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Preface

On behalf of the Program Committee, it is our pleasure to present the pro-
ceedings of the 12th International Symposium on Recent Advances in Intrusion
Detection systems (RAID 2009), which took place in Saint-Malo, France, during
September 23-25. As in the past, the symposium brought together leading re-
searchers and practitioners from academia, government, and industry to discuss
intrusion detection research and practice. There were six main sessions present-
ing full research papers on anomaly and specification-based approaches, malware
detection and prevention, network and host intrusion detection and prevention,
intrusion detection for mobile devices, and high-performance intrusion detec-
tion. Furthermore, there was a poster session on emerging research areas and
case studies.

The RAID 2009 Program Committee received 59 full paper submissions from
all over the world. All submissions were carefully reviewed by independent re-
viewers on the basis of space, topic, technical assessment, and overall balance.
The final selection took place at the Program Committee meeting on May 21
in Oakland, California. In all, 17 papers were selected for presentation and pub-
lication in the conference proceedings. As a continued feature, the symposium
accepted submissions for poster presentations which have been published as ex-
tended abstracts, reporting early-stage research, demonstration of applications,
or case studies. Thirty posters were submitted for a numerical review by an
independent, three-person sub-committee of the Program Committee based on
novelty, description, and evaluation. The sub-committee recommended the ac-
ceptance of 16 of these posters for presentation and publication.

The success of RAID 2009 depended on the joint effort of many people.
We would like to thank all the authors of submitted papers. We would also
like to thank the Program Committee members and additional reviewers, who
volunteered their time to evaluate the numerous submissions. In addition, we
would like to thank the General Chair, Ludovic Me, for handling the conference
arrangements, Davide Balzarotti, for handling the publication, Corrado Leita
for publicizing the conference, Christophe Bidan for finding sponsors for the
conference, and SUPELEC for hosting the conference website. We would also
like to thank our sponsors, DCSSI, INRIA Grand Est, EADS, Alcatel Lucent
and Fondation Michel Metivier.

July 2009 Engin Kirda
Somesh Jha
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Panacea: Automating Attack Classification for
Anomaly-Based Network Intrusion Detection
Systems*

Damiano Bolzoni', Sandro Etalle!'2, and Pieter H. Hartel®

! University of Twente, Enschede, The Netherlands
2 Eindhoven Technical University, The Netherlands
{damiano.bolzoni,pieter.hartel}@utwente.nl, s.etalle@tue.nl

Abstract. Anomaly-based intrusion detection systems are usually crit-
icized because they lack a classification of attacks, thus security teams
have to manually inspect any raised alert to classify it. We present a new
approach, Panacea, to automatically and systematically classify attacks
detected by an anomaly-based network intrusion detection system.

Keywords: attack classification, anomaly-based intrusion detection
systems.

One of the often cited weaknesses of anomaly-based intrusion detection systems
(ABSs) is the fact that they cannot classify the attacks they detect (Ghosh and
Schwartzbard [I] and Robertson et al. [2]). The lack of an attack classification
affects the overall usability of an ABS, because security teams have to manually
process each alert the ABS raises in order to assess the impact of the detected
attack, and to handle the alert.

Today, security teams faces two main challenges. First, because the most
harmful attacks currently consist of several stages (Ning et al. [3]), security
teams need to detect an attack at the earliest stage, in order to stop it. Secondly,
because of the activities conducted by automatic scanners, BOTnets, and script-
kiddies the number of security alerts has increased over the years. Although true
positives when detected by an IDS, these kinds of activities cannot normally be
considered a serious threat, i.e., they are “non-relevant” events (e.g., a remote
automatic scanner attempting to replicate a 5-year old attack against a now-
secure PHP script).

A number of automatic techniques to perform alert correlation have been
proposed (Cuppens and Ortalo [4], Debar and Wespi [5], Ning and Xu [6] and
Valeur et al. [7]), in order to detect attacks at an early stage, or lower the false
and the non-relevant alert rates. However, such techniques require a good deal of

* This research is supported by the research  program  Sentinels
(http://www.sentinels.nl). Sentinels is being financed by Technology Founda-
tion STW, the Netherlands Organization for Scientific Research (NWO), and the
Dutch Ministry of Economic Affairs.

E. Kirda, S. Jha, and D. Balzarotti (Eds.): RAID 2009, LNCS 5758, pp. 1 2009.
© Springer-Verlag Berlin Heidelberg 2009



2 D. Bolzoni, S. Etalle, and P.H. Hartel

information (apart from the usual IP addresses and TCP ports) to be effective:
the attacks that triggered the alerts must be classified.

By classifying an attack (e.g., buffer overflow, SQL Injection), it is also possible
to set default actions for handling a certain alert. The alert could (1) trigger
automatic countermeasures, e.g., either because an early attack stage has been
detected or because the attack class is considered to have a great impact on the
security. Alternately, the alert could be (2) forwarded for manual handling or
(3) filtered and stored for later analysis (i.e., correlation) and statistics.

Determining the class of an attack is trivial for an alert generated by a
signature-based IDS (SBS), like Snort [8/9]. Each signature is the result of an
analysis of the corresponding attack conducted by experts: the attack class is
manually assigned during the signature development process (i.e., the alert class
is included in the signature). Thus, security teams usually do not need to further
process the alert to assign a class, and they can set precisely a standard action
for the system to execute when such an alert is triggered.

Problem. When an ABS raises an alert, it cannot associate the alert with an
attack class. The system detects an anomaly, but it has too little information
(typically only source and destination IP addresses and TCP ports) to determine
the attack class. No automatic or semi-automatic approach is currently available
to classify anomaly-based alerts. Thus, any anomaly-based alert must be man-
ually processed to identify the alert class, increasing the workload of security
teams. A solution to automate the classification of anomaly-based alerts is to
employ some heuristics (e.g., see Robertson et al. [2]) to analyse the anomaly-
based alert for features of well-known attacks. Although this approach could lead
to good results, it totally relies on the manual implementation of the heuristics
(which could be a labour intensive task), and on the expertise of the operator.

Contribution. In this paper we present Panacea, a simple, yet effective, system
that uses machine learning techniques to automatically and systematically clas-
sify attacks detected by a payload-based ABS (and consequently the generated
alerts as well). The basic idea is the following. Attacks that share some common
traits, i.e., some byte sequences in their payloads, are usually in the same class.
Thus, by extracting byte sequences from an alert payload (triggered by a certain
attack), we can compare those sequences to previously collected data with an
appropriate algorithm, find the most similar alert payload, and then infer the
attack class from the matching alert payload class.
To the best of our knowledge, Panacea is the first system proposed that:

— Automatically classifies attacks detected by an ABS, without using pre-
determined heuristics;

— Does not need manual assistance to classify attacks (with some exceptions
to be described in Section [L[]).

Panacea requires a training phase for its engine to build the attack classifier.
Once the training phase is complete, Panacea classifies any attack detected by
the ABS automatically. Here we consider only attacks that target networks,
however it is possible to extend the approach to include host-based IDSs too.
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Limitation of the approach. Panacea analyses the generated alert payload to
build its classification model. Thus, any alert generated by attacks/activities that
do not involve a payload (e.g., a port scan or a DDoS) cannot be automatically
classified. As most of the harmful attacks inject some data in target systems, we
do not see this as a serious limitation.

This paper is organized as follows. In Section [Il we present the architecture
of Panacea, we detail its components, the way they interact and the data they
exchange (Section [[T]). In Section [[2] we summarise the machine learning algo-
rithms that Panacea uses to classify the alerts. In Section 2] we show the results
of the benchmarks. Section B presents related work, while Section H] concludes.

1 Architecture

Panacea consists of two interacting components: the Alert Information Extractor
(AIE) and the Attack Classification Engine (ACE). The AIE receives alerts
from the IDS(s), processes the payload, and extracts significant information,
outputting alert meta-information. This meta-information is then passed to the
ACE that automatically determines the attack class. The classification process
goes through two main stages. First, the ACE is trained with several types of
alert meta-information to build a classification model. The ACE is fed alert meta-
information and the corresponding attack class. The attack class information can
be provided in several ways, either manually by an operator or automatically by
extracting additional information from the original alert (only when the alert
has been raised by an SBS). Secondly, when the training is completed, the ACE
is ready to classify new incoming alerts automatically. We now describe each
component and the working modes of Panacea in detail. Figure[Ildepicts Panacea
and its internal components.

&

Classification
Alet——
| Classified
2o N Alerts
Attack
Alert Classification
Engine
SBS Alert g
Information
Training mode ks Extractor Panacea

Classification mode

Fig. 1. An overview of the Panacea architecture and the internal components
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1.1 Alert Information Extractor

The first component we examine is the AIE. The extraction of relevant infor-
mation from alert payloads is a crucial step, as it is the basis for attack class
inference. Requirements for this phase are that the extraction function should
capture enough features from the original information (i.e., the payload) to dis-
tinguish alerts belonging to different classes, and it should be efficient w.r.t. the
required memory space. We now describe the analysis techniques we have chosen.

Extracting and storing relevant information. N-gram analysis [I0] allows
one to capture features of data in an efficient way, and it has been used before in
the context of computer security to detect attacks (Forrester and Hofmeyr [I1],
Wang and Stolfo [12]). N-gram analysis is a suitable technique to capture data
features also for the problem of attack classification, and the AIE employs such
a technique to extract relevant information from alert payloads.

As Wang et al. note [I3], by using higher order n-grams (i.e., n-grams where
n > 1) it is possible to capture more data features and to achieve a more precise
analysis. One has to consider that the whole feature space size of a higher-
order n-gram is 256™ (where n is the n-gram order). The comparison of byte
frequency values becomes quickly infeasible, also for values of n such as 3 or
4, because the space needed to store average and standard deviation values for
each n-gram grows exponentially (e.g., 640GB would be needed to store 5-grams
statistics). Although a frequency-based n-gram analysis may seem to model data
distribution accurately, Wang et al. experimentally show that a binary-based n-
gram analysis is more precise in the context of network data analysis. In practice,
the fact that a certain n-gram has occurred is stored, rather than computing
average byte frequency and standard deviation statistics. The reason why the
binary approach performs better is that high-order n-grams are more sparse than
low-order n-grams, thus it is more difficult to gather accurate byte-frequency
statistics as the order increases. This approach has an additional advantage,
other than being more precise. Because less information is required, it requires
less space in memory, and we can consider higher-order n-grams (such as 5).
We now present the data structure used by the AIE to store the extracted
information.

Bloom filter. A Bloom filter [I4] (BF) is a method to represent a set of S elements
(n-grams in our embodiment) in a smaller space. Formally, a BF is a pair (b, H)
where b is a bit map of [ bits, initially all set to 0, and H is a set of k independent
hash functions h; ...h;. H determines the storage of b in such a way that, given
an element s in S: Vhy, b; =1 <= hy(s) mod | = i. In other words, for each
n-gram s in S, and for each hash function hy, we compute hy(s) mod I, and we
use the resulting value as index to set to 1 the bit in b corresponding to it. When
checking for the presence of a certain element s, the element is considered to
be stored in the BF if: Vhy, by, (s) moa 1 = 1. Because of the n-gram sparsity, a
BF with a size of 10KB is sufficiently large to store the alert meta-information
resulting from 5-grams analysis.
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Fig. 2. Examples of inserting two different 5-grams. H1, H2 and Hs represent different
hash functions.

A BF employs k different hash functions at the same time to decrease the
probability of a false positive (the opposite situation, a false negative, cannot
occur). False positives occur when all of the bit positions calculated for a given
element have been set to 1 when inserting previous elements, due to the collisions
generated by hash functions. The false positive rate for a given BF is (1 — e )k,
where n is the number of elements already stored.

Operational modes. The AIE not only extracts information from alerts as
described above, but it is also responsible for forwarding the attack class in-
formation to the classification engine, when the latter is in training mode. The
attack class can be provided either automatically or manually. In case an SBS
is deployed next to the ABS and it is monitoring the same data, it is possible to
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zxcvb

COLLISION

AT ' ¥y,

Fig. 3. Example of a false positive. The element “zxcvb” has not been inserted in the
Bloom filter. Due to the collisions generated by the hash functions, the test for its
presence returns “true”.

feed the ACE during training both the payload and the attack class of any alert
generated by the SBS. We define this as the automatic mode, since no human
operator is required to carry out the attack classification. A human operator
can classify the alerts raised by the ABS (in a manner consistent with the SBS
classification), hence integrating those with the alerts raised by the ABS during
the ACE training. We call this the semi-automatic mode. The last possible op-
erative mode is the manual mode. In this case, any alert is manually classified
by an operator.

Each mode presents advantages and disadvantages. In automatic mode, the
workload is low, but on the other hand the classification accuracy is likely to
be low as well. In fact, the SBS and the ABS are likely to detect different
attacks, hence the classification engine could be trained to correctly classify
only a subset of the ABS alerts. The manual mode requires human intervention
but it is likely to produce better results, since each alert is consistently classified.
We assume that the alerts raised by the SBS and ABS have already been verified
and any false positive alert has already been purged (e.g., using ALAC [I5] or
our ATLANTIDES [16]).

1.2 Attack Classification Engine

The ACE includes the algorithm used to classify attacks. Since we are aware
of the attack class information, we consider only supervised machine learning
algorithms. These algorithms generally achieve better results than unsupervised
algorithms (where the algorithm, e.g. K-medoids, deduces classes by measuring
inter-data similarity). The classification algorithm must meet several require-
ments, namely:
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support for multiple classes, as alerts fall in several classes;

classification of high-dimensional data, since each bit of the BF data struc-

ture the ACE receives in input is seen as a dimension of analysis;

— fast training (the reason for this will be clarified later) and classification
phases;

— (optional) estimate classification confidence when in classification phase.

We consider the last requirement optional, as it does not directly influence the
quality of the classification, though it is useful to improve the system usability.
Confidence measures the likelihood of having a correct classification for a given
input. Users can instruct the system to forward any alert whose confidence value
is lower than a given threshold for manual classification, hence reducing the prob-
ability of misclassification (at the price of an increased workload, see Section 2.7)).

We chose two algorithms for our experiments: (1) Support Vector Machines
(SVM) and (2) the RIPPER rule learner. These algorithms implement super-
vised techniques, their training and classification phases are fast and handle
high-dimensional data. Both algorithms perform non-incremental learning. A
non-incremental algorithm iterates on samples several times to build the best
classification model by minimizing the classification error. The whole training
set is then needed at once, and additional samples cannot be incorporated in the
classification model unless the training phase is run from scratch. On the other
hand, an incremental algorithm can modify the model after the main training
phase as new samples become available. An incremental algorithm usually per-
forms worse than a non-incremental algorithm, because the model is not re-built.
Thus, a non-incremental algorithm is the best choice to perform an accurate clas-
sification. However, because it is highly unlikely that we can collect all alerts for
training at once the choice of non-incremental algorithms could be seen as a
limitation of our system.

In practice, thanks to the limited BF memory size, we can store a huge num-
ber of samples and, by applying a “batch training”, we can simulate incremental
learning in non-incremental algorithms. As new training samples become avail-
able, we add them to the batch training set and build the classifier using the
entire set only when a certain number of samples is reached. Then, the classifier
is re-built with the set of “batches” available at that time. Because both SVM
and RIPPER are fast in training, there are no computational issues.

We chose SVM and RIPPER, not only because they meet the requirements,
but for two additional reasons. First, they yield high-quality classifications.
Meyer et al. [I7] test the SVM against several other classification algorithms
(available from the R project [I8]) on real and synthetic data sets. An SVM
outperforms competitors in 50% of tests and ranks in the top 3 in 90% of them.
RIPPER has been used before in the context of intrusion detection (e.g., on data
relative to system calls and network connections [19/20]) with good results. Sec-
ondly, because they approach the classification problem differently (geometric
for SVM, and rule-based for RIPPER), the algorithms are supposed to compen-
sate for each others weaknesses. Hence, we can evaluate which algorithm is more
suitable in different contexts. We will now provide some detail on the algorithms.
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Fig. 4. Hyperplanes in a 2-dimensional space. H1 separates samples sets with a small
margin, H2 does that with the maximum margin. The example refers to linearly sepa-
rable data. The support vectors are shown with a thicker border.

Support Vector Machines. (Vapnik and Lerner [21]) is a set of supervised
learning methods used for classification. In the original formulation, an SVM is a
binary classifier. It uses a non-linear mapping to transform the original training
data into a higher dimension. Then, it searches for the linear optimal separating
hyperplane, i.e., a plane that separates the samples of one class from another.
An SVM uses “support vectors” and “margins” to find the optimal hyperplane,
i.e., the plane with the maximum margin.

The original SVM algorithm has been modified to classify non-linear data and
to use multiple classes. Boser et al. [22] introduce non-linear data classification by
using kernel functions (i.e., non-linear functions). To support multiple classes,
the problem is reduced to multiple binary sub-problems. Given m classes, m
classifiers are trained, one for each class. Any test sample is assigned to the class
corresponding to the largest positive distance.

RIPPER. (Cohen [23]) is a fast and effective rule induction algorithm. RIPPER
uses a set of IF-THEN rules. An IF-THEN rule is an expression in the form
IF <condition> THEN <conclusion>. The IF-part of a rule is called the rule
antecedent. The THEN-part is the rule consequent. The condition consists of one
or more attribute tests, that are logically ANDed. A test ¢; is in the form ¢; = v
for categorical attributes (where v is a categorical label) or either ¢; > 6 or t; < 6
for numerical attributes (where 6 is a numerical value). The conclusion contains
a class prediction. If, for a given input, the condition (i.e., all of the attribute
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tests) holds true, then the rule antecedent is satisfied and the corresponding
class in the conclusion is returned (the rule is said to “cover” the input). Since
RIPPER employs ordered rules, when a match occurs, the algorithm does not
evaluate other rules. Some examples of rules are:

IF bf[i] =1 AND ... AND bf[k] =1 THEN class = cross-site scripting
IF bf[l] =1 AND ... AND bf[n] =1 THEN class = sql injection

RIPPER builds the rule set for a certain class SC; as follows. The training data
set is split into two sets, a pruning and a growing sets. The classifier is built
using these two sets by repeatedly inserting rules starting from an empty rule
set (the growing set). The algorithm heuristically adds one condition at a time
until the rule has no error rate on the growing set. RIPPER implements also an
optimisation phase, in order to simplify the rule set.

When multiple classes C ... C,, are used, RIPPER sorts classes on a sample
frequency basis and induces rules sequentially from the least prevalent class
SC1 to the second most prevalent class SC,_1. The most prevalent class SC,,
becomes the default class, and no rule is induced for it (thus, in case of a binary
classification, RIPPER induces rules for the minority class only).

1.3 Implementation

We have implemented a prototype of Panacea to run our experiments. The pro-
totype is written in Java, since we link to the libraries provided by the Weka
platform [24]. Weka is a well-known collection of machine learning algorithms,
and it contains an implementation of both SVM and RIPPER. Weka provides
also a comprehensive framework to run benchmarks on several data sets under
the same testing conditions. The attacks samples generated by network IDSs, in
the form of alerts, are stored in a database that the system fetches to extract
the alert payload information.

2 Benchmarks

Public data sets for benchmarking IDSs are scarce. It is even more difficult to
find a suitable data set to test Panacea, since no research has systematically
addressed the problem of (semi)automatically classifying attacks detected by an
ABS before. Hence, we have collected three different data sets (referred to as
DS4, DSp and DS¢, see below for a description of the data sets) to evaluate
the accuracy of Panacea. These data sets are used to evaluate the accuracy of
Panacea in different scenarios: (1) when working in automatic mode (DS4), (2)
when using an ad hoc taxonomy and the manual mode (DSg) and (3) when
classifying unknown attacks (e.g., generated by two ABSs), having trained the
system with alerts from known attacks (DSp and DS¢).

In the literature there are several taxonomies and classifications of security
events. For instance, Howard [25], Hansman and Hunt [26], and the well-known
taxonomy used in the DARPA 1998 [27] and 1999 [28] data sets. Only the latter
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classification has been used in practice (in spite of its course granularity, as it
contains only four classes which are unsuitable to classify modern attacks). In our
experiments, we use the Snort classification for benchmarks with DSy (see [29]
for a detailed taxonomy) and the Web Application Security Consortium Threat
Classification [30] for benchmarks with DSp and DS¢.

To evaluate the accuracy of the classification model, we use two approaches.
For test (1) and (2), we employ cross-validation. In cross-validation, samples
are partitioned into sub-sets. The analysis is first performed on a single sub-set,
while the other sub-set(s) are retained to validate the initial analysis. In k-fold
cross-validation, the samples are partitioned into k sub-sets. A single sub-set is
retained as the validation data for testing the model, and the remaining k — 1
sub-sets are used as training data to build the model. The process is repeated k
times (the “folds”), using each of the k sets exactly once to validate the model.
Usually the k fold results are combined (e.g., averaged) to generate a single
estimation. The advantage of this method is that all of the samples are used
for both training and validation, and each sample is used for validation exactly
once. We use 10 folds in our experiments, which is a standard value, used in the
Weka testing environment too.

For test 3), we use one of DS and DS¢ for training and the other for testing.
The accuracy is evaluated by counting the number of correctly classified attacks.

2.1 Data Sets

DS 4. contains alerts raised by Snort (see Table [Il for alert figures). To collect
the largest number of alerts possible, we have used several tools to automatically
inject attack payloads (Nessus [3I] and a proprietary vulnerability assessment
tool). Attacks have been directed against a system running some virtual machines
with both Linux- and Windows-based installations, which expose several services
(e.g., web server, DBMS, web proxy, SMTP and SSH). We collected more than
3200 alerts in total, classified in 14 different (Snort) attack classes. However,
some classes have few alerts, thus we select only classes with at least 10 alerts.
This data set (and DSp as well) is synthetic. We do not see this as a limitation
since the alerts cover multiple classes and trigger a large number of different
signatures. We test how the system behaves in automatic mode, the whole set
being generated by Snort.

DSp. contains a set of more than 1400 Snort alerts related to web attacks
(Table [2] provides alert details). To generate this data set, we have used Nes-
sus, Nikto [32] (a web vulnerability scanner), and we have manually injected
attack payloads collected from the well-known site MilwOrm, that hosts a large
collection of web exploits [33]. The attack classification has been performed man-
ually (manual mode), since Snort does not provide a fine-grained classification of
web-related attacks (alerts are allocated to different classes with other alerts, see
Table[I]). Attacks have been classified according to the Web Application Security
Consortium Threat Classification [30].
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Table 1. DS4 (alerts raised by Snort): attack classes and samples. It is not surpris-
ing that web-related attacks account for more than 50%, since most Snort signatures
address web vulnerabilities. * marks classes that contain web-related attacks.

Attack Class Description # of samples
attempted-recon™ Attempted information leak 1379
web-application-attack™ Web application attack 1032

Access to a potentially

web-application-activity vulnerable web application 599
unknown Unknown traffic 66
attempted-user” Attempted user privilege gain 45
misc-attack Miscellaneous attack 44
attempted-admin Attempt.e(.i admin.istrator 32
privilege gain
attempted-dos Attempted Denial of Service 14
bad-unknown Potentially bad traffic 13

Table 2. DSpg: attack classes and samples. Attacks have been classified according to
the Web Application Security Consortium Threat Classification.

Attack Class # samples

Path Traversal 931
Cross-site Scripting 399
SQL Injection 73
Buffer Overflow 8

Table 3. DSc: attack classes and samples. Attacks have been classified according to
the Web Application Security Consortium Threat Classification.

Attack Class # samples

Path Traversal 53
Cross-site Scripting 27
SQL Injection 16
Buffer Overflow 4

DS is a collection of alerts generated over a period of 2 weeks by two ABSs, i.e.,
our POSEIDON [34] and Sphinx [35]. POSEIDON is a general-purpose anomaly-
network-based IDS, which uses a combination of a neural network with the well-
know algorithm PAYL [12] to analyse network data and detect attacks. Sphinx is
a web- anomaly-based IDS, which analyses HT' TP request parameters and which
detects data-flow [36] attacks. We recorded network traffic directed to a main
web server of the university network, and did not inject any attack. Afterwards,
we processed this data with POSEIDON and Sphinx to generate alerts. The
inspection of alerts and the classification of attacks has been performed manually
(using the same taxonomy we apply for DSg). The data set consists of a set of
100 alerts, and Table [ reports attack details.
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2.2 Tests with DS 4

We use DSy to validate the general effectiveness of our approach. There are
three factors which influence the classification accuracy, namely: (1) the number
of alerts processed during training, (2) the length of n-grams used, and (3) the
classification algorithm selected. This preliminary test aims to identify which
parameter combination(s) results in the most accurate classification.

Testing methodology. We proceed with a 3-step approach. First, we want
to identify an adequate number of samples required for training: in fact, a too
low number of samples could generate an inaccurate classification. On the other
hand, while it is generally a good idea to have as many training samples as
possible, after some point the benefit from adding additional information could
become negligible. Secondly, we want to identify the best n-gram length. Short
n-grams are likely to be shared among many attack payloads, and the attack di-
versification would be poor (i.e., a number of different attacks contains the same
n-grams). On the other hand, long n-grams are unlikely to be common among
attack payloads, hence it would be difficult to predict a class for a new attack
that does not share a sufficient number of long n-grams. Finally, we analyse how
the classification algorithms work by analysing the overall classification accuracy
(i.e., considering all of the attack classes) and the per-class accuracy. The two
algorithms approach the classification problem in two totally different ways, and
each of them could be performing better under different circumstances.

To avoid bias by choosing a specific attack, we randomly select alerts in the
sub-sets. In fact, by selecting alerts for training in the same order they have been
generated (as opposed to random), we could end up with few (or no) samples
in certain classes, hence influencing the accuracy rate (i.e., a too good, or bad,
value). To enforce randomness, we also run several trials (five) with different
sub-sets and calculate the average accuracy rate. Table M reports benchmark
results (the percentage of correctly classified attacks) for SVM and RIPPER.

Discussion. Tests with DS 4 indicate that the approach is effective in classifying
attacks. As the number of training samples increases, accuracy increases as well
for both algorithms. Also the n-gram length directly influences the classification.

Table 4. Test results on DS4 with SVM and RIPPER. We report the average percent-
age of correctly classified attacks of five trials. As the number of samples in the testing
sub-set increases, the overall effectiveness increases as well. Longer n-grams generally
produce better results, up to length 3. SVM performs better than RIPPER by a narrow
margin.

SVM RIPPER
n-gram length n-gram length
# samples 1 2 3 4 1 2 3 4
1000 62.6% 76.8% 77.3% 76.7% 66.1% 75.9% 76.2% 75.7%
2000 65.9% 78.6% 78.9% 77.7% 69.4% 76.7% 76.9% 76.4%

3000 66.3% 79.4% 79.6% 78.6% 72.7% 77.2% 77.5% 76.9%
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Table 5. Per-class detailed results on DS4, using 3-grams. We report the average
percentage of correctly classified attacks of five trials. RIPPER performs better than
SVM in classifying all attacks, .

SVM RIPPER
# of samples # of samples
Attack Class 1000 2000 3000 1000 2000 3000
attempted-recon 90.9% 90.5% 90.7% 90.4% 93.9% 94.0%

web-application-attack  79.8% 89.0% 88.8% 97.4% 98.8% 99.1%
web-application-activity 80.8% 81.2% 80.9% 93.7% 96.1% 95.8%

The number of correctly classified attacks increases as n-grams get longer, up to
3-grams. N-grams of length 4 produce a slightly worse classification, and the same
happens for 1-grams (which achieve the worst percentages). SVM and RIPPER
present similar accuracy rates on 3-grams, with the former being slightly better.
However, if we perform an analysis based on per-class accuracy (see Table [,
we observe that, although both classification algorithms score high on accuracy
level for the three most populated classes, RIPPER is far more precise than SVM
(in once case, the “web-application-activity” class, by nearly 15%).

When we look at the overall accuracy rate, averaged among the 9 classes, for
DSy, SVM performs better because of the classes with few alerts. If we zoom
into the classes with a significant number of samples, we observe an opposite
behaviour. This means that, with a high number of samples, RIPPER performs
better than SVM.

In Table Bl a sub-set with fewer samples seems to achieve better results
(although percentages differ by a narrow margin), when considering the same
algorithm. This happens for SVM once when using 1000 training samples
(“attempted-recon” class) and twice when using 2000 training samples (“web-
application-attack” and “web-application-activity” classes). When using 2000
training samples, RIPPER performs best in the “web-application-activity” class.
The reason for this is that alerts in the sub-sets are randomly chosen, thus a
class could have a different number of samples among trials.

2.3 Tests with DSpg

DSp is used to validate the manual mode and the use of an ad hoc classifica-
tion. To perform the benchmarks, we use the same n-gram length that achieves
the best results in the previous test. Table [(] details our findings for SVM and
RIPPER.

Discussion. The test results on DSp show that Panacea is effective also when
using a user-defined classification, regardless of the classification algorithm is
chosen. Regarding accuracy rates, RIPPER shows a higher accuracy for most
classes, although SVM scores the best classification rate (by a narrow margin).

Only the “buffer overflow” class has a low classification rate. Both algorithms
have wrongly classified most of buffer overflow attacks in the “path traversal”
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Table 6. Test details (percentage of correctly classified attacks) on DS with SVM and
RIPPER. RIPPER achieves better accuracy rates for the two most numerous classes,
although by a narrow margin. We observe the same trend for the rates reported in
Table

Attack Class SVM RIPPER
Path Traversal 98.6% 99.1%
Cross-site Scripting 97.5% 98.4%
SQL Injection 97.6% 96.2%
Buffer Overflow 37.5%  37.5%

Percentage of total attacks

correctly classified 98.0% 97.7%

class. This is because (1) the number of samples is lower than for the other
classes, which are at least 10 times more numerous, and 2) a number of the
path traversal attacks present some byte encoding that resembles byte values
typically used by some buffer overflow attack vectors. In the case of RIPPER,
the “path traversal” class has the highest number of samples, hence no rule is
induced for it and any non-matching samples is classified in this class.

2.4 Tests with DS¢

An ABS is supposed to detect previously-unknown attacks, for which no sig-
nature is available yet. Hence, we need to test how Panacea behaves when the
training is accomplished using mostly alerts generated by an SBS but afterwards
Panacea processes alerts generated by an ABS. For this final test we simulate
the following scenario. A user has manually classified alerts generated by an SBS
during the training phase (DSp) and she uses the resulting model to classify un-
known attacks, detected by two different ABSs (POSEIDON and Sphinx). Since
we collected few buffer overflow attacks, we use the Sploit framework [37] to
mutate some of the original attack payloads and increase the number of samples
for this class, introducing attack diversity at the same time. Thus, we obtain
additional training samples with a different payload. Table [ shows the percent-
age of correctly classified attacks by SVM and RIPPER. For the buffer overflow
attacks, we report accuracy values for the original training set (i.e. representing
real traffic) and the “enlarged” training set (in brackets).

Discussion. Tests on DS¢ show that the SVM performs better than RIPPER
when classifying attack instances that have not been observed before. The accu-
racy rate for the “buffer overflow” class is the lowest, and most of the misclassified
attacks have been classified in the “path traversal” class (see the discussion of
benchmarks for DSp). However, with a higher number of training samples (gen-
erated by using Sploit), the accuracy rate increases w.r.t. previous tests. This
suggest that, with a sufficient number of training samples, Panacea achieves high
accuracy rates.
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Table 7. Test details (percentage of correctly classified attacks) on DSc with SVM
and RIPPER. SVM perform better than RIPPER in classifying any attack class. For
the “buffer overflow” class and the percentage of total attacks correctly classified we
report (in brackets) the accuracy rates when Panacea is trained with additional samples
generated using the Sploit framework.

Attack Class SVM RIPPER
Path Traversal 98.1% 94.4%
Cross-site Scripting 92.6% 88.9%
SQL Injection 100.0% 87.5%
Buffer Overflow 50.0% (75.0%) 25.0% (50.0%)

Percentage of total attacks

correctly classified 92.0% (93.0%) 89.0% (91.0%)

2.5 Summary of Benchmark Results

From the benchmarks results, we can draw some conclusions after having ob-
served the following trends:

— The classification accuracy is always higher than 75%.

— SVM performs better than RIPPER when considering the classification ac-
curacy for all classes, when not all of them have more than 50-60 samples
(DSA, DSB and DSC)

— RIPPER performs better than SVM when the class has a good deal of train-
ing samples, i.e., at least 60-70 in our experiments (DS4 and DSp).

— SVM performs better than RIPPER when the class presents high diversity
and attacks to classify have not been observed during training (DS¢).

We can conclude that SVM works better when a few alerts are available for
training and when attack diversity is high, i.e., the training alert samples differ
from the alerts received when in classification phase. On the other hand, RIPPER
shows to be more accurate when trained with a high number of alerts.

2.6 System Performance

In Section [[.2] we introduce the requirement of a fast training phase for the clas-
sification algorithm. During our benchmarks both SVM and RIPPER proved
to satisfy such a requirement. As the BF data size is constant (and it is not
related to the n-gram length), the training time depends on the number of alerts
processed. Benchmarks have been performed on a machine with an Intel Core 2
CPU at 1.8Ghz and 2Gb of memory. The reported figures refer to benchmarks
with DS 4, and are averaged values over five trials. RIPPER is the fastest algo-
rithm and the time required for training grows linearly. When 1000 alerts are
used for training, RIPPER completes the training phase in 8.9 seconds and SVM
in 11.8 seconds. 3000 alerts are processed in 25.9 seconds by RIPPER and in 39.7
seconds by SVM. While retraining, Panacea can use the old classifier instance
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while it builds the new classifier (and the required time is short enough to allow
batch processing of a large number of alerts).

A fast classification phase is also desirable, in order to select an appropriate
action to handle any alert as soon as it is raised. We report figures for benchmarks
with data set DS¢, since for DS4 and DSp we use the cross-validation testing
(where multiple scans of the set are performed). When 1500 alerts are used for
training, RIPPER classifies 100 alerts in 0.9 seconds and SVM in 1.3 seconds.
Thus, Panacea would be able to process up to 300.000 alerts per hour, a rate
that is hardly seen even in large networks.

2.7 Evaluating Confidence

However good Panacea is, the system is not error-free. The consequences of
a misclassification can have a direct impact on the overall security. Think of
a buffer overflow attack, for which usually countermeasures must take place
immediately (because of the possible consequences), that is misclassified as a
path traversal attack, for which the activation of countermeasures can be delayed
(e.g., after other actions taken by the attacker). This event occurs often in our
benchmarks when the system selects the wrong class. Both SVM and RIPPER
can generate a classification confidence value for each attack. This value can be
used to evaluate the accuracy of the classification. The lower the classification
value is (in a range from 0.0 to 1.0), the more likely the classification is wrong
(see Table B for average confidence values for DS¢).

The confidence value can be taken into consideration to detect possible mis-
classification. Users can set a minimum confidence value (e.g., 0.5). Any alert
with a lower confidence value is forwarded to a human operator for manual clas-
sification. With this additional check, we are able to increase the percentage of
total attacks correctly classified up to 95% for SVM and 94% for RIPPER (when
using the standard training set, without additional training samples generated

Table 8. Effects of confidence evaluation for DS¢, when Panacea is trained with the
standard DSp. When considering the classification confidence to forward alerts for
manual classification, the human operator classification increases by 3% and 5% the
overall accuracy rate by inspecting 10 and 13 alerts, out of 100, when Panacea uses
SVM and RIPPER respectively.

SVM RIPPER
Average confidence value for correctly classified attacks 0.75 0.62
Average confidence value for misclassified attacks 0.37 0.43
Percentage of tota} attacks correctly classified without 92.0%  89.0%
confidence evaluation
Percentage of tota% attacks correctly classified with 95.0%  94.0%
confidence evaluation
# of alerts forwarded for manual classification 10/100 13/100
# of forwarded attacks that were actually wrongly classified 3/10 5/13
# of forwarded attacks that were actually correctly classified 7/10 8/13
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Table 9. Actions that users have to take with or without Panacea w.r.t. alert classifi-
cation for each data set we use during benchmarks.

User actions
Without Panacea With Panacea
DSy Classify any alert No action to take
DSp Classify any alert  Classify alerts used during training
No action to take

DSc  Classify any alert (alerts have been previously classified)

with Sploit). The additional workload involves also the manual classification of
alerts which have been correctly classified by the system but whose confidence
value is lower than the set threshold. However, less than 10 alerts (out of 100)
have been forwarded for manual classification when this action was not needed.
Table Bl reports the details regarding the evaluation of the confidence value.

2.8 Usability in Panacea

Panacea aims not only to provide automatic attack classification for an ABS, but
to improve usability as well. In automatic mode, Panacea performs an accurate
classification (more than 75% of correctly classified attacks). In semi-automatic
and manual modes, users actively take part in the classification process: how-
ever, users are requested to provide a limited input (i.e., a class label). Panacea
classifies attacks systematically and automates (1) the extraction of relevant in-
formation used to distinguish an attack class from another and (2) the update of
the classification model. These tasks are usually left to the user’s experience and
knowledge, thus they can be error-prone and not comprehensive. Table[Q reports
actions that users have to take with and without the support of Panacea.

3 Related Work

Although the lack of attack classification is a well-known issue in the field of
anomaly-based intrusion detection, little research has been done on this topic.

Robertson et al. [2] suggest to use heuristics to infer the class of (web-based)
attacks. This approach has several drawbacks. Users have to generate heuristics
(e.g., regular expressions) to identify attack classes. They have to enumerate all
of the possible attack variants, and update the heuristics each time a new attack
variation is detected. This is a time consuming task. Panacea can operate in an
automatic way, by extracting attack information from any SBS, or employ an
ad-hoc classification, with the user providing only the attack class.

Wang and Stolfo [12] use a “Z-String” to distribute among other ABSs attack
payloads to enhance detection. A Z-String contains the information resulting
from the n-gram analysis of the attack payload. Once a certain payload has been
flagged as malicious, the corresponding Z-String can be distributed to other IDSs
to detect the attack also, and stop it at an early stage (think of a worm). If some
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traffic matches a certain Z-String, that data is likely to be a real attack. Although
a Z-String is not used for attack classification, by attaching a class label it would
be possible to classify each attack. However, this approach is not systematic, as
each attack that does not exactly match any Z-String would have to be manually
classified. A Z-String is based on a frequency-based n-gram analysis, thus an
exact match could be difficult to achieve. On the other hand, Panacea applies
a systematic classification using the more precise binary-based n-gram analysis.
Panacea can also use as a source of information the alerts generated by an SBS,
and not only by an ABS.

4 Conclusion

We present Panacea, a system that automatically and systematically classifies
attacks detected by a payload-based ABS (and consequently classifies the gener-
ated alerts). Panacea extracts information from alerts during a training phase,
then predicts the attack class for new alerts. The alerts used to train the classifi-
cation engine can be generated by an SBS as well as an ABS. In the former case,
no manual intervention is requested (the system operates in automatic mode),
as Panacea automatically extracts the attack class from the alert. In the latter
case, the user is required to provide the attack class for each alert used to train
the classification engine.

Panacea improves the usability and makes it possible to integrate anomaly-
based with signature-based IDSs. Benchmarks show that the approach is effective
in classifying attacks, even those that have not been detected before (and not
used for training). Although Panacea works in an automatic way, users can
employ ad-hoc classifications, and even manually tune the engine for more precise
classifications.

Future work. Panacea can use different algorithms to classify alerts. The bench-
marks with SVM and RIPPER, which approach the classification problem in
two different ways, show that each algorithm has its strong points, depending
on the circumstances. A possible extension is to use a cascade of SVM and RIP-
PER, in order to increase the overall accuracy. We would then use SVM for early
classification (when the number of samples is low, and when RIPPER does not
perform well), then, when the number of alerts increases, we can train RIPPER,
thanks to the batch training mode, and use it for classification as well (RIPPER
performs better than SVM when the number of training samples is high).

References

1. Ghosh, A., Schwartzbard, A.: A study in using neural networks for anomaly and
misuse detection. In: SSYM 1999: Proc. 8th conference on USENIX Security Sym-
posium, pp. 141-152. USENIX Association (1999)

2. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.: Using generalization and
characterization techniques in the anomaly-based detection of web attacks. In:
NDSS 2006: Proc. 13th ISOC Symposium on Network and Distributed Systems
Security (2006)



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Panacea: Automating Attack Classification 19

. Ning, P., Cui, Y., Reeves, D.: Constructing attack scenarios trough correlation

of intrusion alerts. In: CCS 2002: Proc. 9th ACM Conference on Computer and
Communication Security, pp. 245-254. ACM Press, New York (2002)

. Cuppens, F., Ortalo, R.: LAMBDA: A Language to Model a Database for Detection

of Attacks. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907,
pp. 197-216. Springer, Heidelberg (2000)

. Debar, H., Wespi, A.: Aggregation and Correlation of Intrusion-Detection Alerts.

In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 85-103.
Springer, Heidelberg (2001)

. Ning, P., Xu, D.: Learning attack strategies from intrusion alerts. In: CCS 2003:

Proc. 10th ACM conference on Computer and Communications Security, pp. 200—
209. ACM Press, New York (2003)

. Valeur, F., Vigna, G., Kruegel, C., Kremmerer, R.: A comprehensive approach to

intrusion detection alert correlation. IEEE Trans. Dependable Secur. Comput. 1(3),
146-169 (2004)

. Roesch, M.: Snort - Lightweight Intrusion Detection for Networks. In: LISA 1999:

Proc. 13th USENIX Conference on System Administration, pp. 229-238. USENIX
Association (1999)

. Sourcefire: Snort Network Intrusion Detection System, http://www.snort.org
. Damashek, M.: Gauging similarity with n-grams: Language-independent catego-

rization of text. Science 267(5199), 843-848 (1995)

Forrest, S., Hofmeyr, S.: A Sense of Self for Unix Processes. In: S&P 1996: Proc.
17th ITEEE Symposium on Security and Privacy, pp. 120-128. IEEE Computer
Society Press, Los Alamitos (2002)

Wang, K., Stolfo, S.: Anomalous Payload-Based Network Intrusion Detection. In:
Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
203-222. Springer, Heidelberg (2004)

Wang, K., Parekh, J., Stolfo, S.: Anagram: a Content Anomaly Detector Resistant
to Mimicry Attack. In: Zamboni, D., Kriigel, C. (eds.) RAID 2006. LNCS, vol. 4219,
pp. 226-248. Springer, Heidelberg (2006)

Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM 13(7), 422-426 (1970)

Pietraszek, T.: Using Adaptive Alert Classification to Reduce False Positives in
Intrusion Detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004.
LNCS, vol. 3224, pp. 102-124. Springer, Heidelberg (2004)

Bolzoni, D., Crispo, B., Etalle, S.: ATLANTIDES: An Architecture for Alert Ver-
ification in Network Intrusion Detection Systems. In: LISA 2007: Proc. 21st Large
Installation System Administration Conference, pp. 141-152. USENIX Association
(2007)

Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test. Neuro-
computing 55(1-2), 169-186 (2003)

R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, http://wuw.R-project.org
Lee, W.: A data mining framework for constructing features and models for in-
trusion detection systems. PhD thesis, Columbia University, New York, NY, USA
(1999)

Lee, W., Fan, W., Miller, M., Stolfo, S., Zadok, E.: Toward cost-sensitive modeling
for intrusion detection and response. Journal of Computer Security 10(1-2), 5-22
(2002)

Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method.
Automation and Remote Control 24 (1963)


http://www.snort.org
http://www.R-project.org

20

22.

23.

24.

25.

26.

27.

28.

29.
30.
31.
32.

33.
34.

35.

36.

37.

D. Bolzoni, S. Etalle, and P.H. Hartel

Boser, B., Guyon, 1., Vapnik, V.: A training algorithm for optimal margin classi-
fiers. In: Proc. 5th Annual ACM Workshop on Computational Learning Theory,
pp. 144-152. ACM Press, New York (1992)

Cohen, W.: Fast effective rule induction. In: Proc. 12th International Conference
on Machine Learning, pp. 115-123. Morgan Kaufmann, San Francisco (1995)

The University of Waikato: Weka 3: Data Mining Software in Java, http://www.
cs.waikato.ac.nz/ml/weka/

Howard, J.: An analysis of security incidents on the Internet 1989-1995. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1998)

Hansman, S., Hunt, R.: A taxonomy of network and computer attacks. Computers
& Security 24(1), 31-43 (2004)

Lippmann, R., Cunningham, R., Fried, D., Garfinkel, S., Gorton, A., Graf, I.,
Kendall, K., McClung, D., Weber, D., Webster, S., Wyschogrod, D., Zissman, M.:
The 1998 DARPA/AFRL off-line intrusion detection evaluation. In: RAID 1998:
Proc. 1st International Workshop on the Recent Advances in Intrusion Detection
(1998)

Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K.: The 1999 DARPA off-line
intrusion detection evaluation. Computer Networks: The International Journal of
Computer and Telecommunications Networking 34(4), 579-595 (2000)

Snort Team: Snort user manual, http://www.snort.org/docs/snort_htmanuals/
htmanual_2832/node220.html

Web Application Security Consortium: Web Security Threat Classification,
http://wuw.webappsec.org/projects/threat/

Tenable Network Security: Nessus Vulnerabilty Scanner, http://www.nessus. org/
CIRT .net: Nikto web scanner, http://www.cirt.net/nikto2

MilwOrm, http://milwOrm. com

Bolzoni, D., Zambon, E., Etalle, S., Hartel, P.. POSEIDON: a 2-tier Anomaly-based
Network Intrusion Detection System. In: IWIA 2006: Proc. 4th IEEFE International
Workshop on Information Assurance, pp. 144-156. IEEE Computer Society Press,
Los Alamitos (2006)

Bolzoni, D., Etalle, S.: Boosting Web Intrusion Detection Systems by Inferring
Positive Signatures. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS,
vol. 5332, pp. 938-955. Springer, Heidelberg (2008)

Cova, M., Balzarotti, D., Felmetsger, V., Vigna, G.: Swaddler: An approach for the
anomaly-based detection of state violations in web applications. In: Kruegel, C.,
Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 63-86. Springer,
Heidelberg (2007)

Vigna, G., Robertson, W., Balzarotti, D.: Testing network-based intrusion detec-
tion signatures using mutant exploits. In: CCS 2004: Proc. 11th ACM Conference
on Computer and Communications Security, pp. 21-30. ACM Press, New York
(2004)


http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.snort.org/docs/snort_htmanuals/htmanual_2832/node220.html
http://www.snort.org/docs/snort_htmanuals/htmanual_2832/node220.html
http://www.webappsec.org/projects/threat/
http://www.nessus.org/
http://www.cirt.net/nikto2
http://milw0rm.com

Protecting a Moving Target:
Addressing Web Application Concept Drift

Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni Vigna

Computer Security Group
UC Santa Barbara
{maggi,wkr,chris,vigna}@cs.ucsb.edu

Abstract. Because of the ad hoc nature of web applications, intrusion
detection systems that leverage machine learning techniques are particu-
larly well-suited for protecting websites. The reason is that these systems
are able to characterize the applications’ normal behavior in an auto-
mated fashion. However, anomaly-based detectors for web applications
suffer from false positives that are generated whenever the applications
being protected change. These false positives need to be analyzed by
the security officer who then has to interact with the web application
developers to confirm that the reported alerts were indeed erroneous
detections.

In this paper, we propose a novel technique for the automatic detection
of changes in web applications, which allows for the selective retraining
of the affected anomaly detection models. We demonstrate that, by cor-
rectly identifying legitimate changes in web applications, we can reduce
false positives and allow for the automated retraining of the anomaly
models.

We have evaluated our approach by analyzing a number of real-world
applications. Our analysis shows that web applications indeed change
substantially over time, and that our technique is able to effectively de-
tect changes and automatically adapt the anomaly detection models to
the new structure of the changed web applications.

Keywords: Anomaly Detection, Web Application Security, Concept
Drift, Machine Learning.

1 Introduction

According to a recent study by Symantec [I], web vulnerabilities represent 60%
of all reported security flaws. In particular, site-specific vulnerabilities (i.e., those
that affect custom web applications) are receiving increased attention from online
criminals [2I3]. This is because by exploiting a single vulnerability in a popular
site (e.g., a social networking site or a high-traffic portal), an attacker can infect
a large number of end hosts by spreading malware via web browser exploits
(e.g., drive-by download attacks). Therefore, there is a need for security tools
and techniques to protect web applications and deal with their ad hoc, dynamic
nature.
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Anomaly-based intrusion detection techniques have been shown to be effec-
tive in protecting web applications against attacks [AUBJ6I7I8]. In contrast to mis-
use detection systems, which contain fingerprints of all known attacks patterns,
anomaly-based detectors leverage models of the normal behavior of the mon-
itored web applications to detect attacks, under the assumption that attacks
cause anomalies, and anomalies are always associated with malicious activity.
Besides an initial configuration, these tools typically neither require mainte-
nance nor manual updates to provide protection. For these reasons, they have
the advantage of offering a black-box solution to web application security, even
against 0-day exploits and site-specific attacks. Some anomaly-based web at-
tack detection techniques are mature enough to be implemented in commercial
tools [QUTOUTT].

A class of anomaly detectors for web applications leverages machine learning
techniques to automatically build models of the normal behavior of the moni-
tored web applications. In this context, the term normal behavior generally refers
to a set of characteristics (e.g., the distribution of the characters of string pa-
rameters, the mean and standard deviation of the values of integer parameters)
extracted from HTTP messages that are observed during normal operation. De-
tection is performed under the assumption that attacks cause significant changes
(i.e., anomalies) in the application behavior. Thus, any activity that does not fit
the expected, learned models is flagged as malicious. Obviously, the detection
accuracy strongly depends upon the quality of the models that describe the nor-
mal behavior. On one hand, over-specialization can lead to false positives [T2J13];
on the other hand, over-generalization often results in false negatives [T4UT5JT6].

One issue that has not been well-studied is the difficulty of adapting to changes
in the behavior of the protected applications. By behavior of a web application,
we refer to the features and the functionalities that the application offers and, as
a consequence, the content of the inputs (i.e., the requests) that it process and
the outputs (i.e., the responses) that it produces. This is an important problem
because today’s web applications are user-centric. That is, the demand for new
services causes continuous updates to an application’s logic and its interfaces.

Our analysis reveals that significant changes in the behavior of web applica-
tions are frequent. We refer to this phenomenon as web application concept drift.
In the context of anomaly-based detection, this means that legitimate behavior
might be misclassified as an attack after an update of the application, causing
the generation of false positives. Normally, whenever a new version of an appli-
cation is deployed in a production environment, a coordinated effort involving
application maintainers, deployment administrators, and security experts is re-
quired. That is, developers have to inform administrators about the changes that
are rolled out, and the administrators have to update or re-train the anomaly
models accordingly. Otherwise, the amount of false positives will increase sig-
nificantly. We propose a solution that makes these tedious tasks unnecessary.
Our technique examines the responses (HTML pages) sent by a web applica-
tion. More precisely, we check the forms and links in these pages to determine
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when new elements are added or old ones removed. This information is leveraged
to identify legitimate changes.

Our technique recognizes when anomalous inputs (i.e., HTTP requests) are
due to previous, legitimate updates (changes) in a web application. In such cases,
false positives are suppressed by automatically and selectively re-training mod-
els. Moreover, when possible, model parameters can be automatically updated
without requiring any re-training. Often, a complete re-training would be ex-
pensive in terms of time; typically, it requires O(P) where P represents the
number of HTTP messages required to train a model. More importantly, such
re-training is not always feasible since new, attack-free training data is unlikely
to be available immediately after the application has changed. In fact, to collect
a sufficient amount of data the new version of the application must be executed
and real, legitimate clients have to interact with it in a controlled environment.
Clearly, this task requires time and efforts. More importantly, those parts that
have changed in the application must be known in advance.

Our approach takes a different perspective. We focus on the fundamental
problem of detecting those parts of the application that have changed and that
will cause false positives if no re-training is performed. Therefore, our technique
is agnostic with respect to the specific training procedure, which can be different
from the one we propose.

In summary, this paper proposes a set of change detection techniques to ad-
dress the concept drift problem by treating the protected web applications as
oracles. We show that HT'TP responses contain important insights that can be
effectively leveraged to update previously learned models to take changes into
account. The results of applying our technique on real-world data show that
learning-based anomaly detectors can automatically adapt to changes, and by
doing this, are able to reduce their false positive rate without decreasing their
detection accuracy.

In this paper, we make the following contributions.

— We detail the problem of concept drift in the context of web applications,
and we provide evidence that it occurs in practice, motivating why it is a
significant problem for deploying learning-based anomaly detectors in the
real world.

— We present novel techniques based on HTTP response models that can be
used to distinguish between legitimate changes in web applications and web-
based attacks.

— We evaluate a tool incorporating these techniques over an extensive real-
world data set, demonstrating its ability to deal with web application concept
drift and reliably detect attacks with a low false positive rate.

2 Concept Drift

To introduce the idea of concept drift, we will use a generalized model of learning-
based anomaly detectors of web attacks. This model is based on the system pre-
sented in [5], but it is general enough to be adapted to virtually any learning-based
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anomaly detector for web applications. Also, we show that concept drift is a prob-
lem that exists in the real world, and we motivate why it should be addressed.
Unless differently stated, we use the shorthand term anomaly detector to refer to
anomaly-based detectors that leverage unsupervised machine learning techniques.

2.1 Anomaly Detection for Web Applications

An anomaly detector builds models of normal behavior by observing HTTP mes-
sages exchanged between servers and clients. The traffic directed to the server
running a certain web application (e.g., an e-commerce application or a blog)
can be organized into paths, or resources, R = {r1,r2,...,r;,... }. Each resource
corresponds to a different software module of the application (e.g., an account
manager, a search component). Each resource r; responds to requests, or queries,
Q= {qj,1, Q25 s Qjiy e } that contain sets of name-value parameters transmit-
ted by the client as part of the HT'TP request. Each query g;; is abstracted as a
tuple g;,;, = (r;, Py), where Py = {(p1,v1), (p2,v2), ..., (pk,vx)} C P;, and P; =
P(r;) is the set of all the parameters handled by r;. For instance, the request
‘GET /page?id=21&uid=u43&action=del’ contains the resource r; = ¢/page’
and the parameters P, = {(p1 = id,v1 = 21),(ps = uid, vy = ‘ud3’), (p3 =
action,vs = ‘del’)}. Typically, an anomaly detector would use different mod-
els to capture legitimate values associated with each parameter.

In addition to requests, the structure of user sessions can be taken into ac-
count to model the normal states of a server-side application. In this case, the
anomaly detector does not consider individual requests independently, but mod-
els their sequence. This model captures the legitimate order of invocation of the
resources, according to the application logic. An example is when a user is re-
quired to invoke an authentication resource (e.g., /user/auth) before requesting
a private page (e.g., /user/profile). In [5], a session S is defined as a sequence
of resources in R. For instance, given R = {ry,r2,...,710}, a sample session is
S = (rs3, 71,712,710, 2)-

Finally, HTTP responses that are returned by the server can also be modeled.
For example, in [5], a model m(4°®) is presented that takes into account the
structure of documents (e.g., HTML, XML, and JSON) in terms of partial trees
that include security-relevant nodes (e.g., <script /> nodes, nodes containing
DOM event handlers, and nodes that contain sensitive data such as credit card
numbers). These trees are iteratively merged as new documents are observed,
creating a superset of the allowed document structure and the positions within
the tree where client-side code or sensitive data may appear.

During the learning (or training) phase, given a training set of queries @
and the corresponding responses, the model parameters are estimated and ap-
propriate anomaly thresholds are calculated. More precisely, each parameter of
a resource 1; is associated with a set of models; this set of models is called a
profile: c(.y = (m1,ma, ..., my). The specific models in c(.y and the strategy to
combine their output determine the classes of attacks that can be detected. The
interested reader is referred to [BI8IT7] for more details.
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During detection, for each new request ¢ and corresponding response, the
database of profiles is used to calculate an aggregated anomaly score, which
takes into account the anomaly score of the request or the response according to
all the applicable models. In general, an alert is raised if the aggregated anomaly
score is above the threshold learned during training.

In this work, the set of models implemented in webanomaly [5] is used to show
how anomaly detectors can be improved to cope with the problem of concept
drift. However, the techniques we propose in this work can be easily applied to
other anomaly-based detectors.

2.2 Web Applications Are Not Static

In machine learning, changes in the modeled behavior are known as concept
drift [18]. Intuitively, the concept is the modeled phenomenon (e.g., the struc-
ture of requests to a web server, the recurring patterns in the payload of network
packets). Thus, variations in the main features of the phenomena under consid-
eration result in changes, or drifts, in the concept.

Although the generalization and abstraction capabilities of modern learning-
based anomaly detectors are resilient to noise (i.e., small, legitimate variations in
the modeled behavior), concept drift is difficult to detect and to cope with [19].
The reason is that the parameters of the models may stabilize to different values.
For instance, a string length model could calculate the sample mean and variance
of the string lengths that are observed during training. Then, during detection,
the Chebyshev inequality is used to detect strings with lengths that significantly
deviate from the mean, taking into account the observed variance. Clearly, small
differences in the lengths of strings will be considered normal. On the other hand,
the mean and variance of the string lengths can completely change because of
legitimate and permanent modifications in the web application. In this case, the
normal mean and variance will stabilize, or drift, to completely different values.
If appropriate re-training or manual updates are not performed, the model will
classify benign, new strings as anomalous. This might be a human-intensive
activity requiring substantial expertise. Therefore, having an automated, black-
box mechanism to adjust the parameters is clearly very desirable.

Changes in web applications can manifest themselves in several ways. In the
context of learning-based detection of web attacks, those changes can be catego-
rized into three groups: request changes, session changes, and response changes.

Request changes. Changes in requests occur when an application is upgraded
to handle different HTTP requests. These changes can be further divided into
two groups: parameter value changes and request structure changes. The former
involve modifications of the actual value of the parameters, while the latter
occur when parameters are added or removed. Parameter renaming is the result
of removal plus addition.

Ezample. A new version of a web forum introduces internationalization (I18N)
and localization (L10N). Besides handling different languages, 118N and L10N
allow several types of strings to be parsed as valid dates and times. For instance,
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valid strings for the datetime parameter are ‘3 May 2009 3:00°, ‘3/12/2009°,
€3/12/2009 3:00 PM GMT-08’, ‘now’. In the previous version, valid date-time
strings had to conform to the regular expression ‘[0-9]1{1,2}/[0-91{2}/[0-
91{4}’. A model with good generalization properties would learn that the field
datetime is composed of numbers and slashes, with no spaces. Thus, other
strings such as ‘now’ or ‘3/12/2009 3:00 PM GMT-08’ would be flagged as
anomalous. Also, in our example, tz and lang parameters have been added to
take into account time zones and languages. To summarize, the new version
introduces two classes of changes. Clearly, the parameter domain of datetime
is modified. Secondly, new parameters are added.

Changes in HTTP requests directly affect the request models. First, parameter
value changes affect any models that rely on the parameters’ values to extract
features. For instance, consider two of the models used in the system described in
[5): m(har) and mGtruet) | The former models the strings’ character distribution
by storing the frequency of all the symbols found in the strings during training,
while the latter models the strings’ structure as a stochastic grammar, using a
Hidden Markov Model (HMM). In the aforementioned example, the 118N and
L10N introduce new, legitimate values in the parameters; thus, the frequency
of numbers in m(*#") changes and new symbols (e.g., ‘=’, ¢ [a-zA-Z]’ have to
be taken into account. It is straightforward to note that m®tut) is affected in
terms of new transitions introduced in the HMM by the new strings. Secondly,
request structure changes may affect any type of request model, regardless of the
specific characteristics. For instance, if a model for a new parameter is missing,
requests that contain that parameter might be flagged as anomalous.

Session changes. Changes in sessions occur whenever resource path sequences
are reordered, inserted, or removed. Adding or removing application modules
introduces changes in the session models. Also, modifications in the application
logic are reflected in the session models as reordering of the resources invoked.

Ezample. A new version of a web-based community software grants read-only
access to mon-authenticated users, allowing them to display contents previ-
ously available to subscribed users only. In the old version, legitimate sequences
were (/site, /auth, /blog) or (/site, /auth, /files), where /site indicates the
server-side resource that handles the public site, /auth is the authentication re-
source, and /blogand /files were formerly private resources. Initially, the prob-
ability of observing /auth before /blogor /files is close to one (since users need
to authenticate before accessing private material). This is no longer true in the new
version, however, where /files|/blogl|/auth are all possible after /site.

Changes in sessions impact all models that rely on the sequence of resources
that are invoked during the normal operation of an application. For instance,
consider the model m %) described in [5], which builds a probabilistic finite
state automaton that captures sequences of resource paths. New arcs must be
added to take into account the changes mentioned in the above example. These
types of models are sensitive to strong changes in the session structure and
should be updated accordingly when they occur.
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Response changes. Changes in responses occur whenever an application is
upgraded to produce different responses. Interface redesigns and feature addition
or removal are example causes of changes in the responses. Response changes are
common and frequent, since page updates or redesigns often occur in modern
websites.

Example. A new version of a video sharing application introduces Web 2.0 fea-
tures into the user interface, allowing for the modification of user interface ele-
ments without refreshing the entire page. In the old version, relatively few nodes
of documents generated by the application contained client-side code. In the new
version, however, many nodes of the document contain event handlers to trigger
asynchronous requests to the application in response to user events. Thus, if a
response model is not updated to reflect the new structure of such documents,
a large of number of false positives will be generated due to legitimate changes
in the characteristics of the web application responses.

2.3 Prevalence of Concept Drift

To understand whether concept drift is a relevant issue for real-world websites,
we performed three experiments. For the first experiment, we monitored 2,264
public websites, including the Alexa Top 500 and other sites collected by querying
Google with popular terms extracted from the Alexa Top 500. The goal was
to identify and quantify the changes in the forms and input fields of popular
websites at large. This provides an indication of the frequency with which real-
world applications are updated or altered.

Once every hour, we visited one representative page for each of the 2,264
websites. In total, we collected 3,303,816 pages, comprising more than 1,390
snapshots for each website, between January 29 and April 13, 2009. One
tenth of the representative pages were manually selected to have a signifi-
cant number of forms, input fields, and hyperlinks with parameters (e.g., <a
href="/login?anon=true&lang=en" />). By doing this, we gathered a consid-
erable amount of information regarding the HTTP messages generated by some
applications. Examples of these pages are registration pages, data submission
pages, or contact form pages. For the remaining websites, we simply used their
home pages.

For each website w, each page sample crawled at time ¢ is associated with a tu-
ple |F |tw), |7 |tw)7 the cardinality of the sets of forms and input fields, respectively.
By doing this, we collected samples of the variables |F|* = [F[{,... |F|{,
[I[" = |1, ..., |1, with 0 < n < 1,390. Figure Mlshows the relative frequency
of the variables X; = stdev(|I|(*1)), ..., stdev(|I|(**)) and X = stdev(|F|*V)),
..., stdev(|F|(¥#)). This demonstrates that a significant amount of websites ex-
hibit variability in the response models, in terms of elements modified in the
pages, as well as request models, in terms of new forms and parameters. In addi-
tion, we estimated the expected time between changes of forms and inputs fields,
E[TF] and E[T}], respectively. In terms of forms, 40.72% of the websites drifted
during the observation period. More precisely, 922 out of 2,264 websites have a
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Fig. 1. Relative frequency of the standard deviation of the number of forms and
input fields Also, the distribution of the expected time between changes of forms
@ and input fields @ are plotted. A non-negligible portion of the websites exhibits
changes in the responses.

finite E[TF]. Similarly, 29.15% of the websites exhibited drifts in the number of
input fields, i.e., E[T7] < +oo for 660 websites. Figure [Il shows the relative fre-
quency of [(b)] E[TF], and E[Ty]. E[TF]. This confirms that a non-negligible
portion of the websites exhibit significantly frequent changes in the responses.
For the second experiment, we monitored in depth three large, data-centric
web applications over several months: Yahoo! Mail, YouTube, and MySpace. We
dumped HTTP responses captured by emulating user interaction using a custom,
scriptable web browser implemented with HtmlUnit. Examples of these interac-
tions are as follows: visit the home page, login, browse the inbox, send messages,
return to the home page, click links, log out. Manual inspection revealed some
major changes in Yahoo! Mail. For instance, the most evident change consisted of
a set of new features added to the search engine (e.g., local search, refined address
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(a) PhpBB (b) WordPress (c) Movable Type

Fig. 2. Lines of codes in the repositories of PhpBB, WordPress, and Movable Type, over
time. Counts include only the code that manipulates HTTP responses, requests and
sessions.

field in maps search), which manifested themselves as new parameters found in
the web search page (e.g. to take into account the country or the ZIP code). User
pages of YouTube were significantly updated with new functionalities between
2008 and 2009. For instance, the new version allows users to rearrange widgets
in their personal pages. To account for the position of each element, new param-
eters are added to the profile pages and submitted asynchronously whenever the
user drags widgets within the layout. The analysis on MySpace did not reveal
any significant change. The results of these two experiments show that changes
in server-side applications are common. More importantly, these modifications
often involve the way user data is represented, handled, and manipulated.

For the third experiment, we analyzed changes in the requests and sessions
by inspecting the code repositories of three of the largest, most popular open-
source web applications: WordPress, Movable Type, and PhpBB. The goal was to
understand whether upgrading a web application to a newer release results in
significant changes in the features that are used to determine its behavior. In this
analysis, we examined changes in the source code that affect the manipulation of
HTTP responses, requests, and session data. We used StatSVN, an open-source
tool for tracking and visualizing the activity of SVN repositories (e.g., the
number of lines changed or the most active developers). We modified StatSVN
to incorporate a set of heuristics to compute approximate counts of the lines of
code that, directly or indirectly, manipulate HT'TP session, request or response
data. In the case of PHP, examples representative of such lines include, but
are not limited to, REQUEST| SESSION| POST| GET|session |http [strip -
tags|addslashes. In order to take into account data manipulation performed
through library functions (e.g., WordPress’ custom Http class), we also generated
application-specific code patterns by manually inspecting and filtering the core
libraries. Figure [2 shows, over time, the lines of code in the repositories of Ph-
pBB, WordPress, and Movable Type that manipulate HTTP responses, requests
and, sessions. These results show the presence of significant modifications in
the web application in terms of relevant lines of code added or removed. More
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importantly, such modifications affect the way HTTP data is manipulated and,
thus, impact request, response or session models.

The aforementioned experiments confirm that the class of changes we de-
scribed in Section [Z.2] is common in real-world web applications. Therefore, we
conclude that anomaly detectors for web applications must incorporate proce-
dures to prevent false alerts due to concept drift. In particular, a mechanism is
needed to discriminate between legitimate and malicious changes, and respond
accordingly.

3 Addressing Concept Drift

In this section, we first present our technique to distinguish between legitimate
changes in web application behavior and evidence of malicious behavior. We then
discuss how a web application anomaly detection system can effectively handle
legitimate concept drift.

3.1 The Web Application as Oracle

The body of HTTP responses contains a set of links L; and forms F; that refer
to a set of target resources. Each form also includes a set of input fields I;.
In addition, each link /;; € L; and form f;; € F; has an associated set of
parameters.

From a resource r;, the client clicks upon a link I; ; or submits a form f; ;.
Either of these actions generates a new HTTP request to the web application
with a set of parameter key-value pairs, resulting in the return of a new HTTP
response to the client, r; 11, the body of which contains a set of links L;;1 and
forms F;11. This process continues until the session has ended (i.e., either the
user has explicitly logged out, or a timeout has occurred).

Our key observation is that, at each step of a web application session, the
set of potential target resources is given exactly by the content of the current
resource. That is, given r;, the associated sets of links L; and forms F; directly
encode a significant sub-set of the possible ;1. Furthermore, each link {; ; and
form f; ; indicates a precise set of expected parameters and, in some cases, the
set of legitimate values for those parameters that can be provided by a client.

Ezample. Consider a hypothetical banking web application, where the cur-
rent resource r; = /account presented to a client is an account overview
containing a set of links L; = {/account/history?aid=328849660322, /ac-
count/history?aid=446825759916, /account/transfer, /logout} and forms
(represented as their target action) F; = {/feedback, /search}.

From L; and F;, we can deduce the set of legal candidate resources for the
next request ;1. Any other resource would, by definition, be a deviation from
a legal session flow through the web application as specified by the application
itself. For instance, it would not be expected behavior for a client to directly ac-
cess /account/transfer/submit (i.e., a resource intended to submit an account
funds transfer) from r;. Furthermore, for the resource /account/history, it is
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clear that the web application expects to receive a single parameter aid with an
account number as an identifier.

In the case of the form with target /feedback, let the associated input ele-
ments be:

<select name="subject">
<option>General</option>
<option>User interface</option>
<option>Functionality</option>

</select>

<textarea name="message" />

It immediately follows that any invocation of the /feedback resource from r;
should include the parameters subject and message. In addition, the legal set
of values for the parameter subject is given by enumerating the enclosed <op-
tion /> tags. Similarly, valid values for the new tz and datetime parameters
mentioned in the example of Section can be inferred. Any deviation from
these specifications could be considered evidence of malicious behavior.

We conclude that the responses generated by a web application constitute aspec-
ification of the intended behavior of clients and the expected inputs to an applica-
tion’s resources. As a consequence, when a change occurs in the interface presented
by a web application, this will be reflected in the content of its responses. There-
fore, as detailed in the following section, our anomaly detection system performs
response modeling to detect and adapt to changes in monitored web applications.

3.2 Adaptive Response Modeling

In order to detect changes in web application interfaces, the response modeling
of webanomaly has been augmented with the ability to build L; and F; from the
HTML documents returned to a client. The approach is divided into two phases.

Extraction and parsing. The anomaly detector parses each HTML document
contained in a response issued by the web application to a client. For each <a />
tag encountered, the contents of the href attribute is extracted and analyzed.
The link is decomposed into tokens representing the protocol (e.g., http, https,
javascript, mailto), target host, port, path, parameter sequence, and anchor.
Paths are subject to additional processing; for instance, relative paths are nor-
malized to obtain a canonical representation. This information is stored as part
of an abstract document model for later processing.

A similar process occurs for forms. When a <form /> tag is encountered, the
action attribute is extracted and analyzed as in the case of the link href at-
tribute. Furthermore, any <input />, <textarea />, or <select /> and <op-
tion /> tags enclosed by a particular <form /> tag are parsed as parameters
to the corresponding form invocation. For <input /> tags, the type, name, and
value attributes are extracted. For <textarea /> tags, the name attribute is
extracted. Finally, for <select /> tags, the name attribute is extracted, as well
as the content of any enclosed <option /> tags. The target of the form and its
parameters are recorded in the abstract document model as in the case for links.
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Fig. 3. A representation of the interaction between the client and the web application
server, monitored by a learning-based anomaly detector. After request ¢; is processed,
the corresponding response resp; is intercepted and link L; and forms F; are parsed to
update the request models. This knowledge is exploited as a change detection criterion
for the subsequent request ¢;y1.

Analysis and modeling. The set of links and forms contained in a response
is processed by the anomaly engine. For each link and form, the corresponding
target resource is compared to the existing known set of resources. If the resource
has not been observed before, a new model is created for that resource. The
session model is also updated to account for a potential transition from the
resource associated with the parsed document and the target resource by training
on the observed session request sequence.

For each of the parameters parsed from links or forms contained in a response,
a comparison with the existing set of known parameters is performed. If a pa-
rameter has not already been observed (e.g., the new tz parameter), a profile is
created and associated with the target resource model.

Any values contained in the response for a given parameter are processed
as training samples for the associated models. In cases where the total set of
legal parameter values is specified (e.g., <select /> and <option /> tags), the
parameter profile is updated to reflect this. Otherwise, the profile is trained on
subsequent requests to the associated resource.

As a result of this analysis, the anomaly detector is able to adapt to changes
in session structure resulting from the introduction of new resources. In addition,
the anomaly detector is able to adapt to changes in request structure resulting
from the introduction of new parameters and, in a limited sense, to changes in
parameter values.

3.3 Advantages and Limitations

Due to the response modeling algorithm described in the previous section, our
web application anomaly detector is able to automatically adapt to many com-
mon changes observed in web applications as modifications are made to the
interface presented to clients. Both changes in session and request structure
such as those described in Section can be accounted for in an automated
fashion. For instance, the I18N and L10N modification of the aforementioned
example is correctly handled as it consists in an addition of the tz parameter
and a modification of the datetime parameter. Furthermore, we claim that web
application anomaly detectors that do not perform response modeling cannot
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reliably distinguish between anomalies caused by legitimate changes in web ap-
plications and those caused by malicious behavior. Therefore, as will be shown
in Section @ any such detector that solely monitors requests is more prone to
false positives in the real world.

Clearly, the technique relies upon the assumption that the web application
has not been compromised. Since the web application, and in particular the doc-
uments it generates, is treated as an oracle for whether a change has occurred, if
an attacker were to compromise the application in order to introduce a malicious
change, the malicious behavior would be learned as normal by our anomaly de-
tector. Of course, in this case, the attacker would already have access to the web
application. However, we remark that our anomaly detector observes all requests
and responses to and from untrusted clients, therefore, any attack that would
compromise response modeling would be detected and blocked. For example, an
attacker could attempt to evade the anomaly detector by introducing a malicious
change in the HTTP responses and then exploits the change detection technique
that would interpret the new malicious request as a legit change. For instance,
the attacker could incorporate a link that contain a parameter used to inject the
attack vector. To this end, the attacker would have to gain control of the server
by leveraging an existing VulnerabilityEI of the web application (e.g., a buffer
overflow, a SQL injection). However, the HTTP requests used by the attacker
to exploit the vulnerability will trigger several models (e.g., the string length
model, in the case of a buffer overflow) and, thus, will be flagged as anomalous.
In fact, our technique does not alter the ability of the anomaly detector to detect
attacks. On the other hand, it avoids many false positives, as demonstrated in
Section

Besides the aforementioned assumptions, three limitations are important to
note. First, the set of target resources may not always be statically derivable from
a given resource. For instance, this can occur when client-side scripts are used
to dynamically generate page content, including links and forms. Accounting
for dynamic behavior would require the inclusion of script interpretation. This,
however, has a high overhead, is complex to perform accurately, and introduces
the potential for denial of service attacks against the anomaly detection system.
For these reasons, we have not included such a component in the current system,
although further research is planned to deal with dynamic behavior. Moreover,
as Section @] demonstrates, the proposed technique performs well in practice.

Second, the technique does not fully address changes in the behavior of in-
dividual request parameters in its current form. In cases where legitimate pa-
rameter values are statically encoded as part of an HTML document, response
modeling can directly account for changes in the legal set of parameter values.
Unfortunately, in the absence of any other discernible changes in the response,
changes in parameter values provided by clients cannot be detected. However,
heuristics such as detecting when all clients switch to a new observable behavior
in parameter values (i.e., all clients generate anomalies against a set of models in

! The threat model assumes that the attacker can interact with the web application
only by sending HT'TP requests.
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a similar way) could serve as an indication that a change in legitimate parameter
behavior has occurred.

Third, the technique cannot handle the case where a resource is the result of
a parametrized query and the previous response has not been observed by the
anomaly detector. In our experience, however, this does not occur frequently in
practice, especially for sensitive resources.

4 Evaluation

In this section, we show that our techniques reliably distinguish between le-
gitimate changes and evidence of malicious behavior, and present the resulting
improvement in terms of detection accuracy.

The goal of this evaluation is twofold. We first show that concept drift in mod-
eled behavior caused by changes in web applications results in lower detection
accuracy. Second, we demonstrate that our technique based on HTTP responses
effectively mitigates the effects of concept drift. In both the experiments, the
testing data set includes samples of the most common types of attacks against
web applications such as cross-site scripting (XSS) (e.g., CVE-2009-0781), SQL
injections (e.g., CVE-2009-1224), and command execution exploits (e.g., CVE-
2009-0258) that are reflected in request parameter values. In particular, we in-
cluded a total of 1000 attacks, comprised of 400 XSS attacks, 400 SQL injections,
and 200 command injections. The XSS attacks are variations on those listed in
[20], the SQL injections were created similarly from [21], and the command exe-
cution exploits were variations of common command injections against the Linux
and Windows platforms.

In both experiments, webanomaly was evaluated on a data set consisting of
HTTP traffic drawn from real-world web applications. This data was obtained
from several monitoring points at both commercial and academic sites. For each
application, the full contents of each HTTP connection observed over a period of
several months were recorded. The resulting flows were filtered using signature-
based techniques to remove known attacks, and then partitioned into distinct
training and test sets. In total, the data set contains 823 unique web applications,
36,392 unique resource paths, 16,671 unique parameters, and 58,734,624 HTTP
requests.

4.1 Effects of Concept Drift

In the first experiment, we demonstrate that concept drift as observed in real-
world web applications results in a significant negative impact on false positive
rates. First, webanomaly was trained on an unmodified, filtered data set. Then,
the detector analyzed a test data set ) to obtain a baseline ROC curve.

After the baseline curve had been obtained, the test data set was processed to
introduce new behaviors corresponding to the effects of web application changes,
such as upgrades or source code refactoring, obtaining Qqyift. In this manner, the
set of changes in web application behavior was explicitly known. In particular, as
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Table 1. Reduction in the false positive rate due to HTTP response modeling for
various types of changes

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%
Modified parameters 5,785 4,821 16.6%
Total 19,284 4,821 75.0%

detailed in Table[I] 6,749 new session flows were created by introducing requests for
new resources and creating request sequences for both new and known resources
that had not previously been observed. Also, new parameter sets were created
by introducing 6,750 new parameters to existing requests. Finally, the behavior
of modeled features of parameter values was changed by introducing 5,785 muta-
tions of observed values in client requests. For example, each sequence of resources
(/login, /index, /article) might be transformed to (/login, /article). Sim-
ilarly, each request like /categories found in the traffic might be replaced with
/foobar. For new parameters, a set of link or form parameters might be updated
by changing a parameter name and updating requests accordingly.

It must be noted that in all cases, responses generated by the web application
were modified to reflect changes in client behavior. To this end, references to new
resources were inserted in documents generated by the web application, and both
links and forms contained in documents were updated to reflect new parameters.

webanomaly — without the HTTP response modeling technique enabled — was
then run over Qq,ir to determine the effects of concept drift upon detector
accuracy. The resulting ROC curves are shown in Figure [fal The consequences
of web application change are clearly reflected in the increase in false positive
rate for Qqyigy versus that for . Each new session flow and parameter manifests
as an alert, since the detector is unable to distinguish between anomalies due to
malicious behavior and those due to legitimate change in the web application.

4.2 Change Detection

The second experiment quantifies the improvement in the detection accuracy
of webanomaly in the presence of web application change. As before, the detec-
tor was trained over an unmodified filtered data set, and the resulting profiles
were evaluated over both @ and Qg In this experiment, however, the HTTP
response modeling technique was enabled.

Figure Bh] presents the results of analyzing HTTP responses on detection ac-
curacy. Since many changes in the behavior of the web application and its clients
can be discovered using our response modeling technique, the false positive rate
for Qauiry is greatly reduced over that shown in Figure Bal and approaches that
of @, where no changes have been introduced. The small observed increase in
false positive rate can be attributed to the effects of changes in parameter val-
ues. This occurs because a change has been introduced into a parameter value
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Fig. 4. Detection and false positive rates measured on @ and Qayitt, with HTTP re-
sponse modeling enabled in (b)

submitted by a client to the web application, and no indication of this change
was detected on the preceding document returned to the client (e.g., because no
<select /> were found).

Table [ displays the individual contributions to the reduction of the false pos-
itive rate due to the response modeling technique. Specifically, the total number
of anomalies caused by each type of change, the number of anomalies erroneously
reported as alerts, and the corresponding reduction in the false positive rate is
shown. The results displayed were generated from a run using the optimal op-
erating point (0.00144, 0.97263) indicated by the knee of the ROC curve in
Figure B0l For changes in session flows and parameters sets, the detector was
able to identify an anomaly as being caused by a change in web application be-
havior in all cases. This resulted in a large net decrease in the false positive rate
of the detector with response modeling enabled. The modification of parame-
ters is more problematic, though; as discussed in Section B3] it is not always
apparent that a change has occurred when that change is limited to the type of
behavior a parameter’s value exhibits.

From the overall improvement in false positive rates, we conclude that HTTP
response modeling is an effective technique for distinguishing between anomalies
due to legitimate changes in web applications and those caused by malicious
behavior. Furthermore, any anomaly detector that does not do so is prone to
generating a large number of false positives when changes do occur in the mod-
eled application. Finally, as it has been shown in Section 2l web applications
exhibit significant long-term change in practice, and, therefore, concept drift is
a critical aspect of web application anomaly detection that must be addressed.

5 Related Work

Anomaly-based IDSs have evolved considerably after Denning’s seminal paper
on intrusion detection [22]. Besides network-based detection [23], anomaly-based
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techniques have been also exploited to protect the operating system. In [24],
the normal behavior of applications is captured by modeling system call se-
quences [25)26] along with features of their arguments. In [27], a mixture of
machine learning techniques is exploited to detect anomalous system calls in
the Linux kernel. Ad-hoc distances between system calls are defined to perform
clustering in order to identify natural classes of similar calls. The reduced size
of the clustered input makes the training of Markov chains efficient. The behav-
ior of each host application is modeled as Markov chains on which probabilistic
thresholds are calculated to detect misbehaving sequences.

PAYL [28] is a network-based anomaly detection system. It creates models of
each service’s normal behavior by recording byte frequencies of network streams.
This approach has been further explored in [29], where higher-order n-grams are
used instead of frequencies. Instead, [30] exploits self-organizing maps to classify
the payload of IP frames in order to separate normal packets from malicious
ones.

Anomaly-based detectors of web attacks have been first proposed in [5], where
a multi-model approach to characterizing the normal behavior of web application
parameters is proposed.

A tool to protect against code-injection attacks has been recently proposed
n [I7]. The approach exploits a mixture of Markov chains to model legitimate
payloads at the HTTP layer. The computational complexity of n-grams with
large n is solved using Markov chain factorization, making the system algorith-
mically efficient.

HTTP responses are exploited in [8]. Besides other features, the DOM is
modeled to enhance the detection capabilities of SQL injection and cross-site
scripting attacks. The fact that it relies on HTTP responses makes this approach
similar to ours. However, we exploit HTTP responses to detect changes and
update other anomaly models accordingly, instead of modeling responses per se.

A complementary tool is proposed in [6], where an approach to improve the
explanatory power of anomaly-based detectors is proposed along with a cluster-
ing and classification methodology to reduce their false positive rate. Another
technique to increase detection accuracy is presented in [31], where Bayesian
networks are exploited to combine models and define inter-model dependencies.
The resulting system shows a significant reduction in false alerts.

Reduction of false positives in anomaly detection systems has also been stud-
ied in [I3]. Similar behavioral profiles for individual hosts are grouped together
using a k-means clustering algorithm. However, the distance metric used was
not explicitly defined. Coarse network statistics such as the average number of
hosts contacted per hour, the average number of packets exchanged per hour,
and the average length of packets exchanged per hour are all examples of metrics
used to generate behavior profiles. A voting scheme is used to generate alerts,
in which alert-triggering events are evaluated against profiles from other mem-
bers of that cluster. Events that are deemed anomalous by all members generate
alerts.
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6 Conclusions

In this work, we have identified the natural dynamicity of web applications as an
issue that must be addressed by modern anomaly-based web application anomaly
detectors in order to prevent increases in the false positive rate whenever the
monitored web application is changed. We refer to this frequent phenomenon
the web application concept drift.

We propose the use of novel HTTP response modeling techniques to discrim-
inate between legitimate changes and anomalous behaviors in web applications.
More precisely, responses are analyzed to find new and previously unmodeled pa-
rameters. This information is extracted from anchors and forms elements, and
then leveraged to update request and session models. We have evaluated the
effectiveness of our approach over an extensive real-world data set of web appli-
cation traffic. The results show that the resulting system can detect anomalies
and avoid false alerts in the presence of concept drift.

As future work, we plan to investigate the potential benefits of modeling the
behavior of JavaScript code, which is becoming increasingly prevalent in modern
web applications. Also, additional, richer, and media-dependent response models
must be studied to account for interactive client-side components, such as Adobe
Flash and Microsoft Silverlight applications.
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Abstract. The deployment and use of Anomaly Detection (AD) sensors often
requires the intervention of a human expert to manually calibrate and optimize
their performance. Depending on the site and the type of traffic it receives, the
operators might have to provide recent and sanitized training data sets, the char-
acteristics of expected traffic (i.e. outlier ratio), and exceptions or even expected
future modifications of system’s behavior. In this paper, we study the potential
performance issues that stem from fully automating the AD sensors’ day-to-day
maintenance and calibration. Our goal is to remove the dependence on human op-
erator using an unlabeled, and thus potentially dirty, sample of incoming traffic.

To that end, we propose to enhance the training phase of AD sensors with a
self-calibration phase, leading to the automatic determination of the optimal AD
parameters. We show how this novel calibration phase can be employed in con-
junction with previously proposed methods for training data sanitization resulting
in a fully automated AD maintenance cycle. Our approach is completely agnostic
to the underlying AD sensor algorithm. Furthermore, the self-calibration can be
applied in an online fashion to ensure that the resulting AD models reflect changes
in the system’s behavior which would otherwise render the sensor’s internal state
inconsistent. We verify the validity of our approach through a series of exper-
iments where we compare the manually obtained optimal parameters with the
ones computed from the self-calibration phase. Modeling traffic from two differ-
ent sources, the fully automated calibration shows a 7.08% reduction in detection
rate and a 0.06% increase in false positives, in the worst case, when compared to
the optimal selection of parameters. Finally, our adaptive models outperform the
statically generated ones retaining the gains in performance from the sanitization
process over time.

Keywords: anomaly detection, self-calibrate, self-update, sanitization.

1 Introduction

In recent years, network anomalies such as flash crowds, denial-of-service attacks, port
scans and the spreading of worms and botnets pose a significant threat for large-scale
networks. The capability to automatically identify and diagnose anomalous behavior
both in the network and on the host is a crucial component of most of the defense and
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failure recovery systems currently deployed in enterprises and organizations. Indeed,
Anomaly Detection (AD) sensors are becoming increasingly popular: host-based [24]
and network-based [21}125[17,/16,130]] intrusion detection systems rely heavily on AD
components to maintain their high detection rates and minimize the false positives even
when other, non-AD sensors are involved in the detection process.

A major hurdle in the deployment, operation, and maintenance of AD systems is
the calibration of these sensors to the protected site characteristics and their ability to
“adapt” to changes in the behavior of the protected system. Our aim is to automatically
determine the values of the critical system parameters that are needed for both training
and long-term operation using only the intrinsic properties of existing behavioral data
from the protected host. To that end, we first address the training stage and calibration
of the AD sensor. We use an unlabeled, and potentially dirty sample of the training set to
construct micro datasets. On one hand, these datasets have to be large enough to generate
models that capture a local view of normal behavior. On the other hand, the resulting
micro-models have to be small enough to fully contain and minimize the duration of
attacks and other abnormalities which will appear in a minority of the micro datasets.
To satisfy this trade-off, we generate datasets that contain just enough data so that the
arrival rate of new traffic patterns is stable. The micro-models that result from each data
set are then engaged in a voting scheme in order to remove the attacks and abnormalities
from the data. The voting process is automatically adapted to the characteristics of the
traffic in order to provide separation between normal and abnormal data.

The second objective is to maintain the performance level of the AD sensors over a
medium or long time horizon, as the behavior of the protected site undergoes changes or
evolution. This is not an easy task [21] because of the inherent difficulty in identifying
the rate of change over time for a particular site. However, we can “learn” this rate by
continuously building new micro-models that reflect the current behavior of the system:
every time a new model is added to the voting process, an old model is removed in an
attempt to adapt the normality model to the observed changes. Without this adaptation
process, legitimate changes in the systems are flagged as anomalous by the AD sensor
leading to an inflation of alerts. In contrast, our framework was shown to successfully
adapt to modifications in the behavior of the protected system. Finally, our approach
is agnostic to the underlying AD sensor, making for a general framework that has the
potential to improve the general applicability of AD in the real world.

1.1 Contributions

Our target is to create a fully automated protection mechanism that provides a high
detection rate, while maintaining a low false positive rate, and also adapts to changes
in the system’s behavior. In [5,/4]], we have explored the basic problem and proposed
the sanitization techniques for multiple sites using empirically determined parameters.
We also presented a distributed architecture for coping with long-lasting attacks and
a shadow sensor architecture for consuming false positives (FP) with an automated
process rather than human attention.

Here, we apply those insights to the problem of providing a run-time framework
for achieving the goals stated above. This is a significant advance over our prior work
which, while not requiring a manually cleaned data set for training, relied on empirically
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determined parameters and human-in-the-loop calibration methods. Along these lines,
our current work provides the following contributions:

— Identifying the intrinsic characteristics of the training data, such as the arrival rate
of new content and the level of outliers (i.e. self-calibration)

— Cleansing a data set of attacks and abnormalities by automatically selecting an
adaptive threshold for the voting method presented previously based on the char-
acteristics of the observed traffic resulting in a sanitized training data set (i.e. auto-
matic self-sanitization)

— Maintaining the performance we gained by applying the sanitization methods be-
yond the initial training phase and extending them throughout the lifetime of the
sensor by continuously updating the self-calibrated and self-sanitized model (i.e.
self-update)

2 Ensemble Classifier Using Time-Based Partitions

In [5,4], we focused on methods for sanitizating the training data sets for AD sensors.
This resulted in better AD sensor performance (i.e. higher detection rate while keeping
the false positives low). Here, we attempt to fully automate the construction of those
models by calibrating the sanitization parameters using the intrinsic properties of the
training data. We briefly describe the sanitization technique and the empirical param-
eters that it requires in order to operate optimally. Indeed, to cleanse the training data
for any AD sensor, we harnessed the idea of an “ensemble classifier”, defined by [6]
as “a set of classifiers whose individual decisions are combined in some way (typically
by weighted or unweighted voting) to classify new examples.” One option for gener-
ating such an classifier ensemble is to peruse the available training data by splitting
them into smaller data sets used to train instances of the AD sensor. The inherent as-
sumption is that attacks and abnormalities are a minority compared to the entire set
of training data. This is certainly true for training sets that span a long period of time.
Therefore, we proposed the use of time-delimited slices of the training data. Indeed,
consider a large training data set T partitioned into a number of smaller disjoint subsets
(micro-datasets):

Tz{mdl,mdg,...,mdN}, (1)

where md; is the micro-dataset starting at time (i — 1) x g and, g is the granularity for
each micro-dataset.
We can now apply a given anomaly detection algorithm. We define the model func-
tion AD to be:
M = AD(T), 2)

where AD can be any chosen anomaly detection algorithm, T is the training data set,
and M denotes the model produced by AD for the given training set. This formulation
enables us to maintain the stated principle of being agnostic to the inner workings of
the AD sensor - we treat it as a black box whose first task is to output a normality model
for a data set provided as input.
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We use each of the “epochs” md; to compute a micro-model M; = AD(md;) and
generate the classifier ensemble. We posit that each distinct attack will be concentrated
in (or around) a certain time period, affecting only a small fraction of the micro-models:
M computed for time period ¢; may be poisoned, having modeled the attack vector
as normal data, but model M}, computed for time period ¢y, k # j is likely to be
unaffected by the same attack. We use this ensemble classifier for identifying attacks
and abnormalities in the data. Our expectation is that the ensemble will be a more
efficient tool that the sum of its parts, with the effects of attacks and other abnormalities
contained in individual micro-models rather than contaminating the entire data set.

A key parameter of the aforementioned sanitization method is the automatic selection
of the optimal time granularity for different training data sets. Intuitively, choring a
smaller value of the time granularity g always confines the effect of an individual attack
to a smaller neighborhood of micro-models. However, excessively small values can lead
to under-trained models that also fail to capture the normal aspects of system behavior.
One method that ensures that the micro-models are well-trained is based on the rate at
which new content appears in the training data [30]]. This has the advantage of relying
exclusively on intrinsic properties of the training data set. By applying this analysis, we
can then identify for each md; the time granularity that ensures a well-trained micro-
model and thus attaining a balance between the two desiderata presented above.

We consider the training data set as a sequence of high-order n-grams (therefore a
stream of values from a high-dimensional alphabet). When processing this data, for any
time window tw;, we can estimate the likelihood L; of the system seeing new n-grams,
and therefore new content, in the immediate future based on the characteristics of the

traffic seen so far: .
K2

N;’

where r; is the number of new unique n-grams in the time window tw; and N; is the
total number of unique n-grams seen between twy and tw;.

Assuming that the data processed by the system is not random, the value of L; de-
creases much faster than the time necessary to exhaust the space of possible n-grams.
We are interested in determining the stabilization point for which the number of new
grams appears at a low rate, thus looking for the the knee of the curve. In order to detect
the stabilization point, we use the linear least squares method over a sliding window of
points (in our experiments we use 10 points) to fit a line, L (¢t) = a + b * t. When the
regression coefficient b approaches zero (0), we consider that the input has stabilized as
long as the standard deviation of the likelihood is not significant. In our experiments,
we discovered that we can relax the above assumptions to an absolute value lower than
0.01 for the regression coefficient » while the standard deviation of the likelihood is
less than 0.1. The time interval between twg and tw; is then set as the desired time
granularity for computing the micro-models as described above.

Our experimental corpus, used throughout the experiments in this paper, consists of
500 hours of real network traffic from each of two hosts, www/ and lists. wwwl is a
gateway to the homepages of students in the Computer Science Department running
several dozen different scripts, while lists hosts the Computer Science Mailing Lists.
The two servers exhibit different content, diversity and volume of data. We partitioned
the data into three separate sets: two used for training and one used for testing. The

L = 3)
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first 300 hours of traffic in each set was used to build micro-models. Figure [l shows the
granularity detection method used to characterize both data sets. Figure [l (a) presents
the time granularity for the first ten micro-models. L is reset immediately after a stabi-
lization point is found, and we begin to generate a new model. At a first glance, both
sites display similar behavior, with the level of new content stabilizing within the first
few hours of input traffic. However, they do not exhibit the same trend in the likelihood
distribution, L1 presenting more fluctuations. Figure [Tl (b) presents a zoom on the
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first micro-model time granularity detection. The solid lines show the evolution of the
L; likelihood metric over time(we use n-grams of size n=5). The dotted lines show the
linear least squares approximation for the stabilization value of tw;, which is used to
compute the time granularity g;.

Figure [2] illustrates the automatically generated time granularities over the first 300
hours of traffic for both www/ and lists. The average value for wwwl is g = 8562s
(= 2 hours and 22 minutes), while the standard deviation is 1300s (= 21 minutes). For
lists the average time granularity is g = 8452s (= 2 hours and 20 minutes), while the
standard deviation is 819.8s (. 13 minutes). In the next section, we will present an
extensive comparison between the performance of the sanitized models that use the au-
tomated parameters versus the ones built using the empirically determined parameters.

3 Adaptive Training Using Self-sanitization

Once the micro-models are built, they can be used, together with the chosen AD sensor,
as a classifier ensemble: a given network packet, which is to be classified as either
normal or anomalous, can be tested, using the AD sensor, against each of the micro-
models. One possibility would be to apply this testing scheme to the same data set that
was used to build the micro-models (we call this process introspection). Another option
is to apply the micro-model testing to a second set of the initially available traffic, of
smaller size. The ultimate goal is to effectively sanitize the training data set and thus
obtain the clean training data set needed for anomaly detection.

Once again, we treat the AD sensor at a general level, this time considering a generic
TEST function. For a packet P; part of the tested data set, each individual test against
a micro-model results in a label marking the tested packet either as normal or abnormal:

Lji =TEST(P;, M;) 4)

where the label, L, ;, has a value of 0 if the model M; deems the packet P; normal, or
1 if M; deems it abnormal. However, these labels are not yet generalized; they remain
specialized to the micro-model used in each test. In order to generalize the labels, we
process each labeled data set through a voting scheme, which assigns a final score to
each packet:

N
SCORE(PJ) = V]I-/ Zwi . Lj’i (5)
i=1

where w; is the weight assigned to model M; and W = va:l w;. We have investi-
gated two possible strategies: simple voting, where all models are weighted identically,
and weighted voting, which assigns to each micro-model M; a weight w; equal to the
number of packets used to train it. In our previous work we observed that the weighted
version performs slightly better, so throughout this paper we will use the weighted vot-
ing scheme.

The set of micro-models is now ready to be used as an overall packet classifier. Recall
our assumption that only a minority of the micro-models will be affected by any given
attack or anomaly. Based on the overall score assigned by the set of micro-models, we
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split the training data into two disjoint sets: T,,,, containing the packets deemed as
normal, and T, containing the abnormalities/attacks:

Tean = | J{P; | SCORE(P;) <V} (6)
Tuon = | J{P; | SCORE(P}) >V}, (7)

where V is a voting threshold used to differentiate between the two sets. Next we will
present our method for automatically computing the value of V' that effectively provides
this separation, based on the characteristics of the traffic. Once the disjoint data sets are
constructed, we can apply the modeling function of the AD sensor and obtain compact
representations of both normal and abnormal traffic:

Msan = AD(Tsan) (8)
Mabn - AD(Tabn) (9)

3.1 Voting Threshold Detection

Our goal is to automatically determine the voting threshold, V. In order to establish an
effective value for it, we must first analyze the impact of the voting threshold on the
number of packets that are deemed normal. The extreme values have an obvious effect:
a threshold of V' = 0 (very restrictive) means that a packet must be approved by all
micro-models in order to be deemed normal. In contrast, a threshold of V' = 1 (very
relaxed) means that a packet is deemed as normal as long as it is accepted by at least one
micro-model. In general, for a given value V; we define P(V;) as the number of packets
deemed as normal by the classifier (SCORE(P;) < V;). The behavior of this function
for intermediate values of V; is highly dependent on the particular characteristics of the
available data. For a particular data set, we can plot the function P(V') by sampling the
values of V" at a given resolution; the result is equivalent to the cumulative distribution of
the classification scores over the entire data set. This analysis can provide insights into
three important aspects of our problem: the intrinsic characteristics of the data (number
and relevance of outliers), the ability of the AD sensor to model the differences in the
data, and the relevance of the chosen time granularity.

To illustrate this concept, we will use as an example the www1 data set and the
Anagram [30] sensor. Figure [3] shows the result of this analysis for time granularity
ranging from 1 to 100 hours. We notice that, as the time granularity increases, the plot
“flattens” towards its upper limit: the classifier loses the ability to discriminate as the
micro-models are fewer in number and also more similar between themselves. We also
notice that for V' very close to 1, all the plots converge to similar values; this is an
indicator of the presence of a number of packets that are highly different from the rest
of the data in the set.

Intuitively, the optimal voting threshold V' is the one that provides the best separation
between the normal data class and the abnormal class. The packets that were voted nor-
mal for V' = 0 are not of interest in the separation problem because they are considered
normal by the full majority of the micro-models and the choice of V' does not influence
them. So the separation problem applies to the rest data for which V' > 0; thus, we
normalize P(V') as follows:
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p(Vi) = (10)

The separation problem can be now considered as the task of finding the smallest thresh-
old (minimize V') that captures as much as possible of the data (maximize p(V")). There-
fore, if the function p(V') — V' exhibits a strong global maximum, these two classes can
be separated effectively at the value that provides this maximum.

We have applied this method to both data sets considered in this paper, using Anagram.
The profiles of both p(V) (solid lines) and p(V') — V' (dotted lines) are shown in Figure
In each case, we have marked the value of V' that maximizes p(V') — V. In both graphs,
the maximum of p(V') — V corresponds to a “breaking point” in the profile of p(V') (in
general, any changes in the behavior of p(V') are identified by local maxima or minima of
p(V') — V). The value of the global maximum can be interpreted as a confidence level in
the ability of the micro-model classifier to identify outliers, with larger values indicating
a high discriminative power between the normal data and the abnormalities/attacks. A
low value (and therefore a profile of p(V') following the x = y line) shows that the two
classes are not distinct. This can be indicative of a poorly chosen time granularity, an
AD sensor that is not sensitive to variations in the data set, or both. We consider this to
be a valuable feature for a system that aims towards fully autonomous self-calibration:
failure cases should be identified and reported to the user rather than silently accepted.

Once the value of the voting threshold V' has been determined, the calibration process
is complete. We note that all the calibration parameters have been set autonomously
based exclusively on observable characteristics of the training data. The process can
therefore be seen as a method for characterizing the combination of AD sensor - training
data set, and evaluating its discriminative ability.
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Fig. 4. Determining the best voting threshold for: [(@)]www1;[(D)] lists

3.2 Analysis of Self-sanitization Parameters

To evaluate the quality of the models built using the automatically determined saniti-
zation parameters, we compare their performance against the performance of the san-
itized models built using empirically determined parameters. There is a fundamental
difference between the two types of models: for the first one the sanitization process
is completely hands-free, not requiring any human intervention, while for the latter,
exhaustive human intervention is required to evaluate the quality of the models for dif-
ferent parameter values and then to decide on the appropriate parameter values.

There are two parameters of interest in the sanitization process: the set of values for
the time granularity and the voting threshold. We will therefore compare the models
built using empirically determined parameters against the models built using:

— afixed time granularity and automatically determined voting threshold;
— automatically determined time granularities and fixed voting threshold;
— both time granularity and voting threshold determined automatically.

Figures [Sl and |6 present the false positive and detection rates for models built using
different sanitization parameters. The traffic contains instances of phpBB forum attacks
(mirela, cbac, nikon, criman) for both hosts that are analyzedﬂ Each line shows the re-
sults obtained as the voting threshold was sampled between 0 and 1, with the granularity
value either fixed at a given value (usually 1, 3 or 6 hours) or computed automatically
using the method described earlier.

! Throughout the paper, we refer to detection and false alert rates as rates determined for a
specific class of attacks that we observed in these data sets. We note that discovering ground
truth for any realistic data set is currently infeasible.
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We note that the time granularity values empirically found to exhibit high perfor-
mance were 1-, 3- and 6-hour for www 1, respectively 3-hour for lists. For each of these
values, we analyzed the performance of the models built with an automatically deter-
mined voting threshold. For each line representing a given granularity value, the trian-
gular markers represent the results obtained with the automatically determined voting
threshold. We observe that the voting threshold is placed in the safety zone for which
the 100% detection rate is maintained for both www/ and lists, while exhibiting a low
false positive rate (< 0.17%).
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Table 1. Empirically vs. automatically determined parameters

Parameters wwwl lists
FP(%) TP(%) FP(%) TP(%)
N/A(no sanitization) 0.07 0 0.04 0
empirical 0.10 100 0.10 100
fully automated 0.16 9292 0.10 100

In the case of automated time granularity (the actual values are presented in fig-
ure ), we initially explored the performance of the models determined for different
values of the voting threshold, ranging from O to 1, with a step of 0.1. In figure 3 for
the same fixed threshold, the detection rate is 94.94% or 92.92% compared to the 3-
hour granularity (empirical optimal - 100%), while maintaining a low false positive rate
(< 0.17%). In figure [@ the results are almost identical to the empirically determined
optimal (3-hour granularity).

When we use both the set of time granularities and the voting threshold determined
automatically, the system is fully autonomous. In figures 3l and [@] this is indicated by
replacing the triangular marker with a star-shaped one. Table[[also summarizes the val-
ues of false positive (FP) and true positive (TP) for the fully automated sanitized model,
the empirical optimal sanitized model and the non-sanitized model. With automated pa-
rameters, for lists we achieve the same values as in the case of empirically determined
parameters, while for www1 the values differ, but we observe that in the absence of the
sanitization process the detection rate would be 0. The most important aspect is that the
fully-automated sanitization still significantly improves the quality of the AD models
while setting its parameters based only on the intrinsic characteristics of the data and
without any user intervention.

4 Self-updating Anomaly Detection Models

We presented a method that generates automatically self-sanitized AD models. How-
ever, the way users interact with systems can evolve over time [9], as can the systems
themselves. As a result, the AD models that once represented the normal behavior of
a system can become obsolete over time. Therefor, the models need to adapt to this
phenomenon, usually referred to as concept drift. As shown in [[18]], online learning can
accommodate changes in the behavior of computer users. Here, we also propose to use
an online learning approach to cope with the concept drift, in the absence of ground
truth.

Our approach is to continuously create micro-models and sanitized models that in-
corporate the changes in the data. An aging mechanism can be applied in order to limit
the size of the ensemble of classifiers and also to ensure that the most current data is
modeled. When a new micro-model, My, is created, the oldest one, pMy, is no
longer used in the voting process (see figure[). The age of a model is given by the time
of its creation.

Every time a new micro-model is generated, a new sanitized model is created as
well. In the previous section, we used the micro-models in a voting scheme on a second
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data set, which was processed into a sanitized and an abnormal model. For the online
sanitization we will use what we call introspection: the micro-models are engaged in
a voting scheme against their own micro-datasetd]. This alternative gives us the ability
to apply the self-sanitization processes in an online fashion, without having to also
maintain a second dataset strictly for model creation. When a new sanitized model is
built, it is immediately used for testing the incoming traffic until a new sanitized model
is built.

Concept drift appears at different time scales and our micro-models span a particular
period of time. Thus, we are limited in observing drift that appears at scales that are
larger than the time window covered by the micro-datasets. Any changes that appear
inside this time window are susceptible to being rejected by the voting process rather
than being accepted as legitimate evolution of the system. In our online sanitization
experiments we use 25 classifiers in the voting process (covering ~ 75 hours of real
time traffic) such that we can adapt to drifts that span more than 75 hours of traffic.

We cannot distinguish between a legitimate change and a long-lasting attack that
slowly pollutes the majority of the micro-models. A well-crafted attack can potentially
introduce malicious changes at the same or even smaller rate of legitimate behavioral
drift. As such, it can not be distinguished using strictly introspective methods that ex-
amine the characteristics of traffic. However, the attacker has to be aware, guess, or
brute-force the drift parameters to be successful with such an attack. In previous work
[4], we presented a different type of information that can be used to break this dilemma:
alert data from a network of collaborative sites. Another potential solution that we in-
tend to explore as future work, is to employ as feedback information the error responses
returned by the system under protection (e.g. the HTTP reply as an error page). We plan
to explore the conjecture that we can indeed ferret out attacks of certain classes by ob-
serving the error responses returned from different sub-systems or software modules.

4.1 Self-update Model Evaluation

To illustrate the self-update modeling, we first apply the online sanitization process for
the first 500 hours of traffic using Anagram as the base sensor. Figures[2] and [§] present
the fully automated sanitization parameters: the time granularity for each micro-model
used in the creation of the new sanitized models, respectively the voting threshold for
each newly created sanitized model.

If we didn’t employ a model update mechanism, a sanitized model would be built
only once. Thus, we call the first sanitized model a static sanitized model. Because

2 We recall that we define a micro-dataset as the training dataset used for building a micro-
model.
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Fig. 9. Alert rate for wwwI:[(@)] both binary and ascii packets; [(b)] ascii packets

in the online sanitization process, the models change continuously we consider them
dynamic sanitized models. To analyze how the online sanitization performs, in figure
we compare the static sanitized model alert rate against the dynamic sanitized models
alert rate for wwwl.

Figure presents the total number of alerts for each micro-dataset tested with
both the static and dynamic models. We first notice that, for a few micro-dates the alert
rate reaches levels up to 30% for both model types. After analyzing the alert data, we
determined that the high alert rate was generated not by abrupt changes in the system’s
behavior, but rather by packets containing binary media files with high entropy. This
type of data would be considered anomalous by AD sensors such as Anagram. Thus
the recommendation is to divert all the media traffic to specialized detectors which can
detect malicious content inside binary media files. Figure presents the alert rate
after ignoring the binary packets. We can observe that there is no significant difference
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Table 2. Static model vs. dynamic models alert rate

Model wwwl lists
FP(%) TP(%) FP(%) TP(%)

static model 0.61 94.68 0.13 100

dynamic models 0.62 98.37 0.26 100
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Fig. 10. Concept drift detection for wwwl - alert rate for [(a)] both binary and ascii packets;
ascii packets. Vertical lines mark the boundary between new and old traffic.

between the alert rate exhibited by the static and dynamic sanitized models. Thus we
can conclude that there are no fundamental changes over the 500 hour period.

In terms of performance, table [2] presents both the false positive rate (including the
binary packets) and the detection rate for www/ and lists. Abrupt changes in the voting
threshold (as shown in figure [B)) determine the creation of more restrictive models, thus
the increase in the detection rate and/or the false positive rate. For wwwl the signal-to-
noise ratio (i.e. TP/FP) is improved from 155.21 to 158.66, while for lists it decreases
from 769.23 to 384.61.

We also investigated concept drift appearing at larger scale such as weeks and months,
as opposed to days. For this, we tested our method for traffic from the same site, collected
at months difference. Figure[IQl presents the alert rate for both static and dynamic mod-
els, with and without the binary packets. Vertical lines mark the boundary between new
and old traffic. We can observe that when changes happen in the system, the alert rate
increases for both static and dynamic models. After the dynamic models start updating
to the new data, there is a drop in the alert rate, back to levels below 1%. For the static
model, the alert rate stays at about 7%, demonstrating the usefulness of a self-updating
sanitization process.

Figure [Tl presents the raw number of alerts that our system returns on an hourly ba-
sis. We note that spikes in the number of alerts can render manual processing
difficult, especially when there are changes in the system under protection and the mod-
els gradually adapt to the new behavior. However, manual processing of alerts is not the



Adaptive Anomaly Detection via Self-calibration and Dynamic Updating 55

450

I dynamic san models
400+ | —e— static san model R

350
300
250

200

150

100

Number of ASCII alerts per hour

50

o 5 100 150 200
Micro-dataset index

Fig. 11. Number of ASCII alerts per hour for wwwl. The vertical line marks the boundary be-
tween new and old traffic.

intended usage model for our framework; our ultimate goal is to build a completely
hands-free system that can further identify the true attacks from the false positives. In
previous work [4] we have proposed using a shadow sensor architecture such as the
ones presented in [22}/1] to automatically consume and validate the false positives. Our
study of computational performance presented in [4]] shows that, with this architecture,
the false positives can be consumed automatically and neither damage the system under
protection nor flood an operational center with alarms.

4.2 Computational Performance Evaluation

To investigate the feasibility of our online technique we have to analyze the computa-
tional overhead that it implies. Ignoring the initial effort of building the first batch of
micro-models and the sanitized model, we are interested in the overhead introduced by
the model update process. Table B presents a breakdown of the computational stages of
this process.

The overhead has a linear dependency on the number and the size of the micro-
models. For wwwl, we used 25 micro-models per sanitization process and the size of
a micro-model was on average 483 KB (trained on 10.98 MB of HTTP requests). The
experiments were conducted on a PC with a 3GHz Intel(R) Xeon(R) CPU with 4 cores
and 16G of RAM, running Linux. This level of performance is sufficient for monitoring
and updating models on the two hosts that we tested in this paper, as it exceeds the
arrival rate of HTTP requests. In the case of hosts displaying higher traffic bandwidth,
we can also exploit the intrinsic parallel nature of the computations in order to speed
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Table 3. Computational performance for the online automated sanitization for www/

Task Time to process
build and save a new micro-model 7.34 s

test its micro-dataset against the older micro-models Im12s
test the old micro-datasets against the new micro-model I1m58s
rebuild and save the sanitized model 3mO03s

up the online update process: multiple datasets can be tested against multiple models in
parallel, as the test for each dataset-model pair is an independent operation. In future
work, we will implement a parallel version of this algorithm to test these assumptions.

5 Related Work

We have previously explored the feasibility of sanitizing training datasets using empir-
ically determined parameters [5,4]]. This paper presents methods that make the process
automatic, by generating the sanitization parameters based only on the intrinsic charac-
teristics of the data and by also coping with concept drift. The sanitization process can
be viewed as an ensemble method [[6] with the restriction that our work is an unsuper-
vised learning technique. We generate AD models from slices of the training data, thus
manipulating the training examples presented to the learning method. Bagging predic-
tors [2]] also use a learning algorithm with a training set that consists of a sample of
m training examples drawn randomly for the initial data set. ADABoost [11] gener-
ates multiple hypothesis and maintains a set of weights over the training example. Each
iteration invokes the learning algorithm to minimize the weighted error and returns a
hypothesis, which is used in a final weighted vote.

MetaCost [7] is an algorithm that implements cost-sensitive classification. Instead
of modifying an error minimization classification procedure, it views the classifier as a
black box, the same as we do, and wraps the procedure around it in order to reduce the
loss. MetaCost estimates the class probabilities and relabels the training examples such
that the expected cost of predicting new labels is minimized. Finally it builds a new
model based on the relabeled data. JAM [27] focuses on developing and evaluating a
range of learning strategies for fraud detection. That work presents methods for “meta-
learning” by computing sets of “base classifiers” over various partitions or sampling of
the training data. The combining algorithms proposed are called “class-combiner” or
“stacking” and they are built based on work presented in [3]] and [31]]. For more de-
tails on meta-learning techniques we can also refer the reader to a more comprehensive
survey [23].

The perceived utility of anomaly detection is based on the assumption that malicious
inputs rarely occur during the normal operation of the system. Because a system can
evolve over time, it is also likely that new non-malicious inputs will be seen [10]. Per-
haps more troubling, Fogla and Lee [8] have shown how to evade anomaly classifiers
by constructing polymorphic exploits that blend with normal traffic (a sophisticated
form of mimicry attack [28]]), and Song et al. [26] have improved on this technique and
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shown that content-based approaches may not work against all polymorphic threats,
since many approaches often fix on specific byte patterns [19].

The problem of determining anomaly detection parameters have been studied before.
Anagram [30] determines the model stability automatically based on the rate at which
new content appears in the training data. pH [24] proposes heuristics for determining
an effective training time, minimizing the human intervention as well. Payl [29] has a
calibration phase for which a sample of test data is measured against the centroids and
an initial threshold setting is chosen. The thresholds are updated throughout a subse-
quent round of testing. In [[17], the authors propose a web-based anomaly detection
mechanism, which uses a number of different models to characterize the parameters
used in the invocation of the server-side programs. For these models, dynamic thresh-
olds are generated in the training phase, by evaluating the maximum score values given
on a validation dataset. PCA-based techniques for detecting anomalous traffic in IP net-
works became popular in the past years. [21] talks about the difficulty of tuning the
parameters for these techniques and discusses pollution of the normal subspace.

The concept of updating an AD sensor in order to mirror valid changes in the pro-
tected system’s behavior is discussed in [18]]. Most publications which propose updat-
ing the model after significant changes to the environment, data stream, or application
use supervised learning techniques, such as [12]. Methods of this type maintain an adap-
tive time window on the training data [14]], select representative training examples [13],
or weigh the training examples [[15]. The key idea is to automatically adjust the win-
dow size, the example selection, and the example weighting, respectively, so that the
estimated generalization error is minimized. Consequently, these methods assume the
existence of labeled data which is not the case for the applications that we interested
in analyzing. It seems that anomaly detectors would benefit from an additional source
of information that can confirm or reject the initial classification, and Pietraszek [20]
suggests using human—supervised machine learning for such tuning.

6 Conclusions and Future Work

Anomaly detection sensors have become an integral part of the network and host-
based defenses both for large-scale network and individual users. Currently, AD sen-
sors require human operators to perform initial calibration of the training parameters to
achieve optimal detection performance and minimize the false positives. In addition, as
the protected system evolves over time, the sensor’s internal state becomes more and
more inconsistent with the protected site. This discrepancies between the initial normal-
ity model and the current system behavior eventually renders the AD sensor unusable.
To amend this, we propose a fully automated framework that allows the AD sensor to
adapt to the characteristics of the protected host during the training phase. Furthermore,
we provide an online method to maintain the state of the sensor, bounding the deviations
due to content or behavioral modifications that are consistent over a period of time.
Without this adaptation process and the generation of new normality models which we
call “dynamic”, legitimate changes in the systems are flagged as anomalous by the AD
sensor leading to an inflation of alerts. Our experimental results show that, compared
to the manually obtained optimal parameters, the fully automated calibration has either
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identical, or slightly reduced (by 7.08%) detection rate and a 0.06% increase in false
positives. Furthermore, over a very large time window, our dynamic model generation
maintains a low alert rate (1%) as opposed to a 7% for a system without updates.

We believe that our system can help alleviate some of the challenges faced as anomaly
detection is increasingly relied upon as a first-class defense mechanism. AD sensors can
help counter the threat of zero-day and polymorphic attacks; however, the reliance on
user input is a potential roadblock to their application outside of the lab and into com-
mercial off-the-shelf software. In this paper we have taken a number of steps towards
AD sensors that enable true hands-free deployment and operation.

In the future, we intend to establish this feature of our framework by using more
sensors, that either model data in a different way (e.g. Payl [29], libanomaly [17], Spec-
trogram [23]]) or target different applications (e.g. pH [24]). Despite the best efforts of
the research community, no AD sensor has been proposed to date that can detect all
attack types while maintaining a low alert rate. A possible option, which we intend to
further explore in the future, is to combine the strengths of multiple sensors under a
general and unified framework, following the directions traced out in this study.

Finally, the methods presented harness the information contained in the traffic (or
behavior in general) of the protected host. Large-scale implementations of AD systems
can further benefit by exchanging data, such as micro-models or sanitized and abnormal
models, across different sites. Therefore, the temporal dimension of our online sanitiza-
tion process can be complemented by a spatial one. We are currently in the process of
establishing an information exchange framework that can facilitate these experiments;
we plan to report these result in a future study.
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Abstract. Our work proposes a generic architecture for runtime monitoring and
optimization of IDS based on the challenge insertion. The challenges, known in-
stances of malicious or legitimate behavior, are inserted into the network traffic
represented by NetFlow records, processed with the current traffic and the sys-
tem’s response to the challenges is used to determine its effectiveness and to
fine-tune its parameters. The insertion of challenges is based on the threat models
expressed as attack trees with attached risk/loss values. The use of threat model
allows the system to measure the expected undetected loss and to improve its
performance with respect to the relevant threats, as we have verified in the exper-
iments performed on live network traffic.

1 Introduction

One of the principal problems of the intrusion detection systems based on the anomaly
detection [1]] principles is their error rate, both in terms of false negatives (undetected
attacks) and false positives, i.e. legitimate traffic labeled as malicious. This problem is
amplified by the fact that the sensitivity (and consequently the error rate) varies dy-
namically as a function of the background traffic. For example, an attack that would be
easily discovered in the lower nighttime traffic will pass undetected during the day, on
the system with identical settings. In this work, we address the problem of correct IDS
monitoring and dynamic reconfiguration, in order to provide the operators with:

— an estimate of system sensitivity/error rate, given the current network traffic and a
threat model, and

— autonomous system reconfiguration, based on the system monitoring and the threat
model.

In order to perform these tasks, we use the concept of challenges [2]] (or fault injection)
from the field of autonomic computing, which allows us to measure the response of the
system with respect to a small subset of challenges, known instances of malicious or
legitimate behavior, inserted into the traffic observed on the network. The response of
the system and its individual components to the inserted challenges is used to determine
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its current error rate in terms of estimated ratio of false positives/false negatives (see
Fig.[D). It is also used to adapt the system behavior and to select and/or create optimal
system settings.

This generic concept is verified by its integration with the CAMNEDP intrusion de-
tection system [3][4], which is based on a multi-stage combination of several network
behavior analysis algorithms processing the NetFlow [3] data. In Section 2l we briefly
discuss the relevant properties of the CAMNEP system, which was augmented with
the processes described in this paper. Then, we present the self-adaptive architecture
integrated with the underlying system and discuss the crucial elements of the architec-
ture (Section [3), such as dynamic classifier selection and optimization of number of
challenges and their composition. These sections describe the core contribution of this
work.

2 CAMNEP System

The self-optimization techniques presented in this paper were integrated with the CAM-
NEP network intrusion detection system [3]], based on the Network Behavior Analysis
(NBA) approach [6]]. This system processes NetFlow/IPFIX data provided by routers
or other network equipment and uses this information to identify malicious traffic by
means of collaborative, multi-algorithm anomaly detection. The system uses the multi-
algorithm and multi-stage approach to optimize the error rate, while not compromising
the performance of the system. The self-monitoring and self-adaptation techniques are
very relevant in this context, as they allow to improve the error rate with only a minimal
and controllable impact on its efficiency.

The NetFlow network traffic data is structured in records, and each record describes
one flow. A flow can be described as an unidirectional component of TCP connection
(or its UDP/ICMP equivalent) and contains all packets with the same source IP, desti-
nation IP, source and destination port and protocol (TCP/UDP/ICMP). A flow record
contains this basic information, as well as other information, such as the number of
packets/bytes transferred, duration and TCP flags encountered in the packets of the
flow. The flow records are aggregated over a predefined observation period (typically
1-5 minutes). When the observation period elapses, the data is read out for analysis, and
a new observation period begins.
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The system contains two principal classes of classifying agents, which are able to
evaluate the received traffic:

Detection agents (agents A and B in Fig.2)) analyze raw network flows by their anomaly
detection algorithms, exchange the anomalies between them and use the aggregated
anomalies to build and update the long-term anomaly associated with the abstract traf-
fic classes built by each agent. These traffic classes describe various behaviors, as they
can be distinguished based on the features used by the anomaly detection methods in-
tegrated into the system. Each detection agent uses one of the five anomaly detection
methods listed herein. Each of the methods works with a different traffic model based on
a specific combination of aggregate traffic features, such as: (i) entropies of flow char-
acteristics for individual source IP addresses [7]], (ii) deviation of flow entropies from
the PCA-based prediction model of individual sources [8]], (iii) deviation of traffic vol-
umes from the PCA-based prediction for individual major sources [9], (iv) rapid surges
in the number of flows with given characteristics from the individual sources [[10] and
(v) ratios between the number of destination addresses and port numbers for individual
sources [[L1]].

All detection agents map the same flows, together with the shared evaluation of these
events, the aggregated immediate anomaly of these events determined by their anomaly
detection algorithms, into the traffic clusters built using different features/metrics, thus
building the aggregate anomaly hypothesis based on different premises. The aggregated
anomalies associated with the individual traffic classes are built and maintained using
the classic trust modeling techniques (not to be confused with the way trust is used
in this work). The detection agents evaluate the anomaly of each network flow on the
whole [0,1] interval, and the output of the detection agents is integrated by the aggrega-
tion agents.

Aggregation agents o from the set A = {a, ..., oy} represent the various aggrega-
tion operators used to build the joint conclusion regarding the normality/anomaly of the
flows from the individual opinions provided by the detection agents. Each agent uses a
distinct averaging operator (based on order-weighted averaging [[12] or simple weighted
averaging) to perform the R9¢¢t — R transformation from the g4.;-dimensional space
to a single real value, thus defining one composite system output that integrates the
results of several detection agents. The aggregation agents also dynamically determine
the threshold values used to transform the continuous aggregated anomaly value in the
[0,1] interval into the crisp normal/anomalous assessment for each flow. The value of
the threshold is either relative (i.e. leftmost part of the distribution) or absolute, based
on the evaluation of the agent’s response to challenges.

The detection and aggregation agents annotate the individual flows ¢ with a contin-
uous anomaly/normality value in the [0, 1] interval, with the value 1 corresponding to
perfectly normal events and the value 0 to completely anomalous ones. This continuous
anomaly value describes an agent’s opinion regarding the anomaly of the event, and
the agents apply adaptive or predefined thresholds to split the [0, 1] interval into the
normal and anomalous classes. The threshold applied (and dynamically maintained) by
the aggregation agents divides the flows into two classes: normal and anomalous. The
anomalous flows are those whose anomaly falls below the threshold, while the normal
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flows are those, whose anomaly is above the threshold. This distinction allows us to
introduce the components of the error rate. False Positives (FP) are the legitimate flows
classified as anomalous, while the False Negatives (FN) are the malicious flows clas-
sified as normal. Most standalone NBA methods suffer from a very high rate of false
positives, which makes them unpractical for deployment. The static multi-stage pro-
cess of the original CAMNEP system already removes a large part of false positives,
while not increasing the rate of false negatives, and the goal of the self-optimization
techniques is to further improve the effectiveness of the system.

3 IDS Monitoring Architecture

The monitoring and adaptation components of the CAMNEP system implement the
high-level functional schema introduced in Fig.[I] The reconfiguration action (as shown
in Fig.[I)) is the identification of the optimal anomaly aggregation function that achieves
the best separation between the legitimate and malicious challenges. Assuming that
these challenges are representative of the traffic in the network and the expected attacks,
such aggregation should also optimize the performance against the actual threats in the
current network traffic. The adaptation process also provides the user with the estimates
of system detection effectiveness against the threats defined in the threat model, as it
presents the effectiveness values for the currently selected aggregation function.
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The background traffic is one of the adaptation process indirect inputs, as it influ-
ences the performance of the individual anomaly detection algorithms. As the network
traffic is highly unpredictable, it is very difficult to predict which aggregation function
will be chosen, especially given the fact that the challenges are selected from the DB
using a stochastic process with a pseudo-random generator unknown to a potential at-
tacker. The attacker therefore faces a dynamic IDS system that unpredictably switches
its detection profile between several different profiles with utility (i.e. detection per-
formance) values close to the optimum, and has to operate in a manner which would
evade any of these profiles. This unpredictability, together with the additional robust-
ness achieved by the use of multiple algorithms, makes the IDS evasion a much more
difficult task than simply avoiding a single intrusion detection method[[13]].

The self-adaptation process (detailed in Fig.[2) is based on the insertion of challenges
into the background of network flow data observed by the system. The challenges are
represented as sets of NetFlow records, corresponding to classified incidents observed
in the past. These records are generated by short lived, challenge specific challenge
agents and are mixed with the background traffic, so that they cannot be distinguished
from the background by the detection/aggregation agents. They are processed together
with the rest of the traffic, used to update the anomaly detection mechanism data and
trust models of individual detection agents and are evaluated with the rest of the traffic.
Once the processing is completed, the challenge flows are re-identified by their respec-
tive challenge agents, removed from the user output and the anomaly attributed to these
flows by individual aggregation agents is used to evaluate these agents and to select the
optimal output agent for the current network conditions.

There are two broad types of challenges. The malicious challenges correspond to
known attack types, while the legitimate challenges represent known instances of legit-
imate events that tend to be misclassified as anomalous. We further divide the malicious
challenges into broad classes (denoted ACY, ..., ACY,...) characterized by the type
of the attack, such as fingerprinting/vertical scan, horizontal scan, password brute forc-
ing, etc. These classes are used to make the connection between the threat models in
Section [4.1] and the challenge selection. With respect to each of these attack classes,
we characterize each aggregation agent by a probability distribution, empirically esti-
mated from the continuous anomaly values attributed to the challenges from this class,
as we can see in Fig.[3] We also define a single additional distribution for all legitimate
challenges.

We assume that the anomaly values of both the legitimate and all types of malicious
challenges define normal distributions, with the parameters z* and o for the k-th class
AC}, of malicious challenges and % and o, for the legitimate ones!. The distance be-
tween the estimated mean values of both distributions (Z* and ), normalized with
respect to the values 0% and o, represents the quality of the aggregation agent with
respect to a given attack class. The effectiveness of the agent, defined as an ability to
distinguish between the legitimate events and the attacks is defined as a weighted aver-
age of the effectiveness with respect to individual classes and will be estimated by the

! Normality of both distributions is not difficult to achieve, provided that the attack classes
are properly defined and that the challenge samples in these classes are well selected, i.e.
comparable in terms of size and other parameters.
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trust modeling approach introduced in Sect.[3l In order to perform the above-described
self-adaptation process, we need to address three important issues:

— offline selection of appropriate challenges and estimation of their relative impor-
tance (Sections [ and .3),

— dynamic selection of the optimal aggregation agent to be used as a system output
(Section[d), and

— dynamic determination of the optimal number of challenges.

4 Threat-Based Approach to Challenge Selection

In this section, we will present a method for challenge selection based on explicit threat
modeling. We define a set 7 = {T7,..., T} of relevant threats as identified by the
network administrator. Each threat is described by an attack tree, which specifies the
adversary’s attacks necessary to realize the threat. For each threat 7}, the system ad-
ministrator has specified the expected damage D(T;), which would be caused should
the attacker realize the threat. Our system uses challenges to evaluate its internal com-
ponents in terms of accuracy and selects the most accurate component. Each challenge
tests for a specific class of attacks. Therefore, the detection of threats can be directed
by prioritizing those challenges that test for the most damaging threats.

In the following, we shortly review the concept of attack trees (Sect.[4.1)) and show
how they can be formulated in propositional calculus (Sect. d.2)). The latter allows us
to minimize attack trees, and so bring them into an expedient form for further process-
ing. We use the minimized attack trees to determine the composition of challenges for
evaluating the internal components (Sect. [4.3).
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4.1 Attack Trees

Attack trees depict how an attacker can attain a certain goal, e.g., to gain unauthorized
access to a system resource. This overall goal constitutes a threat to a security system
and builds the root of an attack tree.

The attack tree shows the alternative ways of how an attacker can reach the root,
and so realize the threat. As formalized in [14], an attack tree is composed of AND
and OR branches. Figure [l shows a simple example of an attack tree structure. In this
figure, the branch with a connectional arc depicts an AND branch, all other branches
are OR branches. To reach the root, the attacker has to conduct a series of basic network
attacks, e.g., “horizontal scan”, which we call the atomic attacks. These atomic attacks
constitute the leafs of an attack tree. An attacker “reaches” a leaf if he conducts the
corresponding attack. Then, either if all children of a node with an AND branch are
reached, then the node itself is reached. Similarly, an OR branched node is reached,
if at least one of its children is reached. This way, starting at the leafs by conducting
atomic attacks, an attacker can work its way up to the root. For our example in Fig. [l
the attacker can for instance reach the root by performing the attacks Az and A,.

The principal advantages of the attack tree formalism are its simplicity, relatively
high expressivity, and generality: an attack tree-level description of the threat is easily
transferable between the networks and can be thus reused.

4.2 Attack Trees in Propositional Logic

We can say, an attacker can reach the root node by reaching specific subsets of the leafs.
In this section we show how these specific subsets can be identified and minimized in
a neat manner. First, we represent an attack tree in propositional logic. A formula cor-
responding to a tree should become true iff the main goal in the attack tree is attained.
To build such a formula, we first create a literal for each atomic attack. Now, we suc-
cessively go through the tree (starting from the root node), and connect all children of
a node by the appropriate logic operation (OR for disjunctive branches, AND for con-
junctive branches). Parentheses are used to group the children together. For the example
tree shown in Fig. @] this results in the formula:

(A1) vV ((A3 V Ag) A (A2)) . 1)

A formula is in Disjunctive Normal Form (DNF) iff it is a disjunction of conjunctive
clauses. A formula is canonical, if all clauses contain all variables. We can bring any
formula into canonical DNF by building a truth table that contains all variables, and
taking all rows that evaluate to true as clauses. For our toy example in Fig. 4l that would
result in:

(Al A Ag N\ Az A A4) 2)
\/(Al ANAs AN Az A _|A4) 3)
\/(Al AN As A=Az A A4) “4)

Y 5)
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Having an attack tree in canonical DNF, we can say, that an attacker realizes the threat
if he succeeds to make at least one clause true. However, there is still much redundancy
in the formula. For example, lines 2] and [3] together are logically equivalent to A; A
Ay A As. To remove all redundancy from the formula, we simply apply the Quine-
McCluskey algorithm [[15]. Note that when simplifying attack tree formulas, clauses
will only contain positive literals. For the attack tree in Fig.[d] we finally get:

(A1) V (A3 AN A) V (Ag A Ag) . (6)

A formula in DNF can be written as a set of clauses {C, Ca, . . . } where each clause C;
is a set of positive literals {l;1, l;2, ... }. We will write F/(T') for the minimal formula
in DNF that corresponds to attack tree T'. The attack tree from Fig.[4] can be formalized
as:

F(T) = {{A1},{A2, A3}, {A2, As}} . (7

4.3 Attack Tree Valuation

In this section, we first show how different attack classes can be prioritized, depending
on the expected damage of the successful attacks, i.e. the attack tree root being attained
by the adversary. We then show how the resulting priorities can be used to determine
the composition of challenges for adapting the IDS. Finally, we exemplify the procedure
with an example for a specific attack tree.

We assume, that a set of n detectable attacks A = {A;,..., A, } and general net-
work conditions are known to the configured IDS. These attacks are classified into K
attack classes {AC1, ..., ACk}, with | J,, ACy, = A. We don’t require that all attacks
in an attack class are known, as the system is able to assess its effectiveness against
the attacks inserted into the traffic in real-time. However, we require a sufficient set of
attacks for each attack class, in order to use these samples as challenges.

The problem now is to prioritize the detection of attack classes. To this end, the
following criteria should be fulfilled:

Attack trees: An attacker has a certain goal (which determines the attack tree 7T°). At-
tack trees that cause more damage should be prioritized.

Clauses: An attacker tries to make one clause true in a chosen formula F'(T"). Any
clause made true causes the same damage D (7). So each clause is assigned the
same priority.

Literals: For making a chosen clause true, an attacker needs to make true all literals
in this clause to cause damage D(T'). Therefore, all literals belonging to the same
clause should be equally prioritized.

To fulfill the last two criteria, we compute the priority of an attack A; within a tree T
as follows:

1 1

PAZ‘,T‘ = . 8

(4i, T;) F(Tj)|ck§m [eX ®)
with A; €0,
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The reader can easily verify that if A; is not in T}, then its priority within the tree is
zero. Also, the sum of all priorities of the attacks in the tree is 1. To fulfill the first
criterion, we additionally weight each tree T); according to the damage D(T}) and get
the final priority for an attack A; by summing over all attack trees:

P(4;) = ) - > D(Ty) - P(Ai, Ty) - 9)

ZTJET (Z; TR€T

Because of the normalization, again the priorities of all attacks sum up to 1. Hence, we
can use these priorities to directly determine the ratio of challenges to test the respective
attacks.

Procedure. In order to calculate the priorities of the attacks in A, we propose the
following procedure:

1. For each tree T; € T do:
(a) Prune all impossible and non-detectable attacks from the tree.
(b) Build F'(T;): Transform the tree into a logical formula, bring it into DNF and
minimize it (as in Sect.[4.2).

2. Compute P(A;) for each attack A; as shown in formula (@).
3. For each attack class AC, add the priorities for all attacks in that class:

> P(A). (10)

A;€AC

The ratio P(AC) is a proportion of challenges from the class AC, and we will use
it to as a weight in Eq.

Example. In this section we show how the priorities are computed for a set of two very
simple example attack trees T} and T shown in Fig.[3land [@ respectively. We estimate
the damages of the trees to be D(T}) = 900 and D(T%) = 100. The minimal formulas
in DNF for the two attack trees are:

F(Ty) ={{A1, Az, A3}, {41, A4, A5}}, an
F(Ty) ={{As},{Ar}, {A4s}} . (12)

server takeover

attack description attack class
M ; A1 horizontal scan AC,y

4 Ao fingerprinting AC,
/ \ A3z buffer overflow ACj3
/<;>\ /4_)\ A4 SSH brute force request ACy
As  SSH brute force response ~ AC}y
As As

Fig. 5. Example Attack Tree T
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attack description  attack class
Ag download ACs

A - A‘ N A Az upload ACs
6 T 8 Asg directory node  ACSs

file sharing

Fig. 6. Example Attack Tree 7>

We can now compute P(A;, T;) for all attacks. Clearly P(A;,T>) = 0, so let us look
at P(Al, Tl)l

1 1 1 1/1 1 1
PALT) = ppy) (cu * 02|> = (3 * 3) .

Analogously we obtain:
1 1 1
P(AQ,Tl) = P(Ag,Tl) = P(A47T1) = P(A57T1) = 9 * 3 = 6 . (14)

For attack tree T we get:

1

P(Ag,To) = P(A7,T3) = P(Ag,Tn) = . (15)

Now, combining the two trees according to their expected damage, we obtain:

D(Ty) 9 1 3
P(A) = -P(A,T}) = L= . 16
In the same way, we obtain for the other attacks:
3 1
P(Az) = P(A3) = P(Ay) = P(45) = 20 , P(Ag) = P(A7) = P(4s) = 30"

(17)

Finally, we can compute the attack class priorities:

3 3 3

1
P(ACY) = ), P(AC2) = P(AGs) =, P(ACy) = |, P(AGs) = . (I8)

5 Dynamic Aggregation Agent Selection

The insertion of challenges into the real traffic is not only a difficult problem from the
technical perspective (due to the high volume of events processed in near-real-time and
hard performance limitations of the system), but can also influence the effectiveness of
the aggregation agents based on anomaly detection approaches. As these agents are not
able to distinguish the challenges from the real events, the challenges are included in
their traffic model, making it less representative of the background traffic and therefore
reducing its predictive ability.
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In this section, we present a trust-based algorithm which dynamically determines the
best aggregation agent and also the optimal number of challenges necessary for the re-
liable identification of the best aggregation agent, while taking into account the: (i) past
effectiveness of the individual aggregation agents and (ii) number of aggregation agents
and the perceived differences in their effectiveness. We decided to use a trust-based ap-
proach for evaluating the aggregation agents, because it not only eliminates the noise in
the background traffic and randomness of the challenge selection process, but accounts
for the fact that attackers might try to manipulate the system by inserting misleading
traffic flows. An attacker could insert fabricated flows [13] hoping they would cause
the system to select an aggregation agent that is less sensitive to the threat the attacker
actually intends to realize. When using trust, one tries to avoid this manipulation by
dynamically adapting to more recent actions of an attacker.

For each time step ¢ € N, the algorithm proceeds as follows:

1. Let each aggregation agent classify a set of challenges from different attack classes
and selected legitimate challenges.

2. Update the trust value of each aggregation agent, based on its performance on the
challenges in time step <.

3. Accept the output of the aggregation agent with the highest trust value as classifi-
cation of the remaining events of time step .

As we have stated above, we challenge detection and aggregation agents in each time
step ¢ with the sets of flows for which we already know the actual class, i.e. whether
they are malicious or legitimate. So, we challenge an aggregation agent o with a set of
malicious events, belonging to K attack classes and a set of legitimate events drawn
from a single class. With respect to each class of attacks k, the performance of the
agent is described by a mean and a standard deviation: (Z¥, o¥) for the set of malicious
challenges and (i, o) for the set of legitimate challenges. Both means lie in the interval
[0,1], and Z* close to 0 and ¥ close to 1 signify accurate classifications of the agent
respectively (see Fig.[7). Based on this performance in time step ¢, we define the trust

[__JAnomaly distribution of traffic
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9000~ Anomaly distribution of false positive challenges
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Fig. 7. Performance measures used for computing one trust experience
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experience t5* with that aggregation agent « as follows:

y—zF

ko
O—y+0m

thk = (19)
The intention behind this formula is that an agent is more trustworthy, if its classifi-
cations are more accurate (¥ is low and 7 is high), and more precise (the standard
deviations are low). Note that t5;* lies in (—o0, 00); however t5;* will rarely be negative
in practice.

To get the attack-class specific trust value T for an agent «, we aggregate the past
trust experiences with that agent regarding the challenges from class k:

To= wixts", (20)

where w; are weights that allow recent experiences a higher impact. This is done be-
cause older experiences are expected to be less significant than more recent ones. In
our current system, the weights decrease exponentially. The system receives the input
events in 5 minute batches, and assigns the same weight to all events in each batch. The
weight of the challenges from the batch 7 is determined as:

1 . 1n(0.1)
(]71) 4
W ’

w; = (21)
where the j denotes the current time step, and the value of the coefficient 1“(2'1) was
selected so that challenges from the fifth batch (the oldest one being used) are assigned
a weight of 0.1 before the normalization. The normalization is performed simply by di-
viding all weights by the sum of their un-normalized values W to ensure that > w; = 1.
We are currently using the challenges from the last 5 batches, meaning that the (j — )
part of the exponent takes the values between 0 and 4. Please note that the specific as-
signment of weights w; is highly domain specific, and is only included as an illustration
of the general principle.

The final trust value T} for the aggregation agent « is determined as a linear combi-
nation of the partial, attack class-specific values T:

K
T, => P(ACy) - TF, (22)
k=1

where the weights P(ACY},) attributed to the trustworthiness of the individual classes
are derived from Eq.

5.1 Optimizing Number of Challenges

The number of challenges used as basis for the computation of the trust experiences ;¥
should be as small as possible while at the same time providing accurate results for the
trust experiences. This means that we want to know the minimum number of challenges
n for computing Z* and  which gives certain guarantees about the estimation of the
actual means fi,x and p,, (estimated by z" and 7 respectively).
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Guaranteeing margin of error m. At the outset, let us make two reasonable assump-
tions. First, we assume that the samples are normally distributed. This is the common
assumption if nothing is known about the actual underlying probability distribution.
Second, as suggested in [16], we assume the sample standard deviations which we
found in past observations to be the actual standard deviations ij and 0. Then, the fol-
lowing formula gives us the number of challenges n that guarantees a specified margin
of error m when estimating yi,.« (or 1, analogously) [[16]:

*x _k 2
nz(”m) : (23)
m

where the critical value z* is a constant that determines how confident we can be. Com-
mon critical values z* are 1.645 for 90%, 1.960 for 95% and 2.576 for 99%. More
specifically, the integral of the standard normal distribution in the range [—z*, z*] equals
the respective confidence level. If z* is for instance chosen for a confidence level of
99%, we know that if we use n challenges for computing z¥, the actual mean g, will
lie in the interval Z* + m with the probability of 0.99.

Choosing margin of error m. The margin of error m is chosen such that we can be
confident that the order of the first two most trustworthy agents is confirmed. In turn,
this confirms that the selection of the first agent is the best choice. Let us call the first
and the second agent o; and ag respectively, so we have Ty, > T,,,. We want to make
sure that for the next trust experience this order is not reversed by chance. Recall that a
trust experience t,, is defined as the difference between 7 and Z* weighted by the sum
of the corresponding standard deviations (see formula (22))). As we use 2 * n challenges
to find ¢ and z* respectively, the overall margin of error for the difference of § and z*
will not be higher than 2 % m. The largest margin of error m’ for which t,, > tq, is
still true (with the given confidence), must therefore fulfill the equation where ., takes
the lowest and ¢, the highest possible value.

- g1 —zh —2m' g — @k +2m/

tay > k y >ta, (24)
Oy, + Oz Oy + Oy
~ ~ -~ ~ ~ -~
=:a =:b

where the inner equation can be solved to give:

, (tay —tag)ab  b(jy — ) — a(yz — 75)
T 9a+b) 2(a +b) : @5)

So, a choice of m with the constraint m < m/, guarantees with the specified confidence
that we will get ¢, > t,, — in the case that this is the true order. To limit the number
of challenges, we choose the maximal margin of error m that fulfills this constraint,
which is given by m := m’. We also impose an additional lower bound on m, in order
to prevent the number of challenges to grow disproportionally when the differences
between the agent’s trustworthiness with respect to this specific attack class AC}, are
insignificant.
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6 Experimental Evaluation

In the experimental part of our work, we evaluate two aspects of the mechanism: its
ability to effectively reduce the number of false positives, while relying on an acceptable
number of challenges, and its ability to selectively identify the events relevant to the
priority threats as specified by the system administrator.

All the experiments were conducted on a university network, on the background
of the regular network traffic. This background traffic contains roughly 10% of mali-
cious flows, principally related to scanning, peer-to-peer activity, botnet propagation
and brute force attacks on passwords, in no particular order.

In the first series of experiments, we test the ability of the suggested mechanism to
produce the classifications with a reasonable error rate as expressed in terms of false
positives and false negatives. To evaluate the error rate, we have manually classified the
traffic from a significant subset of active hosts on the network. This classified traffic
is then used to gauge the effectiveness of the method. The system observed about 80
000 flows every 5 minutes, with roughly 20 000 flows being malicious, and that the
evaluation was performed over about seventy S-minute long observation intervals. The
system contained 30 aggregation agents, each of them averaging the opinions of the 5
underlying detection agents as described in Section

In Fig.[8 we can see the number of challenges as it evolves over time. At the begin-
ning, the system works with a fixed number of challenges, in order to let the anomaly
detection methods in the detection agents adapt to the traffic. Once all the detection
agents start (at step 5, after 25 minutes), the system starts to progressively insert more
challenges, in order to build an initial assessment of all classifier agents. The number
of challenges peaks at around the step 14, when it reaches 100 (all challenges com-
bined). Once a user agent has built the initial trustworthiness for all agents, the num-
ber of challenges decreases until it levels out at around 40 (legitimate and malicious
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Fig. 8. Number of challenges over time, both le-
gitimate (top, green curve) and malicious (bot-
tom, red curve)

Fig.9. Number of false positives (unique
sources). Each aggregation agent is represented
by one thin curve, the solid curve shows the per-
formance of the aggregation agent dynamically
selected by the system.
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Table 1. Results of static system with arithmetic average (top line) compared to the selection of a
single aggregation agent (middle part) and the dynamic self-adaptation mechanism described in
this paper. Values are averaged to obtain the expected error numbers for one observation period.

Result False Negat. [# sources] False Posit. [# sources]
Arithmetic average 14.7 12.5

Average for aggregation fct. 13.1 243

Min FP for aggregation fct. 14.5 53

Min FN for aggregation fct. 9.8 125.2

Best aggregation fct. 13.7 5.7

Adaptive aggregation selection 14.0 3.1

challenges combined), where it fluctuates until the end of experiment. However, there
are two notable increases to explain: between steps 30 and 40, and after step 60.

These increases can be easily explained when looking at Fig. Bl which shows the
number of false positives in terms of unique source IP addresses. During these time
intervals, we can notice that the choice of an appropriate aggregation agent has a huge
impact on the quality of results, and that the adapted system is able to minimize the
number of false positives. The number of challenges is lower between steps 40 and
60, when all agents provide similar results, and increases again around 60, where the
performance of the aggregation agents varies somewhat more. On the other hand, we
can see that the user agent did not manage to avoid a spike in false positives around the
step 20, when it did not yet have a representative trust model.

The results shown in Fig.[Qlare summarized in Table[Il We can see that the challenge-
based, dynamic adaptation mechanism clearly outperforms the simple arithmetic aver-
age aggregation, which is the optimal selection when we have no information regarding
the detection agent’s performance. It also outperforms any single aggregation function
selected using the a-posteriori knowledge from the pool of all 30 functions. All the
methods have a comparable rate of false negatives, but differ in the rate of false posi-
tives, where the dynamic selection clearly outperforms the best aggregation functions.
The relatively important margin of separation between the dynamic selection and best
false positives of any single aggregation is given by the fact that the dynamic selection
can avoid relatively high number of false positives during the periods when the indi-
vidual aggregation functions differ in performance, such as around the sets 30-40. This
further underlines the importance of the adaptive rate of challenge insertion, which
allows fast identification of the optimal system output during the changes of system
characteristics.

In Fig.[10l we can see the dynamics of the aggregation operator/agent selection over
time. With an exception of the initial 6 intervals, when the operator #0 (arithmetic av-
erage) is selected by default, the system dynamically selects between the remaining
operators, with about half of the selections being the operators #23 and #24. Both
these operators include OWA as well as anomaly-detection-method-based weight av-
erage portion. They are identical in the fixed part, where they attribute the weight 0.33
to each of the agents Xu [7], MINDS [10] and TAPS [[L1]. The operators differ in the
OWA part, where the first one builds its opinion from the three lowest anomaly values,
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Fig. 10. Selected aggregation agent (identified by the ID number on axis y) for each time step

while the second considers the third and fourth anomaly values. The weights of the
detection-method-based averaging and order weighted averaging parts are 0.5 for both
operators. It is interesting to note that the system managed to pick the three methods
with the most diverse set of anomaly detection features (in the fixed part), consistently
with basic ensemble classification [[17] principles. The quality of this result is there-
fore based not only on the absolute quality of underlying detection methods, but also
benefits from the diversity of the anomaly detection methods.

In the above-described experiments, the challenges were inserted uniformly, regard-
less of the attack type. In the following, we will try to measure the effects of challenge
insertion in terms of system sensitivity with respect to specific attacks. To do so, we
have used the simple server compromise attack tree specified in Fig. [3[to generate the
challenges optimizing the system, and we have then attempted to compromise one of the
hosts on our network using the standard security tools, such as nmap ormetasploit.
The attacks were repeated several times, with changes in speed, tools settings and in-
tensity. We have observed that the system selected the aggregation functions that were
able to maximize the likelihood of detection of various stages involved in the server
exploit attacks. The anomaly values attributed to horizontal sans, fingerprinting and
vertical scans have increased considerably, making them far more likely to be detected.
The most dramatic change of behavior was related to the password brute force breaking
attempts. These were undetectable with the baseline system configuration, but became
detectable with the case-specific system configuration. Buffer overflow attacks were un-
detectable regardless of the aggregation function, as they are nearly impossible to detect
with NBA methods due to the low volumes of traffic involved.

In Table 2] we present the effects of threat model-based adaptation in the traffic used
in the first series of experiments. This data set does not match the model at all and
provides a good worst case example. We can see that the number of alerts (typically
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Table 2. Effects of scenario specific selection on alert numbers in unrelated traffic. Obtained over
72 observation intervals 5 minutes long.

Result [# alerts] False Negatives False Positives True Positives
Neutral challenge insertion 39 201 146
Case-specific insertion 37 249 161

greater than the number of malicious sources used in Table[T)) generated by the system
has grown, and that the number of false positives increased by about 50. The number of
alerts classified as true positives have increased as well (by 15), and the number of false
negatives decreased by 2. Note that the total number of alerts is not necessarily identi-
cal due to the possible alert fragmentation. Overall, we can see that in order to detect
the attacks crucial in the server compromise scenario (e.g. password bruteforcing), the
system was able to increase its sensitivity and to find a new equilibrium with different
detection profile. It shall be also noted that most of the false positives are repetitive
occurrences of traffic structures that are difficult to predict, and that about 80% of them
can be eliminated with less than 20 rules in the alert processing engine.

7 Related Work

In literature, more sophisticated formalisms than attack trees have been proposed for
modeling attack structures, e.g., attack graphs [[18] and attack grammars [[19]. However,
for our purposes, we do not need to account for the order in which plans of attacks
are carried out or the relations between attacks, and hence, the attack tree formalism is
sufficiently rich.

In desktop grid computing, spot-checking [20J21] is used to make sure that hosts to
which a computation has been outsourced, return correct results. To this end, indistin-
guishable challenges for which the correct answer is already known are interspersed
with actual requests. For a spot-checking approach, where challenges are merged into
a vector among a set of real requests, Staab et al. [2] showed how to determine an op-
timal number of challenges for a given number of real requests. They focused on the
case where the answer to a challenge or a real request is binary. This was extended in
our work, where we handle the continuous case.

The use of ensemble classification approaches [22] is functionally equivalent to our
approach, but with extremely strong assumptions. It requires a pre-classified training
data set and don’t dynamically adapt system to the changing conditions.

Ghanbari and Amza [23]] train belief networks that represent complex systems by
injecting failures. At the outset, experts model a belief network that describes the de-
pendencies within a system. The inserted failures then change the prior beliefs of the
experts to form better estimates. Through fault injection, the dependencies between the
variables in the belief network become evident, and so the overall system can be trained.
Opposed to that, we inject challenges to evaluate classification components in terms of
accuracy in order to select the most accurate one.
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8 Conclusion

Our work presented in this paper aims to close the gap between security policies and
formal threat models and the practice of IDS deployment. To achieve this objective, we
have designed a runtime adaptation and monitoring framework running on the top of
the IDS. It evaluates the performance with respect to the threat models, that are defined
as attack trees, with a value assigned to the achievement the objective (root) of the each
tree. Objective value can be defined in two manners. In a decision theoretical paradigm,
we will aim to minimize our loss by associating an estimate of our loss (or risk) with the
achievement of each attack tree root. In the game theoretic model, the value of the attack
tree would reflect its value for the attacker. This second option allows us to differentiate
between different types of attackers, with different technical capabilities represented by
trees with growing complexity and corresponding risk values.

Either type of the threat/risk model can be used as an input for the online monitor-
ing and adaptation process, which is able to evaluate the probability that an attack as
defined by the attack tree would pass undetected. This results in an estimate of the ex-
pected undetected loss, given the current traffic status. This value is also a basis for
system adaptation, as the system dynamically reconfigures itself in order to minimize
the undetected loss value. The adaptation is based on the evaluation of system response
with respect to a set of challenges, pre-classified recorded samples of the past traffic
modified to fit the current traffic. The adaptation components of the system use the
threat model to define the optimal mix of challenges to insert, in order to align the sys-
tem performance with the threat models. It is also able to dynamically adjust the number
of challenges to insert in response to changing traffic characteristics. The experiments
performed with the system show that the dynamic selection of the optimal aggregation
function in the CAMNEDP system can significantly reduce the number of false positives
and that the targeted insertion of challenges selected according to threat models can
influence the system sensitivity to reflect the risks associated with each attack type.

The principal limitations of the work are related to the detection capabilities of the
individual detection agents aggregated in the system. Using the assumption of classifier
diversity [24]], we know that the statistical performance of the combined classifier can be
significantly better than the performance of individual classifiers. However, the system
can not detect (i.e. separate from the traffic) the attacks that none of the individual
algorithms can robustly detect.

In our future work, we plan to improve the attack modeling capabilities by inclusion
plan-based attack modeling, and to integrate the outputs of the adaptation layer with the
alert fusion and correlation capabilities of the system. This combination assess which
attack stages are unlikely to be detected, and can use this information to improve the
alert correlation [23]).
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Abstract. Most behavioral detectors of malware remain specific to a
given language and platform, mostly executables for Windows. The ob-
jective of this paper is to define a generic approach for behavioral de-
tection based on two layers respectively responsible for abstraction and
detection. The abstraction layer is specific to a platform and a language.
It interprets the collected instructions, API calls and arguments and clas-
sifies these operations, as well as the objects involved, according to their
purpose in the malware lifecycle. The detection layer remains generic and
interoperable with different abstraction components. It relies on paral-
lel automata parsing attribute-grammars where semantic rules are used
for object typing (object classification) and object binding (data-flow).
Theoretical results are first given with respect to the grammatical con-
straints weighting on the signature construction as well as to the resulting
complexity of the detection. For experimentation purposes, two abstrac-
tion components have then been developed: one processing system call
traces and the other processing the VBScript interpreted language. Ex-
perimentations have provided promising detection rates, in particular for
scripts (89%), with almost no false positives. In the case of process traces,
the detection rate remains significant (51%) but could be increased by
sophisticated collection tools.

Keywords: Malware, Behaviors, Attribute-Grammars, Interpretation.

1 Introduction

Malware behavioral detection should theoretically be able to detect, if not inno-
vative malware, at least unknown malware reusing variations of known
techniques. However, most current behavioral detectors rely on specific char-
acteristics, allowing evasion through simple functional modifications. This ar-
ticle aims to provide generic grammars modeling malicious behaviors in order
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to build efficient and resilient detection automata. Deterministic finite automata
are attractive because their linear complexity remains acceptable for operational
deployment. In 1995, [I] already used automata to describe the alternative se-
quences of operations making up malicious behaviors. Since then, researches
focusing on the notion of data flow has led to the apparition of tainting tech-
niques to detect malicious uses of data [2]. Control of the data flow has exhibited
significant successes and is now broadly used, in intrusion detection [3] or mal-
ware behavior extraction [4]. These articles use automata to model the sequences
of system calls constituting respectively attacks and behaviors. The data flow
is then captured by analysis of the parameters collected along the calls. On
this principle, [5] focuses on self-reproduction as the discriminating behavior for
detection.

Similarly, our approach of behavioral detection combines automata and data
flow control. The model easily supports multiple behaviors. In fact, malicious be-
haviors are described by attribute-grammars. Syntactic rules describe the possi-
ble combinations of operations making up the behavior, whereas, semantic rules
both control the data flow between the involved objects, and associate them
with a potential purpose in the malware lifecycle (installation, communication,
execution). The detection process is finally achieved by parsing execution traces
to check for the satisfaction of the grammatical behavior descriptions.

Abstraction is needed to translate observed traces into the behavioral model
for detection. By a layered architecture, [6] addresses the semantic gap existing
between the system call traces, understandable by OS specialists, and high-level
behaviors. Similarly, our abstraction layer provides generic descriptions where
the processed data get detached from the specificities of the platform and the
programming language. In fact, the graph-based formalism in [6] is in many
ways equivalent to the grammatical formalism provided here. In effect, AND/OR
graphs may be expressed by the semantic rules of attribute-grammars. Relying
on a well-established formalism, these grammars provide theoretical results in
terms of complexity which also hold for the approach from [6]. In addition, the
present article provides different behaviors, assessed on larger test pools.

With regards to the operations for language abstraction, the identification of
the system objects with a potential use for malware and the generation of the
grammatical behavior descriptions, they all require an initial configuration step
as described in Figlll Contrary to other methods, the configuration focuses both
on critical objects, which remain enumerable in a standard environment, and
innovative malware, which are scarce among the numerous variants of known
malware. In a few words, this paper introduces the following contributions:

— A model of malicious behaviors using attribute-grammars with semantic for
object binding (data flow control) and typing (object purposes for malware).

— An abstraction layer to translate observed traces into the model, detaching
detection from the specificities of platforms and programming languages,
with two proofs of concept to analyze executable traces and scripts.

— Some generic automata for behavior detection with an assessment from per-
spectives theoretical (complexity) and operational (coverage, performance).
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Fig. 1. Configuration and detection processes

The article is articulated as follows. Section 2introduces the behavioral model
based on attribute-grammars. Section [] presents the abstraction process from
the collected data to the model. Section [] describes the detection process. An
implementation is given in Section [f] whose results are commented in Section

2 Grammatical Formalization of Behaviors

From a theoretical perspective, an attribute-grammar (Definition[I]) is a Context-
Free Grammar (CFG) enriched with semantic attributes and rules [7]. In the for-
malism, each start symbols begins the description of a new malicious behavior.
The terminal symbols of the grammar then correspond to the basic operations
making up the behavior whereas the production rules describe their different
combinations to achieve the behavior. As stated in [8l9], basic operations even-
tually refer to data collected through the abstraction layer (instructions, API
calls, parameters). These common principles are kept along the formalization.

Definition 1. An attribute-grammar G4 is a triplet <G, D, E> where:

- G is originally a context-free grammar <V, XS, P>,

-att: X € {VUX} — att(X) € Att* is an assignment function for attributes and
D=U,catDy their set of values,

- F is a set of semantic rules such as for any production of P, there is at most one
rule per variable of the formY.ao = f(Y1.a1...Yn.ap) with f : Dy, X... XDy, — Dg,.

2.1 Malicious Behavior Language

A generic programming language is required to describe malicious behaviors:
the Malicious Behavior Language (MBL) has been designed to this purpose. Its
syntax and operational semantics are given in [8]. Most malicious behaviors can
be described by sub-grammars of the MBL generative grammar. The language
principles are object-oriented according to the encapsulation in Figl2l It provides
internal operations: arithmetic and control operations guaranteeing Turing com-
pleteness, as well as interactions to interface with external objects: commands
(open, create, close, delete, execute) or inputs/outputs (send, receive).

On top of the syntax for operations and interactions, a type system has
been provided for the external objects. These objects are typed according to
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Interactions

their potential use in the malware lifecycle: permanent objects (0bj perm), tem-
porary objects (0bj temp), booting objects (obj boot), communicating objects
(obj com), self-reference (this). A partial order has been defined on these types
according to their subset inclusion, as shown in the Hasse Diagram of Figl3l
These inclusions correspond to object specializations. This type system can be
deployed thanks to the semantic attributes enriching attribute-grammars. In
fact, semantic attributes and rules can have several purposes:

Object binding: Object binding identifies the different object instances, and
guarantees they are coherently used. It is achieved by affecting specific
attributes called identifiers to the terminal symbols representing objects (de-
noted objId where Id is an abbreviation for Identifier). Considering interac-
tions, the binding constrains the data-flow between objects. The data flow is
critical in behaviors such as duplication where data transfers are involved.

Object typing: A type attribute can also be affected to a given object (de-
noted objTp where Tp is an abbreviation for Type). Types are attached
to objects according to their potential use. They are critical to distinguish
certain malicious purposes such as booting objects in the case of residency
or communicating objects in the case of propagation. Additional character-
ization of the objects can be achieved through additional attributes. For
example, an attribute can store the object nature (denoted objNat): vari-
able, file, registry key, network socket, mail, etc.

2.2 Descriptions of Malicious Behaviors

Four behaviors are examined: duplication, propagation, residency (automatic
start) and overinfection tests (avoiding reinfection of an infected system). Be-
cause their whole descriptions would be too tedious, only two extracts of the most
prevalent ones are covered: duplication and propagation. Their descriptions, as
well as additional behaviors, had been generated in [§], by manual analysis of a
malware pool. Since these descriptions convey the most generic features of the
malicious behaviors, manual generation can be considered more easily than for
the binary signatures of scanners.

Duplication. Duplication is achieved by copying code from the self-reference to
a permanent object. It is described below by syntactic production rules (grey)
and their related semantic rules (white). The syntactic derivations correspond
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to different duplication techniques: only single-block read/write is described
above, but the complete description also supports interleaved read/write and
direct copy. The semantic rules guarantee the data-flow through a same variable
between read and write interactions (Binding: <Write>.varld = <Read>.varld).
They also guarantee the behavior maliciousness by constraining read interac-

tions to refer to the self-reference (Typing: <Duplicate>.stcTp= this).

(4) <Duplicate>

{ <Duplicate>.srcld
< Duplicate>.srcTp
<Duplicate>.targld
<Duplicate>.targTp
<Open>.objTp
<Create>.objTp
<Read>.objld
<Read>.objTp
<Write>.objld
<Write>.objTp

= <Create><Open>
<Read><Write>

|  <Open><Create>

<Read><Write>

<Open><Read>

<Create><Write>

<Open>.objld

this

<Create>.objld

obj perm

<Duplicate>.srcTp

< Duplicate>.targTp

< Duplicate>.srcld

< Duplicate>.srcTp

<Duplicate>.targld

< Duplicate>.targTp

(it) <Create>

{ <Create>.objld
object.objTp

(i11) <Open>

{ <Open>.objld
object.objTp

(iv) <Read>

{ <Read>.varld
objectl.objTp
object2.objld
object2.0bjTp

(v) <Write>

{ <Write>.varld
objectl.objTp

create object;
object.objld
<Create>.objTp }
open object;
object.objld
<Open>.objTp }

receive objectl «— object2;
objectl.objld

var

<Read>.objld
<Read>.objTp }

send objectl — object2;
objectl.objld
var

<Write>.varld <Read>.varld } object2.objld

object2.0bjTp

<Write>.objld
<Write>.objTp }

Propagation. Propagation differs from duplication by a different target. The
malware code is copied from the self-reference to a communicating object. Con-
sequently, it shows syntactic similarities with duplication, except adjustments
to insert a format process. The main differences thus lie in adaptations of the
semantic rules. [llustrating typing, the permanent type of the target is replaced
by the communicating type (<Propagate>.targTp= obj com). A communicating
object can either be a network connection, a mail or a shared file. The second
modification specifies, by a disjunction of semantic equations, that the propaga-
tion source can be either the self-reference or the result of a previous duplication
(<Propagate>.stcTp= this or <Propagate>.srcld= <Duplicate>.targld).

()

{ <Propagate>.srcld
(< Propagate>.srcTp = this
< Propagate>.targld
< Propagate>.targTp

<Open><Read><Transmit>

< Read><Open><Transmit>
<Read>.objld

<Propagate>.srcld = <Duplication>.targld)
<Open>.objld

obj com

<Propagate>

<=y

(1) <Transmit> = <Format><Write> | <Write>

3 Model Translation by Abstraction

In the context of behavioral detection, a trace conveying the actions of the moni-
tored program is statically or dynamically collected. Depending on the collection
mechanism, completeness of the data and its nature vary greatly, from simple
instructions to system calls along with their parameters. The trace remains spe-
cific to a given platform and to the language in which the program has been
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coded (native, interpreted, macros). An abstraction layer is thus required for
translation into the behavioral language from Section 2l Translation of basic in-
structions, either arithmetic (move, addition, subtraction...) or control related
(conditional, jump...), into operations of the language is an obvious mapping, not
requiring further explanation. On the opposite, translation of API calls and their
parameters into interactions and objects from the language is detailed thereafter.

3.1 API Calls Translation

For a program to access services and resources, the Application Programming
Interfaces (APIs) constitute a mandatory point enforcing security and consis-
tency [10]. API calls are also denoted system calls when accessing services from
the operating system. For each programming language, the set of available APIs
can be classified into distinct interaction classes. This set being finite and sup-
posedly stable, the translation is defined as a mapping over the interaction
classes, the completeness of the process being guaranteed. Table [1 provides a
mapping for APIs subsets from Windows [I1] and VBScript. The table is re-
fined according to the nature of the manipulated objects. The API name, on
its own, is not always sufficient to determine its interaction class. For exam-
ple, network devices and files use common APIs; the distinction is made on their
path (\device\Afd\Endpoint). Sending, receiving packets then depends on control
codes transmitted to NtDeviceIoControlFile (IOCTL AFD RECV, IOCTL AFD SEND). If
required, specific call parameters constitute additional mapping inputs:

{API name} x ({Parameters} U {e}) — {Interaction class}.

3.2 Parameters Interpretation

In the context of interactions, parameters are important factors to identify the
involved objects and assess their criticality through typing. Parameters interpre-
tation thus complements the initial abstraction from the platform and language
obtained through API translation. Due to their varying nature, parameters can

Table 1. Mapping Windows Native and VBScript APIs to interaction classes

Interaction Object Windows VBScript
Class Nature Native API API
Open MtOpenFileptr FileHandle, ..., strFilePath, ...} FileSystemO bject. GetFile (str FilePath)
NtCreateSection{ptr SectionHandle, ..., ptr FileHandle) FileSystemO hiect. OpenT extFile(str FilePath)
FileSystemO bject Drives.ltem {int DriveMb)

MrOpenFileiptr DeviceHandle, ..., str MetwaorkDevicePath, .0

MtReadFile{ptr FileHandle, ..., ptr Buffer, ...} FileObject Read)
NtMapViewOfSection{ptr SectionHandle, FileObiect ReadLine

..., btr BaseAddress, . )| FileD biect ReadAll D
MtDevicelo ContolFileiptr DeviceHandle,

...,ReadCtrl, ptr Buffer, ...}
NtWriteFileiptr FileHandle, ..., ptr Buffer, ...} FileQbject Write{str Value)
NtWhiteF ileG ather iptr FileHandle, ..., ptr SegmentArray, .0 [FileO bject WiiteLine{str Value)
FileQbject. Copyistr FilePath)

MNtDevicelo ContolFile{ptr DeviceHandle,
..., SendCtrl, ntr Buffer,...

M ailOhject TextBodyistr Content)
MailObiject Ad dAttachment{str FilePath)
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Fig. 4. Character strings interpretation

not be translated by a simple mapping. Decision trees are more adaptive tools,
capable of interpreting parameters according to their representation:

Simple integers: Integer attributes are mainly constants specific to an associ-
ated API. They may condition the interpretation of its interaction class.
Address and Handles: Addresses and handles identify the different objects
appearing in the collected traces. They are particularly useful to study the
data flow between objects. Considering a variable, it is represented by its
address a,, and its size s,. Every address a such as a, < a < a, + s, will refer
to the same variable. Certain addresses with important properties may be
refined by typing: import tables, services table, entry points. These specific
addresses may be interpreted by decision trees partitioning the address space.

Character strings: String parameters contain the richer information. Most of
these parameters are paths satisfying a hierarchical structure where every
element is important: from the root identifying drives, drivers and registry,
passing by the intermediate directories providing object localization, until
the real name of the object. This hierarchical structure is well adapted for a
progressive analysis embedded in a decision tree. A progressive interpretation
of the path elements is shown in Fig[dlwith basic examples for Windows and
Linux platforms.

3.3 Decision Trees Generation

Building decision trees requires a precise identification of the critical resources
of a system. Our methodology proceeds by successive layers: hardware, oper-
ating system and applications. For each layer, we define a scope encompassing
the significant components; the resources involved either in the installation, the
configuration or the use of these components are monitored for potential misuse:

Hardware layer: For the hardware layer, the scope can be restricted to the
interfaces open to external locations (Network, CD, USB). The key resources
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to monitor are the drivers used to communicate with these interfaces as well
as additional configuration files (e.g. Autorun.inf files impacting booting).

Operating system layer: OS configuration is critical but unfortunately dis-
persed in various locations (e.g. files, registry, structures in memory). How-
ever, most of the critical resources are already well identified, such as the
boot sequence or the intermediate structures used to access the provided
services and resources (e.g. file system, process table, system call table).

Applicative layer: It is obviously impossible to consider all existing applica-
tions. To restrict the scope, observing malware propagation and interoper-
ability constraints, the analysis is limited to connected and widely deployed
applications (web browsers, messaging, mail, peer-to-peer, IRC clients). Again
are considered resources involved in communication (connections, transit lo-
cations) as well as in configuration (application launch).

Identification of the critical resources potentially used by malware is a manual,
but necessary, configuration step. We believe however that it is less cumbersome
than analyzing the thousands of malware discovered every day, for the follow-
ing reasons. First, critical resources of a given platform are known and limited;
they can thus be enumerated. Their name and location can then be retrieved
in a partially automated way (e.g. listing connected drives, recovering peer-to-
peer clients and their shared folders). In fact, full automation of the parameter
interpretation may be hard to achieve. In [I2], an attempt was made to fully au-
tomate their analysis for anomaly-based intrusion detection. The interpretation
relied on deviations from a legitimate model based on string length, character
distribution and structural inference. These factors are significant for intrusions
which mostly use misformatted parameters to infiltrate through vulnerabilities.
It may prove less efficient with malware since they can use legitimate param-
eters, at least in appearance. Moreover, the real purpose of these parameters
would still be unexplained; an additional analysis would be required for type
affectation. Thus, interpretation by decision trees with automated configuration
seems a good trade off between automation and beforehand manual analysis.

4 Detection Using Parsing Automata

Detecting malicious behaviors may be reduced to parsing their grammatical de-
scriptions. To achieve syntactic parsing and attribute evaluation in a single pass,
the attribute-grammars must be both LL grammars and L-attribute grammars:
attribute dependency is only allowed from left to right in the production rules.
These properties are not necessarily satisfied by the MBL generative grammar
but they prove true for the sub-grammars describing the malicious behaviors.
Therefore, detection can be implemented by LL-parsers, capable of building,
from top to down, the annotated leftmost-derivation trees. Basically, LL-parsers
are pushdown automata enhanced with attribute evaluation (Definition 2).

Definition 2. A LL-parser is a particular pushdown automaton A that can be
built as a ten-tuple <Q, X, D, I, I, 6, qo0, Zpo, Zs,0, F'> where:
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- Q is the finite set of states, and F C @ is the subset of accepting states,

- X is the alphabet of input symbols and D is the set of values for attributes,

- I, / I are the parsing / semantic stack alphabets,

- qo € Q is the initial state and Z, o / Zs,o are the stacks start symbols,

- 0 is the transition function defining the production rules and semantic routines,
of the form: Q@ x ({X Ue},D*) x (I, [s) = Q@ x ({Ip, Ue}, Is).

Several behaviors are monitored in parallel by dedicated automata. Each au-
tomaton Aj parses several instances of the behavior, storing its progress in in-
dependent derivations (triple made up of a state ¢ and parsing and semantic
stacks Ik, Is). For each collected events e; containing input symbols and se-
mantic values, all the parsing parallel automata progress along their derivations.
When an irrelevant input is read (an operation interleaved inside the behavior
for example), this input is dropped instead of causing an error state. The global
procedure is defined in the Algorithms [I and 2 with an explicative figure.

Algorithm 1. All-parse(e,Q,lp,I)
1: if e, Q, Iy, I's match a transition 7' € §4 then

2:  if e introduces a possible ambiguity then —'CE‘ i ﬁll_;,l H[ 211
3: duplicate state and stack triple (Q, Ip, I's). N '/]_ ﬁ;:} Ty
4:  end if i T ETam
5. Compute transition T to update (Q, Ip, Is). P (@) E Cok.1
6: if Q is an accepting state Q € F4 then "_(ADI‘*' il 0 s
7 Malicious behavior detected. ‘_,; (] m— ‘T?
8: else . 6y M Tpny
9: ignore e. _,(]:\j)__, ” E Fen1
10:  end if @ e
11: end if e

Algorithm 2. BehaviorDetection(e,...,e;)

Require: events e; are couples of symbol and semantic values: ({¥ U e}, D*).
1: for all collected events e; do
2:  for all the automata Ay such as 1 <k <n do
my = current number of parallel derivations handled by Ay.
for all state and stack triple (Q,j, Ipk,j, I'sk,j) such as 1 < j < my do
A l-parse(e;, Q. j, Lpk,j, Lsk,j))-
end for
end for
end for

4.1 Semantic Prerequisites and Consequences

The present detection method can be related to scenario recognition in intrusion
detection. An intrusion scenario is defined as a sequence of dependent attacks
[13]. For each attack to occur, a set of prerequisites or preconditions must be
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satisfied. Once completed, new consequences are introduced, also called postcon-
ditions. In [I4], isolated alerts are correlated into scenarios by parsing attribute-
grammars annoted with semantic rules to guarantee the flow between related
alerts. Similarly, a malicious behavior is a sequence where each operation pre-
pares for the next one. In a formalization by attribute grammars, the sequence
order is led by the syntax whereas prerequisites and consequences are led by
semantic rules of the form Y;.a = f(Y7.c1...Y,.ar,) (Definition [T).

Checking prerequisites: Prerequisites are defined by specific semantic rules
where the left-side attributes of the equations are attached to terminal sym-
bols (Y; € X). During parsing, semantic values are collected along input
symbols. These values are compared to values computed using inherited and
already synthesized attributes. This comparison corresponds to the matching
step performed on the semantic stack Iy during transitions from 9.

Evaluating consequences: When the left-side attribute is attached to a non-
terminal (Y; € V') and right-side attributes are valued, the attribute is evalu-
ated. During transitions from ¢, the evaluation corresponds to the reduction
step where the computed value is pushed on the semantic stack Is.

4.2 Ambiguity Support

All events are fed to the behavior automata. However, some of them may be
unrelated to the behavior or unuseful to its completion. Unrelated events do not
match any transition and are simply dropped. This is insufficient for unuseful
events raising ambiguities: they may be related to the behavior but parsing them
makes the derivation fail unpredictably. Let us take an explicit example for du-
plication. After opening the self-reference, two files are consecutively created.
If duplication is achieved between the self-reference and the first file, parsing
succeeds. If duplication is achieved with the second one, parsing fails because
the automaton has progressed beyond the state of accepting a second creation.
Similar ambiguities may be observed along the variable affectations which alter
the data-flow. The algorithm should thus be able to manage the different objects
and variables combinations. Ambiguities are handled by the detection algorithm
using derivation duplicates. Before transition reduction, if the operation is po-
tentially ambiguous, the current derivation is copied in a new triple containing
the current state and the parsing and semantic stacks. This solution handles
the combinations of events without backtracking. To come back and forth in the
derivation trees would have proved too cumbersome for real-time detection.

4.3 Time and Space Complexity

LL-parsing is linear in function of the number of symbols. Parallelism and ambi-
guities increase the complexity of the detection algorithm. Let us consider calls
to the parsing procedure as the reference operation. This procedure is decom-
posed in three steps: matching, reduction and accept (two comparisons and a
computation). In the worst case scenario, all events are related to the behavior
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automata and all these events introduce ambiguities. In the best case scenario,
no ambiguity is raised. Resulting complexities are given in Proposition [l

Proposition 1. In the worst case, behavioral detection using attributed automata
has a time complezity in9(k(2™ —1)) and a space complezity in 9 (k2™ (2s)) where k
1s the number of automata, n is the number of input symbol and s is the maximum
stack size. In the best case, time complexity drops to linear time ¥(kn) and space
complezity becomes independent from the number of inputs 9(k2s).

The worst case complexity is important but it quickly drops as the number
of ambiguous events decreases. The experimentations in Section [ show that
the ratios of ambiguous events are limited and the algorithm offers satisfactory
performances. Based on these ratios, a new assessment of the average practical
complexity is provided. Besides, these experimentations also show that impor-
tant ratios of ambiguous events are already a sign of malicious activity.

Proof. In a best case scenario, the number of derivation for each automaton
remains constant. Considering the worst case scenario, all events are potentially
ambiguous for all the current derivations. Technically, ambiguities multiply by
two the number of derivations at each iteration of the main loop. Consequently,
each automaton handles 2~ ! different derivations at the i*" iteration. The time
complexity is then equivalent to the number of calls to the parsing procedure:

(W) k+2k+ .. +27 Uk =k(1+24..+2771) = k(2" — 1)

The maximum number of derivations is reached after the last iteration where all
automata manage 2" parallel derivations. Each derivation is stored in two stacks
of size s. This moment coincide with the maximum memory occupation:

(2) k27(2s).

5 Prototype Implementation

The prototype includes the aforementioned two layers: a specific collection and
abstraction layer and a generic detection layer. The overall architecture is de-
scribed in Figlll Components of the abstraction layer interpret the specificities
of the languages whereas the common object classifier interprets the specificities
of the platform. As a proof of concept, abstraction components have been imple-
mented for two languages: native code of PE executables and interpreted Visual
Basic Script. Above abstraction, the detection layer based on parallel behavioral
automata parses the interpreted traces independently from their original source.

5.1 Analyzer of Process Traces

Process traces provide useful information about the system activity of an exe-
cutable. The detection method could be deployed in real-time but for a greater
easiness, the experimentations were led off-line. The process traces were thus col-
lected beforehand inside a virtual environment to avoid any risk of infection. The
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Fig. 5. Multi-layer architecture Fig. 6. Collection environment for API calls

prototype deploys an existing tool called NtTrace to collect Windows native calls,
their arguments and returned values [15]. The main point with dynamic collection
mechanisms (real-time or emulation based) is that most behaviors are conditioned
by external objects and events: available target for infection or listening servers
for network propagation. In order to increase the mechanism coverage and col-
lect conditioned behaviors, the virtual environment from Figlfl has been deployed
over Qemu [16]. Windows XP was installed on the drive image and useful services
and resources were configured: system time, ISP account, Mail and P2P clients,
potential targets (.exe, .jpg, .html). Outside the virtual machine, emulations of
DNS and SMTP servers have been deployed to establish connections and capture
a network activity at the system call level. The weight of the platform and its con-
figuration may seem important but notice that simple call interception would be
sufficient in a real-time deployment without any need for a virtual environment.

Translation is then deployed line by line on the collected traces. It directly
implements the results from Section [3] for API call translation and parameter
interpretation. Only a selection of APIs is classified by mappings; the others are
ignored until their future integration. An object classifier, embedding decision
trees specifically crafted for a Windows configuration as in FigHl is then called
on the parameters. During the process, sequences of identical or combined calls
are detected and formatted into loops in order to compress the resulting logs.
Looking specifically at creation and opening interactions, when resolved, a cor-
respondence is established between the names of objects and their references
(addresses, handles). Following interactions check for these references for inter-
pretation. Conversely, on deletion or closing, this correspondence is destroyed
for the remainder of the analysis. Names and identifiers must be unlinked since
a same address or handle number could be reused for a different object.

5.2 Analyzer of Visual Basic Scripts

No collection tool similar to NtTrace was available for VBScript. We have thus
developed our own collection tool, directly embedding the abstraction layer. VB-
Script being an interpreted language, its static analysis is simpler than native
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code because of the visibility of the source but also because of some integrated
safety properties: no direct code rewriting during execution and no arbitrary
transfer of the control flow [I7]. For these reasons, path exploration becomes
conceivable. The interest of the static approach with respect to the dynamic one
used for process traces lies in the coverage of the collected data. In effect, the
different potential actions corresponding to the different execution paths will be
monitored. In addition, the visibility over the internal data flow will be increased
likewise. By comparison, the results of the experimentations will eventually be
a good indicator of the impact of the collection mechanism on detection.

Basically, the VBScript analyzer is a partial interpreter using static analysis
for path exploration. The analyzer is divided into three parts:

1) Static analyzer: The static analyzer heavily depends on the syntactic spec-
ifications of the VBScript language [I8]. The script is first parsed to localize the
main, the local functions and procedures, as well as to retrieve their signature.
Its structure is then parsed by blocks to recover information about the declared
variables and instantiated managers (file system, shell, network, mail). In ad-
dition, the analyzer also deploys code normalization to remove the syntactic
shortcuts provided by VBScript, but most critically to thwart obfuscation. By
normalization, the current version can handle certain categories of obfuscation
such as integer encoding, string splitting or string encryption.

2) Dynamic interpreter: A partial interpreter has been defined to explore the
different execution paths. It is only partial in the sense that the script code is not
really executed. Only significant operations and dependencies are collected. To
support path exploration, the analyzer handles conditional and loop structures,
but also calls to local functions and procedures. Inside these different blocks, each
line is processed to retrieve the monitored API calls manipulating files, registry
keys, network connections or mails. Calls interpretation is deployed by mapping
as previously defined. Affectations, impacting the data-flow, are thereby also
monitored. Additional analysis is then deployed to process the expressions used
as call arguments, or affected values. In order to control the data-flow, object
references and aliases must be followed up through the processing of expressions:
- Local function/procedure calls: linking signature with the passed parameters,
- Monitored API calls: creating objects or updating their type and references,

- Variable affectations: linking variables with values,

- Calls to execute: evaluating expressions as code.

3) Object classifier: The previous classifier has been reused, as in Fighl Scripts
being based on strings, the address classifier part is unused. The string classifier
has been extended to best fit the script particularities, with new constants for
the self-reference for example ("Wscript.ScriptName","ScriptFullName").

5.3 Detection Automata

The transitions corresponding to the different grammar production rules have di-
rectly been coded in a prototype similarly to the algorithms from Sectiondl Only
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two enhancements have been brought to the algorithm in order to increase the
performance. A first mechanism avoids duplicate derivations. Coexisting identi-
cal derivations artificially increase the number of iterations without identifying
other behaviors than the ones already detected. The second enhancement is re-
lated to the close and delete interactions. Once again, in order to decrease the
number of iterations, the derivations where no interaction intervene between the
opening/creation and the closing/deletion of an object, are destroyed. These two
mechanisms have proved helpful in regulating the number of parallel derivations.

6 Experimentation and Discussions

For experimentation, hundreds of samples have been gathered, the pool being
divided into two categories: Portable Executables and Visual Basic Scripts. For
each category, about 50 legitimate samples and 200 malware were considered.
According to the repartition in Fig[] different types of legitimate applications,
selected from an healthy system, and malware, downloaded from repositories
[19/20], have been considered.

1) Coverage: The experimentation has provided significant detection rates with
51% for PE executables and up to 89% for VB Scripts. Results, behavior by be-
havior, are described in Tables 2] and Bl Duplication is the most significant ma-
licious behavior. However the additional behaviors, and in particular residency,
have detected additional malware where duplication was missed. False positives
are almost inexistent according to Tables@land Bl The only false positive, related
to residency, can be easily explained: the script was a malware cleaner reinitial-
izing the browser start page to clear the infection. On the opposite, important
false negative spikes can be localized in the PE results (Table [2): the low de-
tection rates for duplication of Viruses and propagation of Net/Mail Worms are
explained by limitations in the collection mechanisms that are assessed in 2).
Comparing VB scripts and PE traces, the false negatives are fewer for VB
scripts. Path exploration and affectation monitoring implemented in the ana-
lyzer provide a greater coverage. The remaining false negatives are explained
by the encryption of the whole malware body which is not supported yet and
the cohabitation in a same script of JavaScript and VBScript which makes the
syntactic analysis fail. Code localization mechanism could solve the problem.
For the analyzer of process traces, the detection rates observed for duplication
are consistent with existing works [5]. The real enhancements are twofolds: the

PE Pool of Legitimate Samples (50} (PEPool of Malware Samples (217}| VBS Pool of Legitimate Samples (60) || VBS Pool of Malware Samples(202)
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(EmW = Email Worms, P2PW =P2P Worms, V = Virii,

Duplication 41(68,33%) 31(77,5%) 15(18,29%) 8(53,33%) 6(30%)  46,54% 30(100%)
direct copy 0(0%) 0(0%) 0(0%) 0(0%)  0(0%) 0,00% 8(26,67%)
single read /write  41(68,33%) 30(75%)  14(17,07%) 8(53,33%) 6(30%)  45,63% 12(40%)
interleaved r/w  9(15%)  3(7,5%)  3(3,66%) 3(0,2%) 0(0%) 8,29% 10(33,3%)
Propagation 4(6,67%)  19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,44% 17(56,7%)
direct copy 0(0%) 0(0%) 0(0%) 0(0%)  0(0%) 0,00%  0(0%)
single read/write  4(6,67%)  19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,44% 17(56,7%)
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
Residency 36(60%)  22(55%)  5(60,98%) 6(40%)  9(45%)  35,94% 30(100%)
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
conditional 0(0%) 0(0%) 0(0%) 0(0%)  0(0%) 0,00%  0(0%)
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
Global detection  43(71,67%) 33(82,50%) 16(19,51%) 8(53,33%) 11(55,00%) 51,15% 30(100%)

Table 3. VBS Malware detection.

(EmW = Email Worms, FdW =Flash Drive Worms,

IrcW =IRC Worms, P2PW = P2P Worms, V = Viruses, Gen = Generators variants)

Nb string ciphered 1/51 0/4 1/26 0/30 3/61 10/30 15/202
Nb body ciphered 4/51 0/4 0/26 1/30 2/61 0/30 7/202
String encryption 1(100%) 0 0 0(0%) 2(66,67%) 10(100%) 86,67%

43(84,31%) 4(100%)
41(80,39%) 4(100%)

Duplication
direct copy

20(76,96%)
20(76,96%)

22(73,33%) 44(72,13%) 30(100%) 80,70%
22(73,33%) 25(40,98%) 30(100%) 70,30%

single read/write  8(15,69%) 0(0%) 4(15,38%) 3(10%)  21(34,43%) 0(0%)  17.82%
interleaved r/w 1(1,96%) 0(0%) 0(0%) 0(0%) 8(13,11%) 0(0%) 4,46%
Propagation 33(64,71%) 3(75%) 5(19,23%) 25(83,33%) 5(8,20%)  30(100%) 49,99%
direct copy 33(64,71%) 3(75%) 4(15,38%) 25(83,33%) 3(4,92%)  30(100%) 48,52%
single read/write  3(5,88%) 0(0%) 2(7,69%) 1(3,33%) 2(3,28%) 0(0%) 3,96%
interleaved r/w 0(0%) 0(0%)  0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 32(62,75%) 4(100%) 20(76,92%) 18(60,00%) 20(32,79%) 30(100%) 61,39%
Overinfection test 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%
conditional 4(7,84%)  1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Global detection  46(90,20%) 4(100%) 25(96,15%) 27(90,00%) 50(81,97%) 30(100%) 90,09%

Table 4. PE Legitimate

Samples.

(Com=Communication & Exchange Applications,

MM=Multimedia Apps, Off=Office Apps, Sec=Security Tools, SysU=System & Utilities)

Duplication
Propagation
Residency

0(0%) 0(0%) 0(0%) 0(0%) 0,00%
0(0%) 0(0%) 0(0%) 0(0%) 0,00%
0(0%) 0(0%) 0(0%) 0(0%) 0,00%
0(0%) 0(0%) 0(0%) 0(0%) 0,00%
0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Table 5. VBS Legitimate Samples. (EmM=Email Managers, InfC=Information Collectors,

Enc=Encoders, DfE=Disk & File Explorers,

MwC=Malware Cleaners, RegR=Registry Repairs)

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%)  0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 1(12,50%) 0(0%) 1,67%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Global detection 0(0%) 0(0%) 0(0%) 0(0%) 1(12,5%) 0(0%) 1,67%
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parallel detection of additional behaviors described in the same language, and
the possibility to feed detection with traces from other sources such as those com-
ing from the script analyzer. Additional tests in Table 2l have been led using the
functional polymorphic engine from [9]. For comparison with actual antivirus
products, confronted to the engine, the detection rates were between 15% for
most of them, up to 90% for others, but with numerous false positives.

2) Limitations in trace collection: A significant part of the missed behaviors
are due to limitations in the collection coverage. However, thanks to the layer-
based approach, collection and abstraction can be improved for a given platform
or language without modifying the upper detection layer.

With regards to dynamic analysis (PE traces), the first reason for missed
detections is related to the configuration of the simulated environment. The
simulation must seem as real as possible to satisfy the execution conditions of
malware. Problems can reside in the software configuration. 65% of the tested
Viruses (53/82) did not execute properly: invalid PE, access violations, excep-
tions. These failures may be explained by the detection of virtualization or anti-
debug techniques thwarting dynamic analysis. Problems can also come from the
simulated network. Considering worms, their propagation is conditioned by the
network configuration. 75% of the Mail Worms (45/60) did not show any SMTP
activity because of unreachable servers. Likewise, Net Worms propagate through
vulnerabilities only if a vulnerable target is reachable, explaining that 93% of
them did not propagate (14/15). All actions conditioned by the simulation con-
figuration are difficult to observe: a potential solution could be forced branching.
Notice that this discussion makes sense for off-line analysis but is less of a prob-
lem in real-time conditions where we are only interested in the malicious actions
effectively performed.

Beyond configuration, the level of the collection can also explain the failures.
With a low level collection mechanism, the visibility over the performed actions
and the data flow is increased. All flow-sensitive behaviors such as duplication
can be missed because of breakdowns in the data flow. Such breakdowns can
find their origin sometimes in non monitored system calls and for the most part
in the intervention of intermediate buffers where all operations are executed in
memory. These buffers are often used in code mutation (polymorphism, meta-
morphism). 12% of additional virus duplications (10/82) were missed because of
data flow breakdowns. The problem is identical with Mail Worms where 8% of
the propagations (5/60) were missed because of intermediate buffers intervening
in the Base64 encoding. These problems do not come from the behavioral de-
scriptions but from NtTrace which does not capture processor instructions. More
complete collection tools either collecting instructions [21I] or deploying tainting
techniques [22] could avoid these breakdowns in the data flow.

With regards to static analysis (VB scripts), the interpreted language implies a
different context where branching exploration is feasible and the whole data flow
is observable. Implemented in the script analyzer, these features compensate for
the drawbacks of NtTrace and eventually result in better detection rates. How-
ever, contrary to the restricted number of system calls, VBScript offers numerous
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services. A same operation can be achieved using different managers or interfacing
with different Microsoft applications. Additional features could be monitored for
a greater coverage: accesses to Messenger, support of the Windows Management
Instrumentation (WMI). Moreover, like any other static analysis, script analysis is
hindered by encryption and obfuscation. The current version of the analyzer only
partially handles these techniques; code encryption is missing for example. Static
analysis of scripts is nevertheless easier to consider because no prior disassembly
is required and some security locks ease the analysis.

3) Behavior relevance: In addition to data collection, the behavioral model
itself must be assessed. The relevance of each behavior must be individually as-
sessed by checking the coverage of its grammatical model. Some behaviors such
as duplication, propagation and residency are obviously characteristic to mal-
ware. Duplication and propagation are discriminating enough for detection. On
the other hand, residency is likely to occur in legitimate programs, during in-
stallations for example. To avoid certain false positives, its description could be
refined , using additional constraints on the value written to the booting object:
the value should refer to the program itself or to one of its duplicated versions.
On the other hand, the overinfection model does not seem completely relevant.
The problem comes from a description that includes too many restraints limiting
its detection. In particular, the conditional structure intervening in the model
can not be detected in system call traces. Its generalization could increase detec-
tion but the risk of confusion with legitimate error handling would also increase.

4) Performance: Table [0 measures the performances of the different prototype
components. Considering abstraction, the analysis of PE traces is the most time
consuming. The analyzer uses lots of string comparisons which could be avoided
by replacing the off-line analysis by hooking in rel-time for immediate transla-
tion. On the other hand, the VBScript analyzer offers satisfying performances.
With regards to the detection automata, the performances are also satisfying
compared with the worst case complexity. The detection speed remains far be-
low a half second in more than 90% of the cases; the remaining 10% were all
malware. The implementation has also revealed that the required space for the
derivation stacks was very low, with a maximal stack size of 7. In addition, the
number of ambiguities has been measured. If n. denotes the number of events
and n, the number of ambiguities, in the worst case, we would have n, = 2™«.

But by experience: n, << 2™ and n, << ng and ng & ane.

This approximation provides a practical complexity in 19(]4;04(”22+ ™)
which is more worth considering. Moreover, the algorithm can easily be
parallelized in multi-core architectures. Figures [§ and [@ provide graphs of the
collected « ratios. It can be observed that above a certain threshold, an
important ambiguity ratio « is already a sign of malicious activity.
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Table 6. Compared performances on mono and multi-core architectures

Data reduction from PE traces to logs
Total size: 351Mo Average: 1,3Mo/Trace
Reduced logs: 11Mo Reduction ratio: 29
Execution speed

Core M 1,4GHz Dual core 2,6GHz
1,48 s/trace 0,34 s/trace

Data reduction from VB scripts to logs
Total size: 1842Ko Average: TKo/Script
Reduced logs: 298Ko Reduction ratio: 6
Execution speed

Core M 1,4GHz Dual core 2,6GHz
0,042 s/script 0,016 s/script

40,50 s/ciphered line 40,21 s/ciphered line

Execution speed

Core M 1,4GHz Dual core 2,6GHz
NT: 0,44 s/log NT: 0,14 s/log
VBS: 0,002 s/log VBS: <0,001 s/log
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7 Conclusions

Detection by attribute automata provides a good coverage of malware using
known techniques with 51% of detected PE malware and 89% of VB Scripts
malware. The grammatical approach offers a synthetic vision of malicious be-
haviors. Indeed, only four generic, human-readable, behavioral descriptions have
resulted in these detection rates. Unknown malware using variations from these
known behaviors should be detected thanks to the abstraction process. In case
of innovative techniques, this approach eases the update process. The segmen-
tation between abstraction and detection enables independent updates: in the
grammatical descriptions for generic procedures (infrequent), or in the abstrac-
tion components for vulnerable objects and APIs. Up until now, the generation
of the behavioral descriptions is still manual but the process could be combined
with the identification of malicious behaviors by differential analysis proposed
by Christodorescu et al. [4]. The experimentations have also stressed the im-
portance of data collection in the detection process. Collection mechanisms are
already an active research field and future work can be testing more adapted
collection tools deploying tainting.
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Abstract. Scanning files for signatures is a proven technology, but ex-
ponential growth in unique malware programs has caused an explosion
in signature database sizes. One solution to this problem is to use string
signatures, each of which is a contiguous byte sequence that potentially
can match many variants of a malware family. However, it is not clear
how to automatically generate these string signatures with a sufficiently
low false positive rate. Hancock is the first string signature generation
system that takes on this challenge on a large scale.

To minimize the false positive rate, Hancock features a scalable model
that estimates the occurrence probability of arbitrary byte sequences in
goodware programs, a set of library code identification techniques, and
diversity-based heuristics that ensure the contexts in which a signature
is embedded in containing malware files are similar to one another. With
these techniques combined, Hancock is able to automatically generate
string signatures with a false positive rate below 0.1%.

Keywords: malware signatures, signature generation, Markov model,
library function identification, diversity-based heuristics.

1 Introduction

Symantec’s anti-malware response group receives malware samples submitted
by its customers and competitors, analyzes them, and creates signatures that
could be used to identify instances of them in the field. The number of unique
malware samples that Symantec receives has grown exponentially in the recent
years, because malware programs are increasingly customized, targeted, and in-
tentionally restricted in distribution scope. The total number of distinct malware
samples that Symantec observed in 2008 exceeds 1 million, which is more than
the combined sum of all previous years.

Although less proactive than desired, signature-based malware scanning is
still the dominant approach to identifying malware samples in the wild because
of its extremely low false positive (FP) rate, i.e., the probability of mistaking
a goodware program for a malware program is very low. For example, the FP
rate requirement for Symantec’s anti-malware signatures is below 0.1%. Most
signatures used in existing signature-based malware scanners are hash signatures,
each of which is the hash of a malware file. Although hash signatures have a
low false positive rate, the number of malware samples covered by each hash
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signature is also low — typically one. As a result, the total size of the hash
signature set grows with the exponential growth in the number of unique malware
samples. This creates a signature distribution problem for Symantec: How can
we distribute these hash-based malware signatures to hundreds of millions of
users across the world several dozen times per day in a scalable way?

One possible solution is to replace hash signatures with string signatures, each
of which corresponds to a short, contiguous byte sequence from a malware bi-
nary. Thus, each string signature can cover many malware files. Traditionally,
string signatures are created manually because it is difficult to automatically de-
termine which byte sequence in a malware binary is less FP-prone, i.e., unlikely
to appear in any goodware program in the world. Even for manually created
string signatures, it is generally straightforward for malware authors to evade
them, because they typically correspond to easy-to-modify data strings in mal-
ware binaries, such as names of malware authors, special pop-up messages, etc.

Hancock is an automatic string signature generation system developed in
Symantec Research Labs that automatically generates high-quality string sig-
natures with minimal FPs and maximal malware coverage. i.e. The probability
that a Hancock-generated string signature appears in any goodware program
should be very, very low. At the same time each Hancock-generated string sig-
nature should identify as many malware programs as possible. Thus, although
one string signature takes more space than one hash signature, it uses far less
space than all of the hash signatures it replaces.

Given a set of malware samples, Hancock is designed to create a minimal
set of N-byte sequences, each of which has a sufficiently low false positive rate,
that collectively cover as large a portion of the malware set as possible. Based on
previous empirical studies, Hancock sets NV to 48. It uses three types of heuristics
to test a candidate signature’s FP rate: probability-based, disassembly-based,
and diversity-based. The first two filter candidate signatures extracted from
malware files and the last selects good signatures from among these candidates.

Hancock begins by recursively unpacking malware files using Symantec’s un-
packing engine. It rejects files that are packed and cannot be unpacked, according
to this engine, PEiD [1], and entropy analysis, and stores 48-byte sequences from
these files in a list of invalid signatures. Hancock does this because signatures
produced on packed files are likely to cover the unpacking code. Blacklisting
certain packers should only be done explicitly by a human, rather than through
automated signature generation.

Hancock then examines every 48-byte code sequence in unpacked malware
files. It finds candidate signatures using probability-based and disassembly-based
heuristics: it filters out byte sequences whose estimated occurrence probability
in goodware programs, according to a pre-computed goodware model, is above
a certain threshold; that are considered a part of library functions; or whose as-
sembly instructions are not sufficiently interesting or unique, based on heuristics
that encode malware analysts’ selection criteria. It examines only code so that
disassembly-based heuristics can work and because malware authors can more
easily vary data.
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Among those candidate signatures that pass the initial filtering step, Hancock
further applies a set of selection rules based on the diversity principle: If the
set of malware samples containing a candidate signature are similar, then they
are less FP-prone. A candidate signature in a diverse set of malware files is
more likely to be a part of a library used by several malware families. Though
identifying several malware families seems like a good idea, if a signature is part
of library code, goodware files might use the same library. On the other hand, if
the malware files are similar, they are more likely to belong to one family and
the candidate signature is more likely to be code that is unique to that family.

Finally, Hancock is extended to generate string signatures that consist of mul-
tiple disjoint byte sequences rather than only one contiguous byte sequence.
Although multi-component string signatures are more effective than single-
component signatures, they also incur higher run-time performance overhead
because individual components are more likely to match goodware programs.
In the following sections, we will describe the signature filter algorithms, the
signature selection algorithms, and the multi-component generalization used in
Hancock.

2 Related Work

Modern anti-virus software typically employ a variety of methods to detect
malware programs, such as signature-based scanning [2], heuristic-based detec-
tion [3], and behavioral detection [4]. Although less proactive, signature-based
malware scanning is still the most prevalent approach to identify malware be-
cause of its efficiency and low false positive rate. Traditionally, the malware
signatures are created manually, which is both slow and error-prone. As a re-
sult, efficient generation of malware signatures has become a major challenge for
anti-virus companies to handle the exponential growth of unique malware files.
To solve this problem, several automatic signature generation approaches have
been proposed.

Most previous work focused on creating signatures that are used by Network
Intrusion Detection Systems (NIDS) to detect network worms. Singh et al. pro-
posed EarlyBird [5], which used packet content prevalence and address dispersion
to automatically generate worm signatures from the invariant portions of worm
payloads. Autograph [0] exploited a similar idea to create worm signatures by
dividing each suspicious network flow into blocks terminated by some breakmark
and then analyzing the prevalence of each content block. The suspicious flows are
selected by a port-scanning flow classifier to reduce false positives. Kreibich and
Crowcroft developed Honeycomb [7], a system that uses honeypots to gather
inherently suspicious traffic and generates signatured by applying the longest
common substring (LCS) algorithm to search for similarities in the packet pay-
loads. One potential drawback of signatures generated from previous approaches
is that they are all continuous strings and may fail to match polymorphic worm
payloads. Polygraph [§] instead searched for invariant content in the network
flows and created signatures consisting of multiple disjoint content substrings.



104 K. Griffin et al.

Polygraph also utilized a naive Bayes classifier to allow the probabilistic match-
ing and classification, and thus provided better proactive detection capabilities.
Li et al. proposed Hasma [0J], a system that used a model-based algorithm to
analyze the invariant contents of polymorphic worms and analytically prove
the attack-resilience of generated signatures. PDAS (Position-Aware Distribu-
tion Signatures) [10] took advantage of a statistical anomaly-based approach to
improve the resilience of signatures to polymorphic malware variants. Another
common method for detecting polymorphic malware is to incorporate semantics-
awareness into signatures. For example, Christodorescu et al. proposed static
semantics-aware malware detection in [IT]. They applied a matching algorithm
on the disassembled binaries to find the instruction sequences that match the
manually generated templates of malicious behaviors, e.g., decryption loop. Yeg-
neswaran et al. developed Nemean [12], a framework for automatic generation
of intrusion signatures from honeynet packet traces. Nemean applied cluster-
ing techniques on connections and sessions to create protocol-semantic-aware
signatures, thereby reducing the possibility of false alarms.

Hancock differs from previous work by focusing on automatically generating
high-coverage string signatures with extremely low false positives. Our research
was based loosely on the virus signature extraction work [I3] by Kephart and
Arnold, which was commercially used by IBM. They used a 5-gram Markov chain
model of good software to estimate the probability that a given byte sequence
would show up in good software. They tested hand-generated signatures and
found that it was quite easy to set a model probability threshold with a zero false
positive rate and a modest false negative rate (the fraction of rejected signatures
that would not be found in goodware) of 48%. They also generated signatures
from assembly code (as Hancock does), rather than data, and identified candidate
signatures by running the malware in a test environment. Hancock does not do
this, as dynamic analysis is very slow in large-scale applications.

Symantec acquired this technology from IBM in the mid-90s and found that
it led to many false positives. The Symantec engineers believed that it worked
well for IBM because IBM’s anti-virus technology was used mainly in corporate
environments, making it much easier for IBM to collect a representative set of
goodware. By contrast, signatures generated by Hancock are mainly for home
users, who have a much broader set of goodware. The model’s training set cannot
possibly contain, or even represent, all of this goodware. This poses a significant
challenge for Hancock in avoiding FP-prone signatures.

3 Signature Candidate Selection

3.1 Goodware Modeling

The first line of defense in Hancock is a Markov chain-based model that is trained
on a large goodware set and is designed to estimate the probability of a given
byte sequence appearing in goodware. If the probability of a candidate signature
appearing in some goodware program is higher than a threshold, Hancock rejects
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it. Compared with standard Markov models, Hancock’s goodware model has two
important features:

— Scalable to very large goodware set. Symantec regularly tests its anti-
virus signatures against several terabytes of goodware programs. A standard
Markov model uses linear space [14] in the training set size, with a large con-
stant factor. Hancock’s goodware model focuses only on high-information-
density byte sequences so as to scale to very large goodware training sets.

— Focusing on rare byte sequences. For a candidate signature to not cause
a false positive, its probability of appearing in goodware must be very, very
low. Therefore, the primary goal of Hancock’s model is to distinguish between
low-probability byte sequences and very rare byte sequences.

Basic Algorithm. The model used in Hancock is a fixed-order 5-gram Markov
chain model, which estimates the probability of the fifth byte conditioned on the
occurrence of the preceding four bytes. Training consists of counting instances
of 5-grams — 5-byte sequences — as well as 4-grams, 3-grams, etc. The model
calculates the probability of a 48-byte sequence by multiplying estimated prob-
abilities of each of the 48 bytes. A single byte’s probability is the probability of
that byte following the four preceding bytes. For example, the probability that
“e” follows “abcd” is

count(abcde)

bed) =
p(elabed) count(abced)

* (1 — e(count(abed))) + p(e|bed) * e(count(abed))

In this equation, count(s) is the number of occurrences of the byte sequence s
in the training set. We limit overtraining with e(count(s)), the escape mass of
s. Escape mass decreases with count. Empirically, we found that a good escape
mass for our model is €(c) = \/3‘5’3 e

Model Pruning. The memory required for a vanilla fixed-order 5-gram model
is significantly greater than the size of the original training set. Hancock re-
duces the memory requirement of the model by incorporating an algorithm that
prunes away less useful grams in the model. The algorithm looks at the relative
information gain of a gram and eliminates it if its information gain is too low.
This allows Hancock to keep the most valuable grams, given a fixed memory
constraint.

Consider a model’s grams viewed as nodes in a tree. The algorithm considers
every node X, corresponding to byte sequence s, whose children (corresponding
to so for some byte o) are all leaves. Let s’ be s with its first byte removed.
For example, if s is “abcd”, s’ is “bed”. For each child of X, o, the algorithm
compares p(a|s) to p(c|s’). In this example, the algorithm compares p(e|abed) to
p(e|bed), p(flabed) to p(f|bed), ete. If the difference between p(o|s) and p(o|s’)
is smaller than a threshold, that means that X is does not add that much value
to o’s probability and the node o can be pruned away without compromising
the model’s accuracy.
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To focus on low-probability sequences, Hancock uses the difference between
the logs of these two probabilities, rather than that between their raw probability
values. Given a space budget, Hancock keeps adjusting the threshold until it hits
the space target.

Model Merging. Creating a pruned model requires a large amount of interme-
diate memory, before the pruning step. Thus, the amount of available memory
limits the size of the model that can be created. To get around this limit, Han-
cock creates several smaller models on subsets of the training data, prunes them,
and then merges them.

Merging a model M; with an existing model M5 is mostly a matter of adding
up their gram counts. The challenge is in dealing with grams pruned from M;
that exist in My (and vice versa). The merging algorithm must recreate these
gram counts in Mj. Let so be such a gram and let s’ be s with its first byte
removed. The algorithm estimates the count for so as count(s) x p(c|s’). Once
these pruned grams are reconstituted, the algorithm simply adds the two models’
gram counts.

Experimental Results. We created an occurrence probability model from a
1-GByte training goodware set and computed the probability of a large number
of 24-byte test sequences, extracted from malware files. We checked each test
byte sequence against a goodware database, which is a large superset of the
training set, to determine if it is a true positive (a good signature) or a false
positive (which occurs in goodware). In Figure [l each point in the FP and TP
curves represents the fraction (Y axis value) of test byte sequences whose model
probability is below the X axis value.

As expected, TP signatures have much lower probabilities, on average, than
FP signatures. A small number of FP signatures have very low probabilities —
below 1076, Around probability 10~4°, however, the model does provide excel-
lent discrimination power, rejecting 99% of FP signatures and accepting almost
half of TP signatures.
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To evaluate the effectiveness of Hancock’s information gain-based pruning
algorithm, we used two sets of models: non-pruned and pruned. The former were
trained on 50 to 100 Mbytes of goodware. The latter were trained on 100 Mbytes
of goodware and pruned to various sizes. For each model, we then computed its
TP rate at the probability threshold that yields a 2% FP rate. Figure [2] shows
these TP rates of goodware models versus the model’s size in memory. In this
case, pruning can roughly halve the goodware model size while offering the same
TP rate as the pruned model derived from the same training set.

3.2 Library Function Recognition

A library is a collection of standard functions that implement common operations,
such as file IO, string manipulation, and graphics. Modern malware authors use
library functions extensively to simplify development, just like goodware authors.
By construction, variants of a malware family are likely to share some library func-
tions. Because these library functions also have a high probability of appearing in
goodware, Hancock needs to remove them from consideration when generating
string signatures. Toward this goal, we developed a set of library function recog-
nition techniques to determine whether a function in a malware file is likely to be
a library function or not.

A popular library identification technique is IDA Pro’s Fast Library Iden-
tification and Recognition Technology (FLIRT) [I5], which uses byte pattern
matching algorithms (similar to string signature scanning) to quickly determine
whether a disassembled function matches any of the signatures known to IDA
Prol] Although FLIRT is very accurate in pinpointing common library func-
tions, it still needs some improvement to suit Hancock’s needs. First, FLIRT is
designed to never falsely identify a library. To achieve this, FLIRT first tries to
identify the compiler type (e.g., Visual C++ 7.0, 8.0, Borland C++, Delphi, etc.)
of a disassembled program and applies only signatures for that compiler. For ex-
ample, veseh signatures (Structured Exception Handling library signatures) will
only be applied to binary files that appear to have been compiled with Visual
C++ 7 or 8. This conservative approach can lead to false negatives (a library
function not identified) because of failure in correctly detecting the compiler
type. In addition, because FLIRT uses a rigorous pattern matching algorithm
to search for signatures, small variation in libraries, e.g., minor changes in the
source code, different settings in compiler optimization options or use of different
compiler versions to build the library, could prevent FLIRT from recognizing all
library functions in a disassembled program.

In contrast to FLIRT’s conservative approach, Hancock’s primary goal is to
eliminate false positive signatures. It takes a more aggressive stance by being
willing to mistake non-library functions for library functions. Such misidentifi-
cation is acceptable because it prevents any byte sequence that is potentially

! IDA Pro ships with a database of signatures for about 120 libraries associated with
common compilers. Each signature corresponds to a binary pattern in a library
function.
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associated with a library function from being used as a malware signature. We
exploited this additional latitude with the following three heuristics:

Universal FLIRT Heuristic. This heuristic generalizes IDA Pro’s FLIRT
technique by matching a given function against all FLIRT signatures, regardless
of whether they are associated with the compiler used to compile the function.
This generalization is useful because malware authors often post-process their
malware programs to hide or obfuscate compiler information in an attempt to
deter any reverse engineering efforts. Moreover, any string signatures extracted
from a function in a program compiled by a compiler C1 that looks like a li-
brary function in another compiler C2 are likely to cause false positives against
programs compiled by C2 and thus should be rejected.

Library Function Reference Heuristic. This heuristic identifies a library
function if the function is statically called, directly or indirectly, by any known
library function. The rationale behind this heuristic is that since a library cannot
know in advance which user program it will be linked to, it is impossible for
a library function to statically call any user-written function, except callback
functions, which are implemented through function pointers and dynamically
resolved. As a result, it is safe to mark all children of a library function in its
call tree as library functions. Specifically, the proposed technique disassembles
a binary program, builds a function call graph representation of the program,
and marks any function that is called by a known library function as a library
function. This marking process repeats itself until no new library function can
be found.

In general, compilers automatically include into an executable binary certain
template code, such as startup functions or error handling, which IDA Pro also
considers as library functions as well. These template functions and their callees
must be excluded in the above library function marking algorithm. For example,
the entry point function start and mainCRTstartup in Visual C+4-compiled
binaries are created by the compiler to perform startup preparation (e.g., execute
global constructors, catch all uncaught exceptions) before invoking the user-
defined main function.

3.3 Code Interestingness Check

The code interestingness check is designed to capture the intuitions of Symantec’s
malware analysis experts about what makes a good string signature. For the most
part, these metrics identify signatures that are less likely to be false positives.
They can also identify malicious behavior, though avoiding false positives is the
main goal. The code interestingness check assigns a score for each “interesting”
instruction pattern appearing in a candidate signature, sums up these scores, and
rejects the candidate signature if its sum is below a threshold, i.e. not interesting
enough. The interesting patterns used in Hancock are:

— Unusual constant values. Constants sometimes have hard-coded values
that are important to malware, such as the IP address and port of a command
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and control server. More importantly, if a signature has unusual constant
values, it is less likely to be a false positive.

— Unusual address offsets. Access to memory that is more than 32 bytes
from the base pointer can indicate access to a large class or structure. If
these structures are unique to a malware family, then accesses to particular
offsets into this structure are less likely to show up in goodware. This pattern
is not uncommon among legitimate Win32 applications. Nonetheless, it has
good discrimination power.

— Local or non-library function calls. A local function call itself is not
very distinctive, but the setup for local function calls often is, in terms of
how it is used and how its parameters are prepared. In contrast, setup for
system calls is not as interesting, because they are used in many programs
and invoked in a similar way.

— Math instructions. A malware analyst at Symantec noted that malware
often perform strange mathematical operations, to obfuscate and for various
other reasons. Thus, Hancock looks for strange sequences of XORs, ADDs,
etc. that are unlikely to show up in goodware.

4 Signature Candidate Filtering

Hancock selects candidate signatures using techniques that assess a candidate’s
FP probability based solely on its contents. In this section, we describe a set
of filtering techniques that remove from further consideration those candidate
signatures that are likely to cause a false positive based on the signatures’ use
in malware files.

These diversity-based techniques only accept a signature if it matches variants
of one malware family (or a small number of families). This is because, if a byte
sequence exists in many malware families, it is more likely to be library code —
code that goodware could also use. Therefore, malware files covered by a Hancock
signature should be similar to one another.

Hancock measures the diversity of a set of binary files based on their byte-
level and instruction-level representations. The following two subsections de-
scribe these two diversity measurement methods.

4.1 Byte-Level Diversity

Given a signature, S, and the set of files it covers, X, Hancock measures the
byte-level similarity or diversity among the files in X by extracting the byte-level
context surrounding S and computing the similarity among these contexts.
More concretely, Hancock employs the following four types of byte-level
signature-containing contexts for diversity measurement.

Malware Group Ratio/Count. Hancock clusters malware files into groups
based on their byte-level histogram representation. It then counts the number
of groups to which the files in X belong. If this number divided by the number
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of files in X exceeds a threshold ratio, or if the number exceeds a threshold
count, Hancock rejects S. These files cannot be variants of a single malware
family, if each malware group indeed corresponds to a malware family.

Signature Position Deviation. Hancock calculates the position of S within
each file in X, and computes the standard deviation of S’s positions in these
files. If the standard deviation exceeds a threshold, Hancock rejects S, because
a large positional deviation suggests that S is included in the files it covers for
very different reasons. Therefore, these files are unlikely to belong to the same
malware family. The position of S in a malware file can be an absolute byte
offset, which is with respect to the beginning of the file, or a relative byte offset,
which is with respect to the beginning of the code section containing S.

Multiple Common Signatures. Hancock attempts to find another common
signature that is present in all the files in X and is at least 1 Kbyte away from
S. If such a common signature indeed exists and the distance between this
signature and S has low standard deviation among the files in X, then Hancock
accepts S because this suggests the files in X share a large chunk of code
and thus are likely to be variants of a single malware family. Intuitively, this
heuristic measures the similarity among files in X using additional signatures
that are sufficiently far away, and can be generalized to using the third or fourth
signature.

Surrounding Context Count. Hancock expands S in each malware file in
X by adding bytes to its beginning and end until the resulting byte sequences
become different. For each such distinct byte sequence, Hancock repeats the same
expansion procedure until the expanded byte sequences reach a size limit, or
when the total number of distinct expanded byte sequences exceeds a threshold.
If this expansion procedure terminates because the number of distinct expanded
byte sequences exceeds a threshold, Hancock rejects S, because the fact that
there are more than several distinct contexts surrounding S among the files in
X suggests that these files do not belong to the same malware family.

4.2 Instruction-Level Diversity

Although byte-level diversity measurement techniques are easy to compute and
quite effective in some cases, they treat bytes in a binary file as numerical
values and do not consider their semantics. Given a signature S and the set
of files it covers, X, instruction-level diversity measurement techniques, on the
other hand, measure the instruction-level similarity or diversity among the files
in X by extracting the instruction-level context surrounding S and computing
the similarity among these contexts.

Enclosing Function Count. Hancock extracts the enclosing function of S in
each malware file in X, and counts the number of distinct enclosing functions.
If the number of distinct enclosing functions of S with respect to X is higher
than a threshold, Hancock rejects S, because S appears in too many distinct
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contexts among the files in X and therefore is not likely to be an intrinsic part
of one or a very small number of malware families. To determine if two enclosing
functions are distinct, Hancock uses the following three identicalness measures,
in decreasing order of strictness:

— The byte sequences of the two enclosing functions are identical.

— The instruction op-code sequences of the two enclosing functions are identi-
cal. Hancock extracts the op-code part of every instruction in a function, and
normalizes variants of the same op-code class into their canonical op-code.
For example, there are about 10 different X86 op-codes for ADD, and Han-
cock translates all of them into the same op-code. Because each instruction’s
operands are ignored, this measure is resistant to intentional or accidental
polymorphic transformations such as re-locationing, register assignment, etc.

— The instruction op-code sequences of the two enclosing functions are iden-
tical after instruction sequence mormalization. Before comparing two op-
code sequences, Hancock performs a set of de-obfuscating normalizations
that are designed to undo simple obfuscating transformations, such as re-
placing “test esi, esi” with “or esi, esi”, replacing “push ebp; mov
ebp, esp” with “push ebp; push esp; pop ebp”, etc.

5 Multi-Component String Signature Generation

Traditionally, string signatures used in AV scanners consist of a contiguous se-
quence of bytes. We refer to these as single-component signature (SCS). A nat-
ural generalization of SCS is multi-component signatures (MCS), which consist
of multiple byte sequences that are potentially disjoint from one another. For
example, we can use a 48-byte SCS to identify a malware program; for the same
amount of storage space, we can create a two-component MCS with two 24-byte
sequences. Obviously, an N-byte SCS is a special case of a K-component MCS
where each component is of size % Therefore, given a fixed storage space budget,
MCS provides more flexibility in choosing malware-identifying signatures than
SCS, and is thus expected to be more effective in improving coverage without
increasing the false positive rate.

In the most general form, the components of a MCS do not need to be of
the same size. However, to limit the search space, in the Hancock project we
explore only those MCSs that have equal-sized components. So the next ques-
tion is how many components a MCS should have, given a fixed space budget.
Intuitively, each component should be sufficiently long so that it is unlikely to
match a random byte sequence in binary programs by accident. On the other
hand, the larger the number of components in a MCS, the more effective it is
in eliminating false positives. Given the above considerations and the practical
signature size constraint, Hancock chooses the number of components in each
MCS to be between 3 and 5.

Hancock generates the candidate component set using a goodware model and
a goodware set. Unlike SCS, candidate components are drawn from both data
and code, because intuitively, combinations of code component signatures and
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data component signatures make perfectly good MCS signatures. When Han-
cock examines an %—byte sequence, it finds the longest substring containing this
sequence that is common to all malware files that have the sequence. Hancock
takes only one candidate component from this substring. It eliminates all se-
quences that occur in the goodware set and then takes the sequence with the
lowest model probability. Unlike SCS, there is no model probability threshold.

Given a set of qualified component signature candidates, S1, and the set of
malware files that each component signature candidate covers, Hancock uses
the following algorithm to arrive at the final subset of component signature
candidates used to form MCSs, S2:

1. Compute for each component signature candidate in S1 its effective coverage
value, which is a sum of weights associated with each file the component
signature candidate covers. The weight of a covered file is equal to its coverage
count, the number of candidates in S2 already covering it, except when the
number of component signatures in S2 covering that file is larger than or
equal to K, in which case the weight is set to zero.

2. Move the component signature candidate with the highest effective cover-
age value from S1 to S2, and increment the coverage count of each file the
component signature candidate covers.

3. If there are still malware files that are still uncovered or there exists at least
one component signature in S1 whose effective coverage value is non-zero,
go to Step 1; otherwise exit.

The above algorithm is a modified version of the standard greedy algorithm for
the set covering problem. The only difference is that it gauges the value of each
component signature candidate using its effective coverage value, which takes
into account the fact that at least K component signatures in S2 must match a
malware file before the file is considered covered. The way weights are assigned
to partially covered files is meant to reflect the intuition that the value of a
component signature candidate to a malware file is higher when it brings the
file’s coverage count from X — 1 to X than that from X — 2 to X — 1, where X
is less than or equal to K.

After S2 is determined, Hancock finalizes the K-component MCS for each
malware file considered covered, i.e., whose coverage count is no smaller than
K. To do so, Hancock first checks each component signature in S2 against a
goodware database, and marks it as an FP if it matches some goodware file
in the database. Then Hancock considers all possible K-component MCSs for
each malware file and chooses the one with the smallest number of components
that are an FP. If the number of FP components in the chosen MCS is higher
than a threshold, Trp, the MCS is deemed as unusable and the malware file is
considered not covered. Empirically, T is chosen to be 1 or 2. After each malware
file’s MCS is determined, Hancock applies the same diversity principle to each
MCS based on the malware files it covers.
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6 Evaluation

6.1 Methodology

To evaluate the overall effectiveness of Hancock, we used it to generate 48-
byte string signatures for two sets of malware files, and use the coverage and
number of false positives of these signatures as the performance metrics. The
first malware set has 2,363 unpacked files that Symantec gathered in August
2008. The other has 46,288 unpacked files (or 112,156 files before unpacking)
gathered in 2007-2008. The goodware model used in initial signature candidate
filtering is derived from a 31-Gbyte goodware training set. In addition, we used
another 1.8-Gbyte goodware set to filter out FP-prone signature candidates. To
determine which signatures are FPs, we tested each generated signature against
a 213-Gbyte goodware set. The machine used to perform these experiments has
four quad-core 1.98-GHz AMD Opteron processors and 128 Gbytes of RAM.

6.2 Single-Component Signatures

Because almost every signature candidate selection and filtering technique in
Hancock comes with an empirical threshold parameter, it is impossible to present
results corresponding to all possible combinations of these parameters. Instead,
we present results corresponding to three representative settings, which are
shown in Table [l and called Loose, Normal and Strict. The generated signa-
tures cover overlapping sets of malware files.

To gain additional assurance that Hancock’s FP rate was low enough, Syman-
tec’s malware analysts wanted to see not only zero false positives, but also that
the signatures look good — they look like they encode non-generic behavior that
is unlikely to show up in goodware. To that end, we manually ranked signatures
on the August 2008 malware set as good, poor, and bad.

To get a rough indication of the maximum possible coverage, the last lines
in tables 2] and [B] show the coverage of all non-FP candidate signatures. The
probability-based and dissassembly-based heuristics were still enabled with
Loose threshold settings.

These results show not only that Hancock has a low FP rate, but also that
tighter thresholds can produce signatures that look less generic. Unfortunately,
it can only produce signatures to cover a small fraction of the specified malware.

Several factors limit Hancock’s coverage:

— Hancock’s packer detection might be insufficient. PEiD recognizes many
packers, but by no means all of them. Entropy detection can also be fooled:

Table 1. Heuristic threshold settings

Threshold Model Group Position # common Interestingness Minimum

setting probability ratio deviation signatures coverage
Loose -90 0.35 4000 1 13 3
Normal -90 0.35 3000 1 14 4

Strict -90 0.35 3000 2 17 4
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Table 2. Results for August 2008 data Table 3. Results for 2007-8 data

Threshold Cover- # Good Poor Bad Threshold Coverage Sig.s FPs
setting age FPs sig.s sig.s sig.s Loose 141% 1650 7
Loose 15.7% 0 6 7 1 Normal 11.7% 67T 2

Normal 14.0% 0 6 2 0 Normal, pos. 11.3% 715 0

Strict 11.7% 0 6 0 0 deviation 1000

All non-FP 22.6% 0 10 11 9 Strict 4.4% 206 O
All non-FP 31.7% 7305 0

some packers do not compress the original file’s data, but only obfuscate
it. Diversity-based heuristics will probably reject most candidate signatures
extracted from packed files. (Automatically generating signatures for packed
files would be bad, anyway, since they would be signatures on packer code.)

— Hancock works best when the malware set has many malware families and
many files in each malware family. It needs many families so that diversity-
based heuristics can identify generic or rare library code that shows up in
several malware families. It needs many files in each family so that diversity-
based heuristics can identify which candidate signatures really are charac-
teristic of a malware family. If the malware sets have many malware families
with only a few files each, this would lower Hancock’s coverage.

— Malware polymorphism hampers Hancock’s effectiveness. If only some code
is polymorphic, Hancock can still identify high coverage signatures in the
remaining code. If the polymorphic code has a relatively small number of
variations, Hancock can still identify several signatures with moderate cov-
erage that cover most files in the malware family. If all code is polymorphic,
with a high degree of variation, Hancock will cover very few of the files.

— Finally, the extremely stringent FP requirement means setting heuristics to
very conservative thresholds. Although the heuristics have good discrimina-
tion power, they still eliminate many good signatures. e.g. The group count
heuristic clusters malware into families based on a single-byte histogram.
This splits most malware families into several groups, with large malware
families producing a large number of groups. An ideal signature for this
family will occur in all of those groups. Thus, for the sake of overall discrim-
ination power, the group count heuristic will reject all such ideal signatures.

Sensitivity Study. A heuristic’s discrimination power is a measure of its ef-
fectiveness. A heuristic has good discrimination power if the fraction of false
positive signatures that it eliminates is higher than the fraction of true positive
signatures it eliminates. These results depend strongly on which other heuristics
are in use. We tested heuristics in two scenarios: we measured their raw discrim-
ination power with other heuristics disabled; and we measured their marginal
discrimination power with other heuristics enabled with conservative thresholds.

First, using the August 2008 malware set, we tested the raw discrimination
power of each heuristic. Table [l shows the baseline setting, more conservative
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Table 4. Raw Discrimination Power

Table 5. Marginal Discrimination Power
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Heuristic FPs Cov. DP Heuristic FPs Coverage
Max pos. deviation — 41.7% 96.6% 25 Max pos. deviation 10 121%
(from oo to 8,000) (from 3,000 to co)

Min file coverage 6.0% 83.3% 15 Min file coverage 2 126%
(from 3 to 4) (from 4 to 3)

Group ratio 2.4% 74.0% 12 Group ratio 16 162%
(from 1.0 to .6) (from 0.35 to 1)

Model log probability 51.2% 73.7% 2.2 Model log probability 1 123%
(from -80 to -100) (from -90 to -80)

Code interestingness 58.3% 78.2% 2.2 Code interestingness 2 226%
(from 13 to 15) (from 17 to 13)

Multiple common sig.s 91.7% 70.2% 0.2 Multiple common 0 189%
(from 1 to 2) sig.s (from 2 to 1)

Universal FLIRT 33.1% 71.7% 3.3 Universal FLIRT 3 106%
Library function 46.4% 75.7% 2.8 Library function 4 108%
reference reference

Address space 30.4% 70.8% 3.5 Address space 3 109%

setting, and discrimination power for each heuristic. The library heuristics (Uni-
versal FLIRT, library function reference, and address space) are enabled for the
baseline test and disabled to test their own discrimination powers. Using all
baseline settings, the run covered 551 malware files with 220 signatures and 84

FPs; Coverage;
FPsy / lOg Coverage; *

Table @l shows most of these heuristics to be quite effective. Position deviation
and group ratio have excellent discrimination power (DP); the former lowers
coverage very little and the latter eliminates almost all false positives. Model
probability and code interestingness showed lower DP because their baseline
settings were already somewhat conservative. Had we disabled these heuristics
entirely, the baseline results would have been so overwhelmed with false positives
as to be meaningless. All four of these heuristics are very effective.

Increasing the minimum number of malware files a signature must cover elim-
inates many marginal signatures. The main reason is that, for lower coverage
numbers, there are so many more candidate signatures that some bad ones will
get through. Raising the minimum coverage can have a bigger impact in combi-
nation with diversity-based heuristics, because those heuristics work better with
more files to analyze.

Requiring two common signatures eliminated more good signatures than false
positive signatures. It actually made the signatures, on average, worse.

Finally, the library heuristics all work fairly well. They each eliminate 50% to
70% of false positives while reducing coverage less than 30%. In the test for each
library heuristic, the other two library heuristics and basic FLIRT functionality
were still enabled. This shows that none of these library heuristics are redundant
and that these heuristics go significantly beyond what FLIRT can do.

false positives. Discrimination power is calculated as log
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Marginal Contribution of Each Technique. Then we tested the effective-
ness of each heuristic when other heuristics were set to the Strict thresholds
from table [l We tested the tunable heuristics with the 2007-8 malware set with
Strict baseline threshold settings from table [Il Testing library heuristics was
more computationally intensive (requiring that we reprocess the malware set),
so we tested them on August 2008 data with baseline Loose threshold settings.
Since both sets of baseline settings yield zero FPs, we decreased each heuristic’s
threshold (or disabled it) to see how many FPs its conservative setting elimi-
nated and how much it reduced malware coverage. Table Bl shows the baseline
and more liberal settings for each heuristic. Using all baseline settings, the run
covered 1194 malware files with 206 signatures and 0 false positives.

Table[Blshows that almost all of these heuristics are necessary to reduce the FP
rate to zero. Among the tunable heuristics, position deviation performs the best,
eliminating the second most FPs with the lowest impact on coverage. The group
ratio also performs well. Requiring a second common signature does not seem to
help at all. The library heuristics perform very well, barely impacting coverage at
all. Other heuristics show significantly decreased marginal discrimination power,
which captures an important point: if two heuristics eliminate the same FPs,
they will show good raw discrimination power, but poor marginal discrimination
power.

6.3 Single-Component Signature Generation Time

The most time-consuming step in Hancock’s string signature generation process
is goodware model generation, which, for the model used in the above exper-
iments, took approximately one week and used up all 128 GBytes of available
memory in the process of its creation. Fortunately, this step only needs to be
done once. Because the resulting model is much smaller than the available mem-
ory in the testbed machine, using the model to estimate a signature candidate’s
occurrence probability does not require any disk 1/0.

The three high-level steps in Hancock at run time are malware pre-processing
(including unpacking and disassembly), picking candidate signatures, and apply-
ing diversity-based heuristics to arrive at the best ones. Among them, malware
pre-processing is the most expensive step, but is also quite amenable to paral-
lelization. The two main operations in malware pre-processing are recursively
unpacking malware files and disassembling both packed and unpacked files us-
ing IDA Pro. Both use little memory, so we parallelized them to use 15 of our
machines 16 cores. For the 2007-2008 data set, because of the huge number
of packed malware files and the decreasing marginal return of analyzing them,
Hancock disassembled only 5,506 packed files. Pre-processing took 71 hours.

Picking candidate signatures took 145 minutes and 37.4 GB of RAM. 15 min-
utes and 34.3 GB of RAM went to loading the goodware model. The remainder
was for scanning malware files and picking and storing candidate signatures in
memory and then on disk.
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Table 6. Multi-Component Signature results

# components Permitted component FPs Coverage # Signatures # FPs

2 1 28.9% 76 7
2 0 23.3% 52 2
3 1 26.9% 62 1
3 0 24.2% 44 0
4 1 26.2% 54 0
4 0 18.1% 43 0
5 1 26.2% 54 0
5 0 17.9% 43 0
6 1 25.9% 51 0
6 0 17.6% 41 0

Generating the final signature set took 420 minutes and 6.07 GB of RAM.
Most of this time was spent running IDA Pro against byte sequences surrounding
the final signatures to output their assembly representation. Without this step,
the final signature generation step would have taken only a few minutes.

6.4 Multi-Component Signatures

We tested MCS signatures with 2 to 6 components, with each part being 16 bytes
long. We used a 3.0 GB goodware set to select component candidates and tested
for false positives with a 34.9 GB set of separate goodwareE Table [6l shows the
coverage and false positive rates when 0 or 1 components could be found in the
smaller goodware set.

We first observe that permitting a single component of an MCS to be an FP
in our small goodware set consistently results in higher coverage. However, from
2- and 3-component signatures, we also see that allowing a single component
FP results in more entire MCS FPs, where all signature components occur in a
single goodware file.

We can trade off coverage and FP rate by varying the number of signatures
components and permitted component FPs. Three to five part signatures with 0
or 1 allowed FPs seems to provide the best tradeoff between coverage and FPs.

Since we applied so few heuristics to get these results, beyond requiring the
existence of the multiple, disjoint signature components which make up the sig-
nature, it is perhaps surprising that we have so few MCS FPs. We explain this
by observing that although we do not limit MCS components to code bytes,
we do apply all the library code reducing heuristics through IDA disassembly
described in Section

Also, the way in which signature components are selected from contiguous
runs of identical bytes may reduce the likelihood of FPs. If a long, identical byte
sequence exists in a set of files, the 16 byte signature component with lowest

2 This final goodware set was smaller than in SCS tests because of the difficulty of
identifying shorter, 16-byte sequences.
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probability will be selected. Moreover, no other signature component will be
selected from the same run of identical bytes. Thus, if malware shares an identical
uncommon library (which we fail to identify as a library) linked in contiguously
in the executable, at most one signature component will be extracted from this
sequence of identical bytes. The other components must come from some other
shared code or data.

Finding candidate signatures took 1,278 minutes and 117 GB of RAM. Picking
the final signature sets took 5 to 17 minutes and used 9.0 GB of RAM.

7 Discussion

The main limitation of the current version of Hancock is its low coverage, which is
also the biggest surprise in this project. One potential explanation for this result
is that malware authors have recently evolved their malware distribution strat-
egy from a “few malware families each with many variants” model to a “many
malware families each with few variants” model, so as to keep each distributed
malware sample effective for as long as possible. Because Hancock is designed to
generate string signatures that correspond to common byte sequences shared by
variants of the same malware family, if the average number of variants in each
family is decreased, it is more difficult for Hancock to generate signature with
good coverage while keeping the false positive rate in check, especially when
state-of-the-art malware classification technology is still quite primitive.

To generate new malware families, malware authors use sophisticated pack-
ing and/or metamorphic transformation tools. The current version of Hancock
cannot do much for binaries created by these tools. The static unpack engine
Hancock uses is used in Symantec’s anti-virus products. Still it cannot handle
many packers or metamorphic transformation tools. For example, in the largest
test described in Section 6.2, Hancock has to ignore 59% of the input malware
set because it found them to be packed and could not unpack them. Among the
remaining 41%, some of them are probably packed (perhaps partially), but are
not detected by Hancock. For such malware files, Hancock won’t create string
signatures for them because they do not share common byte sequences with
other malware files.

In the future, we plan to incorporate dynamic unpacking techniques, such
as Justin [16], to reduce the impact of packers on Hancock’s coverage. It is
also possible to mitigate the packer problem by blacklisting binaries packed by
certain packers. We did not spend much effort investigating metamorphic trans-
formation tools in the Hancock project, because string signature-based malware
identification may not be effective for metamorphic binaries. Instead, behavior-
based malware identification may be a more promising solution. Nonetheless,
systematically studying modern metamorphic tools and devising a taxonomi-
cal framework to describe them will be very useful contributions to the field of
malware analysis.

Another significant limitation of Hancock is its lack of dynamic analysis, which
forces it to give up on packed or metamorphically transformed binaries that it
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cannot recognize or restore. The rationale for the design decision of employing
only static analysis in Hancock is that it cannot afford the run-time performance
cost associated with dynamic analysis given the current and future malware ar-
rival rate. In addition, even state-of-the-art dynamic analysis techniques cannot
solve all the packer or metamorphism problems for Hancock.

Although many of Hancock’s heuristics can be evaded, in general this is a
much smaller concern than the problem that malware authors avoid using known
string signatures in their binaries. Attackers can (and do) test newly generated
malware files against popular anti-virus products. In contrast, even if malware
authors create malware files that do not contain byte sequences that Hancock
may use as signatures, there is no easy way to test the effectiveness of these
malware files against Hancock’s signature generation algorithms, because it is
not publicly available and because it has so many empirical built-in parameters.
In theory, security by obscurity is not a foolproof solution; in practice, it is very
difficult, if not infeasible, to evade Hancock’s signature generation heuristics.

8 Conclusion

Given a set of malware files, an ideal string signature generation system should
be able to automatically generate signatures in such a way that the number
of signatures required to cover the malware set is minimal and the probability
of these signatures appearing in goodware programs is also minimal. The main
technical challenge of building such string signature generation systems is how
to determine how FP-prone a byte sequence is without having access to even
a sizeable portion of the world’s goodware set. This false positive problem is
particularly challenging because the goodware set is constantly growing, and is
potentially unbounded. In the Hancock project, we have developed a series of
signature selection and filtering techniques that collectively could remove most,
if not all, FP-prone signature candidates, while maintaining a reasonable cover-
age of the input malware set. In summary, the Hancock project has made the
following research contributions in the area of malware signature generation:

— A scalable goodware modeling technique that prunes away unimportant
nodes according to their relative information gain and merges sub-models
so as to scale to very large training goodware sets,

— A set of diversity-based techniques that eliminate signature candidates when
the set of malware programs they cover exhibit high diversity, and

— The first known string signature generation system that is capable of creat-
ing multi-component string signatures which have been shown to be more
effective than single-component string signatures.

Although Hancock represents the state of the art in string signature generation
technology, there is still room for further improvement. The overall coverage
of Hancock is lower than what we expected when we started the project. How
to improve Hancock’s coverage without increasing the FP rate of its signatures
is worth further research. Although the multi-component signatures that Han-
cock generates are more effective than single-component signatures, their actual
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run-time performance impact is unclear and requires more thorough investiga-
tion. Moreover, there could be other forms of multi-component signatures that
Hancock does not explore and therefore deserve additional research efforts.

This paper omitted discussion of several additional heuristics explored in

project Hancock. See [I7] for more details.
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Abstract. In this paper, we present an accurate and realtime PE-Miner
framework that automatically extracts distinguishing features from
portable executables (PE) to detect zero-day (i.e. previously unknown)
malware. The distinguishing features are extracted using the structural
information standardized by the Microsoft Windows operating system for
executables, DLLs and object files. We follow a threefold research method-
ology: (1) identify a set of structural features for PE files which is
computable in realtime, (2) use an efficient preprocessor for removing re-
dundancy in the features’ set, and (3) select an efficient data mining algo-
rithm for final classification between benign and malicious executables.
We have evaluated PE-Miner on two malware collections, VX Heavens
and Malfease datasets which contain about 11 and 5 thousand malicious
PE files respectively. The results of our experiments show that PE-Miner
achieves more than 99% detection rate with less than 0.5% false alarm
rate for distinguishing between benign and malicious executables. PE-
Miner has low processing overheads and takes only 0.244 seconds on the
average to scan a given PE file. Finally, we evaluate the robustness and
reliability of PE-Miner under several regression tests. Our results show
that the extracted features are robust to different packing techniques and
PE-Miner is also resilient to majority of crafty evasion strategies.

Keywords: Data Mining, Malicious Executable Detection, Malware
Detection, Portable Executables, Structural Information.

1 Introduction

A number of non-signature based malware detection techniques have been pro-
posed recently. These techniques mostly use heuristic analysis, behavior analysis,
or a combination of both to detect malware. Such techniques are being actively
investigated because of their ability to detect zero-day malware without any a
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priori knowledge about them. Some of them have been integrated into the exist-
ing Commercial Off the Shelf Anti Virus (COTS AV) products, but have achieved
only limited success [26], [I3]. The most important shortcoming of these tech-
niques is that they are not realtime deployabl. We, therefore, believe that the
domain of realtime deployable non-signature based malware detection techniques
is still open to novel research.

Non-signature based malware detection techniques are primarily criticized
because of two inherent problems: (1) high fp rate, and (2) large processing over-
heads. Consequently, COTS AV products mostly utilize signature based detec-
tion schemes that provide low fp rate and have acceptable processing overheads.
But it is a well-known fact that signature based malware detection schemes are
unable to detect zero-day malware. We cite two reports to highlight the alarming
rate at which new malware is proliferating. The first report is by Symantec that
shows an increase of 468% in the number of malware from 2006 to 2007 [25].
The second report shows that the number of malware produced in 2007 alone
was more than the total number of malware produced in the last 20 years [0].
These surveys suggest that signature based techniques cannot keep abreast with
the security challenges of the new millennium because not only the size of the
signatures’ database will exponentially increase but also the time of matching
signatures. These bottlenecks are even more relevant on resource constrained
smart phones and mobile devices [3]. We, therefore, envision that in near future
signature based malware detection schemes will not be able to meet the criterion
of realtime deployable as well.

We argue that a malware detection scheme which is realtime deployable should
use an intelligent yet simple static analysis technique. In this paper we propose
a framework, called PE-Miner, which uses novel structural features to efficiently
detect malicious PE files. PE is a file format which is standardized by the Mi-
crosoft Windows operating systems for executables, dynamically linked libraries
(DLL), and object files. We follow a threefold research methodology in our static
analysis: (1) identify a set of structural features for PE files which is computable
in realtime, (2) use an efficient preprocessor for removing redundancy in the
features’ set, and (3) select an efficient data mining algorithm for final classi-
fication. Consequently, our proposed framework consists of three modules: the
feature extraction module, the feature selection/preprocessing module, and the
detection module.

We have evaluated our proposed detection framework on two independently
collected malware datasets with different statistics. The first malware dataset
is the VX Heavens Virus collection consisting of more than ten thousand mali-
cious PE files [27]. The second malware dataset is the Malfease dataset, which
contains more than five thousand malicious PE files [21]. We also collected more
than one thousand benign PE files from our virology lab, which we use in con-
junction with both malware datasets in our study. The results of our experiments

! We define a technique as realtime deployable if it has three properties: (1) a tp rate
(or true positive rate) of approximately 1, (2) an fp rate (or false positive rate) of
approximately 0, and (3) the file scanning time is comparable to existing COTS AV.
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show that our PE-miner framework achieves more than 99% detection rate with
less than 0.5% false alarm rate for distinguishing between benign and malicious
executables. Further, our framework takes on the average only 0.244 seconds
to scan a given PE file. Therefore, we can conclude that PE-Miner is realtime
deployable, and consequently it can be easily integrated into existing COTS AV
products. PE-Miner framework can also categorize the malicious executables as
a function of their payload. This analysis is of great value for system adminis-
trators and malware forensic experts. An interested reader can find details in
the accompanying technical report [23].

We have also compared PE-Miner with other promising malware detection
schemes proposed by Perdisci et al. [I§], Schultz et al. [22], and Kolter et al.
[11]. These techniques use some variation of n-gram analysis for malware de-
tection. PE-Miner provides better detection accuracy@ with significantly smaller
processing overheads compared with these approaches. We believe that the su-
perior performance of PE-Miner is attributable to a rich set of novel PE format
specific structural features, which provides relevant information for better de-
tection accuracy [I0]. In comparison, n-gram based techniques are more suitable
for classification of loosely structured data; therefore, they fail to exploit format
specific structural information of a PE file. As a result, they provide lower de-
tection rates and have higher processing overheads as compared to PE-Miner.
Our experiments also demonstrate that the detection mechanism of PE-Miner
does not show any significant bias towards packed/non-packed PE files. Finally,
we investigate the robustness of PE-Miner against “crafty” attacks which are
specifically designed to evade detection mechanism of PE-Miner. Our results
show that PE-Miner is resilient to majority of such evasion attacks.

2 PE-Miner Framework

In this section, we discuss our proposed PE-Miner framework. We set the follow-
ing strict requirements on our PE-Miner framework to ensure that our research
is enacted with a product development cycle that has a short time-to-market:

— It must be a pure non-signature based framework with an ability to detect
zero-day malicious PE files.

— It must be realtime deployable. To this end, we say that it should have more
than 99% tp rate and less than 1% fp rate. We argue that it is still a challenge
for non-signature based techniques to achieve these true and false positive
rates. Moreover, its time to scan a PE file must be comparable to those of
existing COTS AV products.

2 Throughout this text, the terms detection accuracy and Area Under ROC Curve
(AUC) are used interchangeably. ROC curves are extensively used in machine learn-
ing and data mining to depict the tradeoff between the true positive rate and false
positive rate of a classifier. The AUC (0 < AUC < 1) is used as a yardstick to de-
termine the detection accuracy from ROC curve. Higher values of AUC mean high
tp rate and low fp rate [28]. At AUC =1, ¢p rate = 1 and fp rate = 0.
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— Its design must be modular that allows for the plug-n-play design philosophy.
This feature will be useful in customizing the detection framework to specific
requirements, such as porting it to the file formats used by other operating
systems.

We have evolved the final modular architecture of our PE-Miner framework
in a question oriented engineering fashion. In our research, we systematically
raised following relevant questions, analyzed their potential solutions, and finally
selected the best one through extensive empirical studies.

1. Which PE format specific features can be statically extracted from PE files
to distinguish between benign and malicious files? Moreover, are the format
specific features better than the existing n-grams or string-based features in
terms of detection accuracy and efficiency?

2. Do we need to deploy preprocessors on the features’ set? If yes then which
preprocessors are best suited for the raw features’ set?

3. Which are the best back-end classification algorithms in terms of detection
accuracy and processing overheads.

Our PE-Miner framework consists of three main modules inline with the above-
mentioned vision: (1) feature extraction, (2) feature preprocessing, and (3) clas-
sification (see Figure[Il). We now discuss each module separately.

2.1 Feature Extraction

Let us revisit the PE file format [I2] before we start discussing the structural
features used in our features’ set. A PE file consists of a PE file header, a section
table (section headers) followed by the sections’ data. The PE file header consists
of a MS DOS stub, a PE file signature, a COFF (Common Object File Format)
header, and an optional header. It contains important information about a file
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Table 1. List of the features extracted from PE files

Feature Description Type Quantity
DLLs referred binary 73
COFTF file header integer 7
Optional header — standard fields integer 9
Optional header — Windows specific fields integer 22
Optional header — data directories integer 30
.text section — header fields integer 9
.data section — header fields integer 9
.rsrc section — header fields integer 9
Resource directory table & resources integer 21
Total 189

such as the number of sections, the size of the stack and the heap, etc. The
section table contains important information about the sections that follow it,
such as their name, offset and size. These sections contain the actual data such
as code, initialized data, exports, imports and resources [12], [15].

Figure 2 shows an overview of the PE file format [12], [I5]. It is important to
note that the section table contains Relative Virtual Addresses (RVAs) and the
pointers to the start of every section. On the other hand, the data directories in
an optional header contain references to various tables (such as import, export,
resource, etc.) present in different sections. These references, if appropriately
analyzed, can provide useful information.

We believe that this structural information about a PE file should be leveraged
to extract features that have the potential to achieve high detection accuracy.
Using this principle, we statically extract a set of large number of features from
a given PE fild]. These features are summarized in Table [l In the discussion
below, we first intuitively argue about the features that have the potential to
distinguish between benign and malicious files. We then show interesting obser-
vations derived from the executable datasets used in our empirical studies.

DLLs referred. The list of DLLs referred in an executable effectively provides
an overview of its functionality. For example, if an executable calls WINSOCK .DLL
or WSOCK .DLL then it is expected to perform network related activities. However,
there can be exceptions to this assumption as well. In [22], Schultz et al. have used
the conjunction of DLL names, with a similar functionality, as binary features.
The results of their experiments show that this feature helps to attain reasonable
detection accuracy. However, our pilot experimental studies have revealed that
using them as individual binary features can reveal more information, and hence
can be more helpful in detecting malicious PE files. In this study, we have used
73 core functionality DLLs as features. Their list and functionality is detailed
in [23]. Table 2 shows the mean feature values for the two DLL{. Interestingly,
WSOCK32.DLL and WININET.DLL are used by the majority of backdoors, nukers,
flooders, hacktools, worms, and trojans to access the resources on the network

3 A well-known Microsoft Visual C++ utility, called dumpbin, dumps the relevant
information which is present inside a given PE file [4]. Another freely available utility,
called pedump, also does the required task [20].

4 The details of the datasets and their categorization are available in Section
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Table 2. Mean values of the extracted features. The bold values in every row highlight
interesting outliers.

Dataset VX Heavens Malfease
Name of Benign Backdoor Constructor DoS + Flooder Exploit + Worm Trojan Virus -
Feature + Sniffer + Virtool Nuker Hacktool
WSOCK32.DLL 0.037 0.503 0.038 0.188 0.353 0.261 0.562 0.242 0.053  0.065
WININET.DLL 0.073 0.132 0.009 0.013 0.04 0.141 0.004 0.103 0.019 0.086
# Symbols 430.2 2.0E6 14.7 59.4 25.8 3.5E6 38.8 4.1E6 1.0E6 2.7TE7
Maj Linker Ver 4.7 14.4 11.2 14.1 12.1 12.3 18.7 12.2 19.3 6.5
Init Data Size (E5) 4.4 1.1 0.5 0.4 0.8 0.7 0.4 0.4 0.1 0.6
Maj Img Ver 163.1 1.6 6.3 0.4 0.6 11.2 0.3 6.0 53.6 0.2
DLL Char 5.8x103 0.0 0.0 0.0 0.0 24.9 0.0 3.1 230.8 18.7
Exp Tbl Size (E2) 13.7 2.4 1.7 14.1 5.0 0.3 1.2 2.1 0.9 0.05
Imp Tbl Size (E2) 5.8 19.2 6.1 7.9 20.8 7.1 23.4 10.3 6.2 4.7
Rsrc Thl Size (B4) 32.6 5.5 1.5 1.4 6.2 1.0 2.6 2.2 0.5 5.9
Except Tbl Size 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5
.data Raw Size (E3) 25.2 8.4 5.6 6.3 6.0 7.9 6.1 5.5 6.7 22.1
# Cursors 14.5 6.4 6.7 7.4 6.1 5.9 5.8 6.0 3.0 6.8
# Bitmaps 12.6 1.2 0.0 1.0 0.6 0.7 1.2 1.4 2.4 0.5
# Icons 17.6 2.5 1.9 2.7 2.0 2.1 1.8 1.9 4.5 2.2
# Dialogs 10.9 3.2 1.5 3.2 1.5 2.0 1.9 1.7 2.2 2.3
# Group Cursors 11.6 6.0 6.6 7.2 5.8 5.8 5.4 5.7 2.7 6.7
# Group Icons 4.1 1.0 0.7 1.0 0.8 0.7 0.5 0.7 1.5 0.6

and the Internet. Therefore, the applications misusing these DLLs might provide
a strong indication of a possible covert network activity.

COFF file header. The COFF file header contains important information such
as the type of the machine for which the file is intended, the nature of the file
(DLL, EXE, or OBJ etc.), the number of sections, and the number of symbols. It
is interesting to note in Table 2 that a reasonable number of symbols are present
in benign executables. The malicious executables, however, either contain too
many or too few symbols.

Optional header: standard fields. The interesting information in the stan-
dard fields of the optional header include the linker version used to create an
executable, the size of the code, the size of the initialized data, the size of the
uninitialized data, and the address of the entry point. Table 2lshows that the val-
ues of major linker version and the size of the initialized data have a significant
difference in the benign and malicious executables. The size of the initialized
data in benign executables is usually significantly higher compared to those of
the malicious executables.

Optional header: Windows specific fields. The Windows specific fields of
the optional header include information about the operating system version,
the image version, the checksum, the size of the stack and the heap. It can be
seen in Table [2] that the values of fields such as the major image version and
the DLL characteristics are usually set to zero in the malicious executables. In
comparison, their values are significantly higher in the benign executables.

Optional header: data directories. The data directories of the optional
header provide pointers to the actual data present in the sections following it. It
includes the information about export, import, resource, exception, debug, cer-
tificate, and base relocation tables. Therefore, it effectively provides a summary
of the contents of an executable. Table 2] highlights that the size of the export
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table is higher for the benign executables and nukers as compared to those of
other malicious executables. Another interesting observation in Table 2] is that
the backdoors, flooders, worms and trojans mostly have a bigger import table
size. It can be intuitively argued that they usually import network functionali-
ties which increase the size of their import table. The size of the resource table,
on the other hand, is higher for the benign executables as compared to those of
the malicious executables. The exception table is mostly absent in the malicious
executables.

Section headers. The section headers provide important characteristics of a
section such as its address, size, number of relocations, and line numbers. In this
study, we have only considered text, data and resource sections because they are
commonly present in the executables. Note that the size of the data section (if
present) is relatively larger for the benign executables.

Resource directory table & resources. The resource directory table pro-
vides an overview of the resources that are present in the resource section of an
executable file. We consider the actual count of various types of resources that
are present in the resource section of an executable file. The typical examples of
resources include cursors, bitmaps, icons, menus, dialogs, fonts, group cursors,
and user defined resources. Intuitively and as shown in Table 2 the number of
these resources is relatively higher for the benign executables.

2.2 Feature Selection/Preprocessing

We have now identified our features’ set that consists of a number of statically
computable features — 189 to be precise — based on the structural information
of the PE files. It is possible that some of the features might not convey useful
information in a particular scenario. Therefore, it makes sense to remove or
combine them with other similar features to reduce the dimensionality of our
input feature space. Moreover, this preprocessing on the raw extracted features’
set also reduces the processing overheads in training and testing of classifiers, and
can possibly also improve the detection accuracy of classifiers. In this study, we
have used three well-known features’ selection/preprocessing filters. We provide
their short descriptions in the following text. More details can be found in [29).

Redundant Feature Removal (RFR). We apply this filter to remove those
features that do not vary at all or show significantly large variation i.e. they
have approximately uniform-random behavior. Consequently, this filter removes
all features that have either constant values or show a variance above a threshold
or both.

Principal Component Analysis (PCA). The Principal Component Analysis
(PCA) is a well-known filter for dimensionality reduction. It is especially useful
when the input data has high dimensionality — sometimes referred to as curse
of dimensionality. This dimensionality reduction can possibly improve the qual-
ity of an analysis on a given data if the dataset consists of highly correlated or
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redundant features. However, this dimensionality reduction may result in infor-
mation loss (i.e. reduction in data variance) as well. One has to carefully choose
the appropriate balance for this tradeoff. We apply PCA filter to remove/combine
correlated features for dimensionality reduction.

Haar Wavelet Transform (HWT). The principle of this technique is that
the most relevant information is stored with the highest coefficients at each
order of a transform. The lower order coefficients can be ignored to get only
the most relevant information. The wavelet transform has also been used for
dimensionality reduction. The wavelet transform technique has been extensively
used in the image compression but is never evaluated in the malware detection
domain. The Haar wavelet is one of the simplest wavelets and is known to provide
reasonable accuracy. The application of Haar wavelet transform requires input
data to be normalized. Therefore, we have passed the data through a normalize
filter before applying HW'T.

2.3 Classification

Once the dimensionality of the input features’ set is reduced by applying one
of the above-mentioned preprocessing filters, it is given as an input to the well-
known data mining algorithms for classification. In this study we have used five
classifiers: (1) instance based learner (IBk), (2) decision tree (J48), (3) Naive
Bayes (NB), (4) inductive rule learner (RIPPER), and (5) support vector ma-
chines using sequential minimal optimization (SMO). An interested reader can
find their details in the accompanying technical report [23].

3 Datasets

In this section, we present an overview of the datasets used in our study. We
have collected 1,447 benign PE files from the local network of our virology lab.
The collection contains executables such as Packet CAPture (PCAP) file parsers
compiled by MS Visual Studio 6.0, compressed installation executables, and MS
Windows XP/Vista applications’ executables. The diversity of the benign files
is also evident from their sizes, which range from a minimum of 4 KB to a
maximum of 104, 588 KB (see Table [3]).

Moreover, we have used two malware collections in our study. First is the
VX Heavens Virus Collection, which is labeled and is publicly available for free
download [27]. We only consider PE files to maintain focus. Our filtered dataset
contains 10, 339 malicious PE files. The second dataset is the Malfease malware
dataset [2I], which consists of 5,586 unlabeled malicious PE files.

In order to conduct a comprehensive study, we further categorize the malicious
PE files as a function of their payloadﬁ. The malicious executables are subdivided
into eight major categories such as virus, trojan, worm, etc [7]. Moreover, we

5 Since the Malfease malware collection is unlabeled; therefore, it is not possible to
divide it into different malware categories.
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Table 3. Statistics of the data used in this study

Dataset VX Heavens Malfease
- Benign Backdoor Constructor DoS + Flooder Exploit + Worm Trojan Virus -
+ Sniffer + Virtool Nuker Hacktool
Quantity 1,447 3,455 367 267 358 243 1,483 3,114 1,052 5,586
Avg. Size 1,263 270 234 176 298 156 72 136 50 285
(KB)
Min. Size 4 1 4 3 6 4 2 1 2 1
(KB)
Max. Size 104, 588 9,277 5,832 1,301 14, 692 1,924 2,733 4,014 1,332 5,746
(KB)
UPXx 17 786 79 15 32 43 353 622 48 470
ASPack 2 432 21 16 25 15 66 371 10 187
Misc. Packed 372 325 a7 31 58 38 471 170 71 1,909
Borland 15 56 8 15 0 6 13 63 18 11
Cc/CH++
Borland Delphi 13 589 13 65 64 8 76 379 71 342
Visual Basic 4 719 106 39 126 38 210 674 119 809
Visual C++4 526 333 19 51 29 59 89 619 96 351
Visual C# 56 0 0 0 1 0 5 1 6 1
Misc. Other 9 49 9 2 3 2 4 15 7 5
Non-packed (%)  43.1 50.5 42.2 64.4 65.1 46.5 26.8 56.2  30.1 27.2
Packed (%) 27.0 44.7 40.1 23.2 32.1 39.5 60.0 37.4 12.3 46.6
Not Found (%) 29.9 4.8 17.7 12.4 2.8 14.0 13.2 6.4 57.6 26.2

have combined some categories that have similar functionality. For example, we
have combined constructor and wvirtool to create a single constructor + wvirtool
category. This unification increases the number of malware samples per category.
Brief introductions of every malware category are provided in the accompanying
technical report [23].

Table B] provides the detailed statistics of the malware used in our study. It
can be noted that the average size of the malicious executables is smaller than
that of the benign executables. Further, some executables used in our study are
encrypted and/or compressed (packed). The detailed statistics about packing
are also tabulated in Table[Bl We use PEiD [I6] and Protection ID for detecting
packed executables [T

Our analysis shows that VX Heavens Virus collection contains 40.1% packed
and 47.2% non-packed PE files. However, approximately 12.7% malicious PE
files cannot be classified as either packed or non-packed by PEiD and
Protection ID. The Malfease collection contains 46.6% packed and 27.2% non-
packed malicious PE files. Similarly, 26.2% malicious PE files cannot be clas-
sified as packed or non-packed. Therefore, we can say that packed/non-packed
malware distribution in the VX Heavens virus collection is relatively more bal-
anced than the Malfease dataset. In our collection of benign files, 43.1% are
packed and 27.0% are non-packed PE files respectively. Similarly, 29.9% benign
files are not detected by PEiD and Protection ID. An interesting observation
is that the benign PE files are mostly packed using nonstandard and custom
developed packers. We speculate that a significant portion of the packed ex-
ecutables are not classified as packed because the signatures of their respec-
tive packers are not present in the database of PEiD or Protection ID. Note
that we do mot manually unpack any PE file prior to the processing of our PE-
Miner.

5 We acknowledge the fact that PEiD and Protection ID are signature based packer
detectors and can have significant false negatives.
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4 Related Work

We now briefly describe the most relevant non-signature based malware detection
techniques. These techniques are proposed by Perdisci et al. [I8], Schultz et al.
[22] and Kolter et al. [IT]. We briefly summarize their working principles in the
following paragraphs but an interested reader can find their detailed description
in [23].

In [I8], the authors proposed McBoost that uses two classifiers — C1 and C2
— for classification of non-packed and packed PE files respectively. A custom
developed unpacker is used to extract the hidden code from the packed PE
files and the output of the unpacker is given as an input to the C2 classifier.
Unfortunately, we could not obtain its source code or binary due to licensing
related problems. Furthermore, its implementation is not within the scope of
our current work. Consequently, we only evaluate the C1 module of McBoost
which works only for non-packed PE files. Therefore, we acknowledge that our
McBoost results should be considered only preliminary.

In [22], Schultz et al. have proposed three independent techniques for detect-
ing malicious PE files. The first technique, uses the information about DLLs,
function calls and their invocation counts. However, the authors did not provide
enough information about the used DLLs and function names; therefore, it is not
possible for us to implement it. But we have implemented the second approach
(titled strings) which uses strings as binary features i.e. present or absent. The
third technique uses two byte words as binary features. This technique is later
improved in a seminal work by Kolter et al. [I1] which uses 4-grams as binary
features. Therefore, we include the technique of Kolter et al. (titled KM) in our
comparative evaluation.

5 Experimental Results

We have compared our PE-Miner framework with recently proposed promising
techniques by Perdisci et al. [I8], Schultz et al. [22], and Kolter et al. [11]. We
have used the standard 10 fold cross-validation process in our experiments, i.e.,
the dataset is randomly divided into 10 smaller subsets, where 9 subsets are
used for training and 1 subset is used for testing. The process is repeated 10
times for every combination. This methodology helps in systematically evaluat-
ing the effectiveness of our approach to detect previously unknown (i.e. zero-day)
malicious PE files. The ROC curves are generated by varying the threshold on
output class probability [5], [28]. The AUC is used as a yardstick to determine
the detection accuracy of each approach. We have done the experiments on an
Intel Pentium Core 2 Duo 2.19 GHz processor with 2 GB RAM. The Microsoft
Windows XP SP2 is installed on this machine.

5.1 Malicious PE File Detection

In our first experimental study, we attempt to distinguish between benign and
malicious PE files. To get better insights, we have done independent experiments
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Table 4. AUCs for detecting the malicious executables. The bold entries in each column
represent the best results.

Dataset VX Heavens Malfease
Malware Backdoor 4+ Constructor DoS 4+ Flooder Exploit + Worm Trojan Virus Average -
Sniffer + Virtool Nuker Hacktool
PE-Miner — RFR
IBK 0.992 0.996 0.995 0.994 0.998 0.979 0.984 0.994 0.992 0.986
Ja8 0.993 0.998 0.987 0.993 0.999 0.979 0.992 0.993 0.992 0.979
NB 0.971 0.978 0.966 0.973 0.987 0.972  0.974 0.986 0.976 0.976
RIPPER 0.996 0.996 0.977 0.981 0.999 0.988 0.988 0.996 0.990 0.985
SMO 0.991 0.990 0.991 0.993 0.997 0.975 0.978 0.992  0.988 0.963
PE-Miner — PCA
IBK 0.989 0.996 0.994 0.995 0.998 0.976 0.984 0.993 0.991 0.984
J48 0.980 0.966 0.929 0.960 0.987 0.936 0.951 0.985 0.962 0.945
NB 0.961 0.990 0.993 0.996 0.996 0.964 0.956 0.990 0.981 0.898
RIPPER 0.982 0.978 0.996 0.974 0.977 0.949 0.968 0.987 0.976 0.952
SMO 0.990 0.992 0.989 0.995 0.995 0.958 0.965 0.992 0.985 0.954
PE-Miner HWT
IBK 0.991 0.996 0.996 0.998 1.000 0.978 0.985 0.995 0.992 0.986
Ja8 0.995 0.997 0.993 0.988 0.997 0.978 0.991 0.999 0.992 0.977
NB 0.989 0.982 0.983 0.987 0.990 0.978 0.972 0.990 0.984 0.960
RIPPER 0.994 0.997 0.982 0.990 0.997 0.983 0.990 1.000 0.992 0.987
SMO 0.990 0.995 0.991 0.996 1.000 0.972 0.973 0.994 0.989 0.964
McBoost — C1 only
IBK 0.941 0.935 0.875 0.960 0.832 0.938 0.930 0.914 0.916 0.949
Ja8 0.866 0.895 0.809 0.893 0.731 0.906 0.902 0.882 0.860 0.860
NB 0.831 0.924 0.723 0.889 0.795 0.873 0.886 0.844 0.846 0.817
RIPPER 0.833 0.888 0.744 0.918 0.660 0.866 0.838 0.844 0.824 0.860
SMO 0.802 0.887 0.759 0.910 0.678 0.854 0.805 0.827 0.815 0.835
Strings
IBK 0.949 0.860 0.902 0.980 0.925 0.928 0.863 0.952 0.920 0.944
J48 0.913 0.834 0.862 0.695 0.871 0.908 0.836 0.938 0.857 0.929
NB 0.920 0.830 0.882 0.726 0.886 0.901 0.828 0.905 0.860 0.930
RIPPER 0.843 0.797 0.714 0.578 0.712 0.892 0.743 0.929 0.776 0.927
SMO 0.855 0.817 0.705 0.775 0.583 0.871 0.756 0.883 0.781 0.933
KM
IBK 0.984 0.934 0.983 0.971 0.983 0.987 0.979 0.986 0.976 0.980
J4as8 0.953 0.940 0.916 0.907 0.916 0.957 0.951 0.953  0.937 0.952
NB 0.943 0.959 0.961 0.952 0.961 0.968 0.954 0.954 0.957 0.961
RIPPER 0.951 0.944 0.924 0.921 0.924 0.964 0.948 0.948 0.941 0.971
SMO 0.949 0.946 0.952 0.927 0.952 0.961 0.940 0.938 0.946 0.960

with benign and each of the eight types of the malicious executables. The five
data mining algorithms, namely IBk, J48, NB, RIPPER, and SMO, are deployed
on top of each approach (namely PE-Miner with RFR, PE-Miner with PCA, PE-
Miner with HWT, McBoost (C1 only) by Perdisci et al. [I8], strings approach
by Schultz et al. [22], and KM by Kolter et al. [II]). This results in a total of 270
experimental runs each with 10-fold cross validation. We tabulate our results
for this study in Table Ml and now answer different questions that we raised in
Section 2] in a chronological fashion.

Which features’ set is the best? Table [ tabulates the AUCs for PE-Miner
using three different preprocessing filters (RFR, PCA and HWT), McBoost,
strings and KM [IT]. A macro level scan through the table clearly shows the
supremacy of PE-Miner based approaches with AUCs more than 0.99 for most
of the malware types and even approaching 1.00 for some malware types. For
PE-Miner, RFR and HWT preprocessing lead to the best average results with
more than 0.99 AUC.

The strings approach gives the worst detection accuracy. The KM approach is
better than the strings approach but inferior to our PE-Miner. This is expected
because the string features are not stable as compiling a given piece of code by
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Table 5. The processing overheads (in seconds/file) of different feature selection, ex-
traction and preprocessing schemes

PE-Miner McBoost Strings KM
(RFR) (PCA) (HWT)

Selection 2.839 5.289 31.499

Extraction 0.228 0.228 0.228 0.198 0.130 0.220
Preprocessing 0.007 0.009 0.012 - -
Total 0.235 0.237 0.240 3.037 5.419 31.719

using different compilers leads to different sets of strings. Our analysis shows
that KM approach is more resilient to variation in the string sets because it
uses a combination of string and non-string features. The results obtained for
KM approach (AUC= 0.95) are also consistent with the results reported in [11].
The C1 module of McBoost also provides relatively inferior detection accuracies
which are as low as 0.66 for exploit+hacktool category. It is important to note
that the C1 module of McBoost is functionally similar to the techniques proposed
by Schultz et al. and Kolter et al. The only significant difference is that C1
operates only on the code sections of the non-packed PE files whereas the other
techniques operate on complete files.

It is important to emphasize that both strings and KM approaches incur
large overheads in the feature selection process (see Table m) Kolter et al. have
confirmed that their implementation of information gain calculation for feature
selection took almost a day for every run. To make our implementation of n-
grams more efficient, we use hash map STL containers in the Visual C++ [§].
Our experiments show that the feature selection process in KM still takes more
than 31 seconds per file even with our optimized implementation. The optimized
strings approach takes, on the average, more than 5 seconds per file for feature
selection. The optimized McBoost (C1 only) approach takes an average of more
than 2 seconds per file for feature selectiond. These approaches have processing
overheads because the time to calculate information gain increases exponentially
with the number of unique n-grams (or strings). On the other hand, PE-Miner
does not suffer from such serious bottlenecks. The application of RFR, PCA, or
HWT filters takes only about a hundredth of a second.

Which classification algorithm is the best? We can conclude from Table
@ that J48 outperforms the rest of the data mining classifiers in terms of the
detection accuracy in most of the cases. Moreover, Table[Glshows that J48 has one
of the smallest processing overheads both in training and testing. RIPPER and
IBk closely follow the detection accuracy of J48. However, they are infeasible for
realtime deployment because of the high processing overheads in the training and
the testing phases respectively. The processing overheads of training RIPPER are
the highest among all classifiers. In comparison, IBk does not require a training
phase but its processing overheads in the testing phase are the highest. Further,

" The results in Table [ are averaged over 100 runs.
8 Note that the complete McBoost system also uses unpacker for extraction of hidden
code. This process is time consuming as reported by the authors in [I§].
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Fig. 3. The magnified ROC plots for detecting the malicious executables using PE-
Miner utilizing J48 preprocessed with RFR filter

Table 6. The processing overheads (in seconds/file) of different features and classifi-
cation algorithms

IBK J48 NB RIPPER SMO IBK J48 NB RIPPER SMO

Training Testing
PE-Miner (RFR) - 0.008 0.001 0.269 0.199 0.032 0.001 0.002 0.002 0.002
PE-Miner (PCA) - 0.007 0.001 0.264 0.179 0.035 0.001 0.001 0.001 0.002
PE-Miner (HWT) - 0.007 0.001 0.252 0.147 0.032 0.001 0.002 0.001 0.002
McBoost - 0.021 0.004 1.305 1.122 0.218 0.010 0.007 0.005 0.022
Strings - 0.009 0.002 0.799 0.838 0.163 0.003 0.003 0.002 0.003
KM - 0.024 0.004 1.510 1.018 0.254 0.018 0.007 0.005 0.020

Naive Bayes gives the worst detection accuracy because it assumes independence
among input features. Intuitively speaking, this assumption does not hold for the
features’ sets used in our study. Note that Naive Bayes has very small learning
and testing overheads (see Table ).

Which malware category is the most challenging to detect? An overview
of Table @l suggests that the most challenging malware categories are worms and
trojans. The average AUC values of the compared techniques for worms and tro-
jans are approximately 0.95. The poor detection accuracy is attributed to the fact
that the trojans are inherently designed to appear similar to the benign executa-
bles. Therefore, it is a difficult challenge to distinguish between trojans and benign
PE files. Our PE-Miner still achieves on the average 0.98 AUC for worms and tro-
jans which is quite reasonable. Figure [3]shows that for other malware categories,
PE-Miner (with RFR preprocessor) has AUCs more than 0.99.

5.2 Miscellaneous Discussions

We conclude our comparative study with an answer to an important issue: which
of the compared techniques meet the criterion of being realtime deployable? (see
Section 2)). We tabulate the AUC and the scan time of the best techniques in

9 The results in Table [B] are averaged over 100 runs.
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Table 7. Realtime deployable analysis of the best techniques

Technique Classifier AUC Scan Time Is Realtime
(sec/file) Deployable?
PE-Miner (RFR) Ja8 0.991 0.244 “Yes”
McBoost IBk 0.926 3.255 No
Strings IBk 0.927 5.582 No
KM IBk 0.977 31.973 No
AVG Free 8.0 [1] - - 0.159 -
Panda 7.01 [14] - - 0.131

Table 8. Portion of the developed decision trees for distinguishing between benign and
backdoor+sniffer

NumMessageTable <= 0

SizeLoadConfigTable <= 0

| TimeDateStamp <= 1000000000

| NumCursor <= 1

| | NumAccelerators <= 0

| | | NumBitmap <= 0: malicious
| | | NumBitmap > O: benign

| | NumAccelerators > O:malicious

| NumCursor > 1:malicious

Table [l Moreover, we also show the scan time of two well-known COTS AV
products for doing the realtime deployable analysis of different non-signature
based techniques. It is clear that PE-Miner (RFR) with J48 classifier is the
only non-signature based technique that satisfies the criterion of being realtime
deployable. One might argue that PE-Miner framework provides only a small
improvement in detection accuracy over the KM approach. But then KM has the
worst scan time of 31.97 seconds per file (see Table[7). It is very important to
interpret the results in Table[]from a security expert’s perspective. For example,
if a malware detector scans ten thousand files with an AUC of 0.97, it will not
detect approximately 300 malicious files. In comparison, a detector with an AUC
of 0.99 will miss only 100 files, which is a 66.6% improvement in the number of
missed files [2]. Therefore, we argue that from a security expert’s perspective,
even a small improvement in the detection accuracy is significant in the limiting
case when the detection accuracy approaches to 1.00.

An additional benefit of PE-Miner is that it provides insights about the learn-
ing models of different classifiers that can be of great value to malware forensic
experts. We show a partial subtree of J48 for categorizing benign and malicious
PE files in Table[8 The message tables mostly do not exist in the backdoor+sniffer
categories. The TimeDateStamp is usually obfuscated in the malicious executa-
bles. The number of resources are generally smaller in malicious PE files, whereas
the benign files tend to have larger number of resources such as menus, icons, and
user defined resources. Similar insights are also provided by the rules developed
in the training phase of RIPPER.

In [9], the authors have pointed out several difficulties in parsing PE files.
In our experiments, we have also observed various anomalies in parsing the
structure of malicious PE files. Table [0 contains the list of anomalies which we



PE-Miner: Mining Structural Information to Detect Malicious Executables 135

Table 9. List of the anomalies observed in parsing malicious PE files

5

Description

Large number of sections
SizeOfHeader field is unaligned
Overlapping DoS and PE headers
Large virtual size in a section
Large raw data size in a section
Zero/Non-zero pair in data directory table
Large pointer in data directory entry
Size of section is too large
Section name garbled (non printable characters)
There is an unknown overlay region
Out of file pointer

© WO U AW
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1 2 3 4 5 6 7 8 9 10 11
Anomaly ID

Fig. 4. Statistics of anomalies observed in parsing malicious PE files

have observed in parsing malicious PE files. A significant proportion of malicious
PE files have anomalous structure which can crash a naive PE file parser. Figure
@ provides the statistics of anomalies which we have observed in parsing malicious
PE files of VX Heavens and Malfease collections. To this end, we have developed
a set of heuristics which successfully handle the above-mentioned anomalies.

6 Robustness and Reliability Analysis of PE-Miner

We have now established the fact that PE-Miner is a realtime deployable scheme
for zero-day malware detection. A careful reader might ask whether the statement
still holds if the “ground truth” is now changed as: (1) we cannot trust the
classification of signature based packer detectors PEiD and Protection ID, and
(2) a “crafty” attacker can forge the features of malicious files with those of
benign files to evade detection. In this section, we do a stress and regression
testing of PE-Miner to analyze robustness of its features and its resilience to
potential evasive techniques.

6.1 Robustness Analysis of Extracted Features

It is a well-known fact that signature based packer detector PEiD, which we
are using to distinguish between packed and non-packed executables, has ap-
proximately 30% false negative rate [I7]. In order to convince ourselves that our
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extracted features are actually “robust”, we evaluate PE-Miner in four scenar-
ios: (1) training PE-Miner on 70% non-packed PE files and 30% packed PE files
and testing on the remaining 70% packed PE files, (2) training PE-Miner on
non-packed PE files only and testing on packed PE files, (3) training PE-Miner
on packed PE files only and then testing on non-packed PE files, and (4) testing
PE-Miner on a “difficult” dataset that consists of packed benign and non-packed
malicious PE files. We assert that the scenarios (2) and (3) — although unrealis-
tic — still provide valuable insight into the extent of bias, that PE-Miner might
have, towards detection of packed/non-packed executables.

We want to emphasize an important point that there is no confusion about
“ground truth” for packed executables in above-mentioned four scenarios because
a packer only detects a file as “packed” if it has its signature in its database. The
confusion about “ground truth”, however, stems in the fact that a reasonable
proportion of packed PE files could be misclassified as non-packed because of
false negative rate of PEiD. Note that the false negatives of PEiD, reported in
[177], consist of two types: (1) packed PE files that are misclassified as non-packed,
and (2) PE files that are unclassified. We have not included unclassified files in
our dataset to remove the false negatives of the second type.

Scenario 1: Detection of packed benign and malicious PE files. The mo-
tivation behind the first scenario is to test if PE-Miner can distinguish between
packed benign and packed malware, regardless of the type of packer. In order
to ensure that our features are not influenced by the type of packing tool used
to encrypt PE files, our “packed-only” dataset contains PE files (both benign
and malware) packed using a variety of packers like UPX, ASPack, Armadillo,
PECompact, WWPack32, Virogen Crypt 0.75, UPS-Scrambler, PEBundle and
PEPack etc. Moreover, the “packed-only” dataset contains on the average 44%
and 56% packed malicious and benign PE files respectively. We train PE-Miner
on 70% non-packed executables and 30% packed executables and then test it on
the remaining 70% packed executables. The results of our experiments for this
scenario are tabulated in Table We can easily conclude that PE-Miner has
shown good resilience in terms of detecting accuracy once it is tested on packed
benign and malicious PE files from both datasets.

Scenarios 2 and 3: Detection of packed /non-packed malicious PE files.
In the second experiment, we train PE-Miner on non-packed benign and mali-
cious PE files and test it on packed benign and malicious PE files. Note that this
scenario is more challenging because the training dataset contains significantly
less number of packed files compared with the first scenario. In the third ex-
periment, we train PE-Miner on packed benign and malicious PE files and test
on non-packed benign and malicious PE files. The results of these experiments
are tabulated in Table [0 It is clear from Table [I0 that the detection accuracy
of PE-Miner (RFR-J48) drops to 0.96, when it is trained on non-packed exe-
cutables and tested on the packed executables. Likewise, the average detection
accuracy of PE-Miner (RFR-J48) drops to 0.90 for the third scenario. Remem-
ber once we train PE-Miner on “packed only” dataset, then it gets 0% exposure
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Table 10. An analysis of robustness of extracted features of PE-Miner (RFR) in
different scenarios

Dataset VX Heavens Malfease
Malware Backdoor + Constructor DoS + Flooder Exploit + Worm Trojan Virus Average -
Sniffer <+ Virtool Nuker Hacktool
Scenario 1: Detection of packed benign and malicious PE files
IBK 0.999 1.000 1.000 0.999 0.999 0.998 0.999 0.999 0.999 0.812
J48 0.996 1.000 1.000 0.999 0.999 0.998 0.993 0.999 0.998 0.991
NB 0.971 0.988 0.963 0.955 0.996 0.980 0.978 0.987 0.977 0.934
RIPPER 0.997 0.996 0.999 0.990 0.993 0.985 0.858 0.998 0.977 0.988
SMO 0.985 0.998 1.000 0.996 0.994 0.994 0.985 0.998 0.994 0.706
Scenario 2: Training using non-packed executables only and testing using packed executables
IBK 0.986 0.965 0.912 0.963 0.998 0.993 0.850 0.989 0.957 0.917
J48 0.982 0.999 0.998 0.937 0.999 0.963 0.857 0.954 0.961 0.968
NB 0.927 0.899 0.842 0.809 0.966 0.911 0.857 0.965 0.897 0.780
RIPPER 0.989 0.995 0.998 0.995 0.986 0.962 0.858 0.853 0.954 0.937
SMO 0.983 0.772 0.905 0.691 0.996 0.737 0.651 0.852 0.823 0.859
Scenario 3: Training using packed executables only and testing using non-packed executables
IBK 0.975 0.965 0.964 0.878 0.793 0.982 0.911 0.904 0.921 0.855
Ja8 0.951 0.908 0.919 0.940 0.726 0.958 0.903 0.881 0.898 0.903
NB 0.685 0.965 0.668 0.633 0.689 0.979 0.688 0.688  0.749 0.789
RIPPER 0.979 0.938 0.967 0.972 0.747 0.768 0.840 0.867 0.885 0.904
SMO 0.977 0.941 0.877 0.882 0.536 0.983 0.835 0.904 0.867 0.849
Scenario 4: Detection of packed benign and non-packed malicious PE files (“difficult” dataset)
IBK 0.999 1.000 1.000 0.999 0.998 0.998 0.998 0.994 0.998 0.992
J4as8 0.997 0.986 0.999 0.999 0.999 0.999 0.989 0.993 0.995 0.996
NB 0.954 0.963 0.995 0.988 0.966 0.990 0.975 0.986 0.977 0.948
RIPPER 0.998 0.984 0.998 0.993 0.986 0.999 0.992 0.996 0.993 0.948
SMO 0.989 0.996 1.000 0.997 0.996 0.997 0.984 0.992 0.994 0.945

to non-packed files and this explains deterioration in the detection accuracy of
PE-Miner. We conclude that the detection accuracy of PE-Miner, even in these
unrealistic stress testing scenarios, gracefully degrades.

Scenario 4: Detection of packed benign and non-packed malicious PE
files. In [18], the authors report an interesting study about the ability of different
schemes to detect packed /non-packed executables. They show that the detection
accuracy of KM approach degrades on a “difficult” dataset consisting of packed
benign and non-packed malicious PE files. According to the authors in [IS],
KM shows a bias towards detecting packed PE files as malware and non-packed
PE files as benign. We also — in line with this strategy — tested PE-Miner on
a “difficult” dataset created from both malware collections used in our study.
The results are tabulated in Table It is important to highlight that for these
experiments PE-Miner is trained on the original datasets but is tested on the
“difficult” versions of both datasets. One can conclude from the results in Table
that PE-Miner does not show any bias towards detecting packed executables
as malicious and non-packed executables as benign.

Our experiments conclude that the extracted features are actually “robust”,
and as a result, PE-Miner doest not show any significant bias towards detection
of packed/non-packed executables.

6.2 Reliability of PE-Miner

Now we test PE-Miner on a “crafty” malware dataset, especially designed to cir-
cumvent detection by PE-Miner. We particularly focus our attention on the false
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Table 11. False negative rate for detecting malicious executables with PE-Miner on

the “crafty” datasets

Dataset
Malware

Backdoor 4+ Constructor DoS + Flooder Exploit + Worm Trojan Virus Average

VX Heavens

Malfease

Sniffer + Virtool Nuker Hacktool
# Forged Features False negative rate
0/189 0.001 0.000 0.000 0.000 0.004 0.000 0.004 0.007 0.002 0.001
5/189 0.002 0.000 0.000 0.000 0.004 0.000 0.004 0.007 0.002 0.001
10/189 0.002 0.000 0.000 0.000 0.004 0.011 0.004 0.014 0.004 0.004
30/189 0.002 0.003 0.000 0.012 0.023 0.011 0.011 0.014 0.009 0.004
50/189 0.002 0.003 0.000 0.012 0.023 0.016 0.011 0.014 0.010 0.004
100/189 0.096 0.003 0.000 0.012 0.023 0.050 0.445 0.176 0.101 0.004
150/189 0.658 0.003 0.000 0.583 0.795 0.611 0.558 0.221 0.429 0.426
189/189 0.996 1.000 1.000  1.000 1.000 1.000 1.000 1.000 0.999 0.998
100
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Fig. 5. Execution analysis of crafted malware files

negative rate (or miss detection rate)@ of PE-Miner when we replace features
in malicious files with those of benign files. It can be argued that if adversaries
exactly know our detection methodology, they might be able to design strategies
that evade detection by PE-Miner. The examples of such strategies could be
especially crafted packing techniques, insertion of dummy resources, obfuscation
of address pointers, and other information present in headers etc.

We have conducted an empirical study to analyze the robustness of PE-Miner
to such evasive techniques. To this end, we have “crafted” malware files in
the datasets to contain benign-like features. Specifically, we have created seven
“crafty” datasets in which for every malware file 5, 10, 30, 50, 100, 150 and 189
random features — out of 189 features — are forged with the respective features
from a randomly chosen benign file. We now analyze the false negative rate of
PE-Miner (RFR-J48) across these “crafty” datasets. The results tabulated in
Table [[I] highlight the robustness of PE-Miner to such crafty attacks. The false
negative rate of PE-Miner stays below 1% when fifty features are simultaneously
forged. For both datasets, the average false negative rate is approximately 5%
even when 100 out of 189 features are forged. This shows that a large set of
features, which cover structural information of almost all portions of a PE file,
used by PE-Miner make it very difficult for an attacker to evade detection — even
when it manipulates majority of them at the same time.

10 The false negative rate is defined by the fraction of malicious files wrongly classified
as benign.
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It should be emphasized that simultaneous manipulation of all features of a
PE malware file requires significant level of skill, in-depth knowledge about the
structure of a PE file, and detailed understanding of our detection framework. If
an attacker tries to randomly forge, using brute-force, the structural features of a
PE malware file with those of a benign PE file then he/she will inevitably end up
corrupting the executable image. Consequently, the file will not load successfully
into memory. We have manually executed the “crafted” malicious executables.
The objective is to understand that how many features a “crafty” attacker can
successfully forge without ending up corrupting the executable image. The results
of our experiments are shown in Figure Bl This figure proves our hypothesis
that the probability of having valid PE files decreases exponentially with an
increase in the number of simultaneously forged features. In fact, the successful
execution probability approaches to zero as the number of simultaneously forged
features approaches to 50. Referring back to Table [T}, the average false negative
rate of PE-Miner is less than 1% when 50 features are simultaneously forged.
Therefore, we argue that it is not a cinch for an attacker to alter malicious PE
files to circumvent detection by PE-Miner. However, we accept that an attacker
can evade the detection capability of PE-Miner if: (1) he/she knows the exact
details of our detection framework — including the detection rules, and (2) also
has the “craft” to simultaneously manipulate more than 100 structural features
without corrupting the executable image.

7 Conclusion

In this paper we present, PE-Miner, a framework for detection of malicious PE
files. PE-Miner leverages the structural information of PE files and the data min-
ing algorithms to provide high detection accuracy with low processing overheads.
Our implementation of PE-Miner completes a single-pass scan of all executables
in the dataset (more than 17 thousand) in less than one hour. Therefore it meets
all of our requirements mentioned in Section 2

We believe that our PE-Miner framework can be ported to Unix and other
non-Windows operating systems. To this end, we have identified similar struc-
tural features for the ELF file format in Unix and Unix-like operating systems.
Our initial results are promising and show that PE-Miner framework is scalable
across different operating systems. This dimension of our work will be the sub-
ject of forthcoming publications. Moreover, PE-Miner framework is also ideally
suited for detecting malicious PE files on resource constrained mobile phones
(running mobile variants of Windows) because of its small processing overheads.
Finally, we are also doing research to develop techniques to fully remove the bias
of PE-Miner in detecting packed/non-packed executables [24].
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Abstract. In order to detect a compromise of a running process based on it devi-
ating from its program’s normal system-call behavior, an anomaly detector must
first be trained with traces of system calls made by the program when provided
clean inputs. When a patch for the monitored program is released, however, the
system call behavior of the new version might differ from that of the version it
replaces, rendering the anomaly detector too inaccurate for monitoring the new
version. In this paper we explore an alternative to collecting traces of the new pro-
gram version in a clean environment (which may take effort to set up), namely
adapting the anomaly detector to accommodate the differences between the old
and new program versions. We demonstrate that this adaptation is feasible for
such an anomaly detector, given the output of a state-of-the-art binary difference
analyzer. Our analysis includes both proofs of properties of the adapted detector,
and empirical evaluation of adapted detectors based on four software case studies.

Keywords: Anomaly detection, software patches, system-call monitoring, binary
difference analysis.

1 Introduction

One widely studied avenue for detecting the compromise of a process (e.g., by a buffer
overflow exploit) is by monitoring its system-call behavior. So-called “white-box” de-
tectors build a model of system-call behavior for the program via static analysis of the
source code or binary (e.g., [18ISUT111212013]). “Black-box” (or “gray-box’’) detectors
are trained with system-call traces of the program when processing intended inputs
(e.g., [7U6/15016/9.8]). In either case, deviation of system-call behavior from the model
results in an alarm being raised, as this might indicate that the code executing in the
process has changed. Both white-box and black/gray-box approaches offer advantages.
The hallmark of white-box approaches is the potential for a near-zero or zero false
alarm rate [18]], if static analysis uncovers every possible system call sequence that the
program could possibly emit. Since they are trained on “normal” system-call behavior,
black/gray-box approaches can be more sensitive, in that they can reflect nuances of the
local environments and usage of the monitored programs [[14] and can detect behavioral
anomalies that are nevertheless consistent with the control-flow graph of the program.
Such anomalies can indicate a compromise (e.g., [3]) and, if ignored, allow more room
for mimicry attacks to succeed [19/17].

When a monitored program is patched, an anomaly detector trained on system-call
traces may no longer be sufficiently accurate to monitor the updated program. One way
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to address this is to rebuild the model by collecting traces of the updated program.
However, these traces must be gathered in a sanitized environment free of attacks that
is otherwise as similar as possible — e.g., in terms of the operating system and relevant
device configurations and contents, as well as the program usage — to the environment
in which the updated program will be run. This problem is compounded if there are
multiple such environments.

To avoid the effort of setting up a sanitized environment for collecting system-call
traces every time a patch is issued, in this paper we consider an alternative approach to
building a model of normal system-call behavior for an updated program. Our approach
consists of detecting the differences between the updated program and the previous ver-
sion, and then directly updating the system-call behavior model to reflect these changes.
There are several complexities that arise in doing this, however. First, program patches
are often released as wholly new program versions, not isolated patches. Second, in
either case, program updates are typically released only in binary format. Both of these
make it difficult to detect where the changes occur between versions. Third, while state-
of-the-art binary difference analyzers (e.g., [10]]) can detect where changes occur, how
to modify the system-call model to reflect those changes can require significant further
analysis. We emphasize, in particular, that we would like to adapt the model to ac-
commodate these changes while decaying the model’s sensitivity to abnormal behavior
as little as possible. So, adaptations that increase the model’s size (and hence allowed
behaviors) more than the changes would warrant should be avoided.

In this paper we provide an algorithm for converting the execution-graph anomaly
detector [8]] on the basis of the output of the BinHunt binary difference analysis tool [[10]
when applied to a program and its updated version. We show that our algorithm is
sound, in the sense that the resulting execution-graph anomaly detector accepts only
system-call sequences that are consistent with the control-flow graph of the program.
Such soundness was also a requirement of the original execution-graph model [8], and
so our algorithm preserves this property of the converted execution graph. In addition,
we show through experiments with several patched binaries that our converted execu-
tion graphs can be of comparable size to ones generated by training on system-call
sequences collected from the updated program, and moreover that the converted execu-
tion graphs accept (i.e., do not raise alarms on) those sequences. As such, the converted
execution graphs from our algorithms are, based on our experiments, good approxi-
mations of the execution graphs that would have been achieved by training. To our
knowledge, ours is the first work to automatically update a system-call-based anomaly
detection model in response to program patches.

2 Related Work

Systems that employ binary matching techniques to reuse stale “profiles” are most re-
lated to our work. Profiles of a program are representatives of how a program is used
on a specific machine by a specific user. They usually include program counter in-
formation, memory usage, system clock information, etc., and are typically obtained
by executing an instrumented version of the program that generates profile informa-
tion as a side-effect of the program execution. Spike [4] is an optimization system that
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collects, manages, and applies profile information to optimize the execution of DEC
Alpha executables. When old profiles are used to optimize a new build of a program,
Spike simply discards profiles for procedures that have changed, where changes in pro-
cedures between two builds of a program are detected by calculating the edit distance
between signatures of the corresponding procedures. Spike is not able to re-use profiles
of modified procedures.

Wang et al. proposed a binary matching tool, namely BMAT, to propagate profile
information from an older, extensively profiled build to a newer build [20]. An opti-
mized version of the newer build is then obtained by applying optimization techniques
on the newer build and the propagated profile. The main difference between BMAT and
our proposed technique is that we skip the process of propagating the profiles (which
roughly correspond to the system-call traces in anomaly detection) and directly prop-
agate the anomaly detection model of the older build to that of the newer build. Our
approach is better suited to anomaly detectors that use an automaton-like model be-
cause these models are closely related to the control flow of the program (e.g., [8]), and
therefore our approach avoids potential inaccuracies introduced in an indirect approach
in which system-call traces are derived first.

3 Background and Terminology

To better explain our algorithm for converting the execution-graph anomaly detection
model [8]], here we provide some background and terminology. We first give our defi-
nitions of basic blocks and control flow graphs, which are slightly different from those
typical in the literature (c.f., [1]). Next, we outline important concepts in binary differ-
ence analysis including common induced subgraphs and relations between two matched
basic blocks and two matched functions. We also define important elements in control
flow graphs, e.g., call cycles and paths, and finally briefly define an execution graph.
The conversion algorithms and their properties presented in Section ] rely heavily on
the definitions and lemmas outlined in this section.

Our definitions below assume that each function is entered only by calling it; jumping
into the middle of a function (e.g., using a got o) is presumed not to occur. We consider
two system calls the same if and only if they invoke the same system-call interface (with
potentially different arguments).

Definition 1 [basic block, control-flow subgraph/graph]. A basic block is a consecu-
tive sequence of instructions with one entry point. The last instruction in the basic block
is the first instruction encountered that is a jump, function call, or function return, or
that immediately precedes a jump target.

The control-flow subgraph of a function f is a directed graph cfsg, = (cfsgV Iz
cfsgE ). cfsgV ; contains

— adesignated f.enter node and a designated f.exit node; and
— anode per basic block in f. If a basic block ends in a system call or function call,
then its node is a system call node or function call node, respectively. Both types of
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nodes are generically referred to as simply call nodes. Each node is named by the
address immediately following the basic block ]

cfsgE; contains (v, v') if

— v = f.enter and v’ denotes the first basic block executed in the function; or

— v/ = f.exit and v ends with a return instruction; or

— v ends in a jump for which the first instruction of v’ is the jump target; or

— the address of the first instruction of v’ is the address immediately following (i.e., is
the name of) v.

The control-flow graph of a program P is a directed graph cfgp = (cfgVp, cfgEp)
where cfgV p = (J; p cfsgV, and (v, ") € cfgEp iff

- (v,v") € cfsgE for some f € P;or
— v' = f.enter for some f € P and v denotes a basic block ending in a call to f; or
— v = f.exit for some f € P and v’ denotes a basic block ending inacall to f. O

We next define common induced subgraphs, which are used in binary difference analy-
sis of two programs [[10].

Definition 2 [common induced subgraph, ~, ~ ]. Given cfsg; = (cfsgV;, cfsgE),
an induced subgraph of cfsg is a graph isg; = (isgV,isgE ;) where isgV, C cfsgV;
and isgE; = cfsgE (N (isgi X isgi). Given two functions f and g, a common induced
subgraph is a pair (isg Iz isgg> of induced subgraphs of cfsg, and cfsg,, respectively,
that are isomorphic. We use ~ to denote the node isomorphism; i.e., if v € isgV; maps
to w € isgV,, in the isomorphism, then we write v ~ w and say that v “matches” w.
Similarly, if v ~ w, v/ ~ w’, and (v,v’) € isgE; (and so (w,w') € isgE, ), then we
write (v,v’) ~ (w,w’) and say that edge (v, v") “matches” (w, w").

The algorithm presented in this paper takes as input an injective partial function
m:{f:f€P}— {g:g € Q} for two programs P and (), and induced subgraphs
{(isgs,isgr(s)) = m(f) # L}. We naturally extend the “matching” relation to functions
by writing f ~ w(f) if #(f) # L, and say that f “matches” 7(f). Two matched
functions f and g are similar, denoted f ~ g, iff isg; = cfsg; and isg, = cfsg,,. o

Control-flow subgraphs and graphs, and common induced subgraphs for two programs,
can be extracted using static analysis of binaries [10]. When necessary, we will appeal
to static analysis in the present work, assuming that static analysis is able to disassemble
the binary successfully to locate the instructions in each function, and to build cfsg ; for
all functions f and cfgp for the program P.

A tool that provides the common induced subgraphs required by our algorithm is
BinHunt [10]. When two nodes are found to match each other by BinHunt, they are
functionally similar. For example, if v € isgV, w € isgV (4, and v ~ w, then either
both v and w are call nodes, or neither is; we utilize this property in our algorithm.
However, BinHunt compares two nodes by analyzing the instructions within each node
only, and so the meaning of match does not extend to functions called by the nodes.
For example, two nodes, each of which contains a single call instruction, may match

! For a function call node, this name is the return address for the call it makes.
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to each other even if they call very different functions. In order to extend the meaning
of match to functions called by the nodes, we introduce a new relation between two
functions (and subsequently two nodes), called extended similarity.

Definition 3 [e%ét ]. Two matched functions f and g are extended-dissimilar, denoted
F 7 g.iff
— (Base cases)
o f#gior
e for two system call nodes v € cfsg; and w € cfsg, such that v ~ w, v and w call
different system calls; or
e for two function call nodes v € cfsg; and w € cfsg, such that v ~ w, if v calls
f"and w calls ¢, then f’ % ¢'.

— (Induction) For two function call nodes v € cfsg; and w € cfsg, such that v ~ w,

if v calls f’ and w calls ¢/, then f’ e%t g.
If two matched functions f and g are not extended-dissimilar, then they are extended-
similar, denoted f %t g. Two matched nodes v and w are extended-similar, denoted
v S w, if (i) neither v nor w is a call node; or (ii) v and w make the same system call;

or (iii) v and w call f and g, respectively, and f = g. 0

Two extended-similar nodes exhibit a useful property that will be stated in Lemma [Tl
To state this property, we first define call cycles.

Definition 4 [Call cycle]. A sequence of nodes (v1,...,v;) in cfgp is a call cycle
from v iff for some function f € P, v = vy = v; is a function call node calling to f,
v = f.enter, v;_1 = f.exit, and

— (Base case) Foreach i € (1,1 — 1), v; € cfsgVy and (v, vi11) € cfsgE;.
— (Induction) For some k, k' € (1,1 — 1),k <k,

e foreachi € (1, k|U[K' 1), v; € cfsgV;; and
e foreachi € (1,k) U [K',l — 1), (vi,viy1) € cfsgE;; and
o (vg,...,v ) is acall cycle from vy = vyr. O

Lemma 1. If v and w are call nodes in P and Q, respectively, and v = w, then for
every call cycle from v that results in a (possibly empty) sequence of system calls, there
is a call cycle from w that results in the same sequence of system calls.

Lemma [Tl which is proved in Appendix Bl shows a useful property about extended-
similar nodes, and is used in our proofs of properties of the converted execution graph.
As we will see, some edges can be copied from the execution graph of the old binary P
to the execution graph of the new binary () on the basis of nodes in cfg » being extended-
similar to nodes in cng, since those nodes exhibit similar system-call behavior. Next,
we define paths to help refer to sequences of nodes in a control flow graph.

Definition 5 [Path, full, pruned, silent, audible 1. A path p = (v1,...,v,) is a
sequence of nodes where
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— foralli € [1,n], v; € cfgVp; and
— foralli € [1,n), (v;,vit1) € cfgEp.

We use |p| to denote the length of p which is n.

p is pruned if no v € {vs,...,v,} is a function enter node, and if no v € {vy, ...,
Un—1} is a function exit node. p is full if for every function call node v & {v1, v, } on
p, v is either followed by a function enter node or preceded by a function exit node
(but not both).

p is called silent if for all ¢ € (1,n), v; is not a system call node. Otherwise, it is
called audible. O

Next, we define an execution graph [8]], which is a model for system-call-based anomaly
detection. We begin with two technical definitions, however, that simplify the descrip-
tion of an execution graph.

Definition 6 [Entry call node, exit call node]. A node v € cfsgy is an entry call node
of f if v is a call node and there exists a full silent path p = (f.enter,...,v). A node
v € cfsg; is an exit call node of f if v is a call node and there exists a full silent path
p={v,..., f.exit). o

Definition 7 [support ( ~>), strong support ( ~>)]. A (full or pruned) path p =
(v,...,v") supports an edge (v,v’), denoted p ~» (v,v’), if p is silent. p strongly sup-
ports (v,v'), denoted p ~> (v,v), if p ~ (v,v) and if each of v and v’ is a system call
node or a function call node from which there is at least one audible call cycle. a

Definition 8 [Execution subgraph/graph]. An execution subgraph of a function f is
a directed graph esg; = (esgV 7 esgE f) where esgV; C cfsgV; consists only of call
nodes. If (v,v") € esgE then there is a full path p = (v, ..., v") such that p & (v,0).

An execution graph of a program P is a directed graph egp = (egVp, egEclp,
egEcrp, egErtp) where egEclp, egEcrp, and egErtp are sets of call edges, cross edges
and return edges, respectively. egVp = (J;cpesgVy and egEcrp = (J;cpesgEy.
If (v,v") € egEclp, then v is a function call node ending in a call to the function f
containing v’, and v’ is a entry call node. If (v, v) € egErtp, then v is a function call
node ending in a call to the function f containing v/, and v’ is an exit call node. O

An execution graph egp is built by subjecting P to a set of legitimate inputs in a pro-
tected environment, and recording the system calls that are emitted and the return ad-
dresses on the function call stack when each system call is made. This data enables the
construction of an execution graph. Then, to monitor a process ostensibly running P
in the wild, the return addresses on the stack are extracted from the process when each
system call is made. The monitor determines whether the sequence of system call (and
the return addresses when those calls are made) are consistent with traversal of a path in
egp. Any such sequence is said to be in the language accepted by the execution graph.
Analogous monitoring could be performed using cfg p, instead, and so we can similarly
define a language accepted by the control flow graph. An execution graph egp is built
so that any sequence in its language is also in the language accepted by cfgp [8].
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4 The Conversion Algorithm

Suppose that we have an execution graph egp for a program P, and that a patch to P is
released, yielding a new program (). In this section, we show our conversion algorithm
to obtain eg,. In addition to utilizing egp, our algorithm utilizes the output of a binary
difference analysis tool (e.g., [[10]), specifically a partial injective function 7 and pairs
(isg g, IS8 ( f)> of isomorphic induced subgraphs. Our algorithm also selectively uses
static analysis on (). Unless stated otherwise, below we use f, v and p to denote a
function, node and path, respectively, in cfgp, and we use g, w, and ¢ to denote a
function, node and path, respectively, in cfg,. In addition, we abuse notation in using
“€” to denote a path being in a graph (e.g., “p € cfgp”), in addition to its normal use
for set membership.

Recall that we have two important requirements in designing the conversion algo-
rithm. A first is that eg, preserves the soundness property of the original execution-
graph model, namely that it accepts only system-call sequences that are consistent with
cfg- A second requirement is that it decays the model’s sensitivity to abnormal behav-
ior as little as possible, and therefore preserves the advantage of black-box and gray-box
models in that eg, should not accept system-call behavior that would not have been ob-
served were it built by training, even though this behavior may be accepted by cfg,.

We satisfy the above two requirements by

— creating counterparts of as many nodes and edges in egp as possible in eg);

— adding new nodes and edges to eg, to accommodate changes between P and (); and

— performing the above two tasks in such a way that a minimal set of system-call
behaviors is accepted by eg,.

More specifically, we first copy matched nodes and edges in esg to esg, to the extent
possible for all matched function pairs f ~ g (Section[4.I)). Next, we handle nodes in
cfsg, that are not matched and create corresponding cross edges (Section E.2). In the
last two steps, we further process the function call nodes to account for the functions
they call (Section[4.3) and connect execution subgraphs together to obtain the execution
graph eg, (Section4.4).

4.1 Copying Nodes and Edges When f ~ g

The first step, called copy(), in our conversion algorithm is to copy matched portions in
esg; to esg, if f ~ g. This is an important step as it is able to obtain a large portion
of eg, assuming that there is little difference between P and (), and that the binary
difference analysis that precedes our conversion produces common induced subgraphs
(isgs,isgr(s)) that are fairly complete for most f € P. Intuitively, for two matched
functions f and g, we simply need to copy all nodes and edges in esg  that are matched
and update the names of the nodes (which denote return addresses). However, when a
cross edge is copied to esg,, we need to make sure that there is a full path in cfg, that
can result in the newly added cross edge (i.e., to make sure that it is supported by a full
path).

There are two caveats to which we need to pay attention. The first is that a cross edge
in esg; supported by a pruned path containing edges in cfsgE; \ isgE; should not be
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copied to esg, because something has changed on this pruned path and may render the

cross edge not supported in cfg,. To improve efficiency, here we restrict our analysis

within f and g only and require that all pruned paths (instead of full paths) supporting

the cross edge to be copied be included in isg; and isg,.
For the example in Figure [[} a cross

edge (v,v’) is supported by the pruned

path (v, va, v3,v") in cfsg; (whichisalso 0

a full path). However, there is no pruned %

path in isg , that supports the correspond- 9

ing cross edge in esg, (so no full path
in cfg, will support it). The only pruned @@
path (w, wa, wy, w') in isg,, does not sup-

port this cross edge since this pruned path %

would unavoidably induce a system call.
Thus, the cross edge (v,v’) cannot be

— edgesin cfsg

: —-+—» across edge under analysis in copy()

COpled to €sg,- -=-=--+ across edge that would not be added by copy()
A second caveat is related to the no- commoninduced subgraphs

tion of extended similarity that we in-
troduced in Section 3l Assume v ~ w,
v/ ~ w', and v ~ w” (see Figure 2);
also assume that (v, v, v") ~» (v, v’). To

Fig. 1. Cross edge that is not copied

copy (v,v’) to esg,, we need (w,w”,w’) ~ (w,w’) and therefore v" % w” so that
any call cycle from v” can be “replicated” by a call cycle from w”, yielding the same
system-call behavior (c.f., Lemmal[).

In summary, when a cross edge
(w,w') is created in esg, in this step,
all the nodes on the pruned paths sup-
porting this edge are matched, and the
nodes along each pruned path not only
match but are extended-similar if they
are call nodes. We are very strict when
copying a cross edge because we do not
know which one of the many supporting
pruned paths was taken during training of
egp. In order to avoid possible mistakes
in copying a cross edge to esg,, that 1) is
not supported by a full path in cfg,; or 2)
would not have been created had training
been done on (), we have to require that
all nodes on all supporting pruned paths
be matched and extended-similar. In Figure[3] three cross edges are copied since all the
pruned paths that support them are in the common induced subgraph and call nodes are
extended-similar.

Algorithm [ copy(), in Appendix [A] performs the operations in this step to copy
nodes and cross edges. The following holds for the cross edges it copies to esggP.

— edgesin cfg
-===% crossedgeineg

Fig. 2. Extended similarity in copy()
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Lemma 2. Every cross edge added by copy() is strongly supported by a full path in
cfgg-
Please refer to Appendix [Blfor an outline
of the proof.

copy() creates nodes and cross edges
by copying them from esg;. The next
step (Section [£.2)) shows how we create
more nodes and edges for esg, by stat-
ically analyzing the unmatched portion
of g.

o)

X

€.

(1) Addedin line 104 ® call nodes
. in Algorithm 1 copy() ===® cross edges
4.2 The Unmatched Portion of g  mddedintine 206 < functon boundary
Assuming that f and g = «(f) differ by in Algorithm 2 diff() commoninduced subgraph
only a small portion, copy() would have
created most of the nodes and cross edges Fig. 3. Converting an execution subgraph

for esg,. In this step, we analyze the un-
matched portion of g to make esg, more complete. This step is necessary because esg ¢
does not contain information about the difference between f and g. Intuitively, esg ; and
(isgy,isg,) do not provide enough information for dealing with the unmatched portion
of g, and we need to get help from static analysis.

We identify each pruned path in cfsg, that passes through the unmatched portion of
g and then build cross edges between consecutive call nodes on this pruned path until
this path is connected to the nodes we created in Algorithm[Ilcopy(). Three cross edges
in Figure[Blare created in this way due to the unmatched nodes w4 and ws.

This algorithm, diff(), is detailed in Appendix[Al diff() results in the following prop-

erty for the cross edges it adds to esgd™; Appendix [Blgives an outline of the proof.

Lemma 3. Every cross edge added by diff() is supported by a full path in cfg,.

If there is a cross edge in esg , that was not copied by copy() to esg,,, this occurred be-
cause a supporting pruned path for this edge was changed (containing unmatched nodes
or nodes that are matched but not extended-similar) in g. Whether this pruned path was
traversed when P emitted the system-call sequences on which egp was trained is, how-
ever, unknown. One approach to decide whether to copy the cross edge to esg, is to
exhaustively search (e.g., in diff()) for a full path in cfg, that supports it. That is, any
such path is taken as justification for the cross edge; this approach, therefore, potentially
decreases the sensitivity of the model (and also, potentially, false alarms). Another pos-
sibility, which reflects the version of the algorithm in Appendix[Al is to copy the cross
edge only if there is a full supporting path that involves the changed (unmatched) part
of g. (This process is encompassed by refine() in Appendix[Al described below in Sec-
tion[4.3]) In addition to this approach sufficing in our evaluation in Section[3] it better
preserves the sensitivity of the model.

4.3 Refining esg, Based on Called Functions

Many function call nodes have been created in esg, by copy() and diff(). Except those
extended-similar to their counterparts in cfsgV,, many of these nodes are created
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without considering the system-call behavior of the called functions. This is the reason
why Lemma [3] claims only that the cross edges created are supported but not strongly
supported. In this step, called refine(), we analyze the system-call behavior of the cor-
responding called functions and extend the notion of support to strong support for cross
edges created so far in copy() and diff().

An obvious case in which function
call nodes need more processing is when
the execution subgraph of the called
function has not been created. This
happens when the called function ¢’
does not have a match with any func-
tion in P. In this case, esg, can be
obtained by statically analyzing the func-
tion itself. For simplicity in this pre- e callnodes

. . i node W, is removed since -—> cross edges
sentation, we reuse dlff() to denote this alicall cycles from it are silento function boundary

s g;””

process in Appendix IE], with CIIlpty commoninduced subgraph

sets for the first three arguments, i.e.,

diff (0, (0, 0), Cfsgg,). Fig. 4. Function call node removed and cross
Another scenario in which the func- €dges modified

tion call nodes need more processing is

when the called function does not make a system call. Recall that a call node w is cre-
ated in copy() and diff() but we might not have analyzed the called function ¢’ at that
time and simply assumed that system calls are made in ¢’ (and therefore these cross
edges are supported instead of being strongly supported). If g’ may not make a system
call, then we need to either delete w (in the case where g’ never makes a system call,
shown in Figure 4] where all call cycles from w, are silent) or add cross edges from
predecessor call nodes of w to successor call nodes of w (in the case where g’ may or
may not make a system call).

Lemma 4. After refine(), every cross edge in esg,, is strongly supported by a full path
in cfgq,.

Please refer to Appendix[Bl for the proof of Lemmaldl

4.4 Connecting Execution Subgraphs

At this stage, we create call and return edges to connect all esg, to form egg,. Some
of these call edges are created by “copying” the edges from the egp, e.g., when the
corresponding call node is created in copy() and is extended-similar to its counterpart

in egp (case 1 in Figure 5] where f” = ¢’). If a call node w has a match v but is not
extended-similar to it, we create an edge (w,w’) only for each entry call node w’ in
the function called by w that matches an entry call node v for which (v, v") € egEclp

(case 2 in Figure 3l where f” e;gt g'"), or to all entry call nodes in the called function if
there is no such v’. For other call nodes, the call and return edges cannot be created via
copying, and we add call edges between this call node and all the entry call nodes of
the called function (case 3 in Figure[3). We create return edges in a similar way.
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Appendix [A] briefly gives an imple-
mentation of connect(), and please refer

to Appendix [Blfor an outline of the proof f0 -0 &() %()

of Lemmal[3l oy

Lemma 5. Every call or return edge oS gl /® ~Z
added by connect() is strongly supported Y g”()

by a full path in cfg,.

Therefore, after running our conversion

algorithm, we have a converted execu- @ Adtedinined® = __, e

tion graph of the new program egg with @ Addedin line 411 ®  callnodes

all the IlOdCS being SyStem Call nodes or ® IAnd/-:ilegz(d)rilr:r:iTeA‘ACZO()nnECt()l = Zl;rr‘:;ir:\?::;j:;:ubgraph
function call nodes with at least one au- in Algorithm 4 connect().

dible call cycle from each, and all the

edges being strongly supported by cng. Fig. .S. Using call and return edges to connect ex-
Finally, we can state the soundness of our ~€cution subgraphs

conversion algorithm:

Lemma 6. The language accepted by eg, is a subset of the language accepted by cfg,.

This result is trivial given Lemmas[2H3] and consists primarily in arguing that any path
q traversed in eg, can be “mimicked” by traversing a full path in cfg, that travels from
each node of ¢ to the next, say from w to w’, by following the full path in cfg, that
strongly supports (w, w").

5 Evaluation

In this section, we evaluate the performance of our conversion procedure. Our con-
version program takes in the execution graph of the old binary egp, the control flow
graph for both binaries cfgp and cfgg,, and the output of the binary difference ana-
lyzer BinHunt, and outputs the converted execution graph eg, of the new binary. We
implemented Algorithms[1l{4] with approximately 3000 lines of Ocaml code.

We evaluated execution graphs obtained by our conversion algorithm by comparing
them to alternatives. Specifically, for each case study, we compared the converted exe-
cution graph for the patched program () with (i) an execution graph for () obtained by
training and (ii) the control flow graph of (). We performed four case studies.

tar. Version 1.14 of tar (P) has an input validation error. Version 1.14-2.3 (Q) differs
from P by changing a do {} while( ) loop into a while( ) do {} loop (see
http://www.securityfocus.com/bid/25417/1info). This change is iden-
tified by BinHunt, but it involves only a function call that does not make any system
calls. As such, the system-call behavior of the two programs remains unchanged, and
so does the execution graph obtained by our conversion algorithm. (diff() adds a new
node and the corresponding cross edges for the function call involved in the change,
which are subsequently deleted in refine() because all call cycles from it are silent.)

ncompress. In version 4.2.4 of ncompress (P), a missing boundary check allows a
specially crafted data stream to underflow a buffer with attacker’s data. A check was
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added in version 4.2.4-15 (@) to fix this problem (see http: //www.debian.org/
security/2006/dsa-1149). The check introduces a new branch in the program
in which an error message is printed when the check fails, causing a new system call
to be invoked. With the same benign inputs for training, the execution graphs for both
programs are the same. Our conversion algorithm, however, tries to include this new
branch by performing limited static analysis, and consequently expands the execution
graph by 3 nodes and 23 edges.

ProFTPD. ProFTPD version 1.3.0 (P) interprets long commands from an FTP client as
multiple commands, which allows remote attackers to conduct cross-site request forgery
(CSRF) attacks and execute arbitrary FTP commands via a long ftp:// URI that
leverages an existing session from the FTP client implementation in a web browser. For
the stable distribution (etch) this problem has been fixed in version 1.3.0-19etch2 (Q)
by adding input validation checks (see http://www.debian.org/security/
2008 /dsa-1689). Eight additional function calls are introduced in the patched part,
most to a logging function for which the execution subgraph can be copied from the
old model. The converted execution graph for the patched version thus only slightly
increases the execution graph size.

unzip. When processing specially crafted ZIP archives, unzip version 5.52 (P) may
pass invalid pointers to a C library’s free () routine, potentially leading to arbi-
trary code execution (CVE-2008-0888). A patch (version 5.52-1 (QQ)) was issued with
changes in four functions (see http://www.debian.org/security/2008/
dsa-1522). Some of the changes involve calling to a new function for which there is
no corresponding execution subgraph for the old version. All four changes resulted in
static analysis in our conversion algorithm, leading to execution subgraphs constructed
mostly or entirely by static analysis. This increased the number of nodes and edges in
the resulting execution graph eg, more significantly compared to the first three cases.
Experimental results are shown

in Table [1l and Table 2l In Ta- Table 1. Evaluation: nodes and edges in eg,,

ble [l we show the number of

nodes and edges in eg 0 that borrowed from eg, not borrowed from eg
have their counterparts in egp # of nodes # of edges # of nodes # of edges
and those that do not. More pre- tar 478 1430 0 0
cisely, if w € egV, and there ncompress 151 489 3 23

. ’ c VQ h that ProFTPD 775 1850 6 28

1S some v € egVp such that o ip 374 1004 50 195

v ~ w, then w is accounted for
in the “borrowed” column in Ta-
ble[Dl Similarly, if (w,w’) € egEclg U egErt, U egEcr(, and there is some (v,v’) €
egEclp UegErtp UegEcrp such that (v, v") ~ (w,w’), then (w, w") is accounted for in
the “borrowed” column. Nodes and edges in eg, not meeting these conditions are ac-
counted for in the “not borrowed” columns. As this table shows, increased use of static
analysis (e.g., in the case of unzip) tends to inflate the execution graph.

Table [2] compares eg, obtained by conversion with one obtained by training. As
we can see, eg, obtained by training is only marginally smaller than the one obtained
by conversion for the first three cases. They differ slightly more in size in the unzip
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Table 2. Statistics for four case studies. Numbers of nodes for egp and eg,, are highlighted as
representatives for size comparison.

Old binary P New binary @
model  egp (trained) cfgp egg (converted) eg (trained) cfgo
nodes edges nodes edges nodes edges time (s) nodes edges nodes edges
tar 478 1430 2633 7607 478 1430 14.5 478 1430 2633 7607
ncompress 151 489 577 1318 154 512 13.1 151 489 578 1322
ProFTPD 775 1850 3343 9160 781 1878 174 776 1853 3351 9193
unzip 374 1004 491 1464 424 1199 41.6 377 1017 495 1490

case, due to the more extensive use of static analysis. When the eg, as obtained by
conversion is substantially larger than egp, as in the unzip case, this is an indication
that rebuilding eg, by training might be prudent.

Both converted eg(, and trained eg, are smaller than cfgg, which, in our experi-
ments, includes cfsg,, for each g reachable from the first function executed in the binary,
including library functions. The numbers presented for cfg¢, do not include non-call
nodes, function call nodes that do not give rise to audible call cycles, enter nodes, or
exit nodes, to enable a fair comparison with eg, (since egg, does not contain these
nodes). Since eg,, when trained, is a function of the training inputs, the gap between
the sizes of cfg, and eg,, would presumably narrow somewhat by training on a wider
variety of inputs (though we did endeavor to train thoroughly, see Appendix[C)). Abso-
lute sizes aside, however, Table [2] suggests that our conversion algorithm often retains
the precision offered by the execution graph from which it builds, no matter how well
(or poorly) trained.

An important observation about our converted execution graphs in these case studies
is that the language each accepts includes all system-call sequences output by () when
provided the training inputs. We cannot prove that this will always hold with our con-
version algorithm, due to limitations on the accuracy of the binary difference analysis
tool from which we build [10]. Nevertheless, this empirically provides evidence that
this property should often hold in practice.

The conversion time shown in Table[2]for each egg (converted) is in seconds on a 2.8
GHz CPU platform with 1GB memory, and includes only our algorithm time, excluding
binary difference analysis and the construction of cfg,. (Binary difference analysis with
BinHunt overwhelmingly dominated the total conversion time.) As shown in Table 2]
as the changes between P and () increase in size, more time is spent on analyzing cfg,
and building eg, statically. In the cases of ncompress and unzip, the static analysis
needs to be applied to the libraries as well.

6 Conclusion

We have presented an algorithm by which an execution graph, which is a gray-box
system-call-based anomaly detector that uses a model trained from observed system-
call behaviors, can be converted from the program for which it was originally trained
to a patched version of that program. By using this algorithm, administrators can be
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spared from setting up a protected and identically configured environment for collecting
traces from the patched program. Our algorithm retains desirable properties of execu-
tion graphs, including that the system-call sequences accepted by the execution graph
are also consistent with the control-flow graph of the program, and that the sequences
accepted tend to capture “normal” behavior as defined by the training sequences. We
have demonstrated the effectiveness of our algorithm with four case studies.

As our paper is the first to study adapting anomaly detectors to patches, we believe
it introduces an important direction of new research. There are numerous system-call-
based anomaly detectors in the literature. Our initial studies suggest that many other
such detectors pose challenges to conversion beyond those we have addressed here.
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A Algorithms

The notation used in the following algorithms follow the convention we stated at the
beginning of Sectiond} we use f, v and p to denote a function, node and path, respec-
tively, in cfg p, and we use g, w, and ¢ to denote a function, node and path, respectively,
in cfgg,. We also continue to use € to denote not only set membership, but a path being
in a graph, as well.

Algorithm [T copy() picks cross edges from the old function execution subgraph,
when we have matches for the two ends of a cross edge and when there is no change that
would potentially affect this edge. We copy the edge into the new function execution

subgraph (line [104).

Algorithm 1. copy()

Input: esg, (isg;,isg,), cfsg;, cfsg,

100: for all (v,v") € esgE; do

101:  if Jw,w’ : v ~ wand v’ ~ w’ then

102: esgVy? — esgVsP U{w,w'}

: i € cfs 2 (v, Cisg, : Yo € pIw” € q:v" X w” then
103 fVp € cfsg;,p~ (v,0') Ig €isg, : VW' €pIw” €q:v”
104: esgEy’ «— esgEZ” U {(w, w')}

Output: esg?’

In this implementation of Algorithm [Il we examine all pruned paths that strongly
support the cross edge to be copied to esg, (line [[03). When the two functions f and g
are similar, it is more efficient to examine the differences between f and g to discover
the cross edges that should not be copied. When the differences between f and g are
small, this equivalent algorithm is more efficient, in our experience.

Algorithm [2] diff () modifies esgi® created in copy(). It analyzes each pruned path
that passes through the unmatched portion of g, and tries to create a part of execution
graph along each such pruned path and connect it to the rest of the execution subgraph.
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Algorithm 2. diff()
Input: esg?’, (isg;, isg,), cfsg,
200: esggiff — esgf
201: U+ {w | w € cfsgV, A (w ¢ isng\/(Hv:va/\ve%tw))}
202: U' «{w | w € esgV5" V (w € U A wis a call node) }
203: for all w € U do
204:  forall g = (w1,...,w)y) € cfsg, 1w € qA
(Vie (1,]q]) :wi #w=w; U") A{wi,w)q} C U do
205: esgV;ifF — esgV‘;lifF U{w; | i €[1,]q]] Aw;isacall node}
206: eng‘;"tF — eng‘;"tF U {(ws,w;) | i, € [1,|q]] Aws,w; are call nodes Ai < j A

Output: esg

Vk € (i,7) : wg is not a call node}
diff
g

Algorithm 3. refine()
Input: {esgi’}y, H = {esggm}g, cfg,

300

301:
302:
303:

304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:

: while H # () do
pick one esg‘;”tF in H
esgg" — esg;‘;ifr
for all w € esgV;f” : w is a function call node A
w ¢ {w’ | w' € esgVy AT 0 B w’}do
let g’ be the function called by w
if no call cycle from w is audible then
esgV;f” — esgV'g‘cn \ {w}
for all w’,w" : (w',w) € esgE)" A (w,w") € esgE}" do
esgEl" — esgE™ U {(w', w")}
for all w’ : (w,w’) € esgE}" do
esgE™ — esgE™ \ {(w, ')}
for all w’ : (w', w) € esgE}" do
esgE™ — esgE™ \ {(w', w)}
else if all call cycles from w are audible then
if esg‘;',fr ¢ H then
H «— H U {diff(0, (0, 0), cfsg,/) }
else
for all w', w” : (w',w) € esgEl" A (w,w”) € esgE}" do
engg" — esgEl" U{(w',w")}
if esg‘;',fr ¢ H then
H «— H U {diff(0, (0, 0), cfsg,/) }
H«— H\ {esgg'ﬁ}

Output: {esg'gf” }o
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Algorithm 4. connect()

Input: R = {esg'gf”}g, egEclp, egErtp
400: for all esg" € R do
401: forallw € esgV;f" do

402: let g’ be the function to which w calls

403:  if3v: v X w then

404: for all v : (v,v") € egEcl, do

405: egEcly, «— egEcly U {(w,w")} where v’ =’

406: for all v’ : (v, v) € egErtp do

407: egErt, — egErt, U {(w",w)} where v” = w”

408: elseifEIU:UNw/\Ueaygwthen

409: for all v’ : (v,v") € egEcl, do

410: if Juw’ € esngf‘ :v' ~w’ Aw'is an entry call node then

411: egEcl, — egEclgy U {(w,w’)}

412: else

413: egEcl, « egEcly U{(w,w’) |w' € esgV;‘c? is an entry call node }
414: for all v’ : (v, v) € egErtp do

415: if Jw” € esgV;ff‘ : 0" ~w” Aw” is an exit call node then

416: egErt, — egErt, U {(w",w)}

417: else

418: egErt, — egErty, U{(w”,w) | w"” € esgV{ is an exit call node }
419: else

420: egEcl, «— egEcly, U{(w,w’) | w’ € esgV}" is an entry call node}
421: egErt, — egErty, U{(w”,w) | w"” € esgVy, is an exit call node}

Output: eg,

Algorithm 3] refine() uses the system call behavior of each called function to deter-
mine if any cross edges should be removed and others used in their places. (Analysis in
Algorithm 2] does not account for the behavior of called functions when adding edges.)

Finally, Algorithm @] connect() tries to copy call edges and return edges from the
execution graph of the old program when we have sufficient matching support (line 403
and Q7). Otherwise, we build call and return edges based on static analysis (lines411]

413 16l 418 420 and B21).

B Proofs

Proof of Lemmal[ll Since v EY w, by Definition[T} 2 Bl for a call cycle (v, va, . . ., vy, V)
in cfgp, there will be a call cycle (w, wa, ..., w,,w) in cfgg such that v; ~ w; : i €
[2,n], and if v; and w; are system call nodes, they must make the same system call, so
these two call cycles result in the same (possibly empty) sequence of system calls. O

Proof of Lemma 2l If (w,w") is added to esgE" in line [[04] then consider the cross
edge (v,v') € esgE, chosen in line [0 Since (v,v’) € esgE,, there is a full, silent
path p’ = (v,...,v’) in P that was exercised in training. Consider the pruned path p
from v to v’ obtained by collapsing each call cycle in p’ to its function call node. By
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line[I03] there is a corresponding ¢ € isg, on which every node is extended-similar to
its corresponding one in p (and hence p € isgy, as well). Then, by Lemmal [Tl there is a

full path ¢’ that strongly supports (w, w"). O
Proof of Lemma 3] If an edge (w;, w;) is added to eng‘;'tF at line 206 then w; and w;
are call nodes with no call node in between them on g. As such, (w;, ..., w;) is a full,
silent path that supports (w;, w;). O

Proof of Lemma H We first argue that any (vw’,w”) € eng;cn at the completion of
refine() is supported by a full path. First, if (w’, w") was added to esgEg’ in line [[04]

and then copied forward (lines200, 302), or if (w’, w"") was added to enggifF in line206]
and then copied forward (line 302)), then (w’, w'") is supported by a full path per Lem-
mas[2and Bl Now, suppose that (w’, w") was added in line or[318] Then line
(respectively, says that some call cycle from w is silent. So, if the cross edges
(w', w), (w,w") were supported by full paths, then the new cross edge (w’, w") is also
supported by a full path. It follows by induction, with Lemmas PH3] providing the base
cases, that any cross edges added in lines and 31§ are supported by a full path.

We now show that any such edge is strongly supported. Consider any function call
node w € esgV;'cn at the completion of refine. If w € esgV{P, then it was added in
line [T02] because it matched some v (line [[0T) from which an audible call cycle was

traversed during training of egp. If v = w, then by Lemmal[T] there is an audible call

cycle from w, as well. If v G;”)ét worw & esgV‘;p, then w satisfied the condition in
line 303 and, if there is no audible call cycle from w, was removed in lines 306H312l O

Proof of Lemma[3 Consider an edge added in line[403] Since both v and v" were wit-
nessed during training eg p, each is a system call node or has some audible call cycle.

Because v % w and v/ ~ w’, Lemmal[ll implies that each of w and w’ is a system
call node or has some audible call cycle. Moreover, Lemmal[I] guarantees that w’ is an
entry call node since v’ is, and so the call edge (w, w’) created at line 403 is strongly
supported by a full path. By similar reasoning, each return edge added at line Q7] is
strongly supported by a full path.

In all other cases in which an edge (w, w’) is added to egEclg (in line 111 or
E20), connect() explicitly checks whether w’ is an entry call node for the function g’
called by w (line[@Q2)), and so there is a full path supporting (w, w’). Similarly, for each
edge (w”,w) added to egErt), there is a full path supporting this edge. Since all nodes
in each esgV;f" are either system call nodes or function call nodes from which there is
an audible call cycle, these edges are strongly supported. |

C Training

In this appendix we briefly explain how we collected the traces for the four case studies,
since training plays an important role in building the execution graphs. For ncompress
and unzip, we tried all operation types and options listed in the online manuals. However,
for tar and ProFTPD, we did not train as exhaustively as we did for the previous two cases
due to the complexity of tar operations and ProFTPD configurations. Nevertheless, for
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tar and ProFTPD, we did follow guidelines to enhance the repeatability of the training
procedure, as described below.

tar. Following the manual (see http://www.gnu.org/software/tar/
manual/tar.pdf), we trained tar for its three most frequently used operations
(create, list and extract) that are introduced in Chapter 2 and with all options described
in Chapter 3. The directory and files we adopted for applying those operations were the
downloaded source of tar-1.14.

ncompress. We trained ncompress on its own source directory for version 4.2.4, us-
ing all operations and options described in its online manual (see http://linux.
about.com/od/commands/a/blcmdll_compres.htm),

ProFTPD. We trained ProFTPD configured using the sample configuration file
shipped with the source, and with all commands described in the online
manual (see http://linux.about.com/od/commands/1l/blcmdll_ftp.
htm). We chose to transfer files within the ProFTPD-1.3.0 source directory.

unzip. Similar to the training on ncompress, we followed the unzip online manual
(see http://1linux.about.com/od/commands/1/blcmdll_unzip.htm)
and trained the program on the .zip package of version 5.52.
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Abstract. Signature-based input filtering is an important and widely deployed de-
fense. But current signature generation methods have limited coverage and the gen-
erated signatures often can be easily evaded by an attacker with small variations of
the exploit message. In this paper, we propose protocol-level constraint-guided ex-
ploration, a new approach towards generating high coverage vulnerability-based
signatures. In particular, our approach generates high coverage, yet compact, vul-
nerability point reachability predicates, which capture many paths to the vulnera-
bility point. In our experimental results, our tool, Elcano, generates compact, high
coverage signatures for real-world vulnerabilities.

1 Introduction

Automatic signature generation remains an important open problem. According to
Symantec’s latest Internet Security Threat Report hundreds of new security-critical vul-
nerabilities were discovered in the second half of 2007 [1]. For many of these vulner-
abilities, the exploit development time is less than a day, while the patch development
time is often days or months [[1]. In addition, the patch deployment time can be long
due to extensive testing cycles.

To address these issues, signature-based input filtering has been widely deployed in
Intrusion Prevention (IPS) and Intrusion Detection (IDS) systems. Signature-based in-
put filtering matches program inputs against a set of signatures and flags matched inputs
as attacks. It provides an important means to protect vulnerable hosts when patches are
not yet available or have not yet been applied. Furthermore, for legacy systems where
patches are no longer provided by the vendor, or critical systems where any changes to
the code might require a lengthy re-certification process, signature-based input filtering
is often the only practical solution to protect the vulnerable program.

The key technical challenge to effective signature-based defense is to automatically
and quickly generate signatures that have both low false positives and low false nega-
tives. In addition, it is desirable to be able to generate signatures without access to the
source code. This is crucial to wide deployment since it enables third-parties to generate
signatures for commercial-off-the-shelf (COTS) programs, without relying on software
vendors, thus enabling a quick response to newly found vulnerabilities.

Due to the importance of the problem, many different approaches for automatic sig-
nature generation have been proposed. Early work proposed to generate exploit-based
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signatures using patterns that appeared in the observed exploits, but such signatures
can have high false positive and negative rates [2}13/4,15,16./7,18}19,[10]. More recently,
researchers proposed to generate vulnerability-based signatures, which are generated
by analyzing the vulnerable program and its execution and the actual conditions needed
to exploit the vulnerability and can guarantee a zero false positive rate [[11,12].

Automatic vulnerability signature generation. A vulnerability is a point in a program
where execution might “go wrong”. We call this point the vulnerability point. A vulner-
ability is only exploited when a certain condition, the vulnerability condition, holds on
the program state when the vulnerability point is reached. Thus, to exploit a vulnerabil-
ity, the input needs to satisfy two conditions: (1) it needs to lead the program execution
to reach the vulnerability point; (2) the program state needs to satisfy the vulnerability
condition at the vulnerability point. We call the condition that denotes whether an input
message will make the program execution reach the vulnerability point the vulnerability
point reachability predicate (VPRP). Thus, the problem of automatically generating a
vulnerability-based signature can be decomposed into two: identifying the vulnerability
condition and identifying the vulnerability point reachability predicate. A vulnerability-
based signature is simply the conjunction of the two. While both problems are impor-
tant, the space limitations makes trying to cover both in a single paper unrealistic. Thus,
in this paper we focus on how to generate vulnerability point reachability predicates
with high coverage and compact size, and we refer the reader to [13] for details on the
vulnerability condition extraction. In this paper, we use optimal signature to refer to a
vulnerability signature that has no false positives and no false negatives.

Coverage is a key challenge. One important problem with early vulnerability-based
signature generation approaches [11,[12] is that the signatures only capture a single
path to the vulnerability point (i.e., their VPRP contains only one path). However, the
number of paths leading to the vulnerability point can be very large, sometimes infinite.
Thus, such signatures are easy to evade by an attacker with small modifications of the
original exploit message, such as changing the size of variable-length fields, changing
the relative ordering of the fields (e.g., HTTP), or changing field values that drive the
program through a different path to the vulnerability point [14}[15].

Acknowledging the importance of enhancing the coverage of vulnerability-based
signatures, recent work tries to incorporate multiple paths into the VPRP either by static
analysis [[16], or by dynamic analysis [17,18]. However, performing precise static anal-
ysis on binaries is hard due to issues such as indirection, pointers and loops.

ShieldGen takes a probing-based approach using protocol format information [[18]—
using the given protocol format, it generates different well-formed variants of the original
exploit using various heuristics and then checks whether any of the variants still exploits
the vulnerability. The advantage of this approach is that by using protocol format infor-
mation, the final signature is expressed at the protocol level (which we call protocol-level
signature) instead of the byte level. Compared to signatures at the byte-level (which do
not understand the protocol format), protocol-level signatures have two advantages: they
are more compact and they naturally cover variants of the exploits caused by variable-
length fields and field re-ordering (See more detail in Section[2.2)). The disadvantage of
the approach used by ShieldGen is that the exploration uses heuristics to figure out what
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test inputs to generate. Such heuristics can introduce false positives and do not use the
information from the execution of the program, which would increase the coverage of
the program execution space. As a result, the exploration is inefficient and has various
limitations (See Section[2.3)).

Bouncer extends previous approaches using symbolic execution to generate sym-
bolic constraints on inputs as signatures [17]. Even though Bouncer makes improve-
ments in increasing the coverage of the generated signatures, it still suffers from
several limitations. First, it generates byte-level signatures instead of protocol-level sig-
natures. As a result, 