most expensive step, but is also quite amenable to paral-
lelization. The two main operations in malware pre-processing are recursively
unpacking malware files and disassembling both packed and unpacked files us-
ing IDA Pro. Both use little memory, so we parallelized them to use 15 of our
machines 16 cores. For the 2007-2008 data set, because of the huge number
of packed malware files and the decreasing marginal return of analyzing them,
Hancock disassembled only 5,506 packed files. Pre-processing took 71 hours.

Picking candidate signatures took 145 minutes and 37.4 GB of RAM. 15 min-
utes and 34.3 GB of RAM went to loading the goodware model. The remainder
was for scanning malware files and picking and storing candidate signatures in
memory and then on disk.
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Table 6. Multi-Component Signature results

# components Permitted component FPs Coverage # Signatures # FPs

2 1 28.9% 76 7
2 0 23.3% 52 2
3 1 26.9% 62 1
3 0 24.2% 44 0
4 1 26.2% 54 0
4 0 18.1% 43 0
5 1 26.2% 54 0
5 0 17.9% 43 0
6 1 25.9% 51 0
6 0 17.6% 41 0

Generating the final signature set took 420 minutes and 6.07 GB of RAM.
Most of this time was spent running IDA Pro against byte sequences surrounding
the final signatures to output their assembly representation. Without this step,
the final signature generation step would have taken only a few minutes.

6.4 Multi-Component Signatures

We tested MCS signatures with 2 to 6 components, with each part being 16 bytes
long. We used a 3.0 GB goodware set to select component candidates and tested
for false positives with a 34.9 GB set of separate goodware.2 Table 6 shows the
coverage and false positive rates when 0 or 1 components could be found in the
smaller goodware set.

We first observe that permitting a single component of an MCS to be an FP
in our small goodware set consistently results in higher coverage. However, from
2- and 3-component signatures, we also see that allowing a single component
FP results in more entire MCS FPs, where all signature components occur in a
single goodware file.

We can trade off coverage and FP rate by varying the number of signatures
components and permitted component FPs. Three to five part signatures with 0
or 1 allowed FPs seems to provide the best tradeoff between coverage and FPs.

Since we applied so few heuristics to get these results, beyond requiring the
existence of the multiple, disjoint signature components which make up the sig-
nature, it is perhaps surprising that we have so few MCS FPs. We explain this
by observing that although we do not limit MCS components to code bytes,
we do apply all the library code reducing heuristics through IDA disassembly
described in Section 3.2.

Also, the way in which signature components are selected from contiguous
runs of identical bytes may reduce the likelihood of FPs. If a long, identical byte
sequence exists in a set of files, the 16 byte signature component with lowest
2 This final goodware set was smaller than in SCS tests because of the difficulty of

identifying shorter, 16-byte sequences.
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probability will be selected. Moreover, no other signature component will be
selected from the same run of identical bytes. Thus, if malware shares an identical
uncommon library (which we fail to identify as a library) linked in contiguously
in the executable, at most one signature component will be extracted from this
sequence of identical bytes. The other components must come from some other
shared code or data.

Finding candidate signatures took 1,278 minutes and 117 GB of RAM. Picking
the final signature sets took 5 to 17 minutes and used 9.0 GB of RAM.

7 Discussion

The main limitation of the current version of Hancock is its low coverage, which is
also the biggest surprise in this project. One potential explanation for this result
is that malware authors have recently evolved their malware distribution strat-
egy from a “few malware families each with many variants” model to a “many
malware families each with few variants” model, so as to keep each distributed
malware sample effective for as long as possible. Because Hancock is designed to
generate string signatures that correspond to common byte sequences shared by
variants of the same malware family, if the average number of variants in each
family is decreased, it is more difficult for Hancock to generate signature with
good coverage while keeping the false positive rate in check, especially when
state-of-the-art malware classification technology is still quite primitive.

To generate new malware families, malware authors use sophisticated pack-
ing and/or metamorphic transformation tools. The current version of Hancock
cannot do much for binaries created by these tools. The static unpack engine
Hancock uses is used in Symantec’s anti-virus products. Still it cannot handle
many packers or metamorphic transformation tools. For example, in the largest
test described in Section 6.2, Hancock has to ignore 59% of the input malware
set because it found them to be packed and could not unpack them. Among the
remaining 41%, some of them are probably packed (perhaps partially), but are
not detected by Hancock. For such malware files, Hancock won’t create string
signatures for them because they do not share common byte sequences with
other malware files.

In the future, we plan to incorporate dynamic unpacking techniques, such
as Justin [16], to reduce the impact of packers on Hancock’s coverage. It is
also possible to mitigate the packer problem by blacklisting binaries packed by
certain packers. We did not spend much effort investigating metamorphic trans-
formation tools in the Hancock project, because string signature-based malware
identification may not be effective for metamorphic binaries. Instead, behavior-
based malware identification may be a more promising solution. Nonetheless,
systematically studying modern metamorphic tools and devising a taxonomi-
cal framework to describe them will be very useful contributions to the field of
malware analysis.

Another significant limitation of Hancock is its lack of dynamic analysis, which
forces it to give up on packed or metamorphically transformed binaries that it
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cannot recognize or restore. The rationale for the design decision of employing
only static analysis in Hancock is that it cannot afford the run-time performance
cost associated with dynamic analysis given the current and future malware ar-
rival rate. In addition, even state-of-the-art dynamic analysis techniques cannot
solve all the packer or metamorphism problems for Hancock.

Although many of Hancock’s heuristics can be evaded, in general this is a
much smaller concern than the problem that malware authors avoid using known
string signatures in their binaries. Attackers can (and do) test newly generated
malware files against popular anti-virus products. In contrast, even if malware
authors create malware files that do not contain byte sequences that Hancock
may use as signatures, there is no easy way to test the effectiveness of these
malware files against Hancock’s signature generation algorithms, because it is
not publicly available and because it has so many empirical built-in parameters.
In theory, security by obscurity is not a foolproof solution; in practice, it is very
difficult, if not infeasible, to evade Hancock’s signature generation heuristics.

8 Conclusion

Given a set of malware files, an ideal string signature generation system should
be able to automatically generate signatures in such a way that the number
of signatures required to cover the malware set is minimal and the probability
of these signatures appearing in goodware programs is also minimal. The main
technical challenge of building such string signature generation systems is how
to determine how FP-prone a byte sequence is without having access to even
a sizeable portion of the world’s goodware set. This false positive problem is
particularly challenging because the goodware set is constantly growing, and is
potentially unbounded. In the Hancock project, we have developed a series of
signature selection and filtering techniques that collectively could remove most,
if not all, FP-prone signature candidates, while maintaining a reasonable cover-
age of the input malware set. In summary, the Hancock project has made the
following research contributions in the area of malware signature generation:

– A scalable goodware modeling technique that prunes away unimportant
nodes according to their relative information gain and merges sub-models
so as to scale to very large training goodware sets,

– A set of diversity-based techniques that eliminate signature candidates when
the set of malware programs they cover exhibit high diversity, and

– The first known string signature generation system that is capable of creat-
ing multi-component string signatures which have been shown to be more
effective than single-component string signatures.

Although Hancock represents the state of the art in string signature generation
technology, there is still room for further improvement. The overall coverage
of Hancock is lower than what we expected when we started the project. How
to improve Hancock’s coverage without increasing the FP rate of its signatures
is worth further research. Although the multi-component signatures that Han-
cock generates are more effective than single-component signatures, their actual
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run-time performance impact is unclear and requires more thorough investiga-
tion. Moreover, there could be other forms of multi-component signatures that
Hancock does not explore and therefore deserve additional research efforts.

This paper omitted discussion of several additional heuristics explored in
project Hancock. See [17] for more details.
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Abstract. In this paper, we present an accurate and realtime PE-Miner
framework that automatically extracts distinguishing features from
portable executables (PE) to detect zero-day (i.e. previously unknown)
malware. The distinguishing features are extracted using the structural
information standardized by the Microsoft Windows operating system for
executables, DLLs and object files. We follow a threefold research method-
ology: (1) identify a set of structural features for PE files which is
computable in realtime, (2) use an efficient preprocessor for removing re-
dundancy in the features’ set, and (3) select an efficient data mining algo-
rithm for final classification between benign and malicious executables.

We have evaluated PE-Miner on two malware collections, VX Heavens
and Malfease datasets which contain about 11 and 5 thousand malicious
PE files respectively. The results of our experiments show that PE-Miner
achieves more than 99% detection rate with less than 0.5% false alarm
rate for distinguishing between benign and malicious executables. PE-
Miner has low processing overheads and takes only 0.244 seconds on the
average to scan a given PE file. Finally, we evaluate the robustness and
reliability of PE-Miner under several regression tests. Our results show
that the extracted features are robust to different packing techniques and
PE-Miner is also resilient to majority of crafty evasion strategies.

Keywords: Data Mining, Malicious Executable Detection, Malware
Detection, Portable Executables, Structural Information.

1 Introduction

A number of non-signature based malware detection techniques have been pro-
posed recently. These techniques mostly use heuristic analysis, behavior analysis,
or a combination of both to detect malware. Such techniques are being actively
investigated because of their ability to detect zero-day malware without any a
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priori knowledge about them. Some of them have been integrated into the exist-
ing Commercial Off the Shelf Anti Virus (COTS AV) products, but have achieved
only limited success [26], [13]. The most important shortcoming of these tech-
niques is that they are not realtime deployable1 . We, therefore, believe that the
domain of realtime deployable non-signature based malware detection techniques
is still open to novel research.

Non-signature based malware detection techniques are primarily criticized
because of two inherent problems: (1) high fp rate, and (2) large processing over-
heads. Consequently, COTS AV products mostly utilize signature based detec-
tion schemes that provide low fp rate and have acceptable processing overheads.
But it is a well-known fact that signature based malware detection schemes are
unable to detect zero-day malware. We cite two reports to highlight the alarming
rate at which new malware is proliferating. The first report is by Symantec that
shows an increase of 468% in the number of malware from 2006 to 2007 [25].
The second report shows that the number of malware produced in 2007 alone
was more than the total number of malware produced in the last 20 years [6].
These surveys suggest that signature based techniques cannot keep abreast with
the security challenges of the new millennium because not only the size of the
signatures’ database will exponentially increase but also the time of matching
signatures. These bottlenecks are even more relevant on resource constrained
smart phones and mobile devices [3]. We, therefore, envision that in near future
signature based malware detection schemes will not be able to meet the criterion
of realtime deployable as well.

We argue that a malware detection scheme which is realtime deployable should
use an intelligent yet simple static analysis technique. In this paper we propose
a framework, called PE-Miner, which uses novel structural features to efficiently
detect malicious PE files. PE is a file format which is standardized by the Mi-
crosoft Windows operating systems for executables, dynamically linked libraries
(DLL), and object files. We follow a threefold research methodology in our static
analysis: (1) identify a set of structural features for PE files which is computable
in realtime, (2) use an efficient preprocessor for removing redundancy in the
features’ set, and (3) select an efficient data mining algorithm for final classi-
fication. Consequently, our proposed framework consists of three modules: the
feature extraction module, the feature selection/preprocessing module, and the
detection module.

We have evaluated our proposed detection framework on two independently
collected malware datasets with different statistics. The first malware dataset
is the VX Heavens Virus collection consisting of more than ten thousand mali-
cious PE files [27]. The second malware dataset is the Malfease dataset, which
contains more than five thousand malicious PE files [21]. We also collected more
than one thousand benign PE files from our virology lab, which we use in con-
junction with both malware datasets in our study. The results of our experiments

1 We define a technique as realtime deployable if it has three properties: (1) a tp rate
(or true positive rate) of approximately 1, (2) an fp rate (or false positive rate) of
approximately 0, and (3) the file scanning time is comparable to existing COTS AV.



PE-Miner: Mining Structural Information to Detect Malicious Executables 123

show that our PE-miner framework achieves more than 99% detection rate with
less than 0.5% false alarm rate for distinguishing between benign and malicious
executables. Further, our framework takes on the average only 0.244 seconds
to scan a given PE file. Therefore, we can conclude that PE-Miner is realtime
deployable, and consequently it can be easily integrated into existing COTS AV
products. PE-Miner framework can also categorize the malicious executables as
a function of their payload. This analysis is of great value for system adminis-
trators and malware forensic experts. An interested reader can find details in
the accompanying technical report [23].

We have also compared PE-Miner with other promising malware detection
schemes proposed by Perdisci et al. [18], Schultz et al. [22], and Kolter et al.
[11]. These techniques use some variation of n-gram analysis for malware de-
tection. PE-Miner provides better detection accuracy2 with significantly smaller
processing overheads compared with these approaches. We believe that the su-
perior performance of PE-Miner is attributable to a rich set of novel PE format
specific structural features, which provides relevant information for better de-
tection accuracy [10]. In comparison, n-gram based techniques are more suitable
for classification of loosely structured data; therefore, they fail to exploit format
specific structural information of a PE file. As a result, they provide lower de-
tection rates and have higher processing overheads as compared to PE-Miner.
Our experiments also demonstrate that the detection mechanism of PE-Miner
does not show any significant bias towards packed/non-packed PE files. Finally,
we investigate the robustness of PE-Miner against “crafty” attacks which are
specifically designed to evade detection mechanism of PE-Miner. Our results
show that PE-Miner is resilient to majority of such evasion attacks.

2 PE-Miner Framework

In this section, we discuss our proposed PE-Miner framework. We set the follow-
ing strict requirements on our PE-Miner framework to ensure that our research
is enacted with a product development cycle that has a short time-to-market:

– It must be a pure non-signature based framework with an ability to detect
zero-day malicious PE files.

– It must be realtime deployable. To this end, we say that it should have more
than 99% tp rate and less than 1% fp rate. We argue that it is still a challenge
for non-signature based techniques to achieve these true and false positive
rates. Moreover, its time to scan a PE file must be comparable to those of
existing COTS AV products.

2 Throughout this text, the terms detection accuracy and Area Under ROC Curve
(AUC) are used interchangeably. ROC curves are extensively used in machine learn-
ing and data mining to depict the tradeoff between the true positive rate and false
positive rate of a classifier. The AUC (0 ≤ AUC ≤ 1) is used as a yardstick to de-
termine the detection accuracy from ROC curve. Higher values of AUC mean high
tp rate and low fp rate [28]. At AUC = 1, tp rate = 1 and fp rate = 0.
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Fig. 1. The architecture of our PE-Miner
framework

Fig. 2. The PE file format

– Its design must be modular that allows for the plug-n-play design philosophy.
This feature will be useful in customizing the detection framework to specific
requirements, such as porting it to the file formats used by other operating
systems.

We have evolved the final modular architecture of our PE-Miner framework
in a question oriented engineering fashion. In our research, we systematically
raised following relevant questions, analyzed their potential solutions, and finally
selected the best one through extensive empirical studies.

1. Which PE format specific features can be statically extracted from PE files
to distinguish between benign and malicious files? Moreover, are the format
specific features better than the existing n-grams or string-based features in
terms of detection accuracy and efficiency?

2. Do we need to deploy preprocessors on the features’ set? If yes then which
preprocessors are best suited for the raw features’ set?

3. Which are the best back-end classification algorithms in terms of detection
accuracy and processing overheads.

Our PE-Miner framework consists of three main modules inline with the above-
mentioned vision: (1) feature extraction, (2) feature preprocessing, and (3) clas-
sification (see Figure 1). We now discuss each module separately.

2.1 Feature Extraction

Let us revisit the PE file format [12] before we start discussing the structural
features used in our features’ set. A PE file consists of a PE file header, a section
table (section headers) followed by the sections’ data. The PE file header consists
of a MS DOS stub, a PE file signature, a COFF (Common Object File Format)
header, and an optional header. It contains important information about a file
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Table 1. List of the features extracted from PE files

Feature Description Type Quantity

DLLs referred binary 73
COFF file header integer 7

Optional header – standard fields integer 9
Optional header – Windows specific fields integer 22

Optional header – data directories integer 30
.text section – header fields integer 9
.data section – header fields integer 9
.rsrc section – header fields integer 9

Resource directory table & resources integer 21

Total 189

such as the number of sections, the size of the stack and the heap, etc. The
section table contains important information about the sections that follow it,
such as their name, offset and size. These sections contain the actual data such
as code, initialized data, exports, imports and resources [12], [15].

Figure 2 shows an overview of the PE file format [12], [15]. It is important to
note that the section table contains Relative Virtual Addresses (RVAs) and the
pointers to the start of every section. On the other hand, the data directories in
an optional header contain references to various tables (such as import, export,
resource, etc.) present in different sections. These references, if appropriately
analyzed, can provide useful information.

We believe that this structural information about a PE file should be leveraged
to extract features that have the potential to achieve high detection accuracy.
Using this principle, we statically extract a set of large number of features from
a given PE file3. These features are summarized in Table 1. In the discussion
below, we first intuitively argue about the features that have the potential to
distinguish between benign and malicious files. We then show interesting obser-
vations derived from the executable datasets used in our empirical studies.

DLLs referred. The list of DLLs referred in an executable effectively provides
an overview of its functionality. For example, if an executable calls WINSOCK.DLL
or WSOCK.DLL then it is expected to perform network related activities. However,
there can be exceptions to this assumption as well. In [22], Schultz et al. have used
the conjunction of DLL names, with a similar functionality, as binary features.
The results of their experiments show that this feature helps to attain reasonable
detection accuracy. However, our pilot experimental studies have revealed that
using them as individual binary features can reveal more information, and hence
can be more helpful in detecting malicious PE files. In this study, we have used
73 core functionality DLLs as features. Their list and functionality is detailed
in [23]. Table 2 shows the mean feature values for the two DLLs4. Interestingly,
WSOCK32.DLL and WININET.DLL are used by the majority of backdoors, nukers,
flooders, hacktools, worms, and trojans to access the resources on the network

3 A well-known Microsoft Visual C++ utility, called dumpbin, dumps the relevant
information which is present inside a given PE file [4]. Another freely available utility,
called pedump, also does the required task [20].

4 The details of the datasets and their categorization are available in Section 3.
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Table 2. Mean values of the extracted features. The bold values in every row highlight
interesting outliers.

Dataset VX Heavens Malfease

Name of Benign Backdoor Constructor DoS + Flooder Exploit + Worm Trojan Virus -
Feature + Sniffer + Virtool Nuker Hacktool

WSOCK32.DLL 0.037 0.503 0.038 0.188 0.353 0.261 0.562 0.242 0.053 0.065
WININET.DLL 0.073 0.132 0.009 0.013 0.04 0.141 0.004 0.103 0.019 0.086
# Symbols 430.2 2.0E6 14.7 59.4 25.8 3.5E6 38.8 4.1E6 1.0E6 2.7E7

Maj Linker Ver 4.7 14.4 11.2 14.1 12.1 12.3 18.7 12.2 19.3 6.5
Init Data Size (E5) 4.4 1.1 0.5 0.4 0.8 0.7 0.4 0.4 0.1 0.6

Maj Img Ver 163.1 1.6 6.3 0.4 0.6 11.2 0.3 6.0 53.6 0.2
DLL Char 5.8x103 0.0 0.0 0.0 0.0 24.9 0.0 3.1 230.8 18.7

Exp Tbl Size (E2) 13.7 2.4 1.7 14.1 5.0 0.3 1.2 2.1 0.9 0.05
Imp Tbl Size (E2) 5.8 19.2 6.1 7.9 20.8 7.1 23.4 10.3 6.2 4.7
Rsrc Tbl Size (E4) 32.6 5.5 1.5 1.4 6.2 1.0 2.6 2.2 0.5 5.9
Except Tbl Size 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5

.data Raw Size (E3) 25.2 8.4 5.6 6.3 6.0 7.9 6.1 5.5 6.7 22.1
# Cursors 14.5 6.4 6.7 7.4 6.1 5.9 5.8 6.0 3.0 6.8
# Bitmaps 12.6 1.2 0.0 1.0 0.6 0.7 1.2 1.4 2.4 0.5
# Icons 17.6 2.5 1.9 2.7 2.0 2.1 1.8 1.9 4.5 2.2

# Dialogs 10.9 3.2 1.5 3.2 1.5 2.0 1.9 1.7 2.2 2.3
# Group Cursors 11.6 6.0 6.6 7.2 5.8 5.8 5.4 5.7 2.7 6.7
# Group Icons 4.1 1.0 0.7 1.0 0.8 0.7 0.5 0.7 1.5 0.6

and the Internet. Therefore, the applications misusing these DLLs might provide
a strong indication of a possible covert network activity.

COFF file header. The COFF file header contains important information such
as the type of the machine for which the file is intended, the nature of the file
(DLL, EXE, or OBJ etc.), the number of sections, and the number of symbols. It
is interesting to note in Table 2 that a reasonable number of symbols are present
in benign executables. The malicious executables, however, either contain too
many or too few symbols.

Optional header: standard fields. The interesting information in the stan-
dard fields of the optional header include the linker version used to create an
executable, the size of the code, the size of the initialized data, the size of the
uninitialized data, and the address of the entry point. Table 2 shows that the val-
ues of major linker version and the size of the initialized data have a significant
difference in the benign and malicious executables. The size of the initialized
data in benign executables is usually significantly higher compared to those of
the malicious executables.

Optional header: Windows specific fields. The Windows specific fields of
the optional header include information about the operating system version,
the image version, the checksum, the size of the stack and the heap. It can be
seen in Table 2 that the values of fields such as the major image version and
the DLL characteristics are usually set to zero in the malicious executables. In
comparison, their values are significantly higher in the benign executables.

Optional header: data directories. The data directories of the optional
header provide pointers to the actual data present in the sections following it. It
includes the information about export, import, resource, exception, debug, cer-
tificate, and base relocation tables. Therefore, it effectively provides a summary
of the contents of an executable. Table 2 highlights that the size of the export
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table is higher for the benign executables and nukers as compared to those of
other malicious executables. Another interesting observation in Table 2 is that
the backdoors, flooders, worms and trojans mostly have a bigger import table
size. It can be intuitively argued that they usually import network functionali-
ties which increase the size of their import table. The size of the resource table,
on the other hand, is higher for the benign executables as compared to those of
the malicious executables. The exception table is mostly absent in the malicious
executables.

Section headers. The section headers provide important characteristics of a
section such as its address, size, number of relocations, and line numbers. In this
study, we have only considered text, data and resource sections because they are
commonly present in the executables. Note that the size of the data section (if
present) is relatively larger for the benign executables.

Resource directory table & resources. The resource directory table pro-
vides an overview of the resources that are present in the resource section of an
executable file. We consider the actual count of various types of resources that
are present in the resource section of an executable file. The typical examples of
resources include cursors, bitmaps, icons, menus, dialogs, fonts, group cursors,
and user defined resources. Intuitively and as shown in Table 2, the number of
these resources is relatively higher for the benign executables.

2.2 Feature Selection/Preprocessing

We have now identified our features’ set that consists of a number of statically
computable features – 189 to be precise – based on the structural information
of the PE files. It is possible that some of the features might not convey useful
information in a particular scenario. Therefore, it makes sense to remove or
combine them with other similar features to reduce the dimensionality of our
input feature space. Moreover, this preprocessing on the raw extracted features’
set also reduces the processing overheads in training and testing of classifiers, and
can possibly also improve the detection accuracy of classifiers. In this study, we
have used three well-known features’ selection/preprocessing filters. We provide
their short descriptions in the following text. More details can be found in [29].

Redundant Feature Removal (RFR). We apply this filter to remove those
features that do not vary at all or show significantly large variation i.e. they
have approximately uniform-random behavior. Consequently, this filter removes
all features that have either constant values or show a variance above a threshold
or both.

Principal Component Analysis (PCA). The Principal Component Analysis
(PCA) is a well-known filter for dimensionality reduction. It is especially useful
when the input data has high dimensionality – sometimes referred to as curse
of dimensionality. This dimensionality reduction can possibly improve the qual-
ity of an analysis on a given data if the dataset consists of highly correlated or
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redundant features. However, this dimensionality reduction may result in infor-
mation loss (i.e. reduction in data variance) as well. One has to carefully choose
the appropriate balance for this tradeoff. We apply PCA filter to remove/combine
correlated features for dimensionality reduction.

Haar Wavelet Transform (HWT). The principle of this technique is that
the most relevant information is stored with the highest coefficients at each
order of a transform. The lower order coefficients can be ignored to get only
the most relevant information. The wavelet transform has also been used for
dimensionality reduction. The wavelet transform technique has been extensively
used in the image compression but is never evaluated in the malware detection
domain. The Haar wavelet is one of the simplest wavelets and is known to provide
reasonable accuracy. The application of Haar wavelet transform requires input
data to be normalized. Therefore, we have passed the data through a normalize
filter before applying HWT.

2.3 Classification

Once the dimensionality of the input features’ set is reduced by applying one
of the above-mentioned preprocessing filters, it is given as an input to the well-
known data mining algorithms for classification. In this study we have used five
classifiers: (1) instance based learner (IBk), (2) decision tree (J48), (3) Näıve
Bayes (NB), (4) inductive rule learner (RIPPER), and (5) support vector ma-
chines using sequential minimal optimization (SMO). An interested reader can
find their details in the accompanying technical report [23].

3 Datasets

In this section, we present an overview of the datasets used in our study. We
have collected 1, 447 benign PE files from the local network of our virology lab.
The collection contains executables such as Packet CAPture (PCAP) file parsers
compiled by MS Visual Studio 6.0, compressed installation executables, and MS
Windows XP/Vista applications’ executables. The diversity of the benign files
is also evident from their sizes, which range from a minimum of 4 KB to a
maximum of 104, 588 KB (see Table 3).

Moreover, we have used two malware collections in our study. First is the
VX Heavens Virus Collection, which is labeled and is publicly available for free
download [27]. We only consider PE files to maintain focus. Our filtered dataset
contains 10, 339 malicious PE files. The second dataset is the Malfease malware
dataset [21], which consists of 5, 586 unlabeled malicious PE files.

In order to conduct a comprehensive study, we further categorize the malicious
PE files as a function of their payload5. The malicious executables are subdivided
into eight major categories such as virus, trojan, worm, etc [7]. Moreover, we

5 Since the Malfease malware collection is unlabeled; therefore, it is not possible to
divide it into different malware categories.
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Table 3. Statistics of the data used in this study

Dataset VX Heavens Malfease

- Benign Backdoor Constructor DoS + Flooder Exploit + Worm Trojan Virus -
+ Sniffer + Virtool Nuker Hacktool

Quantity 1, 447 3, 455 367 267 358 243 1, 483 3, 114 1, 052 5, 586
Avg. Size 1, 263 270 234 176 298 156 72 136 50 285

(KB)

Min. Size 4 1 4 3 6 4 2 1 2 1
(KB)

Max. Size 104, 588 9, 277 5, 832 1, 301 14, 692 1, 924 2, 733 4, 014 1, 332 5, 746
(KB)

UPX 17 786 79 15 32 43 353 622 48 470
ASPack 2 432 21 16 25 15 66 371 10 187

Misc. Packed 372 325 47 31 58 38 471 170 71 1, 909
Borland 15 56 8 15 10 6 13 63 18 11
C/C++

Borland Delphi 13 589 13 65 64 8 76 379 71 342
Visual Basic 4 719 106 39 126 38 210 674 119 809
Visual C++ 526 333 19 51 29 59 89 619 96 351
Visual C# 56 0 0 0 1 0 5 1 6 1
Misc. Other 9 49 9 2 3 2 4 15 7 5

Non-packed (%) 43.1 50.5 42.2 64.4 65.1 46.5 26.8 56.2 30.1 27.2
Packed (%) 27.0 44.7 40.1 23.2 32.1 39.5 60.0 37.4 12.3 46.6

Not Found (%) 29.9 4.8 17.7 12.4 2.8 14.0 13.2 6.4 57.6 26.2

have combined some categories that have similar functionality. For example, we
have combined constructor and virtool to create a single constructor + virtool
category. This unification increases the number of malware samples per category.
Brief introductions of every malware category are provided in the accompanying
technical report [23].

Table 3 provides the detailed statistics of the malware used in our study. It
can be noted that the average size of the malicious executables is smaller than
that of the benign executables. Further, some executables used in our study are
encrypted and/or compressed (packed). The detailed statistics about packing
are also tabulated in Table 3. We use PEiD [16] and Protection ID for detecting
packed executables [19]6.

Our analysis shows that VX Heavens Virus collection contains 40.1% packed
and 47.2% non-packed PE files. However, approximately 12.7% malicious PE
files cannot be classified as either packed or non-packed by PEiD and
Protection ID. The Malfease collection contains 46.6% packed and 27.2% non-
packed malicious PE files. Similarly, 26.2% malicious PE files cannot be clas-
sified as packed or non-packed. Therefore, we can say that packed/non-packed
malware distribution in the VX Heavens virus collection is relatively more bal-
anced than the Malfease dataset. In our collection of benign files, 43.1% are
packed and 27.0% are non-packed PE files respectively. Similarly, 29.9% benign
files are not detected by PEiD and Protection ID. An interesting observation
is that the benign PE files are mostly packed using nonstandard and custom
developed packers. We speculate that a significant portion of the packed ex-
ecutables are not classified as packed because the signatures of their respec-
tive packers are not present in the database of PEiD or Protection ID. Note
that we do not manually unpack any PE file prior to the processing of our PE-
Miner.

6 We acknowledge the fact that PEiD and Protection ID are signature based packer
detectors and can have significant false negatives.
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4 Related Work

We now briefly describe the most relevant non-signature based malware detection
techniques. These techniques are proposed by Perdisci et al. [18], Schultz et al.
[22] and Kolter et al. [11]. We briefly summarize their working principles in the
following paragraphs but an interested reader can find their detailed description
in [23].

In [18], the authors proposed McBoost that uses two classifiers – C1 and C2
– for classification of non-packed and packed PE files respectively. A custom
developed unpacker is used to extract the hidden code from the packed PE
files and the output of the unpacker is given as an input to the C2 classifier.
Unfortunately, we could not obtain its source code or binary due to licensing
related problems. Furthermore, its implementation is not within the scope of
our current work. Consequently, we only evaluate the C1 module of McBoost
which works only for non-packed PE files. Therefore, we acknowledge that our
McBoost results should be considered only preliminary.

In [22], Schultz et al. have proposed three independent techniques for detect-
ing malicious PE files. The first technique, uses the information about DLLs,
function calls and their invocation counts. However, the authors did not provide
enough information about the used DLLs and function names; therefore, it is not
possible for us to implement it. But we have implemented the second approach
(titled strings) which uses strings as binary features i.e. present or absent. The
third technique uses two byte words as binary features. This technique is later
improved in a seminal work by Kolter et al. [11] which uses 4-grams as binary
features. Therefore, we include the technique of Kolter et al. (titled KM ) in our
comparative evaluation.

5 Experimental Results

We have compared our PE-Miner framework with recently proposed promising
techniques by Perdisci et al. [18], Schultz et al. [22], and Kolter et al. [11]. We
have used the standard 10 fold cross-validation process in our experiments, i.e.,
the dataset is randomly divided into 10 smaller subsets, where 9 subsets are
used for training and 1 subset is used for testing. The process is repeated 10
times for every combination. This methodology helps in systematically evaluat-
ing the effectiveness of our approach to detect previously unknown (i.e. zero-day)
malicious PE files. The ROC curves are generated by varying the threshold on
output class probability [5], [28]. The AUC is used as a yardstick to determine
the detection accuracy of each approach. We have done the experiments on an
Intel Pentium Core 2 Duo 2.19 GHz processor with 2 GB RAM. The Microsoft
Windows XP SP2 is installed on this machine.

5.1 Malicious PE File Detection

In our first experimental study, we attempt to distinguish between benign and
malicious PE files. To get better insights, we have done independent experiments
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Table 4. AUCs for detecting the malicious executables. The bold entries in each column
represent the best results.

Dataset VX Heavens Malfease

Malware Backdoor + Constructor DoS + Flooder Exploit + Worm Trojan Virus Average -
Sniffer + Virtool Nuker Hacktool

PE-Miner — RFR
IBK 0.992 0.996 0.995 0.994 0.998 0.979 0.984 0.994 0.992 0.986
J48 0.993 0.998 0.987 0.993 0.999 0.979 0.992 0.993 0.992 0.979
NB 0.971 0.978 0.966 0.973 0.987 0.972 0.974 0.986 0.976 0.976

RIPPER 0.996 0.996 0.977 0.981 0.999 0.988 0.988 0.996 0.990 0.985
SMO 0.991 0.990 0.991 0.993 0.997 0.975 0.978 0.992 0.988 0.963

PE-Miner — PCA
IBK 0.989 0.996 0.994 0.995 0.998 0.976 0.984 0.993 0.991 0.984
J48 0.980 0.966 0.929 0.960 0.987 0.936 0.951 0.985 0.962 0.945
NB 0.961 0.990 0.993 0.996 0.996 0.964 0.956 0.990 0.981 0.898

RIPPER 0.982 0.978 0.996 0.974 0.977 0.949 0.968 0.987 0.976 0.952
SMO 0.990 0.992 0.989 0.995 0.995 0.958 0.965 0.992 0.985 0.954

PE-Miner — HWT
IBK 0.991 0.996 0.996 0.998 1.000 0.978 0.985 0.995 0.992 0.986
J48 0.995 0.997 0.993 0.988 0.997 0.978 0.991 0.999 0.992 0.977
NB 0.989 0.982 0.983 0.987 0.990 0.978 0.972 0.990 0.984 0.960

RIPPER 0.994 0.997 0.982 0.990 0.997 0.983 0.990 1.000 0.992 0.987

SMO 0.990 0.995 0.991 0.996 1.000 0.972 0.973 0.994 0.989 0.964

McBoost — C1 only
IBK 0.941 0.935 0.875 0.960 0.832 0.938 0.930 0.914 0.916 0.949
J48 0.866 0.895 0.809 0.893 0.731 0.906 0.902 0.882 0.860 0.860
NB 0.831 0.924 0.723 0.889 0.795 0.873 0.886 0.844 0.846 0.817

RIPPER 0.833 0.888 0.744 0.918 0.660 0.866 0.838 0.844 0.824 0.860
SMO 0.802 0.887 0.759 0.910 0.678 0.854 0.805 0.827 0.815 0.835

Strings
IBK 0.949 0.860 0.902 0.980 0.925 0.928 0.863 0.952 0.920 0.944
J48 0.913 0.834 0.862 0.695 0.871 0.908 0.836 0.938 0.857 0.929
NB 0.920 0.830 0.882 0.726 0.886 0.901 0.828 0.905 0.860 0.930

RIPPER 0.843 0.797 0.714 0.578 0.712 0.892 0.743 0.929 0.776 0.927
SMO 0.855 0.817 0.705 0.775 0.583 0.871 0.756 0.883 0.781 0.933

KM
IBK 0.984 0.934 0.983 0.971 0.983 0.987 0.979 0.986 0.976 0.980
J48 0.953 0.940 0.916 0.907 0.916 0.957 0.951 0.953 0.937 0.952
NB 0.943 0.959 0.961 0.952 0.961 0.968 0.954 0.954 0.957 0.961

RIPPER 0.951 0.944 0.924 0.921 0.924 0.964 0.948 0.948 0.941 0.971
SMO 0.949 0.946 0.952 0.927 0.952 0.961 0.940 0.938 0.946 0.960

with benign and each of the eight types of the malicious executables. The five
data mining algorithms, namely IBk, J48, NB, RIPPER, and SMO, are deployed
on top of each approach (namely PE-Miner with RFR, PE-Miner with PCA, PE-
Miner with HWT, McBoost (C1 only) by Perdisci et al. [18], strings approach
by Schultz et al. [22], and KM by Kolter et al. [11]). This results in a total of 270
experimental runs each with 10-fold cross validation. We tabulate our results
for this study in Table 4 and now answer different questions that we raised in
Section 2 in a chronological fashion.

Which features’ set is the best? Table 4 tabulates the AUCs for PE-Miner
using three different preprocessing filters (RFR, PCA and HWT), McBoost,
strings and KM [11]. A macro level scan through the table clearly shows the
supremacy of PE-Miner based approaches with AUCs more than 0.99 for most
of the malware types and even approaching 1.00 for some malware types. For
PE-Miner, RFR and HWT preprocessing lead to the best average results with
more than 0.99 AUC.

The strings approach gives the worst detection accuracy. The KM approach is
better than the strings approach but inferior to our PE-Miner. This is expected
because the string features are not stable as compiling a given piece of code by
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Table 5. The processing overheads (in seconds/file) of different feature selection, ex-
traction and preprocessing schemes

PE-Miner McBoost Strings KM
(RFR) (PCA) (HWT)

Selection - - - 2.839 5.289 31.499
Extraction 0.228 0.228 0.228 0.198 0.130 0.220

Preprocessing 0.007 0.009 0.012 - - -

Total 0.235 0.237 0.240 3.037 5.419 31.719

using different compilers leads to different sets of strings. Our analysis shows
that KM approach is more resilient to variation in the string sets because it
uses a combination of string and non-string features. The results obtained for
KM approach (AUC= 0.95) are also consistent with the results reported in [11].
The C1 module of McBoost also provides relatively inferior detection accuracies
which are as low as 0.66 for exploit+hacktool category. It is important to note
that the C1 module of McBoost is functionally similar to the techniques proposed
by Schultz et al. and Kolter et al. The only significant difference is that C1
operates only on the code sections of the non-packed PE files whereas the other
techniques operate on complete files.

It is important to emphasize that both strings and KM approaches incur
large overheads in the feature selection process (see Table 57). Kolter et al. have
confirmed that their implementation of information gain calculation for feature
selection took almost a day for every run. To make our implementation of n-
grams more efficient, we use hash map STL containers in the Visual C++ [8].
Our experiments show that the feature selection process in KM still takes more
than 31 seconds per file even with our optimized implementation. The optimized
strings approach takes, on the average, more than 5 seconds per file for feature
selection. The optimized McBoost (C1 only) approach takes an average of more
than 2 seconds per file for feature selection8. These approaches have processing
overheads because the time to calculate information gain increases exponentially
with the number of unique n-grams (or strings). On the other hand, PE-Miner
does not suffer from such serious bottlenecks. The application of RFR, PCA, or
HWT filters takes only about a hundredth of a second.

Which classification algorithm is the best? We can conclude from Table
4 that J48 outperforms the rest of the data mining classifiers in terms of the
detection accuracy in most of the cases. Moreover, Table 6 shows that J48 has one
of the smallest processing overheads both in training and testing. RIPPER and
IBk closely follow the detection accuracy of J48. However, they are infeasible for
realtime deployment because of the high processing overheads in the training and
the testing phases respectively. The processing overheads of training RIPPER are
the highest among all classifiers. In comparison, IBk does not require a training
phase but its processing overheads in the testing phase are the highest. Further,
7 The results in Table 5 are averaged over 100 runs.
8 Note that the complete McBoost system also uses unpacker for extraction of hidden

code. This process is time consuming as reported by the authors in [18].
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Fig. 3. The magnified ROC plots for detecting the malicious executables using PE-
Miner utilizing J48 preprocessed with RFR filter

Table 6. The processing overheads (in seconds/file) of different features and classifi-
cation algorithms

IBK J48 NB RIPPER SMO IBK J48 NB RIPPER SMO

Training Testing

PE-Miner (RFR) - 0.008 0.001 0.269 0.199 0.032 0.001 0.002 0.002 0.002
PE-Miner (PCA) - 0.007 0.001 0.264 0.179 0.035 0.001 0.001 0.001 0.002
PE-Miner (HWT) - 0.007 0.001 0.252 0.147 0.032 0.001 0.002 0.001 0.002

McBoost - 0.021 0.004 1.305 1.122 0.218 0.010 0.007 0.005 0.022
Strings - 0.009 0.002 0.799 0.838 0.163 0.003 0.003 0.002 0.003

KM - 0.024 0.004 1.510 1.018 0.254 0.018 0.007 0.005 0.020

Näıve Bayes gives the worst detection accuracy because it assumes independence
among input features. Intuitively speaking, this assumption does not hold for the
features’ sets used in our study. Note that Näıve Bayes has very small learning
and testing overheads (see Table 69).

Which malware category is the most challenging to detect? An overview
of Table 4 suggests that the most challenging malware categories are worms and
trojans. The average AUC values of the compared techniques for worms and tro-
jans are approximately 0.95. The poor detection accuracy is attributed to the fact
that the trojans are inherently designed to appear similar to the benign executa-
bles. Therefore, it is a difficult challenge to distinguish between trojans and benign
PE files. Our PE-Miner still achieves on the average 0.98 AUC for worms and tro-
jans which is quite reasonable. Figure 3 shows that for other malware categories,
PE-Miner (with RFR preprocessor) has AUCs more than 0.99.

5.2 Miscellaneous Discussions

We conclude our comparative study with an answer to an important issue: which
of the compared techniques meet the criterion of being realtime deployable? (see
Section 2). We tabulate the AUC and the scan time of the best techniques in

9 The results in Table 6 are averaged over 100 runs.
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Table 7. Realtime deployable analysis of the best techniques

Technique Classifier AUC Scan Time Is Realtime
(sec/file) Deployable?

PE-Miner (RFR) J48 0.991 0.244 “Yes”

McBoost IBk 0.926 3.255 No
Strings IBk 0.927 5.582 No

KM IBk 0.977 31.973 No
AVG Free 8.0 [1] - - 0.159 -
Panda 7.01 [14] - - 0.131 -

Table 8. Portion of the developed decision trees for distinguishing between benign and
backdoor+sniffer

NumMessageTable <= 0
| SizeLoadConfigTable <= 0
| | TimeDateStamp <= 1000000000
| | | NumCursor <= 1
| | | | NumAccelerators <= 0
| | | | | NumBitmap <= 0: malicious
| | | | | NumBitmap > 0: benign
| | | | NumAccelerators > 0:malicious
| | | NumCursor > 1:malicious

Table 7. Moreover, we also show the scan time of two well-known COTS AV
products for doing the realtime deployable analysis of different non-signature
based techniques. It is clear that PE-Miner (RFR) with J48 classifier is the
only non-signature based technique that satisfies the criterion of being realtime
deployable. One might argue that PE-Miner framework provides only a small
improvement in detection accuracy over the KM approach. But then KM has the
worst scan time of 31.97 seconds per file (see Table 7). It is very important to
interpret the results in Table 7 from a security expert’s perspective. For example,
if a malware detector scans ten thousand files with an AUC of 0.97, it will not
detect approximately 300 malicious files. In comparison, a detector with an AUC
of 0.99 will miss only 100 files, which is a 66.6% improvement in the number of
missed files [2]. Therefore, we argue that from a security expert’s perspective,
even a small improvement in the detection accuracy is significant in the limiting
case when the detection accuracy approaches to 1.00.

An additional benefit of PE-Miner is that it provides insights about the learn-
ing models of different classifiers that can be of great value to malware forensic
experts. We show a partial subtree of J48 for categorizing benign and malicious
PE files in Table 8. The message tables mostly do not exist in the backdoor+sniffer
categories. The TimeDateStamp is usually obfuscated in the malicious executa-
bles. The number of resources are generally smaller in malicious PE files, whereas
the benign files tend to have larger number of resources such as menus, icons, and
user defined resources. Similar insights are also provided by the rules developed
in the training phase of RIPPER.

In [9], the authors have pointed out several difficulties in parsing PE files.
In our experiments, we have also observed various anomalies in parsing the
structure of malicious PE files. Table 9 contains the list of anomalies which we
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Table 9. List of the anomalies observed in parsing malicious PE files

ID Description

1 Large number of sections
2 SizeOfHeader field is unaligned
3 Overlapping DoS and PE headers
4 Large virtual size in a section
5 Large raw data size in a section
6 Zero/Non-zero pair in data directory table
7 Large pointer in data directory entry
8 Size of section is too large
9 Section name garbled (non printable characters)
10 There is an unknown overlay region
11 Out of file pointer
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Fig. 4. Statistics of anomalies observed in parsing malicious PE files

have observed in parsing malicious PE files. A significant proportion of malicious
PE files have anomalous structure which can crash a näıve PE file parser. Figure
4 provides the statistics of anomalies which we have observed in parsing malicious
PE files of VX Heavens and Malfease collections. To this end, we have developed
a set of heuristics which successfully handle the above-mentioned anomalies.

6 Robustness and Reliability Analysis of PE-Miner

We have now established the fact that PE-Miner is a realtime deployable scheme
for zero-day malware detection. A careful reader might ask whether the statement
still holds if the “ground truth” is now changed as: (1) we cannot trust the
classification of signature based packer detectors PEiD and Protection ID, and
(2) a “crafty” attacker can forge the features of malicious files with those of
benign files to evade detection. In this section, we do a stress and regression
testing of PE-Miner to analyze robustness of its features and its resilience to
potential evasive techniques.

6.1 Robustness Analysis of Extracted Features

It is a well-known fact that signature based packer detector PEiD, which we
are using to distinguish between packed and non-packed executables, has ap-
proximately 30% false negative rate [17]. In order to convince ourselves that our
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extracted features are actually “robust”, we evaluate PE-Miner in four scenar-
ios: (1) training PE-Miner on 70% non-packed PE files and 30% packed PE files
and testing on the remaining 70% packed PE files, (2) training PE-Miner on
non-packed PE files only and testing on packed PE files, (3) training PE-Miner
on packed PE files only and then testing on non-packed PE files, and (4) testing
PE-Miner on a “difficult” dataset that consists of packed benign and non-packed
malicious PE files. We assert that the scenarios (2) and (3) – although unrealis-
tic – still provide valuable insight into the extent of bias, that PE-Miner might
have, towards detection of packed/non-packed executables.

We want to emphasize an important point that there is no confusion about
“ground truth” for packed executables in above-mentioned four scenarios because
a packer only detects a file as “packed” if it has its signature in its database. The
confusion about “ground truth”, however, stems in the fact that a reasonable
proportion of packed PE files could be misclassified as non-packed because of
false negative rate of PEiD. Note that the false negatives of PEiD, reported in
[17], consist of two types: (1) packed PE files that are misclassified as non-packed,
and (2) PE files that are unclassified. We have not included unclassified files in
our dataset to remove the false negatives of the second type.

Scenario 1: Detection of packed benign and malicious PE files. The mo-
tivation behind the first scenario is to test if PE-Miner can distinguish between
packed benign and packed malware, regardless of the type of packer. In order
to ensure that our features are not influenced by the type of packing tool used
to encrypt PE files, our “packed-only” dataset contains PE files (both benign
and malware) packed using a variety of packers like UPX, ASPack, Armadillo,
PECompact, WWPack32, Virogen Crypt 0.75, UPS-Scrambler, PEBundle and
PEPack etc. Moreover, the “packed-only” dataset contains on the average 44%
and 56% packed malicious and benign PE files respectively. We train PE-Miner
on 70% non-packed executables and 30% packed executables and then test it on
the remaining 70% packed executables. The results of our experiments for this
scenario are tabulated in Table 10. We can easily conclude that PE-Miner has
shown good resilience in terms of detecting accuracy once it is tested on packed
benign and malicious PE files from both datasets.

Scenarios 2 and 3: Detection of packed/non-packed malicious PE files.
In the second experiment, we train PE-Miner on non-packed benign and mali-
cious PE files and test it on packed benign and malicious PE files. Note that this
scenario is more challenging because the training dataset contains significantly
less number of packed files compared with the first scenario. In the third ex-
periment, we train PE-Miner on packed benign and malicious PE files and test
on non-packed benign and malicious PE files. The results of these experiments
are tabulated in Table 10. It is clear from Table 10 that the detection accuracy
of PE-Miner (RFR-J48) drops to 0.96, when it is trained on non-packed exe-
cutables and tested on the packed executables. Likewise, the average detection
accuracy of PE-Miner (RFR-J48) drops to 0.90 for the third scenario. Remem-
ber once we train PE-Miner on “packed only” dataset, then it gets 0% exposure



PE-Miner: Mining Structural Information to Detect Malicious Executables 137

Table 10. An analysis of robustness of extracted features of PE-Miner (RFR) in
different scenarios

Dataset VX Heavens Malfease

Malware Backdoor + Constructor DoS + Flooder Exploit + Worm Trojan Virus Average -
Sniffer + Virtool Nuker Hacktool

Scenario 1: Detection of packed benign and malicious PE files

IBK 0.999 1.000 1.000 0.999 0.999 0.998 0.999 0.999 0.999 0.812
J48 0.996 1.000 1.000 0.999 0.999 0.998 0.993 0.999 0.998 0.991

NB 0.971 0.988 0.963 0.955 0.996 0.980 0.978 0.987 0.977 0.934
RIPPER 0.997 0.996 0.999 0.990 0.993 0.985 0.858 0.998 0.977 0.988

SMO 0.985 0.998 1.000 0.996 0.994 0.994 0.985 0.998 0.994 0.706

Scenario 2: Training using non-packed executables only and testing using packed executables

IBK 0.986 0.965 0.912 0.963 0.998 0.993 0.850 0.989 0.957 0.917
J48 0.982 0.999 0.998 0.937 0.999 0.963 0.857 0.954 0.961 0.968

NB 0.927 0.899 0.842 0.809 0.966 0.911 0.857 0.965 0.897 0.780
RIPPER 0.989 0.995 0.998 0.995 0.986 0.962 0.858 0.853 0.954 0.937

SMO 0.983 0.772 0.905 0.691 0.996 0.737 0.651 0.852 0.823 0.859

Scenario 3: Training using packed executables only and testing using non-packed executables

IBK 0.975 0.965 0.964 0.878 0.793 0.982 0.911 0.904 0.921 0.855
J48 0.951 0.908 0.919 0.940 0.726 0.958 0.903 0.881 0.898 0.903

NB 0.685 0.965 0.668 0.633 0.689 0.979 0.688 0.688 0.749 0.789
RIPPER 0.979 0.938 0.967 0.972 0.747 0.768 0.840 0.867 0.885 0.904

SMO 0.977 0.941 0.877 0.882 0.536 0.983 0.835 0.904 0.867 0.849

Scenario 4: Detection of packed benign and non-packed malicious PE files (“difficult” dataset)

IBK 0.999 1.000 1.000 0.999 0.998 0.998 0.998 0.994 0.998 0.992
J48 0.997 0.986 0.999 0.999 0.999 0.999 0.989 0.993 0.995 0.996

NB 0.954 0.963 0.995 0.988 0.966 0.990 0.975 0.986 0.977 0.948
RIPPER 0.998 0.984 0.998 0.993 0.986 0.999 0.992 0.996 0.993 0.948

SMO 0.989 0.996 1.000 0.997 0.996 0.997 0.984 0.992 0.994 0.945

to non-packed files and this explains deterioration in the detection accuracy of
PE-Miner. We conclude that the detection accuracy of PE-Miner, even in these
unrealistic stress testing scenarios, gracefully degrades.

Scenario 4: Detection of packed benign and non-packed malicious PE
files. In [18], the authors report an interesting study about the ability of different
schemes to detect packed/non-packed executables. They show that the detection
accuracy of KM approach degrades on a “difficult” dataset consisting of packed
benign and non-packed malicious PE files. According to the authors in [18],
KM shows a bias towards detecting packed PE files as malware and non-packed
PE files as benign. We also – in line with this strategy – tested PE-Miner on
a “difficult” dataset created from both malware collections used in our study.
The results are tabulated in Table 10. It is important to highlight that for these
experiments PE-Miner is trained on the original datasets but is tested on the
“difficult” versions of both datasets. One can conclude from the results in Table
10 that PE-Miner does not show any bias towards detecting packed executables
as malicious and non-packed executables as benign.

Our experiments conclude that the extracted features are actually “robust”,
and as a result, PE-Miner doest not show any significant bias towards detection
of packed/non-packed executables.

6.2 Reliability of PE-Miner

Now we test PE-Miner on a “crafty” malware dataset, especially designed to cir-
cumvent detection by PE-Miner. We particularly focus our attention on the false
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Table 11. False negative rate for detecting malicious executables with PE-Miner on
the “crafty” datasets

Dataset VX Heavens Malfease

Malware Backdoor + Constructor DoS + Flooder Exploit + Worm Trojan Virus Average -
Sniffer + Virtool Nuker Hacktool

# Forged Features False negative rate

0/189 0.001 0.000 0.000 0.000 0.004 0.000 0.004 0.007 0.002 0.001
5/189 0.002 0.000 0.000 0.000 0.004 0.000 0.004 0.007 0.002 0.001
10/189 0.002 0.000 0.000 0.000 0.004 0.011 0.004 0.014 0.004 0.004
30/189 0.002 0.003 0.000 0.012 0.023 0.011 0.011 0.014 0.009 0.004
50/189 0.002 0.003 0.000 0.012 0.023 0.016 0.011 0.014 0.010 0.004
100/189 0.096 0.003 0.000 0.012 0.023 0.050 0.445 0.176 0.101 0.004
150/189 0.658 0.003 0.000 0.583 0.795 0.611 0.558 0.221 0.429 0.426
189/189 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998
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Fig. 5. Execution analysis of crafted malware files

negative rate (or miss detection rate)10 of PE-Miner when we replace features
in malicious files with those of benign files. It can be argued that if adversaries
exactly know our detection methodology, they might be able to design strategies
that evade detection by PE-Miner. The examples of such strategies could be
especially crafted packing techniques, insertion of dummy resources, obfuscation
of address pointers, and other information present in headers etc.

We have conducted an empirical study to analyze the robustness of PE-Miner
to such evasive techniques. To this end, we have “crafted” malware files in
the datasets to contain benign-like features. Specifically, we have created seven
“crafty” datasets in which for every malware file 5, 10, 30, 50, 100, 150 and 189
random features – out of 189 features – are forged with the respective features
from a randomly chosen benign file. We now analyze the false negative rate of
PE-Miner (RFR-J48) across these “crafty” datasets. The results tabulated in
Table 11 highlight the robustness of PE-Miner to such crafty attacks. The false
negative rate of PE-Miner stays below 1% when fifty features are simultaneously
forged. For both datasets, the average false negative rate is approximately 5%
even when 100 out of 189 features are forged. This shows that a large set of
features, which cover structural information of almost all portions of a PE file,
used by PE-Miner make it very difficult for an attacker to evade detection – even
when it manipulates majority of them at the same time.

10 The false negative rate is defined by the fraction of malicious files wrongly classified
as benign.
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It should be emphasized that simultaneous manipulation of all features of a
PE malware file requires significant level of skill, in-depth knowledge about the
structure of a PE file, and detailed understanding of our detection framework. If
an attacker tries to randomly forge, using brute-force, the structural features of a
PE malware file with those of a benign PE file then he/she will inevitably end up
corrupting the executable image. Consequently, the file will not load successfully
into memory. We have manually executed the “crafted” malicious executables.
The objective is to understand that how many features a “crafty” attacker can
successfully forge without ending up corrupting the executable image. The results
of our experiments are shown in Figure 5. This figure proves our hypothesis
that the probability of having valid PE files decreases exponentially with an
increase in the number of simultaneously forged features. In fact, the successful
execution probability approaches to zero as the number of simultaneously forged
features approaches to 50. Referring back to Table 11, the average false negative
rate of PE-Miner is less than 1% when 50 features are simultaneously forged.
Therefore, we argue that it is not a cinch for an attacker to alter malicious PE
files to circumvent detection by PE-Miner. However, we accept that an attacker
can evade the detection capability of PE-Miner if: (1) he/she knows the exact
details of our detection framework – including the detection rules, and (2) also
has the “craft” to simultaneously manipulate more than 100 structural features
without corrupting the executable image.

7 Conclusion

In this paper we present, PE-Miner, a framework for detection of malicious PE
files. PE-Miner leverages the structural information of PE files and the data min-
ing algorithms to provide high detection accuracy with low processing overheads.
Our implementation of PE-Miner completes a single-pass scan of all executables
in the dataset (more than 17 thousand) in less than one hour. Therefore it meets
all of our requirements mentioned in Section 2.

We believe that our PE-Miner framework can be ported to Unix and other
non-Windows operating systems. To this end, we have identified similar struc-
tural features for the ELF file format in Unix and Unix-like operating systems.
Our initial results are promising and show that PE-Miner framework is scalable
across different operating systems. This dimension of our work will be the sub-
ject of forthcoming publications. Moreover, PE-Miner framework is also ideally
suited for detecting malicious PE files on resource constrained mobile phones
(running mobile variants of Windows) because of its small processing overheads.
Finally, we are also doing research to develop techniques to fully remove the bias
of PE-Miner in detecting packed/non-packed executables [24].
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Abstract. In order to detect a compromise of a running process based on it devi-
ating from its program’s normal system-call behavior, an anomaly detector must
first be trained with traces of system calls made by the program when provided
clean inputs. When a patch for the monitored program is released, however, the
system call behavior of the new version might differ from that of the version it
replaces, rendering the anomaly detector too inaccurate for monitoring the new
version. In this paper we explore an alternative to collecting traces of the new pro-
gram version in a clean environment (which may take effort to set up), namely
adapting the anomaly detector to accommodate the differences between the old
and new program versions. We demonstrate that this adaptation is feasible for
such an anomaly detector, given the output of a state-of-the-art binary difference
analyzer. Our analysis includes both proofs of properties of the adapted detector,
and empirical evaluation of adapted detectors based on four software case studies.

Keywords: Anomaly detection, software patches, system-call monitoring, binary
difference analysis.

1 Introduction

One widely studied avenue for detecting the compromise of a process (e.g., by a buffer
overflow exploit) is by monitoring its system-call behavior. So-called “white-box” de-
tectors build a model of system-call behavior for the program via static analysis of the
source code or binary (e.g., [18,5,11,12,2,13]). “Black-box” (or “gray-box”) detectors
are trained with system-call traces of the program when processing intended inputs
(e.g., [7,6,15,16,9,8]). In either case, deviation of system-call behavior from the model
results in an alarm being raised, as this might indicate that the code executing in the
process has changed. Both white-box and black/gray-box approaches offer advantages.
The hallmark of white-box approaches is the potential for a near-zero or zero false
alarm rate [18], if static analysis uncovers every possible system call sequence that the
program could possibly emit. Since they are trained on “normal” system-call behavior,
black/gray-box approaches can be more sensitive, in that they can reflect nuances of the
local environments and usage of the monitored programs [14] and can detect behavioral
anomalies that are nevertheless consistent with the control-flow graph of the program.
Such anomalies can indicate a compromise (e.g., [3]) and, if ignored, allow more room
for mimicry attacks to succeed [19,17].

When a monitored program is patched, an anomaly detector trained on system-call
traces may no longer be sufficiently accurate to monitor the updated program. One way
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to address this is to rebuild the model by collecting traces of the updated program.
However, these traces must be gathered in a sanitized environment free of attacks that
is otherwise as similar as possible — e.g., in terms of the operating system and relevant
device configurations and contents, as well as the program usage — to the environment
in which the updated program will be run. This problem is compounded if there are
multiple such environments.

To avoid the effort of setting up a sanitized environment for collecting system-call
traces every time a patch is issued, in this paper we consider an alternative approach to
building a model of normal system-call behavior for an updated program. Our approach
consists of detecting the differences between the updated program and the previous ver-
sion, and then directly updating the system-call behavior model to reflect these changes.
There are several complexities that arise in doing this, however. First, program patches
are often released as wholly new program versions, not isolated patches. Second, in
either case, program updates are typically released only in binary format. Both of these
make it difficult to detect where the changes occur between versions. Third, while state-
of-the-art binary difference analyzers (e.g., [10]) can detect where changes occur, how
to modify the system-call model to reflect those changes can require significant further
analysis. We emphasize, in particular, that we would like to adapt the model to ac-
commodate these changes while decaying the model’s sensitivity to abnormal behavior
as little as possible. So, adaptations that increase the model’s size (and hence allowed
behaviors) more than the changes would warrant should be avoided.

In this paper we provide an algorithm for converting the execution-graph anomaly
detector [8] on the basis of the output of the BinHunt binary difference analysis tool [10]
when applied to a program and its updated version. We show that our algorithm is
sound, in the sense that the resulting execution-graph anomaly detector accepts only
system-call sequences that are consistent with the control-flow graph of the program.
Such soundness was also a requirement of the original execution-graph model [8], and
so our algorithm preserves this property of the converted execution graph. In addition,
we show through experiments with several patched binaries that our converted execu-
tion graphs can be of comparable size to ones generated by training on system-call
sequences collected from the updated program, and moreover that the converted execu-
tion graphs accept (i.e., do not raise alarms on) those sequences. As such, the converted
execution graphs from our algorithms are, based on our experiments, good approxi-
mations of the execution graphs that would have been achieved by training. To our
knowledge, ours is the first work to automatically update a system-call-based anomaly
detection model in response to program patches.

2 Related Work

Systems that employ binary matching techniques to reuse stale “profiles” are most re-
lated to our work. Profiles of a program are representatives of how a program is used
on a specific machine by a specific user. They usually include program counter in-
formation, memory usage, system clock information, etc., and are typically obtained
by executing an instrumented version of the program that generates profile informa-
tion as a side-effect of the program execution. Spike [4] is an optimization system that
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collects, manages, and applies profile information to optimize the execution of DEC
Alpha executables. When old profiles are used to optimize a new build of a program,
Spike simply discards profiles for procedures that have changed, where changes in pro-
cedures between two builds of a program are detected by calculating the edit distance
between signatures of the corresponding procedures. Spike is not able to re-use profiles
of modified procedures.

Wang et al. proposed a binary matching tool, namely BMAT, to propagate profile
information from an older, extensively profiled build to a newer build [20]. An opti-
mized version of the newer build is then obtained by applying optimization techniques
on the newer build and the propagated profile. The main difference between BMAT and
our proposed technique is that we skip the process of propagating the profiles (which
roughly correspond to the system-call traces in anomaly detection) and directly prop-
agate the anomaly detection model of the older build to that of the newer build. Our
approach is better suited to anomaly detectors that use an automaton-like model be-
cause these models are closely related to the control flow of the program (e.g., [8]), and
therefore our approach avoids potential inaccuracies introduced in an indirect approach
in which system-call traces are derived first.

3 Background and Terminology

To better explain our algorithm for converting the execution-graph anomaly detection
model [8], here we provide some background and terminology. We first give our defi-
nitions of basic blocks and control flow graphs, which are slightly different from those
typical in the literature (c.f., [1]). Next, we outline important concepts in binary differ-
ence analysis including common induced subgraphs and relations between two matched
basic blocks and two matched functions. We also define important elements in control
flow graphs, e.g., call cycles and paths, and finally briefly define an execution graph.
The conversion algorithms and their properties presented in Section 4 rely heavily on
the definitions and lemmas outlined in this section.

Our definitions below assume that each function is entered only by calling it; jumping
into the middle of a function (e.g., using a goto) is presumed not to occur. We consider
two system calls the same if and only if they invoke the same system-call interface (with
potentially different arguments).

Definition 1 [basic block, control-flow subgraph/graph]. A basic block is a consecu-
tive sequence of instructions with one entry point. The last instruction in the basic block
is the first instruction encountered that is a jump, function call, or function return, or
that immediately precedes a jump target.

The control-flow subgraph of a function f is a directed graph cfsgf = 〈cfsgVf ,
cfsgEf 〉. cfsgVf contains

– a designated f .enter node and a designated f .exit node; and
– a node per basic block in f . If a basic block ends in a system call or function call,

then its node is a system call node or function call node, respectively. Both types of
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nodes are generically referred to as simply call nodes. Each node is named by the
address immediately following the basic block.1

cfsgEf contains (v, v′) if

– v = f.enter and v′ denotes the first basic block executed in the function; or
– v′ = f.exit and v ends with a return instruction; or
– v ends in a jump for which the first instruction of v′ is the jump target; or
– the address of the first instruction of v′ is the address immediately following (i.e., is

the name of) v.

The control-flow graph of a program P is a directed graph cfgP = 〈cfgVP , cfgEP 〉
where cfgVP =

⋃
f∈P cfsgVf and (v, v′) ∈ cfgEP iff

– (v, v′) ∈ cfsgEf for some f ∈ P ; or
– v′ = f.enter for some f ∈ P and v denotes a basic block ending in a call to f ; or
– v = f.exit for some f ∈ P and v′ denotes a basic block ending in a call to f . �

We next define common induced subgraphs, which are used in binary difference analy-
sis of two programs [10].

Definition 2 [common induced subgraph, ∼, ≈ ]. Given cfsgf = 〈cfsgVf , cfsgEf 〉,
an induced subgraph of cfsgf is a graph isgf = 〈isgVf , isgEf 〉 where isgVf ⊆ cfsgVf

and isgEf = cfsgEf ∩(isgVf× isgVf ). Given two functions f and g, a common induced
subgraph is a pair 〈isgf , isgg〉 of induced subgraphs of cfsgf and cfsgg, respectively,
that are isomorphic. We use ∼ to denote the node isomorphism; i.e., if v ∈ isgVf maps
to w ∈ isgVg in the isomorphism, then we write v ∼ w and say that v “matches” w.
Similarly, if v ∼ w, v′ ∼ w′, and (v, v′) ∈ isgEf (and so (w, w′) ∈ isgEg), then we
write (v, v′) ∼ (w, w′) and say that edge (v, v′) “matches” (w, w′).

The algorithm presented in this paper takes as input an injective partial function
π : {f : f ∈ P} → {g : g ∈ Q} for two programs P and Q, and induced subgraphs
{〈isgf , isgπ(f)〉 : π(f) �= ⊥}. We naturally extend the “matching” relation to functions
by writing f ∼ π(f) if π(f) �= ⊥, and say that f “matches” π(f). Two matched
functions f and g are similar, denoted f ≈ g, iff isgf = cfsgf and isgg = cfsgg. �

Control-flow subgraphs and graphs, and common induced subgraphs for two programs,
can be extracted using static analysis of binaries [10]. When necessary, we will appeal
to static analysis in the present work, assuming that static analysis is able to disassemble
the binary successfully to locate the instructions in each function, and to build cfsgf for
all functions f and cfgP for the program P .

A tool that provides the common induced subgraphs required by our algorithm is
BinHunt [10]. When two nodes are found to match each other by BinHunt, they are
functionally similar. For example, if v ∈ isgVf , w ∈ isgVπ(f), and v ∼ w, then either
both v and w are call nodes, or neither is; we utilize this property in our algorithm.
However, BinHunt compares two nodes by analyzing the instructions within each node
only, and so the meaning of match does not extend to functions called by the nodes.
For example, two nodes, each of which contains a single call instruction, may match

1 For a function call node, this name is the return address for the call it makes.
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to each other even if they call very different functions. In order to extend the meaning
of match to functions called by the nodes, we introduce a new relation between two
functions (and subsequently two nodes), called extended similarity.

Definition 3 [
ext≈ ]. Two matched functions f and g are extended-dissimilar, denoted

f �ext≈ g, iff

– (Base cases)

• f �≈ g; or
• for two system call nodes v ∈ cfsgf and w ∈ cfsgg such that v ∼ w, v and w call

different system calls; or
• for two function call nodes v ∈ cfsgf and w ∈ cfsgg such that v ∼ w, if v calls

f ′ and w calls g′, then f ′ �≈ g′.

– (Induction) For two function call nodes v ∈ cfsgf and w ∈ cfsgg such that v ∼ w,

if v calls f ′ and w calls g′, then f ′ �ext≈ g′.

If two matched functions f and g are not extended-dissimilar, then they are extended-

similar, denoted f
ext≈ g. Two matched nodes v and w are extended-similar, denoted

v
ext≈ w, if (i) neither v nor w is a call node; or (ii) v and w make the same system call;

or (iii) v and w call f and g, respectively, and f
ext≈ g. �

Two extended-similar nodes exhibit a useful property that will be stated in Lemma 1.
To state this property, we first define call cycles.

Definition 4 [Call cycle]. A sequence of nodes 〈v1, . . . , vl〉 in cfgP is a call cycle
from v iff for some function f ∈ P , v = v1 = vl is a function call node calling to f ,
v2 = f.enter, vl−1 = f.exit, and

– (Base case) For each i ∈ (1, l − 1), vi ∈ cfsgVf and (vi, vi+1) ∈ cfsgEf .
– (Induction) For some k, k′ ∈ (1, l− 1), k < k′,

• for each i ∈ (1, k] ∪ [k′, l), vi ∈ cfsgVf ; and
• for each i ∈ (1, k) ∪ [k′, l − 1), (vi, vi+1) ∈ cfsgEf ; and
• 〈vk, . . . , vk′ 〉 is a call cycle from vk = vk′ . �

Lemma 1. If v and w are call nodes in P and Q, respectively, and v
ext≈ w, then for

every call cycle from v that results in a (possibly empty) sequence of system calls, there
is a call cycle from w that results in the same sequence of system calls.

Lemma 1, which is proved in Appendix B, shows a useful property about extended-
similar nodes, and is used in our proofs of properties of the converted execution graph.
As we will see, some edges can be copied from the execution graph of the old binary P
to the execution graph of the new binary Q on the basis of nodes in cfgP being extended-
similar to nodes in cfgQ, since those nodes exhibit similar system-call behavior. Next,
we define paths to help refer to sequences of nodes in a control flow graph.

Definition 5 [Path, full, pruned, silent, audible ]. A path p = 〈v1, . . . , vn〉 is a
sequence of nodes where
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– for all i ∈ [1, n], vi ∈ cfgVP ; and
– for all i ∈ [1, n), (vi, vi+1) ∈ cfgEP .

We use |p| to denote the length of p which is n.
p is pruned if no v ∈ {v2, . . . , vn} is a function enter node, and if no v ∈ {v1, . . . ,

vn−1} is a function exit node. p is full if for every function call node v �∈ {v1, vn} on
p, v is either followed by a function enter node or preceded by a function exit node
(but not both).

p is called silent if for all i ∈ (1, n), vi is not a system call node. Otherwise, it is
called audible. �

Next, we define an execution graph [8], which is a model for system-call-based anomaly
detection. We begin with two technical definitions, however, that simplify the descrip-
tion of an execution graph.

Definition 6 [Entry call node, exit call node]. A node v ∈ cfsgf is an entry call node
of f if v is a call node and there exists a full silent path p = 〈f.enter, . . . , v〉. A node
v ∈ cfsgf is an exit call node of f if v is a call node and there exists a full silent path
p = 〈v, . . . , f.exit〉. �

Definition 7 [support ( �), strong support ( s
�)]. A (full or pruned) path p =

〈v, . . . , v′〉 supports an edge (v, v′), denoted p � (v, v′), if p is silent. p strongly sup-
ports (v, v′), denoted p

s
� (v, v′), if p � (v, v′) and if each of v and v′ is a system call

node or a function call node from which there is at least one audible call cycle. �

Definition 8 [Execution subgraph/graph]. An execution subgraph of a function f is
a directed graph esgf = 〈esgVf , esgEf 〉 where esgVf ⊆ cfsgVf consists only of call

nodes. If (v, v′) ∈ esgEf then there is a full path p = 〈v, . . . , v′〉 such that p
s

� (v, v′).
An execution graph of a program P is a directed graph egP = 〈egVP , egEclP ,

egEcrP , egErtP 〉 where egEclP , egEcrP , and egErtP are sets of call edges, cross edges
and return edges, respectively. egVP =

⋃
f∈P esgVf and egEcrP =

⋃
f∈P esgEf .

If (v, v′) ∈ egEclP , then v is a function call node ending in a call to the function f
containing v′, and v′ is a entry call node. If (v′, v) ∈ egErtP , then v is a function call
node ending in a call to the function f containing v′, and v′ is an exit call node. �

An execution graph egP is built by subjecting P to a set of legitimate inputs in a pro-
tected environment, and recording the system calls that are emitted and the return ad-
dresses on the function call stack when each system call is made. This data enables the
construction of an execution graph. Then, to monitor a process ostensibly running P
in the wild, the return addresses on the stack are extracted from the process when each
system call is made. The monitor determines whether the sequence of system call (and
the return addresses when those calls are made) are consistent with traversal of a path in
egP . Any such sequence is said to be in the language accepted by the execution graph.
Analogous monitoring could be performed using cfgP , instead, and so we can similarly
define a language accepted by the control flow graph. An execution graph egP is built
so that any sequence in its language is also in the language accepted by cfgP [8].
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4 The Conversion Algorithm

Suppose that we have an execution graph egP for a program P , and that a patch to P is
released, yielding a new program Q. In this section, we show our conversion algorithm
to obtain egQ. In addition to utilizing egP , our algorithm utilizes the output of a binary
difference analysis tool (e.g., [10]), specifically a partial injective function π and pairs
〈isgf , isgπ(f)〉 of isomorphic induced subgraphs. Our algorithm also selectively uses
static analysis on Q. Unless stated otherwise, below we use f , v and p to denote a
function, node and path, respectively, in cfgP , and we use g, w, and q to denote a
function, node and path, respectively, in cfgQ. In addition, we abuse notation in using
“∈” to denote a path being in a graph (e.g., “p ∈ cfgP ”), in addition to its normal use
for set membership.

Recall that we have two important requirements in designing the conversion algo-
rithm. A first is that egQ preserves the soundness property of the original execution-
graph model, namely that it accepts only system-call sequences that are consistent with
cfgQ. A second requirement is that it decays the model’s sensitivity to abnormal behav-
ior as little as possible, and therefore preserves the advantage of black-box and gray-box
models in that egQ should not accept system-call behavior that would not have been ob-
served were it built by training, even though this behavior may be accepted by cfgQ.

We satisfy the above two requirements by

– creating counterparts of as many nodes and edges in egP as possible in egQ;
– adding new nodes and edges to egQ to accommodate changes between P and Q; and
– performing the above two tasks in such a way that a minimal set of system-call

behaviors is accepted by egQ.

More specifically, we first copy matched nodes and edges in esgf to esgg to the extent
possible for all matched function pairs f ∼ g (Section 4.1). Next, we handle nodes in
cfsgg that are not matched and create corresponding cross edges (Section 4.2). In the
last two steps, we further process the function call nodes to account for the functions
they call (Section 4.3) and connect execution subgraphs together to obtain the execution
graph egQ (Section 4.4).

4.1 Copying Nodes and Edges When f ∼ g

The first step, called copy(), in our conversion algorithm is to copy matched portions in
esgf to esgg, if f ∼ g. This is an important step as it is able to obtain a large portion
of egQ, assuming that there is little difference between P and Q, and that the binary
difference analysis that precedes our conversion produces common induced subgraphs
〈isgf , isgπ(f)〉 that are fairly complete for most f ∈ P . Intuitively, for two matched
functions f and g, we simply need to copy all nodes and edges in esgf that are matched
and update the names of the nodes (which denote return addresses). However, when a
cross edge is copied to esgg , we need to make sure that there is a full path in cfgQ that
can result in the newly added cross edge (i.e., to make sure that it is supported by a full
path).

There are two caveats to which we need to pay attention. The first is that a cross edge
in esgf supported by a pruned path containing edges in cfsgEf \ isgEf should not be
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copied to esgg, because something has changed on this pruned path and may render the
cross edge not supported in cfgQ. To improve efficiency, here we restrict our analysis
within f and g only and require that all pruned paths (instead of full paths) supporting
the cross edge to be copied be included in isgf and isgg.

edges in cfsg

a cross edge that would not be added by copy()

common induced subgraphs

noncall

call f’()

jz

syscall3

call f’’()

syscall4

call g’()

jz

syscall3

call g’’()

f() g() w

'w

2w

3w 4w

v

'v

2v

3v 4v

a cross edge under analysis in copy()

Fig. 1. Cross edge that is not copied

For the example in Figure 1, a cross
edge (v, v′) is supported by the pruned
path 〈v, v2, v3, v

′〉 in cfsgf (which is also
a full path). However, there is no pruned
path in isgg that supports the correspond-
ing cross edge in esgg (so no full path
in cfgQ will support it). The only pruned
path 〈w, w2, w4, w

′〉 in isgg does not sup-
port this cross edge since this pruned path
would unavoidably induce a system call.
Thus, the cross edge (v, v′) cannot be
copied to esgg.

A second caveat is related to the no-
tion of extended similarity that we in-
troduced in Section 3. Assume v ∼ w,
v′ ∼ w′, and v′′ ∼ w′′ (see Figure 2);
also assume that 〈v, v′′, v′〉 � (v, v′). To

copy (v, v′) to esgg , we need 〈w, w′′, w′〉 � (w, w′) and therefore v′′
ext≈ w′′ so that

any call cycle from v′′ can be “replicated” by a call cycle from w′′, yielding the same
system-call behavior (c.f., Lemma 1).

edges in cfg
cross edge in eg

f’’()

call f()

call f’’()

call f’()

f’’.enter

call g()

call g’’()

call g’()

f’’.exit

call f’’’()

g’’.enter

g’’.exit

call g’’’()

g’’()

w

'w

''w

v

'v

''v

'''v '''w

Fig. 2. Extended similarity in copy()

In summary, when a cross edge
(w, w′) is created in esgg in this step,
all the nodes on the pruned paths sup-
porting this edge are matched, and the
nodes along each pruned path not only
match but are extended-similar if they
are call nodes. We are very strict when
copying a cross edge because we do not
know which one of the many supporting
pruned paths was taken during training of
egP . In order to avoid possible mistakes
in copying a cross edge to esgg that 1) is
not supported by a full path in cfgQ; or 2)
would not have been created had training
been done on Q, we have to require that
all nodes on all supporting pruned paths
be matched and extended-similar. In Figure 3, three cross edges are copied since all the
pruned paths that support them are in the common induced subgraph and call nodes are
extended-similar.

Algorithm 1 copy(), in Appendix A, performs the operations in this step to copy
nodes and cross edges. The following holds for the cross edges it copies to esgcp

g .
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Lemma 2. Every cross edge added by copy() is strongly supported by a full path in
cfgQ.

call nodes
cross edges

Added in line 104
in Algorithm 1 copy()

Added in line 206 
in Algorithm 2 diff()

fesg

func�on boundary
common induced subgraph

diff
gesg

w

'w

2w

3w

4w

5w

v

'v

2v

3v
4v

Fig. 3. Converting an execution subgraph

Please refer to Appendix B for an outline
of the proof.

copy() creates nodes and cross edges
by copying them from esgf . The next
step (Section 4.2) shows how we create
more nodes and edges for esgg by stat-
ically analyzing the unmatched portion
of g.

4.2 The Unmatched Portion of g

Assuming that f and g = π(f) differ by
only a small portion, copy() would have
created most of the nodes and cross edges
for esgg . In this step, we analyze the un-
matched portion of g to make esgg more complete. This step is necessary because esgf

does not contain information about the difference between f and g. Intuitively, esgf and
〈isgf , isgg〉 do not provide enough information for dealing with the unmatched portion
of g, and we need to get help from static analysis.

We identify each pruned path in cfsgg that passes through the unmatched portion of
g and then build cross edges between consecutive call nodes on this pruned path until
this path is connected to the nodes we created in Algorithm 1 copy(). Three cross edges
in Figure 3 are created in this way due to the unmatched nodes w4 and w5.

This algorithm, diff(), is detailed in Appendix A. diff() results in the following prop-
erty for the cross edges it adds to esgdiff

g ; Appendix B gives an outline of the proof.

Lemma 3. Every cross edge added by diff() is supported by a full path in cfgQ.

If there is a cross edge in esgf that was not copied by copy() to esgg , this occurred be-
cause a supporting pruned path for this edge was changed (containing unmatched nodes
or nodes that are matched but not extended-similar) in g. Whether this pruned path was
traversed when P emitted the system-call sequences on which egP was trained is, how-
ever, unknown. One approach to decide whether to copy the cross edge to esgg is to
exhaustively search (e.g., in diff()) for a full path in cfgQ that supports it. That is, any
such path is taken as justification for the cross edge; this approach, therefore, potentially
decreases the sensitivity of the model (and also, potentially, false alarms). Another pos-
sibility, which reflects the version of the algorithm in Appendix A, is to copy the cross
edge only if there is a full supporting path that involves the changed (unmatched) part
of g. (This process is encompassed by refine() in Appendix A, described below in Sec-
tion 4.3.) In addition to this approach sufficing in our evaluation in Section 5, it better
preserves the sensitivity of the model.

4.3 Refining esgg Based on Called Functions

Many function call nodes have been created in esgg by copy() and diff(). Except those
extended-similar to their counterparts in cfsgVf , many of these nodes are created
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without considering the system-call behavior of the called functions. This is the reason
why Lemma 3 claims only that the cross edges created are supported but not strongly
supported. In this step, called refine(), we analyze the system-call behavior of the cor-
responding called functions and extend the notion of support to strong support for cross
edges created so far in copy() and diff().

call nodes
cross edges
func�on boundary
common induced subgraph

node       is removed since
all call cycles from it are silent

diff
gesg rfn

gesg
ww

'w 'w

2w 2w

3w 3w

4w

4w

5w5w

Fig. 4. Function call node removed and cross
edges modified

An obvious case in which function
call nodes need more processing is when
the execution subgraph of the called
function has not been created. This
happens when the called function g′

does not have a match with any func-
tion in P . In this case, esgg′ can be
obtained by statically analyzing the func-
tion itself. For simplicity in this pre-
sentation, we reuse diff() to denote this
process in Appendix A, with empty
sets for the first three arguments, i.e.,
diff(∅, 〈∅, ∅〉, cfsgg′).

Another scenario in which the func-
tion call nodes need more processing is
when the called function does not make a system call. Recall that a call node w is cre-
ated in copy() and diff() but we might not have analyzed the called function g′ at that
time and simply assumed that system calls are made in g′ (and therefore these cross
edges are supported instead of being strongly supported). If g′ may not make a system
call, then we need to either delete w (in the case where g′ never makes a system call,
shown in Figure 4 where all call cycles from w4 are silent) or add cross edges from
predecessor call nodes of w to successor call nodes of w (in the case where g′ may or
may not make a system call).

Lemma 4. After refine(), every cross edge in esgg is strongly supported by a full path
in cfgQ.

Please refer to Appendix B for the proof of Lemma 4.

4.4 Connecting Execution Subgraphs

At this stage, we create call and return edges to connect all esgg to form egQ. Some
of these call edges are created by “copying” the edges from the egP , e.g., when the
corresponding call node is created in copy() and is extended-similar to its counterpart

in egP (case 1 in Figure 5, where f ′ ext≈ g′). If a call node w has a match v but is not
extended-similar to it, we create an edge (w, w′) only for each entry call node w′ in
the function called by w that matches an entry call node v′ for which (v, v′) ∈ egEclP

(case 2 in Figure 5, where f ′′ �ext≈ g′′), or to all entry call nodes in the called function if
there is no such v′. For other call nodes, the call and return edges cannot be created via
copying, and we add call edges between this call node and all the entry call nodes of
the called function (case 3 in Figure 5). We create return edges in a similar way.
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Added in line 405 
in Algorithm 4 connect().
Added in line 411
in Algorithm 4 connect().
Added in line 420
in Algorithm 4 connect().

call nodes

func�on boundary
common induced subgraph

call edge

f() g()f’() g’()

f’’() g’’()
g’’’()

Fig. 5. Using call and return edges to connect ex-
ecution subgraphs

Appendix A briefly gives an imple-
mentation of connect(), and please refer
to Appendix B for an outline of the proof
of Lemma 5.

Lemma 5. Every call or return edge
added by connect() is strongly supported
by a full path in cfgQ.

Therefore, after running our conversion
algorithm, we have a converted execu-
tion graph of the new program egQ with
all the nodes being system call nodes or
function call nodes with at least one au-
dible call cycle from each, and all the
edges being strongly supported by cfgQ.
Finally, we can state the soundness of our
conversion algorithm:

Lemma 6. The language accepted by egQ is a subset of the language accepted by cfgQ.

This result is trivial given Lemmas 2–5, and consists primarily in arguing that any path
q traversed in egQ can be “mimicked” by traversing a full path in cfgQ that travels from
each node of q to the next, say from w to w′, by following the full path in cfgQ that
strongly supports (w, w′).

5 Evaluation

In this section, we evaluate the performance of our conversion procedure. Our con-
version program takes in the execution graph of the old binary egP , the control flow
graph for both binaries cfgP and cfgQ, and the output of the binary difference ana-
lyzer BinHunt, and outputs the converted execution graph egQ of the new binary. We
implemented Algorithms 1-4 with approximately 3000 lines of Ocaml code.

We evaluated execution graphs obtained by our conversion algorithm by comparing
them to alternatives. Specifically, for each case study, we compared the converted exe-
cution graph for the patched program Q with (i) an execution graph for Q obtained by
training and (ii) the control flow graph of Q. We performed four case studies.

tar. Version 1.14 of tar (P ) has an input validation error. Version 1.14-2.3 (Q) differs
from P by changing a do {} while( ) loop into a while( ) do {} loop (see
http://www.securityfocus.com/bid/25417/info). This change is iden-
tified by BinHunt, but it involves only a function call that does not make any system
calls. As such, the system-call behavior of the two programs remains unchanged, and
so does the execution graph obtained by our conversion algorithm. (diff() adds a new
node and the corresponding cross edges for the function call involved in the change,
which are subsequently deleted in refine() because all call cycles from it are silent.)

ncompress. In version 4.2.4 of ncompress (P ), a missing boundary check allows a
specially crafted data stream to underflow a buffer with attacker’s data. A check was

http://www.securityfocus.com/bid/25417/info
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added in version 4.2.4-15 (Q) to fix this problem (see http://www.debian.org/
security/2006/dsa-1149). The check introduces a new branch in the program
in which an error message is printed when the check fails, causing a new system call
to be invoked. With the same benign inputs for training, the execution graphs for both
programs are the same. Our conversion algorithm, however, tries to include this new
branch by performing limited static analysis, and consequently expands the execution
graph by 3 nodes and 23 edges.

ProFTPD. ProFTPD version 1.3.0 (P ) interprets long commands from an FTP client as
multiple commands, which allows remote attackers to conduct cross-site request forgery
(CSRF) attacks and execute arbitrary FTP commands via a long ftp:// URI that
leverages an existing session from the FTP client implementation in a web browser. For
the stable distribution (etch) this problem has been fixed in version 1.3.0-19etch2 (Q)
by adding input validation checks (see http://www.debian.org/security/
2008/dsa-1689). Eight additional function calls are introduced in the patched part,
most to a logging function for which the execution subgraph can be copied from the
old model. The converted execution graph for the patched version thus only slightly
increases the execution graph size.

unzip. When processing specially crafted ZIP archives, unzip version 5.52 (P ) may
pass invalid pointers to a C library’s free() routine, potentially leading to arbi-
trary code execution (CVE-2008-0888). A patch (version 5.52-1 (Q)) was issued with
changes in four functions (see http://www.debian.org/security/2008/
dsa-1522). Some of the changes involve calling to a new function for which there is
no corresponding execution subgraph for the old version. All four changes resulted in
static analysis in our conversion algorithm, leading to execution subgraphs constructed
mostly or entirely by static analysis. This increased the number of nodes and edges in
the resulting execution graph egQ more significantly compared to the first three cases.

Table 1. Evaluation: nodes and edges in egQ

borrowed from egP not borrowed from egP

# of nodes # of edges # of nodes # of edges
tar 478 1430 0 0

ncompress 151 489 3 23
ProFTPD 775 1850 6 28

unzip 374 1004 50 195

Experimental results are shown
in Table 1 and Table 2. In Ta-
ble 1, we show the number of
nodes and edges in egQ that
have their counterparts in egP

and those that do not. More pre-
cisely, if w ∈ egVQ and there
is some v ∈ egVP such that
v ∼ w, then w is accounted for
in the “borrowed” column in Ta-
ble 1. Similarly, if (w, w′) ∈ egEclQ ∪ egErtQ ∪ egEcrQ and there is some (v, v′) ∈
egEclP ∪ egErtP ∪ egEcrP such that (v, v′) ∼ (w, w′), then (w, w′) is accounted for in
the “borrowed” column. Nodes and edges in egQ not meeting these conditions are ac-
counted for in the “not borrowed” columns. As this table shows, increased use of static
analysis (e.g., in the case of unzip) tends to inflate the execution graph.

Table 2 compares egQ obtained by conversion with one obtained by training. As
we can see, egQ obtained by training is only marginally smaller than the one obtained
by conversion for the first three cases. They differ slightly more in size in the unzip

http://www.debian.org/security/2006/dsa-1149
http://www.debian.org/security/2006/dsa-1149
ftp://
http://www.debian.org/security/2008/dsa-1689
http://www.debian.org/security/2008/dsa-1689
http://www.debian.org/security/2008/dsa-1522
http://www.debian.org/security/2008/dsa-1522
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Table 2. Statistics for four case studies. Numbers of nodes for egP and egQ are highlighted as
representatives for size comparison.

Old binary P New binary Q

model egP (trained) cfgP egQ (converted) egQ (trained) cfgQ

nodes edges nodes edges nodes edges time (s) nodes edges nodes edges

tar 478 1430 2633 7607 478 1430 14.5 478 1430 2633 7607
ncompress 151 489 577 1318 154 512 13.1 151 489 578 1322
ProFTPD 775 1850 3343 9160 781 1878 17.4 776 1853 3351 9193

unzip 374 1004 491 1464 424 1199 41.6 377 1017 495 1490

case, due to the more extensive use of static analysis. When the egQ as obtained by
conversion is substantially larger than egP , as in the unzip case, this is an indication
that rebuilding egQ by training might be prudent.

Both converted egQ and trained egQ are smaller than cfgQ, which, in our experi-
ments, includes cfsgg for each g reachable from the first function executed in the binary,
including library functions. The numbers presented for cfgQ do not include non-call
nodes, function call nodes that do not give rise to audible call cycles, enter nodes, or
exit nodes, to enable a fair comparison with egQ (since egQ does not contain these
nodes). Since egQ, when trained, is a function of the training inputs, the gap between
the sizes of cfgQ and egQ would presumably narrow somewhat by training on a wider
variety of inputs (though we did endeavor to train thoroughly, see Appendix C). Abso-
lute sizes aside, however, Table 2 suggests that our conversion algorithm often retains
the precision offered by the execution graph from which it builds, no matter how well
(or poorly) trained.

An important observation about our converted execution graphs in these case studies
is that the language each accepts includes all system-call sequences output by Q when
provided the training inputs. We cannot prove that this will always hold with our con-
version algorithm, due to limitations on the accuracy of the binary difference analysis
tool from which we build [10]. Nevertheless, this empirically provides evidence that
this property should often hold in practice.

The conversion time shown in Table 2 for each egQ (converted) is in seconds on a 2.8
GHz CPU platform with 1GB memory, and includes only our algorithm time, excluding
binary difference analysis and the construction of cfgQ. (Binary difference analysis with
BinHunt overwhelmingly dominated the total conversion time.) As shown in Table 2,
as the changes between P and Q increase in size, more time is spent on analyzing cfgQ

and building egQ statically. In the cases of ncompress and unzip, the static analysis
needs to be applied to the libraries as well.

6 Conclusion

We have presented an algorithm by which an execution graph, which is a gray-box
system-call-based anomaly detector that uses a model trained from observed system-
call behaviors, can be converted from the program for which it was originally trained
to a patched version of that program. By using this algorithm, administrators can be
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spared from setting up a protected and identically configured environment for collecting
traces from the patched program. Our algorithm retains desirable properties of execu-
tion graphs, including that the system-call sequences accepted by the execution graph
are also consistent with the control-flow graph of the program, and that the sequences
accepted tend to capture “normal” behavior as defined by the training sequences. We
have demonstrated the effectiveness of our algorithm with four case studies.

As our paper is the first to study adapting anomaly detectors to patches, we believe
it introduces an important direction of new research. There are numerous system-call-
based anomaly detectors in the literature. Our initial studies suggest that many other
such detectors pose challenges to conversion beyond those we have addressed here.
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A Algorithms

The notation used in the following algorithms follow the convention we stated at the
beginning of Section 4: we use f , v and p to denote a function, node and path, respec-
tively, in cfgP , and we use g, w, and q to denote a function, node and path, respectively,
in cfgQ. We also continue to use ∈ to denote not only set membership, but a path being
in a graph, as well.

Algorithm 1 copy() picks cross edges from the old function execution subgraph,
when we have matches for the two ends of a cross edge and when there is no change that
would potentially affect this edge. We copy the edge into the new function execution
subgraph (line 104).

Algorithm 1. copy()
Input: esgf , 〈isgf , isgg〉, cfsgf , cfsgg

100: for all (v, v′) ∈ esgEf do
101: if ∃w, w′ : v ∼ w and v′ ∼ w′ then
102: esgVcp

g ← esgVcp
g ∪ {w, w′}

103: if ∀p ∈ cfsgf , p
s

� (v, v′) ∃q ∈ isgg : ∀v′′ ∈ p ∃w′′ ∈ q : v′′ ext≈ w′′ then
104: esgEcp

g ← esgEcp
g ∪ {(w, w′)}

Output: esgcp
g

In this implementation of Algorithm 1, we examine all pruned paths that strongly
support the cross edge to be copied to esgg (line 103). When the two functions f and g
are similar, it is more efficient to examine the differences between f and g to discover
the cross edges that should not be copied. When the differences between f and g are
small, this equivalent algorithm is more efficient, in our experience.

Algorithm 2 diff() modifies esgcp
g created in copy(). It analyzes each pruned path

that passes through the unmatched portion of g, and tries to create a part of execution
graph along each such pruned path and connect it to the rest of the execution subgraph.



Automatically Adapting a Trained Anomaly Detector to Software Patches 157

Algorithm 2. diff()
Input: esgcp

g , 〈isgf , isgg〉, cfsgg

200: esgdiff
g ← esgcp

g

201: U ← {w | w ∈ cfsgVg ∧ (w /∈ isgVg ∨ (∃v : v ∼ w ∧ v �ext≈ w))}
202: U ′ ← {w | w ∈ esgVcp

g ∨ (w ∈ U ∧ w is a call node)}
203: for all w ∈ U do
204: for all q = 〈w1, . . . , w|q|〉 ∈ cfsgg : w ∈ q ∧

(∀i ∈ (1, |q|) : wi �= w ⇒ wi �∈ U ′) ∧ {w1, w|q|} ⊆ U ′ do
205: esgVdiff

g ← esgVdiff
g ∪ {wi | i ∈ [1, |q|] ∧ wi is a call node}

206: esgEdiff
g ← esgEdiff

g ∪ {(wi, wj) | i, j ∈ [1, |q|] ∧ wi, wj are call nodes ∧ i < j ∧
∀k ∈ (i, j) : wk is not a call node}

Output: esgdiff
g

Algorithm 3. refine()
Input: {esgcp

g }g , H = {esgdiff
g }g , cfgQ

300: while H �= ∅ do
301: pick one esgdiff

g in H

302: esgrfn
g ← esgdiff

g

303: for all w ∈ esgVrfn
g : w is a function call node ∧

w /∈
{

w′ | w′ ∈ esgVcp
g ∧ ∃v′ : v′ ext≈ w′

}
do

304: let g′ be the function called by w
305: if no call cycle from w is audible then
306: esgVrfn

g ← esgVrfn
g \ {w}

307: for all w′, w′′ : (w′, w) ∈ esgErfn
g ∧ (w, w′′) ∈ esgErfn

g do
308: esgErfn

g ← esgErfn
g ∪ {(w′, w′′)}

309: for all w′ : (w, w′) ∈ esgErfn
g do

310: esgErfn
g ← esgErfn

g \ {(w, w′)}
311: for all w′ : (w′, w) ∈ esgErfn

g do
312: esgErfn

g ← esgErfn
g \ {(w′, w)}

313: else if all call cycles from w are audible then
314: if esgdiff

g′ /∈ H then
315: H ← H ∪ {diff(∅, 〈∅, ∅〉, cfsgg′)}
316: else
317: for all w′, w′′ : (w′, w) ∈ esgErfn

g ∧ (w, w′′) ∈ esgErfn
g do

318: esgErfn
g ← esgErfn

g ∪ {(w′, w′′)}
319: if esgdiff

g′ /∈ H then
320: H ← H ∪ {diff(∅, 〈∅, ∅〉, cfsgg′)}
321: H ← H \ {

esgdiff
g

}
Output: {esgrfn

g }g
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Algorithm 4. connect()
Input: R = {esgrfn

g }g , egEclP , egErtP

400: for all esgrfn
g ∈ R do

401: for all w ∈ esgVrfn
g do

402: let g′ be the function to which w calls

403: if ∃v : v
ext≈ w then

404: for all v′ : (v, v′) ∈ egEclP do

405: egEclQ ← egEclQ ∪ {(w, w′)} where v′ ext≈ w′

406: for all v′′ : (v′′, v) ∈ egErtP do

407: egErtQ ← egErtQ ∪ {(w′′, w)} where v′′ ext≈ w′′

408: else if ∃v : v ∼ w ∧ v �ext≈ w then
409: for all v′ : (v, v′) ∈ egEclP do
410: if ∃w′ ∈ esgVrfn

g′ : v′ ∼ w′ ∧ w′ is an entry call node then
411: egEclQ ← egEclQ ∪ {(w, w′)}
412: else
413: egEclQ ← egEclQ ∪ {(w, w′) | w′ ∈ esgVrfn

g′ is an entry call node}
414: for all v′′ : (v′′, v) ∈ egErtP do
415: if ∃w′′ ∈ esgVrfn

g′ : v′′ ∼ w′′ ∧ w′′ is an exit call node then
416: egErtQ ← egErtQ ∪ {(w′′, w)}
417: else
418: egErtQ ← egErtQ ∪ {(w′′, w) | w′′ ∈ esgVrfn

g′ is an exit call node}
419: else
420: egEclQ ← egEclQ ∪ {(w, w′) | w′ ∈ esgVrfn

g′ is an entry call node}
421: egErtQ ← egErtQ ∪ {(w′′, w) | w′′ ∈ esgVrfn

g′ is an exit call node}
Output: egQ

Algorithm 3 refine() uses the system call behavior of each called function to deter-
mine if any cross edges should be removed and others used in their places. (Analysis in
Algorithm 2 does not account for the behavior of called functions when adding edges.)

Finally, Algorithm 4 connect() tries to copy call edges and return edges from the
execution graph of the old program when we have sufficient matching support (line 405
and 407). Otherwise, we build call and return edges based on static analysis (lines 411,
413, 416, 418, 420, and 421).

B Proofs

Proof of Lemma 1. Since v
ext≈ w, by Definition 1, 2, 3, for a call cycle 〈v, v2, . . ., vn, v〉

in cfgP , there will be a call cycle 〈w, w2, . . . , wn, w〉 in cfgQ such that vi ∼ wi : i ∈
[2, n], and if vi and wi are system call nodes, they must make the same system call, so
these two call cycles result in the same (possibly empty) sequence of system calls. �

Proof of Lemma 2. If (w, w′) is added to esgEcp
g in line 104, then consider the cross

edge (v, v′) ∈ esgEg chosen in line 100. Since (v, v′) ∈ esgEg , there is a full, silent
path p′ = 〈v, . . . , v′〉 in P that was exercised in training. Consider the pruned path p
from v to v′ obtained by collapsing each call cycle in p′ to its function call node. By
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line 103, there is a corresponding q ∈ isgg on which every node is extended-similar to
its corresponding one in p (and hence p ∈ isgf , as well). Then, by Lemma 1 there is a
full path q′ that strongly supports (w, w′). �

Proof of Lemma 3. If an edge (wi, wj) is added to esgEdiff
g at line 206, then wi and wj

are call nodes with no call node in between them on q. As such, 〈wi, . . . , wj〉 is a full,
silent path that supports (wi, wj). �

Proof of Lemma 4. We first argue that any (w′, w′′) ∈ esgErfn
g at the completion of

refine() is supported by a full path. First, if (w′, w′′) was added to esgEcp
g in line 104

and then copied forward (lines 200, 302), or if (w′, w′′) was added to esgEdiff
g in line 206

and then copied forward (line 302), then (w′, w′′) is supported by a full path per Lem-
mas 2 and 3. Now, suppose that (w′, w′′) was added in line 308 or 318. Then line 305
(respectively, 316) says that some call cycle from w is silent. So, if the cross edges
(w′, w), (w, w′′) were supported by full paths, then the new cross edge (w′, w′′) is also
supported by a full path. It follows by induction, with Lemmas 2–3 providing the base
cases, that any cross edges added in lines 308 and 318 are supported by a full path.

We now show that any such edge is strongly supported. Consider any function call
node w ∈ esgVrfn

g at the completion of refine. If w ∈ esgVcp
g , then it was added in

line 102 because it matched some v (line 101) from which an audible call cycle was

traversed during training of egP . If v
ext≈ w, then by Lemma 1, there is an audible call

cycle from w, as well. If v �ext≈ w or w �∈ esgVcp
g , then w satisfied the condition in

line 303 and, if there is no audible call cycle from w, was removed in lines 306–312. �

Proof of Lemma 5. Consider an edge added in line 405. Since both v and v′ were wit-
nessed during training egP , each is a system call node or has some audible call cycle.

Because v
ext≈ w and v′

ext≈ w′, Lemma 1 implies that each of w and w′ is a system
call node or has some audible call cycle. Moreover, Lemma 1 guarantees that w′ is an
entry call node since v′ is, and so the call edge (w, w′) created at line 405 is strongly
supported by a full path. By similar reasoning, each return edge added at line 407 is
strongly supported by a full path.

In all other cases in which an edge (w, w′) is added to egEclQ (in line 411, 413, or
420), connect() explicitly checks whether w′ is an entry call node for the function g′

called by w (line 402), and so there is a full path supporting (w, w′). Similarly, for each
edge (w′′, w) added to egErtQ, there is a full path supporting this edge. Since all nodes

in each esgVrfn
g are either system call nodes or function call nodes from which there is

an audible call cycle, these edges are strongly supported. �

C Training

In this appendix we briefly explain how we collected the traces for the four case studies,
since training plays an important role in building the execution graphs. For ncompress
and unzip, we tried all operation types and options listed in the online manuals. However,
for tar and ProFTPD, we did not train as exhaustively as we did for the previous two cases
due to the complexity of tar operations and ProFTPD configurations. Nevertheless, for
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tar and ProFTPD, we did follow guidelines to enhance the repeatability of the training
procedure, as described below.

tar. Following the manual (see http://www.gnu.org/software/tar/
manual/tar.pdf), we trained tar for its three most frequently used operations
(create, list and extract) that are introduced in Chapter 2 and with all options described
in Chapter 3. The directory and files we adopted for applying those operations were the
downloaded source of tar-1.14.

ncompress. We trained ncompress on its own source directory for version 4.2.4, us-
ing all operations and options described in its online manual (see http://linux.
about.com/od/commands/a/blcmdl1_compres.htm),

ProFTPD. We trained ProFTPD configured using the sample configuration file
shipped with the source, and with all commands described in the online
manual (see http://linux.about.com/od/commands/l/blcmdl1_ftp.
htm). We chose to transfer files within the ProFTPD-1.3.0 source directory.

unzip. Similar to the training on ncompress, we followed the unzip online manual
(see http://linux.about.com/od/commands/l/blcmdl1_unzip.htm)
and trained the program on the .zip package of version 5.52.

http://www.gnu.org/software/tar/manual/tar.pdf
http://www.gnu.org/software/tar/manual/tar.pdf
http://linux.about.com/od/commands/a/blcmdl1_compres.htm
http://linux.about.com/od/commands/a/blcmdl1_compres.htm
http://linux.about.com/od/commands/l/blcmdl1_ftp.htm
http://linux.about.com/od/commands/l/blcmdl1_ftp.htm
http://linux.about.com/od/commands/l/blcmdl1_unzip.htm
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Abstract. Signature-based input filtering is an important and widely deployed de-
fense. But current signature generation methods have limited coverage and the gen-
erated signatures often can be easily evaded by an attacker with small variations of
the exploit message. In this paper, we propose protocol-level constraint-guided ex-
ploration, a new approach towards generating high coverage vulnerability-based
signatures. In particular, our approach generates high coverage, yet compact, vul-
nerability point reachability predicates, which capture many paths to the vulnera-
bility point. In our experimental results, our tool, Elcano, generates compact, high
coverage signatures for real-world vulnerabilities.

1 Introduction

Automatic signature generation remains an important open problem. According to
Symantec’s latest Internet Security Threat Report hundreds of new security-critical vul-
nerabilities were discovered in the second half of 2007 [1]. For many of these vulner-
abilities, the exploit development time is less than a day, while the patch development
time is often days or months [1]. In addition, the patch deployment time can be long
due to extensive testing cycles.

To address these issues, signature-based input filtering has been widely deployed in
Intrusion Prevention (IPS) and Intrusion Detection (IDS) systems. Signature-based in-
put filtering matches program inputs against a set of signatures and flags matched inputs
as attacks. It provides an important means to protect vulnerable hosts when patches are
not yet available or have not yet been applied. Furthermore, for legacy systems where
patches are no longer provided by the vendor, or critical systems where any changes to
the code might require a lengthy re-certification process, signature-based input filtering
is often the only practical solution to protect the vulnerable program.

The key technical challenge to effective signature-based defense is to automatically
and quickly generate signatures that have both low false positives and low false nega-
tives. In addition, it is desirable to be able to generate signatures without access to the
source code. This is crucial to wide deployment since it enables third-parties to generate
signatures for commercial-off-the-shelf (COTS) programs, without relying on software
vendors, thus enabling a quick response to newly found vulnerabilities.

Due to the importance of the problem, many different approaches for automatic sig-
nature generation have been proposed. Early work proposed to generate exploit-based
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signatures using patterns that appeared in the observed exploits, but such signatures
can have high false positive and negative rates [2, 3, 4, 5, 6, 7, 8, 9, 10]. More recently,
researchers proposed to generate vulnerability-based signatures, which are generated
by analyzing the vulnerable program and its execution and the actual conditions needed
to exploit the vulnerability and can guarantee a zero false positive rate [11, 12].

Automatic vulnerability signature generation. A vulnerability is a point in a program
where execution might “go wrong”. We call this point the vulnerability point. A vulner-
ability is only exploited when a certain condition, the vulnerability condition, holds on
the program state when the vulnerability point is reached. Thus, to exploit a vulnerabil-
ity, the input needs to satisfy two conditions: (1) it needs to lead the program execution
to reach the vulnerability point; (2) the program state needs to satisfy the vulnerability
condition at the vulnerability point. We call the condition that denotes whether an input
message will make the program execution reach the vulnerability point the vulnerability
point reachability predicate (VPRP). Thus, the problem of automatically generating a
vulnerability-based signature can be decomposed into two: identifying the vulnerability
condition and identifying the vulnerability point reachability predicate. A vulnerability-
based signature is simply the conjunction of the two. While both problems are impor-
tant, the space limitations makes trying to cover both in a single paper unrealistic. Thus,
in this paper we focus on how to generate vulnerability point reachability predicates
with high coverage and compact size, and we refer the reader to [13] for details on the
vulnerability condition extraction. In this paper, we use optimal signature to refer to a
vulnerability signature that has no false positives and no false negatives.

Coverage is a key challenge. One important problem with early vulnerability-based
signature generation approaches [11, 12] is that the signatures only capture a single
path to the vulnerability point (i.e., their VPRP contains only one path). However, the
number of paths leading to the vulnerability point can be very large, sometimes infinite.
Thus, such signatures are easy to evade by an attacker with small modifications of the
original exploit message, such as changing the size of variable-length fields, changing
the relative ordering of the fields (e.g., HTTP), or changing field values that drive the
program through a different path to the vulnerability point [14, 15].

Acknowledging the importance of enhancing the coverage of vulnerability-based
signatures, recent work tries to incorporate multiple paths into the VPRP either by static
analysis [16], or by dynamic analysis [17,18]. However, performing precise static anal-
ysis on binaries is hard due to issues such as indirection, pointers and loops.

ShieldGen takes a probing-based approach using protocol format information [18]—
using the given protocol format, it generates different well-formed variants of the original
exploit using various heuristics and then checks whether any of the variants still exploits
the vulnerability. The advantage of this approach is that by using protocol format infor-
mation, the final signature is expressed at the protocol level (which we call protocol-level
signature) instead of the byte level. Compared to signatures at the byte-level (which do
not understand the protocol format), protocol-level signatures have two advantages: they
are more compact and they naturally cover variants of the exploits caused by variable-
length fields and field re-ordering (See more detail in Section 2.2). The disadvantage of
the approach used by ShieldGen is that the exploration uses heuristics to figure out what
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test inputs to generate. Such heuristics can introduce false positives and do not use the
information from the execution of the program, which would increase the coverage of
the program execution space. As a result, the exploration is inefficient and has various
limitations (See Section 2.3).

Bouncer extends previous approaches using symbolic execution to generate sym-
bolic constraints on inputs as signatures [17]. Even though Bouncer makes improve-
ments in increasing the coverage of the generated signatures, it still suffers from
several limitations. First, it generates byte-level signatures instead of protocol-level sig-
natures. As a result, it is difficult for Bouncer to handle evasion attacks using variable-
length fields and field re-ordering. Second, Bouncer’s exploration is inefficient and
largely heuristic-based. As mentioned in their paper, the authors tried to use symbolic-
constraint-guided exploration to explore the program execution space to identify dif-
ferent paths reaching the vulnerability point, but couldn’t make the approach scale to
real-world programs and thus had to resort to heuristics such as duplicating or removing
parts of the input message or sampling certain field values to try to discover new paths
leading to the vulnerability point. Thus, a key open problem for generating accurate and
efficient signatures is how to generate vulnerability point reachability predicates with
high coverage.

Our approach. In this paper, we propose protocol-level constraint-guided exploration,
a new approach to automatically generate vulnerability point reachability predicates
with high coverage, for a given vulnerability point and an initial exploit message. Our
approach has 3 main characteristics: 1) it is constraint-guided (i.e., instead of heuristics-
based exploration as in ShieldGen and Bouncer), 2) the constraint-guided exploration
works at the protocol-level and generates protocol-level signatures at the end, and 3) it
effectively merges explored execution paths to remove redundant exploration. The three
points seamlessly weave together and amplify each other’s benefit. By using constraint-
guided exploration, our approach significantly increases the effectiveness and efficiency
of the program execution space exploration. By lifting the symbolic constraints from the
byte level to the protocol level, our constraint-guided exploration is done at the protocol
level, which makes the exploration feasible for real-world programs, addressing the
problem that Bouncer couldn’t solve. By merging paths in the exploration, we further
reduce the exploration space.

Elcano. We have designed and developed Elcano, realizing the aforementioned ap-
proach. We have evaluated the effectiveness of our system using real-world vulnerable
programs. In our experiments, Elcano achieved optimal or close-to-optimal results in
terms of coverage. In addition, the generated signatures are compact. In fact, most of
the signatures are so compact that they can be understood by a human.

Compared to Bouncer, Elcano produces higher coverage signatures. For example,
for the GHttpd vulnerability Bouncer run for 24 hours, exploring only some fraction of
all possible paths, and produced a partial signature with significant false negatives. In
contrast, Elcano generates an optimal signature for the same vulnerability in 55 seconds.
Compared to ShieldGen, Elcano produces more accurate signatures, both in terms of
less false negatives (i.e., higher coverage) and less false positives.
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In addition to signature generation, extracting a high coverage vulnerability point
reachability predicate is useful for other applications such as exploit generation [19]
and patch testing. For example, the Microsoft patch MS05-018 missed some paths
to the vulnerability point and as a result left the vulnerability still exploitable after
the patch [20]. This situation is not uncommon. A quick search on the CVE database
returns 13 vulnerabilities that were incorrectly or incompletely patched [21]. Our tech-
nique could assist software developers to build more accurate patches. Furthermore, our
protocol-level constraint-guided approach can increase the effectiveness of generating
high-coverage test cases and hence be very valuable to software testing and bug finding.

2 Problem Definition and Approach Overview

In this section, we first introduce the problem of automatic generation of protocol-level
vulnerability point reachability predicates, then present our running example and finally
give the overview of our approach.

2.1 Problem Definition

Automatic generation of protocol-level vulnerability point reachability predicates.
Given a parser implementing a given protocol specification, the vulnerability point, and
an input that exploits the vulnerability at the vulnerability point in a program, the prob-
lem of automatic generation of protocol-level vulnerability point reachability predicates
is to automatically generate a predicate function F , such that when given some input
mapped into field structures by the parser, F evaluates over the field structures of the
input: if it evaluates to true, then the input is considered to be able to reach the vulner-
ability point, otherwise it is not.

Parser availability and specification quality. The problem of automatic generation of
protocol-level vulnerability point reachability predicates assumes the availability of a
parser implementing a given protocol or file specification. Such requirement is identical
to previous approaches such as ShieldGen [18]. The parser given some input data can
map it into fields, according to the specification, or fail if the input is malformed. In the
latter case, the IDS/IPS could opt to block the input or let it go through while logging
the event or sending a warning. Such parser is available for common protocols (e.g.,
Wireshark [22]), and many commercial network-based IDS or IPS have such a parser
built-in. In addition, recent work has shown how to create a generic parser that takes as
input multiple protocol specifications written in an intermediate language [23, 24].

The quality of the specification used by the parser matters. While obtaining a high
quality specification is not easy, this is a one time effort, which can be reused for mul-
tiple signatures, as well as other applications. For example, in our experiments we ex-
tracted a WMF file format specification. According to the CVE Database [21] the WMF
file format appears in 21 vulnerabilities, where our specification could be reused. Sim-
ilarly, an HTTP specification could be reused in over 1500 vulnerabilities. Also, recent
work has proposed to automatically extract the protocol specification from the program
binary [25,26,27,28]. Such work can be used when the protocol used by the vulnerable
program has no public specification.



Towards Generating High Coverage Vulnerability-Based Signatures 165

1 void service() {
2 char msgBuf[4096];
3 char lineBuf[4096];
4 int nb=0, i=0, sockfd=0;
5 nb=recv(sockfd,msgBuf,4096,0);
6 for(i = 0; i < nb; i++) {
7 if (msgBuf[i] == ’\n’)
8 break;
9 else

10 lineBuf[i] = msgBuf[i];
11 }
12 if (lineBuf[i-1] == ’\r’)
13 lineBuf[i-1] = ’\0’
14 else lineBuf[i] = ’\0’;
15 doRequest(lineBuf);
16 }

17 void doRequest(char *lineBuf){
18 char vulBuf[128],uri[256];
19 char ver[256], method[256];
20 int is_cgi = 0;
21 sscanf(lineBuf,
22 "%255s %255s %255s",
23 method, uri, ver);
24 if (strcmp(method,"GET")==0 ||
25 strcmp(method,"HEAD")==0){
26 if strncmp(uri,"/cgi-bin/",
27 9)==0 is_cgi = 1;
28 else is_cgi = 0;
29 if (uri[0] != ’/’) return;
30 strcpy(vulBuf, uri);
31 }
32 }

Fig. 1. Our running example

Exploit availability. Similarly to all previous work on automatic generation of vulner-
ability signatures [12,11,17,18], our problem definition assumes that an initial exploit
message is given.

Vulnerability point availability. Finally, our problem definition assumes that the vul-
nerability point is given. Identifying the vulnerability point is part of a parallel project
that aims to accurately describe the vulnerability condition [13]. Such vulnerability
point could also be identified using previous techniques [17, 29].

2.2 Running Example

Figure 1 shows our running example. We represent the example in C language for clar-
ity, but our approach operates directly on program binaries. Our example represents
a basic HTTP server and contains a buffer-overflow vulnerability. In the example, the
service function copies one line of data received over the network into linebuf
and passes it to the doRequest function that parses it into several field variables (lines
21-23) and performs some checks on the field values (lines 24-31). The first line in the
exploit message includes the method, the URI of the requested resource, and the proto-
col version. If the method is GET or HEAD (lines 24-25), and the first character of the
URI is a slash (line 29), then the vulnerability point is reached at line 30, where the size
of vulBuf is not checked by the strcpy function. Thus, a long URI can overflow the
vulBuf buffer.

In this example, the vulnerability point is at line 30, and the vulnerability condi-
tion is that the local variable vulBuf will be overflowed if the size of the URI field
in the received message is greater than 127. Therefore, for this example, the vulnera-
bility point reachability predicate is: (strcmp(FIELD METHOD,"GET") == 0 ||
strcmp(FIELD METHOD,"HEAD") == 0) && FIELD URI[0] �= ’/’ while the
vulnerability condition is: length(FIELD URI) > 127, and the conjunction of the
two is an optimal protocol-level signature.
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2.3 Approach

In this paper we propose a new approach to generate high coverage, yet compact, vul-
nerability point reachability predicates, called protocol-level constraint-guided explo-
ration. Next, we give the motivation and an overview of the three characteristics that
comprise our approach.

Constraint-guided. As mentioned in Section 1, previous approaches such as ShieldGen
and Bouncer use heuristics-based exploration [17,18]. Heuristic-based exploration suf-
fers from a fundamental limitation: the number of probes needed to exhaustively search
the whole space is usually astronomical. In addition, an exhaustive search is inefficient
as many probes end up executing the same path in the program. Thus, such approaches
often rely on heuristics that are not guaranteed to significantly increase the signature’s
coverage and can also introduce false positives.

For example, ShieldGen [18] first assumes that fields can be probed independently,
and then for fixed-length fields it samples just a few values of each field, checking
whether the vulnerability point is reached or not for those values. Probing each field in-
dependently means that conditions involving multiple fields cannot be found. Take the
condition SIZE1 + SIZE2 ≤ MSG SIZE, where SIZE1 and SIZE2 are length
fields in the input, and MSG SIZE represents the total length of the received message.
The authors of ShieldGen acknowledge that their signatures cannot capture this type of
conditions, but such conditions are commonly used by programs to verify that the input
message is well-formed and failing to identify them will introduce either false positives
or false negatives, depending on the particular heuristic. Probing only a few sample val-
ues for each field is likely to miss constraints that are satisfied by only a small fraction
of the field values. For example, a conditional statement such as if (FIELD==10)
|| (FIELD==20) then exploit, else safe, where FIELD is a 32-bit in-
teger, creates two paths to the vulnerability point. Finding each of these paths would
require 230 random probes on average to discover. Creating a signature that covers both
paths is critical since if the signature only covers one path (e.g., FIELD == 10), the
attacker could easily evade detection by changing FIELD to have value 20.

To overcome these limitations, we propose to use a constraint-guided approach by
monitoring the program execution, performing symbolic execution to generate path
predicates, and generating new inputs that will go down a different path. This constraint-
guided exploration is similar in spirit to recent work on using symbolic execution for
automatic test case generation [30, 31, 32]. However, simply applying those techniques
does not scale to real-world programs, given the exponential number of paths to explore.
In fact, in Bouncer [17] the authors acknowledge that they wanted to use a constraint-
guided approach but failed to do so due to the large number of paths that need to be
explored and thus had to fall back to the heuristics-based probing approach.

To make the constraint-guided exploration feasible and effective we have incorpo-
rated two other key characteristics into our approach as described below.

Protocol-level constraints. Previous symbolic execution approaches generate what we
call stream-level conditions, i.e., constraints that are evaluated directly on the stream
of input bytes. Such stream-level conditions in turn generate stream-level signatures,
which are also specified at the byte level. However, previous work has shown that
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signatures are better specified at the protocol-level instead of the byte level [6, 18].
We call such signatures protocol-level signatures.

Our contribution here is to show that, by lifting stream-level conditions to protocol-
level conditions, so that they operate on protocol fields rather than on the input bytes, we
can make the constraint-guided approach feasible, as using constraints at the protocol-
level hugely reduces the number of paths to be explored compared to using stream-level
conditions. The state reduction is achieved in two ways. First, the parsing logic often
introduces huge complexity in terms of the number of execution paths that need to be
analyzed. For example, in our experiments, 99.8% of all constraints in the HTTP vul-
nerabilities are generated by the parsing logic. While such parsing constraints need to be
present in the stream-level conditions, they can be removed in the protocol-level condi-
tions. Second, the stream-level conditions introduced by the parsing logic fixes the field
structure to be the same as in the original exploit message, for example fixing variable-
length fields to have the same size as in the original exploit message, and fixing the
field sequence to be the same as in the exploit message (when protocols such as HTTP
allow fields to be reordered). Unless the parsing conditions are removed the resulting
signature would be very easy to evade by an attacker by applying small variations to
the field structure of the exploit message. Finally, the vulnerability point reachability
predicates at the protocol level are smaller and easier to understand by humans.

Merging execution paths. The combination of protocol-level conditions with
constraint-guided exploration is what we call protocol-level constraint-guided explo-
ration, an iterative process that incrementally discovers new paths leading to the vul-
nerability point. Those paths need to be added to the vulnerability point reachability
predicate. The simplistic approach would be to blindly explore new paths by revers-
ing conditions and at the end create a vulnerability point reachability predicate that is
a disjunction (i.e., an enumeration) of all the discovered paths leading to the vulnera-
bility point. Such approach has two main problems. First, blindly reversing conditions
produces a search space explosion, since the number of paths to explore becomes ex-
ponential in the number of conditions, and much larger than the real number of paths
that exist in the program. We explain this in detail in Section 4. In addition, merely
enumerating the discovered paths generates signatures that quickly explode in size.

To overcome those limitations, we utilize the observation that the program execution
may fork at one condition into different paths for one processing task, and then merge
back to perform another task. For example, a task can be a validation check on the input
data. Each independent validation check may generate one or multiple new paths (e.g.,
looking for a substring in the HTTP URL generates many paths), but if the check is
passed then the program moves on to the next task, which usually merges the execution
back into the original path. Thus, in our exploration, we use a protocol-level exploration
graph to identify such potential merging points. This helps alleviate the search space
explosion problem, and allows our exploration to quickly reach high coverage.

2.4 Architecture Overview

We have implemented our approach in a system called Elcano. The architecture of
Elcano is shown in Figure 2. It comprises of two main components: the constraint
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Fig. 2. Elcano architecture overview. The darker color modules are given, while the lighter color
components have been designed and implemented in this work.

extractor and the exploration module, and two off-the-shelf assisting components: the
execution monitor and the parser.

The overall exploration process is an iterative process that incrementally explores
new execution paths. In each iteration (that we also call test), an input is sent to the
program under analysis, running inside the execution monitor. The execution monitor
produces an execution trace that captures the complete execution of the program on
the given input, including which instructions were executed and the operands content.
The execution monitor also logs the test result, i.e., whether the vulnerability point was
reached or not during the execution. In addition, the parser extracts the message format
for the input, according to the given protocol specification.

Then, given the execution trace and the message format, the constraint extractor ob-
tains the field constraint chain. The field constraint chain is conceptually similar to the
path predicate used in previous work on automatic test case generation, but the condi-
tions are at the protocol-level and each condition is tagged with additional information.
We detail the field constraint chain and its construction in Section 3.

The exploration module maintains the protocol-level exploration graph, which stores
the current state of the exploration, i.e., all the execution paths that have been so far
explored. Given the field constraint chain, the exploit message and the test result, the
exploration module merges the new field constraint chain into the current protocol-level
exploration graph. Then, the exploration module uses the protocol-level exploration
graph to select a new path to be explored and generates a new input that will lead
the program execution to traverse that path. Given the newly generated input, another
iteration begins. We detail the exploration module in Section 4.

The process is started with the initial exploit message and runs iteratively until there
are no more paths to explore or a user-specified time-limit is reached. At that point
the exploration module outputs the VPRP. The VPRPs produced by Elcano are written
using the Vine language [33] with some extensions for string operations [34]. The Vine
language is part of the Bitblaze binary analysis infrastructure [35].

3 Extracting the Protocol-Level Path-Predicate

In this section we present the constraint extractor, which given an execution trace, pro-
duces a field constraint chain. The architecture of the constraint extractor is shown in
Figure 3. First, given the execution trace the path predicate extractor performs symbolic
execution with the input represented as a symbolic variable and extracts the path pred-
icate, which is essentially the conjunction of all branch conditions dependent on the
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symbolic input in the execution captured in the execution trace. The concept of sym-
bolic execution, the path predicate and how to compute it are well understood and have
been widely used in previous work including vulnerability signature generation [11,12]
and automatic test case generation [30,31]. Thus, we refer the interested reader to these
previous work for details.

The path predicate generated by previous work is at the stream-level, i.e., the con-
ditions are on raw bytes of the input. To enable constraint-guided exploration, Elcano
needs to lift the path predicate from the stream-level to the protocol-level, where the
conditions are instead on field variables of the input. To make the distinction clear, we
refer to the path predicate at the stream-level the stream-level path-predicate, and the
path predicate at the protocol-level the protocol-level path-predicate. In addition, the
constraint extractor needs to remove the parsing conditions, which dramatically reduces
the exploration space and makes the constraint-guided exploration feasible.

To accomplish this, first the field condition generator lifts the stream-level path-
predicate to the protocol-level, and then the field condition generalizer generalizes it
by removing the parsing conditions and outputs the field constraint chain, which is
essentially the protocol-level path-predicate, where each condition is annotated with
some additional information and conditions are ordered using the same order as they
appeared in the execution.

3.1 The Field Condition Generator

Given the stream-level path-predicate generated by the path predicate extractor and
the message format of the input given by the parser, the field condition generator out-
puts a protocol-level path-predicate. It performs this in two steps. First, it translates
each byte symbol INPUT[x] in the stream-level path-predicate into a field symbol
FIELD fieldname [x - start(fieldname)] using the mapping produced
by the parser. Second, it tries to combine symbols on consecutive bytes of the same
field. For example, the stream-level path-predicate might include the following con-
dition: (INPUT[6] << 8 | INPUT[7]) == 0. If the message format states that
inputs 6 and 7 belong to the same 16-bit ID field, then the condition first gets trans-
lated to (FIELD ID[0] << 8 | FIELD ID[1]) == 0 and then it is converted
to FIELD ID == 0 where FIELD ID is a 16-bit field symbol.

The message format provided by the parser is a hierarchical tree, where one field
may contain different subfields, with the root of the tree representing the whole mes-
sage. For example, the linebuf variable in our running example represents the
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Request-Line field, which in turn contains 3 subfields: Method, Request-URI,
and HTTP-Version. Thus, a condition such as: strstr(linebuf,"../") �=
0 would be translated as strstr(FIELD Request-Line,"../") �= 0. A con-
dition on the whole message would translate into a condition on the special MSG field.

Benefits. This step lifts the stream-level path-predicate to the protocol-level, breaking the
artificial constraints that the stream-level path-predicate imposes on the position of fields
inside the exploit message. For example, protocols such as HTTP allow some fields in
a message (i.e., all except the Request-Line/Status-Line) to be ordered differently with-
out changing the meaning of the message. Thus, two equivalent exploit messages could
have the same fields ordered differently and a byte-level vulnerability point reachability
predicate generated from one of them would not flag that the other also reaches the vul-
nerability point. In addition, if variable-length fields are present in the exploit message,
changing the size of such fields changes the position of all fields that come behind it in
the exploit message. Again, such trivial variation of the exploit message could defeat
stream-level signatures. Thus, by expressing constraints using field symbols, protocol-
level signatures naturally allow a field to move its position in the input.

3.2 The Field Condition Generalizer

The field condition generalizer takes as input the protocol-level path-predicate gener-
ated by the field condition generator, the protocol specification and the input that was
sent to the program and outputs a field constraint chain where the parsing-related con-
ditions have been removed.

First, the field condition generalizer assigns a symbolic variable to each byte of the
input and processes the input according to the given protocol specification. This step
generates symbolic conditions that capture the constraints on the input which restrict
the message format of the input to be the same as the message format returned by the
parser on the given input. We term these conditions the parsing conditions. Then, the
field condition generalizer removes the parsing conditions from the protocol-level path-
predicate by using a fast syntactic equivalence check. If the fast syntactic check fails,
the field condition generalizer uses a more expensive equivalence check that uses a
decision procedure.

Benefits. The parsing conditions in the protocol-level path-predicate over-constrain the
variable-length fields, forcing them to have some specific size (e.g., the same as in the
exploit message). Thus, removing the parsing conditions allows the vulnerability point
reachability predicate to handle exploit messages where the variable-length fields have a
size different than in the original exploit message. In addition, for some protocols such
as HTTP, the number of parsing conditions in a single protocol-level path-predicate
can range from several hundreds to a few thousands. Such a huge number of unneces-
sary conditions would blow up the size of the vulnerability point reachability predicate
and negatively impact the exploration that we will present in Section 4. Note that the
parsing conditions are enforced by the parser, so we can safely remove them from the
protocol-level path-predicate while still having the conditions enforced during the sig-
nature matching time. We refer the reader to the extended version for more details [36].
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The field constraint chain. To assist the construction of the protocol-level exploration
graph (explained in Section 4), the constraint extractor constructs the field constraint
chain using the generalized protocol-level path-predicate (after the parsing conditions
have been removed). A field constraint chain is an enhanced version of the protocol-level
path-predicate where each branch condition is annotated with the instruction counter and
an MD5 hash of the callstack of the program at the branching point, and these annotated
branch conditions are put in an ordered chain using the same order as they appear in the
execution path.

4 Execution-Guided Exploration

In this section we present the exploration module, which adds the given field constraint
chain to the protocol-level exploration graph, selects a new path to be explored and
generates an input that will traverse that path. That input is used to start a new iteration
of the whole process by sending it to the program running in the execution monitor.
Once there are no more paths to explore or a user-specified time-limit is reached, the
exploration module stops the exploration and outputs the VPRP.

Our exploration is based on a protocol-level exploration graph, which makes it sig-
nificantly different from the traditional constraint-based exploration used in automatic
test case generation approaches [30, 31, 37]. Using a protocol-level exploration graph
provides two fundamental benefits: 1) the exploration space is significantly reduced, and
2) it becomes easy to merge paths, which in turn further reduces the exploration space,
and reduces the size of the vulnerability point reachability predicate. In this section,
we first introduce the protocol-level exploration graph, next we present our intuition
for merging paths, and then we describe the exploration process used to extract the
vulnerability point reachability predicate.

4.1 The Protocol-Level Exploration Graph

The explorer dynamically builds a protocol-level exploration graph as the exploration
progresses. In the graph, each node represents an input-dependant branching point (i.e.,
a conditional jump) in the execution, which comprises the protocol-level condition and
some additional information about the state of the program when the branching point
was reached, which we explain in Section 4.2. Each node can have two edges repre-
senting the branch taken if the node’s condition evaluated to true (T) or false (F). We
call the node where the edge originates the source node and the node where the edge
terminates the destination node. If a node has an open edge (i.e, one edge is missing),
it means that the corresponding branch has not yet been explored.

4.2 Merging Execution Paths

When a new field constraint chain is added to the protocol-level exploration graph, it is
important to merge all conditions in the field constraint chain that are already present
in the graph. Failure to merge a condition creates a duplicate node, which in turn effec-
tively doubles the exploration space because all the subtree hanging from the replicated
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node would need to be explored as well. Thus, as the number of duplicated nodes in-
creases, the exploration space increases exponentially.

The key intuition behind why merging is necessary is that it is common for new
paths generated by taking a different branch at one node, to quickly merge back into
the original path. This happens because programs may fork execution at one condition
for one processing task, and then merge back to perform another task. One task could
be a validation check on the input data. Each independent check may generate one or
multiple new paths (e.g., looking for a substring in the URI generates many paths), but if
the check is passed then the program moves on to the next task (e.g., another validation
check), which usually merges the execution back into the original path. For example,
when parsing a message the program needs to determine if the message is valid or not.
Thus, it will perform a series of independent validity checks to verify the values of the
different fields in the message. As long as checks are passed, the program still considers
the message to be valid and the execution will merge back into the original path. But, if
a check fails then the program will move into a very different path, for example sending
an error message.

The intuition on the merging is that two nodes can be merged if they represent the
same program point and they are reached with the same program state. To identify
the program point, each condition in the field constraint chain is annotated with the
program’s instruction counter (eip) and an MD5 hash of the callstack, both taken at
the time the condition was executed. To identify the program state we use a technique
similar to the one introduced in [38] where we compute the set of all values (both
concrete and symbolic) written by the program during the execution up to the point
where the condition is executed. Thus, we merge nodes that satisfy 4 conditions: same
eip, same callstack hash, equivalent conditions, and same program state, where Elcano
queries the decision procedure to determine if two conditions are equivalent.

4.3 The Exploration Process

Figure 4 shows the architecture of the exploration module. It is comprised of three
components: the explorer, the prioritization engine, and the input generator, plus an off-
the-shelf decision procedure. The exploration process is comprised of 3 steps: (1) given
the field constraint chain, the explorer adds it to the current protocol-level exploration
graph producing an updated graph; (2) given the updated protocol-level exploration
graph, the prioritization engine decides which node’s open edge to explore next; (3) for

Explorer
Input 

Generator

Branch 
reachability 
predicate New Input

Prioritization 
Engine

Protocol -level 
exploration graph

Node

Field constraint 
chain

Decision 
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Message 
format

Fig. 4. Exploration module architecture. The darker color module is given, while the lighter color
components have been designed and implemented in this work.



Towards Generating High Coverage Vulnerability-Based Signatures 173

T

T

strcmp (
METHOD ,

"GET ") == 0

URI[0] != /

Start

VP

A

B

C

strncmp (URI,"/
cgi-bin/",9) == 0

T

T

Start

A

Exit

F

D

T

VP

F

CA

T

B

C

T

strcmp (
METHOD ,
"HEAD") 

== 0

T

Start

A

Exit

F

D

T

VP

F

E

T

B

C

T

F

F

E

F

E

F

T

T

F

F

T

T

strcmp (
VERSION ,

"HTTP /0.9") 
== 0

strcmp (
VERSION ,

"HTTP /1.0") 
== 0

F

T

Start

VP

A

B

C

T

B

D

T

T

Start

A
F

D

T

VP

T

B

C

T

D

Fig. 5. Building the protocol-level exploration graph for our running example

the selected node’s open edge, the input generator generates a new input that will lead
the program execution to reach that node and follow the selected open edge.

The new input is then used to start another iteration of the whole process as shown
in Figure 2, that is, the new input is replayed to the program running in the execution
monitor and a new field constraint chain is generated by the constraint extractor, which
is passed to the explorer and so on. The prioritization engine is in charge of stopping
the whole process once there are no more paths to explore or a user-specified time-limit
is reached. When the exploration stops, the explorer outputs the VPRP.

Next, we detail the 3 steps in the exploration process and how to extract the VPRP.
We illustrate the different steps using Figure 5 which represents the graph for our run-
ning example. Note that, the A–F node labels are not really part of the protocol-level
exploration graph but we add them here to make it easier to refer to the nodes.

Adding the new path to the exploration graph. To insert a new field constraint chain
into the protocol-level exploration graph, the explorer starts merging from the top until
it finds a node that it cannot merge, either because it is not in the graph yet, or because
the successor in the new field constraint chain is not the same one as in the graph. To
check if the node is already in the graph, the explorer checks if the node to be inserted
is equivalent (same EIP, same callstack hash, equivalent condition, and same state) to
any other node already in the graph. We call the last node that can be merged from the
top the split node.

Once a split node has been identified the explorer keeps trying to merge the rest of
the nodes in the new field constraint chain until it finds a node that it can merge, which
we term the join node. At that point, the explorer adds all the nodes in the new field
constraint chain between the split node and the join node as a sequence of nodes in
the graph hanging from the split node and merging at the join node. The process of
looking for a split node and then for a join node is repeated until the sink of the new
field constraint chain is reached. At that point, if the explorer was looking for a join
node then all nodes between the last split node and the sink are added to the graph as a
sequence that hangs from the last split node and ends at the sink.

For example, in Figure 5A the graph contains only the original field constraint chain
generated by sending the starting exploit message to the program, which contains the
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three nodes introduced by lines 24, 26, and 29 in our running example (since the parsing
conditions have already been removed). The sink of the original field constraint chain
is the vulnerability point node (VP). Figure 5B shows the second field constraint chain
that is added to the graph, which was obtained by creating an input that traverses the
false branch of node A. When adding the field constraint chain in Figure 5B to the graph
in Figure 5A, the explorer merges node A and determines that A is a split node because
A’s successor in the new field constraint chain is not A’s successor in the graph. Then,
at node B the explorer finds a join node and adds node D between the split node and
the join node in the graph. Finally node C is merged and we show the updated graph in
Figure 5C.

Selecting the next node to explore. Even after removing the parsing conditions and
merging nodes, the number of paths to explore can still be large. Since we are only
interested in paths that reach the vulnerability point, we have implemented a simple
prioritization scheme that favours paths that are more likely to reach it. The prioriti-
zation engine uses a simple weight scheme, where there are three weights 0, 1, and 2.
Each weight has its own node queue and the prioritization engine always picks the first
node from the highest weight non-empty queue. The explorer assigns the weights to the
nodes when adding them to the graph. Nodes that represent loop exit conditions get a
zero weight (i.e., lowest priority). Nodes in a field constraint chain that has the VP as
sink get a weight of 2 (i.e., highest priority). All other nodes get a weight of 1. We favor
nodes that are in a path to the VP because if a new path does not quickly lead back to the
VP node, then the message probably failed the current check or went on to a different
task and thus it is less likely to reach VP later. We disfavor loop exit conditions to de-
lay unrolling the same loop multiple times. Such heuristic helps achieve high coverage
quickly.

Generating a new input for a new branch. We define a node reachability predicate
to be the predicate that summarizes how to reach a specific node in the protocol-level
exploration graph from the Start node, which includes all paths in the graph from the
Start to that node. Similarly, we define a branch reachability predicate to be the predi-
cate that summarizes how to traverse a specific branch of a node. A branch reachability
predicate is the conjunction of a node reachability predicate with the node’s condition
(to traverse the true branch), or the negation of the node’s condition (to traverse the false
branch). To compute a new input that traverses the specific branch selected by the pri-
oritization engine, the explorer first computes the branch reachability predicate. Then,
the input generator creates a new input that satisfies the branch reachability predicate.

To compute the branch reachability predicate, the explorer first computes the node
reachability predicate. The node reachability predicate is essentially the weakest
precondition (WP) [39] of the source node of the open edge over the protocol-level
exploration graph—by definition, the WP captures all paths in the protocol-level explo-
ration graph that reach the node. Then, the explorer computes the conjunction of the
WP with the node’s condition or with the negated condition depending on the selected
branch. Such conjunction is the branch reachability predicate, which is passed to the
input generator.
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Table 1. Vulnerable programs used in the evaluation

Program CVE Protocol Type Guest OS Vulnerability Type
gdi32.dll (v3159) CVE-2008-1087 EMF file Binary Windows XP Buffer overflow
gdi32.dll (v3099) CVE-2007-3034 WMF file Binary Windows XP Integer overflow
Windows DCOM RPC CVE-2003-0352 RPC Binary Windows XP Buffer overflow
GHttpd CVE-2002-1904 HTTP Text Red Hat 7.3 Buffer overflow
AtpHttpd CVE-2002-1816 HTTP Text Red Hat 7.3 Buffer overflow
Microsoft SQL Server CVE-2002-0649 Proprietary Binary Windows 2000 Buffer overflow

For example, in Figure 5C if the prioritization engine selects the false branch of node
D to be explored next, then the branch reachability predicate produced by the explorer
would be: A && D. Similarly, in Figure 5D if the prioritization engine selects the false
branch of node B to be explored next, then the branch reachability predicate produced
by the explorer would be: (A||(A && D)) && B.

The input generator generates a new input that satisfies the branch reachability pred-
icate using a 3-step process. First, it uses a decision procedure to generate field values
that satisfy the branch reachability predicate. If the decision procedure returns that no
input can reach that branch, then the branch is connected to the Unreachable node.
Second, it extracts the values for the remaining fields (not constrained by the decision
procedure) from the original exploit message. Third, it checks the message format pro-
vided by the parser to identify any fields that need to be updated given the dependencies
on the modified values (such as length or checksum fields). Using all the collected field
values it generates a new input and passes it to the replay tool. We refer the reader to
our extended version [36] for our handling of field conditions that depend on a memory
read from a symbolic address.

Extracting the vulnerability point reachability predicate. Once the exploration ends,
the protocol-level exploration graph contains all the discovered paths leading to the
vulnerability point. To extract the VPRP from the graph the explorer computes the
node reachability predicate for the VP node. For our running example, represented in
Figure 5E the VPRP is: (A||(A && D)) && C. Note that, a mere disjunction
of all paths to the VP, would generate the following VPRP: (A && B && C)||(A
&& D && B && C)||(A && B && C)||(A && D && B && C). Thus,
Elcano’s VPRP is more compact using 4 conditions instead of 14.

5 Evaluation

In this section, we present the results of our evaluation. We first present the experiment
setup, then the constraint extractor results and finally the exploration results.

Experiment setup. We evaluate Elcano using 6 vulnerable programs, summarized in
Table 1. The table shows the program, the CVE identifier for the vulnerability [21],
the protocol used by the vulnerable program, the protocol type (i.e., binary or text), the
guest operating system used to run the vulnerable program, and the type of vulnerability.
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Table 2. Constraint extractor results for the
first test, including the number of condi-
tions in the protocol-level path-predicate
and the number of remaining conditions af-
ter parsing conditions have been removed

Program Original Non-parsing
conditions

Gdi-emf 860 65
Gdi-wmf 4 4
DCOM RPC 535 521
GHttpd 2498 5
AtpHttpd 6034 10
SQL Server 2447 7

Table 3. Exploration results, including
whether all open edges in the protocol-level
exploration graph were explored and the
number of conditions remaining in the vul-
nerability point reachability predicate

Program All branches
explored VPRP

Gdi-emf no 72
Gdi-wmf yes 5
DCOM RPC no 1651
GHttpd yes 3
AtpHttpd yes 10
SQL Server yes 3

We select the vulnerabilities to cover file formats as well as network protocols, multi-
ple operating systems, multiple vulnerability types, and both open-source and closed
programs, where no source code is available. In addition, the older vulnerabilities (i.e.,
last four) are also selected because they have been analyzed in previous work, and this
allows us to compare our system’s results to previous ones.

5.1 Constraint Extractor Results

In this section we evaluate the effectiveness of the constraint extractor, in particular of
the field condition generalizer, at removing the parsing conditions from the protocol-
level path-predicate. For simplicity, we only show the results for the protocol-level path-
predicate produced by the field condition generator from the execution trace generated
by the original exploit. Note that, during exploration this process is repeated once per
newly generated input. Table 2 summarizes the results. The Original column represents
the number of input-dependent conditions in the protocol-level path-predicate and is
used as the base for comparison. The Non-parsing conditions column shows the number
of remaining conditions after removing the parsing conditions.

The removal of the parsing conditions is very successful in all experiments. Over-
all, in the four vulnerable programs that include variable-length strings (i.e., excluding
Gdi-wmf and DCOM-RPC), the parsing conditions account for 92.4% to 99.8% of all
conditions. For formats that include arrays, such as DCOM RPC, the number of pars-
ing conditions is much smaller but it is important to remove such conditions because
otherwise they constrain the array to have the same number of elements as in the ex-
ploit message. By removing the parsing conditions, each field constraint chain repre-
sents many program execution paths produced by modifying the format of the exploit
message (e.g., extending variable-length fields or reordering fields). This dramatically
decreases the exploration space making the constraint-guided exploration feasible.

5.2 Exploration Results

Table 3 shows the results for the exploration phase. We set a user-defined time-limit of
6 hours for the exploration. If the exploration has not completed by that time Elcano
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Table 4. Performance evaluation. The genera-
tion time and the average test time are given
in seconds, and the trace size is given in
Megabytes

Gener. Ave. test Trace
Program time # tests time size
Gdi-emf 21600 502 43.0 28.8
Gdi-wmf 98 6 16.3 3.0
DCOM RPC 21600 235 92.0 3.5
GHttpd 55 6 9.1 3.0
AtpHttpd 282 12 23.5 8.6
SQL Server 1384 11 125.8 27.5

Table 5. On the left, the format of the Gdi-
wmf exploit file. On the right the vulnerabil-
ity point reachability predicate.
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outputs the intermediate VPRP and stores the current state of the exploration. This
state can later be loaded to continue the exploration at the same point where it was
interrupted. The first column indicates whether the exploration completes before the
specified time-limit. The second column presents the number of conditions in the inter-
mediate VPRP that is output by the exploration module once there are no more paths to
be explored or the time-limit is reached.

The results show that in 4 out of 6 experiments Elcano explored all possible paths,
thus generating a complete VPRP. For the DCOM RPC and Gdi-emf experiments, the 6
hour time-limit was reached, thus the VPRPs are not complete. They also show that the
number of conditions in the VPRP is in most cases small. The small number of condi-
tions in the VPRP and the fact that in many cases those conditions are small themselves,
makes the signatures easy for humans to analyze, as opposed to previous constraint-
based approaches where the large number of conditions in the signature made it hard
to gain insight on the quality of the signature. We do that by labeling the nodes in the
graph with the full protocol-level conditions.

Performance. Table 4 summarizes the performance measurements for Elcano. All mea-
surements were taken on a desktop computer with a 2.4GHz Intel Core2 Duo CPU and
4 GB of memory. The first column presents the VPRP generation time in seconds. For
the Gdi-emf and DCOM RPC examples, the 6 hour time-limit on generation time is
reached. For the rest, the generation time ranges from under one minute for the GHttpd
vulnerability up to 23 minutes for the Microsoft SQL vulnerability. Most of the time
(between 60% and 80% depending on the example) is spent by the constraint extractor.
Thus, we plan to parallelize the exploration by having a central explorer, which spawns
multiple copies of the constraint extractor and the execution monitor, each testing a
different input and reporting back to the explorer. The remaining columns show the
number of tests in the exploration, the average time per test in seconds, and the average
size in Megabytes of the execution trace.
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Compared to Bouncer, where the authors also analyze the SQL Server and GHttpd
vulnerabilities, the signatures produced by Elcano have higher coverage (i.e., less false
negatives) and are smaller. For example, Bouncer spends 4.7 hours to generate a signature
for the SQL Server vulnerability, and the generated signature only covers a fraction of
all the paths to the vulnerability point. In contrast, Elcano spends only 23 minutes, and
the generated signature covers all input-dependnt branches to the vulnerability point.
Similarly, for the GHttpd vulnerability the authors stop the signature generation after
24 hours, and again the signature only covers a fraction of all input-dependent branches
to the vulnerability point, while Elcano generates a complete signature that covers all
input-dependent branches to the vulnerability point in under one minute.

SQL server. The parser returns that there are two fields in the exploit message: the Com-
mand (CMD) and the Database name (DB). The original protocol-level path-predicate re-
turned by the constraint extractor contains 7 conditions: 4 on the CMD field and the other
3 on the DB field. The exploration explores the open edges of those 7 nodes and finds that
none of the newly generated inputs reaches the vulnerability point. Thus, no new paths are
added to the graph and the VPRP is: (FIELD CMD==4)&& (strcmp(FIELD DB,””) �=0)&&
(strcasecmp(FIELD DB,”MSSQLServer”) �=0).

Note that, the vulnerability condition for this vulnerability states that the length of
the DB field needs to be larger than 64 bytes. Thus, the last two conditions in the VPRP
are redundant and the final protocol-level signature would be: (FIELD CMD == 4) &&

length(FIELD DB) > 64 . According to the ShieldGen authors, who had access to
the source code, this signature would be optimal.

Gdi-wmf. Figure 5 shows on the left the field structure for the exploit file and on
the right the VPRP. The original protocol-level path-predicate contained the 4 aligned
nodes on the left of the graph, while the exploration discovers one new path leading to
the vulnerability point that introduces the node on the right. The graph shows that the
program checks whether the Version field is 0x300 (Windows 3.0) or 0x100 (Win-
dows 1.0). Such constraint is unlikely to be detected by probing approaches, since they
usually sample only a few values. In fact, in ShieldGen they analyze a different vulner-
ability in the same library but run across the same constraint. The authors acknowledge
that they miss the second condition of the disjunction. Thus, an attacker could easily
avoid detection by changing the value of the Version field. Since we have no access to
the source we cannot verify if our VPRP is optimal, though we believe it to be.

Other experiments. Due to space constraints we refer the reader to our extended ver-
sion [36] for details on the Atphttpd, GHttpd and DCOM RPC examples. For the Atphttpd
and GHttpd vulnerabilities, where we have access to the source code, the extended ver-
sion contains the optimal signatures that we manually extracted for the vulnerability. The
results show that Elcano’s VPRPs exactly match or are very close to the optimal ones that
we manually extracted from the source code.

6 Conclusion

In this paper we propose protocol-level constraint-guided exploration, a novel approach
to automatically generate high coverage, yet compact, vulnerability point reachability
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predicates, with application to signature generation, exploit generation and patch veri-
fication. Our experimental results demonstrate that our approach is effective, generates
small vulnerability point reachability predicates with high coverage (optimal or close
to optimal in cases), and offers significant improvements over previous approaches.
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Abstract. This paper addresses the fingerprinting of devices that speak
a common, yet unknown to the fingerprinting engine, protocol. We con-
sider a behavioral approach, where the fingerprinting of an unknown
protocol is based on detecting and exploiting differences in the observed
behavior from two or more devices. Our approach assumes zero knowl-
edge about the syntax and state machine underlying the protocol. The
main contribution of this paper consists in a two phased method. The
first phase identifies the different message types using an unsupervised
support vector clustering algorithm. The second phase is leveraging re-
cent advances in tree support kernel in order to learn and differentiate
different implementations of that protocol. The key idea is to represent
behavior in terms of trees and learn the distinctive subtrees that are
specific to one particular device. Our solution is passive and does not
assume active and stimulus triggered behavior templates. We instanti-
ate our solution to the particular case of a VoIP specific protocol (SIP)
and validate it using extensive data sets collected on a large size VoIP
testbed.

1 Introduction

Over the past few years, there has been an increased effort in the research com-
munity towards the automated analysis and reverse engineering of network pro-
tocols. The driving forces are multiple and range from practical needs to analyze
network traffic generated by malware where the most notorious case is the Storm
bot and up to the development of open source implementation for poorly doc-
umented protocols, as it was the case of the SMB protocol [1] for example. A
related problem is the automated and passive fingerprinting of devices using
an unknown protocol. While some research efforts in this direction have been
recently made in [2] in order to learn the syntax and grammar that generated
the protocol messages, to our knowledge, none until now has addressed the au-
tomated learning of the specific behavior of a protocol in order to fingerprint
a device or a protocol stack. [3] and [4] are close and complementary works as
they aim to learn an unknown protocol to automatically respond to requests.
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The research challenges that we face are related to learning the relevant protocol
operations/primitives and modeling the protocol message sequences such that
automated learning is possible. If packet captures from an unknown protocol are
given, we aim first to automatically discover the unknown types of messages. We
assume furthermore that no learning set with labeled protocol messages exists,
that no encryption is used and that no reverse engineering of the application
using such a protocol is possible. We also assume that the number of different
message types is a-priori unknown.

Reverse engineering of network protocols is clearly related to the security
problem since understanding the protocols is a necessary step for detecting pro-
tocol misuse. In addition, fingerprinting is a useful task in the security domain.
For an attacker, fingeprinting is a prior work for performing efficient attacks. For
a network administrator, it is a tool for security assessment and testing.

The two contributions presented in this paper are:

– the automated analysis of protocols with respect to the types of messages
exchanged based on unsupervised learning methods. For instance, if we con-
sider a stripped-off ICMP version, an ICMP echo request message has to
be answered by an ICMP echo reply message; assuming that a collection of
captured messages is available, our approach should automatically discover
that several types of messages exist (ICMP echo request and ICMP echo
reply). Thus, our technique can be used as an essential preprocessing phase
to the automated learning of the protocol related state machine;

– the learning of the device/stack specific behavior that results from recon-
structing/reverse engineering a state machine for a device under test. In
the previous example of ICMP for instance, it may be possible to detect a
specific device by peculiar behavior related features. Although ICMP is a
simple protocol, a large and comprehensive research work [5] (using mostly
manual and tedious tests) showed that reliable fingerprinting is possible. We
address a new and automated research direction that leverages support vec-
tor machines and tree kernels for learning structural behavior features of the
underlying protocol.

The paper is structured as follows: related work is analyzed in the next section;
the SIP protocol that we use as the first application case is described in the third
section; the different metrics to classify the messages are presented in section 4.
Message types identification methods and results are described in section 5.
Section 6 focuses on the behavioral fingerprinting. Finally, the last section con-
cludes the paper and sketches future research directions.

2 Related Works

Automatically recognizing the different messages of a protocol without prior
knowledge is a challenging task. This is one part of the reverse protocol engi-
neering goals which also aims to clearly infer the syntax and grammar of messages
i.e., the different fields. Historically, the first technique available was hand-based
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analysis of dump files provided by packet sniffing software like tcpdump [6]. Ob-
viously, this technique is tedious, limited and very time consuming. Therefore,
new methods appeared. The Protocol Informatics project [7] proposes a solution
which uses well known bioinformatics algorithms and techniques based on se-
quence alignment. Given a set of messages protocols, the program tries to deter-
mine both constant and variable fields. Several approaches consider the context
semantics i.e., the target computer behavior itself: [2] looks for extracted bytes
in the message to rebuild the different fields; [8] is based on the execution trace
i.e., system calls; [9] proposes a dynamic binary analysis to identify separators
and keywords; [10] introduces a semi-supervised learning method to determine
the message fields. Closer to our goal, an approach to cluster the messages cap-
tured on the network by types before trying to infer their format is proposed
in [11]. To achieve this clustering, the authors propose to tokenize each message
i.e., to find the different fields by considering that each binary bytes is a binary
token and that each text sequence between two binary bytes is a field. The tech-
nique proposed in [12] is also based on identifying the different fields thanks to
a delimiter. This is done by instrumenting the protocol application by studying
how the program parses the messages. [13] focuses more on the state machine
construction of multiple flows protocol. Application dialog replay is a very close
domain since its goal is to construct a valid replay dialog by identifying the
contents which need to be modified thanks to sequence alignment techniques [3]
or by building a model from application inputs and outputs [14]. ScriptGen [4]
is another approach which is able to construct the partial state-machine of a
protocol based on network traces in order to automatically generate responses
to attacker requests sent to a honeypot. Network and service fingerprinting is a
common task is security assessment, penetration testing and intrusion detection.
The key assumption is that subtle differences due to development choices and/or
incomplete specification can trace back the specific device/protocol stack [15].
There are excellent tools that implement such schemes: p0f [16] uses TCP/IP
fields to passively identify the signature of a TCP/IP stack, while nmap [17] does
actively follow a stimulus-response test in order to detect the operating system
and service versioning of a remote device. [18] aims to construct automatically
the fingerprints by active probing. The research community has addressed the
fingerprinting of SIP devices [19,20] by automatically constructing message spe-
cific fingerprints. In [21] and [22], the goal is a little bit different because the
authors aim to correctly identify the flow types i.e., the protocols used. In a pre-
vious contribution [23], we have addressed a syntax driven fingerprinting, where
parse trees of captured messages were used to learn distinctive features capable
to perform fingerprinting. In that study, we assumed that BNF [24] specifications
are available and that individual messages can be used to infer vendor/stack spe-
cific implementation characteristics. This is different from the current approach
where no a-priori knowledge of the syntax is assumed. Secondly, we did not con-
sider until now the behavioral aspects for the fingerprinting task. In this paper
we do consider the latter and we leverage differences in induced state machines
in order to perform fingerprinting.
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3 Session Initiation Protocol (SIP)

SIP [25] is the de-facto signalisation protocol for the management of VoIP com-
munications. Its main features are related to the establishment, tear-down and
negotiation of VoIP sessions and it comprises a rich set of protocol primitives
and options as well as a complex underlying state machine. We consider SIP
to illustrate our approach for several reasons. Firstly, the number of operations
is relatively important (more than 10). Secondly, due to its design, a clear de-
limitation of transport level information and network level information does
not exist, thus making the automated analysis difficult. Thirdly, the distribu-
tion of individual message types is quite unbalanced: some message types ap-
pear very rarely such that small sided and under-represented classes have to
be dealt with. Although a complete overview of SIP is beyond the scope of
this paper, a short introduction is given below. SIP messages are divided into
two categories: requests and responses. Each request begins with one of the fol-
lowing keywords: REGISTER, OPTIONS, INVITE,UPDATE, CANCEL, ACK, BYE,
SUBSCRIBE, NOTIFY, PRACK, PUBLISH, INFO, REFER, MESSAGE. The SIP re-
sponses begin with a numerical code of 3 digits divided into 6 classes identified
by the first digit.

A SIP transaction is illustrated in the figure 1. It is an usual example when
user1@domain1.com wants to call user2@domain2.com. So user1 initiates the
connection by sending an INVITE request. First, the callee user2 informs that
it receives the request and will try to achieve its by the Trying message. The
Ringing message means that the user is alerted of the incoming call. When user2
decides to accept the call, the OK response is sent. The caller acknowledges
this one and the media session over RTP (Realtime Transport Protocol) [26]
is established. Finally, user2 hangs the phone, a BYE message is sent and the
other party send an OK response to accept the ending of the session. Obviously,
many details are omitted like the negotiation of parameters.

We have built a dataset of 1580 SIP messages, generated using several phones
coming from different manufacturers. In our traces we minded 27 different kinds

Fig. 1. SIP transaction example
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of message which are the most important and used in VoIP networks. Their
empirical distribution is illustrated in figure 2.

Regarding SIP as a target protocol, we would like to be able to automatically
identify the 27 types of messages and automatically build tools that can identify
abnormal sequences which are not compliant with the protocol, but can be linked
to a specific SIP stack and/or vendor. We had to use a known protocol (SIP)
in order to be able to assess the accuracy and precision of our approach but
it can be generalized towards any protocol. One of the key components is the
differentiation among several method types with appropriate metrics.

4 Metrics and Distances for Protocol Messages

Character distribution. The character distribution d of a message is based on
the statistical distribution of its characters. Intuitively, if two messages ma and
mb are of the same type, their distributions should be similar. The natural and
logical measure is the symmetric relative entropy or Kullback-Leibler divergence:

char dist(ma, mb) =
∑

i

d(ma)ilog(
d(ma)i

d(mb)i
) +

∑
i

d(mb)ilog(
d(mb)i

d(ma)i
) (1)

where i represents all possible characters.

Relative character distribution. An alternative character distribution can be
constructed to capture the relative character distribution of the message m:
rel char dist. It is based on the distribution of characters but can deal with
simple enciphering schemes like for example the per character XOR encryption.
It uses an ordered distribution [27] of the character frequencies. Thanks to this
metric we have:

rel char dist(m⊕ k) = rel char dist(m)∀ key k (2)
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Character position. A third metric that can be associated to each message is
the character position. Basically, each message of a protocol has different fields
and each message of the same type usually has common field filled with similar
content. Therefore, the character at a certain position is often the same for a cer-
tain type of message. This metric char pos(m) determines the average position
of each character of the message m:

char pos(m)(c) =
∑i=k

i=1 pos(ai)
k

(3)

where i is the index of the character c with k occurrences in the message and
pos() the function returning the position of the index of a given character.

Weighted character position. Most protocol messages are formed by a header
containing the type of the message followed by options, arguments and an addi-
tional payload. This comes from good and established protocol design patterns.
The weighted char pos(m) balances more the first characters:

∀ character c occurring k times, p2(m)(c) =
∑i=k

i=1 pos(ai)−1

k
(4)

The key assumption is that messages of the same types should start with similar
headers even if the message contents are totally different.

5 Automated Protocol Clustering

Using the previously defined metrics, we derive an unsupervised clustering
method that combines two clustering methods in order to determine the number
of different messages types. The first technique is a new method relying on unsu-
pervised support vector clustering [28]. The second method is based on the well
known agglomerative nearest neighbor method [29]. This last technique consid-
ers each data point as an individual cluster. The two clusters with the smallest
inter-distance are merged into one. Then, this step is repeated until the smallest
inter-distance is higher than a threshold t.

5.1 Support Vector Clustering

The support vector clustering (SVC) technique has been introduced in [28] and
leverages machine learning paradigms based on support vector machines (SVM)
[30] techniques. Such techniques show good accuracy with a limited overhead in
different domains [31]. The initial data points 3(a) are mapped from the input
space to a high dimensional space using a non linear transformation 3(b). The
goal is to find the smallest sphere which contains all the points in the high
dimensional space 3(c). This sphere is mapped back to the original input space
and forms a set of countours which are considered as the cluster boundaries 3(d).
The final step determines the cluster of each point by checking which boundaries
contain it.
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Fig. 3. SVC example

Consider Φ, a nonlinear transformation and {xi} the set of N points in the
original d-dimensional input space. The training phase consists of finding the
smallest hyper-sphere containing all the transformed points i.e., {Φ(xi)} which
is characterized by its radius R and its center a. Therefore we have:

‖Φ(xi)− a‖2 ≤ R2 ∀i (5)

The original problem is casted into the Lagrangian form by introducing the
lagrangian multipliers (βi and μi) and the penalty term (C

∑
i ξi):

L = R2 −
∑

i

(R2 + ξi − ‖Φ(xi)− a‖2)βi −
∑

i

ξiμi + C
∑

i

ξi (6)

In fact, the ξ terms are slack variables allowing some classification errors. Then,
the problem is turned into its Wolfe dual form and the variables a and R are
eliminated due to Lagrangian constraints.:

W =
∑

i

Φ(xi)2βi −
∑
i,j

βiβjK(xi, xj) (7)

where K(xi, xj) is typically defined by a Gaussian Kernel:

K(xi, xj) = e−q‖xi−xj‖2
(8)

where q is another parameter named Gaussian width.
Next, a labeling step has to determine the points that belong to the same

clusters by a geometric approach. In fact, two points are considered of the same
clusters if all the points on the segment between them in the original space are
in the hypersphere in the high dimensional feature space.

5.2 Global Method

Even if SVC enables the discovery of intertwined clusters, the accuracy can be
limited when a single shape comprises different clusters. The figure 4 shows such
a case, where in figure 4(a), the SVC method is able to isolate two large clus-
ters but none the single ones which composes the largest one. These constructed
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algorithm

Fig. 4. Global Method
Fig. 5. Limitation of nearest
neighbors clustering

clusters can be furthermore split by an additional nearest neighbors technique
for each of them. Hence, this second step is necessary. Obviously, it depends also
on the data to classify and our experiments in the next sections show the ben-
efits of the combination of these two methods. Furthermore, several multi-pass
clustering methods exist and are introduced in [32]. Complex clusters bound-
aries are discovered by the SVC technique. By applying the nearest neighbors
technique, the result shown in figure 4(b) can be obtained. However, applying
only the nearest neighbors technique will entail a bad classification as illustrated
in figure 5. Therefore, we propose a global method which consists in two steps:

– a first clustering using SVC
– a second cluster splitting using nearest neighbors technique

5.3 Evaluation Metrics

We consider several metrics in order to assess the quality of the clustering method
Consider n messages to be classified, m1 . . .mn, divided into r types and k
clusters found: c1 . . . ck with k ≤ n. At the end of the classification, a label is
assigned to each cluster which is the predominant type of the messages within.
However, only one cluster per type, the largest one, is allowed. If c(mi) represents
the cluster containing mi then t(mi) is the real type of the message mi and t(ci)
is the type assigned to the cluster (ci).

The first metric is the classification rate cr and represents the ratio of messages
which are classified in the right clusters:

cr =

∑
i|t(mi)=t(c(mi)) 1

n
(9)

The second metric is the proportion of different message types which were dis-
covered:

cf =
r

k
(10)

The latter is a rather important metric because performing a good classification
rate can be easy by discovering the main types and ignoring unusual ones. In our
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dataset for instance, having a classification rate close to 100% can be obtained
without discovering small clusters like 603, 480, 486, 487 as shown in figure 2.
Some of these classes have only one recognized message. The classification rate
can also be computed for each type y:

crtype(y) =

∑
i|t(mi)=y xi∑
i|t(mi)=y 1

where xi = 1 if t(mi) = t(c(mi)) else 0 (11)

In practice we will consider the average value and the standard deviation by
computing this metric for all possible kinds. Therefore, the classification accuracy
has to be discussed regarding these different metrics. Because, several figures
relate to the accuracy, a common key will be used and will be displayed only
in figure 6(a). We analyze the composition of the different clusters with two
metrics. The first one is the percentage of good classified messages which are
contained in the considered cluster type. The second one is the percentage of
messages of this type which are not present in the cluster.

5.4 Nearest Neighbors Technique Results

We consider the first metric to be the relative character distribution. The results
are presented on figure 6 where the parameter t varies. This parameter is the max-
imal distance authorized between two points. The best tradeoff between the clas-
sification rate and the number of clusters found is obtained for t = 0.005 on the
figure 6(a). In this case, about 40% of messages are classified correctly and 60%
of the types are found. This shows that for 40% of types the average classifica-
tion rate is 0% and the standard deviation of the classification rate per type is
relatively high. The third bar represents the average classification rate per type
which is close to the global classification. The composition of the clusters is in-
teresting since they are similar (see figure 6(b)). In fact, there is no type which is
totally well classified. So each cluster contains a relatively high proportion of mis-
classified messages. t is the main parameter of the nearest neighbors algorithm and
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does have a high impact on the accuracy (see figure 6(a)). When t increases, less
clusters are found because the maximum distance between two points of a cluster
is increased and so the cluster sizes are larger. Hence, when t increases, the clus-
ters are merged. The classification rate variation is less obvious: when t increases,
it begins by increasing and followed by a decrease. The reason is correlated to the
number of clusters. With a small t, the cluster sizes are small too leading messages
of the same types to be split into multiple clusters. This entails a bad classification
rate because only the biggest one is considered for each kind. When t increases,
the clusters are merged, especially many clusters of the same kind. Then, clusters
of different types can be grouped into one and in this case all messages of one type
are missclassified in the new cluster which decreases the classification rate.

The next experiment is based on the character distribution which captures
the information in the characters. To limit the effect of the zero values, the
results using the smoothing distribution is presented on the figure 7. We checked
with other experiments that the smoothing technique has a low impact on the
classification rate but allows to discover easily more kinds of message. Comparing
the relative character distribution results, they are not significantly improved
except for the number of clusters found: about 90% with a classification rate
of about 40% (t = 0.05). The number of found clusters is better with the same
classification rate. This is confirmed by the increase of the average classification
rate per type. This means that some small clusters are found too. Moreover, the
associated standard deviation is reduced for the same reason.

The character position metric is accounting for that the first characters in a
message are most probably relevant for the message identification. For instance,
the INVITE message has two “I” in the first 7 bytes, and thus a good character-
istic of this message is that this letter is more present at the beginning. However,
an INVITE message contains basically a long payload formed with uri, param-
eters and so on. It may also contain “I” because its length is much higher than
the INVITE keyword. The weighted character position metric gives more impor-
tance to first characters. The results plotted in figure 8(a) are very good as it
is possible to find all the different kinds of message with a global and per type
classification rate close to 85%. The details of the classification are illustrated
in figure 8(b). In fact, the misclassified messages are shared out within several
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Fig. 8. Weighted characters position results

clusters which entails a small standard deviation for the classification rate per
type on figure 8(b). So, increasing the accuracy has not to focus on single or few
types of messages only.

5.5 SVC Technique Results

We applied the SVC method with different values for the Gaussian width q and
the penalty factor C. The weighted character position metric is used because it is
the best to differentiate the messages. As it is shown in the figure 9(a), the best
possible accuracy is 0.73 for the classified messages with all types of messages
found. This result is good but slightly lower than the nearest neighbors technique
on figure 8 (85% of good classification). This is mainly due to a poor discovery of
the smallest clusters because the standard deviation of the specific classification
rate per type is higher. When the Gaussian width q increases between 0.1 and 1,
the difference between the packets is emphasized in the high dimensional feature
space. Hence, the messages clusters are more split and the accuracy is improved.
However, when q is too high, the number of clusters continues to increase with
redundant types. The number of found clusters is then still good but due to
many redundant cluster types, the classification rate drops.

The cluster composition is interesting. In this case, the best accuracy provides
clusters similar to the previous obtained in the figure 8 where all kinds of clusters
are represented with a little proportion of missclassified messages inside each
one. However, if we consider the case of C = 0.04 and q = 0.1 in figure 9(b)
with a lower accuracy, the clusters are totally different, all types are not found
but for most of them, all messages are totally discovered. It means that these
clusters represented by black bars contain also messages of other types because
the latter ones are not classified in their own clusters -represented by stripes bar
(unclassified). We apply the nearest neighbors technique on each cluster to split
them. By looking for the best t value, we found t = 1.1 which allows to classify
91% of the messages and to discover 96% of the types of the message.
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Fig. 10. SVC - SMTP dataset Fig. 11. Nearest neighbors clustering

5.6 Other Protocols

We have applied also our method to other protocols. We considered only the
weighted character position metric because it provided the best results in the
previous section. Two well known protocols were tested: SMTP [33] (150 packets
and 10 types) and IMAP [34] (289 packets and 24 types). To ease the compari-
son of results, a classical standardization of the data is done. When the nearest
neighbors technique is applied, the classification rates are similar for these proto-
cols -as shown in figure 11 - and less than 50% of the messages are well identified.
The number of clusters found is better for SMTP. Moreover, using standardized
data helps to choose the parameter t in order to obtain the best classification
rate. Then t = 20 seems to be a good value to apply the nearest neighbors
method with the standardized weighted character position metric.

The SVC method instantiated with the IMAP does not improve the clustering
accuracy since in the best case, only 36% of the messages are well classified. Hence,
doing the second step with nearest neighbors technique is necessary and allows to
obtain 49% of good classification. This is slightly better than the nearest neighbors
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technique as it was 47% on the figure 11. Obviously, this difference is very low
but the number of different types found increases from 62% to 96% with SVC.
Therefore, even if the combined method doesn’t improve the classification rate, it
is able to keep the classification rate stable and at the same time discovering more
message types. The figure 10 shows the accuracy of SVC for the SMTP traffic.
Since the nearest neighbors technique was able to find most of the types in figure
11, SVC can also find them. Moreover, the classification rate is greatly improved:
72% of messages are correctly identified and 80% of kinds are found. By applying
the nearest neighbors technique on the obtained clusters, the results are very close
because only one additional type is identified with one packet. Hence, the number
of discovered types is 90%. The standard deviation of the classification rate per
type is quite high (0.39) principally due to one type totally ignored in both cases.

5.7 Semi Automated Parameters Identification

The assessing of the classification results for a known protocol is easy. The same
is much more difficult with unknown because no reference exists. The first con-
clusion of our study is that the standardized weighted character position metric is
the most suitable. For SVC technique, there are two parameters: C and q. In our
experiments C has not a great impact as it is highlighted in figure 10. This value
is constrained by the SVC technique itself and we have β initi < C < 1 where
β initi are initial values of βi in the Wolfe dual form. These values can be ran-
domly selected since their impacts is only limited to the computation time. Their
sum has to be one and we can choose β initi = β = 1/#number of data points.
In our case, the number of data points is the number of packets in the dataset.
We can consider a minimal dataset size of 100 and so C = 0.2 or C = 0.3
are suitable. The parameter q is the Gaussian width and has a real impact on
the classification. The aim of the SVC clustering is to obtain large clusters re-
grouping several types within in. Then, the width of a classification instance is
the width of the largest cluster. The width of a cluster is the maximal distance
(depending on the metric used) between two points within it. For small values
of q, all data points are regrouped into the same cluster and when it increases,
they are split. Therefore, when the big clusters will be divided into several ones,
if the width is about the same, there will be still a big cluster remaining. If
the width is different, the cluster has been really divided into several important
ones. In the same time, the number of clusters has to increase more during this
step. Considering p values of q: q1, q2, . . . , qp, the associated number of clusters
(#c(q1), . . . , #c(qp)) and the classification width (w(q1), . . . , w(qp)). To observe
the evolutions of these values, we define the following metrics where the division
are required to have a value between 0 and 1:

evol c(qi) =
|#c(qi)−#c(qi−1)|

maxi(#c(qi))
if i > 1 else 0 (12)

evol w(qi) =
|w(qi)− w(qi−1)|

maxi(w(qi))
if i > 1 else 0 (13)
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Fig. 12. SVC Gaussian width q selection (IMAP)

These are plotted in the figure 12 for the IMAP protocol. Several peaks of
evol w(q) exist, but the last one for q = 8.5 can be easily discarded because
the number of clusters decreases in the same time. The second one is interest-
ing since it represents the value selected by hand (q = 5.5) and the clusters
number increases in the same time. This semi automated technique is able to
find a good parameter. Finally, the first peak (q = 2) is not so high but it con-
cerns simultaneously both metrics. By testing this value, the classification rate is
slightly improved by reaching 50%. With others protocols, this approach is able
to identify the same optimal parameters which were found by manual testing.
Identifying optimal parameters for the nearest neighbors technique can be based
on known techniques like [35].

To conclude, combination of weighted normalized position metric and SVC
technique is often able to improve the recognition of the messages types. By
doing a second phase based on the nearest neighbors technique, the results are
always improved.

6 Behavioral Fingerprinting

In order to best describe our approach, we will use the example illustrated in
figure 13. The messages exchanged between two parties are captured first. Sec-
ondly, each message can be mapped to the corresponding message type. This is
done using the clustering mechanism described previously. Once each message
is mapped to its cluster, a session of captured messages can be represented as a
sequence of clusters. A session is composed of the messages exchanged between
two entities without a relative long inactivity period. in fact, TCP based protocol
sessions are easily distinguishable

The original sequence of messages can be mapped to the sequence of clusters:

{m1(A → B), m2(B → A), m3(A → B), m4(A → B)}
≡ {c(m1)(A → B), c(m2)(B → A), c(m3)(A → B), c(m4)(A → B)}
≡ {c1(A → B), c2(B → A), c2(A → B), c3(A → B)}
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Fig. 13. Session example

(a) Device A (b) Device B

Fig. 14. Kernel trees

≡ {!c1, ?c2, !c2, !c3}A→B

We use the notation ?x for a message x that is received and the notation !x to
model that a message of type x is emitted by a device.

A second capture might consist in the sequence of messages (figure 13):

{m5(A → B), m6(B → A), m7(A → B), m8(B → A)}
≡ {c(m5)(A → B), c(m6)(B → A), c(m7)(A → B), c(m8)(B → A)}
≡ {c1(A → B), c4(B → A), c5(A → B), c4(B → A)}
≡ {!c1, ?c4, !c5, ?c4}A→B

In the same manner, the final capture consists in the sequence:

{!c1, ?c4, ?c5, !c6}A→B

Then a tree based representation can summarize them as follows: a simple algo-
rithmadds incrementallya sequence to the tree.This isdoneby checking the longest
prefix of the chain that is also a path sourced (in the root) in the tree. Starting with
the last node in this path, the remaining suffix is added as a chain to the tree.

We construct for each device, a device specific trees - see figure 14. Each node
in the tree corresponds to a message type. An edge in the tree links two nodes
if the corresponding message types have been observed to succeed in the traces
Although known to be NP complete (see [36],[37] and [38] for good overviews
on this topic), the existing heuristics for doing it are based on building tree
representations for the underlying finite state machine. In our approach we don’t
prune the tree and although the final tree representation is dependent on the
order in which we constructed the tree, we argue that the resulting substrees
are good discriminative features. We follow a supervised training method, where
protocol trees are labeled with the identity of their class. The identity of the
class is assumed to be known. For instance, the figure 14(a) shows that based
on traces, a node can start by sending an INVITE message (!c1) and receiving
afterwards 180 (?c2) or 407 (?c4) typed messages. In SIP, a 180 typed message
is used to learn that the call in in progress, while 400 messages are related to
authentication requests.
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The core idea behind behavioral fingerprinting consists in identifying subtrees
in the underlying tree representations that can uniquely differentiate between
two observed behaviors. We developed a classification method based on trees
kernels in order to take into account the peculiar nature of the input space. Tree
kernels for support vector machines have been recently introduced in [39], [40],
[41] and do allow to use substructures of the original sets as features. These
substructures are natural candidates to evaluate the similitude and differentiate
among tree-like structures. We have considered two kernel types introduced in
[42],[43] and [41]: the subtree (ST) kernel and the subset tree kernel (SST).
Simply stated a subtree (ST) of a node is just the complete subtree rooted in
that node. A subset tree corresponds to a cut in the tree - a subtree rooted
in that node that does not include the original leaves of the tree. For instance,
the figure 14 highlights some examples of similar SST and ST for two trees.
Figure 14(a) represents a very simple tree corresponding to a Linksys SIP Phone.
In the context of behavioral fingerprinting, a device specific protocol tree can
be mapped to a set of ST and SST features by extracting all underlying SSTs
and STs. Two protocol trees generated by two different devices (figure 14) can
now be compared by decomposing each tree in its SSTs and STs followed by
a pair-wise comparison of the resulted SSTs and STs. This can be done using
tree kernels as proposed in [41]. The idea behind tree kernels is to count the
number of similar SSTs in both features sets and/or check the exact matching of
underlying STs. The interested reader is referred to [41] for more completeness
and fast implementation techniques.

For our purposes, similar substructures correspond to similar behavior in terms
of exchanged messages and represent thus a good measure of how much two de-
vices are similar with respect to their behavior. We collected traces from a real
VoIP testbed using more than 40 different SIP phones and SIP proxies. In the
learning phase, we trained the support vector machines using a modified version
of the svm-light -TK [44] developed by Alessandro Moschitti. Our dataset con-
sisted in complete SIP traces obtained during a one day capture from a major
VoIP provider. The capture file (8 GB) contained only the signaling SIP related
data. Using the user-agent banner, we could identify 40 different end devices. We
have also observed traffic coming from user-agents that were not identifiable. This
latter is due probably to some topology hiding performed by home routers or ses-
sion border controllers. For each device/user-agent we constructed the underlying
tree representations using a maximum of 300 SIP dialogs. Therefore, devices that
generated more than 300 dialogs, were tagged with more than one tree represen-
tation. We performed a multi-class classification using the one versus all method
described in [41]. The classification precision was 80 % which is a relative promis-
ing result. This result was obtained using a 5 fold validation technique - one fifth
of the data was taken out and used to assess the accuracy/precision of the system.
The remaining four fifths of data was used to train the system. Table 1 summa-
rizes a subset of the SIP devices used for training/testing. We could not include
the complete table in the paper due to space constraints. However, the different
columns of table 1 give a glance of the data samples and associated tree structures.
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Table 1. Tested equipment

Device #Msgs #Sessions #Dialogs #Nodes Depth

TrixboxCE v2.6.0.7 1935 714 544 279 99
Twinkle v1.1 421 129 109 146 36
Thomson2030 v1.59 345 102 83 105 34
Cisco-7940 v8.9 457 175 139 54 18
Linksys v5.1.8 397 130 67 206 99
SJPhone v1.65 627 246 210 66 19

For instance, the Tribox CE (a popular VoIP PBX) has a tree representation of
depth 99 and 279 nodes. This was learned using 1935 messages split over 544 SIP
dialogs.

7 Conclusion and Future Work

We have addressed in this paper the automated fingerprinting of unknown pro-
tocols. Our approach is based on the unsupervised learning of the types of mes-
sages that are used by actual implementations of that protocol. The unsupervised
learning method relies on support vector clustering - SVC. Our technique is using
a new metric - the weighted character position metric. This metric is computed
rapidly and does not suppose any knowledge about the protocols: header fields
specification, number of messages. One main advantage of the SVC technique
is its improvement of the accuracy of the classification for large datasets. We
have also proposed a semi automated method that allows to choose the best
parameters. The observed message types can be used to induce a tree-like rep-
resentation of the underlying state machines. The nodes in this tree represent
the different types of observed messages and the edges do indicate an invocation
relationship between the nodes. This first phase is completed by a second stage,
where the behavioral differences are extracted and mined. This second phase
uses tree kernel support vector machines to model the finite state machines in-
duced from the first phase. The main novelty of this approach lies in the direct
usage and mining of the induced state machines. We did test our approach on
extensive datasets for several well known protocols: SIP, SMTP and IMAP. The
observed empirical accuracy is very good and promising. We plan to extend this
work towards other machine learning tasks and conceptual solutions. In addition,
finding specific metrics for encrypted and binary protocols is another direction
for future work.
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Abstract. With more than one trillion mobile messages delivered world-
wide every year, SMS has been a lucrative playground for various attacks
and frauds such as spamming, phishing and spoofing. These SMS-based
attacks pose serious security threats to both mobile users and cellular net-
work operators, such as information stealing, overcharging, battery ex-
haustion, and network congestion. Against the backdrop that approaches
to protecting SMS security are lagging behind, we propose a lightweight
scheme called SMS-Watchdog that can detect anomalous SMS behaviors
with high accuracy. Our key contributions are summarized as follows: (1)
After analyzing an SMS trace collected within a five-month period, we con-
clude that for the majority of SMS users, there are window-based regular-
ities regarding whom she sends messages to and how frequently she sends
messages to each recipient. (2)With these regularities, we accordingly pro-
pose four detection schemes that build normal social behavior profiles for
each SMS user and then use them to detect SMS anomalies in an online
and streaming fashion. Each of these schemes stores only a few states (typ-
ically, at most 12 states) in memory for each SMS user, thereby imposing
very low overhead for online anomaly detection. (3) We evaluate these four
schemes and also two hybrid approaches with realistic SMS traces. The re-
sults show that the hybrid approaches can detect more than 92% of SMS-
based attacks with false alarm rate 8.5%, or about two thirds of the attacks
without any false alarm, depending on their parameter settings.

Keywords: SMS, anomaly detection, relative entropy, JS-divergence.

1 Introduction

The Short Message Service (SMS) provided by cellular carriers is a connectionless
message transfer service with low capacity. Since its inception in December 1992,
when the first short message was delivered in the Vodafone GSM network in the
United Kingdom [12], SMS has been growing at a blistering speed. According to
the IDC research firm, the total number of SMS subscribers in the US in 2006
was estimated at 102 million and is expected to reach 184 million in 2011; the
number of short messages delivered in the US will grow at an even faster pace,
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which will jump from 157 billion in 2006 to 512 billion in 2011 [22]. Another
report by Gartner shows that the Asia-Pacific region, whose SMS subscribers
sent 1.5 trillion short messages in 2007, is leading the SMS growth over North
America and Western Europe, whose SMS subscribers generated 189 and 202
billion short messages in 2007, respectively [18].

Due to its increasing popularity, SMS has become a lucrative target for fraud-
ulent behaviors that have been rampant in the Internet for decades. For instance,
88 percent of mobile users in China [4] have been plagued by SMS spams. Mean-
while, the convergence of the telecommunication world and the Internet has led
to the emergence of SMS phishing, also dubbed “SMiShing”, which could steal
confidential account information from mobile devices [16] or spreading mobile
malware [15]. SMS spoofing is another type of attacks based on SMS: by manip-
ulating address information in SMS messages, an SMS spoofing attack simulates
the behavior of a legitimate mobile device so that foreign networks (as opposed
to the home network of the mobile device) mistakingly think these messages
originate from that device. SMS spoofing attacks have been launched against
major cellular operators in Europe in the past [19]. Besides these spamming,
phishing and spoofing attacks, other SMS-based attacks include SMS flooding,
which aims to overload the cellular network, and SMS faking, which mimics the
behavior of an SMS switch to send messages [17]. In particular, SMS flooding
could shut down cellular services entirely in a large area [6].

SMS-based attacks pose serious security threats to both mobile users and
cellular networks, including information stealing, overcharging, battery exhaus-
tion, and network congestion. Effective countermeasures, unfortunately, are still
lagging behind. Many existing solutions are aimed at detecting malware on mo-
bile devices with techniques inspired by their counterparts in IP networks. For
instance, signature-based detection schemes are proposed to examine mobile net-
work traffic [8] or power usage of mobile applications [9] for signatures that are
extracted from existing mobile malware instances. A machine learning-based ap-
proach is developed in [1] to catch mobile malware by discriminating behaviors
of normal applications and malware at the level of system events and API calls.

Although effective against some SMS-based attacks, these mobile malware de-
tection approaches have their flip sides. First, not all aforementioned SMS-based
attacks originate from mobile malware. For instance, SMS spoofing usually comes
from a device that simulates an authentic mobile handheld to fool a foreign net-
work. Second, many of these approaches demand extra computational resources
on mobile devices, which accelerate exhaustion of their batteries. Third, operat-
ing systems of existing mobile devices often lack sophisticated countermeasures
to prevent mobile malware from disabling device-resident detection schemes.

In this work, we take a different avenue to detect anomalous SMS behaviors.
We propose a detection framework called SMS-Watchdog, which is deployed at
a place where a mobile user’s short message records can be easily accessed, such
as the Short Messaging Service Center (SMSC) in a typical SMS architecture.
Hence, our work alleviates typical shortcomings of device-resident mobile de-
tection schemes, such as extra power consumption for detection and inability to
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catch spoofed short messages. Motivated by observations made from a real-world
SMS dataset, our work exploits regularities inherent in a typical user’s SMS be-
haviors for anomaly detection. Our key contributions in this paper are summa-
rized as follows: (1) After analyzing an SMS trace collected within a five-month
period, we conclude that for the majority of SMS users, there are window-based
regularities regarding whom she sends messages to and how frequently she sends
messages to each recipient. (2) With these regularities, we accordingly propose
four detection schemes that build normal social behavior profiles for each SMS
user and then use them to detect SMS anomalies in an online and streaming
fashion. Each of these schemes stores only a few states (typically, at most 12
states) in memory for each SMS user, thereby imposing very low overhead for
online anomaly detection. (3) We evaluate these four schemes and also two hy-
brid approaches with realistic SMS traces and the results show that the hybrid
approaches can detect more than 92% of SMS-based attacks with false alarm
rate 8.5%, or two thirds of the attacks without any false alarm, depending on
their parameter settings.

Related work. In [27], Zerfos et al. used an SMS trace collected from a na-
tional cellular carrier in India to examine message size distribution, message
service time distribution, and thread-level characteristics. The same trace was
later investigated by Meng et al. to understand delivery reliability and latency
[13]. It is noted that their trace, although containing more SMS users than the
one analyzed in this paper, lasts only three weeks. By contrast, our trace contains
short messages within five months, thus offering insights on long-term and per-
sistent behaviors of SMS users. Enck et al. showed that SMS flooding from the
Internet side can cause severe denial-of-service attacks against cellular network
operations in a large area [6] and later they proposed some countermeasures to
prevent such attacks [24]. Our work in this paper attempts to identify anomalous
SMS behaviors by comparing them against normal SMS user’s social behavior
profiles and is thus complementary to their work.

Techniques based on profiling human social behaviors have been applied to
detect anomalies in other types of network traffic. For instance, Stolfo et al.
developed a data mining system that builds behavioral profiles or models with
methods such as user cliques, Hellinger distance, and cumulative distributions
for emails users [20]. Using injected simulated viral emails, they show that the
detection system performs well with high accuracy. In [26], Yan et al. applied
change-point detection techniques to detect worm propagation in IM (Instant
Messaging) networks. They show that schemes simply counting the number of
instant messages sent by each user can easily be circumvented by a carefully
crafted IM worm. Observing that the distribution of the number of messages
sent to each contact on the buddy list is typically highly skewed, they developed
an effective technique that periodically calculates the overall likelihood that in-
stant messages are sent to each recipient and look for abrupt changes to detect
IM worm propagation. Moreover, in this work we use information-theoretical
measures to detect anomalies in SMS traffic and these techniques have been ap-
plied to detect anomalies in Internet traffic before [11][14]. Besides focusing on a
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different type of network traffic, we also address the scalability issues that were
not considered in previous work. For a more comprehensive survey on anomaly
detection techniques and their applications, we refer interested readers to [2].

Anomaly detection for mobile phone networks has a long history. For instance,
calling activities have been examined to detect mobile phone fraud [7][23][5] and
mobility patterns of mobile devices have been profiled to detect cloning attacks
and cell phone losses [25][21]. Recently, due to the increasing popularity of smart
phones, a growing number of malware instances have been observed on these
mobile devices. Many existing approaches to detect mobile malware work by
profiling behaviors of normal applications [9][1]; our work instead focuses on
profiling normal SMS user behaviors.

Organization. The remainder of the paper is organized as follows. Section 2
briefly introduces typical SMS architectures and how we collect the SMS trace.
In Section 3, we first analyze SMS user behaviors in the trace and discuss
what statistic metrics exhibit low variation. We then discuss the design of SMS-
Watchdog in Section 4. Based on the results from the trace analysis in Section
3, we propose four different detection schemes in Section 5. We evaluate the
performance of these four schemes and also two hybrid schemes in Section 6. We
finally make concluding remarks and discuss the scope of our work in Section 7.

2 Background on SMS and SMS Traces

SMS architecture. SMS is a service that provides a connectionless transfer of
messages with at most 160 characters using signaling channels in cellular net-
works. Figure 1 illustrates the basic SMS architecture in a GSM-based system.
A short message sender (on the right bottom corner) uses an originating MS
(Mobile Station) to send a short message to a receiver (on the left bottom cor-
ner in Figure 1). The short message is delivered to a nearby BSS (Basestation
System) through the GSM signaling channel and then the MSC (Mobile Switch-
ing Center) associated with this BSS. The MSC first checks with a VLR (Visitor
Location Register) database whether the originating MS is allowed to receive
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SMS Proxy
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BSS BSS

SMS Proxy 
User 1

Short
Message 
Receiver

SMS Proxy 
User 2

Short
Message
Sender  

VLR

Fig. 1. SMS Architecture and SMS Proxy
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the short message service. The VLR database temporarily stores subscription
information for the visiting mobile stations so that the associated MSC knows
what services should be provided to them. If the originating MS is allowed to
use SMS, the MSC further routes the short message to SMSC, a dedicated store-
and-forward server that handles SMS traffic.

The SMSC is responsible for forwarding the short message to the targeted
mobile device, also called terminating MS (on the left bottom corner). To do
that, it queries an HLR (Home Location Register) database, which keeps infor-
mation about cellular subscribers, such as their profile information, current loca-
tion, billing data, and validation period. The HLR responds by sending back the
serving MSC address of the terminating MS. Thereafter, the SMSC forwards the
short message to that MSC, which further queries its associated VLR database
for the location area of the terminating MS. Once the location of the terminating
MS is found, the short message is delivered to it through its nearby BSS.

SMS trace collection. The SMS trace used in this work was collected from an
SMS proxy in Italy. This SMS proxy connects with the Internet, and also the
GSM network through a GSM modem. There are two classes of users for this
SMS proxy. Similar to the regular SMS sender, the first class (e.g., User 1) also
use an MS to send short messages. These short messages, however, do not use
GSM signaling channels; instead, they are delivered through the GPRS network
to the SMS proxy, which further forwards these messages to their recipients
through the GSM modem. The second class of SMS proxy customers (e.g., user
2) send their short messages to the SMS proxy through the Internet and then to
their receiving MSes through the GSM modem. The economic incentive for such
an SMS proxy is the price difference between regular SMS and GPRS messages.

The SMS proxy was launched in early 2008 and we obtained communication
logs of all its users from April 15, 2008 to September 14, 2008. Through this
period, there were 2,121 users that have used it to send short messages. In total,
146,334 short messages have been sent through this proxy. As this data trace
covers a large number of users, we believe that it is representative of general
SMS traffic. Due to its short history, the SMS proxy has not been seen suffering
malicious attacks yet. Hence, analysis on the data collected sheds light on how
normal SMS users behave socially. Moreover, the long time span of this trace
enables us to investigate the persistent behavioral patterns of SMS users. This
is contrast to previous work which mainly focus on analyzing communication
traces of SMS users only within a short period of time [27][13].

3 Trace Analysis

In this section, we analyze the dynamics of the system from which the trace was
collected and then derive regularities inherent in behaviors of normal SMS users.

System dynamics. In Figure 2, we show the number of short messages that
have been observed by the SMS proxy each day. From the graph, we observe an
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obvious trend that an increasing number of short messages have been transmitted
through the SMS proxy. For instance, the number of short messages observed
has increased by 67% from May to August. This is attributed to the growing
number of users of the system during the trace collection period. Figure 2 also
depicts the number of users that sent at least one message in a day. In August,
there were 972 active customers, as opposed to only 662 ones in May.

Although the number of users in the system was not stationary during the
data collection period, we find that both the number of messages sent out by
each user and the number of receivers per sender each day are quite stationary.
They are illustrated in Figure 3, from which we observe that each day an active
user sends about 5.4 messages to 2.4 recipients on average. We also note that
some users in the dataset used the SMS proxy to send short messages for only a
short period of time. As we are only interested in persistent behaviors of SMS
users, we do not consider these temporary users. From the dataset, we obtain a
list of 662 users whose first and last short messages were sent at least 60 days
apart. For brevity, we call them persistent users, who contributed about 75% of
the entire set of short messages.

Temporally periodic behaviors of persistent users. We are interested in
statistically time-invariant metrics that characterize behaviors of SMS users so
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that they can be applied for anomaly detection. An ideal metric should have
low variation, which helps reduce false alarm rates. As human behaviors such as
lunch and shopping often exhibit temporal periodicity, a natural hypothesis is
that SMS user behaviors should follow similar patterns. To verify this, we depict
in Figure 4 the average number of messages sent out per day and per week by
each persistent user versus his overall rank. Note that the x-axis, which indicates
the user rank, is shown in logarithmic scale. For each persistent user in the
graphs, we also show the range between the mean plus and minus one standard
deviation. Clearly, these graphs reveal that both daily and weekly numbers of
messages sent by persistent users exhibit high variation for many users.

A better way of quantifying the variation of a statistic metric is Coefficient
of Variation (COV), defined as the ratio of the standard deviation to the mean.
Generally speaking, a distribution with COV < 1 portends low variation, and
those with COV > 1 are considered high variation. Among all the persistent
users, 97.7% and 71.9% of them have COVs > 1 for the daily and weekly number
of short messages they sent, respectively, suggesting that neither of these two
metrics is good for anomaly detection.
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We perform a similar analysis on the daily and weekly number of unique
recipients to whom persistent users sent their short messages, and the results are
provided in Figure 5. We observe that 94.4% and 54.4% of persistent users have
COVs > 1 for their daily and weekly number of unique recipients, respectively.
Hence, they are not good candidates for anomaly detection either.

We further analyze the entropy of the distribution of the number of short
messages sent to each unique recipient for every persistent SMS user. The en-
tropy, H , is defined as: H = −

∑n
i=1 pi× log2pi, where pi is the fraction of short

messages sent to the i-th unique recipient in a day or a week (suppose that there
are n unique recipients). Figure 6 shows the average daily and weekly entropies
for each persistent SMS user. Similar to the other metrics that we have studied,
these two also show high variation: 98.0% and 66.9% of persistent users have
COVs > 1 for their daily and weekly entropies, respectively. Therefore, neither
metric seems plausible for anomaly detection.

Window-based behaviors of SMS users. The above analysis reveals that
high variation is inherent in many SMS users’ behaviors on a temporally periodic
basis. We now examine their behaviors from a window-based perspective. For
each SMS user in the dataset, we form m blocks, each of which contains an equal
number of successive short messages. Given the sequence of blocks from the same
SMS sender, we first consider the number of unique recipients to whom messages
in each block are sent. Similar to our previous analysis, we are interested in the
variation of this metric. To ensure that there are enough short messages in each
block, we consider only users that have sent at least θ short messages. In our
study, we consider two θ values, 100 and 200, which lead to a set of 353 and 167
qualified SMS users, respectively.

Figure 7 gives the average number of unique recipients when θ is 200 (we have
similar results for θ = 100, but due to space limitation, we do not show them
here). Different from the metrics characterizing temporally periodic behaviors,
the number of unique recipients seen in each window seems to have low variation.
This is confirmed by Table 1, which shows that the COV exceeds 1.0 for less
than 1% of the users, regardless of which θ and m are used.

For each SMS user, we also consider the entropy of the distribution of the
number of messages sent to each unique recipient within each block. Figure 8
depicts the mean for θ = 200, and Table 1 also provides the average COV in
different combinations of θ and m. In all cases, the average COV is smaller
than 20%. It also seems that the COV can be reduced by either increasing the
threshold θ or choosing a smaller m.

These results reveal that window-based behaviors of SMS users bear lower
variation than their temporally periodic behaviors. In the following discussion,
we further explore the similarity across different blocks for each SMS user.

Similarity measures. First, we study the similarity in the set of recipients
between different blocks for the same SMS user. For the i-th block Bi associated
with an SMS user, we let Ri denote the entire set of unique recipients of the
short messages in this block. We use the following recipient similarity metric to
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Table 1. Fraction of users with COV > 1 regarding window-based behaviors

m θ = 100 θ = 200
#Recipients Entropy #Recipients Entropy

10 0.3% 14.5% 0.6% 11.2%
20 0.3% 18.1% 0.6% 15.6%
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measure the distance between two sets Ri and Rj (i �= j):

S(Ri,Rj) =
|Ri ∩Rj |

2
× (

1
|Ri|

+
1
|Rj |

). (1)

S(Ri,Rj) gives the average fraction of common elements that are shared between
sets Ri and Rj . Clearly, S(Ri,Rj) close to 0 means that Ri and Rj share few
common elements and vice versa if it is close to 1. For each SMS user, we call
set {S(Ri,Rj) : ∀i, j, i �= j} as her recipient similarity metric set.

Figure 9 depicts the recipient similarity metrics with θ = 200. One observation
is that SMS users differ significantly on how they send messages regularly: for
some users they send short messages to almost the same set of recipients, but for
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Table 2. Fraction of users with COV > 1 regarding similarity measures for all recipients

m θ = 100 θ = 200
Recipient JS Recipient JS
similarity divergence similarity divergence

10 4.5% 4.3% 0.6% 1.2%
20 12.8% 5.1% 6.0% 1.2%

some others1 they send short messages to a very diverse set of recipients. Given
this fact, we thus cannot conclude that SMS users always tend to send short
messages to the same set of users over time, which, if true, would be useful for
anomaly detection. We further analyze the variation of the recipient similarity
metric set for each SMS user and the results are given in Table 2. Interestingly,
this measure exhibits low variation for the majority of the SMS users, implying
that the recipients to whom most SMS users send short messages vary in a very
similar fashion over time.

1 These users typically send bulk messages for advertisement purposes.
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Previously we have used the entropy to measure the uncertainty of the distri-
bution of the number of short messages sent to each recipient. A natural question
extended from that is how similar these distributions are across different mes-
sages blocks. A metric commonly used for this is relative entropy, also called
Kullback-Leibler (KL) divergence [3], which is defined as follows:

DKL(P‖Q) =
∑

i

P (i) log
P (i)
Q(i)

, (2)

where P and Q are two distributional functions.
Note that DKL(P‖Q) is undefined if the support2 of P is not a subset of the

support of Q. Hence, directly applying the relative entropy here is problematic
because an SMS user may have different sets of recipients in two message blocks.
Moreover, relative entropy is not symmetric, i.e., DKL(P‖Q) may not equal
DKL(Q‖P ). Due to these constraints, we instead use the Jensen-Shannon (JS)
divergence [10], whose computation relies on the KL-divergence:

DJS(P‖Q) =
1
2
[DKL(P‖ÃP,Q) + DKL(Q‖ÃP,Q)], (3)

where function ÃP,Q denotes the average distribution: ÃP,Q(x) = (P (x)+Q(x))/2.
Obviously, DJS(P‖Q) is always defined and also symmetric.

Figure 10 shows the JS-divergences when θ = 200. We observe that the JS-
divergence also varies significantly among different SMS users. It is clear that
the JS-divergence has low variation for the majority of the SMS users, which is
confirmed by Table 2: for all four combinations of θ and m, less than 6% percent
of the SMS users have a JS-divergence COV greater than 1.

Next, we show how the top five recipients receiving the most messages cor-
relate with each other between different blocks. Figure 11 depicts the recipi-
ent similarity metrics for the top 5 recipients with θ = 200. Still, this metric
varies significantly among different SMS users. The fractions of SMS users with
COV > 1 are shown in Table 3. Clearly, these fractions are higher than their
counterparts where all recipients are considered, but are still relatively small.

Similarly, we study the JS-divergence of the distributions of the numbers
of messages sent to the top five recipients among different blocks. Here, we
normalize the probability that each of those top five recipients receives a message
by dividing it by the probability that any of those top five recipients receives

Table 3. Fraction of users with COV > 1 for top-5 recipients (similarity measure)

m θ = 100 θ = 200
Recipient JS Recipient JS
similarity divergence similarity divergence

10 8.2% 7.9% 6.6% 5.4%
20 14.4% 13.6% 9.6% 12.6%

2 The support of a function is the set of points where the function is not zero.
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Fig. 11. Recipient similarity metric for top 5 recipients (θ = 200)
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Fig. 12. JS-divergence for top 5 recipients (θ = 200)

a short messages. For instance, if the top five recipients receive 5, 4, 3, 2, and
1 short messages within a window, the normalized probabilities are 1/3, 4/15,
1/5, 2/15, and 1/15, respectively.

The JS-divergence of the distributions for the top five recipients is shown in
Figure 12 for θ = 200. We notice that the average JS-divergence is always no
higher than 1 and the fractions of SMS users with COV > 1 exhibit a similar
pattern as the recipient similarity metric: although they are higher than their
counterparts where all recipients are considered, they are still very small.

In summary, different SMS users may have different levels of similarity across
their message blocks, but the level of similarity across different message blocks
of the same SMS user typically does not change significantly.

4 SMS-Watchdog Design

In the following, we shall discuss how to exploit the regularities inherent in social
behaviors of SMS users for anomaly detection. Before presenting the detailed al-
gorithms, we first discuss two families of SMS-related attacks that are considered
in this work and then present the design of SMS-Watchdog.
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Threat model. Two families of SMS-related attacks are considered here. The
first type is called blending attacks, which occur when an SMS user’s account is
used to send messages for a different person. In reality, this can happen in three
circumstances. First, a user’s cell phone is implanted with a Trojan horse such
that the cell phone can be remotely controlled to send messages for a different
user3. Second, in an SMS spoofing attack, a fraudster can manipulate address
information in messages to spoof a legitimate SMS user’s identity in a foreign
network. Third, if an SMS proxy is used (e.g., the one in Figure 1), an attacker
can hack an SMS user’s account at the front end and use it to send messages. All
these attacks are termed as blending attacks because illegitimate messages are
intermingled with legitimate ones from the detector’s perspective. The second
type of attacks, termed as broadcast attacks, mirrors the behavior of mobile
malware that send out phishing or spamming messages to recipients that appear
in normal ones. In such attacks, the mobile device from which these messages
are sent have already been infected by the mobile malware.

Workflow of SMS-Watchdog. In our design, the SMS-Watchdog is placed at
the SMSC, as shown in the SMS architecture in Figure 1, which handles all SMS
traffic for a specific cellular network. The workflow of SMS-Watchdog involves
three steps:

(1) Monitoring: SMS-Watchdog maintains a detection window of size h for each
SMS user that has subscribed for this service. For the current detection window,
it also keeps a counter k for the number of sent SMS messages observed, and
the sequence of recipients of these SMS messages. When k becomes equal to h,
SMS-Watchdog performs anomaly detection for this user as shown in Step (2).

(2) Anomaly detection: Given the recipients of the last h SMS messages, the
SMS-Watchdog checks whether there exist anomalous behaviors. If so, it raises
an alert and goes to the next step. The detailed algorithms for anomaly detection
will be presented in the next section.

(3) Alert handling: SMS-Watchdog sends an alert to the SMS user through a
different communication channel, such as emails. Together with the alert, SMS-
Watchdog also sends to the user a summary of the last h messages, such as
the number of SMS messages per recipient and the whole time frame of these
messages. The information is used to help the user to identify false positives.
The user can first check whether the communication record shown on her mobile
device matches with the summary sent by SMS-Watchdog within the given time
frame4. If the two do not match, it means that the user’s SMS account has been
spoofed and she can notify her service provider. Otherwise, the user further
checks the summary to identify suspicious SMS behaviors. A more cautious
user can even request to check the full communication record, regarding the

3 To evade detection, the malware can delete the message from the ”sent” folder after
it is sent out; also, the message can attach a different returning number so that the
recipient will not reply the message to the compromised phone.

4 This can be automatically done with a software for the user’s convenience.
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transmission time of each SMS message. If suspicious SMS behaviors have been
observed, it is likely that the mobile device has been infected by malware and
the user can use some anti-virus software to disinfect her mobile device.

5 Anomaly Detection

In this section, we provide the details on how Blue-Watchdog performs anomaly
detection. The anomaly detection problem is formulated as follows: given an
SMS user’s communication history V = {v1, v2, ..., vn}, where vi(1 ≤ i ≤ n)
denotes the recipient of the i-th short message in V, and a test sequence T =
{t1, t2, ..., th}, where tj (1 ≤ j ≤ h) denotes the recipient of the j-th short mes-
sage in T , is T anomalous?

Decision on detection window size h. We first address how to choose h, the
detection window size for a specific user. As revealed in Section 3, a typical SMS
user’s window-based behaviors bear low variation in the number of unique recip-
ients, entropy, recipient set similarity metric, and also JS-divergence, suggesting
that choosing h based on any of these metrics would be a possible solution.
Compared with the other three metrics, however, the JS-divergence contains the
most information, because its calculation depends on not only the set of recip-
ients, the distribution of the number of short messages sent to each recipient,
but also the distances between these distributions.

A feasible choice for h is minimizing the COV of the JS-divergence after
grouping sequence V by every h short messages, because this can maximize the
level of similarity among different blocks. Let cov(X) denote the COV of set X .
We choose h∗ as follows:

h∗ = argmin
hmin≤h≤hmax

cov({DJS(Pi‖Pj) | 1 ≤ i < j ≤ �n
h
�})

where Ps (1 ≤ s ≤ �n
h �) is the distribution of the number of short messages sent

to each unique recipient within block [v(s−1)h+1, v(s−1)h+2, ..., vsh].
It is important to bound h from both sides. On one hand, we need to ensure

that the training sequence V is split into enough blocks so that the COV does not
approach 0 (note that if h = |V|, the COV is always 0). Also, a large h induces
high detection delay. On the other hand, we choose a sufficiently large h to avoid
performing anomaly detection too frequently. Hence, we constrain the selection
of h between hmin and hmax, both of which are configurable parameters.

Mean-based anomaly detection. As both the average number of unique
recipients and the average entropy within each block show low variation for most
SMS users, the mean-based anomaly detection scheme identifies anomalous SMS
behavior by checking whether the means of these two metrics in the test sequence
T deviate significantly from the means observed from the history trace V . Let
{B1,B2, ...,Bl}, where l = � n

h∗ �, be the set of blocks after dividing sequence V by
every h∗ messages. We use R(X ) and H(X ) to represent the number of unique
recipients and the entropy of X (X can be a block Bi or the test sequence T ).
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We let E(RB) and var(RB) denote the mean and variance of {R(Bi) : 1 ≤ i ≤ l},
and E(HB) and var(HV ) denote the mean and variance of {H(Bi) : 1 ≤ i ≤ l}.

We perform mean-based anomaly detection as follows: if |R(T )−E(RB)| > αR,
we raise an R-type alert (R-type detection); if |H(T )−E(HB)| > αH , we raise
an H-type alert (H-type detection). The rationale behind it is simple: if the
mean observed from the test sequence deviates from the mean observed from
the training trace by a predefined threshold, we deem it as anomalous.

Then, an important question is how to choose thresholds αR and αH . A too
large threshold may miss many anomalous behaviors but a too low threshold
may raise too many false alerts. We do this based on the Chebyshev’s inequality:

P{|R(T )− E(RB)| > αR} ≤
var(RB)

α2
R

. (4)

Let βR be the upper bound on the expected false alarm rate for R-type alerts. In
practice, βR is a configurable input parameter. By having αR =

√
var(RB)/βR,

we ensure that the expected false alarm rate of R-type alerts does not exceed
βR. Similarly, choosing αH =

√
var(HB)/βH , where βH gives the upper bound

on the expected false alarm rate for H-type alerts, renders the expected false
alarm rate of H-type alerts no greater than βH .

From an implementation point of view, the mean-based anomaly detection
scheme imposes trivial computational overhead. For each SMS user, it only re-
quires only four states for anomaly detection: E(RB), E(HB), αR, and αH . The
parameters can be derived from the training trace in an offline fashion, but their
values can be stored in the memory (instead of on disk), thereby relieving the
online anomaly detection from intensive disk access operations.

Similarity-based anomaly detection. We now explore how to exploit
similarity-based metrics for anomaly detection. A naive implementation can be
the following: we compute a similarity metric (recipient similarity metric or JS-
divergence) between the test sequence T and each block in the history trace
and check whether its mean significantly deviates from the mean similarity met-
ric only between the blocks in the history trace. Although straightforward, this
scheme demands knowledge of the whole history trace when performing online
anomaly detection, thereby rendering it hardly practical due to its prohibitive
computational cost.

Due to such performance concern, we propose a light-weight anomaly detec-
tion scheme as follows. First, instead of comparing the test sequence T against
each block in the history trace, we condense information in the history trace into
a set of recipients and a distributional function. Furthermore, we do not consider
the entire set of recipients that have been witnessed in the history trace, but in-
stead focus on the top few recipients that have received the most messages from
the SMS user. Such simplification is justified by the previous results showing
that the similarity metrics bear low variation even if only the top few recipients
are considered within each message block.

Suppose that we only consider the top φ recipients. Let Gφ(X) denote the
set of the top φ recipients that receive the most messages within sequence X ,
and Qφ(X) the normalized distribution of the number of short messages sent
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to the top φ recipients within sequence X . The similarity-based anomaly detec-
tion scheme checks how significantly S(Gφ(T ),Gφ(V)) and DJS(Qφ(T )‖Qφ(V))
deviate from the means that have been observed from the history trace.

Recall that {B1,B2, ...,Bl} is the set of blocks after dividing sequence V by
every h∗ messages. To compute the means, we first define V \Bi, where 1 ≤ i ≤ l,
as the sequence after block Bi is removed from V . We then let E(Sφ) and var(Sφ)
be the mean and variance of elements in set {S(Gφ(Bi),Gφ(V \ Bi)) : 1 ≤ i ≤
l}. Similarly, we use E(Dφ) and var(Dφ) to denote the mean and variance of
elements in set {DJS(Qφ(Bi)‖Qφ(V \ Bi)) : 1 ≤ i ≤ l}. Given V and h∗, we can
easily calculate E(Sφ), var(Sφ), E(Dφ) and var(Dφ).

Similarity-based anomaly detection on test sequence T works as follows: if
|S(Gφ(T ),Gφ(V))− E(Sφ)| > αS , we raise an S-type alert (S-type detection);
if |DJS(Qφ(T )‖Qφ(V))−E(Dφ)| > αD, we raise a D-type alert (D-type detec-
tion). Using the Chebyshev’s inequality, we can determine parameters αS and
αD as follows: αS =

√
var(Sφ)/βS and αD =

√
var(Dφ)/βD, where βS and βD

are the upper bounds on the expected false alarm rates for S-type and D-type
alerts, respectively. Both βS and βD are input parameters in practice.

From the implementation perspective, the similarity-based anomaly detec-
tion schemes do not impose high computational cost. For each SMS user, we can
compute the four variables E(Sφ), var(Sφ), E(Dφ) and var(Dφ) based on her
history trace V in an offline fashion. We then calculate αS and αD accordingly.
When we perform online anomaly detection, we need to know not only E(Sφ),
E(Dφ), αS and αD, but also Gφ(V) and Qφ(V). Clearly, the sizes of Gφ(V) and
Qφ(V) depend on φ. In total, the S-type detection requires at most φ + 2 states
and the D-type detection requires at most 2φ + 2 states. Since φ is usually
much smaller than the size of the set of unique recipients shown in history trace
V , the computational cost of our proposed scheme improves significantly com-
pared to the aforementioned naive similarity-based scheme that demands the full
knowledge of the whole history trace. Our experiments later show that φ = 5 is
sufficient to achieve high detection accuracy. In that case, even for the D-type
detection scheme, only 12 states are needed.

6 Experimental Evaluation

Setup. In this section, we shall evaluate the performance of our proposed de-
tection schemes. For this, we use the same data trace discussed in Section 3. As
our detection schemes require some training data to derive a few parameters, we
consider only those SMS users that have sent out at least 200 short messages.
In total, there are 167 such users. Here note that the discarded user data are
not relevant because of the limited SMS traffic they produce and are thus not
a concern. We also use 70% of each SMS user’s short messages for training and
the remaining 30% for testing. Suppose that the number of training short mes-
sages is n. We let hmin be 10 and hmax be min{30, �n/10�} in Equation (4).
We believe that bounding h between 10 and 30 provides a good balance between
detection accuracy and latency. Further, we also bound h from the upper side by
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�n/10� to ensure that there are at least 10 elements for variance computation; if
we have enough training data, such a constraint can be relieved. We also have:
βR = βH = βS = βD = β, and vary β between 0.05 and 0.1.

False positive rates. The false positive rates of the four detection schemes are
shown in the following table:

Scheme β = 0.05 β = 0.1
R-type detection 1.0% 2.2%
H-type detection 0.8% 2.7%
S-type detection 0.0% 5.4%
D-type detection 0.0% 4.3%

From the above table, we observe that the false positive rates of all four
detections are very low. The effect of β on the false positive rates is also obvious:
a higher β leads to a higher false positive rate, irrespective of the type of alerts
considered. This is because a higher β lowers threshold αR in Equation (4) (or
αH , αS , and αD in the other three cases).

Detection rates of blending attacks. In our experiments, we consider every
pair of SMS users in which one is the victim and the other is the attacker.
Suppose that SMS user a is the victim and b is the attacker. We first identify
the timestamp of the last message in user a’s training dataset; we further get
the list of messages that are sent by user b that are sent after that timestamp
in the trace. For brevity, we call this list an attack list. Since it is possible that
the attack list may not have enough messages, e.g., because user b quit from
system before data collection terminated, we only consider those cases that have
at least 4h∗

a messages on the attack list, where h∗
a is the detection window size

for user a. Messages on the attack list are then merged with those in user a’s
test dataset, with their timestamp ordering unchanged as in the original trace.

Among all pairs of SMS users considered, we compute the fraction of cases
in which the blending attack is successfully detected by each scheme, and the
average detection delay in the number of detection windows if the attack is
indeed detected. The results are as follows:

Scheme β = 0.05 β = 0.1
Rate Delay Rate Delay

R-type 35.6% 3.9 55.6% 4.2
H-type 40.5% 1.8 62.3% 2.8
S-type 44.1% 1.0 71.6% 1.0
D-type 65.1% 1.0 81.7% 1.0

Three observations can made from the above table. First, similarity-based
schemes can detect blending attacks with higher rates and smaller detection
delays than mean-based schemes. This is because similarity-based schemes en-
code more information in the detection metrics. Second, both H-type detection
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and D-type detection consider not only the set of unique recipients, but also
the distribution of the number of short messages sent to each recipients. Hence,
they perform better than both the R-type and S-type detection schemes. Third,
a higher β leads to a higher detection threshold, thereby improving both the
detection rate and the detection delay, irrespective of the detection scheme.

Detection rates of broadcast attacks. In the experiments, we intermingle
the test dataset of each SMS user with malicious messages sent to recipients that
are randomly chosen from those observed in the training dataset. For each SMS
user, exactly γ malicious messages are sent out at 12:00PM every day. We call
γ the broadcast threshold, which is varied among 10, 20, 30, and 40.

The detection ratios are depicted in Figure 13. Unsurprisingly, detection ra-
tios when β = 0.1 are higher than those when β = 0.05. We note, however,
that the relative ranks of the four schemes differ significantly from the detec-
tion results for blending attacks. Detection based on recipient similarity metric
(i.e., S-type detection) performs the worst but detection simply based on the
number of unique recipients (i.e., R-type detection) performs quite well. Recall
that R-type detection for blending attacks is not as effective as the other three
schemes. Such difference actually attributes to the type of attacks we are con-
sidering. For broadcasting attacks, as recipients of illegitimate short messages
are actually drawn from those recipients of those legitimate short messages, the
change on the recipient similarity metric under broadcasting attacks is limited.
Broadcast attacks, however, generate a large number of messages with different
recipients, thereby exposing themselves to the R-type detection scheme which
simply monitors the change on the number of unique recipients within each de-
tection window. On the other hand, Figure 13 reveals that D-type detection is
still effective against broadcast attacks. This is because although broadcast at-
tacks mimic the set of recipients that have been observed in the training dataset,
the distribution of the number of messages sent to each recipient is still different
from that in the training dataset.
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The average detection delay in the number of detection windows are given in
the following table:

β R-type H-type S-type D-type
0.05 4.0 3.7 6.8 4.1
0.1 3.2 3.0 5.5 3.2

Recall that on average similarity-based schemes detect blending attacks within
a single detection window (if the detection is successful). For broadcast attacks,
however, detection delays are higher because illegitimate short messages are sent
at the same time in a day in our experiments and the detector thus has to wait
for that moment to catch these attacks.

Hybrid detection. We now explore the detection solution space further by
combining multiple detection schemes together. Due to space limitation, we con-
sider only two hybrid detection schemes: In the first one (R/H/S/D), if any
type of alert is flagged, we treat it as anomalous; otherwise, we treat it as nor-
mal; in the second one (S/D), if an S- or D-type of alert is flagged, we treat
it as anomalous; otherwise, we treat it as normal. The following table provides
the performance of these two schemes (DRblending and DRbroadcast denote the
detection ratio of blending and broadcast attacks, respectively):

R/H/S/D S/D
β = 0.05 β = 0.1 β = 0.05 β = 0.1

False alarm rate 1.3% 8.5% 0.0% 5.0%
DRblending 85.7% 96.2% 69.1% 83.4%

DRbroadcast (γ = 10) 78.3% 94.0% 65.7% 82.5%
DRbroadcast (γ = 20) 82.5% 92.8% 68.1% 80.7%
DRbroadcast (γ = 30) 83.7% 93.4% 69.3% 81.9%
DRbroadcast (γ = 40) 83.1% 93.4% 69.3% 81.9%

We note that the R/H/S/D scheme with β = 0.1 can catch blending and
broadcast attacks with detection ratios higher than 90% but at the expense of
a relatively high false positive rate, which is about 8.5%; when β = 0.05, the
false alarm rate is only 1.3% but its detection ratios of blending and broad-
cast attacks fall between 78% and 86%. The S/D scheme, although not able to
detect as many attacks as the R/H/S/D scheme with the same β, does not
generate any false alarm when β = 0.05, and still catches about two thirds of
the attacks.

There is a clear tradeoff between high detection rates and low false alarm
rates. In practice, the decision on which parameterized detection scheme to use
can be made based on the user’s preference on this tradeoff, which is also af-
fected by the frequency at which she needs to deal with a false alarm. Here, we
provide simple analysis on the average interval between two false alarms. Sup-
pose that each detection window contains h short messages and the false alarm
rate is p. By modeling false alerts as a Bernoulli process, the average number
of windows before a false alarm is raised is 1/p. Hence, the average number of
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messages between two false alarms is h/p. Consider the case with h = 20 and
p = 8%. Note that we are considering a relatively high false alarm rate. Then,
about every 250 short messages leads to a false alarm. In our trace, we observe
that a persistent user sends 1.5 messages per day on average, suggesting that a
normal SMS user needs more than 5 months on average to receive a false alarm.
Even if we consider the largest average daily number of short messages sent by
an SMS user in our trace, which is about 25, a false alarm is raised every 10
days.

7 Conclusions and Future Work

The goal of this work is to detect anomalous SMS behaviors. From an SMS trace
that was collected within a five-month period, we observe that there are window-
based regularities inherent in behaviors of typical SMS users. Accordingly, we
develop SMS-Watchdog, a light-weight detection scheme that relies on normal
social behavior profiles built for each SMS user. Experimental results show that
our detection approach can detect more than 92% of SMS-based attacks with
false alarm rate 8.5%, or about two thirds of the attacks without any false alarm.

Admittedly, SMS-Watchdog is not panacea for all SMS-related attacks. For
instance, SMS-Watchdog is not able to detect SMS faking attacks, as such at-
tacks simulate the behavior of SMS switches (i.e., SMSC in Figure 1) and the
illegitimate SMS messages do not go through the SMSC of the originating ter-
minal, where the SMS-Watchdog is deployed. Moreover, with the integration of
the telecommunication network and the Internet, many SMS messages are now
sent from the Internet. SMS accounts can be easily created through the Inter-
net and then used to send spamming or phishing SMS messages. Given the fact
that SMS-Watchdog requires a training process to build a behavioral profile for
each SMS user, it is difficult for SMS-Watchdog to identify those transient SMS
accounts that are used only for spamming or phishing purposes.

Moreover, as SMS-Watchdog detects abnormal SMS activities by monitoring
deviations from behavioral profiles trained under normal circumstances, it is
possible that some malware can intelligently evade its detection. For example, a
stealthy malware can learn the behavior of an SMS user from her recent SMS
communication history and then send spamming or phishing SMS messages in a
similar fashion. Also, the design of SMS-Watchdog takes the variation of a typical
SMS user’s regular behavior into consideration to avoid high false positive rates.
Accordingly, a stealthy malware can exploit this to evade its detection by limiting
the number of illegitimate SMS messages sent within each detection window.

With the lesson learned from the increasing sophistication of cyber-attacks
in the Internet, we do not claim that SMS-Watchdog can address all existing
or future SMS-related attacks. While we will continuously improve the effec-
tiveness of SMS-Watchdog against these attacks, we also plan to explore other
complementary approaches to protect this increasingly popular service.
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Abstract. Smart phones are now being used to store users’ identities and
sensitive information/data. Therefore, it is important to authenticate le-
gitimate users of a smart phone and to block imposters. In this paper, we
demonstrate that keystroke dynamics of a smart phone user can be trans-
lated into a viable features’ set for accurate user identification. To this
end, we collect and analyze keystroke data of 25 diverse smart phone users.
Based on this analysis, we select six distinguishing keystroke features that
can be used for user identification. We show that these keystroke features
for different users are diffused and therefore a fuzzy classifier is well-suited
to cluster and classify them. We then optimize the front-end fuzzy clas-
sifier using Particle Swarm Optimization (PSO) and Genetic Algorithm
(GA) as back-end dynamic optimizers to adapt to variations in usage pat-
terns. Finally, we provide a novel keystroke dynamics based PIN (Personal
Identification Number) verification mode to ensure information security
on smart phones. The results of our experiments show that the proposed
user identification system has an average error rate of 2% after the detec-
tion mode and the error rate of rejecting legitimate users drops to zero
in the PIN verification mode. We also compare error rates (in terms of
detecting both legitimate users and imposters) of our proposed classifier
with 5 existing state-of-the-art techniques for user identification on desk-
top computers. Our results show that the proposed technique consistently
and considerably outperforms existing schemes.

1 Introduction

Smart phones1 are pervasively and ubiquitously integrating into our home and
work environments. In particular, due to the enhanced capabilities available on
contemporary smart phones, users – in addition to personal and professional
1 We use the terms smart phone and mobile phone interchangeably throughout this

paper because our proposed system, with the support of OS vendors, can be deployed
on both types of phones.
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contacts’ information – now store sensitive information such as emails, credit
card numbers, passwords, corporate secrets, etc. on mobile phones which make
them an attractive target for imposters [9]. Stolen mobile phones can be used for
identity theft which can then be exploited for malicious and/or unlawful activi-
ties. Various surveys conducted recently show that in case of mobile phone theft,
users (instead of being worried about the cost of the stolen phone) are becoming
more concerned with the misuse of information and services on the stolen phones
[1]. Therefore, it is important to develop intelligent user identification schemes
for mobile phones.

Despite its need and importance, user identification on mobile phones has
received little attention in research literature. User identification systems for
mobile phones are usually based on secret PIN numbers [28]. These identifica-
tion techniques are borrowed from desktop computers’ domain and have not
been very effective on mobile phones [6],[28]. For instance, freely available tools
empower intruders, who have physical access to the Subscriber’s Identity Module
(SIM) and know the Personal Identification Number (PIN), to reverse engineer
the International Mobile Subscriber Identity (IMSI) and the secret key of GSM
mobile phone users [19]. Similarly, token-based authentication schemes devel-
oped for desktops are not suitable for mobile phones because: (1) they cannot
be efficiently implemented on resource-constrained devices [9], and (2) loss of a
token in essence means loss of the device [26]. Biometric hardware for mobile
phones are now being developed to overcome the shortcomings of token-based
authentication [26]. A common drawback of these authentication paradigms is
that they perform one-time identity check at the beginning of a session that
allows imposters to access the smart phones once a session has been logged in.

In this paper, we propose a robust approach to identify a legitimate user of a
mobile phone by learning his/her “in-session” keystroke dynamics. The scheme
requires no additional hardware or software resources and is user-friendly as it
requires minimum user intervention after installation. While keystroke-based
user identification was actively pursued in the domain of desktop computer
[27],[17],[14],[18], its suitability for mobile phones has not been explored, ex-
cept by the preliminary work reported in [7],[15]. To use keystroke information
for user identification, we collect and analyze keystroke data of 25 diverse mo-
bile phone users including researchers, students, and professionals from varying
age groups. Based on our analysis, we select six distinguishing keystroke fea-
tures that can be used for user identification. Two of these features – key hold
time (how long a key is pressed) and error rate (number of times backspace is
pressed) – are borrowed from the desktop domain. We also customize a set of
four features to capture the unique switching behavior across multiplexed mobile
phone keys2 using: (1) Horizontal Digraph: time to switch between horizontally
adjacent keys, (2) Vertical Digraph: time to switch between vertically adjacent

2 This study has been done only for the smart phones with numeric keypads. In these
phones, each key stands for multiple characters that can be produced by pressing
the key a predefined number of times. We thus name the keys of such phones as
multiplexed keys.
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keys, (3) Non-Adjacent Horizontal Digraph: time to switch between non-adjacent
horizontal keys, and (4) Non-Adjacent Vertical Digraph: time to switch between
non-adjacent vertical keys.

We reveal that, while these keystroke features differ across users, leverag-
ing them for accurate user identification on mobile phones is significantly more
challenging than on a desktop computer because on a majority of contemporary
mobile phones: (1) different keys are multiplexed on a small keypad, (2) the vari-
able and discontinuous keystroke usage of a mobile phone user results in a highly
diffused (overlapping) and time-varying feature space that makes it difficult to
cluster and classify different users, and (3) an imposter can get access to a mo-
bile phone at anytime so techniques that rely on static, application-specific or
keyword-specific authentication are not feasible. These challenges are aggravated
by the fact that most of the mobile OS vendors do not provide any mechanism
for key logging. In view of these challenges, we set two accuracy objectives for
the proposed technique: (1) correctly identify imposters and legitimate users us-
ing keystroke dynamics3, and (2) identify an imposter within a small number of
key hits to ensure timely information security. In addition to being accurate, an
effective user authentication scheme for mobile phones must: (1) be able to con-
tinuously adapt to varying usage patterns of a phone user, (2) utilize a classifier
that provides high classification accuracy for a diffused features space, and (3)
have low-complexity so that it can be deployed on resource-constrained mobile
phones.

To meet the above requirements, we propose a keystroke-based user identifi-
cation system which operates in three sequential modes.

Learning Mode. In this mode, we train a fuzzy classifier which maps the dif-
fused feature space of a mobile phone user to his/her profile. Moreover, it utilizes
a hybrid of bio-inspired optimizers – Particle Swarm Optimization (PSO) [16]
and Genetic Algorithm (GA) [11] – at the back-end for continuous evolution of
the fuzzy system in order to cope with the varying usage pattern of the user4.

Imposter Detection Mode. In this mode, the trained classifier is used to
classify real-time keystroke measurements to classify a user as legitimate or im-
poster.

Verification Mode. This mode is only invoked if a user is potentially identified
as an imposter in the detection mode or the user wants to transmit documents
from a mobile phone. In the verification mode, the potential imposter is asked to
type a memorized 8-character PIN of the legitimate user. The system then uses
the keystroke dynamics model to analyze the typing behavior of the potential
imposter. This mode makes it difficult for an imposter to have illegitimate access

3 Throughout the paper we define accuracy in terms of error in detecting an imposter
– False Acceptance Rate (FAR), and error in detecting a legitimate user – False
Rejection Rate (FRR).

4 PSO and GAs are well-known for providing efficient and online solutions to dynamic
and time-varying optimization problems [10],[4].
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by hacking the PIN only; therefore, it serves as the last line of defence after an
imposter has breached all other security layers.

Performance evaluation on the collected dataset shows that the proposed hy-
brid PSO-GA based fuzzy classifier, when trained using a mere 250 keystrokes,
achieves an average error rate of approximately 2% after the detection mode
and an FRR close to zero after the verification mode. We compare the accuracy
of our system with five other state-of-the-art keystroke-based user identifica-
tion techniques and show that our proposed system provides significantly better
accuracy in detecting legitimate users and imposters.

The rest of the paper is organized as follows. Section 2 briefly describes the
related work. We discuss our dataset in Section 3 and explain feature selection
along with a study of existing desktop schemes on these features in Section 4.
In Section 5, we first investigate the feasibility of existing desktop classifica-
tion schemes for mobile phones, and then we discuss the architecture of our
proposed user identification system. In Section 6, we analyze the performance of
our proposed system for varying parameters. The limitations of the proposed sys-
tem and potential countermeasures to overcome these limitations are detailed in
Section 7. Finally, we conclude the paper with an outlook to our future research.

2 Related Work

The idea of using keystroke dynamics for user authentication is not new as
there have been a number of prior studies in this area for desktop computers.
Most of these studies have focused on static or context-independent dynamic
analysis using the inter-keystroke latency method for desktop keyboards only.
From the earliest studies in 1980 [5], the focus has been on the analysis of delay
between two consecutive keystrokes – also called digraph. Later studies [14],[20]
further enhanced the work by identifying additional statistical analysis methods
that provided more reliable results. This section briefly summarizes some of the
prominent research on keystroke based user identification.

One of the earlier works in the area of keystroke dynamics was accomplished
by Umphress and Williams [27] in 1985. They used digraphs as the underlying
keystroke biometric. However, they were only able to achieve an FAR of 6%.
In 1987, Williams and Leggett [17] further extended the work by: (1) increas-
ing the number of users in the study, (2) reducing experimental variables, and
(3) discarding inappropriate digraphs according to latency and frequency. They
managed to reduce the FAR to 5%.

Another extension of the above work was conducted in 1990 by Leggett et
al. [18]. While the results of the static procedure of entering a reference and
testing profiles achieved the same 5% FAR, they were the first ones to utilize the
concept of keystroke dynamics for doing verification in a dynamic environment.
They were able to achieve FAR of 12.8% and FRR of 11.1% using statistical
theory. In a study by Joyce and Gupta [14], the username was compared to
the particular profile for that user. The login had four components – username,
password, first name, and last name. Digraphs were then calculated and basic
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statistical method of means, variances, and standard deviations were used to
determine a match. Using this method, the FAR was just 0.25% but the FRR
was 16.67%. Bleha et al. [3], in 1990, used a different statistical method: the
Bayes classification algorithm. The verification system gave results of 8.1% for
FRR and 2.8% for the FAR. Regarding features’ set, no significant additions
occurred until 1997 when Obaidat and Sadoun [21] introduced key hold times
as another feature of interest. Currently, the most common and widely-known
application that uses keystroke dynamics technology is BioPassword [12]. To the
best of our knowledge, BioPassword is the only product available in the market
that has relatively wide usage.

These studies, however, have focused their research only on desktop com-
puters. Except for [7],[15], no work has been done on user identification using
keystroke dynamics on mobile phones. Clarke et al. [7] have used neural networks
to classify a user by using key hold time and inter-key latency. They performed
three sets of experiments on mobile phone emulators: (1) on PIN verification,
(2) on specific text, and (3) on phone number entry. They achieved FARs of 3%,
15% and 18% respectively for these three experiments, however FRRs were 40%,
28% and 29%, respectively.

3 Data Acquisition

As a first step towards developing a robust mobile phone user identification sys-
tem, we developed an application to log mobile keystroke data. We decided to
develop the application for Symbian OS 3rd Edition because: (1) it had a rela-
tively large customer base in our social network, and (2) it provides developers
with Application Programming Interfaces (APIs) to capture key events. The
application runs in the background so that a user can continue using his/her
mobile phone uninterruptedly. All keys pressed by a user are logged along with
the press/release times of the keys5. In addition to the regular keys, we also
log left soft key, right soft key, left arrow key, right arrow key, up arrow key,
down arrow key, joystick key, menu key, call dial key, call end key, back space
key, camera key, volume up key, volume down key, * key, and # key. A text file
containing all logged key events is stored in the phone memory and is periodi-
cally uploaded to our development server. The application was digitally signed
by Symbian Signed (http://www.symbiansigned.com) before deployment.

Despite security and privacy concerns shown by most volunteers, we were able
to convince 25 mobile phone users to volunteer for this study. The subjects of our
study have different socioeconomic backgrounds (see Table 1) that provides good
diversity in our dataset; we have teenagers, corporate executives, researchers,
students, software developers and even a senior citizen in our list of volunteers.

Another distinguishing feature of this dataset is that it is not a one prototype
model dataset and has been collected from a diverse set of Nokia mobile phones.
We have N-series, E-series and 6xxx series mobile phones all of which have
multiplexed keypad. This diversity in phone sets is important to ensure that
5 We used Active Objects to realize this functionality [2].
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Table 1. Feature table of 25 mobile phone users of this study (cv is coefficient of
variation)

Non- Non-
adjacent adjacent

Key Hold Horizontal Vertical Vertical Horizontal
Total Total Time Digraph Digraph Digraph Digraph

Nokia Social key hit key μ cv μ cv μ cv μ cv μ cv Error
Users model status profiles hits (ms) (sec) (sec) (sec) (sec) (%)

u1 N73 manager 17 4113 61.1 0.08 0.12 2.08 0.15 1.80 0.19 1.21 0.05 1.11 1.25
u2 N95 researcher 48 11901 83.1 0.01 0.32 0.87 0.33 0.87 0.24 1.79 0.09 1.23 3.07
u3 N81 student 12 2939 81.4 0.04 0.35 0.31 0.42 0.45 0.39 1.43 0.07 1.36 2.63
u4 6650 engineer 21 5011 131 0.02 0.26 0.88 0.34 0.38 0.18 1.77 0.13 0.82 0.93
u5 6120 teenager 34 8255 103 0.08 0.21 2.09 0.12 2.33 0.43 1.25 0.11 1.31 2.38
u6 N79 businessman 20 4919 25.3 0.16 0.32 1.68 0.17 3.05 0.53 0.45 0.14 1.23 8.47
u7 N73 student 30 7283 45.1 0.21 0.11 5.72 0.23 2.82 0.12 5.33 0.17 1.11 8.59
u8 6124 manager 33 8209 95.9 0.03 0.12 1.50 0.11 3.09 0.53 0.43 0.09 0.79 5.79
u9 N95 engineer 37 9211 83.2 0.04 0.31 2.45 0.61 0.39 0.32 1.03 0.05 1.09 4.10
u10 N82 advertiser 53 13193 76.6 0.04 0.21 0.62 0.42 0.59 0.52 1.46 0.08 1.23 6.55
u11 E51 student 27 6501 32.1 0.12 0.33 0.87 0.56 1.33 0.32 0.68 0.04 1.01 8.14
u12 6120 researcher 37 9028 67.3 0.03 0.18 1.66 0.82 0.42 0.54 0.62 0.11 0.92 7.85
u13 N81 student 41 10001 11.3 0.16 0.22 1.59 0.28 0.82 0.75 0.88 0.14 1.22 6.02
u14 N77 student 53 13022 35.6 0.07 0.24 1.37 0.48 1.56 0.35 1.22 0.19 0.86 2.47
u15 E65 engineer 55 13713 61.5 0.05 0.33 0.93 0.41 0.95 0.12 1.83 0.16 1.31 3.22
u16 N76 senior citizen 19 4744 15.9 0.13 0.71 0.33 0.86 0.75 0.43 1.55 0.13 0.87 2.37
u17 N81 manager 12 2900 42.1 0.07 0.54 1.40 0.28 1.25 0.65 0.35 0.08 2.01 11.2
u18 6121 engineer 48 11793 57.6 0.07 0.18 1.72 0.48 1.56 0.45 1.20 0.13 1.71 1.35
u19 6120 student 17 4011 21.7 0.01 0.21 3.38 0.19 2.94 0.19 1.21 0.07 1.52 1.21
u20 N73 researcher 47 11529 33.4 0.15 0.15 1.53 0.32 0.81 0.43 1.23 0.15 1.08 2.53
u21 N81 researcher 20 4992 76.3 0.02 0.66 0.51 0.64 0.67 0.64 0.35 0.15 0.57 1.33
u22 N73 director 27 6721 23.3 0.12 0.21 1.04 0.24 3.25 0.24 2.79 0.11 1.14 6.23
u23 N95 student 41 10132 68.2 0.08 0.63 0.61 0.53 0.66 0.15 2.26 0.14 1.16 8.43
u24 N81 researcher 39 9531 79.7 0.05 0.44 0.72 0.31 0.74 0.32 1.71 0.09 1.11 3.11
u25 6120 teenager 33 8193 17.5 0.38 0.25 0.64 0.45 1.66 0.74 0.31 0.07 1.23 2.31

the design of our system and its evaluation spans across a wide range of modern
mobile phones. The complete dataset is available at http://www.nexginrc.org.

For all the analysis provided later in the paper, we use a dataset of 25 users
spanning over 7 days. We quantify the keystrokes into a profile of 250 key-hits6

each, which we call a ‘Key hit profile’. Table 1 shows that people from different
walks of life have different number of key hit profiles in accordance with their
social status. We observe that students, teenagers and professionals use keyboard
of mobile phones aggressively while senior citizens and managers use keyboard
of mobile phone less frequently. For instance, users u10, u14, and u15 have more
than 50 key hit profiles while users u1, u3, u16, u17, and u19 make less than 20
key hit profiles over the same period of 7 days.

After successfully collecting the dataset, we started the next phase of our re-
search – systematically analyzing our raw data to extract useful features for user
identification. We observed that some people tend to type faster with less errors
as compared to others, while some others type very slowly which is uniquely
linked to their social status and age as shown in Table 1. Based on this prelimi-
nary analysis, we observed that if we can identify a keystroke dynamics feature
set that covers all aspects of a persons’ unique typing pattern, we can actually
identify the mobile phone user. Therefore, we extracted 6 features to correctly
identify a user – 2 of these features have been borrowed from the desktop domain
while the remaining 4 are customized for mobile phones’ multiplexed keypads.
A detailed discussion of this features’ set is provided in the next section.

6 A justification for this profile size is given during the discussion of experiments.
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4 Feature Selection and Study of Desktop-Based Schemes

In this section, we first analyze three well-known features that have been used for
user identification on desktop/laptop computers. We then customize these fea-
tures for mobile phones. Finally, we evaluate the accuracies of existing keystroke-
based user identification schemes in identifying mobile phone users.

4.1 Feature Selection

After collecting data of the mobile phone users, we extracted three features
from this data – key hold time, digraph, and error rate. These features have
been used for keystroke-based user identification for desktop/laptop computers
[17],[14]. However, their usability to identify a legitimate user on mobile phones
has not been explored before. These features are defined as:

Key hold time. The time difference between pressing a key and releasing it;

Digraph time. The time difference between releasing one key and pressing the
next one; and

Error rate. The number of times backspace key is pressed.

We observed that identifying a user based on these three features is less chal-
lenging on desktops because of a relatively distinguished feature vector for each
user. As an example, we installed a key-logging application on the laptops of
6 users for a period of 5 days. The plot of these three features extracted from
the desktop key logging data of 6 users is shown in Figure 1. It can be observed
that the features’ set on desktops is well segregated and poses a relatively simple
classification problem. However, once we extracted the same three features from
the mobile phone data of 25 users, their feature vectors are extremely diffused
as shown in Figure 1(a). Keystroke-based user identification problem is more
challenging on mobile phones because they generally have multiplexed keys in
a 4 × 3 matrix. In order to make the data less diffused, we split the feature
“digraph” into four types of digraphs as follows:
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Fig. 1. Plot of features’ variation for mobile and desktop



Keystroke-Based User Identification on Smart Phones 231

Horizontal Digraph (Da
h). This is the time elapsed between releasing a key

and pressing the adjacent key in the same horizontal row of keys, e.g. the time
between key 1 and key 2, key 5 and key 6, key 0 and key * etc.;

Vertical Digraph (Da
v). This is the time elapsed between releasing a key and

pressing the adjacent key in the same vertical column of keys, e.g. the time be-
tween key 1 and key 4, key 5 and key 8, key # and key 9 etc.;

Non-adjacent Horizontal Digraph (Dna
h ). This is the time elapsed between

releasing a key and pressing the next in the same horizontal row such that the
keys are separated by another key, e.g. time between key 1 and key 3, key 4 and
key 6, key * and key # etc.; and

Non-adjacent Vertical Digraph (Dna
v ). This is the time elapsed between

releasing a key and pressing the next in the same vertical column such that the
keys are separated by another key, e.g. the time between key 1 and key 7, key 0
and key 5, key 3 and key 9 etc.

Once we extracted these features, we calculated the coefficient of variation
(cv) for each feature to determine variation and randomness in the features’
data. From Table 1, we can observe that the coefficient of variation of the key
hold time feature for 25 different users is very small (order of 10−2) which high-
lights that users normally press keys for approximately the same length of time.
However, this parameter is significantly higher for digraph times. The coefficient
of variation of more than 1 shows large randomness in the data. Therefore, in
order to correctly classify a user based on this collective feature set, we need a
classifier that can identify classification boundaries for this highly varying data
which is a result of diffused usage patterns of different users.

4.2 Accuracy Evaluation of Existing Techniques

As a next logical step, we investigate the accuracy of existing classification
schemes, developed for desktop computers, on the mobile phones’ dataset. To this
end, we evaluate five prominent classifiers proposed in [24],[22],[13],[29],[8],[23].
These classifiers are quite diverse. Naive Bayes [24] is a probabilistic classifier;
while Back Propagation Neural Network (BPNN) [22] and Radial Basis Function
Network (RBFN) [13] belong to the category of neural networks. In comparison,
Kstar [8] is a statistical classifier and J48 [23] is a decision tree classifier. In order
to remove any implementation related bias, we have performed our experiments
in WEKA [29].

Ideally, we need a classifier that classifies a user as legitimate or imposter
with 100% accuracy. In our current accuracy evaluation setup, the errors are
of two types: (1) False Acceptance Rate (FAR) is defined as the probability
that an imposter is classified as a legitimate user, and (2) False Rejection Rate
(FRR) is defined as the probability that a legitimate user is classified as an
imposter.

The results of our experiments are tabulated in Table 2. We can see that the
existing classifiers provide an FAR of 30-40% which is not acceptable. Similarly,
FRR of most of the classifiers is approximately 30% or more and this again
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Table 2. A comparative study of techniques on the basis of key hold time, digraph,
and error percentage

Naive Bayes BPNN RBFN Kstar J48
Users FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

u1 51.1 6.31 56.2 12.4 33.2 9.31 13.2 22.1 44.3 39.2
u2 32.4 17.9 31.5 58.4 28.4 11.9 11.2 38.4 31.2 67.4
u3 42.1 11.6 45.3 19.6 22.5 11.2 34.2 11.5 44.3 26.4
u4 56.9 7.28 31.4 11.3 58.3 12.4 49.8 19.5 21.3 32.4
u5 33.1 36.6 44.2 24.5 45.2 21.4 32.1 31.3 33.4 25.8
u6 44.6 17.8 53.4 20.5 48.9 11.5 37.6 18.4 24.6 32.4
u7 40.2 21.3 45.6 18.9 36.7 21.4 43.1 33.4 21.2 24.8
u8 29.8 58.2 37.5 23.6 68.9 18.9 44.6 26.5 24.6 32.1
u9 27.3 62.7 40.4 44.2 44.1 31.3 24.6 21.3 44.3 38.5
u10 24.5 63.2 36.7 72.4 30.9 43.2 27.6 53.2 42.1 79.6
u11 41.6 18.9 42.1 19.6 23.5 12.3 23.2 31.2 21.7 34.5
u12 33.1 37.3 42.1 28.5 33.2 33.5 31.2 43.2 43.8 73.5
u13 32.1 53.4 42.6 61.3 19.5 54.3 24.6 34.2 19.5 75.2
u14 22.5 63.5 28.9 23.1 33.5 31.3 26.6 21.5 43.5 39.3
u15 21.5 38.8 33.4 78.9 20.4 59.6 21.3 31.2 12.4 81.2
u16 43.1 35.8 56.7 19.6 67.5 15.6 52.3 33.4 21.7 30.4
u17 49.6 11.9 61.3 12.4 39.4 13.7 34.6 28.5 41.2 23.2
u18 29.8 63.4 31.2 73.2 34.5 35.6 28.7 39.2 23.5 34.6

u19 52.4 4.16 64.7 13.2 37.4 15.8 38.6 30.5 47.7 32.4
u20 29.8 13.2 22.5 38.6 33.3 66.7 27.9 35.4 33.2 28.3
u21 39.8 19.7 53.7 19.2 28.5 19.8 32.3 31.2 31.4 25.3
u22 39.1 35.6 39.6 44.2 22.1 33.1 19.4 31.3 19.4 28.5

u23 30.9 23.3 28.6 26.7 21.8 32.1 12.5 43.2 23.4 55.3
u24 33.5 21.3 41.4 21.4 31.2 24.1 18.4 22.3 16.4 39.2
u25 42.5 19.7 29.6 19.6 38.2 22.4 21.3 38.2 19.4 18.3

average 36.9 30.5 41.6 32.2 36.0 26.5 29.2 30.8 29.9 40.7
standard deviation 9.50 19.9 11.1 20.8 13.5 15.7 11.0 9.22 10.9 19.2

confirms that their accuracies are not acceptable for real-world deployments
because such a high FRR will simply frustrate legitimate users.

4.3 Discussion

The main reason for poor FAR and FRR performance of these classifiers is that
they are unable to cope with the variation in the feature set that was highlighted
by cv in the previous section. Thus an important outcome of this pilot study is
that we need to design a classifier for our user identification and authentication
system that should meet the following requirements: (1) it should provide low
(< 5%) FAR, (2) it should also provide low (< 5%) FRR, (3) it must have small
detection time to correctly classify a user, (4) the system must be deployable
on real mobile phones, (5) it should continuously adapt to the variation in the
feature set, and (6) it should have low run-time complexity.

Requirement (1) ensures that an imposter does not go undetected. Once this
requirement is combined with requirement (3), we reduce the identification delay
on a mobile phone. Requirement (2) is important because if our system starts
rejecting the legitimate users, it will lead to their frustration and annoyance and
the system will lose its usability appeal. Finally requirement (6) is important
because a highly complex system can not be deployed on resource constrained
mobile phones.

The following section develops a classifier that can simultaneously meet all of
the above requirements.
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5 A Tri-mode System for Mobile Phone User
Identification

Based on the results of the last section, we propose a tri-mode system for mo-
bile phone user identification. To simultaneously cater for the requirements set
above, the system operates in three sequential modes.

Learning Mode. This mode can be further divided into two submodes: initial
(static) learning and continuous (dynamic) learning. In the static learning phase,
a keystroke profile of a user is collected and a feed-forward classifier is trained
on this profile. The dynamic learning phase executes continuously to track and
learn changes in the user’s behavior. These changes are fed back into the feed-
forward detector to allow it to adapt to variations in the user’s behavior.

Detection Mode. In the detection mode, the classifier trained during the learn-
ing mode is used to differentiate between legitimate users and imposters. If the
detector raises an alarm during this mode, the system moves to the verification
mode.

Verification Mode. In the verification mode, a user is asked to type a remem-
bered 8-character PIN. In the verification mode, we not only compare the typed
characters with the stored PIN but also match how the PIN has been typed. In
the worst case, when an imposter already knows the PIN, the imposter would
still have to enter the PIN using the legitimate user’s keystroke dynamics. This
mode acts as a final line of defence against an imposter who has successfully
breached every other protection layer.

Interested readers can find all the technical details and algorithms used in the
development of this tri-mode system in [25]. In subsequent sections, we give a
general overview of the algorithms used in each of the modes described above.

5.1 Algorithms in Learning and Detection Modes

Previous results showed that, due to the variation in the feature-set of differ-
ent users, standard machine learning classifiers cannot provide acceptable error
rates for the present problem of keystroke-based mobile phone user identifica-
tion. Specifically, variation in the features’ set results in a diffused dataset and
consequently it is not possible to assign crisp classification boundaries to differ-
ent users. A study of existing classifiers reveals that classifiers based upon fuzzy
logic [30] are well-suited for such problem. Fuzzy classifiers can provide accept-
able accuracies on diffused datasets because they assign a given data point a
degree of membership to all available classes. The primary task of fuzzy clas-
sification is to determine the boundaries of the decision regions based on the
training datapoints. Once the class-labeled decision regions in the feature space
are determined, classification of an unknown point is achieved by simply iden-
tifying the region in which the unknown point resides. Since fuzzy logic assigns
each data point a degree of membership to different decision regions instead of
a single association to one decision region (thus showing inherent capability to
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deal with fuzzy/diffused datasets), we expect a fuzzy classifier to provide an
accurate and efficient learning mechanism for the diffused mobile phone feature-
set. The remainder of this section develops and evaluates a fuzzy classifier for
mobile phone user classification.

Initial Learning using a Feed-Forward Fuzzy Classifier. We are work-
ing on a two-class classification problem as we need to distinguish between a
legitimate user and an imposter. A fuzzy system is based on a database, rule
base, and a fuzzy inference system. The database is composed of linguistic vari-
ables, fuzzy partitions, and membership functions. We now describe our fuzzy
clustering algorithm and then evaluate its accuracy on the mobile keystrokes
dataset.

In order to determine an initial rule base for fuzzy system, we define the cen-
troid of a cluster in the form of (x1, x2, . . . , xz), where x1, x2, . . . , xz are the
values of the first, second, . . . , zth feature, respectively, where z is the dimen-
sion of the feature vector. It is mentioned earlier that we use z = 6 features.
For a given data point, we search its value in the corresponding fuzzy sets, de-
termine its degree of membership to each fuzzy partition and then assign the
point to the partition with the maximum degree of membership. To determine
the consequent of a rule, we find the density of the cluster of the centroid for
which we are defining an antecedent of the rule. If a cluster has high, medium
or low density then the output belongs to the fuzzy partitions high, medium or
low, respectively, in the consequent of the rule. We repeat this procedure for all
training data points to define a rule-base using the centroids of all the clusters.

To give a preliminary indication of the accuracy of the first phase of our pro-
posed system, the FAR and FRR values of the fuzzy classifier are shown in Table
3. FAR and FRR of approximately 18.6% and 19.0%, respectively – much better

Table 3. A comparative study of the feasible techniques

RBFN Fuzzy PSO-Fuzzy GA-Fuzzy PSO-GA Fuzzy
Users FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

u1 33.2 9.31 18.1 19.3 8.34 7.55 8.32 8.54 2.13 1.76

u2 28.4 11.9 17.3 21.6 9.63 6.43 8.73 8.11 1.61 0.82

u3 22.5 11.2 21.3 17.5 7.43 9.22 6.34 7.63 2.14 1.71

u4 58.3 12.4 17.6 16.2 7.92 8.74 8.91 6.19 1.19 1.56

u5 45.2 21.4 18.3 15.3 8.73 6.12 7.43 8.11 1.87 2.01

u6 48.9 11.5 17.1 18.2 9.54 9.01 8.63 7.23 2.01 2.33

u7 36.7 21.4 18.9 19.9 6.94 5.91 7.23 3.71 1.46 2.15

u8 68.9 18.9 21.6 21.4 7.22 6.42 8.34 9.73 2.14 1.61

u9 44.1 31.3 19.3 19.8 9.02 6.71 9.84 7.29 3.34 1.14

u10 30.9 43.2 17.3 21.2 11.4 9.13 10.1 8.92 1.73 1.28

u11 23.5 12.3 18.3 22.1 7.44 8.21 9.23 9.31 2.43 1.86

u12 33.2 33.5 16.2 17.2 5.22 9.42 9.31 8.22 1.71 1.92

u13 19.5 54.3 19.7 18.1 8.23 6.12 8.34 9.31 3.44 1.81

u14 33.5 31.3 17.3 16.4 9.15 9.84 8.91 8.34 1.29 1.38

u15 20.4 59.6 17.3 16.3 7.97 8.92 7.25 8.81 3.37 1.95

u16 67.5 15.6 18.1 16.9 6.95 7.01 6.33 9.42 2.31 2.11

u17 39.4 13.7 19.2 14.5 9.12 9.21 8.93 7.71 1.82 2.04

u18 34.5 35.6 19.1 22.4 10.1 7.01 11.3 8.73 1.01 1.72

u19 37.4 15.8 15.1 26.8 6.02 5.17 9.61 7.29 1.21 1.04

u20 33.3 66.7 17.5 18.1 9.14 5.95 7.21 6.32 2.04 1.33

u21 28.5 19.8 22.1 17.2 7.05 5.11 8.87 9.82 1.41 2.38

u22 22.1 33.1 19.2 15.5 6.21 9.31 9.94 9.63 2.12 2.24

u23 21.8 32.1 19.8 22.6 9.11 8.01 12.1 8.24 2.02 2.92

u24 31.2 24.1 16.6 21.8 6.22 6.16 10.4 7.31 3.11 1.14

u25 38.2 22.4 22.1 19.3 8.34 8.91 8.22 4.72 2.97 1.19

Avg 36.0 26.5 18.6 19.0 8.09 7.58 8.79 7.94 2.07 1.73

standard deviation 13.5 15.7 1.86 3.00 1.47 1.55 1.46 1.56 0.73 0.47
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compared with existing classifiers in Table 2 – are still far from acceptable. These
accuracy results do not meet the requirements that we have set for our system.
In our performance evaluation, we observed that the main accuracy limiting fac-
tor for the fuzzy classifier was the dynamically changing keystroke behavior of
mobile phone users. Thus the performance of the feed-forward fuzzy classifier
can be improved if we use an online dynamic optimizer that can dynamically
track and provide the changing feature trends as feedback into the fuzzy system.

Prior work has shown that Particle Swarm Optimization (PSO) and Genetic
Algorithms (GAs) have the capability to adapt with changes in datasets [10],[4].
Therefore, in subsequent sections, we study the effect of incorporating a PSO-
and GA-based optimizer into the fuzzy classifier.

Continuous Learning using Dynamic Optimizers. As mentioned above,
after an initial rule base is generated, we use Particle Swarm Optimization (PSO)
and Genetic Algorithms (GAs) to adapt the rule base to dynamically varying
user keystoke behavior.

Particle Swarm Optimization (PSO). The main idea of PSO [16] is to use
a swarm of agents that is spread on the landscape of search space, and these
agents, through local interactions, try to find an optimal solution to the problem.
The characteristic that makes PSO successful is the communication between the
agents which allows agents to converge to the best location. Table 3 tabulates the
results of our fuzzy classifier optimized using PSO. It can be seen that the FAR
and FRR values have improved significantly to approximately 8% (averaged).
However, even after this improvement, a system with an error rate of around 8%
is not usable in the real-world.

Genetic Algorithm (GA). Genetic algorithms are well-known for providing
acceptable solutions to dynamic optimization problems [4]. Unlike PSO, GA
does not utilize feedback explicitly; rather, it uses genetic operators of selection,
crossover and mutation to find the best solution. Use of GA reduces error rate
to approximately 8% (averaged) which is almost the same as obtained by the
fuzzy classifier optimized using PSO.

Hybrid PSO-GA. PSO utilizes the concept of feedback and GA uses the diver-
sity achieved by randomness. Both of these optimizers have improved FAR and
FRR considerably. If we can somehow combine the concept of feedback with
randomness, theoretically the accuracy of our fuzzy classifier should improve.
For this scenario, we use PSO and GA together for optimizing the database and
rule base of the feed-forward fuzzy classifier. The results of the fuzzy classifier
optimized by a hybrid PSO-GA optimizer are tabulated in Table 3. It can be
seen that the FAR and FRR have improved substantially to approximately 2%;
as a result, our hybrid system is able to meet the accuracy requirements set
earlier.

Another important thing to mention here is the standard deviation of the
results. The standard deviation of our proposed hybrid PSO-GA-Fuzzy system
is only 0.73% for FAR and 0.47% for FRR which is negligible. We have repeated
the experiments for our scheme 500 times and the confidence interval of our
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results is 95% using the t-distribution. This shows that the results produced
by our system are statistically significant and the variation in the results is
significantly small.

5.2 Algorithm in Verification Mode

If the detection mode raises an alarm, the system moves to the verification mode.
In this mode, we ask the suspicious user to enter a remembered 8-character
PIN. During the PIN entry process, we observe his/her keystroke patterns and
conclude whether or not the current user is an imposter. In this mode, the system
extracts three features – key hold time, digraph (irrespective of the position of
keys), and error rate – from the key log of the PIN entry process. Note that here
we use only three features because we have empirically determined that these
features are sufficient to achieve approximately 0% error rate.

We have also empirically concluded a rule: if a potential imposter passes the
test twice in three attempts, we declare him/her a legitimate user. We have
arrived at this configuration by running a controlled experiment. We asked 10
of our colleagues to enter their PINs 30 times for training. After training, we
asked all of these 10 colleagues to enter their passwords 5 times. We observed
that each of them was able to enter his/her password with correct behavior at
least two out of the first three attempts. Later, we selected three imposters for
each of those 10 colleagues and told them the correct passwords of respective
legitimate users. We again requested imposters to enter the password 5 times
and it was interesting to note that none of them was able to successfully enter
the password with a correct keystrokes pattern even once.

For PIN verification, we have designed a simple, efficient and accurate classifier
specifically for keystroke dynamics. The motivation behind developing a new
classifier for PIN verification mode was that in case of PIN verification we already
know the correct PIN and consequently we know what to expect from the user.
Thus a classifier with significantly small computational complexity can perform
this task. Our classifier dynamically assigns an impression coefficient (iC) to
a user on the basis of his/her PIN typing pattern. We argue that a legitimate
user is less likely to commit a mistake while entering his/her PIN; therefore,
committing a mistake during the PIN entry process counts negatively towards
the possibility that the current user is the legitimate user. We calculate the
difference between the key hold times of keys of current profile with the key
hold times of all the corresponding keys of the standard profiles of a user and
then sum up all these differences to find the overall difference in the key hold
time. Similarly, we find an overall difference in the digraph time. Finally, we sum
overall key hold time difference and digraph difference to define the impression
coefficient of PIN entry process. If a user commits a mistake during the PIN
entry process, we penalize him/her for each error by adding l milliseconds to the
overall difference value.

Theoveralldifference is comparedwitha thresholdvalue that is alsodynamically
calculated. If iC of a user is larger than this threshold value, we classify him as an
imposter otherwise he/she is a legitimate user. It is important to emphasize that
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we do not train our system with imposters’ profiles. The mathematical explanation
of our proposed classifier is given in the following text.

The size of the PIN is s characters, the number of keys pressed by the user
to enter s characters is represented by t, and the number of training profiles is
represented by n. P k is a matrix consisting of n rows corresponding to n training
profiles and t columns corresponding to t key hold times. Puk is a row vector
of t columns; each column corresponds to a key hold time for a key press in an
unknown profile. Dk, similarly, is a matrix of dimensions n× t − 1 for digraph
times obtained from training profiles and Duk is a row vector of t− 1 columns
representing the digraph times of an unknown user. The mathematical model is
given in following equations:
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k
mj ∈ Dk; duk

j ∈ Duk; and e represents
the number of backspaces during PIN entry. Moreover, if iC ≥ μ + aσ then the
user is classified as an imposter; otherwise the user is classified as a legitimate
user. We have empirically determined that values of l = 5 and a = 3 provide
0% error. The following section evaluates the accuracy of the proposed tri-mode
system for varying system parameters.

6 Performance Evaluation

In this section, we first evaluate the accuracy of the proposed system for a
fixed training profile. We then systematically evaluate the system’s performance
for different parameters. Specifically, we chronologically answer the following
questions: (1) What is the accuracy of the system for a fixed profile?, (2) What
is the impact of number of profiles on the accuracy of our system?, (3) What is
the relationship between the size of a profile and the accuracy of our system?, (4)
What is the average user identification delay in terms of mobile phone usage (we
report it in terms of the number of SMSs)?, (5) How much damage an imposter
can do in 250 keystrokes?, and (6) What are the training and testing times of
our system?

What is the accuracy of the system for a fixed profile? The accuracy of
our system can be viewed from the Table 4. It can be seen that our tri-mode
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Table 4. Accuracy results after detection mode and verification mode for a fixed profile
size of 250 keystrokes

After After After After
Detection Verification Detection Verification

Mode Mode Mode Mode
Users FAR FRR FAR FRR Users FAR FRR FAR FRR

u1 2.13 1.76 2.13 0 u2 1.61 0.82 1.61 0
u3 2.14 1.71 2.14 0 u4 1.19 1.56 1.19 0
u5 1.87 2.01 1.87 0 u6 2.01 2.33 2.01 0
u7 1.46 2.15 1.46 0 u8 2.14 1.61 2.14 0
u9 3.34 1.14 3.34 0 u10 1.73 1.28 1.73 0
u11 2.43 1.86 2.43 0 u12 1.71 1.92 1.71 0
u13 3.44 1.81 3.44 0 u14 1.29 1.38 1.29 0
u15 3.37 1.95 3.37 0 u16 2.31 2.11 2.31 0
u17 1.82 2.04 1.82 0 u18 1.01 1.72 1.01 0
u19 1.21 1.04 1.21 0 u20 2.04 1.33 2.04 0
u21 1.41 2.38 1.41 0 u22 2.12 2.24 2.12 0
u23 2.02 2.92 2.02 0 u24 3.11 1.14 3.11 0
u25 2.97 1.19 2.97 0 Avg 2.07 1.73 2.07 0
SD 0.73 0.47 0.73 0 — — — — —

system achieves 0% FRR and approximately 2% FAR after the verification mode.
0% FRR indicates that our system is completely user friendly and never rejects
a legitimate user. It also has a very low FAR as compared to other techniques.

What is the impact of number of profiles on the accuracy of our sys-
tem? Scalability analysis is important to determine the minimum number of
profiles/keystrokes required to achieve acceptable accuracy. We take the users
with the most number of profiles (u10, u14, and u15) for our scalability analysis
and tabulate the results in Table 5. Note that each profile is made up of 250
keys. The results in Table 5 suggest a gradual, almost linear decrease in FAR and
FRR as we increase the number of training profiles up to 50. This shows that as
the number of training profiles increases, the accuracy of our system increases.

What is the relationship between the size of a profile and accuracy of
our system? For the same users (u10, u14, and u15,) we now take 50 profiles
of each user and study the relationship between FAR and FRR and the size of
a profile. These results are also tabulated in Table 5. It is obvious from Table 5
that FAR and FRR values degrade for small size profiles, however, for a profile
of 250 keys, the error rates on average are 2%. It can also be seen that increasing
the size of profile from 250 to 350 keys further improves the detection accuracy
but the improvement is not much significant; therefore, we use a profile of 250
keys. Note that increasing the size of profile not only increases the detection ac-
curacy but also the time required to make a profile. Our aim is to get reasonable
detection accuracy with as small a profile size as possible. Profile size of 250 keys
satisfies the criteria.

Table 5. Relationship of number of training profiles and size of a profile with error
rates

Number of profiles (Profile Size = 250) Size of profile (Number of Profiles = 50)
20 30 40 50 150 200 250 300 350

Users FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

u10 2.32 1.99 2.01 1.51 1.93 1.35 1.74 1.29 11.2 7.28 4.98 3.45 1.74 1.29 1.45 1.11 1.10 1.01

u14 3.21 2.21 1.97 2.01 1.77 1.78 1.30 1.40 9.21 8.12 4.11 4.01 1.30 1.40 1.03 1.21 0.97 1.11

u15 5.89 3.13 5.11 2.72 4.01 2.11 3.39 1.98 17.8 11.5 9.62 6.22 3.39 1.98 2.87 1.23 1.91 0.99
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Table 6. User identification delay

Avg Avg Avg Avg Avg Avg Avg
SMSs / SMSs / SMSs / SMSs / SMSs / SMSs / SMSs /

Users Profile Users Profile Users Profile Users Profile Users Profile Users Profile Users Profile

u1 1.06 u2 1.44 u3 1.25 u4 1.09 u5 1.26 u6 0.65 u7 1.03
u8 1.03 u9 1.11 u10 1.34 u11 1.04 u12 1.27 u13 1.32 u14 1.39
u15 1.33 u16 0.16 u17 1.17 u18 1.15 u19 1.00 u20 1.43 u21 1.25
u22 1.22 u23 1.24 u24 1.13 u25 1.30 — — — — — —

What is the user identification delay? Table 6 shows the average number
of SMS a user types in a single profile. Remember our system tries to classify a
user after every 250 keystrokes using the keystrokes features’ set. It can be seen
from Table 6 that on the average a profile of 250 keystrokes is generated once
a user sends just 1 SMS. So our detection delay is bounded by the time within
which a user sends an SMS. Detection delay is not a significant problem if the
objective of an imposter is to steal the mobile phone. However, this delay will
become very crucial if an imposter wants to steal information from the mobile
phone. We invoke the verification mode of our system to disallow an imposter
to transmit data from the mobile phone.

How much damage can an imposter do in 250 keystrokes? We have done
an interesting study in which we requested 4 of our colleagues in the virology
lab to act as imposters on a trained mobile phone to get an understanding of
how much data they can read in a given document. (Remember that they cannot
upload or copy the data because of the verification mode). We downloaded the
current paper (20 pages long) on a smart phone and told the imposters the exact
directory path of the paper. (Remember that it is the best case scenario for an
imposter; otherwise, he needs to press more keys to search a document). We
asked them to find the line “and the system will lose its usability appeal” in the
paper that happens to be on page 9. We tabulate the number of keys pressed by
each of them in Table 7 to locate the required information. It is interesting to
note that, even in this best case scenario, only one of them was able to locate
the information within 250 keystrokes. We have also done an interesting study
to understand that how far different imposters can scan the given document in
250 keystrokes. i4 appears to be a smart imposter who manages to reach page 14
in 250 keystrokes. Most of the users pressed 250 keystrokes in 8 to 15 minutes.

What are the training and testing times of our system? We now analyze
the training and testing times of different classifiers in Table 8. The training
time of our classifier is 28 seconds, but our testing time is just 520 milliseconds.
Thus, while the system’s run-time complexity is comparable to other existing
algorithms, its training complexity is significantly higher. The main source of this

Table 7. Analysis showing the number of keystrokes to perform the task

Number of Keys Page # Number of Keys Page #
to Perform After to Perform After

Imposters the Task 250 Keys Imposters the Task 250 Keys

i1 332 7 i2 442 6
i3 297 8 i4 189 14



240 S. Zahid et al.

Table 8. The processing overheads of classifiers on an old 233MHz, 32MB RAM
computer

Algorithm Train Test Algorithm Train Test Algorithm Train Test
(secs) (secs) (secs) (secs) (secs) (secs)

PSO-GA Fuzzy 28 0.52 Naive Bayes 0 0.52 BPNN 4.8 2.0
RBFN 0.41 0.42 Kstar 8 0.21 J48 0.23 0.22

complexity are the back-end dynamic optimizers used in our system. However, we
emphasize that training complexity needs to be incurred very infrequently after
every 5 training profiles (usually after a few hours). Moreover, unlike desktop
computers, mobile phones remain idle much of the time and the retraining can
be performed during these inactivity periods.

7 Limitations and Potential Countermeasures

We now highlight the important limitations and countermeasures of our system.

Identification delay period. Our system can detect an imposter after observ-
ing a minimum of 250 keystrokes. The identification delay is hence a function of
the imposters keyboard usage. We argue that an imposter’s keyboard usage can
belong to one of the following two types: (1) he/she wants to get access to the
sensitive information/documents on the phone, and (2) he/she wants to steal
the mobile phone. In the first case, the imposter must try to quickly get access
to the sensitive information and, as a result, the time to generate a profile of 250
keystrokes, as mentioned before, will reduce to 10-15 minutes. If the imposter
is of the second type, then our system will detect him/her after 250 keystrokes
through our PIN verification procedure.

Accuracy is sensitive to the number of profiles. Another shortcoming of
our approach is that it requires a cold start of 30 or more profiles to accurately
learn the behavior of a user. In this time period, the system might suffer from
relatively high FAR and FRR which are still comparable with the existing tech-
niques (see Tables 2 and 5). But our system provides significantly better FAR
and FRR after collecting just one week of training data, which we believe is
quite reasonable.

Portability to full keyboard smart phones. We have not tested our proto-
type on BlackBerry category of phones that have QWERTY keyboards. While
we believe that the results of our system will scale to these phones, we are
currently soliciting volunteers with full keyboard Nokia phones for testing and
evaluation.

Relatively large training time. Our systems takes 28 seconds on the average
once we retrain it after every 5 profiles. During these 28 seconds after every
few hours, the response time of the mobile phone degrades which might result
in some annoyance to the user. We argue that this cost is worth the benefit of
very low FAR and FRR values of our system. Moreover, as suggested earlier, the
retraining module can be customized to execute during inactivity periods.
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Table 9. Improvement shown by Hybrid PSO-GA Fuzzy system over the other
classifiers

%Improvement %Improvement
Algorithm FAR FRR Algorithm FAR FRR

Naive Bayes 94.4 94.3 BPNN 95.0 94.6
RBFN 94.2 93.5 Kstar 92.9 94.4
J48 93.1 95.7 Fuzzy 88.8 89.1

PSO-Fuzzy 74.4 77.2 GA-Fuzzy 76.4 78.2

Resilience to reinstalling OS. A savvy imposter may reinstall the OS on the
phone, thus circumventing our system. This is a common limitation for all host-
based intrusion detection systems. A solution to this problem is OS virtualization
which is computationally infeasible on contemporary mobile phones.

8 Conclusion and Future Work

We have proposed a user identification system that monitors the keystroke dy-
namics of a mobile phone user to differentiate legitimate users from imposters.
We have used a custom dataset of 25 diverse mobile phone users to show that
the proposed system can provide an error rate of less than 2% after the detec-
tion mode and an FRR of close to zero after the PIN verification mode. We
have also compared our approach with 5 state-of-the-art existing techniques for
keystroke-based user identification. Table 9 shows percentage improvement of
our scheme compared to the existing schemes on our dataset. In future, we in-
tend to incorporate our system in a Symbian mobile phone and then evaluate
its accuracy on-line under real-world usage circumstances. Interested researchers
can also work on the modification of the proposed system for its portability to
the mobile phones with QWERTY keyboards.
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Abstract. Due to the rapid advancement of mobile communication
technology, mobile devices nowadays can support a variety of data ser-
vices that are not traditionally available. With the growing popularity
of mobile devices in the last few years, attacks targeting them are also
surging. Existing mobile malware detection techniques, which are often
borrowed from solutions to Internet malware detection, do not perform
as effectively due to the limited computing resources on mobile devices.

In this paper, we propose VirusMeter, a novel and general malware de-
tection method, to detect anomalous behaviors on mobile devices. The
rationale underlying VirusMeter is the fact that mobile devices are usu-
ally battery powered and any malicious activity would inevitably consume
some battery power. By monitoring power consumption on a mobile de-
vice, VirusMeter catches misbehaviors that lead to abnormal power con-
sumption. For this purpose, VirusMeter relies on a concise user-centric
power model that characterizes power consumption of common user be-
haviors. In a real-time mode, VirusMeter can perform fast malware detec-
tion with trivial runtime overhead. When the battery is charging (referred
to as a battery-charging mode), VirusMeter applies more sophisticated
machine learning techniques to further improve the detection accuracy.
To demonstrate its feasibility and effectiveness, we have implemented a
VirusMeter prototype on Nokia 5500 Sport and used it to evaluate some
real cellphone malware, including FlexiSPY and Cabir. Our experimental
results show that VirusMeter can effectively detect these malware activi-
ties with less than 1.5% additional power consumption in real time.

Keywords: mobile malware, mobile device security, anomaly detection,
power consumption.

1 Introduction

With the ever-improving chip design technology, the computing power of micro-
processors is continuously increasing, which enables more and more features on
mobile devices that were not available in the past. For example, today many
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cellphones come with various data services, such as text messaging, emailing,
Web surfing, in addition to the traditional voice services. Due to their all-in-one
convenience, these increasingly powerful mobile devices are gaining a lot of pop-
ularity: It has been expected a mobile population of 5 billion by 2015 [1] and out
of 1 billion camera phones to be shipped in 2008, smartphones represent about
10% of the market or about 100 million units [2]. Moreover, the new generation
of mobile devices provide a more open environment than their ancestors. They
now can not only run sandbox applications shipped from original manufacturers,
but also install and execute third-party applications that conform to the norms
of their underlying operating systems.

The new features brought by exotic applications, although rendering mobile
devices more attractive to their users, also open the door for malicious attacks.
By the end of 2007, there were over 370 different mobile malware in the wild [21].
The debut of Cabir [3] in 2004, which spreads through Bluetooth connections, is
commonly accepted as the inception of modern cellphone virus [4]. Since then, a
number of malware instances have been found exploiting vulnerabilities of mo-
bile devices, such as Cabir [9] and Commwarrior [8]. These mobile malware have
created serious security concerns to not only the mobile users, but also the net-
work operators, such as information stealing, overcharging, battery exhaustion,
and network congestion.

Despite the immense security threats posed by mobile malware, their detec-
tion and defense is still lagging behind. Many signature- and anomaly-based
schemes for IP networks have been extended for mobile network malware de-
tection and prevention [12,30,31]. For example, Hu and Venugopal proposed to
extract signatures from mobile malware samples and then scan network traffic
for these signatures [20]. Similar to their counterparts on IP networks, however,
signature-based approaches can easily be circumvented by various techniques,
such as encryption, obfuscation, and packing. On the other hand, anomaly-based
detection schemes often demand accurate and complete models for normal states
and are thus prone to high false alarm rates.

Recently, behavioral signatures have also been proposed for mobile malware
detection [10]. They have their own limitations. On one hand, monitoring API
calls within an emulated environment and running sophisticated machine learn-
ing algorithms for detection are hardly practical for resource-constrained mobile
devices due to high detection overhead, not mentioning that most manufactur-
ers do not publicize all relevant APIs on commodity mobile devices. On the
other hand, stealthy malware can mimic user behavior or hide its activities
among normal user activities to evade detection by API tracking. For example,
FlexiSPY[5]-like malware that perform eavesdropping does not show anomalies
in the order of relevant API calls, since they are typically implemented as if the
user has received an incoming call. To detect energy-greedy malware and variants
of existing malware, Kim et al. proposed to use power signatures based on sys-
tem hardware states tainted by known malware [22]. Their approach, however,
is mainly useful for detecting known malware and their variants.
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In this study, we propose VirusMeter, a novel and general mobile malware
detection method, to detect malware on mobile devices without demanding ex-
ternal support. The design of VirusMeter is based on the fact that mobile de-
vices are commonly battery powered and any malware activity on a mobile device
will inevitably consume battery power. VirusMeter monitors and audits power
consumption on mobile devices with a behavior-power model that accurately
characterizes power consumption of normal user behaviors. Towards this goal,
VirusMeter needs to overcome several challenges. First, VirusMeter requires a
power model that can accurately characterize power consumption of user be-
haviors on mobile devices, but such a model is not readily available as yet.
Second, VirusMeter needs to measure battery power in real time. Existing re-
search however shows that precise battery power measurement is difficult due to
many electro-chemical properties. In addition, although in practice mobile de-
vices commonly have battery power indicators, their precision varies significantly
from device to device. Examining the battery capacity frequently also incurs high
computational overhead, rendering it hardly practical in reality. Third, as Virus-
Meter aims to run on on-the-shelf mobile devices without external support, it
must be lightweight itself, without consuming too much CPU (and thus battery
power); otherwise, it can adversely affect the detection accuracy.

To overcome these challenges, we design a user-centric power model that, as
opposed to a system-centric model which requires in-depth understanding of
various system-level behaviors and states, has only a small number of states
based on common user operations. VirusMeter is designed to run in two modes:
It, when in a real-time detection mode, performs fast malware detection, but
when in a battery-charging mode, applies advanced machine learning techniques
to detect stealthy malware with high accuracy.

To demonstrate its feasibility and effectiveness, we implement a VirusMeter
prototype on Nokia 5500 Sport and evaluate its performance with real-world
smartphone viruses including Cabir and FlexiSPY. The results show that Virus-
Meter can effectively detect the malware by consuming less than 1.5% additional
power in a real-time mode. In a battery-charging mode, VirusMeter, by using
advanced machine learning techniques, can considerably improve the detection
rate up to 98.6%.

The remainder of the paper is organized as follows. Some related work is
presented in section 2. We overview the VirusMeter design in section 3. We
present our model designs, data collection, and model checking for VirusMeter
in sections 4, 5, 6, respectively. We present our implementation in section 7 and
evaluation results in section 8. We discuss some limitations and future work in
section 9 and make concluding remarks in section 10.

2 Related Work

The increasing popularity of mobile devices with faster microchips and larger
memory space has made them a lucrative playground for malware spreading.
Existing studies [21] show that there are more than 370 mobile malware in the
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wild. As Symbian occupies the largest cellphone OS market share, it has been tar-
geted by most of these mobile malware. Different approaches have been employed
to classify existing mobile malware. For instance, mobile viruses have been clas-
sified based on their infection vectors, such as Bluetooth, MMS, memory cards,
and user downloading [13,21]. Currently, user downloading, Bluetooth, and MMS
are the most popular channels for mobile malware propagation. Several studies
on mobile malware have focused on understanding their propagation behaviors.
For example, an agent-based model has been developed to study worms spread-
ing over short-range radio and cellular messaging systems [11]. A probabilistic
queuing model is proposed for the spreading of mobile worms over wireless con-
nections [23], and a detailed mathematical model is also developed in [32] to
characterize specifically the propagation process of Bluetooth worms. To detect
Bluetooth worm outbreaks, Su et al. proposed to deploy monitors in high-traffic
areas [29]. To simulate worm propagation in mobile phone networks, Fleizach et
al. [17] developed a simulator with great details, including realistic topologies,
provisioned capacities of cellular networks, and realistic contact graphs.

Some early studies on defense schemes against mobile malware have mainly
focused on understanding their attack characteristics. For example, various po-
tential attacks from a compromised cellphone and the corresponding defenses
have been studied [15,16,19,26]. An algorithm based on user interactions is pro-
posed to identify vulnerable users [12]. In [30], several schemes have been studied
to mitigate DoS attacks via queuing in the network. To prevent cross service
boundary attacks, a labeling technique is used to separate the phone interface
from the PDA interface of a mobile device [24]. Sarat et al. [27] proposed to
integrate commonwalk lengths and node frequencies to detect worms and deter-
mine their propagation origins. Recently, SmartSiren [13] showed how to use a
proxy to detect malware by analyzing collected user communication logs. Bose et
al. [10] proposed to extract behavioral signatures for mobile malware detection.

So far, existing schemes either have limited effectiveness by targeting particu-
lar situations (such as attacks through SMS), and/or demand significant infras-
tructure support, and/or demand non-trivial computing resources from mobile
devices. By contrast, VirusMeter is a general approach, regardless of how mal-
ware invade into a system or whether they are known in advance. VirusMeter is
also lightweight and can run on a mobile device without any external support.
A previous approach that also aims to detect energy-greedy anomalies [22] is
closest to VirusMeter. However, it is only effective to detect known malware and
their variants, and works only for a single process mode which stealthy malware
can easily evade by activating itself on when a user process is active.

3 Overview of VirusMeter Design

The rationale behind VirusMeter is the fact that any malware activities on a mo-
bile device must consume some battery power. Hence, abnormal battery power
consumption is a good indicator that some misbehavior has been conducted.
Accordingly, VirusMeter monitors battery power usage on a mobile device and
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Fig. 1. VirusMeter Runs on a Mobile Device

compares it against a pre-defined power consumption model to identify abnormal
activities due to mobile malware.

Figure 1 shows the work flow of VirusMeter when executed on a mobile de-
vice. VirusMeter can run at either the system level or the application level (our
current implementation is at the application level). Running at the system level
is more robust against attacks since mobile OSes, such as Symbian and Windows
Mobile, are often only accessible to device manufacturers or authorized parties.
As shown in the figure, VirusMeter, using APIs provided by the underlying
mobile OS, collects necessary information of supported services as well as the
current remaining battery capacity. VirusMeter, based on the pre-defined power
model, calculates how much power could have been consumed due to these ser-
vices and then compares it against the actually measured power consumption.
The comparison result portends whether abnormal power draining has occured:
If the difference exceeds a pre-specified threshold, VirusMeter raises an alarm
indicating the existence of potential malware. Such comparison can be done in
real time (a real-time mode) for fast malware detection, or when the battery is
charging (a battery-charging mode) for high detection accuracy.

The alarms raised by VirusMeter are instrumental to further revealing ma-
licious activities of the mobile malware. For instance, the user can check the
communication records of her mobile device provided by the network operator
to see whether there are any suspicious phone calls or text messages; she can
also run more advanced virus removal tools to clean the mobile device. Hence,
VirusMeter is a valuable tool to expose malware on mobile devices to their users
at their early stages, thus preventing them from continuously compromising the
service security or data confidentiality of the mobile device.

The pre-defined power model in VirusMeter is user-centric, which is relative
to system-centric models that typically have too many system-level states. This
model is constructed by VirusMeter itself when the device is in a clean state.
VirusMeter consists of three major components: User-Centric Power Model,
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Data Collector, and Malware Detector. Figure 2 shows these components and
the work flow of VirusMeter.

While the logic of VirusMeter is straightforward, we still need to overcome sev-
eral challenges before VirusMeter becomes practically deployable on commodity
mobile devices: (1) Accurate power modeling: An accurate yet simple power
consumption model is crucial to the effectiveness of VirusMeter for malware de-
tection. (2) Precise power measurement: Both model construction and data
collection rely on precise power measurement. (3) Low execution overhead:
For VirusMeter to be practically deployable, its own power consumption should
not adversely affect the power-based anomaly detection.

In the following sections, we shall present more design and implementation
details that address these challenges.

4 Building a User-Centric Power Model for VirusMeter

4.1 Existing Battery Power Models

Generally speaking, a battery’s power consumption rate can be affected by two
groups of factors, environmental factors such as signal strength, environmental
noises, temperature, humidity, the distance to the base station, the discharging
rate, the remaining battery power, etc., and user operations such as phone calls,
emailing, text messaging, music playing, etc. Three types of power models have
been suggested so far:

(1) Linear Model: In this simple model the remaining capacity after operating
duration td is given by
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Pr = Pp −
∫ t0+td

t=t0

d(t)dt = Pp − I × td, (1)

where Pp is the previous battery power, and d(t) is the draining rate at time t.
With the assumption that the operating mode does not change for td time units,
d(t) stays the same during this period and is denoted as I. Once the operation
mode changes, the remaining capacity is re-calculated [28].

(2) Discharge Rate Dependent Model: In this model, the discharge rate is
considered to be related to the battery capacity. For this purpose, c is defined
as the fraction of the effective battery capacity Peff and the maximum capacity
Pmax, i.e., c = Peff

Pmax
. Then the battery power is calculated as

Pr = c× Pp −
∫ t0+td

t=t0

d(t)dt = c× Pp − I × td. (2)

c changes with the current; it becomes close to 1 when the discharge rate is low,
and approaches 0 when the discharge rate is high [6,28].

(3) Relaxation Model: This model is based on a common phenomenon called
relaxation [14,18], which refers to the fact that when a battery is discharged at
a high rate, the diffusion rate of the active ingredients through the electrolyte
and electrode will fall behind, and the battery reaches its end of life even if there
are active materials available. If the discharge current is cut off or reduced, the
diffusion and transport rate of active materials will catch up with the depletion of
the materials [25]. Although this is the most comprehensive model characterizing
a real battery, the model involves more than 50 electro-chemical and physical
input parameters [25].

All these models calculate the battery power consumption from a physical
and electrical perspective, although their inputs are remarkably different. The
relaxation model can provide more accurate battery estimation than the lin-
ear model. However, even with aid of external instruments, measuring over 50
parameters could be difficult and expensive in practice. In addition, since Virus-
Meter aims to run on commodity mobile devices, it purely relies on publicly
available system functions (without external support) to collect data; most of
the 50 parameters in the relaxation model, however, cannot be captured with
available APIs. Furthermore, a model with as many as 50 parameters is too cum-
bersome and thus not suitable for resource-constrained devices. The other two
models model have similar problems, as the power draining rate and discharge
rate are hard to measure without external power measurement instruments.

4.2 User-Centric Power Model

Due to the difficulties of measuring the input parameters of existing power mod-
els, we decide to build a user-centric power model for VirusMeter. In this model,
the amount of power consumed is characterized as a function of common user
operations and relevant environmental factors. Moreover, this model has only a
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few states, which is in contrast to those system-centric power models that need
cumbersomely profile all system behaviors and are thus difficult to build without
in-depth understanding of the mobile OS and its underlying hardware.

To derive a user-centric model from scratch, we investigate the power con-
sumption of common types of user operations on mobile devices in different
environments. The following types of user operations are now considered: (1)
Calling: its power consumption is mainly dependent on the conversation dura-
tion. VirusMeter treats incoming and outgoing calls separately. (2) Messaging:
its average power consumption depends on both the sizes and the types of the
messages. MMS and SMS are the two message types being considered. Also,
sending and receiving messages are treated as different activities. (3) Emailing:
its power consumption is mainly decided by the amount of traffic, which we can
get by querying the email message size. (4) Document processing: we assume
that the duration of the operation is the deciding factor. (5) Web surfing: Web
surfing is more complicated than the above as a user may view, download, or be
idle when surfing the Web. Currently we calculate the average power consump-
tion simply based on the amount of traffic involved and also the surfing duration.
(6) Idle: for a large amount of time, a user may not operate on the device for
anything. During this period, however, system activities such as signaling may
still take place. Under such a state, the power consumption is intuitively relevant
to its duration. (7) Entertainment and others: currently, we simply assume the
average power consumption is determined by the duration of the activities. This,
admittedly, is a coarse model and further study is required.

For environmental factors, the following two types are being considered: (1)
Signal strength: signal strength impacts the power consumption of all the above
operations. The weaker of the signal strength, the more power consumption is
expected. (2) Network condition: for some of the operations, network conditions
are also important. For example, the time, and thus the power, needed to send
a text message depends on the current network condition.

In VirusMeter, the battery power consumed between two measurements can
be described as a function of all these factors during this period:

ΔP = f(Di
call, SSi

call, T
j
msg, S

j
msg, SSj

msg, N
j
msg..., D

k
idle, SSk

idle), (3)

where ΔP represents the power consumption, D the duration of the operation,
SS the signal strength, T the type of the text message, and N the network
condition. i,j, and k represent the index of the user operation under discussion.

To this end, what is missing in this user-centric power model is the function
itself in Equation 3. This is derived from the following three different approaches:

Linear Regression: Linear regression generates a mathematical function which
linearly combines all variables we have discussed with techniques such as least
square functions; it can thus be easily stored and implemented in a small segment
of codes that run on commodity mobile devices with trivial overhead. While
linear regression may incur little overhead, which makes it suitable for real-
time detection, its accuracy depends on the underlying assumption of the linear
relationship between variables.
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Neural Network: An artificial neural network (ANN), often referred to as a
“neural network” (NN), is a mathematical or computational model inspired by
biological neural networks. It consists of an interconnected group of artificial neu-
rons that process information using a connectionist approach for computation.
Neural networks are commonly used for non-linear statistical data modeling.
They can be used to model complex relationships between inputs and outputs
or to find patterns in data. In VirusMeter, we use neural network as a regres-
sion tool, in which the neural network model, unlike the linear regression model,
cannot easily be presented as a mathematical function.

Decision Trees: A decision tree is a predictive model that maps the observa-
tions of an item to conclusions of its target value. In a decision tree, branches
represent conjunctions of features that lead to leaves that represent classifica-
tions. In VirusMeter we build a classification tree in which branches represent
normal or malware samples. We train the decision tree with both normal and
malware data samples. When a new piece of data sample is fed into the decision
tree, it can tell if the new data is normal or not, as well as which malware most
likely caused the abnormal power consumption.

5 Constructing State Machines for Data Collection

To train the three power models presented in the previous section, VirusMeter
needs to collect some data. For the linear and neural network model construction,
only clean data are needed. For decision tree construction, both clean data and
dirty data (the data when malware programs are present) are needed. In this
section, we present how VirusMeter collects these data to train the models.

Currently, we mainly consider the user operations defined in the previous sec-
tion and their corresponding power consumption in VirusMeter. Although the
power consumption can be queried using public APIs, there is no interface that
could be directly called for the user operations. As it is common for commodity
devices to provide some APIs for third parties to query, register, and monitor
system-level events or status, we construct a state machine to derive user opera-
tions (which we also call external events) from system events (which we also call
internal events). In this state machine, state transitions are triggered by internal
events when they appear in a certain order and satisfy certain timing constraints.
For example, during a normal incoming call, a ring event must precede another
answer key event, but cannot happen more than 25 seconds before the answer
key event, because ringing lasts for less than 25 seconds in our experimental
cellphone before the call is forwarded to the voicemail service.

One may wonder whether we can simply use these state machines to detect
malware without power auditing. This is possible but can potentially miss some
malware for two reasons. On one hand, stealthy malware can easily evade de-
tection by mimicing normal user behaviors that can be derived from the state
machine. On the other hand, it is difficult, if not impossible, to build a state
machine that exhaustively characterizes all possible user operations. The state
machine in VirusMeter covers only the internal events corresponding to those
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Algorithm 1. State Machine Construction for Each User Operation
1: Run a monitor program on the clean cellphone.
2: Execute a defined user operation, such as a phone call.
3: Monitor and record all related internal events during the test period and their

properties.
4: Find the correlation between a user operation and the internal events, their depen-

dency and sequences.
5: Query and record all parameters of the events.
6: Repeat the experiment.
7: Abstract the common event sequence from the recording. These internal events are

used to build the state machine.

common user operations that we have defined. Due to these concerns, we still
need the power model for mobile malware detection.

VirusMeter performs Algorithm 1 to construct the state machine for each user
operation defined previously. Figure 3 shows an example of the obtained state
machine for receiving a phone call. In this figure, the triggering events are marked
on the transition arrows. Starting in the Idle state, the state machine transits
to the Ring state after a ring event. If the user decides to answer the call by
pressing the answer key, the answer key event is generated, which makes the state
machine move to the Answer state if the answer key event happens half a second
to 25 seconds after the Ring state. On a Symbian cell phone, we can observe an
EStatusAnswering event. At this time, the state machine starts a timer. When
the user terminates the call by pressing the cancel key or hanging it up, the
state machine turns to the End state followed by a Symbian EStatusDisconnecting
event. The state machine now stops the timer and calculates the calling duration.
Finally the state machine returns to Idle state and generates a receiving call
operation with the call duration. In a similar approach, we conduct experiments
to build state machines for other user operations we have defined.

Idle

ring event

Ring

EstatusAnswering

Answer

End

EstatusDisconnecting  call operation
       (receiving)
       ( duration)

start timer

stop timer

cancel key
hangup event

cancel key
hangup event

[0.5<delay<25]
answer key event

EstatusRinging

Fig. 3. State Machine for Receiving a Phone Call
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6 Model Checking for Malware Detection

With the power model and the state machines available, VirusMeter can perform
malware detection in a straightforward manner: we use the power model to
predict how much power should be consumed and then compare it against the
measured power consumption. If abnormal power consumption is observed, an
alert is raised. Here, VirusMeter is designed with two running modes:

– Real-time mode: VirusMeter uses the linear regression power model to predict
power consumption due to its low computational cost.

– Battery-charging mode: Although linear regression is easy to perform, it
may generate false detection results since (1) it implicitly assumes a linear
relationship among all variables, and (2) power measurements may have
fluctuations due to electro-chemical battery properties. Thus, VirusMeter
accumulates power consumption measurement data and uses the neural net-
work model and the decision tree algorithm to perform malware detection
when the battery is charging.

It is noted that both modes can also run off the mobile device. For example,
the device manufacturer or the service operator may provide such a service
that a user can submit the collected measurement data to a server for malware
detection. This however will increase the communication cost on the mobile
device.

7 Practical Issues in VirusMeter Implementation

As Symbian is the most popular mobile OS, we implement a prototype of Virus-
Meter on Nokia 5500 Sport, supported by Symbian OS 9.1. Figure 4 shows the
modules of VirusMeter implementation. Currently, it is implemented as a user-
level application and a user can choose to start it or to shut it down manually.
The implementation program uses a client/server architecture which is widely
used for Symbian applications. Figure 5 shows the user interface once VirusMeter
is installed on our experimental device.
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7.1 Power Measurement Precision and Power Model Construction

The power consumption data are collected through the APIs provided by Sym-
bian for power status changes. In the prototype implementation, however, we
find that the precision of the power capacity measurement is not sufficient. In
fact, the precision returned by the APIs of mobile devices varies significantly. For
example, iPhone can return the current power capacity at 1% precision. Many
other devices, including the one in our experiments, return the power consump-
tion data only at the level of battery bars shown on the screen. On the Nokia
5500, these bars are at the 100, 85, 71, 57, 42, 28, 14, and 0 percent of the full
capacity. We call the battery supply between two of these successive values as
a power segment. To overcome the precision challenge, we perform experiments
long enough so that the power consumption is sufficient to cross a segment. As-
suming a constant draining rate during the experiments, we expect the power
measurement through this method is more accurate.

Accordingly, it is necessary to transform the power model in Equation 3 be-
cause if we were to still follow Equation 3, many experiment samples would have
the same constant dependent value ΔP , which is bad for the linear regression
and neural network regression. To make the regression as accurately as possible,
we transform the function as follows. Because in all our experiments, the signal
strength is always good (at level 6 and 7) but the duration of idle time has a
large range, we select idle time at the best signal strength as the dependent
variable, and transform our model to

Didle = f ′(Di
call, SSi

call, T
j
msg, S

j
msg, SSj

msg, N
j
msg..., ΔP, SSk

idle). (4)

For environmental factors, VirusMeter is currently only concerned about the
signal strength and network condition. Through the API, VirusMeter can di-
rectly query the current signal strength. There are 7 levels of signal strength on
Nokia 5500, from 1 to 7. We, however, cannot directly query APIs for network
conditions when a user performs a certain operation, such as text messaging. In
the experiments, we have observed that if the network congestion is severe, the
duration for sending or receiving messages increase significantly. Therefore, to
make the power model more accurate, we introduce the sending time into it, and
the duration is measured as follows. In Symbian, sending a message leads to a
sequence of events that can be captured by VirusMeter: first, an index is created
in the draft directory; when the creation is complete, the index is moved to
the sending directory; when sending is successful, the index will be moved to
the sent directory. Hence, the operation time can be measured from the time
when the index is created to the time when it is moved to the sent directory.
Following the similar idea, we further refine the parameter input for receiving
messages and other networking operations.

Note that our power model is built in such a way due to insufficient power
precision, but a malware does not need to be active throughout a segment of
battery power to be detected by VirusMeter. Instead, no matter how long the
malware is active, we can always feed the runtime data collected during an entire



256 L. Liu et al.

power segment for malware detection, and our experiments in the next section
will show that it is still very effective.

7.2 Data Collection Rules

To construct the power model, we need to collect not only the power consump-
tion data under normal user operations (clean data) for the three power models,
but also dirty data when malware is present for training the decision tree. Con-
strained by the precision of the battery power measurement offered by Symbian
OS, we treat all user operations conducted in one battery segment as a batch to
achieve more accurate detection. As our goal is to detect malware whose activ-
ities lead to abnormal power consumption no matter how long they are active,
we collect clean data under various circumstances for model construction: (1) In
some experiments, our data collection just focuses on a single user operation. For
example, in a battery segment, we only send SMS text messages, and in another
one, we only receive SMS text messages; (2) In some experiments, mixed user
operations are conducted. For example, in a battery segment, we make phone
calls and also receive text messages; (3) For each user operation, we consider var-
ious properties of the activity. For instance, we send text messages with different
sizes ranging from ten bytes to a thousand bytes; and (4) In all experiments, we
avoid abnormal conditions, which decrease the accuracy of our power models.

Dirty data are also necessary to train the decision trees. The power consump-
tion of a malware program may vary significantly in different environments.
For example, different usage frequencies or spy call durations on FlexiSPY cause
great difference in power consumption. In another example, the power consumed
by the Cabir worm depends on how many Bluetooth devices exist in the neigh-
borhood. Based on such considerations, we collect dirty data as follows: (1)
During dirty data collection, we conduct experiments to cover as many differ-
ent scenarios as possible, including both high power consumption cases and low
power consumption cases; and (2) For the purpose of model training, the fraction
of high and low power consumption data samples are randomly selected.

7.3 Stepwise Regression for Data Pre-processing and Time-Series
Data Analysis

The data we have collected, including both clean and dirty data, have 41 variables
that are measurable through the Symbian APIs. To simplify the model by elimi-
nating insignificant factors, we first use the stepwise regression technique [7]
to pre-process the collected data. Stepwise regression is a statistical tool that
helps find the most significant terms and remove least significant ones. Besides
that, stepwise regression also provides information that help to merge variables.
Using stepwise regression, we found that the idle time with signal strength level
6 is insignificant. This is because in our experimental environment, we often have
good signal strength at level 7. The signal strength 6 is relatively rare. Thus, we
merge the signal strength 6 to the signal strength 7.

To further improve the model accuracy, we collect data samples from multiple
segments and use the average to smooth out the fluctuations due to the internal
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electro-chemical battery properties. Based on this idea, we generate three sets
of input for each power model. If a model is built from data samples collected
in a single battery power segment, we call them “short-term” experiments. If a
model is built from data samples from seven segments, we call them “middle-
term” experiments. Note that Nokia 5500 only has seven battery segments. We
can further feed data samples collected in more than one battery lifecycle. In our
experiments, we use four battery lifecycles, which correspond to 28 segments, and
we call them “long-term” experiments. A stealthy malware that does not con-
sume much power in one segment may not be caught in a short-term detection,
but can be caught in the middle- or long-term detection.

8 Evaluation Results

In this section, we use actual mobile malware, including FlexiSPY, Cabir, and
some variants of Cabir, to evaluate the effectiveness of VirusMeter. FlexiSPY is
a spyware program that runs on either Symbian OS or Blackberry handhelds.
Once installed, it conducts eavesdropping, call interception, GPS tracking, etc.
It monitors phone calls and SMS text messages and can be configured to send
them to a remote server. We test three major types of misbehaviors supported by
FlexiSPY: eavesdropping (spy call), call interception, and message (text message
and email) forwarding. Figure 6 shows the information flow of FlexiSPY. The
Cabir malware exploit Bluetooth to spread themselves. We obtained 3 Cabir
variants and in the experiments, we used two of them for decision tree training
and the other one for testing.

We have several sets of experiments to examine common malware behaviors
that consume low (such as Cabir), medium (such as text-message forwarding),
and high battery power (such as eavesdropping). We also evaluate false positives
and the runtime overhead, i.e., power consumption, of VirusMeter.

read SMS, email, call logs
and location on FlexiSPY web

GPRS

monitor phone eavesdrops
and controls target 

on target

phone activities log
to FlexiSPY web
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Fig. 6. FlexiSPY Running on Nokia 5500 Sport and the Information Flow



258 L. Liu et al.

Table 1. Detection Rate (%) on Eavesdropping

Short-Term Middle-Term Long-Term
Linear Regression 85.1 89.9 87.1
Neural Network 89.3 90.9 93.0
Decision Tree 89.8 90.2 88.9

8.1 Experiments on Eavesdropping Detection

When using FlexiSPY to eavesdrop on a cellphone, the attacker makes a call to
a previously configured phone number and then the phone is activated silently
without user authentication. Our power measurement shows that eavesdropping
has a similar power consumption rate as a normal call. In our experiments, we
make spy calls of different time durations uniformly ranging from 1 minute to
30 minutes. More than 50 samples are collected in this and each of the following
detection rate experiments. Table 1 shows the detection rates (true positives).

The results show that for eavesdropping, both middle-term and long-term
experiments can improve the detection rates for linear regression and neural
network, compared with short-term detection. In fact, even the short-term lin-
ear regression achieves a detection rate over 85%. This is because eavesdropping
consumes a lot of power, which makes short-term detection quite accurate. Sur-
prisingly, the long-term detection based on linear regression generates a worse
result than mid-term detection. Our conjecture is that due to the inaccurate
linear relationship between variables, more errors may be accumulated in the
long-term experiments, which leads to worse results. This may apply to long-
term decision tree as well.

8.2 Experiments on Call Interception Detection

FlexiSPY can also perform call interceptions, which enables the attacker to mon-
itor ongoing calls. A call interception differs from eavesdropping in that the call
interception can only be conducted when a call is active. After FlexiSPY is in-
stalled, when the victim makes a call to a pre-set phone number, the attacker
will automatically receive a notification via text message and silently call the
victim to begin the interception.

In our detection experiments, we again perform call interceptions with dif-
ferent time durations uniformly ranging from 1 minute to 30 minutes. Table 2
shows the detection rate. The short-term linear regression detection results are

Table 2. Detection Rate (%) on Call Interception

Short-Term Middle-Term Long-Term
Linear Regression 66.8 79.5 82.4
Neural Network 82.9 86.0 90.5
Decision Tree 84.8 86.8 86.9
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Table 3. Detection Rate (%) on Text Message Forwarding

Short-Term Middle-Term Long-Term
Linear Regression 89.5 93.0 96.4
Neural Network 90.3 94.8 98.6
Decision Tree 88.7 89.1 90.7

not very good when compared to neural network and decision tree. This is be-
cause the call interception only consumes slightly more battery power than a
normal phone call and it only works when a call is active. But middle-term and
long-term experiments can significantly improve the detection rate for linear re-
gression. The results confirm that for stealthy malware that consumes only a
small amount of power, a more accurate model or a longer detection time can
help improve the detection accuracy.

8.3 Experiments on Text-Message Forwarding and Information
Leaking Detection

FlexiSPY can also collect user events, such as call logs, and then deliver collected
information via a GPRS connection periodically at a pre-configured time inter-
val. Clearly, transferring data through GPRS consumes power and the power
consumption depends on the time interval and the characteristics of user oper-
ations such as the number of text messages sent during each interval.

In our detection experiments, we set the interval from 30 minutes to 6 hours,
with an interval of 30 minutes. Under each setting, we keep sending and receiv-
ing text messages of different sizes ranging from 10 bytes to 1000 bytes.Table 3
shows the detection results. We can see all three approaches achieve detection
rates above 88%. The long-term detection with linear regression and neural net-
work can achieve a detection rate up to 98.6%. Our analysis shows that this is
because such a FlexiSPY functionality consumes additional power other than
communication: although when the interval is large, FlexiSPY may not transfer
data for a while, FlexiSPY still needs to monitor and save information related to
user activities, which also consumes battery power. Thus, even in short-term ex-
periments, the detection rate is quite high. To our surprise, decision tree does not
achieve comparable results to linear regression and neural networks for middle-
term and long-term detection. We believe that the performance of decision tree
is highly related to the training dataset, for which we are currently constrained
by a limited number of malware samples.

8.4 Experiments on Detecting Cabir

Cabir, a cellphone worm spreading via Bluetooth, searches nearby Bluetooth
equipments and then transfers a sis file to them once found. The power con-
sumption of Cabir mainly comes from two parts: neighbor discovery and file
transferring. Because Bluetooth normally does not consume significant bat-
tery power, we conduct the experiments in an environment full of Bluetooth
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Table 4. Detection Rate (%) on Cabir

Short-Term Middle-Term Long-Term
Linear Regression 84.6 89.8 92.9
Neural Network 88.6 93.4 93.5
Decision Tree 86.8 87.6 88.7

Table 5. Detection Rate (%) on Multiple Malware Infection

Short-Term Middle-Term Long-Term
Linear Regression 84.8 87.9 88.1
Neural Network 88.9 90.2 92.0
Decision Tree 72.6 76.3 73.6

equipments, in which Cabir keeps finding new equipments and thus consumes
a nontrivial amount of power. To control the frequency of file transferring, we
repeatedly turn off Bluetooth on these devices for a random amount of time after
a transfer completes and then turns it on again.

Table 4 shows the detection results. For linear regression, the middle-term and
long-term detection can remarkably improve the detection result. The table also
indicates that although Bluetooth discovery and file transferring only consume
a limited amount of battery power, it can be detected with a reasonably high
rate by VirusMeter at real time.

8.5 Experiments on Detecting Multiple Malware Infections

Previous detection experiments all involve only one malware program running
on the cellphone. It is possible that a mobile device is infected by more than one
malware program and each malware program could perform different attacks
simultaneously. To test such cases, we activate both FlexiSPY and Cabir on our
experimental cellphone and randomly conduct various attack combinations.

Table 5 shows the detection rates. The results show that both linear re-
gression and neural network still have reasonably high true positive rates. But
decision tree results in a much higher false negative rate than in single mal-
ware infection experiments. Although it is seemingly counterintuitive, the un-
derlying principle of these three approaches can explain this: linear regression
and neural network regression only predict the power consumption of normal
user operations rather than describing power consumption of specific malware
activities, which is the objective of decision tree. However, our decision tree
model is not trained with a mixture of malware samples. Thus for data samples
collected when multiple malware programs are active, its performance is the
worst.
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Table 6. VirusMeter False Positive Rate (%)

Short-Term Middle-Term Long-Term
Linear Regression 22.4 14.2 10.3
Neural Network 10.0 5.1 4.3
Decision Tree 15.2 15.1 14.4

8.6 False Positive Experiments

In addition to the detection rates, we also conduct experiments to evaluate false
positives. By feeding power models with a clean dataset, we can get the predic-
tion result and calculate the false positive rate. For this purpose, we collect more
than 100 clean data samples for experiments.

Table 6 shows the false positive rates. The results show that linear regression
in short-term detection has the highest false positive rate. This is due to the
inaccuracy of the underlying assumption of linear regression model. However,
both middle-term and long-term experiments can significantly reduce the false
positive rates. With a more accurate power model, neural network achieves the
best results among the three for all three terms.

8.7 VirusMeter Overhead Measurement

As VirusMeter targets to run on commodity devices, its power consumption over-
head is a great concern. As we cannot directly measure the power consumption
of VirusMeter, we conduct experiments as follows: with and without VirusMeter
running on the cellphone, we conduct the same set of user operations and then
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compare the operating durations under these two scenarios. Figure 7 shows our
experimental results. We can see that with and without VirusMeter, the duration
of various user operations is very close. The average duration when VirusMeter
is off is 109.5 minutes across our experiments, while the average duration when
VirusMeter is on is 108 minutes. This indicates the VirusMeter running overhead
is less than 1.5%. Note the above results show the overhead when VirusMeter
uses the linear regression model. For the other two approaches, we do not eval-
uate their power consumption because they run in a battery-charging mode.

9 Further Discussion

VirusMeter, in principle, has the potential to detect any misbehavior with abnor-
mal power consumption as long as the battery power metering is sufficiently ac-
curate. Currently, precisions of battery power indicators vary significantly among
different mobile OSes, which can affect the detection efficiency of VirusMeter.
This is particularly important for real-time detection. Practically, on our exper-
imental device, this changes the real-time detection mode of VirusMeter to a
near-real-time mode.

Since VirusMeter relies on the user-centric power models to detect malware,
the accuracy of the models themselves is important. Our experimental results
have shown that linear regression, although consuming trivial additional power,
may generate high false negative rates due to the inaccurate underlying assump-
tion between variables. On the other hand, in a battery-charging mode, neural
network often improves the detection rate remarkably due to lack of such an
assumption. The decision tree model does not perform as effectively as neural
networks in our experiments. We believe that our limited malware samples may
adversely affect its performance, and we plan to collect more samples in the
future to further evaluate this method. In addition, for some types of user oper-
ations, such as entertainment and Web surfing, more fine-grained profiling can
further improve the accuracy of the power model.

As we suggested, VirusMeter can also run in the battery-charging mode to
improve the detection accuracy. Malware may leverage this as well since when
the battery is charging, there is no way for VirusMeter to accurately measure
the power consumption without any external assistance. To capture this kind
of malware, VirusMeter needs external devices to measure how much power is
charged and how much power is consumed. On the other hand, currently most
mobile OSes are only accessible to manufacturers. If we place VirusMeter in the
mobile OS, VirusMeter becomes more resilient to those attacks that could fail
signature- or anomaly-based detection schemes. But if the mobile OS is also
cracked and the malware knows how to inject faked events, VirusMeter will also
fail because the data collected by VirusMeter cannot be trusted any more.

10 Conclusion

The battery power supply is often regarded as the Achilles’ heel of mobile de-
vices. Provided that any activity conducted on a mobile device, either normal or
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malicious, inevitably consumes some battery power, VirusMeter exploits this to
detect existence of malware with abnormal power consumption. VirusMeter re-
lies on a concise lightweight user-centric power model and aims to detect mobile
malware in two modes: While the real-time detection mode provides immediate
detection, running VirusMeter under the battery-charging mode can further im-
prove the detection accuracy without concerns of resource consumption. Using
real-world malware such as Cabir and FlexiSpy, we experimentally show that
VirusMeter can effectively and efficiently detect their existence.
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Abstract. The expressive power of regular expressions has been often
exploited in network intrusion detection systems, virus scanners, and
spam filtering applications. However, the flexible pattern matching func-
tionality of regular expressions in these systems comes with significant
overheads in terms of both memory and CPU cycles, since every byte of
the inspected input needs to be processed and compared against a large
set of regular expressions.

In this paper we present the design, implementation and evaluation
of a regular expression matching engine running on graphics processing
units (GPUs). The significant spare computational power and data par-
allelism capabilities of modern GPUs permits the efficient matching of
multiple inputs at the same time against a large set of regular expressions.
Our evaluation shows that regular expression matching on graphics hard-
ware can result to a 48 times speedup over traditional CPU implemen-
tations and up to 16 Gbit/s in processing throughput. We demonstrate
the feasibility of GPU regular expression matching by implementing it
in the popular Snort intrusion detection system, which results to a 60%
increase in the packet processing throughput.

1 Introduction

Network Intrusion Detection Systems (NIDS) are an efficient mechanism for
detecting and preventing well-known attacks. The typical use of a NIDS is to
passively examine network traffic and detect intrusion attempts and other known
threats. Most modern network intrusion detection and prevention systems rely
on deep packet inspection to determine whether a packet contains an attack
vector or not. Traditionally, deep packet inspection has been limited to directly
comparing the packet payload against a set of string literals. One or more string
literals combined into a single rule are used to describe a known attack. By
using raw byte sequences extracted from the attack vector, it is easy to maintain
signature sets that describe a large number of known threats and also make them
easily accessible to the public.

However, the existence of loose signatures [28] can increase the number of
false positives. Signatures that fail to precisely describe a given attack may
increase the number of matches in traffic that do not contain an actual attack.

E. Kirda, S. Jha, and D. Balzarotti (Eds.): RAID 2009, LNCS 5758, pp. 265–283, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



266 G. Vasiliadis et al.

Moreover, string literals that are shared between two or more rules will probably
conflict at the matching phase and increase the number of false positives. Thus, a
large number of well and carefully designed strings may be required for precisely
describing a known attack.

On the other hand, regular expressions are much more expressive and flexible
than simple byte sequences, and therefore can describe a wider variety of payload
signatures. A single regular expression can cover a large number of individual
string representations, and thus regular expressions have become essential for
representing threat signatures for intrusion detection systems. Several NIDSes,
such as Snort [21] and Bro [20] contain a large number of regular expressions to
accomplish more accurate results. Unfortunately, regular expression matching, is
a highly computationally intensive process. This overhead is due to the fact that,
most of the time, every byte of every packet needs to be processed as part of the
detection algorithm that searches for matches among a large set of expressions
from all signatures that apply to a particular packet.

A possible solution is the use of hardware platforms to perform regular expres-
sion matching [9,24,7,18]. Specialized devices, such as ASICs and FPGAs, can be
used to inspect many packets concurrently. Both are very efficient and perform
well, however they are complex to modify and program. Moreover, FPGA-based
architectures have poor flexibility, since most of the approaches are usually tied
to a specific implementation.

In contrast, commodity graphics processing units (GPUs) have been proven to
be very efficient for accelerating the string searching operations of NIDS [14,30,
10]. Modern GPUs are specialized for computationally-intensive and highly par-
allel operations—mandatory for graphics rendering—and therefore are designed
with more transistors devoted to data processing rather than data caching and
flow control [19]. Moreover, the ever-growing video game industry exerts strong
economic pressure for more powerful and flexible graphics processors.

In this paper we present the design, implementation, and evaluation of a
GPU-based regular expression matching engine tailored to intrusion detection
systems. We have extended the architecture of Gnort [30], which is based on
the Snort IDS [21], such that both pattern matching and regular expressions are
executed on the GPU. Our experimental results show that regular expression
matching on graphics hardware can provide up to 48 times speedup over tradi-
tional CPU implementations and up to 16 Gbit/s of raw processing throughput.
The computational throughput achieved by the graphics processor is worth the
extra communication overhead needed to transfer network packets to the mem-
ory space of the GPU. We show that the overall processing throughput of Snort
can be increased up to eight times compared to the default implementation.

The remainder of the paper is organized as follows. Background information
on regular expressions and graphics processors is presented in Section 2. Section 3
describes our proposed architecture for matching regular expressions on a graphics
processor, while Section 4 presents the details of our implementation in Snort. In
Section 5 we evaluate our prototype system. The paper ends with an outline of
related work in Section 7 and some concluding remarks in Section 8.
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2 Background

In this section we briefly describe the architecture of modern graphics cards,
and the general-purpose computing functionality they provide for non-graphics
applications. We also discuss some general aspects of regular expression matching
and how it is applied in network intrusion detection systems.

2.1 Graphics Processors

Graphics Processing Units (GPUs) have become powerful and ubiquitous. Be-
sides accelerating graphics-intensive applications, vendors like NVIDIA1 and
ATI,2 have started to promote the use of GPUs as general-purpose computa-
tional units complementary to the CPU.

In this work, we have chosen to work with the NVIDIA GeForce 9 Series
(G9x) architecture, which offers a rich programming environment and flexible
abstraction models through the Compute Unified Device Architecture (CUDA)
SDK [19]. The CUDA programming model extends the C programming language
with directives and libraries that abstract the underlying GPU architecture and
make it more suitable for general purpose computing. CUDA also offers highly
optimized data transfer operations to and from the GPU.

The G9x architecture, similarly to the previous G80 architecture, is based on
a set of multiprocessors, each comprising a set of stream processors operating on
SPMD (Single Process, Multiple Data) programs. A unit of work issued by the
host computer to the GPU is called a kernel and is executed on the GPU as many
different threads organized in thread blocks. A fast shared memory is managed ex-
plicitly by the programmer among thread blocks. The global, constant, and texture
memory spaces can be read from or written to by the host, are persistent across ker-
nel launched by the same application, and are optimized for different memory us-
age [19].The constant and texturememory accesses are cached, so a read fromthem
costsmuch less compared to device memory reads, which arenot being cached. The
texture memory space is implemented as a read-only region of device memory.

2.2 Regular Expressions

Regular expressions offer significant advantages over exact string matching, pro-
viding flexibility and expressiveness in specifying the context of each match. In
particular, the use of logical operators is very useful for specifying the context
for matching a relevant pattern. Regular expressions can be matched efficiently
by compiling the expressions into state machines, in a similar way to some fixed
string pattern matching algorithms [3].

A statemachine canbe either a deterministic (DFA)ornon-deterministic (NFA)
automaton, with each approach having its own advantages and disadvantages. An
NFA can compactly represent multiple signatures but may result to long match-
ing times, because the matching operation needs to explore multiple paths in the
automaton in order to determine whether the input matches any signatures.
1 http://developer.nvidia.com/object/cuda.html
2 http://ati.amd.com/technology/streamcomputing/index.html
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A DFA, on the other hand, can be efficiently implemented in software—a
sequence of n bytes can be matched with O(n) operations, which is very efficient
in terms of speed. This is achieved because at any state, every possible input
letter leads to at most one new state. An NFA in contrast, may have a set
of alternative states to which it may backtrack when there is a mismatch on
the previously selected path. However, DFAs usually require large amounts of
memory to achieve this performance. In fact, complex regular expressions can
exponentially increase the size of the resulting deterministic automaton [6].

2.3 Regular Expression Matching in Snort

Regular expression matching in Snort is implemented using the PCRE library [1].
The PCRE library uses an NFA structure by default, although it also supports
DFA matching. PCRE provides a rich syntax for creating descriptive expressions,
as well as extra modifiers that can enrich the behavior of the whole expression,
such as case-insensitive or multi-line matching. In addition, Snort introduces
its own modifiers based on internal information such as the position of the last
pattern match, or the decoded URI. These modifiers are very useful in case an
expression should be matched in relation to the end of the previous match.

Each regular expression is compiled into a separate automaton that is used at
the searching phase to match the contents of a packet. Given the large number of
regular expressions contained in Snort’s default rule set, it would be inefficient
to match every captured packet against each compiled automaton separately.
45% of the rules in the latest Snort ruleset perform regular expression matching,
half of which are related to Web server protection.

To reduce the number of packets that need to be matched against a regular
expression, Snort takes advantage of the string matching engine and uses it as
a first-level filtering mechanism before proceeding to regular expression match-
ing. Rules that contain a regular expression operation are augmented with a
string searching operation that searches for the most characteristic fixed string
counterpart of the regular expression used in the rule.

The string matching engine consists of a set-wise pattern matching algorithm
that searches in advance for the fixed string subparts of all regular expressions
simultaneously. For a given rule, if the fixed string parts of the regular expressions
are not present in a packet, then the regular expression will never match. Thus,
fixed string pattern matching acts as a pre-filtering mechanism to reduce the
invocation of the regular expression matching engine, as shown in Figure 1.

There are also 24 rules in the latest Snort rule set that do not perform this pre-
filtering, but we believe these are cases of poorly written rules. The matching
procedure for regular expression matching is invoked only when the subparts
have been identified in the packet. For example, in the following rule:

alert tcp any any -> any 21 (content:"PASS"; pcre:"/^PASS\s*\n/smi";)

the pcre: pattern will be evaluated only if the content: pattern has previously
matched in the packet.
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Fig. 1. Regular expression matching in the Snort IDS

3 Regular Expression Matching on Graphics Processors

We extend the architecture of Snort to make use of the GPU for offloading reg-
ular expression matching from the CPU, and decreasing its overall workload.
Figure 2 depicts the top-level diagram of our regular expression pattern match-
ing engine. Whenever a packet needs to be scanned against a regular expression,
it is transferred to the GPU where the actual matching takes place. The SPMD
operation of the GPU is ideal for creating multiple instantiations of regular ex-
pression state machines that will run on different stream processors and operate
on different data.

Due to the overhead associated with a data transfer operation to the GPU,
batching many small transfers into a larger one performs much better than
making each transfer separately, as shown in Section 5.3. Thus, we have chosen to
copy the packets to the GPU in batches. We use a separate buffer for temporarily
storing the packets that need to be matched against a regular expression. Every
time the buffer fills up, it is transferred to the GPU for execution.
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Fig. 2. Overview of the regular expression matching engine in the GPU



270 G. Vasiliadis et al.

Reg.Ex. ID Length Payload

40 6 1536

Reg.Ex. ID Length Payload

Reg.Ex. ID Length Payload

Reg.Ex. ID Length Payload

Fig. 3. Packet buffer format

The content of the packet, as well as an identifier of the regular expression that
needs to be matched against, are stored in the buffer as shown in Figure 3. Since
each packet may need to be matched against a different expression, each packet
is “marked” so that it can be processed by the appropriate regular expression
at the search phase. Therefore, each row of the buffer contains a special field
that is used to store a pointer to the state machine of the regular expression the
specified packet should be scanned against.

Every time the buffer is filled up, it is processed by all the stream processors of
the GPU at once. The matching process is a kernel function capable of scanning
the payload of each network packet for a specific expression in parallel. The
kernel function is executed simultaneously by many threads in parallel. Using
the identifier of the regular expression, each thread will scan the whole packet in
isolation. The state machines of all regular expressions are stored in the memory
space of the graphics processor, thus they can be accessed directly by the stream
processors and search the contents of the packets concurrently.

A major design decision for GPU regular expression matching is the type of
automaton that will be used for the searching process. As we have discussed in
Section 2, DFAs are far more efficient than the corresponding NFAs in terms
of speed, thus we base our design of a DFA architecture capable of matching
regular expressions on the GPU.

Given the rule set of Snort, all the contained regular expressions are compiled
and converted into DFAs that are copied to the memory space of the GPU. The
compilation process is performed by the CPU off-line at start-up. Each regular
expression is compiled into a separate state machine table that is transferred to
the memory space of the GPU. During the searching phase, all state machine
tables reside in GPU memory only.

Our regular expression implementation currently does not support a few
PCRE keywords related to some look-around expressions and back references.
Back references use information about previously captured sub-patterns which is
not straightforward to keep track of during searching. Look-around expressions
scan the input data without consuming characters. In the current Snort default
rule set, less than 2% of the rules that use regular expressions make use of these
features. Therefore our regular expression compiler is able to generate automata
for the vast majority of the regular expressions that are currently contained in
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the Snort rule set. To preserve both accuracy and precision in attack detection,
we use a hybrid approach in which all regular expressions that fail to compile
into DFAs are matched on the CPU using a corresponding NFA, in the same
way unmodified Snort does.

4 Implementation

In this section, we present the details of our implementation, which is based
on the NVIDIA G9X platform using the CUDA programming model. First, we
describe how the gathered network packets are collected and transferred to the
memory space of the GPU. The GPU is not able to directly access the captured
packets from the network interface, thus the packets must be copied by the CPU.
Next, we describe how regular expressions are compiled and used directly by the
graphics processor for efficiently inspecting the incoming data stream.

4.1 Collecting Packets on the CPU

An important performance factor of our architecture is the data transfers to and
from the GPU. For that purpose, we use page-locked memory, which is substan-
tially faster than non-page-locked memory, since it can be accessed directly by
the GPU through Direct Memory Access (DMA). A limitation of this approach
is that page locked memory is of limited size as it cannot be swapped. In prac-
tice though this is not a problem since modern PCs can be equipped with ample
amounts of physical memory.

Having allocated a buffer for collecting the packets in page-locked memory,
every time a packet is classified to be matched against a specific regular ex-
pression, it is copied to that buffer and is “marked” for searching against the
corresponding finite automaton. We use a double-buffer scheme to permit over-
lap of computation and communication during data transfers between the GPU
and CPU. Whenever the first buffer is transferred to the GPU through DMA,
newly arriving packets are copied to the second buffer and vice versa.

A slight complication that must be handles comes from the TCP stream
reassembly functionality of modern NIDSs, which reassembles distinct packets
into TCP streams to prevent an attacker from evading detection by splitting
the attack vector across multiple packets. In Snort, the Stream5 preprocessor
aggregates multiple packets from a given direction of a TCP flow and builds a
single packet by concatenating their payloads, allowing rules to match patterns
that span packet boundaries. This is accomplished by keeping a descriptor for
each active TCP session and tracking the state of the session according to the
semantics of the TCP protocol. Stream5 also keeps copies of the packet data
and periodically “flushes” the stream by reassembling all contents and emitting
a large pseudo-packet containing the reassembled data.

Consequently, the size of a pseudo-packet that is created by the Stream5
preprocessor may be up to 65,535 bytes in length, which is the maximum IP
packet length. However, assigning the maximum IP packet length as the size of
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Fig. 4. Matching packets that exceed the MTU size

each row of the buffer would result in a huge, sparsely populated array. Copying
the whole array to the device would result in high communication costs, limiting
overall performance.

A different approach for storing reassembled packets that exceed the Max-
imum Transmission Unit (MTU) size, without altering the dimensions of the
array, is to split them down into several smaller ones. The size of each portion
of the split packet will be less or equal to the MTU size and thus can be copied
in consecutive rows in the array.

Each portion of the split packet is processed by different threads. To avoid
missing matches that span multiple packets, whenever a thread searches a split
portion of a packet, it continues the search up to the following row (which con-
tains the consecutive bytes of the packet), until a final or a fail state is reached,
as illustrated in Figure 4. While matching a pattern that spans packet bound-
aries, the state machine will perform regular transitions. However, if the state
machine reaches a final or a fail state, then it is obvious that there is no need to
process the packet any further, since any consecutive patterns will be matched
by the thread that was assigned to search the current portion.

4.2 Compiling PCRE Regular Expressions to DFA State Tables

Many existing tools that use regular expressions have support for converting reg-
ular expressions into DFAs [5,1]. The most common approach is to first compile
them into NFAs, and then convert them into DFAs. We follow the same ap-
proach, and first convert each regular expression into an NFA using the Thomp-
son algorithm [29]. The generated NFA is then converted to an equivalent DFA
incrementally, using the Subset Construction algorithm. The basic idea of sub-
set construction is to define a DFA in which each state is a set of states of the
corresponding NFA. Each state in the DFA represents a set of active states in
which the corresponding NFA can be in after some transition. The resulting



Regular Expression Matching on Graphics Hardware 273

DFA achieves O(1) computational cost for each incoming character during the
matching phase.

A major concern when converting regular expressions into DFAs is the state-
space explosion that may occur during compilation [6]. To distinguish among the
states, a different DFA state may be required for all possible NFA states. It is
obvious that this may cause exponential growth to the total memory required.
This is primarily caused by wildcards, e.g. (.*), and repetition expressions, e.g.
(a(x,y)). A theoretical worst case study shows that a single regular expression
of length n can be expressed as a DFA of up to O(Σn) states, where Σ is the size
of the alphabet, i.e. 28 symbols for the extended ASCII character set [12]. Due
to state explosion, it is possible that certain regular expressions may consume
large amounts of memory when compiled to DFAs.

To prevent greedy memory consumption caused by some regular expressions,
we use a hybrid approach and convert only the regular expressions that do not
exceed a certain threshold of states; the remaining regular expressions will be
matched on the CPU using NFAs. We track of the total number of states during
the incremental conversion from the NFA to the DFA and stop when a certain
threshold is reached. As shown in Section 5.2, setting an upper bound of 5000
states per expression, more than 97% of the total regular expressions can be
converted to DFAs. The remaining expressions will be processed by the CPU
using an NFA schema, just like the default implementation of Snort.

Each constructed DFA is a two-dimensional state table array that is mapped
linearly on the memory space of the GPU. The dimensions of the array are
equal to the number of states and the size of the alphabet (256 in our case),
respectively. Each cell contains the next state to move to, as well as an indication
of whether the state is a final state or not. Since transition numbers may be
positive integers only, we represent final states as negative numbers. Whenever
the state machine reaches into a state that is represented by a negative number,
it considers it as a final state and reports a match at the current input offset. The
state table array is mapped on the memory space of the GPU, as we describe in
the following section.

4.3 Regular Expression Matching

We have investigated storing the DFA state table both as textures in the texture
memory space, as well as on the linear global memory of the graphics card. A
straightforward way to store the DFA of each regular expression would be to
dynamically allocate global device memory every time. However, texture memory
can be accessed in a random fashion for reading, in contrast to global memory,
in which the access patterns must be coalesced [19]. This feature can be very
useful for algorithms like DFA matching, which exhibit irregular access patterns
across large datasets. Furthermore, texture fetches are cached, increasing the
performance when read operations preserve locality. As we will see in Section 5.3,
the texture memory is 2 to 2.5 times faster than global device memory for input
data reads.
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Fig. 5. Regular expression matching on the GeForce 9800 with 128 stream processors.
Each processor is assigned a different packet to process using the appropriate DFA.

However, CUDA does not support dynamic binding of memory to texture
references. Therefore, it is not feasible to dynamically allocate memory for each
state table individually and later bind it to a texture reference. To overcome this
limitation, we pre-allocate a large amount of linear memory that is statically
bound to a texture reference. All constructed state tables are stored sequentially
in this texture memory segment.

During the searching phase, each thread searches a different network packet in
isolation, as shown in Figure 5. Whenever a thread matches a regular expression
on an incoming packet, it reports it by writing the event to a single-dimension
array allocated in the global device memory. The size of the array is equal to
the number of packets that are processed by the GPU at once, while each cell
of the array contains the position within the packet where the match occurred.

5 Evaluation

5.1 Experimental Environment

For our experiments, we used an NVIDIA GeForce 9800 GX2 card, which consists
of two PCBs (Printed Circuit Board), each of which is an underclocked Geforce
8800 GTS 512(G92) video card in SLI Mode. Each PCB contains 128 stream
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processors organized in 16 multiprocessors, operating at 1.5GHz with 512 MB of
memory. Our base system is equipped with two AMD OpteronTM 246 processors
at 2GHz with 1024KB of L2-cache.

For our experiments, we use the following full payload network traces:

U-Web: A trace of real HTTP traffic captured in our University. The trace
totals 194MB, 280,088 packets, and 4,711 flows.

SCH-Web: A trace of real HTTP traffic captured at the access link that con-
nects an educational network of high schools with thousands of hosts to
the Internet. The trace contains 365,538 packets in 14,585 different flows,
resulting to about 164MB of data.

LLI: A trace from the 1998-1999 DARPA intrusion detection evaluation set of
MIT Lincoln Lab [2]. The trace is a simulation of a large military network
and generated specifically for IDS testing. It contains a collection of ordinary-
looking traffic mixed with attacks that were known at the time. The whole
trace is about 382MB and consists of 1,753,464 packets and 86,954 flows.

In all experiments, Snort reads the network traces from the local machine. We
deliberately chose traces of small size so that they can fit in main memory—
after the first access, the whole trace is cached in memory. After that point, no
accesses ever go to disk, and we have verified the absence of I/O latencies using
the iostat(1) tool.

We used the default rule set released with Snort 2.6 for all experiments. The
set consists of 7179 rules that contain a total of 11,775 pcre regular expressions.
All preprocessors were enabled, except the HTTP inspect preprocessor, in order
to force all web traffic to be matched against corresponding rules regardless of
protocol semantics.

5.2 Memory Requirements

In our first experiment, we measured the memory requirements of our system.
Modern graphics cards are equipped with enough and fast memory, ranging
from 512MB DDR up to 1.5GB GDDR3 SDRAM. However, the compilation of
several regular expression to DFAs may lead to state explosion and consume
large amounts of memory.

Figure 6(a) shows the cumulative fraction of the DFA states for the regular
expressions of the Snort rule set. It appears that only a few expressions are
prone to the state-space explosion effect. By setting an upper bound of 5000
states per regular expression, it is feasible to convert more than 97% of the
regular expressions to DFAs, consuming less than 200MB of memory, as shown
in Figure 6(b).

5.3 Microbenchmarks

In this section, we analyze the communication overheads and the computational
throughput achieved when using the GPU for regular expression matching.
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Fig. 6. States (a) and memory requirements (b) for the 11,775 regular expressions
contained in the default Snort ruleset when compiled to DFAs
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Fig. 7. Sustained throughput for transferring packets to the graphics card using virtual
(a) and paged-locked (b) memory

Packet transfer performance. In this experiment we evaluated the time
spent in copying the network packets from the memory space of the CPU to
the memory space of the GPU. The throughput for transferring packets to the
GPU varies depending on the data size and whether page-locked memory is used
or not. For this experiment we used two different video cards: a GeForce 8600
operating on PCIe 16x v1.1, and a GeForce 9800 operating on PCIe 16x v2.0.

As expected, copying data from page-locked memory, despite the fact that can
be performed asynchronously via DMA, is substantially faster than non page-
locked memory, as shown in Figure 7. Compared to the theoretical 4 GB/s peak
throughput of the PCIe 16x v1.1 bus, for large buffer sizes we obtain about 2
GB/s with page pinning and 1.5 GB/s without pinning. When using PCIe 16x
v2.0, the maximum throughput sustained reached 3.2 GB/s, despite the maxi-
mum theoretical being 8 GB/s. We speculate that the reason of these divergences
from the theoretical maximum data rates is the use of 8b/10b encoding in the
physical layer.
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Fig. 8. Computational throughput for regular expression matching

Regular expression matching raw throughput. In this experiment, we
evaluated the raw processing throughput that our regular expression matching
implementation can achieve on the GPU. Thus, the cost for delivering the packets
to the memory space of the GPU is not included.

Figure 8 shows the raw computational throughput, measured as the mean size
of data processed per second, for both CPU and GPU implementations. We also
explore the performance that different types of memory can provide, using both
global and texture memory to store the state machine tables. The horizontal
axis represents the number of packets that are processed at once by the GPU.

When using global device memory, our GPU implementation operates about
18 times faster than the speed of the CPU implementation for large buffer sizes.
The use of texture memory though appears to maximize significantly the utiliza-
tion of the texture cache. Using texture memory and a 4096 byte packet buffer,
the GeForce 9800 achieved an improvement of 48.2 times compared to the CPU
implementation, reaching a raw processing throughput of 16 Gbit/s. However,
increasing the packet buffer size from 4096 to 32768 packets gave only a slight
improvement.

We have also repeated the experiment using the older GeForce 8600GT card
which contains only 32 stream processors operating at 1.2GHz. We can see that
the achieved performance doubles when going from the previous model to the
newest one, which demonstrates that our implementation scales to newer graph-
ics cards.

5.4 Overall Snort Throughput

In our next experiment we evaluated the overall performance of the Snort IDS
using our GPU-assisted regular expression matching implementation. Unfortu-
nately, the single-threaded design of Snort forces us to use only one of the two
PCBs contained in the GeForce 9800 GX2. Due to the design of the CUDA
SDK, multiple host threads are required to execute device code on multiple de-
vices [19]. Thus, Snort’s single thread of execution is able to execute device code
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Fig. 9. Sustained processing throughput for Snort using different network traces. In (a)
content matching is performed on the CPU for both approaches. In (b), both content

and pcre matching is performed on the GPU.

on a single device. It is possible to run multiple instances of Snort dividing the
work amongst them, or modify Snort to make it multi-threaded. We are cur-
rently in the processes of extending Snort accordingly but this work is beyond
the scope of this paper.

We ran Snort using the network traces described in Section 5.1. Figure 9(a)
shows the achieved throughput for each network trace, when regular expressions
are executed in CPU and GPU, respectively. In both cases, all content rules are
executed by the CPU. We can see that even when pcre matching is disabled, the
overall throughput is still limited. This is because content rules are executed
on the CPU, which limits the overall throughput.

We further offload content rules matching on the GPU using the implementa-
tion of GPU string matching from our previous work [30], so that both content
and pcre patterns are matched on the GPU. As we can see in Figure 9(b), the
overall throughput exceeds 800 Mbit/s, which is an 8 times speed increase over
the default Snort implementation. The performance for the LLI trace is still
limited, primarily due to the extra overhead spent for reassembling the large
amount of different flows that are contained in the trace.

5.5 Worst-Case Performance

In this section, we evaluate the performance of Snort for the worst-case sce-
nario in which each captured packet has to be matched against several regular
expressions independently. By sending crafted traffic, an attacker may trigger
worst-case backtracking behavior that forces a packet to be matched against
more than one regular expressions [25].

We synthetically create worst-case conditions, in which each and every packet
has to be matched against a number of regular expressions, by removing all
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content and uricontent keywords from all Snort rules. Therefore, Snort’s pre-
filtering pattern matching engine is rendered completely ineffective, forcing all
captured packets to be evaluated against each pcre pattern individually.

Figure 10 shows how the CPU and the GPU implementations scale as the
number of regular expressions increases. We vary the number of pcre web rules
from 5 to 20, while Snort was operating on the U-Web trace. In each run, each
packet of the network trace is matched against all regular expressions. Even if
the attacker succeeds in causing every packet to be matched against 20 different
regular expressions, the overall throughput of Snort remains over 700 Mbit/s
when regular expression matching is performed on the GPU. Furthermore, in all
cases the sustained throughput of the GPU implementation was 9 to 10 times
faster than the throughput on the CPU implementation.

6 Discussion

An alternative approach for regular expression matching, not studied in this
paper, is to combine many regular expressions into a single large one. The com-
bination can be performed by concatenating all individual expressions using the
logical union operator [28]. However, the compilation of the resulting single ex-
pression may exponentially increase the total number of states of the resulting
deterministic automaton [16, 26]. The exponential increase, mainly referred as
state-space explosion in the literature, occurs primarily due to the inability of
the DFA to follow multiple partial matches with a single state of execution [15].

To prevent state-space explosion, the set of regular expressions can be parti-
tioned into multiple groups, which can dramatically reduce the required memory
space [31, 16]. However, multiple DFAs require the traversal of input data mul-
tiple times, which reduces the overall throughput. Recent approaches attempt
to reduce the space requirements of the automaton by reducing the number of
transitions [16] or using extra scratch memory per state [26, 15]. The resulting
automaton is compacted into a structure that consists of a reasonable number
of states that are feasible to store in low-memory systems.
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Although most of these approaches have succeed in combining all regular
expressions contained in current network intrusion detection systems into a small
number of automata, it is not straightforward how current intrusion detection
systems (like Snort) can adopt these techniques. This is because most of the
regular expressions used in attack signatures have been designed such that each
one is scanned in isolation for each packet. For example, many expressions in
Snort are of the form /^.{27}/ or /.{1024}/, where . is the wild card for
any character followed by the number of repetitions. Such expressions are used
for matching the presence of fixed size segments in packets that seem suspicious.
Therefore, even one regular expression of the form /.{N}/ will cause the relevant
automaton to generate a huge number of matches in the input stream that need
to be checked against in isolation.

Moreover, the combination of regular expressions into a single one prohibits
the use of specific modifiers for each regular expression. For example, a regular
expression in a Snort rule may use internal information, like the matching posi-
tion of the previous pattern in the same rule. In contrast, our proposed approach
has been implemented directly in the current Snort architecture and boost its
overall performance in a straightforward way. In our future work we plan to
explore how a single-automaton approach could be implemented on the GPU.

Finally, an important issue in network intrusion detection systems is traffic
normalization. However, this is not a problem for our proposed architecture since
traffic normalization is performed by the Snort preprocessors. For example, the
URI preprocessor normalizes all URL instances in web traffic, so that URLs like
“GET /%43md.exe HTTP/1.1” become GET /cmd.exe HTTP/1.1. Furthermore,
traffic normalization can be expressed as a regular expression matching pro-
cess [22], which can also take advantage of GPU regular expression matching.

7 Related Work

The expressive power of regular expressions enables security researchers and
system administrators to improve the effectiveness of attack signatures and at the
same time reduce the number of false positives. Popular NIDSes like Snort [21]
and Bro [20] take advantage of regular expression matching and come preloaded
with hundreds of regexp-based signatures for a wide variety of attacks.

Several researchers have shown interest in reducing the memory use of the
compiled regular expressions. Yu et al. [31] propose an efficient algorithm for
partitioning a large set of regular expressions into multiple groups, reducing
significantly the overall space needed for storing the automata. Becchi et al. [4]
propose a hybrid design that addresses the same issue by combining the benefits
of DFAs and NFAs. In the same context, recent approaches attempt to reduce the
space requirements of an automaton by reducing the number of transitions [16]
or using extra scratch memory per state [26,15].

A significant amount of work focuses on the parallelization of regular expres-
sion matching using specialized hardware implementations [9, 24, 7, 18]. Sidhu
and Prasanna [24] implemented a regular expression matching architecture for
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FPGAs achieving very good space efficiency. Moscola et al. [18] were the first
that used DFAs instead of NFAs and demonstrated a significant improvement
in throughput.

Besides specialized hardware solutions, commodity multi-core processors have
begun gaining popularity, primarily due to their increased computing power and
low cost. For highly parallel algorithms, packing multiple cores is far more ef-
ficient than increasing the processing performance of a single data stream. For
instance, it has been shown that fixed-string pattern matching implementations
on SPMD processors, such as the IBM Cell processor, can achieve a computa-
tional throughput of up to 2.2 Gbit/s [23].

Similarly, the computational power and the massive parallel processing ca-
pabilities of modern graphics cards can be used for non graphics applications.
Many attempts have been made to use graphics processors for security appli-
cations, including cryptography [11, 8], data carving [17], and intrusion detec-
tion [14,30,10,27,13]. In our previous work [30], we extended Snort to offload the
string matching operations of the Snort IDS to the GPU, offering a three times
speedup to the processing throughput compared to a CPU-only implementation.
In this work, we build on our previous work to enable both string and regular
expression matching to be performed on the GPU.

8 Conclusion

In this paper, we have presented the design, implementation, and evaluation of
a regular expression matching engine running on graphics processors, tailored to
speed up the performance of network intrusion detection systems. Our prototype
implementation was able to achieve a maximum raw processing throughput of
16 Gbit/s, outperforming traditional CPU implementations by a factor of 48.
Moreover, we demonstrated the benefits of GPU regular expression matching
by implementing it in the popular Snort intrusion detection system, achieving a
60% increase in overall packet processing throughput.

As part of our future work, we plan to run multiple Snort instances in parallel
utilizing multiple GPUs instead of a single one. Modern motherboards contain
many PCI Express slots that can be equipped with multiple graphics cards.
Using a load-balancing algorithm, it may be feasible to distribute different flows
to different Snort instances transparently, and allow each instance to execute
device code on a different graphics processor. We believe that building such
“clusters” of GPUs will enable intrusion detection systems to inspect multi-
Gigabit network traffic using commodity hardware.
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Abstract. Intrusion prevention systems determine whether incoming
traffic matches a database of signatures, where each signature in the
database represents an attack or a vulnerability. IPSs need to keep up
with ever-increasing line speeds, which leads to the use of custom hard-
ware. A major bottleneck that IPSs face is that they scan incoming
packets one byte at a time, which limits their throughput and latency.
In this paper, we present a method for scanning multiple bytes in parallel
using speculation. We break the packet in several chunks, opportunisti-
cally scan them in parallel and if the speculation is wrong, correct it later.
We present algorithms that apply speculation in single-threaded software
running on commodity processors as well as algorithms for parallel hard-
ware. Experimental results show that speculation leads to improvements
in latency and throughput in both cases.

Keywords: low latency, parallel pattern matching, regular expressions,
speculative pattern matching, multi-byte, multi-byte matching.

1 Introduction

Intrusion Prevention Systems (IPSs) match incoming traffic against a database of
signatures, which are Regular Expressions (REs) that capture attacks or vulner-
abilities. IPSs are a very important component of the security suite. For instance,
most enterprises and organizations deploy an IPS. A significant challenge faced
by IPS designers is the need to keep up with ever-increasing line speeds, which
has forced IPSs to move to hardware. Most IPSs match incoming packets against
signatures one byte at a time, causing a major bottleneck. In this paper we ad-
dress this bottleneck by investigating the problem of multi-byte matching, or the
problem of IPS concurrently scanning multiple bytes of a packet. We present a
novel speculation-based method for multi-byte matching.

Deterministic Finite Automata (DFAs) are popular for signature matching be-
cause multiple signatures can be merged into one large regular expression and a
single DFA can be used to match them simultaneously with a guaranteed robust
performance of O(1) time per byte. However, matching network traffic against a
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DFA is inherently a serial activity. We break this inherent serialization imposed
by the pointer chasing nature of DFA matching using speculation. Speculation
has been used in several areas of computer science, especially computer architec-
ture. Our speculative method works by dividing the input into multiple chunks
and scanning each of them in parallel using traditional DFA matching. The main
idea behind our algorithm is to guess the initial state for all but the first chunk,
and then to make sure that this guess does not lead to incorrect results. The
insight that makes this work is that although the DFA for IPS signatures can
have numerous states, only a small fraction of these states are visited often while
parsing benign network traffic. This idea opens the door for an entire new class
of parallel multi-byte matching algorithms.

This paper makes the following contributions: We present Speculative Par-
allel Pattern Matching (SPPM), a novel method for DFA multi-byte matching
which can lead to significant speedups. We use a new kind of speculation where
gains are obtained not only in the case of correct guesses, but also in the most
common case of incorrect ones yet whose consequences quickly turn out to still
be valid. Section 3 presents an overview of SPPM, with details given in Sec-
tion 4. We present a single-threaded SPPM algorithm for commodity processors
which improves performance by issuing multiple independent memory accesses
in parallel, thus hiding part of the memory latency. Measurements show that
by breaking the input into two chunks, this algorithm can achieve an average of
24% improvement over the traditional matching procedure. We present SPPM
algorithms suitable for platforms where parallel processing units share a copy
of the DFA to be matched. Our models show that when using up to 100 pro-
cessing units our algorithm achieves significant reductions in latency. Increases
in throughput due to using multiple processing units are close to the maximum
increase afforded by the hardware.

2 Background

2.1 Regular Expression Matching – A Performance Problem

Signature matching is a performance-critical operation in which attack or vulner-
ability signatures are expressed as regular expressions and matched with DFAs.
For faster processing, DFAs for distinct signatures such as .*user.*root.* and
.*vulnerability.* are combined into a single DFA that simultaneously repre-
sents all the signatures. Given a DFA corresponding to a set of signatures, and
an input string representing the network traffic, an IPS needs to decide if the
DFA accepts the input string. Algorithm 1 gives the procedure for the traditional
matching algorithm.

Modern memories have large throughput and large latencies: one memory
access takes many cycles to return a result, but one or more requests can be
issued every cycle. Suppose that reading DFA[state][input char] results in a
memory access1 that takes M cycles2. Ideally the processor would schedule other
1 Assuming that the two indexes are combined in a single offset in a linear array.
2 On average. Caching may reduce the average, but our analysis still holds.
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Input: DFA = the transition table
Input: I = the input string, |I| = length of I
Output: Does the input match the DFA?
state ← start state;1

for i = 0 to |I| do2

input char ← I[i];3

state ← DFA[state][input char];4

if accepting(state) then5

return MatchFound;6

end7

end8

return NoMatch;9

Algorithm 1. Traditional DFA matching

operations while waiting for the result of the read from memory, but in Algorithm
1 each iteration is data-dependent on the previous one: the algorithm cannot
proceed with the next iteration before completing the memory access of the
current step because it needs the new value for the state variable (in compiler
terms, M is the Recurrence Minimum Initiation Interval). Thus the performance
of the system is limited due to the pointer chasing nature of the algorithm.

If |I| is the number of bytes in the input and if the entire input is scanned,
then the duration of the algorithm is at least M ∗ |I| cycles, regardless of how
fast the CPU is. This algorithm is purely sequential and can not be parallelized.

Multi-byte matching methods attempt to consume more than one byte at a
time, possibly issuing multiple overlapping memory reads in each iteration. An
ideal multi-byte matching algorithm based on the traditional DFA method and
consuming B bytes could approach a running time of M ∗ |I|/B cycles, a factor
of B improvement over the traditional algorithm.

2.2 Signature Types

Suffix-closed Regular Expressions over an alphabet Σ are Regular Expressions
with the property that if they match a string, then they match that string
followed by any suffix. Formally, their language L has the property that x ∈ L ⇔
∀w ∈ (Σ)∗ : xw ∈ L. All signatures used by IPSs are suffix-closed. Algorithm 1
uses this fact by checking for accepting states after each input character instead
of checking only after the last one. This is not a change we introduced, but a
widely accepted practice for IPSs.

Prefix-closed Regular Expressions (PREs) over an alphabet Σ are regular ex-
pressions whose language L has the property that x ∈ L ⇔ ∀w ∈ (Σ)∗ : wx ∈ L.
For instance, .*ok.*stuff.*|.*other.* is a PRE, but .*ok.*|bad.* is not,
because the bad.* part can only match at the beginning and is not prefix-closed.
In the literature, non-PRE signatures such as bad.* are also called anchored sig-
natures. A large fraction of signatures found in IPSs are prefix-closed.
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3 Overview

The core idea behind the Speculative Parallel Pattern Matching (SPPM) method
is to divide the input into two or more chunks of the same size and process them
in parallel. We assume that the common case is not finding a match, although
speedup gains are possible even in the presence of matches. As is customary in
IPSs, all our regular expressions are suffix closed. Additionally, at this point we
only match REs that are also prefix closed, a restriction that will be lifted in
Sec. 4.4. In the rest of this section we informally present the method by example,
we give statistical evidence explaining why speculation is often successful, and
we discuss ways of measuring and modeling the effects of speculation on latency
and throughput.

3.1 Example of Using Speculation

As an example, consider matching the input I=AVOIDS VIRULENCE against the
DFA recognizing the regular expression .*VIRUS shown in Fig. 1. We break
the input into two chunks, I1=AVOIDS V and I2=IRULENCE, and perform two
traditional DFA scans in parallel. A Primary process scans I1 and a Secondary
process scans I2. Both use the same DFA, shown in Fig. 1. To simplify the
discussion, we assume for now that the Primary and the Secondary are separate
processors operating in lockstep. At each step they consume one character from
each chunk, for a total of two characters in parallel.

To ensure correctness, the start state of the Secondary should be the final
state of the Primary, but that state is initially unknown. We speculate by using
the DFA’s start state, State 0 in this case, as a start state for the Secondary and
rely on a subsequent validation stage to ensure that this speculation does not
lead to incorrect results. In preparation for this validation stage the Secondary
also records its state after each input character in a History buffer.

Figure 2 shows a trace of the two stages of the speculative matching algorithm.
During the parallel processing stage, each step i entry shows for both the
Primary and the Secondary the new state after parsing the i-th input character
in the corresponding chunk, as well as the history buffer being written by the
Secondary. At the end of step 8, the parallel processing stage ends and the
Secondary finishes parsing without finding a match. At this point the History
buffer contains 8 saved states. During the validation stage, steps 9-12, the
Primary keeps processing the input and compares its current state with the state
corresponding to the same input character that was saved by the Secondary in
the History buffer. At step 9 the Primary transitions on input ’I’ from state 1 to
state 2 which is different from 0, the state recorded for that position. Since the
Primary and the Secondary disagree on the state after the 9-th, 10-th and 11-
th characters, the Primary continues until step 12 when they agree by reaching
state 0. Once this coupling between the Primary and Secondary happens, it is not
necessary for the Primary to continue processing because it would go through
the same states and make the same acceptance decisions as the Secondary. We
use the term validation region to refer to the portion of the input processed by
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Fig. 1. DFA for
.*VIRUS; dotted lines
show transitions
taken when no other
transitions apply

Input A V O I D S V I R U L E N C E
step 1 0 0
step 2 1 0 0
step 3 0 0 0 0
step 4 0 0 0 0 0
step 5 0 0 0 0 0 0
step 6 0 0 0 0 0 0 0
step 7 0 0 0 0 0 0 0 0
step 8 1 0 0 0 0 0 0 0 0

step 9 2 �=0, 0 0 0 0 0 0 0
step 10 3 �=0, 0 0 0 0 0 0
step 11 4 �=0, 0 0 0 0 0
step 12 0=0, 0 0 0 0

Fig. 2. Trace for the speculative parallel matching of
P=.*VIRUS in I=AVOIDS VIRULENCE. During the parallel
stage, steps 1-8, the Primary scans the first chunk. The
Secondary scans the second chunk and updates the history
buffer. The Primary uses the history during validation stage,
steps 9-12, while re-scanning part of the input scanned by
the Secondary till agreement happens at step 12.

both the Primary and the Secondary (the string IRUL in this example). Coupling
is the event when the validation succeeds in finding a common state.

In our case, the input is 16 bytes long but the speculative algorithm ends after
only 12 iterations. Note that for different inputs, such as SOMETHING ELSE..,
the speculative method would stop after only 9 steps, since both halves will see
only state 0. The performance gain from speculative matching occurs only if
the Primary does not need to process the whole input. Although we guess the
starting state for the Secondary, performance improvements do not depend on
this guess being right, but rather on validation succeeding quickly, i.e. having a
validation region much smaller than the second chunk.

3.2 Statistical Support for Speculative Matching

In this section we provide an intuitive explanation behind our approach. We
define a default transition to be a transition on an input character that does not
advance towards an accepting state, such as the transitions shown with dotted
lines in Fig. 1. If we look at Fig. 1, we see that the automaton for .*VIRUS.*
will likely spend most of its time in state 0 because of the default transitions
leading to state 0. Figure 2 shows that indeed 0 is the most frequent state. In
general, it is very likely that there are just a few hot states in the DFA, which are
the target states for most of the transitions. This is particularly true for PREs
because they start with .* and this usually corresponds to an initial state with
default transitions to itself.

For instance, we constructed the DFA composed from 768 PREs from Snort
and measured the state frequencies when scanning a sample of real world HTTP
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Fig. 3. The state frequency CDF graph for a PRE composed of 768 Snort signatures.
Most of the scanning time is spent in a few hot states. The most frequent state accounts
for 33.8% of the time and the first 6 most frequent states account for half the time.

traffic. Fig. 3 displays the resulting Cumulative Distribution Function (CDF)
graph when the states are ordered in decreasing order of frequency. Most time is
spend in a relatively small number of states. The most frequent state occurs in
33.8% of all transitions, and the first 6 states account for 50% of the transitions.

The key point is that there is a state that occurs with a relatively high fre-
quency, 33.8% in our case. A back-of-the-envelope calculation shows that it
is quite likely that both halves will soon reach that state. Indeed, assume a
pure probabilistic model where a state S occurs with a 33.8% probability at
any position. The chances for coupling due to state S at a given position are
0.3382 = 0.114. Equivalently, the chances that such coupling doesn’t happen
are 1 − 0.3382 = 0.886. However, the chances that disagreement happens on
each of h consecutive positions are 0.886h, which diminishes quickly with h. The
probability for coupling in one of 20 different positions is 1 − 0.88620 = 0.912.
Even if the frequency of a state S was 5% instead of 33.8%, it would take 45
steps to have a probability greater than 90% for two halves to reach state S.
While 45 steps may seem high, it is only a tiny fraction, 3%, compared to the
typical maximum TCP packet length of 1500 bytes. In other words, we contend
that the length of the validation region will be small.

Note that the high probability of coupling in a small number of steps is based
on a heavily biased distribution of frequencies among the N states of the DFA. If
all states were equally probable, then the expected number of steps to coupling
would be O(N). This would make coupling extremely unlikely for automata with
large numbers of states.

3.3 Performance Metrics

One fundamental reason why speculation improves the performance of signature
matching is that completing two memory accesses in parallel takes less time
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than completing them serially. While the latencies of memories remain large, the
achievable throughput is high because many memory accesses can be completed
in parallel.

When we apply SPPM in single-threaded software settings, the processing
time for packets determines both the throughput and the latency of the system
as packets are processed one at a time. Our measurements show that SPPM
improves both latency and throughput. When compared to other approaches
using a parallel architecture, SPPM improves latency significantly and achieves
a throughput close to the limits imposed by hardware constraints.

4 Speculative Matching

Speculative Parallel Pattern Matching is a general method. Depending on the
hardware platform, the desired output, the signature types, or other parameters,
one can have a wide variety of algorithms based on SPPM. This section starts by
formalizing the example from Section 3.1 and by introducing a simplified perfor-
mance model for evaluating the benefits of speculation. After presenting basic
SPPM algorithms for single-threaded software and for simple parallel hardware,
we discuss variants that are not constrained by the simplifying assumptions.
These generalized algorithms work with unconstrained regular expressions, re-
turn more information about the match, not just whether a match exists or not,
and limit speculation to guarantee good worst-case performance.

4.1 Basic SPPM Algorithm

Algorithm 2 shows the pseudocode for the informal example from Sect. 3.1. The
algorithm processes the input in three stages.

During the initialization stage (lines 1-5), the input is divided into two
chunks and the state variables for the Primary and Secondary are initialized. Dur-
ing the parallel processing stage (lines 6-13), both processors scan their chunks
in lockstep. If either the Primary or the Secondary reach an accepting state (line
10), we declare a match and finish the algorithm (line 11). The Secondary records
(line 12) the states it visits in the history buffer (for simplicity, the history buffer
is as large as the input, but only its second half is actually used). During the val-
idation stage (lines 14-21), the Primary continues processing the Secondary’s
chunk. It still must check for accepting states as it may see a different sequence of
states than the Secondary. There are three possible outcomes: a match is found
and the algorithm returns success (line 18), coupling occurs before the end of the
second chunk (line 20) or the entire second chunk is traversed again. If the input
has an odd number of bytes, the first chunk is one byte longer, and a sentinel is
setup at line 5 such that the validation step will ignore it.

Correctness of Algorithm 2. If during the parallel processing stage the Sec-
ondary reaches the return at line 11, then the Secondary found a match on
its chunk. Since our assumption is that we search for a prefix-closed regular ex-
pression, a match in the second chunk guarantees a match on the entire input.
Therefore it is safe to return with a match.
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Input: DFA = the transition table
Input: I = the input string
Output: Does the input match the DFA?
// Initialization stage

len ← |I| ; // Input length1

(len1, len2) ← (�len/2�, �len/2�); // Chunk sizes2

(chunk1, chunk2) ← (&I, &I + len1); // Chunks3

(S1, S2) ← (start state, start state); // Start states4

history[len1 − 1] ← error state ; // Sentinel5

// Parallel processing stage

for i = 0 to len2 − 1 do6

forall k ∈ {1, 2} do in parallel7

ck ← chunkk[i];8

Sk ← DFA[Sk][ck];9

if accepting(Sk) then10

return MatchFound;11

history[len1 + i] ← S2 ; // On Secondary12

i ← i + 1;13

// Validation stage (on Primary)

while i < len do14

c1 ← I[i];15

S1 ← DFA[S1][c1];16

if accepting(S1) then17

return MatchFound ;18

if S1 == history[i] then19

break;20

i ← i + 1;21

return NoMatch ; // Primary finished processing22

Algorithm 2. Parallel SPPM with two chunks. Accepts PREs.

If the algorithm executes the break at line 20, then the Primary reaches a
state also reached by the Secondary. Since the behavior of a DFA depends only
on the current state and the rest of the input, we know that if the Primary would
continue searching, from that point on it would redundantly follow the steps of
the Secondary which did not find a match, so it is safe to break the loop and
return without a match.

In all the other cases, the algorithm acts like an instance of Algorithm 1
performed by the Primary where the existence of the Secondary can be ignored.

To conclude, Algorithm 2 reports a match if and only if the input contains
one.

Simplified performance models. Our evaluation of SPPM includes actual
measurements of performance improvements on single-threaded software plat-
forms. But to understand the performance gains possible through speculation
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Table 1. Simplified performance model metrics (N is number of processors)

Metric Definition

Useful work Number of bytes scanned, |I |
Processing latency (L) Number of parallel steps/iterations
Speedup (S) S = |I |/L

Processing cost (P ) P = N · L
Processing efficiency (Pe) Pe = |I |/(N · L)
Memory cost (M) Number of accesses to DFA table
Memory efficiency (Me) Me = |I |/M
Size of validation region (V ) Number of steps in validation stage

and to estimate the performance for parallel platforms with different bottle-
necks we use a simplified model of performance. Because the input and the
history buffer are small (1.5KB for a maximum-sized packet) and are accessed
sequentially they should fit in fast memory (cache) and we do not account for
accesses to them. We focus our discussion and our performance model on the
accesses to the DFA table. Table 1 summarizes the relevant metrics.

We use the number of steps (iterations) in the parallel processing, |I|/2, and
in the validation stage, V , to approximate the processing latency: L = |I|

2 + V .
Each of these iterations contains one access to the DFA table. The latency

of processing an input I with the traditional matching algorithm (Algorithm 1)
would be |I| steps, hence we define the speedup (latency reduction) as S = |I|

L =
|I|

|I|/2+V = 2
1+2V/|I| .

The useful work performed by the parallel algorithm is scanning the entire
input, therefore equivalent to |I| serial steps. This is achieved by using N = 2
processing units (PUs), the Primary and Secondary, for a duration of L parallel
steps. Thus, the amount of processing resources used (assuming synchronization
between PUs), the processing cost is P = N · L and we define the processing
efficiency as Pe = useful work

processing cost = |I|
N ·L = |I|

2·(|I|/2+V ) = 1
1+2V/|I| .

Another potential limiting factor for system performance is memory through-
put: the number of memory accesses that can be performed during unit time. We
define memory cost, M , as the number of accesses to the DFA data structure by
all PUs, M = |I| + V . Note that M ≤ N · L as during the validation stage
the Secondary does not perform memory accesses. We define memory efficiency
as Me = |I|

M = |I|
|I|+V = 1

1+V/|I| and it reflects the ratio between the throughput
achievable by running the reference algorithm in parallel on many packets and the
throughput we achieve using speculation. Both Pe and Me can be used to charac-
terize system throughput: Pe is appropriate when tight synchronization between
the PUs is enforced (e.g. SIMD architectures) and the processing capacity is the
limiting factor, Me is relevant when memory throughput is the limiting factor.

Performance of Algorithm 2. In the worst case, no match is found, and
coupling between Primary and Secondary doesn’t happen (V = |I|/2). In this
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Input: DFA = the transition table
Input: I = the input string
Output: Does the input match the DFA?
// Initialization as in Algorithm 2

...1

for i = 0 to len2 − 1 do6

c1 ← chunk1[i];7

c2 ← chunk2[i];8

S1 ← DFA[S1][c1];9

S2 ← DFA[S2][c2];10

if accepting(S1)||accepting(S2) then11

return MatchFound;12

history[len1 + i] ← S2;13

i ← i + 1;14

// Validation as in Algorithm 2

...15

Algorithm 3. Single-threaded SPPM with two chunks. Accepts PREs.

case the Primary follows a traditional search of the input and all the actions of
the Secondary are overhead. We get L = |I|, S = 1, Pe = 50%, M = 1.5|I|, and
Me = 67%. In practice, because the work during the iterations is slightly more
complex than for the reference algorithm (the secondary updates the history),
we can even get a small slowdown, but the latency cannot be much lower than
that of the reference algorithm.

In the common case, no match occurs and V � |I|/2. We have S = 2
1+2V/|I| ,

Pe = 1
1+2V/|I| , M = |I| + V/|I|, and Me = 1

1+V/|I| , where V/|I| � 1. Thus
the latency is typically close to half the latency of the reference implementation
and the throughput achieved is very close to that achievable by just running the
reference implementation in parallel on separate packets.

In the uncommon case where matches are found, the latency is the same as
for the reference implementation if the match is found by the Primary. If the
match is found by the Secondary, the speedup can be much larger than 2.

4.2 SPPM for Single-Threaded Software

Algorithm 3 shows how to apply SPPM for single-threaded software. We simply
rewrite the parallel part of Algorithm 2 in a serial fashion with the two table
accesses placed one after the other. Except for this serialization, everything else
is as in Algorithm 2 and we omit showing the common parts. The duration of
one step (lines 6-14) increases and the number of steps decreases as compared to
Algorithm 1. The two memory accesses at lines 9-10 can overlap in time, so the
duration of a step increases but does not double. If the validation region is small,
the number of steps is little over half the original number of steps. The reduction
in the number of steps depends only on the input and on the DFA whereas the
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increase in the duration of a step also depends on the specific hardware (proces-
sor and memory). Our measurements show that speculation leads to an overall
reduction in processing time and the magnitude of the reduction depends on
the platform. The more instructions the processor can execute during a memory
access, the larger the benefit of speculation.

This algorithm can be generalized to work with N > 2 chunks, but the number
of variables increases (e.g. a separate state variable needs to be kept for each
chunk). If the number of variables increases beyond what can fit in the processor’s
registers, the overall result is a slowdown. We implemented a single-threaded
SPPM algorithm with 3 chunks, but since its performance is weaker on the
platforms we evaluated, we only report results for the 2-chunk version.

4.3 SPPM for Parallel Hardware

Algorithm 4 generalizes Algorithm 2 for the case where N PUs work in parallel on
N chunks of the input. We present this unoptimized version due to its simplicity.

Lines 2-5 initialize the PUs. They all start parsing from the initial state of
the DFA. They are assigned starting positions evenly distributed in the input
buffer: PUk starts scanning at position �(k − 1) ∗ |I|/N�. During the parallel
processing stage (lines 6-13) all PUs perform the traditional DFA processing
for their chunks and record the states traversed in history (this is redundant for
PU1). The first N−1 PUs participate in the validation stage (lines 14-25). A
PU stops (becomes inactive) when coupling with the right neighbor happens, or
when it reaches the end of the input. Active PUs perform all actions performed
during normal processing (including updating the history).

The algorithm ends when all PUs become inactive.

Linear History Is Relatively Optimal. Algorithm 4 uses a linear history: for
each position in the input, exactly one state is remembered – the state saved by
the most recent PU that scanned that position. Thus PUk sees the states saved
by PUk+1, which overwrite the states saved by PUk+2, PUk+3, ..., PUN .

Since we want a PU to stop as soon as possible, a natural question arises:
would PUk have a better chance of coupling if it checked the states for all of
PUk+1, PUk+2, ..., PUN instead of just PUk+1? Would a 2-dimensional history
that saves the set of all the states obtained by preceding PUs at a position offer
better information than a linear history that saves only the most recent state?
In what follows we show that the answer is no: the most recent state is also
the most accurate one. If for a certain input position, PUk agrees with any of
PUk+1, PUk+2, ..., PUN then PUk must also agree with PUk+1 at that position.
We obtain this by substituting in the following theorem chunkk for w1, the
concatenation of chunks k + 1 to k + j − 1 for w2 and any prefix of chunkk+j

for w3. We use the notation w1w2 to represent the concatenation of strings w1
and w2; and δ(S, w) to denote the state reached by the DFA starting from state
S and transitioning for each character in string w.

Theorem 1 (monotony of PRE parsing). Assume thatDFA is theminimized
deterministic finite automaton accepting a prefix-closed regular expression, with
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Input: DFA = the transition table
Input: I = the input string (|I| =input length)
Output: Does the input match the DFA?
len ← |I|;1

forall PUk, k ∈ {1..N} do in parallel2

indexk ← start position of k-th chunk;3

statek ← start state;4

history[0..len − 1] ← error state; // sentinel5

// Parallel processing stage

while index1 < �|I|/N� do6

forall PUk, k ∈ {1..N} do in parallel7

inputk ← I[indexk];8

statek ← DFA[statek][inputk];9

if accepting(statek) then10

return MatchFound;11

history[indexk] = statek;12

indexk ← indexk + 1;13

forall PUk, k ∈ {1..N − 1} do in parallel activek ← true ;14

while there are active PUs do15

forall PUk such that (activek == true) do in parallel16

inputk ← I[indexk];17

statek ← DFA[statek][inputk];18

if accepting(statek) then19

return MatchFound;20

if history[indexk] == statek OR indexk == len − 1 then21

activek ← false;22

else23

history[indexk] = statek;24

indexk ← indexk + 1;25

return NoMatch;26

Algorithm 4. SPPM with N processing Units (PUs). Accepts PREs.

S0 = the start state of the DFA. For any w1, w2, w3 input strings we have:
δ(S0, w1w2w3) = δ(S0, w3) ⇒ δ(S0, w1w2w3) = δ(S0, w2w3).

Proof. Let S1 = δ(S0, w1w2w3) = δ(S0, w3) and S2 = δ(S0, w2w3). Assume, by
contradiction, that S1 �= S2. Since DFA is minimal, there must be a string w
such that only one of δ(S1, w) and δ(S2, w) is an accepting state and the other
one is not.

Assume L = the language accepted by the DFA.
We have two cases:

1. δ(S1, w) accepting and δ(S2, w) is not. Since δ(S1, w) = δ(δ(S0, w3), w) =
δ(S0, w3w) we have δ(S1, w) accepting⇒ δ(S0, w3w) accepting. Hence w3w ∈
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L. Since L is prefix closed, w3w ∈ L ⇒ w2w3w ∈ L ⇒ δ(S0, w2w3w) accept-
ing. But δ(S0, w2w3w) = δ(δ(S0, w2w3), w) = δ(S2, w). Therefore δ(S2, w) is
accepting, which is a contradiction.

2. δ(S2, w) is accepting and δ(S1, w) is not. Then δ(S2, w)=δ(δ(S0, w2w3), w)=
δ(S0, w2w3w) is accepting. Hence w2w3w ∈ L. Since L is prefix closed,
w2w3w ∈ L ⇒ w1w2w3w ∈ L. We have w1w2w3w ∈ L ⇔ δ(S0, w1w2w3w) is
accepting. But, δ(S0, w1w2w3w) = δ(δ(S0, w1w2w3), w) = δ(S1, w). There-
fore δ(S1, w) is accepting, which is also a contradiction.

Both cases lead to contradiction, so our assumption was wrong and S1 = S2. � 

Performance of Algorithm 4. We define validation region k as the portion of
the packet processed by PUk during validation, so it can go beyond the end of
chunk k +1. Let Vk be the length of the validation region k, Vmax = maxN

k=1 Vk,

and VΣ =
∑N

k=1 Vk .
We get the following performance metrics:

processing latency L = |I|
N + Vmax

speedup S = |I|
L = N

1+N ·Vmax/|I|
processing cost P = N · L
processing efficiency Pe = |I|

P = 1
1+N ·Vmax/|I|

memory cost M = |I|+ VΣ

memory efficiency Me = |I|
M = 1

1+VΣ/|I|

(1)

In the worst case (no coupling for any of the chunks) Vk = |I|−k|I|/N (ignoring
rounding effects), Vmax = |I|(1−1/N) and VΣ = (N −1)|I|/2 which results in a
latency of L = |I| (no speedup, but no slowdown either), a processing efficiency
of Pe = 1/N , and a memory efficiency of Me ≈ 2/N . Note that the processing
efficiency and the memory efficiency do not need to be tightly coupled. For
example if there is no coupling for the first chunk, but coupling happens fast for
the others, the latency is still L = |I| and thus Pe = 1/N , but Me ≈ 50% as
most of the input is processed twice. But our experiments show that for N below
100, the validation regions are typically much smaller than the chunks and the
speedups we get are on the order of S ≈ N and efficiencies are Pe ≈ 100% and
Me ≈ 100%.

We note here that SPPM always achieves efficiencies of less than 100% on
systems using parallel hardware: within our model, the ideal throughput one
can obtain by having the PUs work on multiple packet in parallel is always
slightly higher than with SPPM. The benefit of SPPM is that the latency of
processing a single packet decreases significantly. This can help reduce the size
of buffers needed for packets (or the fraction of the cache used to hold them) and
may reduce the overall latency of the IPSs which may be important for traffic
with tight service quality requirements. Furthermore systems using SPPM can
break the workload into fixed-size chunks as opposed to variable-sized packets
which simplifies scheduling in tightly coupled SIMD architectures where the
processing cost is determined by the size of the largest packet (or chunk) in the
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batch. This can ultimately improve throughput as there is no need of batching
together packets of different sizes. Due to the complexity of performance in IPSs
with parallel hardware, it depends on the specifics of the system beyond those
captured by our model whether SPPM, simple parallelization, or a mix of the
two is the best way to achieve good performance.

4.4 Relaxing the Assumptions

Matching non-PRE expressions. The basic SPPM algorithms require prefix-
closed expressions only because Secondaries are allowed to safely terminate the
algorithm if they reach an accepting state. For non-PRE such as .*ok|bad, the
matches found by Secondaries (which start processing from the start state of the
DFA) may be false matches such as the case when the string bad occurs at the
beginning of the second chunk, not at the beginning of the input. The version
of the algorithm described later in this section avoids the problem.

Returning more information about matched packets. The basic match-
ing algorithm is often extended to return more information than just whether
a match occurred or not: the offset within the input where the accepting state
has been reached and/or the signature number for that matched (a single DFA
typically tracks multiple signatures). Furthermore, multiple matches may ex-
ist as the reference algorithm may visit accepting states more than once. For
example if the DFA recognizes the two signatures .*day and .*week with a sin-
gle DFA and the input is This week on Monday night!, we have a match for
the second signature at the end of the second word and one for the first signa-
ture at the end of the fourth word. It is straightforward to extend Algorithm
4 to deliver information about the match, but if the system requires informa-
tion about the first match (or about all matches), we need a more elaborate
modification.

The most general case is when the system requires an ordered list of all
matches and accepts arbitrary regular expressions. We change the way Algo-
rithm 4 handles matches: instead of returning immediately, each Secondary PU
keeps a list of all the matches it finds. After validation, the individual lists are
combined in an ordered list of all matches, but candidate matches found by PUk

at positions preceding the coupling position with PUk−1 are discarded. Note
that since the common case in IPSs is that no matches are found, the overhead
of the extra bookkeeping required is incurred only for a small fraction of the
packets and the overall system performance is not affected.

Limiting inefficiency by bounding the validation cost. In the worst case
speculation fails and the whole input is traversed sequentially. There is nothing
we can do to guarantee a worst case latency smaller than I and equivalently
a processing efficiency of more than 1/N . But we can ensure that the memory
efficiency is larger than 2/N which corresponds to the case where all PUs traverse
the input to the end. We can limit the size of the history buffer to H positions,
and stop the validation stage for all PUs other than the primary when they
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Fig. 5. CDF graph for the sizes of the
validation region

reach the end of their history buffer. If H is large enough convergence may still
happen (based on our experiments 40 would be a good value), but we bound the
number of memory accesses performed during the validation stage to H(N − 2)
for the k− 2 non-primary PUs doing validation and |I| − |I|/N for the primary.
Thus M ≤ |I|(2 − 1/N) + H(N − 2) < 2|I|+ HN and Me > 1/(2 + HN/|I|).

5 Experimental Evaluation

We compared results using speculative matching against the traditional DFA
method. We used 106 DFAs recognizing a total of 1499 Snort HTTP signatures.
As input we extracted the TCP payloads of 175,668 HTTP packets from a two-
hour trace captured at the border router of our department. The most frequent
packet sizes were 1448 bytes (50.88%), 1452 bytes (4.62%) and 596 bytes (3.82%).
Furthermore 5.73% of the packets were smaller than 250 bytes, 34.37% were
between 251 and 1,250 and 59.90% were larger than 1,251.

5.1 Evaluation of Algorithm 3 (Software Implementation)

We implemented Algorithm 3 and measure its actual running time using Pentium
performance counters. We ran experiments on two processors, an Intel Core 2
at 2.4GHz and a Pentium M at 1.5GHz. Compared to the traditional sequential
algorithms we obtained speedups of 24% and respectively 13%. We explain the
higher speedup for the faster processor by the larger gap between the processor
speed and the memory latency. Figure 4 shows how the packet size influences
the speedup for Algorithm 3: for packets smaller than 20 bytes speculation may
result in slowdowns, but for packets larger than 50 bytes the speedup does not
change significantly with packet size.

We also find that the validation typically happens quickly. For 98% of the
packet validation happens after a single input byte is processed. Validation failed
for only 0.335% of the packets. Figure 5 shows the cumulative distribution of
the sizes of the validation regions.
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5.2 Evaluation of Algorithm 4

We evaluated Algorithm 4 for up to N = 100 processing units. We report
speedups and efficiency based on our performance model which relies on the
number of accesses to the DFA data structure (lines 9 and 18 of Algorithm 4).
These metrics are described in Sect. 4.3 by equations 1. From Fig. 6 we see that
speedup is almost linear up to N = 20 and it slowly diverges afterwords. The
processing efficiency approaches 50% and the memory efficiency 90% by the time
we reach N = 100. Figures 7, 8 and 9 show the speedup, processing efficiency
and respectively memory efficiency for packets of various sizes: small (1-250),
medium (251-1250) and large (1251-1500). The only notable difference is the
low memory efficiency for small packets.

Figures 10 and 11 present the cumulative distributions for the sizes of the
validation regions when N = 10. Figure 10 captures the sizes of all validation
regions, which is relevant to memory efficiency. Figure 11 captures only the
largest validation region for each packet, which is relevant to processing efficiency.
The average size for the validation regions is VΣ/(N − 1) = 2.12 and for the
largest validation regions is Vmax = 8.24. 99.26% of the validation regions were
a single byte long and 95.35% of the packet had Vmax = 1.
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6 Related Work

Signature matching is at the heart of intrusion prevention, but traditional match-
ing methods have large memory footprints, slow matching times, or are vulner-
able to evasion. Many techniques have been and continue to be proposed to
address these weaknesses.

Early string-based signatures used multi-pattern matching algorithms such as
Aho-Corasick [1] to efficiently match multiple strings against payloads. Many
alternatives and enhancements to this paradigm have since been proposed [27,
8,25, 16,26]. With the rise of attack techniques involving evasion [18, 19, 10,21]
and mutation [12], though, string-based signatures have more limited use, and
modern systems have moved to vulnerability-based signatures written as regular
expressions [28, 6, 24, 20]. In principle, DFA-based regular expression matching
yields high matching speeds, but combined DFAs often produce a state-space
explosion [22] with infeasible memory requirements. Many techniques have been
proposed to reduce the DFA state space [22, 23], or to perform edge compres-
sion [15, 3, 13, 9]. These techniques are orthogonal to our own, which focuses
specifically on latency and can be readily applied to strings or regular expres-
sions with or without alternative encodings.

Other work uses multi-byte matching to increase matching throughput. Clark
and Schimmel [7] and Brodie et al. [5] both present designs for multi-byte match-
ing in hardware. Becchi and Crowley [4] also consider multi-byte matching for
various numbers of bytes, or stride, as they term it. These techniques increase
throughput at the expense of changing DFA structure, and some form of edge
compression is typically required to keep transition table memory to a reasonable
size. Our work on the other hand reduces latency by subdividing a payload and
matching the chunks in parallel without changing the underlying automaton.
It would be interesting to apply speculative matching to multi-byte structured
automata.

Kruegel et al. [14] propose a distributed intrusion detection scheme that di-
vides the load across multiple sensors. Traffic is sliced at frame boundaries, and
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each slice is analyzed by a subset of the sensors. In contrast, our work subdivides
individual packets or flows, speculatively matches each fragment in parallel, and
relies on fast validation. Whereas Kruegel’s work assumes individual, distinct
network sensors, our work can benefit from the increasing availability of multi-
core, SIMD, and other n-way processing environments.

Parallel algorithms for regular expression and string matching have been
developed and studied outside of the intrusion detection context. Hillis and
Steele [11] show that an input of size n can be matched in Ω(log(n)) steps
given n ∗ a processors, where a is the alphabet size. Their algorithm handles
arbitrary regular expressions but was intended for Connection Machines-style
architectures with massive numbers of available processors. Similarly, Misra [17]
derives an O(log(n))-time string matching algorithm using O(n∗ length(string))
processors. As with the above, the resulting algorithm requires a large number
of processors.

Many techniques have been proposed that use Ternary Content addressable
Memories (TCAMs). Alicherry et al. [2] propose a TCAM-based multi-byte
string matching algorithm. Yu et al. [30] propose a TCAM-based scheme for
matching simple regular expressions or strings. Weinsberg et al. [29] introduces
the Rotating TCAM (RTCAM), which uses shifted patterns to increase matching
speeds further. In all TCAM approaches, pattern lengths are limited to TCAM
width and the complexity of acceptable regular expressions is greatly limited.
TCAMs do provide fast lookup, but they are expensive, power-hungry, and have
restrictive limits on pattern complexity that must be accommodated in soft-
ware. Our approach is not constrained by the limits of TCAM hardware and can
handle regular expressions of arbitrary complexity.

7 Conclusions

We presented speculative pattern matching method which is a powerful tech-
nique for low latency regular-expression matching. The method is based on three
important observations. The first key insight is that the serial nature of the mem-
ory accesses is the main latency-bottleneck for a traditional DFA matching. The
second observation is that a speculation that doesn’t have to be right from the
start can break this serialization. The third insight, which makes such a specula-
tion possible, is that the DFA based scanning for the intrusion detection domain
spends most of the time in a few hot states. Therefore guessing the state of the
DFA at a certain position and matching from that point on has a very good
chance that in a few steps will reach the “correct” state. Such guesses are later
on validated using a history of speculated states. The payoff comes from the fact
that in practice the validation succeeds in a few steps.

Our technique is the first method we are aware of that performs regular-
expression matching in parallel. Our results predict that speculation-based par-
allel solutions can scale very well. Moreover, as opposed to other methods in the
literature, our technique does not impose restrictions on the regular-expressions
being matched. We believe that speculation is a very powerful idea and other
applications of this technique may benefit in the context of intrusion detection.
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Abstract. Using a sandbox for malware analysis has proven effective
in helping people quickly understand the behavior of unknown malware.
This technique is also complementary to other malware analysis tech-
niques such as static code analysis and debugger-based code analysis.
This paper presents Rkprofiler, a sandbox-based malware tracking sys-
tem that dynamically monitors and analyzes the behavior of Windows
kernel malware. Kernel malware samples run inside a virtual machine
(VM) that is supported and managed by a PC emulator. By building
its monitoring component into the PC emulator, Rkprofiler is able to
inspect each instruction executed by the kernel malware and therefore
possesses a powerful weapon against the malware. Rkprofiler provides
several capabilities that other malware tracking systems do not. First,
it can detect the execution of malicious kernel code regardless of how
the monitored kernel malware is loaded into the kernel and whether it
is packed or not. Second, it captures all function calls made by the ker-
nel malware and constructs call graphs from the trace files. Third, a
technique called aggressive memory tagging (AMT) is proposed to track
the dynamic data objects that the kernel malware visit. Last, Rkprofiler
records and reports the hardware access events of kernel malware (e.g.,
MSR register reads and writes). Our evaluation results show that Rkpro-
filer can quickly expose the security-sensitive activities of kernel malware
and thus reduces the effort exerted in conducting tedious manual mal-
ware analysis.

Keywords: Dynamic Analysis, Rootkit, Emulator.

1 Introduction

When a attacker breaks into a machine and acquires administrator privileges,
kernel malware could be installed to serve various attacking purposes (e.g., pro-
cess hiding, keystroke logging). The complexity of attackers’ activity on ma-
chines has significantly increased. Rootkits now cooperate with other malware
to accomplish complicated tasks. For example, the rootkit Rustock.B has an en-
crypted spam component attached to its code image in memory. The initializa-
tion routine of this rootkit registers a notification routine to the Windows kernel
by calling the kernel function PsCreateProcessNotifyRoutine. This notification
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routine is then invoked each time that a new process is created. When detect-
ing the creation of Windows system process Service.exe, Rustock.B decrypts the
spam components and injects two threads into the Service.exe process to execute
the spam components [7]. Without understanding the behavior of the Rustock.B
rootkit, it would be difficult to determine how the spam threads are injected into
the Service.exe process. To fully comprehend malicious activitiy on a compro-
mised machine, it is necessary to catch and dissect key malware that attackers
have loaded onto the machine. Thus, analyzing rootkits is an inevitable task for
security professionals.

Most of the early rootkits were rudimentary in nature and tended to be single-
mission, small and did not employ anti-reverse engineering techniques (e.g., ob-
fuscation). These rootkits could be manually analyzed using disassemblers and
debuggers. Since rootkit technology is much more mature today, the situation
has changed. Rootkits have more capabilities and their code has become larger
and more complex. In addition, attackers apply anti-reverse engineering tech-
niques to rootkits in order to prevent people from determining their behavior.
Rustock.C is one such example. The security company, Dr. Web, who claimed
to be one of the pioneers that provided defense against Rustock.C, took several
weeks to unpack and analyze the rootkit [8]. The botnet using Rustock.C was
the third largest spam distributor at that time, sending about 30 million spam
messages each day. This example illustrates how the cost incurred by the delay of
analyzing kernel malware can be huge. As another example, the conficker worm
that has infected millions of machines connected to the Internet was reported
by several Internet sources [6] [10] (on April 8th 2009) that a heavily encrypted
rootkit, probably a keylogger, was downloaded to the victim machines. At the
time of the initial submission of this paper for publication, which was three days
later, no one had published the details of the rootkit. It is still unclear how se-
vere the damage (e.g., economic, physical) will be as a result of this un-dissected
rootkit. Accordingly, developing new approaches for quickly analyzing rootkits
is urgent and also critical to defeating most rootkit-involved attacks.

Several approaches have been proposed to address the rootkits analysis prob-
lem to some extent. For examples, HookFinder [30] and HookMap [27] are two
rootkit hooking detection systems. The former uses dynamic data tainting to
detect the execution of hooked malicious code; and the latter applies backward
data slicing to locate all potential memory addresses that can be exploited by
rootkits to implant hooks. K-tracer [14] is another rootkit analysis system that
uses data slicing and chopping to explore the sensitive kernel data manipulation
by rootkits. Unfortunately, these systems cannot meet the goal of comprehen-
sively revealing rootkit behavior in a compromised system. Meeting this goal
requires answering two fundamental questions: 1) what kernel functions have
been called by rootkits?; and 2) what kernel data objects have been visited
by rootkits? In the paper, we present a proof-of-concept system, Rkprofiler,
in attempt to address these two questions. Rkprofiler is built based on the
PC emulator QEMU [5] and analyzes Windows rootkits. The binary transla-
tion of QEMU allows Rkprofiler to sandbox rootkits and inspect each executed
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malicious instruction. Further, Rkprofiler develops the memory tagging tech-
nique to perform just-in-time symbol resolving for memory addresses visited by
rootkits. Combining deep inspection capability with the memory tagging capa-
bility, Rkprofiler is able to track all function calls and most kernel object accesses
made by rootkits.

The rest of paper is structured as follows. We point out the technical chal-
lenges for completely revealing rootkit behavior in Section 2. Section 3 gives the
overview of the Rkprofiler system, including its major components and malware
analysis process. Section 4 presents the technical details of tracking rootkits.
Then, we present several case studies in Section 5 and discuss the limitations of
Rkprofiler in Section 6. Section 7 surveys related work and Section 8 gives the
conclusion of the paper.

2 Challenges

Modern operating systems (OSs) like Windows and Linux utilize two ring levels
(ring 0 and 3) provided by X86 hardware to establish the security boundary be-
tween the OS and applications. Kernel instructions and application instructions
run at ring level 0 and 3 respectively (also called kernel mode and user mode).
The execution of special system instructions (INT, SYSENTER and SYSEXIT)
allows the CPU to switch between kernel mode and user mode. This isolation
mechanism guarantees that applications can only communicate with the kernel
through well-defined interfaces (system calls) that are provided by the OS. Many
sandbox-based program analysis systems take advantage of this isolation bound-
ary and monitor the system calls made by malware [1] [3]. While this approach
is effective to address user-space malware, it fails to address kernel malware.
This is because there is no well-defined boundary between benign kernel code
and malicious kernel code. Kernel malware possess the highest privileges and
can directly read and write any kernel objects and system resource. Moreover,
kernel malware may have no constant ”identity” - that is, some kernel malware
could be drivers and others could be patches to benign kernel software. So the
first challenge is how to create a ”virtual” boundary between kernel malware and
benign kernel software. Rkprofiler overcomes this challenge by using the timing
characteristic of malware analysis. Before loading kernel malware, all kernel code
is treated as benign code; after loading kernel malware, newly loaded kernel code
is considered malicious. Note this ”virtual” boundary only isolates code, but not
data. This is because the data created by malicious code can also be accessed
by benign code, and Rkprofiler does not monitor the operations of benign kernel
code for the purpose of design simplicity and better performance.

When monitoring a VM at the hypervisor layer, only hardware-level activi-
ties (e.g., memory reads and writes) are observed. To make these observations
useful, it is necessary to translate the hardware-level activities to software-level
activities. Here, software-level activities refer to using software terms to describe
program activities. For example, ”local variable X is modified.” This transla-
tion requirement is also known as the semantic gap problem [9]. This problem
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can be expressed as the following: given a memory address, what is its symbol?
Automatically finding the symbols for static kernel objects (global variables and
functions) is straightforward, but automatically finding the symbols for dynamic
kernel objects (data on stack and heap) is challenging. This challenge is not well
addressed by previous work. In this paper, we propose a method called aggressive
memory tagging (AMT) to overcome this challenge. The basic idea of AMT is
to perform the symbol resolution at run time and derive the symbols of dynamic
kernel objects from other kernel objects whose symbols have been identified. It
should be pointed out that Microsoft does not publish all kernel symbols and
we can only gather the kernel symbols that are publically available (Microsoft
symbol server, DDK documents and some unofficial Internet sources). So the
current implementation of Rkprofiler is not able to resolve many unpublished
symbols. Nevertheless, we find that it identifies most sensitive available symbols
in our evaluation.

3 System Description

Rkprofiler is composed of four software components: generator, controller, mon-
itor and reporter. These software components operate in three phases tempo-
rally: pre-analysis, analysis and post-analysis. In the pre-analysis phase, the
generator collects symbols of native Windows kernel modules (e.g., ntoskrnl.exe,
ndis.sys) from the program database (PDB) files available on the Microsoft sym-
bol server [15] and header files in Microsoft’s Driver Development Kit (DDK).
Two databases are produced by the generator at the end of this stage: type graph
and system map. The type graph database contains the data type definitions of
native Windows kernel modules. There are six classes of data types: basic type,
enum, structure, function, union, and pointer. The data types in the last four
classes are considered as composite data types, indicating that a data type in-
cludes at least one sub data type. For example, the sub data types of a structure
are data types of its data members. In the type graph database, Rkprofiler as-
signs a unique type ID to each data type. A data type is represented by its type
ID, type name, size, class ID and class specific data (e.g., the number of sub data
types and their type IDs). The system map database keeps the names, relative
virtual addresses and type IDs of global variables and functions used by native
Windows kernel modules. In addition, the names and type ID of parameters and
the return value for each function are also stored in system map. The generator
is comprised of several executables and Perl scripts.

Executing malware and monitoring its behavior are carried out in the analysis
phase. Two components of Rkprofiler, controller and monitor, are involved in
this phase. The monitor is built into QEMU. The controller is a standalone shell
script that sends commands to the monitor via the Linux signal mechanism. Four
commands are defined in their communication messages: RKP_INIT, RKP_RUN,
RKP_STOP and RKP_REPORT, (which are explained shortly). First, a test VM is
started and goes into a clean state in which no malware is installed and executed.
Then, the controller sends a RKP_INIT command to the monitor. After receiving
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Fig. 1. Rkprofiler architecture and rootkit analysis process

the command, the monitor queries the kernel memory image of the guest OS
and creates a hash table of trusted kernel code. Next, the controller instructs
the monitor to start monitoring through a RKP_START command. At that point,
Rkprofiler is ready for the monitoring task. For example, a user starts executing
malware in the VM. Depending on the attack objectives of the malware, the
user may run other applications to trigger more behaviors from the malware.
For example, if the malware is intended to hide processes, the user may open
the Windows task manager to induce the hiding behavior. Since the malware
can be tested repeatedly, the attack objectives of the malware can be inferred
from the analysis results of previous tests. To obtain the monitoring result or
end the test, the user can have the controller issue RKP_REPORT or RKP_STOP
commands to the monitor. The first command informs the monitor to write the
monitoring result to local audit files; the second command prompts the monitor
to stop monitoring and clear its internal data structures. Four audit files in CSV
format are generated in the analysis phase: trace, tag trace, tag access trace,
and system resource access trace. These files contain the functions called by the
malware, their parameters and return values, kernel data objects visited by the
malware and their values. In the post-analysis phase, the reporter is executed
to create user-friendly reports. Using the audit files generated in the analysis
phase, the reporter performs three tasks. First it builds a call graph from the
call trace and saves the graph to another file; second, it visualizes the call graph
and tag trace with open-source software GraphViz [11]; third it generates the
HTML-formatted reports for call traces and tag traces (CSV format). The entire
analysis process is illustrated in Figure 1.

The monitor component of Rkprofiler was built based on the open-source PC
emulator QEMU. To support multiple CPU architectures, QEMU defines an
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intermediate instruction set. When QEMU is running, each instruction of a VM is
translated to the intermediate instructions. Rkprofiler performs code inspection
and analysis at the code translation stage. To improve the performance, QEMU
caches the translated Translation Block (TB) so that it can be re-executed on
the host CPU over time. However, this optimization approach is not desirable to
Rkprofiler because an instruction can behave differently in varied machine states.
For example, the instruction CALL, whose operand is a general-purpose register,
may jump to diverse instructions depending on the value of that register. For each
malicious TB that has been cached, Rkprofiler forces QEMU to always perform
the code translation. But, the newly generated code is not stored in the cache and
the existing cached code is actually executed. Another problem arises when a TB
contains multiple instructions. In QEMU, VM states (register and memory con-
tents) are not updated during the TB translation. Except for the first instruction,
the translation of all other instructions in a TB could be accompanied by incorrect
VM states, possibly resulting in analysis errors. Rkprofiler addresses this problem
by making each malicious TB include only one instruction and disabling the direct
block chaining for all malicious TBs.

4 Design and Implementation

Kernel malware could take the form of drivers and be legitimately loaded into
the kernel. They can also be injected into the kernel by exploiting vulnerabilities
of benign kernel software. Rkprofiler is designed to detect kernel malware that
enter the kernel in both ways. Roughly speaking, before any malware is executed,
Rkprofiler looks up the kernel memory image and identifies all benign kernel
code in the VM. Then it groups them into a Trust Code Zone (TCZ) and a hash
table is created to store the code addresses of the TCZ. When malware is started,
any kernel code that does not belong to the TCZ is regarded as malicious and
therefore is tracked by Rkprofiler.

Identification of the trusted kernel code is straightforward if the non-execute
(NX) bit of the page table is supported by the (virtual) Memory Management
Unit (MMU) of a (virtual) processor. In this case, the kernel code and data do
not co-exist in any page of memory. Rkprofiler just needs to traverse the page
table of a process to find out all the executable kernel pages. QEMU can provide
a NX-bit enabled virtual processor (by enabling the PAE paging mechanism),
but this system configuration is not common. Doing so may influence the mal-
ware behavior in an undesired manner. For example, the malware could stop
running when it detects that the (virtual) CPU is NX enabled. So, the current
implementation of Rkprofiler does not require enabling the NX-bit of the vir-
tual CPU. Instead, it interprets all images of benign kernel modules and obtains
the Relative Virtual Addresses (RVA) of the code sections. Then it computes
their actual virtual addresses by adding the RVAs to the module base addresses,
which is acquired by scanning the kernel memory of the VM. After that, Rkpro-
filer stores the TCZ addresses in a hash table. However, one common type of
kernel malware attack is to patch the benign kernel code. To accommodate this
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type of attack, Rkprofiler excludes the patched code from the TCZ and revises
the TCZ hash table at run time. Rkprofiler identifies the patched code by ex-
amining memory write operations and memory copy functions that the malware
performs. Note, malware could escape this detection by indirectly modifying the
TCZ code (e.g., tampering with kernel memory from user space). A more reliable
method is to monitor the integrity of the TCZ as [20] does. Last, Rkprofiler de-
termines whether a kernel TB is malicious or not right before it is translated. If
the address of a TB is not within the TCZ, it is deemed as a malicious TB. The
hash table implementation of the TCZ ensures that malicious code detection has
a small performance hit on the entire system.

4.1 Malicious Code Detection

Kernel malware could take the form of drivers and be legitimately loaded into
the kernel. They can also be injected into the kernel by exploiting vulnerabilities
of benign kernel software. Rkprofiler is designed to detect kernel malware that
enter the kernel in both ways. Roughly speaking, before any malware is executed,
Rkprofiler looks up the kernel memory image and identifies all benign kernel
code in the VM. Then it groups them into a Trust Code Zone (TCZ) and a hash
table is created to store the code addresses of the TCZ. When malware is started,
any kernel code that does not belong to the TCZ is regarded as malicious and
therefore is tracked by Rkprofiler.

Identification of the trusted kernel code is straightforward if the non-execute
(NX) bit of the page table is supported by the (virtual) Memory Management
Unit (MMU) of a (virtual) processor. In this case, the kernel code and data do
not co-exist in any page of memory. Rkprofiler just needs to traverse the page
table of a process to find out all the executable kernel pages. QEMU can provide
a NX-bit enabled virtual processor (by enabling the PAE paging mechanism),
but this system configuration is not common. Doing so may influence the mal-
ware behavior in an undesired manner. For example, the malware could stop
running when it detects that the (virtual) CPU is NX enabled. So, the current
implementation of Rkprofiler does not require enabling the NX-bit of the vir-
tual CPU. Instead, it interprets all images of benign kernel modules and obtains
the Relative Virtual Addresses (RVA) of the code sections. Then it computes
their actual virtual addresses by adding the RVAs to the module base addresses,
which is acquired by scanning the kernel memory of the VM. After that, Rkpro-
filer stores the TCZ addresses in a hash table. However, one common type of
kernel malware attack is to patch the benign kernel code. To accommodate this
type of attack, Rkprofiler excludes the patched code from the TCZ and revises
the TCZ hash table at run time. Rkprofiler identifies the patched code by ex-
amining memory write operations and memory copy functions that the malware
performs. Note, malware could escape this detection by indirectly modifying the
TCZ code (e.g., tampering with kernel memory from user space). A more reliable
method is to monitor the integrity of the TCZ as [17] does. Last, Rkprofiler de-
termines whether a kernel TB is malicious or not right before it is translated. If
the address of a TB is not within the TCZ, it is deemed as a malicious TB. The
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hash table implementation of the TCZ ensures that malicious code detection has
a small performance hit on the entire system.

4.2 Function Call Tracking

Kernel malware often interacts with the rest of the kernel by calling functions
exported by other kernel modules. In Rkprofiler, we use the terms I2E (Internal-
to-External) and E2I (External-to-Internal) to describe the function-level control
flow transferring between malicious code and benign code. Here, internal and ex-
ternal functions refer to the malicious function code and benign function code
respectively. Function calls and returns are two types of events that Rkprofiler
monitors. For example, I2E call indicates the event that an internal function
invokes an external function; I2E return refers to the event that an internal
function returns to its caller that is an external function. Capturing these func-
tion events is important for Rkprofiler to reveal the activity of the malware.
Further, in an instance, the kernel malware may directly call the registry func-
tions exported by ntoskrnl.exe like zwSetKeyValue to manipulate local registry
entries. Rkprofiler is also designed to capture the I2I (Internal-to-Internal) call
and return events. By doing so, Rkprofiler is able to construct (partial) call
graphs of the kernel malware, which helps a security professional understand
the code structure of the malware. This capability is important, especially when
the malware is obfuscated to resist static code analysis. Note, E2E (External-
to-External) function events are not monitored here because Rkprofiler does not
inspect benign kernel code.

To completely monitor the function-level activity of malware, a data structure
called function descriptor is defined to represent a stack frame (activation record)
of a kernel call stack, allowing Rkprofiler to track the call stacks of the kernel
malware. When a function that is called by malware is detected, Rkprofiler
creates a new function descriptor object and pushes it to the stack. Conversely,
when the function is returned, its function descriptor object is popped from the
stack and is deleted. One function descriptor has a pointer that points to the
function descriptor of the caller. This pointer is used by Rkprofiler to construct
the caller-callee relationships in the post-analysis phase.

The method of detecting a function call event depends on the calling direc-
tions. For I2I and I2E calls, Rkprofiler monitors the CALL instructions executed
by the malware. Further, it can obtain the function address from the operand of
a CALL instruction and the return address that is next to the CALL instruc-
tion. For E2I calls, a CALL instruction belongs to TCZ and is not monitored by
Rkprofiler. So, the detection point is moved to the first instruction of the callee
function. To capture E2I calls, Rkprofiler adds extra data members to the TB
descriptor TranslationBlock. The first data member indicates what the last in-
struction of this TB is: CALL, JMP, RET or others. If it is a CALL instruction,
the second data member records the return address of the call. Rkprofiler fills in
the two data members of a TB when it is being translated. In addition, Rkprofiler
creates a global pointer that points to the last TB descriptor whose code was
just executed by the virtual CPU. Before translating a malicious TB, Rkprofiler
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queries the last TB descriptor to decide if it is an E2I call event. The decision
is based on three criteria: 1) if the last TB is benign; 2) if the last instruction
of the last TB is CALL; and 3) if the return address stored in the kernel stack
is equal to the one stored in the last TB descriptor. The reason for criterion 3
is that the return address is always constant for both direct and indirect calls.
On the other hand, Rkprofiler processes the function return events in a similar
way to the call events: for I2I and E2I returns, Rkprofiler captures these events
by directly monitoring the RET instructions executed by the malware; for I2E
returns, Rkprofiler detects them at the instructions directly following the RET
instructions and the criteria of the decision are similar to that for the E2I calls.

Two problems complicate the call event detection methods described above.
The first one is a pseudo function call, which is caused by JMP instructions.
When a kernel module attempts to invoke one function exported by another
kernel module, it first executes the CALL instruction to invoke an internal stub
function and the stub function then jumps to the external function by running
the JMP instruction. Normally, the internal stub function is automatically gen-
erated by a compiler and the operand of the JMP function is an IAT entry of this
module, whose value is determined and inserted by the system loader. Without
recognition of these JMP instructions, Rkprofiler incorrectly treats an I2E call as
an I2I call: labeling the new function descriptor with the internal stub function
address. One example of such functions is DbgPrint. To address a pseudo func-
tion call, Rkprofiler first creates an I2I function descriptor and labels it with the
internal stub function address. When detecting if an internal JMP instruction
is executed in order to jump to an external address, Rkprofiler locates the I2I
function descriptor from the top of the function tracking stack, and replaces the
internal address with the external address. The second problem is an interrupt
gap. This is where an interrupt is sent to the (virtual) CPU while it is executing
an E2I CALL (or I2E RET) instruction. Consequently, some interrupt handling
instructions are executed between the E2I CALL (or I2E RET) instruction and
the subsequent internal instruction that Rkprofiler monitors. In this situation,
the last TB descriptor does not record the expected CALL (or RET) instruction,
so Rkprofiler is unable to track the E2I call (or I2E return) event and observes
an unpaired return-call event. The solution to this problem is part of our future
work. Fortunately, we did not see interrupt gaps in the experiments.

4.3 Memory Access Tracking

Rkprofiler observes the hardware-level activity of kernel malware, however it
should be translated to software-level activity to be understandable to users.
Thus, given a virtual address that the malware visits, Rkprofiler is required to
find its symbols (e.g., variable name and type). In this paper, we name the pro-
cess of finding symbols for kernel objects as memory tagging. A memory tag
is composed of tag id, virtual address, type ID, variable name (optional) and
parent tag id (optional). If a kernel object is owned by the malware, it is an in-
ternal kernel object; otherwise, it is an external kernel object. If a kernel object
is located in the dynamic memory area (stack and heap), it is a dynamic kernel
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object; otherwise, it is a static kernel object. Rkprofiler tags four types of kernel
objects: static internal, dynamic internal, static external and dynamic external.
Static external kernel objects include global variables and Windows kernel func-
tions. Their symbols are stored in a system map. Tagging a static kernel object
is straightforward. Rkprofiler searches the system map by its virtual address and
the hit entry contains the target symbols. However, tagging a dynamic kernel
object is challenging because its memory is dynamically allocated at run time
and the memory address cannot be predicted. Attackers often strip off the sym-
bols of their malware in order to delay reverse engineering, so Rkprofiler assumes
that malware samples do not contain valid symbols.

Previous Linux rootkit detection systems [19] [4] present one approach of
tracking dynamic kernel objects. A rootkit detector first generates a kernel type
graph and identifies a group of global kernel variables. At run time, it periodi-
cally retrieves the dynamic objects from the global variables based on the graph
type. For example, if a global variable is a linked list head, the detector traverses
the list under the direction of the data structure type of list elements. Unfortu-
nately, this approach cannot be applied to the task of profiling kernel malware.
First, it covers a limited number of kernel objects, and many other kernel objects
such as functions and local variables are not included. Second, since the creation
and deletion of dynamic kernel objects could occur at any time, the time gap
between every two searches in this approach will produce inaccurate monitoring
results. Last, this approach may track many kernel objects that the malware
never visits. In this paper, we propose a new symbol exploration approach, Ag-
gressive Memory Tagging (AMT), that can precisely find symbols for all kinds
of static and dynamic kernel objects at a low computation cost.

AMT Description. We define a kernel object as contagious if another kernel
object can be derived from it. Tag inferring is a process where a kernel object
(child object) is derived from another (parent object). Two types of kernel ob-
jects are considered contagious: pointers and functions. A pointer kernel object
could be a pointer variable or a structure variable containing a pointer mem-
ber. The child object of a pointer is the pointee object. For a function, its child
objects are the parameters and return value of this function. AMT follows the
principle of the object tracking approach described above: tracing the dynamic
objects from the static objects. Specifically, Rkprofiler first tags all static kernel
objects that the malware accesses (memory reads/writes and function calls) by
querying the system map. Then, the child objects of the existing contagious tags
are tagged via tag inferring. This process is repeated until the malware stops
execution or the user terminates monitoring. Note, a tag could become invalid
in two scenarios: 1) if when a function returns, the tags of its local variables are
invalidated; and 2) if a memory buffer is released, the associated tag becomes
out of date as well. Only valid tags can generate valid child tags.

Rkprofiler performs tag inferring through a pointer object at the time that
the malware reads or writes the pointer object. The reason is as follows: when
reading a pointer, the malware is likely to visit the pointee object through the
pointer; when writing a pointer, the malware will possibly modify the pointer to



314 C. Xuan, J. Copeland, and R. Beyah

point to another object if the new value is a valid memory address. Because the
executions of benign kernel code are not monitored by Rkprofiler, both read and
write operations over a pointer have to be tracked here. If only read operations
are monitored, Rkprofiler cannot identify the kernel objects whose pointers are
written by malicious code and read by benign code. Many hooks implanted by
rootkits fall into this scenario. Similarly, if only write operations are monitored,
Rkprofiler can miss the reorganization of kernel objects whose pointers are writ-
ten by benign code and read by malicious code. Many external kernel objects
that are visited by rootkits fall into this scenario. The procedure of tag inferring
through a pointer object is as follows: 1) Rkprofiler detects a memory read or
write operation and searches the tag queue to check if the target memory corre-
sponds to a contagious tag; 2) if yes, Rkprofiler obtains the up-to-date pointer
value and verifies that it is a valid memory address; 3) Rkprofiler searches the
tag queue to check if the pointee object is tagged; 4) if not, Rkprofiler obtains
the symbols of the pointee object from the type graph and creates a new tag.
On the other hand, when a recognizable function is called, tag inferring through
the function object is carried out by identifying the function parameters. Input
parameters are tagged when the function is called; output parameters are tagged
when the function returns.

Implementation. Rkprofiler creates a data structure called tag descriptor to
represent memory tags. A tag descriptor includes the virtual address of the tag,
type ID, a boolean variable, a num variable for memory type, one pointer to
the parent tag and one pointer to the function descriptor. The Boolean variable
indicates if a tag is contagious or not. The memory type member tells if the
tagged object is on the stack, heap or another memory object. Rkprofiler moni-
tors the kernel memory management functions called by malware and records it
to a heap list (the memory buffers allocated to the malware). When a buffer is
released, Rkprofiler removes it from the heap list. The function descriptor mem-
ber of a tag helps identify which function is running when this tag is generated.
Finally, Rkprofiler maintains a tag queue that contains all the tags that have
been created. When a tag is created, its tag descriptor is inserted into the tag
queue. The tag is removed from the tag queue after it becomes invalid. Because
malware’s memory accesses are frequent events, Rkprofiler needs to search the
tag queue frequently as well. The tag queue describes a group of various-sized
memory segments. If it is organized as a list structure like a linked list, its linear
searching time is expensive. To address the problem, Rkprofiler applies the ap-
proach presented in [29] that converts a group of various-sized memory segments
to a hash table. The basic idea is to break a memory segment into a number of
fix-sized memory segments (buckets). A list structure is stored in one bucket to
handle the case that some portions of the bucket should not be counted. In this
way, the time for searching the tag queue becomes constant.

The Windows kernel provides built-in supports for linked lists via two data
structures: SINGLE_LIST_ENTRY (for single linked list) and LIST_ENTRY (for dou-
ble linked list). Several kernel APIs are available to simplify driver developers’
tasks when managing linked lists (e.g., adding or removing elements). However,
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this support causes problems to the memory tagging process of Rkprofiler. For
example, in a double linked list, each element contains a data member whose data
type is LIST_ENTRY. Two pointers of this data member point to the LIST_ENTRY
data members of two neighbor elements. When one list element is tagged and mal-
ware tries to visit the next list element from this one, Rkprofiler just tags the
LIST_ENTRYdata member of the next list element with the type LIST_ENTRY. This
is not acceptable because what Rkprofiler wants to tag is the next list element
with its type. In the pre-analysis stage, we annotated the SINGLE_LIST_ENTRYand
LIST_ENTRY data members with the type names of list elements and their offsets.
When parsing the type header file, the generator replaces the SINGLE_LIST_ENTRY
and LIST_ENTRY data members with pointers to list elements. The offset values
are also stored in the type graph, allowing the monitor to find the actual addresses
of neighbor elements. Another problem is relative pointers. The Windows kernel
sometimes uses relative pointers to traverse a list in the following way: the ad-
dress of the next element is computed by adding the relative pointer and the ad-
dress of the current element. One example is the data buffer that contains the disk
file query result by kernel function NtQueryDirectoryFile. Because these relative
pointers are defined as unsigned integer, we also need to label the relative pointers
in the kernel type header file such that Rkprofiler can recognize them and properly
compute the element addresses.

Rkprofiler has to handle two ambiguous data types that the Windows kernel
source uses. The first one is union. Union is a data type that contains only one of
several alternative members at any given time, and the memory storage required
for a union is decided by its largest data member. Unfortunately, guessing which
data member of a union should be used at a given time depends on code context,
which is hard to automate in Rkprofiler. The second one is generic pointer pvoid.
Pvoid can be caste to another data type by developers. The actual data type
that pvoid points to at a given time is context dependent too. Automatically
predicting the pointee data type for pvoid is another challenge. The current
default solution is to replace a union with one of its largest members and leave
pvoid alone. While performing the analysis, a user can modify the kernel data
type header file and change the definition of union or pvoid in terms of his
understanding of their running contexts. An automated solution to this problem
is part of our future work.

4.4 Hardware Access Monitoring

In comparison to user-space malware, kernel malware is able to bypass the me-
diation of the OS and directly access low-level hardware resources. In X86 ar-
chitectures, in addition to the memory and general-purpose registers that kernel
malware access through instructions like MOV and LEA, other types of system
storage resources could also be visited and manipulated by kernel malware. CPU
caches (e.g., TLB) dedicate registers and buffers of I/O controllers. Attackers
have developed techniques that take advantage of these hardware resources to
devise new attacks. For example, upon a system service (system call) invoca-
tion made by a user-space process, Windows XP uses instruction SYSENTER
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(for Intel processor) to perform the fast transition from user space to kernel
space. The entry point of kernel code (a stub function) is stored in a dedicated
register called IA32_SYSENTER_EIP, which is one of Model-Specific Registers
(MSRs). When executing SYSENTER, the CPU sets the EIP register with the
value of IA32_SYSENTER_EIP. Then, the kernel stub function is called and it
transfers the control to the target system service. To compromise Windows sys-
tem services, a rootkit could alter the system control-flow path by resetting the
IA32_SYSENTER_EIP to the starting address of a malicious stub function, and
this function can invoke a malicious system service. So, capturing the malware’s
accesses to these sensitive hardware resources could be essential to comprehend
its attacking behavior. Currently, Rkprofiler monitors twenty system instruc-
tions that malware might execute. They are not meant to be complete at this
point and can be expanded in the future if necessary.

5 Case Studies

5.1 FUTo

FUTo is an enhanced version of the Windows kernel rootkit FU, which uses the
technique called Direct Kernel Object Manipulation (DKOM) to hide processes
and drivers and change the process privileges. DKOM allows rootkits to directly
manipulate kernel objects, avoiding the use of kernel hooks to intercept events
that access these kernel objects. For example, a rootkit can delete an item from
the MODULE_ENTRY list to hide a device driver without affecting the execution of
the system. This technique has been applied to many rootkit attacks, such as
hiding processes, drivers and communication ports, elevating privilege levels of
threads or processes and skewing forensics [12]. In this experiment, FUTo was
downloaded from [21] and it included one driver (msdirectx.sys) and one exe-
cutable (fu.exe). The fu.exe was a command-line application that installed the
driver and sent commands to the driver according to the user’s instructions. Dur-
ing the test, we executed the fu.exe to accomplish the following tasks: querying
the command options, hiding the driver (msdirect.sys) and hiding the process
(cmd.exe). After that, we used Windows native system utilities (task manager
and driverquery) to verify that the target driver and process did not show up in
their reports. The test took less than 3 minutes.

We compared the call graph created by Rkprofiler with the call graph created
by IDA-Pro (which uses the static code analysis technique). It was found that
the former was the sub-graph of the latter, which is as expected. The tag trace
graph of this test is shown in Table 1. The driver msdirectx was executed in
four process contexts in the graph. Process 4 (System) is the Windows native
process that was responsible for loading the driver misdirectx. The driver initial-
ization routine (with tag_id 0) was executed in this process context. The other
three processes were associated with FUTo.exe and they communicated with
the misdirectx driver to perform the tasks of hiding the driver and process. One
important observation is that the major attacking activities have been recorded
by Rkprofiler and can be easily identified in the tag trace table by users. To
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Table 1. FUTO tag trace table

Tag ID Address Type Parent Category Size(bytes) Process ID Process Name

0 0xf6b7e7e6 FUNCT 0049 0953 DriverInit n/a function n/a 4 System

1 0x825c3978 DRIVER OBJECT n/a struct 168 4 System

2 0x827cba00 EPROCESS n/a struct 608 4 System

3 0x825991c8 EPROCESS 2 struct 608 4 System

4 0x825ce020 EPROCESS 3 struct 608 4 System

5 0xf7b0ec58 PVOID n/a pointer 4 4 System

6 0xf6b8b92 PDEVICE OBJECT n/a pointer 4 4 System

7 0xf6b7e722 FUNCT 0049 095B MajorFunction 1 function n/a 4 System

8 0xf6b7d43a FUNCT 00BC 0957 DriverUnload 1 function n/a 4 System

9 0x8264600 MODULE ENTRY 1 struct 52 4 System

10 0x82609f18 DEVICE OBJECT n/a struct 184 1920 fu.exe

11 0x8266fc28 IRP n/a struct 112 1920 fu.exe

12 0x8266fc03 IRP n/a struct 112 1920 fu.exe

13 0x826bc118 IRP n/a struct 112 1952 fu.exe

14 0x826bc103 IRP n/a struct 112 1952 fu.exe

15 0x826d8288 MODULE ENTRY 9 struct 52 1952 fu.exe

16 0x8055ab20 MODULE ENTRY 9 struct 52 1952 fu.exe

17 0x826bc210 IRP n/a struct 112 1952 fu.exe

18 0x825d1020 EPROCESS 4 struct 608 1880 fu.exe

19 0x8273a7c8 EPROCESS 18 struct 608 1880 fu.exe

20 0x826eb408 EPROCESS 19 struct 608 1880 fu.exe

21 0x825d5a80 EPROCESS 20 struct 608 1880 fu.exe

22 x825e4da0 EPROCESS 21 struct 608 1880 fu.exe

23 0x825a9668 EPROCESS 22 struct 608 1880 fu.exe

24 0x82695180 EPROCESS 23 struct 608 1880 fu.exe

25 0x825a0da0 EPROCESS 24 struct 608 1880 fu.exe

26 0x82722980 EPROCESS 25 struct 608 1880 fu.exe

27 0x825c27e0 EPROCESS 26 struct 608 1880 fu.exe

28 0x82624bb8 EPROCESS 27 struct 608 1880 fu.exe

29 0x825de980 EPROCESS 28 struct 608 1880 fu.exe

30 0x8248bda0 EPROCESS 29 struct 608 1880 fu.exe

31 0x8264a928 EPROCESS 30 struct 608 1880 fu.exe

32 0x8263a5a8 EPROCESS 31 struct 608 1880 fu.exe

33 0x825d9020 EPROCESS 32 struct 608 1880 fu.exe

34 0xe13ed7b0 HANDLE TABLE 4 struct 68 1880 fu.exe

35 0x82607d48 ETHREAD 32 struct 600 1880 fu.exe

36 0xe15ca640 HANDLE TABLE 32 struct 68 1880 fu.exe

37 0xe10a8a08 HANDLE TABLE 36 struct 68 1880 fu.exe

38 0xe1747cd0 HANDLE TABLE 36 struct 68 1880 fu.exe

hide itself, the driver msdirectx first reads the address of its module descriptor
(with tag_id 9) from its driver object (with tag_id 1). Then it removes this
module descriptor from the kernel MODULE_ENTRY list by modifying the Flink and
Blink pointers in two neighbor module descriptors (tag_id 15 and 16). Similarly,
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to conceal process cmd.exe, msdirectx first obtains the process descriptor (with
tag_id 2) of the current process by calling kernel function IoGetCurrentProcess.
Starting from this process descriptor, msdirectx traverses the kernel EPROCESS
list to find the process descriptor (with tag_id 4) of process csrss.exe. These two
steps take place in the System process context. After receiving the command for
hiding the cmd.exe process sent by one of the fu.exe processes, msdiretx searches
the kernel EPROCESS list, beginning with the process descriptor of csrss.exe.
When the process descriptor (with tag_id 32) of cmd.exe is found, msdirectx
removes it from the kernel EPROCESS list by altering Flink and Blink point-
ers in two neighbor process descriptors (with tag_id 31 and 33). Furthermore,
Flink and Blink pointers in the process descriptor of cmd.exe are also modified
to prevent the random Blue Screen of Death (BSOD) when exiting the hidden
process. To evade the detection of rootkit detectors, FUTo deletes the hidden
process from the other three kernel structures: kernel handle table list, handle
table of the process csrss.exe and PspCidTable. The first one is a linked list, and
the DKOM behavior of FUTo over this kernel structure was captured and dis-
played in the tag trace graph too (see tag_id 36, 37 and 38). The last two kernel
structures are implemented as three-dimensional arrays, which is not supported
by the current version of Rkprofiler. So, the tag trace graph does not include the
modification of these two kernel structures.

Combining Rkprofiler’s output with other reports, we discovered other inter-
esting behavior of FUTo. First, FUTo employed an IOCTL mechanism to pass
control commands from user space to kernel space. During the driver initializa-
tion, a device \\Device\\msdirectx was created by calling the kernel function
IoCreateDevice. Then a dispatch function (data type FUNCT_0049_095B_
Majorfunction and tag_id 7) was registered to the driver object (with tag_id
1) that was assigned to msdirectx by the Windows kernel. This dispatch func-
tion was invoked by the kernel I/O manager to process I/O requests issued by
the fu.exe processes. By checking the parameters of this dispatch function, we
found that the I/O control codes for process and driver concealment tasks are
0x2a7b2008 and 0x2a7b2020. Second, the kernel string function strncmp was
called 373 times by one msdirectx function, implying a brute-force searching
operation. The first parameter of this function was constant string ”System”
and the second parameter was 6 bytes of data within the process descriptor of
the process System (with tag_id 2). Beginning with the address of the process
descriptor, the address of the second parameter was increased by one byte each
time this string function was called. The purpose of the search was to find the
offset of the process name in the EPROCESS structure. This was confirmed by
manually checking the FUTo source. It seems that the definition of EPROCESS
structure has changed over the Windows versions and the brute-force searching
allows FUTo to work with different Windows versions.

5.2 TCPIRPHOOK

Inserting hooks into the kernel to tamper with the kernel control-flow path is one
major technique that attackers apply to rootkit attacks. A hooked function can
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intercept and manipulate kernel data to serve its malicious aims. TCPIRPHOOK
is one such rootkit and it intends to hide the TCP connections from local users.
Specifically, this rookit exploits the dispatch function table of the TCP/IP driver
object (associated with driver TCPIP.sys) and substitutes a dispatch function
with its hook. The hooked function registers another hook to the I/O request pack-
ets (IRP) such that the second hook can intercept and modify the query results for
network connections. We downloaded the rootkit package from [21] which also in-
cluded one driver file, irphook.sys. The rootkit was implemented to conceal all http
connections (with destination port 80). Before installing the rootkit, we opened
Internet Explorer to visit a few websites, and then ran the netstat utility to dis-
play the corresponding http connections. We loaded the irphook.sys to the kernel
and used netstat to verify that all https connections were gone. In the end, we
unloaded the irphook.sys. The test took less than 3 minutes.

The call graph of TCPIRPHOOK is shown in Figure 2. Function 0xf7ab8132
(irphook.sys) was the first hook that was inserted into the 14th entry
(IRP MJ DEVICE CONTROL,) of the dispatch function table in the driver
TCPIP.sys. The replaced dispatch function was TCPDispatch (address
0xf726fddf) owned by driver TCPIP.sys. The first hook invoked TCPDispatch
15 times in the call graph. In fact, it is common for rootkits to call the original
function in a hook, which reduces the coding complexity of the hook. Function
0xfa7b8000 (irphook.sys) was the second hook that was responsible for modify-
ing the query results for network connections. Although the second hook seems
to be called by TCPDispatch in the call graph, the actual direct caller of the
second hook was IopfCompleteRequest (ntoskrnl.exe). This is because Rkprofiler
did not track the benign kernel code and had no knowledge of their call stacks.
On the other hand, even the indirect caller-callee relation between TCPDisptch
and the second hook can imply that the network connection query caused syn-
chronous IRP processing and completion in the kernel, which is comparable to

Fig. 2. TCPIRPHOOK call graph
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asynchronous IRP processing and completion. But this information cannot be
inferred by simply looking at the IDA-pro’s call graph, because IDA-pro can-
not statically determine the symbol of function TCPDispatch and the calling
path from the first hook to the second hook in Figure 3 is not presented in the
IDA-pro’s call graph.

Figure 3 is the tag trace graph of TCPIRPHOOK. Two hooking activities are
illustrated in this graph. The first hook was installed at the driver loading stage.
To hook the dispatch function table of the driver TCPIP.sys, TCPIRPHOOK
first calls the kernel function IoGetDeviceObjectPointer with the device name
\\Device\\Tcp to get the pointer (with tag_id 7) to the device object (with
tag_id 8) owned by driver TCPIP.sys. Then, the device object was visited to
get the address of the driver object (with tag_id 9) owned by driver TCPIP.sys.
Last, TCPIRPHOOK carried out the hooking by accessing the 14th entry of the
dispatch function table in the driver object: reading the address of the original
dispatch function (with tag_id 10) and storing it to a global variable; writing the
address of the second hook (with tag_id 11) to the table entry. The second hook
was dynamically installed in the context of process netstat.exe. When netstat.exe
was executed to query TCP connection status, the Windows kernel I/O manager
created an IRP (with tag_id 12) for the netstat.exe process. This IRP was
passed to the first hook (function_id 5 and tag_id 11) of TCPIRPHOOK.
The first hook obtained the IO_STACK_LOCATION object (with tag_id 13) from
this IRP and wrote the address of the second hook (with tag_id 14) to the data
member CompletionRoutine of the IO_STACK_LOCATION object. Thus, being one

Fig. 3. TCPIRPHOOK tag trace graph
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IRP completion function, the second hook would be called by the Windows
kernel to process the I/O return data for this IRP. Last, the tag trace graph also
captures the manipulation of the I/O return data. The buffer of the I/O return
data was pointed to by the data member UserBuffer of IRP and it was an array
of structure CONNINF101 (with tag_id 15). The size of the buffer was stored
in the data member IoStatus.Information of the IRP. Clearly, the tag_id 15 was
modified in the tag trace graph. By examining the tag trace table, we found that
the status of all http connections in the buffer were changed from 5 to 0.

5.3 Rustock.B

Rustock.B is a notorious backdoor rootkit that hides malicious activities on a
compromised machine. The distinguished feature of this rootkit is the usage of
multi-layered code packing, which makes static analysis cumbersome [7]. Unlike
the other two rookits described above, we did not have access to the source code
of this rootkit. However, several analysis results on this rootkit published on the
Internet helped us understand some behaviors of this rootkit. We downloaded
Rustock.B from [20] as one executable. During the test, we just double-clicked
the binary and waited until the size of the Rkprofiler log stop being populated.
The test lasted about five minutes.

A malicious driver named system32:lzx32:sys was detected by Rkprofiler.
90857 calls and 2936 tags were captured in the test. The driver contained self-
modifiying code and we found many RET instructions that did not have corre-
sponding CALL instructions at code unpacking stages. This is because unpacking
routines executed JMP instructions to transfer the controls to the intermedi-
ate or unpacked code. In addition, the driver modified the dedicated register
IA32_SYSENTER_EIP through WRMSR and RDMSR instructions to hijack the
Windows System Service Descriptor Table (SSDT). One hook was added to the
dispatch function table of driver Ntfs.sys to replace the original IRP_MJ_CREATE
dispatch function. This is similar to what TCPIRPHOOK does. We compared
the report generated by Rkprofiler with others on the Internet and they matched
each other well. Table 2 lists the external functions and registry keys that were
called and created by Rustock.B. Unfortunately, the full report of this test can-
not be presented due to the space constraint.

6 Discussion

In addition to the incomplete kernel symbols provided by Microsoft, the current
implementation of Rkprofiler suffers several other limitations that could be ex-
ploited by attackers to evade the inspection. First, attackers may compromise
the kernel without running any malicious kernel code, e.g., directly modifying
kernel data objects from user space or launching return-to-lib attacks without
the use of any function calls [24]. Rkprofiler is not able to detect and profile
such attacks. Instead, other defense approaches like control flow integrity en-
forcement [2] could be adopted to address them. Second, the instruction pair
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Table 2. External functions and registry keys manipulated by Rustock. B

External Functions

ExAllocatePoolWithTag, ExFreePoolWithTag, ExInitializeN-
PagedLookasideList, IoAllocateMdl, IoGetCurrentProcess, IoGet-
DeviceObjectPointer, IoGetRelatedDeviceObject, KeClearEvent,
KeDelayExecutionThread, KeEnterCriticalRegion, KeInitial-
izeApc, KeInitializeEvent, KeInitializeMutex, KeInitializeSpin-
Lock, KeInsertQueueApc, KeLeaveCriticalRegion, KeWaitForS-
ingleObject, MmBuildMdlForNonPagedPool, MmMapLocked-
Pages, MmProbeAndLockPages, NtSetInformationProcess,
ObfDereferenceObject, ObReferenceObjectByHandle, Probe-
ForRead, PsCreateSystemThread, PsLookupProcessByProcessId,
PsLookupThreadByThreadId, RtlInitUnicodeString, _stricmp,
_strnicmp, swprintf, wcschr, wcscpy, _wcsicmp, _wcslwr, wcsncpy,
_wcsnicmp, wcstombs, ZwClose, ZwCreateEvent, ZwCreateFile,
ZwDeleteKey, ZwEnumerateKey, ZwOpenKey, ZwQueryInforma-
tionFile, ZwQueryInformationProcess, ZwQuerySystemInforma-
tion, ZwReadFile

Registry Keys

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\pe386

HKEY\_LOCAL\_MACHINE\SYSTEM\CurrentControlSet\

Enum\Root\LEGACY_pe386

CALL/RET is used as the sole indicator of function call and return events.
attackers can obfuscate these function activities to escape the monitoring. For
example, JMP/JMP, CALL/JMP and JMP/RET can be employed to imple-
ment the function call and return events. Moreover, instead of jumping to a
target instruction (either the first instruction of a callee function or the returned
instruction of a caller function), a attacker could craft the code to jump to one
of its neighbor instructions, while preserving the software logic intact. Defending
against such attacks is part of our future work. Third, a attacker may deter the
AMT method by accessing dynamic objects in unconventional ways. For exam-
ple, a rootkit can scan the stack of a benign kernel function to get the pointer to
a desired kernel object. These attacks are very challenging, because building an
accurate and up-to-date symbol table for all kernel objects is impractical. Last,
malware may have the capability of detecting virtual machine environments and
change their behavior accordingly. Exploring multiple execution paths [16] and
static analysis could mitigate this problem to some extent.

7 Related Work

Many previous works have focused on run time rootkit detection [19] [4] [17] [18]
[28] and prevention [29] [22] [25]. The main purpose of these mechanisms is to
protect data and code integrity of the guest OS at run time. On the other hand,
researchers have also applied program analysis techniques to create offline rootkit
defense mechanisms with goals such as rootkit identification, hook detection and
so on. Several works that fall into this category are discussed below.
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Rootkit Identification. Kruegel [13] proposed a system that performs static
analysis of rootkits using symbolic execution, a technique that simulates program
execution with symbols. This system can only detect known rootkits. Moreover,
anti-static-analysis techniques like code obfuscation can be used to defeat this
system. Limbo [26] is another rootkit analysis system that loads a suspicious
driver into a PC emulator and uses flood emulation to explore multiple running
paths of the driver. Limbo has a low false positive rate, but it performs poorly
when detecting unknown rootkits. Also, flood emulation makes rootkits behave
abnormally in the emulator, possibly resulting in inaccurate detection. Panorama
[31] uses dynamic taint analysis to detect privacy-breaching rootkits. Sensitive
system data like keys and packets are tainted and system-wide taint propagation
is tracked. A taint graph is generated to tell whether a target rootkit accesses
the tainted data or not. Although this system is good at capturing data-theft
rootkits, it cannot provide necessary behavior information (e.g., kernel hooking)
associated with other types of rootkits.

Hook Detection. HookFinder [30] and HookMap [27] aim to identify the hook-
ing behavior of rootkits. HookFinder performs dynamic taint analysis and allows
users to observe if one of the impacts (tainted data) is used to redirect the sys-
tem execution into the malicious code. On the other hand, HookMap is intended
to identify all potential hooks on the kernel-side execution paths of testing pro-
grams such as ls and netstat. Dynamic slicing is employed to identify all mem-
ory locations that can be altered to diverted kernel control flow. Unfortunately,
hooking is only one aspect of rootkit behavior and both systems cannot provide
comprehensive a view of rootkit activities in a compromised system.

Discovery of Sensitive Kernel Data Manipulation. K-tracer [14] is a
rootkit analysis system that automatically discovers the kernel data manipu-
lation behaviors of rootkits including sensitive data access, modification and
triggers. K-tracer performs data slicing and chopping on sensitive data in the
rootkit trace and identifies the data manipulation behaviors. K-tracer cannot
detect hooking behaviors of rootkits and is unable to deal with DKOM and
hardware-based rootkits. In comparison, Rkprofiler can handle a broad range of
rootkits, including DKOM and hardware-based rootkits, and provide a complete
picture of rootkit activities in a compromised system.

Rootkit Profiling. PoKeR [23] is a QEMU-based analysis system that shares
the same design goal as Rkprofiler: comprehensively revealing rootkit behavior.
PoKeR is capable of producing rootkit traces in four aspects: hooking behavior,
target kernel objects, user-level impact and injected code. Similar to Rkprofier,
PoKeR infers the dynamic kernel object starting from the static kernel objects.
However, PoKeR only tracks the pointer-based object propagation, while Rkpro-
filer tracks both pointer-based and function-based object propagation. So Rkpro-
filer can identify more kernel objects than PoKeR. In addition, the function call
and hardware access monitoring features of Rkprofiler are not offered by PoKeR.
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8 Conclusion

In this paper, we present a sandbox-based rootkit analysis system that moni-
tors and reports rootkit behavior in a guest OS. The evaluation results demon-
strate the effectiveness of this system in revealing rootkit behavior. However,
to strengthen the current implementation of Rkprofiler, we need OS vendors
to provide the unpublished symbols, some of which may have been reversely
engineered by attackers.
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Abstract. We describe a method to detect botnet command and con-
trol traffic and individual end-hosts. We introduce the notion of “desti-
nation traffic atoms” which aggregate the destinations and services that
are communicated with. We then compute the ”persistence”, which is
a measure of temporal regularity and that we propose in this paper,
for individual destination atoms. Very persistent destination atoms are
added to a host’s whitelist during a training period. Subsequently, we
track the persistence of new destination atoms not already whitelisted
in order to identify suspicious C&C destinations. A particularly novel
aspect is that we track persistence at multiple timescales concurrently.
Importantly, our method does not require any a-priori information about
destinations, ports, or protocols used by the C&C communication, nor
do we require payload inspection. We evaluate our system using exten-
sive user traffic traces collected from an enterprise network, along with
collected botnet traces.

We demonstrate that our method correctly identifies a botnet’s C&C
traffic, even when it is very stealthy. We also show that filtering outgoing
traffic with the constructed whitelists dramatically improves the perfor-
mance of traditional anomaly detectors. Finally, we show that the C&C
detection can be achieved with a very low false positive rate.

1 Introduction

A botnet is a collection of compromised end-hosts all under the control of a
particular bot-master (or bot-herder). The recruited end-hosts, also called drones
or zombies, are marshalled and controlled by the bot-herders via a command
and control (in short, C&C) traffic channel to carry out a number of malevolent
activities. For example, they are used to launch DDoS attacks, send SPAM,
harvest personal information from zombie hosts, stage social engineering attacks,
and so on. Botnets are so effective at delivering these services that there is an
thriving (underground) economy based around buying or renting botnets [1].
Today’s commercial malware prevention methods, typically host based HIPS and
AV engines, are well suited to identifying and countering previously identified
and analyzed threats. However, contemporary botnets are extremely adaptable
and able to churn our variants at a very high volume, using polymorphism and
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packing engines, which can easily overwhelm existing defenses (a particular AV
vendor reports collecting 3000 distinct malware samples daily on average [2]).

In contrast to signature scanning based methods, which target known threats,
statistical anomaly detection methods are often employed to detect new threats;
these operate by looking for deviations in traffic feature distributions caused
by the malware. These methods can detect and flag zombie hosts that have
been activated and generating a significant (noticeable) volume of traffic (DDoS
attacks, SPAM, click-fraud, etc). However, it may be a considerable period of
time between a host joining a botnet to the time that is instructed to carry out
a malicious task; often by then it is too late, as the zombie has completed its
purpose. Therefore, even as detecting a botnet in the act of performing some
detrimental activity should be a goal, it is far more critical to block the initial
recruitment vector, or failing that to detect the C&C traffic between the drone
and bot-herder, so as to deactivate the channel and render the drone useless.
More critically, information gathered about the C&C infrastructure may be used
to take down the botnet as a whole.

In this paper, we present and validate a method to detect the C&C commu-
nications at an endhost. We were motivated by the observation that a recruited
host needs to be in touch with its C&C server to be ready to carry any particu-
lar activity. It will reconnect, for each new activity, each time it is repurposed,
or resold, and so on. Intuition suggests that such visits will happen with some
regularity; indeed without frequent communication to a C&C server, the bot
becomes invisible to the bot herder. However, this communication is likely to
be very lightweight and spaced out over irregular large time periods. This helps
the botnet be stealthy and hence harder to expose. We thus seek to design a
detector that monitors a user’s outgoing traffic in order to expose malicious
destinations that he visits with some temporal regularity, even if infrequently.
In order to discern these from normal destinations a user frequents, we build
whitelists based on a new kind of IP destination address aggregation which we
call destination atoms. A destination atom is an aggregation of destinations that
is intended to capture the service connected to. For example, we view google.com
as a destination service, because a user’s request to google.com will be answered,
over time, by many different servers with different IP addresses. We build these
destination atoms using a series of heuristics. Then, to capture the nebulous
idea of “lightweight repetition”, we introduce a measure called persistence. Our
whitelists contain destination atoms that exhibit a given level of persistence.
With this whitelist in place, detection proceeds by tracking persistence to con-
tacted (non whitelisted) destinations. When the computed persistence becomes
high enough, the destination is flagged as a potential C&C endpoint. The method
we describe in this paper is particularly well suited to be deployed inside enter-
prise networks. In such networks, a level of administrative control is enforced
over what applications may or may not be installed by end-users, which results
in traffic from individual end-hosts being easier to analyze and attribute to par-
ticular applications.
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The regularity with which a zombie contacts its bot-herder will differ from
botnet to botnet; moreover, we cannot predict the communication frequency
that will be used in tomorrow’s botnet. We therefore propose to track persis-
tence over multiple timescales simultaneously so as to expose a wide variety of
communication patterns. We develop a simple and practical mechanism to track
persistence over many observation windows at the same time.

There are various styles by which botnets can communicate to command con-
trol centers, including IRC channels, P2P overlays, centralized and decentralized
C&C channels. Our goal here is to try to uncover the C&C activity for the class
of bots that employ a high degree of centralization in their infrastructure and
where the communication channel lasts for an extended period. We do not target
botnets where the communication between zombie and bot-herder is limited to
a few connections, or those where the zombie is programmed to use a completely
new C&C server at each new attempt.

We validate and assess our scheme using two datasets; one consists of (clean)
traces collected directly on enterprise endhosts, and the second consists of traces
of live bot malware. For our method to be practical, it is important that the
created whitelists be stable, i.e., they do not require frequent updating. In addi-
tion, it is essential that whitelists be small so that they require little storage and
can be matched against quickly. Using data traces from a large corpus of enter-
prise users, we will show that the constructed whitelists, composed of destination
atoms and based on their persistence values, exhibit both of these properties. We
then overlay the malware traces on top of the user traces, and run our detectors
over this combined traffic trace. We manually extracted the C&C traffic from the
botnet malware traces in order to compute false positives and false negatives.
We show that our method identifies the C&C traffic in all the bots we tested. Fi-
nally, we also demonstrate that there is a positive side benefit, of identifying the
persistent destination atoms. The sensitivity of HIDS traffic anomaly detectors
can be dramatically improved, by first filtering the traffic through the whitelists.
This allows a larger fraction of our endhosts to catch the attack traffic, while
also speeding up the overall detection time.

2 Related Work

There are three potential avenues with which we could mitigate the botnet prob-
lem as described in [3]: preventing the recruitment, detecting the covert C&C
channel, and detecting attacks being launched from the (activated) drones. A
number of previous works has addressed the first avenue ([4,5] among others),
and in this paper we chiefly address the second avenue (and the third, albeit
indirectly). Our method detects the covert channel end-points by tracking per-
sistence, and we are able to detect attacks by filtering out whitelisted (normally
persistent) traffic and subsequently applying well established thresholding meth-
ods, borrowing from the domain of statistical anomaly detection.

In [6] the authors devise a method to detect covert channel communications
carried over IRC with a scoring metric aimed at differentiating normal IRC chan-
nels from those used by botnets based on counts of protocol flags and common
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IRC commands. Our own work differs in that we do not require protocol pay-
loads, nor are we restricted to IRC activity. Another detection approach, BotH-
unter [7], chains together various alarms that correspond to different phases of a
host being part of a botnet Our own method does not attempt to identify such
causality and is also able to detect botnet instances for which other identifying
alarms do not exist. Other approaches to detecting botnet traffic involve corre-
lating traffic patterns to a given destination, across a group of users [8]. Our own
work is complementary, focusing on the individual end-host (and can thus detect
single instances of zombies); we can envision combining the approaches together.
Botminer [9] attacks the detection problem by first independently clustering
presumed malicious traffic and normal traffic and then performing a cross-
correlation across these to identify hosts that undertake both kinds of communi-
cation. These hosts are likely to be part of an organized botnet. Our own work
differs in that it is primarily an end-host based solution, and we do not attempt
to correlate activities across hosts. Also, we do not attempt to identify attack
traffic in the traffic stream. We focus purely on the nature of communication
between the end-hosts and purported C&C destinations, looking for regularity
in this communication. Orthogonal to the problem of detecting the botnets and
their activities, and following the increasing sophistication being applied in the
design of the more common botnets in operation today, there has been a great
deal of interest in characterizing their structure, organization and operation. A
description of the inner workings, specifically, the mechanisms used by the Storm
botnet to run SPAM campaigns is described in [10]. The work in [11] examines
the workings of fast-flux service networks, which are becoming more common
today as a way to improve the robustness of botnet C&C infrastructures.

The area of traffic anomaly detection is fairly well established, and many de-
tectors have been proposed in the past [12,13]. Some methods build models of
normal behavior for particular protocols and correlate with observed traffic. An
indicator of abnormal traffic behavior, often found in scanning behaviors, is a
unusual number of connection attempts that fail, as detailed in [12]. Another
interesting idea, described in [13], in which the authors try to identify the par-
ticular flow that caused the infection by analyzing patterns of communications
traffic from a set of hosts simultaneously. All of these approaches are comple-
mentary to our work and we allow for any type of traffic feature based anomaly
detector to be integrated into the system we describe. Finally, [14] describes a
method to build host profiles based on communication patterns of outgoing traf-
fic where the profiles are used to detect the spread of worms. This is different
from our goal in this paper, to detect botnet C&C activity, which is a stealthier
phenomenon. A more fundamental difference between our approaches is that we
employ the notion of persistence to incorporate temporal information.

To end this discussion we strongly believe, given the severity of the issue, there is
not a single silver bullet solution that can tackle the botnet threat; a combination
of mechanisms will be needed to effectively mitigate the problem. We view our own
work as complementary to existing approaches that are focused on preventing the
botnet recruitment or else protecting against the infection vector.
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3 Methodology

While botnets vary a great deal in organization and operation, a common be-
havior across all of them is that each zombie needs to communicate regularly
with a C&C server to verify its liveness. In order to keep the C&C traffic under
the radar, most botnets tend to keep this communication very lightweight, or
stealthy. However because the bot will visit its C&C server repeatedly over time,
failing which the bot-herder might simply assume the zombie to be inactive, we
are motivated to try to expose this low frequency event. To do this, we introduce
a notion called destination atoms (an aggregation of destinations), and a metric
called persistence to capture this “lightweight” yet “regular” communication.
We design a C&C detection method that is based upon tracking the persistence
of destination atoms. In order to differentiate whether a new destination atom
exhibiting persistence is malicious or benign, we need to develop whitelists of
persistent destinations that the user or his legitimate applications normally visit.

The intuition for our method is as follows: an end-host, on any particular day,
may communicate with a large set of destination end-points. However, most of
these destinations are transient; they are communicated with a few times and
never again. When traffic from the host is tracked over longer periods, the set of
destinations visited regularly is a (much) smaller and stable set. Presumably, this
set consists of sites that the user visits often (such as work related, news and en-
tertainment websites), as well as sites contacted by end-host applications (such
as mail servers, blogs, news sites, patch servers, RSS feeds, and so on). If the set
of destinations with high regularity is not very dynamic, then such a set can de-
fine a behavioral signature of the end-host and can be captured in a whitelist that
requires infrequent updating (once learned). We will see in our user study, that
indeed such a whitelist is quite stable. This means that should a new destination
appear, one that is persistent and malicious, the event stands out, enabling detec-
tion. This is precisely what we expect to happen when an end-host is subverted,
recruited into a botnet and begins to communicate with its C&C servers.

In order to keep the whitelists compact and more meaningful, we use a set of
heuristics to aggregate individual destination endpoints into destination atoms,
which are logical destinations or services. For example, the particular addresses
that are mapped to google.com vary by location and time, but this is irrelevant
to the end user who really only cares about the google ”service”. The same
is often true for mail servers, print services, and so on. For our purpose, we
primarily care about the network service being connected to, not so much the
actual destination address.

Given a destination end-point (dstIP, dstPort, proto), we obtain the atom
(dstService, dstPort, proto), by extracting the service from the IP address using
the heuristics described below (Table 1 shows a few mappings from endpoints
to destination atoms):

1. If the source and destination belong to different domains, the service name
is simply the second level domain name of the destination (e.g., cisco.com,
yahoo.com)
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Table 1. Example destination atoms contacted by somehost.intel.com. Notice that
the intel hosts, being in the same domain, are mapped onto the third level domain,
and the google destinations to the second level domain.

Destination address Dest. Name Dest. Atom
(143.183.10.12, 80, tcp) www.inet.intel.com (inet.intel.com, 80, tcp)
(134.231.12.19, 25, tcp) smtp-gw.intel.com (smtp-gw.intel.com, 25, tcp)
(216.239.57.97, 80, tcp) cw-in-f97.google.com (google.com, 80,tcp)
(209.85.137.104, 80, tcp) mg-in-f104.google.com (google.com, 80,tcp)

2. If the source and destination belong to the same domain, then the service
is the third level domain name (e.g., mail.intel.com, print.intel.com). We
differentiate these situations because we expect a host to communicate with
a larger set of destinations in its own domain, as would be the case in an
enterprise network.

3. When higher level application semantics are available (such as in enter-
prise IT departments), we can use the following type of heuristic. Con-
sider the passive FTP service, which requires two ports on the destination
host, one being port 21, and the other an ephemeral port (say k). Thus,
both (ftp.service.com,21,tcp) and (ftp.service.com,k,tcp) reflect the same
service and for the case of FTP. We thus generalize the destination atom
as (ftp.service,com, 21:>1024,tcp). Being able to do this for a larger set of
protocols requires a detailed understanding of the particular application’s
semantics, which is beyond our scope here. In this paper, we use a sim-
ple heuristic that approximates this behavior: if we observe more than 50
ephemeral ports being connected to at the same service, we expand the des-
tination atom to include all ephemeral ports. The rationale here is that if the
service is associated with ephemeral ports, it is likely that we will observe
a port number not seen previously at some time and should simply include
this in the previously created destination atom.

4. Sometimes a single destination host can provide a number of distinct ser-
vices, and in this case, the destination port is sufficient to disambiguate
the services from each other, even though they may have similar “service
names”, obtained by a (reverse) DNS lookup.

5. Finally, when the addresses cannot be mapped to names, no summarization
is possible, and we use the destination IP address as the service name.

We now define our persistence metric, to quantify the lightweight yet regular
communication from end-hosts to destination atoms. We monitor the outgoing
traffic from an end-host using a large sliding time window of size W , divided
into n time-slots, each of length s. We term W an observation window, and each
time-slot s as a measurement window (simply, bin). Letting si denote the i-th
slot of size s in W , we have W ≡ [s1, s2, . . . , sn]. The persistence of a destination
atom (d), in the observation window W is defined as:
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p(d, W ) =
1
n

n∑
i=1

1d,si

where 1d,si has a value 1 if the host makes at least one connection to d in the
time-slot si, and 0 otherwise. Thus, a destination atom’s persistence value is
simply the fraction of time slots where at least one connection was observed.
Given a threshold p∗, we say that d is persistent if p(d, W ) > p∗ (otherwise, it is
termed transient).

Because botnets differ from one to another to a great extent, we cannot know
a priori the frequency (using the term loosely) with which a zombie will contact
its C&C server(s). Thus, it is of paramount importance to design a method
that can track persistence over several observation windows simultaneously. Note
that the persistence of an atom depends upon the sizes of the two windows
(W, s) over which it is observed and measured; we use the term timescale to
denote a particular instance of (W, s). In order to capture persistence over many
timescales, we select k overlapping timescales (W 1, s1) ⊂ (W 2, s2) ⊂ . . . ⊂
(W k, sk), where (W 1, s1) is the smallest timescale, and (W k, sk) is the largest.
Here sj denotes the bin size at time scale j. (We could define sj

i as the ith slot in
an observation window W j , however we drop the subscript for simplicity when
discussing timescales). For each timescale (W j , sj) : 1 ≤ j ≤ k, we compute the
persistence p(j)(d) as previously defined. Then, a destination atom d is persistent
if the threshold p∗ is exceeded in any one of the timescales, i.e., d is a persistent
destination atom iff

max
j

p(j)(d) > p∗

We have explicitly chosen not to use direct frequency type measurements (e.g.,
a low pass filter) because our definition is very flexible and does not require one to
track specific multiples of one frequency or another. More importantly, we don’t
expect these low frequency connection events to precisely align at any particular
frequency; our definition allows some slack in where exactly the events occur.

When deciding upon the appropriate timescales, particularly the smallest
measurement window s1, we want it capture session level behavior (multiple
requests to a web server in a short interval are likely to be for a single session).
Based on a preliminary analysis of user data, we select s1 = 1 hr (from em-
pirical data, we see that 87% of connections to the same destination atom are
separated by at least an hour). We also set sk = 24 hours because our train-
ing dataset is 2 weeks (in reality, one could use larger windows). With these
two boundary slot-lengths, we select a number of intermediate values (listed in
§ 5.2). The observation window length controls how long we should wait before
we conclude as to whether something is persistent (or transient). For conve-
nience, we select n = 10. Noting that W = n × s, the 7 timescales used in this
paper lie between (Wmin = 10, smin = 1), which is the smallest timescale, and
(Wmax = 240, smax = 24), the largest (all values described in hours). It should
be pointed out that additional timescales can be added dynamically based on
evidence of some anomaly at a particular timescale.
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In the following, we describe the specifics of how our C&C detection proceeds.
Initially, there is a training stage in which the end-host bootstraps itself by learn-
ing a whitelist of destination atoms. The training stage should last long enough
for the stable behavior of the end-host to be exposed (perhaps a week or two).
Subsequent to the training stage, after the whitelists are built up and system
parameters initialized, the system enters the detection stage. It should be noted
that the training and detection stages proceed identically; in both, persistence of
destinations is tracked and alarms raised when this crosses a specified threshold.
The fundamental difference is that in the detection stage, an alarm simply re-
sults in the destination atom being incorporated into the whitelist; on the other
hand, in the detection stage, the alarm alerts the end-user (or communicated
to the central IT console in an enterprise) and asked to take punitive action.
In case the alarm is benign, and the user (or administrator) can attest to the
destination atom, it is added into the whitelist.

C&C Detection Implementation. To simplify the description, we first de-
scribe how detection is carried out with a single timescale. The system proceeds
by observing all the outgoing traffic at an end-host; connections to destination
atoms already in the whitelist are ignored. Persistence values are tracked for
all other outgoing traffic: connections to a destination atom in a window W , is
tracked using a bitmap of n bits (one bit for each timeslot in s ∈ W ). If a new
outgoing connection is observed in slot si, then the entry in the bitmap, for the
corresponding slot, is set to 1. We create a separate bitmap for each destination
atom when it is first observed. This bitmap updating occurs asynchronously as
the outgoing connections are observed. A timer fires every smin minutes (this is
the time interval corresponding to the smallest timescale), and all the bitmaps
are processed. Here, for each bitmap, the persistence is computed taking into
account the last n bits and at this time, one of three things can occur: (i) it
cannot be determined if the persistence is high enough (not enough samples),
and the bitmap is retained; (ii) the newly updated persistence crosses the crit-
ical threshold, p∗ (bitmap is freed and an alarm is raised), or (iii) after enough
samples, the persistence is below the threshold (the bitmap is freed up).

In order to track persistence at multiple timescales simultaneously, we could
use k separate bitmaps per atom. It turns out this is not necessary because we
can exploit the structure in our definition of timescales to reduce the overhead.
Notice that s1 · n = W 1 < W 2 < . . . < W k = n · sk, that is, sj is covered by a
slot in the next higher timescale, as is depicted in Fig. 1. Thus, setting a bit in
one of these timescales implies setting a bit in the higher timescale. Thus, rather
that maintain separate bitmaps, we can simply construct a single, long bitmap
that covers all the timescales appropriately; this allows all the timescales to be
updated with a single bit update. The length of this bitmap is W k

s1 = W max

smin . In
our implementation we have s1 = 1 hr, n = 10, and Wmax = 240 hrs, so the
bitmap length is exactly 240 bits.

High level pseudocode for this entire process is shown in Proc. 1. Here, the
set of bitmaps is stored in DCT, indexed by individual atoms (line 1 retrieves all
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Fig. 1. Bitmaps to track connections at each timescale. Here, we have n = 3 and k = 3.

Algorithm 1. computePersistence():
1: for all d ∈ DCT do
2: p(d) ← 0
3: for i = 1 to k do
4: p(i)(d) ← getBits(d, i). |W

i|
|si|

5: p(d) = max(p(d), p(i)(d))
6: if p(d) ≥ p∗ then
7: RAISEALARM(... suspicious destination d)
8: end if
9: end for

10: idx ← (idx + 1)modWmax

smin

11: if p(d) = 0 then
12: discard DCT[d]
13: end if
14: end for

the active bitmaps). The loop (lines 2-7) iterates over each timescale, computing
persistence in each. There is a separate process that processes each outgoing
connection; this checks if the destination is whitelisted, and if not, updates the
bit at index idx in the bitmap (this index is updated in line 10, each time the
procedure is called, i.e., every smin). Finally, if there is no observed activity for
the atom in Wmax, the bitmap is discarded (lines 11-13).

When a C&C alarm is raised, we flag the outgoing connection as suspicious
and alert the user who can choose between either adding the destination atom to
their whitelist, or blocking the outgoing traffic. We will see in our evaluation that
the users are bothered with such decisions infrequently. For enterprise users, such
alarms could also be passed to an IT department where they can be correlated
with other data.

4 Dataset Description

End Host Traffic Traces. The endhost dataset used in this paper consists of
traffic traces collected at over 350 enterprise users’ hosts (mostly laptops), over
a 5 week period. Users were recruited via intranet mailing lists and newsletters,
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and prizes were offered as a way to incentivize participation. The results pre-
sented in this paper use the traces from 157 of the hosts; these were selected
because they provide trace data for a common 4 week period between January
and February 2007. Our monitoring tool collected all packets headers, both in-
going and outgoing, from all machine interfaces (wired and wireless). We divide
the 4 weeks traffic trace into two halves, a training set and a testing set. The
training data is used to build the per-user whitelists and to determine the system
parameters (i.e. p∗). The testing data is used to assess the detection performance,
i.e., false positives and false negatives.

Botnet Traffic Traces. We collected 55 botnet binaries randomly selected
from a larger corpus of malware. Each binary was executed inside a Windows
XP SP2 virtual machine and run for as long as a week, together with our trace
collection tool. When constructing the clean VM image, we took great pains to
turn off all the services that are known to generate traffic (windows auto-update,
etc.) This gives us a certain level of confidence that all (or nearly all) the traffic
collected corresponds to botnet activity. During the collection, the server hosting
the VMs was placed behind a NAT device and connected to an active DSL link.

While we expected the trace collection to be a straight-forward exercise, this
turned out not to be the case. To begin with, a lot of the binaries simply crashed
the VM or else did nothing (no traffic was observed). In other cases, the C&C
seemed to have been deactivated, and we only saw failed connections or connec-
tions to illegal addresses (indicating that the DNS entries for the C&C servers
had been rewired). Only 27 binaries yielded any traffic at all (the collection was
aborted if there was no traffic seen even after 48 hours). From the larger set
of 55 , only 12 binaries yielded traffic that lasted more than a day and the de-
tails of these (usable) traces are enumerated in the first column of Table 2. The
labels here are obtained using the open source ClamAV scanning engine [15].
Given our limited infrastructure, we were unable to scale to a large number of
binaries; however, we endeavored to collect botnet samples with widely different
behaviors and temporal characteristics to assure us that our evaluation results
hold for a larger population of botnets.

To evaluate our detection method, we overlaid these botnet traces on the
traffic traces from each user, and then run this combined traffic through our
detector which tries to identify persistent destination atoms. In order to assess
the true detections, missed detections and false positives, we first needed to ob-
tain the ground truth from the botnet traces (for which there are no established
methods). We had to manually analyze all of our 12 botnet traces in order to
isolate the C&C traffic from the remainder of the attack traffic. Rather than
label individual packets we used BRO [16] to generate connection summaries
which we analyzed in detail.

Isolating the C&C traffic turned out to be a very tedious process which in-
volved manually breaking down the traffic across ports and destinations of each
botnet trace. Due to a lack of space, we cannot enumerate how we did this for
the entire set. In summary, we employed a variety of methods including, extract-
ing IRC commands embedded in the streams, looking at the payloads directly
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Table 2. List of sampled Botnet binaries with clear identifiable C&C traffic

ClamAV Signature C&C type # of C&C atoms C&C Volume
min - max

Trojan.Aimbot-25 port 22 1 0-5.7
Trojan.Wootbot-247 IRC port 12347 4 0-6.8
Trojan.Gobot.T IRC port 66659 1 0.2-2.1
Trojan.Codbot-14 IRC port 6667 2 0-9.2
Trojan.Aimbot-5 IRC via http proxy 3 0-10
Trojan.IRCBot-776* HTTP 16 0-1.
Trojan.VB-666* IRC port 6667 1 0-1.3
Trojan.IRC-Script-50 IRC ports 6662-6669,9999,7000 8 0-2.1 8
Trojan.Spybot-248 port 9305 4 3.8-4.6
Trojan.MyBot-8926 IRC port 7007 1 0-0.1
Trojan.IRC.Zapchast-11 IRC ports 6666, 6667 9 0-1
Trojan.Peed-69 [Storm] P2P/Overnet 19672 0-30

of non-IRC communications, and in some cases examining histograms of pay-
load size to extract unusual patterns (i.e. very high chance of small packet sizes
consistent across a subset of connections). As an interesting example, consider
Trojan.AimBot-5. First we constructed histograms of traffic to various destina-
tions and on various ports. In this particular case, the communication involved
a few destinations. By zooming in on these individual connections and recon-
structing the associated TCP streams we obtained a “conversation” between the
zombie and the significant destination. We were able to identify IRC protocol
commands being tunneled over HTTP to particular destinations. Further analy-
sis revealed that the destination being contacted was hosting a squid proxy, and
the IRC commands were being tunneled through. In case of the Storm botnet
trace, we were able to pick out the p2p traffic from the packet size distribu-
tions (the UDP traffic used to communicate with the p2p network had a very
different characteristic from the other, presumably attack, traffic). The second
column in Table 2 describes the ports and protocols associated with the C&C
channel. The third column is a count of the distinct destination atoms seen in
the (isolated) C&C traffic. Column 4 shows the range (min to max) of C&C
traffic in connections/minute. This confirms our belief that the communication
volume associated with the C&C traffic is light and thus volume based detectors
would not be able to easily expose this traffic.

5 Evaluation

In this section we present results from overlaying the botnet malware traces on
top of each user trace, and then emulating our detection algorithm to evaluate
the performance of our detector. The two notable results which we discuss further
in this section are: (i) our persistence metric based detector can indeed pick out
the C&C destination atoms in the botnet traces with a very low false positive
rate, (ii) the whitelists we construct can significantly boost the detection rates,
and improve detection times, of well established volume anomaly detectors.
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5.1 System Properties

As mentioned earlier, for our system to work well, the whitelists should have two
properties. First, they should be stable, i.e., they need to be updated infrequently
(so that bot C&C will stand out and user annoyance is kept small). Second, it is
desirable that they be small, as this speeds up the searching activity (matching
outgoing traffic against whitelist contents). Our whitelists will be stable if the
rate at which new persistent destination atoms are added to the whitelist is
low; and this will be true when much of the user communication is transient. To
examine this for our set of users, we compute all the destination atoms for a given
user and the persistence value for each atom. The cumulative distribution of these
across all users is plotted in Figure 2. We see that less than 20% of the destination
atoms have a persistence value greater than 0.2; this validates our intuition that
transient destinations form the bulk of endpoints a host communicates with. Very
few destination atoms exhibit a persistence greater than 70%. The observation
that any user typically has few persistent destination atoms confirms that a
whitelist consisting of these atoms is unlikely to be updated often. Recall that
our method uses a parameter p∗, that is used both to construct the whitelists
in the training stage, and as an alert threshold when monitoring for new C&C
destination during detection (testing phase). This plot of user data suggests that
selecting a value of p∗ anywhere in the range of 50 to 80% will result in a small
whitelist, that is likely to require few updates. We select the value of p∗ = 0.6
because it is in the flat portion of the curve. Note that the number of destination
atoms in the whitelist is not very sensitive to the value of p∗ (as long as it is above
roughly 0.5) suggesting that this parameter is fairly robust in the sense that it
need not necessarily be fine tuned. In figure 3, we plot the histogram of whitelist
sizes across all the 157 users. The whitelists for almost all the hosts contain
60-140 destination atoms, which is a very manageable size and thus limits any
overhead involved in searching whitelists when filtering. Thus our user traffic
traces confirms that whitelists constructed of persistent destination atoms will
have the two desirable properties which will enable our detection method to be
effective.

Fig. 2. CDF of destination atom persis-
tence across all atoms seen in training
data

Fig. 3. Distribution of per host whitelist
size (using p∗ = 0.6)
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Ideally, we would have liked to verify these properties over a much longer
period. However collecting user traces, particularly over an extended period and
a sizeable population is extremely challenging. Nor are there public repositories
of such data that can be used. While we cannot prove this conclusively, there are
certain observations to be made from the traces we use which lead us to believe
that the properties are likely to hold over a longer period. One of these is that
we see few false positives in the C&C detection (§r̃efsec:sec:ccdetection), which
essentially determines how the whitelist sizes will grow over time.

5.2 C&C Detection

To assess the ability of our algorithm to identify C&C traffic when it is mixed in
with regular user traffic, we overlaid each botnet trace on each of our 157 user
traces and ran this traffic through our detector (12 botnets × 157 users = 1884
traces). The detector was configured to use 5 distinct timescales (as discussed in
Section 3). The timescales used were with measurement window s taking values
s = (1, 4, 8, 16, 20, 24), and the observation window W was always W = 10s,
i.e. we used (1,10), (4,40), etc. In each of these 1884 instances, our detector
was able to correctly identify the C&C traffic. This was validated against the
labels determined earlier (from having isolated the portion of the bot traffic
corresponding to the C&C channel). This success illustrates the effectiveness of
our persistence metric in detecting botnet C&C activity.

In Table 3 we list various properties of the detected botnets. Column 2 in-
dicates the persistence of a destination atom from a particular bot. Column 3
indicates the timescale that triggered the alert, and the 4th column enumerates
the specific number of destination atoms that were associated with (persistence
and timescale) listed in the same row. For example, we see IRCBot-776 listed
twice (first two rows of this table) because it used one destination atom that had
a persistence of 1 and was detected at a timescale of (10,1), and it had 2 other
destination atoms with a persistence of 0.8 that were detected at a timescale
of (200,20). This example illustrates that a single zombie might used multiple
time scales (in terms of how regularly they contact their botmasters) on different
C&C servers. Looking down column 3, we see that the smallest timescale (10,1)
was sufficient to detect at least one of the atoms in all instances except in the
case of IRC.Zapchast-11 and Mybot-8926. However, we cannot know ahead of
time as to what timescale is appropriate for a particular botnet; thus it is critical
to have enough timescales in play to cover a wide range of behaviors. For the
STORM bot, we have marked ”> 1” in the last column because there a great
many of them. The success of our method in uncovering the STORM bot C&C
traffic brings up an interesting point: even though our method works best to
uncover botnets that tend to have a high degree of centralization, we are able to
detect the p2p based infrastructure used by the Storm botnet. Thus, our method
is likely to be effective at also uncovering non-centralized infrastructures as long
as there is a certain repetitiveness in contacting some of the destination atoms
involved (out of the thousands, in the case of Storm).
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Table 3. C&C Detection Performance

Botnet Persistence Timescale # dest. atoms
IRCBot-776 1.0 (10,1) 1
IRCBot-776 0.8 (200,20) 2
Aimbot-5 1.0 (10,1) 1
Aimbot-5 1.0 (40,4) 1
Aimbot-5 1.0 (160,16) 1
MyBot-8926 0.6 (160,16) 1
IRC.Zapchast-11 1.0 (40,4) 3
Spybot-248 1.0 (10,1) 2
IRC-Script-50 1.0 (10,1) 7
VB-666 0.7 (10,1) 1
Codbot-14 1.0 (10,1) 1
Gobot.T 1.0 (10,1) 1
Wootbot-247 1.0 (10,1) 3
IRC.Zapchast-11 1.0 (10,1) 6
Aimbot-25 1.0 (10,1) 1
Peed-69 [Storm] 1.0 (10,1) > 1

The bot IRC.Zapchast-11 presents a compelling illustration on how tracking
for persistence can be effective even when the connection volume is extremely
stealthy. Recall from Table 2 that IRC.Zapchast-11 generates very little traffic
overall - about 1.4 connections per binning interval on average. By all accounts,
this is a minuscule amount of additional traffic, that has no chance to stand
out in traffic volume against the normal traffic of an end-host, and thus will
go undetected by a volume based anomaly detector. However by tracking the
persistence of its associated destination atom, we were able to make the anomaly
visible. This illustrates the utility of persistence, even in the face of extremely
stealthy bots.

Using our two data sets, we can also compute the false positive and detection
rate (1 - false negative rate) tradeoff. We computed a traditional ROC curve, by
sweeping through a range of values for p∗. The detection rate is computed as the
fraction of the tested botnets, across users, for which an alarm is raised. It should
be clear that the detection rate is independent of user traffic (the persistence
value of an atom does not depend on other atoms). The y-axis denotes an average
number of false positives per day. Here, a false positive is simply a destination in
the user traffic (assumed clean) which raised an alarm. The values are averaged
across all users and over the last two weeks of user traffic data. This ROC curve
is shown in Fig. 4. In an earlier section, we had selected a value for p∗ based upon
properties of the user generated whitelists; we can now determine the optimum
value from the ROC curve. if we set p∗ ≤ 0.6, we are guaranteed to raise an
alarm, for at least one of the atoms, in every botnet trace that we evaluated
against. This brings the detection rate to 1.0. In general, lowering p∗ acts to
increase the detection rate (more botnet atoms cross the persistence bar) but
also increases the false positive rate (more begign atoms also meet the standard).
Selecting p∗ = 0.6 seems balance the tension between these two points. At this
operating point, we are able to detect every botnet and keep the false positives
down to less than 1 a day on average. However, it is also important to study
how this number varies across the user population.
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Figure 5 plots the histogram of false positives encountered by all the users,
over the entire two week period, as determined by p∗ = 0.6. A significant fraction
of the population see few or no alarms in the two week period. A small handful
of users—we speculate these are the very heavy traffic users—see 25-30 alarms
over the entire period. To summarize the distribution, we see an average of 5.3
benign destination atoms being flagged as suspicious per user in the 2 week
period. That is, the average user will have to dismiss fewer than 1 alarm every
other day when this C&C detection system is in place on the users end-host.
Since false positives are often associated with user annoyance, our method is
able to carry out the detection with an extremely low user annoyance factor.

We note that the detection results presented here reflect the enterprise setting
and may not generalize to other settings. P2P applications which (legitimately)
connect to a large number of destinations might conceivably increase the false
positives being experienced (we saw no p2p traffic in our dataset).

5.3 Detecting Botnet Attack Traffic

In the previous discussion, we focused on detecting C&C channels. Here we try
to understand how our method can boost the detection rates of more traditional
traffic feature (or volume) based anomaly detectors. Note that the whitelists
constructed in the training phase can be considered the set of ”known good
destination” for a particular host. Thus, all traffic going to these destinations
must be de-facto “anomaly free” and can be filtered out of the traffic stream
being passed to a conventional anomaly detector.

The traditional anomaly detectors operate by tracking a time series of some
significant traffic feature, e.g., number of outgoing connections in an interval, and
raising an alarm when this crosses a threshold. The threshold is ideally deter-
mined based on the tail of the feature’s distribution empirically derived from clean
traffic. To distinguish the alarms in question from those triggered by C&C desti-
nations (as discussed previously), we denote them “burst alarms”. Thus, the per-
sistence metric results in C&C alarms, and the anomaly detectors generate burst
alarms. In the experimental evaluations we describe in the following, the (aggre-
gate, without C&C filtered out) botnet traffic was superimposed on the traffic of
each end-host. We point out that the botnet traces are generally shorter than the
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user traces. To ensure that the trace overlay extends across the entire user trace,
we replicated the botnet trace as often as necessary to fill up the entire testing
window of 2 weeks.

There are a number of possible traffic features one can track, and a larger
universe of anomaly detectors that can be defined on them. In the current in-
stance, we use a simple connection count detector with a 99.9%-ile threshold.
That is, the traffic feature of interest is the number of outgoing connections in 1
minute intervals, and the threshold is computed as the 99.9 percentile value of
this distribution empirically computed from the training data. Specifically, we
compare the detection results across two traffic streams, one where the outgoing
traffic is filtered by the whitelist and the other where it is not. By “filter” we
simply mean that all traffic to destinations on the whitelist is ignored and not
passed along to the anomaly detector. Note that the same definitional threshold
is used, i.e., the 99.9%-ile, but the values are different since the time-series are
different (one of them has whitelisted destinations filtered out).

Figure 6 plots the detection rate over the entire user population. The x-axis
enumerates the botnets from Table 2 and the y-axis is the fraction of users that
generated a burst alarm for the particular botnet. The two bars correspond to the
non-filtered (left column) and filtered (right column) traffic streams, the latter
corresponding to our detection method. In the figure, we see a detection rate
of 1.0 for some of the botnets, indicating every user generated an alarm when
fed the tainted trace that included the traffic of (Gobot.T, AimBot-5, SpyBot-
50, storm/Peed-69). In these cases, the filtering provides no added benefit. This
is because the traffic volumes associated with these instances so egregious and
beyond the range of normal traffic that any reasonable detector would raise an
alarm. However, there are lots of other instances in the figure where detection
with the filtered traffic is significantly better. For instance, in the case of VB-666,

Fig. 6. Improvement in detection rate after filtering
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which is the most dramatic result, we see a five fold improvement in detection
when the traffic is filtered. Another example, with Aimbot-25, only 27% of
the users generate an alarm in the general case, but this number grows to 85%
when the traffic is filtered— a dramatic improvement. The intuition for why the
filtering helps with the detection rate is thus: when the traffic to known good
destinations is filtered out and the threshold recomputed, the new threshold
tracks the residual traffic better and offers a small “gap” or range that is available
for the botnet traffic. That is, as long as the volume of botnet traffic stays inside
this gap it will fall under the threshold and be undetected. However this gap
is small enough that even a small volume tends to go beyond the usable range.
Clearly, the benefit of filtering the traffic is apparent when the botnet traffic
volumes are low to moderate. When the volume is large, detection is easily
carried out by any reasonably anomaly detector (even without filtering). Thus,
filtering traffic through the whitelist helps to uncover stealthier traffic that is
hidden inside. We carried out the same comparison for other detectors and found
the results to be consistent with what we describe here. We omit details from
these experiments for a lack of space.

Importantly, notice in the figure that for some of the botnet instances, the
detection rate does not reach 100%, even with the filtering. This is possibly
because of the variability in traffic across users: presumably, there is a sufficient
gap between the traffic and the threshold for some users and the additional
botnet traffic is able to squeeze into this gap. However, even when the volume
based methods fail to carry out the detection to a complete degree, C&C alarms
are generated for every botnet trace that we have collected and tested against (as
shown in the previous discussion). Thus, even when the attack traffic is small
enough to go undetected by the volume detectors, the botnets are still flagged by
tracking persistence. This goes to underscore how critical it is to track temporal
measures, rather than just volume, when dealing with botnets.

Thus, we demonstrate that by first learning whitelists of good destination
atoms, and subsequently filtering out the traffic contributions of these desti-
nation atoms, we can dramatically improve the detection of botnet associated
traffic. We enable more end-hosts to reliably generate alarms for this traffic, and
to do so earlier.

6 Discussion

In this paper, we introduced the notion of “destination atoms” and “persistence”
and subsequently described a method to detect the communication between a
bot and its command and control infrastructure. The method we describe op-
erates by associating a numeric value, quantified by persistence, with individ-
ual destination atoms. Destination atoms that are frequently contacted tend to
have higher persistence values, even if the communication volume is low. Those
with large persistence values are likely to be command and control servers. The
method works best when the C&C infrastructure has a degree of centraliza-
tion. We are also able to detect instances that are not centralized by exploiting
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the regularity of communication to a small set of C&C destinations. However,
botnets are constantly evolving with new cloaking and obfuscation mechanisms
being developed constantly. For instance, Torpig [17] and Conficker [18] are re-
cent botnets that make heavy use of domain name fluxing. Here, the botnets
generate a very large number of domain names (typically based on a generat-
ing algorithm) to which connections are attempted. Such botnets are very hard
to detect with general methods which do not try to target very specific botnet
behaviors. Our method might not be successful at detecting these botnets since
the names being generated, and to which connections are attempted, are com-
pletely unrelated and cannot be grouped into a smaller set of destination atoms.
From the point of view of our detection method, these botnets seem to connect
to a large number of destination atoms with uniformly low persistence values.
However, methods have been developed in the recent past that specifically target
fast flux networks [11]. This underscores the fact that a silver bullet approach
to detecting and preventing botnets is unlikely to manifest anytime soon. A va-
riety of methods focused on detecting different aspects of a botnets behavior are
essential and must be used in conjunction to mitigate the botnet problem.

Another drawback to being a very general detection method is that the alarms
generated are probabilistic in nature. The system, in of itself, cannot ascertain
whether an alarm corresponds to an actual C&C destination or if it is benign.
Processing an alarm must necessarily involve the end-user. If the end-user were
to install a new application which begins to communicate with a particular server
everytime it is launched, the behavior is likely to trigger an alarm at some point,
which the user has to respond to. However, the act of installing a new application
occurs infrequently and we don’t believe the extra false positives due to this will
be significant. Moreover, if our sytem were to be deployed inside an enterprise
network, the alarms will be sent to a central console and processed by trained
IT personnel; this would shift the onus away from end-users who may not be
well equipped to decide if the alarm is benign.

Our method reliably detects all the malwares experimented with and does so
with a very low false positive rate. The network traces used were collected in an
enterprise network where p2p applications are prohibited (save for Skype, which
serves a business purpose). The rate of false positives is likely to be much higher
in the presence of significant p2p traffic. However, this is not really a bad result.
Some of the botnets that p2p infrastructures for the command and control are
fundamentally indistinguishable from actual p2p networks. In fact, the Storm
botnet uses a legitimate (arguably) p2p network (Overnet) to host its command
and control. One mechanism of dealing with this problem, where we want p2p
like botnets to raise an alarm, but not legitimate p2p applications, would be to
whitelist applications themselves. In this scenario, select legitimate applications
would be whitelisted and all the traffic that they generate is considered de-facto
legitimate; the whitelisted application would never trigger an alarm. Applications
are almost always installed manually by the end-users which implicitly implies
a trust relationship between the user and application.
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7 Conclusions

In this paper, we introduced the notion of “persistence” as a temporal mea-
sure of regularity in connection to “destination atoms”, which are destination
aggregates. We then described a method that builds whitelists of known good
destination atoms in order to isolate persistent destinations in the traffic which
are likely C&C channels. The notion of persistence, a key contribution of this
work, turns out to be critical in detecting the covert channel communication
of botnets. Moreover, being a very coarse measure, persistence does not require
any protocol semantics or to look inside payloads to detect the malware. Using
a large corpus of (clean) user traffic as well as a collection of botnet traces, we
showed that our method successfully identified C&C destinations in each and
every botnet instance experimented with, even the ones that make very few con-
nections. We demonstrated that this detection incurs low overhead and also has
a low user annoyance factor. Even though our method is focused on uncovering
C&C communication with botnets that have a centralized infrastructure, we are
able to uncover even those that are not, as long as there is a certain regularity
(even over short time scales) in communicating with the C&C destinations.

In the future, a key task that we would like to undertake is to run our method
on a much larger sample of botnet traffic than we were able to collect on our own,
and perhaps validate it against a longer trace of user traffic data. Unfortunately,
as we learned in the course of this work, such an effort requires a significant
amount of resources, and technical expertise. This goes to show that a much
larger community effort is needed to collect, share and annotate traces to sup-
port research efforts in designing botnet mitigation solutions in particular, and
security mechanisms in general.
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Abstract. Traditional researches on network anomaly detection have been 
solely focused on the detection algorithms, whereas an important issue that has 
not been well studied so far is the selection of normal training data for network 
anomaly detection algorithm, which is highly related to the detection perform-
ance and computational complexities. In this poster, we present two instance se-
lection mechanism – EFCM (Enhanced Fuzzy C-Means) as well as GA (Genetic 
Algorithm) for network anomaly detection algorithm, aiming at limiting the size 
of training dataset, thus reducing the computational cost of them, as well as 
boosting their detection performance. We report our experimental results on 
several classic network anomaly detection algorithms by using the network traf-
fic trace collected from a real network environment.  

To our best knowledge, this topic about instance selection for efficient network 
anomaly detection is still hardly well addressed in any published literatures. Most of 
current network anomaly detection algorithms are highly dependent on the training dataset [1, 
2], if the dataset is of poor quality or its size is too big, the detection performance would de-
grade greatly. The large size dataset would also cause additional expensive computational costs. 
In this poster, we therefore propose two instance selection schemes for anomaly de-
tection algorithms: FCM-based instance selection mechanism – EFCM (Enhanced 
Fuzzy C-Means) and Genetic Algorithm (GA), and provide the preliminary results. 

As for EFCM algorithm, we first utilize it to cluster the original training dataset into 
three classes: notable data, obscure data and redundant data. We refer to the notable 
data as what belong to and represent a series of clusters; the obscure data denotes those 
that belong to any cluster with very small (or under a very small constant) membership 
grades calculated by FCM; the redundant data then includes the remaining data that 
don’t belong to any of the above two classes. We then select some high quality “repre-
sentatives” as our training subset, which contains the most useful data that contribute the 
currently existing anomaly detection techniques to distinguish the normal from the ab-
normal traffic. Genetic Algorithm (GA) is optimization algorithm based on natural 
genetics and selection mechanisms. We utilize it to fulfill the instance selection task. 
Training dataset is denoted as TR with instances, and the search space associated with 
the instance selection of TR is constituted by all the subsets of TR. Then, the chromo-
somes should represent subsets of TR. This is accomplished by using a binary represen-
tation. A chromosome consists of genes (one for each instance in TR) with two possible 
states: 0 and 1. If the gene is 1, then its associated instance is included in the subset of 
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TR represented by the chromosome. If it is 0, then this instance does not occur. After 
running GA algorithm, the selected chromosomes would be the reduced training dataset 
for network anomaly detection algorithms. 

From our preliminary experimental studies on EFCM and GA (see Table 1 and  
Table 2) over real network traffic trace, we found many useful results: Firstly, after 
employing instance selection mechanisms, we found their computational costs re-
duced greatly, whereas their detection performances still held high or became even 
better, which is an very important finding. For example, as for TCM-KNN algorithm 
[2], the size of training dataset is reduced almost 90%, and the training and detection 
time is reduced about 77%. Secondly, the detection rate (TP) appears a little decrease, 
while the false positive rate (FP) demonstrates an inspiring trend of decrease. Thirdly, 
the effectiveness of EFCM and GA methods in network anomaly detection domain 
are comparable. Therefore, from these results we are apt to select EFCM as instance 
selection methods for network anomaly detection algorithms in real network envi-
ronment, while under the circumstances of having no restrict requirements on the 
training speed, GA may be more suitable for leading to better detection performance.  

Table 1. Comparison Results after Using Instance Selection for Various Algorithms 

Without instance  
selection 

EFCM GA 
Algorithm 

TP FP TP FP TP FP 

One-classSVM[1] 95.85% 8.67% 94.98% 9.87% 95.72% 7.03% 

Fixed-width 
Clustering[1] 

72.57% 15.37% 72.77% 13.48% 72.55% 10.26% 

KNN score[1] 92.72% 10.63% 88.78% 9.03% 92.08% 8.78% 

TCM-KNN[2] 100% 1.29% 99.38% 1.07% 99.46% 0.98% 

Table 2. Computational Costs after Instance Selection for Various Algorithms 

Without instance selection EFCM GA 
Algorithm Training 

time 
Detection 

time 
Training 

time 
Detection 

time 
Training 

time 
Detection 

time 
One-class 
SVM 

/ 26200s / 8680s / 7287s 

Fixed-width 
Clustering 

/ 1098s / 213s / 210s 

KNN score / 29898s / 1398s / 1293s 

TCM-KNN 40418s 0.4558s 992s 0.1007s 983s 0.0987s 
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Abstract. To detect intrusions resulting of an attack that corrupted
data items used by a program to perform its computation, we propose
an approach that automatically instruments programs to control a data-
based behavior model during their execution. We build our model by
discovering the sets of data the system calls depend on and which con-
straints these sets must verify at runtime. We have implemented our ap-
proach using a static analysis framework called Frama-C and we present
the results of experimentations on a vulnerable version of OpenSSH.

To make a program deviate from its specification, an intrusion needs to corrupt
some data initially used by the process to control its execution (control-data) or
to perform its computation (non-control-data). To execute illegal system calls,
an attack can use an invalid code (injected or out-of-context) by corrupting the
first class of data or use a valid code (with invalid inputs or through an invalid
path) by corrupting the second class of data. To detect intrusions, anomaly-
based intrusion detection systems check for deviations from a model reflecting
the normal behavior of programs. Numerous of them working at the system level
build their model using sequences of system calls. This approach detects various
control-data attacks but misses most of the non-control-data ones. Furthermore,
evasion techniques such as mimicry attacks can be used to bypass these detection
mechanisms during a control-data attack. Several enhancements of this approach
have been proposed, notably by adding information available at the system level,
such as the parameters of the system calls or their execution context. The de-
tection of control-data attacks is improved both in accuracy and completeness,
but non-control-data attacks remain mostly undetected [1].

Our work focuses on the detection of non-control-data attacks by checking for
memory corruptions that may lead to illegal system calls executed by a valid
code. Since those attacks need to corrupt specific data items with specific val-
ues, they may put the memory of the process in an inconsistent state regarding
the specification of the program. Our approach consists in finding consistency
properties in a program through static analysis to detect data corruptions in-
duced by non-control-data attacks. We thus build a data-oriented model based
on these properties to detect such attacks inside the program at runtime. To de-
rive these properties from the source code, two problems need to be addressed :
for a particular system call SCi, what is the set of variables Vi that influence
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its execution, and what is the set of constraints Ci these variables must verify.
Thus, we define for a given system call its normal data behavior by the triple
(SCi, Vi, Ci). We can then define our data behavior model by {∀i, (SCi, Vi, Ci)}.

To build the set of intrusion sensitive variables, we must consider two kinds of
dependency relations : value dependencies, that influence the parameters of sys-
tem calls, and control dependencies, that influence the paths that lead to them.
Discovering these relations through static analysis can be done using program
slicing techniques. A program slice can be defined as the subset of instructions
that influence the execution of a particular instruction from this program called
a point of interest. The set of variables Vi on which a system call SCi depends is
the set of variables used by the program slice computed at the point of interest
SCi. To discover constraints that an attack could broke, we must consider the
dependency relations that may exists between them : that is why the variables
from a set should be processed as a tuple and not individually. We choose to
limit the constraints Ci a given set Vi must verify to the variation domain of the
corresponding tuple. Computing these variation domains through static analy-
sis can be done using abstract interpretation techniques, which produce an over
approximation of the semantic of a program based on lattices. To detect devia-
tions from our data behavior model, we choose to insert reasonableness checks
in the program that will raise an alert when a constraint is broken. To derive
such checks from our model, we have a reachability problem to address : all the
variables Vi a system call SCi depends on may not be reachable at the calling
point in the source code. We choose to solve this by distributing the verification
of Ci along the call stack that lead to SCi at each function call, checking only
the subset of Vi containing all the variables reachable at each point.

To evaluate our approach against non-control-data attacks on real vulnerabil-
ities [1], we have developed a tool that implemented our detection model using
Frama-C [2], a modular framework dedicated to the analysis of source codes
of programs written in C. Our tool is a source to source translator that trans-
forms an untrusted program into a data security enforced program. It computes
a normal data behavior model from the source code and inserts in the program
executable assertions derived from this model. We have tested our tool on a vul-
nerable version OpenSSH which suffer from an integer overflow allowing remote
attackers to write arbitrary values to any location in the memory of the process.
After using our tool on its source code, 8% of the function calls are checked for
inconsistencies, which detect the two known non-control-data attacks exploiting
this vulnerability, with an overhead of 0.5%. This shows that our approach can
indeed detect non-control-data attacks at runtime while inducing a low overhead.
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Abstract. Drive-by downloads, which result in the unauthorized instal-
lation of code through the browser and into the victim host, have become
one of the dominant means through which mass infections now occur.
We present BLADE (Block All Drive-by download Exploits), a browser-
independent system that seeks to eliminate the drive-by threat. BLADE
prudently assumes that the legitimate download of any executable must
result from explicit user consent. BLADE transparently redirects every
browser download into a non-executable safe zone on disk, unless it is
associated with a programmatically inferred user-consent event. BLADE
thwarts the necessary underlying transaction on which all drive-by down-
loads rely, therefore it requires no prior knowledge of the exploit methods,
and is not subject to circumvention by obfuscations or zero-day threats.

1 The BLADE System

Unlike push-based approaches adopted by Internet scanning worms and viruses,
contemporary malware publishers rely on drive-by exploits for silent dissemina-
tion of spyware, trojans, and bots [2]. As a countermeasure, BLADE is a kernel-
based monitor designed to block all malware delivered without user knowledge
via browsers and overcomes the challenges described in [1].

BLADE’s design is motivated by the fundamental observation that all browser
downloads fall into either of two basic categories: supported file types (e.g., html,
jpeg) or unsupported file types (e.g., exe, zip). While browsers silently fetch and
render all supported file types, they must prompt the user when an unsupported-
type is encountered. The objective of client-side download exploits is to deliver
malicious (unsupported) content through the browser using methods that essen-
tially bypass the standard unsupported-type user prompt interactions. BLADE’s
approach is to intercept and impose “execution prevention” of all downloaded
content that has not been directly consented to by user-to-browser interaction.
To achieve this, BLADE introduces two key OS-level capabilities:

(1) User-Interaction Tracking. A novel aspect of BLADE is the introduction
of user-interaction tracking as a means to discern transparent browser down-
loads from those that involve direct user authorization. Operating from the ker-
nel space, BLADE introduces a browser-independent supervisor, which infers user
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Fig. 1. BLADE’s Architecture

consent-to-download events, by reconstructing on-screen user interfaces (UI) from
kernel memory and monitoring user interactions in the form of hardware inter-
rupts. Specifically, it retrieves semantic UI information from the kernel objects
maintained by the windowing subsystem (Win32K), discovers interested UI ele-
ments and their status changes (e.g., download confirmation dialogs), and listens
to hardware-interaction events (e.g., mouse clicks) targeted at any interested UI

element. Once a download consent event is inferred, the supervisor records it as
an authorization along with the information parsed from UI elements (e.g., file
names and URLs).

(2) Disk I/O Redirection. BLADE’s I/O-Redirector transparently redirects all
hard disk write operations to a safe zone. This safe zone, created and managed
by BLADE, represents offshore storage inaccessible from the local file system.
Being addressable only through BLADE ensures that files in the safe zone can
never be loaded or executed, even by the OS. Upon finishing each file write
operation, the I/O-Redirector queries the supervisor and maps the current file
to the local file system if a stored authorization correlates with it. To maintain
functional consistency, the supervised processes are also provided a modified file
system view, which renders the impression that all disk writes are carried out in
their respective locations, while actual disk I/O to these files are forwarded by
BLADE to the safe zone. A prototype of BLADE is now under development as a
kernel driver for Windows platforms, which will be tested with multiple versions
of Firefox, Internet Explorer and Chrome.

Threat Model. We assume that the OS, the underlying hardware and network
infrastructure are uncompromised. The attacker’s goal is to perform a forced
upload and execution of malicious binary content on the victim machine. Upon
successfully hijacking control of a browser process, an attacker may pursue either
of two possible paths to bypass BLADE and install a malware binary: (a) evading
I/O redirection, or (b) executing the malware stored in the safe zone. As a kernel
driver only dealing with trusted OS components and unforgeable hardware events
(e.g., mouse clicks), BLADE is not subject to code injection or data manipulation
attacks, and not deceived by fake UI messages which makes (a) difficult. Likewise,
attempts to launch the malware from outside the browser process are naturally
prevented as the the malware is only addressable through BLADE.
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Abstract. The CINBAD (CERN Investigation of Network Behaviour
and Anomaly Detection) project was launched in 2007 in collaboration
with ProCurve Networking by HP. The project mission is to understand
the behaviour of large computer networks in the context of high per-
formance computing and large campus installations such as at CERN,
whose network today counts roughly 70,000 Gigabit user ports. The goals
of the project are to be able to detect traffic anomalies in such systems,
perform trend analysis, automatically take counter measures and provide
post-mortem analysis facilities. This paper will present the main project
principles, data sources, data collection and analysis approaches as well
as the initial findings.

Keywords: computer networks, anomaly detection, packet sampling,
network monitoring.

1 Network Anomalies

Anomalies are nowadays a fact of life in computer networks. However anomaly
definition is very domain specific and the causes are diverse (network faults,
malicious attacks, viruses and worms, misconfiguration, policy violations, etc).

The following common denominator can be factored out: an anomaly is always
a deviation of the system from the normal (expected) behaviour (baseline); the
normal behaviour (baseline) is never stationary and anomalies are not always
easy to define. As a consequence, non-trivial anomalies are not easy to detect.

2 sFlow Packet Sampling and Other Data Sources

With the modern high-speed networks it is impossible to monitor all the packets
traversing the links. sFlow, the industry standard for monitoring high-speed
switched networks overcomes this issue by providing randomly sampled packets
(first 128 bytes) from the network traffic. These initial bytes provide crucial
information for the analysis conducted by the CINBAD team. Our collection
and analysis is based on traffic from more than 1500 switches and routers around
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CERN. The CINBAD team also investigates other data sources that can be used
to augment the information provided by the packet sampling. At CERN we can
use the reports from the central antivirus service, detailed logs from the DNS
servers and other central services. Information from many different data sources
may be correlated in order to find interesting phenomena.

3 Data Analysis

We have been investigating various data analysis approaches that could be cat-
egorised mainly into the two domains: statistical and signature based analysis.
The former depends on detecting deviations from normal network behaviour
while the latter uses existing problem signatures and matches them against the
current state of the network. The signature based approach has numerous prac-
tical applications with SNORT (an opensource intrusion detection system) being
a prominent example. The CINBAD team has successfully ported SNORT and
adapted various rules in order to work with sampled data. It seems to perform
well, and provides a low false positive rate. However, the system is blind and can
yield false negatives in case of unknown anomalies. Fortunately, this problem
can be addressed by the statistical approach. This requires the understanding
of the normal network behaviour. Expected network activity can be established
by specifying the allowed patterns in certain parts of the network. While this
method can work very well for a DNS or Web server that are supposed to be
contacted only on a given protocol port number, for more general purposes this
approach would not scale.

A second approach to infer the normal network behaviour is to build various
network profiles by learning from the past. Selection of robust metrics that are
resistant to data randomness plays important role in characterising the expected
network behaviour. Once these normal profiles are well established the statistical
approach can detect new and unknown anomalies. However, this might not pro-
vide sufficient information to identify the anomaly type. The CINBAD project
combines the statistical approach with the signature based analysis in order to
benefit from the synergy of the two techniques. While the latter provides the
detection system with a fast and reliable detection rate, the former is used to
detect the unknown anomalies and to produce new signatures.

4 Initial Findings

By using the described approach the CINBAD team performs constant moni-
toring of both campus and Internet traffic. A certain number of misbehaviours
were identified, for example: DNS abuse, p2p applications, rogue DHCP servers,
worms, trojans, unauthorised wireless base stations, etc. Some of our findings
resulted in the refinement of the security policies.
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Abstract. We present here an intrusion detection system automatically
parameterized by the security policy. The main idea consists in monitor-
ing information flows in an operating system in order to detect those not
allowed by the security policy. In previous works ([1,2] and [3]), the se-
curity policy set at the initialization of the IDS and can not be updated.
We focus here on the dynamism of the security policy monitored.

A security policy defines the authorized behavior of users and applications in
a system, generally in terms of access rights (read/write). We use such a pol-
icy to infer a specification of the reference behavior for our IDS. The access
control policy is translated into an information flow policy in which a piece of
information i is allowed to flow into an information container c if there exists
at least one user allowed to read i and to write into c. Pieces of information
(or atomic information) in the system are characterized by the name of their
original container and the information flow policy is a relation between atomic
information and containers of information. Once the information flow policy P
is defined, containers of information are tagged with three tags T I , T R and T W .
For a given container of information c, the first tag T I lists atomic information
that are origins of the current content of c (1). T R is the set of elements in P
related to information listed in T I (2), the last tag T W lists all elements in P
related to c (3). At each observation of an information flow, tags T I and T R are
updated to keep properties (1) and (2), the last tag never changes. An object
with disjoints tags T R and T W is a witness of an illegal information flow and
generates an alert. Indeed, in this case, the pair (information, container) is not
in the defined flow policy. Consider now that the security policy is modified, for
instance a user u gaining a read access to an object o. In terms of information
flows two interpretations are possible: u may now legally access to the original
contains of o or u may now legally access to information currently contained by
o. The two interpretations can be expressed as new element(s) added to P . The
IDS has to be updated since u can now legally access new atomic information
wherever these information are located. For that purpose, tags of relevant ob-
jects are updated. We have formally defined an update mechanism and proved
that properties (1) and (2) still hold.
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In our current implementation, objects are all files, sockets and memory files
of an operating system. Our IDS is composed of two consoles and a policy con-
troller. The read and write tags are implemented with a binary vector linked to
each object. The information tag is implemented with a sorted list of integers,
each integer being associated to an atomic information. The first console, Blare,
observes information flows between objects at the system level. Blare is a patch
for standard Linux kernel where any system call that engender information flows
call our functions flow in and flow out. This two functions update the tags of
concerned objects and computes intersection of the tags T R and T W . An alert
is raised when empty. Blare provides tools in userspace: lsinfo (resp. setinfo)
to list (resp. to set) T I and findinfo to find all the objects of the system con-
taining a subset of a list of atomic information. The second console JBlare is a
patch for the Java Virtual Machine and refines the view of Blare by observing
information flow through method calls in Java programs. JBlare is responsible
of tags T R for objects output by a java program. The policy controller waits for
any access control changes. It translates these changes in terms of information
flow policy and uses findinfo and setref to update the relevant tags. The
administrator uses the controller to declassify information if needed. In this case
the controller calls setinfo to rename informations and setref to attribute new
rights to these information.

With the Blare project and the Blare tools, we aim at proposing a set of col-
laborative tools able to monitor information flows at several level of granularity.
Beside this practical objective, we also aims at building this tools upon a formal
intrusion detection model allowing to prove the completeness and soundness (for
information flow observable at a given level) of the detection. We now envision
other tools to complete the set. For example, we aim at applying our model for
the monitoring of web services. Such services typically consist of an operating
system, a programming language runtime system (e.g. the JVM), an application
framework and the application software itself. We already have applied our ap-
proach to the first two components. Now, we aims at studying its application
to the application framework. However, Since Web-services- based applications
are by nature distributed systems, it is necessary to analyse potential threats as
multi-step attack scenarios across multiple nodes and to adapt the model and
its implementation to such a context.
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Abstract. In this research, we evaluate a knowledge-based approach for detect-
ing instances of known classes of mobile devices malware based on their tem-
poral behavior. The framework relies on lightweight agent that continuously 
monitors time-stamped security data within the mobile device and then  
processes the data using a light version of the Knowledge-Based Temporal Ab-
straction (KBTA) methodology. The new approach was applied for detecting 
malware on Google Android powered-devices. Evaluation results demonstrated 
the effectiveness of the proposed approach. 

Keywords: KBTA, Host-Based Intrusion Detection Systems, Mobile Devices. 

Smartphones have evolved from simple mobile phones into sophisticated yet compact 
minicomputers. Mobile devices become susceptible to various new threats such as vi-
ruses, Trojans and worms, all of which are well-known from the desktop computers. In 
this research we examine the applicability of detecting malware instances using a light 
version of the KBTA method [1] that can be activated on resource-limited devices. 
Using KBTA, continuously measured data (e.g., number of running processes) and 
events (e.g., software installation) are integrated with a temporal-abstraction knowledge-
base; i.e., a security ontology for abstracting higher-level, meaningful concepts and 
patterns from raw, time-oriented security data, also known as temporal abstractions 
(Fig. 1). Automatically-generated temporal abstractions can be monitored to detect 
suspicious temporal patterns and to invoke the proper response. These patterns are com-
patible with a set of predefined classes of malware as defined by a security expert em-
ploying a set of time and value constraints. Derived patterns are also context-aware, thus 
the same data may be interpreted differently within different contexts. 
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Fig. 1. The KBTA process Fig. 2. SD-Card information leakage pattern 
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For example, the “SD-card Information Leakage” pattern is derived when an “Access 
to SD-card” event is detected and generates the “Post Access to SD-card” Context. 
Then, within the “Post Access to SD-card” context, an increasing number of “Sent 
Packets” (Trend) is derived which may be a result of a malicious software sending the 
content stored on the SD-card to a remote server (Fig. 2). Following is the pattern 
definition in CAPSUL language [2]: 

Linear Pattern: SD-card Information Leakage pattern 
  Context: Post Access to SD-Card 
  Linear Components: 
   Parameter Component: 
    Sent Packets Trend 
    Abstracted From:  
     Sent Packets 
    Local Constraints: 
     value = INCREASING 
     duration > 3sec 
  Output Value of Pattern: 
   Value Function: value = SD-Card Information Leakage 

For our evaluation, we used a host-based intrusion detection system (HIDS) that was 
developed for Google Android powered-devices and which monitors more than 100 
raw parameters and events, including some that were used to define basic abstractions 
and complex patterns. The HIDS employs a light-weight Incremental KBTA detector. 
A smartphone security ontology for detecting the malware was defined. The ontology 
includes five different temporal patterns of potentially malicious behavior: Denial of 
Service (overloading the system CPU and memory), abuse of SMS messages, abuse 
of the device camera, injecting malware via USB connection and theft of confidential 
information stored on the SD-Card. We have developed five different smartphone 
malware and later deliberately infected a G1 Android device. Evaluation results 
showed the ability to detect the malware while reducing false alarms using context-
based interpretations. When an alert is detected, in addition to displaying a notifica-
tion, the Android HIDS is capable of employing effective countermeasures tailored 
for the alert (e.g., all network transports can be disconnected when information leak-
age is detected or the malicious application can be terminated). 

The HIDS can quickly be adapted to new malware classes by simply modifying the 
knowledge-base. In addition, KBTA defines patterns in a fuzzy fashion as a set of 
constraints, rather than as a hard-coded signature for each and every known malware. 
Consequently, it facilitates detection of instances of malware even when they have not 
been encountered before. The system can also help in integrating alerts from other 
sensors as primitive parameters. Meshing alerts from multiple sensors reduces the 
amounts of false alarms and isolates solid and reliable alerts, such that persist for a 
substantial time interval. 
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Abstract. We propose a novel framework of autonomic intrusion de-
tection that fulfills online and adaptive intrusion detection in unlabeled
audit data streams. The framework owns ability of self-managing: self-
labeling, self-updating and self-adapting. Affinity Propagation (AP) uses
the framework to learn a subject’s behavior through dynamical cluster-
ing of the streaming data. The testing results with a large real HTTP
log stream demonstrate the effectiveness and efficiency of the method.

1 Problem Statement, Motivation and Solution

Anomaly Intrusion Detection Systems (IDS) are important in current network
security framework. Insomuch as data involved in current network environments
evolves continuously and as the normal behavior of a subject may have some
changes over time, a static anomaly IDS is often ineffective. The detection models
should be frequently updated by incorporating new incoming normal examples
and be adapted to behavioral changes. To achieve this goal, there are at least
two main difficulties: (1) the lack of precisely labeled data that is very difficult to
obtain in practice; (2) the streaming nature of the data with behavioral changes.

To tackle these difficulties, we propose a framework of autonomic IDS that
works in a fashion of self-managing, adapting to unpredictable changes whilst
hiding intrinsic complexity to operators. It has abilities of self-labeling, self-
updating and self-adapting for detecting attacks over unlabeled data streams.

The framework is under an assumption of rareness of abnormal data.
We thus “capture” the anomalies by finding outliers in the data streams. Given
a bunch of data stream, our method identifies outliers through the initial clus-
tering. In the framework, the detection model is a set of clusters of normal
data items. The outliers generated during the clustering as well as any incoming
outlier that is too far from the current model are suspected to be attacks. To
refine our diagnosis, we define three states of a data item: normal, suspicious
and anomalous. If an outlier is identified, it is marked as suspicious and then put

� The work was supported by Q2S Centre in communication systems, Centre of Ex-
cellence, which is appointed by the Research Council of Norway and funded by the
Research Council, NTNU and UNINETT. The work was also supported by ERCIM
fellowship program. The authors thank Florent Masseglia for providing us the data.
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into a reservoir. Otherwise, the detection model is updated with the normal
incoming data until a change is found, triggering model rebuilding to adapt to
the current behavior. A suspicious item is considered as real anomalous if it is
again marked as suspicious after the adaption.

2 Implementation and Discussion

The autonomic IDS is effective for detecting rare attacks [1]. Detecting bursty
attacks is a challenge as the attack scenario does not well match the assumption.
We thus design another two mechanisms during the autonomic detection. First, if
a data item is very far from the model, the data item will be flagged as anomalous
immediately (other than considered as suspicious). Second, a change is triggered
if the percentage of outliers is high (e.g., larger than 60%) during a time period.
Bursty attacks can thus be easily identified by the large dissimilarity and by the
prompt model rebuilding.

We use Affinity Propagation (AP) and StrAP [2] to detect bursty attacks with
the framework. We use a real HTTP log stream to test the method. Character
distribution of each HTTP request is used as the feature and the IDS is to
identify whether a request is normal or not. The data contains 40,095 requests
in which 239 attacks occurring in a very short interval (request 7923-9743th, see
Fig.1(a), the k-NN distance between a data item and the training items) after
filtering out static requests. To facilitate comparison, we also use another three
static methods k-NN, PCA and one class SVM for the detection. The first 800
attack-free requests are used for training the static models while the first 800
requests are used for AP initial clustering. Testing results are shown in Fig.1(b).

Fig.1(a) shows that the normal behavior changes over time and Fig.1(b) in-
dicates that the autonomic detection method achieves the better results than
other three static methods while the detection rates are higher than 50%. Note
that the autonomic IDS does not need a priori knowledge while static methods
need labeled data for training. Our future work is combining the autonomic IDS
with effective static methods to prevent mimicry attacks (e.g., implementing
large-scale attacks to evade the autonomic IDS).
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Abstract. Malware silently infects millions of systems every year
through drive-by downloads, i.e., client-side exploits against web
browsers or browser helper objects that are triggered when unsuspecting
users visit a page containing malicious content. Identifying and blacklist-
ing websites that distribute malicious content or redirect to a distributing
page is an important part of our defense strategy against such attacks.
However, building such lists is fraught with challenges of scale, timeli-
ness and deception due to evasive strategies employed by adversaries. In
this work, we describe alice@home, a distributed approach to overcoming
these challenges and actively identifying malware distribution sites.

The growing prevalence of browser exploits and client-side attacks demands bet-
ter surveillance strategies to actively blacklist malicious sites and to detect new
and zero-day exploits. An approach that has been suggested is actively patrolling
the Internet for sites that surreptitiously install malicious software [6]. However,
scanning the Internet for miscreant sites is fraught with challenges of both scale
and evasion. First, modern search engines track over a trillion web links [4] and
using a virtual machine to assess the forensic impact of visiting each link requires
minutes of processing time. Second, adversaries use javascript obfuscators, IP
address tracking and website cloaking to evade patrolling systems. Third, most
search engines do not index javascript content and simply searching on exploit
features is insufficient to discover malicious sites. To address these challenges,
we need to devise an intelligent and Internet-scale approach to the malicious site
discovery problem.

In this paper, we present the case for a distributed architecture alice@home for
tracking malicious websites. Much like, other @home projects [5], this distributed
approach utilizes the idle processing cycles of desktops to crawl the web for
infected sites. This enables alice@home to scale to tens of millions of pages
per day assuming 1000-node network and avoid IP-tracking strategies employed
by distribution sites. The incentive for participation in this network would be
tangible, i.e., the ability to receive a real-time feed of malicious sites to blacklist
from other paticipants.
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1 ALICE: Virtual Honey-Client

A key component of alice@home is ALICE (A Low-Interaction Crawler and Em-
ulator), a drive-by download discovery and analysis tool that is lightweight, scal-
able, self-learning, easily deployable, precise, and resilient to evasion. Locating
malicious scripts embedded in a page is a challenging task due to complexities
such as redirects, obfuscation, multiple layers of frames and iframes, and self-
modifying script code. Static analysis of these scripts are difficult since attackers
typically obfuscate scripts or use string operations to conceal script contents.
Therefore, we use dynamic analysis to generate and output execution traces
of the script. ALICE, strips away the need to have a forensic tool or a VM
running a vulnerable OS and browser by using a lightweight browser emulator
able to execute script in a safe way. Scripts typically manipulate the Document
Object Model (DOM) of a web page in a browser. Therefore, we emulate the
DOM hierarchy by implementing a light weight browser. This browser provides
the necessary support script functions, DOM hierarchal structure, safe execu-
tion environment and exposes the execution path of the script. Then we use
spidermonkey (Mozilla’s C implementation of a javascript engine) to execute all
javascripts. Our analysis engine post-processes the output of these scripts and
compares them with a dictionary of known exploits to decide malicious scripts.
Its lightweight design allows a single instance of ALICE to process over 12 URLs
per minute.

2 Preliminary Results

We are able to determine the malware distribution sites in the case of MDAC
vulnerabilities or the type of BHO vulnerabilities that is exploited by an attacker.
In the case of MDAC vulnerabilities, the location of malware distribution site
is often different from the landing site, i.e., sites typically visited by users. To
evade detection, these distribution sites often incorporate techniques such as non-
determinism, IP tracking and fast flux to rapidly change binding IP addresses
of domain names.

Processing rate. We evaluated the processing rate of ALICE relative to [2,6,1].
In the worst case ALICE is atleast 300% faster than Wang et al and in the best
case it is 17% faster than Moshchuk et al ’s approach with optimization. Un-
fortunately, the technique by [2] affects the detection capability of their system
given that some of the steps used by distribution sites to evade detection. One
of the distinguishing features of ALICE versus PhoneyC [3], a similar virtual
honeyclient, is that PhoneyC takes an average of 2.1 hours to process URL.

Detection. In our initial testing of 35,000 urls, we detected 1294 drive-by down-
load sites. Our initial focus was on attacks that exploit MDAC vulnerabilities.
These sites linked to 33 unique distribution sites hosting malicious binaries. All
33 distribution sites infrequently infected a host by using IP tracking. Nonethe-
less, we were able to detect these sites.
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Abstract. It is often the case that more than one signature is triggered
on a given group of packets, depending on the signature database used
by the IDS. For performance reasons, network IDSs often impose an
alert limit (i.e., they restrict) on the number of signatures that can be
triggered on a given group of packets. Thus, it is possible that some
signatures that should be triggered to properly identify attacks are not
verified by the IDS and lead to an IDS Evasion attack. In this poster, we
introduce the concept of packet space analysis as a solution to address
these problems.

IDS signatures sometimes overlap (i.e., they partially specify the same group
of packets) and sometimes they even completely include some other signatures
(i.e., a packet that triggers one signature will always trigger some other). As an
illustration, here are Snort signature 1672 and signature 336.

– alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:”FTP CWD ∼
attempt”; flow:to server,established; content:”CWD”; nocase;
pcre:”/ˆCWD\s+∼/smi”; sid:1672; rev:11;)

– alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:”FTP CWD ∼
root attempt”; flow:to server,established; content:”CWD”; nocase;
content: ”∼root”; distance:1; nocase; pcre:”/ˆCWD\s+∼root/smi”;
sid:336; rev:10;)

Here, we can see that signature 1672 includes signature 336 because the con-
straints (specified by the plug-ins) of signature 336 are strictly more restrictive
than the constraints of signature 1672.

The inclusions and intersections between signatures in an IDS database could
have security implications. (1) It is important to know if a group of signatures
prevents other signatures from being triggered because of an alert limit.1 This
type of attack could lead to an IDS evasion attack. (2) The alert limit cannot
be arbitrary and should be identified using a systematic analysis. Increasing
this alert limit is a solution to prevent an IDS evasion attack, but it could
decrease performance and lead the IDS to miss packets (or attacks). Identifying
the optimal alert limit (i.e., the maximum number of signatures intersecting) is

1 Snort 2.8.4 (released in 2009), has an alerting limit of 3 signatures.
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crucial to identifying the weaknesses of a signature database. Our research on
packet space analysis of an IDS signature database (i.e., analyzing signatures for
inclusions and intersections) could be used to address (1) and (2).

To analyze the packet space of an IDS signature database, we propose an
approach that uses set theory. We convert signatures into sets of packets. Thus,
standard set theory operations such as ∪, ∩ and \ can be used. Let PSd

i
be

the set of packets that triggers signature Si of IDS d. Thus, Sd
i includes Sd

j iff
PSd

i
⊆ PSd

j
. Similarly, Sd

i intersects Sd
j iff PSd

i
∩ PSd

j
.

This approach cannot be used without a representation of PSd
i

allowing the
computation of ∪, ∩ and \. In the case of Snort, to calculate PSd

i
from Sd

i ,
the plug-ins related to protocol header fields are converted into ranges of values
with a min and a max and associated with a protocol header field. It would be
inappropriate to convert the Snort payload plug-ins into ranges of values. For
example, converting the following pcre regular expression /^CWD\s+∼root/smi
into a range of values is not the proper model to use because its representation
into ranges of values is very complex and payload plug-ins can overlap (i.e.,
specify the same bytes in the packet payload) such as signature 1672 and 336.
To address this situation, we convert each Snort payload plug-in into one finite
state automaton (FSA) that represents the constraints on the packet payload.
As a result, PSd

i
is represented as a FSA for the packet payload and a set of

ranges RΠ
f where f is a field of protocol Π . The ranges and the FSA can then

be used with ∪, ∩ and \ operators.
Based on this, we developed an IDS Signature Space Analyzer (IDS-SSA) to

identify problems in a signature database. We obtained interesting results using
a prototype version of IDS-SSA for signature inclusions on 12 Snort signature
databases downloadable without registration.2 The intersection calculation is
currently not implemented. In Snort 2.4.03, we identified three pairs of equal
signatures (i.e., Sd

i = Sd
j ), 266 inclusion sequences of length two (i.e., Sd

i ⊂ Sd
j )

and two inclusion sequences of length three. For this case study, we did not
identify an inclusion sequence longer than four. These results suggest redundan-
cies between signatures. They also suggest situations that could be exploited
by an attacker (e.g., IDS evasion) as well as potential problems or errors (e.g.,
signatures that are equal) in the signature database.

The next step is to implement the signature intersection analysis to identify
whether or not there are sets of intersecting signatures with size greater than
the alert limit and to calculate (if possible) or approximate the optimal alert
limit. Moreover, the IDS-SSA could also be used to compare signatures between
different signature databases.

2 1.8.6, 1.8.7, 1.9.0, 1.9.1, 2.0.0, 2.1.0, 2.2.0, 2.3.0, 2.3.1, 2.3.2, 2.3.3 and 2.4.0.
3 Last version of the signature database downloadable without registration.
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Abstract. Previous studies have shown the feasibility of deriving simple indica-
tors of file transfers, human-interactivity, and other important behavioural char-
acteristics. We are proposing a practical implementation and use of such indica-
tors with NetMate. In its current state as a work in progress, our extended ver-
sion of NetMate will already be of interest to network security practitioners 
conducting incident analysis.  The tool can be used to post-process traffic traces 
containing suspicious flows in order to obtain a behavioural description of the 
incident and surrounding traffic activities. With further development, the ap-
proach has great potential for other use cases such as intrusion detection, insider 
threat detection, and traffic classification.   

 

The majority of current network monitoring tools rely on well-known port numbers 
and/or payload analysis to identify the network applications. While payload analysis 
is more reliable than port numbers, decoding is not always possible due to encryption 
or obfuscation, for instance. 

Previous research studies have shown that classifying network traffic according to 
flow behaviour is feasible and promising [1][2][3][4].  Despite relevant studies, we 
are not aware of traffic characterization solutions of this type being used in practice 
by network security professionals.  

Our proposed implementation is designed with practitioners in mind. Installation 
and use are simple and similar to other common packet processing tools such as 
tcpdump and snort. The output is intuitive and can shed light on traffic activities un-
der investigation. 

This implementation is based on [4], in which the flow features (metrics) have dis-
criminative power and also provide insight into the traffic behaviour. The set of flow 
features, inspired by the the work of Paxson [5], includes indicators of interactivity 
(human control), conversation, transaction, data transfer, and many other important 
behavioural characteristics. The analysis is confined to headers at the network and 
transport layers and thereby does not depend on access to payload. 

We are extending NetMate [6], an existing open-source packet processing frame-
work. NetMate includes two types of modules: Packet Processing Modules designed 
to implement different metrics, and Export Modules that implement different output 
formats. Our flow features are being implemented in Packet Processing Modules, and 
our rule engine that describes and recognizes the flows is being implemented as an 
Export Module. 
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Our Export Module compares the measured flow metrics against a configurable set 
of rules, which are stored in files. When NetMate is configured to use our new mod-
ules and set of rules, the output file it produces consists of one line per flow (i.e. per 
TCP/UDP 5-tuple session).  Here is a sample output: 

yyyy-mm-dd hh:mm:ss, 4, 6, xx.xx.xx.xx, yy.yy.yy.yy, 
35573, 22, directional-bkwd, persistent, human-
keystroke-fwd, no-bulk-transfer, free-transmitrate, 
blockcipher-encrypted, , , , , , ssh, , , , , , , , ,  

Two different types of rules are used to produce the output: description rules and 
recognition rules. In the example above, the description rules produce the portion of 
the output in underlined characters, while the text in italics is due to the recognition 
rules. In this example, one and only one of the protocol-profiles, ssh, matched.  The 
first portion of the output is simply composed of the date, time, and the flow key (IP 
version, proto ID, IP addresses, and port numbers). 
 
Current State and Future Work. We need to evaluate performance on streaming 
traffic. We also need to evaluate the detection rates and false positive rates of the 
rules implemented to date. These rules come from [4] and have been implemented 
following their original specifications, which were derived manually. The use of ma-
chine-learning techniques [1][2][3] to derive recognition and description rules will be 
considered in future work. The description rules currently implemented provide sen-
sible and insightful overview of the traffic activities.  We believe that the description 
capability provides in itself much added value. While the implemented recognition 
rules attempt to identify protocols, these rules can also be defined to recognize gen-
eral types of traffic of interest to an analyst.  

Despite its early development stage, we believe that our current version, as is, can 
be useful to security analysts in the context of supporting network incident analysis.  
We are therefore working on the first release of our extended NetMate, which we 
expect will be available by September 2009.   
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Abstract. Entropy-based measures have been widely deployed in
anomaly detection systems (ADSes) to quantify behavioral patterns. The
entropy measure has shown significant promise in detecting diverse set
of anomalies present in networks and end-hosts. We argue that the full
potential of entropy-based anomaly detection is currently not being ex-
ploited because of its inefficient use. In support of this argument, we
highlight three important shortcomings of existing entropy-based AD-
Ses. We then propose efficient entropy usage – supported by preliminary
evaluations – to mitigate these shortcomings.

1 Entropy Limitations and Countermeasures

1.1 Feature Correlation Should Be Retained

Current ADSes perform entropy analysis on marginal distributions of features. In
general, significant correlation exists across traffic and/or host features which is
not being leveraged by these ADSes. As a proof-of-concept example, we propose
to detect malicious network sessions by noting that the histogram of keystrokes
which are used to initiate network sessions is skewed [see Fig. 1(a)] and pertur-
bation in this metric can easily reveal the presence of an anomaly; network traffic
and keystroke data were collected before and after infecting a human-operated
computer with the low-rate Rbot-AQJ worm. While analyzing the entropies of
the marginal keystroke distribution and/or the marginal session distribution is
clearly not useful, Fig. 1(b) shows that quantifying these features using joint
(session-keystroke) entropy can easily detect anomalous activity.

1.2 Spatial/Temporal Correlation Should Be Retained

Another limitation of the entropy measure is its inability to take spatial/temporal
correlation of benign patterns into account. Such correlations can prove useful in
the detection of subtle anomalies. For instance, Fig. 1(c) shows the block-wise

� This work is supported by the Pakistan National ICT R&D Fund.
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Fig. 1. Examples to support the limitations of the current use of entropy

(block size = 1KB) entropy of a PDF file which is infected by an embedded ex-
ecutable malware. It is evident that entropy is unable to provide clear perturba-
tions required for detection. On the other hand, entropy rate [Fig. 1(d)], which
models and accounts for the spatial/temporal correlation, provides very clear per-
turbations at the infected file blocks; entropy rate quantifies the average entropy
of conditional distributions.

1.3 Randomness Quantification Is Not Enough

Entropy cannot distinguish between differing distributions with the same amount
of uncertainty; e.g., entropy of the normalized distribution of a source producing
90 packets on port 80 and 10 packets on port 21 is the same as a source producing
900 packets on port 6666 and 100 packets on port 6667. Thus anomalies which
do not perturb randomness go undetected. Fig. 1(e) shows a case where the
Blaster worm cannot be detected in the destination port entropy time-series.
This limitation arises due to the fact that entropy does not take the individual
port numbers into account. It is, therefore, important to perform a symbol-
by-symbol comparison between benign and observed distributions. This can be
achieved by computing the relative entropy of the distributions. Fig. 1(f) shows
that K-L divergence time series of destination port is perturbed due to the
presence of Blaster worm.
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Abstract. This work proposes a novel intrusion prevention technique
that leverages information located in the browser in order to mitigate
client-side web attacks such as login cross-site request forgery, session
hijacking, etc. The browser intrusion prevention system enforces a new
fine-grained policy, which complements the same-origin policy, that re-
stricts interaction between authenticated and unauthenticated regions
of a page or its associated stored data objects. The browser intrusion
prevention system monitors page interactions that occur through script
processing or URL fetches. The outcome of this technique is a system
that can prevent attacks that are perpetuated by exploiting a user’s
browser into making malicious request.

1 Motivation

The Hypertext Transfer Protocol (HTTP) is a generic, stateless protocol, [1] that
maintains no information on a connection between a host and a server. In order
to identify a returning host, web applications use interfaces provided by servers
to implement a session management system. By using HTTP response header
to set state information on a host’s browser and subsequently associating the
state information with a particular host or user at the server side, a web appli-
cation can keep track of user’s activities. This enables a web application on the
server to identify a returning user by extracting the necessary state parameters
from the HTTP request that was generated and sent by the user’s browser on
subsequent visits. It also uses this technique to manage authenticated sessions;
thereby eliminating the need to constantly send authentication credentials such
as username and password, on every request.

Since browsers automatically present “what it knows” to the server as a form
of authentication (i.e. validation or identification) attackers have developed ways
of leveraging this to exploit users by exploiting the browser into making malicious
requests on users’ behalf. Attacks such as cross site request forgery, surf jacking,
dynamic pharming [4], have been shown to use this technique to mount a successful
exploit. Most solutions or proposed solutions against such attacks are focused at
the server side [3], while others recommend better browsing habits or changes to
HTTP protocol [2]. Though these solutions are viable, they are ineffecient since
they require the use of additional resources or are long term solutions that may be
implemented in newer browsers. While in the short term, users are continuously
exposed to these attacks. To mitigate these attacks, this work takes advantage of
information stored in browsers to provided the much needed security.
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2 Browser-Based Intrusion Prevention System

Websites provide user authentication to protect user’s sensitive data from unau-
thorized accesses. Therefore, successfully exploiting such sites provide high remu-
neration to an attacker since these sites might contain valuable data. Furthermore,
this task is made easier since browsers maintain all the necessary credentials per-
taining to any session including an authenticated session.

The proposed client-side browser intrusion prevention system consist of a pol-
icy and an enforcement mechanism. The policy states that an unauthenticated
page region cannot read or write to an authenticated page region or to its stored
private data. This is a finer grain policy to the same-origin policy, SOP, but it is
not a substitute to SOP since different regions could belong to the same-origin.
For example, many web sites use “https” connection during authentication but
immediately revert to “http” connection once the authentication is successful.
Consequently, the policy description and enforcement ensures that the page re-
gion changes once authentication is successful but the origin remains the same.
Therefore, the described policy complements SOP.

The enforcement mechanism detects a change in region when it observes that
a username and password is entered by a user. After which, it associates this
information with the corresponding http-response from the server. If a suc-
cess response, 200 OK, is received, the enforcement mechanism labels the page
as authenticated. When a page and its components (e.g., frames, iframes) are
placed in regions, all cross-regional accesses are monitored by the enforcement
mechanism.

By monitoring these accesses to authenticated regions it is possible to identify
and prevent an attack while accesses to unauthenticated region are permitted
with no checks. In order to properly analyze these accesses all http-request is
monitored and mediated. Each http-request header is examined and all cre-
dentials such as GET/POST destination, session ids, referrer, and cookies are
extracted. Using the retrieved information, the enforcement mechanism deter-
mines the source of the request. Subsequently, it deduces whether the source
of the request is authenticated or unauthenticated. The page region is verified
in accordance with the proposed policy. If the policy is violated, the request is
blocked, otherwise the enforcement mechanism inspects the session credentials.
The session credentials are inspected for any policy violation and if one is found,
the credentials are filtered. Filtering the session credentials involve eliminating
those credentials that violate the policy from the request, permitting the request
to go through. In likewise manner, page or stored data accesses via scripts are
also mediated in accordance with the policy.
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Abstract. In this paper, we leverage the concepts of formal grammar
and genetic operators to evolve malware. As a case study, we take COM
infectors and design their formal grammar with production rules in the
BNF form. The chromosome (abstract representation) of an infector
consists of genes (production rules). The code generator uses these pro-
duction rules to derive the source code. The standard genetic operators –
crossover and mutation – are applied to evolve population. The results of
our experiments show that the evolved population contains a significant
proportion of valid COM infectors. Moreover, approximately 7% of the
evolved malware evade detection by COTS anti-virus software.

1 Evolutionary Malware Engine: An Empirical Study

Malware writers have developed malware engines which create different variants
of a given malware – mostly by applying packing techniques. The developed
variants essentially have the same functionality and semantics. In contrast, our
methodology targets to create “new” malware. It consists of three phases: (1)
design a formal grammar for malware and use it to create an abstract repre-
sentation, (2) use standard genetic operators – crossover and mutation, and (3)
generate assembly code from the evolved abstract representation.

The working principle of the proposed COM infector evolution framework is
shown in Fig. 1. In the first step, it analyzes the source code of an infector and
maps it to the production rules – defined in the formal grammar – to generate its
chromosome. This step is initially done for 10 infectors (source code is obtained
from [1]); resulting in a population of 10 chromosomes. We then apply genetic
operators – crossover and mutation – to the population. Intuitively speaking, all
individuals will not be legitimate infectors after genetic operators are applied.
To test this hypothesis, we have a code generation unit which accepts these
chromosomes and produces assembly code for them. Finally, we present the
evolved malware to well-known COTS anti-virus products to check if the evolved
infectors can evade detection.

We have observed that the evolved infectors fall into one of the three cate-
gories: (1) COM infectors which have turned benign, (2) COM infectors which
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Fig. 1. Architecture of COM infector evolution framework

Fig. 2. Code of mini44 Fig. 3. BNF of COM infectors

are detected by anti-virus but as a different type than that of initial 10 infectors,
and (3) unknown variants of COM infectors which have successfully evaded the
detection mechanism. We manually execute the last category of the infectors on
Windows XP machine to check if the evolved infectors truly do the damage. Our
initial findings show that about 52% of evolved infectors have become benign;
41% are detected but with new names that are not included in the initial popu-
lation; while remaining 7% still do their destructive job but remain undetected.
The last category of infectors have achieved stealthiness in the true sense.

We now take an example of a simple mini44 malware (see Fig. 2) to explain
the evolution procedure. The common routines – Search First, Copy, Search Next
– are labeled in Fig. 2. Search First routine searches for the first COM file in
the current directory and it then opens it. After opening the file, the malware
writes its code into the victim file and the file is closed. The next victim COM
file is searched in Search Next function. Once our engine will read instruction
mov ah, 4EH of mini44, it will lookup for the production rules that match with
this instruction. The production rules are given in Fig. 3. The genotype of the
instruction mov ah, 4EH may consist of following production rules: 1-2-7-8-9-
10-11-12-16-15-22. In a similar fashion, the genotype of each insturction/routine
in COM infector is generated. When we want to produce a new individual, we
take abstract representation of two infectors and use crossover and mutation
operators to evolve new individuals. Finally, the code generator does the reverse
mapping to generate the source code of the evolved infector.
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Abstract. We present a method for detecting new malicious executables, which 
comprises the steps of: (a) in a training phase, finding a collection of system 
call sequences that are characteristic only to malicious files, and storing said se-
quences in a database; (b) in a runtime phase, for each running executable, con-
tinuously monitoring its issued run-time system calls and comparing with the 
stored sequences within the database, and when a match is found, declaring said 
executable as malicious.  

1   Introduction and Related Works 

Detection of known malicious executables is typically performed using signature-
based techniques. The main disadvantage of these techniques is the inability to detect 
totally new malicious executables. The main prior art approach for detecting new 
malicious executables is to employ machine learning and data mining for the purpose 
of creating a classifier that is able to distinguish between malicious and benign execu-
tables statically [1]. The main drawback of the above approach is its inability to deal 
with obfuscated or encrypted files, that results in false alarms. In this paper we intro-
duce a novel technique for the real-time detection of new malicious executables that 
follows dynamic analysis approach.  

2   Our Method 

Fig. 1 is a flow diagram illustrating the process for detecting malicious executables. 
During the training phase 101, which is performed off-line, an "M determining mod-
ule" 102 operates to determine sequences of system calls that are characteristic only to 
malicious executables. This module produces an "M database" 103 which forms an 
input data to comparator 104. During the runtime monitoring phase 105, comparator 
104 continuously receives inputs relating to the system calls that are issued by the 
currently running executables, compares separately for each running program the 
sequence of system calls that it issues, with each of the sequences stored in the M 
database. If a match is found with one or more of the M-sequences, a program is de-
clared as malicious and can be terminated. Otherwise, as long as no such an alert 
signal is issued, a running file is considered as begin. 
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Fig. 1. Process for detecting malicious executables - flow diagram 

Fig. 2 describes a training phase process for determining the database of M-
sequences. The process comprises accumulation of n malicious and m benign execu-
tables. In steps 201 and 202, each executable is executed, and its runtime sequence of 
system calls is recorded. The result is Mr dataset which contains n records and Br 
dataset which contains m records. In step 203, a set S of all frequent sequences in Mr 
is determined by applying the SPADE algorithm [2]. It should be noted that each si in 
the found set S may contain wildcards. In step 204, for each sequence si in S the proc-
ess checks whether the sequence si appears within any of the sequences included 
within the dataset Br. If it is, that means that si is not a suitable sequence for the pur-
pose of determining malicious executables according to our method. The output from 
step 204 is therefore a minimal set Sm, which includes only those sequences from S 
that do not appear in any of the sequences of Br, and therefore are characteristic to 
only malicious executables.  

 

Fig. 2. Training phase process 

3   Evaluation  

We ran 3-fold cross-validation on 700 malicious and 700 benign files. We have dis-
covered 28 characteristic sequences that match 87% of malicious executables, with 
7% false alarms.  
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Abstract. Embedded network devices have become an ubiquitous fix-
ture in the modern home, office as well as in the global communication
infrastructure. Devices like routers, NAS appliances, home entertainment
appliances, wifi access points, web cams, VoIP appliances, print servers
and video conferencing units reside on the same networks as our personal
computers and enterprise servers and together form our world-wide com-
munication infrastructure. Widely deployed and often misconfigured,
they constitute highly attractive targets for exploitation. In this study
we present the results of a vulnerability assessment of embedded network
devices within the world’s largest ISPs and civilian networks, spanning
North America, Europe and Asia. The observed data confirms the intu-
ition that these devices are indeed vulnerable to trivial attacks and that
such devices can be found throughout the world in large numbers.

Keywords: Router insecurity, network webcams, print servers, embed-
ded device management interface exploitation, default password.

1 Introduction

Embedded network devices perform specific functions like routing, file storage
etc. Competition among manufacturers demand that these products be produced
with minimal time to market at the lowest cost possible. These common com-
modity products are often implemented without security in mind and reside on
the same networks as general purpose computers, making them attractive tar-
gets for exploitation. Once compromised, communication devices like routers,
voip appliances, and video conferencing units can be used to quietly intercept
and alter the traffic they carry. Nearly all embedded network devices contain a
network interface which can be used to perform layer-2 and layer-3 attacks on
the rest of the network. Since host based protection schemes for embedded de-
vices generally do not exist today and network based protection schemes (802.1X
etc) often intentionally exclude such devices administratively, exploitation and
root-kitting1 of these devices proves to be very advantageous to the attacker.
1 The companion paper to this field survey will detail Doppelgänger; a semi-virtualized

exploitation method for root-kitting heterogeneous embedded devices in a device and
operating system agnostic manner.
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Table 1. Key scan statistics thus far

Total IPs Scanned Webservers Telnet Servers Devices Targeted Vul. Devices Found
85.7 Million 1.1 Million 800 Thousand 105,357 3,847

Table 2. Vulnerability rate by device class

Enterprise Devices VOIP Devices Consumer Devices
2.46% 19.21% 41.62%

Fig. 1. Linksys vul. distribution

JPN CAN IND KOR
75.0% 60.0% 57.1% 57.1%
HUN AUT NLD USA
54.5% 50.0% 48.6% 38.5%
CZE FRA URY CHN
38.5% 34.2% 18.9% 10.0%

Fig. 2. Linksys vul. by country

2 Methodology

This paper presents preliminary results from our larger communications inse-
curity study by scanning, on a global scale, for perhaps the simplest attack
possible; publicly accessible administrative interface with default password. We
targeted the largest ISP networks in North America, Europe, and Asia, scanning
and cataloging popular network appliances accessible over the internet. Out of
all discovered devices, we then tabulated the number of such devices which are
configured with their factory default administrative passwords. This data is then
broken down by device types (Linksys, Polycom, Cisco etc), device class (Con-
sumer, Enterprise, VOIP etc) and by geographical region (Zipcodes within the
US and by Country world-wide).

3 Findings

It is possible to draw several high level conclusions from the observed data. Inse-
curity is pervasive world-wide: Vulnerable devices can be found in significant
numbers in all parts of the world covered by our scan. The double digit vulner-
ability rates suggest that a large botnet can be created by constituting only
embedded network devices. [1]. Geographical variations exist: We found sig-
nificant geographical concentrations of vulnerable devices of several types. This
is undoubtedly related to the targeted markets of these devices. Consumer de-
vices are most vulnerable: Looking at the vulnerability rates between con-
sumer and enterprise devices world-wide, we see a significant difference between
45.62% versus 2.46%.
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Detailed findings of our vulnerability assessment will be published in it’s en-
tirety upon the completion of the global scan.
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Abstract. Large-scale darknet monitoring is an effective approach to grasp a 
global trend of malicious activities on the Internet, such as the world-wide 
spread of malwares. There, however, have been a gap between the darknet 
monitoring and actual security operations on live networks, namely the global 
trend has less direct contribution to protect the live networks. Therefore, we 
propose a novel application of large-scale darknet monitoring that significantly 
contributes to the security of live networks. In contrast to the conventional 
method, wherein the packets received from the outside are observed, we employ 
a large-scale distributed darknet that consists of several organizations that mu-
tually observe the malicious packets transmitted from the inside of the organiza-
tions. Based on this approach, we have developed an alert system called 
DAEDALUS (direct alert environment for darknet and livenet unified security). 
We present the primary experimental results obtained from the actual deploy-
ment of DAEDALUS. 

Keywords: darknet monitoring, live network protection, alert system. 

The Internet encounters considerable amounts of unwanted traffic and attacks, which 
are mostly caused by malwares. An effective approach to grasp a global trend of ma-
licious activities such as the spread of malwares is to monitor a large-scale darknet (a 
set of globally announced unused IP addresses) [1,2]. There, however, have been a 
gap between the darknet monitoring and actual security operations on the live net-
work (hereafter referred to as livenet), which comprises legitimate hosts, servers and 
network devices. For instance, although darknet monitoring can be used to inform 
network operators about a global increase in scan on 80/tcp, it may not ensure that 
any concrete security operations are carried out. This means that darknet monitoring 
does not significantly contribute to the protection of the livenet. Therefore, we pro-
pose a novel application of large-scale darknet monitoring that significantly contrib-
utes to the security of the livenet. In contrast to the conventional method wherein the 
packets received from the outside are observed, we employ a large-scale distributed 
darknet that consists of several organizations that mutually observe the malicious 
packets transmitted from the inside of the organizations. Based on this approach, we 
have developed an alert system called DAEDALUS (direct alert environment for 
darknet and livenet unified security), which is illustrated in Fig. 1. 



382 D. Inoue et al. 

Organization A

O
rganization C

Organization D
Organization E

O
rg

an
iz

at
io

n 
F

O
rg

an
iz

at
io

n 
G O

rganization B

Analysis
Center

(2) Darknet Traffic(3) Alert

(1) Local Scan

Organization A

O
rganization C

Organization D
Organization E

O
rg

an
iz

at
io

n 
F

O
rg

an
iz

at
io

n 
G O

rganization B

Analysis
Center

(2) D
arknet T

raffic

(3) Alert

(1) Global Scan

: Darknet
: Livenet

: Infected Host

(a) Internal Darknet Alert (b) External Darknet Alert  

Fig. 1. Overview of DAEDALUS 

DAEDALUS consists of an analysis center and several organizations. Each organi-
zation (hereafter referred to as org) establishes a secure channel with the analysis 
center and continuously forwards darknet traffic toward the center. In addition, each 
org registers the IP address range of its livenet to the center beforehand. We divide 
the darknet into two types—internal and external darknet. From the viewpoint of an 
org, the darknet within the org is an internal darknet, and the darknets in other orgs 
are external darknets. 

When a malware infection occurs, e.g., in org G in Fig. 1, and the infected host 
starts scanning the inside of the org, including the internal darknet (Fig. 1 (a)), the 
analysis center can detect the infection on the basis of the match between the source 
IP address of darknet traffic from the org G and the preregistered livenet IP address. 
The analysis center then sends an internal darknet alert to org G. When the infected 
host starts scanning the outside, including the external darknet in org A (Fig. 1 (b)), 
the analysis center can detect the infection in the same above-mentioned manner. The 
analysis center then sends an external darknet alert to org G. The alerts include infor-
mation on the IP address of the infected host, protocol, source/destination ports, dura-
tion of attack, and analysis results, if any. 

We are conducting a trial of DAEDALUS by using the darknet resources of nicter 
[3]. With a /16 mixed network of livenet and darknet (as the preregistered livenet and 
internal darknet) and a pure/16 darknet (as the external darknet), over 2,500 internal 
darknet alerts and 9 external darknet alerts were issued in a month (July 2008), some 
of the alerts triggered actual security operations in the org that owns the livenet. 
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