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Preface

The papers in this volume were selected for presentation at the 18th International 
Meshing Roundtable (IMR), held October 25-28, 2009 in Salt Lake City, UT, 
USA.  The conference was started by Sandia National Laboratories in 1992 as a 
small meeting of organizations striving to establish a common focus for research 
and development in the field of mesh generation.  Now after 18 consecutive years, 
the International Meshing Roundtable has become recognized as an international 
focal point annually attended by researchers and developers from dozens of coun-
tries around the world.   

The 18th International Meshing Roundtable consists of technical presentations 
from contributed papers, research notes, keynote and invited talks, short course 
presentations, and a poster session and competition.  The Program Committee 
would like to express its appreciation to all who participate to make the IMR a 
successful and enriching experience. 

The papers in these proceedings were selected from more than 40 paper submis-
sions. Based on input from peer reviews, the committee selected these papers for 
their perceived quality, originality, and appropriateness to the theme of the Interna-
tional Meshing Roundtable.  We would like to thank all who submitted papers. We 
would also like to thank the colleagues who provided reviews of the submitted pa-
pers.  The names of the reviewers are acknowledged in the following pages. 

We extend special thanks to Jacqueline Hunter for her time and effort to make 
the 18th IMR another outstanding conference. 

August 2009 18th IMR Program Committee 
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Size Function Smoothing Using an Element Area 
Gradient 

John Howlett and Alan Zundel 

Department of Civil and Environmental Engineering 
Brigham Young University 
john.d.howlett@byu.net, zundel@byu.edu 

Abstract. This paper presents a method to improve element size transitions when using a 
size function to govern the mesh generation. The method modifies the size function to 
meet a user specified adjacent element area change limit. The method can be used to either 
refine or coarsen the resulting mesh. Two sample meshes generated using the method are 
presented. 

1   Introduction 

Size functions consist of spatially distributed points with an associated value used 
to specify the desired spacing of finite element nodes. Size functions should con-
tain only positive, nonzero values. In addition, size functions should contain val-
ues for the entire domain. 

Sources of size functions vary based on what numerical model the finite ele-
ment mesh being generated will be used with. They may come from manual speci-
fication by the user, analysis performed on a previous calculation [6], or from 
geometric data such as depth. For example, the size function may be specified 
based on the wavelength when using CGWAVE a wave prediction model for 
simulating the propagation and transformation of ocean waves in coastal regions 
and harbors [5]. In any case, the size function specifies how far apart nodes should 
be in the finite element mesh. 

Figure 2 shows a wave shape represented by a different number of elements. 
The quality of the representation varies as the number of nodes changes. To in-
clude more nodes, the size of each element must be a smaller fraction of the wave-
length. Since wavelength is related to the depth of the water, which varies spa-
tially over the domain, a size function can be created based on the wavelength in 
the area being modeled. Shallow areas, with short wavelengths, require closer 
node spacing than deeper areas, with long wavelengths [2]. 
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Fig. 1. CGWAVE Model Results 

    

Fig. 2. Wave Shape as Represented by Different Number of Elements 

2   Size Function Smoothing Using an Element Area Gradient 

If the size function changes too quickly, it will be impossible to space the mesh 
nodes at a distance close to the distance specified by the size function. Size func-
tions that change too quickly are said to be poorly conditioned. Size functions that 
change at an acceptable rate are said to be well conditioned [3][7][8]. 

Size function smoothing using an element area gradient significantly improves 
the quality of meshes produced by size function based mesh generators. By creat-
ing high quality initial meshes, the amount of manual mesh editing required is 
greatly reduced or eliminated. 

To understand why size function smoothing is needed, consider the case of a one 
dimensional grid between x = 0 and x = 20 with a desired node spacing varying 
from one unit at x = 0 to five units at x = 20. The creation of intermediate nodes to 
match the desired spacing could proceed, starting at x = 0, as shown in Figure 3. 

The first node is located at x = 0.0 and has a size value of 1.0. The next node is 
offset one unit to x = 1.0 and has a size function value of 1.2. The third node is 
offset 1.2 units to x = 2.2 and has a size function value of 1.44. This process con-
tinues until the entire one dimensional grid is filled in. 

The creation of intermediate nodes to match the desired spacing could also pro-
ceed, starting at x = 20, as shown in Figure 4. 
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Fig. 3. One Dimensional Grid Node Distribution – Case 1A 
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Fig. 4. One Dimensional Grid Node Distribution – Case 1B 



4 J. Howlett and A. Zundel 

If the generation of nodes begins x = 0, the resulting grid contains nine ele-
ments. However, if the generation of nodes begins at x = 20, eight elements are 
created. Since there is a fixed length to fill, numeric integration of the desired 
node spacing can be used to compute the number of nodes to insert along the fixed 
length and the resulting number of elements. This will lead to a node insertion that 
more accurately matches the desired node spacing. Consider the case of two nodes 
shown in Figure 5. If a linear variation in the size function is assumed along the 
length, L, the size function at any point along the line can be calculated using 
Equation 1. 

 
L

S1 S2

 

Fig. 5. Linear Variation in Size 

Taking small steps along L, each segment, dx, has an associated size S. The 
number of elements, n, to fill the length L can be calculated using Equation 2. 
Combining Equation 1 and 2 and computing the integral yields the number of ele-
ments required to fill the length L as shown in Equation 3. Since the number of 
nodes to be inserted will be not be an integer value in most cases, the desired node 
spacing values are scaled using the scale calculated with Equation 4. The scaled 
node spacing values produce an integer value for the number of nodes to insert. 
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This method is able to place points in an acceptable manner unless the fixed 
length is not long enough to match the desired node spacing values. Consider the 
same one dimensional grid presented earlier, but this time with a desired node 
spacing varying from one unit at x = 0 to one hundred units at x = 20 as shown in 
Figure 6. 
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Fig. 6. One Dimensional Grid Node Distribution – Case 2A 

Using this desired node spacing, if the generation of nodes begins x = 0, and the 
same offset method as described earlier is used, the resulting grid contains three 
elements. However, if the generation of nodes begins at x = 20, one element is cre-
ated. So the question becomes, what is a reasonable variation of the desired node 
spacing? The desired node spacing should be a function of the fixed length to fill. 
We will present an algorithm capable of determining the minimum, Smin, and 
maximum, Smax, size values for a node located a distance, L, from the starting 
node, whose desired node spacing is known. 

To simplify the algorithm, we eliminate the need to compute Smin by always 
computing Smax for the smaller of the two desired node spacings and adjusting the 
larger desired node spacing value to be less than or equal to Smax. 

To compute Smax, we must define how fast the desired node spacing is allowed 
to change. One guideline for the RMA2 model from the USACE-ERDC states that 
the area of an element should fall between 50 and 200 percent of its neighbor’s 
area [4]. For example, if an element has an area of ten square meters, the adjacent 
elements should have an area between five and twenty square meters. ADCIRC  
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Eadj E1

For any element Eadj, having area Aadj, adjacent to element E1, having area A1:

RMA2 area change ratio = 0.5  ADCIRC area change ratio = 0.8 
0.5 A1 < Aadj < 2.0 A1 0.8 A1 < Aadj < 1.25 A1  

Fig. 7. Element Area Change Guidelines 

model developers recommend even more restrictive guidelines that limit area 
change to between 80 and 125 percent [9]. 
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The area change ratio, r, is specified as a value between zero and one. The 
minimum area of an adjacent element is the current element’s area times the area 
change ratio. The maximum area of an adjacent element is the current element’s 
area times one over the area change ratio. Since the area of a triangle is propor-
tional to the nodal spacing squared, the allowable change in the desired node spac-
ing is the square root of the user specified area change ratio. 
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Given a segment with a target size of S1 at one end and a length of L, we want 
to compute the maximum size of a segment, Smax. We begin by determining how 
far down the segment one element extends. Since S1 is the minimum size, it will 
extend farther than S1. This distance can be computed by finding the length to get 
one element using Equation 6. 
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The next segment length can be computed in the same fashion with Equation 7. 
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Similarly, the third segment length can be computed with Equation 8. The re-
sulting nodal size values and segment lengths are shown in Figure 9. 

 
Pg

2 S1S
1

Sf S1 Pg Sf S1 Pg
2 Sf S1

Pg S1

 

Fig. 9. Segment Lengths and Associated Nodal Size Values 

Therefore, the total length of n segments can be computed using Equation 9 and 
the nodal size value using Equation 10. 
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The number of terms, n, from Equation 11 can be used in Equation 10 to de-
termine the maximum size value for a node located a distance, L, from the node 
with size value S1, given the maximum percent growth, Pg. 

3   Size Function Smoothing Tools in SMS 

The Surface-water Modeling System (SMS) [1] contains a size function smooth-
ing tool based on the method presented in this paper. The smoothing tool modi-
fies size function values to honor the user specified maximum area change limit 
(see Figure 7). The tool allows the user to control whether size function values 
are increased (maximum value anchored) or decreased (minimum value an-
chored). Increasing size function values results in a less refined mesh, while de-
creasing them results in a more refined mesh. A minimum size function value can 
also be specified. 

 

 

Fig. 10. SMS Smoothing Tool Dialog 

The smoothing tool operates on a size function stored as a triangulated irregular 
network (TIN) by performing the following steps for the minimum value anchored 
example: 

 
1. Sort TIN nodes from smallest to largest size function value 
2. Set the size function value to the larger of the current size function value or the 

specified minimum size function value   
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3. For each sorted TIN node, Ti: 
4. For each TIN node adjacent to Ti: 
5. Calculate the distance, L, from the adjacent TIN node to Ti 
6. Compute n using Equation 11 
7. Compute Smax using Equation 10 
8. Set the size function value at Ti to the smaller of the current size function value 

or Smax 
9. If the size function value at Ti was changed, resort Ti in the list of TIN nodes 

4   Examples 

Consider a two dimensional grid, similar to the one dimensional grid presented 
earlier, with a desired node spacing varying from one unit at x = 0 to one hundred 
units at x = 20 with no variation in the y direction. The resulting mesh is shown in 
Figure 11. 

 

 

Fig. 11. Poor Element Size Transitions Fig. 12. Good Element Size Transitions 

 

Fig. 13. Beaufort, North Carolina Mesh Generated Using Original Size Function 
 



 Size Function Smoothing Using an Element Area Gradient 11 

By applying the smoothing algorithm with an area change limit of 0.8, the re-
vised size function has a desired node spacing varying from one unit at x = 0 to 
3.23 units at x = 20 with no variation in the y direction. The resulting mesh is 
shown in Figure 12. 

Figure 13 shows a mesh generated using a size function of 10 elements per 12 
hour period (semi-diurnal tidal constituents) wave. The size function varies from 4 
to 827,685. Applying the smoothing algorithm with an area change limit of 0.8 re-
sults in a new size function varying from 4 to 38,283. The resulting mesh from 
this new size function is shown in Figure 14. 

 

 

Fig. 14. Beaufort, North Carolina Mesh Generated Using Smoothed Size Function 

5   Conclusion 

Size function smoothing using an element area gradient has been proposed as a 
new method for improving element size transitions when using a size function to 
govern the mesh generation. The method can be applied as a pre-process to a siz-
ing function generated from any criteria regardless of the mesh generator used. 
Future work will involve application to three dimensions. 
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Abstract. This paper describes a computational method for removing self intersections of a 
triangular mesh. A self intersection is a situation where a part of a surface mesh collides 
with another part of itself, i.e., two mesh elements intersect each other. It destroys the integ-
rity of the mesh and makes the mesh unusable for certain applications. A mesh generator 
often creates a self intersection when a relatively large element size is specified over a  
region with a narrow clearance.  There has been no automated method that automatically 
removes self intersections, and such self intersections needed to be corrected by manually 
editing the mesh.  The proposed method automatically resolves a self intersection by  
re-connecting edges and adjusting node locations.  This technique removes a typical self in-
tersection and recovers the integrity of the triangular mesh.  Experimental results show the 
effectiveness of the proposed method. 

1   Introduction 

This paper describes a computational method for removing self intersections of a 
triangular mesh. A self intersection is a situation where a part of a surface mesh 
collides with another part of itself, i.e., at least two mesh elements intersect each 
other. A self intersection destroys the integrity of the surface mesh and makes the 
surface mesh unusable for certain applications.  The proposed method removes 
such self intersections and recovers the integrity of the mesh. 

A triangular mesh is used for many applications such as finite element analysis, 
visualization, and so on.  Many of those applications require the mesh to be free of 
self intersections. A self intersection in a triangular mesh could cause failure of the 
finite element analysis or make unwanted artifacts in the visualization. 

A triangular mesh is also used as a boundary of a tetrahedral mesh, and such a 
triangular mesh must not include a self intersection.  A tetrahedral mesh is usually 
created by first creating a triangular mesh of the boundary of the target volume 
and then filling the inside of the triangular mesh with tetrahedral elements.  If the 
boundary triangular mesh includes a self intersection, the mesh no longer defines a 
legitimate volume, and the tetrahedral mesh generator may create severely dis-
torted elements or even fail to create a mesh at all.  Therefore, a self intersection in 
a triangular mesh is very problematic and needs to be removed. 

Theoretically, the best approach for removing self intersections is to mesh the 
original CAD model with more appropriate mesh sizing. However, it is often im-
possible to choose adequately short edge length. For example, some types of 
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analyses require minimum edge length longer than certain threshold. For those 
analyses, minimum edge length condition is more important than the boundary fi-
delity. The original CAD model is sometimes not available to the analyst due to 
confidentiality issues.  When an analysis needs to be performed on a very old ge-
ometry, or a legacy model, the original CAD model may no longer exist, and the 
model may be available only in the form of a mesh.  Therefore, self-intersections 
need to be removed by modifying the mesh in many real-world problems. 

There has been, however, no automated method for removing self intersections 
of a triangular mesh. Hence, the appropriate care must have been taken before a 
triangular mesh was created to avoid self intersections. The input geometric model 
needed to be de-featured, geometric constraints needed to be appropriately added 
or removed, and a non-uniform sizing function was often necessary.  If those pre-
conditioning measures were not adequate, a surface mesh generator would yield 
self intersections, which needed to be removed by manually editing the mesh. 

The proposed method effectively removes typical self intersections created due 
to a defective CAD model or a very narrow clearance and recovers integrity of the 
triangular mesh.  The proposed method takes as input a triangular mesh, open or 
closed, and applies to the mesh a sequence of three types of operations: (1) edge 
swapping, (2) edge hammering, and (3) face lifting.  The edge-swapping operation 
has been used mainly for mesh-quality improvement and is used for reducing self 
intersections in this context.  The edge-hammering and face-lifting operations ad-
just locations of the nodes used by an intersecting triangular element. These opera-
tions calculate new node locations based on the neighboring nodes and the loca-
tions of intersections.  The node is moved to the new location if the move reduces 
the number of intersecting elements without making a new intersecting element. 

The organization of the paper is as follows.  Section 2 presents previous work.  
Section 3 describes typical sources of self intersections.  Section 4 explains details 
of the proposed method, and Section 5 discusses some potential expansions and 
discussions.  Some experimental results are presented in Section 6.  Section 7 con-
cludes the paper. 

2   Previous Work 

The proposed method pertains to facet-repair techniques, which repair defects in-
cluded in a surface mesh.  A surface mesh may include two types of defects, geo-
metric defects and topological defects.  A self intersection is one of the common 
geometric defects, and a common topological defect is a gap or a hole located 
where the mesh needs to be closed. 

Since facet-repair techniques have been of great interest in the industry, sub-
stantial research has been done.  Nonetheless, most of the attention has been paid 
to the topological aspect of the problem. 

The majority of the published facet-repair techniques are gap-closure and hole-
filling techniques.  If a triangular mesh has a gap or hole located where the mesh 
needs to be closed, such a gap or hole needs to be closed.  Barequet and Sharir 
have presented a method for closing gaps and holes of a polyhedral surface [1].  
Barequet and Kumar have presented a method for repairing a geometric model  
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defined by a triangular mesh [2].  Gueziec et al. have presented a method for con-
verting a polygonal surface to a manifold surface [3].  Branch et al. have presented 
a method for filling holes of a triangular mesh [4]. Li et al. have presented a 
method for repairing holes of a triangular mesh [5]. Those gap-closure and hole-
filling techniques identify gaps and holes that need to be closed and then insert tri-
angular elements and/or stitch the edges together so that gaps and holes are filled 
by triangular elements. 

Gap closure and hole filling are important to recover the topological integrity of 
a triangular mesh. However, it is also necessary to remove self intersections and 
recover the geometric integrity. Self-intersection avoidance has been relying 
mainly on a priori methods. In other words, adequate pre-conditioning needed to 
be performed before a triangular mesh was created so that the mesh generator 
would not yield a self intersection. 

One of the common sources of a self intersection is a very small feature, which 
is usually irrelevant to the purpose of the mesh.  Ribelles et al. have presented a 
method that automatically removes features of a geometric model [6].  Lee et al. 
also have presented another approach for small-feature suppression [7]. 

A self-intersection can also be avoided by identifying features and appropri-
ately adding geometric constraints near the features.  Numerous researches have 
been done for feature-line identification [8-12].  Jiao has presented a method for 
identifying features of a geometric model and preserves them during the mesh-
generation process [13]. 

Alternatively, a self-intersection can be avoided by creating smaller elements 
near small features.  Quadros et al. have presented a method for automatically cre-
ating an element-sizing function based on the input geometry [14]. 

Self intersections can be avoided by embedding intersection curves on a mesh 
and then dividing the mesh into a set of non-intersecting sub-meshes [15].  This 
method, however, divides a mesh into multiple meshes and can be utilized only in 
limited types of applications. 

Despite the extensive research on automatic feature identification and removal 
techniques, those techniques are not always adequate for avoiding all self inter-
sections. If the mesh generator could not avoid creation of self intersections in a 
triangular mesh, the user needed to manually edit the mesh to remove those self 
intersections. 

The proposed method modifies a triangular mesh and reduces self intersections.  
It is useful for reducing the manual mesh editing when the mesh generator can not 
avoid self intersections. 

3   Typical Sources of a Self Intersection 

Even when the CAD model itself does not include a self intersection, there is a 
possibility that the mesh generator creates a self intersection when an excessively 
large element size is specified.  A large element size yields a large error (in dis-
tance) between the mesh surface and the original surface.  In two dimensions, 
when a curve is discretized into line segments, an expected error between a curve 
and its discretization is calculated as: 
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22 )2/()/1(
1

he −−= κ
κ

, 

where h is the length of a segment of the discretization and κ  is the curvature of 
the curve as shown in Figure 1. 

In three dimensions, an expected error between a surface and its triangulation is 
calculated as: 

)3/()/1(
1 22 he −−= κ
κ

, 

where h is the edge length, and κ  is the principal curvature of the surface.  The 
assumption is the curvature does not change rapidly and the triangular element is 
equilateral. 

Assume that an equilateral triangle with edge length of h is lying on X-Y plane 
as shown in Figure 2.  The coordinates of the three corners are )0,0,0( , )0,0,(h , 

and ))2/3(,0,2/( hh , and the center of the triangle is ))6/3(,0,2/( hh .  The center 
of one of its circumscribed spheres with radius of )/1( κ=r  is located at 

))6/3(,0,2/( hh .  Since the distance from the center to the origin, where one of the 
triangle corners is located, is equal to the radius, the following equation is derived: 
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Fig. 1. Expected error between a curve 
and its discretization 

Fig. 2. Expected error between a curved surface 
and its discretization 
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Since the expected error can be calculated as the difference between the radius 
and the distance between the element to the center of the sphere, the expected er-
ror becomes: 

)3/()/1(
1 22 he −−= κ
κ

.                                                      (1) 

Therefore, when two surfaces are separated with a small clearance d, the edge 
length h should be small enough so that the expected error is smaller than d. 

However, in practice, element size is often decided based on the application in 
which the mesh is used, and it can be way too large for the surface clearance of the 
original geometric model.  Such a large element size yields self intersections in the 
mesh.  For example, Figure 3 (a) shows a CAD model that includes two co-axial 
cylindrical surfaces.  The radii of the outer and inner cylindrical surfaces are 5.0 
and 4.8, respectively.  Therefore, the clearance between the two surfaces is 0.2.  
The curvature of the outer surface is 1.0/5.0=0.2.  From equation (1), the edge 
length of the mesh needs to be less than 2.42.  Figure 3 (b) shows a triangular 
mesh created from this CAD model with an average edge length of 2.42, and it 
does not include a self intersection.  However, if the same geometry is meshed 
with average edge length of 3, some self intersections are clearly visible as shown 
in Figure 3 (c).  In this particular case, self intersections can be avoided by identi-
fying cylindrical surfaces and adding some mesh constraints on the surface.  Fig-
ure 3 (d) shows some new constrained edges added by the polygon-crawling 
method [12].  The mesh generator preserves those constrained edges, and the out-
put triangular mesh does not include a self intersection as shown in Figure 3 (e). 

Ideally, a sufficiently small element size needs to be chosen or appropriate 
mesh constraints need to be added for the regions of small clearance. However, 
some of such ill conditions are often overlooked. Particularly, such ill conditions 
tend to be left untreated if they are: 

 
1. contained within a very small feature, or 
2. away from the point of interest for the application in which the mesh is 

used. 
 

Such less-visible ill conditions are most likely left untreated before the model is 
given to the mesh generator.  Even if all of those ill conditions are detected, a 
complex model could have hundreds of them and could take substantial manual 
operations to correct or add constraints to all of them.  As discussed in Section 2, 
if such an ill condition was overlooked and the mesh generator created self inter-
sections, the user needed to manually correct those self intersections. 

The next section explains an automated method for removing self intersections 
included in a triangular mesh.  The method substantially reduces the manual op-
erations required to eliminate self intersections to recover the integrity of the 
mesh. 
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Fig. 3. A narrow clearance causing self intersections 

4   Detail of the Proposed Method 

4.1   Improvement Criteria 

The proposed method uses three types of operations, edge swapping, edge ham-
mering and face lifting, which are explained later in this section.  Although the 
three operations are effective in reducing self intersections, those operations can-
not always guarantee the successful reduction of self intersections.  In the worst 
case, those operations could make the situation worse.  Therefore, the proposed 
method needs criteria to test the improvement, and the proposed method will not 
apply the operations if the criteria cannot be met. 

The improvement criteria used by the proposed method are as follows: 
 
1. The number of intersecting triangles decreases. 
2. No new intersecting triangle is created. 

 

The first criterion guarantees that the process terminates within finite computa-
tional time.  The mesh has a finite number of intersecting triangles, and the edge-
swapping, edge-hammering and face-lifting operations do not change the total 
number of triangles.  Therefore, the process terminates when no more reduction of 
the intersecting triangles is possible. 

(c) Triangular mesh with 
average edge length of 3. 

Intersecting elements 

(d)  Additional constrained 
edges added by the polygon-

crawling method 

New constrained edges 

(e)  Triangular mesh with average edge length of 
3.  Additional constrained edges have successfully 

prevented self intersections 

(a) Original CAD model (b) Triangular mesh with av-
erage edge length of 2.42 
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The second condition prevents the effect of the edge-swapping, edge-hammering, 
and face-lifting operations from propagating through the mesh. If the number of in-
tersecting triangles is reduced by creating a new intersecting triangle, the new inter-
section needs to be removed by a subsequent edge-swapping, edge-hammering, or 
face-lifting operation. As a result, the effect of those operations could propagate 
through the mesh. Such propagation can be prevented by the second condition. 

 
 

Fig. 4. Removing a self intersection by edge swapping 

 
 

Fig. 5. An Example of edge hammering 

4.2   Edge Swapping 

Edge swapping reconnects an edge shared by two triangles.  When an edge con-
necting nodes a and b is shared by two triangles T1 and T2, and if triangle T1 is us-
ing nodes a, b, and c, and T2 is using b, a, and d, triangles T1 and T2 are replaced 
with triangles cad and dbc as shown in Figure 4.  Edge swapping removes edge 
ab and creates edge cd.  The proposed method applies edge swapping to an edge 
used by an intersecting triangle if it satisfies the improvement criteria. 

4.3   Edge Hammering 

Edge Hammering moves a node and corrects an edge sticking out of another trian-
gle. When a triangular mesh is created from two curved surfaces with a small 
clearance, a self intersection can be created as shown in Figure 5 (a). In this  
 

(a) Five triangles are intersecting  
with another triangle.  Dashed lines 
are behind the outside layer of the 
triangular mesh. 

(b) Intersections are removed 
by Edge Hammering 

a  

b  

d  

1T   

2T   

a  

b  

c  

d  1T   

2T   
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(a) Three edges connected to node a are intersecting 
with other triangles. 

x1

x2 x4

x3

(Schematic drawing) 
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c

x1 d

x4

a

b

c
x1

d

x2

(b) Moving node a to 
(x4+b)/2 reduces intersections 

(c) Moving node a to (x1+ x2)/2 re-
duces intersections 

a

b
c

x5

x6 d

(d) Moving node a beyond x1 yields 
new intersections. 
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(e) Three candidate locations (d) Moving node a to the average of the three 
candidate locations reduces intersections with-

out creating a new intersecting triangle. 
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x2 x4

x3

d
1T
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Fig. 6. Calculating candidate points to which a node is moved 

example, five edges from the inside-layer triangles are sticking out of an outside-
layer triangle. Such a self intersection can be removed by moving the node of the 
intersecting edges as shown in Figure 5 (b). 

If an edge is intersecting with another triangle at one point, the intersection on 
the edge will disappear by moving one of the edge nodes toward the other node 
beyond the intersecting point.  For example, in Figure 6 (a), edge ab is intersect-
ing with triangle T4 at x4.  Edge ab will no longer have an intersection if node a is 
moved toward node b beyond x4 as shown in Figure 6 (b).  In this example, this 
move also makes triangles 2T , 3T , 4T , and abd free of intersection.  The new lo-
cation of node a can be anywhere between x4 and b to make edge ab intersection-
free.  The mid point, (x4+b)/2, is advantageous because it does not make edge ab 
too short and makes a reasonable clearance from x4. 

If an edge is intersecting with other triangles at more than one point, the inter-
section may be reduced by moving one of the edge nodes toward the other node 
beyond the first intersecting point before reaching the second.  For example, edge 
ac in Figure 6 (a) is intersecting with triangles 1T  and 2T  at x1 and x2, respec-
tively.  If node a is moved toward node c beyond x2 before x1, intersection x2 dis-
appears, and triangles 2T , 3T , 4T , and abd become free of intersection as shown 
in Figure 6 (c).  However, if node a is moved beyond x1, a new intersection x5 will 
be created as shown in Figure 6 (d).  From this observation, if an edge intersects 
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with other triangles at more than one point, one of the edge nodes should be 
moved toward the other node beyond the first intersection to reduce the number of 
intersections.  However, moving the node beyond the second intersection will cre-
ate a new intersection.  Node a can be moved to anywhere between the first and 
second closest intersections.  The simplest choice of the point is the mid point of 
the first two intersections. 

Since a node can be connected to more than one intersecting edge, the node can 
have multiple candidate points.  If edge abn is the nth intersecting edge connected 
to node a, the nth candidate point a'n is calculated as: 

 

(a) If edge abn is intersecting with another triangle at a single point x, candi-
date point a'n is calculated as a'n=(x+bn)/2, and 

(b) If edge abn is intersecting with other triangles at multiple points x1, x2, 
…, and xk, and x1 and x2 are the first and second closest intersection to 
node a, candidate point a'n is calculated as a'n=(x1+x2)/2. 

 

The proposed method moves node a to the average of the candidate points: 

∑= n/na'a' , 

if the move satisfies the improvement criteria described in Section 4.1. 
In the example shown in Figure 6, three candidate locations, a'1 and a'2 are cal-

culated as: 

a'1=(x4+b)/2 

a'2=(x1+x2)/2 

a'3=(x3+d)/2, 

as shown in Figure 6 (e), and node a is moved to a'=(a'1+a'2+a'3)/3 because trian-
gles 2T , 3T , 4T , and abd become intersection free without making a new inter-
secting triangle. Although triangles 1T , acb, and acd are still intersecting, the 
move yields no new intersecting triangles, and the three remaining intersecting tri-
angles can be made intersection free by subsequent edge hammering and face lift-
ing operations. 

4.4   Face Lifting 

The face lifting operation moves a triangle at a time to reduce the number of inter-
sections.  For example, a highlighted triangle in Figure 7 (a) is intersecting with 
multiple edges.  The face-lifting operation moves the triangle to its normal direc-
tion and removes the intersections as shown in Figure 7 (b). 

Assume that triangle T1, consisting of three nodes t1, t2, and t3, is intersecting 
with one or more edges, and the nodes p1, p2, …, pn are the nodes used by the in-
tersecting edges.  The unit normal vector of T1 is n1, and ε  is the given clearance 
requirement between a triangle and a node. 

The minimum and maximum of the signed distances of nodes pi {i=1 to n} 
relative to T1, denoted as dmin and dmax respectively, are then calculated as: 
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Fig. 7. Face-lifting operation 

dmin=min( 11i ntp ⋅− )( ), 

dmax=max( 11i ntp ⋅− )( ). 

The proposed method moves triangle T1 to two possible new locations, by off-
setting )( max1 ε+dn  and )( min1 ε−dn  from the original location.  And for each new lo-
cation, the proposed method tests if the move satisfies the improvement criteria 
described in Section 4.1. 

If only one of the two new locations satisfies the improvement criteria, triangle 
T1 is moved to the new location that satisfies the improvement criteria. If both  
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(a) Triangle T1 intersecting with six edges, ad, ae,
be, bf, cd,and cf.
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(Schematic drawing) (b) Computing the minimum 
and maximum of the signed 
heights of nodes a, b, c, d, e,

and f based upon T1.

(c) Moving T1 by )( max1 ε+dn  re-
moves all the intersections 

(d) Moving T1 by )( min1 ε−dn  makes T1

free of intersections.  However, it makes 
new intersecting triangles, T2 and T3.  

Fig. 8. Calculating possible new locations of an intersecting triangle 

(a) A triangle intersecting with 
multiple edges 

(b) Face-lifting operation removes 
the intersections 
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moves satisfy the improvement criteria (implies that the intersecting edges are dis-
connected from the other part of the mesh that T1 belongs to,) T1 is moved to the 
new location that makes the move smaller. 

For example, in Figure 8 (a), triangle T1 intersects with six edges, ad, ae, be, 
bf, cd, and cf.  The minimum and maximum of the signed heights of the nodes of 
the intersecting edges are calculated as shown in Figure 8 (b).  If the triangle T1 is 
moved by )( max1 ε+dn , triangle T1 becomes free of intersection without making a 
new intersecting triangle as shown in Figure 8 (c).  Therefore, it satisfies the im-
provement criteria described in Section 4.1. However, if T1 is moved by )( min1 ε−dn  
as shown in Figure 8 (d), triangles T2 and T3, which were intersection free before 
the move, intersect with some of the edges.  Therefore, it violates the improve-
ment criterion.  In this case, triangle T1 is thus moved by )( max1 ε+dn  from the 
original location. 

4.5   Order-Dependency Issues 

The result of edge-swapping, edge-hammering, and face-lifting operations de-
pends on the order in which the operations are applied.  If the operations are ap-
plied to the mesh in an inappropriate order, they may either make an unnecessarily 
large deformation to the mesh or simply fail to reduce the self intersections.  
However, it is virtually impossible to find the ideal order of the operations. 

In this research, we have tested several different measures in an attempt to re-
duce the adverse effect caused by the order dependency.  In the first approach, we 
have applied edge swapping first, edge hammering second, and face lifting last.  
Since edge swapping does not move nodes, it seemed to have the least impact on 
the geometry.  Edge hammering moves one node at a time while face lifting 
moves three nodes at a time.  Edge hammering thus seems to have less impact on 
the geometry compared to face lifting.  Although this approach gave somewhat 
good results, it often gave less than satisfactory results.  That led to the two-phase 
approach described below. 

To reduce the adverse effect caused by the order-dependency, the proposed 
method applies a sequence of edge-swapping, edge-hammering, and face-lifting 
operations in two phases: (1) cost-calculation phase and (2) implementation phase. 

In the cost-calculation phase, a sequence of edge-swapping, edge-hammering, 
and face-lifting operations are applied to all applicable edges, nodes, and ele-
ments.  After each operation, the cost of the operation is calculated, and then the 
modifications made to the mesh by the operation are retracted back to the original 
state of the mesh.  Therefore, the mesh does not change before and after the cost-
calculation phase. 

The cost of an operation is a measurement that evaluates the magnitude of de-
formation of the mesh made by the operation, which can be measured as a change 
of volume made by the operation.  The cost of the edge-swapping operation is the 
volume of a tetrahedron enclosed by the two triangles deleted by the operation and 
the two new triangles created by the operation as shown in Figure 9 (a). 
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(b) Cost of the edge-hammering operation 

(c) Cost of the face-lifting operation 

(a) Cost of the edge-swapping operation 

Two triangles deleted
by the operation 

Two triangles created by 
the operation 

A tetrahedron enclosed by 
the four triangles 

Triangles before
the operation 

Triangles after 
the operation 

A volume enclosed by the triangles 
before and after the operation 

nT
nT '

TnT 'TnT '

Triangles before the 
operation 

Triangles after 
the operation 

A volume enclosed by the triangles 
before and after the operation 

 

Fig. 9. Cost of the edge-swapping, edge-hammering, and face-lifting operations 

The cost of the edge-hammering operation is calculated as follows.  Let 1T , 
2T , …, nT  be the triangles sharing the node to be moved by the operation. The 

operation moves the node, and nT  becomes nT ' .  The cost of the edge-hammering 
operation is the volume enclosed by 1T , 2T , …, nT , and 1'T , 2'T ,…, nT '  as shown 
in Figure 9 (b). 

The cost of the face-lifting operation is calculated as follows.  Let T  be the tri-
angle to be moved by the operation and 1T , 2T , …, nT  be the triangles sharing at 
least one node with T .  The operation moves T  to 'T , and nT  becomes nT ' .  The 
cost of the edge-hammering operation is the volume enclosed by T , 'T , 1T , 2T , 
…, nT , and 1'T , 2'T ,…, nT '  as shown in Figure 9 (c). 

Then, in the implementation phase, the edge-swapping, edge-hammering, and 
face-lifting operations are applied to the mesh in the order of ascending cost. 

5   Potential Expansions and Discussions 

5.1   Expanding the Proposed Method for a Quadrilateral Mesh 

The proposed method can easily be expanded so that it can deal with a quadrilat-
eral mesh by the following steps: 

 

1. Tessellate every quadrilateral by adding a diagonal edge while keeping 
track of which triangle comes from which quadrilateral. 
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2. Apply the proposed method. 
3. Merge triangles to re-construct the quadrilaterals. 

 

However, there are two remaining issues that need to be addressed for this ex-
pansion as follows. 

 

(a) Edge preservation vs. effectiveness 
Some quadrilaterals may not be re-constructed after applying the proposed 
method due to edge swapping.  To guarantee the re-construction, edge swap-
ping needs to be carefully applied so that edges of the original quadrilaterals 
are preserved.  However, this limitation could reduce the effectiveness of the 
proposed method. 
(b) Non-planar quadrilateral 
Four nodes of a quadrilateral element may not be co-planar, and the geometry 
of a quadrilateral element is a bi-linear surface.  Therefore, tessellating a quad-
rilateral into two triangles changes the geometry, and some self intersections 
may not be detected after the tessellation.  Or, even if the triangular mesh is 
made self-intersection free by the proposed method, it does not guarantee that 
the quadrilateral mesh is also self-intersection free after quadrilateral elements 
are re-constructed. 

 

Further research is needed for addressing these issues. 

5.2   Locally Adjusting the Clearance Requirement 

The proposed method takes the parameter ε , a clearance requirement for the face-
lifting operation, as input.  The face-lifting operation moves an intersecting trian-
gular element in its normal direction so that it will have a clearance of ε . 

However, in some cases, it is ideal to vary ε  over the domain.  For example, if 
the thickness of the geometry substantially changes over the domain, ε  should be 
proportional to the local thickness of the domain. 

The proposed method can be adapted to such requirement with a small modifi-
cation.  When triangle 1T  is being moved by the face-lifting operation, instead of 
taking ε  as a user input, it can be calculated as follows. 

Assume triangle 1T  consists of nodes 1p , 2p , and 3p , and its normal is n .  nt  
is the distance that a ray travels from np  in the direction n−  until it hits another 
triangular element as shown in Figure 10.  If the ray does not hit another triangle, 

nt  is zero.  Each of nt  gives a rough estimation of the thickness at np .  If at least 
two of the three nt s are non-zero, ε  is taken from the median of nt s.  If only one 

nt  is non-zero, ε  is taken from the non-zero nt .  If all three nt s are zero, the face-
lifting operation is not attempted, and this intersection is deferred to the edge-
swapping and edge-hammering operations. 

In some applications, the clearance can also be specified relative to the edge 
length of the triangle to be moved.  For example, if the triangular mesh is used as 
the boundary of a tetrahedral mesh, and if the maximum aspect ratio of the tetra-
hedral mesh needs to be smaller than γ , the required clearance ε  must be γ/1  
times the longest edge length of the triangle.  In this application, a similar adapta-
tion is also possible for the edge-hammering operation. 



26 S. Yamakawa and K. Shimada 

 

Fig. 10. Estimating the clearance requirement from the local thickness 

5.3   Boundary Fidelity Issue 

The edge-hammering and face-lifting operations move nodes of the input triangu-
lar mesh.  The mesh generator usually places nodes exactly on the original sur-
faces.  However, the nodes may be moved away from the original surfaces by the 
proposed method.  In other words, edge-hammering and face-lifting operations 
trade the boundary fidelity for removal of self intersections.  It raises an obvious 
question: if it is allowed to sacrifice boundary fidelity to remove self intersections. 

A surface mesh needs to satisfy multiple requirements including edge length, 
clear of self-intersection, element quality, in addition to boundary fidelity.  As 
presented in Section 6, self intersections in a boundary triangular mesh yield a tet-
rahedral mesh that is utterly unusable in the finite element simulation.  It implies 
that self intersections can be more problematic than loss of the boundary fidelity.  
If the boundary fidelity is very important, another option is to make smaller ele-
ments so that no self intersection is created as discussed in Section 3. 

In summary, those mesh requirements, edge length, clear of self intersection, 
element quality, and boundary fidelity, are in the relation of trade offs and may not 
be satisfied all together.  Priorities of those requirements must be considered based 
on the best outcome of the application in which the mesh is used.  It is possible 
that boundary fidelity is not the top priority, and then diverting the nodes away 
from the original surface to remove self intersections can be justified. 

Loss of the boundary fidelity could impact the outcome of the application in 
which the mesh is used, and therefore the diversion should be kept as small as 
possible.  Nonetheless, a certain loss of boundary fidelity should be tolerated in 
order to obtain the best outcome in the application. 

6   Examples 

This section presents some examples to demonstrate the effectiveness of the pro-
posed method. Figure 11 (a) shows a thin-walled solid with ribs and a screw hole. 
Such a shape frequently appears in a geometric model of a plastic-casing. Figure 11 
shows a triangular mesh with an average edge length of 1.5. This mesh does not in-
clude self intersections. However, the number of elements can be too many for the 
application in which the mesh is used. The number of elements can be reduced by 
specifying larger element size. Figure 11 (c) shows a triangular mesh with an aver-
age edge length of 3mm. The middle section of the outer surface of the screw hole  
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(a) Intersection (b) Schematic drawing 
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(d)  Triangular mesh with 3mm average edge 
length repaired with the proposed method.  The 

mesh includes no self intersection. 

(e)  Tet mesh created from a triangular mesh 
with self intersections 

(f)  Tet mesh created from a triangular mesh 
repaired by the proposed method 

(c)  Triangular mesh with 3mm average 
edge length including numerous self inter-

sections. 

(a)  Original geometric model (b)  Triangular mesh with 1.5mm average edge 
length does not include a self intersection 

 

Fig. 11. Sample model with ribs and a screw hole 

is collapsed to a single edge, and it intersects with the inside wall. Some inside-wall 
elements also collide with the outer-wall of the fillet. The proposed method suc-
cessfully removes all self intersections as shown in Figure 11 (d). Figure 11 (e) 
shows a tetrahedral mesh created from the triangular mesh shown in Figure 11 (c). 
Due to the self intersections in the input triangular mesh, the output tetrahedral 
mesh has some exterior edges that are shared by more than two exterior triangular 
elements. Figure 11 (f) shows a tetrahedral mesh created from the triangular mesh 
shown in Figure 11 (d). Since no self intersection is included in the triangular mesh, 
the output tetrahedral mesh is a valid and usable in the finite element analysis. 

Figure 12 (a) shows a CAD model of a plastic casing of a telephone. Figure 12 
(b) is a triangular mesh of the model meshed with an average edge length of 4mm.  
With this edge length, the mesh generator does not create a self intersection. Fig-
ure 12 (c) is a triangular mesh with 10mm average edge length. This edge length 
yields numerous self intersections as shown in Figure 12 (d). Note that the major-
ity of the elements are intersection free. Only a small fraction of the elements are 
intersecting. Despite the small percentage of intersecting elements, these self in-
tersections could make the mesh utterly unusable for the application. The pro-
posed method successfully removes all the intersections. The changes made by the  
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(a) Input geometric model (c) 10mm average edge 
length yields numerous 

self intersections. 

(d) Intersecting triangular 
elements 

(e) Close up of intersect-
ing elements 

(f) Intersection removed 
by the proposed method 

(b)Triangular mesh with 
4mm average edge length does 
not include a self intersection. 

 

Fig. 12. Sample model of a plastic casing of a telephone  

proposed method are hardly visible without zooming into the specific locations.  
Figure 12 (e) shows a close up look of two of the self intersections included in the 
10mm mesh, and the proposed method removes them as shown in Figure 12 (f). 

7   Conclusions 

This paper has presented a computational method for removing self intersections 
included in a triangular mesh.  The method systematically applies edge-swapping, 
edge-hammering, and face-lifting operations to the input triangular mesh.  The 
proposed method has been applied to many test cases, and the results showed the 
effectiveness of the proposed method. 
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Abstract. A multilevel adaptive refinement technique is presented for unstruc-
tured quadrilateral meshes in which the mesh is kept conformal at all times. This
means that the refined mesh, like the original, is formed of only quadrilateral ele-
ments that intersect strictly along edges or at vertices, i.e., vertices of one quadri-
lateral element do not lie in an edge of another quadrilateral. Elements are refined
using templates based on 1:3 refinement of edges. It is demonstrated that by careful
design of the refinement and coarsening strategy, high quality elements can be main-
tained in the refined mesh. The method is demonstrated on a number of examples
with dynamically changing refinement regions.

1 Introduction

Adaptive mesh refinement is a well-known and widely employed technique for
accurately capturing special features of the solution in steady and unsteady
simulations. In such simulations, adaptive refinement enables the capturing
of complex solution features by focusing refinement in critical areas with-
out having to refine the mesh everywhere. Adaptive mesh refinement is now
standard practice in simplicial meshes (triangular and tetrahedral) in a wide
variety of applications. The unique topological properties of simplices allow
the refinement in such meshes to be confined to fairly local regions while
maintaining a high element quality [10] and keeping the mesh conforming.
Conformity of the mesh implies that the intersection of a pair of elements, if
not null, is strictly a lower dimensional mesh entity such as a face, an edge
or a vertex. Non-conformity of mesh is commonly interpreted to mean that
a lower order boundary entity (e.g. a vertex) of one element lies on a higher
order boundary entity (e.g. an edge) of another element.

For quadrilateral meshes, the most common approach to adaptation is to
refine elements in a non-conformal way. This allows the refinement to remain
local but introduces non-conformal nodes which lie on the edges of neighbor-
ing elements. However, mesh non-conformity necessitates augmentation of
the PDE solution algorithm to deal with the special nodes. Non-conformity is
typically dealt with by constraining the solution at the non-conformal nodes
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to be dependent on the solution at the nodes of the edge it lies on using
constraint equations [15] or Lagrange multipliers [4] or by the use of mortar
elements to link the non-matching elements [1].

In this research, a technique is described to refine an unstructured quadri-
lateral mesh such that the result is also a hierarchically refined, conforming
mesh of only quadrilaterals with high quality albeit a little worse than the
parent mesh quality.

2 Previous Work

There has been considerable research on conformal triangular refinement for
adaptive simulations since termination of refinement for simplices is very easy
(see, for example, [12]). However, for quadrilateral meshes most researchers
choose to use non-conformal quadtree type refinement with specialized code
to handle non-conformal nodes (see, for example, [3]). There have been only
a few articles describing conformal quadrilateral mesh refinement and coars-
ening, and even fewer that deal with the issue in a dynamic setting, i.e.,
conformally refining and coarsening a quadrilateral mesh that has been pre-
viously refined.

One of the best known papers on the issue of conformal quadrilateral refine-
ment is by Schneiders [14]. In the paper, Schneiders discusses 2-refinement
(bisection of edges) and 3-refinement (trisection of edges). He chooses the
trisection of edges because it simplifies the algorithm. The refinement infor-
mation is propagated from elements to nodes and refinement templates are
defined based on the number of marked nodes (See Figure 1). The refine-
ment templates are chosen such that the scheme is stable, i.e., the quality
of elements does not deteriorate with increasing refinement levels. However,
even though in this research, uniformly refined quadrilaterals have trisected
edges and are split into 9 child quadrilaterals, templates used in adjacent el-
ements to terminate the refinement have bisected edges as seen in the figure.
In general, Schneiders scheme is more complicated to implement than the
scheme presented here. Still, it is a valid scheme for conformal quadrilateral
refinement and has been used by other researchers such as Zhang and Bajaj
[18]. Schneiders has extended the work to hexahedral refinement as well but
correctly points out that certain refinement patterns for the faces of hexahe-
dra may not admit a valid decomposition of the parent hexahedron. Ito et al.
have also used Schneiders’ approach for octree based hexahedral refinement
templates [8].

Tchon et al. have proposed a quadrilateral refinement strategy in which
they find layers of elements, shrink the layers of elements and reconnect the
shrunk layer with the surrounding mesh [17]. Clearly this strategy assumes
certain structure to the mesh and specific refinement patterns while ignor-
ing the issues of multiple levels of refinement, mesh quality and dynamic
adaptation. Hence, the approach is of limited utility.
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(a) (b) (c)

(d) (e)

Fig. 1. Schneiders’ subdivision templates for quadrilateral refinement (refinement
vertices are marked with circles) (a) unrefined quadrilateral (b) one vertex marked
(c) two adjacent vertices marked (d) two diagonally opposite vertices marked (e)
three vertices marked (f) all vertices marked (uniform refinement of quadrilateral).

Several researchers have proposed a quadrilateral refinement strategy
where the end result is a mixture of quadrilaterals and triangles, for example
[5]. Similarly, others have proposed hexahedral refinement strategies which
result in a combination of hexahedra and prisms. However, this conflicts with
the stated goal of achieving a conforming all-quadrilateral or all-hexahedral
mesh.

Benzley et al. have proposed quadrilateral mesh coarsening strategies that
are quite general and do have an advantage over nested refinement strategies
in that they can coarsen beyond the original resolution of the mesh [16].

The research that is closest to the presented is the work by Sandhu et
al. [13] although this work was developed without knowledge of this ear-
lier research. In this work, Sandhu et al. use node marking and trisection of
edges to define templates for refining elements and terminating the refine-
ment. They define one less than the number of templates used in this work.
Similar to this work, they also recommend undoing non-uniform refinement
of quadrilaterals before further refinement to maintain quality. However, all
their examples show only static refinement and aspects of dynamic refinement
such as coarsening, remapping etc. are not explored.

This paper discusses a dynamic mesh adaptation strategy for quadrilat-
eral meshes that results in a conformal all-quadrilateral mesh with nested
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refinement. Moreover, while not proved, it is believed that in piecewise linear
complexes the resulting mesh quality is bounded by the quality of the parent
mesh regardless of the number of levels of refinement at each time step or the
number of time steps in the mesh. The adapted mesh is suitable for use in a
wide range simulations without any special procedures since it is composed of
only conformal quadrilaterals. Finally, the nested refinement allows for easy
remapping of cell based quantities from one time step to another.

3 Description of Mesh Refinement/Coarsening
Algorithm

3.1 Overview

The adaptive mesh modification algorithm starts with tagging elements that
must be refined because they do not adequately represent some geometric
feature or because the solution error in these elements is deemed to be too
high. These elements and their edges are tagged for refinement (or coarsen-
ing), if necessary, to multiple levels below (or above) their current level of
refinement1. When an edge is adjacent to two elements with different refine-
ment levels, it is refined to the higher of the two levels. Once the appropriate
elements have been tagged by the application, the mesh is coarsened wher-
ever the application requests the elements to be larger than they currently
are. After coarsening, the mesh is refined wherever the application requests
elements to be smaller than they currently are. During both coarsening and
refinement, the target refinement levels of elements are adjusted so that they
are consistent with their siblings (children of their parents) and such that
the target refinement levels of two adjacent elements do not differ by more
than one. The one-level difference rule ensures that the number of templates
required to make the mesh conforming is limited to a manageable number
and that the mesh is smoothly graded.

3.2 Subdivision Templates

When some elements in the mesh get uniformly refined, one or more edges
of adjacent quadrilaterals are also refined. To make the mesh strictly con-
forming, these adjacent elements must also be subdivided into quadrilaterals
such that the refinement terminates. To facilitate conformal subdivision of
elements that are not uniformly refined, edges are trisected instead of being
bisected as in triangular meshes. The reason for choosing trisection over bi-
section is that if an odd number of edges of a quadrilateral were bisected, the
resulting polygon would have an odd number of edges and could not be sub-
divided into quadrilaterals in a self contained manner. The templates used
1 Regardless of whether an element is being coarsened or refinement, it will always

be referred to its target level in the heirarchy of meshes below the coarsest mesh
as its target level of refinement.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Subdivision templates for quadrilateral refinement (thick edges are refined
edges) (a) unrefined quadrilateral (b) one edge refined (c) two opposite edges refined
(d) two adjacent edges refined (e) three edges refined (f) all edges refined (uniform
refinement of quadrilateral).

for subdividing quadrilaterals with different edges refined are shown below
in Figure 2. Some of these templates have been described in previous works
[13] and some are new.

The quadrilaterals that result from uniform refinement of a parent quadri-
lateral are called regular elements while quadrilaterals resulting from refine-
ment of one, two or three edges of the parent quadrilateral are called irregular
quadrilaterals.

It must be pointed out that the templates described above are different
from the templates in Schneiders’ work. In that work, refinement tags are
transmitted to vertices of elements and templates derived from the combina-
tions of vertices tagged for refinement. Those templates are shown in Figure 1.
As can be seen from the picture, the only template the two approaches have
in common is the uniform refinement template. In the remaining cases, edges
of elements that adjacent to uniformly refined elements are refined using
an irregular 1:2 pattern. Also, even if only one edge of an element adjacent
to a uniformly refined element is refined, the template proposed by Schnei-
ders refines two other edges of the element. This in turn forces refinement
of other elements. Figure 3 shows a simple example of this over-refinement
as a consequence of uniform refinement of the central element in a 3x3 mesh
of quadrilaterals. As can be seen in the picture, Schneiders’ scheme modifies
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(a) (b) (c)

Fig. 3. Comparison of Schneiders’ scheme and the proposed scheme of refine-
ment on a 3x3 grid of quadrilaterals (a) Central element refined uniformly (b)
Surrounding mesh made conforming by Schneiders’ scheme (c) Surrounding mesh
made conforming by proposed scheme.

every element in the 3x3 mesh while the proposed scheme affects only the
edge connected neighbors. This leads us to the conclusion that the Schnei-
ders’ scheme is a little more complex to implement that the current scheme
in which termination requires refinement of only edge neighboring faces. In
terms of numbers of elements, the number of extra elements created by both
schemes seems comparable for large problems.

3.3 Coarsening

In the mesh adaptation method presented here, coarsening of elements is done
first before refinement. In this approach, coarsening is performed strictly us-
ing the knowledge of the hierarchical structure of the adapted mesh, i.e., if
an element is to be deleted then its siblings are also deleted simultaneously
and the parent element is restored. For this reason, the coarsening strategy
of this paper cannot coarsen beyond the original mesh. Coarsening is per-
formed on elements whose current refinement level is higher than the target
refinement level. Before actual deletion of elements, however, the target levels
of elements are adjusted to ensure that there is not more than one level of
difference between two adjacent elements and that the target levels of siblings
are consistent.

Consider an element whose current refinement level is Lc and target re-
finement level is Lt. Assume the maximum refinement level of all of its edge
connected neighbors (and therefore, all of its edges) is La. Then, if the target
refinement level of this element is greater than one level less than the maxi-
mum target level of its edges, then set the target level to be exactly one less
than the maximum target level of its edges. Algorithmically, this can be ex-
pressed more succinctly as: if Lt < La − 1, then Lt = La − 1 (See Figure 4a).
For example, if for a particular element Lc = 5, Lt = 1 and the neighbors
have targets of 1, 3, 1, 2. Then La = 3 and Lt is set to 2.
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For making the refinement levels consistent between siblings, a conservative
approach is taken and the element and its siblings are marked for coarsening
only up to the maximum level (smallest size), Ls, allowed by the element
and all its siblings. So, if Lt <= Ls < Lc then Lt = Ls. For example, if
Lc = 5, Lt = 1 for an element, but Ls = 3, i.e., one of the siblings of the
element has a target level of 3 (Figure 4c). Then the current element cannot
be coarsened to a level lower than Lt = 3. On the other hand if Lt < Lc < Ls,
then Lt = Lc. For example, Lc = 5, Lt = 1 as before, but Ls = 7, i.e., a
sibling wants to be refined from the current level while the element wants to
be coarsened. Then the element cannot be coarsened above the current level,
Lt = Lc (Figure 4d).
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Fig. 4. Level adjustment during coarsening and refinement (a)(b) Refinement level
adjusted due to maximum level of edges (c) Coarsening level adjusted due to target
level of sibling (d) No coarsening allowed above current level because sibling wants
to be further refined.

Next the elements are coarsened one level at a time starting from the
highest level. Every time an element and its siblings are deleted we transmit
the target refinement level to its parent. After coarsening the mesh at a
particular level, the level adjustment is redone before coarsening at the next
lower level.

3.4 Refinement

The most important rule imposed during refinement is that irregular ele-
ments are never refined as their repeated subdivision can lead to unbounded
deterioration of quality. Instead, whenever an irregular element is tagged for
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refinement, the element and its siblings are deleted and its parent element
is tagged for uniform refinement upto the maximum level requested by the
element and its siblings. This rule ensures that the quality of the refined mesh
is always bounded by the quality of the parent mesh. Schneiders defines re-
finement schemes with this property as being stable [14].

Refinement of the mesh and adjustment of levels before refinement is bit
more complex than coarsening because regular and irregular elements have
to be dealt with separately. On the other hand, level adjustment has to be
done only once before multilevel refinement as opposed to the doing it at
each level for coarsening.

To do level adjustment for refinement, the algorithm looks at each element
whose target refinement level Lt is higher than its current refinement level,
Lc. Then it gets the maximum refinement level, La of all its edge connected
neighbors. As before, if its target refinement level is greater than one level
lower than the maximum target level of its edges, i.e. Lt < La − 1, then the
target level of this element is adjusted as Lt = La − 1. Also, if the element is
irregular and one of its edges is to be refined, then the element and its siblings
are marked for deletion and its parent is marked for refinement to Lt. Finally,
if two adjacent elements are to be subdivided irregularly, it is ensured that
the common edge of the two is also to be subdivided. This ensures better
element quality as shown in Figure 5.

Then the algorithm deletes the irregular faces and subdivides the remain-
ing faces according to the templates based on the number of edges that are

(a) (b)

(c) (d)

Fig. 5. Refining the common edge between two irregularly refined elements (a)
Two adjacent elements with one edge refined (b) same elements with their common
edge refined (c) One element with two edges refined next to an element with one
edge refined (d) same elements with their common edge refined
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refined. Every time an element is refined, all its children are marked with
the target refinement level. The procedure continues to iterate over the mesh
elements until all elements have reached their target level of refinement.

4 Remapping or Solution Transfer

Unlike mesh adaptation for capturing geometry, adaptation to reduce solution
error for solving a PDE is tightly coupled with the issue of remapping or
transfer of quantities from the base mesh to the adapted mesh. There are two
types of solution quantities that must be remapped between meshes - integral
quantities such as mass or energy and pointwise quantities such as diffusivity.
The remapping of both quantities must be done accurately and remapping
of integral quantities must be done in a conservative manner (for example,
the densities of the child elements must be assigned such that the total mass
of the parent element is conserved). When a group of elements is coarsened,
one can just sum up integral quantities such as mass (or energy) over the
child elements and assign it to the parent. For pointwise quantities, one can
take an average of the values for the children weighted by their areas. On the
other hand, when an element is refined uniformly, then one can equidistribute
the mass over the children (less accurate) or do a linear reconstruction of the
density function over the parent element and integrate over each child to get
its mass (more accurate) [2]. Likewise pointwise properties such as diffusivity
can also be linearly reconstructed over the parent’s neighborhood and an
accurate value derived for the child. Field variables (such as velocity) can be
obtained by either evaluating an interpolant over the parent at nodes of the
child or by solving a local problem over the refined elements using the solution
over the base mesh to impose boundary conditions for the local problem. Also,
in the proposed algorithm, special care must be taken for remapping when
irregular elements are targeted for refinement since the mesh is coarsened
back to the parent element and refined down uniformly. Using a summation
of masses of the irregular children to get a mass for the parent element and
then redistributing it to the regular children can be a poor choice and will lead
to lower order accuracy remapping. Rather, it is better to use an intersection
based remapping routine locally to get second order accuracy [6].

5 Results

First a static example of refinement is presented of a structured mesh mesh
adapted to a superimposed line in the mesh. Any element that is intersected
by the line is refined up to level 3 (level 0 is the original mesh). The super-
imposed line goes from (−0.308207, 1.106007) to (1.106007− 0.308207). The
quality of the mesh before and after the refinement is also compared in terms
of the average condition number of the element, κ̄, defined as the mean of the
condition numbers [9, 7] at all corners of the element. One can see from the
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κ̄ Original Refined
1.0 – 1.5 400 12412
1.5 – 2.0 0 1396
2.0 – 3.0 0 0
4.0 – 5.0 0 0
5.0 – 0 0

Fig. 6. A 20x20 structured mesh refined using distance from center as the refine-
ment criterion

histogram of the refined mesh that it is not shifted dramatically from the ideal
case and that the worst quality element has an average condition number of
only 1.69. In fact, in simulations where a line is moved diagonally across the
domain and the mesh refined around it, the worst element condition number
stays at 1.69. Also, the worst element quality stays at 1.69 regardless of what
refinement level is applied to elements intersected by the line.

Next refinement induced by the same line in an unstructured quadrilateral
mesh is demonstrated. Figure 7a shows the original mesh with the elements
marked for refinement to level 3 due to intersection with the line (also shown).
Figure 7b shows the refined mesh after the levels have been adjusted to en-
force a one-level difference between adjacent elements. Also included is a table
showing the distribution of condition numbers before and after refinement.
The worst condition number goes from 3.12 to 3.79 after refinement.

In the following example, several snapshots from an dynamic adaptation
procedure are shown where a circle of radius 0.1 is moved along a circular
path in the domain. The center of the circle traces a circle of radius 0.2
centered at (0.5, 0.5). The starting point of the circle center is (0.7, 0.5). The
target size for the elements to be refined is 0.05d where d is the distance
between the centroid of the element and the center of the circle. As the circle
moves, previously refined parts of the mesh are coarsened and new parts are
refined with considerable overlap between the coarsened and refined regions.
As expected, the worst element quality stays at 1.69 throughout the dynamic
adaptation procedure.

Finally, several snapshots of a dynamic adaptation procedure are shown
in which elements intersecting one of two expanding circles are refined to
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(a)
(b)

κ̄ Original Refined
1.0 – 1.5 1007 42491
1.5 – 2.0 15 1776
2.0 – 3.0 1 504
3.0 – 4.0 1 15
4.0 – 5.0 0 0
5.0 – 7.5 0 0

(c)

Fig. 7. Refinement of an unstructured mesh along a line (a) Target refinement
levels (b) Refined mesh (c) Histograms of condition numbers

level 3 and elements intersecting both circles are refined to level 4. One circle
is centered at (0.0, 0.0) and the other circle is centered at (1.0, 0.25). Both
circles start with a radius of 0.11 with their radii increasing in increments of
0.05. As the circles grow, they intersect each other and eventually grow out
of the domain. Elements that intersect one or the other circle are refined to
a level of 3 while elements that intersect both circles are refined to a level of
4. Again the worst quality is stays fixed at 1.69 throughout the adaptation
process.

6 Discussion

This paper presented a comprehensive mesh adaptation procedure for quadri-
laterals that results in conformal meshes with nested refinement. The refine-
ment is based on templates devised from a consistent 1:3 refinement of ele-
ment edges. It also presented algorithms for adjustment of refinement levels
of elements, both for coarsening and for refinement, such that there is never
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Fig. 8. Snapshots of dynamic mesh adaptation of a 20x20 structured mesh with
respect to a circle rotating about the center of the domain

more than a one level difference between the refinement levels of adjacent
elements. The quality of the refined mesh is kept high by never refining irreg-
ular elements used to bridge refined and coarse regions of the mesh. Instead
if irregular elements must be refined, they are deleted and their parent is
uniformly refined instead. Using several dynamic mesh adaptation examples,
it was shown that the procedure effectively refines the mesh where necessary
and coarsens it where it is not.

Although one other paper discussing similar templates and strategy was
found after this algorithm was devised, that paper does not discuss dynamic
mesh adaptation and mesh coarsening explicitly although it too suggests that
irregular elements not be refined.

Compared to the algorithm proposed by Schneiders and the templates in
his papers, this algorithm produces fewer elements and is simpler due to the
consistent use of 1:3 edge refinement. Also, Schneiders does not discuss the is-
sue of mesh quality when forced to refine irregular elements. Finally, the issue
of solution transfer or variable remapping is addressed in the current paper
which is often ignored in most conformal quadrilateral refinement papers.

In 3D, the combinatorial complexity of the current algorithm could be
more complex than that of Schneiders’ algorithm. That is because this al-
gorithm tags edges instead of vertices for refinement, thereby resulting in∑12

i=0
12Ci = 4096 possible combinations. Of course, many of these can be

eliminated due to symmetry of rotation and inversion. Even so, the number is
expected to be higher than in Schneiders’ algorithm. Also, it is possible, just
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Fig. 9. Snapshots of dynamic mesh adaptation of a 20x20 structured mesh with
respect to two expanding circles

like in Schneiders’ algorithm, that some subdivisions of the hexahedron faces
may not admit a subdivision into hexahedra. In such a case, one can refine
additional edges of such hexahedra to be able to mesh them and propagate
the refinement further. In such a case, one can only hope that the refinement
does not consume the entire mesh. Alternatively, one can use the modified
templates proposed by Parrish et al. to terminate the refinement [11]. This
topic will be addressed in future work.
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Abstract. In this paper, a quadtree-based mesh generation method is described to
create guaranteed-quality, geometry-adapted all-quadrilateral meshes with feature
preservation for arbitrary planar domains. Given point cloud, our method gener-
ates all-quad meshes with these points as vertices and all the angles are within
[45◦, 135◦]. For given planar curves, quadtree-based spatial decomposition is gov-
erned by the curvature of the boundaries and narrow regions. 2-refinement tem-
plates are chosen for local mesh refinement without creating any hanging nodes. A
buffer zone is created by removing elements around the boundary. To guarantee the
mesh quality, the angles facing the boundary are improved via template implemen-
tation, and two buffer layers are inserted in the buffer zone. It is proved that all
the elements of the final mesh are quads with angles between 45◦ ± ε and 135◦ ± ε
(ε ≤ 5◦) with the exception of badly shaped elements that may be required by the
specified geometry. Sharp features and narrow regions are detected and preserved.
Furthermore, boundary layer meshes are generated by splitting elements of the sec-
ond buffer layer. We have applied our algorithm to a set of complicated geometries,
including the Lake Superior map and the air foil with multiple components.

Keywords: Guaranteed quality, all-quadrilateral mesh, quadtree, sharp feature,
narrow region, boundary layer.

1 Introduction

Provably good-quality triangular mesh generation methods were well devel-
oped for planar and curved surfaces. However, quadrilateral elements are
preferred in finite element analysis due to their superior performance. Al-
though it was proved that any planar n-gon can be meshed by O(n) quads
with all the angles bounded between 45◦ − ε and 135◦ + ε [5], fewer algo-
rithms exist in the literature for all-quad mesh generation, and most of these
algorithms are heuristic. Circle-packing techniques have been developed to
construct quads with no angles larger than 120◦ for polygon interiors, but
with no bound on the smallest angle [4]. Later, a balanced quadtree was uti-
lized to generate a quad mesh with bounded minimum angle 18.43◦, but the
� Corresponding author.
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maximum angle bound is 180◦ [1]. In this paper, we present an approach to
generate guaranteed-quality all-quad meshes for given point cloud or planar
curves, in which all the angles of any element are within [45◦ ± ε, 135◦ ± ε],
where ε ≤ 5◦, except badly shaped elements that may be required by the
specified geometry.

Our algorithm generates unstructured adaptive all-quad meshes. For given
point cloud, we firstly define a size function based on the relative location of
these points, and then generate adaptive quadtree using 2-refinement tem-
plates. Three cases are considered to produce all-quad meshes conforming to
the given point cloud, with all the element angles within [45◦, 135◦].

For planar curves, six steps are adopted to construct guaranteed-quality
all-quad meshes. Firstly we decompose each curve into a set of line segments
based on its curvature; Secondly, a strongly balanced quadtree is constructed
and hanging nodes are removed using 2-refinement templates. The element
size is governed by the curvature of the boundary and narrow regions; Thirdly,
elements outside and around the boundary are removed to create the quadtree
core mesh and a buffer zone; Next, we design four categories of templates
to adjust the boundary edges and therefore improve the angles facing the
boundary in the quadtree core mesh; Then the angular bisectors are used
to construct the first buffer layer; Finally the points generated during the
first layer construction are projected to the boundary and form the second
buffer layer. It is proved that all the angles in the constructed mesh are
within [45◦ ± ε, 135◦ ± ε] (ε ≤ 5◦) for any planar smooth curves. A few bad
angles may be required to preserve sharp features such as small angles on the
boundary. Boundary layers are generated by splitting the second buffer layer.

We have applied our algorithm to a set of complicated geometries, includ-
ing the Lake Superior map and the air foil with multiple components. Our
robust algorithm efficiently deals with curves in large-scale size, and generates
meshes with guaranteed quality while minimizing the number of elements.

The reminder of this paper is organized as follows: Section 2 reviews the
related work on quad mesh generation; Section 3 describes the guaranteed-
quality meshing of point cloud; Section 4 explains the detailed algorithm for
guaranteed-quality meshing of smooth curves; Section 5 talks about sharp
feature and boundary layer generation; Section 6 shows two application re-
sults; Section 7 presents our conclusion and future work.

2 Previous Work

There are three main categories for direct unstructured all-quad mesh gener-
ation [13]: domain decomposition, advancing front and grid-based methods.

Domain Decomposition Methods: The domain is divided into simpler
convex or mappable regions, and then template-based, mapping or geometric
algorithms are utilized to generate the mesh for each of these regions. Domain
decomposition can be achieved by various techniques. Tam and Armstrong
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[18] introduced medial axis decomposition. Joe [10] decomposed the domain
based on geometric algorithms. Quadros et al. [14] introduced an algorithm
that couples medial axis decomposition with an advancing front method. In
general, these methods produce high quality meshes but they are not robust
and may require a great deal of user interaction especially if the domain has
non-manifold boundaries.

Advancing Front Methods: This approach starts with the initial place-
ment of nodes on the boundaries of the domain. Quad elements are then
formed by projecting each edge on the front towards the interior and a new
front is formed using edges on the new boundary. This process is repeated
recursively until the domain is completely covered with quads. Zhu [25] is
among the first to propose a quadrilateral advancing front algorithm. In his
approach, two triangles are created using the traditional advancing front
methods then combined to form a single quad. Blacker and Stephenson [6]
introduced the paving algorithm in which they place a complete row of quads
next to the front toward the interior. White and Kinney [19] enhanced the
robustness of the paving algorithm through creating individual quads rather
than a complete row. The advancing front methods generate near-boundary
elements with high quality. However, the closure algorithms for the elements
at the interior are still unstable, especially if the two overlapping elements
have large difference in size. In such instance, heuristic decisions are made
and these usually generate elements with poor quality in this region. More-
over, the detection and resolution of the closure regions can be very time
consuming and sensitive to floating point errors.

Grid-Based Methods: A grid-based method starts with a uniform Carte-
sian background grid or a quadtree structure generated using the local feature
sizes. Quads, conforming to the domain boundaries, are then fitted into that
grid. Baehmann et al. [2] modified a balanced quadtree to generate a quad
mesh for an arbitrary domain. Zhang et al. developed an octree-based iso-
contouring method to generate adaptive quadrilateral and hexahedral meshes
[22, 21, 24]. Schneiders et al. [16] used an isomorphism technique to conform
an adaptive tree structure to the object boundaries. Grid-based algorithms
are robust but often generate poor quality elements at the boundary.

Quality Improvement: In finite element analysis, small angles within the
mesh usually lead to ill-conditioned linear systems. Further problems are
caused due to elements with angles close to 180◦. Therefore, a post-processing
step is crucial to improve the overall quality of the elements. Smoothing
and clean-up methods are the two main categories of mesh improvement.
Smoothing methods relocate vertices without changing the connectivity [7].
These methods are simple and easy to implement. However, they are heuristic
and sometimes invert or degrade the local elements. To solve this problem,
optimization-based smoothing methods were proposed [8]. In this approach,
a node is relocated at the optimum location based on the local gradient of
the surrounding element quality. Optimization-based methods provide much
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better mesh quality but they are not practical due to excessive amount of
computations. For this reason such methods are usually combined with a
Laplacian smoothing technique [9]. Surface feature preservation represents
another challenging problem. Methods based on local curvature and volume
preserving geometric flows are presented in [3, 23] to identify and preserve
the main surface features. Clean-up methods for quad meshes [17, 11] are
utilized to improve the node valence. Pillowing [12] is used to ensure that
any two adjacent quads share at most one edge.

All of these quality improvement techniques do not guarantee any bounds
for the element angles in the final mesh. In this paper, we will present an
approach to generate all-quad meshes with guaranteed quality.

3 Guaranteed-Quality Meshing of Point Cloud

Given N points in a planar domain Ω, we aim to find a quad mesh M that
includes the given points as vertices and all the elements have the minimum
and maximum angle bounds. Let X denote the set of input points, we start by
the spatial decomposition using 2-refinement templates [15] and the strongly
balanced quadtree algorithm [20], which means the quadtree level difference
between any two neighboring cells is ≤ 1. Compared to 3-refinement, 2-
refinement provides a gradual transition and preserves element angles. It is
well-known that any quad mesh has an even number of boundary nodes. This
fact is utilized in eliminating each pair of the hanging nodes in the quadtree
structure using 2-refinement templates. This algorithm considers the vertex
sequence {V1, V2, . . . , V2k} on the boundaries. Half of the vertices in this list
are set to be active and the other half are set to be inactive such that each
active vertex is followed by an inactive vertex. Any element that contains
only one active node is refined using the transition template in Fig. 1(b)
while any element containing two or more active nodes is refined using the
refinement template shown in Fig. 1(c).

During the spatial decomposition, an additional requirement is applied so
that each cell, c, containing a point P ∈ X is surrounded by eight empty
cells of the same size. We then subdivide c into 16 identical regions, Bi

(i = 1, 2, . . . , 16). One region of these will contain the point P . Here we
consider three regions only as shown in Fig. 2(a). The other possibilities can
be obtained by symmetry. If P ∈ B1, we set the grid node V1 = P as shown
in Fig. 2(b). When P ∈ B2 ∪ B3, the local refinement shown in Fig. 2(c)
is carried out first. If P ∈ B2, we set the grid node V2 = P and adjust V3

vertically as shown in Fig. 2(d). Similarly, if P ∈ B3 as shown in Fig. 2(e),
we set V3 = P and adjust V2 correspondingly. As proved in Lemma 1, this
algorithm guarantees all the angles in the final mesh are within [45◦, 135◦],
and the maximum aspect ratio is 1.5 (The aspect ratio of a quad is defined
as the longest edge length over the shortest edge length). Fig. 1(d-e) show
two testing cases.
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Fig. 1. 2-refinement templates and mesh generation conforming to a set of points.
(a) A quadtree cell at Level i; (b) The transition template; (c) The refinement
template; (d) A quad mesh of 32 points distributed uniformly along a circle; and
(e) A quad mesh of 215 points distributed non-uniformly along a curve.

(a) (b) (c) (d) (e)

Fig. 2. All-quad mesh generation conforming to a set of points. (a) The cell con-
taining a point is subdivided into 16 regions, supposing P ∈ B1 ∪ B2 ∪ B3; (b)
When P ∈ B1, V1 = P ; (c) Local refinement for P ∈ B2 ∪ B3; (d) When P ∈ B2,
V2 = P and V3 is adjusted; and (e) When P ∈ B3, V3 = P and V2 is adjusted.

Lemma 1. The method above results in a quad mesh with angles between 45◦

and 135◦ with the maximum aspect ratio of 1.5.

Proof. In Fig. 2(b), the maximum displacement that V1 can move is the
diagonal of the square region B1,

√
2s. The resulting angles α1, α2, α3 and

α4 due to this displacement have a minimum value of 67◦ and a maximum
value of 127◦. The maximum aspect ratio of the quad around P is 1.3. When
P ∈ B2 ∪ B3, the local refinement in Fig. 2(c) guarantees that both V2 and
V3 are surrounded initially by four angles of 90◦. In Fig. 2(d-e), V2 and V3 are
adjusted. One node is moved to P , and the other node is adjusted to maintain
the slope between V2 and V3. The worst case here is similar to moving a corner
of a square cell of size s a distance of

√
2s. The resulting angles α1, α2, and α3

due to this displacement have a minimum value of 53◦ and a maximum value
of 108◦. The maximum aspect ratio of the quads around P is 1.5. Therefore,



50 X. Liang, M.S. Ebeida, and Y. Zhang

our algorithm produces all-quad meshes with angles between 45◦ and 135◦

with the maximum aspect ratio of 1.5. �

4 Guaranteed-Quality Meshing of Smooth Curves

Given a planar domain Ω and closed smooth curves C represented by cubic
splines, a set of points or polygons, we aim to generate a guaranteed-quality
all-quad mesh for the regions enclosed by C. Six steps are applied as shown in
Fig. 3, including (1) curve decomposition, (2) adaptive quadtree construction,
(3) buffer zone clearance, (4) template implementation, (5) first buffer layer
construction, and (6) second buffer layer construction.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Flow chart of guaranteed-quality mesh generation. (a) The input curve; (b)
Adaptive quadtree construction; (c) Buffer zone clearance; (d) Template implemen-
tation; (e) First buffer layer construction; and (f) Second buffer layer construction.

4.1 Curve Decomposition

Given closed smooth curves C represented by cubic splines, we first decompose
C into a set of piecewise-linear line segments using three criteria: (1) The angle
between two neighboring line segments is ≤ 5◦; (2) The approximation error
of each line segment is less than a given threshold (i.e., 0.01); and (3) Each
curve in C is represented by line segments in the clockwise direction. As a
result, non-uniform points X are created based on the curve local curvature.

4.2 Adaptive Quadtree Construction

For a set of points X , a size function is first defined. For example, we define the
size function as si = min(dij), where dij is the distance between two points
i and j (i, j ∈ X and i �= j). The basic concept of a spatial representation
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consists of enclosing the points X in a bounding box, denoted as B(Ω), which
is corresponding to the root of the spatial decomposition quadtree. This box
is either a square with one cell or a rectangle with one row of square cells.
Each cell is recursively subdivided based on the size function and the strongly
balanced quadtree algorithm. A cell, c, is crowded if its size is greater than
the size function at any point within c or if the quadtree level difference
around c is more than one. The spatial decomposition is achieved by splitting
any crowded cell recursively until there is no crowded cell, and 2-refinement
templates are used to remove all hanging nodes, see Fig. 3(b).

Narrow region is an important feature of the input curve. A region is
defined as narrow if it contains only none/one/two quadtree cells in one
direction after the domain decomposition. The detected narrow region will
be refined until all directions contain more than two quadtree cells, which
guarantees the topology will be preserved during the mesh generation.

4.3 Buffer Zone Clearance

After generating the adaptive quadtree, we remove elements near the bound-
ary curves so that there is enough space to construct guaranteed-quality quad
elements. Such a process is called buffer zone clearance. Here are definitions
used in the algorithm description:

Buffer zone: Any zonal area that serves the purpose of keeping the quad
mesh distant from boundaries, e.g., the blue region in Fig. 3(c).
Boundary edge: A boundary edge is contained in only one element, e.g.,
the edges AB, BC and CD in Fig. 4(a).
Boundary point: The two vertices of each boundary edge are named bound-
ary points, e.g., the points A, B, C and D in Fig. 4(a).
Boundary angle: The angle formed by two neighboring boundary edges fac-
ing the nearest boundary, e.g., the angles α, β, and γ in Fig. 4(a).
Boundary edge angle: The angle formed from the boundary edge to the
boundary. The angle must be inside the buffer zone, and can not intersect with
the quadtree core mesh. The boundary edge angle has a range of [−180◦, 180◦],
and the counterclockwise direction is positive. For example, the angle ψ in Fig.
4(a) is negative.

(a) (b) (c)

Fig. 4. Definition and criteria in Buffer Zone Clearance. (a) The red curve is the
boundary. A, B, C, and D are boundary points. AB, BC, and CD are boundary
edges. α, β, and γ are boundary angles. ψ is a boundary edge angle; (b) One
exception of Criterion 3; and (c) Single element removal (the blue quad).
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Three criteria are used in the buffer zone clearance: Criterion 1: all ele-
ments outside the regions to be meshed are deleted; Criterion 2: all elements
intersecting with curves C are deleted; and Criterion 3: if the distance of
any vertex to the nearest boundary is less than or equal to a pre-defined
threshold εs, all elements sharing this vertex are deleted. Here we choose
εs = 0.5 ∗ max(si), where si is the size of the ith element sharing this ver-
tex. However, there are two exceptions. For example in Fig. 4(b), the two
blue boundary points are very close to the boundary, so they need to be
deleted according to Criterion 3. However, we choose to keep them because
the boundary edge formed by them are almost parallel to the boundary. In
addition, we also need to remove all the single elements. A single element is
an element whose four vertices are all boundary points, and it has only one
edge shared by another element as shown in Fig. 4(c). After the buffer zone
clearance, the quadtree core mesh and a buffer zone are created, see Fig. 3(c).
The buffer zone will be filled with guaranteed-quality quad elements.

4.4 Template Implementation

If all the boundary edges are parallel to the boundary, it is easy to construct
good quality meshes. However, after the buffer zone clearance, the range of
the boundary angles is [45◦, 315◦], and the boundary edge angles are within
[−180◦, 180◦]. In order to generate good quality elements around the bound-
ary, we design templates and use them to improve the boundary angles and
the boundary edge angles, keeping all the element angles in the quadtree core
mesh ∈ [45◦, 135◦].

Uniform Grid: If the quadtree core mesh is uniform, there are only three
possible boundary angles after the buffer zone clearance: 90◦, 180◦, and 270◦.
Only 90◦ and 270◦ will possibly introduce bad elements when we fill the buffer
zone. To guarantee the element quality, we use Templates 1(a-b) to modify
these quad elements. In Tab. 1, the left column shows the original config-
urations, and the middle column shows the modified templates. For each
template, the boundary angles are denoted in the figure and the boundary
angle sequence is provided. For example, in Template 1(a), the boundary

angle sequence is ( 180◦

270◦ )-90◦-( 180◦

270◦ ), which indicates ϕ =(180◦

270◦ ), α = 90◦,

ψ =(
180◦

270◦ ), where “(
180◦

270◦ )” means “[180◦, 270◦]”. By using Templates 1(a-

b), the possible boundary angles in the uniform mesh become 112.5◦, 180◦,
202.5◦, and 225◦. It is obvious that the boundary angle range is improved
from [90◦, 270◦] to [112.5◦, 225◦].

The right column of Tab. 1 shows the boundary edge angle for each tem-
plate. For example in Templates 1(a-b), the grey points and dash lines indi-
cate the edges deleted during the buffer zone clearance. We draw two solid-line
circles at the starting point S and the ending point T , and draw a dash-line
circle at one of the deleted points, denoted as B

′′
. The solid-line circle means
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Table 1. Template implementation of Categories 1-4.

Template Original template Modification Boundary edge angles

1(a-b)
Uniform:

Adaptive:

2(a)

2(b)

2(c)

3(a)

3(b)

3(c)

3(d)

4(a)

4(b)

4(c)

Note: The boundary angle sequence below each template starts from left to right. In 1(a), (180
◦

270◦)

-90◦-(180
◦

270◦) indicates ϕ =(180
◦

270◦), α=90◦, ψ =(180
◦

270◦). “ϕ =(180
◦

270◦)” means “ϕ ∈ [180◦, 270◦]”.
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the boundary line must be on or outside the circle since the center is an
existing point, while the dash-line circle means the boundary line must be
inside the circle since the center is a deleted point. The radius of each circle
is half size of the maximum element surrounding its center. By balancing the
three circles, we can determine two boundary lines L1 and L2, which give
the range of possible boundary edge angles for each template. In Templates
1(a-b), the slope of L1 is −90◦, and the slope of L2 is 0◦. Since the boundary
edge SB′ has a slope of 22.5◦ and the boundary edge B′T has a slope of
67.5◦, the boundary edge angle becomes [−67.5◦, 67.5◦]. As a final result, we
obtain that the range of the boundary edge angles in Templates 1(a-b) is
[−67.5◦, 67.5◦].

Adaptive Grid: For the adaptive mesh, the range of boundary angles after
the buffer zone clearance is [45◦, 315◦]. Here Templates 1(a-b) are also used,
but the boundary angles ϕ and ψ have larger ranges. In addition, three other
categories of templates are designed to improve the boundary angles as listed
in Tab. 1: the boundary angle α = 45◦ in Category 2, α = 90◦ in Category 3,
and α = {135◦, 225◦, 270◦, 315◦} in Category 4. All the other possible con-
figurations can be derived from these basic templates. Meanwhile, templates
beginning with α = 180◦ are not listed in Tab. 1, because they are either
categorized in other templates or good enough and therefore need not to be
improved.

Here we use Template 2(a) as an example to explain how to derive these
templates based on the 2-refinement algorithm (Fig. 1(a-c)). Fig. 5(a) shows
a row of three uniform cells, where the black points indicate the boundary
nodes. We then use 2-refinement templates to refine these cells, and Fig. 5(b)
is one possible result. Here we always keep the left element and the corre-
sponding boundary points in Fig. 5(b). The red points are boundary points
which are very close to the boundary. These points and their neighboring cells
(grey cells) are removed during the buffer zone clearance, which results in Fig.
5(c). The cells now have new boundary points and boundary edges. However,
the boundary edges AB, BC and CD form a sharply concave geometry with
the minimum boundary angle of 45◦. To guarantee the mesh quality, we must
eliminate the concaveness by modifying the boundary edges as shown in Fig.
5(d), and finally we obtain Template 2(a) in Tab. 1. Changing the number
of cells in Fig. 5(a) or/and applying 2-refinement templates to these cells
differently, we can obtain the rest templates in Tab. 1 in similar ways. It is
noticed that the same template can be derived from different combinations,
and some combinations are impossible and never appear in the mesh. More-
over, the number of cells in Fig. 5(a) can be restricted to be between 1 and
4. If the number of cells is greater than 4, they can always be split so that
each part contains no more than 4 cells.

From the right column of Tab. 1, we can obtain the range of the boundary
edge angles for each template. We also take Template 2(a) as an example. L1

is horizontal and its slope is 0◦. Since the dash-line circle at the center B
′′

is
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(a) (b) (c) (d)

Fig. 5. An example of deriving a template. (a) Given uniform cells; (b) Cells after
applying 2-refinement templates; (c) Cells after the buffer zone clearance; and (d)
Cells after the template implementation.

double size of the solid-line circle at the center T , and L2 is tangent to both
circles, we can obtain the slope of L2 is 39.5◦. The boundary edge angles
of the two horizontal boundary edges are within [−39.5◦, 0◦]. However, the
boundary edge SC has a slope of 26.5◦, so the boundary edge angle becomes
[−13◦, 26.5◦]. As a final result, the range of the boundary edge angles in
Template 2(a) is [−39.5◦, 26.5◦].

Lemma 2. After the template implementation, all the element angles in the
quadtree core mesh are within [45◦, 135◦], all the boundary angles are within
[112.5◦, 251.5◦], and all the boundary edge angles are within [−90◦, 90◦].

Proof. It is obvious that all the element angles in the quadtree core mesh are
within [45◦, 135◦]. From the modified templates in Tab. 1, we can see that
the boundary angles are within [112.5◦, 251.5◦], noticing that the possible
boundary angle 90◦ in Template 4(c) will be further improved by Template
1(a)/3(a). We check the boundary edge angles of each template in Tab. 1
and list them in Tab. 2. From the table, it is obvious that all the boundary
edge angles are in the range of [−67.5◦, 90◦]. Due to the symmetry of these
templates, we release the range of the boundary edge angle to [−90◦, 90◦]. �
Discussion: During the template implementation, the boundary angles and
the boundary edge angles are improved by filling with new quads, changing
the shape of quads or changing the connectivity of quads. All these improve-
ments will help to guarantee the element quality during the following first
and second buffer layer construction. Moreover, we classify all the templates
into three priorities as shown in Tab. 2: high, medium and low. Templates in
lower priority will not be implemented until all the higher priority templates
are implemented.

4.5 First Buffer Layer Construction

For each boundary point, we use angular bisectors to calculate a correspond-
ing point inside the buffer zone called the first buffer point. Then, each pair
of neighboring boundary points and their first buffer points construct a quad.
All these new quads form the first buffer layer as presented in Fig. 3(d).

Here we develop an algorithm to calculate the first buffer points using
angular bisectors. As shown in Fig. 6(a), the boundary point B is shared by
two boundary edges AB and BC with the boundary edge angles of ϕ and ψ.
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Table 2. Boundary edge angles of each template in Tab. 1.

Template Slope of L1 Slope of L2 α Boundary edge angle Priority

1(a) −90◦ 0◦ 22.5◦ [−67.5◦, 67.5◦] Low
1(b) −90◦ 0◦ 22.5◦ [−67.5◦, 67.5◦] Medium
2(a) 0◦ 39.5◦ 26.5◦ [−39.5◦, 26.5◦] High
2(b) 0◦ 28.1◦ 26.5◦ [−28.1◦, 26.5◦] High
2(c) 0◦ 28.1◦ 26.5◦ [−28.1◦, 26.5◦] High
3(a) −63.4◦ 45◦ 45◦ [−63.4◦, 90◦] Low
3(b) 0◦ 26.5◦ 18.5◦ [−26.5◦, 18.5◦] High
3(c) 0◦ 26.5◦ 18.5◦ [−26.5◦, 18.5◦] High
3(d) 0◦ 14◦ 11.3◦ [−14◦, 11.3◦] High
4(a) 0◦ 26.5◦ 26.5◦ [−26.5◦, 26.5◦] High
4(b) −26.5◦ 26.5◦ - [−26.5◦, 26.5◦] High
4(c) −90◦ 0◦ 45◦ [−45◦, 90◦] Medium

Suppose ψ ≥ ϕ, we draw the angular bisectors of the larger angle ψ and the
boundary angle β. Finally, the two angular bisectors intersect at B

′
which is

the corresponding first buffer point of B. By using all the boundary points
and their first buffer points, a set of quad elements are generated to form the
first buffer layer.

There are two special cases for the first buffer point calculation. If both
boundary edges of a boundary point are approximately parallel to the bound-
ary, or the boundary edge angles are less than 10◦, we create the first buffer
point as the middle of each boundary point and its projection on the bound-
ary. For example in Fig. 6(b), since the two boundary edges AB and BC are
almost parallel to the boundary, we project B to the boundary, and take the
middle point of B and its projection as the corresponding first buffer point
B

′
. Similarly, A

′
and C

′
are calculated. These boundary points A, B, C and

the first buffer points A
′
, B

′
, C

′
construct two quads for the first buffer layer.

As shown in Fig. 6(c), the second special case is introduced by Templates
1(a-b) in Tab. 1. The boundary angles at boundary points B and C are
α = 112.5◦ and β = 180◦, and the angular bisectors are l1 and l2. B

′
is the

first buffer point of B. It can be observed that B
′

is close to l2, which may

(a) (b) (c)

Fig. 6. First buffer layer construction. (a) The general case; (b) The parallel case;
and (c) The special case.
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introduce a quad with bad angles or even self-intersection. Suppose l1 and l2
form an angle θ = (β − α)/2 = 33.75◦, l2 is rotated by θ/2 so that it is away
from B

′
. This new angular bisector l

′
2 will be used to calculate C

′
.

With these three cases in Fig. 6, we can get all the corresponding first
buffer points and generate the first buffer layer. After the construction of the
first buffer layer, the original boundary points have now become inner points,
and new boundary points are on the first buffer layer. The following Lemma
3 proves the angle bounds of the first buffer layer.

Lemma 3. All the four angles of any element in the first buffer layer are in
the range of [45◦ ± ε, 135◦ ± ε], where ε ≤ 5◦.

Proof. To simplify the proof, we first assume that the boundary curve around
each boundary edge is a straight line. In Fig. 7(a), B

′
and C

′
are the first

buffer points corresponding to the boundary points B and C, and the bound-
ary edge angle of BC is ψ. Suppose B

′
and C

′
are on the angular bisector

of ψ. There are two possible cases we need to consider in order to prove this
lemma.

(a) (b) (c)

Fig. 7. Guaranteed-quality proof. (a) The first buffer layer (Case 1); (b) The first
buffer layer (Case 2); and (c) The second buffer layer.

The first case is shown in Fig. 7(a). The boundary angle of B is ≤ 180◦

and the boundary angle of C is ≥ 180◦. From Lemma 2, we can obtain
ψ ∈ [−90◦, 90◦]. Here we choose ψ ∈ [0◦, 90◦] due to the symmetry, therefore
ϕ = ψ/2 ∈ [0◦, 45◦]. After the template implementation, all the boundary
angles are in the range of [112.5◦, 251.5◦]. Therefore, the boundary angle of
B is in the range of [112.5◦, 180◦] and the boundary angle of C is in the range
of [180◦, 251.5◦]. Since BB′ and CC ′ are angular bisectors, β ∈ [56.25◦, 90◦]
and γ ∈ [90◦, 125.75◦]. Likewise, we can get σ = 180◦ − γ ∈ [54.25◦, 90◦],
θ = ϕ + σ ∈ [54.25◦, 135◦], α = 180◦ − β − ϕ ∈ [45◦, 125.75◦]. Therefore, all
the angles of the quad BCC

′
B

′
are within [45◦, 135◦].

As shown in Fig. 7(b), the second case is that both of the boundary angles
are greater than 180◦. This case is introduced by Templates 1(a-b). From
Tabs. 1-2, we can obtain the two boundary angles are 202.5◦ at B and 225◦

at C, and the boundary edge angle ψ ∈ [−67.5◦, 67.5◦]. Here we choose
ψ ∈ [0◦, 67.5◦] due to the symmetry. Therefore, we have β = 202.5◦/2 =
101.2◦, γ = 225◦/2 = 112.5◦, σ = 180◦ − γ = 67.5◦, ϕ = ψ/2 ∈ [0◦, 33.8◦],
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θ = σ + ϕ ∈ [67.5◦, 101.3◦], and α = 180◦ − β −ϕ ∈ [45◦, 78.8◦]. It is obvious
that all the four angles of the quad BCC

′
B

′
are within [45◦, 112.5◦].

Following the similar ways, we can easily prove that all the angles in the
two special cases (Fig. 6(b-c)) are also within [45◦, 135◦]. In summary, all
the four angles of any element in the first buffer layer are within [45◦, 135◦].
Considering that the boundary curve has a small perturbation ε ≤ 5◦, we
relax the angle range to [45◦ ± ε, 135◦ ± ε]. �

4.6 Second Buffer Layer Construction

The second buffer layer construction is simple. As shown in Fig. 7(c), we
project the first buffer points to the boundary and obtain the corresponding
second buffer points. Then we construct a quad using these first and second
buffer points, and all these new quads form the second buffer layer, see Fig.
3(f). We use Lemma 4 to prove its angle bounds.

Lemma 4. All the four angles of any element in the second buffer layer are
in the range of [45◦ ± ε, 135◦ ± ε], where ε ≤ 5◦.

Proof. Similar to Lemma 3, we assume that the boundary curve is a straight
line around each boundary edge. In Fig. 7(c), B

′
and C

′
are the first buffer

points of the boundary points B and C. B
′
and C

′
are on the angular bisector

of ψ, which is the boundary edge angle of BC. From Lemma 2, we have
ψ ∈ [−90◦, 90◦]. Here we choose ψ ∈ [0◦, 90◦] due to the symmetry, therefore
ϕ = ψ/2 ∈ [0◦, 45◦]. It is obvious that γ = θ = 90◦. We can derive that
α = σ = 90◦ − ϕ ∈ [45◦, 90◦], and β = 180◦ − σ ∈ [90◦, 135◦]. Therefore, all
the four angles of the quad B

′
C

′
C

′′
B

′′
are within [45◦, 135◦]. Considering

that the boundary curve may have a small perturbation ε ≤ 5◦, the angular
range is relaxed to [45◦ ± ε, 135◦ ± ε]. �
Remark: After applying the designed six steps in Fig. 3, the element angles
in the quadtree core mesh, the first buffer layer and the second buffer layer
are all in the range of [45◦ ± ε, 135◦ ± ε] (ε ≤ 5◦).

5 Sharp Feature and Boundary Layer

To preserve sharp features, we keep the quadtree core mesh nearby each
sharp feature uniform during the adaptive quadtree construction. An addi-
tional template in Fig. 8(a) is implemented, and the boundary angle range is
improved from [90◦, 270◦] to [116.6◦, 206.6◦]. Suppose P is the corner and α
is the sharp angle as shown in Fig. 8(b-d), we develop different meshing algo-
rithms for three various cases: α ∈ (0◦, 135◦], (135◦, 270◦], and (270◦, 360◦).

When α ∈ (0◦, 135◦] as shown in Fig. 8(b), we first draw two lines l
′
1 and

l
′
2, where l

′
1 ⊥ l1 and l

′
2 ⊥ l2. In the green area enclosed by l

′
1 and l

′
2, we

find the closest point M after constructing the first buffer layer, then project
it to the boundary and obtain two corresponding points L and N . The four
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(a) (b) (c) (d)

Fig. 8. A new template and three algorithms for sharp features. (a) An additional
template; (b) α ∈ (0◦, 135◦]; (c) α ∈ (135◦, 270◦); and (d) α ∈ [270◦, 360◦).

points then form a quad PNML. Since L and N are the projections of M , if
α ≥ 45◦, obviously all the four angles will be within [45◦, 135◦]; otherwise if
α < 45◦, we just keep α, and the range of all the four angles is [α, 180◦ − α].

When α ∈ (135◦, 270◦] as shown in Fig. 8(c), after the template implemen-
tation, we use the angular bisector of α to modify the quadtree core mesh
close to the sharp feature. First we find that the angular bisector intersects
the boundary edge LM at M

′
, so we move M to M

′
. Then we create the

first buffer points L
′
and N

′
. Suppose the boundary edge angle of LM ′ is ψ,

the first buffer point P
′
of M

′
is calculated as the intersection of the angular

bisector of ψ with PM ′ . The constructed yellow quads form the first buffer
layer, its quality is guaranteed by Lemma 3. Finally, we obtain the second
buffer layer by projecting L

′
and N

′
to the boundary. To prove the second

buffer layer is also in good quality, we take the quad PP
′
L

′
L

′′
as an example

and check all its four angles. It is obvious that ψ ∈ [0◦, 90◦] and ϕ = 90◦.
If α ∈ [180◦, 270◦], it is straightforward to obtain β = α/2 ∈ [90◦, 135◦],
θ = 90◦ − ψ/2 ∈ [45◦, 90◦], and γ = 180◦ − β + ψ/2 ∈ [45◦, 135◦]. If
α ∈ (135◦, 180◦), ψ can be restricted to be within [0◦, 67.5◦ − (180◦ − α)]
from Templates 1(a-b), then we have β = α/2 ∈ (67.5◦, 90◦), θ = 90◦−ψ/2 ∈
[45◦, 90◦], and γ = 180◦ − β + ψ/2 ∈ [90◦, 123.25◦]. Now all the four angles
of the quad PP

′
L

′
L

′′
are within [45◦, 135◦]. Similarly, we can prove that the

quad P
′
PN

′′
N

′
is of good quality.

When α ∈ (270◦, 360◦) as shown in Fig. 8(d), we also use the angular
bisector of α to modify the local quadtree core mesh. M

′
is the intersection

point of the angular bisector of α with LM . Then we move M to M
′
, and

move N to N
′

so that M
′
N

′
//MN . The angular bisector of ∠M

′
PO

′′
in-

tersects the angular bisector of ∠ON
′
M

′
at point N

′′
; likewise, we create L

′

in the similar way. Later, we use points K
′
, L

′
, P , N

′′
and O

′
to construct

the first buffer layer, and use K
′′
, O

′′
to obtain the second buffer layer. It

is noticed that no second buffer layer is created at the sharp feature. This
method may not always guarantee good angles, therefore in some cases we
have to rotate the bisectors PM ′ , PN ′′ and PL′ so that all the angles near
the sharp feature are of good quality.

In order to apply a mesh to Computer Fluid Dynamics (CFD) simulations,
we must generate one or more boundary layers. In our algorithm, the bound-
ary layer construction is conveniently obtained by splitting the elements of
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Fig. 9. Templates for boundary layer generation and the delta wing with a small
sharp angle of 31◦. (a-c) Templates with one, two and three boundary points; (d)
Final mesh with all angles ∈ [31◦, 135◦]; (e-g) Zoom-in pictures of (d).

the second buffer layer. Only three templates are needed as shown in Fig. 9(a-
c). The black points are boundary points, the red points are new points, and
the blue quads are elements constructed for the boundary layer. It is obvious
that Fig. 9(b-c) preserve all the angles. Fig. 9(a) splits an angle using the
angular bisector, resulting in a change of the angle range to [22.5◦, 157.5◦].
This only happens at the sharp feature with an angle > 270◦. Fig. 9(d-g)
show the delta wing with 6 sharp angles and a boundary layer.

Remark: Our algorithm guarantees all the angles in the final mesh are within
[45◦ ± ε, 135◦ ± ε] (ε ≤ 5◦), with the exception of bad elements that may be
required by sharp features with an angle < 45◦ or > 270◦.

6 Results

We have applied our algorithm to two complicated models: the Lake Superior
map and the air foil with multiple components. Our results were computed
on a PC equipped with an Intel Q6600 CPU and 4GB DDR-II Memories.
As shown in Fig. 10, the Lake Superior map consists of seven closed smooth
curves, which has narrow regions. The constructed mesh conforms to the
input curves accurately and all the elements are quads with angles within
[43◦, 135◦]. The mesh adaptivity is controlled by a size function based on the
boundary curvature and narrow region. It took 82 seconds to generate the
mesh. The final mesh has 32789 nodes and 30321 quads, the quadtree has 10
levels, and the maximum aspect ratio is 10.

In Fig. 11, the air foil consists of three components, all of them contain
sharp angles. It took 15 seconds to generate the mesh. Before generating a
boundary layer, the mesh has 24514 nodes and 22929 quads, the quadtree
has 14 levels, the angle range in the final mesh is [45◦, 135◦], and the maxi-
mum aspect ratio is 4.7. After generating one boundary layer, the angle range
becomes [27◦, 153◦] due to the template in Fig. 9(a). This result shows that
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Fig. 10. The Lake Superior map. (a) Final guarantee-quality all-quad mesh with
all angles ∈ [43◦, 135◦]; and (b-c) Zoom-in pictures of (a).

(a)

(b) (c) (d) (e)

Fig. 11. The air foil with multiple components. (a) All-quad mesh with all angles
∈ [45◦, 135◦] before boundary layer generation, and [27◦, 153◦] after generating one
boundary layer; (b-e) Zoom-in pictures of (a).
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our algorithm can deal with large-scale inputs while minimizing the number
of elements, which are important for aerodynamics simulations.

7 Conclusion and Future Work

In this paper, we present a quadtree-based meshing method, which creates
guaranteed-quality all-quad meshes with feature preservation for arbitrary
planar domains. It is proved that all the elements of the final mesh are quads
with angles between 45◦ ± ε and 135◦ ± ε (ε ≤ 5◦), except badly shaped
elements required by the specified geometry. Our algorithm can conveniently
generate boundary layers on the final mesh for the CFD simulation. We have
applied our algorithm to a set of complicated geometries, including the Lake
Superior map and the air foil with multiple components.

In the current algorithm, the meshes generated inside and outside the
curves do not conform to each other. In the future, we will improve our
algorithm so that it can be used to generated interior and exterior meshes
at the same time. We are also planning to extend our algorithm to dynamic
re-meshing. All the ideas in the paper can be extended to 3D hexahedral
meshes. As part of our future work, we would like to explore quality proof
for octree-based hexahedral mesh generation.
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Mesh Generation: Handling Sharp Features�
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Abstract. Even though many methods have been suggested to meet the challenge
of all-hexahedral meshing, octree-based methods remain the most efficient from
an engineering point of view. As of today, its robustness, speed and robustness
are still unmatched. This paper presents advances made in the Hexotic project, es-
pecially in terms of sharp angles meshing, non-manifold geometries and adaptation.

Keywords: octree, meshing, hexahedra, adaptation.

1 Introduction

1.1 Motivation

Engineers facing the need for hexahedral meshes can access today only two
kinds of software:

• Semi-automated block decomposition based methods like super block
mapping, extrusion, sweeping algorithms, etc... These produce good qual-
ity meshes and enable fine grain control over the mesh, such as element
position, orientation and size, but require a big human time cost. To begin
with, a good deal of time is needed to learn how to use the software and
acquire some knowhow. Afterwards, meshing each object requires a siz-
able amount of time, from hours to months depending on its complexity
and the user’s skill.

• Fully automated software, mostly based on the octree method. These
products offer high speed, robustness and ease of use at the cost of mesh
quality.

Consequently, researchers eager to improve an engineer’s condition have
but two ways to do so:

• the first is to reduce the human intervention required by semi-automated
methods,

� This work was funded by the Pôle system@tic under the project E.H.P.O.C.
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• the second is to improve the quality of meshes produced by octree-based
methods.

This paper addresses the second alternative: what can be done to improve
the capabilities of octree methods?

1.2 Limitations of Available Octree-Based Software

Most available products suffer from one ore more of these limitations:

• Non-conformity: hanging vertices are left in the final mesh, adding a bur-
den to the solvers.

• Hybrid meshes: tets, pyramids and prisms are generated along with hexes.
These software are often boasted as being hex-dominant, because they
produce meshes made of 51% hexes... which is far from satisfactory for
many solvers.

• Invalid elements: some products favor geometry accuracy over elements
quality and as such tolerate some degenerated hexes (concave, negative
volume).

• Smooth geometry: sharp features are smoothed out. No right or acute
angles can be represented in the hex mesh. Such rough geometrical accu-
racy may be enough when dealing with M.R.I based data, but proves to
be unsatisfactory for mechanical simulations.

• Constant sized-elements: all hexes are of the same, user-defined, size. Such
a constraint generally improves quality but requires too many elements
in order to capture small features.

1.3 Objective

We aimed at high objectives when starting this project, even though we knew
that, in the end, we would have to water them down. Ideally, we would like to
design a new approach to octree which would enforce the following features:

• all-hexahedral meshes,
• full automation, no intervention or knowledge should be required from

the user,
• variable element size to capture each geometrical feature with the lowest

amount of elements,
• valid meshes, 100% of hexes must have a positive jacobian,
• multiple subdomains and non-manifold subdomains, required in many

complex mechanical devices,
• sharp angle meshing,
• adaptive meshing.

To achieve that goal, we chose to combine a modified octree, dual-mesh
generation, extensive use of buffer-layers and a new vertex smoothing scheme.
These efforts were undertaken under a project named Hexotic.
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The overall scheme unfolds as:

1. Octree:
a) analyze and check the input surface mesh
b) compute the object’s bounding box as a starting octant for the octree
c) refine the octree according to a set of geometrical, physical or user-set

criteria,
d) balance and pair-up the octants,
e) intersect octants with the triangulated surface,

2. Conforming:
a) connect octree hanging vertices with the help of arbitrary polyhedra,
b) build the dual-mesh from the polyhedral mesh,

3. Subdomains
a) color topological sub-domains,
b) control topological sub-domain thickness and topological pinches,
c) insert a buffer layer of hexes around each volume subdomain,
d) smooth vertices to improve elements quality,

4. Ridge meshing
a) capture sharp edges on surface elements,
b) group sharp-edged elements in surface pseudo-subdomains,
c) insert a buffer layer of hexes around each surface subdomain,
d) perform a final vertex smoothing while projecting surface vertices on

the real geometry.

This paper will guide you through the whole set of meshing steps and
present you with some results.

2 Octree Building

2.1 An Almost Regular Octree

Hexotic is based on a regular octree with little, but crucial, modifications:

• compute the object bounding box and use it as first octant,
• recursively subdivide octants according to a set of geometric and compu-

tational criteria,
• eventually, subdivide some octants to follow additional topologic rules

(balancing, pairing).

Since the scope of this paper is not about fundamentals of octree meshing,
reading [13] and [14] should be considered for more information.

2.2 Subdivision Criteria

Two subdivision criteria have been used:

Geometric diameter

Octants are split until they match the local geometry thickness.



68 L. Maréchal

Indeed, half this size is required to ensure that each feature is two-element
thick. Meshing small features (shell or beam-shaped) with two hexes across
allows for much less element distortion in the final boundary recovery process.

Furthermore, it gives the smoothing algorithm much more flexibility, since
elements have one to four free vertices inside the volume. One-element thick
meshes produce all-vertices locked hexes, which make the mesh extremely
stiff in the final projection of surface vertices onto the geometry.

On the other hand, splitting octants once more than required increases the
number of elements by a factor of eight in thin areas.

Size-map

In a mesh adaptation scheme, element size is driven by a priori or a posteriori
error estimates. Defining the right size in each area of the mesh is achieved
through a so called size-map.

It is made of a set of vertices mapping the whole mesh area, each vertex
being associated to a target size. It is up to the solver to derive this size-
map from the computation results. Once this size-map is generated, it should
be provided, along with the surface mesh, to the hex-mesher. A very simple
example is shown in section 10, fig. 16.

Other criteria could be used such as curvature angle or surface mesh trian-
gles size. They are called ”geometrical criteria” since they basically associate
a size to any area within the bounding-box (size = mini=1..n(fi(x, y, z)),
where fi(x, y, z) is a size criterion) and split octants until their sizes match
the target.

2.3 Balancing and Pairing Rules

These rules are also called topological subdivision criteria, as opposed to
geometrical criteria presented in the previous section. They set octants sizes
depending on their neighbors sizes, enforcing topological rules, hence their
name.

Hexotic applies two such criteria to the octree:

Balancing rule

This makes sure that no octant is more than twice or less than twice smaller
than neighboring elements (sharing one or more vertices). In other words,
the difference between two neighboring octants subdivision level cannot be
greater than one.

Pairing rule

This one is quite unusual and its purpose will be fully explained in the fol-
lowing section. Basically, if an octant’s son is to be split, its brothers (octants
belonging to the same father element) should be split along with it.
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Figure 1 shows the four steps an octree mesh goes through: single element
bounding-box, octree subdivided according to geometrical rules, then after
balancing rule, and finally, after pairing rule has been applied.

Fig. 1. (From left to right) Object inside its bounding-box; octree matching local
features size; octree after balancing; octree after pairing.

After building the octree, the mesh is made only of hexes and each element
size matches the size of geometry features in the corresponding area. Still,
only the whole bounding-box is meshed and neither subdomains nor geometry
boundaries are represented in this hex mesh. Furthermore, size variations
between octants leave hanging vertices throughout the mesh, making it non-
conformal. The next section will deal with this last issue.

3 Polyhedral Cutting

3.1 Connecting Hanging Vertices

Octree generation leaves us with non-conformal elements, that is, some oc-
tants have vertices hanging in the middle of neighboring faces or edges.

Connecting these hanging vertices using all-hex patterns has been a prob-
lem for many years.

Several solutions have been suggested (see [15] and [16]) some of them quite
satisfactory, but we could do even better using a polyhedral and dual-mesh
scheme.

The main idea is to connect hanging vertices using polyhedral elements.
Any type of polyhedron and polygonal face can be used, which offers a much
greater range of patterns to fill in non-conformal octants. The only restriction
stands in the connectivity: the degree of vertices must be eight (there must
be only eight elements sharing the same vertex), likewise, each edge can be
shared by only four elements. Such a constraint is easily enforced if a cutting
process is used to connect hanging vertices (see [2] and [6]).

Furthermore, the cutting process is split into as many steps as there are
geometric dimensions. It is known as directional refinement (see [16]).
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3.2 2-Dimensional Case

As a starting point, hanging vertices must be tagged according to the dimen-
sion they belong to. As depicted in figure 3, vertices hanging at the end of a
vertical line are tagged with a small black dot, conversely, horizontal hanging
vertices are tagged with a bigger white dot.

Then, we proceed with cutting elements with vertical tags as shown in
figure 3 (left). This first cutting step can produce triangles and pentagons.

Finally, elements with horizontal tags are cut, like in figure 3 (right). This
second step might cut previously cut polygons, thus cutting hexagons from
pentagons.

Thanks to the pairing rule, the number of configurations is reduced to two
in 2-dimension. Complex case like the one on the right in fig. 2 are avoided.
An octant can only have one subdivided (non-conformal) edge (octants 1 and
3 in fig. 3) or two adjacent subdivided edges (octant 2 in fig. 3).

?

Fig. 2. (left) Correctly paired situation; (right) unauthorized unpaired situation,
element ”?” cannot be properly cut.

1 2

3

Fig. 3. (left) Polygonal mesh after vertical cutting; (right) and after horizontal
cutting.

After the two cuttings steps, the mesh is conformal and it is made of
polygons, ranging from triangles to hexagons. Vertices are shared by four
elements (2-dimensional case).

3.3 3-Dimensional Case

The 3-dimensional case unfolds in the same way, but adds a third cutting
step.



Advances in Octree-Based All-Hexahedral Mesh Generation 71

x

z

y

Fig. 4. Octree mesh before cutting: yz plane hanging vertices are tagged with small
back dots and xz ones are tagged with bigger white dots. Dotted lines belong to
neighboring smaller octants. Note that the vertex in the middle of the non-conformal
face belongs to both planes.

1 2 3

Fig. 5. (left) Polyhedral mesh after cutting along the yz plane. Vertices cut in
the middle of an edge whose two vertices belong to the same cut plane, inherits
the same plane tag. Since vertices 1 and 3 belong to the xz plane (white dots), the
vertex 2, cut in the middle of edge 1-3, inherits a white dot tag. (right) Polyhedral
mesh after two directional cuttings. Fine dotted lines come from the first cut (yz
plane), and thick ones come from the second cut (xz plane).

Vertices are first tagged according to the plane they hang from: xy, xz or
yz as shown in figure 4.

In 3-dimensions, a new rule must be set: when a vertex falls into the middle
of an edge whose vertices have the same tag, then the newly cut vertex inherits
this tag (see fig. 5).

The three cuttings steps produce a conformal mesh which is made of poly-
hedra.

These polyhedra range from four to sixteen polygonal faces, which range
from triangles to hexagons.

Thanks to the cutting process, vertices are shared by eight polyhedra,
twelve faces and six edges. Likewise, edges are shared by four polyhedra and
four faces.

After this step, the mesh is conformal, but made of polyhedra, the next
step will make it all hexahedral.
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4 Dual-Mesh Generation

4.1 2-Dimensional Case

Generating a dual-mesh consists in creating vertices from primal-mesh ele-
ments, and elements from primal-mesh vertices.

A dual vertex is simply built in the barycenter of each primal element.
Creating a dual-element is a little more complicated. For each primal ver-

tex, the ball of elements is computed (that is, the list of primal elements
sharing this vertex). From this list of primal elements, the list of their dual-
vertices is built. Finally, these dual-vertices are connected to form a dual-
element. The process is shown in fig. 6.

PE1 PE4

PE2 PE3

PV1 DE1

DV1 DV4

DV3DV2

Fig. 6. (left) Four primal-mesh elements (PE) sharing a primal-mesh vertex (PV1);
(right) the primal-mesh is in dotted lines and the dual one in thick lines. Dual
vertices (DV) comes from PE, and the dual element DE comes from PV.

Consequently, the nature of elements in the dual-mesh depends on the
vertex connectivity of the primal-mesh. Since primal vertices have a degree
of four, then dual-mesh elements will be quadrilaterals. This way, an all-quad
mesh is derived from a (not so) arbitrary polygonal mesh.

Figure 7 shows the only two possible configurations in the 2-dimensional
case.

Remark

Having a look at the left figure, it appears that we just introduced a new kind
of size transition. Well-known quadtree size transition rules are 2 ↔ 1 and
3 ↔ 1. The dual-mesh generation introduces a 4 ↔ 2 transition as shown in
fig. 8.

4.2 3-Dimensional Case

Dual vertices

They are set at the barycenter of primal-mesh polyhedra. A vertex is the
dual of an element.
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Fig. 7. (left) Primal-meshes; (right) primal-meshes in dotted lines and dual-
meshes in thick lines.

12:12 13:13 24:24

Fig. 8. (left) 2:1 size transition using mixed elements; (center) Schneider’s 3:1
transition; (right) 4:2 dual-mesh transition.

Dual edges

They are derived from primal-mesh polygonal faces. A dual edge connects
two dual vertices derived from two primal polyhedra sharing the same face.
Thus, an edge is the dual of a face.

Dual faces

They are generated from primal edges. The shell (the set of elements which
share a common edge) of each primal edge is built, then a dual face is made
from the dual vertices associated to these elements. A face is the dual of an
edge.
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Dual elements

Conversely, they are made from the primal vertices. The ball of polyhedra
sharing the same primal vertex is built and the dual element is made from
the polyhedra-associated dual vertices. An element is the dual of a vertex.

Since the cutting steps produced only degree-four edges, corresponding
dual faces have four vertices. Likewise, every primal vertices have a degree of
six, producing dual-elements with six quadrilateral faces: hexahedra!

Fig. 9. (left) Pattern to mesh a non-conformal octant with one subdivided edge;
(center) With one subdivided face; (right) And with two subdivided edges.

Not surprisingly, the resulting dual-mesh patterns look like Schneiders’
original size transitions (see [15]). Only three different patterns are needed to
mesh all transition cases (see fig. 9). The advantages over Schneiders’ original
scheme are:

• smoother size transition, edges are split in two instead of three,
• ability to mesh all configurations, even concave ones, which was impossible

with the original method,
• fewer patterns needed.

After this step, the mesh is conformal and hex-only. Still, the mesh fills
the whole bounding box and no boundaries nor subdomains are represented.
The following steps are about subdomains recovery and boundaries meshing.

5 Subdomains Coloring

The subdomain recovery process begins with coloring concentric main do-
mains. Then tries to color potential non-manifold subdomains within main
domains. Finally, some filtering is made to remove one-element thin subdo-
mains and various domain-pinches problems.

Each dual vertex derived form a primal hex intersected by a surface triangle
is a boundary one. Conversely, each dual quad which has four boundary
vertices is a boundary face.
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Fig. 10. Cut through a volume mesh: a regular Schneiders’ size transition pattern
set can mesh any configuration.

6 Geometry and Features Detection

In this step, the hex-mesh boundary quads are to be mapped on the real
geometry.

Alongside, some edges of the hex-mesh should be mapped in order to
capture sharp angles. These sharp angle edges, called ridges, are set via a
user-defined sharp-angle threshold.

Setting objective triangles

Each newly set boundary quad should now be assigned a triangle from the
input mesh onto which it will be projected. This process defines a mapping
between the generated boundary-quad mesh and the triangular input mesh.

Setting ridges

If two neighboring quads are to be projected on triangles which make and
angle greater than a user defined threshold, then their common edge is tagged
as ridge. The input triangulated mesh is searched for the closest ridge edge
to be assigned as objective feature.

Setting corners

Conversely, if two ridges sharing a common vertex make and angle greater
than the threshold, this vertex is tagged as a corner. The closest corner is
retrieved from the real geometry to be assigned as objective feature.
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7 Buffer-Layer Insertion

Now, we are provided with an all-hexahedral mesh whose hexes are assigned
subdomain numbers. Boundary quads, ridges and corners are assigned target
geometry position to be projected on. Unfortunately, these boundary vertices
cannot be projected yet on the real surface. This is caused by the fact that
many boundary hexes have two or three faces to be projected on the same
plane, which would make them invalid (see fig. 11). A layer of elements needs
to be inserted around boundary hexes to tackle this problem.

Fig. 11. Two cases of degenerated hexahedra near the boundary: before and after
buffer layer insertion.

Inserting volume layers

Each subdomain is surrounded by a boundary layer. A new element is in-
serted between each boundary quad and the boundary hex it belongs to.
This way, some hexes may be surrounded by up to three such boundary ele-
ments. Boundary hexes are topologically identical: they have one boundary
face, and five internal ones. Thus, they can be freely projected on the real
surface while preserving the element quality.

Inserting surface layers

Unfortunately, another problem was left unsolved by the boundary layer in-
sertion. Indeed, some boundary quads have two-ridge edges to be projected
onto the same line, making the element invalid (see fig. 12).

This problem is solved by inserting another boundary layer inside the
first one. In this case, the subdomains do not come from the geometry, but
are built on purpose. First, two-ridge faces are tagged. Then untagged faces
standing between tagged ones are also tagged. Finally, adjacent tagged faces
are packed together to form the so-called surface subdomains.

Eventually, each surface subdomain is wrapped in a layer a hexes, these
new hexes having no more than one boundary face and one-ridge edge.
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1 2 3

Fig. 12. (1) Initial cube with two edges to be projected on a ridge; (2) Degenerated
element after projection; (3) Each hex of the buffer-layer has no more than one
ridge-edge.

8 Smoothing

After the insertion of all these layers of elements, the mesh is topologically
suitable for projection.

Projection is done on the fly while smoothing the vertices to increase the
elements quality. Indeed, surface vertices are not explicitly projected on the
geometry. The surface model appears as a constraint when computing the
shape of optimal elements in the smoothing scheme.

During the 30 smoothing steps, internal vertices will move so that the
quality of inner hexes gradually improves. Surface vertices will slowly be
projected on the surface while preserving the quality of boundary hexes.
Doing so, it is possible to lower the quality of an element below an acceptance
threshold. In this case, we decided to favor element quality over geometry
accuracy. Some surface vertices, especially those to be projected on sharp
edges, may get stuck during the projection process.

Quality criterion

The quality criterion used is very simple:

q = 24
√

3
Vmin

(
∑

1≤i≤12

li)3/2

Where Vmin is the minimum volume among the two sets of five tetrahedra
corresponding to the hex (see fig. 13), and li are the lengths of the twelve
edges.

Since there are as many hex quality criteria as there are solvers, it was
pointless to try to find an ideal criterion. Instead, we came up with this basic
one, which ranges from 0 (flat element) to 1 (perfect cube) and is negative in
case of invalid element (negative volume).
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Fig. 13. Two sets of five tetrahedra cut from a hex.

The minimum quality accepted by hexotic is 0.01, which may be unsuit-
able for some solvers. Setting a higher target may result in poorer geometry
accuracy.

A new element based smoothing scheme

This new optimizing scheme loops over elements instead of vertices. That is,
for each hexahedron, an optimal element is computed, and its coordinates
are added to a set of optimal vertex coordinates. Finally vertices are relaxed
toward these optimal positions.

Such a scheme is faster since each optimal hex needs to be computed once.
When looping over vertices, a hex optimal shape is computed for each of its
vertices, that is, eight times. Furthermore, in this scheme, vertices move all
together instead of one by one. When it comes to grid smoothing, a global
displacement is preferable.

Computing the optimal element

For each hex, a target optimal element is computed. The main idea is to
find the perfect cube, of which vertices are the closest to the original hex
one. Thus, minimizing global vertices displacement when moving from initial
positions to the optimal one. Here is the 2-dimensional scheme:

• compute the initial quad barycenter (C) and initial base vectors −→V1 and −→
V2

• find the pair of orthogonal vectors −→W1 and −→
W2, minimizing the sum:∑

1≤d≤2

(−→Vd · −→Wd)2

• build a perfect square made up from the center point C and base vectors−→
W1 and −→

W2 (its size being the average length of the original element, see
fig. 14).

If a hex has a boundary face, then the perfect cube should be built so that
its boundary quad lies on the constrained surface. In this case, one of the
base vectors is set with the surface normal. Likewise, the center point C is
moved to a position M (see fig. 15) so that the distance between M and its
orthogonal projection on the constrained surface is half the size of the target
element.
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Fig. 14. (left) Finding the optimal orthogonal base vectors (in thick dotted lines);
(right) Building a perfect square in these base.
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Fig. 15. The edge 1 − 4 is to be projected on the geometry (thin line). Thus, one
of the base vectors is set with the surface normal vector. Likewise, the origin of the
new base is positioned so that the boundary edge of the optimal quad lies perfectly
on the real surface (right).

9 Conclusion

Let’s be honest, Hexotic is still far from the hex-meshing Holy Grail.
It is robust, fast (2 million elements per minute on a 2.4 ghz core2 duo)

and generates all-hexahedral, conformal and valid meshes while capturing
(not so) sharp angles greater than 30◦.

It still behaves poorly with thin geometries (the octree generates too many
elements) and cannot mesh accurately angles sharper than 30◦. Thus it may
not be considered as a true general purpose hex-mesher.

However, such a software is able to mesh many real life mechanical geome-
tries as is shown in the last section examples.

Two directions are being investigated to overcome these limitations: using
anisotropic smoothing to help handling thin geometries and the insertion of
a limited number of tetrahedra and pyramids in very sharp angles.
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10 Some Results

Here are some sample results, ranging from simple, but somewhat tricky,
geometric pieces, to real life mechanical parts and adapted meshes. All tests
have been run on a 2.8 ghz octo-core mac xserve. The smoothing step is
multithreaded and takes advantage of all eight cores.

These stats are summed up in the following table:

Figure Name # of hexes Meshing time Hex quality Min. q.
Fig. 17, top nasty cheese 3,556,915 67.11 sec. 0.718 0.010
Fig. 17, bottom TetTet7 32,995 0.78 sec. 0.735 0.013
Fig. 18, top anc101 a1 166,280 3.67 sec. 0.620 0.004
Fig. 18, bottom asm007 121,532 3.12 sec. 0.633 0.011
Fig. 19, top bm1 90base 818,780 22.74 sec. 0.671 0.011
Fig. 19, bottom gps25 1,427,535 24.37 sec. 0.721 0.010

Fig. 16. Mesh adaptation scheme coupling a CFD simulation of an Apollo capsule
entering atmosphere (Euler inviscid solver Wolf [1]) and Hexotic: (top left) cut
through the initial mesh (66,000 elements); (top right) final adapted mesh (538,000
elements); (bottom left) initial pressure field; (bottom right) The final iteration
pressure field is much better captured.
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Fig. 17. Test case geometries. The upper picture is a close-up view of nasty cheese,
a well known test-case featuring 30◦ dihedral angles.
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Fig. 18. More complex mechanical parts. Picture above shows a cut through the
volume mesh (dark elements are hex faces).
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Fig. 19. (top) Small features capturing required 818,780 hexes; (bottom) A very
fine gap between upper part and the top gear forced the octree up to level 9 sub-
division. Thus generating 1,427,535 hexes.
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Conforming Hexahedral Mesh Generation via
Geometric Capture Methods�

Jason F. Shepherd
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Abstract. An algorithm is introduced for converting a non-conforming
hexahedral mesh that is topologically equivalent and geometrically similar
to a given geometry into a conforming mesh for the geometry. The pro-
cedure involves embedding geometric topology information into the given
non-conforming base mesh and then converting the mesh to a fundamental
hexahedral mesh. The procedure is extensible to multi-volume meshes with
minor modification, and can also be utilized in a geometry-tolerant form
(i.e., unwanted features within a solid geometry can be ignored with minor
penalty). Utilizing an octree-type algorithm for producing the base mesh,
it may be possible to show asymptotic convergence to a guaranteed closure
state for meshes within the geometry, and because of the prevalence of these
types of algorithms in parallel systems, the algorithm should be extensible to
a parallel version with minor modification.

Keywords: Hexahedral, Mesh, Generation, Dual, Topology Modification.

1 Introduction

In this paper we explore more fully how to capture geometric boundary fea-
tures using elements in the dual. We build on work completed in [1, 2, 3]
and demonstrate conversion of non-geometry conforming hexahedral meshes
to conforming hexahedral meshes followed by a mesh conversion to the fun-
damental mesh. The final quality of these meshes is largely dependent on
the quality of the original non-conforming mesh; however, once a reasonable
mesh is developed within a geometry it should be feasible to perform mesh
conversions to optimize the structures within the mesh to improve geometric
quality and mesh topology. The method described in this paper is extensible
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-

heed Martin Company for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.
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to multi-volume meshes and geometry tolerant meshing paradigms. Addition-
ally, because the concepts relating to fundamental meshes effectively localize
mesh modification to geometric features, parallelizing the algorithm should
be relatively straight-forward.

2 Background

The basic concepts that will be utilized throughout this paper utilize a ’dual’
representation of a hexahedral mesh. The concept of the hexahedral mesh
dual is foundational to many hexahedral mesh modification techniques that
have been developed in recent years [4, 1, 5]. Defined by sheets and columns,
the dual provides an alternate representation of a conforming hexahedral
mesh. This alternate representation has supplied greater understanding about
hexahedral mesh topology and has led to the creation of some basic mesh
operations. Although the capture techniques introduced in this paper are
novel, there is some similarity in the results produced by this method with
grid-based methods. The reader is encouraged to review work in [6, 7, 8].

2.1 Dual Sheets and Columns

A hexahedral element contains three sets of four topologically parallel edges,
as shown in Figure 1. Topologically parallel edges provide the basis for hex-
ahedral sheets. The formation of a sheet begins with a single edge. Once an
edge has been chosen, all elements which share that edge are identified. For
each of these elements, the three edges which are topologically parallel to
the original edge are also identified. These new edges are searched iteratively
to find all connected hexahedra and the topologically parallel edges for each
of these elements. This iterative procedure continues until no new adjacent
elements are found. The set of all elements which are traversed during this
process results in a layer of hexahedra, also known as a hexahedral sheet. Fig-
ure 2 shows a hexahedral mesh with a single hexahedral sheet highlighted.

Fig. 1. A hexahedral element has three sets of four topologically parallel edges.

A hexahedral element also contains three pairs of topologically opposite
quadrilateral faces, as shown in Figure 3. Topologically opposite faces provide
the basis for hexahedral columns. The formation of a column begins with a
single face. Once a face has been chosen, the two elements which share that
face are identified. For each of these elements, the face which is topologically
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Fig. 2. A hexahedral mesh with one sheet highlighted.

Fig. 3. A hexahedral element has three pairs of topologically opposite faces.

Fig. 4. The intersection of the two sheets shown on the left is defined by the column
shown on the right.

opposite of the original face is also identified. These new faces are then used to
find the incident hexahedra and topologically opposite faces on these adjacent
elements. This process is repeated iteratively until no new adjacent hexahedra
can be found. The set of all hexahedra which are traversed during this process
makes up a hexahedral column. An important relationship between sheets
and columns is that a column defines the intersection of two sheets. This
relationship is illustrated in Figure 4.

2.2 Sheet Operations

The dual description of a hexahedral mesh is essentially an arrangement of
surfaces satisfying specific criterion. It is, therefore, possible to modify an
existing mesh simply by modifying the underlying arrangement of surfaces
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describing the original mesh. The simplest form of modifying the mesh would
involve adding or removing a surface from the arrangement of surfaces. This
concept is often referred to as sheet insertion or sheet extraction [9]. Sheet
extraction removes a sheet from a mesh by simply collapsing the edges that
define the sheet, as shown in Figure 5.

Fig. 5. Sheet extraction: (a) A sheet is selected. (b) The edges that define the sheet
are collapsed. (c) The sheet is entirely removed from the mesh.

Using an inverse approach to sheet extraction, it is also possible to insert
new sheets into an existing hexahedral mesh. The most common method for
inserting a generalized sheet into a hexahedral mesh is pillowing [10]. Unlike
sheet extraction, which removes an existing sheet from a mesh, pillowing
inserts a new sheet into a mesh. As demonstrated in Figure 6, pillowing is
performed on a set of hexahedral elements which make up a ‘shrink’ set.
These elements are pulled away from the rest of the mesh and a new sheet
is inserted by reconnecting each of the separated nodes with a new edge and
creating new hexahedra utilizing all of the new created edges to fill in the
gap. The new sheet surrounds the shrink set and maintains a conforming
mesh.

Fig. 6. Pillowing: (a) A shrink set is defined. (b) The shrink set is separated from
the rest of the mesh and a sheet is inserted to fill in the gap. (c) The newly inserted
pillow sheet.

2.3 Fundamental Hexahedral Meshes

Another concept of importance to the methods outlined in this paper is the
notion of a fundamental hexahedral mesh. The definition of a fundamental
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sheet is relative to the geometric object associated with the mesh [1]. The
principle of a fundamental mesh is to have a single sheet for every surface,
and a single chord for every curve on a surface (see examples in Figure 7).
Such a mesh captures the geometry in such a way that every n-dimensional
geometric cell is captured by one or many n-dimensional dual cells with
particular restrictions. There is always at least one fundamental mesh for a
given geometry, but the fundamental mesh definition allows for many different
arrangements which satisfy the definition. If you translate this description in
the primal mesh, you get the following definition given in [2].

Definition 2.1 Let G and M be respectively a 3-dimensional geometric ob-
ject and a hexahedral mesh. A hexahedral mesh M is a fundamental mesh
with respect to G if and only if:

1. M is a strictly geometry-valid hexahedral mesh with respect to G;
2. For every geometric surface G2

k, the number of hexahedral elements inci-
dent to G2

k is equal to the number of quadrilaterals classified on G2
k;

3. For every curve G1
k and every surface G2

k′ , the number of quadrilaterals
on G2

k′ incident to edges on G1
k is equal to the number of edges classified

on G1
k.

Fig. 7. Fundamental and non-fundamental meshes of a cylindrical geometric ob-
ject. In the mesh on the right, multiple sheets are utilized to capture a single surface
producing a non-fundamental mesh. The image on the left has a single sheet asso-
ciated with the cylindrical surface and is fundamental.

Complementary explanations about this definition are given [2]. Note, for a
geometric object, there is not one unique fundamental mesh, and, in fact,
many geometry-valid hexahedral meshes will exist which are fundamental.
These meshes are different for two reasons: there are many permutations of
boundary sheets which satisfy the fundamental mesh requirements, and the
number and configurations of non-boundary sheets within the hexahedral
mesh is not restricted.

3 Theory and Assertions

In [1], the assertion is made that any non-fundamental hexahedral mesh can
be converted to a fundamental hexahedral mesh. A proof of this assertion was
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later given in [3]. In this paper, the goal is to show that a non-conforming
hexahedral mesh whose boundary is topologically equivalent and geometri-
cally similar to the composite boundary of a given solid geometry can be
converted to a fundamental hexahedral mesh of the geometry and maintain
reasonable quality metrics for the resulting hexahedra. We will discuss these
two conjectures (i.e., conversion and quality) in more detail in this section.

3.1 Non-conforming Meshes to Fundamental Meshes

In [3], it was shown that a non-fundamental hexahedral mesh of a geometric
object can always be converted to a fundamental hexahedral mesh of the
geometric object. Therefore, it remains to be shown how to convert a non-
conforming hexahedral mesh of a given object to a non-fundamental mesh of
the same object.

The process of converting a non-conforming mesh to a conforming hexahe-
dral mesh begins with two assumptions regarding the non-conforming mesh
and the geometric object to be captured. The first assumption is that the
boundary (composite) of the geometry and the boundary of the initial hex-
ahedral mesh must be equivalent. That is, if the geometry is topologically
spherical, then the boundary of the initial hexahedral mesh should also be
spherical (i.e., it is not possible to convert a hexahedral mesh whose boundary
is an n-toroid into a mesh of a spherical geometry). This assumption almost
goes without saying, but depending on the method utilized to form the initial
base mesh, may be commonly encountered.

The second assumption is more subjective. That is, the boundary of the
initial base mesh should be geometrically similar to the boundary (composite)
of the geometry to be captured. Satisfaction of this assumption is not binary
(i.e., yes or no) like the topology equivalence assumption, and can involve a
continuous range of satisfactory values. However, high geometric similarity
between the base mesh and the geometry results in decreased modification
to the base mesh and an associated higher probability that the quality of the
resulting modified mesh will match the quality of the initial base mesh.

Given a base mesh that is non-conforming to the geometry, but topolog-
ically equivalent and geometrically similar, the process for converting the
mesh to a conforming mesh involves the following steps:

1. Find an embedding of the geometric topology into base mesh.
2. Map the embedded geometric topology in the base mesh to the geometry

For the first item - finding an embedding of the geometric topology into the
base mesh - we treat the boundary of the base mesh (e.g., the quadrilaterals,
edges and nodes on the boundary of the mesh) as a graph (the mesh graph)
and the geometric topology of boundary of the geometric object as a second
graph (the geometric graph), and work to find an embedding of the second
graph into the first graph. In some cases, this may require an enrichment
of the the mesh graph when embedding the curves at high valent vertices
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from the geometric graph. This enrichment can be accomplished utilizing a
pillowing operation in the hexahedral mesh that will be described in the next
section.

The second item - Map the embedded geometric topology in the base mesh
to the geometry - is accomplished by finding an appropriate location for each
of the nodes on the boundary of the base mesh to the appropriate geometric
location determined from the embedding in the first step. At this point the
mesh is now conforming to the geometry, although it likely has very poor
quality (especially, near the new mesh boundary where most of the nodal
movement took place in the last step). This quality will be improved during
the conversion from the conforming, non-fundamental mesh to a fundamental
mesh, and will be described in the next section.

3.2 Assertion on Hexahedral Quality

The second conjecture is in regards to the hexahedral element quality result-
ing from the conversion process outlined above. While it is very difficult to
provide guarantees on potential hexahedral element quality, we refer back to
an observation made in [11]. The ideal isotropic mesh contains perfectly pla-
nar sheets. Sheet curvature induces ‘keystoning’ of the hexahedral element
(where the edges on one side of the hex are shorter than the opposite edges
which are lengthened by the curvature). Sheets that do not intersect each
other orthogonally induce element ‘skewing’ (see Figure 8). However, if only
one of the three sheets defining the hex is subject to increased curvature or
if there is only a single sheet with non-orthogonal intersections to the other
sheets, then the feasible region for non-positive Jacobians remains large and
it is likely that a smoothing or mesh optimization algorithm will be able to
find a satisfactory nodal placement resulting in suitable hexahedral quality.

Fig. 8. Non-orthogonal intersections between sheets results in element ‘skewing’.

We attempt to capitalize on this conjecture. That is, if the base mesh
utilized consists of sheets with very low curvature and the sheets intersect
each other with near orthogonality, then the sheets which are inserted during
the conversion from non-fundamental to fundamental mesh will be the only
sheets with any curvature or potential for non-orthogonality. If these inserted
sheets are not interacting with each other, then the probability for creating
a mesh which cannot be optimized to have reasonable quality is very low.
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4 Algorithm

In this section, we describe an algorithm for performing the conversion of
the non-conforming mesh to a conforming, non-fundamental mesh, and then
finally to a fundamental mesh. We will also provide discussion on optimizing
the mesh following the fundamental conversion. The algorithm described is
presented for a generalized approach and various alterations can be made
which limit generality but improve quality or desired mesh topology. These
differences will be discussed in a later section.

The algorithm has four basic steps:

1. Establish the 2-manifolds for volumetric capture.
2. Convert the non-conforming mesh to a conforming mesh through geo-

metric topology capture.
3. Convert the non-fundamental mesh to a fundamental mesh.
4. Mesh optimization to improve mesh quality.

4.1 Establishing 2-Manifolds

The first step in the algorithm is to capture a geometric solid from a pre-
existing base mesh. We start by considering the boundary of the geometric
solid as a closed, 2-manifold surface. We desire a base mesh whose boundary
is topologically equivalent to the boundary of the geometric solid, as well as
minimizing the geometric dissimilarities between these two boundaries. We
only restrict this base mesh to topological equivalence, except to say, that
the resulting quality of the final mesh will be heavily dependent on the geo-
metric similarity between the base mesh and the geometric solid. Therefore,
tailoring a base mesh (topologically and geometrically) to improve similar-
ities between the base mesh and the geometric solid can provide dramatic
quality differences in the final mesh.

There are several options for establishing the initial base mesh. Perhaps the
easiest method is to create a structured grid in the bounding box representa-
tion of the solid geometry and eliminating hexahedra outside the boundary
of the solid geometry (see Figure 9. This type of approach also allows base
meshes to be created using standard octree-meshing techniques.

A similar approach can be utilized by creating simplified solid models and
using standard hexahedral meshing algorithms on the simplified geometries
and then eliminating hexahedra in the simplified geometry that do not match
the original geometry (see example in Figure 10).

This approach can also be used to establish bounding 2-manifolds for multi-
volume meshing. The only difference in multi-volume is to ensure that the
topology of the all the volumetric base-meshes conform equivalent to the
volumes in the solid model. Some initial work by Zhang, et al., demonstractes
a method for establishing the base meshes for multi-volume biological models.
A similar methodology can be utilized for solid models, although in some
cases where the edges in the mesh do not have sufficient topology to match
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Fig. 9. An original geometry (on left) can be embedded in a regular mesh and
the elements contained in the geometry is one alternative for defining a initial base
mesh.

Fig. 10. A base mesh for an original geometry (on left) can also be created using
standard hex primitive algorithms, including sweeping. The elements not contained
in the mesh on the right can be removed and the resulting mesh would be suitable
for a base mesh.

the curves in the solid model, a mesh enrichment step may be needed to
provide the additional topology such that the base meshes are equivalent to
the solid model.

4.2 Capturing Geometric Topology

Once the base mesh for the solid model has been established, the process of
converting the non-conforming base mesh into a conforming base mesh can
begin. Essentially, what we want to do in this step is to embed the curves
and vertices from the boundary of the solid model into the boundary of the
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base mesh. This also can be done in one of several ways. We will discuss one
approach in this section.

Because the desire is to embed the geometric topology of the boundary
into the base mesh, the logical first step is to first find an embedding of
each of the geometric vertices into the boundary of the base mesh. In our
case, we have done this by a geometric search, and find the closest node in
the boundary of the base mesh to the geometric vertex. The number of edges
emanating from each of the nodes is also taken into account and if the number
of curves emanating from the geometric vertex is greater than the number of
edges at the node and a nearby node captures the geometric topology more
adequately, then a re-assignment may be made.

If the number of edges emanating from the closest node to a geometric
vertex is fewer than the number of curves emanating from the vertex, a
mesh enrichment procedure may be utilized to increase the nodal valence.
Increasing the nodal valence consists of pillowing a collection of hexes in the
neighborhood of the node resulting in additional edges emanating from the
node (see Figure 11). This process can be repeated multiple times as needed
to increase the nodal valence; however, care should be taken as possible, since
the insertion of a small pillow will have reasonably high local curvature (the
pillow in this case is essentially hemispherical). The curvature of the pillowed
sheet may result in element quality reductions in the final mesh based on the
conjecture discussed in Section 3.2.

Once an embedding of the geometric vertices is found and the nodal valence
is equal to or greater than the vertex valence, we can begin to work on
embedding each of the geometric curves into the mesh. If the quadrilateral
boundary of the base mesh is treated as a graph, and the vertices have been
embedded in this graph, then this problem can be viewed as similar to a
collision-free network search. That is, we want to find a path between the
embedded nodes which minimizes the geometric distance from the geometric
curve and contains no collisions with the paths for each of the other curves.
We demonstrate an example of this process in Figure 12.

Fig. 11. Nodal valence can be increased using a simple pillowing operation. The
original mesh is shown on the left and the resulting nodal valence increase after
pillowing is displayed on the right.
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Fig. 12. The geometric graph is embedded into the base mesh using a conflict-
free search of the mesh edges on the boundary of the base mesh to ensure topo-
logic equivalence of the new embedding. Once the embedding has been established,
the bounding mesh elements are ‘snapped’ to the appropriate geometry (image on
right).

Once an embedding of the vertices and curves has been accomplished, the
surface embedding is calculated by finding all of the quadrilaterals contained
within the boundary of the embedded curves. This should complete the em-
bedding of the geometric boundary into the boundary of the base mesh. At
this point, all of the nodes on the boundary of the base mesh are moved to the
correct geometric entity based on the previous embedding. This results in a
conforming, but non-fundamental mesh of the geometry, from the previously
non-conforming base mesh (see example in Figure 12).

4.3 Fundamental Conversions

Given a the embedding of the vertices and curves into the base mesh, we can
begin the process of converting the base mesh to a fundamental mesh of the
given geometry. A proof that this conversion can always occur is given in [2],
and a construction of this proof can be utilized as follows in two steps:

1. Add a single sheet for each closed shell of boundary surfaces in the geom-
etry. Assuming that the shell is manifold, this operation can be accom-
plished with a simple pillowing operation.

2. Add a single sheet for the collection of hexahedra contained by quadrilat-
erals associated with each surface of the geometry. Again, assuming that
the collection of quadrilaterals is topologically equivalent to the associ-
ated geometric surface and the boundary of this collection of hexahedra
if manifold, a simple pillowing operation will suffice for this sheet in-
sertion. It should be noted that the first sheet insertion guarantees that
there is a single hexahedron associated with each boundary quadrilateral,
which is critical for this construction. Additionally, the embedding step
described earlier can be used to guarantee topological equivalence of the
quadrilateral collection with the geometric surface.
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Fig. 13. The pyramid mesh following before (left) and after (right) conversion to
a fundamental mesh.

The mesh following the fundamental conversion should be free of flattened
(triangle-shaped) quadrilateral elements, and similar improvements will be
noted in the interior hexahedra. The mesh for the pyramid example is shown
in Figure 13 with the improved quality elements around the boundary.

This particular method for converting the mesh to fundamental is general-
ized, or in other words, it will work in all cases. However, it should be noted
that fundamental meshes are not always required for satisfactory quality, and
alternative manipulations of the mesh may be possible and desirable for im-
proved quality. We will discuss this further in Section 6. Additionally, if the
mesh in the second step is already fundamental, then no sheet insertion is
required and the pillowing operation can be skipped.

4.4 Mesh Optimization

The conversion of the mesh to fundamental has the advantage of giving im-
proved flexibility for mesh optimization near the boundary of the mesh. This
is seen quite markedly in earlier papers [12, 1, 8], where dramatic improve-
ments in the scaled Jacobian values are realized following the sheet insertion
process and mesh smoothing/optimization. The pillowing process involves
non-uniformly scaling elements in order to allow space for the newly inserted
elements to occupy. This scaling often causes element inversions; however, the
new topology introduced by the sheet insertion allows for greater flexibiliy by
increasing the positive quality feasible regions for each of the elements near
the boundary. In order to take advantage of this flexibility, mesh optimization
algorithms with L2 and L-inf guarantees are recommended. In particular, we
have heavily utilized the results of Knupp in mesh untangling [13], condition
number optimization [14], and mean-ratio optimization [15, 16]. Addition-
ally, it has been shown [17] that we can dramatically improve the speed of
these algorithms by first utilizing a relaxation-based smoother (e.g. Laplacian
smoothing), or using a focused-smoothing operation to reduce the number of
elements being optimized. A recipe typically utilized following the conversion
to fundamental is as follows:
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1. Centroidal smoothing [18] each of the surfaces on the mesh boundary.
2. Untangling/optimization for each surface on the boundary (as needed).
3. Laplacian smoothing of the volumetric mesh.
4. Focused untangling of any pockets of mesh with inverted elements.
5. Focused L-inf optimization for any pockets of mesh elements with scaled

Jacobian less than 0.2.
6. Additional mesh optimization as desired.

5 Examples

In this section, we demonstrate the process for one more example with
slightly increased complexity (Figures 14 and 15). Following this example, we

Fig. 14. The original ‘sbase’ geometric model shown in shaded and transparent
modes. (Model provided courtesy of Ansys [19].)

Fig. 15. A base mesh created for the ‘sbase’ geometry. The base mesh was created
by creating a regular mesh in the bounding box of the geometry and eliminating all
hexahedra located exterior of the geometry. This image also shows an embedding
of the geometric graph in the boundary edges of the base mesh (the blue edges).
The final mesh after conversion of the base mesh to a fundamental mesh is shown
on the right.
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Fig. 16. A mesh of a 6 generation airway of a human lung. The mesh on the right
is a close-up view showing the sharp curves generated at the end caps of the model.
(Model provided courtesy of Kwai Lam Wong, Oakridge National Laboratories.)

Fig. 17. Mesh of the valve model (Model courtesy of Kyle Merkley, Elemental
Technologies, Inc.), and hook model (on right).

Fig. 18. Mesh of the ‘a027’ and ‘ucp’ models (‘A027 Model courtesy of Ansys [19]).
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demonstrate several other meshes that have been generated using this
methodology (Figures 16, 17, and 18).

6 Alternate Methods

The method outlined in the previous sections of this paper are meant to be
generalized. That is, these methods should work for all geometries with man-
ifold boundaries. However, alternate conversions may produce better mesh
quality, but may not be suitable for general cases. We will discuss some of
these cases here, although it should be noted that the list provided below is
not exhaustive, and additional methods may be developed and utilized.

6.1 Tri-valent Vertices

As indicated before, the method described in this paper is a generalized
method. However, the price for generalization is decreased quality in some
cases that could be improved with different sheet configurations that may
not work generally. A tri-valent geometric vertex is a good example of this
trade-off. In Figure 19(left) a mesh is shown that might be developed using
the method outlined in this paper. At the trivalent vertex in the forefront
of the image, the fundamental sheets are drawn (red, green, and yellow) for
capturing the curves associated with this vertex. This configuration of sheets
produces 2*v hexahedra, where v is the vertex valence. So, in this case, there
are six hexahedra produced at this vertex location (i.e. the node at the vertex
is contained in six hexahedra). An alternate sheet configuration (shown in
Figure 19 (right) where the sheets are allowed to intersect one another is
also shown. This configuration of sheets produces a single hexahedron at the
vertex, and still fundamentally captures all of the curves associated with the

Fig. 19. Allowing changes in the sheet structure can improve the mesh quality. In
the image on the left, the three sheets do not intersect resulting in six hexahedra
at the vertex in the forefront of the image. On the right, the three sheets intersect
and a single hexahedron is produced offering better opportunity for improved mesh
quality at the vertex.
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vertex. The resulting mesh has a higher potential for quality because of the
change in the sheet topology.

Allowing the sheets to intersect one another is, in many cases, an im-
proved strategy for inserting the sheets; however, the disadvantage to this
alternate strategy is that it will only work if every vertex is trivalent. There-
fore, applying the generalized algorithm is a better option for the original
mesh generation algorithm, but it may be possible to ‘clean-up’ the mesh by
re-arranging the sheet topology to improve the mesh quality locally at some
of these tri-valent vertices. Additionally, it may be possible to develop similar
recipes to reduce the element count and improve the quality potential while
still maintaining a valid hexahedral mesh at each of the vertices by allowing
some local sheet reconfigurations.

6.2 Regularizing Mesh Near Boundaries

Multiplying the number of sheets can also be utilized to increase the regularity
of the mesh near the boundaries (see Figure 20). Balancing the arrangement
of the sheets, can have a dramatic effect on the quality of the mesh. It will
be advantageous to re-arrange the sheet topology following the initial mesh
generation in order to improve regularity of the mesh and quality of the
elements while still maintaining conformity with the geometry.

Fig. 20. Allowing for changes to sheet arrangements can improve the quality of
the final mesh. In this image, several additional sheets were added near the interior
cranial boundary to improve the regular structure of the mesh in this region. Other
such additions, rearrangements, and removals of sheets may provide improved qual-
ity and topology of the final mesh.

7 Conclusion

We have outlined a method for building all-hexahedral meshes in arbitrary ge-
ometries. The procedure involves embedding geometric topology information
into the given non-conforming base mesh and then converting the mesh to a
fundamental hexahedral mesh. The procedure is extensible to multi-volume
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meshes with minor modification, and can also be utilized in a geometry-
tolerant form (i.e., unwanted features within a solid geometry can be ignored
with minor penalty by the meshing procedure). Utilizing an octree-type al-
gorithm for producing the base mesh, it may be possible to show asymptotic
convergence to a guaranteed closure state for meshes within the geometry.
Due to the prevalence of octree algorithms in parallel systems, the algorithm
should also be extensible to a parallel version with minor modification.
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Abstract. We proposed a new, easy-to-implement, easy-to-understand set of refinement 
templates in our previous paper to create geometry-adapted all-hexahedral meshes easily 
[Ito et al., “Octree-Based Reasonable-Quality Hexahedral Mesh Generation Using a New 
Set of Refinement Templates,” International Journal for Numerical Methods in Engineer-
ing, Vol. 77, Issue 13, March 2009, pp. 1809-1833, DOI: 10.1002/nme.2470]. This paper 
offers an extension of the template set to refine concave domains more efficiently. In addi-
tion, two new options, temporal rotation and temporal local inflation, are introduced to 
create hexahedral meshes with fewer elements for long objects or objects with thin regions. 
Several examples are shown to discuss the improvements of the mesh generation method. 

1   Introduction 

All-hexahedral mesh generation using an octree data structure is a promising ap-
proach to automatically create meshes for complex geometries. However, there are 
still several issues that need to be addressed for practical applications. 

The refinement of a hexahedral mesh with a concave refinement domain is a 
challenging problem because a resulting mesh must have only hexahedral ele-
ments without hanging nodes and the number of elements to be added must be mi-
nimized outside of the refinement domain. Several solutions have been presented 
before, using a combination of templates, and/or pillowing (also known as sheet 
insertion) techniques [1-7]. Schneiders et al. proposed the first template-based me-
thod in 1996, which has been used widely because of its simplicity to implement 
[1]. However, it can be applied to convex refinement domains only. To refine con-
cave refinement domains, many extra elements are needed outside of the domains. 
Although other template-based methods can be applied to concave refinement 
domains more efficiently, their implementation is neither easy nor clear, especially 
for multiple levels of refinement [2, 3]. The pillowing methods are not easy to im-
plement because generally sheets cannot be added locally. 

To overcome this problem, we have recently proposed a new, easy-to-
implement, easy-to-understand set of refinement templates as part of octree-based, 
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geometry-adapted hexahedral mesh generation [8]. Two new templates were de-
veloped for three-node (three nodes of one of the six quadrilaterals) and two-face 
(two quadrilaterals sharing an edge) refinement. The new template set allows re-
fining hexahedra individually and concave refinement domains can be refined ef-
ficiently. In this paper, we propose adding one more new template to the refine-
ment template set to improve the efficiency. 

Another challenging problem is how to keep the number of hexahedra minimum 
for complex geometries while their geometrical fidelity is kept. The alignment of 
hexahedra in an octree-based mesh mostly depends on the position of the initial 
octree. The easiest way to select it is by the use of an axial aligned bounding box 
around the input geometry. However, it tends to create more elements for long ob-
jects that do not align with the xyz axes. Objects with thin regions, such as skulls 
and hearts, need many elements to be represented by octree-based hexahedra with-
out holes. We propose two mesh generation options to relieve this problem. 

The reminder of the paper is organized as follows. In Section 2, the new tem-
plate set is introduced. In Section 3, new options added to our hexahedral mesh 
generator are introduced to create meshes with fewer elements for complex geo-
metries. In Section 4, examples are shown to demonstrate our mesh generation 
method. Finally, conclusions are given in Section 5. 

2   Refinement Templates 

Figure 1 shows the new set of templates for edge (Figure 1a), face (Figure 1b), vo-
lume (Figure 1c), three-node (Figure 1d), two-face (Figure 1e) and opposite-edge 
(Figure 1f) refinement. The templates for edge, face, volume, three-node, two-face 
and opposite-edge refinement are represented as T2(ABCDEFGH), T4(ABCDEFGH), 
T8(ABCDEFGH), T3(ABCDEFGH), T6(ABCDEFGH), and T4o(ABCDEFGH), re-
spectively. The underlines indicate nodes to be refined, which correspond to the black 
points with white letters in Figure 1 (hereafter referred as marked nodes). Only the 
main structures of T3, T6 and T4o are shown in Figure 1 to simplify the drawing. T2, T4 
and T8 are from pillowing [4, 5]. T3 and T6 are proposed in [8]. T4o is a new template 
proposed in this paper. 

To obtain T3, the hexahedron is first divided into six base hexahedra as shown in 
Figure 1d. T2 is then applied to two hexahedra: T2(ABJIEFNM) and T2(DAILHEMP). 
The other four hexahedra, CDLKGHPO, BCKJFGON, IJKLMNOP and 
MNOPEFGH, are used as is. 

To obtain T6, the hexahedron is first divided into five base hexahedra as shown in 
Figure 1e. T2 is applied to two hexahedra: T2(BFGCJNOK) and T2(HDCGPLKO). T4 
is applied to two other hexahedra: T4(AEFBIMNJ) and T4(DHEALPMI). The hex-
ahedron in the center, IJKLMNOP, is used as is. 

To obtain T4o, the hexahedron is first divided into seven base hexahedra as shown 
in Figure 1f. T2 is applied to four hexahedra: T2(ABJIEFNM), T2(ABCDIJKL), 
T2(GHPOFEMN) and T2(GHDCOPLK). The hexahedron in the center, IJKLMNOP, 
is used as is. 



 Efficient Hexahedral Mesh Generation for Complex Geometries 105 

 

Fig. 1. New set of refinement templates for (a) edge (T2), (b) face (T4), (c) volume (T8), (d) 
three-node (T3), (e) two-face (T6) and (f) opposite-edge refinement (T4o). Note that d, e and 
f only show the main structures of our new templates. 

Table 1. Number of hexahedra in each of the six refinement templates 

Templates T2 T4 T8 T3 T6 T4o 

# of hexahedra 5 13 27 14 37 23 

 
We can consider that those three templates, T3, T6 and T4o, are created by mul-

tiple application of sheet insertion. Table 1 shows the number of hexahedra in 
each of the six templates. Table 2 shows a conversion table for possible refine-
ment patterns and corresponding refinement templates. This conversion table is 
based on Candidate 2 in [8] to use the new opposite-edge refinement template. Let 
us think about default templates for quadrilaterals to understand the conversion ta-
ble better. If a quadrilateral has only one marked node (Figure 2a) or two marked 
nodes that are in opposite corners (Figure 2b), it is not refined. If a quadrilateral 
has two neighboring marked nodes (Figure 2c), three marked nodes (Figure 2d) or 
four marked nodes (Figure 2e), it is refined using TQ2(ABCD), TQ3(ABCD) or 
TQ4(ABCD), respectively. Patterns 1, 2B, 2C, 3C and 4F shown in Table 2 are not 
refined, and one of the marked nodes in Pattern 3B or 4D is ignored, accordingly. 
Although the marked nodes are not always refined, the conversion table works  
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well most of the time because those refinement patterns appear only on the verge 
of the domain to be refined. 

All the templates need new nodes. Their positions must be determined consis-
tently and easily such that subdivided hexahedra are in good quality. Note that ini-
tial hexahedra are not necessarily cubes but can have low minimum scaled Jaco-
bian values, e.g., the base hexahedra in T3, T6 and T4o to which T2 or T4 is applied. 
Let us think about how to calculate the positions of the new nodes in T8 because 
those in the other templates are calculated in the same way. Let  be the coordi-
nates of node i. Two nodes added between any edge are calculated as its trisection 

points. For example, the two nodes between edge AB are obtained as  and 

. Each of four nodes added on any quadrilateral is calculated as the center of 

its any three nodes. For example, the four nodes on quadrilateral ABCD are ob-
tained as , ,  and . Eight nodes added inside T8 

are calculated as the trisection points of the four diagonal lines: AG, BH, CE and 
DF. 

3   Options for Hexahedral Mesh Generation 

To create hexahedral meshes efficiently for complex geometries, the following 
two options have been added to our mesh generation method: temporal rotation 
and temporal local inflation. 

3.1   Temporal Rotation 

Surface models are not always axially aligned, i.e., their oriented bounding boxes 
(OBB) do not always align with the xyz axes. This means that the coordinate sys-
tem of an octree needs to be selected carefully. The temporal rotation option is 
useful to create a mesh with fewer elements with the same resolution for a long 
object. 

Figure 3 shows an example of a pediatric left humerus model. There are two 
bounding boxes in Figure 3a: the axial aligned bounding box (AABB; black) and 
the oriented bounding box (OBB; red) calculated based on the covariance matrix 
from vertex coordinates [9]. Our mesh generation method creates octants aligned 
with the AABB by default (Figure 3b). When the temporal rotation option is 
turned on, octants are automatically aligned with the OBB (Figure 3c). Fewer 
elements are needed with the same resolution. The quality of the meshes is almost 
the same. The lowest minimum scaled Jacobian of the hexahedra in the two mesh-
es is 0.37. No adaptation is applied in this case. 

3.2   Temporal Local Inflation 

The temporal local inflation is a helpful option to represent thin regions with a 
fewer number of hexahedra. Suppose the local thickness of a surface model is    
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4.1   Ramses Model 

Figure 5 shows hexahedral meshes for a Ramses model from the AIM@SHAPE 
Shape Repository. The initial octree was refined equally so that the size of octants 
becomes approximately 23 and then was locally refined three times based on α 
proposed in [8] (α = 50°). Figures 5a and b show a mesh using the new template 
set, which has 2.14M elements. Figure 5c shows a mesh using the previous tem-
plate set (without T4o), which has 2.20M elements (2.8% more). Compared to the 
previous template set, the new set usually reduces the number of elements by a 
few percent while keeping almost the same or slightly better mesh quality. The ac-
tual reduction depends on each case, especially on the complexity of the refine-
ment domain. The meshes shown in Figures 5b and c are similar except around the 
right eye. 

Figure 6 shows the distribution of element quality of the two hexahedral mesh-
es by the scaled Jacobian metric. The lowest minimum scaled Jacobian values are 
0.015 for the mesh using the new set and 0.00079 for the mesh using the previous 
set. The two meshes have a small number of low quality hexahedra, but their 
overall quality is good. 

4.2   Pediatric Brain Model 

Figure 7 shows a hexahedral mesh for a pediatric brain model using the new set of 
the refinement templates. The initial octree was refined equally so that the size of 
octants becomes approximately 2.7, and then was locally refined twice based on α 
= 60°. The mesh has 340,917 hexahedra and is nicely adapted to the geometry. 
The lowest minimum scaled Jacobian of the hexahedra is 0.10. If the previous 
template set is used, a mesh with 355,904 hexahedra (4% more) is created. 

4.3   Three-Year-Old Child Model 

Figure 8 shows a hexahedral mesh for a three-year-old child model. Part of the 
components, left humerus, skull and brain, is already shown in Sections 3.1, 3.2 
and 4.2, respectively. A hexahedral mesh is created for each of the body compo-
nents separately using the new set of the refinement templates to apply the tem-
poral rotation option to long bones and/or to apply the temporal local inflation op-
tion to components with thin regions. The final mesh has 2.79M hexahedra. 

5   Conclusions 

An octree-based mesh generation method has been developed to automatically 
create all-hexahedral meshes for complex geometries. An improved set of refine-
ment templates allows the generation of geometry-adapted meshes with fewer 
elements while keeping almost the same or slightly better mesh quality. Two new 
options, temporal rotation and temporal local inflation, are useful to create meshes 
for long objects or thin regions. The capability of our mesh generation method is  
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demonstrated using a few triangulated surface models. The resulting meshes do 
not have any negative Jacobian elements even for complex geometries, and the 
quality of the meshes is good. 
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Embedding Features in a Cartesian Grid

Steven J. Owen and Jason F. Shepherd
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Abstract. Grid-based mesh generation methods have been available for many
years and can provide a reliable method for meshing arbitrary geometries with
hexahedral elements. The principal use for these methods has mostly been limited
to biological-type models where topology that may incorporate sharp edges and
curve definitions are not critical. While these applications have been effective, ro-
bust generation of hexahedral meshes on mechanical models, where the topology is
typically of prime importance, impose difficulties that existing grid-based methods
have not yet effectively addressed. This work introduces a set of procedures that
can be used in resolving the features of a geometric model for grid-based hexahedral
mesh generation for mechanical or topology-rich models.

Keywords: grid-based, overlay grid, hexahedral mesh generation, topological
equivalence, topology embedding.

1 Background

The general problem of mesh generation involves discretizing a domain
into simple shapes such as tetrahedra and hexahedra. In most cases the
problem begins with a three-dimensional domain that is represented with
topology and geometry. The topology representation can be as simple as
a single surface or as complex as a mechanical assembly with hundreds of
interconnected volumes, surfaces, curves and vertices related by means of a
Boundary-representation (B-Rep) graph structure. In contrast the geometry
representation defines the core mathematical foundation of the curves and
surfaces and may be defined as a set of non-uniform rational b-splines or as
a simple connected set of triangles. The B-Rep graph usually provides the
frame on which the geometry is defined. Both geometry and topology should
be considered when developing a mesh.
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-

heed Martin Company for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.
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Most modern software tools that provide mesh generation capabilities en-
force a requirement of geometry-mesh ownership. This provides a convenient
method by which the user can apply physical properties and attributes to the
topological features of the domain rather than dealing with the mesh itself.
While attributes must ultimately be represented on the nodes and elements
of the mesh for analysis, from a user’s perspective, it is more convenient to
assign attributes to the B-Rep entities rather than on individual mesh entities
that may change over the course of a study.

To accomplish this, individual mesh entities, including, nodes, faces, edges
and elements, must have a child-parent relationship with the B-Rep entities
in the model: vertices, curves, surfaces and volumes. Likewise, B-Rep entities
must have a parent-child relationship with the mesh entities that they own.
This association, in most cases is a one-to-many link; that is, a single B-Rep
entity may own multiple mesh entities, but a mesh entity can have only one
unique parent. This one-to-many relationship has driven most of the modern
meshing algorithms, where independent mesh entity groups can be generated
for each individual B-Rep entity in the model and subsequently joined to form
a contiguous mesh. Underlying the assumption of the B-Rep→mesh one-to-
many relationship is that each B-Rep entity does indeed provide important
information to the analysis and that a discrete representation of every B-Rep
entity in the model will be represented in the mesh. Unfortunately, geometry
creation procedures often developed in solid modeling tools frequently gen-
erate anomalous curves and surfaces that are not significant to the analysis.
Using these models in a mesh generation system that enforces one-to-many
ownership can lead to poor quality elements where the B-Rep will routinely
over-constrain the resulting mesh. This work assumes that all entities in the
geometric model are important to the analysis and that defeaturing or model
simplification procedures such as those illustrated in the overview by Thakur
et. al. [14] have already been accomplished.

The development of general-purpose unstructured hexahedral mesh gener-
ation procedures that effectively capture both geometry and topology for an
arbitrary domain have been a major challenge for the research community. A
wide variety of techniques and strategies have been proposed for this problem.
It is convenient to classify these methods into two categories: geometry-first
and mesh-first. In the former case, a topology and geometry foundation is
used upon which a set of nodes and elements is developed. Historically signif-
icant methods such as plastering [1], whisker weaving [12] and the more the
recent unconstrained plastering [11] can be considered geometry-first meth-
ods. These methods begin with a well defined boundary representation and
progressively build a mesh that ensures that properties of mesh ownership
are adhered to. Because these methods use the B-Rep entities themselves as
the foundation for the algorithm, the parent-child ownership of mesh entities
generated is easily built in to the procedures. Most of these methods define
some form of advancing front procedure that requires resolution of an interior
void and have the advantage of conforming to a prescribed boundary mesh.
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Although work in the area is on-going, the ability to generalize these tech-
niques for a comprehensive set of B-Rep configurations has proven a major
challenge and has yet to prove successful for a broad range of models.

In contrast, the mesh-first methods start with a base mesh configuration.
Procedures are then employed to extract a topology and geometry from the
base mesh. These methods include grid-overlay or octree methods. In most
cases these methods employ a Cartesian or octree refined grid as the base
mesh. Because a complete mesh is used as a starting point, the interior mesh
quality is high, however the boundary mesh produced cannot be controlled as
easily as in geometry-first approaches. As a result the mesh may suffer from
reduced quality at the boundary and can be highly sensitive to model orien-
tation. In addition, grid-overlay methods may not accurately represent the
topology and geometric features as defined in the geometric model. In spite
of these inherent deficiencies, mesh-first methods have proven a valuable con-
tribution to mesh generation tools for modeling and simulation. In contrast
to geometry-first techniques, fully automatic mesh-first methods have been
developed for some applications where boundary topology is simple or is not
critical to the simulation. In particular, bio-medical models [17] [18] [3], metal
forming applications [8] [4], and viscous flow [13] methods have utilized these
techniques with some success. Automating and extending mesh-first methods
for use with general B-Rep topologies would provide an important advance
in hexahedral meshing technology.

As one of the first to propose an automatic overlay-grid method, Schneiders
[8] developed techniques for refining the grid to better capture geometry. He
utilized template-based refinement operations, later extended by Ito [3] and
H. Zhang [16] to adapt the grid so that geometric features such as curvature,
proximity and local mesh size could be incorporated. Y. Zhang [17] [18] and
Yin [15] independently propose an alternate approach known as the Dual-
contouring method that discovers and builds sharp features into the model
as the procedure progresses. This is especially effective for meshing volumetric
data where a predefined topology is unknown and must be extracted as part
of the meshing procedure.

The dual contouring method for establishing a base mesh described by Y.
Zhang [17] begins by computing intersections of the geometry with edges in
the grid. Intersection locations are used to approximate normal and tangent
information for the geometry. One point per intersected grid cell is then
computed using Hermite interpolation from tangents computed at the grid
edges. The base mesh in this case is defined as the dual of the Cartesian grid,
using the cell centroids and interpolated node locations at the boundary.
While attractive as a method for extracting features from volumetric data, it
does not guarantee capture of a pre-existing topology such as that contained
in a CAD solid model.

Recent work on mesh-first approaches have focused more on the capturing
of features of the geometry. A common thread among many of these methods
[17] [3] [9] is the introduction of a buffer layer of hex elements to improve
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element quality near the boundary. This approach, while effective, still relies
on a base mesh that is topologically equivalent to the features of a B-Rep. A
drawback of many of these methods is that they tend to neglect the parent-
child geometry-to-mesh ownership principals which are important for meshing
algorithms to effectively engage with CAD-based modeling tools. With the
assumption that all features of a B-Rep are indeed important in modeling the
domain, the focus of this study is to propose a procedure whereby topological
features can be accurately represented in a finite element mesh using a mesh-
first method.

Shepherd [10] describes an approach to mesh-first hexahedral mesh gener-
ation utilizing geometric capture procedures. This work utilizes theory and
assertions developed in [5] [6] . He asserts that a mesh must be topologically
equivalent and geometrically similar to its geometry and B-Rep definition in
order to develop a valid conformal mesh of the domain. To be topologically
equivalent there must be a consistent correlation between the graph of the
mesh and the graph of the B-Rep. This can be accomplished by establishing
a one-to-many parent-child relationship between B-Rep and mesh entities.
B-Rep entities of dimension r must contain a set of one or more contigu-
ous mesh entities of dimension r, where r = 0, 1, 2, 3. Although not strictly
required, geometric similarity between the mesh and the geometry of the do-
main is desired in order to maintain reasonable mesh quality. For example,
aligning the base mesh with the principal orientations of curves and surfaces
of the model will minimize the characteristic stair-step effect and increase
mesh quality once mapped to the original geometry.

2 Feature Embedding

For convenience we have limited the base mesh for this study to a Cartesian
grid. While it is often desirable to begin with an enriched octree grid or
an aligned swept mesh, the Cartesian grid offers simplicity and automation
that is easy to generalize for any model. For implementation purposes, a
Cartesian grid is very light-weight and fast, avoiding full unstructured mesh
data structures required for more general methods. While it is inevitable that
mesh enrichment will be needed to more accurately capture small features and
high valence vertices and curves, there is value in understanding the principles
needed to embed topology through the use of a Cartesian grid. Indeed, it is
expected that through careful application of topology embedding, that the
need for mesh enrichment will be reduced.

Shepherd [10] outlines an algorithm which is convenient to use as the
context for this work. The overall procedure is illustrated in figure 1. Begin-
ning from a CAD model, a Cartesian grid is defined enclosing the model.
A 2-manifold is then established from an inside-out procedure on which a
topology capture algorithm is performed and subsequently projected to the
geometry. A series of one or more buffer layers known as fundamental sheets
are then inserted at the boundary, followed by a series of mesh optimization



Embedding Features in a Cartesian Grid 121

Fig. 1. Mesh generation procedure. (a) Initial CAD B-Rep model. (b) Enclosing
Cartesian grid is established. (c) Base grid established and topology embedded. (d)
Base grid projected to geometry. (e) Fundamental sheets inserted on boundaries.

steps to improve mesh quality. This work will focus specifically on the topol-
ogy capture procedure illustrated in figure 1(c) and leave the sheet insertion
and mesh optimization procedures for a future study.

Establishing a 2-manifold on which topology is captured implies developing
a base mesh and using the bounding set of quadrilaterals from a contiguous
set of hexahedra on which vertex and curve topology is embedded. Shepherd
suggests that tailoring a base mesh to the features and characteristics of the
domain is advantageous. For example, where the bulk outline of a model
is generally cylindrical, then a base mesh constructed from the sweep of a
bounding cylinder would yield better results than using a Cartesian grid.
However, this procedure is not easily generalized nor automated and would
also be a valuable topic for future study. Instead, most current literature
indicates that a base mesh is established from a Cartesian grid. In these cases
individual hexes are tested for inclusion or exclusion based on common in-
out procedures. In-out procedures classify each cell in the grid based upon its
centroid’s relative position with respect to the boundary of the domain. The
continuous set of hexes that are completely contained within the geometry
and optionally combined with hexes that are intersecting the domain are used.
In many cases, mesh enrichment procedures using octree decomposition are
used at this stage to ensure the geometry is effectively represented. In many
cases special procedures are used to ensure non-manifold connections and
non-contiguous regions within the hex mesh are eliminated.

Whether a base grid is defined using traditional in-out procedures or
through a dual contouring procedure, topologic equivalence may not be ad-
equately taken into account. Figures 2 to 4 show examples where standard
methods for defining a base grid may be inadequate. The single hexahedra
at the apex of the pyramid in figure 2 provides a maximum of a 3-valent
node on which to embed a 4-valent vertex. Without subsequent mesh en-
richment, topology capture would be impossible at this location. Although
Shepherd [10] proposes local pillowing operations to enrich the valence, it also
requires an unstructured mesh data representation consequently reducing the
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Fig. 2. Base grid defined from a pyra-
mid geometry. Resulting 2-manifold
does not provide rich enough mesh
to capture 4-valent vertex at pyramid
apex.

Fig. 3. B-Rep used to generate the
base grids shown in figure 4.

Fig. 4. Two different base grids defined from a C-shaped geometry (figure 3) using
common in-out procedures. The grid on the left is defined from the inside and
intersected hexes while the grid on the right is defined from only the hexes on the
inside of the geometry. Neither satisfies the requirement of topologic equivalence.

efficiency of the proposed procedures and can also result in marginal quality
hexahedra to achieve the required valence.

Figures 3 and 4 illustrate another potential issue with traditional base
mesh definitions for mesh-first procedures. Neither the cells intersecting the
geometry, nor the cells on the interior of the geometry produce a set of hexes
that can build a topologically equivalent mesh without special procedures to
combine the results from the two cases. In examples such as these, mesh en-
richment strategies can be employed to locally refine the grid using template-
based refinement techniques [3]. In order to provide complete generality, these
methods typically require a 1 → 27 refinement strategy. That is, each hex in
the refinement region is decomposed into 27 hexahedra. In addition to intro-
ducing artificially high gradients on the local mesh size, transition elements,
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typically of marginal quality, are needed to ensure a conformal mesh between
coarse and fine regions.

In an attempt to better control some of these issues, this work proposes
using the full three dimensional Cartesian grid on which the B-Rep topology
is progressively extracted. Initially limiting the topology extraction problem
to a 2-manifold, as originally proposed by Shepherd [10] and others, may
over constrain the problem such that specialized procedures are required to
enrich the grid where otherwise a full 3D approach would naturally extract
topologic equivalence from the grid. However, it is clear that mesh enrichment
strategies will still need to be employed, particularly for features significantly
smaller than the grid cell size and for vertex valence greater than 6. We con-
tend that the use of such procedures may be reduced by limiting specialized
mesh enrichment procedures that impose high valent or marginal transition
elements, ultimately improving overall mesh quality.

3 Embedding Procedures

Beginning from the solid model boundary representation of the model, the
current implementation may first employ defeaturing as described by Quadros
et. al. [7] and then extract the facets from the model to use as an approximate
geometry representation. Using the faceted form of the model allows for easy
integration of this procedure with the discrete feature suppression procedures
also described in [7]. Also beneficial is that geometry evaluation during the
embedding procedures can be limited to evaluation of planar triangles and
linear edges rather than evaluations using a full B-spline library. A Cartesian
grid that completely encloses the geometry with a user-defined resolution
is then established. While there is no explicit requirement on grid cell size,
for practical purposes the cells should be approximately smaller than the
smallest feature size in the geometry. The grid may also be optionally oriented
so that a tight fitting bounding box is established to help align curves and
surfaces with the principal axes of the grid. To maintain the advantages of a
Cartesian grid, rather than transforming the grid itself, the geometry can be
transformed into the Cartesian space during the embedding procedures and
transformed back when complete.

The approach taken for embedding features follows roughly the bottom-
up method of mesh generation, where successive dimensions are embedded
starting from vertices and continuing through curves, surfaces and volumes.
If we define a Cartesian grid ΩM = {M r

i |r = 0, 1, 2, 3} and a B-Rep ΩG =
{Gr

i |r = 0, 1, 2, 3}, our objective is to find groups of grid entities, M r
i of

dimension r that will be owned by corresponding B-Rep entities, Gr
i of the

same dimension. Corresponding grid and B-Rep entities are enumerated in
table 1. The embedding EG→M ⊆ ΩM is defined as EG→M = {M r

i : M r
i �→

Gr
i }, where the non-unique mapping, M r

i �→ Gr
i , is a set of procedures for

each dimension that assigns grid entities to individual B-Rep entities. This
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Table 1. Corresponding B-Rep and Cartesian grid entities

B-Rep Symbol Cartesian Symbol
Entity Grid Entity
Vertex G0 Node M0

Curve G1 Edge M1

Surface G2 Face M2

Volume G3 Cell M3

mapping will necessarily be collision-free; that is, a grid entity, M r
i may be

mapped to one and only one B-Rep entity, Gr
i .

The embedding procedures M r
i �→ Gr

i for each dimension have similar
characteristics. Each uses a combination of local geometric and topologic in-
formation to determine grid entities that will map to a given B-Rep entity.
The procedures generally proceed by looping through each B-Rep entity Gr

i

for dimension r and capturing grid entities M s
i for dimensions s ≥ r. For

example, the vertex embedding procedure, while incorporating node capture,
also includes methods to capture nearby edge, face and cell entities. Similarly,
the curve embedding procedure includes the capture of faces and cells. This
has proven effective in avoiding or controlling collision conditions as the al-
gorithm proceeds. The overall procedure is illustrated in algorithm 1, where
the function {M s

j } ← Capture(s, Gr
i ) defines procedures for mapping grid

entities of dimension s to the geometry entities of dimension s immediately
at or adjacent to the geometry entity Gr

i . The following sections detail the
Capture(s, Gr

i ) procedures for each dimension.

Input: B-Rep ΩG, Cartesian Grid ΩM

Output: Embedding EG→M ⊆ ΩM

for dimension r ← 0 to 3 do1

for dimension s ← r to 3 do2

foreach geometry entity Gr
i ∈ ΩG do3

{M s
j } ← Capture(s, Gr

i);4

EG→M+ = {M s
j };5

end6

end7

end8

Algorithm 1. Algorithm for computing embedding set EG→M ⊆ ΩM

3.1 Embedding Vertices

Capturing nodes at vertices

Vertices can be embedded in most cases by simply finding the closest node
in the grid to each vertex in the B-Rep. Collisions may occur where multiple
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vertices may claim the same grid node. Collision resolution in this case is han-
dled by selecting the closest vertex to the node in question and successively
assigning ownership to nearby grid nodes based on their relative distance.

Capturing edges at vertices

Once vertex locations are assigned, grid edges at the selected grid node must
be matched with appropriate curves. Figure 5 shows an example where the
vertex G0

0 at the apex of a pyramid maps grid node M0
0 . For this vertex,

four grid edges must be selected that match the four curves that share the
vertex. At this location, any of the curves G1

i=0,1,2,3 may choose any one of the
six grid edges M1

j=0,1,..5 sharing grid node M0
0 . Clearly vertices with valence

greater than six would not be permitted when utilizing a Cartesian grid. To
facilitate edge selection at a selected grid node, the metric μij is computed
as follows:

μij =
1 + (VMj ·VGi)

2
(1)

where μij is a value 0 ≤ μij ≤ 1 that represents how well curve G1
i matches

geometrically with edge M1
j where μij = 1 is a perfect match and μij = 0

is very poor. In equation 1 the variables VMj and VGi are the normalized

Fig. 5. A representation of the local grid near the apex of a pyramid. Four of the
grid edges selected from M1

j=0,1,...5 that are connected to the node M0
0 must be

paired to the four curves in the B-Rep G1
i=0,1,2,3.
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outward pointing vectors of the grid edges M1
j and curves G1

i at the node
M0

0 and vertex G0
0 respectively. This equation simply incorporates the dot

product of edge and curve vectors to indicate how well each grid edge is
oriented with respect to a particular curve. In practice, since the B-Rep is
comprised of facets, the curve vector VGi can be approximated from the first
facet edge that shares the vertex G0

0 and curve Gj
i .

Once the metric μij has been computed for each edge with respect to each
curve at the vertex, all permutations of pairings between edges and curves
are computed and the sum of μij for each permutation is determined. The
pairings can then be ranked from best to worst based on their μij sums. For
example, in figure 5 a ranking of all possible curve-edge pairings are compiled.
Given 6 possible edges assigned to 4 curves, the total number of permutations
of edge pairings would be 6 ·5 ·4 ·3 = 360 permutations. For the worst case of
a 5 or 6 valent vertex, the total number of permutations would be 6! or 720.
The curve-edge pairing with the highest μij sum is used as the candidate set
of edges to be used to represent the curves at the vertex. For the example in
figure 5 the selected candidate edge-curve pairings are shown at right. Note
that multiple edge-curve permutations may yield identical μij sums as in this
simple example.

Capturing faces at vertices

Even after selecting the best candidate edge-curve pairing for a given vertex,
there is no guarantee that a valid topology that matches the local surface con-
figuration can be established. For this reason a face-surface pairing procedure
is also used. The best candidate edge-curve pairing is used as the starting
point for this procedure. For any B-Rep graph of a three-dimensional do-
main, each vertex will have an equal number of edges and surfaces sharing
the common vertex. Having defined edge-curve pairings, it remains to find a
path of faces at the vertex between existing edge-curve pairs such that each
surface is represented by at least one face.

Figure 6 shows the same example of a pyramid apex and the local grid
topology at node M0

0 . Also shown are the faces M2
j=0,1,...11 sharing the node.

For this problem we use the cyclic ordering of curves and surfaces at the vertex
to guide a traversal. Staring with curve G1

0, its corresponding grid edge (in
this case M1

4 ) is selected to begin the traversal. Using the B-Rep topology,
we know that surface G2

1 is the next counter-clockwise surface adjacent curve
G1

0; which in turn shares the curve G1
1 that is associated with grid edge M1

0 .
To find the face(s) at node M0

0 that will map to surface G2
1 we must find

a set of faces bounded by edges M1
4 and M1

0 . For this case, the choice is
relatively trivial, as face M2

5 appears to satisfy our criteria. For the general
case, however there are several solutions that will satisfy this criteria. For
example the set of faces {M2

7 , M2
6 , M2

4}, {M2
11, M

2
1 } and {M2

10, M
2
3} are each

bounded by edges M1
4 and M1

0 . Figure 7 is a representation of the edge-face
graph at any node in a Cartesian grid. Using this connectivity information,
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Fig. 6. A representation of the local grid near the apex of a pyramid. Four of the
grid faces selected from M2

j=0,1,...11 that are connected to the node M0
0 must be

paired to the four surfaces in the B-Rep G2
i=0,1,2,3.

a complete set of unique paths can be derived between any two edges. A
metric mij , where 0 ≤ mij ≤ 1, can be computed for each possible path
P 2

ij ⊆ M2
j=0,1,...11 based on the following criteria:

mij =
1 + 0.5(TG2

i
· TP 2

ij
)

1 +
∣∣∣Ji − NP 2

ij

∣∣∣ (2)

where TG2
i

is the normalized outward pointing tangent vector at the common
vertex G0

i and in the plane of the surface G2
i that bisects curves G1

i and G1
i+1;

TP 2
ij

is the average normalized outward pointing tangent vector at node M0
i

to the faces in P 2
ij ; NP 2

ij
is the number of faces in P 2

ij and Ji is defined as:

Ji =

⎧⎨⎩
1, θi ≤ 3π

4
2, 3π

4 ≤ θi ≤ 5π
4

3, θi > 5π
4

(3)

where Ji is an integer that represents the ideal number of faces that should
represent surface G2

i given the angle θi between curves G1
i and G1

i+1 on the
surface. Equation 2 computes the relative alignment between the path P 2

ij
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Fig. 7. The graph of local faces and edges at a node illustrating all possible paths
of faces that can be selected representing the set of surfaces around a vertex. The
path used in figure 6 is highlighted.

and the surface G2
i and assigns a penalty for paths that are longer or shorter

than the ideal path defined by Ji.
A suitable path P 2

i can now be selected that effectively matches surface
G2

i by selecting the path P 2
ij with the maximum mij . Subsequent paths can

also be computed in a similar manner. The fact that edges and faces can only
be used once, may block an optimal path between any given pair of edges,
however alternate paths can generally be found. The final set of paths is
represented in figure 7 as thicker lines and are illustrated as faces in figure 6.

Once a valid set of faces and edges have been determined using the preced-
ing algorithm, there is still no guarantee that an optimal solution has been
found. Given the fact that equation 1 may yield identical or similar metrics
μij for different permutations of edge-curve pairings, it may be necessary
to check multiple edge-curve pairings by determining their associated face-
surface pairings. This can be done by keeping track of the sum of mij for
the face-surface pairings associated with each edge-curve pairing. For most
cases, a limited number of edge-curve pairings will need to be tested before
an optimal is determined.

Capturing cells at vertices

The final step in matching grid topology at a vertex is to capture the grid cells
that will be inside the volume. In practice this is done by finding the face that
is well-aligned with its associated surface. We can determine alignment based
on the dot product of the face with the surface normal. Using the surface
normal we can then determine which side of the face is defined as inside
and which is defined as outside. By selecting the inside cell and traversing
to neighboring cells sharing the node M0

i that are on the same side as the
inside cell, all cells at the node inside the volume can be selected.
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An example of topology captured at the vertices of the simple pyramid
problem is shown in figure 8.

Fig. 8. The grid topology captured for vertices of a simple pyramid model is
illustrated. The procedure described here has been used to select the appropriate
grid topology.

3.2 Embedding Curves

Capturing edges at curves

The next step of the procedure involves embedding curves into the grid topol-
ogy, or specifically the set EG→M = {M1

i : M1
i �→ G1

i }. We can gather a set
of grid edges for each curve by starting from the grid edge associated with
the curve at each vertex that we determined in the previous step and finding
a collision free path between the start and ending grid edges on the curve.
For this procedure, knowing the edge at position k on the curve, we can de-
termine the next grid edge at position k + 1 by examining the 5 connected
edges at its end. Equation 6 can then be used to select the best next edge in
the path.

Tij =
1 + (VMj ·VGi)

2
(4)

Dij =

∣∣PMj − PGi

∣∣−2∑5
j=1

∣∣PMj − PGi

∣∣−2 (5)

μij = Tij

(
1 − di

2s

)
+ Dij

di

2s
(6)

The variables in equations 4 to 6 are illustrated in figure 9. Equation 6
incorporates both a tangent component, Tij in equation 4 and a distance
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component, Dij in equation 5. The tangent component is the same as that
used in equation 1 to determine alignment of edges at a vertex. The distance
component is used to ensure the selected grid edges do not deviate too far
from its parent curve. Equation 5 incorporates proximity information, where
a normalized inverse distance weighted value between 0 and 1 is computed so
that edges that are close are given a larger weight than those farther away.
The vector PMj in this case is defined as the midpoint of edge M1

j and the
vector PGi is a point on curve G0

i a distance 1
2 length(M1

j ) from a projection
of the end point of edge M1

k on the curve G1
i .

Fig. 9. The selection of the next
edge in a sequence following edge
M1

k is illustrated. The five edges at-
tached to this edge are the only can-
didates. Equations 4 to 6 are used
to select the edge.

Equation 6 incorporates both the tangent and distance components from
equations 4 and 5 by using a simple linear blending function pair 1−di/2s and
di/2s where di is the projected distance from the end point of edge M1

k and
the parent curve G1

i and s is the constant grid spacing size as illustrated in
figure 9. This ensures that when the curve is close to the grid edges, that the
tangent component will control, while for distances beyond the grid spacing,
s, the distance component will control.

Some of the possible edge selections may be eliminated by examining the
end node of each of the edges to see if they are already in use. While this
will avoid collisions, in some cases a non-optimal path may be selected. Pos-
sible alternative paths may be generated by starting from opposite ends of
the curve or by changing the order in which curves are processed. Optimal
curve paths may be generated by minimizing the direction changes between
grid edges representing the curve, and attempting to modify the edge-curve
pairing of those curves where μij is small while attempting to maximize the
average μij . This may require multiple iterations to define an optimal curve
path.

Figure 10 left shows edge paths representing the curves for the pyramid
problem. Where curves are not naturally aligned with one of the coordinate
axes, multiple direction changes between grid edges are unavoidable, which
will ultimately reduce final mesh quality.
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Fig. 10. Continuing with the embedding procedures, the figure on the left illus-
trates the edges selected to represent each of the curves in the model. On the right,
the cells adjacent each of these edges has been selected and illustrated here.

Capturing faces and cells at curves

Another important aspect of the curve capture problem is selecting the cells
at the curve that will be interior to the volume. Knowing the orientation and
angle between surfaces at the curve, we can attempt to control the number
and position of each grid cell so that final mesh topology will match as close as
possible to the B-Rep. Figure 11(a) illustrates two edges M1

k and M1
k+1 that

have been selected to represent a segment on a curve G1
i . The four shaded

cells adjacent edge M1
k represent the possible choices for cells where at least

one and no more than three cells must be selected to represent the interior
of the volume at the curve. Figure 11(b) shows the 4 cells adjacent edge M1

k .
Ji from equation 3 may be used to determine the number of cells to select
where θi is the interior angle formed by adjacent surfaces G2

i and G2
i+1 at the

curve. If we compute vector Bi as the bisecting vector at edge G1
i projected

onto the plane normal to edge M1
k , then the quadrant in which Bi falls with

respect to the four cells adjacent edge M1
k will determine which initial cell

M3
i to select. Where Ji > 1, then one or two additional cells adjacent the

cell M3
i at edge M1

k may be selected based on the relative orientation of Bi

within the cell. Once cells at the edge have been selected, then faces M2
i , also

shown in figure 11(b), can be selected and associated with their respective
surfaces G2

i and G2
i+1

Another issue which must be resolved is potential collisions between cells
as the algorithm proceeds. This is common especially at adjacent edges where
a 90 degree turn is required to better capture geometry. This is illustrated in
figure 11(a), where edge M1

k is oriented 90 degrees to M1
k+1. In this case it

is not uncommon for Bi and Ji to be computed such that the cells selected
adjacent M1

k+1, conflict with those selected adjacent M1
k . Where conflicts

arise, they are resolved by using the cell selection from the edge whose tangent
most closely aligns with that of the curve at its closest point.
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Fig. 11. (a) Representation of the curve G1
k in the geometry and two edges M1

k

and M1
k+1 that have been associated with the curve. The cell selected at the edges

representing the interior of the volume is highlighted. (b) The side view of the four
cells adjacent the same edge M1

k along with the curve G1
i and its adjacent surfaces.

The angle θi between the surfaces and its bisecting vector Bi are used to determine
which of the four cells at the edge will be captured.

3.3 Embedding Surfaces

Capturing faces at surfaces

The next stage of the algorithm is to ensure that a continuous set of faces
M2

i is associated with their respective surfaces G2
i . For this we seek the set

of faces EG→M = {M2
i : M2

i �→ G2
i }. Since both vertex and curve embedding

procedures also included selection of adjacent faces, we can begin with the
assumption that at least one continuous layer of faces has been captured
at each surface. This is illustrated in figure 12 where the image on the left
shows one of the surfaces with only the faces near the curves that have been
captured.

This procedure can be compared to an advancing front algorithm where
boundary faces are first captured and interior faces to the surfaces are pro-
gressively discovered and added to the surface until a continuous set of grid
faces have been established that represent the surface. It is advantageous to
order the procedure such that loops of faces progressively advance towards
the interior of the surface until they close on themselves. Figure 13 illustrates
the procedure for advancing a single front where a current front edge de-
fined by M1

i has adjacent face M2
i which has already been associated with

its parent surface G2
i . The objective here is to determine which of the three

faces, illustrated as M2
i→up, M2

i→forward, or M2
i→down, should be selected as

the next face onto which the front will advance. The candidate face can be
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Fig. 12. Continuing with the same pyramid example, the figure at left illustrates
the faces that have been captured near the curves of one of the surfaces. The figure
on the right illustrates the final grid topology with all features embedded.

Fig. 13. The cells adjacent a grid edge and face M2
i that has been associated with

the surface G2
i is illustrated to represent the current front of the advancing front

procedure. The next face in the surface will be selected from the three faces M2
i→up,

M2
i→forward or M2

i→down.

selected by computing μij using equation 6 as we did for edges. In this case
the vectors VMj and VGi are the normal vectors of the grid face and surface,
and the points PMj and PGj is the midpoint of the face and its projection
to the surface G2

i respectively.
The selection of the next front is also effected by the placement of the exist-

ing cells associated with the volume. From our definition of the cells captured
at curves, we will always have a volume cell M3

i,0 immediately adjacent the
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face M2
i . It is however conceivable, that the cell M3

i,1 has already been se-
lected for the volume. Should this case arise, then the face M2

i→down would
be eliminated as a candidate for the next advancement. Likewise should M3

i,2

and M3
i,1 be in use, the only candidate for advancement would be M2

i→up. To
ensure non-manifold connections are not created, we would ensure that cases
where only M3

i,0 and M3
i,1 are selected at any grid edge are not permitted.

Similarly, we ensure that the case where cells M3
i,0 and M4

i,1 are both used by
the volume would not be permitted, as this would create a condition where
a hanging or dangling face would exist in the volume.

Capturing cells at surfaces

Also part of this procedure is the selection of the cells adjacent new faces
as the algorithm progresses. Cells can be selected by choosing from the two
adjacent cells at the new face. Depending on which of the three candidate
faces is selected, zero, one or two new cells may be added to the volume with
each new face added to a surface.

3.4 Embedding Volumes

Capturing cells in a volume

The final step of the algorithm is to ensure that all remaining cells M3
i interior

to the volume G3
i have been captured and appropriately assigned. Similar to

other procedures this can be represented by the mapping M3
i �→ G3

i . At this
stage, all surfaces will have been captured and have exactly one adjacent cell.
The remaining cells can now be captured by selecting one known interior cell
and recursively traversing to collect all cells that are bounded by the grid faces
that are associated with surfaces. All cells in the Cartesian grid not selected
as part of this procedure are discarded. An example of a base grid with

Fig. 14. A completed embedding procedure is illustrated using the C-geometry
model shown in figure 3. Note that topological equivalence is maintained through
the thin sections and narrow gap.
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embedding procedures completed is shown in figure 14 where the different
colors (shades) represent the separate captured surfaces in the Cartesian grid.

4 Completing the Mesh

The embedding procedures discussed in this work focus specifically on pro-
viding a base mesh that is topologically equivalent to a given boundary
representation. Once this is achieved, subsequent sheet insertion and mesh
optimization steps would be employed to build a final mesh as described by
Shepherd [10]. Up to this point in the procedure, a Cartesian grid has been
used because of its efficiency and low memory requirements. Sheet insertion
procedures, however, require a full unstructured mesh data representation to
insert appropriate layers of hexes. As a result, the base mesh is transferred
to an unstructured data representation before sheet insertion and mesh op-
timization algorithms are executed. A simple implementation of a completed
mesh on the example C-Geometry model illustrated in figure 4 is shown in
figure 15. On the left is the base mesh shown in figure 14 with its associated
grid entities projected to its parent geometry. The curves in the original ge-
ometry are also shown demonstrating the ability of the procedure to embed
arbitrary B-Rep topology within a grid. This figure also illustrates that poor
quality elements arise as a result of multiple edges and faces from a single cell
being projected to the same geometric parent. Although not specifically part
of this study, the figure on the right illustrates the insertion of buffer lay-
ers or sheets to improve element quality near the boundary using the pillow
operation in the CUBIT [2] Meshing Toolkit. Future work will focus on the
automatic insertion of boundary sheets.

Fig. 15. The mesh is completed by projecting grid nodes to their associated parent
geometry, inserting sheets or layers at the boundaries and then smoothing.
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Fig. 16. Examples of embedding results on three solid models. Solid model is shown
top with its resulting topologically equivalent base mesh on the bottom. Projection,
smoothing and sheet insertion operations have not yet been performed.

A few examples of B-Rep topology captured using the proposed embedding
procedures are also illustrated in figure 16. The top row shows the original
CAD model, while the bottom row illustrates the topologically equivalent set
of grid cells that will be used in the final meshing procedures. Different colors
(shades) in the grids illustrate the distinct surfaces that have been captured
from the grid and associated with its parent geometry.

5 Conclusion

Hexahedral methods that begin with a Cartesian grid as a base mesh are
attractive because of their potential for automation. Their primary use, how-
ever has been for bio-medical applications that do not include significant
topology. These methods have not been as effective for topology rich models
such as those common to three-dimensional CAD solid models described by
a boundary representation. While some work has been done to ensure curves
and surfaces are captured in a Cartesian-based mesh, this work proposes
a new systematic approach to ensure that features of a B-Rep model are
adequately represented in a final hexahedral mesh.
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This work introduces an approach to embedding features in a Cartesian
grid. Without such procedures there is no guarantee that important features
defined in a CAD model will be captured in the simulation model. Using
traditional in-out procedures can often neglect topological equivalence, re-
sulting in non-manifold or disjoint cells, as well as insufficient local node
valence for a given B-Rep topology. Current methods generally resolve these
issues by using mesh enrichment strategies that can introduce highly refined
and poorly shaped elements. The embedding procedures described here build
a base mesh from a Cartesian grid that is intended to meet topological equiv-
alence requirements of a B-Rep while reducing the need for mesh enrichment.

While a Cartesian grid provides efficiency and ease-of-use, for complete
generality, it is clear that mesh enrichment strategies will need to be ap-
plied. However it is expected that the proposed embedding procedures will
limit the use of such strategies. Future work will need to extend these proce-
dures to combine mesh enrichment with topology embedding to ensure that
topological equivalence is maintained for an arbitrary B-Rep configuration.

In contrast to traditional in-out procedures for generating a base mesh,
using the proposed embedding algorithms also provides more control over
mesh topology, such that numbers of hexes placed at curves and vertices can
better account for local geometry. Future work will study how sheet insertion
procedures can work together with embedding algorithms to better control
placement of sheets to maximize element quality.

The topology embedding problem, while a key component of automatic
hexahedral meshing, is clearly only one part of a fully automatic procedure.
Careful insertion of boundary sheets as well as projection and mesh optimiza-
tion methods are necessary to provide a robust, quality hexahedral mesh.
Ongoing work to couple the proposed procedures into a fully automatic hex-
ahedral meshing algorithm for topology rich models is still necessary and
under development along with its extension to muti-volume assemblies.
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Abstract. Mappings from a master element to the physical mesh element, in con-
junction with local metrics such as those appearing in the Target-matrix paradigm,
are used to measure quality at points within an element. The approach is applied
to both linear and quadratic triangular elements; this enables, for example, one
to measure quality within a quadratic finite element. Quality within an element
may also be measured on a set of symmetry points, leading to so-called symmetry
metrics. An important issue having to do with the labeling of the element vertices
is relevant to mesh quality tools such as Verdict and Mesquite. Certain quality
measures like area, volume, and shape should be label-invariant, while others such
as aspect ratio and orientation should not. It is shown that local metrics whose
Jacobian matrix is non-constant are label-invariant only at the center of the ele-
ment, while symmetry metrics can be label-invariant anywhere within the element,
provided the reference element is properly restricted.

1 Measuring Quality Within Mesh Elements

Mesh quality is important for maintaining accuracy and efficiency of numer-
ical simulations based on the solution of partial differential equations [6].
Mesh quality metrics are used to measure mesh quality and there is an ex-
tensive literature on the subject, particularly for finite element meshes [8],
[14], [16], [17], [19]. For simplicial elements, ‘shape’ is an important measure
[3], [15]. A shape measure based on condition number was proposed in [4],
[5]. In [2] and [7] the notion of shape for simplicial elements was formalized.
Few works discuss quality measures for quadratic elements [1], [18]; the latter
reference being the only example that goes beyond detecting singular points.
Significantly, the latter is limited to triangle elements.

Engineers usually measure mesh quality by one of two basic approaches, de-
pending on whether they are working with unstructured or structured meshes.
The quality of an unstructured mesh is most often studied in terms of the
individual elements within the mesh. Elements aremost often polygons or poly-
hedra, with triangles, tetrahedra, quadrilaterals, hexahedra, prisms, and pyra-
mids being the most commonly used types. A mesh element contains vertices
and/or nodes, usually given in some canonical ordering. The vertices/nodes
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have coordinates xm ∈ Rd, with d = 2, 3 and m = 0, 1, 2, ..., M , with M de-
pending on the element type and order. The quality qε of an element is most
often defined as some continuous function of the element coordinates.

Triangular element aspect ratio, given by the formula qε = Lmax

2
√

3 r
is an

example of the first approach to measuring quality. Because the lengths in
the formula depend on the coordinates of the vertices in the triangle, the
element metric is a function of the vertex coordinates. The formula only
applies to straight-sided (low-order) triangles.

The second approach to measuring mesh quality arises in the structured
meshing community. A global mapping from a logical block U to a physical
block Ω ⊂ Rd is found and serves to define a discrete grid. When d = 3,
the map takes the form x = x(Ξ), with Ξ = (ξ1, ξ2, ξ3) ∈ U and x =
(x1, x2, x3) ∈ Ω. The tangents to the map, dxi/dξj , i, j = 1, 2, 3, are used
to define local mesh quality at a point within the domain. For example, for
d = 2, one measures orthogonality at a point in U via the local metric xξ1 ·xξ2 .

Over the past decade, the author has used a third approach to measuring
quality that is a hybrid of the two basic approaches [8], [9]. For each element
of a mesh, let there be a map from a logical (or master) element to the
physical element. Then one can measure local quality within the element
using formulas based on the local tangents of the map, just as is done in
the structured meshing community. Because the element map depends on
the coordinates of the vertices/nodes within the element, the local quality
at a point within the element also depends on these coordinates. Although
the third approach uses the master element concept from the finite element
method, it can be used to measure quality whether or not the mesh is intended
to be used in a finite element simulation. That is, measuring quality by the
third approach applies equally well to finite element, finite volume, finite
difference, or even spectral element simulations, as is the case with the first
approach.1

The third approach does not preclude the measurement of element quality,
if desired. Let μ be a local quality metric and μ(Ξn), n = 1, ..., N , be the
local qualities measured at N points Ξn within the master element. Then
element quality may be defined to be, for example, qε = maxn{μ(Ξn)}, qε =
minn{μ(Ξn)}, or the pth power-mean, p �= 0, of the local qualities:

qε =

(
1
N

N∑
n=1

[μ(Ξn)]p
)1/p

(1)

with μ > 0. The power-mean, minimum, and maximum are attractive as a
means to combine the local metrics because the range of the resulting element
metric is the same as the range of the local metric.
1 For the sake of clarity, we propose to call the first approach to measuring qual-

ity the ‘element’ quality method, the second approach the ‘pointwise’ quality
method, and the third approach the ‘hybrid’ quality method.
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Three examples are given to show why this third approach may be attrac-
tive. First, consider a planar quadrilateral element, with area as the quantity
of interest. Let the four vertices be labeled xm, m = 0, 1, 2, 3, in counter-
clockwise order. The linear map is x(ξ1, ξ2) and the Jacobian matrix A(ξ1, ξ2)

A = [ (x1 − x0) + (x0 − x1 + x2 − x3) ξ2, (x3 − x0) + (x0 − x1 + x2 − x3) ξ1 ]

The signed area at any given point within the element is α = det(A).2 In the
‘element’ quality method, a standard quadrilateral area measure is

A1 =
1
2

det([x1 − x0, x3 − x0]) +
1
2

det([x3 − x2, x1 − x2]) (2)

In the ‘pointwise’ quality method, an area measure based directly on the local
metric α(ξ1, ξ2) is

A2 = min{α(0, 0), α(1, 0), α(1, 1), α(0, 1) } (3)

To compare these two area measures, consider the quadrilateral with vertex
coordinates x0 = (0, 0), x1 = (1, 0), x2 = (1

4 , 1
4 ), and x3 = (0, 1)3 Then

formula (2) yields A1 = 1
4 , while formula (3) gives A2 = − 1

2 . Therefore, the
latter formula detects the negative Jacobian, while the former does not.4

In the second example, consider the quality of a high-order finite element
such as a quadratic triangle having three mid-side nodes. With the exception
of [18], there are no examples in the literature that measure the quality of a
quadratic finite element by the ‘element’ quality method and this reference
is limited to triangular elements. The quality of high-order finite elements
such as tetrahedra and hexahedra can be assessed using the ‘hybrid’ quality
method. In fact, the method is exactly the same as it is for linear elements:
evaluate the local quality metric at a point by computing the Jacobian of
the relevant map from the master to the physical element and combine the
local qualities via the formulas for maximum or minimum quality or the
power-mean (1). Although this method often does not bound the worst quality
within the element, a judicious choice of sample points within the element can
provide a lot of useful information. For a quadratic triangle, for example, it
is reasonable to measure the local quality at the three corner vertices and
at the three mid-side nodes. In this manner one can measure local shape,
size, and orientation within an element using, for example, metrics from the
Target-matrix paradigm [10], [11], [12].

In the third example, suppose one wanted to optimize the quality of a
locally-refined mesh containing, as a submesh, the two linear quadrilaterals
2 The notation A = [xξ1 , xξ2 ] signifies that the first column of A is the 1×d vector

xξ1 and that the second column of A is the 1 × d vector xξ2 . Similar notation is
used throughout. Also, det(A) signifies the determinant of A.

3 This poor quality quadrilateral is called an arrow due to the re-entrant corner.
4 Formula (2) can also be written in terms of local metrics. In this example, the

ability to detect negative Jacobians is a matter of choosing the minimum instead
of the linear average.
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on the right in Figure 1 and one quadratic quadrilateral on the left. An
objective function could be based on (1), for example, in which μ is any
desired local quality metric. The points Ξn would include the logical corners
of the three quadrilaterals, along with the logical points corresponding to
the mid-edge nodes in the quadratic ‘quadrilateral’. If the mid-side node is
allowed to be ‘free’ in the optimization, then the quadratic map is required
for the left quadrilateral, while if the mid-side node is constrained to the mid-
point of the straight edge, then only a linear map is needed. Note that in the
hybrid quality method one can have more than one quality measurement per
vertex within the mesh.

Fig. 1. Three non-conformal quadrilateral elements

The hybrid method is clearly more flexible than the element quality
method. It becomes yet more powerful when combined with concepts from
the Target-matrix paradigm which provides numerous referenced local met-
rics. Figure 2 shows the basic idea: let there be maps from the logical element
to the physical element, and from the logical element to a reference element
which gives the desired element configuration. Let the Jacobian matrix of
the first map be denoted by A(Ξ) and the Jacobian matrix of the second
map be W (Ξ). It is reasonable to assume that the reference element is non-
degenerate; in that case, W is non-singular. To compare the two matrices,
form T = AW−1 so that when A = W , T = I. The quality at a point Ξ
within the element is given by a quality metric μ̃(Ξ) = μ[T (Ξ)]. A variety of
useful local quality metrics μ(T ) are studied in [11]. Most of the quality met-
rics are combinations of the fundamental quantities τ = det(T ), |T |, |T tT |,
tr(T ), and |T−1|, so the analysis to follow is focused on these.

W

Logical Element Reference Element

AW

A

Physical Element

-1

Fig. 2. Relation between the Logical, Reference, and Physical Elements
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2 Label-Invariance of Quality Metrics

An important practical issue arises in the measurement of a priori unstruc-
tured mesh quality that has to do with the labeling of the vertices within an
element. Consider the logical (left) and physical (right) triangles in Figure 3.
The vertices in the logical triangle are labeled 0,1,2 in counter-clockwise or-
der, while the vertices in the physical triangle are labeled m, m + 1, m + 2,
again in counter-clockwise order. If m = 0, then physical vertex m corre-
sponds to logical vertex 0, physical vertex m + 1 to logical vertex 1, and so
on. However, if m = 1, then physical vertex m corresponds to logical vertex
1, physical vertex m + 1 to logical vertex 2, and so on. In most unstructured
mesh generation software, the value of m is determined by the order of the
nodes in the list of nodes for the given element. As an example, in the Verdict
mesh quality assessment code [19], one step in calculating the quality of an
element is to obtain the list of vertices that are contained by the element.
No sorting of this list is done and so the first vertex in the list automatically
becomes the image vertex 0, and the second vertex in the list becomes image
vertex 1, etc. The impact of this can be seen in the two examples to follow.

Fig. 3. Vertex Labeling Choices

First, consider the metric A1 in (2). If the indices are cyclically permuted
by 1 the formula becomes

A′
1 =

1
2

det(x2 − x1, x0 − x1) +
1
2

det(x0 − x3, x2 − x3) (4)

One can show that A′
1 = A1, that is, the element area is independent of

the choice of labeling of the vertices. This is an example of what we will
call a label-invariant metric. Not all element metrics enjoy this property. For
example, let

Lh = 1
2 {|x1 − x0| + |x2 − x3|} , Lv = 1

2 {|x3 − x0| + |x2 − x1|}
and define the quadrilateral aspect ratio metric to be AR = Lv/Lh. Then
the cyclically permuted formula is (AR)′ = 1/(AR).

Definition 1. Label-invariance for Element Quality Metrics
An element quality metric is label-invariant if, for an arbitrary physical el-
ement, its value is the same no matter which corner vertex of the physical
element is labeled zero.
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The question arises as to whether or not quality metrics should be label-
invariant. In general, the answer is no because while metrics such as area,
volume, and shape should probably be label-invariant, metrics like aspect
ratio may be more informative if they are not label-invariant.

The labeling issue above was described within the context of the first
approach to the measurement of element quality. It also exists within the
context of the third approach, with a few additional twists, due to the fact
that the mapping from the logical to the physical element depends on the
choice of labeling and the Jacobian matrix thus depends on m. The first twist
in the third approach is that even the local metric at a point may or may
not be label-invariant, so that one can speak of label-invariant local metrics
in addition to label-invariant element metrics. Second, the label-invariance
may depend on the choice of reference element. For example, if an isotropic
reference element is selected, it is more likely that the local metric is label-
invariant. Third, label-invariance of a local metric may depend on the point
within the element at which it is evaluated. This necessitates a modification
of the previous definition for the case of measuring quality within elements.

Definition 2. Label-invariance for Local Quality Metrics
Let μm(Ξ) = μ(Tm(Ξ) ) be a local (target-matrix) quality metric. Let the
reference element be a particular type and have a particular configuration
within that type. Then the local quality metric is label-invariant at Ξ (with
particular reference) if, for an arbitrary physical element (whose type is the
same as the reference element), μm(Ξ) is a constant for all m.

In additional to the above definition, there is another concept of importance
that arises in the third approach to measuring quality. Let {Ξ(0), . . . , Ξ(N)}
be a collection of symmetry points within the master element.5 The symmetry
points are each functions of Ξ. Define a non-local symmetry metric σm(Ξ),
similar to (1), based on an associated local metric μ. For example, in terms
of the power-mean

σm(Ξ) =

(
1
N

N∑
n=0

[ μm(Ξ(n)) ]p
)1/p

(5)

and for the minimum and maximum

σm(Ξ) = min
n

{μm(Ξ(n))} (6)

σm(Ξ) = max
n

{μm(Ξ(n))} (7)

Definition 3. Label-invariance for Symmetry Quality Metrics
Let σm be a symmetry metric derived from the metric μm. Let the reference
element be a particular type and have a particular configuration within that
5 It will become apparent later what is meant by a symmetry point.
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type. Then the symmetry metric is label-invariant at Ξ (with particular ref-
erence) if, for any arbitrary physical element (whose type is the same as the
reference element), σm is a constant for all m.

It is noted that the concept of label-invariance is not the same as the con-
cept of orientation-invariance. As a example, the aspect ratio metric AR is
orientation-invariant because, if the element is rigidly rotated, the value of
the metric does not change; in contrast, the metric is not label-invariant.

The comments and definitions presented in this section should become
clearer in the sections to follow, where the hybrid quality method is studied
on triangles with linear and quadratic maps.

3 Linear Planar Triangles

3.1 The Linear Map

Let Ξ = (ξ, η) and U = {Ξ | ξ ≥ 0 , η ≥ 0 , ξ + η ≤ 1} be a logical triangle.
Let x0, x1 and x2 be the three (ordered) vertices of a physical triangle in
R2. For linear triangles in the xy-plane, the mapping from U to the physical
triangle is

x(Ξ) = x0 + (x1 − x0)ξ + (x2 − x0)η (8)

Then, xξ = x1 −x0 and xη = x2 −x0, so the Jacobian matrix is A = [xξ, xη].
For the linear triangle map, the Jacobian matrix and its determinant, det(A),
are independent of ξ and η and are thus constant over the element (i.e., the
same at every point in U).

3.2 The Reference Element

Let a reference triangle with vertex coordinates w0, w1, and w2 be given. The
Jacobian matrix W of the reference triangle is obtained from the previous
relations by replacing x0 with w0, x1 with w1, and x2 with w2, yielding W =
[w1 − w0, w2 − w0]. The reference element is assumed to be non-degenerate,
i.e., det(W ) �= 0; therefore W−1 exists. Let T = AW−1 be the weighted
Jacobian matrix. Both W and T are constant over the linear triangle.

Let ρ > 0, R be any 2 × 2 rotation matrix, and

V =
(

1 1/2
0
√

3/2

)
(9)

Then if the reference triangle is equilateral, the matrix W representing the
reference Jacobian belongs to the set of 2× 2 matrices M of the form ρ R V .

3.3 Label-Invariance

The map (8) assigns the vertex (0, 0) ∈ U to the image vertex 0 in the physical
triangle. In general, the vertex (0, 0) could have been assigned to any of the
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image vertices 0, 1, or 2 (see Figure 3). To preserve orientation, it is assumed
that if reference vertex (0, 0) is assigned to image vertex m, with m = 0, 1, 2,
then reference vertex (1, 0) is automatically assigned to image vertex m + 1,
and (0, 1) to image vertex m + 2. There are thus three ways one can define a
properly oriented mapping for a linear triangle, depending on which physical
vertex, m is selected to be the image of Ξ = 0. The previous map (8) is
modified to emphasize this dependence. Define the map

x(Ξ, m) = xm + (xm+1 − xm) ξ + (xm+2 − xm) η (10)

where m = 0, 1, or 2.6 Quantities derived from the map, such as the Jacobian
matrices and quality metrics, will also depend on m in general.

Let the Jacobian matrices of the map (10) be Am. From the map it is
clear that Am = [xm+1 − xm, xm+2 − xm]. The three Jacobian matrices are,
in general, not equal to one another, and thus Am is not a label-invariant
quantity. It is straightforward to show that the Jacobian matrices obey the
relation

Am+1 = Am P (11)

where P is the constant matrix

P =
(−1 −1

+1 0

)
(12)

Accordingly, A1 = A0 P and A2 = A1 P = A0 P 2. Because det(P ) = 1,
det(A0) = det(A1) = det(A2). Thus det(Am) is a label-invariant quantity.

For this map, there are three weighted Jacobian matrices Tm = AmW−1,
for which det(T0) = det(T1) = det(T2). Thus the local metric τm = det(Tm)
for the linear planar triangle is label-invariant for any choice of Ξ or W .

Proposition 1. The local quantities |Tm| and |(Tm)t(Tm)| are label-invariant
for arbitrary Ξ if and only if W ∈ M. The quantity tr(Tm) is not label-
invariant for any choice of W .

Proof. Suppose that W ∈ M. Then let W = ρ R V . One can show by direct
calculation that the matrix V Pm V −1 is a rotation. Therefore, W Pm W−1 =
R (V Pm V −1)Rt is also a rotation. Let Qm = W Pm W−1. Then, Tm =
Am W−1 = A0 Pm W−1 = A0 W−1 Qm. Because the Frobenius norm is in-
variant to orthogonal matrices,

|Tm| = |A0W
−1Qm| = |A0W

−1| = |T0|
The steps in this proof are reversible, so if |Tm| is label-invariant, then
W ∈ M. The proof for |(Tm)t(Tm)| is similar. Since the trace is not in-
variant to a rotation, it is not label-invariant. §

6 All vertex subscripts in this section are modulo 3 so, for example, x4 = x1.
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Corollary. Any local metric μm = μ(Tm), which is a function of the quantity
τm only (e.g. μ(T ) = τ2), is label-invariant for any Ξ and W . Any local
metric which is a combination of only τm, |Tm|, and/or |(Tm)t(Tm)| is label-
invariant provided W ∈ M. For example, the local inverse mean ratio metric
μ(T ) = |T |2

2 τ (which when d = 2 is the same as the condition number metric) is
label-invariant when W ∈ M . Invariance is desirable in this case since mean
ratio is intended to measure the local shape within a triangle relative to the
reference shape.7 Any local metric containing tr(Tm) is not label-invariant.
For example, the metric μ(T ) = |T−I|2, which is the same as |T |2−2 tr(T )+2,
is not label-invariant. Lack of invariance is acceptable for this metric since it
is intended to control the orientation within mesh elements [11]. §
These results, of course, apply to the linear map (10) and must be re-examined
when the map is different.

4 Quadratic Planar Triangles

4.1 The Quadratic Map

There are three ways one can define the mapping for a quadratic planar
triangle, depending on which vertex, m (m = 0, 1, 2) is selected to be the
image of Ξ = 0. Write the quadratic map on U as

x(Ξ, m) = c0,m + c1,m ξ + c2,m η

+ c3,m ξ2 + c4,m ξη + c5,m η2 (13)

The tangent vectors of the map are8

xξ(Ξ, m) = c1,m + 2 c3,m ξ + c4,m η (14)
xη(Ξ, m) = c2,m + c4,m ξ + 2 c5,m η (15)

In contrast to the linear map, the tangent vectors for the quadratic map
depend on Ξ, thus the Jacobian matrix Am = Am(Ξ) depends on Ξ. It is
easy to show that the Jacobian matrix Am for the quadratic map is constant
(i.e., independent of Ξ) if and only if the physical triangle has straight sides.

Recall the relations between the logical, reference, and physical elements
shown in Figure (2). When the map from the logical to the physical element
is quadratic, there is no reason why the map from the logical to the reference
element cannot also be quadratic. In that case, W = W (Ξ), i.e, the reference
Jacobian matrix can vary from one position to another. The discussion that
follows does not assume W is constant so that reference elements having
7 Because the Jacobian of the linear triangle map is constant, mean ratio also

measures the shape of the triangle itself.
8 To save space, the formulas for the coefficients in terms of the element nodes is

not given since they are well-known.
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curved sides are allowed.9 Define Tm (Ξ) = Am (Ξ) [ W (Ξ) ]−1 and τm =
det(Tm).

4.2 Symmetry Points for Maps to Triangular Elements

Recall that for both the linear and quadratic triangular elements there is a
map x of the form x(Ξ, m), where m = 0, 1, 2 denotes the vertex of the trian-
gle that serves as the base in the construction the map. Let X(0) be an arbi-
trary point in the physical triangular element. Setting X(0) = x(Ξ(0), m) for
some fixed choice of m, we have Ξ(0) as the pre-image of X(0). For each such
point X(0) in the triangle, there are two additional points X(1) = x(Ξ(1), m)
and X(2) = x(Ξ(2), m) with pre-images Ξ(1) and Ξ(2) which we define by the
relations10

x(Ξ(1), m) = x(Ξ(0), m + 1) (16)
x(Ξ(2), m) = x(Ξ(0), m + 2) (17)

The points X(k) and their pre-images Ξ(k) (k = 0, 1, 2) are points of sym-
metry because point X(k+1) can be obtained either from the map based at
vertex m evaluated at Ξ(k+1) or from the map based at vertex m + 1 eval-
uated at Ξ(k). The symmetry points are defined by the relations above and
hold on any triangle of any shape and includes both linear and quadratic
maps.11

The relations above can be used to find the pre-image points Ξ(k) in terms
of Ξ(0). Solving for Ξ(1) = (ξ(1), η(1)) and Ξ(2) = (ξ(2), η(2)), one obtains

Ξ(1) = (1, 0) + P Ξ(0) (18)
Ξ(2) = (0, 1) + P 2 Ξ(0) (19)

where P is the matrix given in (12). Explicitly, Ξ(0) = (ξ(0), η(0)), Ξ(1) =
(1 − ξ(0) − η(0), ξ(0)), and Ξ(2) = (η(0), 1 − ξ(0) − η(0)). Notably, the logical
symmetry points do not depend on the vertices xm, xm+1, and xm+2 of the
triangle.

4.3 Symmetry Relation for Jacobian of the Quadratic Map

Proposition 2. Let the Jacobian of the quadratic map (13) at the point Ξ
be given by Am(Ξ) = [xξ(Ξ, m), xη(Ξ, m)], with the latter given in (14)-(15).
Then, for k, m = 0, 1, 2, the following relations hold

Am(Ξ(k)) = A0(Ξ(k+m))Pm (20)

with P defined as in (12).
9 Note, however, that W does not depend on m since there is no labeling issue

with the reference element.
10 More generally, one can write x(Ξ(r+s), m) = x(Ξ(s), m + r) with s = 0, 1, 2,

which leads to the same symmetry points.
11 The indices k are cyclic with period 3.
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Proof. The logical symmetry points derived in the previous section can be re-
garded as functions of ξ(0) and η(0). Differentiation of the pre-image formulas
with respect to these variables, one finds(

∂ξ(k)

∂ξ(0)
∂ξ(k)

∂η(0)

∂η(k)

∂ξ(0)
∂η(k)

∂η(0)

)
= P k (21)

From the relations (16)-(17) that define the symmetry points of the map, one
can deduce the general statement

x(Ξ(k), m) = x(Ξ(k−1), m + 1) = x(Ξ(k−2), m + 2)

for k, m = 0, 1, 2. Differentiation of these relationships with respect to ξ(0)

and η(0) and applying (21) yields

Am(Ξ(k))P k = Am+r(Ξ(k−r))P k−r

Simplifying,

Am(Ξ(k)) = Am+r(Ξ(k−r))P−r (22)

Now let r = −m to obtain the result. §

4.4 Label-Invariance

Let αm = det(Am). From Proposition 2, it is immediate that

αm (Ξ(r)) = α0 (Ξ(r+m)) (23)

Tm (Ξ(r))W (Ξ(r)) = T0 (Ξ(r+m))W (Ξ(r+m))Pm (24)

τm (Ξ(r))ω (Ξ(r)) = τ0 (Ξ(r+m))ω (Ξ(r+m)) (25)

for any W . The relation Am+1 (Ξ) = Am (Ξ)P that held for the linear map
does not hold for the quadratic map at arbitrary Ξ. As a consequence, the
local metrics of interest are not label-invariant for arbitrary Ξ as they were
in the linear case.

Proposition 3. Let Ξc =
(

1
3 , 1

3

)
. Then the metrics μ(T ) = τ and μ(T ) =

|T | are label-invariant at Ξc, the first for arbitrary reference element and the
second for an equilateral element.

Proof. When Ξ = Ξc, the three symmetry points are all equal to Ξc. Then
(25) becomes

τm (Ξ(c)) = τ0 (Ξ(c)) (26)
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Therefore, the metric μ(T ) = τ is label-invariant. Similarly, (24) becomes

Tm (Ξ(c))W (Ξ(c)) = T0 (Ξ(c))W (Ξ(c))Pm (27)

Therefore,

|Tm (Ξ(c)) | = |T0 (Ξ(c))W (Ξ(c))Pm [ W (Ξ(c)) ]−1 | (28)

But one can show that when the reference element is equilateral, W (Ξc) ∈
M, so, as was shown in Proposition 1, W Pm W−1 is a rotation. Using the
Frobenius invariance property, we have

|Tm (Ξ(c)) | = |T0 (Ξ(c)) | (29)

and thus the local metric |T | is label-invariant. §
A similar proof can be constructed to show that μ(T ) = |T tT | is also label-
invariant at Ξc, provided the reference element is equilateral.

Corollary. Metrics μ(T ) that involve combinations of τ , |T |, and/or T tT are
label-invariant at Ξ = Ξc, provided W (Ξc) ∈ M. For example, the Mean
Ratio metric.

For the linear triangle map, the local metrics τ , |T |, and |T tT | were label-
invariant for any Ξ because the Jacobian matrices were constant. Therefore,
there was no need to consider symmetry metrics. Since the Jacobians vary
with Ξ in the quadratic case, it is necessary to investigate symmetry metrics.

Proposition 4. If the local metric satisfies μm+r (Ξ(s)) = μm (Ξ(r+s)) for a
particular reference element, then σm in (7) with N = 3 is label-invariant.

Proof

σm+r = max{μm+r(Ξ(0)), μm+r(Ξ(1)), μm+r(Ξ(2)) } (30)
= max{μm(Ξ(r)), μm(Ξ(r+1)), μm(Ξ(r+2)) } (31)

For any choice of r, we have σm+r = σm, and thus this symmetry metric is
label-invariant. §

Corollary. When the local metric is μ(T ) = τ then σm is label-invariant,
provided the reference triangle has straight sides.

Proof. When k − r = s, the relation (22) becomes

A
(s)
m+r = A(r+s)

m P r

from which one obtains

T
(s)
m+r W (s) = T (r+s)

m W (r+s) P r
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and so

τ
(s)
m+r ω(s) = τ (r+s)

m ω(r+s)

When the reference element has straight sides, det(W ) is constant, the previ-
ous becomes τ

(s)
m+r = τ

(r+s)
m and therefore μ

(s)
m+r = μ

(r+s)
m . Thus the assump-

tion of Proposition 4 is satisfied. §
Corollary. When the local metric is μ(T ) = |T | then σm is label-invariant,
provided the reference triangle is equilateral (with straight sides).

Proof. From the previous corollary

Tm+r (Ξ(s)) = Tm (Ξ(r+s))W (r+w) P r [ W (s) ]−1 (32)

When the reference element is equilateral, it has straight sides, and then W
is independent of Ξ. Moreover, W P r W−1 is a rotation. Taking the norm of
both sides of the above relation and using the rotation-invariance property of
the Frobenius norm shows that the assumption of Proposition 4 is satisfied. §
One can similarly show that the symmetry metric σm based on the local
metric μ(T ) = |T tT | is label-invariant provided the reference element is equi-
lateral.

Corollary. When the local metric is μ(T ) = |T |2/2τ then σm is label-
invariant, provided the reference triangle is equilateral.

Proof. The previous corollaries showed τ
(s)
m+r = τ

(r+s)
m and |Tm+r(Ξ(s))| =

|Tm(Ξ(r+s))|. From this, one can readily see that the assumption of Proposi-
tion 4 is satisfied. §
More generally, any local metric that is a combination of τ and |T | can be used
to form a label-invariant symmetry metric provided the reference triangle is
equilateral.

The local metric μ(T ) = tr(T ) is never label-invariant, nor is its associated
symmetry metric label-invariant.

The results of Proposition 4 and its corollaries apply equally well to sym-
metry metrics based on the minimum (6) or the power mean (5) instead of
the maximum (7).

If μm+r (Ξ(s)) = μm (Ξ(r+s)) for a particular choice of reference element,
then for s = 0 we have μm+r (Ξ(0)) = μm (Ξ(r)). Then one can show that,
for example, (7) becomes

σm = max{μ0 (Ξ(0)), μ1 (Ξ(0)), μ2 (Ξ(0))} (33)

This directly shows that the maximum-symmetry metric is label-invariant for
a particular choice of reference element, and that one can evaluate it either by
fixing the map and evaluating the local metrics at the three symmetry points,
or, by varying the map and evaluating the local metric at the first symmetry
point. The same is true for the minimum-symmetry and power-symmetry
metrics.



152 P. Knupp

4.5 The Shape Quality of Quadratic Triangles

As noted previously, [18] is the only reference which proposes quality metrics
for quadratic elements. In theory one might also create an element metric
based on some local metric μ as in the following example:

qε = max
Ξ∈U

{μ(Ξ) }

Unfortunately, the definition is impractical to compute efficiently due to the
infinite number of points at which μ must be evaluated. As a practical al-
ternative, consider using one or more sets of symmetry metrics. For exam-
ple, in the quadratic triangle case let Sv consist of the symmetry points
{Ξ(0), Ξ(1), Ξ(2)} when Ξ = (0, 0), i.e., Sv = { (0, 0), (1, 0), (0, 1) }. Like-
wise, let Sn = { (1

2 , 1
2

)
,
(
0, 1

2

) (
1
2 , 0

) }, obtained when Ξ =
(

1
2 , 1

2

)
. Now

define three symmetry metrics

σv = max
Ξ∈Sv

{μ(Ξ) } (34)

σn = max
Ξ∈Sn

{μ(Ξ) } (35)

σv+n = max
Ξ ∈(Sv∪Sn)

{μ(Ξ) } (36)

In words, the first symmetry metric evaluates the local metric at only the
three corner vertices of the element, the second at only the three mid-side
nodes, and the third on both sets.

To illustrate, the three metrics σv, σn, and σv+n were computed for ten
thousand randomly generated quadratic triangles. The local metric μ was
chosen to be the inverse mean ratio (shape) metric with an equilateral refer-
ence element. Each of these values was compared to the value qε, which was
approximated by evaluating μ on 1250 points uniformly distributed over the
logical triangle. Figure 4 compares the pairs (σv, qε), (σn, qε), and (σv+n, qε)
in three scatter plots whose range on both the x- and y-axes is -1 to 1 (1
being the best quality). Since for any triangle, σv ≤ qε (and likewise for the
other cases), the upper left side of each plot is empty. Sampling at only the
mid-side nodes is the least effective of the three cases. As one can see, for
some triangles even σv+n can be a poor approximation to qε.

On the positive side, it appears from the σv+n plot that the approximation
to qε improves as the quality of the triangle improves. For example, there are
relatively few points found below the σv+n = qε line when the quality is better
than 0.0, whereas there are a lot of points below the line when the quality
is less than 0.0. That means for non-inverted elements, the approximation to
element shape quality is not too bad in most instances. Further investigation
is required in order to determine whether or this observation holds for other
metrics and/or element types, but it is encouraging, at least. In any case, this
third approach to measuring the quality of non-triangular quadratic elements
is the only known approach.
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Fig. 4. Quadratic Planar Tri: σv, σn, σv+n vs. qε. (Left) Three Corner Vertices,
(Middle) Three Mid-side Nodes, (Right) Six Vertices

Finally, we close this section with a proposition that applies to symmetry
metrics for any map and further, makes it clear that the symmetry metric
σv+n discussed in this section is label-invariant.

Proposition 5. Let S(Ξ) = {Ξ(0), Ξ(1), . . . , Ξ(N) } be a set of symmetry
points. Let Ξ1 ∈ U and Ξ2 ∈ U be two values of Ξ, and further let S1 = S(Ξ1)
and S2 = S(Ξ2). Let σm(Ξ) be defined as one of (5)-(7). Suppose both
σm(Ξ1) and σm(Ξ2) are label-invariant. Then σm evaluated on S1 ∪ S2 is
label-invariant.

Proof. The proof is constructed for the case where the symmetry metric is
based on the maximum function. Similar proofs can be given for the other
cases. Then

σm(Ξ1) = max
Ξ(s)∈S1

{μm(Ξ(s)) } (37)

σm(Ξ2) = max
Ξ(s)∈S2

{μm(Ξ(s)) } (38)

are label-invariant. Also define

σm(Ξ1, Ξ2) = max
Ξ(s)∈(S1∪S2)

{μm(Ξ(s)) } (39)

Therefore

σm(Ξ1, Ξ2) = max{ σm(Ξ1), σm(Ξ2) } (40)

and

σm+r (Ξ1, Ξ2) = max{ σm+r (Ξ1), σm+r (Ξ2) }
= max{ σm(Ξ1), σm(Ξ2) }
= σm(Ξ1, Ξ2) (41)

§

5 Summary

Quality measurement within mesh elements can be achieved using local met-
rics such as those given in the Target-matrix paradigm, along with a map
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from the logical to the reference and physical elements. Local area, volume,
shape, and orientation can thus be measured with respect to the same local
quantities within the reference element. This provides a method for assessing
the quality of elements having curved sides, such as those associated with the
quadratic map. The minimum or maximum value of these quantities over all
points in the element can be approximated by taking local measurements on
a small, finite, set of points. For elements whose quality is not too bad (e.g.,
non-inverted), the approximations appear reasonably good, as seen in the
quadratic triangle example. In any case, this ‘hybrid’ quality method is the
only known approach to measuring the quality of non-triangular high-order
elements.

Label-invariance is a desirable property for some quality metrics. Local
metrics can be made label invariant by evaluating them at the center of
the element and using a particular reference element. For shape metrics, the
appropriate reference element for label-invariance was the regular shape cor-
responding to the given element type. For size metrics, the reference element
was arbitrary. Metrics that are sensitive to orientation, such as those involv-
ing the trace, are not label-invariant for any choice of reference element.

Another type of label-invariance can be obtained by defining a symmetry
metric, based on an associated local metric and a set of symmetry points
that differs from one element type to another. As in the local metric case,
the symmetry metrics can be made label invariant provided the reference
element is regular. An advantage of the symmetry metrics is that one does
not have to evaluate the local metric at the center of the element in order
to obtain label-invariance. This is important because, for example, quality at
the corners can often provide a more discerning criterion than quality at the
center.

Similar results for the linear and quadratic tetrahedron, and the linear
planar quadrilateral, are given in [13]. It is expected the similar results would
hold for the quadratic quadrilateral and for the linear and quadratic hexahe-
dral elements. Pyramid and prismatic elements are not naturally isotropic, so
probably local metrics on these cannot be made label-invariant. Non-planar
quadrilaterals and non-planar quadratic triangles have not been investigated
for label-invariance.
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Abstract. Isotropic tetrahedron meshes generated by Delaunay refinement algo-
rithms are known to contain a majority of well-shaped tetrahedra, as well as spu-
rious sliver tetrahedra. As the slivers hamper stability of numerical simulations we
aim at removing them while keeping the triangulation Delaunay for simplicity. The
solution which explicitly perturbs the slivers through random vertex relocation and
Delaunay connectivity update is very effective but slow. In this paper we present a
perturbation algorithm which favors deterministic over random perturbation. The
added value is an improved efficiency and effectiveness. Our experimental study
applies the proposed algorithm to meshes obtained by Delaunay refinement as well
as to carefully optimized meshes.

1 Introduction

Delaunay refinement algorithms [9, 26, 23, 25] have been extensively studied
in the literature. They are amenable to analysis, and hence are reliable algo-
rithms. In addition, the robust implementations of Delaunay triangulations
which are now available greatly facilitate the implementation of Delaunay-
based mesh refinement algorithms. However, most Delaunay refinement al-
gorithms fail at removing all badly-shaped tetrahedra, and a special class
of almost-flat tetrahedra (so-called slivers) may remain in the triangulation.
These slivers, with dihedral angles close to 0 and to π, are problematic for
many numerical simulations.

1.1 Slivers

Many finite element methods require discretizing a domain into a set of tetra-
hedra. These applications require more than just a triangulation of the do-
main for simulation and rendering. The accuracy and the convergence of
these methods depend on the size and shape of the elements apart from the
fact that the mesh should conform to the domain boundary [28]. Both the
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bad quality and the large number of the mesh elements can negatively affect
the execution of a simulation. It is required that all elements of the mesh are
well-shaped as the accuracy of the simulations and computations can be com-
promised by the presence of even a single badly shaped element. In general
it is desirable to bound the smallest dihedral angle in the mesh, from below.
The Delaunay refinement technique guarantees a bound on the radius-edge
ratio of all mesh elements, which is the ratio of the circumradius to the short-
est edge length of a tetrahedron. Although in 2D this translates into a lower
bound on the minimum angle in the mesh, in 3D it does not: a bound on the
radius-edge ratio is not equivalent to a bound on the smallest dihedral angle.

The only bad elements that remain after Delaunay refinement are slivers.
A sliver tetrahedron is formed by almost evenly placing its 4 vertices near the
equator of its circumsphere (see Figure 1), and has a bounded radius-edge
ratio. In such a sliver the smallest dihedral angle can be very close to 0◦, and
a numerical simulation may be far from accurate in the presence of slivers.

1.2 Tetrahedron Quality

Several tetrahedron quality criteria have been defined and used in the liter-
ature depending on the application. The radius edge ratio ρ of a simplex is
defined as the ratio of its circumradius to the length of the shortest edge.
This measure, which is minimal for the regular tetrahedron, unfortunately
cannot detect slivers, though it is used in Delaunay refinement algorithms to
define bad simplices. The radius ratio, defined as the ratio of the inradius
(insphere radius) to the circumradius (circumsphere radius), is another pop-
ular measure of tetrahedron quality. It is desired to ensure that radius ratio
of all tetrahedra are bounded from below by a constant.

Another criterion for mesh generation is the minimum dihedral angle θmin.
It can be shown that a lower bound on the radius ratio is equivalent to
a lower bound on the minimum dihedral angle. In the sequel we choose this
measure to evaluate the mesh quality as it is more intuitive and geometrically
meaningful than, e.g., the radius ratio, which combines the six dihedral angles
of a tetrahedron.

Consider an arbitrary tetrahedron τ with triangular faces T1, T2, T3, T4.
Let the areas of these triangles be denoted by S1, S2, S3, S4 respectively, the
dihedral angle between Ti and Tj by θij and the length of the edge shared
by Ti and Tj by lij . The volume V of τ is given by

V =
2

3lij
SiSjsinθij for i �= j in {1, 2, 3, 4}. (1)

Let rC , rI be the circumradius and inradius of τ and ri be the circumradius of
Ti for i in {1, 2, 3, 4}. We know that for any tetrahedron, ri ≤ rC . This gives
Si ≤ π r2

i ≤ π r2
c , and we also have a bound on the volume V ≥ 4

3 πr3
I .
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Using Equation 1, for i �= j we have

4
3
πr3

I ≤ 2
3lij

SiSjsinθij ≤ 2
3lij

π2r4
csinθij,

and we get

sinθij ≥ 2
π
· r3

I

r3
c

lij
rC

≥ 2
π
· a3

0

ρ0
,

where a0 is the radius-radius ratio and ρ0 is the radius-edge ratio. Finally,

θij ≥ sin−1

(
2
π
· a3

0

ρ0

)
.

Li [21] uses a different parameter of tetrahedron quality to define a sliver.
Denote the volume of tetrahedron pqrs by V and its shortest edge length by
l. The volume per cube of shortest edge length (σ = V

l3 ) is used as a measure
of the shape quality along with the radius-edge ratio ρ, or on its own [7].
According to Li, a tetrahedron pqrs is called sliver if ρ(pqrs) ≤ ρ0 and
σ(pqrs) ≤ σ0, where ρ0 and σ0 are constant.

Fig. 1. Tetrahedron shapes. A sliver (left) has its four vertices close to a circle,
four very small dihedral angles (close to 0◦), and two very large (close to 180◦). A
regular tetrahedron (right) is well shaped and has its dihedral angles close to 70.5◦.
Each of the other tetrahedra (middle) present a different type of degeneracy.

1.3 Previous Work

The problem of removing slivers from a 3D Delaunay mesh has received
some attention over the last decade. Delaunay refinement gets so close to
providing a perfect output that removing the leftover slivers is generally per-
formed as a post-processing step that is worth it. Previous work on removing
and avoiding the creation of slivers can be classified into three parts: The
Delaunay-based methods, the weighted Delaunay-based methods, and the
non-Delaunay methods. For each part, post-processing steps and complete
mesh generation algorithms can be studied. This paper focuses on a post-
processing step, devised to take as input a Delaunay mesh and to improve
its quality in terms of dihedral angles.
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Delaunay-based

Vertex Perturbation

Li [21, 14] proposes to explicitly perturb the vertices incident to a sliver in
an almost-good mesh, by locally relocating them so as to remove the incident
slivers. The idea is based on the fact that, for any triangle qrs, the region of
locations of the vertex p such that the tetrahedron pqrs is a sliver, is very
small. Moving the point p out of this region ensures that the tetrahedron is
not a sliver anymore, or has disappeared once the Delaunay connectivity is
updated. This is achieved by moving the point p to a new location inside a
small ball centered at p, whose radius is proportional to the distance from p
to its the nearest neighbor. The author shows that for certain values of the
involved parameters, there always exists some points in this ball which are
outside all regions that form slivers with nearby triangles. Li uses the union
graph concept to avoid circular dependencies on vertex perturbations. The
following theorem [21] proves the existence of such a point that makes the
mesh locally sliver-free.

Theorem 1 (Sliver theorem). If every simplex in a Delaunay triangulation
has radius-edge ratio of at least ρ0, then there is a constant σ0 > 0 and a very
mild perturbation S′ with σ(τ) ≥ σ0 for each tetrahedron τ in the perturbed
triangulation.

Based on this theorem, Li proposes an algorithm that applies mild random
perturbations to the mesh until one which removes slivers is found. One draw-
back of the above result is the pessimistic theoretical estimate of the bounds
on the involved parameters. These bounds are either too small or too large
to have any significance. In practice, though this technique is very effective,
when targeting a large bound on the minimum dihedral angle (e.g. 15◦), the
average number of trials of random perturbations required is very large. In
our experiments, it is not rare to apply hundreds of random perturbation
trials on a single vertex before succeeding in removing a sliver. This number
is not surprising when seeking a high minimum dihedral angle such as 15◦

since the corresponding tetrahedron is not a real sliver anymore. However the
fact that the perturbation succeeds even for a high minimum dihedral angle
is at the core of our motivation. Finally, the fact that this method always
maintains the mesh as a true Delaunay triangulation makes it both robust
and practical.

Sliver-free mesh generation

Some mesh generation algorithms are designed to avoid creating slivers. For
example, Delaunay refinement can be modified by choosing a new type of
Steiner point which does not create any sliver [22, 23, 24]. As an exam-
ple, Chew’s algorithm [9] inserts Steiner points in a randomized manner, to
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avoid the creation of slivers. This method has a theoretical lower bound of
arcsin 1/4 ≈ 14.5◦ on the angles of the triangular faces of the mesh.

Weighted Delaunay-based

Sliver exudation

First described by Cheng et al. [7], sliver exudation is a technique based on
turning a Delaunay triangulation into a weighted Delaunay triangulation [3],
devised to trigger flips so as to increase the minimal angle. Edelsbrunner and
Guoy [13] provide an experimental study of sliver exudation, and show that
it works pretty well in practice as a post-treatment applied to a triangulation
obtained by Delaunay refinement [25]. The main strategy of the algorithm
consists of assigning a weight to each vertex so that the weighted Delau-
nay triangulation is free of any slivers after connectivity updates, without
any changes over the vertex locations. This method successfully increases all
dihedral angles above 5◦ in the best configuration (see Section 3), but as
admitted in [13], the theoretical bound on the dihedral angle is too small to
be of any practical significance.

Beside being not strictly Delaunay anymore, the main disadvantage of
sliver exudation is that the process often ends with leftover slivers near the
boundary [13]. This is mainly due to the fact that sliver exudation is not
allowed to modify the topology of the boundary of the mesh. Hence, weight
assignments close to the boundary are constrained and do not always manage
to remove the slivers.

Complete algorithm

Cheng and Dey [6] propose a complete Delaunay refinement algorithm, com-
bined with the sliver exudation technique. This type of weighted-Delaunay
algorithm is also used to handle input domains containing sharp creases sub-
tending small angles [8].

Non-Delaunay

Local combinatorial operations

Though a Delaunay-refined triangulation is known to have nice properties
on its angles in 2D [12], there is no theoretical guarantee on the dihedral
angles in 3D. One valid choice consists of leaving the Delaunay framework
by flipping some well-chosen simplices [27, 18], either as a post-processing
step to the meshing process [19], or during the whole process [10]. As long
as the triangulation remains valid, flips can be performed on its edges and
facets. Joe gives a description of all possible flips [17] that can be made in
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a triangulation, and a triangulation improvement algorithm through these
flips. Although each improvement in this algorithm is local, the complete
algorithm succeeds in improving the overall quality of the mesh.

Dealing with non-Delaunay meshes can also be combined with optimiza-
tion steps, such as Laplacian smoothing [15], which relocates each vertex
to a new location computed as an average of the incident vertex positions.
Laplacian smoothing can be applied to any valid triangulation.

Complete algorithm

Some other types of triangulations, such as for example max-min solid angle
triangulations [16] can be computed to improve the solid angles as com-
pared to that in a Delaunay triangulation. This method generates a set of
well-distributed points in the input polyhedral domain and first computes
a Delaunay triangulation of these vertices. Then, local combinatorial trans-
formations are applied to satisfy the local max-min angle criterion. These
local transformations can in fact be applied to any triangulation as a post-
processing step.

Instead of performing local improvements through flips in a Delaunay
mesh, Labelle and Shewchuck [20] propose a fast lattice refinement technique
which constructs a triangulation based on two nested regular or adapted
grids. In its graded version this algorithm provides a theoretical bound on
the dihedral angles which is much more practical than provided by other
algorithms.

1.4 Contribution

We present a sliver removal algorithm inspired by Li’s random perturbation
algorithm [21]. Our algorithm is made more deterministic by choosing a fa-
vored perturbation direction for each vertex incident to one or more slivers,

Fig. 2. Sphere. (Left) Graded mesh with 3195 vertices, output angles are in
[23.5; 142.5]. (Right) Uniform mesh with 7041 vertices, output angles are in
[30.02; 138.03].
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before resorting to Li’s random perturbation if the favored perturbation fails
at removing the incident slivers. Our experiments show that the chosen de-
terministic directions are sufficient to remove more than 80% of the slivers
of a mesh, leading to shorter computational times. In addition, our approach
reaches higher minimum dihedral angles in practice.

2 Algorithm

We describe a sliver perturbation algorithm which improves in a hill-climbing
manner the dihedral angles of an input isotropic Delaunay mesh. This algo-
rithm can be used as a post-processing step after refinement or optimiza-
tion.

To improve the dihedral angles of the mesh tetrahedra, the rationale be-
hind our approach is as follows: each vertex v incident to at least one sliver
is repeatedly relocated through a perturbation vector pv such that when v
moves to v + pv, the incident slivers get flipped. More specifically, the cho-
sen direction for pv is not devised to improve the shape of the slivers, but
rather to worsen them instead, so that they get flipped. Two directions are
favored by the algorithm: the incident squared circumradius gradient ascent
(see Section 2.1) and the sliver volume gradient descent (see Section 2.2).
The length of the perturbation vector is heuristically chosen as a fraction
(usually between 0.05 and 0.2) of the minimum incident edge length. If nei-
ther of these two perturbation vectors succeed in flipping a sliver we resort
to random perturbations (see Section 2.3). If the whole sequence does not
improve the local minimum dihedral angle then we restore the vertex to its
original location before perturbation.

By construction, our combined perturbation algorithm is hill-climbing in
the sense that the dihedral angles in the output mesh must be higher than the
ones in the input mesh. The theoretical proofs of Li’s method [21] concerning
random perturbation apply to this combined perturbation method as we
resort to it in case of failure of the deterministic perturbation.

When more than one sliver is incident to a vertex v, all perturbation vec-
tors must be compatible (i.e., pushing in a similar direction) to be effective.
In our current algorithm, a set of perturbation vectors are said to be compat-
ible if all their pairwise dot products are positive. The perturbation vector
pv is then set to be the average of these vectors. When not compatible,
v is perturbed only using random perturbations. The algorithm relies on a
modifiable priority queue, built in a way such that vertices incident to fewer
slivers are processed first. Hence, any “chain” of slivers (set of slivers sharing
at least one vertex) is treated starting from its endpoints thereby minimizing
the need to process vertices incident to more than one sliver.
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Algorithm 1. Sliver perturbation
Input: T : a Delaunay triangulation,

α: the angle bound defining slivers, and
Nmax: the maximum number of random trials, or gradient steps.

Let P be a priority queue of Delaunay vertices.
Fill P with vertices incident to slivers,
Compute perturbation vector pv for each vertex v in P ,

while P non-empty do
Pop v from P ,
v′ ← v,
while relocating v to v′ would not trigger a combinatorial change,
and #loops < Nmax do

v′ ← v′ + pv,
if pv is random, then

compute a new pv,
v′ ← v.

end if
end while

Conditionally relocate v to v′.

if v is still incident to slivers and pv is not random, then
Compute a new perturbation vector (another type, if possible),
and re-insert v into P .

end if

Insert all vertices affected by relocation into P ,
with their new perturbation vector.

end while

Note that each vertex relocation is conditional, as we want our algorithm
to be hill-climbing in terms of dihedral angles. We need to check that the
minimum dihedral angle of the triangulation does not decrease, and that
the topology of the boundary is not affected. Otherwise, the relocation is
canceled.

Each time a vertex is effectively relocated, the priority queue is updated.
Moving v to v′ in a Delaunay mesh makes combinatorial changes (and, hence,
changes on incident dihedral angles) on the vertices incident to v before its
removal, and the ones incident to v′ after its insertion. We first compute
the perturbations associated with all these vertices, and insert them into the
priority queue.

The order in which the vertices are processed in the priority queue is re-
lated to the vertex type. Interior vertices are processed first, since they are
more likely to be easily perturbable than boundary vertices. The boundary
vertices are constrained to be located on the boundary, and their move must
not break the topology of the mesh. These constraints make them more dif-
ficult to perturb. The other ordering criteria are discussed in Section 3.
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2.1 Circumsphere Radius

In an almost-good isotropic tetrahedron mesh, the distribution of the mesh
vertices is locally uniform. Hence, perturbing the vertex locations so as to
make the radius of the sliver’s circumsphere explode triggers many flips as the
empty circumsphere property must hold after Delaunay connectivity update.

Let τ be the sliver, and {pi}i=0,1,2,3 its vertices. Without loss of generality,
and since the sequel remains true by translation, we can assume that p0 = 0R3 .
We also assume that this vertex is fixed. Let c be τ ’s circumcenter. We have
||c|| = R the radius of τ ’s circumsphere. Then, ∇R2 = ∇||c||2. We aim at
computing ∇R2.

Let pi = (xi, yi, zi) for i in {1, 2, 3} be τ ’s vertices, with p0 = 0R3 . Also,
let p2

i be (x2
i + y2

i + z2
i ). The center c of the circumsphere of τ is given by

c =

⎛⎝xc

yc

zc

⎞⎠ =

⎛⎝Dx

2a
Dy

2a
Dz

2a

⎞⎠, where
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x2 y2 z2

x3 y3 z3
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Thus we have, ∇p1 ||c||2 =
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∇p1Dz =
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Following a gradient ascent scheme, the vertex position pi evolves this way:

pnext
i = pi + ε∇piR

2
τ/||∇piR

2
τ ||, where the step length ε is taken as a fraction

of the minimum incident edge length to pi. A relocation is performed only if
the new minimal dihedral angle in the tetrahedra impacted by the relocation
is not smaller than it was before relocation. As shown by Figure 3, the squared
radius of τ ’s circumsphere increases very fast for a small perturbation of
one of its vertices’ positions. The circumsphere, now huge, most probably
includes other mesh vertices, which triggers a flip to maintain the empty
sphere Delaunay property.

Fig. 3. Circumsphere of a sliver. Before perturbation (left), the sliver is close to
the equatorial plane of its circumsphere. A very mild perturbation of one of the
sliver vertices (right) makes its circumradius increase considerably.

2.2 Volume

One of the main characteristics of a sliver is that its volume is strictly positive
albeit small with respect to its smallest edge length, and possibly arbitrarily
small. This property can be exploited in order to apply a perturbation devised
to generate a sliver with negative volume and hence to trigger a combinatorial
change.

Let {pi}i=1,2,3 be the three fixed points of τ , and p0 the vertex to be
perturbed. The volume of τ is

Vτ =
1
6

∣∣∣∣∣∣∣∣
x0 y0 z0 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣ .
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Then, we get the volume gradient:

∇p0Vτ =
1
6

⎛⎝ y2z3 + y1(z2 − z3) − y3z2 − z1(y2 − y3)
−x2z3 − x1(z2 − z3) + x3z2 + z1(x2 − x3)
x2y3 + x1(y2 − y3) − x3y2 − y1(x2 − x3)

⎞⎠ .

Following a gradient descent scheme, the vertex position pi evolves this
way: pnext

i = pi − ε∇piVτ/||∇piVτ ||, where the step length ε is taken as a
fraction of the minimum incident edge length to pi. A relocation is performed
only if the new minimal dihedral angle of the tetrahedra impacted by the
relocation is not smaller than it was before relocation. A negative tetrahedron
volume triggers a flip to maintain a valid Delaunay triangulation.

2.3 Random Perturbation

When both ∇V and ∇R2 fail at flipping the considered slivers by vertex per-
turbation, we use a random perturbation based on Li’s approach [21]. A per-
turbation satisfying three conditions (flip sliver, improve minimum dihedral
angles, preserve restricted Delaunay triangulation) is searched for randomly
inside a sphere centered at v. In accordance with Li’s algorithm, the mag-
nitude of the perturbation vector is set to fraction of the minimum incident
edge length.

3 Experiments and Results

The algorithm presented has been implemented with the 3D Delaunay trian-
gulation of the Computational Geometry Algorithms Library [1]. Our imple-
mentation of Li’s random perturbation algorithm is based upon Algorithm 1,
with one single perturbation type: the random one, described in Section 2.3.
For each of the following experiments we set 100 trials of random perturba-
tions (in our combined version as well as in the purely random algorithm).

The order in which the vertices are processed in the priority queue has
been chosen empirically as a result of many experiments. Interior vertices are
processed first, with priority over boundary vertices. Boundary vertices are
constrained so as to remain on the domain boundary and their relocation is
invalid if they modify the local restricted triangulation. This makes boundary
vertices more difficult to perturb than interior vertices. The second order
criterion is the number of incident slivers to the processed vertex. The idea
behind this choice is that a chain of slivers (several incident slivers) is more
difficult to perturb than an isolated sliver as the directions of gradients may
not be compatible. However, if the endpoints of the chain are successfully
perturbed, we ideally would not have to deal with vertices incident to more
than one sliver. Thirdly, the vertex incident to a smaller dihedral angle is
processed first, as our first goal is to remove the worst tetrahedra.

In our experiments, the ∇R2 direction turns out to be more effective than
∇V at perturbing a sliver. On average, this perturbation is responsible for
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about 80% of all sliver flips. The ∇V perturbation accounts for about 15%
of the flips while the random perturbation counts for the remaining 5%. The
priority given to ∇R2 over ∇V and random while picking the perturbation
vector can be blamed for distorting these statistics, but we have chosen this
order because it turns out to be the most effective. Giving priority to ∇V
results in an overall slowdown. Random perturbation always remains the last
resort in the combined perturbation algorithm as the deterministic directions
are favored.

The following experiments show what our combined algorithm can achieve
on meshes generated by Delaunay refinement alone and on some meshes which
have been optimized after refinement. A mesh optimization algorithm is in
general devised to improve the mesh quality [2] while simpler algorithms
aim at evenly distributing the vertices in accordance to a given mesh sizing
function. Note that a mesh with well-spaced vertices does not mean an ab-
sence of slivers inside the mesh [29], and hence sliver removal is still required.
The mesh optimization schemes used in our experiments are the centroidal
Voronoi tessellation [11] using the Lloyd iteration, and the Optimal Delaunay
triangulation (ODT for short) [5]. Both of these optimization methods have
been implemented in a way that respects the local density of the mesh. It is
important to not modify the density of a graded mesh, and to not decrease
its quality.

Figures 4 and 5 provide the computation times and the best minimum
dihedral angles obtained in our experiments. The same experiment has been
carried out on many other models (not shown), giving similar results. Fig-
ures 4 and 5 emphasize that, for the same definition of a sliver (in terms
of smallest dihedral angle), the combined algorithm is faster in removing all
slivers by explicit perturbation compared to using Li’s random perturbation
alone. Moreover the combined algorithm reaches higher minimum dihedral
angles.

The algorithm obtains fairly high minimum dihedral angles when the in-
put is a mesh obtained by Delaunay refinement. Figures 4 and 5 illustrate
that when the mesh is optimized prior to perturbation, the time taken for
the algorithm to succeed in removing all slivers is shorter and that it can
reach a higher minimum dihedral angle. As shown by histograms of Figure 4,
the algorithm takes 611 seconds to perturb the mesh obtained after Delau-
nay refinement so that no dihedral angle is below 17◦. If the same mesh is
optimized prior to perturbations, the time taken goes down to 76 seconds
for Lloyd and even further down to 11 seconds for ODT. Overall the same
histograms show that a mesh optimized by ODT is easier to perturb and can
reach a higher minimum angle (25◦) than a mesh optimized by Lloyd (21◦).
However, optimization can be costly. The optimizations performed on Fig-
ure 4 meshes before applying perturbation took about 200 seconds. In spite
of this additional cost, the combined perturbation algorithm remains more
efficient than the random one. The same comments apply to Figure 5. The
gradation of the mesh in Figure 5, along with the numerous high curvature
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Fig. 4. Dinosaur. Comparison of the timings for our perturbation and random
perturbation (in seconds) w.r.t. the sliver angle bound α on the Dinosaur model
meshes obtained by Delaunay refinement (left), followed by Lloyd optimization
(middle) and ODT optimization (right).

regions, make it more difficult to perturb in a way that still preserves the
gradation, even after optimization. Even in this case, ODT reaches a higher
minimum angle.

For comparison we have also performed sliver exudation on meshes gener-
ated by Delaunay refinement and on meshes optimized after refinement. As
expected sliver exudation performs better on the optimized meshes.

We performed two other experiments that were abandoned since they
rarely succeeded in improving the mesh quality. While computing the pertur-
bation of a vertex incident to more than one sliver, we tried combining ∇V
vector of one of the slivers and ∇R2 of the other by using their average as per-
turbation direction if they were compatible. In practice such a combination
was almost never successful removing the slivers. The other aborted exper-
iment consisted of removing from the mesh the vertices that every explicit
perturbation failed to perturb. In practice this never resulted in improving
the minimum dihedral angle.

Moreover, our experiments show that successively applying our combined
algorithm to the mesh several times while progressively increasing the angle
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Fig. 5. Bimba. Comparison of the timings for our perturbation and random per-
turbation (in seconds) w.r.t. the sliver angle bound α on the Bimba model meshes
obtained by Delaunay refinement (left), followed by Lloyd optimization (middle)
and ODT optimization (right).

Table 1. Angles. Minimum dihedral angles obtained by the different perturbation
algorithms (combined perturbation, random perturbation, and sliver exudation).
To achieve these maxima, combined perturbation takes about twice the exudation
time, and random perturbation takes about six times the exudation time.

Mesh input combined random exudation
Dinosaur (DR) 0.65 25.0 24.2 2.62
Dinosaur (DR & Lloyd) 0.24 26.15 23.5 4.47
Dinosaur (DR & ODT) 2.26 28.55 22.0 4.55
Bimba (DR) 0.16 15.51 15.64 1.11
Bimba (DR & Lloyd) 0.11 16.02 15.63 3.84
Bimba (DR & ODT) 0.84 19.8 18.85 4.47

bound that defines a sliver provides higher minimal dihedral angles at the
price of higher computation times. This amounts to giving priority to vertices
incident to the worst slivers, cluster by cluster of minimum dihedral angles.
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Fig. 6. Delaunay meshes perturbed with combined perturbation algorithm after
ODT optimization.

Table 1 summarizes the best angles obtained in this way using com-
bined perturbation, random perturbation and sliver exudation. In this labor-
intensive experiment we only measure how far we can go in terms of dihedral
angles and do not consider timing. Finally, Figure 6 shows some Delau-
nay meshes obtained by Delaunay refinement followed by ODT optimization
and perturbed with the combined algorithm along with their dihedral angle
histograms.

4 Conclusion and Discussion

We have presented a practical vertex perturbation algorithm for improving
the dihedral angles of a 3D isotropic Delaunay triangulation. The key idea
consists of performing a gradient ascent over the sliver circumsphere radius as
well as a gradient descent over the sliver volume. All vertices incident to slivers
are processed, in an order devised to improve effectiveness and computation
times. We compare our approach with pure random perturbation and sliver
exudation.

Our experiments show that we are both faster and able to reach higher
minimum dihedral angles. Our scheme is particularly well suited as a post-
processing step after mesh optimization [30]. We also plan to use it in the
context of mesh generation from multi-material voxel images [4].
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In the cases where all vertices of a sliver are on the domain boundary,
the perturbation can fail in removing a sliver as the boundary vertices are
too constrained. One way to extend our approach would be to also perturb
the vertices of the sliver’s adjacent tetrahedra whose relocation can impact
the sliver. Future work will focus on obtaining a proof of termination of our
combined perturbation algorithm, and some tighter lower bounds on output
dihedral angles.
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Abstract. Whenever a new mesh smoothing algorithm is introduced in the litera-
ture, initial experimental analysis is often performed on relatively simple geometric
domains where the meshes need little or no element size grading. Here, we present a
comparative study of a large number of well-known smoothing algorithms on trian-
gulations of complex geometric domains. Our study reveals the limitations of some
well-known smoothing methods. Specifically, the optimal Delaunay triangulation
smoothing and weighted centroid of circumcenter smoothing methods are shown to
have difficulty achieving smooth grading and adapting to complex domain bound-
ary. We propose modifications and report significant improvements and behavior
change in the performance of these algorithms. More importantly, we propose three
new smoothing strategies and show their effectiveness in computing premium qual-
ity triangulations for complex geometric domains. While the proposed algorithms
give the practitioners additional tools to chose from, our comparative study of over
a dozen algorithms should guide them selecting the best smoothing method for
their particular application.

1 Introduction

Mesh smoothing is an important research problem for scientific simulation
applications where high quality elements are desired for accurate numeri-
cal calculations. While mesh generation [5, 6, 7, 22] focuses on computing a
subdivision (e.g. triangulation) of a given input domain from scratch, mesh
smoothing [1, 2, 4, 8, 9, 10, 15, 19, 18, 21, 23, 26, 29, 28, 27] aims to improve
an existing subdivision (e.g., for instance by relocating its vertices). Effective-
ness of proposed smoothing methods are often shown on meshes of relatively
simple domains, e.g., points distributed inside a square box. When the input
mesh models a complex geometric domain, the existing smoothing strate-
gies may struggle. For instance, Chen [10] proposed a smoothing method
called optimal Delaunay triangulation (ODT) and showed that it is effec-
tive for smoothing meshes of simple geometric domains. Figure 1 illustrates
� This research is partially supported by NSF CAREER Award CCF-0846872.
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(f)

(e)

(d)

(a) Initial (b) ODT (c) Modified ODT

(9.49◦, 145.95◦) (0.59◦, 177.84◦) (12.25◦, 131.53◦)

Fig. 1. Smoothing on complex geometry. (a) Initial Iraq mesh; (b) ODT smoothing
output with regions depicting suppressed (d) and stretched elements ((e) and (f));
(c) Output of our modified ODT smoothing method. Smallest and largest angles
in each mesh are also shown.

the poor performance ODT smoothing when the input geometry is complex.
The smoothed mesh contains very many bad quality triangles (suppressed
or stretched) near the domain boundary. We later present a modification of
ODT smoothing that can handle complex geometric domains (Figure 1 (c)
illustrates the output of this improved version).

In this paper, we compare the performance of a number of smoothing
methods when the input is a complex geometric domain. We propose modifi-
cations for some of these techniques to handle complex geometry. In addition,
we introduce three new smoothing methods, which are shown to be successful
to obtain high quality triangulations on complex domains.

2 Review of Smoothing Algorithms

In this section, we examine a number of smoothing methods, each of which
has been shown to be easy to implement, fast and/or effective. Here, we review
each approach to better understand their similarities, differences, strengths
and drawbacks regarding complex input domains. Note that, in this study we
mainly focus on smoothing methods which are based on geometric concepts.

First, we define a vertex xi to be free if it is allowed to be relocated. The
star of xi is denoted by Ωi which consists of all triangles incident to xi.
Similarly, the link of xi consists of all surrounding edges of triangles in the
star that are not incident to xi.

In general, smoothing algorithms iteratively relocate free vertices of a tri-
angulation until a threshold value is satisfied or a specified number of iter-
ations are completed. This is also incorporated with potential edge flipping
operations to obtain higher quality triangulations. Now, we describe how to
compute a new location for a given vertex based on given algorithms.
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(a) Initial (b) Laplacian (c) Smart Laplacian

(9.96◦, 141.21◦) (10.81◦, 110.15◦) (18.34◦, 114.47◦)

(d) WCC (e) CVT I (f) CVT II

(1.93◦, 174.00◦) (4.48◦, 161.56◦) (12.87◦, 132.38◦)

(g) ODT (h) Angle-based (i) WCT

(0.76◦, 178.11◦) (8.44◦, 117.37◦) (13.10◦, 133.64◦)

Fig. 2. (a) Initial airfoil mesh. (b)-(i) Output of existing smoothing algorithms.
Smallest and largest angles in each mesh are listed.

2.1 Laplacian Smoothing

In Laplacian smoothing [18], a free vertex is simply relocated to the centroid
of the vertices connected to that vertex (see Equation 1). This technique
is widely used due to its simplicity and effectiveness. However, it does not
guarantee quality improvement where inverted elements might be generated.
Therefore, many studies introduced different versions of Laplacian smoothing
or combined with other methods. An overview of those can be found in [9].

x∗ =
1
k

∑
xj∈Ωi,xj 
=xi

xj, (1)

where Ωi is the star of the vertex xi having k points and x∗ is the new
location. Notice that, this formulation can also be interpreted as a torsion
spring system [29], where a central node in a star polygon is located at the
centroid of the polygon balancing out the system to stay in equilibrium (see
also Equation 10).
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2.2 Smart Laplacian Smoothing

One of the variations of the standard Laplacian smoothing algorithm is the
smart Laplacian smoothing [9, 19] which is also called constrained Laplacian
smoothing. The main difference between the original and this variant is relo-
cating points only if there is an improvement in the neighborhood. Briefly, a
vertex is relocated when the new candidate location improves the quality of
the elements in the star. Otherwise, the node remains in its current location.
Note that, the candidate location is the centroid of the surrounding points as
before. Cost of evaluating the quality is also added to overall computation,
however this method is still quite inexpensive and avoids inverted elements.
The quality metric can be chosen based on the application, where we use
minimum angle as our quality criterion.

2.3 Centroidal Voronoi Tessellation (CVT)-Based Smoothing

A Voronoi tessellation is called a centroidal Voronoi tessellation (CVT) when
its generating points are the centroids of the corresponding Voronoi regions
[13]. This special structure has been shown to have applications in many
fields, such as image processing, clustering, cell division, and others. Du et al.
discussed many properties and applications of CVT in [13, 14, 15, 27]. They
also showed that the Lloyd iteration [20] which is a minimizer for the energy
function given in Equation 2, converges to centroidal Voronoi tessellation.

ΨCV T =
N∑

i=1

∫
Vi

ρ(x)‖x − xi‖2
dx, (2)

where Vi is the Voronoi region generated by the vertex xi and ρ is the density
function.

Hence, an immediate algorithm is to apply the Lloyd iteration by itera-
tively computing the Voronoi regions for each point and updating their lo-
cations to the centroid of each region until convergence. In general, the new
location can be defined as follows:

x∗ =

∫
Vi

xρ(x)dx∫
Vi

xdx
(3)

Note that, the Lloyd iteration is not the only technique to determine CVTs.
A discussion on other deterministic and probabilistic methods can be found in
[13]. However, this method is naturally suitable for mesh smoothing, although
the Lloyd iteration converges slow and hard to analyze [12]. Thus, researchers
proposed different smoothing techniques based on centroidal Voronoi tessel-
lation concept [15, 27, 1, 10]. Now, we overview a few which mainly differ in
density function and regions leading to less computation time.

Weighted Centroid of Circumcenters (WCC). In this method, Alliez et
al. [1] proposed to relocate each vertex to a weighted average of correspond-
ing circumcenters, where the weights are based on the physical size of each
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simplex. This is same as computing a weighted centroid of the corresponding
Voronoi region, where density function is represented by the weights. Then,
the new location is represented as follows:

x∗ =
1

|Ωi|
∑

τj∈Ωi

|τj |cj , (4)

where Ωi is the star of the point of interest, cj is the circumcenter of the
simplex τj and |.| denotes area in two-dimensions. The circumcenter can be
defined as the intersection point of the bisectors of a triangle, which is also
the center of the circle that passes through all three vertices of the triangle.

CVT I. In this variant, Chen [10] used the same density function as above,
but instead of circumcenters, he proposed to use the centroid of each simplex.
This allows to compute the surrounding points, i.e., the region, faster. This
smoother can be represented as the following expression:

x∗ =
1

|Ωi|
∑

τj∈Ωi

|τj |xτj , (5)

where xτj denotes the centroid of the simplex τj , which is equal to
∑

xk∈τj
xk

n+1 ,
while n is the dimension.

CVT II. For non-uniform domains, Chen [10] proposed to incorporate the
mesh density function to the calculations. Hence, the smoother can generate
an appropriate grading for modulation regions. So, in general by the addition
of a density function ρ, Equation 5 becomes

x∗ =

∑
τj∈Ωi

|τj |xτj ρτj∑
τj∈Ωi

|τj |ρτj

. (6)

In two-dimensions, when the density function is chosen as ρτj = |τj |−
n
2 ,

the above expression is equal to

x∗ =
2
3

∑
xj

k
+

1
3
xi. (7)

Chen described this as a “lumped Laplacian Smoothing”, which partially
explains the reason behind the effectiveness of the Laplacian smoothing [10].

2.4 Optimal Delaunay Triangulation (ODT)-Based Smoothing

Chen and Xu [11] studied Delaunay triangulations in terms of linear inter-
polation error for a given function. They showed that when f(x) = ‖x‖2,
the Delaunay triangulation can be referred as optimal in terms of minimizing
the interpolation error among all the triangulations for a given number of
vertices. This helped Chen to design a new mesh smoothing strategy based
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on the optimal Delaunay triangulation (ODT) concept [10], which aims to
equally distribute the edge lengths based on the function to be approximated.
Basically, the energy function from the interpolation error is exactly solvable,
which results in the new location for each query point (see Equation 8).

ΨODT =
1

1 + n

N∑
i=1

∫
Ωi

‖x − xi‖2
dx, (8)

where Ωi is the star of the point of interest xi, while n represents the di-
mension. For a regular-shaped uniform mesh generation, the function to be
interpolated can be chosen as f(x) = ‖x‖2. Then, the new location can be
computed as in Equation 9. Note that, convergence rate is slower while the
time for each relocation calculation is increased compared to the others.

x∗ = − 1
2|Ωi|

∑
τj∈Ωi

(∇|τj(x)|
∑

xk∈τj,xk 
=xi

‖x‖2). (9)

2.5 Angle-Based Smoothing (AB)

Zhou and Shimada [29] proposed a smoothing method which aims to improve
the geometric quality of a mesh in a computationally easy way. Their method
has been shown to provide better results than Laplacian smoothing in quality
and to avoid creating inverted elements. They formulated local neighborhood
of a vertex as a torsion spring system similar to Laplacian smoothing. (See
Equations 10 and 11.)

ΨLAPLACIAN =
k∑

j=1

1
2
K‖vj‖2, (10)

ΨANGLE =
2k∑

j=1

1
2
Kθj

2, (11)

where k is number of nodes in the star of the vertex xi, K is the spring
constant, vj is the vector from xi to every surrounding node and θj is the
angle formed by each side of the polygon and the central point xi.

However, their spring system is based on angles instead of distances. The
system has its minimum potential energy when the new location for the
central node yields to an optimum angle distribution on the angles formed
by the each side of the star. In order to find the optimum location, following
two approaches have been introduced.

Original Version. Zhou and Shimada [29] introduced a heuristic method
which gives an approximate position for the optimum location. A four-step
procedure, summarized below, is followed to find the new location for each
free vertex. Note that, this method is more expensive than Laplacian smooth-
ing, but easier and faster than optimization techniques.
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Given a vertex xi and its corresponding neighborhood (star) and link, the
vertices of the link is denoted by yj , j = {1, 2, ..., k} in counterclockwise
order.

1. Compute the side angles αj1 = ∠xiyjyj+1 and αj2 = ∠yj−1yjxi.
2. Compute the difference between each adjacent angles: βj = (αj2 −αj1)/2.
3. Compute the new location xj

i for the central node xi by a vector rotation
based on βj , yj and xi, while keeping the size of the vector from yj

to xi.
4. Compute the average of the new location suggestions for the final loca-

tion: x∗ = 1
k

∑k
j=1 xj

i

Optimization Version. Xu and Newman [28] approached to the same idea
of angle-based smoothing from an optimization point of view. They sacrificed
computation time to have better quality results. Instead of heuristically cal-
culating an approximate new location, they used optimization techniques to
find a close optimum. The same torsion spring system is formulated as an
optimization problem and the Gauss-Newton approximation has been used
to solve the least-squares formulation of the following objective function:

s =
k∑

j=1

[distance(x∗, lj)], (12)

where x∗ is the optimized location of the query point xi, and lj is the angle
bisector line for each side angle of the star Ωi. This method has been shown
to produce slightly better quality meshes than original angle-based method
and also shown to converge faster. However, overall computation can take
more than the heuristic version, although the number of iterations is less.
Therefore, we will use the original version of this method in our experiments
due to its simplicity, efficiency and availability.

2.6 Well-Centered Triangulation (WCT) Smoothing

Another iterative method has been proposed by Vanderzee et al. in [26],
mainly focusing on providing well-centered triangulations (WCT), i.e., acute
triangulations in the plane. They introduced a global energy function, which
aims to minimize the maximum angle of a mesh M . They also claim that
their energy function penalizes small angles as well.

ΨWCT =
∑
θ∈M

|cos(θ) − 1/2|p, (13)

where p is a finite number (it is sufficient to set p ∈ {4, 6, 8}) and θ represents
each angle in the triangulation M . This algorithm is computationally more
expensive, however considering this approach concentrates on maximum an-
gle, it would be interesting to observe its behavior among others. We should
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also note that, this algorithm preserves the topological connections unlike the
above mentioned methods where they incorporate edge flip operations into
smoothing.

3 New Smoothing Algorithms

We first give modifications to two of the methods described in the previous
section, so that they handle complex geometric input domains. Then, we
propose three new smoothing algorithms in Sections 3.2, 3.3 and 3.4.

3.1 Modifying Existing Algorithms for Complex Geometry

As we mentioned, when the input domain has a complex geometry, most of
the known smoothing methods struggle and generate bad quality elements
(see Figure 1 and 2). In particular, although the output triangulation overall
contains good quality elements, the elements which are close to the boundary,
are problematic. We observed this boundary problem especially in ODT and
WCC methods. Here, we propose simple modifications for each algorithm to
handle boundary issues to an extend.

ODT with boundary fix via incenters. ODT smoothing approach [10]
tends to create bad quality elements close to input features (see Figures 1,
2 (g) and 3). The original ODT algorithm relocates a vertex xi, by exactly
solving an optimization problem within the star of xi and trying to achieve
uniformity in the edge lengths of the triangles. Since we consider the boundary
vertices as input features representing the complex domain and chosen not
to be relocated, this approach causes some triangles near the boundary to be
stretched or suppressed (see Figure 3). As a modification, we now perform
the same relocation strategy within the star-shaped polygon formed by the
incenters of the triangles in the star of xi. This way, we aim to make the
distances of the relocated vertex to the star vertices proportional to the length
of the corresponding edges on the star. Experiments indicate that this idea
works fairly well in producing graded and quality triangulations. Therefore,
we suggest to use a patch formed by the incenters of the connected elements
instead of elements themselves (see Figures 1, 3, 5 and 7).

WCC with boundary push. WCC smoothing approach [1] has the similar
boundary issues (see Figure 2 (g)). This is partly because the algorithm tries
to iteratively reach a regular-shaped centroidal Voronoi tessellation, where in
case of complex geometric domains it fails to consider the input features. In
order to alleviate this problem, while calculating the new location, we propose
to use incenters of the triangles whose circumcenters are located outside the
boundary. Note that, by definition an incenter is always located inside of the
triangle. This idea reasonably eliminates suppressed elements and increase
the quality, however stretched elements can remain near the boundary (see
Figures 5 and 7). Therefore, we explore other smoothing ideas as we propose
next.
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(e)

(f)

(d)

(a) (2.96◦, 169.33◦) (b) (1.30◦, 176.87◦) (c) (12.98◦, 143.10◦)

(d) (e) (f)

Fig. 3. (a) Initial Syria mesh and histogram of angles. (b) Output and histogram
of angles after 50 iterations of ODT applied on (a). (c) Output and histogram of
angles after applying 10 iterations of modified ODT on (a). ODT output is zoomed
in for stretched ((d) and (f)) and suppressed (e) elements.

(a) (2.50◦, 166.03◦) (b) (16.25◦, 130.92◦) (c) (16.50◦, 131.04◦)

Fig. 4. (a) Initial crab mesh and histogram of angles. (b) Output and histogram of
angles after 10 iterations of CO smoothing applied on (a). (c) Output and histogram
of angles after applying 10 iterations of WCI on (a).
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3.2 Centroid of Off-Centers (CO)

Off-centers [25] have been introduced to improve Delaunay refinement algo-
rithms as another type of Steiner point alternative to circumcenters. Given a
triangle with the shortest edge pq, the off-center is a point o on the bisector
of pq, which is furthest from p (or q) such that the angle ∠poq is α.

Here, we introduce a new method to benefit from off-centers for smoothing.
Given a point to be relocated, similar to WCC method, with an additional
quality constraint, we compute the off-center of each simplex connected to
that point. Then, we calculate the centroid of this region formed by the com-
puted centers and relocate our point to that location. In our experiments,
we chose a reasonably large α value for computing the off-centers and ob-
tained good results (see Figures 4, 5 and 7). Note that, here the uniformity
constraint is lifted, however a weighted version of this method (WCO) is also
explored and observed to have a similar behavior to WCC. WCO is also prone
to boundary problems, but off-centers help to reduce.

3.3 Distance Weighted Centroid of Incenters (WCI)

The incenter of a triangle is the intersection point of the angle bisectors,
which is the center of the largest circle that fits inside the triangle. Hence,
the location of the incenter of a triangle is determined by the angles and
edge lengths of that element, while remaining always inside of the element.
Here, we relocate free vertices to the centroid of the incenters of the elements
in their stars. A weighted version of this idea have been introduced as part
of an hybrid smoothing approach for mixed meshes which classifies elements
based on their local neighborhoods and apply different smoothing algorithms
accordingly [21]. Hence, WCI is used only for specific types of elements. How-
ever, it has not been explored as a sole triangular mesh smoother. As in some
other smoothing methods (see Section 2) a central node and its star is for-
mulated as a torsion spring model, where relocation point is computed based
on energy minimization.

ΨINCENTER =
k∑

j=1

1
2
K‖zj‖2

, (14)

where zj denotes the vector from the central node xi to the incenter of each
connected triangle. Then, the new location is calculated as follows:

x∗ =
∑

τj∈Ωi

wτjpτj , (15)

where pτj is the incenter of the simplex τj and weight wτj = ‖zj‖∑
k
t=1‖zj‖ . Note

that, here the weight function is different than the previously mentioned
methods. Our experiments show that this smoothing method achieves good
quality bounds while generating proper grading (see Figure 4, 5 and 7).
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3.4 Sliced-Petal Smoothing

Among many mesh quality criteria [24], minimum angle quality is widely
popular due to its direct influence on applications [3, 24]. Here, we designed
a new smoothing method to obtain large minimum angles for given triangula-
tions. In our method, we guarantee to preserve and improve (if possible) the
initial minimum angle while smoothing the mesh elements. As can be seen
from Figure 2, this is not always true for other smoothing methods. They
potentially reduce the minimum angle, in particular, for complex geometric
domains.

Our method relies on the geometric concepts that have been introduced
in [17, 16], where a similar relocation strategy has been used as part of the
Delaunay refinement process.

Consider a bad quality triangle pqr (where its minimum angle does not
satisfy the angle constraint α) in a triangulation with its shortest edge pq.
Let α-petal(pq) be the disk bounded by the circle that goes through p, q and
a third point y such that y and r are on the same side of pq and ∠pyq = α
[17, 16]. Then, α-slice(pq) is defined as the intersection of the α-petal(pq) and
the region between the two lines one going through p, the other q where both
making an angle α to line segment pq. Note that, the α-slice is the feasible
region, where r needs to be relocated in order to make all the angles of pqr
greater than or equal to α. Here, due to space restriction we omit descriptive
figures, however the reader can refer to the figures in [17, 16].

Given a vertex to be relocated xi and its star, in order to have minimum
angles of all elements inside the star to be at least α, the intersection of
the α-slices of the edges on the link must be non-empty. Based on this ob-
servation, first we search for approximately the best possible α value. We
start our search with an initial α value which is determined according to the
current minimum angle of the star. After the search operation, we construct
the feasible relocation region. In order to find the best location inside this
region for xi which strictly improves the local quality, we check sufficiently
large number of sample points. If such a location could not be found, simply
the point location is kept the same. Thus, every local relocation definitely
improves the overall quality of the mesh.

Compared to the other smoothing methods, our results indicate a consid-
erable amount of improvement in quality (see Figures 5, 6, 7 and 8). Clearly,
this method requires more computation time than many of the algorithms
mentioned, however it successfully handles complex geometric domains with
proper grading and has high convergence rate. Although our method obtains
small maximum angle values, our ultimate goal is to incorporate the maxi-
mum angle constraint (γ) to our relocation strategy as in [16].

4 Results and Discussions

Results of our experiments have been given throughout the paper, however
in this section we compare all smoothing algorithms that are reviewed and
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introduced. We generated several experimental set-ups which include various
input domains in different complexities. We discuss the results mostly based
on the distribution of angles and edge lengths, uniformity, minimum and
maximum angle and time.

4.1 Implementation and Data Sets

The algorithms discussed in this paper are all implemented in the same plat-
form and using the C programming language. The examples and data sets
presented in this limited space are only a small but representative subset of
our extensive experimental study. The output triangulations (Figures 5 and
7) are accompanied by the histogram of angles in each case (Figures 6 and
8) and the time performance is summarized in Table 2.

4.2 Experiments

Our experimental study is conducted on a large number of data sets including
the representative China and Hawaii maps, which have 1158 and 3216 points
and 1876 and 5024 triangles, respectively.

In Table 1, we give an overall qualitative comparison of smoothing methods
experimented in this study. These classifications have been obtained based
on the results of our qualitative visual experiments. In particular, ease of
implementation and speed incorporate our experimental observations and the
main idea of each approach, where the speed levels are determined according
to have almost an order of magnitude difference. Minimum and maximum

Table 1. A qualitative comparison of the known and the proposed smoothing
methods, where we label the performance of each method on a scale of 3, as 1.
Poor, 2. Medium, or 3. Good.

Smoothing Ease of Quality Quality
Method Implementation Speed α γ Grading

Laplacian [18] Good Good Medium Medium Good
Smart Lap. [9, 19] Good Good Medium Good Good
WCC [1] Medium Good Poor Poor Medium
CVT I [10] Good Good Medium Medium Good
CVT II [10] Good Good Medium Medium Good
ODT [10] Medium Medium Poor Poor Poor
AB [29] Medium Good Medium Good Medium
WCT [26] Poor Poor Poor Medium Good
M. ODT Medium Good Medium Medium Good
M. WCC Medium Good Medium Medium Medium
WCO Medium Good Medium Medium Medium
CO Medium Good Medium Medium Good
WCI [21] Medium Good Medium Medium Good
Sliced-petal Medium Medium Good Good Good
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Table 2. Time comparison between the known and the proposed methods.

China Hawaii
Smoothing Quality Total Quality Total
Method (α, γ) Time (msec) (α, γ) Time (msec)

Initial (8.82◦,161.47◦) N/A (5.80◦,164.76◦) N/A
Laplacian [18] (22.02◦,117.83◦) 377 (6.88◦,151.59◦) 1447
Smart Lap. [9, 19] (23.60◦,121.84◦) 420 (13.92◦,148.32◦) 1988
WCC [1] (10.54◦,138.30◦) 382 (0.14◦,179.72◦) 1866
CVT I [10] (12.88◦,138.30◦) 449 (0.70◦,166.35◦) 1872
CVT II [10] (21.13◦,115.58◦) 415 (8.27◦,145.28◦) 1849
ODT [10] (0.72◦,177.96◦) 2073 (0.01◦,179.97◦) 18669
AB [29] (18.54◦,114.92◦) 407 (5.44◦,154.95◦) 2053
WCT [26] (15.24◦,118.58◦) 8129 (1.96◦,168.18◦) 21534
M. ODT (17.15◦,117.00◦) 415 (2.12◦,161.30◦) 1984
M. WCC (10.54◦,138.30◦) 996 (0.58◦,168.71◦) 13112
WCO (10.14◦,144.60◦) 483 (0.40◦,171.51◦) 2225
CO (22.02◦,117.83◦) 443 (6.88◦,151.59◦) 1938
WCI [21] (21.88◦,118.09◦) 421 (7.50◦,148.32◦) 1839
Sliced-petal (30.48◦,113.42◦) 1550 (18.98◦,133.73◦) 5347

angle (α and γ respectively) quality is categorized based on the consistency of
the methods. Average performance has been chosen as medium level while the
others indicate notably better or worse performance. Grading values reflect
the overall appearence of the output triangulations, where three different
classes naturally emerge.

We observed that the complexity of geometric domains plays a significant
role in the performance of the smoothing methods. For complex geometric
domains, methods incorporating input features into their relocation strategy
perform well. On the other hand, algorithms that aim to converge to lattice
structures have trouble computing graded meshes. Our proposed sliced-petal
method is shown to be performing considerably better than others in quality,
while smart Laplacian method obtains good results as well. However, its
behavior is not as stable as our sliced-petal method.

Quality. Figures 5 and 7 together with the histograms in Figures 6 and 8
show the performance of smoothing algorithms on complex geometric domains.
Here, Laplacian and smart Laplacian methods are shown to be performing well
on complex geometric domains, however ODT and WCC methods have clear
boundary problems. Our modified versions alleviate the problem considerably
for ODT and reduce it for WCC. The CO and WCI methods behave simi-
lar to the angle-based smoothing method, whereas our sliced-petal smoothing
method outperforms them all. Both the smallest and the largest angle values
observed in the output of the sliced-petal smoothing method is significantly
better than those of the other methods. Histograms also support our observa-
tions by showing the angle quality of each element.
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(a) Initial (b) Laplacian (c) Smart Laplacian

(d) WCC (e) CVT I (f) CVT II

(g) ODT (h) Angle-based (i) WCT

(k) Modified ODT (l) Modified WCC (m) WCO

(n) CO (o) WCI (p) Sliced-petal

Fig. 5. (a) Initial China mesh. (b)-(j) Output of the existing smoothing methods.
(k)-(p) Output of the proposed smoothing methods.

Time. In Table 2, we report the total execution time for each smoothing
method. As can be seen, WCT and ODT take significantly more time than
the others. In case of WCT, computing the energy function is costly, whereas
for ODT convergence takes time. Mainly, due to the current implementation
of the feasible region calculation, our sliced-petal method is slower than the
remaining. As we expected, the Laplacian smoothing is the fastest, whereas
others perform similar to each other.
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(a) (8.82◦, 161.47◦) (b) (22.00◦, 117.83◦) (c) (23.60◦, 121.84◦)

(d) (10.54◦, 138.30◦) (e) (12.88◦, 138.30◦) (f) (21.13◦, 115.58◦)

(g) (0.72◦, 177.96◦) (h) (18.54◦, 114.92◦) (j) (15.24◦, 118.58◦)

(k) (17.15◦, 117.00◦) (l) (10.54◦, 138.30◦) (m) (10.14◦, 144.60◦)

(n) (22.02◦, 117.83◦) (o) (21.88◦, 118.09◦) (p) (30.48◦, 113.42◦)

Fig. 6. (a) Initial China mesh histogram. (b)-(j) Output histograms of the ex-
isting smoothing methods. (k)-(p) Output histograms of the proposed smoothing
methods.

Grading. Experiments show that smoothing on complex geometric domains
mostly requires proper grading in order to achieve high quality triangulations.
As we pointed out, smoothing methods designed to reach regular meshes
fails to conform to the boundary (see Figures 5 and 7). While others achieve
proper grading as well, our sliced-petal method converges to significantly
higher quality meshes than the existing methods.
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(a) Initial (b) Laplacian (c) Smart Laplacian

(d) WCC (e) CVT I (f) CVT II

(g) ODT (h) Angle-based (i) WCT

(k) Modified ODT (l) Modified WCC (m) WCO

(n) CO (o) WCI (p) Sliced-petal

Fig. 7. (a) Initial Hawaii mesh. (b)-(j) Output of the existing smoothing methods.
(k)-(p) Output of the proposed smoothing methods.

4.3 Future Work

Combining smoothing methods to benefit from their properties remains as
future work. A thorough convergence study on these algorithms and a similar
study on quadrilateral/three-dimensional meshes would be helpful for future
studies. Our sliced-petal smoothing performance can easily be improved by
careful implementation and search strategies. We believe this study will be
useful for applications involving complex geometric domains, especially in
choosing the appropriate smoothing method.
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(a) (5.80◦, 164.76◦) (b) (6.88◦, 151.59◦) (c) (13.92◦, 148.32◦)

(d) (0.14◦, 179.72◦) (e) (0.70◦, 166.35◦) (f) (8.27◦, 145.28◦)

(g) (0.01◦, 179.97◦) (h) (5.44◦, 154.95◦) (j) (1.96◦, 168.18◦)

(k) (2.12◦, 161.30◦) (l) (0.58◦,168.71◦) (m) (0.40◦, 171.51◦)

(n) (6.88◦, 151.59◦) (o) (7.50◦, 148.32◦) (p) (18.98◦, 133.73◦)

Fig. 8. (a) Initial Hawaii mesh histogram. (b)-(j) Output histogram of the existing
smoothing methods. (k)-(p) Output histogram of the proposed smoothing methods.
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Abstract. In this paper, we present a surface-fitting based smoothing algorithm for discrete, 
general-purpose mesh models. The surface patch around a mesh vertex is defined in a local 
coordinate system and fitted with a quadratic polynomial function. An initial mesh smooth-
ing is achieved by projecting each vertex onto the fitted surface. At each vertex of the initial 
mesh, the curvature is estimated and used to label the vertex as one of four types. The cur-
vature-based vertex labeling, together with the curvature variation within a local region of a 
vertex, is utilized to adaptively smooth the mesh with fine features well preserved. Finally, 
three post-processing methods are adopted for mesh quality improvement. A number of 
realworld mesh models are tested to demonstrate the effectiveness and robustness of our 
approach. 

Keywords: Surface mesh smoothing, Quadric surface fitting, Curvature labeling, Mesh 
quality improvement. 

1   Introduction 

The surface reconstruction and visualization from 3D imaging data have found 
wide applications in biomedical fields, such as computer-aided diagnosis, 
intervention planning, and realistic pathological analysis and prediction. The 
models used for such purposes are typically represented by surface meshes in 
triangular or quadrilateral forms. Going from imaging data to surface meshes 
involves a number of computational approaches. Two of the critical steps are 
image segmentation and surface mesh generation and processing. In digital 
images, image segmentation normally produces a vast number of discrete voxels 
(small cubes) that approximate the boundary of an object of interest. These voxels 
can certainly be converted into surface manifolds represented by quadrilateral 
meshes by extracting the faces of the cubes that face towards either outside or 
inside of the boundaries. But the resulting meshes suffer from an extremely 
bumpiness on the surface, as shown in the examples in Fig. 1. One of the goals in 
the present paper is hence to smooth a given mesh to reduce the bumpiness on the 
surface.  

                                                           
* Corresponding author. 
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(a)                                                               (b) 

Fig. 1. Examples of surface meshes generated from image segmentation. The meshes ap-
pear very bumpy without further mesh processing. 

Surface mesh smoothing has been studied for decades. Laplace iterative 
smoothing is one of the most common and simplest techniques for mesh 
smoothing [1-5]. During each iteration, each vertex of a mesh is adjusted to the 
barycenter of its neighboring region. It is very fast but often results in volume 
shrinkage. Taubin [2] used a signal processing method, the Laplacian operator, to 
fair surface design and reduce the shrinkage. Desbrun et al. [3] extended Taubin’s 
work to smooth irregular meshes by using geometric flows. Their approach 
provides a better way to prevent the volume shrinkage. Peng [6] presented a 
denoising approach for geometric data represented as a semiregular mesh on the 
basis of locally adaptive Wiener filtering. 

Other popular smoothing approaches include the energy minimization 
techniques. Kobblet [7, 8] proposed a general algorithm to fair a triangular mesh 
with arbitrary topology in R3 by estimating the curvature for the discrete mesh 
model. Welch and Witkin [9] described an approach to designing fair, freeform 
shape by using triangulated surfaces. These methods are time-consuming due to 
the complicated energy functions that need to be solved. 

Recently, feature-preserving smoothing methods [10-21] have drawn more and 
more attentions. Jones et al. [19] developed a feature-preserving smoothing 
algorithm by adopting statistics and local first-order predictors of triangulated 
surface meshes. Bajaj et al. [20] proposed a PDE-based anisotropic diffusion 
approach for processing noisy geometric surfaces and functions defined on 
surfaces. Li et al. [21] adopted the weighted bi-quadratic Bezier surface fitting and 
uniform principal curvature techniques to smooth surface meshes.  

In the present paper, we describe a novel approach, combining the surface 
fitting, curvature estimation, and vertex labeling, to smooth meshes. Beside the 
surface smoothness that we shall demonstrate below, Antoher main goal in this 
paper is to preserve or improve the mesh quality so that the processed meshes 
have no sharp angles. The mesh quality is extremely critical in some applications 
such as the numerical simulation using finite or boundary element methods. 
However, not all meshes that appear smooth have high quality in terms of angles. 
For example, the marching cube algorithm can be used to generate a very smooth 
surface triangulation of a volumetric function but the resulting mesh usually 
suffers from too many sharp or skinny angles, which often cause poor accuracy in 
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numerical simulation. To this end, improving mesh quality, sometimes also 
referred to as mesh smoothing, is taken into serious consideration in our 
algorithms presented here. 

While triangular surface meshes are perhaps the most common form in 
representing a 3D model and a majority of previous work has been focused on this 
type of meshes, we will consider in this paper quadrilateral meshes, especially 
those extracted from 3D imaging data and represented by cube-like bumpy 
meshes. The resulting meshes will be smoothed quadrilateral meshes with 
improved quality, which can be readily converted into triangular meshes if 
needed. In addition, the data structures we used can be easily modified to read 
triangular meshes as inputs. In other words, the approach we propose here will 
provide a general-purpose tool for mesh processing in a variety of applications. 

2   Surface Mesh Smoothing Algorithm 

Our algorithm includes four steps. At first, the geometric and topological 
relationship is constructed from the input surface mesh model. For each vertex, we 
construct a local coordinate system and then fit the neighboring vertices in the 
local coordinate system with an analytical quadric surface function. The vertex 
being considered is projected onto this quadric surface. The initial mesh 
smoothing is achieved by updating each vertex with its projection. Then, the 
curvature of each vertex is estimated based on the first and second fundamental 
forms of its quadric surface obtained and then the vertex is labeled with the 
corresponding type. Additionally, for each vertex, the size of its neighborhood is 
dynamically determined according to the curvature and vertex type so that the 
mesh is adaptively smoothed by similar approaches as in the first step. Finally, the 
mesh is further improved with a few post-processing algorithms. 

2.1   Initial Mesh Smoothing 

The local surface patch around a point can be approximated with a quadric surface 
[22]: S(u, v)=(u, v, h(u, v)), a parametric representation in a local coordinate sys-
tem as shown in Fig 2, where p is the origin; h-axis directs along the normal vec-
tor n of p on S; and u-, v- axes are orthogonal vectors in the tangent plane of p on 
S. Obviously, the local coordinate system (p-uvh) can be transformed from the 
global coordinate system (o-xyz). According to the surface theory [23], the local 
shape of surface around p can be represented with Darboux system D(p) = (p, T1, 
T2, n, k1, k2), where (T1, T2), (k1, k2) are principal directions and curvatures, respec-
tively.  

We extend this principle to discrete mesh models and construct the local 
coordinated system for each vertex on the meshes. Since the construction of a 
local system mainly relies on the h-axis, i.e., the normal vector of the vertex, we 
first estimate the normal vector for each vertex with the area-weighted averaging 
method.  
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Fig. 2. An illustration of the local coordinate system on a surface 

Let NV_i(k) be the set of neighboring vertices of vertex vi within the k-ring 
(that is, the minimum number of edges from vi to the neighboring vertices is equal 
to or less than k), E_i = {<vi, vj>|vj∈NV_i (1)} the set of edges incident to vi, and 
F_i the set of faces incident to vi. Then the normal vector ni of vi is calculated as: 

( )
1

1
, _ .

j j

N

i f f j
j

n area n f F i
N =

= ⋅ ∈∑                                 (1) 

where areaf, nf are respectively the area and normal vector of face f in F_i. After 
the normal vector ni is calculated, we consider vi, ni as the origin and z-axis of the 
local coordinate system respectively. Then the x- and y- axes of the local 
coordinate system are arbitrarily chosen in the plane locating at vi that is 
orthogonal to the normal ni.  

 

Fig. 3. The 2-ring neighboring vertices at a vertex. The minimal number of edges from 
these vertices to the center vertex is equal to or less than 2. 

After constructing the local coordinate system, we find all the neighboring 
vertices for each vertex with a ring-by-ring scheme, referred to as the k-ring 
neighborhood. At the initial mesh smoothing phase, k is fixed as 2 in our algo-
rithm. Fig. 3 shows the 2-ring neighboring vertices of vi, in which the red and blue 
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vertices are the first and second ring neighboring vertices respectively, and all 
these vertices constitute the 2-ring neighbors of vi. 

For each vertex, the global coordinates of all the neighboring vertices are 
transformed to the local coordinates by homogeneous transformation and then the 
local coordinates are used to fit an analytical quadric surface:  

h(u, v) = au2 + buv + cv2 +eu + fv + g                                 (2) 

In our algorithm, the least square fitting method is adopted. Let V_i = {<xj, yj, 
zj>| j = 1, 2, ... m} be the local coordinates of 2-ring neighboring vertices of vertex 
vi. The objective function of the least square quadric surface fitting can be 
expressed as: 
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where wj is the weighting function defined below. It is observed that the closer the 
neighboring vertex to vi, the more it affects the surface shape. Therefore, wj can be 
represented as  
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The linear equations can be solved with Gaussian elimination method [24], 
which yields the coefficients of the quadric surface. The vertex vi is then projected 
onto the fitted quadric surface along its normal vector. Since its normal vector is 
exactly the z-axis in the local coordinate system, the coordinate of the projected 
point of vi should be (0, 0, g) in the local coordinate system. Its global coordinate 
is calculated by the coordinate transformation from local system to global system. 
Finally, the vertex vi is updated with the global coordinate of its projection. The 
above steps are performed for every vertex, yielding what we call the initial mesh 
smoothing. Fig. 4 shows mesh smoothing of two simple models. 
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Fig. 4. Two examples of initial mesh smoothing. The first and third from left are the origi-
nal models and the other two are meshes after smoothing. 

2.2   Curvature Estimation and Labeling 

Meshes generated in the initial smoothing step are much better than the original 
meshes but may not be good enough for subsequent applications if the original 
meshes are too bumpy. In our algorithm, an adaptive mesh smoothing algorithm is 
proposed to further smooth the meshes by taking advantage of the same surface 
fitting technique as seen in Section 2.1 but the size of the neighborhood 
considered adaptively changes according to the local geometric properties as 
explained below. 

Many features in the real-world structures/models are usually defined on the 
basis of curvature variance of the surface meshes. When an input mesh, such as 
the cube-based meshes in Fig. 1, is too coarse, we cannot accurately calculate the 
curvature information. However, this becomes much less problematic after the 
initial mesh smoothing. To further smooth a mesh and preserve the features in the 
model, the same surface fitting and vertex projection schemes as in initial Section 
2.1 are adopted, whereas the ring number of neighboring vertices for surface 
fitting is dynamically determined based on the curvature variance. In this 
subsection we introduce how the curvatures are analytically calculated and used to 
label the vertices. 

In the initial mesh smoothing, each vertex is associated with a quadric surface 
using the least squre fitting technique. Since each vertex has been adjusted to its 
projection in the normal direction, it is straightforward to calculate the curvature 
of the vertex on quadric surface by using the first and second fundamental forms 
of a surface. The analytical form of the quadric surface of a vertex vi can be trans-
formed to the parametric form as: 

S = (u, v, h(u, v))                                                      (6) 

The coefficients of the first and second fundamental forms of the quadric sur-
face at vi are calculated as: 
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The Gaussian and mean curvatures at vi are then given respectively as follows: 
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The Gaussian and mean curvatures of a mesh face facei with vertices v1, v2, …, 
vm are approximated as: 
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After the Gaussian (K) and mean (H) curvatures are obtained, all the mesh ver-
tices and faces are labeled with the corresponding type. In particular, the signs of 
K and H define the surface type and the values of K and H define the surface 
sharpness. Besl and Jain [25] proposed eight fundamental surface types using the 
signs of K and H as shown in Table 1. 

Table 1. Eight fundamental surface types 

 K > 0 K = 0 K < 0 

H < 0 Peak Ridge Saddle ridge 
H = 0 N/A Flat Minimal surface 
H > 0 Pit Valley Saddle valley 

In our algorithm, four simplified types are considered: convex, flatten, minimal 
and concave. In Table 1, the convex type includes peak, ridge and saddle ridge 
surfaces; the flatten and minimal types only includes flat and minimal surfaces re-
spectively; and the concave type contains pit, valley and saddle valley surfaces. 
These surface types are extended to mesh vertices. After the curvatures are calcu-
lated, the faces and vertices are labeled with the criterion in Table 2. 

Table 2. Four surface types 

Surface/Vertex type Signs of H & K 
 Convex type H < 0 
Flatten type H = 0 

Minimal type H = 0 && K < 0 
Concave type H > 0 

2.3   Adaptive Mesh Smoothing 

After curvature-based vertrex labeling, the whole mesh is segmented into four 
types of features, each of which consists of topologically adjacent vertices and 
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faces with the same surface type. In order to further smooth the mesh model, the 
quadric surface fitting on each vertex is performed in a similar way as in Section 
2.1, and the vertex is adjusted by projecting onto the fitted surface. Meanwhile, to 
preserve the features of the mesh model during the smoothing process, the 
neighboring vertices used in the surface fitting here should have the same type as 
that of the center vertex. As a result, these four types of features will be preserved 
after smoothing.  

However, there are cases in which more than one feature may be seen in a 
segment having the same surface type. Consequently, if the vertex type was 
considered as the only criterion for definging the neighborhood of the vertex in the 
quadric surface fitting, many sub-features would be filtered. To address this issue, 
the standard deviation of curvatures within the neighborhood chosen is used as an 
additional constraint to determine the neighborhood size to preserve the sub-
features in a mesh. The standard deviation of curvatures in a neighborhood of a 
vertex should be bounded by a pre-defined threshold.  

Below we give the detailed algorithm of adaptive mesh smoothing. Let V = {v1, 
v2, ... vn} be the set of mesh vertices after initial mesh smoothing; T = {t1, t2, ... tn} 
the types of vertices; k the fixed ring number in the initial mesh smoothing and 
tmpVerArray the temporary vertex array. k is set as 2 by default. For each vertex vi, 

 
Step 1. Search its k-ring neighboring vertices and calculate the standard deviation 
σk of curvatures of all such vertices; 
Step 2. Set tmpVerArray = NULL. For each vertex vi in the set of the outermost 
(k-th) ring neighboring vertices,  

i) if the types ti and tj of vi and vj are same, add the vj into tmpVerArray; 
ii) otherwise, go to step 4. 

Step 3. Calculate the standard deviation σk+1 of curvatures of k-ring neighboring 
vertices together with vertices in tmpVerArray. 

i) if σk+1 is less than σk, add each vertex of tmpVerArray into the neighboring 
vertices and update k←k+1, σk←σk+1; then go to step 2; 

ii) otherwise, go to step 4. 
Step 4. Fit the k-ring neighboring vertices of vi with a quadric surface and project 
vi onto the surface to get the vertex vi’; 
Step 5. Adjust vi to vi’, i.e. vi←vi’. 

 

During the smoothing processes, we adjust mesh vertices by updating their 
coordinates, while the geometric and topological relationship of the mesh model 
remains unchanged, which reduces the space and time complexity of this 
smoothing algorithm. 

2.4   Mesh Quality Improvement 

When the input mesh has complicated features and the resolution of the mesh is 
not high enough to capture the features, the smoothing approaches described 
above may produce some unwanted errors or low-quality meshes, such as twisted 
polygons, very short edges, or very sharp angles. Below we briefly describe the 
strategies to handle these three cases. 
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• Twisted meshes. Normally, the four vertices in a quadrilateral should be ar-
ranged in order (e.g., counterclockwise), while in a twisted quadrilateral, the 
vertices are arranged in a “Z” shape. Fig. 5(a) shows the twisted meshes, 
mesh1, mesh2 and Fig. 5(b) gives the corresponding meshes after adjustment. 
In order to detect whether a quadrilateral is twisted or not, we use the normal 
vectors of the two triangles associated with the quadrilateral. In a regular 
quadrilateral the angle between the normal vectors n123, n341 of the triangles 
v1v2v3, v3v4v1 is less than 90° , as shown in Fig. 5(c). By contrast, the angle 
would be more than 90° in a twisted quadrilateral (see Fig. 5(d)). A twisted 
quadrilateral usually occurs in conjunction with its opposite quadrilateral 
sharing the same edge. Therefore, the common edge (v3v2 in Fig. 5(a)) be-
tween a pair of twisted quadrilaterals can be easily identified and its end 
points are swapped to cure this problem. 

 

 
(a) Twisted meshes                                     (b) Vertex swapping 

 
(c) Vertex arrangement in regular mesh   (d) Vertex arrangement in twisted mesh 

Fig. 5. Illustration of handling twisted meshes 

• Meshes with short edges. This occurs when the length of one edge of a quad-
rilateral is shorter than a pre-defined threshold (for example, see v1v2 in Fig. 
6). The steps to correct this type of meshes are described as follows. For the 
end point v1 of a short edge v1v2,, 
− Find the two associated edges v1v3, v1v4 in the meshes, mesh1, mesh2, con-

taining v1v2, 

− Compute the bisector c1 of 3 1 4v v v∠  and a plane pln passing through c1 

and the vector 1 3 1 4v v v v× ; 
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− Find the intersection point p1 between  pln and the edges of all the poly-
gons incident to v1; 
 

For the other end point v2, its intersection point p2 can be computed in the 

same way. Then, the trisected points 1 2' , 'v v  are determined on the polyline 

1 1 2 2p v v p  such that the lengths of 1 1'p v , 1 1 2 2' 'v v v v  and 2 2'v p  are equal. 

Finally, 1v , 2v  are updated with 1'v , 2'v  such that the short edge is pro-

longed (Fig. 6). 
 

 

Fig. 6. Illustration of handling short edges 

• Meshes with shape angles. When an internal angle of a mesh is smaller than 
a pre-defined threshold, the mesh needs to be improved. To this end, we adopt 
the angle-based approach as described in [26]. For the vertex v1 with sharp 
angle, we consider the surrounding incident vertices and calculate the bisector 
of each of the angles formed by adjacent vertices on that ring. Then v1 is pro-
jected onto each bisector (see the blue points in Fig. 7). Finally, the centroid 
of all these projection points is calculated and used to update v1 so that the 
sharp angle can be improved (Fig. 7). 

 

Fig. 7. Illustration of handling sharp angles 
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3   Implementation and Results 

All algorithms described have been implemented in Visual C++ and OpenGL, 
running on a Pentium IV PC configuration with 3.0G Hz. Many 3D surface mod-
els have been tested and a couple of them are demonstrated here. 

Fig. 8 shows the smoothing result of the 2CMP molecule, randomly chosen 
from the Protein Data Bank (http://www.rcsb.org/). The original mesh in Fig. 8(a) 
was generated using the approach described in [27]. The initial mesh smoothing 
gives the result as shown in Fig. 8(b). The curvature labeling is performed and 
shown in Fig. 8(c), where the patches in green and red are convex and concave 
surfaces respectively. A smoother mesh is achieved by the adaptive mesh smooth-
ing, as seen in Fig. 8(d). However, there are still some defective polygons in the 
smoothed mesh, as shown with small dark dots in Fig. 8(e). The meshes after the 
quality improvement are shown in Fig. 8(f). To estimate the smoothness of a sur-
face mesh, we calculate the curvature variation at each vertex as the maximal dif-
ference between the curvature of the vertex and the curvatures of the surrounding 
vertices. The average curvature variations over the entire mesh of 2CMP are 
0.5032, 0.3529, and 0.0921 in the original mesh, the mesh after initial smoothing 
and the adaptively smoothed mesh respectively, suggesting that the proposed 
adaptive mesh smoothing method is effective in smoothing a surface mesh. Fig. 9 
gives the result of another molecule called 2HAO, taken again from the Protein 
Data Bank. There are 72098 and 228132 vertices in the 2CMP and 2HAO models, 
and the computational time is 31.51s and 92.24s respectively. 

As mentioned in the introduction, the marching cube method is able to produce 
smooth surface meshes, but many skinny triangular meshes are generated as well. 
For instance, the angle histograms of several molecular surface meshes generated 
by the marching cube method are shown in [28], where one can see a lot of very 
small (near 00) and large angles (near 1800). To demonstrate the quality of the 
meshes , the angle histograms of the meshes generated with our method are plot-
ted in Fig. 10, where the angles used are the internals angles of all the triangles ob-
tained by dividing each quadrilateral into two triangles. It is interesting to observe 
that there are two obvious peaks in the histogram: one around 60° that corresponds 
to equilateral triangles and the other around 90° indicating that a large number of 
regular (equilateral) quadrilateral have been kept after the mesh smoothing.  

Fig. 11 demonstrates the mesh smoothing results from 3D imaging data. Fig. 
11(a) shows a cross section of the 3D cryo-electron microscopy reconstruction of 
the rice dwarf virus. The initial surface mesh, shown in Fig. 1(a), was generated 
using the 3D image segmentation algorithms [29]. Fig. 11(c) shows the surface 
mesh after applying the smoothing techniques as described in Section 2. Fig. 11(b) 
shows a cross section of the 3D electron tomographic reconstruction of the ventri-
cle muscle cell. The initial surface mesh, illustrated in Fig. 1(b), was extracted us-
ing automatic image segmentation methods [30]. Fig. 11(d) shows the mesh after 
our smoothing algorithms. From both examples, we can see that our mesh smooth-
ing approach can be used in conjunction with image segmentation for a variety of 
3D biomedical imaging data. 
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(a) 3D mesh model                                     (b) Initial mesh smoothing 
 

          
 

(c) Curvature labeling                             (d) Adaptive mesh smoothing 
 

 
 

(e) Defective meshes after mesh smoothing              (f) Final smoothed meshes 
 

Fig. 8. Example of mesh smoothing for the molecular model 2CMP 
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(a) 3D mesh model                        (b) Initial mesh smoothing 
 

              
 

(c) Curvature labeling                        (d) Final smoothed meshes 
 

Fig. 9. Mesh smoothing of the molecular model 2HAO 
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Fig. 10. Mesh angle histogram of models: 2CMP and 2HAO 

     
(a) p8-monomer image         (b) T-tubule image 

 

     
(c) Final smoothed meshes                  (d) Final smoothed meshes 

Fig. 11. Mesh smoothing of surface models extracted from 3D imaging data. (a) & (c):  
a cryo-electron microscopy reconstruction of the rice dwarf virus (courtesy of Dr. Wah 
Chiu, Baylor College of Medicine). (b) & (d): an electron tomographic reconstruction of 
ventricular cells (courtesy of Dr. Masahiko Hoshijima, UC-San Diego). 

4   Conclusions 

We have presented in this paper a novel mesh smoothing method based on quadric 
surface fitting for general mesh models. The fitting algorithm is combined with 
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vertex projection, curvature estimation, and mesh labeling of four types. Based on 
the geometric characteristics of surfaces, the adaptive mesh smoothing is 
conducted to further smooth meshes while important features are well preserved. 
To improve the mesh quality, three adjustment methods are adopted to handle 
defective meshes. 

Our mesh smoothing algorithm can handle a variety of meshes, including 
molecular models, imaging data and industrial surface meshes. As demonstrated in 
the results, our method can generate meshes with high quality, i.e., no sharp angle 
or short edge in the output meshes. This is particularly useful and sometimes 
necessary in such applications as surface reconstruction, visualization, and 
numerical simulation. While the examples demonstrated here are all quadrilateral 
meshes, our method can be easily modified to handle triangular or other types of 
surface meshes. 

Due to the quadric model being used to approximate the local shape of a 
freeform surface, there may be some cases where our method does not work 
perfectly. Such cases include very sharp and thin features and meshes with too low 
resolutions to capture the features of interest. One of our future efforts is to detect 
these ill-posed regions and apply mesh subdivision techniques to increase the 
mesh resolution so that our method can work more effectively in these circum-
stances. There are still a few small angles persisting in the final meshes as can be 
seen in Fig. 10. We shall work on better methods to handle these cases during the 
vertex projection step. While sharp edges or corners are not commonly present in 
the biomedical examples we have tested, these features will be taken care of in our 
future work by making a good balance between sharp features and possible 
surface noises.  
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Abstract. This paper describes a novel approach to improve the quality of non-
manifold hexahedral meshes with feature preservation for microstructure materials.
In earlier works, we developed an octree-based isocontouring method to construct
unstructured hexahedral meshes for domains with multiple materials by introducing
the notion of material change edge to identify the interface between two or more ma-
terials. However, quality improvement of non-manifold hexahedral meshes is still
a challenge. In the present algorithm, all the vertices are categorized into seven
groups, and then a comprehensive method based on pillowing, geometric flow and
optimization techniques is developed for mesh quality improvement. The shrink set
in the modified pillowing technique is defined automatically as the boundary of each
material region with the exception of local non-manifolds. In the relaxation-based
smoothing process, non-manifold points are identified and fixed. Planar boundary
curves and interior spatial curves are distinguished, and then regularized using B-
spline interpolation and resampling. Grain boundary surface patches and interior
vertices are improved as well. Finally, the local optimization method eliminates
negative Jacobians of all the vertices. We have applied our algorithms to two beta
titanium datasets, and the constructed meshes are validated via a statistics study.
Finite element analysis of the 92-grain titanium is carried out based on the im-
proved mesh, and compared with the direct voxel-to-element technique.

Keywords: Non-manifold hexahedral mesh, quality improvement, pillowing, B-
spline curve, geometric flow, optimization, microstructure materials.

1 Introduction

Many researchers have incorporated simulated material microstructures into
predictive finite element analysis tools: assigning properties such as grain
shape, size, and crystallography based on measured distributions [3, 6, 10, 27].
Models based on simulated microstructures can provide important insights
into macroscopic material behaviors. The identification of local behaviors
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and critical microstructural features requires the use of real, experimentally-
measured microstructures as the simulation input. The collection and anal-
ysis of 3D microstructure data has been carried out by a number of groups
[11, 18, 19, 34]. These 3D datasets, however, are typically quite large and com-
plex. Incorporating these datasets into predictive models therefore requires
advanced meshing techniques which can preserve the essential features with
as few elements as possible.

(a) (b)

Fig. 1. Polycrystalline 92-grain beta titanium. (a) The volume rendering result;
and (b) The mesh obtained through the voxel-to-brick transformation.

In its simplest form, the microstructural data is comprised of a 3D array
of values which represent a property or identifier for each voxel as shown in
Figure 1(a). People have used various ways to construct tetrahedral meshes
for microstructure data; however, hexahedral meshes are preferred due to
their superior performance in finite element analysis in terms of reduced error,
smaller element number and improved reliability. A straightforward approach
is to convert each voxel to a 3D brick element as shown in Figure 1(b).
This direct method of meshing has the advantages of rapid mesh generation
and automatic identification of grain boundaries [20]. However, the resulting
mesh has a number of disadvantages for simulation of mechanical behavior.
In particular, these meshes typically consist of a large number of elements,
with a constant shape and volume. Additionally, direct conversion of voxel
data to brick elements [26] results in a stair-casing effect at the boundaries.

In this paper, we choose an octree-based isocontouring algorithm to con-
struct hexahedral meshes [40]. This algorithm is robust and works for arbi-
trarily complicated geometry and topology. The generated mesh may have
a few elements with unsatisfied aspect ratios. Therefore, the mesh needs to
be improved. In our quality improvement algorithm, all vertices are catego-
rized into seven groups according to their relative locations in the individual
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grain and in the whole representative volume element (RVE) dataset. With
this vertex classification, we apply different algorithms to different groups of
vertices to improve the mesh quality. A comprehensive method based on pil-
lowing, geometric flow and optimization techniques is developed. The shrink
set in the modified pillowing technique is defined automatically as the bound-
ary of each material region with the exception of local non-manifolds. In the
relaxation-based smoothing process, non-manifold points are identified and
fixed. Planar boundary curves and interior spatial curves are distinguished
and regularized based on B-spline interpolation and resampling. Grain bound-
ary surface patches and interior vertices are improved as well using geomet-
ric flow and the weighted averaging method. Finally, the local optimization
method eliminates negative Jacobians of all the vertices, and improves the
aspect ratio of the mesh.

We have applied our quality improvement algorithms to two beta titanium
datasets, and the generated hexahedral meshes are validated via a statistics
study. To compare our meshing technique to the voxel-to-brick technique, a
3D volume consisting of 92 grains is sampled from a reconstructed titanium
microstructure [34]. A detailed comparison between these two meshes is made,
and a series of finite element analysis are carried out. A number of significant
advantages of our algorithm can be observed, particularly with respect to
grain boundaries and triple junctions. These features are of particular interest
in this model because they are the most likely sites for initiation of plastic
flow in a polycrystalline metallic material.

The remainder of this paper is organized as follows: Section 2 summarizes
related previous work. Section 3 reviews data acquisition and octree-based
mesh generation. Section 4 talks about the classification of vertices and the
corresponding criteria. Section 5 explains the detailed algorithm of hexahe-
dral mesh quality improvement. Section 6 presents the results of the quality
improvement and finite element analysis. Section 7 draws conclusions and
outlines future work.

2 Previous Work

Image-Based Modelling for Microstructures: Image-based modelling
has been employed to analyze the properties and to predict the performance
of microstructure materials [36, 19, 21]. For example, serial sectioning and
optical microscopy with periodic electron backscatter diffraction (EBSD) to-
gether with computer aided 3D reconstruction were used to reconstruct mi-
crostructures [28]. Some of these microstructures show significant difference
in the 3D properties than traditional assumptions of the 2D information [16],
and some other cases present that better prediction of material behavior
can be obtained by simulating real 3D microstructure [5]. Large-scale image
models have been created for linear elastic, isotropic continuum plastic and
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crystal plastic cases [20, 21]. In addition, the crystallography of each individ-
ual grain was proved to play an important role in the mechanical response of
materials. Due to the limited computational resource, an abbreviated repre-
sentative volume element (RVE) has been selected for modelling with certain
criteria [3, 13].

Hexahedral Mesh Generation: Generally there are two meshing tech-
niques for polycrystals: structured and unstructured. Usually block-structured
grids are used because it is easy to implement. However, this technique pro-
duces non-conforming representation of the grain boundaries with large num-
ber of elements [3, 7, 23]. Another approach is the unstructured meshing
which produces tetrahedral meshes conforming to the grain boundaries [41],
for example, Delaunay triangulation and Voronoi tessellation. The Delaunay
triangulation is based on a criterion called “empty sphere”, which states that
any node must not be contained in the circumsphere of any tetrahedra within
the mesh [8]. Voronoi tessellation divides the domain into a set of polygonal
regions, which are bounded by the perpendicular bisectors of the lines joining
the points [17].

The direct method for hexahedral mesh generation includes five distinct
groups: grid-based [29, 30, 31], medial surface [24, 25], plastering [2], whisker
weaving [35] and isosurface extraction. The isosurface extraction method ex-
tracts the boundary surface and constructs the uniform and adaptive hexahe-
dral meshes [38, 37]. Furthermore, this method has been extended to meshing
domains with multiple materials [40]. These techniques create meshes with
good aspect ratios in the interior volume; however, bad elements may be
generated along the boundaries. Therefore, quality improvement is a very
important step after mesh generation.

Quality Improvement: When two neighbouring hexes share two faces, a
“doublet” is formed [22]. The pillowing technique was developed to remove
doublets [32]. As the simplest and most straightforward method, Laplacian
smoothing relocates the vertex to the average of the vertices connecting to it
[8]. Based on the weighted-averaging method, several other smoothing tech-
niques were developed. These methods are easy to implement and inexpensive,
but they may invert or degrade the local elements [33]. Instead of relocating
vertices based on a heuristic algorithm, an optimization technique is utilized to
improve the mesh quality. This algorithmmeasures the quality of the surround-
ing elements of one node, and optimizes the mesh with respect to a certain ob-
jective function [14, 15]. Optimization-based smoothing yields better results,
but it is more computationally expensive, and the optimization step length
is sometimes hard to decide. Therefore, a combined Laplacian/optimization-
based approach was recommended [9, 4].

Most of the previous improvement methods were designed for manifold
meshes. In this paper, we will talk about a robust quality improvement ap-
proach for non-manifold hexahedral meshes with feature preservation.
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3 Data Acquisition and All-Hex Mesh Generation

With the advent of advanced material characterization techniques, it be-
comes possible to quantify and analyze 3D metallic microstructure with the
advanced material characterization techniques such as serial sectioning, X-
ray tomography and X-ray diffraction. The composite material model dis-
cussed in this paper is the bcc single phase titanium alloy, beta-21s. A 3D
microstructural reconstruction of the alloy is made using serial sectioning
techniques and optical microscopy with periodic electron backscatter diffrac-
tion (EBSD), followed by computerized reconstruction. After segmentation
and labeling by grain, the resulting 3D image consists of 2000 million data
voxels, and it contains 4700 grains in which 2200 are interior. This methodol-
ogy was outlined in detail in [28]. In order to reduce the computational cost,
an abbreviated 92-grain representative volume element (RVE) is selected for
modelling. This microstructural information of the RVE is further reduced
by sampling every third voxel in the xy planes of the reconstruction, and
every second voxel in the z direction. The simplified RVE represents 92 total
grains while 16 are interior. Figure 1(a) shows the volume rendering result. A
hexahedral mesh is created by transforming every voxel into one hexahedral
element, as shown in Figure 1(b). This mesh is bumpy, and may affect the
accuracy of the finite element analysis.

In this paper, we choose an octree-based method to construct quality hex-
ahedral meshes conforming to all the grain boundaries [40]. One minimizer
point is calculated for each cell to minimize the predefined Quadratic Er-
ror Function (QEF): QEF (x) =

∑
(ni · (x − pi))2, where pi and ni are the

position and normal vectors at the intersection points. We analyze each ma-
terial change edge to construct all the material boundaries, and then analyze
each interior grid point for all-hexahedral mesh generation. In this octree
data structure, each grid point is shared by eight cells, and we use the calcu-
lated eight minimizers to construct a hexahedron. In this way, a conforming
mesh for domains with multiple materials is constructed automatically. Our
hexahedral meshing method provides a material index for each hexahedral
element, which will be used in the following vertex classification.

4 Vertex Classification

Due to the non-manifold nature of the microstructure data, we first classify
all the vertices into different groups, and then choose various methods to
improve them. Here are some definitions in our vertex classification:

RVE boundary: The RVE boundary is the outer boundary box of the
dataset. It consists of 8 corners, 12 edges and 6 faces. During quality im-
provement, the RVE boundary needs to be preserved.
Grain boundary surface patches: The common surfaces of any two neigh-
boring grains are referred as the grain boundary surface patches.
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Boundary curves: The common curves of any two neighboring grain bound-
ary surface patches are referred as the boundary curves. Depending on whether
such curves lie on the six RVE planes or not, we distinguish them as the pla-
nar curves and the interior curves.
Planar curves: If a boundary curve is located on the RVE plane, then it is a
planar curve. Planar curves start and end with planar non-manifold points.
Interior curves: If a boundary curve is inside the RVE volume, then it is an
interior curve. These curves start and end with interior non-manifold points.

In non-manifold microstructure materials, all planar and interior curves
start with one non-manifold point, while end with another. Once we figure out
all the non-manifold vertices in the dataset and then consider every curve they
send out, we obtain all the information of the curves: where they start, where
they pass by and where they end. The properties of these curves can be used to
check the topology of the microstructure data. Based on the above definitions,
we categorize all the vertices into seven groups as shown in Figure 2.

(a) (b)

Fig. 2. Vertex classification. (a) Groups 1-3 on the RVE boundary; and (b) Groups
4-7 inside the RVE volume.

Group 1: The eight corners of the RVE box, which are fixed during the
improvement in order to keep the RVE boundary.
Group 2: Vertices on the twelve edges of the RVE box, which only move
along the edge. It has two sub-categories: Group 2a are the vertices inside
one grain, which are smoothed only along the edge; and Group 2b are the
vertices shared by two or more than two grains, which are fixed during the
improvement.
Group 3: Vertices on the six faces of the RVE box, which are smoothed only
on the plane. It has three sub-categories: Group 3a are the vertices shared
by more than two grains, which are planar non-manifold points and they are
fixed during the improvement; Group 3b are the planar curve vertices shared
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by two grains, which are smoothed along the tangent direction of the planar
curve during the improvement; and Group 3c are the vertices of one grain,
which can only move on the plane.
Group 4: Vertices inside one grain, which will be improved using the
weighted-averaging method.
Group 5: Vertices located on the grain boundary surface patches shared by
two grains, which are smoothed on the tangent plane of the grain boundary
during the improvement.
Group 6: Vertices located on interior curves, which can only move along the
tangent direction of the interior curve.
Group 7: Interior non-manifold vertices shared by more than two interior
curves, which are fixed during the improvement.

For different groups, we improve the quality using different methods as
discussed in the next section. Eight corners are fixed; vertices on the RVE
planes/edges are moved only on the planes/edges; the planar/interior curves
are faired and regularized so that they only move along the curves; and
vertices on the grain boundary are smoothed only on the boundary tangent
plane.

5 Quality Improvement of Non-manifold Hex Meshes

The hexahedral mesh generated from the 3D volumetric data may be noisy,
have “doublets” in the boundary, or even have negative Jacobians. These
will result in a poorly conditioned stiffness matrix, and affect the stability,
convergence and accuracy of the finite element analysis. Therefore, quality
improvement is an important step after mesh generation. Here we develop a
comprehensive approach based on a modified pillowing technique, relaxation-
based smoothing and optimization. There are four main steps in our algo-
rithm: (1) A relaxation-based smoothing is implemented, which will smooth
the grain boundaries while preserving surface features; (2) In order to elimi-
nate doublets, a modified pillowing technique is developed to create a bound-
ary layer; (3) Another smoothing is implemented to drag the shrink set inside
and improve the mesh quality; (4) Finally, a local optimization is carried out
to improve the worst Jacobian. During the relaxation-based smoothing, dif-
ferent schemes are used for various groups of vertices. A curve fairing method
based on B-spline interpolation and resampling is utilized to regularize all the
planar and interior curves. Each grain boundary surface patch is faired and
regularized using tangent movements, and the interior vertices of each grain
are smoothed using the weighted-averaging method.

5.1 Modified Pillowing for Non-manifold Boundaries

In the hexahedral mesh of microstructure materials, “doublets” exist along
the grain boundaries. A doublet is formed by two neighboring hexahedra
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sharing two faces that have an angle greater than 180 degrees. In this situ-
ation, it is practically impossible to generate a reasonable Jacobian by relo-
cating vertices. The pillowing technique was developed to remove doublets
[22, 32], which was a sheet insertion operation. Figure 3(a) shows one doublet
in 2D, and Figure 3(b) shows the pillowed layer along the boundary, then a
smoothing operation is required to improve the mesh quality as shown in
Figure 3(c). When doublets appear on both sides of the grain boundaries,
two sheets need to be inserted. The main challenge in pillowing is how to
automatically and efficiently define the shrink set.

(a) (b) (c)

Fig. 3. One 2D doublet and the pillowing, smoothing results. (a) One doublet in
the green element along the red boundary; (b) The inserted yellow pillowing layer;
and (c) The improved mesh after smoothing.

In our algorithm, the pillowing process is applied to one grain by another.
If the grain is interior to the RVE volume with closed boundary, we set the
whole grain boundary as the shrink set, as shown in Figure 4(a). Note that
the grain boundary may not be closed, i.e., it ends at the RVE boundaries,
therefore, its shrink set is also open as shown in Figure 4(b). Sometimes, one
grain boundary has local non-manifolds. For example, one boundary edge is
shared by more than two faces on the boundary. In this situation, we first
detect these non-manifold edges, then disable all the elements connecting to
them. The shrink set for this grain is set as the grain boundary except the
disabled elements, see Figure 4(c). After pillowing, the disabled elements are
added back to the mesh, and the vertex classification is updated for the grain
boundary.

5.2 Fairing and Regularization for Curves

There are many boundary curves in the microstructure data, which start and
end at non-manifold points. Since noises exist on the curve, a curve fairing
method based on the mean curvature flow is first carried out to smooth
both the planar and interior curves. In order to regularize these curves while
preserving geometric features at the same time, we fix the starting and ending
non-manifold points (Group 3a, Group 7) of the curves, and move interior
vertices (Group 3b, Group 6) only along the tangent direction using B-spline
interpolation and resampling.
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(a) (b) (c)

Fig. 4. One grain with its pillowed layer (red dashed lines). (a) An interior grain
with closed boundary; (b) A grain with open boundary, the yellow region is on the
RVE boundary; and (c) A grain with local non-manifolds (pink region), which are
disabled and not pillowed.

Let [x0, x1, x2, · · · xn] be a set of points in 3D space, which represents a
planar or interior curve. In order to fair this curve, we construct the mean
curvature flow iteration:

dxi

dt
+

xi − xi−1

‖xi − xi−1‖ +
xi − xi+1

‖xi − xi+1‖ = 0, (1)

where i = 1, · · ·, n-1. In this flow, the beginning and the ending points of the
curve are fixed. This equation can be solved using the Euler scheme:

x
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(k)
i − x
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(k)
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), (2)

where i = 1, · · · n-1. In this scheme, τ is the step size, the superscript k rep-
resents the iteration time, and x

(0)
i = xi is the original positions of the input

points. The first and the last points are fixed, therefore x
(k)
0 = x

(k+1)
0 = x0,

and x
(k)
n = x

(k+1)
n = xn. Then the points on the curves are relocated accord-

ing to Equation 2. In order to preserve the essential features, the displacement
of each vertex is projected to the tangent direction of the curve. Planar curves
(Group 3b) are restricted to move only on the RVE planes.

Once the curve is faired, we use a regularization technique to make the
points on the curve more evenly distributed via two steps: B-Spline inter-
polation and resampling. B-Spline interpolation is to construct a cubic non-

uniform B-Spline curve, C(t) =
m∑

j=0

Nj,3(t)Pj , which passes through all the

data points xi (i = 0, 1, · · · , n) on the original curve in the given order, sat-
isfying C(ti) = xi for all i = 0, 1, · · · , n. Pj are the control points and Nj,3

are the B-Spline basic functions of degree 3. In this paper, the parameters
are determined using the chord-length parameterization, since it is a good
approximation to the arc-length parameterization. The total chord length is

calculated using L =
n∑

i=1

‖xi − xi−1‖2, and the chord length from x0 to xi
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is Li =
i∑

j=1

‖xj − xj−1‖. Suppose the domain of the B-Spline curve is [0, 1],

then the parameter tk is calculated using t0 = 0, tn = 1 and ti = Li

L for
i = 1, 2, · · · , n − 1. In this way, the knot vector of the non-uniform B-Spline
curve is t = [0 0 0 t0 t1 · · · , tn−1 tn 1 1 1]. After we obtain the knot vector,
the next step is to calculate the control points which satisfy the interpolation

condition xi = C(ti) =
m∑

j=0

Nj,3(ti)Pj , where m = n + 2. The number of

control points is n + 3, in other words, we have n + 3 unknowns. According
to the interpolation constraint, we have n + 1 equations, so we have to add
another two conditions. In this paper, we use the natural end conditions,
which means the curvature of the curve at the two ends are zero. In this case,
we add two more equations: C′′(0) = 0 and C′′(1) = 0. Then the equations
can be organized in the following format:

Md = e, (3)

where

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N ′′
0 (t0) N ′′

1 (t0) N ′′
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3 (t0)
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. . .
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n−1(tn) N ′′
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4)
d =

[
P0 P1 P2 · · ·Pn Pn+1 Pn+2

]T
, (5)

e =
[
0 x0 x1 · · ·xn−1 xn 0

]T
. (6)

After solving this linear system, we obtain all the control points of the
B-spline curve, Pj for j = 0, 1, · · · , m. Till now, the B-spline has been con-
structed. The second step is data point resampling. In this step, we aim to
obtain n + 1 sample points on the curve we constructed, which are evenly
distributed along the curve. After we get the new sampled data points, we
move the curve points towards the new sampled data points. Here we choose
the points whose parameters are equally spaced inside the domain, for exam-
ple, we calculate n + 1 points on curve C(t) at t = 0, 1

n , 2
n , · · · , n−1

n , 1, as
the sampling points. After this, we relocate the original data points to the
obtained sample points iteratively. Figure 5(a) shows the complete set of the
curves obtained from the 92-grain data, including the planar ones as well as
the interior ones. Figure 5(b-c) show the curves on one RVE plane before and
after smoothing and regularization.
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(a) (b) (c)

Fig. 5. Boundary curves fairing and regularization. (a) All the curves in the RVE
volume; (b) The curves on one RVE plane; and (c) The improved curves.

5.3 Geometric Flow and Optimization

Vertices on grain boundary surface patches are improved using geometric
flows [39]. The surface diffusion flow is defined as:

∂x
∂t

= ΔH(x)n(x) + v(x)T(x), (7)

which denoises the surface and improves the aspect ratio while preserving
geometric features. Here x is a surface point, Δ is the Laplace-Beltrami (LB)
operator, H is the mean curvature, n(x) is the unit normal vector at the node
x, v(x) is the tangent velocity of the surface, and T(x) is the unit tangent
vector at the node x. The first term on the right represents the vertex move-
ment in the normal direction of the surface, while the second term represents
the movement on the tangent plane. Vertices are relocated by solving Equa-
tion 7 numerically. In addition, the volume of each grain is preserved due to
the property of the surface diffusion flow. A discretized Laplace-Beltrami op-
erator is computed numerically [39], and Gaussian integration points are used
to calculate the quad area and the hex volume. Other interior vertices are
relocated to the mass center of their neighboring elements using the volume-
weighted averaging method.

After quality improvement using Equation 7, negative Jacobians may still
exist in the mesh. To further improve the mesh quality, a local optimization
method is applied to eliminate the negative Jacobians of all the vertices. Each
hexahedron is mapped into a trilinear parametric space in terms of ξ, η and
ζ. The Jacobian is the determinant of the Jacob matrix from the physical
coordinate system to the parametric coordinate system,

J =

⎛⎜⎝
∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

⎞⎟⎠ . (8)

The optimization method starts with looping all the vertices to compute their
Jacobians, and then the very vertex with the worst Jacobian is found and
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improved using a conjugate gradient method, in which the objective function
is the Jacobian of that vertex. Then a new loop begins and the new worst
region in the improved mesh is found and optimized in the same manner.
We keep improving the worst Jacobian until it is greater than a pre-defined
threshold. We choose the traditional definition of the Jacobian matrix using
the finite element basis functions [40]. Generally if the eight corners of one
hex all have positive Jacobians, then the Jacobian inside the hex is usually
positive. In order to guarantee that the finite element analysis works properly,
we can check the Jacobians at the Gaussian integration points inside each
element and include them in our loop.

It should be noted that during these two steps, the vertex classification
and the specific moving method towards different vertex groups need to be
followed. For instance, when we relocate one vertex belonging to Group 5
(vertices on the common patch of two neighboring grain surfaces), the move-
ment should be projected to the tangent direction of the common surface
patch.

6 Finite Element Analysis and Results

Our techniques greatly improve the mesh quality, which were computed on a
PC equipped with an Intel Q9600 CPU and 4GB DDR-II memories. Figure
6(a-b) show the mesh before and after quality improvement for the 92-grain
dataset, and Figure 6(c-d) show the mesh for the 20-grain dataset. The im-
proved meshes have good Jacobians and are smooth on boundaries. Table 1
shows the statistics before and after quality improvement of the mesh. Note
that in the optimization, we use the Jacobian defined in the finite element
method as the objective function; while in the statistics, we measure the mesh
quality with the Jacobian defined by three edge vectors [14, 37, 40]. For the
92-grain data, the original mesh has 30 negative Jacobians. After the quality
improvement, all the Jacobians are greater than 0.002. The condition number
is also greatly improved, ranging from 1 to 465.3. For the 20-grain data, the
worst Jacobian is 0.003 after quality improvement, while the worst condition
number becomes 399.8. Figure 7 shows the histogram of the Jacobian and
the condition number before and after the quality improvement.

Table 1. Statistics of meshes before and after quality improvement.

Mesh Mesh Size Jacobian Condition � Vertex � with
(Vertex �, Elem �) (worst, best) (worst, best) Negative Jacobian

92-grain Original (30600, 27720) (-0.004, 1.0) (12781.3, 1.0) 30
After Improvement (54064, 49673) (0.002, 1.0) (465.4, 1.0) 0

20-grain Original (32768, 29791) (-0.02, 1.0) (12549.2, 1.0) 8
After Improvement (46368, 42505) (0.003, 1.0) (399.8, 1.0) 0
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Fig. 6. The meshes before and after quality improvement. (a-b) The original (left)
and improved (right) mesh for the 92-grain beta titanium data; and (c-d) The
original (left) and improved (right) mesh for the 20-grain beta titanium data.

(a) (b)

Fig. 7. Statistics of meshes before and after the quality improvement. (a) The
histogram of the Jacobian; and (b) The histogram of the condition number.
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In order to validate the constructed hexahedral meshes, a statistic analysis
is carried out. Important geometry features, such as the number and neigh-
bour of the non-manifold vertices, together with accuracy features, such as
the surface area and the volume of each grain, are calculated and compared
between the original data and the hexahedral mesh. In the 92-grain beta ti-
tanium data, 16 out of 92 grains are interior. There are 866 non-manifold
points in total, and 602 of them are triple junctions shared by three grains,
250 are shared by four grains, 11 are shared by five, and 3 are shared by six.
The 59th grain has the largest volume, 21518.7μm3, and the 22th grain has
the smallest volume, 12.5μm3; the 59th grain has the largest surface area,
4830.6μm2, while the 76th grain has the smallest, 37.1μm2. In the 20-grain
beta titanium data, 19 out of 20 grains are on the boundary. There are 85
non-manifold points in total, and 59 of them are triple junctions shared by
three grains, 26 are shared by four. The 10th grain has the largest volume,
25843.7μm3, and the 14th grain has the smallest volume, 0.6μm3; the 15th

grain has the largest surface area, 5041.2μm2, while the 14th grain has the
smallest surface area, 4.6μm2.

The isocontouring meshing and quality improvement algorithm is com-
pared to the direct voxel-to-element technique in detail. It is obvious that
the isocontouring method leads to a more conforming boundary surface with
less abrupt changes in geometry than the brick element mesh of the same
microstructure. Figure 8 shows two meshes of three selected grains (Grains
49, 55, and 58) extracted from the 92-grain titanium data using these two
techniques. In addition to the removal of the stair-casing at grain boundaries,
the present meshing algorithm has the advantage of providing higher fidelity
at the grain boundaries, where plasticity is most likely to initiate. As seen in
Figure 8(b), the elements around the grain boundaries are more refined. This
is particularly important in studies of the percolation of plasticity through
a microstructure - a high-fidelity mesh at the grain allows for more precise

(a) (b)

Fig. 8. Comparison of meshes of three selected grains (Grains 49, 55 and 58)
generated using two different techniques. (a) Voxel-to-element transformation; and
(b) Isocontouring mesh generation and quality improvement with one boundary
layer.



Quality Improvement of Non-manifold Hexahedral Meshes 225

quantification of the location of plastic activity, and its progression either into
the center of the grain or across the boundary into the adjacent grain. Another
significant advantage of the present meshing algorithm is the relatively small
number of elements required to represent a 3D volume. The resulting volu-
metric meshes consist of 200,000 elements for the voxel-to-element technique
[34], while the same volume meshed using the present algorithm consists of
only 49,673 elements. The significant reduction in total number of elements
while maintaining the accuracy of the microstructural representation allows
for significantly larger volumes to be incorporated into simulations. This is
particularly important in the study of structure-property correlations, where
representative volumes must be considered in order to extract the global
microstructural response from local phenomena.

To check the accuracy of our meshing and quality improvement algorithm
as compared to the direct voxel-to-element technique, two finite element sim-
ulations of the mechanical response of the 92-grain volume are carried out,
using meshes generated by the two techniques. The commercial software
ABAQUS is used to simulate the mechanical response. Eight-noded brick
elements (C3D8) are used for both the direct voxel-to-element mesh and the
mesh generated and improved using our algorithm. A uniaxial tension in the
z direction is applied to the z=0 plane, while the opposite plane is fixed. All
the remaining free surfaces are constrained to move as planes only.

Elastic Finite Element Analysis: The elastic modulus changes with re-
spect to the crystalline orientations and this causes higher stress and strain
gradients near the grain boundaries, where local plasticity may initiate.
Therefore, it is important to include the grain orientation information in
the analysis. In the RVE data, the average orientation of each grain is mea-
sured and applied. Each grain is treated as an anisotropic grain with its own
orientation. The parameters of the orthogonal titanium are shown in Ta-
ble 2. Figure 9(a) shows the Mises Stress distribution in the RVE volume in
response to an applied uniaxial strain of 0.6375% in the global y-direction,
while Figure 9(b) shows the max principal logarithmic strain distribution. It
is obvious that the grain boundaries have higher stress level. The analysis
time for this elastic model is 64 seconds.

Table 2. Elastic material properties of the beta titanium for the orthogonal
anisotropic model (Gpa).

C11 C12 C13 C21 C22 C23 C31 C32 C33

97.7 82.7 97.7 82.7 82.7 97.7 37.5 37.5 37.5

Plastic Finite Element Analysis: In our plastic finite element analysis, the
crystal behavior of the material is simulated using the framework of hypoe-
lasticity and resolved shear stress developed in [1]. A User-Material (UMAT)
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(a) (b)

Fig. 9. Elastic finite element analysis result of the 92-grain titanium data. (a) The
Mises stress distribution; and (b) The max elastic strain distribution.

Table 3. Plastic material properties of beta titanium for the single crystal consti-
tutive model.

Material Parameter Value

Family of slip systems s1 = 〈1 1 1〉, n1 = {1 1 0}
(48 independent) s2 = 〈1 1 1〉, n2 = {1 1 1}

s3 = 〈1 1 1〉, n3 = {1 2 3}
Elastic moduli C11 = 97.7Gpa, C12 = 82.7Gpa, C44 = 37.5Gpa

Shearing rate parameters m = 50, γo = 0.0023/s

Hardening moduli ho1 = 1.5Gpa, ho2 = 1.98Gpa, ho3 = 1.64Gpa
parameters (Taylor τo1 = τo2 = τo3 = 200Mpa, τs1 = τs2 = τs3 = 500Mpa
hardening is assumed) q1 = q2 = q3 = 1

subroutine [12] is employed. The parameters of the user-subroutine are given
in Table 3. Figure 10(a) shows a contour plot of the von Mises stress in re-
sponse to an applied uniaxial strain of 0.6375% in the global y-direction. Fig-
ure 10(b) shows the global stress-strain response of the material under three
different loading conditions: uniaxial tension in the x, y, and z directions using
the two meshes. A very good agreement is obtained. The computation time
for the crystal plasticity simulation using our mesh is reduced significantly,
primarily due to the number of elements comprising the mesh. As noted pre-
viously, the voxel-to-element mesh consists of nearly four times the number
of elements as the mesh generated using our algorithm. This results in a re-
duction of computation time by a factor of 10, from approximately 4 days to
8 hours, using the same computational resources (parallel computing on 156
processors). This significant reduction in mesh size and computation time,
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(a) (b)

Fig. 10. Plastic finite element analysis result of the 92-grain titanium data. (a)
The Mises stress distribution in the RVE; and (b) Stress-strain response for applied
strain in three global directions using the two meshing algorithms.

while maintaining accuracy of the global response and increasing precision
at the grain boundaries, makes the present meshing algorithm a superior
method for mesh generation of microstructures.

7 Conclusion and Future Work

We have developed a comprehensive approach consisting of pillowing, ge-
ometric flow, regularization and optimization to improve the quality of
non-manifold hexahedral meshes for microstructure materials. Vertices are
distinguished and classified first, and then a pillowing technique consider-
ing the local non-manifold situation is carried out. Planar and spatial curves
are identified and smoothed along the tangent plane of the curve with the
non-manifold points fixed. Then, a regularization technique is developed to
make the curve segments regular. In the following relaxation-based smooth-
ing process, surface patches and interior vertices are improved. Finally, a
local optimization method improves the worst Jacobian of the mesh. We
have successfully applied our algorithm to two beta titanium data. Finite
element analysis is carried out based on the improved mesh, and the result
is compared with the voxel-to-element meshing technique.

For large datasets, the requirements of memory and CPU time increase
significantly. We will optimize our data structure and develop parallel mesh-
ing algorithms to construct non-manifold hexahedral mesh efficiently for very
large dataset. In the future, we will also apply the algorithm to more appli-
cations, and include the material properties into our mesh generation and
quality improvement procedure.
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Abstract. A lot of research work has been focused on integrating FEA (finite elements 
analysis) with CAD (Computer Aided Design) over the last decade. In spite of improve-
ments brought by this integration, research work remains to be done in order to better inte-
grate all the operations led during the whole design process. The design process involves 
several modifications of an initial design solution and until now, in this context, the com-
munication between CAD modules (dedicated to different tasks involved in the product de-
sign process) remains static. Consequently, there is a need for more flexible communication 
processes between CAD modules through the design cycle, if not through the product life 
cycle. Some approaches have been developed aiming at the reduction of the design process 
length when using FEA, and aiming at the automation of part’s data transfer from one step 
of the process to the next one. Automatic re-meshing is one of these approaches. It consists 
in automatically updating the part’s mesh around modifications zones, in the case of a mi-
nor change in the part’s design, without the need to re-mesh the entire part. The purpose of 
this paper is to present a new tool, aiming at the improvement of automatic re-meshing pro-
cedures. This tool basically consists in automatically identifying and locating modifications 
between two versions of a CAD model (typically an initial design and a modified design) 
through the design process. The knowledge of these modifications is then used to fit por-
tions of the initial design’s mesh to the modified design (a process referred to as automatic 
re-meshing). A major benefit of the approach presented here is that it is completely inde-
pendent of the description frame of both models, which is made possible with the use of 
vector-based geometric representations. 

Keywords: Model comparisons/BREP/Vectorial space/Remeshing/ NURBS. 

1   Introduction 

The design process of mechanical parts, usually involves several modification of 
an initial design solution. This means that during the design and manufacturing 
cycle of a given part, the geometry can change several times. When the new ver-
sion of a part’s geometry has to be analyzed using FEA (Finite Element Analysis), 
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the mesh usually needs to be completely built from scratch and no benefit is made 
of meshes corresponding with the analysis of previous versions of the design. This 
is obviously a great waste of time if we consider that a part’s geometry changes 
very little from one design version to the next one. It is even a greater waste of 
time when analysis requires significant adaptive mesh refinement. In fact, repeat-
ing these tasks (mesh generation and adaptive refinement) for every new design 
alternative makes the design process very expensive with regard to processing 
time. In order to reduce the time of the design phase in product development, 
automatic updating of models and processes (such as mesh generation and FEA) 
could induce very important gains with regard to processing time. For example, 
instead of re-meshing entirely a modified model, it can be re-meshed only around 
modification zones, while partially preserving the former mesh. Also, when per-
forming a FEA on a modified design, instead of solving the entire modified 
model, it would be very powerful to be able to solve the problem only in modifica-
tions zones and to retrieve results of previous analyses, in zones where the design 
has not been modified (Fig. 1).  

Initial design solution: 
Geometry (BREP)

Boundary conditions, materials  

FEA Solver

Mesh generation

FEA solution 
Analysis (Design 

objectives)

Design refinement
Geometry modifications

Mesh
automatic update

Automatic detection of modifications

Improve

FEA solution
automatic update 

Final solution

Accept

 

Fig. 1. The iterative FEA process in the context of design optimization 

The implementation of these concepts in the context of the design process re-
quires the development of a set of tools, which are (Fig. 1) : 

 

1. A tool aimed at automating the identification and localization of modifica-
tions between different versions of a CAD model through the design progress. 

2. A tool aimed at automatically retrieving elements from previous versions of 
a FEA model and only remeshing in modification zones. 
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3. A FEA solver able to retrieve results of previous analyses in zones where the 
design has not been modified and to restrict the calculation to modification 
zones. 

 

This paper focuses on the presentation of our research work towards the devel-
opment of the two first tools in the list just above. 

2   Comparison between CAD Models  

The automatic comparison between two versions of a given CAD model through 
the design process and the retrieval of identical shapes is not really a new subject 
of interest [1-11]. Nevertheless, it is sill a subject of interest and a subject of re-
search investigations, especially because CAD models are in constant evolution 
and because this allows for the development of new functionalities and for the im-
provement of existing functionalities. Also, in the context of designing and storing 
huge numbers of digital product models, the interest for this type of functionalities 
is clearly growing. For example, in the aeronautics and automotive industries, 
where thousands of CAD models for manufactured parts are contained in product 
databases, being able to easily re-use stored design/manufacturing information 
would result in a much faster and more efficient design processit is.  

Among functionalities mentioned just above, a key aspect is the ability to com-
pare two versions of a CAD model, being fully independent of the frames in which 
these two versions are defined. In fact, many existing comparison approaches re-
quire that these versions are defined with respect to the same frame, which means 
that they are located and oriented the same way. In the context of our research and 
in the context of modern feature-based CAD systems, this comparison has to be 
fully independent from the definition frames of feature-based models. 

The main concept underlying our approach is to base comparisons between 
models on a vector representation of 3D shapes. Basically, a solid geometry is 
modeled in any CAD system using a spatial type of representation, referred to as a 
BREP (Boundary REPresentation) [12]. This spatial representation is fundamen-
tally based on the location of geometric entities (vertices, control points, curves, 
surfaces, etc.). As described in the next section, in our work, this BREP is added 
with vector representations of 3D shapes (the vectorial space, the metric tensor 
and the initia tensor) [11, 13-15]. Indeed, a very interesting property of these vec-
tor-based representations is that they can be derived into frame-independent quan-
tities. Consequently, they provide us with meaningful data on which comparisons 
can be made independently from any definition frame. 

2.1   Vectorial Space, Metric Tensor and Initia Tensor 

The definition of the vectorial space of BREP entities (for example, curves and 
surfaces) is based on a point cloud, which is directly derived from the BREP entity 
control points associated with their NURBS (NonUniform Rational B-Splines) de-
scription [16]. The vectorial space is computed from this point cloud as a vector 
sheaf where each vector is defined by a pair of control points. The coordinates of 
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control points (and incidentally, the components of vectors derived) are defined in 
a 4D space. The fourth coordinate of a given control point corresponds to the 
weight associated with it in its NURBS representation. If the native BREP entity is 
not a NURBS then equivalent NURBS parameters can be obtain from most CAD 
system. So the vectorial space is defined for every type of BREP entities. 

Once these vectors are computed, a corresponding metric tensor is derived. Us-

ing the 4D coordinates mentioned earlier, any vector V  can be written in a unique 

way as a linear combination of the four basis vectors ( )1 2 3 4, , ,B e e e e= . The vecto-

rial space of a BREP entity { }pVV ,,.........0=Γα , which is defined in this basis 

just above, can be expressed as: 
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Then, the metric tensor )( αΓG of this vector’s set is defined as the tensor product: 
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The inertia tensor )( αΓI of a BREP entity α  is defined as the inertia matrix of 

the entity’s set of control points obtained when a unit point mass is attached to 
each control point: 
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2.2   Comparison between CAD Models  

The basic idea on which our approach is comparing to CAD models (and by the 
way identifying differences between them) by comparing metric and inertia ten-
sors associated with entities of the two BREP models.  

With regard to the following definitions of similarity, identity and localized 
identity, this comparison is performed through four consecutive steps (Fig. 2) 

Definition 1: Two entities are similar if they have the same shape regardless of 
their size (Fig. 3a).  

Definition 2: Two entities are identical if they are similar and if their dimensions 
are the same (Fig. 3b).  

Definition 3: Two entities are identically localized if they are identical and if their 
location is the same relative to the same reference face in both models (Fig. 3c).  

These four steps are the following: 

Step 1: comparisons between metric tensors associated with topologic entities 
of the two BREPs being compared (typically edges and faces) result in a list of 
similar topologic entities between the two models. 

Step 2: comparisons between the intertia tensors of similar topologic entities 
result in a list of identical topologic entities between the two models. 

Step 3: A local frame is computed for each topologic entity tagged as identical. 
This local frame is derived from the principal direction vectors of the entity’s iner-
tia tensor. Then the coordinates of topologic entities’ barycentre are calculated 
with regard to these local frames and comparisons based on these coordinates re-
sult in a list of topologic entities which are identified as localized identical.  

Step 4: All the topologic entities of a given model which have not been identi-
fied as having a corresponding localized identical topological entity in the other 
model are tagged as modified.  

 
Once modified topologic entities are identified between the two models, the 

process ends with the classification of these entities in the following three catego-
ries: new entities, erased entities and partially modified entities. This classification  
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Similar entities retrieval

Identical entities retrieval

Identical entities localization
Computation of the transformation matrix

Identification of 
modification zones

1

2

3

4

 
Fig. 2. The general framework of our comparison algorithm 

Localized identical entities

Similar entities

Identical entities

(a)

(b)

(c)

 
Fig. 3. Three types of relationship between two BREP entities 
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is basically performed using the same type of concepts as those described earlier 
(comparisons between metric and inertia tensors, considering local frames and co-
ordinates of barycentres). It important to outline that for entities that are finally 
identified as partially modified, the modification zones are not explicitly identified 
at this stage of the process. We will see in the next paragraphs that these modifica-
tion zones are in fact implicitly identified through the remeshing process itself.     

Once these steps are completed and if necessary, the homogeneous transforma-
tion matrix between definition frames (expressing the relative position and orien-
tation of the two models’ definition frames) can be computed.  

Fig. 4 illustrates results obtained applying this approach on two versions of a 
sample part through the design process.  

 

Initial part Modified part

Similar faces

Modified faces

identical faces

 

Fig. 4. A comparison result 

3   Automatic Remeshing  

3.1   Algorithm 

The remeshing algorithm used in this study is an adaptation and improvement of a 
previous version developed by our research team [10, 17, 18]. This adaptation is 
closely related to the fact that the comparison process itself, has been improved, as 
described in the previous section.  
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In this new remeshing process, edges, faces and the volume are processed 
(namely remeshed) using the same generic scheme. This scheme is based on the 
following definition of mesh blocks. 
 

Definition 4: A mesh block is a continuous subset of mesh elements (segments on 
edges (1D), triangles on faces (2D), and tetrahedrons inside the volume (3D)), all 
of which are related to the same topologic entity of the BREP model (respectively 
an edge, a face or a body).  

As mentioned above, modification zones are not explicitly known. The basic 
principle of the method we are describing here is to define mesh blocks by cutting 
out the initial mesh. The process starts with one tetrahedron block (the initial 
mesh).  

We have illustrated the various steps of the method using an elementary part 
(Fig. 5), i.e., a beam with a square section whose length has been decreased and to 
which grooves have been suppressed.  

The steps in the remeshing process are as follows: 
 

1. The initial mesh is applied to the modified model. Two layers of tetrahedrons 
(the minimum number of layers needed to guarantee the process will work 
properly and efficiently) are destroyed around entities of the initial model that 
have disappeared (the second list in the information provided by the compari-
son algorithms).  

2. At this point, some vertices are associated with a mesh node and some are not. 
A node is created on each vertex to which no node is associated. 

 

a

b

 

Fig. 5. Remeshing on a simple case a) The mesh of the initial part b) The modified part 
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3. Tetrahedrons of the initial mesh with a node B closer than a distance L to a 
node A created at step 2 are destroyed. L is calculated using the equation: 

 

[ ]BABA EEEEL .2.4,.2,.2max −=  

Where 

AE  is the nodal spacing function value at node A, and

BE  is the nodal spacing function value at node B. 

(5) 

 

4. 1D mesh blocks (segments) on edges are created (Fig. 6a). 
5. As the 3D mesh of the modified part is partially known, each edge of the BREP 

structure is either without elements, completely meshed or partially meshed. 
Standard edge discretization procedures must be adapted for partially meshed 
edges. These edges are cut into sets of sub-edges, so that a sub-edge is either 
completely meshed or without elements. After this preliminary process, stan-
dard edge discretization procedures are applied to mesh sub-edges that remain 
without elements (Fig. 6b). Once these procedures are complete, all BREP 
edges are completely meshed (Fig. 6c). Segment blocks that cannot be inserted 
on edges of the modified model are eliminated. 

a
b

c

1D mesh blocks

 
Fig. 6. a) 1D mesh blocks; b) edge mesh processed; c) edge mesh processed with edge 
mesh recovered  

6. Tetrahedrons of the initial mesh with a node located inside a zone defined 
around segments created at step 5 are destroyed. The shape of this destruction 
zone is derived from a parabola with height L as defined at step 3 (Fig. 7a). The 
shape is very specific and has been designed so that a minimum number of tet-
rahedrons are destroyed and so that the convergence of advancing front auto-
matic mesh generation is guaranteed. 
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7. 2D mesh blocks (triangles) on faces are created (Fig. 8a). 
8. In the BREP structure, a face is either without elements, completely meshed or 

partially meshed. An adaptation of standard procedures is also necessary for 
partially meshed faces (Fig. 8b). The initialization front of our advancing front 
mesh generator is adapted. The front is initialized on the boundaries of triangles 
belonging to partially meshed faces. The advancing front mesh generator is 
then used to compute the entire face’s mesh (Fig. 8c). Here again, triangle 
blocks that cannot be inserted on faces of the modified model are eliminated. 

 

 

Fig. 7. Destruction zone a) for a mesh segment; b) for a mesh triangle.  

 

 

Destruction zone 
 (one half) 

Mesh 
segment  a) 

 
 

Mesh triangle  

Destruction zone 

b) 
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Fig. 8. a) 2D mesh blocks; b) faces mesh processed; c) face mesh processed with face mesh 
recovered. 

9. Tetrahedrons of the initial mesh with a node located inside a zone (Fig. 7b) 
defined around triangles created at step 5 are destroyed. Here again, the shape 
of this destruction zone is derived from a parabola with height L as defined at 
step 3 (Fig. 7b). This shape is different from those used at step 6 (for seg-
ments) and has also been designed so that a minimum number of tetrahedrons 
are destroyed and the convergence of advancing front automatic mesh gen-
eration is guaranteed. 

10. 3D mesh blocks (tetrahedrons) inside the volume are created (Fig. 9a). 
11. In the BREP structure, a volume is either without elements, completely 

meshed or partially meshed. The same adaptation of standard procedures is 
also necessary for partially meshed volumes (Fig. 9b). The initialization front 
of our advancing front mesh generator is adapted. The front is initialized on 
the boundaries of tetrahedrons belonging to partially meshed volumes. The 
advancing front mesh generator is then used to obtain the entire volume’s 
mesh (Fig. 9c). Mesh blocks that cannot be inserted inside the modified 
model are eliminated. 

 
This last step has also been adapted from our previous work on automatic 

remeshing. The convergence of the remeshing process is improved because the 
destruction of tetrahedrons inherent to 3D advancing front mesh generation itself 
is coupled with the destruction of tetrahedrons performed at step 9 of the remesh-
ing algorithm. Thus, convergence of the 3D advancing front process, which is a 
very sensitive problem, is achieved using a smaller value for parameter L. These  
 

a
b

c

2D mesh blocks
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a
b

c

3D mesh blocks

 
Fig. 9. a) 3D mesh blocks; b) volume mesh processed; c) volume mesh processed with vol-
ume mesh recovered. 

results in improved efficiency of the remeshing since a larger number of initial tet-
rahedrons are retrieved.   

The implementation of the remeshing process is made simpler by the fact that 
the majority of operations used here are the same as those used for meshing the 
initial solid. The efficiency (reduced CPU time) of the remeshing strategy is di-
rectly related to the importance and number of modification zones. 

The finite elements fall into two categories:  
 

• tetrahedrons retrieved from the mesh of the initial model. 
• new tetrahedrons created by the remeshing procedure.  

 
The procedure also generates a table of corresponding nodes in the initial and 

modified meshes.  

3.2   Results 

In Fig. 10 to Fig. 12, results of the comparison of BREP models and automatic 
remeshing are presented for three mechanical parts, to illustrate the method’s po-
tential. Matching results for initial and modified parts are once again identified us-
ing colour conventions. The colour of the triangular mesh indicates whether the 
face is identical, localized identical and/or partially modified. Black indicates that 
the face is erased or new. For each example, illustrations of elements that have 
been retrieved from the initial mesh, as well as elements that have been newly 
generated on the modified model, are provided.  
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Destruction zone

New mesh 
elements

Elements retrieved

 
Fig. 10. Remeshing example 1 

 

New mesh 
elements

Elements retrieved

Destruction zone
 

Fig. 11. Remeshing example 2 
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Destruction zone

New mesh 
elements

 

Fig. 12. Remeshing example 3 

4   Conclusion 

The design process typically involves many iterations of an initial design solution, 
which may be analyzed and refined numerous times. In this context, there is a 
need for tools allowing for the fast and efficient retrieval of results obtained in 
previous analyses at any stage of the design process. In this paper, we have pre-
sented a tool that automates the retrieval of modifications between different ver-
sions of a design, and the use of this information to automate the retrieval of finite 
elements between different versions of the analysis of a design. The automatic re-
trieval of FEA results between different versions of the analysis of a design is still 
an ongoing research.    
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Abstract. A method towards robust and efficient medial axis transform (MAT)
of arbitrary domains using distance solutions is presented. The distance field, d,
is calculated by solving the hyperbolic-natured Eikonal (or Level Set) equation.
The solution is obtained on Cartesian grids. Both the fast-marching method and
fast-sweeping method are used to calculate d. Medial axis point clouds are then
extracted based on the distance solution via a simple criteria: the Laplacian or the
Hessian determinant of d. These point clouds in 2D-pixel and 3D-voxel space are
further thinned to curves and surfaces through binary image thinning algorithms.
This results in an overall hybrid approach. As an alternative to other methods,
the current d−MAT procedure bypasses difficulties that are usually encountered by
pure geometric methods (e.g. the Voronoi approach), especially in 3D, and provides
better accuracy than pure thinning methods. It is also shown that the d−MAT
approach provides the potential to sculpt/control the MAT form for specialized
solution purposes. Various examples are given to demonstrate the current approach.

Keywords: Eikonal equation, wall distance, medial axis transform, thinning.

1 Introduction

In physics, the nearest normal wall distance d is still a key parameter in many
turbulence modeling and simulation approaches [10, 28] and also in peripheral
applications incorporating additional solution physics [17, 29]. Such examples
include explosive front, multiphase flow, and electrostatic particle force mod-
eling. Also, in grid generation the near-wall isovalues of d can be used to
form the boundary layer mesh [25, 30], while the far-field d contours can be
used as a rapid means of evaluating computational interfaces on unstructured
overset meshes with relative movements. Not only being useful in traditional
physics, distance field has also been important in computer vision, modeling
and computational physics.

In the general fields of shape analysis and solid modeling, including auto-
mated meshing, obtaining the medial axis transform (MAT) for a given ge-
ometry (or shape/domain) is regarded as an essential step [14, 19, 22, 21, 23].
Efficient and robust techniques are therefore required. Medial axis has been
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widely studied by researchers across the community. Several different types
of methods exist, mainly including thinning, Voronoi diagram, distance field,
and hybrid methods. A brief review on these methods can be found in [9]. Most
widely discussed are the Voronoi diagram [6, 16, 3, 7] and distance field meth-
ods [1, 24, 27]. By nature, the Voronoi diagram is geometry-based and the dis-
tance field is often related to general differential equations. One of the advan-
tages of differential equations is that their extension to 3D space is straight-
forward. On the other hand, although being quite intuitive, the Voronoi type
methods often encounter increasing geometric and logical complexity and the
approaches rigidity prevents MAT modification/customization.

In this paper, we propose a hybrid differential MAT approach based on the
pixel/voxel distance field solution, namely d−MAT. Notice the advantage of
such a hybrid method is to extract a well approximated medial point cloud on a
properly calculated distance field, while pure thinning methods are fundamen-
tally discrete and cannot ensure an accurate distance distribution. A similar
approach has been suggested by Bouix [5]. However, the Laplacian or Hessian
determinant criteria of the distance field proposed in this study seems simpler,
more robust, and is independent on the thinning techniques. As shown later
in this paper, the differential equation-based approach also provides a biased
MAT, in other words the medial axis does not necessarily lie at the mid-point
of the space, and it can be sculpted/controlled by the user.

To evaluate d, there are several methods. They can be broadly classified
as: search procedures, integral approaches, and numerically solving differ-
ential equations. Crude search procedures often require O(nvns) operations
where nv and ns correspond to the number of volume and surface node points
[28]. This can be O(nv

√
ns) and O(nv log ns) operations, however, for com-

plex geometries such specialized approaches are difficult to apply [28]. Dif-
ferential equation-based methods have been discussed in detail in References
[29, 28, 30]. Advantageously, they are naturally compatible with vector and
parallel computer architectures. The focus here is on the solution of Eikonal
differential equation within the framework of the integer Cartesian space
using the fast-marching method (FMM) [25] or the fast-sweeping method
(FSM) [31].

2 Solutions of Eikonal Equation

2.1 H-J/Eikonal Equation for d

To overcome the expense of calculating d, Sethian [25] considered viscosity
solutions of the following general Hamilton-Jacobi equation, ε → 0,

β
∂φ

∂t
+ H(∇φ,x, β) = ε∇2φ (1)

with H(∇φ,x, β) = F |∇φ| − (1 − β). A stationary Eikonal equation with
hyperbolic nature is obtained when β = 0:
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F |∇φ| = 1 + ε∇2φ (2)

where the dependent variable φ describes first arrival times of propagating
wave fronts from boundaries, and F (x) is the local speed function of these
fronts. The wall distance is then simply d = F φ, if F ≡ const.. With ε → 0,
Eq. (2) can be solved by numerical schemes with just enough dissipation to
gain an entropy (physical sensible) solutions [25, 28]. As shown by Tucker
[28, 30], the right hand side Laplacian is useful and often employed to control
the front propagation velocity. However, this potential is not explored here.

With ε = 0, Eq. (2) is also the multidimensional form of the boundary
value formulation of the front tracking problem, F = dx

dφ , where F > 0.
Details of the procedures to solve Eq. (2) with ε ≡ 0 using FMM and FSM
are given in Appendix.

2.2 Domain and Initialization

For simplicity and efficiency, uniform Cartesian grids1 are used in this d
calculation context, namely Δx = Δy = Δz = h. The numbers of grid points
in x, y and z direction are I + 1, J + 1 and K + 1 respectively. The physical
space is transformed and scaled into x ∈ [0 : I], y ∈ [0 : J ] and z ∈ [0 : K],
so that no grid storage is needed and point locating is straightforward. To
locate a given point (x0, y0, z0) in the Cartesian grid, the floor function � · �
is simply applied. For example, if i = �x0�, then i ≤ x0 ≤ i + 1, and so are
y0, z0.

Fig. 1. A 2D schematic showing the wall boundary (or initial front) and the ini-
tialization of the solution (F > 0 for outward propagation).

Figure 1 shows the position of the wall boundary or initial front inside a
Cartesian grid. This arbitrary curve can either be open or closed. To initialize,
all immediate nearby grid points of the curve are marked as known (black
1 Non-uniform Cartesian grids are particularly attractive when the geometric fea-

tures have a broad range of scales.
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(a) (b)

Fig. 2. Distance field contours for (a) a cosine wave, and (b) a curved cross domain

dots in Figure 1) and the value of d on these points are evaluated exactly.
The remaining points are marked as ‘unknown’ and the value of d on them
set as ∞. Then, the whole domain is solved numerically with FMM or FSM.

2.3 Distance Solution Examples

Figure 2 shows the distance contours of example 1 and 2 solved on a uniform
Cartesian grid with I = J = 200. In Example 1, frame (a), the boundary
(initial front) is a piece of cosine curve x ∈ [0, 4π], and in example 2, frame
(b), the domain is the closed area of a curved cross profile. Both examples
show the entropy conformed fronts propagating from the initial position in 2D
space. The analogous compression from the concave feature and the expansion
from the convex and sharp feature are also clear.

Example 3 is a slightly more complex multiply connected 2D domain.
Various shapes (including a rectangle, a square, a triangle, an ellipse and a
circle) are subtracted from the domain leaving internal voids with disparate
d scales. A Cartesian grid with I = J = 400 is used. Both FMM and FSM
demonstrate good efficiency to obtain accurate solutions with FMM using
4.7 seconds and a single 22-sweep FSM using 2.3 seconds on a single 2.33GHz
Intel Xeon CPU core. Figure 3a shows the distance contour. Collisions of
fronts are seen in the central area. A center line cut (shown as the dash-dot
line) is made through the domain. Figure 3b compares numerical solutions
together with the exact d distribution on the center line. The FMM and FSM
solutions are close to each other and agree with the analytical solution.

Example 4 is a 3D cubic box, where a variety of shape subtractions are
made. FSM is applied to get the solution on a I = J = K = 200 uniform
3D Cartesian grid. Figure 4 plots the d contours at three cut planes. The
predicted maximum d is within 0.05% of the exact solution.
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Fig. 3. Distance field contours for example 3

Fig. 4. Distance field obtained for the cubic box domain at various planes. The
contour range evenly spreads from 0 (blue) to dmax (red).

3 Medial Axis Transform via Distance Field: d−MAT

The medial axis of a shape provides a compact representation of its features
and their connectivity. As a result, researchers have discovered and are still
exploring its use in many fields, such as topology recognition for grid gen-
eration [26, 23]. The medial axis is defined when the shape is embedded in
an Euclidean space and is endowed with a distance function. Therefore, an
expedient route is to efficiently obtain d (as discussed in previous sections)
followed by the medial axis construction. (Notice that this approach is dif-
ferent from the pure geometric Voronoi-diagram based approach, in which
the equal distance nature of the Voronoi-diagram is a key.) In 3D, a sphere is
called medial if it meets S, the domain boundary, only tangentially in at least
two points. The medial axis M is defined as the closure of the set of centers
of all medial spheres. Figure 5 is an illustration in 2D. Only the medial axis
inside the domain is considered here. Informally, the medial axis of a surface
in 3D is the set of all points that have more than one closest point on the
surface. They are often called the medial axis transform (MAT) for that 3D
bounded domain.
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Fig. 5. Schematic of the medial axis for a 2D domain defined by a closed curve

3.1 Feature Detection Criteria

The key step for the MAT construction here is to detect the medial axis
feature in a given d field. Notice that the unique property of a medial axis
point is that it has equal distance to multiple boundaries. Hence, in space, the
medial axis represents the ‘local maxima’ or non-smoothness of the distance
function d(x). For example, in one dimension the medial axis is a single point
as shown in Figure 6.

d’(x) discontinuity
d

x

Fig. 6. An example of 1D distance field and its medial axis (vertex)

In multi-dimensions, one of the general formulations to represent this dis-
continuity in gradient or ‘slope jump’ is the Laplacian, ∇2d. In smooth re-
gions, ∇2d ≡ 0. In the vicinity of the local maxima of d, ∇2d → −∞. Hence,
with the numerical approximation of d, the medial axis area can be identified
by specifying a criteria such as ∇2d < −ε, where positive small number ε is
a user specified threshold.

Another way to detect the medial axis feature is through the Hessian
matrix determinant. The Hessian matrix, Hij(d) = ∂2d

∂xi∂xj
, is a square matrix

of second-order partial derivatives of a function. It is the true ‘second order’
derivative in multi-dimensional space. The determinant of the Hessian matrix
has been widely used in computer vision [15] (e.g. the ’blob detection’) and
shock wave detection in computational fluid dynamics [2, 20].
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(a) (b) (c) (d)

Fig. 7. Distance field and marked medial axes for simple domains: (a, b) Laplacian
based medial axes and (c, d) Hessian based.

Figure 7 gives geometries where d distance contours and medial axes (in
thicker line) are shown. For the medial axis identification, Figures 7(a) and
(b) use the Laplacian criteria while 7(c) and 7(d) apply the Hessian matrix
criteria. The results are very similar. We note that generally the Laplacian
is simpler and cheaper to calculate. Figure 8 gives Laplacian based medial

(a) (b) (c)

(d) (e)

Fig. 8. Distance field and marked medial axes for complex domains
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(a) (b) (c)

Fig. 9. Point cloud represented medial axis for a bended duct: (a) d contours and
marked MA, (b) Underlying point cloud of the MA, (c) Zoom-in.

axes for more complex geometries. These include a hand profle, compressor
passage with two blades and one splitter, a turbine blade shroud, a turbine
blade in a passage, and a test section with an airfoil and other devices.

3.2 Thinning and Representation

It is very often still not enough to just have the medial axis as a finite thickness
curve or surface. The ultimate aim of MAT is to reduce the marked area to
thin curves/surfaces and possibly to represent them in a parametric form.
This requires a ‘thinning’ operation. As shown, for example, in Figure 9 once
the medial axis area is marked, by say application of ∇2d < −ε one only
obtains a point cloud of the underlying mesh nodes. However, to build up
the topology, data reduction and connectivity of the point cloud are needed.
Because the complex medial axis area does not represent a simple bounding
line or surface, surface reconstruction methods or point cloud simplification
methods cannot be applied directly, particularly due to branching points of
the medial axis. Hence, here, shape recognition methods are considered. A
typical procedure is to first convert the point cloud into a binary image and
then thin the ‘width’ of the band (or shell) in the image, and finally transfer
back to medial axis skeleton of the domain.

Notice that the term ‘thinning’ is a morphological operation that is used to
remove selected foreground pixels/voxels from 2D/3D binary images, some-
what like erosion or opening. The result of thinning can be regarded as the
minimum set of the topology preserving representation of the original shape.
It can be used for many applications, and is often useful for skeletonization.
Thinning is normally only applied to binary images, and produces another
binary image as output. In the current case, because the uniform Cartesian
grids are used, they are conformed with binary (black & white) images. The
marked medial axis points can be regarded as ‘black’ pixels and the rest
are ‘white’. Therefore, the thinning methodologies for binary images can be
applied here to thin medial axis point clouds.
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Thinning in Z2

Thinning methodologies for 2D binary images have been extensively studied
since 1980s (see [13] for a review). In this study, the algorithm described in
[11] is adopted. Consider a pixel at p and its eight neighbors, see Figure 10.
The following notations are used. The pixels x1, x2, . . . , x8 are the 8-neighbors
of p and are collectively denoted by N(p). They are said to be 8-adjacent to
p. The pixels, x1, x3, x5, x7 are the 4-neighbors of and 4-adjacent to p. The
value of each pixel can either be 0 or 1 meaning ‘white’ and ‘black’.

p x1

x2x3x4

x5

x6 x7 x8

Fig. 10. Pixel adjacencies of N8(p) in Z2, where the value at each pixel can either
be 0 or 1

The thinning algorithm is generally described as: p is deleted (i.e. value
changed from 1 to 0), if only if all the following conditions are satisfied:

C1: XH(p) = 1,
C2: 2 ≤ min[n1(p), n2(p)] ≤ 3,
C3: (x2 ∨ x3 ∨ x8) ∧ x1 = 0 for odd iterations; (x6 ∨ x7 ∨ x4) ∧ x5 = 0 for
even iterations.

where ∨, ∧ are logical ‘OR’, ‘AND’ operators, and

XH(p) =
4∑

i=1

bi and bi =

{
1, if (x2i−1 = 0) and (x2i−1 or x2i+1 = 1)
0, otherwise

(3)

n1(p) =
4∑

k=1

x2k−1 ∨ x2k and n2(p) =
4∑

k=1

x2k ∨ x2k+1 (4)

A note to this algorithm is that it preserves the connectivity of the pixels,
or to say: no two remaining pixels after thinning are ‘disconnected’ if they
were neighbors before the thinning. Therefore, if p and x1 are the remaining
pixels in Figure 10, the local connectivity is straightforward, because x1 is
either directly or diagonally adjacent to p. A simple N8(p) neighborhood
check restores the full connectivity. p is identified as a medial axis branching
point if

∑
N8(p) > 2; for p, where

∑
N8(p) = 1, p is an end point of a medial

axis; and finally for any p with
∑

N8(p) = 2, p is a middle point in a medial
axis curve.
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(a) (b) (c)

Fig. 11. The bended duct after applying thinning: (a) Single-pixel-wide point
cloud, (b) Zoom-in, (c) Rebuilt connectivity and splined MA curves.

(a) (b) (c) (d)

Fig. 12. Fina medial axes for simple domains previously shown in Figure 7

The typical procedure of applying this algorithm can be described with the
aid of Figures 9 & 11. First, the binary image is obtained from the marked
medial axis point cloud by one of the feature detecting criteria on the d
solution, as in Figure 9b & c. Secondly, the binary image is thinned using the
above pixel thinning algorithm, shown in Figure 11a & b. Thirdly, the pixels
are transferred from Z2 back to R2. Finally, and optionally, the MAT points
can be splined in smooth curves, as in frame (c). Figures 12 & 13 show the
results of pixel thinning applied to the cases previously shown in Figures 7
& 8.

Thinning in Z3

It is much more complicated to thin a binary image with p ∈ Z3. The recent
study of Palágyi [18] shows that a robust (both topology-preserving and
maximum thinning) surface-thinning algorithm is possible. It deals with the
full 26-adjacent voxels to p, see Figure 14. This is an analogous extension from
the 2D thinning algorithms but different in the underlying details. We adopt
this method in this study to thin the equivalent Z3 binary image representing
the marked medial axis point cloud in 3D.
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(a) (b) (c)

(d) (e)

Fig. 13. Final medial axes for more complex domains previously shown in Figure 8

U

S
P

N
E

D

W

(a)

P

(b)

Fig. 14. Voxel adjacencies of N26(p) in Z3

Consider a voxel p. Its directly connected 6-adjacent neighbors are denoted
as U, N, E, S, W and D, shown in Figure 14a, also denoted as N6(p). The
set N18(p) contains the set N6(p) and the 12 points marked “black square”.
The set N26(p) contains the set N18(p) and the 8 points marked “black cir-
cle”. Whether p is deletable depends on N26(p) marked “diamond” and six
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additional points marked “black diamond”, see Figure 14b. An important
step is to construct structuring elements to delete the extra voxels. Due to
the extended neighbor dependency, this procedure, although becoming more
complex than its 2D counterpart, still seems manageable. A complete set of
114 structuring elements are suggested in [18]. Details of this algorithm can
be found in the original paper. A note to the application of this thinning algo-
rithm is that in our study the extracted medial point cloud by the Laplacian
criteria is already quite thin, usually a few voxels thick, say Nth ∼ 4 voxels.
The iterations involved in the above thinning is at most Nth/2 ∼ 2, and this
number is independent on the size of the image, i.e. the total voxels in space.

(a) (b)

Fig. 15. Full and partial view of the 3D medial axis surface through voxel thinning

For example, the 3D medial surfaces, shown in Figure 15, are obtained
using this approach. The FSM d solution of the 200 × 200 × 200 Cartesian
grid in Z3 is calculated first. The voxels with local maxima of d are marked
using the Laplacian criteria, and finally thinned into the shown complex
medial surface inside the domain, between objects.

3.3 Solution Superposition

One useful feature of the current d−MAT approach is that it allows solution
superposition. For instance, in Figure 16, frames (a), (b) and (c) are three
independent solutions. The first is simply a square domain. The other two
are solid points at two different locations placed in an infinite domain. After
applying the minimum superposition:

d = min(da, db, dc) (5)

where da, db and dc are the independent solutions, the solution shown in
frame (d) is obtained. The solution is the same as if it was solved with
the three boundary conditions imposed simultaneously. This decomposition
is particularly useful because different speed functions can be applied to
different solutions before the superposition. For example, Figure 17 rep-
resents a different pattern of the distance field after the superposition of
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(a) (b) (c) (d)

Fig. 16. Eikonal d solution superposition for a square domain and two points in
infinite domains: (a) Square domain solution; (b, c) Point source solutions; and
(d) Superposition of solutions

Fig. 17. Solution superposition for a square box and two points distance field
solution with Fa : Fb : Fc = 1 : 4 : 2

(a) (b)

Fig. 18. Standard and biased medial axes for a multi-element airfoil domain

three solutions with different speeds, in which case the speed functions are
Fa : Fb : Fc = 1 : 4 : 2.

With this useful feature, one can build biased medial axes by setting differ-
ent speed functions to superimposed solutions. Figure 18(a) shows the stan-
dard medial axes of the flow domain of a multi-element airfoil, and frame
(b) demonstrates the biased medial axes where front speed from the far field
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(a) (b)

Fig. 19. Standard and biased medial axes for a compressor passage with two blades
and one splitter

boundaries is three times faster than the one from the airfoil. Sometimes to
create more sensible domain decomposition, it is desirable to have such a
biased medial axis. For instance, in Figure 19, the biased medial axes may
provide more sensible information for domain division. We also note that to
further sculpt the medial axis (see Reference [30]) other d dependent func-
tions can be added to the differential Eikonal type equation. This sculpting
can provide a d−MAT for high quality hexehedral meshing. This is left as
future work.

4 Conclusion

Fast marching and sweeping methods of the Eikonal equation have been
applied to obtain distances, d, in arbitrary domains. A continuous distance
field based method for creating the medial axis transform d−MAT has been
proposed and demonstrated with various examples. This d−MAT approach
combines fast Eikonal equation solutions with the pixel/voxel thinning. The
link between the distance solution and the medial axes are established upon
the use of simple criteria of ∇2d and |Hij(d)|. It has been found to be a robust
alternative to the classical pure geometric or pure thinning methods. Solution
superposition and boundary dependent front speeds have been found useful
to generate the biased medial axis, providing more general information than
the standard medial axis. Because the differential equation does not pose
any particular challenge when extended from 2D to 3D, it is a promising
approach for medial axes evaluation in geometrically complex domains. The
differential equation basis allows for flexible d−MAT customization through
the addition of source terms that are functions of d itself. Future work will
be focused on the representation of the 3D thinned medial surfaces which
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will involve building the connectivity through local voxel neighborhood, re-
sampling the voxels and splining the surfaces.
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A Finite Difference Solution Procedures

A.1 Fast-Marching Method

The gradient ∇φ in Eq. (2) is discretized by Godunov’s upwind difference
scheme. This correctly chooses the physically vanishing weak viscosity solu-
tion. The following form is suggested by Osher [17] and Sethian [25],⎛⎜⎜⎝

max(D−x
ijkφ − D+x

ijkφ, 0)2 +

max(D−y
ijkφ − D+y

ijkφ, 0)2 +

max(D−z
ijkφ − D+z

ijkφ, 0)2

⎞⎟⎟⎠ =
1

F 2
ijk

(6)

where D−
ijk and D+

ijk are the first-order backward and forward finite difference
operators given by:

D−x
ijkφ =

φi,j,k − φi−1,j,k

Δx
, D+x

ijkφ =
φi+1,j,k − φi,j,k

Δx

D−y
ijkφ =

φi,j,k − φi,j−1,k

Δy
, D+y

ijkφ =
φi,j+1,k − φi,j,k

Δy

D−z
ijkφ =

φi,j,k − φi,j,k−1

Δz
, D+z

ijkφ =
φi,j,k+1 − φi,j,k

Δz

(7)

φi,j,k−1

φi,j,k+1

φi,j−1,k

φi,j+1,k

φi−1,j,k φi+1,j,kφi,j,k

Fig. 20. Finite difference stencil at (i, j, k)



262 H. Xia and P.G. Tucker

The stencil of grid points involved is shown in Figure 20. Although schemes
with higher order accuracy are available, Refs. [25, 28] suggest the first-order
scheme is sufficient for d calculation. Through substitution of the above equa-
tion Eq. (6) can be rewritten as:

max
(

φ − φ1

Δx
, 0
)2

+ max
(

φ − φ2

Δy
, 0
)2

+ max
(

φ − φ3

Δz
, 0
)2

=
1

F 2
ijk

(8)

where
φ = φi,j,k

φ1 = min(φi−1,j,k, φi+1,j,k)
φ2 = min(φi,j−1,k, φi,j+1,k)
φ3 = min(φi,j,k−1, φi,j,k+1)

(9)

In a way similar to the Dijkstra algorithm [8], the idea of the Fast-Marching
Method (FMM) is to introduce an order to the selection of grid points. This
order is based on a causality criteria, where the arrival time φ at any point
depends only on the neighbors that have smaller values. Therefore, the FMM
relies on propagating the information in one direction from smaller values of
φ to larger ones. This is also convenient for Eq. (8), since it can be further
reduced to a standard quadratic equation,(

φ − φ1

Δx

)2

+
(

φ − φ2

Δy

)2

+
(

φ − φ3

Δz

)2

=
1

F 2
ijk

(10)

The general algorithm can be described as follows. The front constructs a
narrow band of trial points, distinct from the accepted (known) points and
the far (unknown) points. Among the current trial points, the point, e.g.
denoted as A, with smallest φ is moved from ‘trial’ status to ‘known’. Each
neighbor of A is added to trial points if it was ‘unknown’ before, and the
quadratic equation (10) is solved for each neighboring point of A. Therefore, a
new narrow band of trial points is formed. A recursive procedure is performed
until there are no more ‘unknown’ points. The key to this algorithm is to find
the smallest φ among the trial points. To store the trial points A special min-
heap data structure [4] is suggested in [25], in which the worst case of finding
the smallest φ has the complexity of O(log N). This is significantly improved
compared with a crude search, which is of O(N).

A.2 Fast-Sweeping Method

To avoid implementing any complex data structure essentially needed in the
marching methods, the Fast-Sweeping Method (FSM) [31] is also considered.
For discretization, FSM shares the same finite difference scheme with FMM,
i.e. the first-order Godunov’s scheme Eq. (6). However, the FSM does not
have the FMM’s convenience of reducing Eq. (8) to a standard quadratic
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equation. A solution procedure of Eq. (8) is suggested in [31] by seeking the
solution of the following general form,

max(x − a1, 0)2 + max(x − a2, 0)2 + · · · + max(x − an, 0)2 = b2 (11)

where n is the number of dimensions. The above equation is re-organized so
that a1 ≤ a2 ≤ · · · ≤ an. When n = 2, the unique solution of the above
equation is:

x̄ =

⎧⎨⎩
a1 + b , if a1 + b ≤ a2,

a1 + a2 +
√

2b2 − (a1 − a2)2

2
, otherwise.

(12)

and for n ≥ 3 a recursive procedure, detailed in [31], is required to find x̄,
in which an integer p, 1 ≤ p ≤ n, is sought such that ap < x̄ ≤ ap+1 is the
unique solution of

(x − a1)2 + (x − a2)2 + · · · + (x − ap)2 = b2 (13)

FSM involves Gauss-Seidel iterations with alternating sweep orderings. At
each grid point xi,j,k whose value is not initialized as known (or fixed), the
solution of Eq. (8), denoted by φ̄i,j,k, is computed from the most recent values
of its neighbors φi±1,j,k, φi,j±1,k and φi,j,k±1, and then the value at xi,j,k is
updated by:

φnew
i,j,k = min(φold

i,j,k, φ̄i,j,k) (14)

The whole domain is repeatedly swept with 2n alternating orderings. For
example when n = 3, these orderings are

{i = 0 : I or I : 0} × {j = 0 : J or J : 0} × {k = 0 : K or K : 0}

Notice that often just one 2n sweep cannot guarantee a converged solution
for an arbitrary speed function F (x), especially those with complex charac-
teristics [31, 12]. However, in practice, for constant F or those with simple
characteristics one 2n sweep is sufficient for an accurate solution.
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Abstract. This paper presents an effective method for automatic topology re-
covery of non-manifold geometries. Mixing topology recovery and geometry noise
detection/removal allowed us to achieve effectively the automation and robustness
required by such methods. We developped our method on CAD boundary represen-
tation (BREP) geometries in the context of surface mesh generation, but it could
also be directly applied to discrete STL or mesh geometries. Its reliability and effi-
ciency has been validated on a variety of complex manifold and non-manifold CAD
geometries.

1 Introduction

Even today, legacy or imported CAD models often lack a large amount
of topological information (patch connectivity) or contain some geometri-
cal noise entities (like micro-curves) which are often due to translations in-
volved when exchanging data between CAD systems. These can prevent a
conforming boundary representation of the surface assembly from being built
straightaway.

This especially becomes a problem for modern parametric meshing meth-
ods like [5] when it comes to generate a conforming surface mesh.

Even though great improvements were allowed by modern file formats
such as STEP, these issues still did not totally disappear especially on large
geometries made of complex assemblies.

Let us recall that boundary representation models are composed of two
parts:

1. Geometry: surfaces, curves and points.
2. Topology: faces, coedges, edges and vertices. A face being a connex com-

ponent of a surface bounded by coedges; a coedge a bounded interval of a
curve. Edges are bounded by vertices and associate coedges accross patches
to define how faces are connected. Vertices associate points to define how
edges are connected. Higher level entities such as lumps and shells are often
defined but are beyond the scope of the method we propose.
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The problem of topology recovery is to compute coherent topological edges
and vertices data from :

1. the given geometry,
2. the topology of faces and coedges.

In other words, points and curves must be associated to one another to define
how faces are linked together. This might also require some curves to be split
as it will be illustrated later on figure 1.

Let us consider that this whole figure is smaller than the tolerance ε :
p1 and p2 will be identified. p1 will also be projected on c1. p1 will not
be projected on c2 because face(c2) ∈ F (p1). Last, neither p1 will be
projected on c3 nor p3 on c4 because the reverse projection condition

contained in Cpoint() is not satisfied.

Fig. 1. Vertex projection and association

Methods for topology recovery have been proposed since the early 90’s.
Tolerance driven methods which associate all geometrical entities within a
given threshold quickly show their limits as the CAD geometries are often
multiscale, making the global tolerance adjustment complex, case dependent
and even sometimes impossible.

In [2], a method to recover the topology of a mesh based CAD is proposed.
It uses heuristics to determine wrong associations of edges, thus removing the
burden of tolerance tuning. The method proposed by [3] to repair a discrete
polyhedral CAD geometry is to first compute a shared-vertex polygonal rep-
resentation and then merge each polygon edge with the most appropriate
edge. While providing more automation, these methods only apply to dis-
crete mesh based CAD geometries and do not remove the need for a human
intervention on complex models.



Automatic Non-manifold Topology Recovery 269

The approach recently described in [1] based on scoring function to pair
curves together extends these methods to continuous CAD models, providing
more automation and robustness. Unfortunately, it applies only to manifold
geometries and it is still not adapted to models containing geometry noise
such as micro-curves.

Our experience with CAD models and topology reconstruction is that,
without effective geometry noise detection and removal, a reconstruction
method cannot be effective on complex or dirty models. This led us to another
approach whose basic keys are:

1. to mix topology recovery with geometry noise detection and
removal. Since the geometrical noise detection is a multiscale problem,
it is mainly made through topological considerations without requiring
another extraneous tolerance threshold. This allows us to detect auto-
matically noise, without removing small features.

2. to associate geometrical entities (points then curves) as long
as it makes sense from a geometrical/topological non-manifold
point of view and the optionally specified tolerance is not reached.

One of the major strengths of our method is its generality. Unlike [2] it
is not based on several specific heuristics but only on a couple of criteria:
one for vertex association and one for edge association. Moreover it provides
greater automaticity without restricting the field of application to manifold
geometries like [1]. Last but not least, non-manifold geometry features do not
require any special treatment but are treated as the general case.

2 Algorithm Description

2.1 Pre-requisites

We suppose that the intra-face topology is known or has already been recon-
structed. In other words, vertex association is already achieved inside each
face of the input geometry. We concentrate here on the reconstruction of the
inter-face topology which is the most complex part of the problem.

To simplify notations, we will use the term curve instead of coedge from
now on.

Definition 1.
For a curve c, we will note ĉ the edge corresponding to c, i.e. the set of

curves associated to c.
For a point p, we will note p̂ the vertex corresponding to p, i.e. the set of

points associated to p.
We will also define order(p) as the number of points in p̂ and order(c) as

the number of curves in ĉ.

In the illustrations of this section, points associated together as a vertex are
surrounded by a dashed line ellipsis.
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2.2 The Optional ε Tolerance Parameter

The only parameter the user can optionally tune in the algorithm is the
tolerance ε. It defines the size of the smallest feature or gap the user wants
to preserve. Even if some modelling artifacts or features are smaller than this
tolerance, it will not be a problem for our reconstruction algorithm.

Moreover, in our method, the effects of a given ε are overriden by the
following rules:

• a geometric detail smaller than ε will be kept unless it prevents conformity
achievement;

• no vertex/edge association above ε will be made
• a vertex/edge association below ε will not be made if it is in contradiction

with the local geometrical/topological configuration.

In practice, this ε parameter is only optional and practically never needs
to be tuned because our method is mostly driven by the local geometry and
topology.

2.3 Pre-processing

Since a great part of the algorithm is based on the notion of proximity between
geometrical entities, curves must be discretized and accelerating structures
need to be built in order to achieve a good implementation of this method.
The algorithm will mainly need:

• to localize and enumerate close curves in the space,
• to enumerate the edges connected to each vertex.

2.4 Vertex Association and Projection

This step is the heart of the method: it detects which vertex associations
or projections make sense or not, given the local geometry/topology. It also
removes a part of the geometry noise using a collapsing technique.

Definition 2.
For a vertex v, let us define :

• C(v) the set of curves c such that v is an extremity of c
• F(v) the set of faces f such that v ∈ f

Definition 3.
For a point p and a curve c we define:

• face(c) as being the face c belongs to.
• the distance between p and c as d(p, c) = mina∈cd(p, a) where a ∈ c means

that a is a point of c.
• Pc(p) ∈ c the projection of p on c, i.e. a point such that d(p, c) =

d(p, Pc(p))
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Let us remark that in this definition:

• Pc(p) is not necessarily an orthogonal projection;
• Pc(p) always exists (we consider a finite space) but is not necessarily

unique. In this latter case, any choice of minimum can be made.

Definition 4. For a curve c, we will say that 2 points p1 ∈ c and p2 ∈ c are
compatible if dc(p1, p2), the distance between p1 and p2 along c, verifies:
dc(p1, p2) ≤ min

{
ε, 1

10 × length(c)
}
.

Let us remark that in this definition the choice of the constant 1
10 might

seem arbitrary, but this choice does not actually have a strong impact on the
algorithm behavior.

Definition 5. For a set of faces F , we note PF (p) the projection (in the
sense of definition 3) of the point p on all the curves of the faces in F .

We can now introduce the criterion upon which the vertex association is
decided:

Definition 6. Let p be a point and c a curve. We define the proposition
Cpoint(p, c) as: d(p, c) ≤ ε and PF(p̂)(Pc(p)) is compatible with p.

The last condition of this definition can be seen as a form of reflexivity
condition and can be interpreted as “the reverse projection of the projection
of p is topologically equivalent to p”.

We will use the condition Cpoint to decide whether merging two points
or projecting a point on a curve makes sense or not from a geometri-
cal/topological point of view. The distance condition will prevent us from
merging entities beyond the tolerance while the reverse projection condition
will prevent us from creating faces overlaps or partially collapsing faces.

The algorithm 1 to project and associate vertices is illustrated on some
common cases on figure 1. The reader should note that geometry noise re-
moval happens when we remove (if it exists) the smallest edge between the
two points we are about to identify.

2.5 Edge Association

The edge association step heavily depends on the results of the previous
vertex association step: for all curves sharing the same vertex extremities, it
determines whether they should be associated as a single edge or not.

Definition 7.
For an edge e, let F(e) be the set of faces f such that e ∈ f .
For 2 curves c1 and c2 we define the distance between c1 and c2 as:

d(c1, c2) = max {maxa∈c1d(a, c2), maxb∈c2d(b, c1)}
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foreach point p in the model do
list = ∅;
foreach curve c such that d(p, c) ≤ ε do

list += c;
end
sort list in the ascending order relatively to the function d(p, .);
foreach curve c in list (in order) do

if face(c) 	∈ F(p̂) then
if Cpoint(p, c) then

p1 = the first extremity of c ;
p2 = the second extremity of c ;
if p and p1 are compatible then

remove (if exists) the smallest edge between p̂ and p̂1;
identify p and p1 ;

else if p and p2 are compatible then
remove (if exists) the smallest edge between p̂ and p̂2;
identify p and p2 ;

else
split the curve c at Pc(p);
identify Pc(p) and p;

end

else
// merging further does not make topological sense
end of loop on curve c;

end

end

end

end

Algorithm 1. The vertex projection and association algorithm

Definition 8. For 2 curves c1 and c2 we define the proposition Ccurve(c1, c2)
as: d(c1, c2) ≤ ε and F(ĉ1) ∩ F(ĉ2) = ∅.
The condition Ccurve is the criterion upon which the edge association is
decided. The distance condition will prevent us from merging curves beyond
the tolerance while the empty intersection condition will prevent us from
creating faces overlaps and from partially collapsing faces.

This edge association step is described in algorithm 2 and illustrated on
a simple case on figure 2. For clarity concerns, we did not detail the simple
extra treatment which can be added to deal correctly with some face overlaps.

2.6 Topology Post-processing

While constructing vertices association, we may have removed already some
geometry noise, but there might still be some micro-curves preventingthe
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foreach curve c1 in the model do
list = ∅;
foreach curve c2 such that c1 and c2 share the same extremities do

list += c2;
end
sort list in the ascending order relatively to the function d(., c1);
foreach curve c2 in list (in order) do

if Ccurve(c1, c2) then
identify curves c1 and c2;

else
// merging further for c1 would not make topological sense
end of loop on c2;

end

end

end

Algorithm 2. The edge association algorithm

Let us consider that this whole pattern is smaller than the
tolerance ε: curves c1 and c2 will be merged, as well as c3 and c4

but c1 will not be identified to c3 because F(ĉ1) ∩ F(ĉ3) 	= ∅ (c1

and c2 have been identified before).

Fig. 2. Edge association

global conformity to be achieved, as illustrated on figure 3. The goal of the
post-processing which is described in algorithm 3 is to identify and collapse
them.

The reader can remark that at the end of the post-processing, any face
whose curves have all been removed is removed.
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Let us consider that c is a small curve preventing conformity. It
will be removed, vertices v1 and v2 will be merged, as well as

curves c1 and c2

Fig. 3. Noise post-processing

list = ∅;
foreach curve c in the model do

if order(c) == 1 and length(c) ≤ ε then
list += e;

end
end
sort list in the ascending order relatively to the length of the curves;
foreach curve c in list (in order) do

let v1 and v2 be the vertex extremities of c;
if order(c) == 1 then

foreach curve c1 ∈ C(v1) such that c1 �= c do
foreach curve c2 ∈ C(v2) such that c2 �= c do

if Ccurve(c1, c2) then
identify vertices v1 and v2;
remove curve c;
if c1 and c2 share the same extremities then

identify curves c1 and c2;
end
continue with the next iteration on c;

end
end

end
end

end
remove any face whose curves have all been removed;

Algorithm 3. The topology post-processing algorithm
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3 Applications

We implemented our algorithm in PreCAD, a module aimed at preparing
CAD data for surface meshing. The CAD is first imported from a CAD
engine, such as for example Opencascade [9] or ACIS [10]; the topology of
each face is then reconstructed separately. Our algorithm is then applied to
recover the global topology.

After this processing, the CAD is meshed with BLSURF [5]. To test our
method deeper, all the input topology information for vertices and edges was
discarded from the input CAD. Last but not least, the capacity to change
the optional tolerance parameter was not used for any of these cases. Our
goal was indeed to assess a fully automatic approach.

Figures 4, 5, 6, 7 and 8 show typical examples of geometries we are able
to reconstruct automatically with our method.

We tested our method on a large test base of 800 more or less complex
IGES, STEP and SAT cases with successful results. Table 1 gives some statis-
tics on a representative set of industrial geometries. It presents:

• Input faces/curves: the number of faces and curves the input CAD ge-
ometries is made of.

• Removed faces/curves: the number of faces and curves that our algorithm
decided to collapse because they were considered as noise, preventing
conformity achievement.

• Free edges: the number of edges that remain unassociated after the pro-
cess. One can expect this count to be null for a closed manifold surface.

• Non-manifold edges: the number of topological edges that have a class
with at least 3 geometrical curves.

Fig. 4. Fad and Wheel geometries made of respectively 1,328 and 1,447 faces
(courtesy of Fathi El-Yafi)



276 A. Alleaume

Fig. 5. V6 engine part made of 7,268 faces (courtesy of Fathi El-Yafi)

Fig. 6. V6 engine patch-independent surface mesh generated by BLSURF

• Time: CPU time required by the computation of the topology on an AMD
Opteron 2.4 GHz.

• Valid volume: “yes” means that a volume mesh can be generated from
the derived surface mesh with the surface constrained Delaunay mesher
Tetmesh-GHS3D (see [6]). In this case, the surface mesh defines a volume
and does not self-intersect. We can thus consider with a high probability
the reconstruction as a success.

• Reconstruction: tells whether the reconstruction can be considered as suc-
cessful or not. This is mainly determined by examining free and non-
manifold (higher order) edges and visually checking in the generated surface
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Fig. 7. Circuit board non-manifold multi-scale geometry made of 31,705 faces

Fig. 8. Circuit board details

Table 1. Results

CAD Geometry Mold EBox Fad Wheel V6 VX Circuit
Input faces 381 2,325 1,328 1,447 7,268 18,700 31,705
Input curves 2,201 11,134 15,985 10,874 40,015 100,068 158,460
Removed faces 0 0 0 0 16 4 0
Removed curves 9 0 16 126 1,717 89 14
Free egdes 4 0 0 0 0 0 0
Non-manifold edges 0 162 0 0 0 3,620 524
Time 0.5s 1.25s 2.01 s 1.74s 7.72s 35.52s 28.01s
Valid volume no no yes yes no no no
Reconstruction failure success success success success success success
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mesh that the computed topology is correct and conforms to expectations
in these area.

These results lead to several remarks:

1. Even on large, complex and noisy geometries, the method is fast and
really reliable, without any parameter tuning.

2. As expected geometry noise is removed in varying quantities, (from 0
to 4.2 percent) depending on the quality of the input case (see removed
curves/faces rows).

3. Non-manifold (higher order) edges are correctly reconstructed in the non-
manifold geometries (EBox, VX and Circuit). As expected, non-manifold
edges are not created in manifold geometries.

4. The “Mold” case is considered as a failure because two curve associations
were beyond the default tolerance ε and thus were rejected, leaving four
free edges. In other words, this case could be successfully processed when
changing the ε parameter. This shows that even though tolerance tuning
issues have been drastically reduced, the human intervention cannot be
totally eliminated from the reconstruction process when the geometry is
too far from the intended topology.

5. Even when the reconstruction is successful, the derived surface mesh is
not always directly suitable for volume mesh generation. This is often
due to a wrong CAD design or to missing CAD boolean operations. To
correct this kind of default, a face imprinting step like described in [8]
should be carried out after topology recovery.

4 Conclusion

We have presented an effective automatic method to recover topology in-
formation while removing geometry noise from non-manifold geometries. Its
robustness and efficiency has been shown on a wide range of complex CAD
geometries.

Even though we are now able to reconstruct successfully the topology from
complex geometries, we still cannot guarantee that the derived surface mesh
defines a volume, especially on large geometries made of complex assemblies.
That is why our next concern will be to apply our approach to automatic
face imprinting techniques.

Acknowledgement. This work was partially funded by the Pôle System@tic’s
EHPOC project.
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Abstract. One of the most widely used algorithms to generate hexahedral meshes
in extrusion volumes with several source and target surfaces is the multi-sweeping
method. However, the multi-sweeping method is highly dependent on the final lo-
cation of the nodes created during the decomposition process. Moreover, inaccurate
location of inner nodes may generate erroneous imprints of the geometry surfaces
such that a final mesh could not be generated. In this work, we present a new
procedure to decompose the geometry in many-to-one sweepable volumes. The de-
composition is based on a least-squares approximation of affine mappings defined
between the loops of nodes that bound the sweep levels. In addition, we introduce
the concept of computational domain, in which every sweep level is planar. We
use this planar representation for two purposes. On the one hand, we use it to
perform all the imprints between surfaces. Since the computational domain is pla-
nar, the robustness of the imprinting process is increased. On the other hand, the
computational domain is also used to compute the projection onto source surfaces.
Finally, the location of the inner nodes created during the decomposition process is
computed by averaging the locations computed projecting from target and source
surfaces.

Keywords: Finite element method, mesh generation, hexahedral mesh, multi-
sweeping, computational domain.

1 Introduction

Extrusion geometries often appear in numerical simulation processes. These
volumes are usually created using CAD packages that allow to extrude a
surface along a sweep path. These one-to-one geometries are delimited by a
source surface, a target surface and a series of linking sides, see Fig. 1.
� This work was partially sponsored by the Spanish Ministerio de Ciencia e Inno-

vación under grants DPI2007-62395, BIA2007-66965 and CGL2008-06003-C03-
02/CLI.
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Fig. 1. Classification of surfaces defining a one-to-one sweep volume

In the last years, several methods have appeared to mesh many-to-many
sweep volumes [1, 2, 3, 4]. That is, extrusion volumes that contain many
source and target surfaces. These methods rely on the decomposition of the
volume into sub-volumes that are meshable by one-to-one [5, 6, 7, 8, 9] or
many-to-one [10] sweep techniques. Then, each sub-volume is meshed sep-
arately. In general, the decomposition of a many-to-many sweeping is per-
formed by projecting target surfaces onto the corresponding source surfaces.
Then, the projected target surfaces and source surfaces are imprinted in or-
der to determine the decomposition of the volume. Finally, each sub-volume
is meshed separately using a many-to-one sweep scheme. In fact, each sub-
volume is further decomposed into barrels, and each barrel is meshed using
a one-to-one sweep scheme.

However, the algorithm is highly dependent on the location of the inner
nodes created during the decomposition process. The quality of the imprints
is also affected by the location of inner nodes. Inaccurate locations may lead
to erroneous imprints. Thus, a low quality mesh with inverted elements may
be generated. Usually, this effect appears when there are non-planar sweep
levels or highly curved surfaces in the geometry. In this work, we present a
new algorithm to decompose a many-to-many geometry that overcomes these
drawbacks.

The method is based on a least-squares approximation of an affine mapping
defined between the loops of nodes that bound the sweep levels according to
[8]. The decomposition is performed using a two-step procedure. First, the
target surfaces are projected in the sweep direction to the source surfaces.
In the second step, the nodes on the source surfaces are projected back to
the target surfaces. Then, the final location of inner nodes is the weighted
average of the position of nodes projecting them from target and from source
surfaces. During the first step of the decomposition process it is necessary
to compute the imprints between the source and target surfaces. The main
contribution of this work is to define the computational domain of a loop of
nodes as a planar representation of them. Since the computational domain
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is planar, the imprinting process becomes more robust. In addition, we also
use the computational domain to project inner nodes onto source surfaces.

2 The Multi-sweeping Method

This section presents an outline of the proposed multi-sweeping method. The
algorithm is performed in five steps:

(i) Surfaces classification.
(ii) Linking sides meshing.
(iii) Loop face projection and imprinting.
(iv) Loop edge meshing and volume decomposition into many-to-one sub-

volumes.
(v) Meshing all many-to-one sub-volumes.

Although this work is focused on the decomposition steps (iii) and (iv), we
also present an outline of the whole multi-sweeping method. The first step of
the algorithm is the classification of the surfaces as source, target and linking
sides. The classification is accomplished using the procedure presented in [11].
This procedure is performed as follows. First, it finds a non-submappable
surface and classifies it as source surface. Then, the algorithm proceeds to
classify the adjacent surfaces in an advancing front manner depending on
the angle between the adjacent surfaces. When the surfaces of the geometry
are classified, the linking sides are meshed using the submapping algorithm
[12, 13]. Figure 2(a) shows a simple multi-sweep geometry with its linking
sides meshed.

Once the linking sides are meshed the decomposition process begins. The
standard decomposition process starts at the target surfaces and ends at the
source surfaces. In contrast, the final meshing process starts at the source
surfaces of the many-to-one sub-volumes and ends at the target surfaces.

(a) (b)

Fig. 2. (a) Mesh generated on the linking sides using the submapping method.
(b) A simple multi-sweep geometry with a row of sweep nodes.
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3 Basic Definitions

In this section we provide four basic definitions that will be used through this
work. We briefly review the concepts of sweep node, loop geometry engine
and control loop previously introduced in [1]. In addition, we introduce the
new concept of computational domain for multi-sweeping.

3.1 Sweep Node

Sweep nodes are a computational structure that stores the vertical connec-
tivity of the linking sides mesh. Each sweep node contains a pointer to the
next sweep node in the sweep direction and another pointer to the previous
sweep node in the counter-sweep direction (some of these pointers may be
null). Figure 2(b) presents a multi-sweep geometry with a row of sweep nodes.
Note that there are sweep nodes that do not point to a sweep node directly
above or below.

3.2 Loop Geometry Engine

The loop geometry engine is a data structure that represents source, target
and mid-level faces as loops of sweep nodes. In addition, a graph is used
in order to define the topology of such loop faces. For instance, Fig. 3(a)
shows a surface represented by: i) a loop face; ii) a loop wire that describes
the boundary of the loop face; iii) an ordered list of four loop edges that
defines the loop wire, and iv) four loop vertices that define the initial and
final points of each loop edge. Figure 3(b) details this relationship using the
topology graph. For instance, the loop wire uses loop edge 1 and, conversely,
loop edge 1 is included in the loop wire.

Loop vertices are represented by a sweep node that provides information
about its location. Loop edges are defined by an ordered list of sweep nodes.

(a) (b)

Fig. 3. (a) A loop face. (b) Associated topology graph.
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The list of nodes provides a discretization of the loop edge. Loop wires are
defined by a closed loop of loop edges. Loop faces are represented by a loop
wire that defines the outer boundary and several loop wires that define inner
boundaries.

The structure of the loop geometry engine is similar to a geometry engine
except that not all the elements in the loop geometry have an underlying
geometrical representation. This engine provides both geometrical and topo-
logical information about the loop geometry. In addition, this structure is
responsible for creating loop geometry and maintaining the topology graph
during the whole algorithm, see [1] for more details.

3.3 Control Loop

Control loops are the loops of sweep nodes that bound each of the sweep
layers of the volume. While one-to-one sweep volumes have a single control
loop for each layer, the number of control loops in multi-sweeping volumes
may differ from layer to layer, see Fig. 4(a). The main objective of the control
loops is to define the projection between two consecutive sweep layers. To
this end, control loops are composed by a loop of sweep nodes that define the
projection (black dots in Fig. 4(a)) and, for implementation purposes, a list
of sweep nodes to project (white dots in Fig. 4(a)).

In a given level of the decomposition process we may have both source and
target loop faces. In these cases, given the sets of target and source loop faces,
(τi)i=1,...,n and (σi)i=1,...,m, respectively, the control loops are computed as:

(i) Compute provisional target control loops, Lt, as follows:
• The loops of nodes of control loops are defined as the Boolean union,

Lt =
⋃

i=1,...,n τi, see [14].
• The nodes to project are those that belong to more than one loop

face.

(a) (b)

Fig. 4. (a) Five control loops in a multi-sweep geometry. (b) Physical sweep nodes
(white squares) and computational sweep nodes (black circles).
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(ii) Compute provisional source control loops, Ls, using the procedure de-
tailed in step (i).

(iii) We collect the nodes of control loops in Ls (both the nodes that describe
the loops and the nodes to project) that are not included in Lt. Then
we insert these nodes into the corresponding control loops in Lt.

3.4 Computational Domain

It is important to point out that control loops in real geometries are usually
non-planar. Therefore, the imprinting operations needed in the decomposition
process may lead to inaccurate representations due to tolerance definitions. To
overcome this drawback we introduce the concept of computational domain.

The computational domain of a given control loop is a planar representa-
tion of it. Figure 4(b) shows a curved control loop in the physical domain
(white squares) and its representation in the computational space (black cir-
cles). The computational domain is used to project the sweep nodes through
the volume and to perform the imprinting between the surfaces of the ge-
ometry. Since the control loops in the computational domain are planar,
the proposed imprinting process is more robust, see Sect. 4. The main rea-
son is that skew lines (neither parallel nor concurrent) do not exist in a
bi-dimensional space. Therefore, computing the intersection of segments in
the computational domain is less affected by tolerance errors than in the
physical domain. In addition, the winding number algorithm [15] can be used
to test if a node is inside a loop of nodes. This algorithm loses its accuracy
and robustness for non-planar loops of nodes.

In reference [8] the pseudo-area vector, a, of a loop of points {xi}i=1,...,n

is defined as

a =
n∑

i=1

xi × xi+1,

where xn+1 = x1. The pseudo-normal vector is defined as

n =
a

||a|| . (1)

The construction of the computational domain of a given control loop is
performed in the following manner. First, we compute the pseudo-normal
of the loop nodes that defines the control loop, n. Second, we define the
computational position of xi, for i = 1, . . . , n as

xi = xi − 〈xi,n〉n, (2)

where 〈·, ·〉 denotes the dot product. Note that we project points xi, for
i = 1, . . . , n, on the plane defined by the pseudo-normal vector. From the
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3D representation of the computational domain given by (2), it is straight-
forward to compute a 2D representation, in (ξ, η) coordinates, of the compu-
tational domain.

Two remarks on the proposed method have to be made. First, each control
loop has its own computational domain, even when control loops are located
in the same sweep level. Second, in order to construct the computational
domain, we need to compute the pseudo-normal vector. This vector can be
defined if a control loop is set. Therefore, our method can be applied to all
extrusion geometries such that all levels are bounded by control loops. Note
that periodic surfaces such as cylinders or spheres that expand from inside to
outside, or vice versa, do not meet this condition. Thus, the proposed method
can not be applied to these cases because the control loop is not set. In these
situations, we can always split the geometry in two sub-volumes such that
the control loops are properly defined.

4 Loop Face Projection and Imprinting

4.1 Loop Face Projection

Starting at target surfaces, we compute the associated loop faces as detailed
in Sect. 3.2. Then, we compute the corresponding control loops according to
Sect. 3.3. When the control loops are constructed, the algorithm proceeds to
build their associated computational domain, see Sect. 3.4.

To project the sweep nodes between layers we use the sweeping scheme pre-
sented in [7, 8]. It is important to point out that the projection of sweep nodes
is performed both in the physical domain and in the 3D representation of the
computational domain. The computational and physical locations are stored
for each sweep node. The projection in the physical space is performed in or-
der to capture the shape of the target and/or source surfaces. The projection
in the computational space is performed in order to obtain accurate and ro-
bust imprints. When a sweep node is projected to the next level, the projected
sweep node becomes the next sweep node of the original one. Conversely, the
original sweep node is the previous sweep node of the projected one.

In each level we check if new target or source loop faces have to be added
to the existing control loops. If this is the case we update the control loops
according to Sect. 3.3. For each one of these control loops an imprinting
process is performed, as detailed in Sect. 4.2.

Once all the source surfaces are reached the geometry is completely de-
composed. However, the location of the inner sweep nodes created during
the decomposition process has to be improved. To this end, the source sur-
faces are projected back to the target surfaces and the final location of inner
sweep nodes is computed as a weighted average of the computed locations
projecting from target and source surfaces, see Sect. 4.5.
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(a) (b) (c) (d)

Fig. 5. Representation of the imprinting process in the physical domain. (a) Two
target loop faces (white) and a source loop face (grey). (b) Target loop edges inter-
section. (c) Projection of target sweep nodes on source faces. (d) Collapse of target
sweep nodes and source sweep nodes.

4.2 Loop Face Imprinting Pre-process

Before starting the actual imprinting process, target and source loop faces of
the same control loop have to be pre-processed. It is important to point out
that each one of the following steps is performed in the 3D representation of
the computational domain. That is, using x coordinates. Figure 5 shows a
representation of the imprinting pre-process in the physical domain. Figure
5(a) shows two target loop faces (white) and one source loop face (grey) ready
to be pre-processed. First, the loop edges of target loop faces are intersected
with each other in order to obtain a conformal model (Fig. 5(b)). Second,
the nodes that define the target loop faces are projected to the corresponding
source loop faces (Fig. 5(c)). Section 4.3 further details the procedure to
project those nodes. Finally, we search a sweep node on a target loop face
and a sweep node on a source loop face that are closer than a given tolerance.
Then the target node is collapsed with the source node (Fig. 5(d)). This
tolerance is defined as h/5, where h is the prescribed element size. On the
one hand, if the tolerance parameter is too big, we may collapse nodes that
are too far and the imprinting process may fail. On the other hand, if the
tolerance is too small, we may miss some collapsing nodes.

4.3 Mapping of Sweep Nodes from the Computational Domain
to a Source Surface

This section is focused on a new procedure to project sweep nodes of target
loop faces to source loop faces of the same control loop. For a given source
loop face, σ, we need to detect which nodes of target loop faces lie inside σ.
Since loop faces are planar in the computational domain we use the winding
number algorithm, see Fig. 6 for a graphical representation of this algorithm.
Given a test point, p, the algorithm adds the angles between p and two
consecutive points in the loop. If the result equals 0, the point is outside.
Else, if the result equals 2π, the point is inside. That is, the algorithm counts
the number of turns around the test point. This algorithm is robust when
dealing with planar loops of nodes. Note that in 3D, the number of turns is
not well defined and, for this reason, the winding number algorithm may fail.
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Fig. 6. Graphical representation of the winding number algorithm

Fig. 7. Mapping of sweep nodes from the computational domain to a source surface

Given a list of sweep nodes inside a source loop face, we have to project
them on the geometrical surface. Let (ξ, η) and (x, y, z) be two coordinate sys-
tems of the 2D representation of the computational domain and the physical
domain, respectively (see Fig. 7). Therefore, we need to compute a mapping
X(ξ, η) to project the sweep nodes of the target loop faces onto the physical
domain. Note that all the source loop faces represent a geometric surface.
Hence, instead of projecting the sweep nodes directly from the computa-
tional space, (ξ, η), to the physical space, (x, y, z), we propose to compute a
mapping Π(ξ, η) to project the nodes to the parametric space of the surface.
Then, using the parameterization of the surface, Σ(u, v), we finally project
the nodes to the physical domain. That is

X = Σ ◦ Π.

Note that the mapping Π(ξ, η) is unknown. In order to compute the mapping
Π(ξ, η), we approximate it by an affine mapping Π̃(ξ, η). This affine mapping
is determined by means of a least-squares approximation of a linear mapping
between the 2D computational domain representation of the source loop face
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and its representation in the parametric space of the source surface, see [6]
for details. That is we approximate X(ξ, η) as

X ≈ Σ ◦ Π̃.

4.4 Loop Face Imprinting

The result of the imprinting process between target loop faces, (τi)i=1...n, and
source loop faces, (σi)i=1...m, is stored in three lists of loop faces: Θo, Θt and
Θs. List Θo contains the loop faces that come from intersections of a target
and a source loop face. The loop faces included in Θo are called overlap loop
faces. List Θt contains the sections of target loop faces that do not intersect
a source loop face. These faces are the new target loop faces that replace the
old target loop faces, (τi)i=1...n. Finally, list Θs contains the section of source
loop faces that do not intersect a target loop face. This list contains the new
source loop faces that replace the old source loop faces, (σi)i=1...m. The loop
face imprinting operation is based on segment intersections, see [1, 14] for
more details. The main difference of the presented method is that all of the
calculations to obtain the imprints are performed in the 3D representation
of the computational domain. Hence, the imprinting process becomes more
accurate and robust as stated in Sect. 4.3.

In addition, we create a new graph that relates the new loop faces created in
the imprinting process and the original loop faces from which they come from.
We call this graph the loop face partitioning graph. This graph allows us to
recover the set of loop faces in which a loop face is decomposed. Moreover, it
also permits us to recover the loop faces in which a given loop face is included.
Figure 8(a) shows the imprinting process of a target loop face, T , and a
source loop face, S. In this case, Θo = {O} = {T ∩S}, Θt = {T ′} = {T − S}
and Θs = {S′} = {S − T }. Figure 8(b) shows the corresponding loop face
partitioning graph. Note that loop face O is a section of S and T . Conversely,
T is partitioned in loop faces T ′ and O.

In order to illustrate the differences between the imprinting process in the
physical and computational domain, Fig. 10(a) shows a curved loop face, T ,
and a planar loop face, S in the physical domain. The intersection between

(a) (b)

Fig. 8. (a) Imprinting process of a target loop face, T , and a source loop face, S.
(b) Associated loop face partitioning graph.
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(a) (b)

Fig. 9. A multi-sweep geometry and its correspondent loop faces. (a) Wire frame
model with two target faces (light grey) and two source loop faces (dark grey). (b)
Loop faces.

the segments that define these loop faces in the physical domain are marked
using a white circle. Figure 10(b) shows the Boolean difference between S
and T computed in the physical domain. Note that we do not obtain the
desired result. Figure 10(c) shows the representation of the previous loop
faces in the computational domain. When the intersections are calculated in
the computational domain, two additional nodes are obtained. Therefore, we
obtain the correct representation of S − T , see Fig. 10(d).

(a) (b)

(c) (d)

Fig. 10. Imprinting process in the physical and computational domains. (a) In-
tersection vertices of loop faces S and T performed in the physical domain. (b)
Boolean difference between S and T performed in the physical domain. (c) Inter-
section vertices of loop faces S and T performed in the computational domain. (d)
Boolean difference between S and T performed in the computational domain.
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When the imprinting ends, the new target loop faces, Θt, are collected in
order to create the new control loops. These control loops are used to project
the new target loop faces to the next level, see Sect. 4.1. The projection and
imprinting process is iterated until the last sweep level is reached. Figure 9(a)
presents a multi-sweep geometry with two target surfaces (light grey) and two
source surfaces (dark grey). Figure 9(b) shows its corresponding loop faces
when the imprinting process ends. Note that the source surfaces are split due
to the diameter that divide the lower surface.

4.5 Final Location of Inner Sweep Nodes

Once all the source surfaces are reached and the geometry is decomposed,
we have to improve the final location of inner sweep nodes. To this end, we
project back inner sweep nodes from source surfaces to target surfaces. The
final location of inner sweep nodes is computed as a weighted average of the
computed locations projecting from target and source surfaces.

It is important to point out that once all the source surfaces are reached,
they are always bounded by overlap loop faces. Therefore, given an overlap
loop face, ω, obtained in the imprinting process, the sweep nodes that have
to be mapped to the previous level in the physical domain are the ones in
ω such that their previous sweep node lies inside the volume (not on the
boundary).

For instance, Fig. 11 presents a cylindrical geometry with a planar bottom
surface split in two parts, and a non-planar top surface. Sweep nodes on the
source surface that have to be projected to the previous level are marked
with white squares. Figure 11(a) shows the computed location of inner sweep
nodes projecting from target surface. These nodes do not reproduce the shape
of the top surface. Figure 11(b) presents the computed location of inner
sweep nodes projecting from source surface. These nodes do not reproduce
the shape of the planar bottom surface. However, Fig. 11(c) shows the final
location of inner sweep nodes computed as a weighted average of the location

(a) (b) (c)

Fig. 11. Projection of inner sweep nodes. (a) Projecting from the target surface. (b)
Projecting from the source surface. (c) Averaging the location computed projecting
from target and source surfaces.
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Algorithm 1. Inner nodes creation
1: function CreateInnerNodes(LoopFace ω, ListOfSweepNodes nodes)
2: while There are nodes to project do
3: Int projectionLevel ← 0
4: ControlLoop CLt, CLs ← ObtainTargetAndSourceControlLoops(ω)
5: Projector projector ← createProjector(CLs , CLt)
6: for all Node node ∈ nodes do
7: Point qSource ← projectNode(projector, node)
8: SweepNode previousNode ← getPreviousNode(node)
9: Point qTarget ← getPositionFromTarget(previousNode)

10: Int depthLevel ← getDepth(previousNode)
11: Int N ← depthLevel + projectionLevel
12: Point q ← (projectionLevel/N) qTarget+(depthLevel/N) qSource
13: setPosition(previousNode, q)
14: if hasToBeProjected(nextNode) then
15: node ← previousNode
16: else
17: remove(node, nodes)
18: end if
19: end for
20: Int projectionLevel ← projectionLevel + 1
21: end while
22: end function

Algorithm 2. Selection of target and source control loop
Return : ControlLoop CLT , CLS

1: function ObtainTargetAndSourceControlLoops(LoopFace ω)
2: LoopFace σ ← obtainContainingLoopFace(ω)
3: if isNull(σ) then
4: LoopFace τ ← previousLoopFace(ω)
5: else
6: LoopFace τ ← previousLoopFace(S)
7: end if
8: CLt ← getControlLoop(τ )
9: CLs ← nextControlLoop(CLt)

10: ω ← τ
11: end function

computed projecting from source and target surfaces. Note that the final
location reproduces the shape of both cap surfaces.

For each overlap loop face, ω, and a list of sweep nodes in ω that have to be
projected, nodes, Algorithm 1 presents a procedure that computes their final
location. First, at Line 4, the algorithm finds a source control loop, CLs, in
the current sweep level and a target control loop, CLt, in the previous sweep
level that define the projection between the two levels (see Algorithm 2).
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Note that Algorithm 2 updates the reference overlap loop face, ω. Then, at
Line 5 of Alg. 1, the node projector is constructed as detailed in [8]. Next, for
each node in nodes, the algorithm computes the projection from the source
surface, Line 7. Then, at Lines 8 and 9, the previous node and its position
computed projecting from target faces is recovered. Next, at Line 12 the
final position of the previous node is obtained by interpolating the positions
obtained from the target and source projections. Note that the depth level of
a sweep node is defined as the number of times this node has been projected
from a target loop face. Finally, the algorithm checks if the previous node
has to be projected, Line 14. If so, the node is updated. Else, the node is
removed from the list of nodes to project. The procedure is iterated until all
nodes are re-located in the physical domain.

5 Loop Edge Meshing and Volume Decomposition

When the imprinting process ends, it is necessary to re-mesh the loop edges
in order to ensure that each loop face contains an even number of intervals.
In this work, we solve an integer linear problem to assign an even number
of intervals using the lp solve library [16]. However, applying this strategy
to all loop edges leads to a large integer linear problem, especially for small
element sizes in the sweep direction. In order to reduce the computational
cost of the integer linear problem, we propose to impose an even number
of intervals to the source loop faces obtained during the imprinting process.
Then, the information is propagated in the sweep direction. Hence, the new
integer linear problem is

min
∑
e∈E

ne

subject to:∑
e∈σ

ne = 2nσ for all source loop face σ,

ne ≥ Ne for all source loop edges e ∈ E ,

(3)

where ne is the number of intervals of loop edge e, E is the set of loop edges
contained in the source loop faces, Ne is a lower bound for ne and 2nσ is the
number of intervals of loop face σ.

Once all loop edges are re-meshed, we decompose the geometry into sub-
volumes that can be meshed using a many-to-one sweep scheme. The main
idea consists on collecting every loop face stacked on a target face. Figure 12
presents a multi-sweep geometry decomposed into two sub-volumes that can
be meshed using a many-to-one sweep method. In this work, all the result-
ing sub-volumes are meshed by the same least-squares projection procedure
that we have already used to project inner nodes during the decomposition
process, see [7, 8].
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Fig. 12. Multi-sweep volume decomposed in many-to-one sub-volume

6 Examples

This section presents three examples of meshes that have been generated
using the presented algorithm. The user assigns an element size and the
algorithm automatically decomposes the geometry. Then, each sub-volume
is meshed using a many-to-one sweep scheme. In the figures that illustrate
these examples we mark the sweep direction with an arrow.

The first example illustrates the advantages of the proposed method to
compute the location on inner sweep nodes created during the decomposition
process. It presents a twisted and curved cylinder in which the cap faces are
not planar, see Fig. 13. Note that the bottom surface is divided in two parts.
The lower surfaces are classified as target and the upper surface is classified
as source. Figure 13(a) presents the nodes created during the decomposition
process using only the information of target surfaces. Note that there are
inner nodes near the source surface that are located outside the geometry.
This will lead to inverted elements during the meshing process. Figure 13(b)

(a) (b)

Fig. 13. Inner nodes location computed during the decomposition process. (a)
Projecting nodes from target surfaces. (b) Interpolating nodes projected from source
and target surfaces.
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(a) (b)

(c)

Fig. 14. Inner nodes location computed during the decomposition process (a)
Projecting nodes from target surfaces. (b) Interpolating nodes projected from source
and target surfaces. (c) Mesh generated using the multi-sweeping method on the
half of a gear.

presents the inner nodes location computed using the proposed procedure
by interpolating the nodes projected from source and target surfaces. We
obtain inner layers of nodes that reproduce the shape of the source and
target surfaces.

The second example presents the mesh generated on one half of a gear. The
loops of nodes that define the control loops are slightly non-planar. For this
reason, the nodes projected from target surfaces during the decomposition
process are deviated (Fig. 14(a)). Thus, we obtain layers of inner nodes that
almost intersect between them. Applying the proposed method the location
of inner nodes is accurate and the inner nodes reproduce the shape of cap
surfaces, see Fig. 14(b). The final mesh generated using the proposed multi-
sweeping method is presented in Fig. 14(c).

The third example shows the mesh generated on a crankshaft. This exam-
ple contains curved surfaces as well as non-planar control loops. Figure 15(a)
presents the location of inner nodes computed during the decomposition pro-
cess. Although the control loops are highly non-planar, the position of inner
nodes is not deviated. Figure 15(b) presents the final mesh generated using
the multi-sweeping algorithm.
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(a)

(b)

Fig. 15. (a) Inner nodes location computed during the decomposition process using
the presented method. (b) Final mesh generated using the multi-sweeping method
on a crankshaft.

7 Conclusions

It is well known that the element quality of the meshes generated using the
multi-sweeping method is heavily affected by the position of the inner nodes
created during the decomposition process. Inaccurate location of inner nodes
can produce low quality elements or even inverted elements during the mesh-
ing process. In practice, this effect is caused by non-planar sweep levels or
curved surfaces in the geometry. To overcome this drawback, we have pre-
sented a new algorithm that automatically decomposes the geometry. The
geometry decomposition is achieved by computing a least-squares approxi-
mation of an affine mapping between the control loops of consecutive layers.

First, we compute the geometry decomposition advancing from target to
source surfaces. This decomposition is performed computing a least-squares
approximation in the physical space and the 3D representation of the compu-
tational space. The projection in the physical space is used to compute a first
approximation to the location of inner nodes. The projections in the 3D rep-
resentation of the computational space are used to carry out the imprinting
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procedure. Since the computational domain is planar, the robustness of the
imprinting process is increased and more accurate results are produced. In
addition, we use the 2D representation of the computational space to project
the inner nodes onto the source surfaces.

Second, we project the inner nodes mapped on sources surfaces back to
the target surfaces using the least-squares approximation only in the physi-
cal domain. An accurate final node placement is obtained by averaging the
locations computed projecting from target and source surfaces.

The proposed method has been applied to several industrial geometries
and in all cases the algorithm has generated high quality meshes. Finally,
it is worth to notice that the presented multi-sweeping method has been
successfully implemented in the ez4u meshing environment [17].
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Defeaturing CAD Models Using a
Geometry-Based Size Field and Facet-Based
Reduction Operators

William Roshan Quadros and Steven J. Owen
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Abstract. We propose a method to automatically defeature a CAD model by
detecting irrelevant features using a geometry-based size field and a method to re-
move the irrelevant features via facet-based operations on a discrete representation.
A discrete B-Rep model is first created by obtaining a faceted representation of the
CAD entities. The candidate facet entities are then marked for reduction by using
a geometry-based size field. This is accomplished by estimating local mesh sizes
based on geometric criteria. If the field value at a facet entity goes below a user
specified threshold value then it is identified as an irrelevant feature and is marked
for reduction. The reduction of marked facet entities is primarily performed using
an edge collapse operator. Care is taken to retain a valid geometry and topology of
the discrete model throughout the procedure. The original model is not altered as
the defeaturing is performed on a separate discrete model. Associativity between
the entities of the discrete model and that of original CAD model is maintained
in order to decode the attributes and boundary conditions applied on the original
CAD entities onto the mesh via the entities of the discrete model. Example models
are presented to illustrate the effectiveness of the proposed approach.

Keywords: defeaturing, feature suppression, CAD simplification, facet reduction.

1 Introduction

CAD technology has evolved significantly in recent decades, facilitating com-
plex and detailed modeling in the early design stages of computational simula-
tion. This has brought new challenges in the pre analysis stages including the
defeaturing of irrelevant or unwanted features prior to mesh generation. This
process frequently requires extensive user interaction to eliminate unwanted
features and misalignments between parts. Therefore, automatic defeaturing
procedures that reduce user time and increase the success ratio of mesh gen-
eration are needed. Defeaturing also reduces the degrees of freedom, thereby
decreasing the analysis time and memory usage.
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-

heed Martin Company for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.
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Defeaturing, sometimes known as feature suppression or simplification, is
intended to address a wide range of characteristics, typically included for
design purposes, that may not be relevant or desired for finite element (FE)
simulation. Some of these geometric features often present in single body solid
models may include small features such as holes, pegs, slots, fillets, chamfers,
slender/sliver surfaces and thin-wall regions. Retaining the features described
here may result in smaller mesh sizes at these localized regions which can
lead to mesh size transition and mesh quality issues. This might lead to ill-
conditioning of the FE model and using excessive computing power may not
help. In addition, many practical hex meshing algorithms such as sweeping
and mapping, which are sensitive to topological features can often fail while
accounting for these anomalies.

Fig. 1a. CAD model with chamfer, hole,
steps, pegs, fillet, and imprint

Fig. 1b. Hex mesh of the defeatured
model

Fig. 1c. 27,181 tets with average ele-
ment quality 0.8411 on original model

Fig. 1d. 3,879 tets with average el-
ement quality 0.8615 on defeatured
model
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Figure 1a shows a simple model with small features including multiple
steps, chamfers, imprinted curves, pegs, and holes, which would make the hex
meshing of this model difficult. Figure 1b shows a defeatured representation
that has been reduced to a simple cube. In this case a hexahedral mesh can
be generated on the model. Figure 1c shows the unreduced model with a tet
mesh applied and the reduced model in Figure 1d also with a tet mesh. The
number of tet elements without and with defeaturing are 27,181 and 3,879
respectively, significantly reducing the degrees of freedom in the mesh. The
average element quality is also higher in the defeatured model as the small
features, that would have required smaller element sizes, are no longer present
- consequently avoiding large mesh size transitions.

It should be noted that the proposed approach does not directly address
the CAD clean-up and repair issues. Instead we assume that the input CAD
data is geometrically and topologically valid. While the focus of this work
is on the defeaturing of correctly resolved solid models, the authors believe
that the proposed framework can be extended to also address common CAD
repair issues.

2 Background

Third party geometry kernels in CUBIT [4] such as ACIS, Granite, or Catia
provide a rich set of geometry query and modification capabilities; however,
they typically do not provide tools to automatically control defeaturing of
CAD models for mesh generation. As a consequence, this work is intended
to address the defeaturing of CAD models, particularly those that are gener-
ated in commercial 3D solid modelers (such as SolidWorks, Pro/Engineer, or
UniGraphics) and are then imported into an independent mesh generation
tool such as CUBIT. Built into many 3D solid modelers is a convenient fea-
ture or parameter-based representation of the model that provides capability
to simply turn off unwanted features or modify parameters to simplify the
model. It is clear that analysts should take advantage of parameter-based
defeaturing whenever available prior to exporting to a third party mesh gen-
eration tool. In practice, however, the full design model containing features
irrelevant to the simulation, is used as the basis for mesh generation. For the
cases in which this work addresses, the model is provided without feature
information and with only the boundary representation (B-Rep) topology
and NURBS-based geometry definition. As a consequence, the users usually
spend significant amount of time in manually identifying unwanted features
and applying appropriate modification operations to simplify the model prior
to mesh generation.

Techniques for feature suppression and defeaturing have been widely stud-
ied with many approaches presented in the literature. A recent study by
Thakur et. al [14] surveys CAD model simplification techniques and classi-
fies existing methods into four categories: techniques based on surface en-
tity based operators, volume entity based operators, explicit feature based
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operators, and dimension reduction operators. Based on Thakur’s classifica-
tion, surface-based operations are most applicable to use within the context
of the required application. Techniques for surface-based defeaturing opera-
tions can be categorized based upon whether operations are applied directly
to the continuous NURBS-based geometry description or whether they utilize
discrete representation of the domain.

NURBS-based defeaturing, such as those described by Clark [3] have the
advantage of accurately redefining the topology and geometry. While geome-
try kernels can assist by providing the necessary geometric operations, identi-
fying the numerous topologic configurations where defeaturing should occur
in a consistent and robust manner is an open-ended problem. Inoue et al. [10]
reported a face clustering technique for FE mesh generation similar to virtual
topology [1]. The approach iteratively merged the model faces to obtain face
cluster regions having sufficiently large area compared to the mesh element
size. Authors defined metrics for mesh area, boundary smoothness, and sur-
face flatness and used them for ranking the faces for merging. This approach
is efficient for 2-manifold surface models and does not defeature topological
features like holes. Focault et al. [8] proposed a hypergraph-based Mesh Con-
straint Topology (MCT) for simplification. Composite topological entities of
MCT are defined as the union of Riemannian surfaces/curves constituting the
reference model. Graph-based operators then perform delete, insert, collapse,
and merge of MCT entities. Indeed, Thakur et al. [14] provides a compre-
hensive list of literature where authors have attempted to enumerate various
cases of defeaturing directly on NURBS-based solid models.

Alternatively, several methods have been proposed that perform defeatur-
ing in a discrete domain. For example, Gao et al. [9] use a feature recognition
strategy to identify features for suppression in the continuous model. Fol-
lowing removal of the features a Delaunay triangulation approach is used to
fill gaps or holes that may be left. Unfortunately, feature-based methods can
often lack completeness as defeaturing only a subset of features, such as holes
or fillets may miss other regions that are not identified as features such as
narrow gaps or misalignments in an assembly. Fine et al. [6] used operators
based on vertex removal and spherical error zone concept to transform the
input polyhedral geometry while preserving it within an envelope. This en-
velope is obtained from a mechanical criterion which can be based either on
an a posteriori error estimator or on a priori estimation.

Other discrete methods perform defeaturing as part of the meshing proce-
dure or as a post-process to meshing. Mobley et al. [11] propose a method that
does not directly modify the geometry, but rather defines operations within
the surface meshing algorithm that ignores or combines features. Borouchaki
and Laug [2] perform operations on the triangles of the mesh following the
initial meshing operation of individual surfaces. Simplification is performed
by identifying surfaces to be combined and then optimizing local mesh qual-
ity while ignoring the boundary between identified regions. Foucault et al. [7]
extended the advancing front method to composite geometry. Dey et al.[5]
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defined a priori error metrics based on element quality, and edge-collapse
operations were iteratively performed on poor quality elements as a post-
meshing operation.

Performing the reduction operations on the mesh itself can however ad-
versely influence the mesh quality. If, for example sliver features are present
in the model, mesh sizes in the initial mesh will be significantly finer than is
needed in the final mesh. Aggressive collapse operations are then needed in
order to achieve the desired size and quality once the slivers have been iden-
tified. In contrast, the proposed method preforms reduction operations on a
facet-based discrete model that represents geometry. This defeatured discrete
model will later be used as the underlying geometry for a meshing algorithm.
The quality of the triangles in the facet representation is not critical provided
the underlying geometry is reasonably represented. As a result, the reduction
operations do not have to concentrate on maintaining a quality triangulation,
as would be required with other methods that perform defeaturing during or
after mesh generation.

Performing defeaturing on the mesh is however attractive because it leaves
the original model untouched for subsequent meshing operations for alternate
element resolutions or for application of boundary conditions. However, one
of the drawbacks is that the identification of features to be suppressed as
well as specific defeaturing operations must be integrated directly within the
meshing algorithm. For CAD-based tools such as CUBIT, which includes nu-
merous options for surface meshing, it would be advantageous to perform
defeaturing operations independent of any specific meshing algorithm, allow-
ing for any surface meshing procedure to utilize defeaturing without special
modifications. Thus, our method provides the advantages of mesh-based de-
featuring without the associated drawbacks.

Following a review of the various approaches for defeaturing, the following
list summarizes the criteria for which our automatic defeaturing framework
has been developed:

1. A strategy for identifying features for suppression should utilize only
the topology and geometry of the B-Rep NURBS model and should not
consider any additional data such as feature data.

2. The procedure should be applicable for any surface mesh generation algo-
rithm, including paving, triangle advancing front and Delaunay methods.
Specialized changes to individual meshing algorithms to accommodate
defeaturing should be avoided.

3. The final mesh should maintain associativity with the original model.
The attributes and boundary conditions applied on the original B-Rep
model should be mapped to the final mesh.

4. The algorithm should not be based on any specific proprietary geometry
kernel as multiple geometry kernels exist within the CUBIT environment.

5. Finally, the extent of automatic feature suppression must be user control-
lable. Individually identifying features for preservation or for suppression
should also be provided.
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The authors assert that the proposed defeaturing algorithm meets the
criteria described above.

3 Defeaturing Algorithm

Here we briefly discuss the steps involved in defeaturing irrelevant features of
a NURBS based B-Rep CAD model via a discrete model. A robust method for
automatically detecting the irrelevant features is very critical to the success
of the proposed approach. A geometry-based mesh sizing function is used
as the field to automatically identify the irrelevant features that need to
be defeatured. With the proposed method, the original CAD model is not
altered as the actual defeaturing is performed on a discrete model of the
original CAD model. The following illustrates the basic steps used in the
defeaturing algorithm.

Figure 2a shows a typical industrial CAD model containing common fea-
tures such as holes, fillets, blends, and steps. Note that the zoom view shows
a small step which is an unintended feature. Such a small step would result
in poor element quality if retained. This model also contains multiple tiny
holes. Assuming these features are not significant to the simulation, they can
significantly increase the element and node count in the final mesh, resulting
in increased analysis time and memory usage.

Figure 2b shows a discrete representation of the input CAD model. First,
the facets of each surface are obtained and stitched to form a water tight
model. The B-Rep topology is then embedded in the facet-based discrete
model, establishing the associativity between facet entities and the original
B-Rep topological entities.

Figures 2c and 2d show the defeatured model represented via the facet-
based B-Rep model. Note that the holes and steps are no longer seen in the
defeatured model. To accomplish defeaturing, two main steps are used: (1)
Identification of irrelevant features on the discrete model; and (2) Performing
facet-based reduction operations to remove irrelevant features.

Reduction operations are first performed on lower order entities followed
by higher order. For example, the facet entities associated with curves are
first collapsed before collapsing the facet entities associated with surfaces.
Following each reduction operation, care is taken to ensure a valid B-Rep
is maintained and that the mapping between the topological entities of the
original CAD model and that of the reduced discrete model is updated. This
is essential for decoding meshing attributes such as meshing schemes, size
specifications and boundary conditions on the discrete model. Thus, the de-
featured model can be updated and meshed using the attributes defined on
the original solid model.

Figures 2e and 2f show the mesh on the defeatured and the original mod-
els, respectively. Mesh generators in CUBIT are capable of using the dis-
crete B-Rep model as the basis for their geometry. As a result it is not cur-
rently necessary to convert the defeatured model back into a NURBS B-Rep
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Fig. 2a. Original B-Rep CAD Model Fig. 2b. Discrete B-Rep Model

Fig. 2c. Defeatured Discrete Model Fig. 2d. Defeatured Discrete Model

Fig. 2e. Tet mesh on Defeatured Model Fig. 2f. Tet mesh on Original Model

format if only the mesh is desired. Note that in Figure 2e that the fine mesh
around the holes is no longer seen in the defeatured model. Also as the steps
are defeatured the element quality improves significantly. The minimum tet
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quality in Figure 2e is 0.038 compared to 0.004 in Figure 2f. Also note that
the number of tet elements in the defeatured model is 4,975 which is much
less than the 11,328 tet elements in the model with no defeaturing. As the
mapping between the entities of the original and the defeatured models has
been maintained, the mesh can be associated with either or both discrete
and continuous models. We now discuss each of the steps of the defeaturing
procedure in more detail.

3.1 Obtaining a Discrete Model

The first step of the procedure is to obtain a discrete representation of the
CAD model. Requirements of the discrete model include the following:

1. The deviation of the facets from the original CAD model should be pro-
portional to the user defined mesh size. For example, a small mesh size
would require a proportionately small facet size so that curvature can
adequately be captured in the final mesh.

2. The discrete representation should be watertight. This implies that each
adjacent surface shares common facet edges with its neighbors.

3. Relationships should be maintained between the original B-rep entities
and the discrete entities. This is to ensure that the final mesh will be
correctly associated with the original CAD model once the procedure is
complete.

In most cases it is convenient to obtain the discrete representation from
a third party CAD kernel such as ACIS or Granite. Building a watertight
faceted representation of the model may require additional operations to
stitch adjacent surfaces to ensure surfaces share common edges. Addition-
ally, to ensure correct associativity between the original B-Rep entities and
the mesh entities that will be generated, the data to link back to the origi-
nal B-Rep must be generated at this point and maintained throughout the
procedure.

For the current work, the mesh-based geometry (MBG) [12] definition as
proposed by Owen et al. [12] is used to build and represent the discrete repre-
sentation once it is extracted from the CAD model. The MBG definition can
also represent non-CAD-based models; for example models initially defined
by triangle facets, such as STL formats, or by extracting geometry from a
legacy FE mesh.

3.2 Detection of Features for Suppression

The identification of features for suppression, is a key component of the pro-
posed method and is critical to the success of defeaturing. Feature identifi-
cation is achieved using mesh sizing function work of the author [13]. This
work describes a systematic approach to reveals the geometric factors that
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completely capture the geometric complexity for controlling element sizes. Ir-
relevant features are defined as those entities where the mesh size determined
via geometric factors falls below the user specified threshold value ε∗.

Below are the three main steps involved in detecting irrelevant features
and are subsequently discussed:

1. Identify geometric factors of input solid model.
2. Measure geometric factors using a set of tools.
3. Mark irrelevant regions on the discrete model using the tools.

Identification of Geometric Factors

To begin the procedure, the input CAD model is first decomposed into dis-
joint subsets, defined as dimensionally-based groupings of geometric entities.
Let an input CAD solid model S contain N surfaces, Fi, where i = 1, 2, ...N ,
which are curvature-continuous and do not intersect at the interior. We can
then define S in terms of the sum of its disjoint subsets as:

S = in(S) +
N∑

n=1

in(Fn) +
M∑

m=1

in(Cm) +
L∑

l=1

Vl (1)

where the disjoint subsets of solid S are, the interior of the solid, in(S),
the interior of each surface, in(Fn), the interior of each curve, in(Cm), and
vertices, Vl. As the subsets are disjoint, the geometric complexity of each
subset is independent of the others.

Table 1 tabulates the full list of geometric factors that are used to measure
the complexity of each disjoint subset. Geometric factors identified on the
disjoint subsets include 3D proximity, 2D proximity, surface curvature, curve
curvature, 1D proximity, and curve twist. The user can optionally provide
threshold values for the size field computed using these geometric factors.
ε3D, ε2D, εsc, ε1D, εcc and εt represent user defined threshold values for 3D
proximity, 2D proximity, surface curvature, 1D proximity, curve curvature,
and twist respectively. If not explicitly identified by the user, default values
for ε∗ are assigned.

Measuring Geometric Factors

The tools needed to measure the geometric factors of each disjoint subset
are also shown in table 1 and figure 3. As shown in Figure 3, a 3D-skeleton
and 2D-skeleton are used to measure 3D-proximity and 2D-proximity, re-
spectively. 3D Skeletons, as described in [13], are computed using a grassfire
approach that progressively marches over a PR-octree decomposition of the
input solid model. A distance function which approximates the closest dis-
tance between an octree node and the boundary surfaces of the solid at each
octree node, is updated as the grassfire is propagated from the octree nodes
closest to the boundary towards the interior. The skeleton of the solid model
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Table 1. Geometric factors, tools, and checks for disjoint subsets

Subset of Geometric Tools for Geometric
CAD Model Factors Measuring Check

Geometric Factor
in(S) 3D 3D skeleton 2d3D < ε3D

proximity distance (d3D)
in(Fn) 2D 2D skeleton 2d2D < ε2D

proximity distance (d2D)
surface min. principal radius rmin < εsc

curvature of curvature (rmin)
in(Cm) 1D curve l < ε1D

proximity length (l)
curve radius of rc < εcc

curvature curvature (rc)
curve torsion (t) f(t, rc) < εt

twist

Fig. 3. Tools proposed to measure geometric factors of disjoint subsets
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is approximated from the points that are generated where the opposing fronts
collide. The distance function at the skeleton points can approximate one-
half the local thickness or 3D-proximity between different combinations of
geometric entities in a computationally efficient manner.

While an important geometric factor, the current implementation neglects
3D-proximity as only surface defeaturing is performed in the current work.
As a result, only the geometric factors that capture the complexity of in(Fn),
in(Cm), and Vl are considered. A more complete implementation should con-
sider 3D-proximity to avoid inadvertently collapsing thin volumes that would
otherwise not be detected with any other geometric factors. Future work may
require a tetrahedral volumetric discrete representation to adequately per-
form volume defeaturing via tetrahedral collapse operations by considering
3D proximity. Currently, only surface defeaturing is performed using all the
other geometric factors.

The 2D skeleton, also described in [13] measures 2D-proximity between
boundary curves and vertices of a given surface. For a general surface the 2D-
skeleton can be extracted in a similar manner to the 3D-skeleton by utilizing
the same grassfire approach by progressively marching from the boundary
curves towards the interior on the discrete model. To improve computational
efficiency, on planar regions a chordal axis transform is used to extract the
2D-skeleton. Local edge swap operators are performed to remove illegal edges
to obtain a more accurate 2D-skeleton. Figure 4b shows an example of the
2D-skeleton points extracted on multiple surfaces of the input solid. The red
dots indicate where the smallest local thickness has been detected.

Other tools for measuring geometric factors, as illustrated in table 1, in-
clude minimum principal radius of curvature on a surface, rmin, curve length,
l, radius of curvature of a curve, rc and torsion, t. These values can be com-
puted directly from the CAD solid model by querying the underlying geome-
try kernel, or else approximated from the discrete model. Since direct queries
are computationally more expensive, approximating these values from the
discrete representation is generally sufficient.

Identifying Features to be Suppressed

The geometric checks, as defined by the skeleton and other tools outlined in
table 1 are used to identify irrelevant features for suppression. These tools
calculate the maximum mesh size at a given point on a facet entity of the
discrete model. A complete size field function s = f(x, y, z) obtained by
interpolating the distance at the skeleton points and other tools is shown
in figure 4c with a color code. If the field value (maximum mesh size) is
less than the minimum threshold value ε∗ then that facet entity is marked
for suppression. Note that the entities specifically identified by the user for
preservation are ignored and never marked for suppression.

For example, unwanted features such as narrow regions and slender sur-
faces can be identified for reduction using the 2D-skeleton tool. In this case,
the local thickness, or twice the skeleton distance (2d2D) is used in calculating
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Fig. 4a. CAD model with narrow re-
gions

Fig. 4b. 2D-skeleton of each surface
with color coded local thickness

Fig. 4c. Mesh size based on skeleton
and other tools

Fig. 4d. Fine mesh at skeleton points
with smaller local thickness

maximum mesh size due to 2D-proximity. If the computed mesh size due to
the 2D-skeleton is less than ε2D then the facet entities associated with that
skeleton point are marked for reduction. This ensures that by defeaturing
these facets, mesh elements with sizes below the size ε2D will not exist in the
final mesh.

Similarly, other tools reveal the local maximum mesh size which in turn
influences the detection of irrelevant features for a given ε. As the geometric
checks are performed, the facet entities corresponding to the irrelevant fea-
tures are detected and marked for suppression. For example, the 3D-skeleton
tool, when used, can detect thin-walled regions via the 3D-proximity check;
surface and curve curvature based checks can detect facet entities near high
curvature regions such as fillets, blend patches, and holes; and 1D-proximity
can detect facet edges associated with tiny curves and small features such as
pegs and indentations via curve length checks.
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3.3 Suppressing Features

Once all irrelevant features have been identified, operations to suppress the
features can be performed. This is accomplished by using a standard edge
collapse operator on all edges marked for suppression as ilustrated in figure 5.
To accomplish this, the topological entities of the discrete B-Rep model are
visited in a dimension-based order. For example, facet edges associated with
the curves are collapsed prior to collapsing those associated with the interior
of the surface. As the collapse operations are performed the associativity be-
tween the geometric entities of the discrete model and the facet entities are
updated. This may require that following any given edge collapse that the
resulting edges may need to maintain associativity to multiple geometric en-
tities. This generalized one-to-many, child-parent associativity between facet
entity and original CAD B-Rep entity is maintained and updated throughout
the procedure.

Following any operation, local checks and updates are made to the re-
duced facet-based B-Rep to ensure a valid topological configuration is always

Fig. 5. The standard edge collapse operation

Fig. 6a. Single curve
overlap

Fig. 6b. Two curves
overlap

Fig. 6c. Single surface
overlap
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maintained. Figures 6a to 6c illustrate three specific cases that may make the
discrete model invalid after an edge collapse operation.

Figure 6a shows an edge collapse at a cylindrical hole. In this case, the
end circle of the cylindrical hole has been reduced to the three edges E1, E2,
and E3, which are associated with one circular curve. After collapsing edge
E1, the edges E2 and E3, although separate edges will share the same end
vertices. To resolve this case, edges E2 and E3 are merged and represented
as a single edge in the facet model. This ensures that there will be only one
facet edge incident on any given pair of facet vertices.

Figure 6b shows that collapsing two small facet edges (shown in red) whose
end vertices are incident on two curves C1 and C2 will result in a facet-
edge associated with both the curves C1 and C2. This results in an invalid
topology in the discrete B-Rep model even though the geometry continues
to be watertight. To make the topology valid, both the curves C1 and C2
are split at their common overlapping edges to form a third curve C3. The
facet edges at the overlapping region are then associated with a new curve
C3 instead of associating with both C1 and C2. Although C3 is created as
a new distinct curve entity in the discrete model, associativity back to its
original geometry owners in the CAD B-Rep is maintained.

Figure 6c shows the facets of a single surface with edge E1 as one of the
base edges of a triangular pyramid. Performing a collapse operation on edge
E1, which is not an edge of F1 or F2 would cause the two facets F1 and F2
to overlap. Similar to the case described in figure 6a, although the facets are
unique entities, they would share common vertices, creating a non-manifold
or dangling facet. To avoid this case, the facets F1 and F2 are first merged
and then subsequently deleted as part of the collapse operation of edge E1.

3.4 Meshing the Defeatured Model

Once all features identified for suppression have been reduced, the discrete
model can be used as the basis for any of the surface and volumetric meshing
tools in the CUBIT tool suite. Because associativity has been maintained
throughout the reduction procedures, mapping between the original and the
defeatured model is used to translate the user defined meshing schemes and
mesh sizes prior to mesh generation. Since small features have now been
removed from the discrete model, the resulting mesh in most cases will be
higher quality with fewer degrees of freedom than if the model had not been
defeatured. Using the same mapping between the original CAD model and
discrete model, any boundary conditions specified in terms of the original
CAD entities can be decoded onto the final FE mesh entities.

4 Results

The proposed approach has been implemented in C++ in CUBIT and has
been tested on a limited number of industrial CAD models. We illustrate the
effectiveness of the proposed method on two selected single part examples.
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While this work focusses on single part models, work is underway to extend
the framework to support volume defeaturing on assembly models.

Fig. 7a. Original B-Rep CAD Model Fig. 7b. Discrete Model

Fig. 7c. Defeatured Discrete Model Fig. 7d. Defeatured B-Rep Model

Fig. 7e. Tet mesh on Defeatured B-Rep
Model

Fig. 7f. Tet mesh on Original B-Rep
Model
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Figures 7a to 7d show the different stages of defeaturing on a simple indus-
trial part. Note that the model shown in Figure 7a and Figure 7b contains
unintended features such as a long cylindrical hole, fillets at both convex and
concave edges, multiple slots, and a protruded slab. Figures 7c and 7d show
the defeatured model. Features have been removed based upon geometric fac-
tors that are controlled by a user specified threshold value of 1.0. Figure 7e
shows a tetrahedral mesh on the defeatured model that has 3,490 tets with
minimum element quality of 0.29 and average element quality of 0.825. In
contrast, Figure 7f is a tetrahedral mesh on the model without defeaturing.
The number of tet elements increases significantly to 51,109 and the mini-
mum and average quality falls to 0.008 and 0.75, respectively. Both figures 7e
and 7d use the same automatic triangle and tetrahedral meshing algorithms
with the same default mesh settings.

Table 2 shows the effect of geometric factors on defeaturing. In CUBIT ge-
ometric factors can be controlled by issuing commands to enable a geometric
factor. As more geometric factors are added, more facets get qualified for de-
featuring and are marked for collapse. Note that using the geometric factors
users can remove a specific type of feature. For example, adding the curve
length check will remove the small peg at the top of the model. Subsequently
adding the 2D-proximity criteria resulted in removing the chamfer. This is

Table 2. Controlling geometric factors to influence defeaturing

No Features Small Curves Chamfer Hole & Fillet
Removed Removed Removed Removed
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s None Curve Length Curve Length Curve Length

2D Proximity 2D Proximity
Curve Curvature
Surface Curvature
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because the distance between the opposite long edges of the chamfer fell be-
low the user specified threshold of 0.6. Similarly, adding curve and surface
curvature-based checks removed the facets associated with the central hole
and a fillet. In general, the geometric factors determine the mesh size at the
facet entities first and then mark the facet entities for deletion only if the
mesh size falls below the user specified threshold value.

5 Conclusion

This paper introduces a new facet-based approach to defeaturing CAD mod-
els by automatic identification of irrelevant features via a geometry-based size
field. Robust detection of irrelevant features is achieved by using geometric
factors that control the size field. The geometric factors are identified by
a systematic analysis of the geometric complexity of the input CAD model.
These geometric factors are also used as user controls to target the selection of
irrelevant features, where the field value or mesh size, goes below a user spec-
ified threshold value. The actual defeaturing is performed on a facet-based
discrete B-Rep model as it is less complex and more robust than perform-
ing it on the original NURBS model. It also has the advantage of leaving
the original CAD model untouched so that multiple alternative defeatured
representations can be derived based upon the needs of the simulation. As
the meshing algorithms themselves are independent of the actual defeaturing
procedures, any mesh generation scheme can be applied to the defeatured
model without modification. The proposed method has been demonstrated
on a limited set of industrial models and has proven effective in reducing user
time, degrees of freedom, and mesh quality issues.

We have limited the initial work described here to feature suppression on
single part CAD models. Extension of these procedures to assembly models
will be a necessary next step. The proposed framework can also be extended
to perform imprinting [15] and CAD repair via the discrete B-Rep model.
Another potentially valuable area for study would be the introduction of
physics-based sizing properties into the field function that drives the criteria
for identification of features to be suppressed. This would provide a mecha-
nism to automatically retain features in the model where important physics
is occurring, but defeature where it is not.

References

1. Blacker, T.D., Sheffer, A., Clements, J., Bercovier, M.: Using Virtual Topol-
ogy to Simplify the Mesh Generation Process. Trends in Unstructured Mesh
Generation, vol. AMD-220, pp. 45–50 (1997)

2. Borouchaki, H., Laug, P.: Simplification of composite parametric surface
meshes. Engineering with Computers 20, 176–183 (2004)

3. Clark, B.W.: Removing Small Features with Real CAD Operations. In: Pro-
ceedings of the 16th International Meshing Roundtable, pp. 183–198 (2007)



318 W.R. Quadros and S.J. Owen

4. CUBIT Geometry and Mesh Generation Toolkit, Sandia National Laboratories
(2009), http://cubit.sandia.gov

5. Dey, S., Shephard, M.S., Georges, M.K.: Elimination of the Adverse Effects of
Small Model Features by the Local Modification of Automatically Generated
Meshes. Engineering with Computers 13, 134–152 (1997)

6. Fine, L., Remondini, L., Leon, J.C.: Automated Generation of FEA Models
Through Idealization Operators. International Journal for Numerical Methods
in Engineering 49(1-2), 83–108 (2000)

7. Foucault, G., Cuilliere, J.C., Francois, V., Leon, J.C., Maranzana, R.: An Ex-
tension of the Advancing Front Method to Composite Geometry. In: Proceed-
ings of the 16th International Meshing Roundtable, seattle (2007)

8. Foucault, G., Cuilliere, J.C., Francois, V., Leon, J.C., Maranzana, R.: Adap-
tation of CAD Model Topology for Finite Element Analysis. Computer Aided
Design 40(2), 176–196 (2008)

9. Gao, S., Zhao, W., Yang, F., Chen, X.: Feature Suppression Based CAD Mesh
Model Simplification. In: Proceedings IEEE International Conference on Shape
Modeling and Applications, NY, June 4-6 (2008)

10. Inoue, K., Itoh, T., Yamada, A., Furuhata, T., Shimada, K.: Face clustering
of a large-scale CAD model for surface mesh generation. Computer Aided De-
sign 33(3), 251–261 (2001)

11. Mobley, A.V., Carroll, M.P., Canann, S.A.: An Object Oriented Approach to
Geometry Defeaturing for Finite Element Meshing. In: Proceddings 7th Inter-
national Meshing Roundtable, pp. 547–563 (1998)

12. Owen, S.J., White, D.R.: Mesh-Based Geometry. International Journal for Nu-
merical Methods in Engineering 58(2), 375–395 (2003)

13. Quadros, W.R.: A Computational Framework for Generating 3D Finite Ele-
ment Mesh Sizing Function via Skeletons, Ph.D. Thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, U.S.A (2005)

14. Thakur, A., Banerjee, A.G., Gupta, S.K.: A Survey of CAD Model Simplifi-
cation Techniques for Physics-based Simulation Applications. Computer Aided
Design 41(2), 65–80 (2009)

15. White, D.R., Saigal, S., Owen, S.J.: An Imprint and Merge Algorithm Incorpo-
rating Geometric Tolerances for Conformal Meshing of Misaligned Assemblies.
International Journal for Numerical Methods in Engineering 59, 1839–1860
(2004)

http://cubit.sandia.gov


Towards Exascale Parallel Delaunay Mesh
Generation�

Nikos Chrisochoides, Andrey Chernikov, Andriy Fedorov, Andriy Kot,
Leonidas Linardakis, and Panagiotis Foteinos

Center for Real-Time Computing
The College of William and Mary
Williamsburg, VA 23185
{nikos,ancher,fedorov,kot,leonl01,pfot}@cs.wm.edu

Abstract. Mesh generation is a critical component for many (bio-)engineering ap-
plications. However, parallel mesh generation codes, which are essential for these
applications to take the fullest advantage of the high-end computing platforms, be-
long to the broader class of adaptive and irregular problems, and are among the
most complex, challenging, and labor intensive to develop and maintain. As a result,
parallel mesh generation is one of the last applications to be installed on new parallel
architectures. In this paper we present a way to remedy this problem for new highly-
scalable architectures. We present a multi-layered tetrahedral/triangular mesh gen-
eration approach capable of delivering and sustaining close to 1018 of concurrent
work units. We achieve this by leveraging concurrency at different granularity levels
using a hybrid algorithm, and by carefully matching these levels to the hierarchy
of the hardware architecture. This paper makes two contributions: (1) a new evolu-
tionary path for developing multi-layered parallel mesh generation codes capable of
increasing the concurrency of the state-of-the-art parallel mesh generation methods
by at least 10 orders of magnitude and (2) a new abstraction for multi-layered run-
time systems that target parallel mesh generation codes, to efficiently orchestrate
intra- and inter-layer data movement and load balancing for current and emerging
multi-layered architectures with deep memory and network hierarchies.

1 Introduction

The complexity of programming adaptive and irregular applications on archi-
tectures with hierarchical communication networks of processors is an order
of magnitude higher than on sequential machines, even for parallel mesh gen-
eration algorithms/codes which can be mapped directly on multi-layered ar-
chitectures. Automatically exploiting concurrency for irregular and adaptive
computation like Delaunay mesh generation is more complex than exploit-
ing concurrency for regular (or array-based) and non-adaptive computations.

� This material is based upon work supported by the National Science Foundation
under Grants No. CCF-0833081, CSR-0719929, and CCS-0750901 and by the
John Simon Guggenheim Foundation.
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Static analysis can not be used for adaptive and irregular applications like
parallel mesh generation [27]. In [1, 33] we introduced a speculative (or op-
timistic) method for parallel Delaunay mesh generation which was recently
adopted by the parallel compilers community [28, 35] to study abstractions
for parallelization of adaptive and irregular applications. This technique has
two major problems for high-end computing: (1) although it works reason-
ably well for the shared memory model, it is communication intensive for
distributed memory machines; and (2) its concurrency can be limited by the
problem size at the faster (and thus smaller) shared memory layer of the
hierarchy.

In this paper we address both problems using a hybrid multi-layer approach
which is based on a decoupled approach [29] at the larger (and slower) layers,
an extension of an out-of-core weakly coupled method [25, 26] at the interme-
diate layers, and a speculative or optimistic but tightly-coupled method [1]
at the faster (shared memory) layers (i.e., multi-core). The out-of-core layer
utilizes additional disk storage and makes it possible to free the main memory
for the storage of data used only in the current computation. In addition, we
extend our runtime system [3] to efficiently manage both intra- and inter-
layer communication in the context of data migration due to load balancing
and migration of data/tasks between layers and between nodes across the
same layer.

We expect that this paper can have an impact in two different areas: (1)
Mesh Generation: we present the first highly scalable parallel mesh generation
method capable to provide and sustain concurrency on the order of 1018. (2)
Engineering Applications: for the first time we provide unprecedented scal-
ability for large-scale field solvers for applications like the direct numerical
simulations of turbulence in cylinder flows with very large Reynolds num-
bers [18] and coastal ocean modeling for predicting storm surge and beach
erosion in real-time [43]. In these applications three-dimensional simulations
are conducted using two-dimensional meshes in the xy-plane which are repli-
cated in the z-direction in the case of cylinder flows or using bathe-metric
contours in the case of coastal ocean modeling. In addition, this method can
be extended for Advancing Front Techniques. The approach we develop is
independent of the geometric dimension (2D or 3D) of the mesh. Although
the mesh-generation-specific domain decomposition has been developed only
for 2D, a similar argument applies to 3D with the use of alternative decom-
positions, e.g., graph partitioning implemented in the Zoltan package [16].

This paper is organized as follows. In Section 2 we review the related
prior work. In Section 3 we describe the organization of our Multi-Layered
Runtime System. In Section 4 we present the proposed Multi-Layered Parallel
Mesh Generation algorithm. In Section 5 we put the runtime system and
the parallel mesh generation algorithm together. Section 5.1 contains our
preliminary performance data, and Section 6 concludes the paper.
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2 Background

In this section we present an overview of parallel mesh generation approaches
related to the method we present in this paper. In addition we review parallel
runtime systems related to our runtime system PREMA (Parallel Runtime
Environment for Multicomputer Applications) which we extend to handle
multi-layered applications.

2.1 Related Work in Parallel Mesh Generation

There are three conceptually different approaches to mesh generation. Delau-
nay meshing methods (see [19] and the references therein) use the Delaunay
criterion for point insertion during refinement. Advancing front meshing tech-
niques (see e.g. [38]) build the mesh in layers starting from the boundary of
the geometry. Some of the advancing front methods use the Delaunay prop-
erty for point placement, but no theoretical guarantees are usually available.
Adaptive space-tree meshing (see e.g. [32]) is based on adaptive space subdivi-
sion (e.g., adaptive octree, or body-centric cubic lattice), and can be flexible
in the definition of the meshed object geometry (e.g., implicit geometry repre-
sentation). Certain theoretical guarantees on the quality of the mesh created
in such a way are provided by some of the methods in this group.

A comprehensive review of parallel mesh generation methods can be found
in [14]. In this section we review only those methods related to parallel De-
launay mesh generation. The problem of parallel Delaunay triangulation of
a specified point set has been solved by Blelloch et al. [4]. A related problem
of streaming triangulation of a specified point set was solved by Isenburg et
al [20]. In contrast, Delaunay refinement algorithms work by inserting addi-
tional (so-called Steiner) points into an existing mesh to improve the quality
of the elements. In Delaunay mesh refinement, the computation depends on
the input geometry and changes as the algorithm progresses. The basic op-
eration is the insertion of a single point which leads to the removal of a poor
quality tetrahedron and of several adjacent tetrahedra from the mesh and to
the insertion of several new tetrahedra. The new tetrahedra may or may not
be of poor quality and, hence, may or may not require further point inser-
tions. We and others have shown that the algorithm eventually terminates
after having eliminated all poor quality tetrahedra, and in addition the termi-
nation does not depend on the order of processing of poor quality tetrahedra,
even though the structure of the final meshes may vary [11, 12, 29]. Therefore,
the algorithm guarantees the quality of the elements in the resulting meshes.

The parallelization of Delaunay mesh refinement codes can be achieved by
inserting multiple points simultaneously. If the points are far enough from
each other, as defined in [11], then the sets of tetrahedra influenced by their
insertion are sufficiently separated, and the points can be inserted indepen-
dently. However, if the points are close, then their insertion needs to be
serialized because of possible violations of the validity of the mesh or of the
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Delaunay property. One way to address this problem is to introduce runtime
checks [28, 33] which lead to the overheads due to locking [1] and to roll-
backs [33]. Another approach is to decompose the initial geometry [30] and
apply decoupled methods [19, 29]. The third approach presented in [8, 9, 11]
is to use a judicious way to choose the points for insertion, so that we can
guarantee their independence and thus avoid runtime data dependencies and
overheads. In [9] we presented a scalable parallel Delaunay refinement algo-
rithm which constructs uniform meshes, i.e., meshes with elements of ap-
proximately the same size and in [11] we developed an algorithm for the
construction of graded meshes. The work by Kadow and Walkington [22, 23]
extended [4, 5] for parallel mesh generation and further eliminated the se-
quential step for constructing an initial mesh, however, all potential conflicts
among concurrently inserted points are resolved sequentially by a dedicated
processor [22].

In summary, in parallel Delaunay mesh generation methods we can explore
concurrency at three levels of granularity: (i) coarse-grain at the subdomain
level, (ii) medium-grain at the cavity level (this is a common abstraction
for many different mesh generation methods), and (iii) fine-grain at the el-
ement level. The fine-grain can only increase the concurrency by a factor of
three or four in two or in three dimensions, respectively. However, a detailed
profiling of our codes revealed that up to 24.5% of the cycles is spent on
synchronization operations, for both the protection of work-queues and for
tagging each triangle upon checking it for inclusion in a cavity. Synchroniza-
tion is always limited among the two or three threads co-located on the same
core, and memory references due to synchronization operations always hit in
the cache. However, the massive number of processed triangles results in a
high percentage of cumulative synchronization overhead. We will revisit the
fine-grain level when there is better hardware support for synchronization.

2.2 Related Work in Parallel Runtime Systems

Because of the irregular and adaptive nature of parallel mesh generation we
wish to optimize, we restrict our discussion in this section to software systems
which dynamically balance application workload and we use the following
six important criteria: (1) Support for data migration. Migrating processes
or threads adds to the complexity of the runtime system, and is often not
portable. Migrating data, and thereby implicitly migrating computation is
a more portable and simple solution. (2) Support for explicit message pass-
ing. Message passing is a programming paradigm that developers are familiar
with, and the Active Messages [42] communication paradigm we use is a log-
ical extension to that. Explicit message passing is also attractive because it
does not hide parallelism from the developer. (3) Support for a global name-
space. A global name-space is a prerequisite for automatic data migration;
applications need the ability to reference data regardless of where it is in the
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parallel system. (4) Single-threaded application model for inter-layer interac-
tions. Presenting the developer with a single-threaded communication model
between layers greatly reduces application code complexity and development
effort. (5) Automatic load balancing. The runtime system should migrate data
or computation transparently and without intervention from the application.
(6) Customizable data/load movement/balancing. It cannot be said that there
is a “one size fits all” load balancing algorithm; different algorithms perform
well in different circumstances. Therefore, developers need the ability to eas-
ily develop and experiment with different application- and machine-specific
strategies without the need to modify their application code.

Systems such as the C Region Library (CRL) [21] implement a shared
memory model of parallel computing. Parallelism is achieved through accesses
to shared regions of virtual memory. The message passing paradigm we em-
ploy explicitly presents parallelism to the application. In addition, PREMA
does not make use of copies of data objects, removing much of the complexity
involved with data consistency and read/write locks. In [17, 41] the authors
propose the development of component-based software strategies and data
structure neutral interfaces for large-scale scientific applications that involve
mesh manipulation tools.

Zoltan [15] and CHARM++ [24] are two systems with similar charac-
teristics to PREMA. Zoltan provides graph-based partitioning algorithms
and several geometric load balancing algorithms. Because of the synchro-
nization required during load balancing, Zoltan behaves in much the same
way as other stop-and-repartition libraries, whose results are presented in [2].
CHARM++ is built on an underlying language which is a dialect of C++,
and provides extensive dynamic load balancing strategies. However, the pick-
and-process message loop guarantees that entry-point methods execute “se-
quentially and without interruption” [24]. This may lead to a situation in
which coarse-grained work units may delay the reception of load balancing
messages, negating their usefulness, as was seen with the single-threaded
PREMA results presented in [2]. The Adaptive Large-scale Parallel Simu-
lations (ALPS) library [7] is based on a parallel octree mesh redistribution
and targets hexahedral finite elements, while we focus on tetrahedral and
triangular elements.

3 Multi-layered Runtime System

The application we target (parallel mesh generation) naturally lends itself to
a hierarchical partitioning of work (specifically: domain, subdomain, indepen-
dent subdomain region, and cavity). At the first two levels of this hierarchy,
we use the concept of mobile object , or Mobile Work Unit (MWU), as an ab-
straction for work partitioning. MWU is a container, which is not attached to
a specific processing element, but, as its name suggests, can migrate between
address spaces of different nodes. Work processing is facilitated by means
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Fig. 1. Left: an abstraction for the hierarchical design of one runtime system layer.
The layers are arranged vertically, such that the arrows represent the transfer of
data between the adjacent layers. Right: a 2-layer instantiation of the proposed
design which we tested using traditional out-of-core parallel mesh generation meth-
ods [25, 26].

of sending mobile messages , which are directed to MWUs. As we showed
in [3], this abstraction is extremely convenient for the development of mesh
generation codes, and is indispensable for one of the most challenging prob-
lems in parallel mesh generation: dynamic data/load movement/balancing.

Deep memory and network architecture hierarchies are intrinsic to the
state-of-the-art High Performance Computing (HPC) systems. Based on our
experience, MWU abstraction is effective in handling data movement, work
distribution and load-balancing across a single layer of the HPC architec-
ture hierarchy (among the nodes and disk storage units), while large-to-small
work subdivision vertically aligns with the hierarchy of the architecture: mesh
subdomains, for meshes with over 1018 elements, can be too large to fit in
memory, while cavities can be processed concurrently at the level of a CPU
core at a lower communication/synchronization cost. The objective of the
multi-layered runtime system design is to provide communication and flow
control support to leverage the hierarchical structure of both the application
work partitioning and HPC architecture.

In our previous work on runtime systems we explored various possibilities
for the design and the implementation of load-balancing on a Cluster of Work-
stations (CoW) [3]. In this paper, our design approach is based upon three
levels of abstraction, as shown in Fig. 1(left). At the lowest level, there is na-
tive communication infrastructure, which is the foundation for implementing
the concept and basic MWU handling routines (migration and MWU-directed
communication). Given the ability to create and migrate MWUs, the schedul-
ing framework implements high-level logic by monitoring the status of the
system and the available objects, and rearranges them accordingly across the
processing elements horizontally, or moving them up and down the vertical
hierarchy. An important feature of the design is the MWU-directed commu-
nication. The life cycle of an MWU is determined by the messages (mostly,
work requests) it receives from other MWUs and processing elements, and
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the status of the system. Depending on its status, availability of work, as well
as the degree and nature of concurrency which can be achieved, an MWU
can be “retired” to a lower level (characterized by lower degree of concur-
rency, when no work is pending for MWU, or when there are no resources to
keep it at the current layer), or “promoted” to an upper layer (e.g., due to
availability of resources or request for fast synchronization due to unresolved
dependencies).

As a specific example of how multi-layered design can be realized, we im-
plemented a two-layered framework based on the abstract design presented
above (see Fig. 1, right). The top layer is an expanded version of the PREMA
system [3]. The native communication can be either one among ARMCI [34],
MPI or TCP sockets. The abstraction of mobile work units is realized by
MOL [13], and high-level MWU scheduling is determined by the dynamic
load-balancing policies implemented within the Implicit Load-balancing Li-
brary [3]. Overall, this layer is responsible for the maintenance of a balanced
work distribution across a single layer of nodes.

4 Multi-layered Parallel Mesh Generation

Figure 2 presents the pseudo-code for the multi-layered (hybrid) parallel
mesh generation algorithm. It starts with the initial Planar Straight Line
Graph (PSLG) X which defines the domain Ω and the user-defined bounds
on circumradius-to-shortest edge length ratio and on the size of the elements.
First, we apply a Domain Decomposition procedure [30] to decompose Ω into
N non-overlapping subdomains: Ω =

⋃N
i=1 Ωi with the corresponding PSLGs

Xi, where N is the number of computational clusters. Then the boundary of
each Ωi is discretized using the Parallel Domain Delaunay Decoupling (PD3)
procedure [29] such that subsequent refinement is guaranteed not to intro-
duce any additional points on subdomain boundaries. Next each subdomain
represented by Xi is loaded onto a selected node from cluster i. Then {Xi}
are further decomposed using the same method [30] into even smaller subdo-
mains. However, in this case the boundaries of the subdomains are not dis-
cretized since PD3 uses the worst case theoretical bound on the smallest edge
length, which generally leads to over-refined meshes in practice. Instead, we
use Parallel Constrained Delaunay Meshing (PCDM) algorithm/software [10]
which at the cost of some communication introduces points on the boundaries
as needed. Specifically, we use its out-of-core implementation (OPCDM) [26].
In addition we take advantage of the shared memory offered by multi-core
systems and use the multi-threaded algorithm/implementation we presented
in [1]. The meshes produced by the Multithreaded PCDM (MPCDM) algo-
rithm are not constrained by the artificial subdomain boundaries and there-
fore generally have an even smaller number of elements than the meshes
produced by the PD3 algorithm.
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ScalableParallelDelaunayMeshGeneration(X , ρ̄, Ā)
Input: X is the PSLG which defines the domain Ω

ρ̄ is the upper bound on circumradius-to-shortest edge length ratio
Ā is the upper bound on element size

Output: A distributed Delaunay mesh M which respects the bounds ρ̄ and Ā
1 Use MADD(X , N) to decompose the domain into subdomains

represented by {Xi}, i = 1, . . . , N , where N is the number of clusters
2 Use PD

3({Xi}, ρ̄, Ā), to refine the boundaries of Xi

3 Load each of the Xi, i = 1, . . . , N , to a node ni in cluster i
4 do on every node ni simultaneously
5 Use MADD(Xi, Mi) to decompose each subdomain

into even smaller subdomains Xij, j = 1, . . . , Mi

6 Distribute the subdomains Xij , j = 1, . . . , Mi, among Pi nodes in cluster i
7 do on every node in cluster i simultaneously
8 Use OPCDM({Xij}, ρ̄, Ā) to refine the subdomains
9 enddo

10 enddo

OPCDM({Xk}, ρ̄, Ā)
11 Let Q be the set of subdomains that require refinement
12 Q ← {Xk}, Qo ← ∅
13 while Q ∪ Qo 
= ∅
14 X ← Schedule(Q, Qo)
15 MPCDM(X , ρ̄, Ā)
16 Update Q (the operation of finding any new subdomains that need

refinement, e.g., after receiving messages, and inserting them into Q)
17 endwhile

MPCDM(X , ρ̄, Ā)
18 Construct M = (V, T ) an initial Delaunay triangulation of X
19 Let PoorTriangles be the set of poor quality triangles in T

with respect to ρ̄ and Ā
20 while PoorTriangles 
= ∅
21 Pick {ti} ⊆ PoorTriangles
22 do using multiple threads simultaneously
23 Compute the set of Steiner points P = {pi} corresponding to {ti}
24 Compute the set of Steiner points P ′ ⊆ P which encroach upon constrained edges
25 P ← P \ P ′

26 Replace the points in P ′ with the corresponding segment midpoints
27 Compute the set of cavities C = {C (p) | p ∈ P ∪ P ′},

where C (p) is the set of triangles whose circumscribed circles include p
28 if C create conflicts
29 Discard a subset of C and the corresponding points from P ∪ P ′

such that there are no conflicts
30 endif
31 BowyerWatson(V , T , p), ∀p ∈ P ∪ P ′

32 RemoteSplitMessage(p), ∀p ∈ P ′

33 enddo
34 Update PoorTriangles
35 endwhile

Schedule(Q, Qo)
36 while Q 
= ∅
37 X ← pop(Q)
38 if X is in-core return X else ScheduleToLoad(X ), push(Qo, X ) endif
39 endwhile
40 X ← pop(Qo)
41 if X is in lower-layer or out-of-core Load(X ) endif
42 return X

BowyerWatson(V , T , p)
43 V ← V ∪ {p}
44 T ← T \ C (p) ∪ {(pξ) | ξ ∈ ∂C (p)},

where (pξ) is the triangle obtained by connecting point p to edge ξ

Fig. 2. The multi-layered parallel mesh generation algorithm.
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Fig. 3. (Left) Thick lines show the decoupled decomposition of the geometry
into 8 high level subdomains which are assigned to different clusters. Medium lines
show the boundaries between the subdomains assigned to separate nodes within a
cluster. Thin lines show the boundaries between individual subdomains assigned
to the same node. (Right) Parallel expansion of multiple cavities within a single
subdomain using the MPCDM algorithm.

4.1 Domain Decomposition Step

We use the Medial Axis Domain Decomposition (MADD) algorithm/software
we presented in [30]. MADD can produce domain decompositions which sat-
isfy the following three basic criteria: (1) The boundary of the subdomains
create good angles, i.e., angles no smaller than a given tolerance Φo, where the
value of Φo is determined by the application which uses the domain decom-
position. (2) The size of the separator should be relatively small compared
to the area of the subdomains. (3) The subdomains should have approxi-
mately equal size, area-wise. This approach is well suited for both uniform
and graded domain decomposition. Before the subdomains become available
for further processing by the PCDM method they are discretized using the
pre-processing step from PD3 [29, 31] which guarantees that any Delaunay
algorithm can generate a mesh on each of the subdomains in a way that does
not introduce any new points on the boundary of the subdomains (i.e., the
algorithm terminates and can guarantee conformity and Delaunay properties
without the need to communicate with any of the neighbor subdomains).

4.2 Parallel Delaunay Mesh Generation Step

We use two different approaches, for different layers of the multi-layered ar-
chitecture: (1) combine a coarse- and medium-grain (speculative-based) ap-
proach which is designed to run on a multi-core processor and (2) combine
coarse- and coarser-grain which is designed after the traditional out-of-core
PCDM method, for a multi-processor node as well as a cluster of nodes. First
we describe the in-core PCDM method [10]. The PSLGs for all subdomains
are triangulated in parallel using well understood sequential algorithms, e.g.,
described in [36, 39]. Each triangulated subdomain contains the collections of
the constrained edges, the triangles, and the points. For the point insertion,
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we use the Bowyer-Watson (B-W) algorithm [6, 44]. The constrained (bound-
ary) segments are protected by diametral lenses [37], and each time a segment
is encroached, it is split in the middle; as a result, a split message is sent to
the neighboring subdomain [10]. PCDM is designed to run on multi-processor
nodes and clusters of nodes, i.e., it uses the message passing paradigm. Each
process lies in its own address space and uses its own copy of a custom mem-
ory allocator. Second, the time corresponding to low aggregation decreases
as we increase the number of processors; this can be explained by the growth
of the utilized network and, consequently, the aggregate bandwidth. Similar
studies for new HPC architectures need to be repeated and this parameter
will be adjusted accordingly i.e., this parameter is machine specific.

Next we describe the two variations of PCDM we use for the multi-layered
algorithm of Figure 2. First, we use the Out-of-Core (OPCDM) approach
(line 8 of the hybrid algorithm) [26] which utilizes the bottom layer of the
HPC architectures, i.e., the processing units with the large storage devices.
Before processing a subdomain (using MPCDM) in the main loop we check
whether the next subdomain in queue is in-core and mark it as sticky if it is
or post a non-blocking load request for that subdomain. Second, after all bad
triangles for a subdomain are processed we check whether the next subdomain
in queue is in-core. If it is not we push it back in queue and examine the
next. If we cannot find an in-core subdomain we load the next subdomain
in queue with a blocking call. It should be noted that the Run-Time System
(RTS) marks subdomains with multiple incoming messages as sticky and may
attempt to prefetch them. Additionally, when processing incoming messages
(when the application is polling), the RTS first executes messages addressed
to in-core subdomains regardless of the order in which messages were received
(the order of the messages sent to the same subdomain is preserved). The
execution order of the subdomains does not affect neither correctness/quality
nor termination for our algorithm.

Second, the Multithreaded (MPCDM) approach (line 15 of the multi-
layered algorithm) [1] which targets the top layer of the HPC architecture,
i.e., utilizes the fastest processing unit (hardware supported threads of cores).
The threads create and refine individual cavities concurrently, using the B-
W algorithm. MPCDM is synchronization-intensive mainly because threads
need to tag each triangle while working on a cavity, to detect conflicts during
concurrent cavity triangulation. Each subdomain is divided up into distinct
areas (in order to minimize conflicts and overheads due to rollbacks), and
the refinement of each area is assigned to a single thread. The decomposition
is performed by equipartitioning — using straight lines as separators (strip-
partitioning) that form a rectangular parallelogram enclosing the subdomain.
Despite being straightforward and computationally inexpensive, this type of
decomposition can introduce load imbalance between threads for irregular
subdomains. The load imbalance can be alleviated by dynamically adjusting
the position of the separators at runtime. The size of the queues (private
and shared — of triangles that intersect the thread-separator) of bad quality
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triangles is proportional to the work performed by each thread. Large differ-
ences in the populations of queues of different threads at any time during the
refinement of a single subdomain are a safe indication of load imbalance. Such
events are, thus, used to trigger the load balancing mechanism. Whenever the
population of the queues of a thread becomes larger than (100 / Number of
Threads)% compared with the population of the queues of a thread process-
ing a neighboring area, the separator between the areas is moved towards the
area of the heavily loaded thread.

5 Putting It All Together

In this Section we present the highlights of the implementation for the multi-
layered algorithm. The following implementation details are pertinent to the
description of the runtime system, which we discussed previously: (1) hier-
archical decomposition of work into MWUs, (2) interaction of the algorithm
implementation with those units (via run-time system API), and (3) the
management of MWUs by the run-time system.

The construction and the registration of the MWUs with the runtime sys-
tem take place immediately after the decomposition of the input domain in
line 5 of the algorithm, see Figure 2. A subdomain has dependencies on the
neighboring subdomains, which share a common boundary, and may require
coordination in order to process points inserted at that boundary. After the
subdomains are defined, their movement, work processing, and communica-
tion (i.e., delivery of the Split messages) are handled transparently by the
runtime system. The work processing is implemented in two mobile message
handlers: subdomain refinement and split point processing subroutines.

We approach the issue of load-balancing across the nodes by using the dy-
namic load-balancing framework of PREMA [3]. Intra-layer object migration
is triggered by the imbalance of work assigned to different subdomains due to
different levels of refinement, different domain geometry, and, consequently,
different rates of split messages arriving at each subdomain. Inter-layer mi-
gration of the MWUs is required for the efficient memory utilization, and
the ability of the given layer to handle larger problem sizes. Scheduling of
the MWUs between the PREMA and the OoCS follows the scheme described
in the previous Section. The complex issue we will have to resolve, for truly
(i.e., greater than two layers of processors) multi-layered architectures like
the HTMT Petaflops design [40], is how to handle guaranteed delivery of the
mobile messages in the causal order. With current two-layered architectures
this is not a problem.

5.1 Preliminary Data

In this Section we report some of the preliminary results for the implementa-
tions of the three individual levels of the proposed hybrid algorithm: Domain
Decomposition, Coarse+medium granularity (PCDM) and Coarse+coarser
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granularity (OPCDM). We evaluated the performance of the Domain Decom-
position procedure on the fastest platform we had in our availability (dual
Intel Pentium 3.6GHz). For the evaluation of the performance of the upper
two levels of the algorithm (coarse+medium and coarse+coarser, i.e., tradi-
tional out-of-core) we used a cluster consisting of four IBM OpenPower 720
nodes. The nodes are interconnected via a Gigabit Ethernet network. Each
node consists of two 1.6 GHz Power5 processors, which share eight GB of
main memory. Each physical processor is a chip multiprocessor (CMP) inte-
grating two cores. Each core, in turn, supports simultaneous multithreading
(SMT) and offers two execution contexts. As a result, eight threads can be
executed concurrently on each node. The two threads inside each core share a
32 KB, four-way associative L1 data cache and a 64 KB, two-way associative
L1 instruction cache. All four threads on a chip share a 1.92 MB, 10-way
associative unified L2 cache and a 36 MB 12-way associative off-chip unified
L3 cache. The results for each of the three levels are as follows:

Domain Decomposition: Given the Chesapeake Bay model, we can se-
quentially decompose it using MADD into two subdomains in less than 0.5
seconds. This model is defined by 13,524 points and has 26 islands (i.e., quite
complex geometry and resolution), see Figure 4. These two subdomains can
be distributed to two cores and decomposed in parallel into four subdomains
in less than 0.5 seconds. If we continue this way by building a logical bi-
nary tree over 1012 cores, the model can be decomposed into 1012 (or ap-
proximately 240) coarse grain subdomains in less than 40 seconds, assuming
that half of this time is spent on communication. All subdomains satisfy
the properties required by the Parallel Constrained Delaunay Mesh (PCDM)
generation algorithm which we apply on each of these subdomains.

Coarse+medium granularity: On the medium grain level, the PCDM
method can expose up to 8× 105 potential concurrent cavity expansions per
subdomain [1]. This level of the algorithm was evaluated (see Table 1) on
the pipe model, see Figure 3. In each configuration we generate as many
triangles as possible, given the available physical memory and the number
of MPI processes and threads running on each node. The times reported
for parallel PCDM executions include pre-processing time, domain decom-
position, MPI bootstrap time, data loading and distribution, and the actual
computation (mesh generation) time. We compare the execution time of par-
allel PCDM with that of the sequential execution of PCDM and with the
execution time of Triangle [36], the best known sequential implementation
for Delaunay mesh generation which has been heavily optimized and man-
ually fine-tuned. For sequential executions of both PCDM and Triangle the
reported time includes data loading and mesh generation time. On a single
processor, we can significantly improve the performance attained by using a
single core, compared with the coarse-grain only implementation. In the fixed
problem size, it proves 29.4% faster than coarse-grain when one MPI process
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Fig. 4. (Top) The Chesapeake Bay model decomposed into 1024 subdomains that
are mapped onto eight clusters of a multi-layered architecture. The assignment of
subdomains to clusters is shown with different colors. The use of PD3 eliminates
communication between clusters, however, the use of the multi-layered PCDM in
each of the original subdomains requires inter-layer communication and some syn-
chronization at the top level. (Bottom) Part of the Chesapeake Bay model meshed
in a way that satisfies conformity and Delaunay properties; thus, correctness and
termination can be mathematically guaranteed.

is executed by a single core and 10.2% faster when two MPI processes cor-
respond to each core (one per SMT context). In the scaled problem size the
corresponding performance improvements are in the order of 31% and 12.7%
respectively. Moreover, coarse+medium grain PCDM outperforms on a single
core the optimized, sequential Triangle by 15.1% and 13.7% for the fixed and
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Table 1. Execution times (in sec.) of the coarse grain and the coarse+medium
grain PCDM in 2D on a cluster of four IBM OpenPower 720 nodes. As a sequential
reference we use either the single-thread execution time of PCDM or the execution
time of the best known sequential mesher (Triangle). Triangle quality in all tests
is fixed to 20◦ degrees minimum angle bound. We present coarse-grain PCDM
results using either one MPI process per core (Coarse) or one MPI process per
SMT execution context (Coarse (2/core)). 60M triangles are created in the fixed
problem size experiments. 15M triangles correspond to each processor core in the
scaled problem size experiments.

Cores 1 2 4 6 8 10 12 14 16
Triangle Fixed 114.7
Coarse Fixed 124.1 63.8 32.5 23.3 18.0 14.6 12.8 10.8 10.7

Coarse Fixed (2/Core) 97.4 49.0 21.2 16.3 12.2 10.1 9.1 7.9 8.3
Coarse+Medium Fixed 87.5 44.7 22.8 16.7 12.9 10.6 9.4 9.1 8.0

Triangle Scaled 28.4
Coarse Scaled 31.0 32.2 32.5 35.6 37.1 36.6 38.3 37.6 41.8

Coarse Scaled (2/Core) 24.5 25.0 21.3 24.5 24.2 24.3 25.5 28.3 28.1
Coarse+Medium Scaled 21.4 22.5 22.8 25.5 26.7 27.1 27.8 29.9 30.4

Table 2. Normalized speed (on a cluster of 4 IBM OpenPower 720 nodes) of
the PCDM in 2D with virtual memory and the OPCDM for problems that have
memory footprint twice as large as the available physical memory. OPCDM(d) and
OPCDM(b) refer to the experiments performed with the disk object manager and
the database object manager respectively.

Mesh size, number Normalized speed,
×106 triangles of nodes ×103 triangles per second

PCDM OPCDM(d) OPCDM(b)
158.25 8(1) 242.45 156.22 160.11
316.50 16(2) 240.54 160.20 165.06
633.07 32(4) 239.82 157.67 161.08

scaled problem sizes respectively. On the fine grain level, the element-level
concurrency allows us to process three or four elements concurrently (in 2D
and 3D respectively), bringing the total potential concurrency to over 1018.

Coarse+coarser granularity: Our evaluation (see Table 2) demonstrated
that OPCDM is an effective solution for solving very large problems on com-
putational resources with limited physical memory. We are able to generate
meshes that otherwise would require 10 times the number of nodes using in-
core implementation. The performance of the implementation was evaluated
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in 2D in terms of mesh generation speed1. We define per-processor mesh gen-
eration (normalized) speed as the average number of elements generated by a
single processor over a unit time period, and it is given by V = N

T×P , N is the
number of elements generated, P is the number of processors in the configu-
ration and T is execution time. We observe that the overhead introduced by
the out-of-core functionality is not large: the per-processor mesh generation
speed is only 33% slower for the meshes that fit completely in-core. At the
same time, for the cases when we do use out-of-core functionality, up to 82%
of disk I/O is overlapped with the computation.

6 Conclusions

We presented a multi-layered mesh generation algorithm capable to quickly
generate and sustain in the order of 1018 of concurrent work units with
granularity large enough to amortize overhead for hardware threads on cur-
rent multi-threaded architectures. In addition we presented a multi-layered
communication abstraction and its implementation on current 2-layered
multi-core architectures. We used the resulting runtime system to imple-
ment a multi-layered parallel mesh generation code on IBM OpenPower
720 nodes (two-layered HPC architecture). The parallel mesh generation
method/software mathematically guarantees termination, correctness, and
quality of the elements. The mathematical guarantees are crucial for the size
of problems we target, because even a single failure to solve a small subprob-
lem my require the recomputation of the whole problem. Our implementation
indicates that: (1) we pay very small overhead to generate very large num-
ber of concurrent work units, (2) intra-layer communication overhead is very
small [10], (4) very large percentage (more than 80%) of inter-layer commu-
nication can be tolerated, (5) synchronization required only at the highest
level where there is very fast hardware support, (5) work load balancing can
be handled transparently with small overhead [3] at the coarse-grain layer
(6) load balancing at the medium-grain layer can be handled easily and with
low overhead within the application and (7) our out-of-core subsystem al-
lows us to significantly decrease the processing times due to the reduction of
wait-in-queue delays. However, the more complex multi-core and multi-CPU
multi-layered designs will demand new hierarchical location management di-
rectories and policies, which will be a major future research effort (out of the
scope of this paper) related to the system design.
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Abstract. Efficiently parallelizing a whole set of meshing tools, as required by
an automated mesh adaptation loop, relies strongly on data localization to avoid
memory access contention. In this regard, renumbering mesh items through a space
filling curve (SFC), like Hilbert or Peano, is of great help and proved to be quite ver-
satile. This paper briefly introduces the Hilbert SFC renumbering technique and
illustrates its use with two different approaches to parallelization: an out-of-core
method and a shared-memory multi-threaded algorithm.
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1 Introduction

The efficient use of computer hardware is crucial to achieve high performance
computing. No matter how clever an algorithm might be, it has to run effi-
ciently on available computer hardwares. Each type of computer, from com-
mon PCs to fastest massively parallel machines, has its own shortcomings
that must be accounted for when developing both algorithms and simulation
codes. The wish to develop efficient parallel codes is thus driven by several
requirements and practical considerations: the problem at hand that need
to be solved, the required level of accuracy and the available computational
power. The main motivation of this paper is to take advantage of today’s
ubiquitous multi-core computers in mesh adaptive computations.

Indeed, mesh adaptation is a method developed to reduce the complexity
of numerical simulations by exploiting specifically the natural anisotropy of
physical phenomena. Generally, it enables large complex problem to be solved
in serial. However, the present hardware evolution suggests the parallelization
of mesh adaptation platforms. Since 2004, first Moore’s law corollary has
plummeted from the 40% yearly increase in processor frequency, that it has
enjoyed for the last 30 years, to a meager 10%. As for now, speed improvement
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can only be achieved through the multiplication of processors, now called
cores, sharing the same memory within a single chip.

Space filling curves (SFCs) are mathematical objects that enjoy nice prox-
imity in space properties. These properties made then very useful in computer
science and scientific computing. For instance, they have been used for data
reordering [26, 31], dynamic partitioning [29], 2D parallel mesh generation [8]
or all of these in the context of Cartesian adapted meshes [1].

In this paper, we present a straightforward parallelization of all softwares
of a mesh adaptation platform where the pivot of the strategy is the Hilbert
space filling curve. This strategy must be efficient in the context of highly
anisotropic adapted meshes for complex real-life geometries. This platform
is highly heterogeneous as it contains several software components that have
different internal databases and that consider different numerical algorithms.
It generally involves a flow solver, an adaptive mesh generator or an adap-
tive local remesher, an error estimate software and a solution interpolation
(transfer) software. Two classes of parallelization are given.

The first one is an intrusive parallelization of the code using the pthreads
paradigm for shared-memory cache-based parallel computers. One of the
main assets of this strategy resides in a slight impact on the source code
implementation and on the numerical algorithms. This strategy is applied
to the flow solver and to the error estimate software. Parallelization is at
the loop level and requires few modifications of the serial code. However, to
be efficient this approach requires a subtle management of cache misses and
cache-line overwrite to enable correct scaling factor for loop with indirect
addressing. The key point is to utilize a Hilbert space filling curve based
renumbering strategy to minimize them.

The second one is an out-of-core parallelization that considers the soft-
ware as a black box. This approach is applied to a local remesher and the
solution transfer software. It relies on the used of the Hilbert SFC to de-
sign a fast and efficient mesh partitioning. This partitioning method involves
a correction phase to achieve connected partitions which is mandatory for
anisotropic mesh adaptation. The mesh partitioner is coupled with an ade-
quate management of the software on each partition. In this case, the code
can be run in parallel on the same computer or in a distributed manner on
an heterogeneous architecture.

As regards the meshing part, global mesh generation methods, such as
Delaunay or Frontal approaches, are still hard to parallelize even if some so-
lutions have already been proposed [7, 17, 20, 23]. Therefore, a local remesh-
ing approach which is easier to parallelize thanks to its locality properties
has been selected over a global mesher. The key point is how to adapt the
partition borders [4, 10, 11, 18, 25, 27].

We illustrate with numerical examples that this methodology coupling
anisotropic mesh adaptation, cache miss reduction and, out-of-core and
pthreads parallelization can reduce the complexity of the problem by several
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orders of magnitude providing a kind of “high performance computing” on
nowadays multi-core personal computers.

This paper is outlined as follow. Section 2 recalls our mesh adaptation
platform and Section 3 describes the test cases. Then, in Section 4, we present
the Hilbert space filling curve based mesh renumbering. The shared-memory
and the out-of-core parallelizations with their application to each stage of the
mesh adaptation loop are introduced in Sections 5 and 6, respectively.

2 A Brief Overview of the Mesh Adaptation Platform

In the context of numerical simulation, the accuracy level of the solution
depends on the current mesh used for its computation. And, for mesh adap-
tation, the size prescription, i.e., the metric field, is provided by the current
solution. This points out the non-linearity of the anisotropic mesh adapta-
tion problem. Therefore, an iterative process needs to be set up in order to
converge both the mesh and the solution, or equivalently the metric field and
the solution. For stationary simulations, an adaptive computation is carried
out via a mesh adaptation loop inside which an algorithmic convergence of
the pair mesh-solution is sought. At each iteration, all components of the
mesh adaptation loop are involved successively: the flow solver, the error
estimate, the adaptive mesh generator and the solution interpolation stage.
This procedure is repeated until the convergence of the mesh-solution pair is
reached.

Our implementation of the mesh adaptation platform considers an inde-
pendent dedicated software for each stage of the adaptation loop. As com-
pared to the strategy where only one software contains all the stages of the
mesh adaptation, we can highlight the following disadvantages and advan-
tages. The main drawback is that between two stages, one software writes
the data (e.g. the mesh and the fields) out-of-core and the next software
reads them back and builds its internal database. This results in a larger
part devoted to I/O as compared to the all-in-one approach. But, the CPU
time for the I/O is generally negligible with respect to the global CPU time.
The advantage of the proposed strategy is its flexibility. Each software can
be developed independently with its own programming language and its own
optimal internal database. For instance, the flow solver can keep a static
database, the mesh generator can use specific topological data structures
such as the elements neighbors, etc. Consequently, we may expect a higher
efficiency in memory and in CPU time for each software. Moreover, each soft-
ware is interchangeable with another one, only the I/O between the different
softwares need to be compatible.

The mesh adaptation platform described in this paper involves the flow
solver Wolf [5], Metrix for the error estimate [21], the local remesher
Mmg3d [12] and Interpol for the solution transfer [6].
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3 The Considered Test Cases

The efficiency of all the presented algorithms will be analyzed independently
on the same list of test cases in their own dedicated sections. The efficiency
is demonstrated thanks to CPU times and speed-ups, the speedup being the
ratio between the CPU time in parallel and the CPU time in serial. The list of
test cases is composed of uniform, adapted isotropic and anisotropic meshes
for a wide range of number of tetrahedra varying from 40 000 to 50 000 000:

• uniform mesh: a transonic flow around the M6 wing [13] and Rayleigh-
Taylor instabilities (IRT) [3]

• adapted isotropic mesh: a blast in a city [3]
• adapted highly anisotropic mesh: supersonic flows around Dassault-

Aviation supersonic business jet (SSBJ) [21] and a NASA spike ge-
ometry, and a transonic flow around Dassault-Aviation Falcon business
jet.

Meshes associated with these test cases are shown in Figure 1 and their
characteristics are summarized in Table 1. Note that the SSBJ and the spike
test cases involve very high size scale factor and highly anisotropic adapted
meshes. For instance, for the SSBJ, the minimal mesh size on the aircraft is
2mm and has to be compared with a domain size of 2.5km.

M6 SSBJ IRT

City Falcon Spike

Fig. 1. View of the considered test cases meshes
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Table 1. Characteristics of all test cases

Case Mesh kind # of vertices # of tetrahedra # of triangles

M6 uniform 7 815 37 922 5 848
IRT uniform 74 507 400 033 32 286
City adapted isotropic 677 278 3 974 570 67 408
Falcon adapted anisotropic 2 025 231 11 860 697 164 872
SSBJ adapted anisotropic 4 249 176 25 076 962 334 348
Spike adapted anisotropic 8 069 621 48 045 800 182 286

All the runs have been done on a 2.8 GHz dual-chip Intel Core 2 Quad
(eight-processor) Mac Xserve with 32 GB of RAM.

4 The Hilbert Space Filling Curve

The notion of space filling curves (SFCs) has emerged with the development
of the concept of the Cantor set [9]. Explicit descriptions of such curves were
proposed by Peano [28] and Hilbert [15]. SFCs are, in fact, fractal objects [22].
A complete overview is given in [30]. A SFC is a continuous function that,
roughly speaking, maps a higher dimensional space, e.g. R2 or R3, into a
one-dimensional space:

h : {1, . . . , n}d �→ {1, . . . , nd} .

These curves enjoy strong local properties making them suitable for many ap-
plications in computer sciences and scientific computing. The Hilbert SFC
is a continuous curve that fills an entire square or cube. For the Hilbert SFC,
we have [26]:

|h(i) − h(j)| <
√

6 |i − j| 12 for i, j ∈ N .

The Hilbert SFC for the square or the cube is generated by recursion as
depicted in Figure 2. Its discrete representation depends on the level of re-
cursion. In our use of the Hilbert SFC, the curve is not explicitly constructed
but its definition is used to calculate an index associated with each mesh en-
tity by means of the recursive algorithm. In other words, in three dimensions,
the SFC provides an ordered numeration of a virtual Cartesian grid of size
23p where p is the depth of recursion in which our computational domain is
embedded. The index of an entity is then obtained by finding in which cube
the entity stands. In the following, we will present how these indices are used
to renumber a mesh or to partition it.

4.1 Mesh Entities Renumbering

The Hilbert SFC can be used to map mesh geometric entities, such as vertices,
edges, triangles and tetrahedra, into a one dimensional interval. In numerical
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Fig. 2. Representation of the Hilbert curve in 2D and 3D after several recursions.
Top, the 2D Hilbert SFC of the square after recursions 1, 2, 3 and 4. Bottom, the
3D Hilbert SFC of the cube after recursions 2, 3, 4 and 5.

Table 2. CPU time in seconds for sorting the vertices of the test cases meshes.

Case M6 IRT City Falcon SSBJ Spike
SFC construction CPU in sec 0.004 0.038 0.338 1.002 1.894 3.632
Quicksort CPU in sec 0.001 0.010 0.104 0.974 0.668 1.518
Global CPU in sec 0.005 0.048 0.442 2.076 2.562 5.150

applications, it can be viewed as a mapping from the computational domain
Ω onto the memory of a computer. The local property of the Hilbert SFC
implies that entities which are neighbors on the memory 1D interval are
also neighbors in the domain Ω. But, the reverse may not be true. Neigh-
bors in the volume may be separated through the mapping. This approach
has been applied to reorder efficiently Cartesian grids [1, 29] and its used
for unstructured tetrahedral meshes has been indicated in [31]. Note that a
large varieties of renumbering strategies exist which are commonly used in
scientific computing [19] or in meshing [32]. Here, we apply and analyze such
renumbering to unstructured, isotropic or anisotropic, adapted meshes.

First, the index is computed for each entity, this operation has a linear com-
plexity. Then, the mesh entities have to be reordered to obtain the renum-
bering. This sort is done with standard C-library sorting routine such as
quicksort, hence the O(N log(N)) complexity of our method. Table 2 sums-
up the CPU time for sorting all the test cases meshes on the Mac Xserve.
Figure 3 illustrates an unstructured mesh of a scramjet (left) and how the
vertices have been reordered in memory by following the line (right), this is
the Hilbert SFC.
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Fig. 3. Left, unstructured mesh of a scramjet. Right, the Hilbert SFC (red line)
associated with the vertices. It represents how the vertices are ordered in memory.

Table 3. Number of CPU cycles required for typical operations on Intel Core 2.

Operations mult/add div sqrt cache miss L1 cache miss L2 mutex condwait
Cycles 1 10 10 13 276 6 240 12 480

Renumbering strategies have a significant impact on the efficiency of a code.
This is even more crucial for numerical methods on unstructured meshes. We
can cite the following impact:

• reducing the number of cache misses during indirect addressing loops
• improving matrix preconditioning for linear system resolutions
• reducing cache-line overwrites during indirect addressing loops which is

fundamental for shared memory parallelism, see Section 5.1
• may provide implicit hashing of the data.

Let us focus on the first item : cache misses that are due to indirect ad-
dressing. They occur when data are required for a computation and those
data do not lie within the same cache line. For instance, such situation is
frequent while performing a loop through the tetrahedra list and requesting
for vertices data. It is worth mentioning that the cost of a cache miss is far
more important than typical operations used in numerical applications, see
Table 3.

To effectively reduce cache misses, all the mesh entities must be reordered
and not, for instance, only the vertices. In our approach, the Hilbert SFC
based renumbering is used to sort the vertices as their proximity depends on
their position in space even for anisotropic meshes. As regards the topological
entities, e.g. the edges, the triangles and the tetrahedra, the Hilbert SFC
based renumbering can be applied by using their center of gravity. However, as
they are topological entities, we prefer to consider a topological renumbering
strategy based on vertex balls which also provides an implicit hashing of the
entities. Note that similar wave renumbering strategies are described in [19].
This strategy reduces by 90% the number of cache misses1 of the flow solver
(Section 5.2) as compared to an unsorted mesh generated with a Delaunay-
based algorithm.
1 This statistic has been obtained with the Apple Shark code profiler.
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For the test cases of Sections 5 and 6, we obtain in serial a speed-up up to
2.68, i.e., up to almost three time faster, when all the entities are reordered
as compared to the unsorted mesh. More precisely, speed-ups of 1.06, 1.62,
2.54 and 2.68 are obtained for the M6, IRT, City and Falcon test cases,
respectively.

5 Exploiting Space Filling Curves for Efficient
Shared-Memory Multi-threaded Parallelization

5.1 A Shared Memory Multi-threaded Parallelization

Our approach is based on posix standard threads (known as pthreads) thus
taking advantage of multi-core chips and shared memory architectures sup-
ported by most platforms. Such an approach presents two main advantages:
data do not need to be explicitly partitioned as with MPI based parallelism
and its implementation requires only slight modifications to a previously de-
veloped serial code.

Symmetric parallelization of loops. In this case, a loop performing the same
operation on each entry of a table is split into many sub-loops. Each sub-loop
will perform the same operation (hence the name symmetric parallelism) on
equally-sized portions of the main table and will be concurrently executed. It
is the scheduler job to make sure that two threads do not write simultaneously
on the same memory location. To allow for a fine load balancing, we split the
main table into a number of blocks equal to 16 times the number of available
processors.

Indirect memory access loops. Using meshes and matrices in scientific com-
puting leads inevitably to complex algorithms where indirect memory ac-
cesses are needed. For example, accessing a vertex structure through a tetra-
hedron leads to the following instruction:

TetTab[i]->VerTab[j];

Such a memory access is very common in C, the compiler will first look for
tetrahedron i, then vertex j, thus accessing the data indirectly. In this case,
after splitting the main tetrahedra table into sub-blocks, tetrahedra from dif-
ferent blocks may point to the same vertices. If two such blocks were to run
concurrently, memory write conflict would arise. To deal with this issue, an
asynchronous parallelization is considered instead of a classic gather/scatter
technique usually developed on distributed memory architectures, i.e., each
thread writes in its own working array to avoid memory conflict and then
the data are merged. Indeed, this asynchronous parallelization has the fol-
lowing benefits: there is no memory overhead and for all the test cases on
8 cores this method was 20 to 30 % faster than the gather/scatter method.
The main difficulty is then to minimize the synchronization costs that are
expensive in CPU cycles, cf. Table 3. To this end, the scheduler will carefully
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choose the set of concurrently running blocks so that they share no common
tetrahedra and no common vertices. In case no compatible blocks are to be
found, some threads may be left idling, thus reducing the degree of paral-
lelization. This method can even lead to a serial execution in the case of a
total incompatibility between blocks.

The collision probability of any two blocks sets the mesh inherent paral-
lelization factor. Meshes generated by advancing front or Delaunay techniques
feature a very low factor (2 or 3 at best), while octree methods far much bet-
ter. Renumbering the mesh elements and vertices as described in Section 4.1
dramatically enhances the inherent parallelism degree (by orders of magni-
tude). Applying such renumbering is de facto mandatory when dealing with
indirect memory access loops. The block collision statistics for the test cases
of Section 3 on 8 processors without and with the renumbering strategy of
Section 4.1 are reported in Table 4.

As regards the scheduler cost, the operation of locking/unlocking a thread
needs one mutex and one condwait, see Table 3. As these two operations
are needed when launching and when stopping a thread, the resulting cost is
approximatively 37 000 CPU cycles which is very expensive as compared to
standard floating point operations or cache misses timings.

This approach has been implemented in the LP2 library [24]. The purpose
of this library is to provide programmers of solvers or automated meshers in
the field of scientific computing with an easy, fast and transparent way to
parallelize their codes. Thus, we can implement directly in parallel.

A sketch of the modifications of a serial code parallelized with the LP2 is
given in Figure 4. Left, the dependencies of the tetrahedra array with respect
to the vertices array are set. Right, the modification of the routine Solve
which processes a loop on tetrahedra. This routine is called in parallel with
two additional parameters iBeg and iEnd that are managed by the LP2. This
illustrates the slight modifications that occur for the serial code. For instance,

Table 4. Collision percentage between blocks of entities when the list is not sorted
or sorted.

Cases
Edges List Tetrahedra List Triangles List
Avg Max Avg Max Avg Max

M6
no sort 2.96% 6.10% 7.25% 9.83% 0.35% 0.61%

sort 0.94% 1.57% 0.95% 1.61% 0.37% 0.61%

IRT
no sort 24.06% 35.94% 45.21% 55.36% 1.56% 2.71%

sort 1.00% 2.03% 1.00% 1.79% 0.42% 0.92%

City
no sort 73.90% 98.64% 93.29% 99.51% 1.21% 2.78%

sort 1.09% 3.95% 1.10% 3.60% 0.25% 0.97%

Falcon
no sort 99.55% 100.00% 99.65% 100.00% 0.15% 1.02%

sort 1.81% 4.63% 1.81% 4.24% 0.19% 0.59%
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BeginDependency(Tetrahedra,Vertices);
for (iTet=1; iTet<=NbrTet; ++iTet) {
for (j=0; j<4; ++j) {
AddDependency( iTet, Tet[iTet].Ver[j] );

}
}
EndDependency(Tetrahedra,Vertices);

Solve(Tetrahedra,iBeg,iEnd) {
for (iTet=iBeg; iTet<=iEnd; ++iTet) {

// .... same as serial
}

}

Fig. 4. Modification of the serial code for shared-memory parallelization.

for our flow solver (see Section 5.2) most of (98.5 %) the explicit resolution
part has been parallelized in less than one day.

5.2 Parallelizing the Flow Solver

The parallelized flow solver is a vertex-centered finite volume scheme on un-
structured tetrahedral meshes solving the compressible Euler equations. To
give a brief overview, the HLLC approximate Riemann solver is used to com-
pute the numerical flux. The high-order scheme is derived according to a
MUSCL type method using downstream and upstream tetrahedra. A high-
order scheme is deduced by using upwind and downwind gradients leading
to a numerical dissipation of 4th order. To guarantee the TVD property of
the scheme, a generalization of the Superbee limiter with three entries is
considered. The time integration is an explicit algorithm using a 5-stage, 2-
order strong-stability-preserving Runge-Kutta scheme. We refer to [5] for a
complete description.

A shared-memory parallelization of the finite volume code has been im-
plemented with the pthreads paradigm described in Section 5.1. It uses the
entities renumbering strategy proposed in Section 4.1. It took only 1 day to
parallelize most of the resolution part with less than 2% of the resolution
remaining in serial. More precisely, 6 main loops of the resolution have been
parallelized:

• the time step evaluation which is a loop on the vertices without depen-
dencies

• the boundary gradient2 evaluation which is a loop on the tetrahedra con-
nected to the boundary

• the boundary conditions which is a loop on the boundary triangles
• the flux computation which is a loop on the edges
• the source term computation which is a loop on the vertices without

dependencies
• the update (advance) in time of the solution which is a loop on the vertices

without dependencies.

The speed-ups, as compared to the serial version, obtained for each test
case from 2 to 8 processors are summarized in Table 5. These speed-ups
2 For this numerical scheme, the element gradient used for the upwinding can be

computed on the fly during the flux evaluation.
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Table 5. Speed-ups of the flow solver as compared to the serial version for all the
test cases from 2 to 8 processors.

Cases M6 IRT City Falcon SSBJ Spike

Speed-up

1 Proc 1.000 1.000 1.000 1.000 1.000 1.000
2 Proc 1.814 1.959 1.956 1.961 1.969 1.975
4 Proc 3.265 3.748 3.866 3.840 3.750 3.880
8 Proc 5.059 6.765 7.231 6.861 7.031 7.223

contains the time of I/Os which is negligible for the flow solver. These results
are very satisfactory for the largest cases for which an enjoyable speed-up
around 7 is attained on 8 processors. The slight degradation observed between
4 and 8 processors is in part due to a limitation of the current hardware of
the Intel Core 2 Quad chip. However, the speed-ups are lower for the smallest
case, the M6 wing with only 7 815 vertices. This small test case with a light
amount of work points out the over-cost of the scheduler for pthreads handling
which is a weakness of the proposed approach. More precisely, we recall that
launching and stopping a thread cost approximatively 37 000 CPU cycles. As
the parallelization is at the loop level, obtaining correct speed-ups requires
that the cost of handling each thread must remain negligible compared to
the amount of work they are processing. But, this is not the case for the
M6 test case. Indeed, if we analyze the time step loop, on 8 processors, this
loop deals with 977 vertices each requiring 100 CPU cycles. Consequently,
the management of the thread costs the equivalent of 38% of the total cost
of the operations.

The speed-up of a parallel code is one criteria, but it is also of utmost
importance to specify the real speed of a code. As regards flow solvers, it
is difficult to compare their speed as the total time of resolution depends
on several parameters such as the RK scheme (for explicit solver), the mesh
quality that conditions the time step, the chosen CFL, etc. Therefore, for the
same computation, high variations could appear. To specify the relative speed
of the solver, we choose to provide the CPU time per vertex per iteration:

speed =
CPU time

# of vertices × # of iterations
.

For the test cases on the Mac Xserve, the serial speed of the solver varies
between 3.4 and 3.87 microseconds (μs) while a speed between 0.47 μs (for
the spike) and 0.76 μs (for the M6) is obtained on 8 processors. To give an
idea, a speed of 0.5 μs is equivalent to performing one iteration in half a
second for a one million vertices mesh. In conclusion, the faster a routine, the
harder it is to parallelize it with a satisfactory speed-up.

The flow solver has also been run on a 128 processors SGI Altix computer
at the Barcelona Supercomputing Center to make a preliminary analysis on
using a large number of processors. Such a machine uses a ccNUMA architec-
ture suffering from high memory latency. In this context, minimizing main
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Table 6. Speed-ups of the flow solver on a 128 processors SGI Altix computer.

# of proc 1 2 4 8 16 32 64 100
Speed-up 1.000 1.954 3.235 6.078 9.815 17.258 26.649 36.539

Table 7. Speed-ups of the error estimate code as compared to the serial version
for all the test cases from 2 to 8 processors. Upper part, speed-up with respect to
the whole CPU time. Lower part, speed-up of the parallelized part.

Cases M6 IRT City Falcon SSBJ Spike

Total CPU in sec. 1 Proc 0.226 3.365 29.315 101.14 252.76 433.91

Speed-up
2 Proc 1.44 1.58 1.47 1.42 1.53 1.33
4 Proc 1.77 2.19 1.76 1.71 2.10 2.01
8 Proc 1.85 2.69 2.19 2.05 2.66 2.61

Gradation CPU in sec. 1 Proc 0.131 2.417 18.414 59.79 186.47 299.45

Speed-up
2 Proc 1.87 1.89 1.88 1.90 1.92 1.89
4 Proc 3.19 3.55 3.44 3.53 3.62 3.47
8 Proc 3.85 6.00 5.84 6.12 6.59 5.90

memory accesses through Hilbert SFC based renumbering, is all the more
important. The considered test case is a large anisotropic adapted mesh con-
taining almost 400 million tetrahedra. The speed-ups from 1 to 100 processors
are given in Table 6. These first results are very encouraging and we are thus
confident for the obtention of good speed-ups up to 128 processors in a near
future.

5.3 Parallelizing the Error Estimate

The error estimate software will use the same parallelization methodology as
the flow solver. This stage of the mesh adaptation platform is very inexpen-
sive. In our experience, its cost is between 1 and 2 % of the whole CPU time.
For instance, computing the metric with the estimate of [21] coupled with
the mesh gradation algorithm of [2] for the spike test cases cost 7 minutes in
serial (I/O included).

However, if the CPU time is carefully analyzed, we observed that the error
estimate represents 3% of the CPU, the mesh gradation 69%, and the I/O
plus building the database 27%. Consequently, we have only parallelized the
mesh gradation algorithm as the error estimate computation is extremely
inexpensive3. The speed-ups obtained for the whole CPU time (upper part)
and for the mesh gradation phase (lower part) are given in Table 7. Concern-
ing, the mesh gradation phase nice speed-ups are obtained for all the test
cases. The impact on the whole CPU time is a speed-up between 2 and 2.6
on 8 processors.
3 Its parallelization is not expected before running on 100 processors.
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6 Exploiting Space Filling Curves for Efficient
Out-of-Core Parallelization

6.1 A Fast Mesh Partitioning Algorithm

Mesh partitioning is one of the crucial task for distributed-memory paral-
lelism. A critical issue is the minimization of the inter-processors communi-
cations, i.e., the interfaces between partitions, while keeping well-balanced
partitions. Indeed, these communications represent the main over-head of the
parallel code. This problem is generally solved using graph connectivity or
geometric properties to represent the topology of the mesh. These methods
have now attained a good level of maturity, see ParMETIS [16].

However, in our context of anisotropic parallel mesh adaptation, the goal
is different. The mesh partitioning is considered for purely distributed tasks
without any communication, but for meshing or local remeshing purposes each
partition must be connected. This requirement is not taken into account by
classical partitioner. Therefore, we aim at designing the fastest possible algo-
rithm that provides well-balanced connected partitions. We choose a Hilbert
SFC based mesh-partitioning strategy applied to unstructured meshes, such
as the ones proposed in [1, 29] which have been applied to Cartesian grids. This
strategy is then improved to handle highly anisotropic unstructured meshes.

A Hilbert SFC based mesh partitioning. As the Hilbert SFC provides a one-
dimensional ordering of the considered three-dimensional mesh, partitioning
the mesh is simply equivalent to partitioning a segment. Given a 3D input
mesh, the algorithm to create k subdomains is threefold:

1. get the index on the Hilbert SFC of each vertex/tetrahedron gravity
center as stated in Section 4.1. An implicit Hilbert SFC is built

2. sort the vertices/tetrahedra list to get a new ordered list of elements
3. subdivide uniformly the sorted list of elements, i.e., the Hilbert SFC, into

k sublists. The sublists are the subdomains.

This algorithm is extremely fast and consumes little memory. The partition-
ing is equivalent to a renumbering plus a sort.

If this algorithm works perfectly for structured grids or uniform meshes, it
needs, as standard partitioner, to be corrected when dealing with anisotropic
meshes to obtain connected partitions. Indeed, two consecutive elements on
the Hilbert SFC are close in the domain but they may be linked by a single
vertex or edge, see Figure 5, and not by a face. In this case, the result-
ing subdomains are non-connected. A correction phase is then mandatory
to ensure that each partition is connected. This is done in two steps. The
first step consists in detecting each connected component of each subdomain
thanks to a coloring algorithm [14]. A first non-colored tetrahedron initializes
a list. Then, the first tetrahedron of the list is colored with the connected
component index and removed from the list, and its non-colored neighbors
(tetrahedra adjacent by a face) are added to the list. The process is repeated
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Fig. 5. Case where two consecutive elements in Hilbert SFC based numbering are
linked by a vertex leading to the creation of a non-connected partition.

Fig. 6. Some partitions of a complex anisotropic adapted mesh.

until the list is empty. This algorithm requires as supplementary data struc-
ture the neighbors tetrahedra table. If each subdomain is composed of only
one connected component then no correction is needed. Otherwise, in the
second step, elements are reattributed to neighboring partitions in order to
ensure that all partitions are connected. Figures 6 shows some partitions of
a complex anisotropic adapted mesh.

Domain gathering. Domain gathering is done on the fly by reading each
partition one after another and by updating a global table of vertices lying on
interfaces. Consequently, only all the interface meshes are loaded in memory
and no partition elements need to be kept in memory. The partition meshes
are read and written element by element on the fly. Therefore, the whole mesh
is never allocated. It results that this operation can gather a large number
of partitions while requiring little memory. The key point is the algorithm to
recover the one-to-one mapping between two interfaces. It consists in using
a wave front approach based on the topology of the interface meshes to map
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Table 8. Number of tetrahedra per partition for the spike test case.

1 2 3 4 5 6 7 8
6 005 604 6 006 014 6 006 041 6 005 838 6 005 737 6 005 026 6 005 757 6 005 783

Table 9. Statistics for partitioning into 8 blocks. CPU times is in seconds and
memory is in MB.

Case I/O CPU Partition CPU Total CPU Max memory Size variation

M6 0.10 0.09 0.191 5 7.68%
IRT 0.86 1.25 2.114 47 3.17%
City 10.89 12.05 22.94 469 0.04%
Falcon 50.47 41.68 92.15 1396 0.22%
SSBJ 98.43 89.35 187.78 2947 0.04%
Spike 120.22 168.35 288.57 5608 0.02%

one after another each vertex [19]. This algorithm is purely topologic. It is
thus exact and not subjected to any floating point precision.

Numerical experiments. Let us analyze the spike test case for 8 partitions.
The time to create the 8 connected partitions and to write the corresponding
meshes is about 288s. The maximal memory allocated in this case is 5.6GB.
The partitions are well-balanced, indeed the size in balance between parti-
tions is no more than 0.02% as summarized by Table 8. We now give the
detailed CPU time for each phase of the domain decomposition algorithm:

• Reading input data: 69s
• Create an initial Hilbert SFC based partition: 91s
• Create neighboring structure: 24s
• Correct partitions: 52.2s
• Writing output data: 50s.

As regards the partitions gathering, the algorithm consumes very low amount
of memory as only the interfaces of the meshes are stored. For this example,
the complete gathering step requires 42s and the maximal allocated memory
is 156MB.

Results obtained for all the test cases are summarized in Table 9. All the
CPU times are in seconds and the maximum allocated memory is in MB.
An excellent load balancing is obtained for all the cases, except for the two
smallest ones.

6.2 Parallelizing the Local Adaptive Remesher

The strategy to parallelize the meshing part is a out-of-core parallelization
that uses the adaptive mesh generator as a black box. This method is com-
pletely distributed without any communications, thus it can be applied to
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shared-memory or heterogeneous architectures. The advantage of this method
is its simplicity and its flexibility, as any adaptive mesh generators can be
used. Here, the local remesher of [12] is utilized. The drawback is an I/O and
build database over-cost.

In the context of parallel anisotropic mesh adaptation, the objectives are
different from the solver ones. Apart from the traditional scaling of the paral-
lel algorithm, the interest is in the possibility of improving the serial remesh-
ing algorithm by:

• reducing the cache misses for efficiency
• reducing the scale factors for robustness purposes
• improving the local quadratic search algorithms that could occur in

Delaunay-based mesh generators.

Previous points are necessary to foresee the generation of highly anisotropic
meshes with dozens of million of elements.

The main difference between different parallelizations of local remeshing
algorithms resides in how the partitions interfaces are handled. In some par-
allel adaptation implementations connectivity changes are performed in the
interior of the partition and migration is used to make border regions inte-
rior [4, 10, 11, 18, 25]. In [27], tetrahedron connectivity changes are performed
on purely-local and border tetrahedra in separate operations without migra-
tion. This difficulty generally comes from the use of a all-in-one method. Here,
as each software is independent and a local remeshing strategy is employed,
the necessity of remeshing partitions interfaces is not strictly necessary. In-
deed, the parallel remeshing algorithm can be thought as an iterative proce-
dure. The only constraint is then to ensure that from one step to another the
boundaries of interfaces change to adapt them. Consequently, reducing the
size of the interfaces is no more the most critical issue.

On the contrary, we prefer to generate well-balanced partitions for
anisotropic remeshing. Note that in the context of remeshing, well-balanced
partitions does not mean having the same number of vertices or elements.
Indeed, the estimate time CPU of a mesh generator depends more of the cur-
rent operation: insertions, collapses or optimization. The CPU time of these
operations is not always linear with the number of vertices of the input mesh.
We did not propose yet any improvements to deal with these non linearities.

The proposed method is a divide and conquer strategy using the mesh
partitioner of Section 6.1 which is given by the following iterative procedure:

1. Split the initial mesh: each partition is renumbered using Hilbert SFC
based strategy

2. Adapt each partition in parallel with only vertex insertion, collapses,
swaps

3. Merge new adapted partitions and split the new adapted mesh with ran-
dom interfaces: each partition is renumbered using Hilbert SFC based
strategy

4. Optimize each partition in parallel with swaps and vertices movement
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5. Merge new adapted partitions
6. return to 1.

Generally, two iterations are performed. Using this technique makes the
anisotropic remeshing time satisfactory as compared to the flow solver CPU
time in the adaptive loop. However, it is very difficult to quantify the CPU
time of the meshing part as it depends on a large number of parameters, for
instance, do we coarse the mesh, optimize it or insert a lot of vertices, etc.

Our experience on a large number of simulations with dozens million of
elements shows that managing efficiently the cache misses leads to acceler-
ation between 2 and 10 in serial. As regards the out-of-core parallelization,
after adequate renumbering, satisfactory speed-ups are obtained. The speed-
ups for the City and SSBJ test case are given in Table 10. These speed-ups
are coherent as the partitions are balanced with respect to their size and do
not take into account the future work of the mesh generator. Sometimes, the
remeshing of one of the partitions is twice more costly than the remeshing
of any of the other ones. This degrades considerably the speed-up. It can be
improved by increasing the number of partitions for a fixed number of pro-
cessors. For instance, for the SSBJ test case on 8 processors and 32 partitions
the speed-up increases to 6.

Overall, this strategy combining cache miss management and out-of-core
parallelization can provide speed-ups up to 40 on 8 processors (the speed-
up may even be greater than the number of processors) as compared to
the original code alone. But large fluctuations in the obtained speed-ups are
observed and are highly dependent on the considered case.

Table 10. Speed-ups of the local remesher as compared to the serial version.

Cases 1 Proc 2 Proc 4 Proc 8 Proc
City 1.00 1.56 2.43 2.61
SSBJ 1.00 1.36 2.37 4.50

6.3 Parallelizing the Solution Interpolation

After the generation of the new adapted mesh, the solution interpolation
stage consists in transferring the previous solution fields obtained on the
background mesh onto the new mesh. This stage is also very fast if cache
misses are carefully managed thanks to the Hilbert SFC based renumbering.
For instance, the solution fields of the spike test case are interpolated in 107
seconds. Detailed CPU times are 47s for the I/Os and sort, 15s for building
the database and 45s for the interpolation method. We notice that the I/Os
and building the database are taking more than 50% of the CPU time. Thus,
the expected speed-ups for a parallel version are limited.
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The algorithm to efficiently parallelize the interpolation method of [6] with
the pthreads paradigm is equivalent to partition the domain. But, partition-
ing is slower than the interpolation. This way has thus not been chosen.
Nevertheless, this stage can be parallelized in the context of mesh adaptation
with a distributed out-of-core strategy. The clue point is that the new mesh
has already been partitioned and renumbered for mesh adaptation. There-
fore, before merging all partitions, the interpolation can be applied in parallel
to each new adapted partition separately. The over-cost of partitioning and
gathering the mesh is already included in the mesh adaptation loop. Other-
wise, it will be faster to run in serial. However, the expected speed-ups are
limited by the I/Os and building the database associated with the background
mesh which is not partitioned.

This method has been applied to all the test cases. Each pair mesh-solution
of Section 3 are interpolated on a new (different) mesh of almost the same size,
i.e., a size variation of less than 10%. The CPU time in seconds for each case in
serial is given Table 11. In parallel, no gain is observed for the smallest cases:
the M6 and the IRT. For larger test cases, speed-ups between 1.3 and 2 are
obtained on 2 processors and they are moderately higher with 4 processors.
Unfortunately, CPU time degrades for 8 processors. This is mainly due to the
fact that I/Os degrade because eight process run concurrently on the same
computer while requesting access to the disk at the same time. Fortunately,
this effect diminishes (or cancels) during an adaptive computations as the
interpolation on each partition immediately follows the mesh adaptation.
Indeed, the mesh adaptation of each partition finishes at different time.

Table 11. CPU times in seconds to interpolate the solution fields in serial.

Cases M6 IRT City Falcon SSBJ Spike
CPU time in sec. 0.081 0.88 14.69 48.45 56.51 107.48

7 Conclusion

In this paper, we have presented a first step in the parallelization of the
mesh adaptation platform. It has been demonstrated that the use of the
Hilbert SFC authorizes a cheap and easy parallelization of each stage of the
mesh adaptation platform. The parallelization can be shared-memory multi-
threaded or out-of-core. The Hilbert SFC is the core of the renumbering
strategy and the mesh partitioner. It also importantly reduces the code cache
misses leading to important gain in CPU time. As already mentioned in [31],
many code options that are essential for realistic simulations are not easy
to parallelize on distributed memory architecture, notably local remeshing,
repeated h-refinement, some preconditioners, etc. We think that this strategy
can provide an answer even if it is not the optimal one.
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The weaknesses of this approach are I/Os and build database over-cost,
especially on the fastest stages as the error estimate or the interpolation. The
I/Os time is incompressible, it depends on the hardware. Indeed, solutions
exist, like fast RAIDs. Improving the building database part require to par-
allelize complex algorithm such as hash table. The other point of paramount
importance for the proposed shared-memory multi-threaded parallelization
is the cost of locking/unlocking thread which can be prohibitive for a loop
with a little amount of work.

In spite of that the proposed parallel adaptive methodology provides a kind
of “high performance computing” on nowadays multi-core personal computers
by reducing the complexity of the problem by several orders of magnitude.

Several improvements of the proposed approach are still in progress.
Regarding the shared-memory parallelization, the scheduler has to be par-

allelized to keep its cost constant whatever the number of processors and, at
the loop level, some algorithm can be enhanced to improve their scalability.
The out-of-core parallelization can be enhanced by parallelizing the mesh
partitioner and by deriving a fine load-balancing that takes into account the
future work on each partition of the local remesher thanks to the metric spec-
ification. And finally, for fast codes, the error estimate and the interpolation,
we will have to tackle the problem of parallelization of database construction
which involves hash tables.
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Abstract. A mesh insertion method is presented to merge a tool mesh into a tar-
get mesh. All the entities of the tool mesh are preserved in the output mesh while
some of the entities of the target mesh are modified or eliminated in order to obtain
a topologically conforming mesh. The algorithm can handle non-manifold surfaces
formed of quadrilaterals and/or triangles as well as volumetric meshes based on hex-
ahedra, prisms, pyramids and/or tetrahedra. Lower order elements such as beams
can also be taken into consideration. A robust 2-steps advancing front algorithm is
introduced to fill the narrow gap between the two mesh objects to obtain a complete
crack-free connection. An efficient mesh data structure is developed to optimize the
search operations and the intersection tests needed by the algorithm. Several ap-
plication examples are provided to show the strength of the presented algorithm.

Keywords: Hybrid meshes, mesh data structure, advancing front methods, mesh
insertion.

1 Introduction

Many engineering applications require two or more materials interacting with
each other, for example, multiphase flows, fluid-structure interaction, and
structural analysis of complex objects. Mesh generation of sophisticated mod-
els is a time consuming process. For large models, meshes are sometimes gen-
erated in independent pieces. The user may also have to deal with legacy
models for which only discretized parts exist. In order to obtain a connected
mesh appropriate for numerical simulations, it is sometimes needed to im-
print the tool mesh into the target mesh, hence the need for such algorithm
described in this paper. One can consider the case of a piece of equipment
(tool mesh) that needs to be inserted into a large ship model. The equipment
model is provided by its manufacturer as a discretized model. In order to
numerically analyze the equipment connected to the infrastructure, a mesh
insertion procedure is required.
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After removing the undesired entities of the target mesh, connecting the
tool mesh to the remaining part of the target mesh can be achieved using
two possible approaches: advancing front methods [1, 2, 3, 4] and Constrained
Delaunay Tetrahedralizations (CDT) [5, 6, 7]. The advancing front approach
starts with a given surface “initial front”. Elements are then created on the
front toward the interior, preserving the domain boundaries. However, the
reliability of many commercial advancing-front mesh generators is still under
investigation. In some cases the algorithm fails and asks the user to modify
the surface mesh without providing adequate reasons. This issue is more
prevalent when the void to be filled has sharp features or contains narrow
regions. Unfortunately the void obtained during the mesh insertion algorithm
is narrow and has many sharp features, even if the involved mesh models
have smooth boundaries. The advancing front method has some additional
limitations: slow computational speed due to geometric search during the
process and the relatively low quality of resulting meshes.

Delaunay tetrahedralizations methods [8, 9, 10, 11, 12] utilize the idea
of an empty sphere for each created tetrahedron and hence generate ele-
ments with optimal quality for a given set of vertices. However, Delaunay
tetrahedralization always generates a convex mesh independent of the mod-
eled domain. In order to solve this problem, CDT are utilized to generate a
mesh that respects the boundaries of the modeled domain. CDT algorithms,
also have drawbacks: more sensitivity to numerical error than most geomet-
ric algorithms, and the connectivity of the input surface cannot be easily
preserved. Hence, CDT algorithms cannot be implemented efficiently for 3D
complex domains, especially if this domain contains narrow regions and sharp
features.

In an attempt to avoid the limitations of both methods, a combination of
the Delaunay and the advancing front approaches is commonly used [13, 14].
This algorithm starts with a Delaunay triangulation of a set of boundary
nodes, which is used as a background mesh. New nodes are then added us-
ing the advancing front approach. This combined approach can increase the
efficiency of the algorithm and produce high quality meshes. However, the
surface recovery in 3D is often the weakest point.

In addition to the limitations mentioned above for both approaches, each
of them is designed to handle tetrahedral meshes only. Owen and Saigal [15]
proposed an advancing front algorithm that generates all-hex meshes but it
starts with an initial tetrahedral mesh that respects the boundaries of the do-
main. Staten et al. [16] developed another advancing front algorithm to handle
all-quad initial front, however this method is limited to simple domains. Un-
fortunately the void between the tool and the target meshes during a mesh
insertion algorithm is narrow and might be surrounded by hybrid surfaces
with sharp features. Recently, Ito et al. [17] presented an interesting method
to accommodate small devices into a baseline mesh. However, this method
preserves only the geometry of these devices and hence it is not suitable for
some applications such as fluid-structure interaction.
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In this paper, a new algorithm is presented, which converts two overlapping
hybrid meshes into a conforming connected crack-free mesh. This method-
ology locally modifies the entities of one of the input meshes (Target Mesh)
so that the two meshes can be merged into a conforming mesh across the
interface. The algorithm utilizes an efficient, hybrid advancing front method
to fill the void between the two meshes in a countable number of operations.
In order to increase the efficiency of this algorithm, an optimal data struc-
ture is introduced and utilized in the query operations required during the
advancing front procedure.

The remaining of this paper is organized as follows: In section 2, an op-
timal non-manifold hybrid mesh data structure (NHMD) is presented. The
mesh insertion algorithm is then described in Section 3. In Section 4, several
examples of mesh insertion are presented. Finally, Section 5 provides some
concluding remarks along with current and future efforts.

2 An Optimal Non-manifold Hybrid Mesh Data
Structure (NHMD)

In this section we present an optimal data structure for handling hybrid
unstructured mesh models that might contain non-manifold entities. The
requirements in choosing a data structure for the implementation of the mesh
insertion algorithm are:

1. It should be able to handle hybrid mesh models with or without non-
manifold surfaces;

2. It must occupy the least possible amount of storage; and
3. The query operations corresponding to any mesh entity (node, edge, face,

element) should be executed in a constant time independent of the mesh
size.

Mesh models contain a finite number of element types: lines, triangles,
quadrilaterals, tetrahedra, pyramids, prisms and hexahedra. Each element is
specified using its list of nodes. Figure 1 shows the local indices of the nodes
associated with various types of elements in the mesh data structure. This list
can be used to determine faces and edges of that element. For example the
tetrahedron in Figure 1(d) is defined using the node sequence {1, 2, 3, 4} and
contains four faces given by {1, 2, 3}, {1, 3, 4}, {2, 1, 4}, and {3, 2, 4}. Each
of these faces can be uniquely identified based on the index of their parent
element and an additional local index for each one of them. The associated
edges can be similarly identified. The developed data structure utilizes this
information to optimize the required storage.

In a hybrid unstructured mesh model, the minimum amount of information
to be stored is the connectivity matrix C. This matrix is sparse and a non-
zero entry cij is one if the element i contains the node j. Sparse matrices are
usually stored using three arrays. However, the connectivity matrix needs
only two arrays (or STL vectors) since the value of all the non-zero entries
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(a) Hexahedron (b) Prism (c) Pyramid (d) Tetrahedron

(e) Quadrilateral (f) Triangle (g) Line

Fig. 1. The connectivity information associated with the main element types de-
fined in the current implementation of the mesh data structure.

are always one. The number of non-zero entries is denoted nnz. Moreover, if
the rows of this matrix are sorted based on the element type, and the number
of elements in each type is stored, the entries of this matrix can be stored
using one array with nnz entries. This array, CI , together with numbers of
elements in each type, represent the minimum storage size that can be used
to hold the associated connectivity information of a hybrid mesh.

In order to have an efficient traverse algorithm we need to store the con-
nectivity matrix C as well as its transpose CT . For this purpose we store two
more arrays, CJ and CK . The size of CJ is the same as CI while the size of
CK is the same as the number of nodes, N , in the associated mesh. Hence
the total storage size for the connectivity information is 2 nnz + N + 7. In
order to have a complete representation of a 3-dimensional mesh we store the
coordinates of the associated nodes using three more arrays, each one has
N entries. Note that in the mesh data structure CI lists the nodes of the
different elements within the mesh, while CJ lists the indices of the entries
of CI sorted based on the associated node index. In other words

If
ki = CJ [i] and ki+n = CJ [i + n] ,

then
CI [ki] ≤ CI [ki+n] for all 0 ≤ i, n ≤ i + n < nnz.

Following this procedure, one can easily retrieve the neighboring elements
around any given node. In order to optimize this process, CK stores the
minimum index of the entries in CJ associated with a given node. For example
if a node i has two neighboring elements, then i would appear twice in CI ,
the first location is at CJ [CK [i]] and the second location is at CJ [CK [i] + 1].
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In this data structure we have seven types of elements and we chose to list
them in the same order presented in Figure 1. For each element type we need
to store the number of nodes, edges, and faces associated with that type, as
well as the local indices of each entity associated with this element type. This
information is used in the traverse algorithm to get the connectivity from an
element to its bounding entities.

This sorting eliminates the need to store the element indices of the con-
nectivity matrix C and hence we can save extra nnz entries. The element
index of any entry k can be found using the following algorithm:

Algorithm 1. Retrieve the element index ie of a given entry k in CI

Set num e = 0 , itype = 1 and num = Num Elements[itype] * Num Nodes[itype];
while k > num do

num e = num e + Num Elements[itype];
itype = itype + 1;
num = num + Num Elements[itype] * Num Nodes[itype];

end while
num = num - Num Elements[itype] * Num Nodes[itype];
ie = num e + size t ( (k - num) / Num Nodes[itype] );

Algorithm 1 is very efficient as it loops over a limited number of element
types, currently 1 ≤ itype ≤ 7. Num Elements and Num Nodes stores the
number of elements and the number of nodes associated with each element
type. Using this algorithm allows to retrieve the neighboring elements of any
node in the mesh independent of the mesh topology.

In this mesh data structure, nodes play a vital role in the traverse algo-
rithm. For example, to retrieve the neighboring faces of a given edge E , one
starts by retrieving all the neighboring elements of the two corner nodes of
that edge, using CJ and CK . Then we get the faces of these elements and
collect those faces that contain E . Note that each face (as well as each edge)
is identified by a unique global index, which can be mapped easily to the
index of its parent element. The complexity of this algorithm is a function of
the mesh quality and is independent of the mesh size.

The mesh data structure is demonstrated using a simple mesh in Figure 2.
This mesh contains seven nodes, three elements and eight edges. One of
the nodes, V4, is not associated with any element. this node is an isolated
node. The transpose of of the associated connectivity matrix is presented in
Figure 2(c). The stored arrays of the data structure corresponding to that
mesh are given by:

Num Elements = [0 0 0 0 1 1 1]T , CI = [6 7 3 5 7 2 3 2 1] T ,

CJ = [9 6 8 3 7 4 1 2 5] T , CK = [1 2 4 6 6 7 8]T
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Note that CK [4] = CK [5], this means that V4 does not exist in CI , in other
words it is an isolated node. Also CK [4]−CK [3] = 2 indicates that V3 exists
twice in CI , hence this node has two neighboring elements. The indices of
these two locations are given by CJ [CK [3]] = 3 and CJ [CK [3] + 1] = 7.
Algorithm 1 can be utilized to identify the element indices corresponding to
these two locations. In order to retrieve an edge we start with its global index
and retrieve its parent element. For example the edge e6 is in the second edge
of the first triangle listed in CI . This triangle is defined using the node list
(7 2 3), hence the required edge connects the nodes V2 and V3. Note that
duplicated edges (such as e2 and e7) does not represent any storage problem,
since we identify these edges implicitly through their parent elements. The
same thing applies for duplicated faces in volumetric meshes.

(a) (b) (c)

Fig. 2. A simple mesh utilized in demonstration of the mesh data structure. The
associated entities are shown in (a) and (b). The transpose of the associated con-
nectivity matrix is presented in (c).

This data structure was tested using a 2.0 GHz processor with a 2.0 GB
RAM and it was capable of handling a mesh size up to 10 million nodes
without using the swap space and up to 20 million nodes using the swap
space. The mesh used for this test is an all-hexahedral model. The number of
nodes is approximately equal to the number of elements. The time required
to generate the mesh and the associated data structure is 45 seconds for the
first case (10 million nodes) and 100 seconds for the second case (20 million
nodes).

3 Mesh Insertion Algorithm

The mesh insertion algorithm starts by the detection, and the removal of
the undesired entities of the tool mesh. These entities might be overlapping
with some of the tool mesh elements or they can be located inside a closed
surface associated with the tool mesh. The remaining elements of the target
mesh are then connected to the tool mesh using a robust advancing front
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Fig. 3. Detection of nodes located inside a closed region using its bounding polyno-
mial, P . A (green) line connecting an internal node to the scaled bounding box has
an odd number of intersections with P , while a similar (blue) line for an external
node has an even number of intersections. A case that might cause miscounting is
illustrated using the (dotted green) line.

algorithm. During this step the advancing front algorithm may vary based
on the type of elements of the target mesh. Two different approaches are used,
the first one is used with the one-dimensional and two-dimensional elements
(lines, triangles, and quadrilaterals) and the second one is useful for the three-
dimensional elements (tetrahedra, pyramids, prisms and hexahedra). In the
latter case, a novel advancing front algorithm is introduced to handle the
narrow region between the tool and the target meshes.

3.1 Detection of the Undesired Entities of the Target Mesh

In order to mark the undesired entities of the target mesh, a method is imple-
mented to detect whether a given node is located inside a closed triangular
surface or not. The implemented algorithm starts by constructing a bound-
ing box of S. This bounding box is then scaled around its center with some
factor f > 1.0. A line segment, L, is then constructed by projecting the input
node to one of the sides of that box. In our implementation we work with
a projection in the direction of positive x-axis. Finally we count the number
of intersections that L have with S. If the number is odd, then this node
is inside S, otherwise it is not. The two-dimensional version of this idea is
demonstrated in Figure 3. To count this number, we loop over all the ele-
ments of S and test for the intersection with L. Using a line aligned with
the x-axis simplifies the operations required for this test to a large extent.
However, three special cases has to be handled correctly to have a robust
algorithm:

1. L intersects an element of S at one of its three edges. The intersection
point will be counted twice, since each edge in S is shared by two elements.
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2. L intersects an element of S at one of its three nodes. The intersection
point will be counted n times, where n represents the number of neighbor
elements to that node.

3. L is tangent to a given element, E , in S. Three cases can occur in this
situation:
a) L passes through two nodes of E .
b) L passes through one node of E .
c) L does not pass through any node of E .

In the implementation of this method, the number of intersections is ad-
justed to handle all these situations. After splitting the nodes of the target
mesh into internal and external nodes using this method, one can easily elim-
inate the undesired elements from the target mesh. Figure 4 shows the output
of this process using a submarine (triangular tool mesh) inserted in an ocean
(hexahedral target mesh). Another example is presented for a mesh insertion
of a cylinder (hexahedral tool mesh) in a non-manifold surface (triangular
mesh. This example is demonstrated in Figure 5.

This detection method deals only with a triangular closed surfaces. For a
volumetric mesh, the outer boundaries, B, are extracted and all the quadrilat-
erals on B are split into triangles. In some cases, we might want to eliminate

(a) Input Meshes (b) Section I (c) Section II

Fig. 4. Eliminating the undesired entities from the target mesh during the mesh
insertion of a submarine (triangular tool mesh) in an ocean (hexahedral target
mesh). Two cross-sections are utilized to show the interior of the target mesh.

(a) (b) (c)

Fig. 5. Eliminating the undesired entities from the target mesh during the mesh
insertion of a cylinder (hexahedral tool mesh) in a non-manifold surface (triangular
target mesh). Two views are utilized to show the remaining part of the target mesh
with and without the cylinder.
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an extra layer of elements to remove the issues linked to narrow gaps when
dealing with the advancing front method. Upon completion of this step, all
the new boundary entities of the target mesh are marked. These entities will
be connected to the surface of the tool mesh.

3.2 Connecting One-Dimensional and Two-Dimensional Entities
to the Tool Mesh

A simple yet effective advancing front algorithm is now presented to connect
the one-dimensional and two-dimensional marked entities of the target mesh
to the surface of the tool mesh. For one-dimensional elements (Lines), the
associated marked nodes are simply connected to the closest nodes on the
surface of the tool mesh. Figure 6 shows the results of this step using a mesh
insertion of a cylinder(hexahedral tool mesh) in a network of orthogonal lines
(target mesh).

For two-dimensional entities, a watertight surface is introduced to connect
the remaining part of the target mesh, Mt, to the tool mesh MT . The pro-
posed algorithm should handle non-manifold cases. A terminal mesh entity
is an entity lying on the interface between the eliminated and the remain-
ing parts of Mt. A node, N ∗, that exists in more than two terminal edges
is denoted as a non-manifold node. A non-manifold edge is an edge with
one non-manifold node. A watertight triangular mesh is created to connect
each terminal edges to the surface of the tool mesh. This triangular mesh is
constructed in two steps. First, triangular elements are created using each
terminal edge and its closest node Nj on ST . If the terminal edge is a non-
manifold one, Nj is the closest node on ST to the non-manifold node of that
edge. Otherwise, Nj is the closest node on ST to the center of that edge. Then
for each pair of neighbor triangles that meet at a node Ni in Mt and have
two points Nj , Nk on ST , the shortest path, connecting Nj to Nk along the
edges of ST , is extracted. A triangle is then constructed for each edge in that

(a) (b)

Fig. 6. Mesh insertion of a cylinder (hexahedral tool mesh) in a network of line
(beam) elements (target mesh). Two views are utilized to show of the final con-
forming mesh.
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(a) (b) (c)

Fig. 7. Three differnet views for the output of the mesh insertion algorithm using a
cylinder (tool mesh) and two perpendicular quadrilateral planes (target mesh with
a non-manifold surface).

path using that edge and Ni. Figure 7 shows the output of this algorithm for
a mesh insertion of a hexahedral cylinder (tool mesh) and two perpendicular
quadrilateral planes (target mesh with a non-manifold surface).

3.3 Connecting Three-Dimensional Entities to the Tool Mesh

Connection of three dimensional entities of the target mesh to the tool mesh
turns out to be a challenging problem for many reasons: First, the three-
dimensional void, V , entrapped between both meshes is narrow and contains
many sharp features even if the two input meshes have smooth surfaces. These
two properties represent a real challenge for any advancing front algorithm.
Figure 8 demonstrates the surfaces surrounding this void during a mesh in-
sertion of a cylinder (Tool Mesh) in a box (Target Mesh). Eliminating the
undesired entities of the target mesh modifies its boundary. The introduced
part of this boundary contains many sharp features. Moreover, the surface
surrounding the void between the two meshes might be hybrid.

(a) (b) (c) (d)

Fig. 8. Mesh insertion of a hexahedral cylinder (Tool Mesh) with a hexahedral
box (Target Mesh). The input meshes are presented in (a). Removal of the desired
entities is shown in (b). A rough surface surrounds the narrow void between the
two meshes is shown in (c) and (d).
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To eliminate the sharp features from the surface surrounding V , an offset
copy, S′, of the boundary surface, S, of the tool mesh is generated and then
extracted using the elements of the target mesh. Hence the void between the
tool mesh and the target mesh is trapped between the extracted surface, S′′

and S. Note that these two surfaces are almost parallel, so the advancing
front algorithm should be easier to construct with the required guarantee for
the execution time and it should produce elements with much better quality.

The algorithm used to create S′ is to loop over the nodes of S, calculate
the average normal, nav, of its neighboring faces and the minimum length,
dm, of its neighboring edges. First S′ is created as an identical copy of S
then each node is duplicated in the direction of its normal vector with a
distance of 0.5 dm. In the case of self intersection, this distance is recursively
reduced by 50% till this problem is resolved. In some cases associated with
sharp corners, a node is displaced to the interior of S. This issue is solved by
projecting the displaced point back to the surface of S. Then that projection
is extended until it intersects again with S and place the new node in the
middle of these two intersections. If a second intersection does not exist, the
projection line is extended by 20% and the new node is placed at its free end.
Figure 9 illustrates the output of this process using a triangular mesh of a
submarine model.

The final step before applying the advancing front algorithm is to extract
the the offset surface, S′, using the elements of the target mesh. This is

(a) Section I

(b) Section II

Fig. 9. Generating an offset copy (yellow) of the surface of the tool mesh (blue).
Two sections of the ouput mesh are utilized.
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achieved by projecting the terminal nodes to the surface onto S′. The pro-
jection direction is based on the average normal direction of the neighbor
terminal faces of the projected node. Figure 10 illustrates the output of this
process using a triangular mesh of a submarine and a hexahedral mesh of the
surrounding water.

(a) Input Meshes

(b) Output Mesh (c) Cross Section

Fig. 10. Extraction of the surface of a floating submarine (triangular mesh) using
the elements of the surrounding ocean (hexahedral mesh).

An advancing front algorithm to fill a narrow void between two
parallel surfaces

A robust hybrid advancing front algorithm is now presented to fill the narrow
void between the two parallel surfaces S and S′′. This algorithm is demon-
strated using mesh insertion of a sphere (tetrahedral tool mesh) in a box
(hexahedral target mesh) shown in Figure 11. First the boundaries, Γ , of S′′

are projected to the surface, S, of the tool mesh as shown in Figure 12(a).
During this projection each node on Γ is projected to its closest node on
S. Then each edge on Γ is mapped to the closest path on S between the
projection of its two end nodes. Hence, each edge on the boundaries of S′′ is
mapped to either a node, an edge or a sequence of edges on S. The mapped
polyline, P is closed and formed by the edges of S. All the edges in P have the
same direction. This can be used to extract the desired part of S as shown in
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(a) (b) (c) (d)

Fig. 11. Mesh insertion of a tetrahedral sphere (Tool Mesh) with a hexahedral box
(Target Mesh). The input meshes are presented in (a). The output crack-free mesh
is shown in (b) and (c) with and without the tool mesh. A section in (d) shows the
interior elements of the final mesh.

(a) (b) (c) (d)

Fig. 12. Connecting the terminal entities of the hexahedral box to the surface of
the tetrahedral sphere. In (a) the boundaries of S ′′ are projected to some edges
forming a closed (blue) polyline in S . The input surfaces of the advancing front
algorithm are presented in (b). Figure (c) shows the internal faces connecting S ′′

and S ′′′. The output of the advancing front algorithm is illustrated in (d).

Figure 12(b). This part is denoted S′′′. At this point we have two hybrid sur-
faces, S′′ and S′′′ that are almost parallel and separated by a narrow region.
These two surfaces are the input of the following advancing front algorithm.

The starting point of the advancing front algorithm is to map each point
on S′′ to the closest nodes on S′′′. Then the edges of S′′ are connected to the
edges and nodes on S′′′ using quadrilaterals and triangles. This is achieved by
looping over the edges in S′′ and extracting the shortest path that connects
the mapping of its end nodes on S′′′. If that path contains a single node,
a triangle is constructed using that node and the edge under consideration.
If that path is an edge on S′′′, a quadrilateral is constructed using the two
edges. Otherwise, a series of triangles are constructed using the two edge
nodes on S′′ and the nodes on that path. The internal faces, connecting
S′′ to S′′′ are illustrated in Figure 12(c). After this step each face on S′′ is
completely surrounded by those internal faces. We loop over the faces on S′′,
and collect the surrounding faces as well as the faces from S′′ that closes
the surface. The collected faces are then checked if they can form one of our
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three-dimensional elements. If that is not the case, a point is added to that
local void and used to fill the void with pyramids and tetrahedra. This is
achieved by connecting this point to each one of the faces surrounding that
void. Finally, a similar approach is followed to fill the local voids associated
with the elements of S′′′, if any. Note that these local voids are closed using
the internal faces generated earlier. The output of this algorithm for the mesh
insertion problem of a tetrahedral sphere is shown in Figure 11.

Note that this advancing front algorithm does not require any kind of iter-
ative loops. It is therefore executed after a countable number of operations.
Also if the elements of S′′ and S′′′ were closed in size, the algorithm tends
to fill the voids with one of the primitive elements defined in the mesh data
structure. This results in fewer elements to fill the void and hence better
quality.

4 Examples

This section presents the behaviour of the method on two examples of indus-
trial interest. The first example, illustrated in Figure 13 presents the merging
of two stern tubes to the bare hull of a ship in order to analyse the stiff-
ness and displacements of each part. The stern tubes are represented using
hexahedral elements while the hull is given by a quadrilateral mesh. The sec-
ond example illustrates merging a submarine shell (triangular tool mesh) in
a hexahedral mesh representing the surrounding ocean. The output mesh is

(a) A ship model after the insertion of two stern tubes

(b) (c)

Fig. 13. Mesh insertion of two stern tubes (tool mesh with hexahedral elements)
into the hull of a ship (target mesh with quadrilateral elements), and zoom-in views
for both meshes before (b) and after (c) applying the mesh insertion algorithm.
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(a)

(b) (c)

Fig. 14. Mesh insertion of a submarine shell (triangular tool mesh) into the sur-
rounding ocean (target mesh with hexahedral elements). The interior elements are
illustrated in figures (b) and (c) using two cross-sections.

illustrated in Figure 14 and can be used to study the fluid structure interac-
tion between the hydrodynamic forces acting on the floating submarine and
the tension forces generated in its shell.

5 Conclusion and Future Work

A new computational method for merging two hybrid meshes into a conform-
ing mesh that preserves all the entities of one of them has been presented. An
optimal data structure for hybrid meshes that might contain non-manifold
surfaces has been developed. The optimality of this data structure is based
on the storage requirements and the computational efficiency of the various
query operations. We also presented a novel robust advancing front algorithm
to fill the narrow void between the two meshes.

Many meshing algorithms require entire assemblies to be meshed at once
in order to have conforming meshes between components [16, 18]. This re-
quirement is relaxed by creating conforming meshes between assembly com-
ponents after each component is meshed individually using the mesh insertion
algorithm.



374 M.S. Ebeida et al.

The presented mesh insertion algorithm depends in many parts on calcu-
lating the shortest path between two nodes along the edges of a given surface.
The implemented method to perform this step might fail if the two nodes oc-
cur on two different sides of a narrow region. One way to fix this problem is
to refine the target elements associated with this problem. However, we are
currently investigating other solutions as well. We are currently working on
the performance charts required to show the strength of the proposed data
structure.

Acknowledgement

This work is funded by contract N0017308-C-6011 from Naval Research Lab-
oratory as part of the HPCMP CREATE program.

References

1. Lohner, R., Parikh, P.: Generation of three-dimensional unstructured grids by
the advancing front method. Int. J. Numer. Meth. Fluids 8, 1135–1149 (1998)

2. George, P.L., Seveno, E.: The advancing front mesh generation method revis-
ited. Int. J. Numer. Meth. Engng. 37, 3605–3619 (1994)

3. Jin, H., Tanner, R.I.: Generation of unstructured tetrahedral meshes by the
advancing front technique. Int. J. Numer. Meth. Engng. 36, 1805–1823 (1993)

4. Ito, Y., Shih, A., Soni, B.: Reliable isotropic tetrahedral mesh generation based
on an advancing front method. In: 13th International Meshing Roundtable, pp.
95–105 (2004)

5. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108
(1989)

6. Shewchuk, J.R.: Constrained Delaunay tetrahedralizations and provably good
boundary recovery. In: 11th International Meshing Roundtable, pp. 193–204
(2002)

7. Cohen-Steiner, D., Colin, E., Yvinec, M.: Conforming Delaunay triangulations
in 3D. In: 18th Annual Symposium on Computational Geometry, pp. 199–208
(2002)

8. Dey, T.K., Bajaj, C.L., Sugihara, K.: On good triangulations in three dimen-
sions. Int. J. Comput. Geom. & App. 2, 75–95 (1992)

9. Miller, G.L., Talmor, D., Teng, S.-H., Walkington, N.: A Delaunay based nu-
merical method for three dimensions: generation, formulation, and partition.
In: 27th Annual ACM Symposium on the Theory of Computing, Las Vegas,
Nevada, pp. 683–692 (1995)

10. Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: 14th
Annual Symposium on Computational Geometry, Minneapolis, Minnesota, pp.
86–95 (1998)

11. Shewchuk, J.R.: Mesh generation for domains with small angles. In: 16th An-
nual Symposium on Computational Geometry, Hong Kong, pp. 1–10 (2000)

12. Edelsbrunner, H., Li, X.-Y., Miller, G., Stathopoulos, A., Talmor, D., Teng,
S.-H., Ungor, A., Walkington, N.: Smoothing and cleaning up slivers. In: 32nd
Annual Symposium on the Theory of Computing, Portland, Oregon, pp. 273–
278 (2000)



Mesh Insertion of Hybrid Meshes 375

13. Mavriplis, D.J.: An advancing front Delaunay triangulation algorithm designed
for robustness. J. of Comput. Phys. 117, 90–101 (1995)

14. Marcum, D.L., Weatherill, N.P.: Unstructured grid generation using iterative
point insertion and local reconnection. AIAA J. 33, 1619–1625 (1995)

15. Owen, S.J., Saigal, S.: H-Morph: an indirect approach to advancing front hex
meshing. Int. J. Numer. Meth. Engng. 49, 289–312 (2000)

16. Staten, M.L., Owen, S.J., Blacker, T.D.: Unconstrained paving & plastering:
a new idea for all hexahedral mesh generation. In: 14th International Meshing
Roundtable, pp. 399–416 (2005)

17. Ito, Y., Murayama, M., Yamamoto, K., Shih, A.M., Soni, B.K.: Efficient com-
putational fluid dynamics evaluation of small device locations with automatic
local remeshing. AIAA Journal 47, 1270–1276 (2009)

18. Zhang, Y., Bajaj, C., Sohn, B.-S.: 3D finite element meshing from imaging
data. Comput. Meth. in Appl. Mech. Engng. 194, 5083–5106 (2005)



Tensor-Guided Hex-Dominant Mesh
Generation with Targeted All-Hex Regions

Ved Vyas and Kenji Shimada

Department of Mechanical Engineering
Carnegie Mellon University, Pittsburgh, PA, USA
ved@cmu.edu, shimada@cmu.edu

Abstract. In this paper, we present a method for generating hex-dominant meshes
with targeted all-hex regions over closed volumes. The method begins by generat-
ing a piecewise-continuous metric tensor field over the volume. This field speci-
fies desired anisotropy and directionality during the subsequent meshing stages.
Meshing begins with field-guided tiling of individual structured hexahedral fronts
wherever suitable and in regions of interest (ROI). Then, the hexahedral fronts
are incorporated into an existing hex-dominant meshing procedure, resulting in a
good quality hex-dominant mesh. Presently, many successful hex meshing methods
require significant preprocessing and have limited control over mesh directional-
ity and anisotropy. In light of this, hex-dominant meshes have gained traction for
industry analyses. In turn, this presents the challenge of increasing the hex-to-tet
ratio in hex-dominant meshes, especially in ROI specified by analysts. Here, a novel
three-part strategy addresses this goal: generation of a guiding tensor field, appli-
cation of topological insertion operators to tile elements and grow fronts towards
the boundary, and incorporation of the fronts into a hex-dominant meshing pro-
cedure. The field directionality is generated from boundary information, which is
then adjusted to specified uniform anisotropy. Carefully placed streamsurfaces of
the metric field are intersected to shape new elements, and the insertion opera-
tors maintain mesh integrity while tiling new elements. Finally, the effectiveness of
the proposed method is demonstrated with a non-linear, large deformation, finite
element analysis.

1 Introduction

In this paper, we present a method for generating hex-dominant meshes with
targeted all-hex regions over closed volumes. A three-part strategy is em-
ployed to achieve this: generation of a guiding metric field, application of
topological insertion operators to insert elements and grow the hex fronts
outward from starting interior points, and indirect incorporation of the fronts
into a final hex-dominant mesh. The field governs element directionality and
anisotropy over the volume for the tiling and final meshing stages. During
the tiling stage, insertion operators maintain mesh integrity and attempt to
prevent the mesh from marching into itself as they place new hexes. New
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elements are formed from the intersections of strategically placed stream-
surfaces of the metric field. The nodes of the fronts are then incorporated
into a rectangular bubble-packing process [24] as fixed bubbles, from which
a tetrahedral and then final hex-dominant mesh are obtained.

The method proposed in this work possesses many salient features. First,
a new method is described for constructing geometry-based tensor fields with
boundary sensitivity and user-input anisotropy. These fields can be applied
to any meshing algorithm which is suitably equipped. Second, both the tiling
and bubble-packing steps produce valid meshes that conform to these fields.
The tiling process is also flexible enough to start on the interior, and with
the help of the field and boundary conformity operations, capture the bound-
ary. Finally, the incorporation of the tiled hex fronts into the hex-dominant
process allows targeting of all-hex regions in ROIs.

Hexahedral meshes are commonly preferred in many types of 3D Finite
Element Analyses. However, robust all-hexahedral mesh generation has not
yet been achieved with the guarantees, quality, and control of arbitrary
anisotropy/directionality provided tetrahedral and hex-dominant meshing
schemes.

Current practical methods for direct hexahedral mesh generation are
at most semi-automatic, requiring model decomposition and application of
topology specific methods such as (sub)mapping and sweeping among others
[1]. Other methods, such as the grid based methods of Schneiders et al. [2] or
Zhang et al. [3], are only subject to topology constraints if boundary features
(for instance curves and vertices) need to be captured. Although they do pro-
vide some degree of anisotropy and size gradation using templates, there is no
mechanism for controlling arbitrary directionality. Furthermore, 3D advanc-
ing front methods such as Plastering [4] start at the boundary while placing
elements. Unfortunately, this leads to unmeshable voids and stitching prob-
lems between fronts. Unconstrained plastering is a promising extension that
aims to avoid these difficulties, but is still under development [5].

In light of this, hexahedral-dominant meshing schemes have gained traction
for semi- and fully automatic mesh generation. Rectangular bubble-packing,
by Yamakawa and Shimada [24], is an indirect hex-dominant method that
is capable of generating high quality hex-dominant meshes. The resulting
meshes conform to a specified tensor field and have good hexahedral volume
ratios. The method begins by packing rectangular solid cells and then gener-
ating a tetrahedral mesh using the cells’ centers. This is followed by merging
groups of tetrahedra into good hexahedral elements. Optionally, tets can
be merged into prisms and possibly pyramids to produce a fully conformal
mesh. That is, hanging edges which are present in a mixed hex-tet mesh will
be eliminated through the use or prisms and pyramids. Alternatively, spe-
cial subdivision templates have been developed to produce conformal meshes
without pyramids [29].
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From the inherent drawbacks and strengths of the methods mentioned
here, the authors have reached the observation that a successful hex-dominant
meshing strategy should include:

1. Using fields to control directionality and anisotropy.
2. Tailoring such fields to be boundary aligned and to incorporate additional

directionality and anisotropic size specifications.
3. Meshing from the inside out by starting at a suitable location(s).
4. Deciding marching directions for meshing ahead of time (via the field).
5. Meshing element by element in such a way that the mesh remains topo-

logically valid and does not march into itself.
6. Complementing difficult regions for all-hex with good quality hex-domi-

nant regions.

Some of these points, such as the need for a boundary sensitive overlay
for grid-based methods, have been noted by Blacker for all-hex meshing [6].
Furthermore, field generation has been performed for application to other
methods such as BubbleMesh [7, 8, 9].

The method presented here attempts to utilize these desired characteristics
through field generation and application of topological insertion operators to
insert elements and grow the mesh outward from a starting interior point.
The metric field incorporates boundary normal information and user-input
uniform anisotropy, and is capable to providing information on element shap-
ing and marching directions for meshing. This allows for a relatively simple
tiling algorithm based on topological insertion operators. The insertion op-
erators maintain mesh integrity while attempting to prevent the mesh from
marching into itself. They also govern the shaping and via specific intersec-
tions of streamsurfaces of the eigenvector fields that are obtained from the
metric field.

Due to the difficulties posed by applying this process to entire volumes,
the proposed method attempts to incorporate the traced hex elements into
a hex-dominant mesh. The resulting mesh is boundary conformal, approx-
imately metric conformal, good quality, and has increased hex-to-tet ratios
in the tiled regions. Therefore, predominantly hex meshes can be created
in ROIs, for instance where boundary conditions are applied or important
stresses/quantities are present.

Presently, the proposed method operates on closed volumes with a facet-
based boundary representation equipped with sufficient guiding feature curves.
It can be applied to analytic-surface based CAD models using the graphics
facets and feature curve extraction. In addition, in this paper only fields of uni-
form anisotropy are considered. The basic approach, however, can be extended
to non-uniform anisotropic fields.

The paper is organized as follows: Section 2 discusses related work that
leads up to and supports the proposed method. Section 3 presents an overview
of the methods used, and also covers preliminaries. Generation of metric
tensor fields is described in Section 4, and meshing via hex tiling and packing
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is covered in Section 5. Section 6 contains results and our discussion, and the
paper is concluded with a brief look at further work in Section 7.

2 Related Work

Riemannian metric tensors have become a popular means of anisotropic mesh
control [7, 8, 10]. In the context of 3D mesh generation, such second-order
tensors can be represented as 3 × 3, symmetric, positive-definite matrices in
a local coordinate system. Given a metric tensor M, the dot (inner) product
of two vectors x and y can be written as xTMy [11]. This can be used to
obtain the norm of a vector under the metric via

(
xTMx

)1/2
, as well as the

angle between two vectors. Additionally, the length l of a parametric curve
r(t) where t ∈ [t0, t1], can be expressed as:

l =
∫ t1

t0

[
Mij

dri

dt

drj

dt

]1/2

dt =
∫ t1

t0

[
ṙ(t)TM (r(t)) ṙ(t)

]1/2
dt , (1)

where M can vary spatially and i, j = 1, 2, 3.
A metric tensor represented by a matrix M has a decomposition given by

the spectral theorem [12]:
M = QΛQT . (2)

Here, Q is an orthogonal eigenvector basis and Λ is a diagonal eigenvalue
matrix. Using the ellipsoid interpretation of the metric, the eigenvalues are
the inverse-squares of the ellipsoid’s axis lengths.

These properties have made metrics an appealing method for representing
mesh directionality (eigenvector directions) and anisotropy (corresponding
eigenvalues). Researchers have applied metrics to generate and adapt meshes
[7, 13].

There is a body of work directed toward generating directional fields on
surfaces for the purpose of texture synthesis, painterly rendering, and surface
meshing; refer to [14, 15].

Other algorithms relevant to this work include advancing front methods
and grid-based methods, as previously mentioned. In addition to this, our
underlying element-shaping strategy is inspired by the previous work of Alliez
et al. [16] and Tchon et al. [17] on remeshing and pseudo-mesh generation
using tensor fields and streamlines, respectively.

The proposed work is unique in that it assigns the tasks of element shaping
and choosing marching directions to a field that is generated prior to meshing.
Additionally, insertion operators have been developed that allow systematic
insertion of elements in a valid manner, while meshing from the inside-out.
Finally, by placing tiled fronts throughout the volume, this method is able to
combine with existing methods to produce good quality hex-dominant meshes
with augmented hex-to-tet ratios where desired.
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3 Technical Approach and Preliminaries

The overall strategy is described in this section, which can be decomposed
into three main steps:

1. Metric Field Generation: An iterative technique is used to solve for metric
tensors on the nodes of a background mesh. The technique produces a
boundary-aligned field, which is then adjusted to uniform anisotropy.
With appropriate interpolation, this provides a piecewise-linear field over
the volume.

2. Field-Guided Hex Tiling: The element shaping strategy attempts to form
unit hexes that are aligned with the metric eigenvector streams and ap-
proximately adhere to the lengths encoded in the metric eigenvalues. This
is achieved by creating new hex nodes at the intersections of approxi-
mately unit length streamsurface triplets. The meshing process begins
by inserting a seed hex on the interior of the volume. During tiling, inser-
tion operators determine how new hexes are extended from the current
mesh. This continues until the boundaries are reached, at which point
new elements are locally snapped to boundary surfaces, feature curves,
and feature vertices to enable boundary conformity.

3. Hex-Dominant Mesh Generation: Packing of rectangular solid cells is aug-
mented to incorporate the tiled hex fronts. The hex nodes are packed as
fixed cells, and with some specific pre- and post-processing, the process
is continued to obtain a hex-dominant mesh.

Figure 1 below depicts some of the main steps of the whole process, in the
order described above.

(a) Input
geometry

(b) Streamlines
and streamsurfaces
of the generated

tensor field

(c) Intermediate
stage of hex front

tiling

(d) Final
hex-dominant

result

Fig. 1. Overview of the whole process

Before elaborating on each of these steps, several techniques and constructs
that support field generation and meshing need to be discussed.
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3.1 Metric Field Representation, Support, and Operations

The metrics used in this work are stored as symmetric 3×3 matrices with di-
rectionality and anisotropy encoded through the eigenvectors and eigenvalues.
This is convenient for tasks such as length measurement and interpolation.
However, streamline generation requires the eigen-decomposition in order to
use the eigenvector fields. Therefore, both representations are employed at
different times. The eigen-decomposition is obtained via the Jacobi rotation
method [18], and 2 is used to go back to the matrix form.

During meshing it is often necessary to query eigenvector directions, find
the best eigenvector corresponding to an input direction, and to relate the
eigenvectors of two closely aligned metrics. In this work, eigenvectors are
specified by an index (e = 1, 2, 3) and sign (σ = ±1) with respect to a given
metric. The eigenvector (index-sign pair with respect to a specific metric)
that best corresponds to an input direction is taken to be the one that has
the largest dot product with it. For example, if the input direction is the
normal of a patch of mesh faces, this facilitates finding the best eigenvector
to trace streamlines in the normal direction.

When relating two metrics, one of two methods is used. The first consis-
tently orders eigenvectors based on eigenvalue magnitudes, so associativity
between the eigenvectors of both metrics is determined by eigenvalue mag-
nitude. This is used to define the three eigenvector fields which are traced
during tiling. The second is employed during field generation to snap the
eigenvectors of one tensor to the eigenvectors of another. It compares direc-
tions as mentioned before to determine the associativity.

The generated metric fields are piecewise-linear in component space. That
is, the six independent components of the tensor field vary linearly over space.
As a support, a convex, constrained Delaunay background tet mesh is used.
With known surface normals, a flood fill is used to mark interior and ex-
terior tets. Additionally, the metric tensors are stored on the nodes of the
background mesh.

Point location in the background mesh is performed by walking [19]. The
convexity requirement prevents walks from falsely terminating at non-convex
boundaries. It is a suitable choice, considering that most of the field op-
erations sequentially access face-adjacent tets. Another benefit is that the
barycentric coordinates can be reused during interpolation. Once the target
point is located, point inside/outside can be determined from the status of
its enclosing tetrahedron.

Linear interpolation of the enclosing tet’s nodal tensors (in component
space) yields the local metric components. This is a relatively inexpensive
interpolation kernel, but note that it can lead to undesirable properties such
as swelling [20] and locally isotropic tensors. The latter case leads to umbilics
in the tensor field [21]. The eigenvector directions change very rapidly in
the proximity of umbilics, which is a problem when forming elements there.
Therefore, tiling avoids such regions.
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Streamlines are generated by specifying a starting point, an eigenvector
index-sign pair (σ, e), and a desired length under the metric field. Fourth-
order, fixed step-size Runge-Kutta [22] is used to generate successive points
along a streamline while accumulating the metric-lengths of the new segments
[12]. Due to the sign ambiguity of eigenvectors, the direction that most closely
matches the established marching direction is chosen; similar considerations
are made in [17]. The process is stopped once the measured length meets the
desired length, or if the integrator is stalled. Depending on the use, either
the entire polyline or just the endpoint is stored.

The next step is to generate streamsurfaces along two eigenvector direc-
tions, (σ1, e1) and (σ2, e2), with nominal lengths l1 and l2, respectively (see
Figure 2). Primary streamlines are traced according to these initial directions
and lengths from the initial point, p0. The primary streamlines are then re-
sampled to have n + 1 points including the original first and last points.

0p

( )2 2,eσ

2l
1l

( )1 1,eσ

(a) Primary streamlines
emanating from the

initial point

(b) Secondary
streamlines emanating

from the primary
streamlines

(c) Final triangulated
quarter-band obtained
from streamline net

Fig. 2. Formation of streamsurfaces (n = 4)

From each resampled point on the (σ1, e1) streamline, a sufficiently long
streamline is generated in the local direction corresponding to (σ2, e2), and
vice-versa. These secondary streamlines should be sufficiently long to account
for rapidly converging/diverging eigenvector directions.

Due to the nature of these fields, it is not necessary for the secondary
streamlines to intersect. Therefore, an optimization process is used to find
the closest points on each pair of streamlines. Let poly1 and poly2 be arrays
of m1 and m2 points, respectively, that contain the points from each stream-
line. Then the following parameterization provides a piecewise-continuous
representation of each (i = 1, 2):

pi(u) = polyi[u0] (1 − u′) + polyi[u0 + 1] (u′) , (3)

where u0 = floor(u), u′ = u − u0, and u ∈ [0, mi − 1). One unit interval in
the parameter space spans one line segment. Defining separate parameters
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for each curve, s and t, we can formulate an objective function from the
squared-distance between the two curves:

f = ‖p1(s) − p2(t)‖2
. (4)

A steepest descent scheme with adaptive step-sizing is used to find the pa-
rameters t� and s� that minimize this function. The gradient of f can be
written as:

∇f = 2 ([p1(s) − p2(t)] · ṗ1(s), [p1(s) − p2(t)] · ṗ2(t))
T

. (5)

Central differencing is used to evaluate the tangent vectors of the two curves,
ṗ1(s) and ṗ2(t). The average of the locations evaluated from the optimal
parameters is returned as the closest point.

The net of closest points forms a grid, which is split into triangles to build
the streamsurface. In practice, the portion of the net within some length along
the primary directions is not generated to lower cost. The streamsurfaces
generated in this manner also occupy a single “quadrant,” so they are referred
to as “quarter-bands.”

This concludes discussion of the preliminaries, and in the next sections the
methods for field generation and hexahedral tiling will be addressed.

4 Generating Metric Tensor Fields

The key to the proposed method is to separate the tasks of controlling element
shape, selecting marching directions, and obtaining boundary alignment from
the meshing algorithm. This allows for a simpler meshing algorithm, while
incurring more effort during this stage. The following subsections describe a
“form-fitting” approach to first generate individual surfaces fields, and then
the final boundary-aligned volume field. It is designed to match the intuitive
notion of how directionality should vary over a “principally blocky” volume.

4.1 Boundary Field Form-Fitting

In the first step, “scaffold triads” are placed along feature curves and at
feature vertices. These triads are aligned with the local features as best as is
possible, and specify required directionality but not eigenvector ordering or
anisotropy. Many geometric features can be captured this way, however, the
orthogonality of the triads limits capture of features such as knife edges or a
vertex with more than four incident feature curves.

Then, form-fitting is applied independently to each surface. For a given
surface, one of its bounding curve’s nodes is selected to begin. This node’s
metric tensor is initialized with the directions from its scaffold triad, and the
following procedure is performed:
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while not all bounding nodes have been visited do
Get the metric tensor of the current node, and snap its directions to the closest directions
on the node’s scaffold.
Mark the node as visited and as a boundary condition (BC) node.
Solve an approximate surface Laplacian over the current surface, with the current set of
tensor BCs.
Move to the next unvisited, adjacent node on the bounding node-loop(s) of the surface.

end while

The stencil for the approximate surface Laplacian is:

Mk+1 =

⎛⎝ N∑
j=1

wj

⎞⎠−1
N∑

j=1

wjTjM
k
j TT

j , (6)

where Mk+1 is the updated tensor at the current node, wj is the Floater’s
mean value coordinate [15] associated with neighbor node j = 1...N , Tj is
the transformation from the surface normal at neighbor node j to the surface
normal at the current node, and Mk

j is the tensor at neighbor node j.

4.2 Interior Form-Fitting

By this point, all surface fields have been established. The fields of adjacent
surfaces may not match up in terms of ordered eigenvectors, but they are
directionally-compatible due to the shared scaffold triads used while gener-
ating them. The tensors on the interior of each surface are snapped to the
local surface normal to ensure alignment, and then all surface tensors are
converted to scaffold triads. A similar procedure is then employed to march
over unvisited boundary nodes and complete the volume field:

Pick a starting node on the boundary and generate a complete metric tensor with directions
from its scaffold.
Set this node as visited.
Push node onto boundary-node queue.
while boundary-node queue not empty do

Set current node to the front node of the queue.
Pop the front of the queue.
Snap the current node’s metric tensor to its scaffold directions.
Set the current node as a BC node.
Solve tensor-component Laplacian over volume with BCs.
for each node adjacent to the current node do

if current adjacent node is on the boundary and is unvisited then
Push onto queue.
Set visited flag.

end if
end for

end while

This concludes the description of the form-fitting procedure. After this,
all surface tensors are set as boundary conditions to solve for the exterior
volume field. This allows streamlines and surfaces to extend slightly past the
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boundary as necessary. The nodal tensors of the completed field are mod-
ified to represent the desired anisotropy, and the umbilics of the field are
extracted using a technique described in [25]. We have modified the second
technique presented in that work to extract connected umbilic structures
(curves, surfaces, and sub-volumes) as well as discrete points for full- and
transverse-isotropy, for the piecewise-linear tensor fields generated here. In
the next stage, the tensor field and umbilic information is passed on to the
tiling and hex-dominant meshing algorithms.

5 Hex-Dominant Mesh Generation

Individual hex fronts are generated in regions that are free of umbilics and
in regions of interest. A hex front is initiated by inserting a seed element
on the interior or just within the boundary of the volume. This exposes six
hex faces on the “skin,” or collection of 2D elements on the boundary of
the current hex mesh. The next elements to be inserted will use some of the
current skin faces and add new ones, after which the skin is updated. As
the skin grows, different combinations of existing skin faces may be used to
form new elements. To avoid combinations that might lead to self-intersection
or topological invalidity, insertion operators are used to plan and execute
insertions that utilize groups of existing skin faces, referred to as insertion face
groups (IFG). The IFGs, in turn, are identified by studying their skin nodes.
When an operator is used to perform an insertion, depending on the IFG
type, quarter-bands are appropriately placed and intersected to obtain the
new nodes that define the target element shape. As appropriate, boundary-
conformity operations may be invoked to associate proximal mesh entities
with boundary features.

Once the fronts have been tiled in ROIs and away from field umbilics, there
are two possible strategies for completing the hex-dominant mesh. The first
is to perform a Boolean subtraction of the fronts from the volume, generate
a hex-dominant mesh in the remaining volume, and then unite the meshes.
This is similar to the Hex-Tet algorithm by Meyers et al. [27]. The second is
to incorporate the front nodes into the rectangular bubble-packing process,
which has been selected for this work. Although it does not guarantee 100%
hex recovery, in practice the distribution of front nodes leads to significant
recovery. Furthermore, it may allow for better overall element quality and
transitions between hex and hex-dominant regions. The potential for non-
conformal configurations with hanging-nodes and other complications noted
in [24] are also avoided by taking this route.

5.1 Topological Insertion Operators and Face Groups

The rules that determine what types of elements to insert are fundamentally
based on the local element-vertex connectivities of the skin vertices and faces.
These vertex types can be enumerated by considering a central vertex in a
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structured hex mesh. The vertex is initially surrounded by eight elements,
and by removing different permutations of elements, a unique set of config-
urations of skin faces using the vertex can be obtained. Figure 3 lists the
types considered in this work. Some configurations have been excluded be-
cause they naturally do not arise due to the way elements are inserted; for
instance, configurations where two hexes only share one edge or where there
is a hexahedral through-hole or void.

All 8 hexes (0) 3-concave (1) 4-concave (2) 5-concave (3) 4-flat (4)

6-star (4) 6-v2 (4) 5-convex (5) 4-convex (6) 3-convex (7)

Fig. 3. Skin vertex types

The number of elements removed from the original eight is indicated in
parentheses next to each vertex type name. In order, these vertex types will
be referred to as: 3c, 4c, 5c, 4f , 6�, 6v2, 5v, 4v, and 3v from here on.

We will now present the topological insertion operators which process
IFGs. The set of insertion operators and their IFGs is given in the figure
below. Each possible insertion (left) is shown with its corresponding IFG
(right) in Figure 4. Sets of required vertex types that are used to identify
IFGs are enumerated in Table 1.

Table 1. Vertex type requirements for IFGs

IFG type Vertex type requirements

Side-1 Type ({v0, v1, v2, v3}) ∈ {4f , 5v, 4c, 3v}
Bracket-2 Type ({v2, v5}) ∈

{
4c, 5c, 6�,
6v2, 5v

}
, Type ({v0, v1, v3, v4}) ∈ {4f, 5v, 4v, 3v}

Corner-3 Type (v6) = 3c, Type ({v0, v2, v4}) ∈ {4c, 5c, 6�, 6v2, 5v},
Type ({v1, v3, v5}) ∈ {3v, 4f , 4v, 4c, 5v}

Cup-3 Type ({v1, v2, v5, v6}) ∈ {4c, 5c, 6�, 6v2, 5v},
Type ({v0, v3, v4, v7}) ∈ {5v, 4v, 3c}

Scoop-4 Type ({v0, v1}) = 3c, Type ({v2, v3, v4, v5}) ∈ {4c, 5v, 5c, 6v2, 6�},
Type ({v6, v7}) ∈ {3v, 4f , 4v, 5v}

Bucket-5 Type ({v0, v1, v2, v3}) = 3c, Type ({v4, v5, v6, v7}) ∈ {4c, 5c, 6�, 6v2, 5v}
Bracket-2*: There is an ambiguous case when both and are of type 5-convex. To resolve this,
an additional requirement is enforced: the edge between them should be used by three hexes
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v0 v1

v2v3

Side-1

v5 v2

v3v4

v0 v1

Bracket-2
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v0

v1
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v6

Corner-3

v5 v2

v3v4

v6 v1

v7 v0
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v5 v1

v3v4

v6 v0

v7 v2

Scoop-4

v2

v1

v5
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v3

v0

v7

v4

Bucket-5

Fig. 4. Topological insertion operators

5.2 Planning and Scheduling Insertions

In this section, we discuss the precedence among the operators at a particular
spot and how potential insertions over the entire skin are processed.

Due to the nature of the vertex type requirements, more complex inser-
tions automatically precede simpler ones over an applicable skin region. This
prevents some cases in which the mesh propagates into itself or forms sharp
cracks. If vertices are instead classified by geometric criteria such as dihe-
dral angles between the faces containing a vertex, then insertions should be
searched for starting from the most complex one (one that is not contained
in any other). One possible ordering is: Bucket-5, Scoop-4, Cup-3, Corner-3,
Bracket-2, and finally, Side-1. This has been adopted as the current insertion
precedence.

In order of precedence, IFGs are placed on unclaimed portions of the skin
and also pushed onto an insertion queue. Once again, in order of precedence,
the top IFG in the queue is popped and then used to place an element.
If this fails, the IFG is maintained but marked as failed and pushed back
onto the queue. Additionally, if an IFG has vertices that fall outside the
volume, it is marked as do not insert. When an insertion is successfully made
from an IFG, the skin and vertex types are locally updated and the IFG is
deleted. The affected IFGs (e.g. adjacent ones) are deleted and removed from
the queue, then local re-planning is performed. One benefit is that a failed
insertion (e.g. due to field behavior) may eventually succeed if neighboring
insertions succeed and trigger a reevaluation. Also, this scheme naturally
prefers uniform front growth. As long as umbilics and highly distorted field
regions are avoided, both features lead to avoidance of self-intersection.

Tiling proceeds until no IFGs remaining in the queue can be processed.
The goals of avoiding umbilics, achieving boundary conformity, and staying
within a ROI use the do not insert flag to appropriately terminate tiling in
particular directions.



Tensor-Guided Hex-Dominant Mesh Generation 389

5.3 Element Shaping

Consider a single hexahedron: If its faces are aligned with the metric eigen-
vectors, as should approximately be the case, then the faces are discrete ana-
logues to similarly placed, continuous streamsurfaces. Mesh edges are then
analogous to curves of intersections between any two adjacent streamsur-
faces, and mesh nodes are analogous to the intersection of any three adjacent
streamsurfaces. This is the guiding principle behind the formation of elements
in the proposed method. When an element is to be placed, it may use exist-
ing skin faces (IFGs) and add new faces. Streamsurfaces are generated to be
parallel to the new faces. The intersections of triplets of these streamsurfaces
are used to locate newly introduced nodes needed to form a new hex. Figure 5
illustrates the collections of streamsurfaces used to define the insertion types:
Seed, Side-1, Bracket-2, and Corner-3. The remaining types shown in Figure
4 only use existing nodes and do not require this procedure.

Seed – Six hex
faces are formed

using 24
quarter-bands

Side-1 – Fix hex
faces are formed

using twelve
quarter-bands

Bracket-2 – Four
hex faces are

formed using six
quarter-bands

Corner-3 – Three
faces are formed

using three
quarter-bands

Fig. 5. Element shape definition using quarter-bands

To generate a seed element, half unit-length streamlines are integrated
along all six eigenvector sign-direction pairs. From the endpoint of each
streamline along direction (σi, ei), four quarter-band surfaces are generated
from the eigen-directions normal to the local (σi, ei) direction. Triplets of
these quarter-bands intersect at a potential node location of the new seed hex.
The intersection process is accelerated using a uniform lattice and Möller’s
presentation of the separating axis theorem [23] to cull the set of triangle-
triangle intersection tests that are performed.

For Side-1, Bracket-2, and Corner-3 insertions, the eigen-directions for the
quarter-bands are determined by looking at the eigen-directions of the metric
tensors at the local skin nodes. The eigen-directions which align with skin
edges or normals are selected to form the surfaces.

By design, this element formation method primarily aligns newly inserted
skin faces with the metric field. Meeting the size requirement is secondary, and
thus is only approximately satisfied. Otherwise the mesh would progressively
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deviate from local field directions, and local eigen-direction selection could
not be used.

5.4 Boundary Conformity

Because the proposed method is designed to produce a boundary-aligned
field and hence elements that approach boundary-alignment as they reach
the surface, a relatively simple boundary capture method suffices for many
models.

When elements are inserted in proximity to the boundary, a series of lo-
cal and greedy snapping moves are attempted to enable capture of feature
vertices, feature curves, and surfaces. For a newly inserted hex, nodes are
considered for snapping to candidate feature vertices, then edges to candi-
date feature curves, and finally, faces to boundary surfaces. Non-dimensional
fitness scores have been developed for each class to facilitate prioritizing and
qualification of moves. To exclude moves that will result in poor quality ele-
ments, the shape metric is evaluated for the hexes incident on a moved node.
If the minimum metric is below the threshold, then the move is reverted; 0.3
is used in this work. Additionally, to prevent the mesh from spilling out of
the volume, the IFGs containing projected faces are appropriately marked.

5.5 Hex-Dominant Mesh Finalization

The packing approach to hex-dominant mesh conversion from an initial con-
strained Delaunay tet mesh is only slightly modified for the purpose of this
work. The following overview includes the necessary alterations, in bold, for
incorporating the hex fronts into the process:

1. Hex front nodes are packed as fixed bubbles.
2. The rest of curves, surfaces, and interior are then packed.
3. Trimming is performed on regular bubbles that are within one

metric unit of the front node bubbles.
4. After the surface is remeshed using the surface bubbles, edge

swaps are performed to recover hex edges that lie on the bound-
ary.

5. A constrained Delaunay tet mesh is obtained from the bubble centers.
6. Topological and geometric quality improvement is performed on the tet

elements.
7. Tet to hex conversion is attempted and followed by further quality im-

provement.

6 Results

To demonstrate the efficacy of the proposed method, a large deformation,
elasto-plastic analysis of a lower control arm has been performed using
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ABAQUS [26]. Figure 6 shows the control arm model, computed volume
tensor field along with umbilic structures, hexahedral mesh fronts, and the
resulting hex-dominant mesh. The oriented bounding box of the model has
dimensions of 16.77 × 4.61 × 17.60 units and pseudo-isotropy is imposed on
the field with a nominal mesh size of 0.2 units. The current implementation
is not yet fully optimized for performance, but the overall time for field gen-
eration, tiling, and generation of the final hex-dominant mesh is under 15
minutes.

(a) Control arm model (b) Tensor field streamlines and
umbilics

(c) Hexahedral fronts (d) Final hex-dominant mesh

Fig. 6. Control arm results

A total of 8,046 hexes with an average length of 0.20 were generated during
tiling. The final hex-dominant mesh consists of 62,300 elements, with an
average edge length of 0.23. By quantity, 20,181 (32%) of the elements are
hexes and 42,119 (67%) are tets. The hex elements constitute 73.52% of
the total volume, whereas only 26.48% is occupied by tets. The minimum
and maximum scaled Jacobian metrics of the hexes are 0.4 and 1.0, and the
average is 0.93. The radius-ratio metric for the tet elements ranges from 3.0
(ideal) to 697.69, with an average value of 4.12. The distributions of hex and
tet element quality according to these metrics are presented in Figure 7.

For the analysis, an elasto-plastic material model based on isotropic hard-
ening was specified with generic parameters for steel: E=210 GPa, ν=0.3,
σy = 480 MPa, ultimate strength σu = 550 MPa, and tangent modulus
Ep,t =349.42 MPa. The interior cylindrical surfaces on the left portion of
the model were displacement constrained, and lateral and vertical loads of
1,080 kN and 540 kN, respectively, were transmitted to the cylindrical surface



392 V. Vyas and K. Shimada

Fig. 7. Hex (Scaled Jacobian) and tet (Radius-Ratio) quality distributions

(a) Von-Mises plot on deformed
configuration along with undeformed

configuration

(b) Deformed configuration
with plastic zones shown in

gray

Fig. 8. Von-Mises stress distribution with fully plastic zones in deformed configu-
ration

at the apex. The deformed configuration is shown in Figure 8, in which the
gray regions denote fully plastic zones.

More examples of this method are shown in Figure 9. Each example shows
the hexahedral fronts followed by the resulting hex-dominant mesh with the
exterior targeted ROIs circled. In all examples, fronts are seeded at interior
positions away from umbilics. Colored faces indicate that a similarly colored
surface has been captured by the mesh.

The data for these models are summarized in Table 2. Inspection of the
resulting hex-dominant meshes reveals that a significant portion of the hex
fronts are recovered at the end of meshing process, and with reasonable qual-
ity overall. However, the results also warrant further work on improvement
of the worst quality elements (primarily tets) and perhaps a more aggressive
strategy for hex recovery.
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(a) Fronts generated for a −5/4 time
square torus [28]

(b) Torus hex-dominant mesh with
ROIs circled

(c) Fronts generated for an
amorphous blob

(d) Blob hex-dominant mesh
with ROIs circled

Fig. 9. Additional examples

Table 2. Statistics for additional examples

Model Square Torus Blob

Oriented bounding box dims: 290.11 × 294.90 × 100.00 25.80 × 20.51 × 20.36
Specified anisotropy: 4.0 pseudo-isotropic 0.5 pseudo-isotropic
# of tiled hexes (avg. edge length): 9,811 (4.11) 5,704 (.46)
# of hex-dom. elements (avg. edge length): 105,052 (4.47) 127,157 (.52)
% hex by volume (by number): 76.90% (36%) 75.32% (33%)
% tet by volume (by number): 23.10% (63%) 24.68% (66%)
(Min / Avg. / Max) Hex Scaled Jacobian: 0.40 / 0.93 / 1.00 0.40 / 0.92 / 1.00
(Min / Avg. / Max) Tet Radius ratio: 3.00 / 3.99 / 87.91 3.00 / 3.82 / 129.26

7 Conclusion

A method for generating quality hex-dominant meshes with targeted all-hex
regions has been presented. This is achieved by tiling fronts of hexahedral
elements throughout the volume and at ROIs, and then incorporating the
front nodes in the rectangular bubble-packing method. To guide element
shaping and marching directions during tiling, and bubble directionality and
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anisotropy during packing, a metric tensor field is required. To this end, a
new approach has been introduced for constructing piecewise-linear metric
tensor fields over volumes. This approach produces boundary-aligned fields
of uniform anisotropy by incrementally “form-fitting” an initially Cartesian
field to the directions specified by boundary curves and surfaces. Provided
with the field, the tiling process is able to generate topologically valid hex
fronts using insertion operators and boundary conformity operations. The
nodes of the fronts are set as fixed bubbles, and through other pre- and post-
processing steps, the method is able to generate good quality hex-dominant
meshes. Finally, the ability of the method to produce meshes of sufficient
quality for difficult, non-linear analyses has been demonstrated.

Plans for future extensions to this work include refining the techniques
for field generation and interpolation as well as improving the robustness
of the tiling process (including boundary conformity), especially with varia-
tions in anisotropy. Furthermore, although this work is motivated by a pri-
ori anisotropy and directionality requirements, the incorporation of solution-
based metrics is currently being investigated.
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Abstract. Aneurysms are an enlargement of a blood vessel due to a weakened
wall and can pose significant health risks. Abdominal aortic aneurysms alone are
the 13th leading cause of death in the United States, with 15,000 deaths annually.
While there are recommended guidelines for doctors to follow in the treatment of
specific aneurysms, they cannot guarantee a satisfactory outcome. Computer sim-
ulations of an aneurysm may be able to help doctors in their treatment; however,
the results are inaccurate if the vessel wall thickness is poorly measured. In order to
provide more accurate, patient-specific simulations, not only does geometry for the
fluid domain need to be created from medical images for analysis, but the creation
of more accurate models for the wall needs to be accomplished as well. This paper
proposes a solution to the latter by deforming the mesh from a healthy vessel into
one with an aneurysm through parameterization and the use of a spring model.
The thickness of the resulting wall model is empirically valid and fluid-structure
interaction simulations show significant improvements when using a variable versus
a uniform wall thickness.

Keywords: Aneurysm, Deformation, Parameterization, Spring System.

1 Introduction

Aneurysms are an enlargement of a blood vessel due to a weakened wall,
and simulating them is an area of significant research and concern. They
can occur anywhere in the vascular system, though are most common along
the abdominal aorta and in the brain. The simulation of aneurysms is of
critical importance because of the large health risk they pose. Rupturing of
an abdominal aortic aneurysm (AAA) occurs in 1–3% of men aged 65 or older
and is 70–95% fatal [7]. This paper presents a method to approximate the
wall thickness of patient-specific geometry, which will increase the accuracy
of simulations.

While there are recommended guidelines for doctors to follow in the treat-
ment of specific aneurysms, they cannot guarantee a satisfactory outcome.
Even with the guidelines for AAAs [7], a lot is left to the best judgment of the
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doctor due to the many variables. Smokers between the ages of 65–75 are en-
couraged to have a screening, while it is elective for non-smokers. An annual
checkup is recommended if the aneurysm is larger than 4 cm in diameter,
otherwise it is not a primary health risk. If open surgery is deemed necessary,
there is a 4–5% chance of mortality with almost 33% of patients developing
other complications. The rupture of cerebral aneurysms are harder to predict
and have a much more varied outcome. Some victims may suffer no compli-
cations while it is fatal to others. Being able to better predict the growth and
failure of the vessel wall or, in the future, the outcome of surgical procedures,
could significantly decrease the mortality rate of patients with aneurysms.

Computer simulations are starting to be used to simulate blood flow
through aneurysms in order to predict and better understand ruptures. This
entails creating geometry of the patient’s aneurysm from medical images and
running a computational fluid dynamic (CFD) or fluid-structure interaction
(FSI) analysis. In addition to all of the other aspects involved in providing
doctors with instantaneous simulations, a major setback is accurately mea-
suring the thickness of blood vessel walls. A doctor will not rely on an analysis
if the results vary by an order-of-magnitude due to poor wall thickness data.
In order to provide increasingly precise, patient-specific simulations, not only
does the geometry for the fluid domain need to be created, but the creation
of a more accurate wall model needs to be accomplished as well.

This paper presents a method to improve the accuracy of FSI simulations
for aneurysms by estimating the wall thickness with the blood vessel geom-
etry. The proposed method maps two geometries onto the same domain in
order to deform one into the other. This deformation is achieved through
two steps. First, parameterization is used to move the mesh from the healthy
blood vessel onto the aneurysm, which provides the initial configuration of
the spring system. Second, the numerical relaxation of a spring system al-
lows the forces between the nodes to balance in a way that approximates the
stretching of the vessel wall. FSI analyses are used to test the results of the
variable wall thickness and compare it against the solution for a uniform wall.

The paper continues in the next section with a discussion of previous work.
Section 3 provides a description of the method to calculate the aneurysm wall
thickness with Section 4 explaining the boundary-layer meshing scheme used
to prepare the models for the analyses. The results found in the FSI analyses
of the aneurysm models are presented in Section 5. The paper is concluded
in Section 6 with a discussion and future work.

2 Previous Work

In computer simulations, the wall thickness plays a key role in determining
the shear stress on the vessel wall. In order to provide a patient-specific sim-
ulation, accurate modeling of the target area is required. A lot of work is
being done to create models from medical images for use in simulations, see
the work of Zhang et al. for an example of creating smooth geometry with
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NURBS (Nonuniform Rational B-Splines) [33]. While there is a push to auto-
mate this part of the process, significant user input is still required for proper
classification and segmentation. In many cases the wall thickness is not mea-
surable from the image data. Even though AAA walls can be seen in medical
images, an exact thickness is hard to determine, especially in the thinnest
regions. This is because the typical CT scan has a resolution of about one
millimeter [15]. Higher doses of X-rays can be used to achieve sub-millimeter
dimensioning, but pose a greater risk to the patient. Additionally, vessel wall-
thickness cannot be seen for smaller vessels, such as those found in the brain.
Intravascular ultrasound (IVUS) can be used to image coronary arteries with
0.2 mm accuracy [5]. However, this is near the limit of successfully captur-
ing the thinnest regions in a AAA and, besides not being usable in narrower
vessels, i.e. cerebral arteries, it cannot resolve a thinner wall thickness.

In order to perform CFD simulations, a mesh of the fluid domain is re-
quired. Two popular methods are the advancing front [10, 16, 22] and octree
[34, 13]. An advancing front approach builds a mesh off the surface, in the
region of the boundary layer, and then fills the remaining space. Garimella
and Shephard give a comprehensive explanation of how to generate an all
tetrahedral mesh with anisotropic elements in the boundary layer [10]. A
variation of this is given by Khawaja, where the boundary-layer elements re-
main wedges, producing a hybrid mesh [16]. Sahni et al. were able to obtain
more accurate wall shear stress (WSS) results by using an adaptive approach
to improve an existing boundary-layer mesh. Using the solution to generate
tensors at the boundary-layer nodes, the anisotropy in the mesh could be
changed to improve the solution [22]. Using an octree mesh provides a signif-
icantly more structured interior mesh, but is typically thought to have poorer
quality near the boundary. Zhang uses pillowing near the boundary to create
higher-quality elements that are also aligned with the flow near the surface
[34]. Isaksen et al. have used these meshes to run FSI analyses on cerebral
aneurysms [13].

CFD and FSI analyses are used to study the blood flow and WSS through
localized regions, e.g. aneurysms, and through significantly larger portions
of the vascular system [12, 26, 6, 22, 31, 19, 25, 29, 1, 34]. Torii showed the
impact of both the cerebral aneurysm shape and the use of FSI on the flow
and stress results [29]. Using an assumed 0.3 mm uniform wall thickness, Torii
et al. found a 20% decrease in WSS when using compliant, instead of rigid,
walls. A similar result was found by Bazilevs through a range of cerebral
aneurysm models [1]. These models again assumed a uniform wall thickness
because patient values are near impossible to obtain. Scotti et al. showed
upwards of a 400% increase in WSS when a variable wall-thickness is used
over its uniform wall-thickness counterparts [26, 25]. The thickness of the
wall used for their aneurysms is a predetermined range that falls within the
measured data from Raghavann [21]. In Raghavan’s work AAAs from four
cadavers were cut into strips and measured to determine a tensile yield stress
for the vessel-wall tissue. It was found that the thickness varied from about
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1.5 mm in the healthy regions of the aorta (approximately 15% of the radius)
to a minimum of 0.23 mm at a rupture site.

Parameterization is used frequently for model texturing and surface deci-
mation [4, 8, 17, 27, 23, 32]. It takes three-dimensional geometry and projects
it onto a planar (or series of planar) domain(s) — this is not completely true
as there are some methods that projects the mesh onto the surface of a sphere.
A proper map should yield a one-to-one relationship between any point on
itself to its parent surface. Sheffer wrote a survey in 2006 describing much of
the work on linear mapping [27]. A lot of the mapping schemes will only fit el-
ements onto convex domains and depending on the parameterization scheme
different guarantees can be made about the quality. For more complex do-
mains, i.e. closed solids or n-manifold surfaces, it is common to partition
the shape into smaller, manifold regions. Kim and Yin showed alternative
methods for mapping multiply connected discs. Kim et al. used Ricci flow to
move a face with holes, for the mouth and eyes, onto an annulus in order to
perform expression recognition [17]. Slit mapping was presented by Yin to
show a linear solution to the same problem with the ability to set arbitrary
boundaries to the inner and outer ring [32].

Model deformation is commonly accomplished through the use of mass-
spring systems [28, 11, 2, 3]. Using elasticity theory, a stiffness matrix could
be created and solved to model and animate the deformation of rigid bodies
[28]. This however can become computationally expensive as the domain in-
creases in complexity. Gudukbay showed solving local spring equations was a
good substitute to the older methods and could still provide time-dependent
deformations [11]. Both Chen and Cui have recent work for haptic feed-
back with surgery simulations that utilizes mass-spring systems to provide
displacement and force information to the user [2, 3]. It should be noted
that the blood-vessel tissue is constantly trying to repair itself and while an
aneurysm is growing the walls are slowly becoming stronger as well. Kroon
and Holzapfel have an finite element simulation that incorporates the growth
and breakdown of collagen in the creation of a cerebral aneurysm [18].

Most of the previous vascular modeling methods have used walls with a
uniform thickness when performing analyses. Some methods are beginning
to use variable thicknesses, but these tend to be coarse approximations with
simple geometry. This paper will present a better approximation to the wall
thickness by deforming a healthy blood vessel into one with an aneurysm.

3 Wall-Thickness Estimation

To determine the aneurysm wall thickness a combination of parameteriza-
tion and spring relaxation is used. The proposed method tries to mimic the
process of aneurysm growth by assuming the amount of tissue remains rela-
tively constant while the vessel wall is stretched. If a single surface-mesh can
be placed on both the healthy and aneurysm geometries then the change in
area of the elements should also represent a local change in wall thickness.
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As outlined in Figure 1, the mapping provides a way to move the surface tri-
angulation from the deforming vessel, S0, onto the surface of the aneurysm,
S1. While the two meshes now lie on the same domain, the deformed sur-
face, S2, is not a physically meaningful solution. A spring system is used to
approximate the elastic nature of the vessel tissue and its relaxation allows
the nodes of the deformed mesh to shift their locations along the aneurysm
surface. This provides a solution, S3, that better reflects how the healthy
vessel was deformed. By comparing the original and deformed mesh, the wall
thickness can be found through a simple volume preserving calculation.

Fig. 1. Deformation of a fusiform aneurysm: S0 and S1 are combined in a map to
create S2. S3 is the spring-relaxed model of S2. S0 and S1 contain 2272 and 1720
triangles respectively.

3.1 Deformation through Parameterization

Moving the mesh from the healthy blood vessel onto the geometry of the
aneurysm is achieved in three steps. First, the meshes for the healthy and
aneurysm models are mapped onto annuli. Second, both maps are overlaid,
which allows nodes from the healthy-surface map to be matched to a unique
location in the map of the aneurysm. Third, using this relationship, nodes
from the healthy mesh can be moved onto the desired geometry.

In order to create the mappings, the surface being deformed, S0, and the
desired surface, S1, will need to be triangulated, t0 and t1 respectively. A
model is required for both the desired, aneurysm shape and the deforming,
healthy, blood vessel. While the aneurysm model can be created from the
segmentation of medical images, unless a model already exists for the healthy
vessel, an approximation will be required. An advancing front method is
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used to create a uniform triangulation on S0 and is recommended to avoid
weighting issues while smoothing with the spring system. The triangle mesh
creates M nodes on the surface, with m nodes, ni, i = 1, ..., m, being interior
to those nodes on the boundary, ni, i = m + 1, ..., M . Every node, ni, has
coordinates on the surface, xi, and a set of valent nodes, Vi.

The nodes from S0 and S1 are mapped onto an annulus using a uniform
parameterization in polar coordinates, see Figures 2(a) and 2(c). The annulus
is chosen as the working domain primarily because it matches the topology
of a cylinder and is still robust for geometries with multiple branches. Each
surface has an inlet and outlet that are forced, respectively, onto the outer
and inner rings of the annulus. This is accomplished through homogeneous
coordinate transformations that translate and rotate each curve onto the
same plane and scales them to the proper radii. The radii of the inner, rin = 1,
and outer, rout = 10, rings can be different values, and does not change the
final results. All the remaining nodes are then projected normally onto the
annulus’ plane so the iterative solution can be calculated in two-dimensions
instead of three, see Figure 2(b).

Many weighting schemes used for parameterization are meant for con-
vex domains, and as a result, solving the system over an annulus produces
triangles that are tangled and fall outside the its bounds. This can be cir-
cumvented by moving the calculations of Equation (1) into the polar space.
Using a uniform parameterization [30],

x́i =
∑
j∈Vi

x́j

vi
, (1)

places each node in the geometric center of its neighbors, where vi is the
valence number of node ni. The initial, strict projection of the nodes directly
onto the plane may create tangled triangles; however, iterating over the in-
terior nodes with Equation (1) will pull them apart, see Figure 2(c). While
most of the triangles will be highly anisotropic, they will also be untangled in
polar coordinates. Unfortunately a few inverted triangles may appear when
moving back to a Cartesian frame. These can be made positive with a couple
iterations of an algorithm presented by Freitag. It is used to maximize the
area of the triangles around every node [9]. At each node, a patch is con-
structed with its neighboring triangles and the minimum area is maximized.
This yields a valid triangulation with the same topology in !2 as the sur-
faces in !3. The maps only need untangled triangles in order to provide the
one-to-one relationship. Higher-quality elements in the maps may improve
the initial deformation, but are not critical to the overall method.

The projected nodes now have coordinates x́i on the annulus and the
projected triangles are t́i. As can be seen in Figure 2, a uniformly meshed
cylinder will appear very regular, with the triangles becoming increasingly
skewed as their radial location increases. This is in contrast to the map of
S1, showing a denser concentration of triangles on the side corresponding to
the offset aneurysm.
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Fig. 2. Mapping of the nodes from a surface to the annulus; (b) shows the initial
projection of nodes onto the annuli’s plane. (c) shows the final maps after iterating
with Equation (1).

The overlay of the two maps provides the relationship needed between the
nodes from S0 and the triangles from S1, see Figure 3(c). With both maps
overlaid, each non-boundary node, n0,i, can be found to lie in a triangle, t́1,j ,
as shown in Figure 3(c) pullout. As a result of the maps covering the same
domain and having no tangled elements, every node in the map of S0 will
correspond to a unique point within the map of S1. Further, by knowing every
point within t́1,j also lies uniquely in its surface counterpart, t1,j , locating
the barycentric coordinates of x́0,i in t́1,j also defines its location, x2,i, in t1,j

on S1, see Figure 3(d). Finding which triangle each node lies in starts with a
search for the coordinate in the map of S1 that yields the shortest distance
to x́0,i. Any triangle connected to that location is chosen as the initial guess
for t́1,j , with the surrounding triangles being moved through until all the
barycentric coordinates are positive for x́0,i.

Once the barycoordinates of all the nodes, n0,i, have been found, they
create the resultant surface, S2. The healthy, blood vessel now matches the
shape of the vessel with the aneurysm. Unfortunately, this alone does not
provide accurate enough information to calculate the wall thickness. As a
result of the weighting scheme used in the map, the parametric transformation
between two different surfaces is not guaranteed to be the same, i.e. if the
inner and outer radii of the annulus are 1 and 10 respectively, r = 5 may
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Fig. 3. Overview of the deformation following a node from S0 (the red dot). (a) The
original surface. (b) The map of a surface on its annulus resulting in the mapping of
ti into t́i. The dashed line represents the location of r = 5 on both surfaces and the
map. (c) An overlay of the maps allows the barycentric coordinates for x́0,i within
t́1,j to be found. (d) The barycoordinates found in (c) are the same for x2,i in t1,j

and move the nodes from S0 onto S1.

not correspond to the same axial coordinate in the original geometry, see
Figures 3(a) and 3(b). Consequently, using the mapping technique, by itself,
will create a bias as to where the wall is thinnest and not represent the true
deformation. By converting the mesh into a spring system and allowing the
nodes to move, this can easily be corrected.

3.2 Relaxation Using Springs

To make the deformation physically meaningful the deforming geometry
should not only match the shape of the desired model, but the elements
should stretch in an elastic manner. That is, a blood vessel will have deformed
more significantly near the aneurysm than its ends, and the triangulation of
S2 should represent that properly. In order to accomplish this, a linear spring
system is created from the mesh, i.e. the edges of the triangles become springs
attached at the nodes. Through a series of iterations the springs are relaxed
until their displacement is below some threshold; here it is less than 5% of
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the shortest edge. Additionally, the nodes are projected back onto S1, in a
direction normal to the surface, after every iteration to ensure S2 does not
deviate from the desired shape. Equation (2) calculates the force, Fi, act-
ing on every node by comparing the current length of each attached spring
against its undeformed length,

Fi = k
∑
j∈Vi

li,j − ||x0,j − x0,i|| ˆli,j , (2)

where li,j = (x2,j − x2,i) is the vector of the current spring between nodes
n2,j and n2,i and ˆli,j is the regularized direction. For this work the spring
stiffness, k = 1, is a constant because of the uniform mesh and the isotropic
material properties assumed. Every node is then updated by,

x2,i = x2,i + s
Fi

k
, (3)

a fraction of the distance determined by the force acting on it. The step size
of s = 0.1 prevents the nodes from taking too large a jump and tangling. The
process is outlined in Algorithm 1 and the final surface is S3.

while movement > ε do
for every node n2,i do

calculate force at n2,i using Equation (2)
move n2,i using Equation (3)
project n2,i to S1

end
end

Algorithm 1. Spring Correction

The deformed, blood vessel now matches the shape of the aneurysm and
takes the elasticity of the vessel tissue into account. Even though this spring
model can only provide a linear approximation, it is a first guess at trying to
represent the complex elasticity and anisotropic nature of the tissue. However,
steps can be taken to improve this. If t0 is not a uniformly generated, triangle
mesh, then each spring will need a stiffness relative to its original length in
S0. Additionally, since the axial and circumferential stiffness of the tissue are
different, the material properties of tissue should be incorporated through a
change in the spring constant as well. A non-linear spring system may also
prove to represent the true elastic nature of the tissue more completely.

3.3 Thickness Calculation

The wall thickness at every node in S3 can now be calculated. The deformed
mesh has elements of different sizes than originally and because the topology
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was never altered, the change in area between t0,i and t3,i can be compared
directly. Since the Poisson’s ratio of tissue is near 0.5, the change in wall
thickness will be inversely proportional to the change in an elements area. At
each node n3,i, the wall thickness, d3,i, is related to the average ratio of the
change in area of the neighboring triangles,

d3,i = d0,i

∑
j∈Vi

A0,j

A3,j

vi
, (4)

where A0,j and A3,j are the area of triangles t0,j and t3,j respectively and
d0,i is the initial thickness, which is assumed to be uniform.

Geometry and a mesh for the blood vessel wall could be created directly
from this information. It should be noted that while S3 has the wall thickness
values associated with the location of its nodes, S1 has a significantly higher
quality mesh because it was never stretched. The barycentric coordinates of
n1,i within t3,j should be used to map the wall thicknesses to S1 since the
geometry of S1 and S3 match. Figure 4 shows the final wall thickness, the
outermost layer, and the fluid mesh, which is discussed in Section 4. As can
be seen in the figure, there can be a significant change in the wall thickness
through a very small distance.

Fig. 4. The vessel wall (3440 wedges) with the boundary-layer mesh (17200 wedges)
and interior mesh (6913 tetrahedra) for a fusiform aneurysm.

4 Boundary-Layer Meshing

Once the wall thickness has been found, a mesh of the fluid domain needs
to be generated in order to run FSI simulations. To properly capture the
rapidly changing velocity within the boundary layer, anisotropic wedges are
used along the walls and created in an advancing-front manner [14]. Every
surface node has a direction and size that controls the growth of the wedges to
prevent a collision of fronts and tangling of elements. After a specified number
of layers have been generated, the remaining space is filled with tetrahedra.

The growth of the boundary-layer mesh is dictated by a hair at each node.
A hair is a vector connected to a node. The initial direction of the hair is
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the normal of the surface, while its length is chose to provide near isotropic
elements in the outermost layer. The hairs are then smoothed to make sure
the wedges do not tangle.

Smoothing the direction is accomplished by moving a hair to the average
of its neighbors. If the difference between the hair and the average is larger
than 30◦ the hair is instead moved iteratively to allow its neighbors to move
towards it as well. Though not common in biological models, there is a chance
a hair could point outside the volume. In these rare instances the hair is
marched towards a location where the dot product between it and all the
neighboring surfaces is positive, if it exists.

The length of the hair is then smoothed with regards to both the geome-
try and its neighbors. Concerning the geometry, using a uniform length for
every hair would produce increasingly skewed elements near sharp corners.
To remedy this, the length of a hair is increased relative to the angle of the
corner. This ensures perpendicular corners remain perpendicular. Addition-
ally, a hair’s length should also be smoothed with respect to its neighbors.
Using the average length would cause a ballooning of the boundary-layer
mesh around corners. Instead, the length becomes the average of the normal
component of its neighbors’ hairs.

Even though the boundary-layer mesh can now grow with well-shaped
elements, there is still a chance for fronts from competing surfaces, and even
adjacent hairs in high-curvature regions, to intersect. To avoid these collisions,
a sizing function based on the radius of the medial-ball is used [20]. The radius
of the medial-ball is placed in a background octree-mesh and the values are
smoothed with a quadratic, inverse-distance weighted interpolation. If the
length of a hair is larger than the local sizing-function, it is shortened. This
method for collision avoidance allows a wider range of length scales to be
present in the biological models without having to specify proper sizing for
each part of the boundary-layer mesh.

5 Results

Models for the fluid region of a fusiform and saccular aneurysm were cre-
ated to represent both the healthy blood vessel and one with an aneurysm.
A fusiform aneurysm occurs when the entire circumference of the blood ves-
sel dilates, though it is commonly not axisymmetric. A saccular aneurysm is
where the growth occurs in a small region of the wall and exhibits necking.
With these models, the method presented was used to deform the healthy ves-
sel into the unhealthy one in order to yield geometry with a varying thickness
for the wall. These were compared against measured values for wall thickness
and FSI analyses were performed to validate the method against expected
results.

As shown in Figure 1, the healthy geometry for the fusiform set was a
cylinder with a diameter of 2 cm and a length of 24 cm. The aneurysm, with
a diameter of 6 cm, was placed in the center of the healthy vessel with an
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offset from the axis of 0.75 cm. The initial wall thickness was calculated to
be 1.50 mm. After deformation, the minimum wall thickness was found to
be 0.22 mm, with an average of 1.11 mm. The deformation can be seen in
Figure 1 and the final wall in Figure 4. With 2272 triangles and 1152 nodes
in S0 and 1720 triangles and 876 nodes in S1, it took 200 s to create the
parameterizations, deform the surface, relax the springs, and calculate the
final wall thickness. Surgery would be recommended for an aneurysm of this
size and the wall thickness is near the limit measured by [21]. The saccular
aneurysm had a maximum diameter of about 4 cm and was placed off-center
from the axis of the 2 cm diameter vessel. The minimum thickness of the wall
was 0.41 mm with an average of 1.23 mm, see Figures 5 and 6. With 6588
triangles and 3320 nodes in S0 and 7968 triangles and 4010 nodes in S1 it
took 2771 s to determine the wall thickness. In both cases the majority of
the time was taken to relax the spring system and needs to be looked at for
efficiency. All the surface were meshed using the advancing front algorithm
in CUBIT [24].

The vessel wall and fluid volume of the fusiform geometry were then
meshed in order to perform FSI simulations. The wall was meshed with 2
layers for a total of 3440 wedges. The wedges in the wall had a maximum
dihedral-angle (MDA) range between 90◦–106◦. Due to the dimensions of
the blood vessel, the boundary layer plays a particularly important role in
the development of the flow and the resultant WSS. As a result the mesh in

Fig. 5. Deformation process of the saccular aneurysm. S0 and S1 contain 6588 and
7968 triangles respectively.
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Fig. 6. The vessel wall (15936 wedges) with the boundary-layer mesh (79680
wedges) and interior mesh (57852 tetrahedra) for the saccular aneurysm.

Fig. 7. The cardiac cycle used in the FSI analyses for the inlet, velocity, and outlet,
pressure, boundary conditions.

the region of the boundary layer should be sized appropriately in order to
capture the steep and changing gradient. The fluid-volume mesh was created
using the advancing-front method presented and implemented in CUBIT for
boundary-layer meshing and consisted of 17200 wedges (10 layers along the
wall) and 6913 tetrahedra. There were 20 wedges with a MDA over 150◦ and
an aspect ratio range of 2-63; the aspect ratio is the ratio between the longest
and shortest edge lengths of an element. The fluid-domain tetrahedra had a
MDA between 73◦–135◦.

The FSI analyses were run to compare the WSS and mesh displacement be-
tween simulations with uniform and variable wall thicknesses for the fusiform
model. They were run with ANSYS R© and ANSYS R©, CFX

TM
. The blood flow

was approximated as a Newtonian fluid with a dynamic viscosity of μ = 3.85
cP and solved using a shear stress transport model. A simplified representa-
tion of the cardiac cycle, Figure 7, was used to provide boundary conditions
giving an inlet velocity with a peak of 31 cm/s at 0.3 s and an outlet pres-
sure with a peak of 118 mm Hg at 0.4 s. The vessel wall was treated as an
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Fig. 8. The shear stress at 0.4 s for the (a) uniform and (b) variable wall thickness.

Fig. 9. The velocity with a vector field at 0.4 s for the (a) uniform and (b) variable
wall thickness.

isotropic material with a Young’s modulus of E = 2.7 MPa, a density of
ρ = 2000 kg/m3, and a Poisson’s ratio of ν = 0.45 and the ends were fixed
in place.

The analysis was first performed on the geometry with a uniform wall
thickness (1.5 mm). With a pulsatile flow the maximum WSS was 0.31 MPa
and occurred on the anterior and posterior regions of the aneurysm, Figure
8(a). A second simulation was run using the variable wall-thickness deter-
mined by the proposed method. The results match well with what is ex-
pected. The max WSS for the variable wall thickness was 1.04 MPa at about
0.4 s and can be seen in Figure 8(b). Using a variable wall thickness pro-
duced a 330% increase in the WSS even though the aneurysm geometry was
unchanged. This is similar to what was seen in the work of Scotti and is be-
low the yield stress shown by Raghavan (a mean of 1.27 MPa). The velocity
profiles, Figure 9, are fairly similar between the two runs. Small differences
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Fig. 10. The wall shear stress at 0.4 s for the saccular geometry with a (a) uniform
and (b) variable wall thickness.

Fig. 11. The velocity with a vector field at 0.4 s for the saccular geometry with a
(a) uniform and (b) variable wall thickness.

can be seen between the two though as a result of the variable wall being
capable of more deformation in the thinner regions.

The same analyses was also performed on the saccular aneurysm in order
to show results for a more complex model. There were 15936 wedges in the
wall and 79680 in the blood volume, which also contained 57852 tetrahedra.
The MDA for the tetrahedra ranged between 72◦–140◦ in the fluid region. The
wedges in the wall had a MDA between 90◦–114◦ and in the fluid domain
was between 90◦–140◦ with an aspect ratio of 2.5–110. The analysis again
showed a velocity profile that was very similar between the uniform and
variable walls, a cross-section can be seen in Figure 11. The WSS, in the
variable wall thickness model, had a max value of 1.89 MPa around 0.4 s and
was not where failure would be predicted, see Figure 10(b). This is likely a
result of the geometry created – it was not medical data – producing a stress
concentration and not indicative of the method. The thinnest regions in the
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variable model show a maximum WSS of 1.31 Mpa and is significantly closer
to the expected value and location. There is more than a 250% increase when
compared against the WSS in the same region of the uniform model (0.49
Mpa).

6 Conclusion

The proposed method provides a very good start to improve patient-specific
geometry for simulations of aneurysms. Having shown how significantly the
wall shear stress changes with the addition of variable wall thicknesses, it
can only be argued that better predicting a patient’s unique geometry is
crucial. That being said, the growth of an aneurysm is more complicated
than deforming an isotropic material with a uniform wall thickness. To start,
the blood-vessel wall is not isotropic and repairs itself while being stretched.
Moreover, as the patient ages, calcification and plaquing will locally alter
the material properties and wall thickness in a way that fully predicting how
the wall deforms becomes increasingly difficult. More boundary conditions
should be used to simulate the natural, axial tension in the blood vessel and
external pressure from surrounding organs. Regardless, having a method that
can start to provide patient-specific wall geometry is a needed step.

Future work will start to incorporate some of these ideas through the use
of non-linear, anisotropic springs. In addition to using medical image data
for aneurysm geometry, more robust mappers should be used to accommo-
date increasingly complex geometry. Even though the examples presented
were approximations of AAAs, the proposed method is extendable to any
aneurysm.
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Abstract. In this paper, we introduce a new method to generate a hybrid mesh
from a CPG (Corner Point Geometry) reservoir grid and a radial mesh around a
well. The method is an extension of the approach proposed in [1] to the case of CPG
grids with high level of deformation. This ensures a fully functional mesh generation
for realistic cases. The main idea is first to construct a mapping between the real
space containing the CPG grid along with the radial mesh of the well and a virtual
space where the CPG reservoir grid becomes a Cartesian grid. Then, because this
mapping damages the circular property of the radial mesh, an appropriate radial
mesh is built in the virtual space and the initial mapping is modified by taking
into account the new radial mesh in the virtual space. To this end, an optimization
technique using mesh refinement procedures is applied. The mapping combined
with the mentioned deformation allows us to generate an unstructured polyhedral
transition mesh (between the reservoir grid and the radial mesh) in the virtual space
using the algorithm proposed in [1]. Finally, coming back to the real space, the
obtained hybrid mesh may require a post processing step to recover the requested
finite volume properties.

Introduction

The new technological improvements in 3D seismic imagery and
drilling/production enable today to obtain a realistic and faithful image of
the internal architecture of the reservoir and to drill deviated and complex
3D wells with several levels of ramification. Well trajectories can be well
adapted to the geometry of the reservoir in order to optimize its production.
In this new technological context, the mesh generation becomes a crucial
step in the reservoir flow simulation of new generation. Meshes allow us to
represent the geometry of the geological structures with discrete elements on
which the simulation is processed. A better comprehension of the physical
phenomena requires us to simulate 3D multiphase flows in increasingly com-
plex geological structures, in the vicinity of several types of singularities such
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as complex wells. All these complexities must initially be taken into account
within the mesh construction and the mesh must faithfully represent all this
heterogeneous information.

Whereas the classical meshes are totally structured or unstructured, in [5],
a hybrid mesh model was proposed in 2D to capture the radial characteristics
of the flow around the wells. It combines the advantages of the structured
and unstructured approaches, while limiting their disadvantages. In [3], the
generation methodology was extended to 3D case where the reservoir grid
is Cartesian. The hybrid mesh is composed of a structured hexahedral mesh
describing the reservoir field, structured radial meshes adapted locally to flow
directions around each well and unstructured polyhedral meshes (based on
power diagrams) connecting the two structured meshes.

In this paper, the generation of the hybrid mesh is extended to the 3D
highly deformed cases. In Section 1, we present the numerical constraints
imposed by finite volume schemes that will govern the mesh construction. In
Section 2, we quickly recall the methodology used to generate a hybrid mesh
in 3D and introduce the problems induced by the cartesian methodology in
the real reservoirs grids. A solution to generate a hybrid mesh in such a grid
is given in section 3.

1 Problem Statement

We present here a quick overview of the problem. In order to achieve numer-
ical simulations of a phenomenon, we need first to establish a mathematical
model of the phenomenon. This model is then discretized in order to define a
numerical scheme. Finally, this numerical scheme is applied to a grid which
is the discretization of the space where the phenomenon occurs.

1.1 Mathematical Model of Flow Simulation

The reservoir simulation is the whole set of operation allowing the modeli-
sation behaviour of a petroleum reservoir. The aim of this simulation is to
drive the reservoir exploitation and to argue the different technical choices
to make. In a petroleum reservoir, flows are the consequences of variations in
space and time of pressure and saturation in the water, oil and gas phases.
These variations are induced by the production or the injection of one of
this fluids into the different wells. The mathematical modelisation of the flow
allows to take into account simultaneously the whole set of physical rela-
tionships describing the interactions inside the medium. Let us consider the
case of a compressible, diphasic flow without capillary pressure (the differ-
ent phases have the same pressure) at a constant temperature and without
chemical reaction. The global equation can be written as follows:

ρ
dP

dt
+ div(ρ

K

μ
(−grad P + ρ g)) = 0 . (1)
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where P is the pressure, ρ the density of the fluid, g the gravity, K the
permeability tensor and μ the viscosity of the fluid.

1.2 Numerical Schemes

Most common numerical schemes used in reservoir flow simulation are volume
finite schemes. They use the mass conservation law for two adjacent cells.
Each discretization point is associated with a control volume. This control
volume is defined by a set of bounding faces.

Considering that the pressure in a cell is constant, for a face ∂C1 ∩ ∂C2

separating a cell C1 to a cell C2, if the face normal n � o1o2

o1o2
, then we can

approximate the flow between both cells through the face with area Ai by

−
∫

∂C1∩∂C2

K grad p � Ai K
pC2 − pC1

o1o2
n . (2)

This way to approximate the flow requires meshes to respect some condi-
tions:

1. Mesh conformity, ensuring a face to face connection.
2. Mesh orthogonality, ensuring that the normal vector of the face is

colinear to the line joining the centers of the adjacent cells.
3. Face planarity, so that the flow approximation is more precise.
4. Auto centering, ensuring that the cell center lies inside the cell.

1.3 Meshes Overview

In order to represent the reservoir using discrete elements, the hybrid mesh
is composed of three kinds of elementary meshes:

• A structured CPG grid, respecting the geological features, is used to de-
scribe the reservoir field.

• To gain accuracy at the drainage areas, a structured radial circular mesh
adapts locally to the radial nature of the flows around the wells.

• Finally, these structured meshes are connected together by the use of un-
structured polyhedral mesh with respect to conformity and finite volume
properties.

While the structured grid generation is a well known process, the construc-
tion of the unstructured transition mesh in 3D constitutes a major issue. The
structured CPG mesh of the reservoir grid is constructed through the use of
transfinite interpolations, projections onto the geological interfaces (horizons
and faults) and a relaxation procedure [2]. The structured radial mesh is com-
puted given the well’s trajectory, the drainage area radius and the progression
of cells’ size. The separate construction of these grids leads to incompatibil-
ities due to a lack of common structure and a transition mesh is needed to
carry out a correct connection.
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Then, to generate such a transition mesh, a method using power diagrams
was introduced in [5]. As a generalisation of Voronöı diagrams, power dia-
grams provide polyhedral, convex, and orthogonal cells. In addition, these
allow here to reach the mesh conformity which would not be possible using
Voronöı diagrams. In [3], the generation methodology was extended to 3D
case where the reservoir grid is Cartesian.

2 Hybrid Meshes and Non Cartesian Grids

2.1 General Methodology and Its Restriction

The general methodology used to build an hybrid mesh from a reservoir grid
and a radial mesh has been detailled in [1]. This methodology consists of the
following steps:

1. the definition of the volume (called cavity) inside which will be built the
polyhedral mesh and the boundaries of this volume,

2. the definition of the centers (called sites) of the polyhedral cells,
3. the weighted Delaunay triangulation of the sites previously defined and

the polyhedral mesh computation.
4. the adjustment of the polyhedral mesh using topological considerations.

This methodology especially details how to link a radial mesh to a carte-
sian grid modelling the reservoir by the use of a polyhedral transition mesh.
It is important to note that using this methodology must be restricted to
the Cartesian reservoir grids. Unfortunately, the Cartesian modelling of a
reservoir is not enough to take into account all its geological complexities.
On the other hand, the Corner Point Geometry grids are able to handle non
geological caracteristics like faults, sedimentation and erosion much more re-
alistically. The problem occurring with such grids is that they do not respect
some essential conditions for the hybrid mesh generation, in particular the
planarity of the cavity faces, the cocyclicity of the cavity faces and the De-
launay admissibility of the cavity edges.

The methodology used to build the radial mesh is such that it ensures this
properties are respected. That is why, cavity faces resulting from the radial
mesh are always valid. In contrary, CPG grids are composed of quadrilateral
faces whose vertices are not planar and thus non co-circular. Furthermore,
this kind of grid does not ensure the Delaunay admissibility of the cavity
edges, inherent properties of cartesian grids. Consequently, the methodol-
ogy developped for the cartesian reservoir grid is not applicable to the CPG
reservoirs.

2.2 A Solution Using Grid Deformation

At first, (because we will often talk about it), it is important to explain what
we call grid deformation. The undeformed grid is the cartesian grid. In a
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CPG grid, the cell faces are aligned with the geological structures of the real
reservoir. By doing such thing, the cells of the reservoir are modified against
the cartesian position, so that they are deformed. Quantification of such a
deformation is not what we care about, whereas we need to ensure that all
edges of the mesh are Delaunay admissible.

A grid deformation approach was proposed in [1]. This previous work con-
sisted in deforming the CPG grid of the reservoir in order to make it cartesian.
The aim was to restore the co-cyclic properties of the external faces of the
core. This approach is based on two different spaces : a space called real (Ereal)
in which the reservoir mesh is CPG and a space called reference (Ereference),
image of Ereal where this one has a cartesian geometry. A bijective function
φ ensures the definition of the image of one point from Ereal to Ereference.

When the reservoir grids are highly deformed, the radial mesh image com-
puted using φ is too deformed and the essential conditions are not fulfilled
anymore. The polyhedral mesh generation can not be achieved directly using
the cartesian methodology, or the resulting mesh will not correspond to the
cavity boundaries topology. The aim of the work we are talking in this paper
is to develop a methodology which restore the necessary geometrical proper-
ties of the radial mesh surface. The recovery is achieved by an extension of
the function φ computation.

3 Hybrid Meshes for Real Grids with High
Deformation

As we explained in the previous section, the solution based on the grid de-
formation improve the external boundary of the cavity. Unfortunately, this
solution impacts the radial grid which suffers the reservoir grid deformation.
We present here an extension of this method which ensures that both radial
grid and reservoir grid remain optimal for power diagram generation. To do
so, we first modify the way defining the interpolation space, and we develop
a set of tools allowing us to compute the intended mapping.

3.1 Mapping the Cavity Space

In the following, we define the core as the whole set of simplices covering the
cavity intended to be filled by the polyhedral mesh.

The global definition of the function φ is the sum of the elementary func-
tions φi defined inside each element of the core. An elementary function
φi is defined as follows : Let P be a point contained by a tetrahedron T
(volume(T ) �= 0). A, B, C and D are the tetrahedron vertices. P can be
written as a linear combination of the four vertices:

P = αA + βB + γC + δD (3)

where α, β, γ et δ are the barycentric coordinates of point P associated with
A, B, C and D. The global function φ is the combination of all the elementary
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functions. Ensuring that the different tetrahedra do not overlap, the global
function is also bijective on the whole core. Knowing the barycentric coordi-
nates of a point in a tetrahedron T , the computation of its new position is
obvious. Thus, we have a simple piecewise linear interpolation function that
can be defined on any arbitrary volume.

The aim of our methodology is to find a bijective mapping between both
Ereal and Ereference spaces. In the Ereference space, both surfaces on which
will fit the transition mesh have to fulfill the geometrical requirements. The
whole methodology is illustrated in Figure 1.
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Fig. 1. Overview of the full methodology.

The first step was done by mapping the real reservoir grid to a non uni-
form reservoir grid which provide the Ereference space. This mapping is a
temporary snapshot of the function φ, but properties of radial mesh are not
preserved. The problem is that using this mapping, the obtained radial mesh
is not suitable to apply the polyhedral mesh generation algorithm. Thus, we
start defining a way to obtain an ideal radial mesh in the Ereference space. In
reservoir modelling, physical wells are simply modelled by a curve following
the trajectory of the well. In order to obtain a surface with the good proper-
ties, a simple idea is to build another radial mesh from the update trajectory
( = φ(initial trajectory) ) of the well in the reference space. This process
allows us to obtain a new external surface. The reconstruction method is
the standard methodology used to build a radial mesh. This methodology is
a simple sweep of a circular section along the well trajectory. We now call
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Fig. 2. Deformed radial mesh surface and its image using reconstruction.

Sradial the ideal surface obtained after radial mesh reconstruction. Both de-
formed and ideal surfaces (see Figure 2) have the same topology, i.e. the same
connectivity between vertices.

At this point, we have the two different geometries which correspond to
the surfaces in the real and the ideal spaces. The main objective is then to
map the cavity volume using a function giving us the position of a point in
one of the two spaces, knowing the position in the other space. It is obvious
that vertices of Sradial do not conform to the initial mapping (see Figure 1,
a specified vertex of the deformed Sradial is inside the horizontally hatched
triangle whereas the same vertex of the ideal Sradial is inside the vertically
hatched triangle). To correct the mapping, the simplest idea is to replace
the tetrahedra obtained from the reservoir cells by an other set of tetrahe-
dra obtained from the Delaunay triangulation of the vertices of the cavity
boundaries. This ensures that the space is mapped with a set of tetrahedra
without self intersection neither void and provides us with a piecewise rep-
resentation of the cavity. In order to ensure the consistency of the mapping
function, the cavity boundary must be preserved in the triangulation. This
can be realized by generating the Delaunay triangulation in the ideal space.
In the case where the deformation of the reservoir grid is small, the Delau-
nay triangulation remains valid in the real space. We thus have the space
mapped with a bijective piecewise function. Unfortunately, this is not the
case if we apply this technique on a highly deformed reservoir grid. In such
a case, the bijectivity of the function will not be ensured and an additional
step is necessary to restore the bijectivity of the mapping function.

3.2 Correction of the Mapping

Point insertion algorithm

In the case of highly deformed reservoir grids, the triangulation built in the
ideal space will not be valid in the real space. Indeed, some of the elements can
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be invalid which creates locally self intersections. An optimisation procedure
has been proposed to restore the validity of the triangulation. The basic idea
is to insert new vertices in the triangulation in order to catch the bending
induced by the mapping between the two spaces. It consists on the following
steps:

1. mark the invalid tetrahedra in the real space,
2. insert the barycenter of the marked tetrahedron in the delaunay triangu-

lation, thus in the ideal space (step 1 in Figure 3),
3. compute the best position of the inserted vertices so that their associated

ball of tetrahedra is valid (step 2 in Figure 3),
4. stop if no invalid tetrahedra remain, else loop again.
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Fig. 3. Point insertion algorithm.

The insertion of vertices in the triangulation is done in the ideal space. By
consequence, all tetrahedra are valid in the ideal space. On the other hand,
this can not be ensured in the real space, and inverted tetrahedra can be
produced. We thus have to find a position for the inserted vertex that make
simultaneously all its adjacent tetrahedra non inverted when it is possible.
The methodology used to compute the best position of the free vertex is
discussed below.

Untangling algorithm using an objective function

The optimization loop we described involves to find an optimal position for
the vertex of a ball of tetrahedra. An efficient algorithm was published in [4]
which consists in minimizing the following objective function:
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f(pi) =
Nj∑
j=0

(|Vj | − Vj)2 . (4)

where Vj is the volume of the jth tetrahedron adjacent to vertex pi. The
convexity of such a function is provable, so that a local minimum is the
global minimum of the function. Due to the absolute value, the function is
not differentiable. Consequently, the function is not “smooth” and there is
not an unique minimum but a region where the function has the same value,
corresponding to the location of pi where no tetrahedra has a null volume. If
such a region does not exist, then there is a single minimum which minimizes
the sum of the square of negative volumes. Nevertheless, negative volumes
remain in this case.
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Fig. 4. Point displacement algorithm.

Minimizing the above function using a steepest descent algorithm leads
to find a point on the boundary of the stationnary region. In this case, at
least one tetrahedron has a null volume. This is not what was initially wanted,
because tetrahedra with a null volume create a singularity in the deformation
function. Our aim is thus to find the best location for the vertex pi inside the
“stationnary region” (grey area in Figure 4). To achieve such an objective,
an idea is to cheat about the computed volume of the tetrahedra. Whereas
the volume of a considered tetrahedron is null, a small value is subtracted to
the computed volume, so that the declared volume is still negative. That is
why a parameter β is introduced, which has the effect of reducing the area
of the stationnary region and thus allowing the inserted vertex to “enter” in
the “stationnary region”. Thanks to this parameter, at convergence, there is
not anymore tetrahedra with a null volume. The objective function becomes:

f(pi) =
Nj∑
j=0

(|Vj − β| − (Vj − β))2 . (5)
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The main difference with the algorithm presented in [4] is that our min-
imization includes two different steps. First, we do the computation with
β = 0, then we compute the parameter β considering the local configuration.
Finally, we launch again the minimization of the function with the new value
of β, starting from the vertex position found at the first step.

Remark: An important point is the determination of the value of the pa-
rameter β. This parameter must be computed so that the smallest volume is
maximized. If β is too small, at least one tetrahedron would keep a volume
very small, whereas an other position of pi would give a higher volume. If β
is too high, the computed position can be outside the “stationnary region”.
The parameter β cannot be a priori defined because it depends on the con-
figuration encountered. In practice, we compute the volume of the smallest
tetrahedron which has a non null volume and associate this value (divided
by the number of null volume plus one) to β. The aim is to distribute this
smallest non null volume between the tetrahedra having a null volume.

As we said, the “stationnary region” we discussed could also not exist for the
given configuration. In such a case, the final value of the objective function
is more than zero and the point is just not moved. Thus, we loop over all
free vertices and we wait until one or more vertices of a given configuration
is moved. If no vertex move occurs within an entire loop, the configuration
is blocked and new free vertices have to be inserted in order to allow the
displacement of the blocked vertices.

The final triangulation provides us a way to transpose the polyhedral mesh
(built in the ideal space) in the real space.

4 Numerical Example

We give here an example of an hybrid mesh built inside a deformed reservoir
grid. The reservoir grid (see Figure 6) is made of 18000 cells and is considered
to be deformed enough to be a good example of what could be encountered
in general. The radial mesh is a classical grid built around the well trajectory
containing 2200 cells.

Figure 7 shows in detail the radial mesh in the real space and in the
intermediate space. The intermediate space generated before the φ correction
changes the reservoir grid into a cartesian one (step O1 in Figure 5). The right
picture shows the radial mesh in the intermediate space. The initial radial
characteristic of the mesh is lost.

The radial mesh is then rebuilt (step O2) and the Delaunay triangulation of
the vertices of the cavity is processed. The triangulation obtained is not valid
in the real space (143 invalid tetrahedra). The vertex insertion algorithm is
thus launch and after 6 insertion loops and 101 vertices finally inserted, no
invalid tetrahedron remains.

The final polyhedral mesh is obtained using the cartesian methodology
(step O3) and the deformation defined by φ−1 (step O4). Graphical results of
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Fig. 5. Detailled description of the generation methodology.

Fig. 6. Initial reservoir grid (30 × 30 × 20 cells) and radial grid around the well
(5 × 10 × 44 cells).

Fig. 7. Detail of the radial in the real space and in the intermediate space (cartesian
configuration of the reservoir grid).
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Fig. 8. Details of a hybrid mesh in the Ereal real space.

the whole hybrid mesh are given in Figure 8. The generated polyhedral mesh
contains 4887 vertices, 6432 faces and 950 cells.

5 Conclusions

The results obtained by the second methodology are encouraging and the
hybrid mesh generation is now possible on realistic cases. However, some ad-
ditional work needs to be done. The mapping could be well adapted by using,
after the untangler, a smoother rather than setting a parameter depending
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of the configuration. Then, this method induces a severe deformation to the
polyhedral mesh which makes it invalid for simulations. A correction step by
means of optimization is required. Two kinds of optimization are used:

• A priori optimization: the deformation can be quite severe locally. The
aim of this optimization is to refine locally the polyhedral mesh so that
the deformation is distributed over several cells. The refinement process
is applied while the deformation per cell remains too high.

• A posteriori optimization: due to the fact that the faces and edges of
the mesh are not suited to the simulations, a classical mesh optimization
based on geometrical criterions will be applied in the Ereal space.

Finally, let’s not forget that we are not looking for a polyhedral mesh that has
perfect faces and edges. Indeed, a power diagram owning all the given cavity
faces does not exist. That is the reason why we are looking for a compromise
as close as possible to a power diagram. We now have a methodology to
build a conformal polyhedral mesh from surfaces which do not suit the power
diagram generation methodology requirements. This new approach is very
promising an simulation tests on real data are planned in order to validate
the efficiency of this technology.
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Lukáš Plaček
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Abstract. This paper describes the main principles used in the development of
the VECTIS mesher. The mesher produces unstructured 3D meshes suitable for
Finite Volume Methods. It is based on the Cartesian approach. In contrary to the
traditional approaches which use exact shape of boundary faces of cut cells, this
mesher employs Marching Cubes method for generation of majority of boundary
faces. Only in problematic parts of the geometry, when the danger of chamfering
of sharp features occurs or when watertightness of the cell might not be ensured,
the Exact Fit method is used to produce the patches. Because two different meth-
ods are used for generation of patches, additional effort needs to be made to tie
the boundary polygons to prevent gaps. A new algorithm for determining the most
suitable configuration of triangles of Marching Cubes patterns is proposed. In carte-
sian meshers, a problematic situation occurs whenever triangles of the surface lay
exactly on a side of the intersecting box. In order to prevent these collisions, an
approach called Dual Levels has been introduced. The implemented method of cell
refinement is presented. The paper also explains the way how the problem of cells
that are too concave was resolved. The algorithm of the whole meshing task is
described in detail. The new mesher has significantly lower time and memory de-
mands in comparison with its predecessor. The main approaches responsible for
this improvement are discussed.

1 Introduction

For many applications, it is advantageous to use meshing based on the Carte-
sian approach. Although this type of meshing have a drawback in lower qual-
ity of cells near boundary, there are also significant advantages. Cartesian
meshers are robust, so when the input surface geometry is prepared in a rea-
sonable quality (it is closed and there are no self-intersections) the meshing
process does not require further interaction with the user. Because generation
of inner parts of meshes is very easy, Cartesian meshers can quickly produce
millions of cells.

There are two basic ways how Cartesian meshes can be generated. The
first approach uses so called cut cells, which means that the boundary
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polygons have arbitrary shape and size defined by the intersection of the input
geometry and the cutting box. When this approach is used, the solver that
uses these meshes needs to be able to cope with the fact that neighbourhood
of cells with significantly different size is possible. A finite volume scheme like
this has been presented in [5]. Another possibility may be merging of cells
(like in [3]). There is a lot of literature dealing with this kind of Cartesian
meshing, for example [1], [2], [3] or [4]. The basic knowledge necessary to
start working on the development of a Cartesian mesher is well summarised
in [3]. In order to try to increase the quality of surface cells, the second
approach is used by several development groups. In this case, the cartesian
cells are generated only inside and then, the gap between the inner cells and
the boundary is tried to be filled by cells with as high quality as possible.
This approach is sometimes called I2B (interior to boundary). When using
this way of mesh generation, the preservation of sharp features is the most
challenging part of the task. This approach can be represented for example
by these papers: [6], [7] or [8].

The mesher described in this paper uses the first approach (cut cells)
and the generated 3D meshes are used by VECTIS solver, which is based on
principles described in [5]. The mesher uses an unique approach of generation
of patches. The exact shape of patches of cut cells (generated by a method in
further text called Exact Fit) is used only in these boxes which are intersected
by a sharp feature. All the other patches (the majority) are generated by
Marching Cubes method (see [10]), which is very straightforward and quickly
generates simple patches. Usage of Marching Cubes has a great advantage
also in its ability to overcome problems with small flaws in the input geometry.
The real world geometries often contain problems when healthy triangles are
connected by a thin triangle with opposite orientation (this flaw is called
“folded geometry”). When boundary faces are produced by Exact Fit, this
kind of flaw leads to problematic patches and an additional cleaning algorithm
needs to be employed. However, these flaws are invisible for Marching Cubes
method; therefore, the surface is naturally cleaned up. Also, a new method for
choice of the proper pattern of Marching Cubes is proposed (see section 4.7).
Usage of Marching Cubes and the mixture of two different methods of patch
generation creates a new problem which needs to be overcome: watertightness
of the surface polygons need to be ensured. It is described in this paper
how to do it (see section 4.8). There is another unique approach used in the
mesher which ensures that collisions of the input surface with sides of cutting
boxes are avoided. This technique is referred as Dual Levels in this paper.
The approach is based on slight shifting of nodes of the input geometry to
discrete levels and cutting planes are shifted to another discrete levels (shifted
by half step), so as it can never happen that a triangle of input surface lies
exactly on a cutting plane. The step of the discrete levels is far smaller than
the manufacturing tolerance of the real component. However, the step is big
enough to ensure robustness of the routines for generation of faces of cells.
The technique is described in section 4.2. In order to cope with concave cells,
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the mesher uses two techniques to overcome problematic situations. The first
approach uses splitting of cells to convex features (called Cell Splitting in this
text and described in section 4.11). For those situations when Cell Splitting
fails (this can happen if the input surface contains flaws), a less exact but
robust method is used (called IP patches in this paper and described in
section 4.11). This second method is based on the maximal simplification
of the inner parts of patch structure. The algorithm of the whole meshing
task is described in detail in section 6. In comparison with its predecessor
(the main principles on which the previous mesher was based were presented
on 3rdInternational Meshing Roundtable [9]), the new mesher produces cells
with much higher quality. This is caused mainly by better choice of Marching
Cubes patterns, better strategy of decisions which method should be used
(Exact Fit or Marching Cubes) when generating patches in a box and the
new Dual Levels technique. Also, the new mesher has significantly lower time
and memory demands. The main approaches responsible for the improvement
in speed and memory consumption are discussed.

2 Context of the Mesher in VECTIS-MAX System

The mesher described in this paper is part of the new version of VECTIS
program (the new program is called VECTIS-MAX). VECTIS is a three-
dimensional computational fluid dynamics program that has been developed
specifically to address fluid flow simulations in the vehicle and engine indus-
tries. VECTIS allows the simulation of a number of applications: in-cylinder
air motion and mixture preparation, spray dynamics, combustion modelling,
intake system design and optimisation such as exhaust gas re-circulation or
air/fuel ratio distribution, exhaust system development such as catalyst opti-
misation and thermal analysis, coolant jacket design and development, under-
bonnet (under-hood) thermal simulations.

The whole VECTIS system consists of preprocessor, mesher, solver and
postprocessor. In the preprocessor, user can load triangulated geometry in
STL format and ensure (with help of implemented tools) that the triangulated
surfaces are clean (i.e. there are no open edges nor mutual intersections of
the triangles). Additionally, groups of triangles forming different boundary
regions can be identified. In the preprocessor, the user also specifies how
the mesher should create cells (regions with different density of cells can be
specified). When this information is prepared, the mesher can be run. The
meshing process is fully automatic and no further interaction with the user
is required. Then, the graphical user interface of the solver can be used to
define the input file for the solver. Here, boundary conditions are specified
on the previously identified boundaries and parameters of the simulation
can be set. Then, solver can be run and the results are visualised by the
postprocessor.
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3 Requirements for Mesh Quality

VECTIS-MAX solver uses an unstructured mesh. Cells can be formed by any
number of polygons. They can have a nearly arbitrary shape; however, there
are several criteria that each cell needs to fulfil.

Shape of polygons: It must be possible to split each polygon forming the
cell into triangles starting from its centre (so called star triangulation).
The polygon may be slightly concave; however, there must be direct vis-
ibility of each of its nodes from the face centre.

Watertight cells: Each cell needs to be properly enclosed by its faces.
When polygons are split into triangles by the star triangulation (see the
previous condition) and the face surface vector Aj is calculated for each
triangle

Aj =
N∑

i=1

Ai =
1
2

N∑
i=1

[(ri−1 − rc) × (ri − rc)] (1)

(where N is the number of nodes of the polygon, which is equal to number
of triangles used for the star triangulation; ri is the position vector of i-th
node; rc is the position vector of the centre of j-th face), the geometric
conservation law has to be ensured:∮

A

dA =
Nf∑
j=1

Aj = 0 (2)

(where Nf is the number of faces in the cell)
Angle condition for boundary faces: Angle between the vector cell centre

−→ face centre and the normal vector of the boundary face needs to be less
than 90�(the scalar product of these vectors needs to be positive). In figure
1, there are examples of cells which do and do not meet the criterion. The
cell on the left side satisfies the criterion, even though it is slightly concave.
The cell on the right side does not fulfil the criterion, because the angle α
is greater than 90�.

Angle condition for inner faces: A similar condition as for boundary
faces needs to be fulfilled for inner faces. In this case, the angle of the
two characteristic vectors needs to be less than 75�(the condition is more
strict).

4 General Approach

The approach is based on cutting the whole domain according to a global
mesh (defined by user) into boxes. When a box is intersected by the input
geometry, it can be further refined. For each hexahedral box, input/output
statuses of the eight vertices are remembered. Boundary faces (patches) are
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Fig. 1. A cell which does fulfil the angle criterion (left) and a cell which does not
(right); CC represents the cell centre, FC is the centre of the tested face, v is the
normal vector of the face; α is the tested angle

generated in all boxes intersected by the surface. Then, sides of the box are
tested. If patches were already generated in both adjacent boxes, they are
tied in order to close gaps; also, inner faces are generated on the common
rectangular face of the two boxes. Then, all fully inner rectangular faces
are generated on the rest of common sides of boxes. Finally, the output file
is generated. In the next subsections, this general approach is described in
detail.

4.1 Scaling

In order to eliminate the influence of dimensions of the input geometry (a
fuel injector nozzle in millimetres, a boat in dozens of meters), the input
geometry is proportionally scaled so as the longest dimension fits between
0.0 and 10.0.

4.2 Dual Levels

The problematic situation when the input geometry intersects a box exactly
on one of its sides (the triangle lies exactly on the cutting plane) needs to be
avoided. In order to cope with this situation, the technique Dual Levels has
been proposed. The approach is based on slight shifting of nodes of the input
geometry to discrete levels and cutting planes are shifted to another discrete
levels (shifted by half step), so as it can never happen that a triangle of input
surface lies exactly on a cutting plane. In order to get the discrete levels of
the two grids, the whole working space is confined to a cube that is divided
to 4200000000 levels in each direction (x,y,z), so as the position of each node
can be described by three unsigned integer values. Then, odd levels are used
to find positions of vertices of surface triangles and even levels help to find
new positions of the cutting planes. The technique of describing x,y and z
positions of vertices by three unsigned integers is used also for storage of nodes
and it is described in detail in section 7. Usage of this technique does not
mean that the input geometry is changed. In fact there is no error introduced,
because the step of the discrete levels is far smaller than the manufacturing
tolerance of the real component. However, the step is big enough to ensure
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robustness of the routines for generation of faces of cells. For example, even
if the calculated domain has 10 meters in its longest dimension, the step
defining the fine grid is 2.4 × 10−9 m. Then, the odd grid defining positions
of vertices of input triangles has step 4.8 × 10−9 m, which is far below any
used manufacturing tolerances. Usage of this technique makes the task of
generation of polygons of cells much easier.

4.3 Shoeboxes

Shoeboxing is a system that helps to quickly limit number of elements that
need to be taken into account when intersection tests are performed. The
3D space is divided to NI x NJ x NK boxes (so called shoeboxes). Then,
for each input triangle all shoeboxes that are intersected by it are found.
The index of the triangle is remembered by all affected shoeboxes. In the
mesher, the shoeboxes are identical to the global boxes (that are defined by
the user). Usually, users define higher density of meshlines in those regions
where fine details in the geometry (modelled by many small triangles) occur,
which naturally makes the searching system sufficiently balanced.

4.4 In/Out Status

In the stage of box generation, it is necessary to find the in/out statuses
of the vertices of all potential boxes. In order to find the in/out status of
a point, a ray-casting method (described for example in [3]) is used. Six
rays are released in directions -x, +x, -y, +y, -z and +z. All intersections
of the rays with the triangles of the surface are found. The in/out status is
then evaluated according to the number of the intersections with the surface
(odd number indicates inside status, even number means outside). Those
rays containing surface intersections that are too close to each other are
not taken into account to avoid further analysing whether the status should
be reversed or not. Two different situations are possible when two very close
intersections are found: the ray just hit edge of two triangles with similar unit
normal vectors (the in/out status needs to be reversed) or it just touched a
sharp feature (the in/out status needs to stay unchanged). If there is not any
reliable ray, new set of rays needs to be released under different angles.

The described algorithm is used when the in/out status of a node needs to
be found after the boxes are generated. However, for determining the in/out
statuses of the initial box vertices, a slightly modified approach also based
on the described principles is used: the released rays are used for whole row
of vertices. This method is described for example in [11].

4.5 Box Generation

First, so called global boxes are constructed according to the given meshlines;
in/out statuses of their vertices are found. Each global box is marked with
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Fig. 2. 2D analogy of refinement of global boxes

one of the three statuses: completely inside, completely outside or intersected.
Then, all completely inside and completely outside global boxes which neigh-
bour to an intersected global box need to be tested for intersections on their
twelve edges and intersections on their six sides. This test is necessary be-
cause it is possible that the surface penetrates the global box through an edge
(there is even number of intersections on the edge) or through a side (there
is a closed polygon forming the intersection on the side). If one of these cases
is detected, the status of the global box needs to be changed to intersected.

Then, all the boxes marked as intersected are processed. For each the pro-
cessed global box, the maximum possible refinement is found. According to
the maximum refinement, a 3D array of the in/out statuses of the vertices of
all the potential boxes is found [dimensions of the array depend on the max-
imum refinement depth Dmax: (2Dmax + 1) × (2Dmax + 1) × (2Dmax + 1)].
Also, a 3D array of statuses of the potential boxes is assembled (dimensions of
the 3D array are 2Dmax × 2Dmax × 2Dmax). The statuses are the same as for
the global boxes: completely inside, completely outside or intersected. Then,
1 × 1 × 1 boxes need to be combined in order to find the minimum number
of boxes which can completely cover the space defined by 1 × 1 × 1 boxes
with inside or intersected status. This task is solved by searching for the
minimum number of splits. The process of box generation is illustrated in
figure 2. The algorithm of box generation does not allow neighbourhood of
boxes with too different levels of refinement. When a big box is touched by
more than one split line on one of its side (when 2D analogy is considered),
it needs to be refined in the same direction. This situation can also be seen
on the figure 2. The big box on the left part of upper-left global box needs
to be split horizontally; otherwise, it would be touched by three horizontal
splits from two different levels of refinement. Also, the box forming the lower
part of upper-right global box needs to be split vertically because of the two
split lines from two different levels of refinement.
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4.6 Types of Refinement

As explained in the previous section (4.5), refinement depth (D) defines the
maximum possible divisions of the global box. The maximal number of 1×1×1
boxes that can be generated can be calculated as

N1×1×1 = 2D × 2D × 2D (3)

For the user, there are three ways how to affect the refinement of global boxes:

1) Global refinement depth defines the default refinement depth valid
for all boxes with no other specification

2) IJK refinement block allows to set a refinement level to a rectangu-
lar block of global boxes. Each global box is defined by its I,J,K integer
coordinates in the system of meshlines; therefore, the block can be spec-
ified by six integer values (IS, IE, JS, JE, KS, KE – where S stands for
start and E stands for end) and values specifying the refinement depth:
allowed refinement level and forced refinement. If the forced refinement
is specified, the global box will be split regardless of whether the input
surface intersects it or not.

3) Boundary refinement specifies the refinement depth which is to be
used in the global boxes that are intersected by a particular boundary.
With this type of refinement, three variables can be set for a boundary:
- Refinement depth at the boundary
- Refinement blending distance (This parameter specifies an integer

value which is used to control how the refinement at the boundary
blends into the refinement level of the surrounding cells. Blending is
achieved by giving the cells at the boundary a forced refinement level
which is less than or equal to the specified refinement depth, and
propagating away from the boundary in layers of successively lower
forced refinement. The blend distance defines how many layers of cells
should be at each forced refinement level.)

- Blend to boundary depth -1 (This is yes/no information specifying
whether the blending should start from “refinement depth–1” instead
from “refinement depth”)

Boundary refinement is applied after IJK refinement blocks. Therefore,
the allowed refinement depth can be changed in global boxes that has pre-
viously been affected by an IJK refinement block. However, the forced re-
finement level and refinement depth are always only increased by bound-
ary refinement specifications - never decreased.

4.7 Generation of Patches

Inside each box intersected by the surface, it is necessary to generate bound-
ary faces (so called patches). First, patches are generated as triangles and
later, triangles with similar unit normal vectors are combined to convex
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polygons. For generation of the triangular patches the concept of combination
of methods Marching Cubes and Exact Fit is used.

Marching Cubes

Marching Cubes is a well known method used in computer graphics (described
in [10]). The method defines 14 basic patterns to create triangles on the
intersections of edges of a cube (box in the terminology of VECTIS-MAX).
The patterns differ according to the in/out statuses of vertices of the cube.
The majority of the patterns have more than one possibility of how to create
triangles (e.g. if there are four intersected edges on the cube in pattern no.
2, two configurations of triangles are possible: “[4,2,9]+[9,2,10]” or “[4,10,9]
+ [4,2,10]”.

During the development of the new mesher, several ways to find the optimal
configuration of triangles have been tried. Based on these experiments, the
method used in the older 3D Cartesian mesher was rejected. The method
was based on the comparison of the in/out statuses of selected nodes in the
box when intersected by the original surface and in the box intersected by
the tested configuration of triangles. There are also some other possibilities
described in [13].

However, during the development of the mesher, a new simple method was
found which seems to be sufficient and much quicker than the other tested
methods. This method is based on evaluation of a criterion calculated from
the scalar product of unit normal vectors of the proposed triangular patch
(np) and the triangle of the surface intersecting the edge of the box (ns).
The criterion C can be calculated as

C =
(Cmax − 1)b1−s + b2 − Cmax

(b2 − 1)
(4)

where b is the base of the used logarithm, s is the scalar product s = np · ns

and Cmax is the chosen maximum value of the criterion (the value for the
worst case when the unit normal vectors are exactly opposite). This criterion
is calculated for each node of each triangle and the average is taken as the
value evaluating the configuration of triangles. The configuration with the
minimum value of the criterion is chosen. The shape of the function of the
criterion is visualised in figure 3. The criterion is designed to strictly refuse
those configurations where unit normal vectors point to opposite half-spaces.
Values b = 7 and Cmax = 4 were found as reasonable for this criterion, so
they are used in the mesher.

Exact Fit

If it is not possible to use the Marching Cubes method, the Exact Fit algo-
rithm is applied. This approach of patch generation is based on the splitting
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Fig. 3. Criterion for evaluation of different possibilities in Marching Cubes patterns

of surface triangles according to the sides of the box; only the triangles lying
inside the box are kept as patches.

Choice of the patching method

Marching Cubes method can be used only when it is sure that the simplifi-
cation would not cause chamfering of sharp features, problems with water-
tightness or damage of the border between different boundaries. When one
of the following conditions is true, the Exact Fit must be used:

- one of the edges of the box is intersected more than once (in this case,
tying of patches may not be feasible)

- the intersection polyline forms a closed polygon on one of the sides of the
box (the geometry would be invisible for Marching Cubes)

- there is a sharp feature detected in the box (Marching Cubes would cham-
fer the feature)

- there is more than one boundary index detected among the triangles in-
tersecting the box (Marching Cubes would damage the border between
two boundaries)

4.8 Tying of Patches

Whenever patches are generated in a box, all rectangular faces of the box
are tested to determine whether boxes on its both sides have already been
processed. When a rectangular side is found, whose both adjacent boxes
have been processed, the patches in the two boxes need to be tested for
watertightness. If there is a gap between patches, they need to be tied so
as the non-conformance is avoided. Two main cases when gaps appear are
illustrated in figure 4. The picture on the left shows the situation when there is
one box neighbouring with two boxes. Different simplifications from using the
Marching Cubes method from both sides gives patches that are not properly
tied. The picture on the right illustrates the situation when the Exact Fit is



VECTIS Mesher – A 3D Cartesian Approach Employing Marching Cubes 439

Fig. 4. Gap between patches caused by different refinement on two sides of common
rectangular side of boxes (left side) and gap between patches caused by usage of
different methods of patch generation (right side)

used from one side of the common rectangular side of boxes and Marching
Cubes is used from the other side.

When tying of patches is used in the mesher, the corresponding nodes need
to be found first. This action divides the problem to several simpler parts
when several segments need to be tied to one segment. The single segment
is divided so as the lengths of corresponding segments respect ratio of total
lengths of the polylines:

Lj

L′
j

=

(
N∑

i=1

Li

)
/

(
N∑

i=1

L′
i

)
(5)

where Lj is length of j-th segment of the polyline before tying of patches and
L′

j is its length after movement of the nodes. Then, the nodes from the more
complex side are moved to the new positions.

4.9 Generation of Inner Faces

Each generated inner face is tested to determine whether it can be divided
into triangles by the star triangulation (see section 3). Those faces that are
so concave that correct triangles cannot be formed, need to be split to more
convex parts. The algorithm of searching the optimal cutting edge from the
most concave angle (described in [12]) is used. Boundary faces do not re-
quire this treatment, because their convexity is ensured by the process of
combination of triangular patches to polygons.

4.10 Removal of Small Cells

Volume of each generated cell is tested and compared with the size of its box.
If the ratio Vcell/Vbox is less than a defined constant R, the cell needs to be
deleted. When a cell is removed, its inner faces need to become boundary
faces of its neighbours. The constant R can be chosen by the user for each
boundary region. Defaultly, R = 1.0×10−3 is set; for boundaries representing
input/output or cyclic boundary, the value 1.0 × 10−100 is used.



440 L. Plaček

4.11 Problem of Concave Cells

In order to overcome problems with cells that are so concave that the an-
gle condition for boundary faces mentioned in section 3 is not fulfilled, two
techniques are applied: Cell splitting and IP patches. Cell splitting inheres in
searching for a cutting polygon which would divide the concave cell into two
parts with better properties.

When this method fails (usually due to a flaw in the input surface), IP
patches can be generated instead. This approach inheres in replacing the
patch structure by polygons forming the intersection of the box with the
surface (IP means intersection polygons). When IP patch method is applied,
the shape of the geometry is not covered as well as if Cell splitting were used.
Therefore, IP patches should be used only as a last chance mechanism when
Cell splitting algorithm fails, just to avert failure of the whole meshing task.

Cell Splitting

First, the optimal cutting plane is found. In order to do this, the following
procedure is performed. The edge representing the worst concave feature
needs to be identified. Then, the adjacent edges are tested; if some of them
are also not convex, the concave feature polyline will grow. Then, the cutting
plane angle αc is calculated as half of the average angles αi adjacent to N
edges of the concave feature polyline:

αc =
1
2

[(
N∑

i=1

αili

)
/

(
N∑

i=1

li

)]
(6)

The average is weighted by lengths of the edges (li).
Then, the intersections of edges of the cell with the cutting plane are

found and the cutting polygon (the closed polyline of the intersection) can
be finished. Whenever an edge is intersected very close to one of its end
vertices (the deviation of the two adjacent edges of the cutting polygon from
the cutting plane is less than 5�), the end vertex is used instead.

IP patches

The unit normal vector and the face centre are assigned to each IP patch.
These properties are calculated in the mesher and they are passed to the
solver (in the contrary with other types of faces whose properties are found
during the run of the solver). The normal vector of the IP patch is calculated
from the condition described by equation (2). Sum of face surface vectors
Aj of all other faces determines the face surface vector of the IP patch. A
face centre needs to be found so as the angle criterion (see the section 3) is
fulfilled. The process needs to be done iteratively, since each movement of
the face centre affects the cell centre.
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Fig. 5. Coolant jacket (input geometry, part of the mesh and a slice view of the
gasket hole)

5 Examples of Generated Meshes

In order to show some examples of generated meshes, geometries of two typ-
ical problems often solved by VECTIS were chosen.

1) Exhaust manifold with turbine: The input geometries, and parts of
generated meshes are illustrated in figure 6. The pictures represent ex-
haust manifold with a turbine housing. Images on the left side are linked
to the solid part of the multi-domain simulation. On the right side, there
is the fluid part of the simulation. When both geometries are meshed,
the common interface needs to be made conformal in order to prepare
them for the multi-domain simulation in the solver. Even distribution of
meshlines with size of cells 3 mm and refinement depth 1 were chosen.

2) Coolant jacket: In figure 5 a typical example of geometry for modelling
of flow of water in cooling channels of the engine is shown. The size of the
global cells was chosen as 3 mm; together with refinement depth 2. The
slice of the mesh in the lower part of the figure shows the critical part
between the head and the block of the engine, called the gasket hole. IJK
refinement block was used here to enforce refinement depth 3 in order to
ensure sufficient number of cells to realistically simulate the flow in this
narrow channel.
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Fig. 6. Exhaust manifold with turbine (input geometries and parts of the meshes)

6 Description of the Meshing Algorithm

When running in the meshing mode, the scheme of the work of the mesher
is this:

1) READ INPUT FILE FOR MESHING TASK: The input ASCII file
(containing information about positions of meshlines and some other spec-
ifications for the meshing task) is read.

2) READ SURFACE TRIANGLES: The input file containing informa-
tion about surface triangles (trifile) is read. Coordinates of the triangles
are scaled (see the subsection 4.1), the geometrical extents of triangles
are found and connectivity information is assembled.

3) APPLY DUAL LEVELS: The x,y and z positions of meshlines (defin-
ing the cutting planes) are shifted to discrete positions on a very fine grid.
At the same time, nodes defining triangles of the input surface are moved
to lay on a different grid (with its levels shifted by half-step). This averts
collisions of cutting planes with with triangles perpendicular to the prin-
cipal axes. (see the subsection 4.2)

4) DETECTION OF OVERLAPPED TRIANGLES: The algorithm
for detection of overlapped triangles is run here. If there are some prob-
lematic triangles, a warning is printed together with the list of indexes
of the triangles. If problematic triangles are detected, the mesher will
continue its work. Usually, the mesher automatically overcomes small
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problems in the input triangulated surfaces. However, if it happens that
the final gridfile contains cells with low quality, the user should try to
improve the flaws in the surface detected in this step and run the mesher
again.

5) PREPARE SHOEBOXES: The system of shoeboxes is established
here (see the subsection 4.3).

6) CONSISTENTLY ORIENT TRIANGLES: Since the orientation of
the input triangulated surfaces is random in the input file, it is necessary
to orient them so as normal vectors of the triangles always point into the
flow domain.

7) PREPARE IN/OUT STATUSES: Here, in/out statuses of the ver-
tices of the global boxes (that are defined by meshlines) are found by
ray-casting method (see the subsection 4.4).

8) GENERATION OF BOXES: The boxes are generated in the global
boxes (see the subsection 4.5) according to the prescribed refinement
specification (see the subsection 4.6).

9) PREPARE COMMON RECTANGULAR SIDES OF BOXES: In
this part of the algorithm, the boxes generated in the previous step are in-
dexed first. Then, the common rectangular sides of the generated boxes are
generated.According towhichdirectiontheyareperpendicular,U,VandW
common sides are distinguished (perpendicular to x, y and z, respectively).
They serve for navigation through boxes and for generation of inner faces
on them.

10) GENERATE CELLS IN BOUNDARY BOXES: For all boxes, it
is determined whether the box is intersected by the surface or fully inner
or fully outer. The optimal order of processing boundary boxes is found
(smaller boxes need to be processed first to be sure that when a box is
processed which has more than one neighbour in a direction, all the adja-
cent boxes are already done). Then, all boxes intersected by the surface
are looped and their faces are generated in these steps:

— POLYGON GENERATION PART —
A1) Generate boundary faces (patches): Marching Cubes or Exact

Fit method is used for the generation of boundary faces (see the sub-
section 4.7).

A2) Polygon Simplification: This technique simplifies the patch struc-
ture where possible. The algorithm preserves sharp features and bor-
ders between different boundaries.

A3) Generate inner faces if neighbours are processed: All rectan-
gular sides common with the adjacent boxes are looped. On those lo-
cations where patches of the two adjacent boxes have already been
generated from both sides, the patches are tied (described in the sub-
section 4.8) and polygons of inner faces are generated. If any generated
inner face is concave, it is split to convex parts here.
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— CELL ASSEMBLING PART —
B1) Find a complete cell: It is found whether there is a cell that has

all its polygons already generated. If there is no such a cell, continue
with the next box (go to A1).

B2) Distinguish separated volumes: The connectivity of faces is
found and the polygons are painted in order to find separated volumes
in the box.

B3) Cell splitting: On each separated volume, it is tested whether
there are concave features. If there are, split the cell to convex parts.

B4) Delete small cell: The volume of the cell is found. If it is too
small, the cell needs to be removed (described in subsection 4.10).

B5) Save faces: The generated boundary and inner faces are saved to
auxiliary files so as they can be retrieved back later when assembling
the final grid (this concept is described below in subsection 7.2). The
algorithm continues with B1.

11) FINISH COMMON FACES: Rectangular faces of those cells that
are fully inner are generated here.

12) PRINT STATISTICS OF GENERATED MESH: The statistics
of the generated grid is printed. The report contains information about
number of generated cells, numbers of boxes processed by Exact Fit and
by Marching Cubes methods, number of cells that needed to be split to
convex parts. If problems occur, number of cells with negative volume,
gaps or angle problems is reported here (see the section 3). Problems like
this are usually linked to topological problems of the input surface.

13) WRITING THE MESH FILE: The polygons stored in the auxil-
iary files (saved in the step B5) are subsequently read while the output
arrays are assembled at the same time. Then, the output gridfile is written
out. Finally, the auxiliary files are deleted.

7 Tools Helping to Decrease Time and Memory
Demands

It is hard to compare the previous VECTIS mesher with the new approach
since both are doing different tasks. The new VECTIS-MAX mesher needs to
perform more actions in order to meet the higher requirements for the mesh
quality. Despite this fact, measurement on several typical cases has shown that
the new program consumes 74 % of memory and 64 % of time in comparison
with the previous system. In the following text, the main features are described
that are believed to be responsible for the significant improvement.

7.1 Features Improving Time Efficiency

Integer storage of coordinates of vertices

In order to ensure the test for existence of a node to be efficient, the ap-
proach recommended in [3] and [12] was used for storage of nodes. The whole
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working space is confined to a cube that is divided to 4200000000 levels in
each direction (x,y,z), so as the position of each node can be described by
three unsigned integer values. The choice of the number of levels is linked to
the capacity of unsigned int type on 32-bit computers, which is 4294967295.
All existing nodes are kept sorted according to their coordinates. When com-
paring two nodes, x determines which node is less; if both nodes have the
same x, the decision is done according y, etc. Whenever a new node needs
to be created, it is very quick to find out whether the node already exists or
not, because of the binary search in the sorted array.

This concept turned out to be very efficient. Of course, it saves certain
amount of memory (unsigned int consumes half the number of bytes than
the double type on 32-bit computers). However, more important is its time
efficiency. It is believed that this concept is mainly responsible for the higher
time efficiency of the new mesher.

This usage of integer values is limited only to storage of coordinates of
vertices. The full integer arithmetic (described in [3]) was not implemented.

7.2 Features Improving Memory Efficiency

Avoidance of STL containers

During the development of the mesher, it was found that when containers
from the Standard Template Library (set, map and list) had been replaced by
simple classes using “malloc” allocation, the time and memory requirements
were significantly lower. A comparison of STL and non-STL approach was
done on storage of one million nodes to a map. Memory requirements fell
down to 16 % when std::map was avoided. Time necessary for storage of the
nodes was decreased to 23 %; time needed to retrieve the nodes decreased
to 56 %. The development team believes that the savings are caused by
allocations and reallocations with a reasonable step. If an STL container is
to be extensively used in a program, its allocator should be changed to avoid
too many allocations by small chunks.

Temporary storage of polygons

Whenever a cell is generated (all its polygons are prepared), those polygons
that are no longer needed can be stored in an auxiliary file. The memory
occupied by the polygons can be reused for polygons of another cell. In order
to make this technique efficient, the optimal order in which boxes are pro-
cessed needs to be found so as neighbours of already done cells are processed
as soon as possible.

Arrays of low-bit information

During the run of the mesher, it is often needed to store long arrays of in-
formation that requires only low number of bits (e.g. in/out status of nodes,
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done status of a box, ...). However, allocation of an array of bool type con-
sumes eight bits for each entry. Therefore, a tool that can store 1D, 2D or
3D array of entries of arbitrary bit-length in a chunk of memory (unsigned
char type is used) has been prepared. For storage or retrieval of each entry
some additional time is consumed. This is caused by necessity to find the
proper unsigned char(s) containing the information and perform appropriate
bit operations in order to find the bits that should be used. However, the
additional time disadvantage seems to be low price for the memory reduction
benefit.
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Abstract. This work deals with the problem of practical mesh generation for sur-
face normal approximation. Part of its contribution is in presenting previous work
in a unified framework. A new algorithm for surface normal approximation is then
introduced which improves upon existing ones in a number of aspects. In particular,
it produces better approximations of surfaces both in practice and in the theoretical
limit regime. Additionally, it resolves in a simple way some of the problems that
previous methods for surface approximation suffered from.

1 Introduction

Computing high-quality approximating meshes from surfaces is an impor-
tant problem in computational geometry, with many practical implications.
Although the approximation criteria can vary greatly, often, approximating
either surface position, or a surface’s normal field can be a good criteria in
practice. As has been argued elsewhere [7, 14], approximating a surface while
minimizing normal approximation error can be useful in many applications.

There is a considerable body of previous work that deals with the surface
approximation problem. Some notable examples include ε-nets [6], for surface
and normal approximation, the Quadric Error Metric algorithm (QEM) [9]
for surface approximation, and Variational Shape Approximation (VSA) [14],
for surface and normal approximation.

In this paper, it is first discussed how the above three methods can be
interpreted from within a unified framework. In this interpretation, they are
essentially all minimizing a k-means like energy, where only the distance
metrics are different. Interestingly enough, in the limit, for smooth surfaces,
these distance measures converge to each other. The other key difference that
is explored is how these means are used by the different algorithms to produce
the output triangulation.

Next, a novel distance measure is proposed (Shape Operator Metric, or
SOM), with a corresponding algorithm, that fills a natural gap in this frame-
work. In particular, like VSA, it is designed for normal approximation. But,
like QEM, it does not require a region-triangulation step. Such a step can
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complicate the implementation and, as it is discussed, it introduces a constant
factor of inefficiency close to 2, in the limit of approximation.

2 Framework

Considered here are meshing algorithms for surface approximation that try
to either meet a uniform error bound, or minimize the average approximation
error over a surface M (minimizing error in the L∞ or L2 sense respectively).
These kinds of algorithms can be naturally described as an optimization
problem:

argmin
{pj},Vj

E∞
X

= argmin
{pj},Vj

max
j

max
p∈Vj

DX(pj , p) (1)

argmin
{pj},Vj

E2
X

= argmin
{pj},Vj

∑
j

∫
Vj

DX(pj , p)dp (2)

over both a set of means {pj} (points on the surface), and a corresponding
partition {Vj} of M composed of the Voronoi cells of {pj} with respect to a
chosen distance function D

X
.

Optimal Voronoi partitions have in all (except perhaps the rarest) cases
neither the shape nor the topology of a triangle mesh. Some further step is
generally necessary before producing a triangle mesh as output. In the sequel,
a meshing algorithm is referred to as a primal algorithm if it discretizes the
boundaries of Voronoi cells, triangulates their interior, and outputs this set
of triangles, as in [14]; while an algorithm in which the means are instead
directly connected using the dual topology of the partition {Vj} to produce
a triangle mesh, as in [6], will be denoted as a dual algorithm.

Apart from the added algorithmic complexity, primal algorithms have an
inherent approximation inefficiency in the limit. Roughly speaking, in smooth
surface regions, in the limit, the relative sizes and aspect ratios of the Voronoi
regions are optimized by minimizing the above energies. These relative sizing
and aspect ratios will be maintained under mesh duality. But these sizes and
aspect ratios are altered (within a constant factor) when the Voronoi regions
are triangulated. The limit regime is explored in more detail in Appendix B,
while the non-limit case is discussed experimentally in Section 5.

The algorithms of [6, 9, 14], as well as the one introduced in Sec. 3, all
fit into this framework. In particular, the method in [14] introduced the idea
of directly optimizing energies with the above form using a k-means/Lloyd-
Max type algorithm. It then applies a primal meshing step to the resulting
partition.

In the work of [6] one finds a set of means {pj} with bounds on the energy
of Eq. 1. The means are then connected in a dual triangulation.

The QEM method of [9] applies a sequence of edge collapses to the input
mesh, which can essentially be interpreted as an attempt to minimize 2. In
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particular, upon completion of the QEM algorithm, each vertex of the out-
put triangulation can be thought of as a mean with a region of the surface
associated to it: the portion of the surface that it uses to evaluate its associ-
ated (quadric) error (with adjacent regions slightly overlapping). In this sense
QEM can be considered a dual algorithm. Even though the connectivity of
the triangle mesh is not directly related to the Voronoi regions of Eq. 1, its
limit behavior is analogous.

2.1 Surface Approximation

The algorithms of [6, 9, 14] use the following distances when optimizing Eqs. 1
or 2:

DII(pj , p) = min
γ∈P (pj,p)

∫
γ

qc
II
(γ′(t); γ(t))

1
2 dt (3)

DQEM(pj , p) = < p − pj , n(p) >2 (4)

DsVSA(pj , p) = < p − pj , n(pj) >2 (5)

where qc
II
(γ′(t); γ(t)) is the “convexified” (using the absolute value of the

eigenvalues) second fundamental form at point γ(t) and applied in direction
γ′(t) ∈ Tγ(t)M , and P (pj , p) is the set of all paths that connect pj to p on
the surface.

As described in Appendix A, for smooth surfaces, it is possible to write:
for all λ > 0, for all non-parabolic pj ∈ M there is an open neighborhood V
of pj such that ∀p ∈ V :

DQEM(pj , p) �λ DII(pj , p)4 �λ DsVSA(pj , p) (6)

where the notation �λ, borrowed from [6], implies tight approximation to any
desired degree of accuracy. Note that the exponent 4 above arises from the
fact that ε-nets minimize a form of Euclidean distance between the surface
and the approximation, while QEM and sV SA minimize squared Euclidean
distance. Equation 6 is valid only for elliptic points pj . For hyperbolic points,
DQEM and DsVSA still converge to the same value, but (DII)4 is only an upper
bound of DQEM and DsVSA , [Note that one could have defined DII using
|qII |1/2 in the integrand of 3, where qII is the second fundamental form. This
would make (DII)

4 be a tight approximation of DQEM and DsVSA everywhere
non-parabolic on M , but would no longer be a Riemannian metric.]

The distance DII , is too expensive to compute in practice (since each eval-
uation involves computing a shortest path under the qc

II
surface metric). In

contrast, both DQEM and DsVSA are efficiently computed using only local
information at the arguments pj and p.

2.2 Normal Approximation

The problem of computing a mesh that approximates the normal field of a
surface is considered next. It is noted that for this problem, the normals of
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the approximating mesh are piecewise constant. However, instead of being
inferred from the vertex positions, the normals of the output mesh are opti-
mally assigned to triangles. This distinction is necessary to avoid difficulties
like those described in [5, 7] that can occur when triangles have large internal
angles, even if they have the right limit shape and size.

A similar analysis to that of Sec. 2.1 can be made in this case. Here, the
two relevant algorithms that are considered are [6, 14]. They use the following
distances to optimize Eqs. 1 and 2 respectively:

DIII(pj , p) = min
γ∈P (pj ,p)

∫
γ

qIII(γ
′(t); γ(t))

1
2 dt (7)

DnVSA(pj , p) = ‖n(pj) − n(p)‖2 (8)

where qIII is the surface’s third fundamental form, and n : M → S2 is the
Gauss map.

Analogously as proven in Appendix A, it is, for p in an appropriate, small
enough neighborhood of a non-parabolic pj :

DIII(pj , p)2 �λ DnVSA(pj , p) (9)

2.3 Behavior

To aid in our discussion, three different kinds of regions on a surface will be
considered, and the algorithms under consideration evaluated separately for
each. The following distinct types of regions on surfaces are considered:

In smooth and non-parabolic regions, it can be shown that, in the limit,
the regions of the partitions generated by optimizing DsVSA DnVSA and DQEM

have the proper aspect ratio [10, 14], which is a necessary condition for opti-
mality for their respective surface or normal approximation problem. It can
also be shown that, for everywhere-elliptical surfaces, and in the limit, the
method of ε-nets [6] using DII produces results that are within a constant
factor of the globally optimal L∞ minimizer for the surface surface approxi-
mation problem. As discussed in Appendix B, in the limit, primal algorithms
such as VSA will need roughly twice as many triangles as compared to dual
algorithms such as QEM and ε-nets.

Near sharp features, these algorithms behave quite differently. In partic-
ular, one can see that DQEM measures error “from the viewpoint” of the
variable of integration p ∈ M , while DsVSA does so from the viewpoint of the
mean pj . As a result, QEM places means at high-curvature points, and thus
is suited as a dual algorithm, while sVSA (the surface approximation version
of VSA [14]) places them at low -curvature points, making it better suited as
a primal algorithm. nVSA also tends to place means at low-curvature points.
It is less clear the authors how ε-nets behaves in this regard.

Parabolic/curved regions are places on a smooth surface near, or at
parabolic points where there is significant higher-than-second-order bend-
ing (i.e. the surface is not locally well approximated by a quadratic patch),
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such as near the parabolic line on a torus. Algorithms often need special
care in this case. Near parabolic/curved points, an optimization using DQEM

undersamples regions near curved parabolic lines. The original QEM algo-
rithm [9] deals with this case by introducing special rules to prevent flips be-
fore edge collapses (which strictly-speaking breaks the energy-minimization
formulation of Eq. 2). For ε-nets, an additional isotropic term is added to the
distance to cope with such regions. VSA deals with this case, in which the
Voronoi cell boundaries are highly curved, by discretizing these boundaries
and triangulating the cells finely enough as to avoid undersampling.

3 Shape Operator Metric for Normal Approximation

An obvious missing piece in this description is an algorithm that converges
to Eq. 9 in the limit, but places means at high curvature points away from
it, making it most suitable as a dual algorithm. In some sense this algorithm
would be to nVSA what QEM is to sVSA. Moreover it can be efficiently
computed an optimized (as in Eq. 1 or 2), has high approximation efficiency
in the sense of Appendix B, and it avoids heavy undersampling near curved
parabolic lines.

To begin, consider the definition DnVSA(pj , p) = ‖n(pj) − n(p)‖2, which
measures normal error from either pj or p, and, similarly as QEM, construct
an approximation that only depends on pj but not on any higher-order local
information at pj . To do this, a second-order Taylor expansion of DnVSA(pj , p)
around p is constructed (note that the zero-th and first order terms vanish):

DSOM(pj , p) ≡ (pj − p)T
∂D

nV SA
(p′j , p)

∂2p′j
(pj − p) (10)

= (pj − p)T S(p)2(pj − p) (11)

where S(p) is a R3×3 shape operator matrix S(p) = k1(p)e1(p)e1(p)T +
k2(p)e2(p)e2(p)T , {k1, k2} are the principal curvatures, and {e1, e2} the prin-
cipal directions.

Note that DSOM , like DQEM and DVSA , can be efficiently computed only
from local information at the endpoints, and, as will be shown in Sec. 4, results
in an energy of the type of Eq. 1 or 2 that can be efficiently minimized using
standard algorithms [13, 12].

The SOM algorithm then simply outputs the dual trianglulation of this
computed surface partition.

It follows from the fact that this is a dual algorithm, whose distance con-
verges in the limit to that of DnVSA , and from the discussion of Appendix
B, that this algorithm has the desired favorable (limit) efficient approxima-
tion characteristics when compared to the primal algorithm of [14]. It is also
shown in Appendix C that this algorithm produces elements that conform to
the theoretically optimal limit shape and orientation.
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Unlike [6, 9, 14], curved parabolic regions are dealt with
in a natural way, without special consideration, which
adds to the simplicity of the algorithm. The side figure
illustrates this point, where a mean pj is placed at a
parabolic line (red). Because the parabolic line is curved,
pj does not lie along the flat direction when viewed from
the point of view of nearby points p. An SOM primal-
region centered around pj thus cannot grow too much

along the parabolic line if the parabolic line curves.
It is possible to see that minimizing Eq. 2 using Eq. 10 has the effect

of placing means at points of high-curvature. Consider the closely-related
problem of gradient approximation of a scalar function f defined on the plane,
and an analogous distance DfSOM = (pj − p)T H2

f (p)(pj − p) with pj , p ∈ R2,
where Hf is the Hessian of f . In an everywhere-isotropic region, DfSOM =
k(p)‖pj − p‖2, which, used for L2 minimization in a form analogous to Eq. 2
over the plane, is an instance of the weighted k-means problem, which is well-
known to place means at points with high weight [1] (high-curvature in this
case). The case where H is not isotropic behaves similarly, but the weight
can be thought of as directionally-varying.

4 Implementation of SOM

The energy of Eq. 10 is minimized in a way very similar to the algorithm
of [12], which uses a probabilistic seeding of means, followed by a Lloyd
relaxation [13] and has theoretical guarantees of closeness to the global opti-
mum. In this work, the probabilistic seeding is simply replaced by iteratively
placing means at the surface point with maximum minimum-distance to the
current set of means, similarly as the greedy algorithm for computing ε-nets
of [11]. This is also similar to the optimization method of [6], except that
the seeding is followed by a Lloyd relaxation, and is also similar to [14]. The
shape operator matrix S of Eq. 10 is estimated using the algorithm of [3].

Once the seed means have been placed, the Lloyd relaxation has two stages.
The first creates a distance-dependent Voronoi partition of the surface, and
the second computes the new means’ locations from the current partition.

To compute a Voronoi partition, all vertices (as opposed to input triangles)
are tagged as belonging to some primal Voronoi region, and Voronoi region
boundaries are computed by splitting input triangles that have vertices in
different regions, as in the side figure below. A Voronoi region is thus not
constrained to be a collection of faces, but can have a boundary that cuts
across triangles, which may slightly improve accuracy in practice. Also, in
this way, Voronoi regions can meet at most at 3-way junctions. These 3-
way junctions naturally dualize into triangles. Note that this generalizes to
higher-dimensions, so that, by construction, it will only output simplicies.
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Given a Voronoi partition of the surface, the new means’ locations are
computed. First, note that the energy of Eq. 2 for the distance DSOM can be
written as

E2
SOM

=
∑

j

pT
j (
∫
Vj

S(p)2dp)pj − (12)

− 2pT
j (
∫
Vj

S(p)2 · pdp) + (
∫
Vj

pT · S(p)2 · pdp) (13)

and so it is quadratic in pj .
It is possible to compute the minimizer pj of

Eq. 12 by solving a small linear system, but this
would return a mean pj which is not constrained
to be on the surface. Instead, the constants in
equation 12 are computed in a first pass: Aj =∫
Vj

S(p)2dp and bj =
∫
Vj

S(p)2·pdp, for each Voronoi
region Vj . Then, for each input triangle (or split tri-
angle) inside region Vj the barycentric coordinates

(u, v) of the minimizer pj of Eq. 12 can be found by solving RT AjR

(
u
v

)
=

RT bj where R ∈ R3×2 is some basis of the supporting plane of the triangle.
The minimizer may fall outside the triangle, so it is necessary to look for it
along triangle edges and vertices as well. The final mean is the minimum over
all the minimizers on each triangle, guaranteeing that pj is a point on the
surface. Finally, instead of outputting pj directly as a (dual) vertex, a quadric
error metric [9] for its associated Voronoi region Vj is first computed, and
its minimizer along the line passing through pj in direction n(pj) is output.
This small perturbation slightly improves the approximation.

5 Results

Some surfaces processed by the SOM algorithm are shown in figures 1 through
3. These meshes are compared with those produced by VSA, which are com-
puted by exactly following [14]. Note that, unlike SOM, VSA has a free pa-
rameter (the precision used to discretize the partition regions’s boundaries),
which has been tuned to improve VSA’s output. These results are also com-
pared with the output of QEM [9]. Note that QEM optimizes (RMS) distance
from the surface to the approximation, instead of normal error, and therefore
the comparison is not strictly relevant; but it is included it as reference. Run-
times for SOM range from 5 sec. (bunny, input: 70k tris.) to 40 sec. (statue,
input: 512k tris.), on a single core 2.0GHz CPU.

Even though it is not necessarily what is being optimized for in this work,
it is possible to consider (L∞) Hausdorff, and RMS error in the sense of sur-
face approximation. Note that, in most cases, QEM produces slightly better
approximation of the surface than SOM, and significantly better than VSA.
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(a) SOM dual (b) VSA (c) QEM

(d) SOM primal (e) VSA partition

Fig. 1. SOM: 500 vert., 996 tris. (Hausdorff error = 1.79e-2, RMS error = 2.24e-3).
VSA: 528 verts., 1076 tris. (Hausdorff error = 2.31e-2, RMS error = 5.06e-3). —
QEM: 502 verts., 1000 tris. (Hausdorff error = 1.93e-2, RMS error = 1.93e-3).

This is expected, as QEM optimizes surface approximation error (RMS er-
ror in the figures), while VSA and SOM both optimize normal error instead.
Notice that, for smooth surfaces, and using (almost) the same number of
triangles, SOM’s approximation is appreciably finer than VSA’s. On smooth
surfaces, the approximation is significantly better for SOM at a given sam-
pling rate. As can be seen in the primal partitions in figures 1 and 2, with
an equal triangle budget, SOM is able to partition the surface into smaller
regions that capture detail better. Note that the bunny is particularly trou-
blesome for VSA, when compared with SOM, because its bumpy surface
produces very curved regions that can output many triangles when their
boundaries are discretized by the VSA algorithm. In general, in the above
figures, triangles are elongated along the directions of minimum curvature,
and tend to show very high anisotropy in places where this is possible: like
the ears of the bunny or the statue’s arms. Note that our algorithm offers no
guarantees in terms of normal flips in the triangulation, which could show
up occasionally in sparsely sampled regions. This behavior is similar to VSA
and ε-nets, which also cannot guarantee to be free of flips.

Figure 3(d-f) shows a surface composed of roughly flat parts separated by
sharp features. On these kinds of surfaces VSA does particularly well, since
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(a) SOM dual (b) VSA (c) QEM

(d) SOM primal (e) VSA partition

Fig. 2. SOM: 200 verts., 396 tris. (Hausdorff error = 3.32e-1, RMS = 5.02e-2).
VSA: 199 verts., 409 tris. (Hausdorff error = 7.03e-1, RMS error = 9.93e-2). —
QEM: 202 verts., 400 tris. (Hausdorff error = 2.50e-1, RMS error = 4.31e-2).

it operates by locating roughly-flat patches and triangulating them. In par-
ticular, the region-triangulation phase of VSA is well-tuned to this problem,
since the desired behavior in this case is to triangulate the flat polygons.
SOM in this case naturally places means at sharp corners. But its connectiv-
ity is guided by the shape operator, which is almost everywhere degenerate
here. This case is dealt with by computing the final mesh connectivity using
a modified shape operator, which is set to a very high (isotropic) value in
flat regions, effectively simulating a flat-polygon triangulation step (similar
to the constrained Delaunay triangulation used in [14]).

5.1 Numerical Validation

Unlike for surface approximation, there is, as far as the authors are aware, no
standard way of measuring the surface normal approximation on a surface. If
there was, away from the limit regime, a well-defined one-to-one correspon-
dence between points on the surface and points on the approximation, then
it would be possible to compute the (L2) approximation error by integrating
the distance between corresponding normals over the surface. However, this
correspondence is not available. To analyze approximation error, the very
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(a) SOM dual (b) VSA (c) QEM

(d) SOM dual (e) VSA (f) QEM

Fig. 3. Lucy SOM: 1500 verts., 2988 tris. (Hausdorff = 14.598, RMS = 1.866).
Lucy VSA: 1456 verts., 2990 tris. (Hausdorff error = 44.688, RMS error = 5.911).
Lucy QEM: 1496 verts., 2988 tris. (Hausdorff error = 11.834, RMS error = 1.472).
Fandisk SOM: 80 verts., 156 tris. (Hausdorff error = 0.118, RMS error = 0.0157).
Fandisk VSA: 80 verts., 156 tris. (Hausdorff error = 0.0596, RMS error = 0.0131).
Fandisk QEM: 80 verts., 156 tris. (Hausdorff error = 0.264, RMS error = 0.0152).

closely-related problem of approximation of the gradient of a height field
over the plane is considered [it has optimal limit aspect ratio ξ1/ξ2, where ξi

are the eigenvalues of the heigh field Hessian [4, 5]]. Because both VSA and
SOM only look at normals and shape operators, it is possible to naturally
adapt both to the gradient approximation case by measuring distances be-
tween gradients, as opposed to normals, by computing a Hessian of the height
field at each point, instead of a shape operator. Both algorithms must also be
extended to force them to conform to the boundary of the domain. There is
however, to our knowledge, no equivalent natural generalization of QEM [9]
to the heigh field approximation case. Once again, the tunable parameter in
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(a) nVSA (b) SOM

Fig. 4. Gradient approximation using nVSA and our algorithm. Primal (top),
algorithm output (middle), height field approximation (bottom). Red marks in the
primal are locations of vertices in the dual. In both (a) and (b), the mask (left side)
is approximated with 356 triangles, and the bunny (right side) with 468 triangles.

Fig. 5. RMS (L2) gradient error plots for the mask and bunny height fields (top-
right corners.)

VSA has been adjusted to the best results obtained. The input is a surface
that is finely scan-converted on a squared piece of the plane (figure 5 top-
right corners.) Planar meshes obtained this way are shown in figure 4, while
figure 5 shows the corresponding error plots for these two inputs, at several
approximation levels. Notice how the mesh approximating the mask in 4.b
more closely matches the features of the input than 4.a, even though both
have the same number of triangles. The difference in RMS error is not always
large for a fixed number of triangles, though it is significant. If, alternatively,
an RMS error level is fixed, and the VSA and SOM approximations with that
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error are considered, it can be noted that the SOM mesh has significantly
fewer triangles.

6 Summary and Conclusion

This work begins by placing some established algorithms for surface approx-
imation into a common framework. From this analysis, it becomes apparent
that a dual variational algorithm for surface normal approximation was pre-
viously missing. Such algorithm is introduced next, and its limit behavior
shown to conform with the theoretical asymptotic aspect ratio (Appendix C).
It is further argued that this dual algorithm has several advantages over pri-
mal variational algorithms for surface normal approximation (such as VSA).
In particular, the limit approximation efficiency is discussed in Appendix B,
which is shown to be approximately 1.75 times higher for a dual algorithm
with the same (asymptotically optimal) limit aspect ratio. The approxima-
tion results of the proposed algorithm and established ones are also compared
on practical data sets. While the primal VSA is still preferable for piecewise
flat surfaces, where it successfully splits them into flat regions which are then
triangulated, for general curved surfaces, the algorithm introduced in this
paper is shown to perform better. This is further shown on quantitatively
experiments, which are carried out on the very closely related problem of
gradient approximation over the plane.
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Appendix

Appendix A: Distance Tightness Bounds

As in [6], it is said that a ≤λ b ⇔ a ≤ (1 + λ)b, and that a �λ b ⇔ a ≤λ

b∧b ≤λ a. qII(t, p) is the second fundamental form at point p in direction t, and
qc
II

is its “convexified” version (taking the absolute value of the eigenvalues).
The definitions of DII and DIII are in Eqs. 3 and 7.

Lemma 1. For all λ > 0, for all non-parabolic pj ∈ M , there’s an open
neighborhood V  pj of M such that ∀p ∈ V , D

QEM
(pj , p) ≤λ D

II
(pj , p)4, and

DsVSA(pj , p) ≤λ DII(pj , p)4.

Proof. Lemma 4.1 of [6] shows that for all λ > 0, for all non-parabolic
pj ∈ M , there’s an open neighborhood V  pj of M such that ∀p ∈ V ,
DE(pj , TpM) ≤λ DII(pj , p)2, where DE(pj , TpM) is the Euclidean shortest
distance from pj to the plane tangent to the surface at p. Then, by the sym-
metry of DII :

DQEM(p, p′) = DE(pj , p)2 ≤λ DII(pj , p)4 =

= DII(p, pj)4 ≥λ DE(p, pj)2 = DsVSA(pj , p)

where V is chosen small enough such that the neighborhood V ′  p of the
last approximate inequality above contains pj as well.

Note that the other direction of the inequality is not true in general in
neighborhoods that are not elliptic. If DII had been defined using |qII |1/2 in-
stead, then it would’ve been possible to write: DQEM(p, p′) �λ DII(pj , p)4 �λ

DsVSA(p, p′) at every non-parabolic point.

Lemma 2. For all λ > 0, for all non-parabolic pj ∈ M , there’s an open
neighborhood V  pj of M such that ∀p ∈ V , D

SOM
(pj , p) �λ D

III
(pj , p)2, and

D
nVSA

(pj , p) �λ D
III

(pj , p)2.
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Proof. From the fact that DSOM(pj , p) is a second-order Taylor approximation
of DnVSA(pj , p) around p, and that pj is not parabolic, with V chosen small
enough not to contain parabolic points (which is possible since the set of non-
parabolic point is open) follows that ∀β > 0 there’s a neighborhood V  pj

such that ∀p ∈ V , DnVSA(pj , p) �β DSOM(pj , p)2 for 0 < β < λ, (1 + β)2 =
1+λ. It is also possible to choose a neighborhood V ′  pj small enough such
that [2]:

DSOM(pj , p) = (pj − p)T S2(p)(pj − p) �β DIII(pj , p)2

In particular, because β < λ, then also DSOM(pj , p) �λ DIII(pj , p)2. Finally,
inside the intersection of the two neighborhoods from the two claims, the
transitivity property x ≤β y ≤β z ⇒ x ≤ (1 + β)2z yields DnVSA(pj , p) �λ

DIII(pj , p)2.

Appendix B: Limit Approximation Efficiency

As pointed out in [6], an optimal solution of Eq. 1 (or 2), in the limit regime,
for a small enough, regular (everywhere elliptical or hyperbolic) neighborhood
of a surface point, looks like a (stretched) regular hexagonal tiling. A dual
algorithm outputs the dual of this tiling (blue), which locally is a regular (va-
lence 6) triangulation. A primal algorithm instead triangulates the hexagons
directly (green). The limit efficiencies of these dual and primal triangulations
are compared next.

The uniform stretching is first undone to obtain an isotropic hexahedral
decomposition, which can be shown not to affect the analysis. Note that,
although there are multiple ways of triangulating a regular hexagon, all pro-
duce the same set of triangles if symmetry and rotation are discounted. In
the L∞, normal approximation case, the larger triangles of the primal (green)
have error equal to DIII(pj , vi), same as the error of the dual triangles (and
analogously for surface approximation by using DII instead). But there are
four primal triangles per hexagon, and only two dual triangles per hexagon,
resulting in a factor of two inefficiency of the primal.

The L2 case is more involved, and it is only an-
alyzed for the normal approximation case that con-
cerns us most here. Optimal normals are assigned to
each triangle in both triangulations, which can be
computed in closed-form. The L2 normal error over
the triangles is then numerically integrated. Start-
ing from the same regular hexagonal tiling, here the
error per unit area in the primal and the dual tri-
angulations is different. Using the fact that L2 error

grows as s4 where s is a uniform scale factor applied to the triangulation, it
is possible to scale the dual triangulation until its error per unit area matches
that of the primal. Now the average triangle areas can be compared, yielding
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the inefficiency factor between primal and dual. All computations (including
integration and scaling) use conservative bounds. The limit inefficiency factor
is γ ∈ (1.7635, 1.7642) (where lower and upper bounds are rounded down and
up, respectively). Hence a primal triangulation in the limit uses approx. 75%
more triangles to obtain the same L2 normal error as the dual.

Appendix C: Shape Operator Metric and Aspect Ratio

For a regular (non parabolic) point p on a smooth surface M , and for very fine
approximations, it is possible to consider the shape of a neighborhood Np of
fixed area that locally minimizes Eq. 2 using DSOM . Since the neighborhood
is very small and the surface is smooth, the shape operator is approximately
constant inside. Therefore, to any desired degree of accuracy, Np is the min-

imizer of
∫
Np

(p′ − p)T · S(p)2 · (p′ − p)dp′. If this expression is written in a

frame centered at p and oriented so that ẑ = n(p) and {x̂, ŷ} are the prin-

cipal directions of S(p), then this energy is
∫
Np

k2
1x2 + k2

2y
2dxdy, where k1,

k2 are the principal curvatures at p. It is easy to show that a neighborhood
Np of fixed area minimizing this energy is an ellipse of aspect ratio (ratio of
major to minor axis) k1/k2, which matches the asymptotically optimal as-
pect ratio for normal approximation of [4]. Note that (around elliptic points)
this ratio would have been |k1/k2|1/2 for the surface approximation energy∫
Np

|k1|x2 + |k2|y2dxdy, in accordance with [8]. The dual triangulation inher-

its these properties: in the limit regime, dual triangles have circumscribing
ellipses with same orientation and aspect ratio as the primal regions.
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Abstract. In this paper we introduce an automatic tetrahedral mesh generator
for complex genus-zero solids, based on the novel meccano technique. Our method
only demands a surface triangulation of the solid, and a coarse approximation of
the solid, called meccano, that is just a cube in this case. The procedure builds
a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral
mesh of the meccano. For this purpose, the method combines several procedures:
an automatic mapping from the meccano boundary to the solid surface, a 3-D local
refinement algorithm and a simultaneous mesh untangling and smoothing. A vol-
ume parametrization of the genus-zero solid to a cube (meccano) is a direct conse-
quence. The efficiency of the proposed technique is shown with several applications.

Keywords: Tetrahedral mesh generation, local refinement, nested meshes, mesh
untangling and smoothing, surface and volume parametrization.

1 Introduction

Many authors have devoted great effort to solving the automatic mesh gen-
eration problem in different ways [3, 13, 14, 26], but the 3-D problem is still
open [1]. In the past, the main objective has been to achieve high quality
adaptive meshes of complex solids with minimal user intervention and low
computational cost. At present, it is well known that most mesh generators
are based on Delaunay triangulation and advancing front technique. How-
ever, problems related to mesh quality, mesh adaption and mesh conformity
with the solid boundary, still remain.

We have recently introduced the meccano technique in [21, 2, 22] for con-
structing adaptive tetrahedral meshes of solids. The method requires a surface

http://www.dca.iusiani.ulpgc.es/proyecto2008-2011


464 J.M. Cascón et al.

triangulation of the solid, a meccano and a tolerance that fixes the desired
approximation of the solid surface. The name of the method stems from
the fact that the process starts from an outline of the solid, i.e. a meccano
composed by connected polyhedral pieces. A particular case is a meccano
consisting only of connected cubes, i.e. a polycube [25, 19, 27]. The method
generates the solid mesh as a deformation of an appropriate tetrahedral mesh
of the meccano. The main idea of the new mesh generator is to combine an
automatic parametrization of surface triangulations [6], a local refinement
algorithm for 3-D nested triangulations [17] and a simultaneous untangling
and smoothing procedure [4].

In this paper, we present significant advances in the method. We define
an automatic parametrization of a solid surface triangulation to the meccano
boundary. For this purpose, we first divide the surface triangulation into
patches with the same topological connection as the meccano faces. Then,
a discrete mapping from each surface patch to the corresponding meccano
face is constructed by using the parameterization of surface triangulations
proposed by M. Floater in [6, 7, 8, 9]. Specifically, we describe the procedure
for a solid whose boundary is a surface of genus 0; i.e. a surface that is
homeomorphic to the surface of a sphere. In this case, the meccano is a single
cube, and the global mapping is the combination of six patch-mapping. The
solution to several compatibility problems on the cube edges will be discussed.

The extension to more general solids is possible if the construction of an
appropriate meccano is assumed. In the near future, more effort should be
made in an automatic construction of the meccano when the genus of the solid
surface is greater than zero. Currently, several authors are working on this
aspect in the context of polycube-maps, see for example [25, 19, 27]. They are
analyzing how to construct a polycube for a generic solid and, simultaneously,
how to define a conformal mapping between the polycube boundary and the
solid surface. Although surface parametrization has been extensively studied
in the literature, only a few works deal with volume parametrization and
this problem is still open. A meshless procedure is presented in [18] as one
of the first tentative to solve the problem. In addition, Floater et al [10] give
a simple counterexample to show that convex combination mappings over
tetrahedral meshes are not necessarily one-to-one.

In the following Section we present a brief description of the main stages of
the method for a generic meccano composed of polyhedral pieces. In Section
3 we analyze the algorithm in the case that the meccano is formed by a simple
cube. In Section 4 we show test problems and practical applications which
illustrate the efficiency of this strategy. Finally, the conclusions and future
research are presented in Section 5.

2 Meccano Technique Algorithm

The main steps of the meccano tetrahedral mesh generation algorithm are
summarized in this Section. A first approach of this method can be found
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in [21, 2, 22]. The input data of the algorithm are the definition of the solid
boundary (for example a surface triangulation) and a given precision (corre-
sponding to the approximation of the solid boundary). The following algo-
rithm describes the mesh generation approach.

Meccano tetrahedral mesh generation algorithm
1. Construct a meccano approximation of the 3-D solid formed by polyhedral

pieces.
2. Define an admissible mapping between meccano and solid boundaries.
3. Construct a coarse tetrahedral mesh of the meccano.
4. Generate a local refined tetrahedral mesh of the meccano, such that the

mapping (according step 2) of the meccano boundary triangulation ap-
proximates the solid boundary for a given precision.

5. Move the boundary nodes of the meccano to the solid surface according
to the mapping defined in 2.

6. Relocate the inner nodes of the meccano.
7. Optimize the tetrahedral mesh by applying the simultaneous untangling

and smoothing procedure.

The first step of the procedure is to construct a meccano approximation
by connecting different polyhedral pieces. The meccano and the solid must
be equivalent from a topological point of view, i.e., their surfaces must have
the same genus. Once the meccano is assembled, we have to define an ad-
missible one-to-one mapping between the boundary faces of the meccano
and the boundary of the solid. In step 3, the meccano is decomposed into a
coarse tetrahedral mesh by an appropriate subdivision of its initial polyhe-
dral pieces. This mesh is locally refined and its boundary nodes are virtually
mapped to the solid surface until it is approximated to within a given pre-
cision. Then, we construct a mesh of the domain by mapping the boundary
nodes from the meccano plane faces to the true boundary surface and by
relocating the inner nodes at a reasonable position. After those two steps,
the resulting mesh is generally tangled, but it has an admissible topology.
Finally, a simultaneous untangling and smoothing procedure is applied and
a valid adaptive tetrahedral mesh of the object is obtained.

3 Meccano Technique for a Complex Genus-Zero Solid

In this Section, we present the application of the meccano algorithm in the
case of the solid surface being genus-zero and the meccano being formed by
one cube. We assume as datum a triangulation of the solid surface. We intro-
duce an automatic parametrization between the surface triangulation of the
solid and the cube boundary. To that end, we divide the surface triangula-
tion into six patches, with the same topological connection than cube faces,
so that each patch is mapped to a cube face.

We note that even being poor the quality of this initial triangulation, the
meccano method can reach a high quality surface and volume triangulation.
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3.1 Meccano

A simple cube, C, is defined as meccano. We associate a planar graph, GC to
the meccano in the following way:

• Each face of the meccano corresponds to a vertex of the graph.
• Two vertices of the graph are connected if their corresponding meccano

faces share an edge.

Figure 1 shows the numbering of cube faces and their connectivities, and
Figure 2 represents the corresponding planar graph.

(a) (b)

Fig. 1. Meccano formed by one cube: (a) notation of nodes and faces of the cube
and (b) connectivities of faces

Fig. 2. Planar graph GC associated to the cube

The position of the cube is crucial to define an admissible mapping between
the cube and solid boundary, as we analyze later. However, its size is less
important, because it only affects the efficiency of the mesh optimization
step. For a genus-zero solid, if the center of the cube is placed inside the
solid, the existence of an admissible mapping is ensured.
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3.2 Mapping from Cube Faces to Solid Surface Patches

Once the cube is fixed, we have to determine a mapping between the cube
faces and the solid surface triangulation. First, we define the concept of ad-
missible mapping for a cube. Let ΣC be the boundary of the cube and ΣS
the boundary of the solid, given by a surface triangulation TS . We denote
by Σi

C the i-th face of the cube, i.e. ΣC =
⋃5

i=0 Σi
C . Let Π : ΣC → ΣS be a

piecewise function, such that Π|Σi
C

= Πi where Πi : Σi
C → Πi(Σi

C) ⊂ ΣS .
Then, Π is called an admissible mapping if it satisfies:

a) Functions {Πi}5
i=0 are compatible on ΣC . That is Πi

|Σi
C∩Σj

C
= Πj

|Σj
C∩Σi

C
,

∀i, j = 0, . . . , 5, with i �= j and Σi
C ∩ Σj

C �= ∅.
b) Global mapping Π is continuous and bijective between ΣC and ΣS .

We define an automatic admissible mapping in the following Sections. For
this purpose, we first construct a partition of the solid surface triangulation
into six patches, maintaining the topology of the graph in Figure 2, then we
parametrize each patch to a cube face.

Partition of the Solid Surface Triangulation

In the following we call connected subtriangulation to a set of triangles of
TS whose interior is a connected set. Given a decomposition of the surface
triangulation TS in any set of connected subtriangulations, we can associate
a planar graph, GS , to this partition in the following way:

• Each subtriangulation corresponds to a vertex of the graph.
• Two vertices of the graph are connected if their corresponding subtrian-

gulations have at least one common edge.

We say that a solid surface partition and the meccano are compatible if their
graphs are isomorphic, GS = GC . In our case, since the solid surface is iso-
morphic to a sphere, it is clear that a compatible partition exists. We now
propose an algorithm to obtain a decomposition of the given solid surface
triangulation TS into six subtriangulations {T i

S}5
i=0. We distinguish three

steps:

a) Subdivision in connected subtriangulations. We construct the Voronoi di-
agram associated to the centers of the six cube faces. We consider that a
triangle F ∈ TS belongs to the i-th Voronoi cell if its barycenter is inside
this cell. We generate a partition of TS in maximal connected subtrian-
gulations with this criterion, i.e. two subtriangulations belonging to the
same cell can not be connected. We denote as T ij

S the j-th connected
subtriangulation belonging to the i-th Voronoi cell, and ni is the total
number of subtriangulation in the i-th cell.
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b) Construction of the graph. We associate a planar graph, GS to the parti-
tion generated in the previous step. If the center of the cube is inside the
solid and the surface triangulation is fine enough, there is one compatible
subtriangulation for each Voronoi cell, i.e. there is one head subtriangula-
tion T i0

S , vertex of the graph GS , with the same connection as the vertex
associated to the i-th cube face in GC . Otherwise, the subtriangulation
with the greatest number of elements is chosen as T i0

S .
c) Reduction of the graph. In order to achieve a decomposition of TS , we

propose an iterative procedure to reduce the current graph GS . In each
step all triangles of T jk

S are included in the head subtriangulation T i0
S if:

– T i0
S is the head subtriangulation with the fewest number of triangles.

– T jk
S and T i0

S are connected.
– k is higher than zero.
Then, the vertex T jk

S is removed from the graph and its connectivities are
inherited by T i0

S . The connectivity of the graph is updated.
After this process, T i0

S could be connected to other subtriangulations
T il
S of the same i-th cell. In this case, the triangles of all T il

S are included in
T i0
S , the graph vertices T il

S are removed from the graph, their connectivi-
ties are inherited and the graph connectivities are updated. Therefore, the
connected subtriangulations are always maximal in all algorithm steps.

This procedure continues iteratively until the graph GS is comprised
only six head vertices, but the compatibility of GS with GC can not be
ensured. As the computational cost of this algorithm is low, a movement
in the cube center, in order to obtain a compatible partition {T i

S}5
i=0,

does not affect the efficiency of the meccano technique. In what follows
we denote Σi

S the solid surface patch defined by the triangles of T i
S .

Parametrization of the Solid Surface Triangulation

Once the given solid surface ΣS is decomposed into six patches Σ0
S , . . . , Σ5

S ,
we map each surface patch Σi

S to the corresponding cube face Σi
C by using

the parametrization of the surface triangulations T i
S proposed by M. Floater

[6]. So, we define
(
Πi

)−1 : Σi
S → Σi

C and we denote τ i
F =

(
Πi

)−1 (T i
S)

as the planar triangulation of Σi
C associated to T i

S . To obtain τ i
F , Floater

parametrization fixes their boundary nodes and the position of their inner
nodes is given by the solution of a linear system based on convex combi-
nations. Let {P i

1, . . . , P
i
n} be the inner nodes and {P i

n+1, . . . , P
i
N} be the

boundary nodes of T i
S , respectively, where N denotes the total number of

nodes of T i
S . Fixed the position of boundary nodes {Qn+1, . . . , QN} of τ i

F ,
the position of the inner nodes {Qi

1, . . .Q
i
n} is given by the solution of the

system:

Qi
k =

N∑
l=1

λklQ
i
l, k = 1, . . . , n.
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The values of the weights of the convex combinations {λkl}l=1,...,N
k=1,...,n verify

λkl = 0, if Pk and Pl are not connected
λkl > 0, if Pk and Pl are connected

N∑
l=1

λkl = 1, for k = 1, . . . n.

In [6] three alternatives are analyzed: uniform parametrization, weighted
least squares of edge lengths and shape preserving parametrization. Another
choice, called mean value coordinate, is presented in [8]. The goal is to obtain
an approximation of a conformal mapping.

In order to ensure the compatibility of {Πi}5
i=0, the boundary nodes of

{τ i
F }5

i=0 must coincide on their common cube edges. The six transformations
{Πi}5

i=0 define an admissible mapping between ΣC and ΣS , i.e. the cube
boundary triangulation τF =

⋃5
i=0 τ i

F is a global parametrization of the solid
surface triangulation TS .

Two important properties of mapping Π are:

(a) the triangulations τF and TS have the same topology,
(b) each triangle of τF is completely contained in one face of the cube.

We note that usual polycube-maps [25, 19] verify property (a), but they do
not verify property (b), i.e., a triangle belonging to TS can be transformed by
a polycube-map into a triangle whose vertices are placed on different faces
of the polycube.

The proposed mapping Π is used in a following step of the meccano al-
gorithm to map a new triangulations τK (obtained on ΣC by application of
the refinement algorithm of Kossaczky [17]) to the solid boundary. Several
problems can appear in the application of this transformation due to the fact
that a valid triangulation τK �= τF on ΣC can be transformed by Π into a
non-valid one on the solid surface.

3.3 Coarse Tetrahedral Mesh of the Meccano

We build a coarse and high quality tetrahedral mesh by splitting the cube
into six tetrahedra [17], see Figure 3(a). The resulting mesh can be recursively
and globally bisected to fix a uniform element size in the whole mesh. Three
consecutive global bisections for a cube are presented in Figures 3 (b), (c)
and (d). The resulting mesh of Figure 3(d) contains 8 cubes similar to the
one shown in Figure 3(a). Therefore, the recursive refinement of the cube
mesh produces similar tetrahedra to the initial ones.

3.4 Local Refined Tetrahedral Mesh of the Meccano

The next step in the meccano mesh generator includes a recursive adaptive
local refinement strategy, by using Kossaczky’s algorithm [17], of those tetra-
hedra with a face placed on a boundary face of the initial coarse tetrahedral
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(a) (b) (c) (d)

Fig. 3. Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivi-
sion into six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in
the cube main diagonal, (c) new nodes in diagonals of cube faces and (d) global
refinement with new nodes in cube edges

mesh of the cube. The refinement process is done in such a way that the
given solid surface triangulation TS is approximated by a new triangulation
within a given precision. That is, we seek an adaptive triangulation τK on
the cube boundary ΣC , so that the resulting triangulation after node map-
ping Π(τK) is a good approximation of the solid boundary. The user has to
introduce as input data a parameter ε, which is a tolerance to measure the
separation allowed between the linear piecewise approximation Π(τK) and
the solid surface defined by the triangulation TS . At present, we have con-
sidered two criteria: the first related to the Euclidean distance between both
surfaces and the second attending to the difference in terms of volume.

To illustrate these criteria, let abc be a triangle of τK placed on the mec-
cano boundary, and a′b′c′ the resulting triangle of Π(τK) after mapping the
nodes a, b and c on the given solid surface ΣS , see Figure 4. We define two
different criteria to decide whether it is necessary to refine the triangle (and
consequently the tetrahedron containing it) in order to improve the approx-
imation.

For any point Q in the triangle abc we define d1(Q) as the euclidean dis-
tance between the mapping of Q on ΣS , Q′, and the plane defined by a′b′c′.
This definition is an estimate of the distance between the surface of the solid
and the current piecewise approximation Π(τk).

We also introduce a measure in terms of volume and then, for any Q in
the triangle abc, we define d2(Q) as the volume of the virtual tetrahedron
a′b′c′Q′. In this case, d2(Q) is an estimate of the lost volume in the linear
approximation by the face a′b′c′ of the solid surface.

The threshold of whether to refine the triangle or not is given by a tolerance
εi fixed by the user. We note that other measures could be introduced in line
with the desired approximation type (curvature, points properties, etc.).

The refinement criterion decides whether a tetrahedron should be refined
attending to the current node distribution of triangulation τK on the cube
boundary ΣC and their virtual mapping Π(τK) on the solid boundary ΣS .
The separation between triangulations Π(τK) and Π(τF ) = TS is used in the
refinement criterion for tetrahedron T :
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Refinement criterion
Tetrahedron T is marked to be refined if it satisfies the following two conditions:

1. T has a face F ∈ τK on the cube boundary.
2. di(Q) ≥ εi for some node Q ∈ τF located on face F of T .

From a numerical point of view, the number of points Q (analyzed in this
strategy) is reduced to the set of nodes of the triangulation τF (defined by the
parametrization of Floater) that are contained in face F . We use the nested
mesh genealogy to implement the refinement criterion efficiently.

Finally, the refinement procedure for constructing a local refined tetrahe-
dral mesh of the meccano is summarized in the following algorithm:

Refinement procedure
1. Given the coarse tetrahedral mesh of the meccano.
2. Set a tolerance εi.
3. Do

a) Mark for refinement all tetrahedra that satisfy the refinement criterion
for a distance di and a tolerance εi.

b) Refine the mesh.
While any tetrahedron T is marked.

S

a b
c

a’ c’

b’

P

P’

(a)

S

a b
c

a’ c’

b’

P

P’

(b)

Fig. 4. Node mapping from meccano to real domain: (a) mapping Π from external
nodes a, b, c, P to a′, b′, c′, P ′, and (b) relocation of an inner node P in P ′



472 J.M. Cascón et al.

We denote nb the number of levels of the nested tetrahedral mesh sequence
and τK the resulting triangulation of the cube boundary associated to the
finest level of the sequence. We note that the refinement procedure automat-
ically concludes according to a single parameter, i.e. εi.

3.5 External Node Mapping on Solid Boundary

Once we have defined the local refined tetrahedral mesh by using the method
proposed in the previous Section, the nodes of the triangulation τK are
mapped to the solid surface. Therefore, the triangulation Π(τK) is the new
approximation of the solid surface.

After this process, due to the properties of Floater’s parametrization,
Π(τK) is generally a valid triangulation. However, unacceptable triangula-
tions can appear. We have checked that this problem only appear when the
mesh size of surface approximation Π(τK) is the same order than the mesh
size of TS . So, if a more precise approximation of the solid surface is demanded
to the meccano approximation, a simple solution is to refine the given solid
surface triangulation TS .

In addition, a tangled tetrahedral mesh is generated because the position
of the inner nodes of the cube tetrahedral mesh has not changed.

3.6 Relocation of Inner Nodes

Even if Π(τK) is an acceptable triangulation, an optimization of the solid
tetrahedral mesh is necessary. Since it is better that the optimization algo-
rithm starts from a mesh with as good a quality as possible, we propose to
relocate the inner nodes of the cube tetrahedral mesh in a reasonable position
before the mesh optimization.

Although this node movement does not solve the tangle mesh problem, it
normally reduces it. In other words, the resulting number of inverted elements
is lower and the mean quality of valid elements is greater.

There would be several strategies for defining an appropriate position for
each inner node of the cube mesh. The relocation procedure should modify
their relative position as a function of the solid surface triangulation before
and after their mapping Π , see Figure 4(b). However, an ideal relocation of
inner nodes requires a volume mapping from the cube to the complex solid.
Obviously, this information is not known a priori. In fact, we will reach an
approximation of this volume mapping at the end of the mesh generation.

An interesting idea is to use an specific discrete volume mapping that
is defined by the transformation between a cube tetrahedral mesh and the
corresponding solid tetrahedral mesh. In practice, a good strategy is: we start
meshing the solid by using a high value of ε (a coarse tetrahedral mesh of the
solid is obtained) and we continue decreasing it gradually. In the first step of
this strategy, no relocation is applied. In this case, the number of nodes of
the resulting mesh is low and the mesh optimization algorithm is fast. In the
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following steps a relocation of inner nodes is applied by using the mapping
that is defined by the previous iteration.

3.7 Solid Mesh Optimization: Untangling and Smoothing

The proposed relocation procedure, based on volumetric parametrization, is
efficient but does not solve the tangling problem completely. Therefore, it is
necessary to optimize the current mesh. This process must be able to smooth
and untangle the mesh and is crucial in the proposed mesh generator.

The most usual techniques to improve the quality of a valid mesh, that
is, a mesh with no inverted elements, are based upon local smoothing. In
short, these techniques consist of finding the new positions that the mesh
nodes must hold, in such a way that they optimize an objective function.
Such a function is based on a certain measurement of the quality of the local
submesh, N (v), formed by the set of elements connected to the free node v,
whose coordinates are given by x. We have considered the following objective
function derived from an algebraic mesh quality metric studied in [16],

K (x) =

[
M∑

m=1

(
1

qηm

)p

(x)

] 1
p

where M is the number of elements in N (v), qηm is an algebraic quality
measure of the m-th element of N (v) and p is usually chosen as 1 or 2.
Specifically, we have considered the mean ratio quality measure, which for a

tetrahedron is qη = 3σ
2
3

|S|2 and for a triangle is qη = 2σ
|S|2 , |S| being the Frobenius

norm of matrix S associated to the affine map from the ideal element (usually
equilateral tetrahedron or triangle) to the physical one, and σ = det (S).
Other algebraic quality measures can be used as, for example, the metrics
based on the condition number of matrix S, qκ = ρ

|S||S−1| , where ρ = 2 for
triangles and ρ = 3 for tetrahedra. It would also be possible to use other
objective functions that have barriers like those presented in [15].

We have proposed in [4] an alternative to the procedure of [12, 11], so
the untangling and smoothing are carried out in the same stage. For this
purpose, we use a suitable modification of the objective function such that
it is regular all over R3. It consists of substituting the term σ in the quality
metrics with the positive and increasing function h(σ) = 1

2 (σ +
√

σ2 + 4δ2).
When a feasible region (subset of R3 where v could be placed, N (v) being
a valid submesh) exists, the minima of the original and modified objective
functions are very close and, when this region does not exist, the minimum
of the modified objective function is located in such a way that it tends to
untangle N (v). With this approach, we can use any standard and efficient
unconstrained optimization method to find the minimum of the modified
objective function.
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In addition, a smoothing of the boundary surface triangulation could be
applied before the movement of inner nodes of the domain by using the
procedure presented in [5, 20].

4 Test Examples

We have implemented the meccano technique using:

• The parametrization toolbox of the geometry group at SINTEF ICT,
Department of Applied Mathematics.

• The module of 3D refinement of ALBERTA code.
• Our optimization mesh procedure describes in Section 3.7.

The parametrization of a surface triangulation patch T i
S to a cube face

Σi
C is done with GoTools core and parametrization modules from SINTEF

ICT, available on the website http://www.sintef.no/math software. This code
implements Floater’s parametrization in C++. Specifically, in the following
applications we have used the mean value method for the parametrization
of the inner nodes of triangulation, and the boundary nodes are fixed with
chord length parametrization [6, 8].

ALBERTA is an adaptive multilevel finite element toolbox [24] developed
in C. This software can be used to solve several types of 1-D, 2-D or 3-
D problems. ALBERTA uses the Kossaczky refinement algorithm [17] and
requires an initial mesh topology [23]. The recursive refinement algorithm
could not terminate for general meshes. The meccano technique constructs
meshes that verify the imposed restrictions of ALBERTA relative to topology
and structure. In addition, the minimum quality of refined meshes is function
of the initial mesh quality.

The performance of our novel tetrahedral mesh generator is shown in the
following applications. The first corresponds to a Bust and the second to the
Stanford Bunny. We have obtained a surface triangulation of these objects
from internet. For both examples, the meccano is just a cube.

4.1 Example 1: Bust

The original surface triangulation of the Bust has been obtained from the
website http://shapes.aimatshape.net, i.e. AIM@SHAPE Shape Repository,
and it is shown in Figure 5(a). It has 64000 triangles and 32002 nodes.
The bounding box of the solid is defined by the points (x, y, z)min =
(−120,−30.5,−44) and (x, y, z)max = (106, 50, 46).

We consider a cube, with an edge length equal to 20, as meccano. Its center
is placed inside the solid at the point (5,−3, 4). We obtain an initial subdivi-
sion of Bust surface in seven maximal connected subtriangulations. In order
to get a compatible decomposition of the surface triangulation, we use the
proposed iterative procedure to reduce the current seven vertices of the graph
GS to six. Figure 5(a) shows the resulting compatible partition {T i

S}5
i=0.
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(a) (b)

Fig. 5. (a) Original surface triangulation of the Bust with a compatible partition
{T i

S}5
i=0 after applying our reduction algorithm and (b) the resulting valid tetrahe-

dral mesh generated by the meccano method

We map each surface patch Σi
S to the cube face Σi

C by using the Floater
parametrization [6]. Once the global parametrization of the Bust surface tri-
angulation is built, see Figure 6(a), the definition of the one-to-one mapping
between the cube and Bust boundaries is straightforward.

Fixing a tolerance ε2 = 0.1, the meccano method generates a tetrahedral
mesh of the cube with 147352 tetrahedra and 34524 nodes; see Figures 6(b)
and 7(a). This mesh has 32254 triangles and 16129 nodes on its boundary
and it has been reached after 42 Kossaczky refinements from the initial sub-
division of the cube into six tetrahedra. The mapping of the cube external
nodes to the Bust surface produces a 3-D tangled mesh with 8947 inverted
elements; see Figure 7(b). The relocation of inner nodes by using volume
parametrizations reduces the number of inverted tetrahedra to 285. We ap-
ply the mesh optimization procedure [4] and the mesh is untangled in 2
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(a) (b)

Fig. 6. (a) Floater’s parametrization of {T i
S}5

i=0 on corresponding cube faces for
the bust application, (b) cube tetrahedral mesh obtained by the meccano method

iterations. The mesh quality is improved to a minimum value of 0.07 and an
average qκ = 0.73 after 10 smoothing iterations. We note that the meccano
technique generates a high quality tetrahedral mesh (see Figure 5(b)): only
1 tetrahedron has a quality less than 0.1, 13 less than 0.2 and 405 lees than
0.3. In Figure 7, we display two cross sections of the cube and Bust meshes
before and after the mesh optimization. The location of the cube is shown in
Figure 7(b).

The CPU time for constructing the final mesh of the Bust is 93.27 seconds
on a Dell precision 690, 2 Dual Core Xeon processor and 8 Gb RAM memory.
More precisely, the CPU time of each step of the meccano algorithm is: 1.83
seconds for the subdivision of the initial surface triangulation into six patches,
3.03 seconds for the Floater parametrization, 44.50 seconds for the Kossaczky
recursive bisections, 2.31 seconds for the external node mapping and inner
node relocation, and 41.60 seconds for the mesh optimization.

4.2 Example 2: Bunny

The original surface triangulation of the Stanford Bunny has been ob-
tained from the website http://graphics.stanford.edu/data/3Dscanrep/ , i.e.
the Stanford Computer Graphics Laboratory, and it is shown in Figure 8(a).
It has 12654 triangles and 7502 nodes. The bounding box of the solid is de-
fined by the points (x, y, z)min = (−10, 3.5,−6) and (x, y, z)max = (6, 2, 6).

We consider a unit cube as meccano. Its center is placed inside the solid
at the point (−4.5, 10.5, 0.5). We obtain an initial subdivision of the Bunny
surface in eight maximal connected subtriangulations using Voronoi diagram.
We reduce the surface partition to six patches and we construct the Floater
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(a) (b) (c)

Fig. 7. Cross sections of cube (a) and Bust tetrahedral meshes before (b) and after
(c) the application of the mesh optimization procedure

(a) (b)

Fig. 8. (a) Original surface triangulation of the Stanford Bunny and (b) the re-
sulting valid tetrahedral mesh generated by the meccano method

parametrization from each surface patch Σi
S to the corresponding cube face

Σi
C . Fixing a tolerance ε2 = 0.0005, the meccano method generates a tetra-

hedral mesh with 54496 tetrahedra and 13015 nodes. This mesh has 11530
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(a) (b) (c)

Fig. 9. Cross sections of cube (a) and Bunny tetrahedral meshes before (b) and
after (c) the application of the mesh optimization process

triangles and 6329 nodes on its boundary and has been reached after 44 Kos-
saczky refinements from the initial subdivision of the cube into six tetrahedra.
The mapping of the cube external nodes to the Bunny surface produces a
3-D tangled mesh with 2384 inverted elements, see Figure 9(b). The reloca-
tion of inner nodes by using volume parametrizations reduces the number
of inverted tetrahedra to 42. We apply 8 iterations of the tetrahedral mesh
optimization and only one inverted tetrahedra can not be untangled. To solve
this problem, we allow the movement of the external nodes of this inverted
tetrahedron and we apply 8 new optimization iterations. The mesh is then
untangled and, finally, we apply 8 smoothing iterations fixing the boundary
nodes. The mesh quality is improved to a minimum value of 0.08 and an aver-
age qκ = 0.68. We note that the meccano technique generates a high quality
tetrahedral mesh: only 1 tetrahedron has a quality below 0.1, 41 below 0.2
and 391 below 0.3. In Figure 9, we display two cross sections of the cube and
Bunny meshes before and after the mesh optimization. The location of the
cube can be observed in Figure 9(b).

The CPU time for constructing the final mesh of the Bunny is 40.28 seconds
on a Dell precision 690, 2 Dual Core Xeon processor and 8 Gb RAM memory.
More precisely, the CPU time of each step of the meccano algorithm is: 0.24
seconds for the subdivision of the initial surface triangulation into six patches,
0.37 seconds for the Floater parametrization, 8.62 seconds for the Kossaczky
recursive bisections, 0.70 seconds for the external node mapping and inner
node relocation, and 30.35 seconds for the mesh optimization.

5 Conclusions and Future Research

The meccano technique is a very efficient mesh generation method for creating
adaptive tetrahedral meshes of a solid whose boundary is a surface of genus
0. We highlight the fact that the method requires minimum user intervention
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and has a low computational cost. The procedure is fully automatic and it is
only defined by a surface triangulation of the solid, a cube and a tolerance
ε that fixes the desired approximation of the solid surface. In addition, the
quality of the resulting meshes is high.

The definition of an automatic parametrization of a solid surface triangu-
lation to the meccano boundary is a significant advance for the method. To
that end, we have introduced an automatic partition of the given solid surface
triangulation for fixing an admissible mapping between the cube faces and
the solid surface patches.

In future works, the meccano technique can be extended for meshing a
complex solid whose boundary is a surface of genus greater than zero. In
this case, the meccano can be a polycube or a set of polyhedral pieces with
compatible connections.
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e Investigación of the Ministerio de Ciencia e Innovación of the Spanish
Government and FEDER, grant contracts: CGL2008-06003-C03.

References

1. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton,
S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis: Toward unification of
computer aided design and finite element analysis. In: Trends in Engineering
Computational Technology, pp. 1–16. Saxe-Coburg Publications, Stirling (2008)

2. Cascón, J.M., Montenegro, R., Escobar, J.M., Rodŕıguez, E., Montero, G.: A
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Collars and Intestines:
Practical Conforming Delaunay Refinement

Alexander Rand and Noel Walkington

Carnegie Mellon University

Abstract. While several existing Delaunay refinement algorithms allow acute 3D piecewise
linear complexes as input, algorithms producing conforming Delaunay tetrahedralizations (as
opposed to constrained or weighted Delaunay tetrahedralizations) often involve cumbersome
constructions and are rarely implemented. We describe a practical construction for both “col-
lar” and “intestine”-based approaches to this problem. Some of the key ideas are illustrated
by the inclusion of the analogous 2D Delaunay refinement algorithms, each of which differs
slightly from the standard approach. We have implemented the 3D algorithms and provide
some practical examples.

1 Introduction

Acute input angles pose significant challenges to Delaunay refinement algorithms
for quality mesh generation in both two and three dimensions. In 2D, the formation
of a conforming mesh is relatively simple: acutely adjacent input segments must be
split at equal lengths. Research extending Ruppert’s algorithm [16] to accept small
input angles [17, 8] focused on finding algorithms which involve simple modifi-
cations of Ruppert’s algorithm and produce the “best” output meshes in practice.
In 3D, producing a conforming tetrahedralization of an arbitrary piecewise linear
complex (PLC) involves a substantial construction [10, 6] and quality refinement
algorithms have been developed in the context of this construction [5, 11]. Alter-
native algorithms involving weighted [4, 3] and constrained [17, 19, 18] Delaunay
tetrahedralization have also been developed. Due to these different challenges, the
algorithms for 3D Delaunay refinement of acute domains are markedly different
than those in 2D.

In this paper, we describe two related strategies for the protection of acute angles
during 3D Delaunay refinement: collars and intestines. The collar approach general-
izes the construction of Murphy, Mount, and Gable [10] and that of Cohen-Steiner,
Colin de Verdière, and Yvinec [6] and produces a quality mesh following the ideas
of Pav and Walkington [11]. The intestine approach is closely related to the quality
refinement algorithm of Cheng and Poon [5]. Unlike these previous algorithms for
3D Delaunay refinement of acute input, our algorithms are motivated by analogous
2D versions and, more notably, have been implemented.



482 A. Rand and N. Walkington

Algorithm 1. Quality Refinement of Acute Input
(PROTECT) Protect acute input angles.
(REFINE) Perform a protected version of Ruppert’s algorithm.

Algorithm 1 is the template for both the collar and intestine based refinement al-
gorithms. The (PROTECT) step requires information about the (d − 2)-dimensional
features of the input complex. We note that a brute force computation of this infor-
mation can be avoided using estimates resulting from certain Delaunay refinement
algorithms [13, 14] or an exact computation during sparse Voronoi refinement [9].

Section 2 contains necessary preliminaries for our analysis. Section 3 describes
both collar and intestine based Delaunay refinement algorithms in two dimensions,
and the three-dimensional algorithms are given in Section 4. Finally, some examples
and practical issues are discussed in Section 5.

2 Preliminaries

2.1 Definitions

Our algorithms accept an arbitrary PLC as input and involve an intermediate piece-
wise smooth complex (PSC), defined below.

Definition 1. In three dimensions [or two dimensions]:

• A piecewise linear complex (PLC), C = (P,S,F ) [(P,S)], is a triple [duple]
of sets of input vertices P, input segments S, and polygonal input faces F such
that the boundary of any feature or the intersection of any two features is the
union of lower-dimensional features in the complex.

• A PLC C′ = (P′,S′,F ′) [(P′,S′)] is a refinement of the PLC C = (P,S,F ) if
P ⊂ P′, each segment in S is the union of segments in S′, and every face in F
is the union of faces in F ′.

• A piecewise smooth complex (PSC), C = (P,S,F ) [C = (P,S)], is a triple
[duple] of sets of input vertices P, non-self-intersecting smooth input curves S,
and non-self-intersecting smooth input faces F such that the boundary of any
feature or the intersection of any two features is the union of lower-dimensional
features in the complex.

Definition 2. Let C be a PLC.

• The i-local feature size at point x with respect to C, lfsi(x,C), is the radius of
the smallest closed ball centered at x which intersects two disjoint features of C
of dimension no greater than i.

• The 1-feature size of segment s with respect to C, fs1(s,C), is the radius of the
smallest closed ball centered at a point x ∈ s intersecting a segment or input
vertex of C which does not intersect s.
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If the argument supplied to the local feature size function is a set of points, rather
than a single point, then the result is defined to be the infimum of the function
over the set, i.e. lfsi(s,C) := infx∈s lfsi(x,C). Often the PLC argument supplied to
the local feature size is that of the input complex and in this case the argument will
be omitted. The subscript will be omitted when it is equal to (d − 1) where d is the
dimension, i.e. lfs(x) := lfs2(x) in 3D.

For a PSC we will use the same definition of local feature size as for a PLC.
Typically the definition of local feature size for a PSC also involves the radius of
curvature or the distance to the medial axis. Since we will only use a very restricted
class of PSCs the simpler definition is sufficient. In our particular constructions
the radius of curvature is proportional to (and often equal to) the local feature size
defined above.

2.2 Generic Delaunay Refinement Algorithm

The Delaunay refinement algorithms which we will consider have the form of Al-
gorithm 2. Additionally, we require that each of the operations involve only local
computations in the Delaunay triangulation of the current vertex set. To specify an
algorithm from Algorithm 2, it is necessary to carefully describe the following four
statements.

Algorithm 2. Delaunay Refinement
Create an initial Delaunay triangulation.
Queue all unacceptable simplices.
while the queue of simplices is nonempty do

if it is safe to split the front simplex then
Take an action based on the front simplex.
Queue additional unacceptable simplices.

end if
Remove the front simplex from the queue.
Dequeue any queued simplices which no longer exist.

end while

Action Where should a vertex be inserted to “split” a simplex? Should
other simplices be added to the queue?

Priority In what order should the queue be processed?
Unacceptability Which simplices are unacceptable?

Safety Which simplices are safe to split?

3 Delaunay Refinement in 2D

Before describing the full 3D algorithms, analogous 2D Delaunay refinement al-
gorithms are given. The resulting algorithms are similar to those typically used for
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Delaunay refinement in the presence of acute input angles [17, 8], but avoid certain
challenges which are difficult to extend to 3D.

We will describe the two steps in the refinement of an arbitrary PLC given in
Algorithm 1: acute input angles are first protected, and then Delaunay refinement
is performed. We assume that an appropriate estimate of the local feature size is
available at each input vertex. Specifically, we require that for each q0 which is the
vertex of an acute input angle, we are given a distance dq0 which satisfies b· lfs(q0) ≤
dq0 ≤ min(c0 · lfs0(q0), c1 · lfs(q0)) for some constants b > 0, c0 ∈ (0, .5) and
c1 ∈ (0, 1).

3.1 Collar Protection Region

A collar protection region involves forming “collar” segments of equal length
around each input vertex so that the Delaunay triangulation conforms to the input
near this vertex. The subsequent Delaunay refinement algorithm will then prevent
the insertion of any vertices which encroach this collar region.

(PROTECT) Formation of the Protection Region

For each q0 which is the vertex of an acute input angle, each input segment con-
taining q0 is split at a distance dq0 away from q0. Figure 3.1 depicts an example of
the points inserted during this step.

Each end segment containing the vertex of an acute input angle will be called a
collar simplex and vertices inserted during this step are called collar vertices. First,
we observe that the collar simplices are sufficiently far away from disjoint input
features of C.

Lemma 1. For any input point q0 ∈ P,

dist
(
B(q0, dq0), B(q′0, dq′0)

)
≥ (1 − 2c0) lfs(q0) for all P � q′0 � q0 and

dist
(
B(q0, dq0), s

)
≥ (1 − c1) lfs(q0) for all segments s � q0.

Let α be the smallest angle between adjacent segments in C and let C̄ denote the
refined PLC obtained after inserting all of the collar vertices. The next lemma quan-
tifies the relationship between the local feature size of C̄ and C.

(a) Collar approach (b) Intestine approach

Fig. 1. Two different protection approaches
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Lemma 2. There exists K > 0 depending only on b and c0 such that for all x,

lfs(x, C̄) ≤ lfs(x,C) ≤ K
sin(α)

lfs(x, C̄).

With the protection region in place, Delaunay refinement can now be performed.

(REFINE) Protected Delaunay Refinement

This step is the Delaunay refinement algorithm described in Algorithm 3 (by
specializing Algorithm 2). Each new end segment is “protected” during refinement:
no vertices will be inserted in the diametral ball of these segments. To ensure this,
circumcenters which encroach these end segments are rejected by the safety criteria.
Lemma 1 ensures that no inserted midpoints encroach upon a collar simplex and thus
the diametral disk of each collar simplex will be empty throughout the algorithm.

Algorithm 3. 2D Delaunay Refinement With Collar

Action Insert the circumcenter of a simplex unless it causes a lower-dimensional
simplex to be unacceptable. In this case, queue the lower-dimensional sim-
plex.

Priority Segments are given higher priority than triangles.
Unacceptability A segment with a non-empty diametral disk is unacceptable.

A triangle with radius-edge ratio larger than τ is unacceptable.
Safety Collar simplices are not safe to split.

The termination of the algorithm and properties of the resulting mesh are de-
scribed in Theorems 1 and 2. The first theorem ensures that the algorithm terminates
and the resulting mesh is graded to the local feature size, and the second theorem
asserts that the mesh conforms to the input PLC and specifies which triangles near
collar simplices may have poor quality.

Theorem 1. For any τ >
√

2, there exists K > 0 depending only upon τ, b, and c0

such that for each vertex q inserted by Algorithm 3,

lfs(q,C) ≤ K
sin(α)

rq.

Remark 1. The inequality lfs(q, C̄) ≤ Krq is shown using an argument identical
to the standard analysis of Ruppert’s algorithm. Then Lemma 2 yields the desired
inequality.

Theorem 2. Algorithm 3 produces a conforming Delaunay triangulation of C. The
circumcenter of any remaining triangle with radius-edge ratio larger than τ lies in
the diametral disk of a collar simplex.
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3.2 Intestine Protection Region

The intestine protection region yields the added result that no triangles in the result-
ing mesh have angles larger than π−2κ, where κ := sin−1

(
1
2τ

)
is the minimum angle

corresponding to the radius-edge threshold τ.

(PROTECT) Formation of the Protection Region

For each input vertex q0 at an acute input angle, all input segments containing q0

are split at a distance dq0 away from q0. Additionally, vertices are added such that
all arcs of the circle centered at q0 with radius dq0 are no larger than π2 . This ensures
that the diametral ball of each arc of the circle does not contain q0 and requires at
most three additional vertices per input vertex.

We will now consider a PSC Ĉ defined by the input PLC, vertices inserted on
each segment at distance dq0 from each input vertex q0 (as in the collar protection
region), and the boundary arcs of each disk B(q, dq) as depicted in Figure 3.1. The
essential property of the PSC Ĉ is that all acute angles between features occur be-
tween segments of C and are contained in

⋃
q0

B(q0, dq0). Let α again denote the
smallest angle between adjacent segments of C. The local feature sizes with respect
to C and Ĉ are related, as described in the next lemma.

Lemma 3. There exists K > 0 depending only on b, c0, and c1 such that for all x,

lfs(x, Ĉ) ≤ lfs(x,C) ≤ K
sin(α)

lfs(x, Ĉ).

A suitably sized protection region has been formed and now the subsequent Delau-
nay refinement algorithm can be described and analyzed.

(REFINE) Protected Delaunay Refinement

Ruppert’s algorithm can be performed outside of
⋃

q0
B(q0, dq0) and each of the

boundary arcs of any disk B(q0, dq0 ) is protected by the diametral disk of its end-
points. This is described completely in Algorithm 4. Refinement of general PSCs
in 2D by algorithms similar to Ruppert’s has been considered [1, 2, 12] and our
analysis follows these developments.

Algorithm 4 terminates and produces a conforming graded mesh as described in
the following two theorems.

Algorithm 4. 2D Delaunay Refinement With Intestine

Action Insert the circumcenter of a simplex unless it causes a lower-dimensional
simplex or arc to be unacceptable. In this case, queue the lower-
dimensional object. Insert the midpoint of an arc.

Priority Segments and arcs are given higher priority than triangles.
Unacceptability A segment or arc with a non-empty diametral disk is unacceptable.

A triangle with radius-edge ratio less than τ is unacceptable.
Safety All simplices and arcs are safe to split.
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Theorem 3. For any τ >
√

2, there exists K > 0 depending only upon τ, b, c0, and
c1 such that for each vertex q inserted by Algorithm 4,

lfs(q,C) ≤ K
sin(α)

rq.

Remark 2. Unlike Theorem 1, the proof of Theorem 3 is substantially more involved
than the usual proof for Ruppert’s algorithm. This is a result of the smooth input
features of Ĉ. Using the techniques of Theorem 1, Theorem 3 can be shown with
the strong restriction that τ > 2.

Theorem 4. Algorithm 4 produces a conforming Delaunay triangulation of C. Any
remaining triangle with radius-edge ratio larger than τ is inside B(q0, dq0) for some
input vertex q0. The resulting triangulation contains no angles larger than π − 2κ.

4 Delaunay Refinement in 3D

Producing a conforming Delaunay tetrahedralization of a 3D PLC requires a con-
sistent mesh along segments between acutely adjacent features. To initially form
this consistent mesh we require the feature size to be known along segments of the
input mesh. Given a PLC C = (P,S,F ), we will assume that we have a refinement
C1 = (P1,S1,F ) such that

(H1)
(P′ \ P) \ (∪s∈Ss) = ∅,

(H2) for any q0 ∈ P, all s1 ∈ S1 such that q0 ∈ s1 have equal length satisfying
|s1| ≤ c0 · lfs0(q0), and

(H3) for all s1 ∈ S1, b ·min( fs1(s1), lfs(s1)) < |s1| < c1 ·min( fs1(s1), lfs(s1)),

where b > 0, c0 ∈ (0, .5), and c1 ∈ (0, 1) are some constants.

4.1 Collar Protection Region

(PROTECT) Formation of the Protection Region

For each input face, the collar is formed by inserting vertices according to the
following rules.

1. If s and s′ are adjacent non-end segments which meet at vertex q, then a
vertex p is inserted at distance max(|s|,|s′|)

2 from q, in any direction into the
face perpendicular to s.

2. If s is an end segment and s′ is an adjacent non-end segment, both contain-
ing vertex q, then insert vertex p at the intersection of any line parallel to s
in the face at distance |s

′|
2 away from s and on the circle of radius |s| around

the input point on s.
3. For any input vertex q0 on a segment s, insert collar vertices such that the

sphere of radius |s| around q0 restricted to the face has no arcs of angle
larger than π2 .
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Collar Vertex

Collar Simplex

Collar Segment

Collar Region

Collar Arc

Input Vertex Input Segment

(a) Collar definitions (b) Typical collar simplices

Fig. 2. Collar region

Below is a list of objects defined to describe the collar based on the vertices
inserted during this step. These objects are depicted in Figure 2(a).

Collar Vertex A vertex inserted during the (PROTECT) step or as a midpoint
of a collar segment or arc during the (REFINE) step.

Collar Segment A segment between collar vertices corresponding to adjacent
vertices on an input segment.

Collar Arc An arc between adjacent collar vertices corresponding to the
same input vertex.

Collar Region The region between input segments and collar segments and
arcs.

Collar Simplex A simplex in the Delaunay triangulation of the face which lies
inside the collar region.

Following the insertion of the collar vertices, the resulting Delaunay tetrahedral-
ization satisfies a number of properties given in the following lemma.

Lemma 4. After inserting collar vertices, the following properties hold.

(I) All adjacent collar segments and arcs meet at non-acute angles.
(II) The diametral disk of each collar segment contains no vertices in P′.

(III) The circumball of any collar simplex contains no vertices in P′.
(IV) The circumball of any collar simplex does not intersect any disjoint faces or

segments.

Remark 3. The circumball of a simplex refers to the smallest open sphere such that
all vertices of the simplex lie on the boundary of the sphere.

Since the circumball of each collar simplex is empty, the collar simplices conform
to the input. Collar segments meet non-acutely and thus the complement of the col-
lar region in each face is well-suited for Ruppert’s algorithm. The final property is
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needed to guarantee that subsequent vertices inserted for conformity will not en-
croach upon disjoint collar simplices.

The collar divides each face into two regions: the collar region and the non-collar
region. Let C̄ be the PSC including each face divided into its collar and non-collar
regions and all collar segments and arcs. Let α1 be the smallest angle between an
input segment and another adjacent input feature in the mesh and let α2 be the small-
est angle between adjacent input faces. The next lemma asserts that this augmented
complex C̄ preserves the initial local feature size, up to a factor depending on α1

and α2.

Lemma 5. There exists a constant K > 0 depending only upon b, c0, and c1 such
that

lfs(x, C̄) ≤ lfs(x,C) ≤ K
sinα1 sinα2

lfs(x, C̄).

As usual, the protection procedure is followed by a Delaunay refinement algorithm.

(REFINE) Protected Delaunay Refinement

The PSC C̄ is now refined based on both quality and conformity criteria using a
modified version of Ruppert’s algorithm. Similarly to the non-acute case, any max-
imum radius-edge threshold τ > 2 can be selected for determining poor quality
tetrahedra. The Delaunay refinement algorithm is specified in Algorithm 5.

Algorithm 5. 3D Delaunay Refinement With Collar

Action Insert the circumcenter of a simplex unless it causes a lower-dimensional
simplex, collar segment, or collar arc to be unacceptable. In this case,
queue the lower-dimensional object. Insert the midpoint of a collar arc.

Priority Collar segments and arcs are given the highest priority. Other simplices are
prioritized by dimension with lower-dimensional simplices processed first.

Unacceptability A simplex, collar segment, or collar arc is unacceptable if it has a nonempty
circumball. A tetrahedron is unacceptable if its radius-edge ratio is larger
than τ.

Safety It is not safe to split any collar simplex (this includes both triangles in input
faces and subsegments of input segments).

The key difference between Algorithm 5 and the 3D version of Ruppert’s algo-
rithm is the safety criteria. This prevents the cascading encroachment associated
with acutely adjacent segments and faces. Since collar arcs must be protected, anal-
ysis of the 3D refinement with the collar protection scheme is closely related to the
2D refinement with the intestine protection scheme.

During the algorithm, it is important to ensure that the properties of the collar
in Lemma 4 continue to hold while allowing refinement of the non-collar region
of each face to create a conforming mesh. In the 2D collar protection procedure,
the collar simplices (i.e. the end segments) never change during Algorithm 3. In
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3D however, the set of collar simplices does change. This occurs when the standard
Delaunay refinement algorithm seeks to insert a vertex in a face that encroaches
upon a collar segment or collar arc. Instead of adding this encroaching vertex, this
collar segment or arc is split. This new vertex is a collar vertex and the collar seg-
ment or arc is replaced with two new collar segments or arcs. The collar region has
not changed but the set of collar simplices has changed. Further, this new vertex
may encroach upon the circumball of another collar simplex in an adjacent face.
In this face, the collar segment associated with this encroached circumball is also
split so that the collar simplices on adjacent faces again “line up.” So conformity of
the mesh is maintained by only splitting the collar segments and thus the algorithm
never attempts to insert the circumcenter of an encroached collar simplex.

Several key properties hold throughout the algorithm whenever there are no collar
segments or collar arcs on the queue.

Lemma 6. If the queue of unacceptable simplices does not contain any collar seg-
ments or collar arcs, the following properties hold.

(I) Adjacent collar segments and arcs meet at non-acute angles.
(II) The circumball of any collar element contains no vertices in P′.

The first property is important to guarantee the termination of the algorithm, while
the second property is important for ensuring the resulting tetrahedralization con-
forms to the input. These two facts are stated precisely in the next two theorems.
Recall that α1 is the smallest angle between an input segment and an adjacent fea-
ture while α2 is the smallest angle between adjacent input faces.

Theorem 5. For any τ > 2, there exists K > 0 depending only upon τ, b, c0, and c1

such that for each vertex q inserted by Algorithm 5,

lfs(q,C) ≤ K
sinα1 sinα2

rq.

Remark 4. Since C̄ includes smooth arcs, the proof of Theorem 5 involves many of
the techniques used in Theorem 3.

Theorem 6. Algorithm 5 produces a conforming Delaunay tetrahedralization of C.
The circumcenter of any remaining tetrahedra with radius-edge ratio larger than τ
lies in the circumball of a collar simplex.

4.2 Intestine Protection Region

The intestine approach for protecting acute input angles mirrors that in 2D described
in Section 3.2. Smooth features will be added to the input to isolate all input seg-
ments and vertices (or at least those contained in acutely adjacent features) from the
region to be refined for tetrahedron quality.
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(PROTECT) Formation of the Protection Region

The vertices and features which are added to the mesh in this step are a superset
of those added during the (PROTECT) step of the collar approach (which created
the PSC C̄). In addition to features of C̄, the following objects are included to form
a new PSC Ĉ.

• For each input vertex q0 which belongs to some segment let dq0 be the length of
all segments containing q0. Then Ĉ includes ∂B(q0, dq0 ).

• For each collar segment s let c be the surface of revolution produced by re-
volving segment s about its associated input segment. The features c and ∂c are
included in Ĉ.

The region inside each sphere and cylindrical surface added to the mesh will
be called the intestine region and the remaining volume is called the non-intestine
region. This is depicted in Figure 3. This construction is designed to ensure the
following fact.

Lemma 7. The non-intestine region of the PSC Ĉ contains no acute angles between
features.

This lemma is necessary to ensure that the usual proof of termination and grading
will apply to Delaunay refinement in the non-intestine region. Let α1 and α2 denote
the smallest angles in the input as discussed previously.

Lemma 8. There exists K > 0 depending only on b, c0 and c1 such that for all x,

lfs(x,C) ≤ lfs(x, Ĉ) ≤ K
sinα1 sinα2

lfs(x,C).

Remark 5. Recall that C̄ is the PSC containing the input and the collar construction.
Lemma 8 is shown by first showing

lfs(x, Ĉ) ≤ lfs(x, C̄) ≤ K lfs(x, Ĉ),

and then applying Lemma 5.

Fig. 3. Intestine Protection Region
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(REFINE) Protected Delaunay Refinement

In a similar fashion to the Delaunay refinement algorithm of Cheng and Poon [5],
the PSC Ĉ has been constructed without any acute angles in the non-intestine re-
gion so that Delaunay refinement can be performed. The analysis of this approach
involves an understanding of the Delaunay refinement of smooth surfaces in 3D.
The intermediate PSC C̄ including the collar region is much simpler from this per-
spective as all 2D faces in the complex are affine. While the collar approach in-
volved elements of the analysis for 2D PSCs, the analysis of the intestine approach
more closely resembles the much less complete theory of the refinement of 3D
PSCs [5, 3, 15, 7].

We now consider two different approaches to performing a quality refinement of
the non-intestine region. The first is to perform the usual Delaunay refinement and
split smooth surfaces by projecting the circumcenter of any Delaunay triangle in the
face to the surface. This is described in Algorithm 6. This approach suffers from
one minor drawback: the Delaunay tetrahedralization inside the cylindrical regions
of the intestine may not conform to the input. To eliminate this issue, the second
approach is to impose more structure on the refinement of these cylindrical regions.
This algorithm is given in Algorithm 7. Figure 4 shows the difference between the
refinement around required cylindrical surfaces of the two algorithms.

Algorithm 6. 3D Delaunay Refinement With Intestine - Unstructured

Action Project the circumcenter of a simplex to its associated surface or curve
and insert this vertex, unless it causes a lower-dimensional simplex to be
unacceptable. In this case, queue the lower-dimensional object.

Priority Simplices are prioritized by dimension, with lower-dimensional items pro-
cessed first.

Unacceptability A simplex in the non-intestine region is unacceptable if it has a nonempty
circumball. A tetrahedron is unacceptable if its radius-edge ratio is larger
than τ.

Safety All simplices are safe to split.

(a) Unstructured Approach of
Algorithm 6

(b) Structured Approach of Al-
gorithm 7

Fig. 4. Refinement of cylindrical surfaces around the intestine.
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These algorithms terminate and produce meshes which are graded to the local
feature size. This is summarized in the following theorem.

Theorem 7. For any τ > 4, there exists K > 0 depending only upon τ, b, c0, and c1

such that for each vertex q inserted by Algorithm 6 or Algorithm 7,

lfs(q,C) ≤ K
sinα1 sinα2

rq.

Remark 6. The restriction τ > 4 is stronger than the restriction τ > 2 seen in The-
orem 5. The techniques of Theorem 3 have not yet been extended to the case of
curved surfaces, and without these techniques, the stronger condition on τ is neces-
sary. Extending this result to admit all τ > 2 is a topic of ongoing research.

Algorithm 7 produces a conforming Delaunay tetrahedralization of the input. This
is shown in the next theorem.

Theorem 8. Algorithm 7 produces a conforming Delaunay tetrahedralization of C.
All tetrahedra with radius-edge ratio larger than τ lie in the intestine region.

The previous result does not hold for Algorithm 6, as the resulting mesh may not
conform to the input. This may occur when a vertex on the boundary of the cylindri-
cal region encroaches upon a triangle in a required face inside the intestine region.

However, a simple conforming (but not Delaunay) tetrahedralization of the intes-
tine region does exist. The spheres around input vertices are tetrahedralized using
the Delaunay tetrahedra. For the cylindrical sections, let p1 and p2 be the endpoints
of the corresponding input segment. The tetrahedralization is produced with two
types of tetrahedra.

• For any Delaunay triangle t on the boundary of the cylinder, include the tetrahe-
dron with base t and vertex at p1.

Algorithm 7. 3D Delaunay Refinement With Intestine - Structured

Action Project the circumcenter of a simplex to its associated surface or curve
and insert this vertex, unless it causes a lower-dimensional simplex to be
unacceptable. In this case, queue the lower-dimensional object.
EXCEPTION: when handling a triangle associated with a cylindrical re-
gion which did not yield to another simplex, divide this cylindrical region
into two cylinders of equal length and include the new boundary circle in
the PSC. Moreover, insert vertices on this circle in the same fashion as in
the construction of the intestine region.

Priority Simplices are prioritized by dimension, with lower-dimensional items pro-
cessed first.

Unacceptability A simplex in the non-intestine region is unacceptable if it has a nonempty
circumball. A tetrahedron is unacceptable if its radius-edge ratio is larger
than τ.

Safety All simplices are safe to split.
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p1 p2

t

s

Fig. 5. Two types of tetrahedra are used to produce a conforming tetrahedralization of the
intestine region following Algorithm 6

• For any arc s on the circle around p2, include the tetrahedra with vertices p1, p2

and the endpoints of s.

These tetrahedra are depicted in Figure 5. This construction yields a mesh which
conforms to the input. This is summarized in the following theorem.

Theorem 9. Algorithm 6 produces a conforming Delaunay tetrahedralization of the
non-intestine region of Ĉ. The previous construction yields a conforming tetrahe-
dralization of the intestine region of Ĉ which matches the Delaunay tetrahedraliza-
tion on the boundary of the intestine region. All tetrahedra with radius-edge ratio
larger than τ lie in the intestine region.

5 Implementation Details and Examples

In 3D, we have implemented both collar and intestine based protection schemes.
Our implementation relies on estimates of the local feature size given by a different
Delaunay refinement algorithm [13, 14]. Algorithm 6 (rather than Algorithm 7) has
been implemented and will be referred to as the intestine approach in the exam-
ples below. In the future, we hope to implement both algorithms and do a thorough
comparison.

Figure 6 demonstrates both protection strategies on a very simple PLC: a single
tetrahedra. Figure 7 shows the refinement of a single face of the pyramid during this
refinement using the collar. The result looks very similar when using the intestine
approach.

An essential method for reducing the number of vertices in the final mesh is to
protect only input segments and vertices which are part of acute input angles. This
yields a substantial improvement in the output mesh size. Figure 8 shows an input
PLC, the resulting mesh when all segments are protected, and the resulting mesh
when only acute input segments are protected. The resulting mesh with full protec-
tion contains 18079 vertices while the mesh with partial protection only contains
3216 vertices.

Finally, Figure 9 contains six examples produced by Algorithm 5. Data on the
input and output sizes of the meshes produced for each of these examples is con-
tained in Table 1. Each of the meshes produced only uses the partial collar described
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(a) Initial PLC (b) PSC with intes-
tine

(c) Initial collar (d) Final collar (e) Initial intestine (f) Final intestine

Fig. 6. Refinement of a simple pyramid

Fig. 7. Refinement of the base of the pyramid

(a) Input PLC (b) Full protection (c) Partial protection

Fig. 8. Comparison of full and partial collar protection

above. While the refinement is performed in a bounding box, this bounding box was
removed for the PLCs which enclose a volume. This is indicated in the “Box” col-
umn of Table 1.
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(a) Tetrahedron (b) Wheel (c) Non-manifold

(d) Duck (e) Rabbit (f) Gazebo

Fig. 9. Examples meshes produced by Algorithm 5

Table 1. Results of Algorithm 5 on six PLCs with acute angles.

Input Output
Name Vertices Segments Faces Vertices Tetrahedra Box

Tetrahedron 24 54 28 3700 11476 No
Wheel 46 65 21 4397 27182 Yes

Non-manifold 22 35 10 2498 15142 Yes
Duck 93 273 182 3216 11001 No

Rabbit 453 1353 902 18968 69001 No
Gazebo 97 148 57 4868 15318 No
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Abstract. Shewchuk’s Delaunay refinement algorithm is a simple scheme to effi-
ciently tetrahedralize a 3D domain. The original analysis provided guarantees on
termination and output edge lengths. However, the guarantees are weak and the
time and space complexity are not fully covered. In this paper, we present a new
analysis of this algorithm. The new analysis reduces the original 90o requirement
for the minimum input dihedral angle to arccos 1

3
≈ 70.53o . The bounds on output

edge lengths and vertex degrees are improved. For a set of n input points with
spread Δ (the ratio between the longest and shortest pairwise distance), we prove
that the number of output points is O(n log Δ). In most cases, this bound is equiv-
alent to O(n log n). This theoretically shows that the output number of tetrahedra
is small.

1 Introduction

Delaunay refinement is one of the classical techniques to generate Delaunay
meshes for domains in Rd with well-shaped simplices and a small output size.
It is first introduced by Chew [6] and Ruppert [18] for meshing 2D domains.

Shewchuk’s Delaunay refinement algorithm [19] (abbreviated as Shewchuk’s
algorithm) is a 3D generalization of Ruppert’s [18]. This algorithm has the
features of being very simple and easy to implement. Practical implemen-
tations [20, 22] show that it is efficient and produces tetrahedral meshes
with relatively small size compared with other size-optimal meshing algo-
rithms [1, 14], see Fig. 1 for an example. Since its introduction, this algorithm
has been generalized into a number of meshing algorithms: for handling small
(acute) input angles [5, 4, 17], for meshing curved domains [15, 3], and for
mesh adaptation [23]. However, there is no known improvement in its original
analysis.

The original analysis of Shewchuk, which follows Ruppert’s framework [18],
proved several theoretical guarantees on its termination and output edge
lengths. It is observed in practice that the behaviors of this algorithm greatly
outperforms the proved estimates. For instances, the algorithm usually ter-
minates on inputs with a dihedral angle as small as 60o, which is far from
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Fig. 1. A three-dimensional polyhedron (left) and a boundary conforming Delaunay
tetrahedral mesh generated by Shewchuk’s algorithm [19] (right).

the originally required 90o. The algorithm is able to produce a mesh whose
tetrahedra having a radius-edge ratio less than

√
2 (or even smaller) instead

of a value ≥ 2. The bounds on output edge lengths are obviously too large.
The time and space complexity of this algorithm remain largely unsolved.

Ruppert [18] has shown that the number of output vertices of Delaunay
refinement algorithms for a domain Ω ⊂ Rd is Θ(

∫
x∈Ω

1

lfs(x)d
dx), where lfs(x)

is the local feature size (explained in Section 3) at a point x ∈ Ω. However,
this estimate does not relate to the input. Hudson et al [10] recently proposed
a variant of Shewchuk’s algorithm, the so-called Sparse Voronoi Refinement
(SVR). For a set of n points in R3, SVR has runtime O(n log Δ + m) and
space usage O(m), where m is the number of output vertices and Δ is the
spread of the input [8]. Note that these bounds depend on the output mesh
size m which is not predictable. Recently, Miller et al [12] and Hudson et
al [11] showed that under some simple assumptions on the input point sets,
m linearly depends on n.

In this paper, we present a new analysis of Shewchuk’s algorithm. Our
goal is to improve the original analysis and to gain more insight into the
simple and elegant scheme of this algorithm. Practitioners of Shewhcuk’s
algorithm could be benefited from our analysis. For instances, one can avoid
adding unnecessary protecting points in the problem of handling small input
angles; it may guide the choice of the order of Steiner points to reduce the
total number of output points; and it may help in designing new Delaunay
refinement algorithms.

The rest of this paper is organized as follows. We briefly review Shewchuk’s
algorithm in Section 2. In Section 3, we show that an dihedral angle bound
of arccos 1

3 ≈ 70.53o is sufficient to guarantee the termination. A useful tool
in our analysis is a proper sequence of added points which will be defined in
Section 4. Improved bounds for output edge lengths and vertex degrees are
given in Section 5 and Section 6, respectively. Section 7 discusses the output
mesh size. For a set of n points with spread Δ, we show that the number of
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output points is bounded by O(n log Δ). We end our analysis by a discussion
of open issues.

2 The Algorithm

This section presents Shewchuk’s algorithm for the later analysis. Some pre-
liminary definitions of the input and output objects are given first.

A piecewise linear system [24] (abbreviated as PLS) X is a collection of
polytopes such that: (i) P ∈ X implies that all faces of P are in X , and
(ii) the intersections of any two polytopes of X are again polytopes of X .
The polytopes in a PLS are not necessarily convex. This definition of a PLS
is generalized from Miller et al’s [13]. The dimension of a PLS is the largest
dimension of its polytopes. For an example, Fig. 1 left shows a 3D PLS which
is a collection including a 3D polyhedron and all its faces. The underlying
space |X | of X is the union of all polytopes of X , i.e., |X | =

⋃
P∈X P . Note

that |X | is a topological subspace of R3. The collection X induces a topology
on its underlying space |X |.

A tetrahedral mesh of a 3D PLS X is a finite set T of simplices, e.g.,
vertices, edges, triangles, and tetrahedra, such that: (i) any two simplices of
T are either disjoint or intersect at their common face, (ii) the union of T
equals to |X |, and (iii) each polytope P ∈ X is the union of a subset of T .
Fig. 1 right shows a tetrahedral mesh of a 3D PLS.

Let S be a finite set of points in Rd. A simplex σ in S is Delaunay [7] if
it has a circumscribed sphere Σ such that no other point of S lies inside Σ.
Moreover, σ is Gabriel [9] if no other point of S lies inside the diametrical
sphere of σ, i.e., the smallest circumscribed sphere of σ. A boundary conform-
ing Delaunay mesh [24] of a 3D PLS X is a tetrahedral mesh of X such that
(i) every simplex of T is Delaunay, and (ii) every simplex of T in a polytope
P ∈ X and dim(P ) < 3 is Gabriel.

The radius-edge ratio, ρ, of a tetrahedron is the ratio between the radius
of its circumscribed ball and the length of its shortest edge. The regular
tetrahedron has the minimum value

√
6/4 ≈ 0.612. Most of the badly shaped

tetrahedra will have a large radius-edge ratio except slivers, which are nearly
degenerate tetrahedra whose radius-edge ratio may be as small as

√
2/2 ≈

0.707. Hence, strictly speaking ρ is not a shape measure. Nevertheless, it is
useful in the analysis of this algorithm.

The Algorithm: Let X be a 3D PLS. We call 1- and 2-polytopes of X
segments and facets. Each segment and facet will be represented by a sub-
complex of a mesh T of X . We call 1- and 2-simplices of that subcomplex
subsegments and subfaces to distinguish them from other simplices of T . A
subsegment (or a subface) σ is said to be encroached if it is not Gabriel in
T . The algorithm is given in Fig. 2.
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DelaunayRefinement (X , ρ0)
// X is a 3D PLS; ρ0 is a radius-edge ratio bound.
1. initialize a DT D of the vertex set of X ;
2. while (∃ encroached subsegment or subface)
3. or (∃ τ ∈ D such that ρ(τ ) > ρ0), do
4. create a new point v by rule i, i ∈ {1, 2, 3};
5. update D to be the DT of vert(D) ∪ {v};
6. endwhile
7. T := D \ {τ | τ ∈ D and τ � |X |}
8. return T ;

Fig. 2. Shewchuk’s Delaunay refinement algorithm [19]. It takes a 3D PLS X and
a radius-edge ratio ρ0 as inputs, generates a boundary conforming Delaunay mesh
T of X such that no tetrahedra of T has radius edge ratio larger than ρ0.

After the initialization, the algorithm runs in a loop (lines 2 − 6). A new
point v (in line 4) is found by one of the three point generating rules:

R1: If a subsegment is encroached, v is its midpoint. v is an R1-vertex.
R2: If a subface is encroached, v is the circumcenter of its diametric ball.

v is an R2-vertex. However, if v encroaches upon some subsegments, then
reject v, and use R1 to return a v.

R3: If a tetrahedron τ has radius-edge ratio ρ(τ) > ρ0, v is its circumcen-
ter. v is an R3-vertex. However, if v encroaches upon some subsegments or
subfaces, then reject v, and use R1 or R2 to return a v.

Among these rules, R1 has the highest priority, and R3 has the lowest
priority. The priorities of the rules are important. They ensure that the new
point v lies either inside the mesh domain or on its boundary.

3 Proof of Termination

The original analysis [19] requires that no facet angle (defined below) of the
input PLS is less than 90o. In this section, we show that this angle can be
reduced.

Definitions: Let X be a 3D PLS. The local feature size [18] of a point x ∈ |X |
is a function lfs : |X | → R+, such that lfs(x) is the radius of the smallest
ball centered at x that intersects at least two disjoint polytopes of X . Note
that lfs(x) only depends on X , it does not change when new vertices are
added in |X |. A well-known property of lfs is that it is 1-Lipschitz, i.e., for
any x,y ∈ |X |, lfs(x) ≤ lfs(y)+‖x−y‖, where ‖x−y‖ denote the Euclidean
distance between x and y.

For each new point v we define a parent p(v) which is a unique point re-
sponsible for the addition. If v is an R1- or R2-vertex, p(v) is the encroaching
point of v. The point p(v) may be a Delaunay vertex or a rejected circumcen-
ter. If there are several encroaching points then p(v) is the one closest to v.
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If two encroaching points are at the same distance to v, choose the one which
is either an input vertex or has been added earlier. If v is an R3-vertex, let τ
be the tetrahedron v splits, then p(v) is one of the endpoints of the shortest
edge of τ which either is an input vertex or has been added earlier. If v is an
input point, then v has no parent.

For each new point v we define the insertion radius r(v) = ‖v − p(v)‖.
For an input point u ∈ X we define r(u) = ‖u − w‖, where w ∈ X is the
nearest input vertex of u. Obviously, r(u) ≥ lfs(u).

An input angle of X is one of the three kinds: If two segments of X intersect,
they formed an angle in |X |, it is called a segment-segment angle; if a facet
intersects a non-coplanar segment, any line inside the facet and the segment
form an angle, the smallest such angle in |X | is called a segment-facet angle;
if two facets intersect, they form a dihedral angle (i.e., the angle between
their normals) in |X |, it is called a facet-facet angle.

The following lemma is well-known. It is first proved in [19].

Lemma 1 ([19]). Let v be an added vertex, p = p(v). Let θm denote the
smallest input angle. Then:

(r1) r(v) ≥ ρ0 r(p), when v is an R3-vertex.
(r2) r(v) ≥ 1√

2
r(p), when v is an R1- or R2-vertex, and θm ≥ 90o.

(r3) r(v) ≥ 1
2 cos θ r(p), when v is an R1- or R2-vertex, and θm ≥ 45o, where

θm is either a segment-segment or a segment-facet angle;

Below we will prove a lemma for the case when θm is an acute facet-facet
angle. First we will need a geometrical fact which we prove it in the following
lemma.

Lemma 2. Let abc be a triangle with vertices a, b, and c, and let θ = ∠abc
and θ < 90o, see Fig. 3 (a). If (i) ‖a−c‖

‖a−b‖ ≤ √
2, and (ii) θ ≥ arctan

√
2 ≈

54.74o, then
‖a − c‖
‖b− c‖ ≥ 2

3
√

2 cos θ
. (1)

Proof. We will prove this lemma in two steps. We first construct a case where
the equality in (1) holds. We then show that this case indeed gives the smallest
ratio among all possible triangles satisfying the two preconditions.

Place the edge ab on a horizontal line, and let c freely move above it. All
possible locus of c form a region shown in Fig. 3 (a) (the shaded part). In
the triangle abp, ‖a−p‖

‖a−b‖ =
√

2, and θ = arctan
√

2. The point q locates on

the line containing ab and the angle ψ = ∠aqp = 45o, hence ‖p−b‖
‖p−q‖ =

√
3

2 .
Then

cos θ =
‖a− b‖
‖p− b‖ =

1/
√

2 ‖a− p‖√
3/2 ‖p− q‖ =

2√
6
‖a− q‖
‖p− q‖ =

2√
6

cosψ. (2)
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θ ψ

a b

c

q

p

a b

c

p

θ

x c′

(a) (b)

Fig. 3. Proof of Lemma 2.

In the triangle aqp,we have the equality

‖a − p‖
‖p− q‖ =

1
2 cosψ

,

substitute cosψ by eq. (2), and ‖p− q‖ by 2√
3
‖b− p‖ in above, we get

‖a− p‖
‖b− p‖ =

1√
6 cos θ

2√
3

=
2

3
√

2 cos θ
.

Next we show that the above ratio is the smallest one for all possible
choices of c. First of all, if c lies inside or on the circle centered at a with
radius ‖a − b‖, Pav [16] has proved that ‖a−c‖

‖b−c‖ ≥ 1
2 cos θ . Hence our claim

holds. In the following, we consider that c lies in the rest of the admissible
region, see Fig. 3 (b).

For any point c in this region, we can find a point c′ which is at the
intersection of the line bp and the circle C centered at a with radius ‖a−c‖,
see Fig. 3 (b). It is easy to see that ‖a−c′‖

‖b−c′‖ < ‖a−c‖
‖b−c‖ . Now we show that

‖a−c′‖
‖b−c′‖ > ‖a−p‖

‖b−p‖ . Introduce an auxiliary point x at the intersection of the
circle C and the edge ap, see Fig. 3 (b), clearly, ‖x− p‖ < ‖c′ − p‖. Then

‖a− p‖
‖b− p‖ =

‖a− x‖ + ‖x − p‖
‖b− c′‖ + ‖c′ − p‖ ≤ ‖a− c′‖

‖b− c′‖ .

Since we have chosen c arbitrarily in the admissible region, so 2
3
√

3 cos θ
is the

smallest ratio among all admissible choices of c.

The next lemma consider the case which is not given in Lemma 1.

Lemma 3. Let v be an added R2-vertex on facet F1, p = p(v) is an R2-
vertex (not a rejected one) on facet F2. Let θ be the facet-facet angle formed
by F1 and F2. Then
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(r4) r(v) ≥ 1
3 cos θ r(p), when θ ≥ arctan

√
2 ≈ 54.74o.

Proof. Let F1  v and F2  p be the two facets which intersect at a common
segment R and form a dihedral angle θ < 90o, see Fig. 4 (a). xy is a subseg-
ment of R. Let Bxy be the diametric ball of xy. Both v and p must lie outside
Bxy (otherwise, xy is encroached and it must be split before we can add p or
v). Let Bv denote the ball centered at v with a radius r. Bv is the diametric
ball of a subface on F1 encroached by p. Without loss of generality, we as-
sume that v is closer to x than to y. Hence r(v) = ‖v − p‖ ≤ r ≤ ‖v − x‖,
and r(p) ≤ ‖p− x‖.

Let p′ be the projection of p onto R, see Fig. 4 (b). Note that ‖v−p′‖ ≥
‖v − x‖/√2, so in the triangle vp′p, ‖v−p‖

‖v−p′‖ ≤ ‖v−x‖
‖v−p′‖ ≤ √

2. Let θ′ be the
angle ∠vp′p. Note that θ′ ≥ θ (since θ is the dihedral angle between the two
facets). We now show that if θ ≥ arctan

√
2, we can map the triangle vp′p

congruently to a triangle abc in Fig. 3 (a).

(a) (b)

(c) (d)

Fig. 4. Proof of Lemma 3.
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Let v = a, p′ = b, and θ′ = ∠vp′p = ∠abc. What remain is to map p
to a point c in the shaded region in Fig. 3 (a). We start from a case which
v lies just on the bisector of Bxy and touch Bxy, p lies vertically on the
top of v at a distance ‖v − p‖ =

√
2‖v − p′‖, see Fig. 4 (c). In this case,

θ = arctan
√

2 ≈ 54.74o. Clearly vp′p is congruent to abp in Fig. 3 (a). Now
if θ > arctan

√
2, since p must lie inside Bv, and v can not be inside Bxy,

hence it must be ‖v−p‖
‖v−p′‖ <

√
2, there exists a point c in the shaded region in

Fig. 3 (a) that can be mapped to p, and the two triangles vp′p and abc are
congruent.

So if θ ≥ arctan
√

2, we can apply Lemma 2 on the triangle vp′p to get

‖v − p‖
‖p′ − p‖ ≥ 2

3
√

2 cos θ′
≥ 2

3
√

2 cos θ
. (3)

Note that ‖p − p′‖ ≥ 1√
2
‖p − x‖. The case when the equality holds is

shown in Fig. 4 (d), where p lies on the ball Bxy. With the help of (3), we
have ‖v − p‖

‖x− p‖ ≥ 1√
2
‖v − p‖
‖p− p′‖ ≥ 1

3 cos θ
. (4)

Remember that r(v) = ‖v − p‖, and r(p) ≤ ‖x − p‖, our claim holds by
substituting corresponding terms in (4).

Lemma 3 allows us to prove an improved angle bound for the termination.

Theorem 1. Let X be a 3D PLS with its smallest input angle θm ≥
arccos 1

3 ≈ 70.53o. Shewchuk’s algorithm terminates on X for any value of
ρ0 ≥ 2.

Proof. Let lfsm = min{lfs(x) | x ∈ |X |}. We will show that no output edge
of this algorithm will have length shorter than lfsm.

Suppose for the sake of contradiction that the algorithm introduces an edge
shorter than lfsm into the mesh. Let xy be the first such edge introduced.
Clearly, x and y cannot both be input vertices, nor can they lie on non-
incident boundaries. Assume x was added after y. By assumption, no edge
shorter than lfsm exists before x was added, i.e., for any existing vertex q,
r(q) ≥ lfsm.

Now let x be an added vertex, and p = p(x), we enumerate all the possible
cases for x and p:

• If x is an R1-vertex, and p is a rejected R3-vertex, i.e., p is the circum-
center of a bad quality tetrahedron. Let g = p(p), then r(x) ≥ 1√

2
r(p) ≥

ρ0√
2
r(g) ≥ lfsm.

• If x is an R1-vertex, and p is a rejected R2-vertex, i.e., p is the circum-
center of a an encroached subface σ, and σ is encroached by a rejected
R3-vertex. Let g = p(p), and e = p(g), then r(x) ≥ 1√

2
r(p) ≥ 1

2r(g) ≥
ρ0
2 r(e) ≥ lfsm.
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• If x is an R1-vertex, and p is either an R1- or R2-vertex (not rejected), i.e.,
p lies on an incident segment or facet. Then r(x) ≥ 1

2 cos θm
r(p) ≥ lfsm.

• If x is an R2-vertex, and p is a rejected R3-vertex. Let g = p(p), then
r(x) ≥ 1√

2
r(p) ≥ ρ0√

2
r(g) ≥ lfsm.

• If x is an R2-vertex, and p is an R1-vertex (not rejected) lies on an
incident segment. Then r(x) ≥ 1√

2 cos θm
r(p) ≥ lfsm.

• If x is an R2-vertex, and p is an R2-vertex (not rejected) lies on an
incident facet. Then r(x) ≥ 1

3cosθm
r(p) ≥ lfsm.

• If x is an R3-vertex, no matter what type of p has, r(x) ≥ ρ0 r(p) ≥ lfsm.

Hence r(x) ≥ lfsm in all cases, contradicting the assumption. It must be
that no edge shorter than lfsm is ever introduced, hence the algorithm will
terminate.

4 Parent Sequences

Since every new vertex v has a unique parent point, we can form a sequence of
points by tracing the parents. In this section, we derive relations of insertion
radii of a new vertex v and points in its parent sequence.

Definitions: The parent sequence of a new vertex v is a sequence of points,
{vi}m+1

i=0 , such that v = v0, for i = 1, 2, ..., m, vi is an existing R3-vertex (not
a rejected one), vm+1 is either an R1-, or R2-vertex, or an input vertex (i.e.,
vm+1 is a boundary vertex), for i = 1, 2, ..., m, vi+1 is the parent of vi. Note
that v1 may not be the parent of v0 when v0 is an R1- or R2-vertex. Denote
g(v) = vm+1 the grandparent of v. A parent sequence of v has at least two
vertices, namely v and g(v). Note that m counts the number of R3-vertices
in this sequence.

Any parent sequence whose last vertex is not an input vertex can be
extended to a longer sequence. We define the maximal sequence of v as a
sequence of parent sequences, {{vj

i }mj+1
i=0 }k−1

j=0 , such that k ≥ 1, for j =
0, 1, ..., k − 2, {vj

i }mj+1
i=0 is a parent sequence of the vertex vj

0 (which has mj

R3-vertices), vj+1
0 = g(vj

0), and vk−1
mk−1+1 (the last vertex) is an input vertex,

it is called the ancestor of v, denoted as a(v). An expansion of the maximal
sequence of v looks like follows

k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v = v0, v0
1,v

0
2, · · ·︸ ︷︷ ︸

m0

, v0
m0+1,

v0
m0+1 = v1, v1

1,v
1
2, · · ·︸ ︷︷ ︸

m1

, v1
m1+1,

· · · , · · · ,
vk−2

mk−2+1 = vk−1, vk−1
1 ,vk−1

2 , · · ·︸ ︷︷ ︸
mk−1

, vk−1
mk−1+1 = a(v).

(5)
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Given a geometric series with a common ratio x
ρ0

, let Cn
x denote the sum

of its first n terms, i.e., Cn
x = 1 + x

ρ0
+
(

x
ρ0

)2

+ · · · +
(

x
ρ0

)n

= 1−(x/ρ0)
n+1

1−(x/ρ0)
.

In particular, C0
x = 1 and C∞

x = 1
1−(x/ρ0) .

The following lemma derives the relations of the insertion radii of v, and
g(v) for a new vertex v.

Lemma 4. Let {vi}m+1
i=0 be the parent sequence of v, and let w = g(v).

(r5) If v is an R3-vertex, then r(v) ≥ ρm+1
0 r(w), and r(v) ≥ 1

Cm
1
‖v − w‖.

(r6) If v is an R2-vertex, then r(v) ≥ 1√
2
ρm+1
0 r(w), and r(v) ≥ 1

1+
√

2Cm
1
‖v−

w‖.
(r7) If v is an R1-vertex, then r(v) ≥ 1

2ρm+1
0 r(w), and r(v) ≥ 1

1+
√

2+2Cm
1
‖v−

w‖.
Proof. If v is an R3-vertex, for i = 0, ..., m + 1, r(vi) ≥ ρ0r(vi+1) (by
(r1)). Then r(v0) ≥ ρ0r(v1) ≥ ρ2

0r(v2) ≥ · · · ≥ ρm+1
0 r(vm+1) =⇒ r(v) ≥

ρm+1
0 r(w), which is the first part of (r5). The second part of (r5) can be

proved by

‖v − w‖ ≤ ‖v0 − v1‖ + ‖v1 − v2‖ + · · · + ‖vm − vm+1‖
= r(v0) + r(v1) + r(v2) · · · + r(vm)
≤ (1 + 1/ρ0 + (1/ρ0)2 + · · · + (1/ρ0)m)r(v0)
= Cm

1 r(v).

When v is an R1-vertex, v1 may not be the parent of v0. In the worst
case, there will be two rejected vertices, p and q, such that p = p(v0),

S

v2

v1

q

√
2rv

√
2rv

2rv

rv

2rv

e

vm

vm+1 = w

· · ·

F p

v

Fig. 5. Proof of Lemma 4. v is an R1-vertex on a segment S. p is a rejected R2-
vertex on facet F (it encroaches upon the ball centered at v), and q is a rejected R3-
vertex (it encroaches upon the ball centered at p). The rest vertices, v1, ..., vm+1,
are in the parent sequence of v.
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q = p(p), and v1 = p(q), see Fig. 5. Then by (r1), r(v0) ≥ 1√
2
r(p), r(p) ≥

1√
2
r(q), r(q) ≥ ρ0r(v1) =⇒ r(v0) ≥ 1

2ρ0r(v1). By (r5) we have r(v1) ≥
ρm
0 r(vm+1). Thus, r(v) ≥ 1

2ρm+1
0 r(w). The gives the first half of (r7). The

second half of (r7) can be proved by

‖v−w‖ ≤ ‖v0−p‖ + ‖p− q‖ + ‖q− v1‖ + ‖v1 − v2‖ + · · · + ‖vm − vm+1‖
= r(v0) + r(p) + r(q) + r(v1) + r(v2) · · · + r(vm)

≤ (1 +
√

2 + 2 + 2/ρ0 + 2(1/ρ0)2 + · · · + 2(1/ρ0)m)r(v0)

= (1 +
√

2 + 2Cm
1 )r(v).

Finally, the proof of (r6) is similar to the proof of (r7) and is skipped.

We consider the longest maximal sequence of an R3-vertex v, see Fig. 6. It
consists of a number of parent sequences on a facet and on a segment, and
ends at an input vertex a. We will derive the relation between r(v) and r(a).
First we need two relations given in the following lemma.

v

w

u

a

s2

s1

m

k1

k2

Fig. 6. A maximal sequence of an R3-vertex v.

Lemma 5. Let {{vj
i }mj+1

i=0 }k−1
j=0 be the maximal sequence of an R3-vertex v

and a = a(v), see Fig. 6. Let w and u be the first R2-vertex and R1-vertex
in this sequence, respectively. Then

(r8) r(w) ≥
(

ρ0√
2

)k1

ρs1
0 r(u), and r(w) ≥ 1

(1+
√

2C∞
1 )C

k1−1√
2

‖w − u‖.
(r9) r(u) ≥ (

ρ0
2

)k2
ρs2
0 r(a), and r(u) ≥ 1

(1+
√

2+2C∞
1 )C

k2−1
2

‖u− a‖.
Where k1, k2, s1, and s2 are quantities determined in the maximal sequence.
Table 1 gives the meaning of these parameters.

Proof. These two claims can be proved similarly. Only the proof of (r9) is
given.

We can expand the sequence starting from u and ending at a (note that
in this case it is just the maximal sequence of u). The expansion is given
in eq. (5) by substituting v by u and k by k2. For each row in (5) we
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Table 1. A summary of the parameters of Lemma 5

m the number of R3-vertices between v and w m ≥ 0
s1 the number of R3-vertices between w and u s1 ≥ 0
s2 the number of R3-vertices between u and a s2 ≥ 0
k1 the number of parent sequences between w and u k1 ≥ 1
k2 the number of parent sequences between u and a k2 ≥ 1

can apply (r7): r(u0) ≥ ρ0
2 ρ0

m0r(u1), r(u1) ≥ ρ0
2 ρ0

m1r(u2), ..., r(uk2−1) ≥
ρ0
2 ρ0

mk2−1r(a) =⇒ r(u) ≥ (
ρ0
2

)k2
ρs2
0 r(a). This proves the first half of (r9).

Next

‖u− a‖ ≤ ‖u0 − u1‖ + ‖u1 − u2‖ + · · · + ‖uk2−1 − a‖ (apply (r7))

≤ (1 +
√

2 + 2Cm0
1 )r(u0) + (1 +

√
2 + 2Cm1

1 )r(u1) + · · · +
(1 +

√
2 + 2C

mk2−1
1 )r(uk2−1)

≤ (1 +
√

2 + 2C∞
1 )(r(u0) + r(u1) + · · · + r(uk2−1) (apply (r7))

≤ (1 +
√

2 + 2C∞
1 )(

1 +
2
ρ0

(
1
ρ0

)m0

+
(

2
ρ0

)2 ( 1
ρ0

)m0+m1

+ · · ·+

(
2
ρ0

)k2−1 ( 1
ρ0

)∑k2−2
i=0 mi

⎞⎠ r(u)

≤ (1 +
√

2 + 2C∞
1 )Ck2−1

2 r(u)

Comments on termination and mesh quality: The termination guar-
antee of this algorithm requires that ρ0 ≥ 2. This is explained by the data
flow diagram in [19]. It is observed that the algorithm usually terminates at
a much smaller ρ0, see Fig. 7. This fact can be explained using the maxi-
mal sequence. The number m of R3-vertices in the parent sequences plays
an important role which is not visible by the data flow diagram. From (r9)
we see if there is at least one R3-vertex in the maximal sequence of u, then
r(u) ≥ 1

2ρ2
0r(a). This immediately relaxes the requirement of termination to

be ρ0 ≥ √
2. Moreover, if s1 and s2 are larger (there are more R3-vertices in

the sequence), ρ0 can be much smaller.
Note that D3 is smaller if the number of R3-vertex in parent sequence (m)

is large. This means vertices having a long parent sequence (which means
they are far away from the boundary) will have longer edge lengths than those
vertices close to boundary, see Fig. 7. This also explains why the algorithm
will terminate fast.
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ρ0 = 2.0 ρ0 = 1.4 ρ0 = 1.1

Fig. 7. The resulting meshes with different ρ0. The input PLS has 994 points, 2988
segments, and 1995 triangles. From left to the right, the number of output mesh
points are: 7884, 15044, and 42686.

5 Output Edge Lengths

Ruppert [18] first showed that any output edge of Delaunay refinement al-
gorithms will has a bounded length which is no smaller than some constant
divided by the local feature sizes of one of its endpoints. Shewchuk pro-
vided three constants, (3+

√
2)ρ0

ρ0−2 , (1+
√

2ρ0)+
√

2
ρ0−2 , and ρ0+1+

√
2

ρ0−2 , one for each
type of new vertices. In this section, we derive new constants which bound
output edge lengths using parent sequences. And we will compare them with
Shewchuk’s.

Theorem 2. Let v be an R3-vertex. Consider the maximal sequence of v
shown in Fig. 6. Then r(v) ≥ lfs(v)

D3
, r(w) ≥ lfs(w)

D2
, and r(u) ≥ lfs(u)

D1
, where

D1, D2, and D3 are three constants depending on m, k1, s1, k2, and s2.

Proof. Denote L1(k1) = (1+
√

2C∞
1 )Ck1−1√

2
, L2(k2) = (1+

√
2+2C∞

1 )Ck2−1
2 ,

and denote μx = x
ρ0

. Then

lfs(v) ≤ ‖v − a‖ + lfs(a)
≤ ‖v − w‖ + ‖w − u‖ + ‖u − a‖ + lfs(a) (apply (r5), (r8), r(9))
≤ Cm

1 r(v) + L1(k1)r(w) + L2(k2)r(u) + r(a)
≤ Cm

1 r(v) + L1(k1)μm+1
1 r(v) + L2(k2)μk1√

2
μs1

1 r(w) + μk2
2 μs2

1 r(u)
≤ Cm

1 r(v) + L1(k1)μm+1
1 r(v) + L2(k2)μk1√

2
μs1

1 μm+1
1 r(v)

+μk2
2 μs2

1 μk1√
2
μs1

1 r(w)

≤
(
Cm

1 + L1(k1)μm+1
1 + L2(k2)μk1√

2
μs1

1 μm+1
1 + μk2

2 μs2
1 μk1√

2
μs1

1 μm+1
1

)
r(v).

Hence D3 is

D3 = Cm
1 + L1(k1)μm+1

1 + L2(k2)μk1√
2
μs1

1 μm+1
1 + μk2

2 μs2
1 μk1√

2
μs1

1 μm+1
1 . (6)
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Using the same approach, it can be shown that D1 and D2 are as follows:

D2 = L1(k1) + L2(k2)μk1√
2
μs1

1 + μk2
2 μs2

1 μk1√
2
μs1

1 , (7)

D1 = L2(k2) + μk2
2 μs2

1 . (8)

Since the constants D1, D2, and D3 are obtained from the longest maximal
sequence of v (and for w and u as well), they are the largest ones for new
vertices of the same type. In other words, they bound the edge lengths at new
vertices of the same type. However, the exact values of these constants depend
on their maximal sequences. Below we discuss the asymptotic behavior of
these constants.

It can be shown that for ρ0 > 2, D1, D2, and D3 are upper bounded. Note
that increasing s1 and s2 can only make D3 smaller. The maximum of D3 is
attained when m = s1 = s2 = 0, k1 = 1, and K2 → ∞, which is

D3,max = C0
1 + (1 +

√
2C∞

1 )C0√
2

μ1 + (1 +
√

2 + 2C∞
1 )C∞

2 μ√
2 μ1

= 1 + (1 +
√

2ρ0
ρ0−1 ) 1

ρ0
+ (1 +

√
2 + 2ρ0

ρ0−1 )
√

2
(ρ0−2)ρ0

The maximums of D2 and D1 are attained when k1 → ∞ and k2 → ∞,
respectively,

D2,max = (1 +
√

2C∞
1 )C∞√

2
= (1 +

√
2

ρ0−1 )
√

2
ρ0−

√
2

D1,max = (1 +
√

2 + 2C∞
1 )C∞

2 = (1 +
√

2 + 2ρ0
ρ0−1 ) ρ0

ρ0−2

Compare to Shewchuk’s constants. Suppose ρ0 = 2.5. D3 is in the range
from 1.667 (m = ∞) to 5.33 (m = s1 = s2 = 0, k1 = 1, k2 = 7). Shewchuk’s
constant (ρ0+1+

√
2

ρ0−2 ) is about 9.83. D2 is in the range from 3.35 (k1 = 1) to

7.73 (k1 ≥ 25). While Shewchuk’s constant (1+
√

2ρ0)+
√

2
ρ0−2 ) gives about 14.9.

At last, D1 is in the range from 5.75 (k2 = 1) to 28.74 (k2 ≥ 58). Shewchuk’s
constant ( (3+

√
2)ρ0

ρ0−2 ) is about 22.07. Only D1,max is larger than Shewchuk’s
constant. Note that it is obtained by ignoring all R3-vertices in the maximal
sequence of u which is not realistic, i.e., the estimation for (r9) is much too
large.

6 Vertex Degrees

Talmor [25] showed that each vertex of a tetrahedral mesh with bounded
radius-edge ratio only belongs to at most some fixed number of edges, and
the number only depends on the ratio. However, the constant given in [25]
is miserably large1. In this section, we show a simple proof of this fact and
bring the constant down to a reasonable size.
1 In [25], Theorem 3.4.4, the proved constant is (2C2 +1)3, where C = CC3

2 , which
is at least (4ρ2

0)C3 , and C3 is the number of circular caps having a cone angle θ
depending on ρ0 that form a cover of a unit sphere.
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The following lemma shows a fact about any tetrahedral mesh (which is
not necessarily Delaunay) with a bounded radius-edge ratio ρ0.

Lemma 6. Let T be a tetrahedral mesh with a bounded radius-edge ratio ρ0.
Let ab be an edge in T . There is a cone which has a as its apex, ab as its
axis, and with a cone angle η0 = arcsin 1

2ρ0
, such that its interior contains no

other edges of T .

Proof. Consider the set of faces in T that contain edge ab. Let their apexes
be c1, c2, ..., cn, see Fig. 8 left. Since no tetrahedra of the mesh has a radius-
edge ratio larger than ρ0, it holds on each face as well. This implies that:
min{∠baci | i = 1, ..., n} ≥ arcsin 1

2ρ0
= η0. Thus the cone must contain

none of the edges ac1, ...,acn in its interior.

η0

a

b

c1

c2

cn

r

a

b′

η0/2

r′

Fig. 8. Proof of Lemma 6 (left) and Theorem 3 (right).

Theorem 3. Let T be a tetrahedral mesh with a bounded radius-edge ratio
ρ0. Then every vertex a of T belongs to at most δ0 edges, where

δ0 =
2

1 − cos(η0/2)
=

2

1 −
√

1/2 − 1/2
√

1 − 1/(4ρ2
0)

. (9)

Proof. By Lemma 6 every edge containing a has an empty cone whose angle
is η0. Particularly, the cones of edges at a with angle η0/2 do not overlap
each other. It turns out that the number of edges at a is never larger than
the maximal number of non-overlapping cones whose angles are all at least
η0/2.

To bound the maximal number of such cones, we place a small sphere Σ
centered at a with radius r. For each edge ab in the star of a, let b′ ∈ Σ
be the radial projection of b. Place a circular cap centered at each b′ with a
radius r′ = r

√
2 − 2 cos(η0/2), see Fig. 8 right. Clearly, any two of such caps

do not overlap. The area of each cap is (1 − cos(η0/2))/2 times the area of
Σ, which implies there are at most 2/(1 − cos(η0/2)) = δ0 caps.

The constant δ0 only depends on ρ0. Here are some examples, for ρ0 = 4,
δ0 ≈ 1019, for ρ0 = 2, δ0 ≈ 251, and for ρ0 =

√
2, δ0 ≈ 123.
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7 Output Mesh Size

In this section, we analyze the output mesh size, i.e., the number of output
vertices and tetrahedra of the Delaunay refinement algorithm.

We assume that the input is only a finite set S of points in R3. To distill
the boundary effect, we assume that S is a periodic point set [2], i.e., S ⊆
[0, 1)3 is a finite set of points, and duplicated within each integer unit cube:
S′ = S +Z3, where Z3 is the three-dimensional integer grid. For refining such
a point set, only the rule R3 is needed, i.e., to generate the circumcenters
of bad quality tetrahedra. Let L denote the diameter of S, while s denotes
the smallest pairwise distance among input features, the ratio Δ = L/s is
referred as spread of S [8].

The following theorem shows that for a periodic point sets, the total num-
ber of output points depends on the input parameters.

Theorem 4. Let S be a set of n periodic points in R3 with spread Δ. Let
ρ0 > 1. The output mesh of Shewchuk’s algorithm has O(n�logρ0

Δ�) vertices.

Proof. Let V denote the set of output vertices. Let | · | denote the cardinality
of a set. Hence |S| = n. We want to show that |V | = O(n�logρ0

Δ�).
We first sort all new vertices produced by the algorithm into a collection of

subsets of V by the following approach: Let v be a new vertex and {vi}m+1
i=0

be its parent sequence. Then it is called a rank-m vertex, i.e., there are m
R3-vertices between v and g(v). Denote Vm be the set of all rank-m vertices.
Let V = {V0, V1, ..., Vl−1} be the collection of all sets of rank-m vertices.
Obviously, Vi ∩ Vj = ∅ for any Vi, Vj ∈ V . Hence we have

|V | = |S| + |V0| + |V1| + · · · + |Vl−1|. (10)

Next we show that the collection V has a finite size. Note that an edge
connecting at a rank-m vertex v has a length at least r(v). By (r5), r(v) ≥
ρm+1
0 r(p), where p = g(v). Since here p is an input vertex, r(p) ≥ lfs(p) ≥ s.

Also note that r(v) ≤ L. Hence L ≥ r(v) ≥ ρm+1
0 ≥ s =⇒ ρm+1

0 ≤ L/s =⇒
m + 1 ≤ logρ0

(L/s). The largest number of subsets in V is:

l = �logρ0
Δ� − 1. (11)

Next we show a key fact, that is the set V0 has the “capability” to have
the largest cardinality among all sets in V . Note it does not mean that the
cardinality of V0 must be the largest in V . It means that no set in V will have
a cardinality larger than the maximal possible cardinality of V0.

Let D(S) be the Delaunay tetrahedralization for S, and let V(S) be the
dual Voronoi diagram of D(S). V(S) forms a space partition of the convex
hull, conv(S) of S. All vertices in V(S) are candidates of rank-0 vertices to be
added by this algorithm. Let S0 be the set formed by all vertices of S and only
rank-0 vertices (no rank-1 vertices are added yet). V(S0) is a new partition of
conv(S). A candidate for rank-1 vertex is a Voronoi vertex in V(S0) which is
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the circumcenter of a bad quality tetrahedron which must have a short edge
formed by two rank-0 vertices. Obviously, the candidates for rank-1 vertices
are locally restricted in V(S0) since they depend on the locations of rank-
0 vertices. This shows that the space which rank-0 vertices can be added
are much larger than the space for adding rank-1 vertices. The same holds
for vertices having higher ranks, since a new vertex is always added at the
“locally sparest” location. The updated Voronoi diagram becomes sparser
after new vertices are added. Fig. 9 illustrates this fact in 2D case. Hence V0

has the capability to have the largest cardinality among other sets in V .

(a) The initial DT (b) The first added rank-1 vertex

(c) All rank-1 vertices are circled (d) All rank-2 vertices are circled

Fig. 9. Output mesh size analysis. From (a)-(d) are output meshes of a 2D Delaunay
refinement algorithm (produced by Triangle [21]) on a planar straight line graph
(Lake Superior). The initial Delaunay mesh and its dual Voronoi partition are shown
in (a). All Voronoi vertices are candidates of rank-0 vertices. The circled vertex in
(b) is the first rank-1 vertex added by this algorithm, it is the circumcenter of the
shaded triangle. For this example, the algorithm has added 326 new vertices, in
which 313 are rank-0 vertices, 11 rank-1 vertices and 2 rank-2 vertices. (c) and (d)
show the locations of rank-1 and rank-2 vertices, respectively.

It remains to find out what is the largest possible number of rank-0 vertices.
Let v be an input vertex. Let e be an edge connecting at v, and e is the
shortest edge of a bad quality tetrahedron t0 in a Delaunay mesh T . The worst
radius-edge ratio of t0, ρ(t0) ≤ L/s = Δ. The Delaunay refinement algorithm
will remove t0 by adding its circumcenter c0. Let t1 be the tetrahedron t1 
e, created by the insertion of c0. It must be ρ(t1) ≤ 1

2Δ. If ρ(t1) > ρ0,
then t1 is again removed by adding its circumcenter c1. This will create a
new tetrahedron t2  e, with ρ(t2) ≤ 1

4Δ. This process will repeat until a
tetrahedron tk  e with ρ(tk) ≤ (1

2 )kΔ ≤ ρ0 is created. Hence a short edge e
could produce at most k ≤ �log2 Δ� new vertices.
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Hence after adding at most �log2 Δ� rank-0 vertices, v gets an edge which
does not belong to any bad quality tetrahedron. By Theorem 3, there are at
most δ0 edges connected at v, thus, after inserting at most δ0�log2 Δ� vertices,
all edges connecting at v do not belong to any bad quality tetrahedron. Since
there are n input vertices, thus, the total number of rank-0 vertices are:

|V0| ≤ (δ0�log2 Δ�)n. (12)

Note that δ0�log2 Δ� is a constant which does not depend on n. The total
size of V can be estimated by substituting (11) and (12) into (10),

|V | ≤ (l + 1)(δ0�log2 Δ�)n = O(n�logρ0
Δ�),

The above theorem shows that for a periodic point set, the output size of the
Delaunay refinement algorithm depends on n and a value logρ0

Δ. Table 2
shows some tests on different values of logρ0

Δ. In this experiment, we see

Table 2. Relations between logρ0Δ and the output sizes. R10, R100, and R1k are
three PLSs. R10 is formed by two spheres, one inside the other, the outer sphere
has radius r = 10 (see Fig. 10). R100 and R1k are obtained from R10 by scaling the
outer sphere to the radii r = 100 and r = 1000, respectively. nin, nout, and nadd

are the number of input nodes, output nodes, and added nodes, respectively.

PLS nin ρ0 Δ logρ0
Δ nout nadd

R10 772 2.0 130.10 7.022 1085 313
R100 1301.08 10.350 1153 381
R1k 13010.80 13.670 1208 436
R10 772 1.4 130.10 14.050 1586 814
R100 1301.08 20.700 1821 1049
R1k 13010.80 27.345 2034 1262
R10 772 1.2 130.10 26.700 2560 1788
R100 1301.08 39.330 3380 2608
R1k 13010.80 51.960 4081 3309

Fig. 10. Left: The PLS R10 (772 nodes, 1536 faces), formed by two spheres, one
inside the other, the outer sphere has radius r = 10, the inner one has r = 1. Right:
The output Delaunay mesh (1085 nodes, 5121 tetrahedra) at ρ0 = 2.
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that the value logρ0
Δ approximately add a factor of O(log n) to the output

number of points.

8 Conclusions

In this paper we reanalyzed Shewchuk’s Delaunay refinement algorithm. Our
new result on the termination condition arccos 1

3 ≈ 70.53o expands the ac-
ceptable class of inputs for this algorithm. The output mesh size bound
O(n�logρ0

Δ�) is a theoretical guarantee that this algorithm will produce
small mesh size. Our new bounds on output edge lengths and vertex degrees
better explain the practical behaviors of this algorithm.

However, our analysis is still far from complete. A number of interested
issues remain to be investigated. A very interested question is: Can the 70.53o

bound be reduced? Our practical experience is that a 60o bound never hurts
the termination. In the output mesh size proof, can we show that V0 has the
largest cardinality quantitatively among other sets in V? Experiments showed
that this algorithm is able to generate a true quality mesh if it also adds the
circumcenters of slivers. In such case, what is the dihedral angle bound for
all output tetrahedra?
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Abstract. We present a novel and robust algorithm for triangulating point clouds
in R2. It is based on a highly adaptive hexagonal subdivision scheme of the in-
put domain. That hexagon mesh has a dual triangular mesh with the following
properties:

• any angle of any triangle lies in the range between 43.9◦ and 90◦,
• the aspect ratio of triangles is bound to 1.20787,
• the triangulation has the Delaunay property,
• the minimum triangle size is bounded by the minimum distance between input

points.

The iterative character of the hexagon subdivision allows incremental addition of
further input points for selectively refining certain regions. Finally we extend the
algorithm to handle planar straight-line graphs (PSLG). Meshes produced by this
method are suitable for all kinds of algorithms where numerical stability is affected
by triangles with skinny or obtuse angles.

Keywords: Unstructured Mesh Generation, Delaunay Triangulation, Guaranteed
Angle Bounds, Hexagon Subdivision.

1 Introduction

Mesh generation is the subject of many articles due to its importance to com-
putational geometry, computer graphics, numerical simulation and various
other areas. Many problems are based on input data lying in a 2-dimensional
domain. This data is often triangulated to allow computations on the mesh,
e.g. for finite element methods. The result usually strongly depends on the
quality of the triangular mesh, e.g. small or obtuse angles reduce the numer-
ical stability for a high number of elements. The number of triangles also
determines the runtime for solving the problem. Therefore it is desirable to
have a well-shaped triangular mesh with as few triangles as possible.

There are several kinds of unstructured mesh generators. Some are based
on grid-techniques, e.g. quad-trees, while others try to improve an existing
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triangulation iteratively. These and other approaches like advancing front
techniques are surveyed by Owen [7].

In this paper we use a different approach. Instead of a quad-tree a hexag-
onal highly adaptive subdivision scheme is used for the input domain. When
the domain is finally subdivided a dual mesh is extracted from the centers
of the full hexagons. It turns out that this mesh has the Delaunay property,
i.e. maximizing the minimum angle of any triangle, which is guaranteed to
be 43.9◦ – independent of the input data. The method is also aware of
different regions of interest, meaning that areas with less input points have
larger triangles. The size of the triangles quickly decreases in regions of high
interest. It is limited by the minimum distance among the input points which
also ensures termination of the algorithm. Both properties lead to triangular
meshes with a reasonable number of triangles.

After describing previous work, we give a short introduction into the
hexagon subdivision scheme. Then refinement rules are defined to subdivide
the input domain adaptively according to the location of the input points.
From the hexagonal mesh a dual triangular mesh is extracted where any an-
gle is between 30◦ and 120◦. In order to achieve much tighter bounds the
hexagons are classified according to their adjacent neighbors. Additional re-
finement rules and shifting the centers of the classified hexagons results in a
triangular mesh with angles between 43.9◦ and 90◦.

As an additional result the algorithm is extended to handle also PSLGs.
This may be important to limit the domain only to valid input values. How-
ever at these boundaries the proven angle bounds are lost.

2 Previous Work

Baker et al. [1] introduced guaranteed shape properties for the resulting
meshes so that all angles of the triangles lie within 13◦ and 90◦, yielding
an aspect ratio of at most 4.6. This is achieved by placing a square-grid over
the polygons to include Steiner points. The size of the grid is determined
by the smallest distance among the input points and edges. However the
resulting meshes may be very large.

Bern et al. [2] use a quad-tree instead of a uniform grid. This method
gives bounds to shape property and the number of triangles. Subdividing the
domain by a quad-tree allows a local refinement with Steiner points where
necessary while regions of low interest remain coarse. For point sets the angle
bounds are 36◦ and 80◦ and for a planar straight-line graph (PSLG) the range
is 18.4◦ and 153.2◦. To achieve this, the key-idea is to move the corners of
the quad-tree according to some patterns. The method of Neugebauer and
Diekmann [6] uses rhombi instead of squares when subdividing the domain,
yielding angle bounds of 30◦ and 90◦ for polygonal input.

A different approach is refining an already obtained Delaunay-triangulation
of a point set by inserting Steiner points at certain positions iteratively which
is called Delaunay refinement. The original approach of Chew [3] and Ruppert
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[8] uses the circumcenter of badly shaped triangles while latest methods of
Üngör [10] and Erten [4] use different locations . The guaranteed angle bounds
for point sets are 30◦ and 120◦. For PSLGs they are set to 20◦ and 160◦. In
practice often higher angles up to 34◦ are achieved, depending on the input
data which was examined by Shewchuk [9]. The Off-Center approach even
raises this limit up to 42◦. However it is always possible to get input data,
where the Delaunay refinement fails for high angles. Both methods are imple-
mented in Triangle which is a robust software for creating Delaunay-refined
meshes available at http://www.cs.cmu.edu/~quake/triangle.html.

3 Hexagonal Subdivision

Sußner et al. [5] use a bidirectional subdivision of a hexagonal mesh to adap-
tively refine the domain of huge height-fields for interactive purposes. The
subdivision method follows simple and easy-to-implement rules and is there-
fore an efficient way to adaptively subdivide planar regions.

3.1 Subdividing a Hexagon

A hexagon is subdivided by scaling it to half size and filling the remain-
ing space with semi-hexagons. The hexagons are organized in levels: Full
hexagons are located in even levels while semi-hexagons only occur in odd
levels. When subdividing a full hexagon, the scaled full hexagon is moved
into the next even level while the semi-hexagons are put in the odd level
in-between. After the operation each of the semi-hexagons is checked for a
fitting adjacent semi-hexagon (see Fig. 1). If there is one both semi-hexagons
are joined to form a new full hexagon one level above.

3.2 Reverse Operation

The above operation is reversible. In a first step adjacent full hexagons may
be separated into two semi-hexagons. In order to break the right hexagons,

Fig. 1. The numbers denote the split-counter of each hexagon. On the left the split-
/merge-operator is shown which increases/decreases the split-counter by one. The
join-/break-operator in the middle creates a new full hexagon with a split-counter
value of zero. As shown on the right side, a boundary semi-hexagon is treated like
a virtual full hexagon.
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each hexagon gets a subdivision counter which is set to zero when a new
hexagon was created by joining two semi-hexagons. Every time a hexagon is
subdivided the counter is increased by one and decreased if it was scaled up
to a hexagon of lower level. Finally a hexagon may only be broken up into
two semi-hexagons if the subdivision counter is zero.

3.3 Adaptive Refinement

For the sake of a smooth increase of level-of-detail, a simple balancing rule
is applied. After each subdivision step the level difference of adjacent (semi-)
hexagons must not be larger than one. If the difference is larger the hexagon
of lower level is subdivided as well. If this is a semi-hexagon, the opposite
neighbor, which must be a full hexagon, is subdivided. The balancing rule
is illustrated in Fig. 2. Note that a single subdivision step may trigger the
refinement of large parts of the hexagon mesh.

Fig. 2. The numbers represent the level counter of each hexagon. If the level
difference is greater than one further splits and joins of semi-hexagons are forced.

4 Simple Refinement

In this section we present a simple version of the triangulation algorithm,
with angle range of 30◦ to 120◦. Beyond these angles triangles are usually
considered as bad.

4.1 Refinement Rules

As a first step, a bounding hexagon is created around all input points. In
order to keep the number of triangles as low as possible, a good choice is
the minimum bounding sphere as the inner circle of the hexagon as shown
in Fig. 3. This sphere may be efficiently computed by the method presented
by Welzl [11]. In addition to the balancing rules of section 3.3 the following
rules must be obeyed in order. A hexagon containing an input point is marked
occupied. Given a set of hexagons H, the rules are:
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1. subdivide any hexagon hi ∈ H occupied by several input points,
2. if hi ∈ H is an occupied semi-hexagon, subdivide the full hexagon adja-

cent to the long edge of hi,
3. subdivide an occupied hexagon hi ∈ H if any adjacent neighbor is occu-

pied as well,
4. if any of the adjacent neighbors is of lower level, subdivide the (full)

hexagons adjacent to the long edge of the neighboring semi-hexagon,
5. subdivide an occupied hexagon hi ∈ H if any adjacent neighbor is of

higher level.

At each single subdivision step, i.e. splitting full hexagons and joining semi-
hexagons, input points were re-distributed among the affected hexagons. In
order to test the whole hexagon-mesh after each operation, a list of affected
hexagons is maintained. Refinement stops if this list is empty. Termina-
tion is guaranteed since an input point is only associated to one hexagon.
Fig. 3 shows examples of these rules. In the final hexagon mesh all occu-
pied hexagons are full hexagons surrounded by a ring of full non-occupied
hexagons.

Fig. 3. Initial setup of input points on the left side, followed by a sequence of applied
refinement rules: several input points, input point in semi-hexagon, adjacent lower
level hexagons.

4.2 Extracting the Dual Mesh

For getting the dual triangulation from the hexagon mesh just add an edge
from the center of each full hexagon to the centers of its adjacent hexagons. If
the neighbor is a semi-hexagon connect the edge to the center of the opposite
full hexagon of the neighbor (see Fig. 4). In a final step the center positions of
the occupied hexagons are replaced by the location of corresponding assigned
input points.

4.3 Proving Angles

The proof for a minimum angle of 30◦ is split into two parts. First the angles
of the plain dual mesh, i.e. without relocated centers, are examined. In the
second part we take a look at the situation of a relocated center.
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Fig. 4. The dual mesh consists of the edges among adjacent full hexagons. For
semi-hexagons the opposite neighbor is taken. Note that the minimum angle of 30◦

is always in the triangulation due to the adaptive subdivision (grey triangle on the
left). On the right side there is a triangle consisting of both angle bounds, 30◦ and
120◦.

Angles of the Plain Dual Mesh

As shown in Fig. 4 the centers of three adjacent full hexagons form a equi-
lateral triangle with three angles of 60◦. If one of them is subdivided, the
center of scaled hexagon still remains at the same position. If two of them
are subdivided, they form a new full hexagon located right in the middle of
them. Therefore the equilateral triangle is split into two with half angle at
the center of the remaining un-subdivided hexagon. Since the center of the
new hexagon lies on the middle of the two existing centers both triangles
have an angle of 90◦ at the new center.

Angles at Relocated Centers

A hexagon containing a relocated center is surrounded by full hexagons as
shown on the right side in Fig. 4. The input point may be located anywhere
within the hexagon. In extremum the center is moved to a hexagon’s vertex.
In this case one triangle has two angles of 30◦, but not less. This also means
that the third angle must be 120◦.

5 Extended Refinement

For simple refinement the dual mesh is extracted by connecting the centers
among all full hexagons. But there is plenty of freedom to shift the centers’
position to achieve tighter angle bounds. To reach this goal, two enhance-
ments are necessary.

First the full hexagons are classified according to their adjacent (semi-)
hexagons. Based on that classification the hexagon mesh is adaptively re-
fined. In a second step, when the dual mesh is extracted, the centers of some
classified hexagons are shifted to yield higher angle bounds of 43.9◦ and 90◦

respectively.
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5.1 Classification of Hexagons

The classification of the full hexagons is based on the number of fins. A fin is
a semi-hexagon which joins at its long edge to the full hexagon (see top row
of Fig. 5). If there is any fin the hexagon hi ∈ H is marked as follows:

MOVED CENTER 1 - hi has only one fin,
MOVED CENTER 2 - hi has only two consecutive fins,
MOVED CENTER 3 - hi has only three consecutive fins,
SUBDIVIDE - else.

Full hexagons adjacent to the edge before the fin strip are called left neighbor
hil

. Those adjacent to the edge after the fins are called right neighbor hir . In
case that hi is of type MOVED CENTER 3 the remaining adjacent full hexagon
is called top neighbor hit . Full hexagons hi ∈ H without fins are marked as
well (see bottom row of Fig. 5):

OCCUPIED 1 - input point lies within the half-sized hexagon of hi,
OCCUPIED 2 - input point lies outside of half-sized hexagon of hi,
FIXED CENTER IN RING - hi is in 1-ring of a hexagon of type OCCUPIED 1 or in

2-ring of a hexagon of type OCCUPIED 2,
MOVED CENTER IN RING - hi is in 1-ring of a hexagon of type OCCUPIED 2,
MOVED CENTER 4 - hi is top neighbor of a hexagon of type

MOVED CENTER 3,
FIXED CENTER REGULAR - else.

Fig. 5. Hexagons are classified to their number of fins. Hexagons containing
an input point marked as OCCUPIED [12] depending on the location of the in-
put point within the hexagon (white areas). OCCUPIED 2-hexagons are surrounded
by ones of type MOVED CENTER IN RING. Input points are also surrounded by
FIXED CENTER IN RING-hexagons either in the 1-ring or 2-ring. The 1-ring of a
hexagon hi is defined by the full hexagons surrounding hi. The 2-ring of hi then
consists of all full hexagons surrounding the hexagons of the 1-ring of hi.
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5.2 Extended Refinement Rules

According to the classified hexagons further refinement rules are defined:

• subdivide any hexagon hi ∈ H of type SUBDIVIDE,
• subdivide any hexagon hi ∈ H of type MOVED CENTER x lying in the 1-ring

of a hexagon of type OCCUPIED 1,
• subdivide any hexagon hi ∈ H of type MOVED CENTER x lying in the 1- or

2-ring of a hexagon of type OCCUPIED 2,
• subdivide any hexagon hi ∈ H of type MOVED CENTER [123] if any full

hexagon adjacent to its fins is not of type FIXED CENTER x,
• subdivide a hexagon hi of type MOVED CENTER 4 if it is the top neighbor

of more than one non-consecutive hexagons of type MOVED CENTER 3.
• Given a hexagon hi of type MOVED CENTER 3 with a left neighbor of the

same type. If its right neighbor hj := hir is of type MOVED CENTER 2, subdi-
vide right neighbor hjr of hj . (Applied symmetrically with left neighbor!)

The last rule is necessary, since we have a special treatment for two or more
consecutive hexagons of type MOVED CENTER 3 when extracting the dual mesh.
The consequences of this rather complicated rule are illustrated in Fig. 6.
Note that six hexagons of type MOVED CENTER 3 may form a ring - called
blossom. This is exploited later in order to reduce the number of hexagons.
Also note that each sequence of MOVED CENTER 2/MOVED CENTER 3- hexagons,
except for a blossom, is enclosed by hexagons of type MOVED CENTER 1. Fig. 7
shows an example of a valid subdivision.

Fig. 6. Angle bounds do not hold if a MOVED CENTER 2-hexagon is adjacent to a pair
of MOVED CENTER 3-hexagons. Subdividing its right/left neighbor creates another
hexagon with three fins.

5.3 Local Coarsening

Applying above rules may lead to a subdivision with greater areas of hexagons
of same size. In order to avoid an unnecessary large number of triangles, a
local coarsening step is performed according to as fine as necessary but as
coarse as possible (see Fig. 7). For this the neighborhood of each hexagon
hi with a split-counter of 0 is examined whether it is possible to execute
all necessary break-/merge-operations to form a blossom. That is all of the
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Fig. 7. This subdivision shows almost all possible combinations among the differ-
ent hexagon types. Blossoms are created at a final local coarsening step in order
to avoid large regions of small sized hexagons. Note that two input points may
share hexagons of type FIXED CENTER IN RING, e.g. in the lower right quarter. The
corresponding dual mesh is drawn as an overlay on the right side.

hexagons in the 4-ring of hi must be of type FIXED CENTER REGULAR. By
this operation 37 hexagons are replaced by 7. In the dual mesh a blossom is
represented by 60 triangles instead of 96 for the plain region.

5.4 Modifications to the Dual Mesh

In this section we show how to adapt the center positions for the dual mesh.
For hexagons of type MOVED CENTER 3 it is additionally necessary to insert
moved centers of their fins.

Lower Angle Bound

First the lower angle bound is determined since this angle is used to compute
some of the relocated centers. Have a look at the left side of Fig. 8 where
a hexagon of type OCCUPIED 1 with radius r is shown. The input vertex is
located at a vertex of the half-sized hexagon, causing extremal angles. The
smallest angle in this configuration is α and is determined analytically:

tan α =
y

x
=

5
4r

3
2r

√
3

2

=
5

3
√

3
⇒ α ≈ 43.8979

Centers of MOVED CENTER IN RING-hexagons

In case that the input point does not lie in the half-sized hexagon of hi, the
closest vertex vci to the input point of hi is determined. As illustrated at
the right side in Fig. 8 the input point may be located anywhere in the grey
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Fig. 8. On the left side the input point is located at a vertex of the half-sized
hexagon (white area). The smallest angle α is determined by x and y. On the right
side the input point is located outside of the half-sized hexagon hi. The centers
of the surrounding hexagons are shifted by vector of 1

2
r from the center of hi

towards the nearest corner of the input point. For that corner the input point may
lie anywhere in the white area. Note that in either configuration all triangles are
acute.

region. In order to maintain angle bounds, the half-sized vector between vci

and the center Chi is added to each of the surrounding hexagons which are
of type MOVED CENTER IN RING.

Centers of MOVED CENTER 1-hexagons

Given a hexagon hi of type MOVED CENTER 1 and a hexagon hf0
i of type

FIXED CENTER x adjacent to the only fin f0
i of hi. The new center position

Ĉhi of hi lies on the axis between the original center position Chi and the
center C

hf0
i

of hf0
i :

Ĉhi :=
5
6
Chi +

1
6
C

hf0
i
.

The ratios are shown on the right side of Fig. 9 together with special config-
uration of MOVED CENTER 3-hexagons.

Centers of MOVED CENTER 2-hexagons

Given a hexagon hj of type MOVED CENTER 2 and three hexagons hf0
j , hf01

j

and hf1
j of type FIXED CENTER x adjacent to the fins f0

j and f1
j of hj. The

new center position Ĉhj of hj lies on the axis between the original center
position Chj and the center C

h
f01

j
of hf01

j . Looking at Fig. 9 x :=
√

3
2 r is the

edge between C
f0

j

h and C
f01

j

h , i.e.

tan α =
x

y
⇒ y =

√
3

2 r
5

3
√

3

=
9
10

r.
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Fig. 9. In this picture the ratios for computing the new location of the centers are
illustrated. On the left side the configuration with a single MOVED CENTER 3-hexagon
and on the right side a pair of them. Note that the ratio for a 1-fin-hexagon is derived
from the right side.

The distance between the centers of hj and hf01
j is 3

2r. Hence the hexagon’s
center is relocated to

Ĉhj :=
3
5
Chj +

2
5
C

h
f01

j

Centers of single MOVED CENTER 3-hexagons

Given a hexagon hi of type MOVED CENTER 3 and five hexagons hf0
i , hf01

i , hf1
i ,

hf12
i and hf2

i of type FIXED CENTER x adjacent to the fins f0
i , f1

i and f2
i of
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hi. If it is a single MOVED CENTER 3-hexagon, i.e. neither the left or nor the
right neighbor is of same type, the original center is neglected. Instead the
three centers of the fins are shifted and included in the triangulation. For
computing the new positions of three centers the same ratios are used as for
MOVED CENTER 2-hexagons. However for the middle one the ratio is swapped.

Ĉf0
i

:= 3
5Chi + 2

5C
hf0

i

Ĉf1
i

:= 2
5Chi + 3

5C
hf1

i

Ĉf2
i

:= 3
5Chi + 2

5C
hf2

i

Centers of consecutive MOVED CENTER 3-hexagons

As mentioned in Sec. 5.2 we have different topologies for two or more con-
secutive hexagons of type MOVED CENTER 3. In addition to the previous case,
the center of hj is included in the triangulation. As shown in Fig. 9, it lies
on the axis between the original center position Chj and the center of its top
neighbor Cht

j
, i.e.

Ĉhj :=
2
3
Chj +

1
3
Cht

j
.

Suppose the left neighbor is of type MOVED CENTER 1, then the right neighbor
must be of MOVED CENTER 3 as shown on the right side of Fig. 9. The center
Cf1

j
lies on the line through Ĉhj and C

hf0
j

. Since we want an upper angle

bound of 90◦, it must form two right triangles together with center of the left
neighbor. Both triangles have the same height and one angle of α, then let
l0, l1 and l be defined as:

l0 :=
5

3
√

3
h l1 :=

3
√

3
5

h l :=
∥∥∥Ĉhj − C

h
f0

j

∥∥∥ .

Solving this for l0 and l1 leads to a ratio of 25 : 27, i.e. the new center is

Ĉf0
j

:=
25
52

Ĉhj +
27
52

C
h

f0
j
.

Note that this configuration also determines the ratio for hexagons of type
MOVED CENTER 1. The center of the second fin is set to

Ĉf1
j

:=
3
5
Chj +

2
5
C

h
f1

j
,

in contrast to the single configuration where the ratio was swapped. At the
common edge of the two MOVED CENTER 3-hexagons the corresponding neigh-
bors coincide and are set to

Ĉf2
j

:=
9
20

CM +
11
20

C
h

f2
j
,

with CM as the average of the two hexagons’ new centers.



Hexagonal Delaunay Triangulation 531

Centers of MOVED CENTER 4-hexagons

The relocated position depends on the number n of adjacent hexagons of type
MOVED CENTER 3. If it is forming a blossom, the center is not relocated. In
any other case the most left hexagon hk0 of the consecutive MOVED CENTER 3-
hexagons is determined:

Ĉhi := 3
5Chi + 2

5Chk0 (n = 1),
Ĉhi := 5

4Chi − 1
4CM , CM := 1

2 (Chk0 + Chk1) (n = 2),
Ĉhi := 7

6Chi − 1
6Chk1 (n = 3),

Ĉhi := 4
3Chi − 1

3CM , CM := 1
2 (Chk1 + Chk2) (n = 4).

6 Properties

6.1 Angle Bounds

The minimum angle bound was already explained in the previous section
where it was used to relocate the hexagon centers so that each triangle has
no angle below that value. The center relocation also took care of right an-
gles, i.e. no triangle is created with an angle greater than 90◦. Yet there is
still missing an analytic proof of all possible combinations which is omitted
due to space constraints. We rather show in Fig. 10 a sample of almost all
possible configurations and and angles. It is left to the reader to verify them
by computing the single angles of each triangle.

Fig. 10. This figure shows almost all possible hexagon-configurations, missing only
MOVED CENTER 3-strips of size 3 and 4 and 6 (blossoms). α is the minimum angle
(tan α = 5

3
√

3
⇒ α = 43.9) and β is its counterpart in a right triangle (tan β =

3
√

3
5

⇒ β = 46.1).
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6.2 Aspect Ratio

Both angle bounds also limit the aspect ratio of a triangle, i.e. the ratio be-
tween the diameter of incircle and radius of the circumcircle. Given a triangle
T having both bounds as angles as shown in Fig. 11 and the shortest edge
has length s. The radii of the circumcircle and the incircle of a right triangle
are defined as

ϕ :=
c

2
=

1
2

s

√√√√12 +

(
3
√

3
5

)2

=
1
2
s

√
52
25

.

ρ :=
a + b − c

2
=

s
(
1 + 3

√
3

5 −
√

52
25

)
2

Thus the aspect ratio of T is 2ρ
ϕ ≈ 1.20786.

Fig. 11. On the left side the circumcircle reaches its maximum extent at the angle
bounds of 43.9◦ and 90◦. This also defines the maximum aspect ratio of the triangle
T . The Delaunay property is achieved if for every inner edge (AB) the sum of γ1

and γ2 is not greater than 180◦ as shown on the right side.

6.3 Minimum Triangle Size

The minimum triangle size is determined by the minimum distance among
the input points. As shown in Fig. 7 the minimum distance of two hexagons of
type OCCUPIED 2 may share some hexagons of type FIXED CENTER IN RING,
i.e. they have at least a distance of three full hexagons. Since the point-in-
hexagon-test may produce undefined results if an input point lies exactly on
an edge between two hexagons or on a vertex among three adjacent hexagons,
the vertex is assigned to the first hexagon to be tested. Therefore an addi-
tional distance of three full hexagons is added. The shortest edge in the
triangular mesh is the one marked in Fig. 8 in the 1-ring of a hexagon h with
radius rmin of type OCCUPIED 1 and has a length of

lmin := rmin

√√√√(
3
2

√
3

2

)2

+
(

1
4

)2

=
rmin

2

√
7.
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The radius rmin is defined by the minimum distance dmin among the input
points and a number of at most six full hexagons in between, i.e.

rmin :=
dmin

6 · 2
√

3
2

⇒ lmin :=
dmin

√
7

12
√

3
.

6.4 Delaunay Property

The upper angle bound of 90◦ automatically implies the Delaunay property.
Note that a triangular mesh has the Delaunay property if no other vertex lies
within the circumcircle of any triangle. This is equivalent that for each inner
edge the sum of the apex angles of the adjacent triangles is not greater than
180◦ (see Fig. 11). Since there is no larger angle than 90◦ this is obviously
satisfied.

7 Triangulating Planar Straight-Line Graphs

Domains are often bounded by a sequence of straight line segments, e.g. to
restrict the computation to valid input values or reduce the number of com-
puted elements. For this purpose we present a method to integrate a PSLG
in the hexagon subdivision assuming that line segments do not intersect each
other. However guaranteed angle bounds are lost at the line segments - but
are guaranteed in the interior of the bound region.

7.1 Input Line Segment

Additionally to the input points one or several line segments are associated
to the hexagons as shown in Fig. 12. During splitting-/join-operations line
segments are re-assigned to the children, according to a hexagon-intersects-
line test. Note that a line segment will never be split into several pieces while
refining the hexagon mesh. When extracting the dual mesh, edges of the
triangles are moved onto the line segment to ensure that all input lines are
represented in the final triangular mesh.

7.2 Extended Refinement Rules

All hexagons intersecting a line segment must not be of type
MOVED CENTER [1234]. These kinds of hexagons are neither allowed in the 1-
ring of the intersected hexagons. Additionally a hexagon may be intersected
at most by two line segments, but only if they are consecutive (see Fig. 12).
Therefore the following rules for an intersected hexagon hi are added to the
refinement rules of Sec. 5.2:

• if any neighbor hj of hi is of higher level subdivide hi,
• if any neighbor hj of hi is of lower level subdivide hj ,
• if hi is intersected by two or more non-consecutive line segments subdivide

hi.
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Fig. 12. Similar to input points line segments are assigned to hexagons. On the left
side s0 is assigned to hi and hj . s1 is assigned to hj and hk. A hexagon is allowed
to have at most two assigned input segments if they are consecutive. On the right
side hi gets all three line segments assigned and must be subdivided.

7.3 Line intersections

The basic idea is to relocate the centers of intersected hexagons. For this
consider the three main axis of a hexagon which are orthogonal to the corre-
sponding edges of the hexagon as shown in Fig. 13. Pick the axis forming the
largest angle with respect to the line segment and compute the intersection
of this axis and the line segment. If the intersection is still within the hexagon
the new center location and the corresponding distance to the start point of
the segment is kept in a list for that segment.

If the hexagon does not contain an input point but is intersected by two
line segments, e.g. at acute input segments, a link to its neighbor intersection
is stored in the record list as well. Finally for each line segment the associated
list records are sorted with respect to the distance to the start point s0 of
the line segment. Afterwards for each line segment the affected hexagons are
traversed according to the sorted intersection entries and their centers are
shifted accordingly. For hexagons with two intersections a new point and
new triangles have to be inserted into the triangulation as explained in the
following subsection.

Fig. 13. The axis a2 of hi forms the largest angle with line segment s0. On the
left side the intersection lies within hi and therefore an intersection record with ti

is created. In contrast to the situation in the middle. Here the intersection lies in
the neighbor hexagon and the center of hi will not be relocated. On the right side a
second intersection record is created for s1. For these kinds of hexagons additional
triangles have to be added to the dual mesh.



Hexagonal Delaunay Triangulation 535

7.4 Adding Triangles

Hexagons intersected only by one line segment are treated as non-intersected
ones. However hexagons with two projected centers require additional trian-
gles. The original single center is split into two, creating an inner region in
between the two line segments. This inner region is filled with two new trian-
gles as seen in Fig. 14. The triangles outside of the inner region are built in
a regular way by connecting the two centers with the centers of the adjacent
hexagons.

Special care is also needed for consecutive projected centers. This happens
for example at input points lying outside of the half-sized hexagon in Fig. 14.
In this case degenerated triangles would be created. The situation is solved
by omitting the projected center of the concerned hexagon if the distance
between the moved center and the projected center is greater than the radius
r of the hexagon.

Fig. 14. The original center is split into two, opening a gap between the two
line segments. This gap is filled by four new triangles. The edges outside the gap
are connected as usual. On the other side in case of almost co-linear segments,
degenerated triangles may occur. The projected center is not used if the distance
between the moved center of hj and the projected center is greater than the radius
r of hj .

8 Results

The method was implemented and tested on a regular PC with an Intel Core2
Duo processor at 2.6 GHz using only a single thread. The implementation is
a proof-of-concept, i.e. it uses a conservative approach for the refinement loop
with a runtime complexity of O(n2) which makes the current implementation
unsuitable for larger data sets.

In this section we compare the results of our method with the current
version of Triangle (v1.6). We have chosen 6 data sets. The first data set
– a popular benchmark – consists of two single points with a close distance
to each other, 0.02 units in this case. It is located within a hexagon with
unit radius. The second data set consists of 100 random points lying on a
straight line. In the third data set the 100 points are distributed randomly
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Fig. 15. Four data sets triangulated with our method. In the first row two close
points were triangulated. In this case the bounding hexagon was not adapted to the
bounding sphere of input points. In the second row a random set of 100 points lying
on a straight line is shown, while in the next row the 100 points were randomly
distributed. The last row shows the inclusion of line segments. The density of the
triangles increases with level-of-detail of the line segments. The right picture shows
a close-up of the triangulation.
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Table 1. Triangle was executed in single precision as well as in double precision
while our method uses just single precision. Per trial-and-error the angle was in-
creased by 0.25 degrees until the Triangle fails. When adding a PSLG the angle
bounds of the hexagon method are lost. For the IMR-letters the minimum angle is
13.7◦ and the maximum angle is 133.4◦ near the line segments. In the interior re-
gions the mininum and the maximum angle are 43.9◦ and 90◦. Timings for Triangle
are below 0.03 seconds for all data sets. The timings of our method are listed in
parenthesis behind the angle numbers.

# triangles of Triangle v1.6 (single) Triangle v1.6 (double) Hexagon Delaunay
2 close pts 122 at 36.75◦ 131 at 37.00◦ 684 at 43.9◦ (0.005 s)
100 pts on line 4890 at 35.00◦ 5289 at 35.00◦ 18667 at 43.9◦ (0.13 s)
100 pts on plane 1149 at 34.50◦ 1133 at 34.50◦ 12748 at 43.9◦ (0.21 s)
IMR-letters 2569 at 34.50◦ 1770 at 34.50◦ 30551 (1.03 s)
1k pts on plane 10423 at 34.5◦ 14414 at 34.75◦ 127729 at 43.9◦ (30.4 s)
2k pts on plane 19377 at 34.25 19244 at 34.25 268138 at 43.9◦ (123 s)

on the plane. The fourth data set consists of the sampled letters IMR where
the level-of-detail increases from letter I to letter R. Finally we tested the
algorithm with slightly larger data sets consisting of 1k and 2k resp. random
points. The timings clearly show the quadratic runtime complexity. However
it should be possible to implement a more sophisticated refinement loop to
reach a runtime complexity of O(n log n) or slightly above.

The resulting triangulations of the first four data sets are shown in Fig. 15.
In Table 1 we have listed the number of triangles for each data set according
to the maximum reachable angle bounds. For Triangle we increase the angle
by 0.25 degrees step by step until the program fails.

9 Conclusion and Future Work

We have presented a new approach of generating meshes of high quality by
triangulating point clouds. All angles of the triangles lie within the range
of 43.9◦ and 90◦. We have also shown that the triangular meshes have the
Delaunay property.

The triangulation is locally adaptive, i.e. regions of interest have more
triangles than regions with less input points. By balancing the underlying
hexagon-subdivision, the triangles grow quickly from high to low detailed re-
gions. Furthermore the minimum distance among the input points determines
the minimum size of the triangles, which may be pre-computed in advance.

In order to limit the domain to certain regions we provided a simple method
to include a planar straight-line graph in the triangulation. Although angle
bounds may fail directly at these line segments, they are still valid in the
interior regions, i.e. one hexagon away from the lines.

Future work will be concentrated on finding a refinement loop implemen-
tation with a better runtime complexity than O(n2) and an integration of a
PSLG with guaranteed angle bounds, preferably in the range of 30◦ and 90◦.
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An open problem is the extension to 3D space. It is not clear which 3D-
polytope will substitute the 2D-hexagon. A promising candidate seems to be
the octahedron.
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Abstract. In this paper we propose a simple technique for tetrahedral mesh im-
provement without inserting Steiner vertices, concentrating mainly on boundary
conforming meshes. The algorithm makes local changes to the mesh to remove
tetrahedra which are poor according to some quality criterion. While the algorithm
is completely general with regard to quality criterion, we target improvement of
the dihedral angle. The central idea in our algorithm is the introduction of a new
local operation called multi-face retriangulation (MFRT) which supplements other
known local operations. Like in many previous papers on tetrahedral mesh improve-
ment, our algorithm makes local changes to the mesh to reduce an energy measure
which reflects the quality criterion. The addition of our new local operation allows
us to advance the mesh to a lower energy state in cases where no other local change
would lead to a reduction. We also make use of the edge collapse operation in order
to reduce the size of the mesh while improving its quality. With these operations,
we demonstrate that it is possible to obtain a significantly greater improvement to
the worst dihedral angles than using the operations from the previous works, while
keeping the mesh complexity as low as possible.

1 Introduction and Motivation

For many types of physical simulation, the tetrahedral mesh representation
is the natural choice. For instance, finite element computations in 3D usually
employ tetrahedral meshes which are far better at adapting to boundaries
and changes in scale than e.g. regular voxel grids.

For 2D triangulations, Delaunay triangulation is often a natural choice
since it leads to a mesh which is optimal in the sense that the minimal
angles are maximized which is a reasonable quality criterion in 2D. In 3D
however, it is less clear what quality criterion we should strive for and a
3D Delaunay tetrahedralization may contain very flat sliver tetrahedra with
extreme dihedral angles, and extreme dihedral angles are often precisely what
we wish to avoid since they may lead to problems, such as great interpolation
errors or ill-conditioned stiffness matrices in some finite element computations
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(although in the anisotropic case they might be desirable) or problems with
interpolation accuracy [21].

Consequently, in this paper and in other recent work [12], the goal is
to optimize a tetrahedralization obtained through either Delaunay or other
methods in order to improve some criterion – particularly dihedral angles.
However, little is known about globally optimal meshes in the sense that
the smallest dihedral angle is maximal or that the largest dihedral angle is
minimal. Consequently, one strives instead for a set of simple, local trans-
formations which improve the mesh by removing poorly shaped tetrahedra.
The best one can hope for in this case is a good local minimum, and whether
one attains such a minimum is highly dependent on one’s vocabulary of local
transformations. It is this vocabulary which we extend by the addition of
two local transformations which are highly beneficial to the mesh quality yet
have not previously been used in tetrahedral mesh optimization.

The most powerful way of improving triangle or tetrahedral meshes is
through the insertion of more vertices (as shown in [12]). Indeed this is some-
times the only way to improve quality. Unfortunately, one pays the price of
adding (sometimes significantly) more tetrahedra, and finding the optimal
place to put a vertex can be hard. Besides, many applications (such as dy-
namic meshes) require their own Steiner vertex insertion routines. For these
reasons, we opine that it is very worthwhile to explore to what extent our
mesh improvement vocabulary can be augmented without adding vertices.

Our main contribution is the multi-face retriangulation operation. Assume
a set of tetrahedra which we can divide into upper and lower tetrahedra. Any
upper tetrahedron shares a face with precisely one lower tetrahedron (and
vice versa) and the upper tetrahedra all share a vertex (the upper vertex) as
do the lower tetrahedra (the lower vertex). We can say that the set of tetra-
hedra is sandwiched between the upper and the lower vertex (as illustrated in
Figure 1). The union of the triangular faces shared between upper and lower
tetrahedra can be seen as a triangulation of a polygon. Our proposed oper-
ation simply retriangulates this polygon to obtain better sets of upper and
lower tetrahedra. Multi-face retriangulation can also be seen as a composition
of the known multi-face removal and edge removal operations (as shown in
Figure 1) [9, 12]. However, multi-face retriangulation is more powerful than
the concatenation of these two operations: in the case of some configurations
multi-face removal followed by edge removal would never be selected because
very poor or inverted tetrahedra would result from the multi-face removal op-
eration (as illustrated in Figure 2). Additionally, multi-face retriangulation
works on boundaries whereas concatenation of multi-face removal and edge
removal does not.

The other contribution is the use of the well known edge collapse oper-
ation. Curiously, to the best of our knowledge, this operation has not been
incorporated into any tetramesh improvement algorithm previously. It sig-
nificantly reduces the complexity of the mesh and it also might improve the
worst quality within the set of affected tetrahedra.
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Fig. 1. Multi-face removal, edge removal and their superposition – multi-face re-
triangulation.

Fig. 2. Configuration in which multi-face removal would not be performed. Vertices
a, b, c and d are nearly coplanar. Performing multi-face removal in such a config-
uration would lead to creating a very poorly shaped tetrahedron abcd (highlighted
in orange) of extremely low quality. Also, by perturbing vertex a or b we can easily
create a situation in which tetrahedron abcd would be inverted. In both situations
multi-face removal would not be performed by a greedy algorithm – hence the arrow
is crossed out. The strength of multi-face retriangulation is in tunneling through
these kinds of hills in the energy landscape.

2 Related Work

Clearly, whether mesh improvement is needed depends on how the mesh was
generated. Broadly speaking, there are three ways of producing tetrahedral
meshes from a boundary representaion of an object. First, if the bound-
ary is a piecewise linear complex (in particular – triangulated manifold), we
could use constrained Delaunay tetrahedralization to produce a conforming
mesh [19,22]. Alternatively, we could use an advancing fronts method which
would build the tetrahedralization out from the boundary. As mentioned,
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the former approach will often have problems with sliver tetrahedra even
after Delaunay refinement, unless the boundary satisfies a set of strict condi-
tions [3,19] limiting the practical applications of this approach, and the latter
tends to produce some bad tetrahedra around areas where the front collides
on itself [16]. These problems are compounded if the boundary mesh has
poorly shaped triangles. An alternative approach is the centroidal Voronoi
tessellation based Delaunay tetrahedralization [6] which can, however, still
leave some poorly shaped tetrahedra. We conclude that the mesh optimiza-
tion is likely to be useful as a step following both Delaunay based methods
and also advancing fronts based methods.

A third and alternative strategy is to force the boundary to conform to an
isosurface of an implicit function rather than a mesh. The spatial domain is
first divided into tetrahedra, and a subset which approximates the shape well
is selected. In a subsequent compression step, the boundary vertices of this
subset are forced to lie precisely on the isosurface [15]. However, we note that
the compression step is an optimization procedure because, generally, not
only the boundary vertices are moved but also the interior vertices in order
to improve the quality of the mesh. In recent work, Labelle and Shewchuk
were able to demonstrate good provable bounds on the dihedral angles using
such a method [13]. However, methods which fit meshes to isosurfaces [15,13]
cannot be expected to capture sharp edges and corners because the vertices
are not constrained to lie in particular positions. Consequently, in some cases
they simply do not apply.

Most of the existing work for tetrahedral mesh improvement uses the fol-
lowing three types of mesh operations:

1. Mesh smoothing – relocation of the mesh points in order to improve mesh
quality without changing mesh topology.

2. Topological operations – reconnection of the vertices in the mesh (without
displacing them).

3. Vertex insertion – adding extra vertices into the mesh (through eg. split-
ting of the edges, faces or tetrahedra) and reconnecting affected regions
of the mesh.

2.1 Mesh Smoothing

One of the best known smoothing methods, Laplacian smoothing, in which
a vertex is moved to the centroid of the vertices to which it is connected,
is a popular and quite effective choice for triangular meshes. In tetrahedral
meshes, however, it often produces poor tetrahedra [7]. Optimal (with regard
to linear interpolation error) Delaunay vertex placement has been investi-
gated by Chen and Xu [2]. More general mesh smoothing algorithms are
based on numerical optimization. One of the most popular local algorithms
for mesh smoothing was suggested by Freitag et al. [8]. This method relo-
cates one vertex at a time. Given one vertex, its new position is found, so
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that the minimum quality of all the tetrahedra adjacent to this vertex is max-
imized (this requires non-smooth optimization). This procedure is performed
for each vertex in the mesh and can be iterated until a stable configuration
is attained. It can also be performed on the boundary of the mesh, given
extra constraints for the position of the vertex. Another optimization based
approach, using generalized linear programming, was presented by Amenta
et al. [1], but this one is not as general as Freitag’s and is not well suited for
dihedral angles optimization. Mesh smoothing can also be performed by con-
tinuous optimization in the space of coordinates of all vertices of the mesh
(as in [10]), but Freitag’s method has advantages over this approach – it
is easier to use with non-smooth quality measures, and its characterised by
stable behavior even if the initial quality of the mesh is very low.

2.2 Topological Operations

Reconnection of the mesh can be pictured as picking a set of adjacent tetra-
hedra and replacing them with another set of tetrahedra, of higher minimum
quality, filling in the same volume. This can be performed in a more or less
arbitrary manner (as small polyhedron re-tetrahedralization in [14]), or can
be organized into a set of topological operations, such as:

• 2-3 flip and its inverse, 3-2 flip, as shown in Figure 3.
• 4-4 flip and its version for boundary configuration, 2-2 flip, illustrated in

in Figure 3 – ambiguous, requires specifying which edge pair of vertices
is going to be connected after the operation.

• Edge removal is illustrated in Figure 1 – generalizes 3-2 flip, 4-4 flip and
2-2 flip; ambiguous, requires specifying the final triangulation of the link
of the removed edge, which can be performed by using triangulation tem-
plates, as in [9] or by using Klincsek’s algorithm [11] in order to maximize
the minimal quality of the created set of tetrahedra, as in [12]. Edge re-
moval can be performed for boundary edges.

• Multi-face removal of de Cougny and Shephard [5] is the inverse to the
edge removal, as shown Figure 1 – generalizes 2-3 flip and 4-4 flip; requires
dynamic programming in order to select the subset of faces sandwiched
between two vertices, which gives the best improvement.

The original paper of Freitag and Ollivier-Gooch [9] uses the first three op-
erations. It can easily be noticed, that multi-face removal can actually be
decomposed into a sequence of a single 2-3 flip followed by a certain number
of 3-2 flips. However, this can not always be performed in the hill-climbing
approach (which is usually the choice for the tetrahedral mesh-improvement
algorithms) if one of the operations in the sequence decreases quality locally.
Klingner and Shewchuk [12] use all the operations from the list above.

2.3 Vertex Insertion

Klingner and Shewchuk showed in [12] that mesh improvement is far more
effective with the inclusion of transformations that introduce Steiner vertices.
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Fig. 3. Simple topological operations.

Proper placement of Steiner vertices is a hard problem. Klingner and
Shewchuk describe a sophisticated and rather complex algorithm for vertex
insertion which mimics Delaunay vertex insertion and, together with opti-
mization based smoothing and topological operations, allows them to im-
prove the meshes so that all dihedral angles are between 31◦ and 149◦, or,
using a different objective function, between 23◦ and 136◦.

3 Tetrahedral Mesh Quality Improvement

Our mesh improvement algorithm is based on the algorithm proposed by
Klingner and Shewchuk [12] (which in turn extends one by Freitag and
Ollivier-Gooch [9]) which uses vertex smoothing by Freitag et al. [8], edge
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removal, multi-face removal and vertex insertion (most of the operations they
use can be performed on the boundary of the mesh). In turn, our algorithm
uses the following set of operations:

• Vertex-smoothing as in Freitag et. al [8],
• Topological operations:

– edge removal,
– multi-face removal,
– multi-face retriangulation.

• Edge collapse.

Vertex smoothing and edge removal can be performed for the boundary
vertices and edges, if the boundary is sufficiently flat around them. Addition-
ally, vertex smoothing can be performed along straight ridges on the boundary
of the mesh, if the surface patches separated by the ridge are sufficiently flat.
Multi-face removal and edge removal are implemented essentially the same
way as in [20].

3.1 Multi-face Retriangulation

Multi-face retriangulation can be seen as a composition of multi-face removal
and edge removal, however, it can be also performed on the boundary of the
mesh. It includes the 4-4 and 2-2 flips. Multi-face retriangulation does not
change the number of tetrahedra in the mesh. So far as we know, it has never
appeared in the literature.

The reasons in favor of using MFRT alongside multi-face removal and edge
removal are:

• In some cases, the configuration produced by multi-face removal is of
lower quality, as illustrated in Figure 2. Thus a greedy approach would
not select that configuration even if the subsequent edge removal led to a
state of lower energy than the initial configuration.

• In some cases the configuration produced by multi-face removal includes
inverted tetrahedra, and no approach would select that (also shown in
Figure 2). However, MFRT cannot produce inverted tetrahedra, as the
best triangulation of the multi-face cannot be worse than the initial one
and we assume we run our algorithm on valid tetrahedral meshes.

• MFRT can be applied to boundary configurations. To see this, let us
only consider a set of lower tetrahedra in Figure 1. In such a configu-
ration, multi-face consists of boundary faces and it cannot be removed
using multi-face removal, but it can easily be retriangulated. However, if
the multi-face is not sufficiently flat, which is the case when the angles
between the normals to the faces are greater than 0◦, MFRT can change
the geometry of the boundary of the mesh, which is usually not desirable.

• MFRT does not change the number of tetrahedra. This property is a direct
consequence of a well known fact that every triangulation of a polygon
has the same number of triangles.
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In our implementation, the input is a single face f we wish to remove. We
find the apices a and b of the two tetrahedra adjoining f . Among the set
of all faces sandwiched between a and b we find the connected component
that contains f . For the multi-face defined like that, we find the optimal
triangulation of its bounding polygon using Klincsek’s algorithm. The routine
is similar for a boundary face f , although in this case we have to make sure
that the retriangulated multi-face is sufficiently flat (otherwise geometry of
the boundary might change).

3.2 Edge Collapse

Edge collapse (also known as edge contraction or half-edge contraction) is a
well known mesh operation which has been used as a primary tool for simpli-
fying 2D and 3D meshes in numerous works, such as [4, 17]. It identifies one
of the vertices of an edge e with the other, removes e and all faces and tetra-
hedra which contain it. This can, however, lead to invalid configurations (vi-
olating the simplicial complex criterion) or alter the surface geometry of the
mesh, unless certain conditions are fulfilled, described in detail by Natarajan
and Edelsbrunner in [17]. If edge collapse is not performed for the boundary
edges, which is the case in our implementation, those conditions simplify to
the following:

Lk(e) = Lk(a) ∩ Lk(b),

where a and b are the vertices of the edge e, and Lk(σ) denotes the link of
a simplex σ which, in tetrahedral meshes, can be defined as a set of those
simplices (vertices, edges and faces) in the mesh, that do not intersect with
σ, but are contained by the one of the tetrahedra containing σ. In our imple-
mentation this is performed if the minimum quality of the set of tetrahedra
affected by the operation increases, or if it does not decrease below a certain
quality threshold qmin, which is a global parameter of our algorithm.

3.3 Quality Measures

Both the smoothing algorithm and the topological operations which we are
using are indifferent to the tetrahedron quality measure. In order to be able
to compare our results to those provided in [12] and [9], we are using:

• The minimum sine measure – the minimum sine of a tetrahedron’s six
dihedral angles, penalizes both small and large dihedral angles.

• The minimum biased sine measure, which is like the minimum sine mea-
sure, but if a dihedral angle is obtuse, its sine is multiplied by 0.7 (before
choosing the minimum). This quality measure penalizes large angles more
aggressively than the small angles.

Many quality measures have been proposed for tetrahedral meshes reviewed
by [21], [10]. Our two choices are well behaved and very intuitive, although
non-smooth.
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4 Implementation

Our mesh improvement schedule follows that of Klingner and Shewchuk [12]
(pseudo code is shown in Algorithm 1). Same as in their work, we use a
short list of quality indicators in order to measure progress in lowest quality
tetrahedra improvement. Those are: the quality of the worst tetrahedron
in the entire mesh and seven thresholded means of the qualities of all the
tetrahedra in the mesh. A mean q̄θ with threshold θ is computed the following
way:

q̄θ =
1

#{tetrahedra in M}
∑
t∈M

min(q(t), θ),

where M is the mesh and q is the tetrahedron quality measure we use. For our
quality measures we use thresholded means with thresholds sin(1◦), sin(5◦),
sin(10◦), sin(15◦), sin(25◦), sin(35◦) and sin(45◦). A quality indicator de-
signed like that is a good measure of how narrow the distribution of the
tetrahedron qualities is and allows us to detect the quality improvement even
if the minimum quality does not change. The minimum quality alone is much
less efficient as a mesh quality indicator – it leads to premature termination
of the mesh improvement algorithm and significantly worse final results. We
consider the improvement in the mesh quality sufficient if either the qual-
ity of the worst tetrahedron improves, or if one of the thresholded means
increases by at least 0.0001.

We begin mesh improvement with a vertex smoothing pass, followed by a
topological pass. In the topological pass, pseudo code of which is shown in
Algorithm 2, we first obtain the list of all the tetrahedra in the mesh and then
try to remove every tetrahedron t on the list by first trying to remove its edges
using the edge remove operation and then, if we have not succeeded, by try-
ing to remove its faces using multi-face retriangulation followed by multi-face
removal. Such an ordering of the operations is justified by the fact that first
performing multi-face retriangulation still leaves room for extra improvement
through multi-face removal, while it does not work the other way round. The
optimal multi-face for multi-face removal is chose using dynamic program-
ming, accordingly to an algorithm described in [20]. Any of those operations
are performed only if they locally improve the quality. If that happens, we
proceed to the next tetrahedron on the list. Every topological operation that
we use can destroy more tetrahedra than the one for which it was called, so
before attempting to remove any tetrahedron we have to make sure that it
still exists in the mesh.

After two initial passes we begin the main loop, in which we first smooth
all the vertices until there is no more improvement detected by our mesh
quality indicators. Then we start the topological pass again. If it improves the
quality of the mesh sufficiently, we start the loop again, otherwise we start
the thinning pass (pseudo code is shown in Algorithm 3). In the thinning
pass we attempt to collapse every edge which is not a boundary one, does
not connect two boundary vertices and fulfills the edge collapse feasibility
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Algorithm 1. Improve(M)
{M is a mesh}
1: Smooth each vertex of M .
2: TopologicalPass(M)
3: failed ⇐ 0
4: while failed < 3 do
5: Smooth each vertex of M .
6: if M improved sufficiently then
7: failed ⇐ 0
8: else
9: TopologicalPass(M)

10: if M improved sufficiently then
11: failed ⇐ 0
12: else
13: ThinningPass(M)
14: if M improved sufficiently then
15: failed ⇐ 0
16: else
17: failed ⇐ failed + 1
18: end if
19: end if
20: end if
21: end while

Algorithm 2. TopologicalPass(M)

1: Create the list of all tetrahedra in M .
2: for each tetrahedron t on the list, that still exists in M do
3: for each edge e of t (if t still exists) do
4: Attempt to remove edge e.
5: end for
6: for each face f of t (if t still exists) do
7: Attempt to remove face f by first using multi-face retriangulation

followed by multi-face removal.
8: end for
9: end for

condition. We perform the collapse only if it improves the quality locally or
if the quality of the affected tetrahedra after the operation is not smaller
than a threshold value q0 = 0.5. If the thinning pass improved the quality of
the mesh sufficiently, we start the loop again, otherwise we record that the
sequence of smoothing, topological and thinning passes did not manage to
improve the quality of the mesh. If that happens three times in a row, the
algorithm stops.
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Algorithm 3. ThinningPass(M)

1: for each edge e ∈ M that is not on the boundary do
2: if e still exists then
3: Find the vertices a and b of e.
4: if b is not a boundary vertex then
5: Attempt to collapse edge e: a ← b.
6: if success then
7: Smooth a.
8: end if
9: end if

10: if a is not a boundary vertex and e still exists then
11: Attempt to collapse edge e: b ← a.
12: if success then
13: Smooth b.
14: end if
15: end if
16: end if
17: end for

5 Tests and Results

We tested our schedule on the following meshes:

• Boid, Teapot and Deer are Delaunay tetrahedralizations generated by
TetGen [22] with extremely bad dihedral angles due to the lack of interior
vertices.

• Rand1 – used by Freitag and Ollivier-Gooch and also by Klingner and
Shewchuk to evaluate their mesh improvement algorithms.

• P and TFire – used by Klingner and Shewchuk to evaluate their mesh
improvement algorithm.

• Glass – medium size mesh generated using TetGen [22] with few interior
vertices and low quality boundary triangles.

Unfortunatelly, Klingner and Shewchuk published the results of mesh im-
provement without vertex insertion only for a very few meshes, so the possi-
bility of comparing our results to theirs was limited.

The results of mesh improvement for those meshes are presented in the
Tables 1, 2 and 3. For the Boid mesh we tried to maximize the minimum
biased sine quality measure for this mesh. The boundary of the mesh is
nowhere flat so smoothing and topological operations are not allowed on the
boundary. There are no interior vertices, so in fact smoothing and thinning
cannot take place at all, as they would alter the surface geometry. Not much
improvement can be achieved without vertex insertion in this case, but still we
can see that the topological pass with MFRT is significantly more effective at
fighting the worst dihedral angles than the topological pass without MFRT.
The situation and the results are similar in the case of the Teapot mesh.
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Table 1. Mesh quality improvement results for meshes: Boid, Teapot and Deer.
Minimum biased sine measure was used for the first two and minimum sine quality
measure was used for the last one. Pictures in the first row show the initial surface
geometry of our meshes. Surface geometry remains the same after the mesh im-
provement, although the tesselation might change in flat regions. Histograms show,
from the top to the bottom, the distribution of all dihedral angles in the original
mesh, mesh improved without MFRT and mesh improved using MFRT.

Boid Teapot Deer

2179 tets 3677 tets 2678 tets

1831 tets 3123 tets 2342 tets

1854 tets 3060 tets 2327 tets

We also obtain a significant extra improvement (6.4◦) by the use of MFRT
for the Deer mesh, while in this case we tried to maximize the minimum
sine quality measure.

For Rand1 the use of MFRT allows us to narrow the dihedral angles range
by as much as 8◦ for both sine and biased sine quality measures. Additionally,
edge collapse allows us to decrease the complexity of the meshes by almost
35% and to narrow the dihedral angles range by almost 3◦ for sine quality
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Table 2. Mesh quality improvement results for meshes: P (using minimum biased
sine quality measure) and Rand1 (left column – using minimum biased sine quality
measure, right column - using minimum sine quality measure). Histograms show,
from the top to the bottom, the dihedral angle distribution in the original mesh,
mesh improved without MFRT, mesh improved using MFRT, meshed improved
using MFRT and thinning. Red bars indicate particularily abundant dihedral angles
and were scaled down to increase the readability of the histograms.

P Rand1

926 tets 5104 tets

855 tets 5736 tets 5730 tets

855 tets 4739 tets 4574 tets

782 tets 3358 tets 3327 tets
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Table 3. Mesh quality improvement results for meshes: Glass (using minimum
biased sine quality measure) and TFire (left column – using minimum biased sine
quality measure, right column - using minimum sine quality measure). Histograms
show, from the top to the bottom, the dihedral angle distribution in the origi-
nal mesh, mesh improved without MFRT, mesh improved using MFRT, meshed
improved using MFRT and thinning.

Glass TFire

77632 tets 1104 tets

72542 tets 1099 tets 1101 tets

71016 tets 1095 tets 1094 tets

69776 tets 1071 tets 1034 tets
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measure – ultimately we obtain 15.8◦–162.4◦, and by 2◦ for biased sine qual-
ity measure – ultimately we obtain 15.1◦–157.6◦. For comparison, the best
results Freitag and Ollivier-Gooch [9] obtained for the same mesh was 15.0◦–
166.7◦ for minmax cosine quality measure (and 12.5◦-167.3◦ for sine quality
measure). Mesh P also benefits significantly from the use of MFRT – it nar-
rows the dihedral range by 6◦, but in this case the thinning pass does not
improve the extreme quality values.

The TFire mesh also benefit from adding the MFRT and the edge col-
lapse operation, although not as significantly as the previous ones. Still, our
result 24.9◦–139.7◦ is better than 21.3◦–147.1◦ obtained by Klingner and
Shewchuk [12].

In case of the Glass mesh, we can notice that our mesh improvement
algorithm actually expands the dihedral angles range. This is due to the lack
of extremely obtuse angles in the original mesh, and due to the fact, that the
mesh operations we use choose to “sacrifice” good quality tetrahedra in order
to locally improve the worst tetrahedron. However, we can notice that the we
still benefit from inclusion of MFRT and thinning in the mesh improvement
algorithm.

6 Discussion and Future Work

Our results show that using the multi-face retriangulation operation along-
side smoothing and topological operations from the previous works can lead
to better improvement of the dihedral angles and should be included in the
standard repertoire of the topological operations for tetrahedral meshes. For
the meshes we tested, we obtained a narrowing of the range of dihedral angles
by up to 8◦ without inserting a single Steiner vertex. Additionally, edge col-
lapse can also improve the worst dihedral angles and decrease the complexity
of the mesh by up to 35%, esspecially when the initial quality of the mesh is
very poor.

However, during our experiments we have noticed that the mesh improve-
ment algorithm is still prone to get stuck in the local minima, even if we use
multi-face retriangulation – in a few cases, running the algorithm with some
mesh operations “switched off” (for instance operations on the boundary of
the mesh) leads to better results than running the algorithm with the full
repertoire of mesh operations. This is, of course, a consequence of using a
greedy, hill-climbing approach. This could possibly be improved by applying
a randomized approach.

It is also important to notice that our algorithm is designed for valid input
meshes. If the initial mesh has inverted tetrahedra the algorithm might fail
to remove them. Also, the tetrahedron quality measures we used are not
particularily well suited for meshes with inverted tetrahedra, since they lose
continuity as the tetrahedron gets inverted.
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In the future we are going to further investigate the possibilities of mesh
improvement without Steiner vertex insertion, also with other quality mea-
sures, such as the volume-length measure [18] V/l3rms, where V is the signed
volume of a tetrahedron and lrms is the root-mean-squared edge length.
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Abstract. This work presents a new approach to conformal all-quadrilateral mesh
adaptation. Most current quadrilateral adaptivity techniques rely on mesh refine-
ment or a complete remesh of the domain. In contrast, we introduce a new method
that incorporates both conformal refinement and coarsening strategies on an exist-
ing mesh of any density or configuration. Given a sizing function, this method mod-
ifies the mesh by combining template-based quadrilateral refinement methods with
recent developments in localized quadrilateral coarsening and quality improvement
into an automated mesh adaptation routine. Implementation details and examples
are included.

Keywords: quadrilateral, adaptivity, refinement, coarsening.

1 Introduction

The ability to automatically adapt a finite element mesh based on a sizing
function is an important component of an automatic modeling and simulation
process. Although it is not a new concept, its principal application has been
to triangle and tetrahedral-based methods. Quadrilateral meshes are often
preferred by analysts for improved accuracy over triangle-based methods. In
spite of this, adaptive quadrilateral techniques are not as prevalent in the
literature.

A truly general mesh adaptation scheme must have the ability to both
enhance (refine) and simplify (coarsen) a mesh to provide sufficient accuracy
and efficiency in the analysis. While there are numerous methods currently
used, relatively few provide for both refinement and coarsening. Additionally,
no current algorithm has the ability to adapt an all-quadrilateral mesh with
refinement and a coarsening technique not constrained to de-refining.

This work presents a unique all-quadrilateral mesh adaptation algorithm
that modifies a given mesh by adding and removing elements and employs a
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-

heed Martin Company, for the United States Department of Energys National
Nuclear Security Administration under contract DE-AC04-94AL85000.
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coarsening process that is not limited to undoing previous steps of refinement.
This algorithm combines template-based quadrilateral refinement techniques
[1] with recent developments in coarsening [2] and quadrilateral improvement
[3] to adapt an existing mesh. Additionally, to provide an algorithm that will
meet conformity and element type requirements of finite element solvers, this
method guarantees a fully conformal, all-quadrilateral mesh.

2 Background

To meet the ever increasing computational demands of complex finite ele-
ment models, mesh adaptation has become a valuable area of study. There
are three basic classes of adaptation, commonly referred to as r−, h−, and
p−adaptation. r−adaptation, sometimes known as smoothing, refers to meth-
ods that alter element geometry by repositioning the nodes, but do not change
the topology of the mesh. h−adaptation, refers to methods which change both
the geometry of the elements and the topology of the mesh by adding and/or
removing elements. p−adaptation, involves methods that do not alter the ge-
ometry or topology of individual elements; instead, these techniques change
the degree of the elements in the mesh. While recognizing the importance of
both r− and p−adaptive methods we focus this work on the h−adaptive tech-
nique, concentrating specifically on the conformal refinement and coarsening
of all-quadrilateral meshes.

2.1 Current Methods

Initial adaptive mesh generation is perhaps the easiest way to build an
adapted finite element mesh because it simply employs the given sizing func-
tion in the original creation of the mesh. This is a widely used method and
is available in many mesh generation schemes, including paving [4]. The ma-
jor drawback of initial adaptive mesh generation is that it requires significant
foresight into the probable results of the analysis which are used to determine
element sizes and an appropriate distribution of element density across the
mesh. Because of this required foresight, initial mesh generation techniques
that incorporate sizing are particularly useful when based on geometric char-
acteristics of the model [5].

Closely related to initial adaptive mesh generation is adaptive mesh re-
generation; a mesh adaptation scheme in which the mesh is analyzed, a sizing
function is determined, and the entire mesh or the region of the mesh requir-
ing modification is removed and reconstructed according to the new sizing
function. A significant amount of research has been done in this area and
numerous algorithms have been presented employing adaptive mesh regen-
eration [6] [7] [8]. Although regenerating the mesh does not have the same
drawbacks with respect to required foresight as does initial adaptive mesh
generation, deleting and re-creating the mesh can be inefficient when only a
small region requires adaption. In addition, the initial mesh generation may
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specify detailed user controls requiring specific local sizing and quality. Re-
generating a complete mesh in these circumstances when only a small portion
is required to be adapted may not be a feasible option.

2.2 Concurrent Refinement and Coarsening

While there are many effective methods that have been proposed in the lit-
erature [9] - [13] to adapt a mesh, none address the ability to provide effec-
tively coupled coarsening and refinement for quadrilateral meshes. Utilization
of both coarsening and refinement in mesh adaptation greatly increases the
ability to modify a mesh to provide an appropriate element density without
the need to know the coarsest state of the model.

Hierarchical adaptation methods [14] have been developed that are able
to adapt all-quadrilateral meshes, while maintaining conformity, by using
quadtree refinement with transition templates. Coarsening in hierarchical
adaptation is accomplished by simply removing quadtrees from parent el-
ements; however, a major limitation of this method is that there is no way
for the mesh to be coarsened further than the initial base mesh. By taking
advantage of new coarsening techniques the algorithm presented in this work
provides adaptation that includes coarsening not limited to undoing previous
refinement.

3 Automated Mesh Adaptation

3.1 Sizing Functions

The first step in creating an adaptive mesh is to provide an appropriate
sizing function across the mesh domain. Sizing functions are typically based
on error estimates derived from the solution of a finite element analysis,
geometric characteristics of the model, or other user defined constraints. A
solution based sizing function might specify an increased element density in
regions of high stress or strain gradients. Geometry based sizing functions,
such as a skeleton sizing function [5] [15], consider feature size as well as
surface or boundary curvature and specify an appropriate element density
throughout the mesh.

In addition to specifying the desired size of elements throughout the mesh,
sizing functions must also take into account mesh gradation, the rate at which
the element sizes change across the mesh [16] [17]. Gradation control is an
important part of ensuring high shape quality of elements in a conformal mesh
by not allowing a large change in size between adjacent elements. Although
it is an important area of study, the development of sizing functions is not
part of this research and it is assumed that an appropriate sizing function is
provided as input to each adaptive meshing problem.
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3.2 Tools and Requirements

The adaptation technique presented in this work employs a combination of
quadrilateral refinement, coarsening, and quality improvement operations to
adapt a given mesh. Since some finite element solvers require a conformal
mesh and others do not allow hybrid meshes with more than one element
type, only adaptation operations that preserve a conformal all-quadrilateral
mesh are used. Additionally, these operations must be able to be applied
locally to allow for concurrent coarsening and refinement.

Since the primary goal of adaptation is to ensure accurate results, refine-
ment is usually required. This adaptation algorithm employs a refinement
method that subdivides faces in the refinement region using a four element
quadtree, referred to as 2-refinement, with templates inserted into the transi-
tion zone to maintain a conformal all-quadrilateral mesh [18] (see figure 1(b)).
While nine element quadtrees or 3-refinement (see figure 1(c)) are sometimes
used to refine quadrilateral faces, 2-refinement was chosen because it offers
more control over the number of elements added to the mesh.

Fig. 1. Quadrilateral refinement with transition templates. (a) Original mesh and
shaded refinement region. (b) Mesh refined with 2-refinement. (c) Mesh refined with
3-refinement.

This adaptation algorithm uses the Automated Quadrilateral Coarsening
by Ring Collapse (AQCRC) algorithm recently developed by Dewey [2]. This
coarsening method provides completely localized coarsening by selecting and
removing rings of adjacent faces from within a specified coarsening region as
shown in figure 2. One consequence of the removal of these coarsening rings
is the creation of poor quality faces and quadrilateral improvement (clean-
up) is a necessary step in this process. Although the AQCRC algorithm is a
very effective local coarsening technique, it assumes that the coarsening rings
are closed rings and does not have any provisions for coarsening of the mesh
boundaries. Because of this limitation we employ the removal of dual chords
[19] to coarsen the boundaries as illustrated in figure 3.
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Fig. 2. AQCRC coarsening.

Fig. 3. Quadrilateral chord removal.

Fig. 4. One example of quality improvement required by refinement. (a) Shaded
refinement region. (b) Seven-valence node formed from 2-refinement. (c) Mesh after
quality improvement operation (face open on high-valence node).

In addition to the use of clean-up within the AQCRC algorithm, poor
quality faces may form as a result of the refinement of irregular regions, mak-
ing quadrilateral improvement a necessary step in this adaptation procedure.
As a result, we also introduce new cleanup procedures [3], extending proce-
dures introduced in [20], for improving the quality of an adapted mesh. For
example, figure 4 shows a case where a concave refinement region forms a
node with a valence of seven. This high-valence node is then removed with
a face open procedure, resulting in a more structured mesh. The removal of
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high valence nodes from a mesh is one of many capabilities of this quality
improvement method.

3.3 Algorithm

The goal of this automated mesh adaptation algorithm is to modify an exist-
ing mesh so that all of the faces are as close to the size specified by a sizing
function but no larger. This ensures that solution accuracy and resolution
are not sacrificed for decreased computation time. The algorithm flowchart
is shown in figure 5 and described by the following steps:

1. A quadrilateral mesh to be adapted and an accompanying sizing function
are provided as input.

2. Each curve defining the boundary of the mesh is checked to see if coarsen-
ing is required. If a bounding curve must be coarsened, chords intersecting
the boundary are removed until an appropriate size is reached.

3. If coarsening is needed anywhere in the mesh, those regions are coars-
ened. The clean-up algorithm is included as a step within the coarsening
algorithm. If at any point, it is determined that coarsening is not needed,
this step is skipped in all future iterations.

4. If refinement is needed anywhere in the mesh, those regions are refined.
5. Following the refinement of elements in the mesh, the entire mesh surface

is cleaned-up.
6. Steps 3 through 5 are repeated until sufficient refinement has occurred.

3.4 Algorithm Example

To illustrate this algorithm, we demonstrate with the following example sim-
ulating a circular line load on a planar surface as shown in Figure 6. In this
case, the area of interest is at the location of the load. For simplicity, the al-
gorithm can be divided into three distinct parts; input, boundary coarsening,
and iterative coarsening/refinement.

Input

This algorithm requires an already meshed surface and an appropriate sizing
function to be provided as input. In this case the surface is a flat 10 x 10
plate, meshed with a perfectly structured 10 x 10 quadrilateral mesh also
shown in figure 6.

The size of each quadrilateral face, ha is the average length of its four
edges:

ha =
1
4

4∑
i=1

li (1)

where li is the length of the ith edge of the quadrilateral face. Therefore, the
size of each face in this initial mesh is 1.0. The sizing function for this example
specifies a very high element density with an element size of 0.1 at the location
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Fig. 5. Algorithm flowchart

Fig. 6. Circular load on plane surface.

of the applied load. This specified element density gets progressively lower,
varying linearly, as we move further away from the load, eventually reaching
a recommended element size of nearly 5 at the center of the plate.

Boundary Coarsening

Since the AQCRC algorithm developed by Dewey does not allow boundary
coarsening, it is achieved with simple chord removals in areas of the bound-
ary that require larger element sizes. The edge length ratio fl, defined in
Equation 2, is the ratio of actual edge size la to desired edge size ld and is
calculated for all boundary edges and used to select chords for removal.
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fl =
la
ld

(2)

In this example, boundary coarsening is necessary near the corners of the
mesh. Four chords, shown in the left panel of Figure 7 are chosen for removal.
The right panel of Figure 7 shows the mesh following the removal of the four
chords. To maintain a more isotropic mesh structure, each bounding curve
that was coarsened is then smoothed.

Fig. 7. Chords selected for removal and removed.

Iterative Coarsening, Refining, and Quality Improvement

The remainder of the algorithm modifies the interior of the mesh by itera-
tively coarsening and refining elements until the goal has been reached. To
provide a balanced approach to the adaptation problem, each iteration of
this algorithm alternates between coarsening and refinement. Since coarsen-
ing tends to make the mesh less structured and refinement tends to make the
mesh more structured, the algorithm always begins with coarsening which
is followed by refinement. Refining after coarsening also helps to achieve the
goal of ensuring that the elements in the mesh are smaller than specified by
the sizing function.

Each iteration begins by calculating the size ratio of each face fs as:

fs =
ha

hd
(3)

where ha is the actual face size as defined in Equation 1 and hd is the desired
face size as specified by the sizing function. A size ratio greater than 1.0
indicates that the face is too large and should be refined; a size ratio less
than 1.0 indicates that the face is too small and can be coarsened.

To better control the amount of coarsening that takes place and to ensure
that the coarsening operation does not overshadow refinement requirements,
a dynamic threshold tc, given as:
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tc = 1.0 − 0.2nc (4)

where nc = 0, 1, 2, ... is an integer defined by the number of iterations.
Any face with a size ratio less than the coarsening threshold is considered

too small and should be coarsened. For example, in the first iteration, any
face with a size ratio less than 1.0 is considered for coarsening. In later iter-
ations, the coarsening threshold is relaxed until the sixth iteration when it
becomes zero and disappears. Also, if at any point in the adaptation process,
fewer than 10% of the faces in the mesh require coarsening, the coarsening is
considered complete and is skipped in all future iterations. This requirement
helps to ensure that the same mesh regions are not being repeatedly coars-
ened and refined. Figure 8(a) shows the faces selected for coarsening in the
example. This shaded region is coarsened and the resulting mesh topology
can be seen in Figure 8(b).

Since the coarsening algorithm requires a contiguous region of quadrilateral
faces to create coarsening rings, a lone face requiring coarsening surrounded
by faces that do not require coarsening will automatically be neglected by
the AQCRC algorithm, making sure coarsening does not extend outside of
the desired region.

After the first iteration of coarsening, the size ratio is re-calculated for all
of the faces in the mesh in preparation for refinement. Any face with a size
ratio greater than 1.0 is considered too large and requires refinement. This
limit of 1.0 is not relaxed at any time throughout the algorithm; however, a
dynamic refinement threshold tr, defined in Equation 5, is used to separate
the elements requiring refinement into two categories.

tr = 1.25 − 0.05nr (5)

where nr = 0, 1, 2, ... is an integer defined by the number of iterations.
Any element with a size ratio greater than 1.0 and greater than the re-

finement threshold is considered a high-refine face, while any face with a size
ratio greater than 1.0 but less than the refinement threshold is considered a
low-refine face. In the refinement step, only the high-refine faces are refined,
unless there are none, in which case the low-refine faces are refined. The pur-
pose of the separation between faces is that the low-refine faces are often very
close to the high-refine faces and fall within their transition zones which are
refined by means of transition template insertion. Similar to the coarsening
threshold, the refinement threshold gradually shrinks the allowable range of
low-refine face until the refinement threshold equals 1.0 and disappears. At
this point, all faces with a size ratio greater than 1.0 are high-refine elements.

If at any time, less than 3% of the faces are considered low-refine faces
and less than 0.5% of the faces are considered high-refine faces, refinement
is deemed sufficient. If these criteria are met, however, future iterations of
refinement are not precluded as future iterations of coarsening are.

In Figure 8(b) the high-refine faces are shaded dark gray and the low-refine
faces are shaded light gray. As expected, the low-refine faces are in close
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Fig. 8. Coarsening, refinement, and quality improvement steps. (a) Iteration 1,
coarsening region. (b) Iteration 2, refinement regions. (c) Iteration 2, before quality
improvement. (d) Iteration 3, refinement regions. (e) Iteration 4, refinement regions.
(f) Iteration 5, refinement regions.
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proximity to the high-refine faces and, in fact, fall in the transition zone.
The mesh topology resulting from the refinement of the high-refine faces is
shown in Figure 8(c). Note the creation of four 9-valence nodes as a result of
the refinement of the irregular high-refine region. Because of situations like
this, the quadrilateral improvement algorithm is applied after each instance
of refinement. In the clean-up procedure, nodes with a valence greater than 6
are considered unacceptable and mesh topology is changed to remove the high
valence. The new mesh topology following the clean-up algorithm is shown
in Figure 8(d) where the unacceptable 9-valence nodes have been reduced to
acceptable 5-valence nodes.

The algorithm then iteratively coarsens and refines the mesh until sufficient
coarsening and refinement have both taken place. At this point in the exam-
ple, after the first refinement step, it was determined that fewer than 10% of
the faces had a size ratio that warranted coarsening; therefore, coarsening is
now considered complete for all future iterations. Following this completion
of coarsening, only refinement steps occur. Figures 8(d-f) show the successive
refinement iterations for the remainder of this example. The final adapted
mesh is shown in Figure 9.

Table 1 provides the distribution of size ratios of the faces in the final
mesh. Note that nearly all of the faces have a size ratio less than 1.0 and are
therefore smaller than desired. Since the goal of this adaptation is to provide
elements close to the desired size, but not larger, this is a good result. It is
not surprising, however, that some of the elements are too large since this

Fig. 9. Adapted mesh of circular load on plane surface.
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Table 1. Results of circular load adaptation

Size Ratio Number of Percent of Size Ratio Number of Percent of
fs Faces Total fs Faces Total

<0.5 1485 61.0% 1.0 - 1.1 36 1.5%
0.5 - 0.8 708 29.1% 1.1 - 1.2 14 0.6%
0.8 - 0.9 114 4.7% 1.2 - 1.5 0 0.0%
0.9 - 1.0 77 3.2% >1.5 1 0.0%

2384 97.9% 51 2.1%

method uses an isotropic smoothing scheme which ignores the desired size
specified by the sizing function.

4 Examples

We show two additional examples to illustrate the results of this new quadri-
lateral adaptation scheme. Both of the examples show the initial mesh and a
contour plot of the sizing function, as well as the mesh after adaptation and
a table with data showing the results of the adaptation. The final example,
a plate with a hole, also provides results from a finite element analysis of the
plate under a tensile load. In each example the original mesh was created with
the paving algorithm in the mesh generation software package, CUBIT [21].

In these examples, and other experiments not included here [22], the size
ratio data resulting from the adaptation technique are very similar. In each
case, 2% or fewer of the faces are larger than their desired size and nearly all
of the larger faces are within 10% of the target. This is a promising result
considering the goal is to make sure most, if not all, of the elements are
smaller than the desired size. The primary reason that there are some faces
that are too large is that the smoothing algorithm used as part of the clean-
up operations does not take into account the sizing function and may work
against the desired size.

Even though there are a few faces with a size ratio greater than 1.0, more
than 80% of the elements have a size ratio of less than 0.8, suggesting that
this adaptation method over-refined the meshes by adding more elements
than were necessary. This over-refinement, however, is to be expected since
the quadtree refinement scheme divides all faces in the refinement region
into four, resulting in a reduction of interval size by half. Additionally, the
transition zone around the region is refined by adding templates to ensure a
conformal mesh.

4.1 Nosecone

The nosecone in this example is a non-planar surface with a paved quadri-
lateral mesh. Figure 10 shows an isotropic view the original mesh and a side
view of the sizing function. The original element size in this example was 1.0
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Fig. 10. Original mesh of nosecone (left) with contour plot of sizing function
(middle) and final addapted mesh (right).

and the desired size ranged from 0.1 to 3. The sizing function used for this
adaptation specified a high element density at the tip of the nosecone where
the curvature is high and low element density away from the tip at the base.
This example also illustrates how a sizing function might be used to adapt
a mesh based on geometric characteristics of the model. In addition to the
refinement near the tip of the object, note the difference in element size along
the curve at the base of the nosecone.

Table 2 shows the distribution of size ratios through the mesh. In this
example, fewer than 3% of the faces are too large and fewer than 7% of the
faces are less than half of the desired size. This example provided very good
results for not over-refining the mesh.

Table 2. Adaptation results of nosecone example.

Size Ratio Number of Percent of Size Ratio Number of Percent of
fs Faces Total fs Faces Total

<0.5 132 6.5% 1.0 - 1.1 50 2.4%
0.5 - 0.8 1494 73.0% 1.1 - 1.2 1 0.0%
0.8 - 0.9 233 11.4% 1.2 - 1.5 0 0.0%
0.9 - 1.0 136 6.6% >1.5 1 0.0%

1995 97.5% 51 2.5%

4.2 Plate with Hole in Tension

This example models a plate with a hole under a tensile loading, as shown in
Figure 11. Due to symmetry of both the geometry and loads, this problem
can be reduced to an analysis of a quarter of the plate, denoted by the shaded
region. The three locations, A, B, and C, have been marked on the diagram
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Fig. 11. Model of plate with hole in tension.

Table 3. Adaptation results of plate with hole in tension.

Size Ratio Number of Percent of Size Ratio Number of Percent of
fs Faces Total fs Faces Total

<0.5 93 7.9% 1.0 - 1.1 7 0.6%
0.5 - 0.8 924 79.0% 1.1 - 1.2 0 0.0%
0.8 - 0.9 120 10.3% 1.2 - 1.5 0 0.0%
0.9 - 1.0 26 2.2% >1.5 0 0.0%

1163 99.4% 7 0.6%

where displacement results (see table 4) have been recorded after an analysis
using the finite element program, ADINA [23].

The initial mesh of this example is shown in Figure 12 with an average ele-
ment size of about 0.6. The sizing function used to adapt this mesh was based
off of the stress error estimates determined from the analysis of the original
mesh also shown in Figure 12. In this figure, the darker colors represent more
error. The sizing function determined from this analysis specified an element
size of 0.04 in the areas of highest error to an element size of 1.5 in areas with
small error. The mesh resulting from the adaptation procedure is shown in
Figure 13 and size ratio results of the adaptation are provided in Table 3.

Fig. 12. Band plot of stress error used to define sizing function for plate with hole
in tension.
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Fig. 13. Adapted mesh of plate with hole in tension.

Table 4. Results of finite element analysis.

Mesh Info Effective Stress Displacements
Nodes Faces Max Value Max Error Δx1 at A Δx2 at B Δx2 at C

Coarse 121 97 94.3 32.08 0.00143 0.00279 0.00467
Medium 1770 1677 106.5 19.23 0.00154 0.00287 0.00474
Fine 6973 6788 107.9 12.33 0.00155 0.00288 0.00475
Adapted 1232 1170 108.3 7.53 0.00154 0.00287 0.00474

In addition to the initial coarse mesh and the adapted mesh, the quarter-
plate was also meshed with two other meshes, each much more fine than the
coarse base mesh. These meshes were used to help show convergence to a so-
lution as well as to compare error between analyses of each of the meshes. Re-
sults shown in table 4 indicate that stress error is much more uniform across
the domain in the adapted mesh than in any of the other analyzed meshes.

The maximum estimated stress error is significantly reduced by the adapted
mesh. These results are significant especially when considering that the
adapted mesh has only 70% of the nodes in the medium mesh and fewer
than 20% of the nodes in the fine mesh. Not only does the adapted mesh pro-
vide virtually equal displacement values and superior stress values, it does
so with fewer elements while reducing the estimated error. Although this is
a very small problem and the time savings were negligible, the savings of
computational effort on a large problem can be significant.

The results of this analysis not only show the effectiveness of this adapta-
tion algorithm in providing an efficient solution to a computational mechanics
problem, but also the importance of mesh adaptation generally in finite ele-
ment problems.

5 Conclusion

The ability to adapt a finite element mesh is critical to providing an effi-
cient analysis to many finite element problems. Although there are currently
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effective quadrilateral adaptation techniques available, none of them are truly
general in that they can modify the element density to match a sizing func-
tion by adding and removing elements without having to re-mesh all or part
of the domain.

Recent developments in localized, automated quadrilateral coarsening have
made it possible to combine quadrilateral refinement, coarsening, and qual-
ity improvement techniques into a conformal, all-quadrilateral adaptation
method. Given a sizing function, this new adaptation technique iteratively
coarsens and refines the mesh domain to provide a mesh with an element
density reasonably close to that specified by the sizing function. As shown
in examples, this method is an effective way to streamline the computational
analysis of a finite element mesh by providing high element density in areas of
the mesh that require high accuracy or geometric resolution while removing
elements in less important areas of the mesh to decrease element density and
save computation time.

5.1 Further Research

The adaptation technique described in this work effectively adds and removes
elements resulting in an adapted mesh that improves accuracy or resolution
where needed while improving the efficiency of the analysis by removing el-
ements away from the area of interest. Although the results shown in this
work are promising, there are still improvements that can be made and more
research that can be done.

One way to improve this algorithm is to provide adaptive smoothing with
refinement and coarsening. The smoothing technique currently employed in
this algorithm attempts to improve the quality of the mesh by re-distributing
the nodes, but does not take into account the desired element size specified
by the given sizing function. In fact, the smoothing algorithm may work
against the size function by attempting to create a uniformly sized mesh
while the sizing function has specified a mesh with varying element density.
Coupling this h−adaptation method with an r−adaptation technique that
considers the element size specified by the sizing function [24] would be a
major improvement to this algorithm.

In some finite element applications, particularly computational fluid dy-
namics problems, anisotropic elements with a high aspect ratio are desired
at mesh boundaries. This adaptation technique does not account for isotropy
and adds or removes elements based solely on their size. By more selectively
choosing where to add elements, or even applying chord dicing capabilities,
this adaptation method could be modified to allow for anisotropy.

One purpose of this research was to provide a springboard into the develop-
ment of an automated all-hexahedral mesh adaptation algorithm. Recent de-
velopments have been made in conformal hexahedral refinement [1] [25] that
provide localized refinement and are robust on both structured and unstruc-
tured hexahedral meshes. Additional developments have been made in auto-
mated hexahedral coarsening as well. Woodbury [26] recently introduced a
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new method that provides localized conformal coarsening to an all-hexahedral
mesh. Woodbury’s method isolates the coarsening region through pillowing
and then uses chord-collapse operations to redirect hexahedral sheets so they
are located entirely within the desired coarsening region. Additionally, this
method does account for boundary and surface coarsening and therefore does
not have the same limitations as the AQCRC algorithm used for quadrilat-
eral adaptation in this work. One potential difficulty in the development of
an automated hexahedral adaptation scheme, however, is providing quality
improvement operations to ensure a high quality mesh. The improvement op-
erators used in quadrilateral mesh improvement do not extend directly into
3-dimensions and topological restrictions in hexahedra make local topology
changes very difficult.
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Abstract. This paper addresses classical issues that arise when applying aniso-
tropic mesh adaptation to real-life 3D problems as the loss of anisotropy or the
necessity to truncate the minimal size when discontinuities are present in the so-
lution. These problematics are due to the complex interaction between the compo-
nents involved in the adaptive loop: the flow solver, the error estimate and the mesh
generator. A solution based on a new continuous mesh framework is proposed to
overcome these issues. We show that using this strategy allows an optimal level of
anisotropy to be reached and thus enjoy the full benefit of unstructured anisotropic
mesh adaptation: optimal distribution of the degrees of freedom, improvement of
the ratio accuracy with respect to cpu time, . . .

Keywords: Anisotropy; multi-scale mesh adaptation; metric-based mesh adapta-
tion; continuous mesh; convergence order; Euler equations.

Introduction

Nowadays, there is no more need to recall the benefits of metric-based mesh
adaptation when dealing with anisotropic physical phenomena. A lot of 3D
successful examples on real-life problems have already proved its efficiency
[3, 6, 11, 18, 19]. However, one question remains: are the adaptive computa-
tions really anisotropic or optimal? Apart from its simplicity, this question
raises, as we will see, many other capital issues: assessment of the numerical
solution, convergence of the computation at the theoretical order, automatic
detection and capturing of all the scales of the solution, . . . Consequently,
answering positively to these questions is not straightforward as we face both
theoretical and practical difficulties. Indeed, claiming that a mesh is optimal
requires at least the definition of a proper cost function along with the possi-
bility of differentiating it. A classical cost function is the interpolation error.
However, problems occur when attempting to differentiate it with respect to
a discrete mesh in order to derive the optimal one. Indeed, the differentiation
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is not defined on the space of discrete meshes. Despite this weakness, if we
now assume that a specification of the optimal can be exhibited, it is of main
importance to derive a numerical algorithm to generate it practically. Being
able to guarantee the convergence of the algorithm to the optimal continuous
solution is a supplementary difficulty.

We first recall the formulation of the mesh adaptation problem for mini-
mizing the interpolation error. The problematics arising when the function
becomes a numerical solution are then illustrated on a simple example.

An initial ill-posed problem. In its more general form, the problem of mesh
adaptation consists in finding the mesh H of Ω that minimizes a given error
for a given function u. For the sake of simplicity, we consider here the linear
interpolation error u − Πhu controlled in Lp norm. Note that considering
other norms works as well [13]. The problem is thus stated in an a priori
way:

Find Hopt having N nodes such that E(Hopt) = min
H

‖u−Πhu‖Lp(Ω) . (1)

As it, Problem (1) is a global combinatorial problem which turns out to be
intractable practically. Indeed, both topology and vertices location need to
be optimized. Consequently, simpler problems are considered to approximate
the solution. A common simplification is to perform a local analysis of the
error instead of considering the global problem. A first set of methods consists
in deriving the optimal element shape [2]. A second set consists in deriving a
local bound of the interpolation error. This bound is then transformed into
a metric-based estimate [8, 9, 13]. Direct minimization of the error can be
also considered by using the interpolation error as a cost function directly in
the mesh generator [14]. All these strategies have in common the resolution
of a local problem as they act in the vicinity of an element. Consequently,
such error minimizations are equivalent to a steepest descent algorithm that
converges only to a local minimum with poor convergence properties. This
drawback arises because of considering directly the minimization on a
discrete mesh.

Loss of anisotropy when turning to numerical solutions. When the solution u
becomes a numerical solution uh provided by a solver, additional problematics
arise in the resolution of Problem (1). The choice of the error estimate used
to derive the metric becomes of main importance. To illustrate this point,
we consider a standard metric-based error estimate as in [4], i.e., the control
of the interpolation error in L∞ norm, for the accurate capturing of shock-
waves inside a scramjet. This is done by considering a recovered Hessian
of one variable of the flow field (mach, pressure, . . . ). The final result is
shown in Figure 1. If the final adapted mesh seems perfectly anisotropic
(left), a closer view around a shock reveals a complete loss of the anisotropy
(right). A second problem is that such a strategy does not capture the small-
scale features of the flow. Several modifications of this Hessian-based estimate
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Fig. 1. Scramjet adaptive computation based on a control of the interpolation
error in L∞ norm

have been considered to overcome this issue. For instance, the following local
normalizations:

|H |
|u| ,

|H |
|u| + h ‖∇u‖2

,
|H |

γ|u| + (1 − γ)h‖∇u‖2
, (2)

were introduced in [4, 15, 9], respectively, as an attempt to capture all the
scales of the solution. However, the control of the interpolation error re-
mains in L∞ norm. If more scales of the solution are captured, the loss of
anisotropy remains and the request for a minimal size prescription is still
necessary.

Continuous mesh framework and multi-scale mesh adaptation. To overcome
the previous issues, a complete duality between discrete entities and con-
tinuous ones is introduced using classical concepts of Differential Geometry
as Riemannian metric space. In the proposed continuous framework, notions
of continuous mesh, continuous element and continuous interpolation opera-
tor naturally appear. This discrete-continuous duality is demonstrated from
equivalence formula. In this framework, Problem (1) can be recast as a con-
tinuous optimization problem. Contrary to discrete-based study, the continu-
ous formulation succeeds in solving globally the optimal interpolation error
problem by using powerful mathematical tools as the calculus of variations.
When dealing with numerical simulations, the use of Lp norm interpolation
error control enables us to capture all the scales of the numerical solu-
tion. Numerical experiments show that solution scales that have an amplitude
1 000 times lower than the largest one are still captured and refined. From a
practical point of view, prescribing a minimal size is no more required.
This results in the generation of highly anisotropic meshes. Moreover, the
analysis for regular functions predicts a second order convergence for the
mesh adaptation algorithm. We show that this order is preserved on numeri-
cal solutions even when they are issued from flows with shocks with a modern
high-order shock capturing solver. Verifying numerically this second order of
convergence is a first assessment of computations.

Outline. The main results associated with the continuous mesh framework
are reviewed in Section 1. Section 2 deals with the discrete and continuous
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equivalence for the local interpolation error. Then, the optimal continuous
mesh minimizing the global interpolation error in Lp norm is derived in Sec-
tion 3. Practical implementation of the continuous mesh framework and the-
ory assessment on complex numerical simulations are done in Section 4.

1 Continuous Mesh Framework

All the notions are introduced in 3D even if all the concepts extend to nD
as well. Most of the time the complete proofs are skipped for conciseness
purposes. However, they are all available in [16, 17]. In the following, a metric
tensor M is a 3× 3 positive symmetric matrix. When the metric field varies
over the domain Ω ⊂ R3, a Riemannian metric space M = (M(x))x∈Ω of
Ω is defined. Rewriting locally metric tensor M gives a new insight of the
possibility of metric-based mesh adaptation. In particular, a duality between
discrete and continuous views appear clearly. We exemplify in this section
the set of meshes that are represented by Riemannian metric space M. The
study is first done locally for an element and then generalized to the whole
computational domain Ω. These considerations are based on the concept of
unit mesh [10], recalled hereafter.
Local duality. An element K (a tetrahedron in 3D) is unit with respect to a
constant metric tensor M if the length of all its edges is unit in metric M.
If K is given by its list of edges (ei)i=1..6, then :

∀i = 1, ..., 6, 
M(ei) = 1 with 
M(ei) =
√

tei M ei.

If K is composed only of unit length edges then its volume |K|M in M is
constant equal to:

|K|M =
√

2
12

and |K| =
√

2
12

(det(M))−
1
2 ,

where |K| is its Euclidean volume. The function unit with respect to defines
classes of equivalences of discrete elements.

Proposition 1 (Equivalence classes). Let M be a constant metric tensor,
there exists a non-empty infinite set of unit elements with respect to M.
Conversely, given an element K = (ei)i=1..6 such that |K| �= 0, then there is
a unique metric tensor M for which element K is unit with respect to M.

The previous proposition induces deeper relationships between M and the set
of unit discrete elements. These relations write as geometric invariants [16].

Proposition 2 (Geometric invariant). Let M be a constant metric tensor
and K be a unit element with respect to M. We denote by (ei)i its edges list.
Then, the following invariant holds for all symmetric matrix H:

6∑
i=1

tei Hei = 2 trace(M− 1
2 HM− 1

2 ) . (3)
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Global duality. When dealing with a Riemannian metric space M =
(M(x))x∈Ω , the main complexity is to take into account the variations of
the function x �→ M(x). To simplify the analysis, M is first rewritten in
order to distinguish local properties from global ones.

Proposition 3. A Riemannian metric space M = (M(x))x∈Ω locally writes:

∀x ∈ Ω, M(x) = d
2
3 (x)R(x)

⎛⎜⎝ r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)

⎞⎟⎠ tR(x),

where

• the density d is equal to: d = (h1h2h3)
−1 = (λ1λ2λ3)

1
2 , with λi the eigen-

values of M and hi = λ
− 1

2
i

• the anisotropic quotients ri are equal to: ri = h3
i (h1h2h3)

−1

• R is the eigenvectors matrix of M.

The anisotropy is given by the anisotropic quotients, the level of accuracy
is given by the density and the orientation by the orthonormal matrix R.
Global properties of M can be deduced by integrating these local quantities
on Ω. When integrating d over Ω, the complexity of M is defined:

C(M) =
∫

Ω

d(x) dx =
∫

Ω

√
det(M(x)) dx.

This quantity can be viewed as the continuous counterpart of the number of
vertices of a mesh. In the context of error estimation, this notion enables the
study of the order of convergence with respect to a sequence of Riemannian
metric spaces having an increasing complexity. Consequently, the complexity
C(M) is also the continuous counterpart of the classical parameter h used for
uniform meshes while studying convergence order.

The set of discrete meshes represented by M is more complex to describe
than the class of unit elements. The problem arises from the impossibility to
tessellate R3 uniquely with the regular tetrahedron, see discussions in [17].
Consequently, the notion of unit element does not extend as well to a mesh.
In order to ensure existence, the notion of quasi-unit element is devised. This
definition takes into account the variations of the continuous mesh:

Definition 1 (Quasi-unit element). A tetrahedron K defined by its list of
edges (ei)i=1...6 is said quasi-unit for M if

∀i ∈ [1, 6], 
M(ei) ∈
[

1√
2
,
√

2
]

and QM(K) ∈ [α, 1] with α > 0 , (4)
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where

QM(K) =
36
3

1
3

|K| 23M∑6
i=1 
2

M(ei)
∈ [0, 1], with |K|M =

∫
K

√
det(M(x)) dx,

and 
M(ei) =
∫ 1

0

√
tab M(a + t ab) ab dt, with ei = ab.

(5)

The quality function QM ensures that the volume and the shape of the ele-
ments are controlled while generating elements with quasi-unit edges lengths.
The integral in the computation of 
M given by (5) is necessary to take into
account the variations of M along each edge ei. A discrete mesh is unit with
respect to M when it is only composed of quasi-unit elements.

Propositions 1 and 3 highlights a duality between discrete entities and con-
tinuous ones. It results that, in the proposed continuous framework, a metric
tensor M is assimilated to a continuous element and a continuous mesh of a
domain Ω is defined by a collection of continuous elements M = (M(x))x∈Ω ,
i.e., a Riemannian metric space. In particular, for an element, this duality
is justified by strict analogy between discrete and continuous notions: orien-
tation vs. matrix R, stretching vs. ri and size vs. d. For a mesh, we point
out the duality between the number of vertices and C(M). Proposition 2 also
illustrates a duality between geometric quantities. This duality will be even
reinforced in the next section by studying the interpolation error.

In what follows, the continuous terminology is employed to emphasize the
exhibited duality.

2 Interpolation Error: Discrete-Continuous Duality

As our intent is to propose a fully discrete-continuous duality, it is not enough
to derive only the optimal mesh arising from an interpolation error bound
as in classical studies on interpolation error [4, 9, 13]. Instead, we want to
evaluate the interpolation error for any functions on any continuous meshes
without imposing some optimality conditions as alignment, equi-distribution,
. . . We show in this section that the interpolation error can be computed
analytically for a given function on a given continuous mesh. We start with
an estimate for quadratic functions. The general case is deduced from this
study.

An error estimate for quadratic functions. In this section, we consider a
quadratic function u defined on a domain Ω ⊂ R3. The function is given
by its matrix representation:

∀x ∈ Ω, u(x) =
1
2

txH x,

where H is a symmetric matrix representing the Hessian of u. For every sym-
metric matrix H , |H | denotes the positive symmetric matrix deduced from
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H by taking the absolute values of its eigenvalues. The function u is linearly
interpolated on a tetrahedron K. We denote by Πhu the linear interpolate of
u on K. We can now state the following result:

Proposition 4. For every quadratic function u, its linear interpolation error
in L1 norm on a tetrahedron K verifies:

‖u − Πhu‖L1(K) ≤ |K|
40

6∑
i=1

tei|H |ei,

where (ei)i=1,6 is the set of edges of K.
The previous inequality becomes an equality when u is elliptic or parabolic.

If K is now assumed to be unit with respect to M, the following theorem
holds:

Theorem 1. For all unit elements K with respect to M, the interpolation
error of u in L1 norm does not depend on the element shape and is only a
function of the Hessian H of u and of M. In 3D, for all unit tetrahedra K
in M, the following equality holds:

‖u − Πhu‖L1(K) =
√

2
240

det(M− 1
2 ) trace(M− 1

2 H M− 1
2 ). (6)

It is important to note that Relation (6) links an infinite set of elements (on
the left-hand side) to a unique entity: M (on the right-hand side). More-
over, it shows that whatever the choice of unit-element made by the mesh
generator, the resulting interpolation error is always the same as it is only
function of metric M. Consequently, this theorem demonstrates the possibil-
ity to evaluate the interpolation error for continuous element M associated
with discrete element K. When u is no more quadratic and when the interpo-
lation error is computed on a continuous mesh M, the following continuous
discrete local equivalence is proved:

Theorem 2 (Discrete-continuous duality). Let u be a twice continuously
differentiable fonction of a domain Ω and (M(x))x∈Ω be a continuous mesh
of Ω. Then, there exists a unique function πM such that:

∀a ∈ Ω , |u − πMu|(a) = 2
‖uQ − ΠhuQ‖L1(K)

|K| ,

for every K unit element with respect to M(a) and where uQ is the quadratic
model of u at a.

This theorem underlines another discrete-continuous duality by pointing out
a continuous counterpart of the interpolation error. For this reason, we pro-
pose the following formalism: πM is called continuous linear interpolate and
|u − πMu| represents the continuous dual of the interpolation error. The
continuous linear interpolate is defined by:
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πMu(a) = u(a) + ∇u(a) +
1
cn

trace(M− 1
2 (a)H(a)M− 1

2 (a)),

where cn is 1/8 in 2D and 1/10 in 3D [17]. This result allows us to compute
interpolation errors analytically. The following examples give a comparison
between continuous and discrete interpolation errors evaluation.

Continuous examples. The set of 2D continuous meshes M(α) =
(Mα(x))x∈Ω is defined on the square domain Ω = [0, 1]× [0, 1] by:

Mα(x, y) = α

(
h−2

1 (x, y) 0
0 h−2

2 (x, y)

)
,

where h1(x, y) = 0.1(x + 1) + 0.05(x− 1) and h2(x, y) = 0.2. The parameter
α is used to control the level of accuracy of the mesh. The continuous mesh
becomes coarser when α decreases but anisotropic quotients and orientations
remain constant. This trend is given by the computation of the complexity
C(M(α)):

C(M(α)) = N(α) =
∫∫

Ω

1
h1h2

(x, y) dxdy =
200
3

ln(2)α.

The continuous interpolation error on M(α) is computed for two analytical
functions: u1(x, y) = 6x2 + 2xy + 4y2 and u2(x, y) = e(2x2+y). As regards the
function u1, the point-wise continuous interpolation error on M(α) is

(u1 − πMu1)(x, y) =
27 x2 + 18 x + 35

800 α
.

The previous expression is then integrated over Ω:∫∫
Ω

|u1 − πMu1|(x, y) dxdy =
53

800 α
=

53
21

ln(2)
N(α)

.

For the function u2, the point-wise continuous interpolation error on M(α)
is:

(u2 − πMu2)(x, y) =
e4x2+y

8 α

(
(0.15x + 0.05)2 (4 + 16x2) + 0.05

)
.

By a direct integration over Ω, it comes:∫∫
Ω

|u2 − πMu2|(x, y) dxdy ≈ 0.2050950191
α

≈ 13.673 ln(2)
N(α)

.

These analytical evaluations of the continuous interpolation error are com-
pared to the evaluation of the discrete interpolation error on a set of a unit
meshes with respect to M(α) for several values of α. These evaluations are
plotted in Figure 2 where a perfect correlation is observed. The black-plain
lines represent the extremal bound of the interpolation error due to the re-
laxed notion of quasi-unit elements, cf. Definition 1, while considering uniform
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Fig. 2. Left, a unit mesh with respect to M(α) for α = 32. Comparison between
continuous interpolation error ‖u − πMu‖L1(Ω) and discrete interpolation error
‖u −Πhu‖L1(Ω) evaluations for the functions u1 (middle) and u2 (right) on M(α).

meshes in M(α) with edges length equal to
√

2/2 (lower line) and 2 (upper
line).

We now consider the set of 3D continuous meshes M(α) = (Mα(x))x∈Ω

defined on the domain Ω = [0, 1] × [0, 1]× [0, 1] which are given by:

Mα(x, y, z) = α

⎛⎝h−2
1 (x, y, z) 0 0

0 h−2
2 (x, y, z) 0

0 0 h−2
3 (x, y, z)

⎞⎠ ,

where h1(x, y, z) = 0.1(x + 1) + 0.05(x − 1),
h2(x, y, z) = 0.2 and h3(x, y, z) = 0.2(z + 2) .

We consider the interpolation error of the function u3(x, y, z) = e2x+y+z. The
continuous linear interpolation error is (see [17] for details):∫∫∫

Ω

|u3 − πMu3|(x, y, z) dxdydz ≈ 0.73
α

≈ 126.215

N(α)
2
3

.

Comparisons between continuous and discrete interpolation errors evalua-
tions for the set of continuous meshes are depicted in Figure 3. As previously,
the matching between both evaluations is excellent.

Fig. 3. 3D unit meshes with respect to M(α) for α = {16, 32} (left and middle).
Right, comparison between continuous interpolation error ‖u3 − πMu3‖L1(Ω) and
discrete interpolation error ‖u3 − Πhu3‖L1(Ω).
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These examples justifies the continuous terminology as the continuous in-
terpolation computation is equivalent to the discrete one. Then, we use this
equivalence to derive a global optimal minimizing the continuous interpola-
tion error.

3 Optimal Control of the Interpolation Error in Lp

Norm

Using the definition of the linear continuous interpolate πM of Section 2,
the following 3D point-wise interpolation error for u on M = (M(x))x∈Ω is
deduced:

eM(x) = (u − πMu)(x) =
1
10

3∑
i=1

h2
i (x)|tvi(x)H(x)vi(x)|,

where H is the Hessian of u, (vi)i=1,3 the local eigen-directions of M and
(hi)i=1,3 the local sizes of M along these directions. It is then possible to set
the well-posed global optimization problem of finding the optimal continuous
mesh minimizing the continuous interpolation error in Lp norm:

Find MLp = min
M

ELp(M) =
(∫

Ω

ep
M

) 1
p

=
(∫

Ω

(u − πMu)p

) 1
p

, (7)

under the constraint
C(M) =

∫
Ω

d = N.

The constraint on the complexity is added to avoid the trivial solution where
all hi are zero which provides a null error. Contrary to discrete analysis, this
problem can be solved globally by using the calculus of variations as it is well-
defined on the space of continuous meshes. In [16], it is proved that Problem (7)
admits a unique solution. In addition, the following properties hold:

Theorem 3. Let u be a twice continuously differentiable function defined on
Ω ⊂ R3, the optimal continuous mesh MLp(u) minimizing Problem (7) reads
locally:

MLp = DLp det(|H |) −1
2p+3 |H |, with DLp = N

2
3

(∫
Ω

det(|H |) p
2p+3

)− 2
3

.

(8)
It verifies the following properties:

• MLp(u) is unique
• MLp(u) is locally aligned with the eigenvectors basis of H and has the

same anisotropic quotients as H
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• MLp(u) provides an optimal explicit bound of the interpolation error in
Lp norm:

‖u − πMLp u‖Lp(Ω) = 3 N− 2
3

(∫
Ω

det (|H |) p
2p+3

) 2p+3
3p

. (9)

• For a sequence of continuous meshes having an increasing complexity
with the same orientation and anisotropic quotients (MN

Lp(u))N=1...∞,
the asymptotic order of convergence verifies:

‖u − πMN
Lp

u‖Lp(Ω) ≤ Cst

N2/3
. (10)

Relation (10) points out a global second order of mesh convergence.

Note that Bound (9) has been also derived in [5]. However, in our case, all the
constants of (9) are explicitly given. In addition, a second order of conver-
gence is predicted. Last but not least, the final difference is that we are able
practically to generate a discrete mesh approximating the continuous opti-
mal solution by using any metric-based adaptive mesh generators as soon as
the generated meshes verify (5). In addition, this approach is fully compati-
ble with steepest descent methods discussed in the introduction. Indeed, the
unit mesh with respect to the global optimal continuous mesh can be used
as an initialization, then a discrete steepest descent method can be used to
converge toward an optimal discrete mesh.

Examples. We first give an example that illustrates why the L∞ norm is
not well-suited for flow solutions involving different scales. The considered
function is:

∀(x, y) ∈ [0, 1]2, f(x, y) = 0.1 sin(50x) + atan
(

0.1
sin(5y) − 2x

)
.

It is composed of a main shock induced by the atan function with varia-
tions of small amplitudes given by the sine, see Figure 4 (left). Two optimal
adapted meshes have been generated: one controlling the L1 norm and the
other controlling the L∞ norm of the interpolation error. Both meshes are
composed of 100 000 vertices. All the scales are refined with the L1 norm ,
see Figure 4 (middle), whereas only the main shock is refined with the L∞

norm, see Figure 4 (right).
The second example illustrates the convergence of the adaptive scheme for a

1D discontinuous function, the step function fH , with and without the intro-
duction of an artificial dissipation. Indeed, modern shock capturing schemes
that are not compressive generally introduce such dissipation [1]. Figure 5 rep-
resents on a uniform mesh the diffused step function fh on two elements (left)
and its linear interpolation ΠfH (middle), i.e., its discrete representation with-
out any dissipation. The right picture shows the evolution of the minimal size
prescription at each iteration of the mesh adaptation loop for two different er-
ror thresholds (ε = 0.1 and ε = 0.12) for both functions. We observed that the
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Fig. 4. From left to right, iso-values of function f , optimal meshes controlling the
interpolation error in L1 norm and in L∞ norm

Fig. 5. Linear interpolate ΠfH of discontinuous function fH and numerical diffused
shock fh. Whatever the level of error Err desired, the minimal size converges when
adapting to fh and diverges when adapting to fH .

minimal size converge progressively towards zero for the step function without
any dissipation fH whereas it converges towards a fixed value for the diffused
one fh. Consequently, one may expect that the size in the normal direction to
a numerical shock will not tend to zero during the refinement process if a dis-
sipation is introduced. This feature of multi-scale mesh adaptation is verified
in Section 4 for a modern shock-capturing scheme.

4 3D Numerical Validations

We first review the main modifications that arises when using the previous
concept with numerical solutions. This concerns the recovery of derivatives of
piecewise linear by element solutions, the adaptive loop and the computation
of anisotropic ratios and quotients. Then, several 3D flow simulations involv-
ing highly anisotropic meshes are presented. For all the examples, a control
of the interpolation error in L2 norm of the local Mach number is used and
no minimal size is prescribed.

High-order approximation and hessian recovery. In our case, the flow solver
provides a continuous piecewise linear by element representation of the solu-
tion uh. Consequently, our analysis cannot be applied directly to the numeri-
cal solution. The idea is to build a higher order solution approximation u∗ of
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the exact solution u from uh which is twice continuously differentiable and to
consider u∗ in the optimal metric expression (8). Practically, only the Hessian
of u∗ is recovered [1]. We also mention that the Hessian recovery procedure
from discrete data may results in a noisy recovered Hessian. Consequently,
using a proper anisotropic mesh gradation is strongly advised to smooth the
field of metric tensors.

A non linear loop. Anisotropic mesh adaptation is a non-linear problem,
therefore, an iterative procedure is required to solve this problem. For sta-
tionary simulations, an adaptive computation is carried out via a mesh adap-
tation loop inside which an algorithmic convergence of the mesh-solution cou-
ple is sought. At each stage, a numerical solution is computed on the current
mesh with the flow solver and is analyzed with a metric-based error estimate
providing the optimal metric using (8). Next, an adapted mesh, i.e., a unit
mesh, is generated with respect to this metric. The mesh generator used is
described in [7]. Finally, the solution is linearly interpolated on the new mesh.
This procedure is repeated until convergence of the couple mesh-solution.

Measuring the anisotropy. We define some anisotropic measures computa-
tion. Anisotropic quotients have been introduced in Section 1 for a continuous
element. Deriving this quantity for an element is straightforward. It relies on
the fact that there always exists a unique metric tensor for which this element
is unit, see Proposition 1. If MK denotes the metric tensor associated with
element K, solving the following linear system provides MK :

(S)

⎧⎪⎨⎪⎩

2
MK

(e1) = 1
...

2
MK

(e6) = 1 ,

where (ei)i=1,6 is the edges list of K and 
2
MK

(ei) = tei MK ei. Note that (S)
admits a unique solution as soon as the volume of K is not null. Once MK

is computed, the anisotropic ratio and the anisotropic quotient are simply
given by

ratio =
√

mini λi

maxi λi
=

maxi hi

mini hi
, and quo =

maxi h3
i

h1h2h3
,

where (λi)i=1,3 are the eigenvalues of MK and (hi)i=1,3 are the corresponding
sizes. The anisotropic ratio stands for the maximum elongation of a tetrahe-
dron by comparing two eigen-directions. The anisotropic quotient represents
the overall anisotropic ratio of a tetrahedron taking into account all the pos-
sible directions. It corresponds to the overall gain in three dimensions of an
anisotropic adapted mesh as compared to an isotropic adapted mesh.
The gain is of course even larger when compared to a uniform mesh. In the
sequel, these measures are used to quantify the obtained level of anisotropy.
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Fig. 6. Transonic flow around a Falcon. From top to bottom, from left to right,
Falcon geometry along with speed streamlines, difference of amplitudes between
the wings shocks and the tip vortices, Mach iso-values on the aircraft, cut in the
volume mesh that shows how the wings shocks are captured, Mach iso-values in
planes located at 100, 200, 300, 400 and 500 meters behind the Falcon and a cut in
the final volume mesh behind the Falcon showing how vortices are captured in the
mesh.
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Fig. 7. Supersonic flow around a lowboom jet. From top to bottom, from left to
right, aircraft geometry, Mach iso-values on the geometry, final anisotropic mesh in
the symmetry plane and below the aircraft, Mach iso-values in a plane 50m behind
the aircraft and order of convergence of the Mach number.
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Transonic flow around a Falcon. The Falcon jet geometry is depicted in Fig-
ure 6 (top left). The aircraft is flying at Mach number 0.8 with an angle of
attack of 3 degrees. The computational domain is a cylinder of radius 250m
and of length 700m. As the aircraft is flying at a transonic speed, the flow is
composed of both shocks and smooth vortices.These phenomena have different
magnitudes and mathematical properties. Across a shock, most variables be-
come discontinuous whereas a vortex corresponds to a smooth variation of the
variables while having a very small amplitude. These features are exemplified
in Figure 6 (top right). An extraction of the pressure across the wing extra-
dos where a shock occurs (green curve) is superposed to the pressure variation
in the wake across a vortex located 400m behind the aircraft (red curve). The
amplitude of the vortex is less than 2% of the amplitude of the shock. More-
over, the smoothness property of the vortex is a supplementary difficulty as its
derivatives involved in our estimate are also smooth. Consequently, vortices are
difficult to detect and it is hard not to diffuse them. Detecting and preserving
these vortices is still a challenge in the field of CFD. We show that the multi-
scale approach detects these two phenomena, i.e., the shocks on the wing, Fig-
ure 6 (middle) along with the vortices behind the aircraft, Figures 6 (bottom).
The final anisotropic mesh depicted in Figure 6 is composed of 2 025 231 ver-
tices and 11 860 697 tetrahedra providing a mean anisotropic ratio of 177 and
a mean anisotropic quotient of 1 639. This example illustrates two main fea-
tures of multi-scale anisotropic mesh adaptation: the accurate capturing of the
shocks on the wings and the drastic reduction of the solver diffusion that allows
us to still capture vortices 500m behind the Falcon.

Supersonic flow around a lowboom jet. The aircraft geometry is depicted in
Figure 7 (top left). Its length is L = 42 meters and it has a wing span of
20 meters. The surface mesh accuracy varies between 0.2 millimeters and 12

Table 1. Supersonic flow around a lowboom jet: anisotropic ratios and quotients
histograms for the final adapted mesh. For each interval, the number of tetrahedra
is given with the corresponding percentage.

Anisotropic ratio

1 ≤ ratio ≤ 2 38 740 0.07 %
2 ≤ ratio ≤ 3 175 929 0.33 %
3 ≤ ratio ≤ 4 274 955 0.51 %
4 ≤ ratio ≤ 5 328 501 0.61 %
5 ≤ ratio ≤ 10 1 55 4625 2.89 %

10 ≤ ratio ≤ 50 6 620 533 12.29 %
50 ≤ ratio ≤ 102 5 983 308 11.10 %

102 ≤ ratio ≤ 103 34 830 344 64.64 %
103 ≤ ratio ≤ 104 4 077 796 7.57 %
104 ≤ ratio ≤ 105 131 0.00 %
105 ≤ ratio ≤ 1 0.00 %

Anisotropic quotient

1 ≤ quo ≤ 2 10 042 0.02 %
2 ≤ quo ≤ 3 50 171 0.09 %
3 ≤ quo ≤ 4 81 027 0.15 %
4 ≤ quo ≤ 5 100 385 0.19 %
5 ≤ quo ≤ 10 526 474 0.98 %

10 ≤ quo ≤ 50 1 989 374 3.69 %
50 ≤ quo ≤ 102 1 204 384 2.24 %

102 ≤ quo ≤ 103 7 408 172 13.75 %
103 ≤ quo ≤ 104 14 595 766 27.09 %
104 ≤ quo ≤ 105 20 999 034 38.97 %
105 ≤ quo ≤ 106 6 790 336 12.60 %
106 ≤ quo 129 698 0.24 %
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Fig. 8. F15 fighter equipped with the Quiet Spike. From top to bottom, from
left to right, F15 geometry and Mach iso-values, pressure distribution 2m below
the aircraft, Mach iso-values behind the aircraft, vortices details behind the F15,
Mach iso-values near the Spike, anisotropic mesh near the spike, Mach iso-values
in a 100m wide box and accuracy of the mesh 100m below the aircraft.
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centimeters. This already represents a size variation of five orders of magni-
tude with respect to the aircraft size, and this only for the surface mesh. The
computational domain is a cylinder of 2.25 kilometers length and 1.5 kilome-
ters diameter. This represents a scale factor of 107 if the size of the domain
is compared to the maximal accuracy of the low boom jet surface mesh. The
final anisotropic mesh is composed of 9 083 53 vertices and 53 884 863 tetrahe-
dra. This accuracy allows us to capture all the shocks emitted by the aircraft
up to a distance of 16 times the length of the aircraft (almost 750m), Fig-
ure 7 (middle). The level of anisotropy reached in this simulation is quite
impressive. Indeed, the mean anisotropic quotient is almost 50 000 which is
very high. Detailed histograms are given in Table 1. Besides this high level of
anisotropy, this simulation demonstrates the good correlation with the the-
ory (10) as a 1.7 order of convergence is numerically verified on the sequence
of adaptive meshes, see Figure 7 (bottom right). As in the previous examples,
the multi-scale strategy reduces the flow solver dissipation that allows us to
capture all solution scales while maintaining a high level of anisotropy.

F15 fighter equipped with the Quiet Spike. We consider in this example the
accurate prediction of the mid-field pressure signature of the F15 fighter
equipped with the Quiet Spike concept [12] during a supersonic flight. The
aircraft is flying at Mach 1.8 with an angle of attack of 0 degree. This com-
plex geometry is shown in Figure 8 (top left). This concept was devised to
soften the sonic boom by splitting the initial strong bow shock in several
shocks of smaller amplitudes. The different scales of the pressure distribution
are depicted in Figure 8 (top right). The Quiet Spike is composed of three
cones linked by cylinders of increasing radius. The smallest cylinder has a
radius of 5cm while the greatest one has a radius of 20cm. These sizes must
be compared to the aircraft length 19.3m and wing-span 13m. The scale vari-
ations of the geometry give a first idea of the complexity of this simulation.

Table 2. F15 fighter equipped with the Quiet Spike: anisotropic ratios and quo-
tients histograms for the final adapted mesh. For each interval, the number of
tetrahedra is given with the corresponding percentage.

Anisotropic ratio

1 ≤ ratio ≤ 2 515 23 0.09 %
2 ≤ ratio ≤ 3 245 783 0.41 %
3 ≤ ratio ≤ 4 373 769 0.62 %
4 ≤ ratio ≤ 5 429 601 0.71 %
5 ≤ ratio ≤ 10 2 365 083 3.92 %

10 ≤ ratio ≤ 50 17 823 972 29.57 %
50 ≤ ratio ≤ 102 15 172 581 25.17 %

102 ≤ ratio ≤ 103 23 780 955 39.45 %
103 ≤ ratio ≤ 37 332 0.06 %

Anisotropic quotient

1 ≤ quo ≤ 2 13 096 0.02 %
2 ≤ quo ≤ 3 645 48 0.11 %
3 ≤ quo ≤ 4 102 693 0.17 %
4 ≤ quo ≤ 5 118 128 0.20 %
5 ≤ quo ≤ 10 598 219 0.99 %

10 ≤ quo ≤ 50 3 176 207 5.27 %
50 ≤ quo ≤ 102 2 676 990 4.44 %

102 ≤ quo ≤ 103 17 153 343 28.46 %
103 ≤ quo ≤ 104 26 329 992 43.68 %
104 ≤ quo ≤ 105 9 808 547 16.27 %
106 ≤ quo 238 843 0.40 %
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In the literature, this simulation is currently envisaged in a 2-stage process
by coupling a structured solver with an unstructured one [12] which provides
an accurate pressure field far below the aircraft with a limit at 70m. Here,
the final adapted meshes is composed of 10 050 445 vertices and 60 280 606
tetrahedra featuring a mean anisotropic ratio of 110 and a mean anisotropic
quotient of 6 400. This mesh comes up with an accurate signature 120m be-
low the aircraft while using only unstructured meshes. Detailed histograms
for anisotropic quotients and ratios are reported in Table 2.

Conclusion

A multi-scale mesh adaptation strategy has been introduced in this paper. It
involves theoretical developments demonstrating that a field of metric tensors
completely models discrete meshes and that the notion of interpolation error
is well-defined in this continuous framework. Contrary to discrete classical
approaches, the interpolation error can be computed analytically without
any a priori hypothesis on the mesh. The optimal mesh minimizing the Lp

norm of the interpolation error is then derived as a global optimum by a
calculus of variations. The algorithm to derive a discrete optimal mesh is
based on the definition of unit-mesh. Consequently, this method can be used
with any metric-based mesh generators.

From a practical point a view, this approach automatically obtains adapted
meshes with high level of anisotropy for realistic simulations. Optimal local
Hessian normalization is set automatically and depends only on the choice
of the norm. Prescribing a minimal size is no more necessary. In addition,
numerical results show that all the scales of the solution are captured and
refined when using an Lp norm error control: shocks, shear layers, . . . There
is no need to fix some parameters as in previous Hessian normalizations.
During a simulation, verifying that a second order of convergence is reached as
predicted by the theory gives a first assessment of the computations. Finally,
the convergence to the most accurate solution is done in a natural way by
increasing the complexity N which is, along with the Lp norm, the only
parameter to set prior to a simulation.
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thesis, Université Pierre et Marie Curie, Paris VI, Paris, France (2008)

17. Loseille, A., Alauzet, F.: Continuous mesh model and well-posed continuous
interpolation error estimation. RR-6846, INRIA (2009)

18. Pain, C.C., Umpleby, A.P., de Oliveira, C.R.E., Goddard, A.J.H.: Tetrahedral
mesh optimisation and adaptivity for steady-state and transient finite element
calculations. Comput. Meth. Appl. Mech. Engrg. 190, 3771–3796 (2001)

19. Tam, A., Ait-Ali-Yahia, D., Robichaud, M.P., Moore, M., Kozel, V., Habashi,
W.G.: Anisotropic mesh adaptation for 3D flows on structured and unstruc-
tured grids. Comput. Meth. Appl. Mech. Engrg. 189, 1205–1230 (2000)



Anisotropic Mesh Adaptation for Solution of
Finite Element Problems Using Hierarchical
Edge-Based Error Estimates

Abdellatif Agouzal1, Konstantin Lipnikov2, and Yuri Vassilevski3

1 Universite de Lyon 1, Laboratoire d’Analyse Numerique
agouzal@univ-lyon1.fr

2 Los Alamos National Laboratory, Theoretical Division
lipnikov@lanl.gov

3 Institute of Numerical Mathematics
yuri.vassilevski@gmail.com

Abstract. We present a new technology for generating meshes minimizing the
interpolation and discretization errors or their gradients. The key element of this
methodology is construction of a space metric from edge-based error estimates. For
a mesh with Nh triangles, the error is proportional to N−1

h and the gradient of error
is proportional to N

−1/2
h which are the optimal asymptotics. The methodology is

verified with numerical experiments.

1 Introduction

Unstructured simplicial meshes are ideally suited for adaptive finite element
calculations. The simplexes can be aligned with solution features and cover
the computational domain in an optimal way to equidistribute the error. This
results in a smaller computational mesh and potentially faster calculations.

Generation of optimal adaptive meshes requires error estimates or error
indicators that carry directional information about the solution. In this arti-
cle, we use error estimates that are associated with mesh edges. We consider
edge-based error estimates for the interpolation error and hierarchical er-
ror estimates for the discretization error [12]. In both cases, we employ the
methodology developed in [1, 3, 4] for the interpolation error. This method-
ology results in a metric that captures correctly isotropic and anisotropic
solution features. Here, we continue analysis of this metric, in particular, its
smoothness and anisotropic alignment.

Other methods for generating a space metric are often based on the Hessian
of the discrete solution [18, 15, 14, 13]. For such a metric, optimal error
estimates for the interpolation error have been proved in [2, 8, 14, 17, 18].
The Hessian-based metric has been successfully applied to adaptive solution
of PDEs [7, 13, 15]. However, its theoretical analysis requires to make an
additional assumption that the discrete Hessian approximates the continuous
one in the maximum norm. Despite the fact that this assumption is frequently
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violated in many Hessian recovery methods, the generated adaptive meshes
still result in optimal error reduction.

The technology, which we proposed in [1, 3, 4] does not require the afore-
mentioned approximation assumption. It can be also applied to adaptive solu-
tion of various finite element problems including problems with discontinuous
finite element solutions. The price to pay is that error estimates or error in-
dicators have to be prescribed to mesh edges. The finite element literature
provides a number of ways to obtain these error estimates. For instance, in
CFD literature, edge-based error estimates have appeared occasionally since
mid of 1990’s but have not received adequate theoretical treatment [5, 6].
In this article, we use the hierarchical error estimates from [12] and provide
a numerical analysis of our methodology for the adaptive solution of finite
element problems. The cornerstone of this methodology is construction of a
space metric from edge-based error estimates.

We define a tensor metric M such that the volume and the perimeter of
a simplex measured in this metric control the norm of error or its gradient.
The equidistribution principle, which can be traced back to D’Azevedo [11],
suggests to balance M-volumes and M-perimeters. This leads to meshes that
are quasi-uniform in the piecewise constant metric M. The piecewise constant
metric may produce instabilities in an adaptive process, especially when the
length of a mesh edge, measured in all metrics associated with simplexes
sharing the edge, varies strongly. We show numerically that this variation is
relatively small for our piecewise constant metrics. This allows us to convert
the piecewise constant metric into a continuous one for additional robustness
of the adaptive process.

A piecewise constant tensor metric that controls the error is not unique.
Any such metric results in asymptotically optimal reduction of the error
[1]. In this paper, we show how to build a metric that preserves solution
anisotropy. The resulting quasi-optimal mesh equidistributes both the error
over simplexes and the maximum norm of the error over edges of each simplex.

The paper outline is as follows. In Section 2, we derive metrics optimal for
the interpolation errors. In Section 3, we present the algorithm for generat-
ing adaptive meshes. In Section 4, we apply the methodology for adaptive
solution of finite element problems.

2 Interpolation Error Analysis

2.1 Edge-Based Error Estimates and a Tensor Metric

Let Ω ⊂ �d be a bounded polyhedral domain and Ωh be a conformal simpli-
cial mesh with Nh simplexes. Let M be a piecewise constant tensor metric
on Ωh. The volume of simplex Δ and the length of edge e in this metric are
denoted by |Δ|M and |e|M, respectively [2]. The total length of all edges of
simplex Δ in denoted by |∂Δ|M. We shall refer to |∂Δ|M as the perimeter of
Δ in the metric M.
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Let I1u be the piecewise linear Lagrange interpolant of u, and I1,Δu be its
restriction to Δ. Similarly, let I2u be the piecewise quadratic Lagrange inter-
polant of u, and I2,Δu be its restriction to Δ. Our goal is to generate a mesh
that minimizes (approximately) the Lp-norm, p ∈ (0,∞], of the interpolation
error

e = u − I1u

or its gradient ∇e. A sequence of meshes with increasing number of simplexes
must provide the optimal reduction of this error. For instance, the Tichomirov
result [16] implies that the optimal reduction of the L∞-norm of error is
proportional to N−1

h .
Let us consider a particular d-simplex Δ with vertices vi, i = 1, . . . , d + 1,

edge vectors ek = vi − vj , 1 ≤ i < j ≤ d + 1, and mid-edge points ck,
k = 1, . . . , nd, where nd = d(d + 1)/2. Let λi, i = 1, . . . , d + 1, be the linear
functions on Δ such that λi(vj) = δij where δij is the Kronecker symbol. For
every edge ek, we define the quadratic bubble function bk = λiλj .

Let u be a continuous function and u2 = I2,Δ u be its quadratic approxi-
mation on Δ. We have

e2 = u2 − I1,Δu2 = 4
nd∑

k=1

(u2(ck) − I1,Δu2(ck)) bk ≡
nd∑

k=1

γk bk. (1)

The L2-norm of the error e2 is given by

‖e2‖2
L2(Δ) = |Δ| (B γ, γ), (2)

where γ is a vector with nd components γk and B is the nd × nd sym-
metric positive definite scaled Gramm matrix with positive entries Bk,l =
|Δ|−1

∫
Δ

bkbl dV . Note that (2) is only a number; therefore, it does not pro-
vide any directional information. To recover this information, we split the
error into nd pieces associated with edges of Δ:

‖e2‖L2(Δ) = |Δ|1/2
nd∑

k=1

αk and
nd∑

k=1

αk = (Bγ, γ)1/2. (3)

Not careful selection of αk may result in loss of directional information. In
the sequel, we motivate the following choice of αk:

αk = |γk| (Bγ, γ)1/2

(
nd∑

k=1

|γk|
)−1

. (4)

We repeat the above derivations for the gradient of the error. The L2-norm
of ∇e2 is given by

‖∇e2‖2
L2(Δ) = ‖

nd∑
k=1

γk∇bk‖2
L2(Δ) = |Δ|(B̃ γ, γ),
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where B̃ is the nd ×nd symmetric positive definite matrix with entries B̃k,l =
|Δ|−1

∫
Δ ∇bk·∇bl dV. Again, we split this error (a number) into nd edge-based

error estimates α̃k ≥ 0 such that

‖∇e2‖2
L2(Δ) = |Δ|

nd∑
k=1

α̃k and
nd∑

k=1

α̃k = (B̃ γ, γ). (5)

Again, a proper choice of αk is required to preserve directional information
in a final metric. In the sequel, we motivate the following choice of α̃k:

α̃k = |γk| (B̃ γ, γ)

(
nd∑

k=1

|γk|
)−1

. (6)

In both cases, the edges-based errors αk and α̃k are proportional to |γk|
which is the same for all simplexes sharing the edge ek. This observation is a
key to understanding ’smoothness’ of the metric whose element-by-element
construction is based on the following result [1, 4].

Lemma 1. Let αk, k = 1, . . . , nd, be values prescribed to edges of a d-simplex
Δ such that

αk ≥ 0 and
nd∑

k=1

αk > 0.

Then, there exists a constant tensor metric MΔ such that(
d!

(d + 1)(d + 2)

)1/d

|Δ|2/d
MΔ

≤
nd∑

k=1

αk ≤ |∂Δ|2MΔ
. (7)

The proof [1, 4] of Lemma 1 provides the constructive way to define the
metric MΔ. Due to its importance, we present a shortened proof here.

Proof. Let us define the quadratic function

v2 = −1
2

nd∑
k=1

αkbk.

The trace of v2 on ek is a quadratic function w2 vanishing at endpoints vi, vj

of ek with an extremum at ck. Therefore, w′
2(ck) = 0 and ∇v2(ck) · ek = 0.

Let H be the Hessian of v2. Applying the multi-point Taylor formula [9, 10]
for v2 at endpoints vi and vj of ek, we get

0 = v2(vi) = v2(ck) − 1
2
∇v2(ck) · ek +

1
8
(H ek, ek), (8)

0 = v2(vj) = v2(ck) +
1
2
∇v2(ck) · ek +

1
8
(H ek, ek).
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Thus,
(H ek, ek) = αk.

The Hessian H may be indefinite and hence cannot be used to define the
metric MΔ. In order to make it positive semidefinite, we take its spectral
module:

|H| = WT |Λ|W,

where H = WT Λ W is the spectral decomposition of the symmetric matrix
H.

If detH �= 0, we set MΔ = |H|. The upper bound follows from

|∂Δ|2|H| =

(
nd∑

k=1

(|H|ek, ek)1/2

)2

≥
nd∑

k=1

(|H|ek, ek) ≥
nd∑

k=1

|(H ek, ek)| =
nd∑

k=1

αk.

To estimate the lower bound, we use formula for the Cayley-Menger deter-
minant generalized to the case H �= I (for its proof we refer to [1]):

det(H) |Δ|2 =
(−1)d−1

2d(d!)2
det(K(H)), (9)

where

K(H) =

⎛⎜⎜⎜⎝
(Hv11,v11) · · · (Hv1d1 ,v1d1) 1

...
. . .

...
...

(Hvd11,vd11) · · · (Hvd1d1 ,vd1d1) 1
1 · · · 1 0

⎞⎟⎟⎟⎠ (10)

and vij ≡ vi − vj . Therefore,

|Δ|2|H| = det(|H|) |Δ|2 =
(−1)d−1

2d(d!)2
det(K(|H|))

≤ 1
2d(d!)2

sup
α∈�nd

|detK(H)|
max

1≤k≤nd

αd
k

(
nd∑

k=1

αk

)d

.
(11)

For a square matrix K(H) with elements ki,j , it holds

|det(K(H))| ≤ |
∑
σ

d+2∏
i=1

ki,σi | ≤ (d + 2)! max
σ

|
d+2∏
i=1

ki,σi |,

where the summation is performed over all possible permutations σ of matrix
rows and columns. Since ki,j = (H ek, ek) = αk, 1 ≤ i < j ≤ d1, from (10) we
derive that det(K(H)) is a homogeneous polynomial of degree d of αk and

sup
α∈�nd

|detK(H)|
max

1≤k≤nd

αd
k

≤ (d + 2)! sup
α∈�nd

max
1≤k≤nd

αd
k

max
1≤k≤nd

αd
k

≤ (d + 2)! .
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Therefore, we conclude from (11) that

|Δ|2|H| ≤
1
2d

(d + 1)(d + 2)
d!

(
nd∑

k=1

αk

)d

which implies the lower bound in (7).
If det(H) = 0, the Hessian H cannot be used to generate a metric. In this

case, we modify αk to get a new quadratic function v2 with a non-degenerate
Hessian such that (7) is still satisfied. For the sake of simplicity, we restrict
ourselves to the case 0 ≤ α1 ≤ α2 ≤ · · · ≤ αnd

and αnd
�= 0. The modified

edge data are

α̃k = αk, k = 1, . . . , nd − 1, α̃nd
= (1 + δ)αnd

,

where δ ∈]0, 1].

Let ṽ2(δ) = − 1
2

nd∑
k=1

α̃kbk be the modified quadratic function and H̃(δ) be its

Hessian. Formulas (9) and (10) imply that p(δ) ≡ det(H̃(δ)) is a polynomial
of degree two. Since p(0) = det(H) = 0, there exists δ0 ∈]0, 1] such that
det(H̃(δ0)) �= 0. We set MΔ = |H̃(δ0)| and check that

nd∑
k=1

αk ≤
nd∑

k=1

α̃k ≤
nd∑

k=1

(|H̃(δ0)|ek, ek) ≤
(

nd∑
k=1

(|H̃(δ0)|ek, ek)1/2

)2

= |∂Δ|2MΔ

and
nd∑

k=1

αk ≥ 1
2

nd∑
k=1

α̃k ≥
(

(d + 1)(d + 2)
d!

)− 1
d

|Δ| 2dMΔ
.

This proves the assertion of the lemma. �

Using Lemma 1 and norm definition (3), we build the auxiliary metric MΔ

for error e2. Similarly, using Lemma 1 and norm definition (5), we build
the auxiliary metric M̃Δ for ∇e2. These metrics do not provide a geometric
representation of the error since the error estimates involve also the volume
of simplex in the Cartesian metric. This mismatch is fixed in the following
section.

2.2 Metrics for the Lp-norm of Error and Its Gradient

In this section, we consider Lp-norms, p ≥ 1, of the errors as well as Lp-quasi-
norms, 0 < p < 1. As described in [18, 1, 4], as well as in [14], the metrics
controlling various Lp-norms differ by a scaling factor. Let

MΔ,p = (det(MΔ))−1/(d+2p)
MΔ and M̃Δ,p = (det(M̃Δ))−1/(d+p)M̃Δ.
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The following estimates are proved in [18, 1, 4].

Lemma 2. Let MΔ,p and M̃Δ,p be the constant tensor metrics defined above.
Then,

cp|Δ|2/d+1/p
MΔ,p

≤ ‖e2‖Lp(Δ) ≤ Cp |Δ|1/p
MΔ,p

|∂Δ|2MΔ,p
(12)

and
c̃p|Δ|1/d+1/p

M̃Δ,p

≤ ‖∇e2‖Lp(Δ) ≤ C̃p |Δ|1/p

M̃Δ,p

|∂Δ|
M̃Δ,p

, (13)

where constants cp, Cp, c̃p, C̃p depend only on d and p.

For brevity, we confine ourselves to the case p = ∞. In this case, the constants
in Lemma 2 depend only on d. Moreover, the metrics generated by Lemma 1
are optimal, i.e. MΔ,∞ = MΔ and M̃Δ,∞ = M̃Δ.

2.3 Extension to General Functions

For a given continuous function u, we use the computable error e2 to estimate
the true error e:

e = u − I1,Δu.

Let F be the space of symmetric d × d matrices and |H| be the spectral
module of H ∈ F . We introduce the following notations:

|‖ek|‖2
|H| = max

x∈Δ
(|H(x)| ek, ek) and |‖∂Δ|‖2

|H| =
nd∑

k=1

|‖ek|‖2
|H|.

The following result is proved in [1, 4].

Lemma 3. Let u ∈ C2(Δ̄). Then,

d + 1
2d

‖e2‖L∞(Δ) ≤ ‖e‖L∞(Δ) ≤ ‖e2‖L∞(Δ) +
1
4

inf
F∈F

|‖∂Δ|‖2
|H−F|.

and

‖∇e2‖L∞(Δ) − osc(H, Δ) ≤ ‖∇e‖L∞(Δ) ≤ ‖∇e2‖L∞(Δ) + osc(H, Δ), (14)

where the oscillation term is

osc(H, Δ) = Cosc
|∂Δ|d−1

|Δ| inf
F∈F

|‖∂Δ|‖2
|H−F|

and Cosc depends only on d.

The oscillation terms are conventional in the contemporary error analysis.
Their value depend on the simplex and particular features of the function.
For smooth solutions and shape-regular simplexes, the oscillation terms are
much smaller than the error value.
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2.4 On Selection of αk

Let H(u2) be definite. The derivation of metric MΔ suggests a simple moti-
vation for the choices (4) and (6). Since the bubble function bk is non-zero
only on one edge, we get

|(MΔek, ek)| = −1
2
αk(H(bk)ek, ek).

The last term is the second derivative in direction ek. The inner product is
a constant independent of the edge length and shape of the simplex. The
definition of γk in (1) implies that the maximum norm of error on edge ek is
simply |γk|/4. Using this, we get

|(MΔek, ek)| = 4
αk

|γk| ‖e2‖L∞(ek).

Let us consider a mesh that is uniform in metric MΔ. For such a mesh, we
immediately get the following equalities:

α1

|γ1| ‖e2‖L∞(e1) =
α2

|γ2| ‖e2‖L∞(e2) = · · · =
αnd

|γnd
| ‖e2‖L∞(end

).

Thus, the optimal mesh equidistributes ‖e2‖L∞(ek) over all edges of each
simplex Δ. It explains our choice for (4). Similar arguments are used to
motivate the choice (6).

The choice (4) has another advantage. In spite of the local metric con-
struction, we have approximate equality of edge length measured in different
metrics MΔ coming from simplexes Δ sharing the edge. In other words, the
recovered cell-based metrics are globally consistent. This results is verified
with numerical experiments in Section 4.1.

2.5 Error Estimates as Functions of Nh

The error equidistribution principle suggests to build meshes that are quasi-
uniform in metric M, for the interpolation error, or in metric M̃, for the
gradient of the interpolation error. Let Ωh and Ω̃h be simplicial meshes with
Nh cells that balance the volume and perimeter of cells:

N−1
h |Ω|Mp � |Δ|MΔ,p � |∂Δ|dMΔ,p

∀Δ ∈ Ωh

and
N−1

h |Ω|
M̃p

� |Δ|
M̃Δ,p

� |∂Δ|d
M̃Δ,p

∀Δ ∈ Ω̃h,

where a � b means that c a ≤ b ≤ C a with constants depending only on d
and p. On such meshes, the following error estimates are held:

‖e‖Lp(Ω) =

( ∑
Δ∈Ωh

‖e‖p
Lp(Δ)

) 1
p

�
( ∑

Δ∈Ωh

|Δ|1+
2p
d

MΔ,p

) 1
p

� |Ω|
1
p + 2

d

Mp
N

− 2
d

h
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and

‖∇e‖Lp(Ω) =

⎛⎝ ∑
Δ∈Ω̃h

‖∇e‖p
Lp(Δ)

⎞⎠
1
p

�

⎛⎝ ∑
Δ∈Ω̃h

|Δ|1+
p
d

M̃Δ,p

⎞⎠
1
p

� |Ω|
1
p + 1

d

M̃p

N
− 1

d

h .

Thus, the Mp (resp., M̃p)-quasi-uniform meshes provide asymptotically op-
timal rate for reduction of the interpolation error (resp., the gradient of the
error).

3 Mesh Adaptation Algorithm

To build a continuous metric from a piecewise constant metric, we employ
the method of shifts. For every node ai in Ωh, we define the superelement σi

as the union of all d-simplices sharing ai. Then, to every node ai, we assign
the metric with the largest determinant among all metrics associated with
the superelement σi.

We use Algorithm 1 to build an adaptive mesh minimizing the Lp-norm
of error or its gradient.

Algorithm 1. Adaptive mesh generation

1: Generate an initial mesh Ωh, compute a piecewise constant metric Mp, and
apply the method of shifts to get a continuous metric still denoted by Mp.

2: loop
3: Generate a Mp-quasi-uniform mesh Ωh.
4: Recompute the metric Mp.
5: If Ωh is Mp-quasi-uniform, then exit the loop.
6: end loop

To generate a M-quasi-uniform mesh, we use a sequence of local mesh
modifications [2, 7, 17] that gradually increase the measure of mesh quasi-
uniformity. The local modifications of mesh topology include edge swapping,
node relocation, insertion and deletion. These operations are implemented in
package Ani2D (sourceforge.net/projects/ani2d).

4 Numerical Results

4.1 Interpolation Problems

In this section, we demonstrate with numerical experiments that the recov-
ered piecewise-constant metric is sufficiently ’smooth’ and reflects anisotropic
features of the interpolated function. Let E0 be the set of interior mesh edges.
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In the two dimensional case, we define the measure of metric discontinuity
as follows:

V (M) =
1

N(E0)

∑
e∈E0

Ve(M), Ve(M) =
∣∣∣∣ |‖e|‖MΔ − |‖e|‖MΔ′

|‖e|‖MΔ + |‖e|‖MΔ′

∣∣∣∣ ,
where N(E0) is the number of interior edges and MΔ, MΔ′ are two triangles
with the common edge e. Note that V (M) is zero for a continuous metric. For
a sequence of refined shape-regular meshes and corresponding piecewise con-
stant metrics approximating a continuous metric, V (M) is converging to zero.

In the first experiment, we calculate V (M) on a sequence of quasi-optimal
meshes built with Algorithm 1. In the unit square Ω = [0, 1]2, we consider
the analytical function proposed in [11]:

u(x, y) =
(x − 0.5)2 − (

√
10y + 0.2)2

((x − 0.5)2 + (
√

10y + 0.2)2)2
.

The function has an anisotropic singularity at point (0.5, −0.2/
√

10) located
outside the computational domain but close to its boundary. Table 1 shows
that V (M) is roughly 0.1, i.e. the length of edge e varies roughly 20% when
measured in metrics MΔ and MΔ′ associated with this edge. Lack of conver-
gence of V (M) to 0 as Nh → ∞ may be related to the fact that the mesh is
only quasi-uniform in metric M.

The L∞-norm of the interpolation error is proportional to N−1
h , while

the L∞-norm of its gradient is proportional to N−0.5
h . Note that the meshes

minimizing the interpolation error and its gradient are different (see Fig. 1).
The figure indicates sharper features of the gradient of the error, which is the
expected result.

In the second experiment, we consider the Texas-shape domain inscribed
in [− 3

2 ; 3
2 ] and shown in Fig 2. We consider the analytical function

u(x, y) = (x2y + y3)/163 + tanh(2(sin(6y) − 3x)(sin(6x) − 3y)) (15)

that has a spider-like distinguished feature highlighted by the mesh anisotropy.
The results of numerical experiments collected in Table 2 confirm conclusions

Table 1. Experiment 1: convergence of the interpolation error and its gradient

Interpolation error Gradient of interpolation error
Nh ‖e‖L∞(Ω) V (M) ‖∇e‖L∞(Ω) V (M)
1000 8.29e-2 0.122 5.41e+1 0.119

4000 2.36e-2 0.114 2.70e+1 0.097

16000 6.59e-3 0.115 1.42e+1 0.096

64000 1.83e-3 0.113 7.71e+0 0.099
rate 0.92 0.48
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Fig. 1. Experiment 1: The adaptive meshes with roughly 2000 triangles minimizing
the maximum norm of the interpolation error (left) and its gradient (right).

Table 2. Experiment 2: convergence of the interpolation error and its gradient.

Interpolation error Gradient of interpolation error
Nh ‖e‖L∞(Ω) V (M) ‖∇e‖L∞(Ω) V (M)
1000 1.03e-1 0.197 1.75e-0 0.220

4000 2.09e-2 0.122 7.72e-1 0.146

16000 5.38e-3 0.098 3.76e-1 0.104

64000 1.39e-3 0.090 1.93e-1 0.090
rate 1.03 0.53

that we made in the previous experiment. We observe the first-order conver-
gence rate for the maximum norm of the error and the half-order convergence
rate for the gradient of this error. The measure of metric discontinuity V (M)
is slowly decreasing; however, its convergence to zero is questionable. Fig. 2
shows that the meshes minimizing the interpolation error and its gradient are
different, which is the expected result.

Actual numerical values of V (M) cause slight but yet unpleasant instabil-
ities in the adaptive process. We found numerically that the adaptation is
more robust for a continuous tensor metric that provides faster convergence
and results in a smoother mesh. That is why we use the method of shifts to
generate of a continuous metric.

4.2 Applications to PDEs

In this section, we apply the developed methodology to adaptive solution of
finite element problems. We consider problems with isotropic and anisotropic
solutions.
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Fig. 2. Experiment 2: The adaptive meshes with roughly 2000 triangles minimizing
the maximum norm of the interpolation error (left) and its gradient (right)

Hierarchical error estimates

We describe briefly a discretization error estimator based on enrichment of the
linear finite element space with a space of piecewise quadratic finite element
functions (bubbles) associated with edges of Ωh [12]. The extended finite
element problem results in a system of algebraic equations:[

ALL ALQ

AQL AQQ

] [
uL

uQ

]
=
[

fL

fQ

]
,

where subscripts L and Q stand for linear and quadratic terms.
Let u∗

L be an approximate solution of the original P1 finite element problem
ALLu∗

L = fL. We define the deviation dL = uL − u∗
L and the discretization

error dQ = uQ. They satisfy[
ALL ALQ

AQL AQQ

] [
dL

dQ

]
=
[

rL

rQ

]
, (16)

with
rL = fL − ALLu∗

L and rQ = fQ − AQLu∗
L.

The exact solution of (16) is too expensive. In order to estimate the dis-
cretization error dQ, equation (16) is replaced with a simpler equation[

ALL 0
0 AQQ

] [
d̃L

d̃Q

]
=
[

rL

rQ

]
. (17)

Using a local finite element analysis, one can show that the diagonal matrix
in (17) is spectrally equivalent to the matrix in (16). Therefore, the energy
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norm of the discretization error dQ can be estimated using the energy norm of
d̃Q. The matrix AQQ is well-conditioned for shape-regular meshes; therefore,
the vector d̃Q can be efficiently calculated with a simple conjugate gradient
method.

The entry of vector d̃Q associated with an edge ek of a simplex Δ plays
the role of interpolation error γk in formula (1). Thus, we can use the above
methodology to generate quasi-optimal meshes.

Problem with a point singularity

Let Ω be a unit disk with a radial cut. We consider the classical crack problem
with the exact solution

u(r, θ) = r1/4 sin(θ/4),

where (r, θ) are polar coordinates, r > 0 and θ ∈ [0, 2π). The crack line S is
defined by points (r, 0). We consider the following boundary value problem:

Δu = 0 in Ω \ S,

u = sin
θ

4
on ∂Ω \ S,

u = 0 on S+,
∂u

∂n
= 0 on S−,

(18)

where S+ and S− denote the crack line when it is approached from regions
θ → +0 and θ → 2π, respectively.

Table 3 demonstrates the half-order convergence of the gradient of the
discretization error. A similar convergence is observed for the gradient of
a finite element function d̃h corresponding to vector d̃Q, which confirms the
theory of hierarchical error estimates on shape-regular meshes. The difference
in error values indicates that the constant of spectral equivalence of energy
norms of dQ and d̃Q is approximately 6.

This theory does not guarantee a similar connection between L2-norms of
these errors, which is also clear from the second and third columns in Table 3.
For this norm, we have to use the finite element function dh corresponding
to dQ; however, calculation of this function is rather expensive.

Problem with anisotropic singularities

Let Ω be the unit square Ω = (0, 1)2. We consider the following boundary
value problem:

−div (K gradu) = 1 in Ω,
u = 0 on ∂Ω,

where

K(x, y) = RT
θ

[
1 0
0 103

]
Rθ, θ = 250 (x + y),

and Rθ is the rotation matrix by angle θ. The analytical solution is unknown
and the discretization error cannot be computed. However, some features
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Table 3. Experiment 3: convergence of the discretization error and its gradient

Discretization error Gradient of discretization error
Nh ‖d̃h‖L2(Ω) ‖e‖L2(Ω) ‖∇d̃h‖L2(Ω) ‖∇e‖L2(Ω)

1000 1.10e-3 7.44e-3 1.94e-2 1.17e-1

4000 2.84e-4 3.10e-3 1.01e-2 6.08e-2

16000 7.04e-5 1.30e-3 5.35e-3 2.96e-2

64000 1.76e-5 9.48e-4 2.62e-3 1.59e-2
rate 1.00 0.51 0.48 0.48

Fig. 3. Experiment 3: The adaptive meshes with roughly 2000 triangles minimizing
the L2-norm of the hierarchical error estimator (left) and its gradient (right)

Table 4. Experiment 4: convergence of the hierarchical error estimators d̃h, dh and
their gradients

Discretization error Gradient of discretization error
Nh ‖d̃h‖L2(Ω) ‖dh‖L2(Ω) ‖∇d̃h‖L2(Ω) ‖∇dh‖L2(Ω)

1000 4.98e-6 5.55e-3 1.88e-4 6.52e-4

4000 1.48e-6 3.02e-3 1.16e-4 3.52e-4

16000 3.88e-7 1.82e-3 5.94e-5 1.67e-4

64000 9.87e-8 1.03e-3 2.94e-5 9.07e-5
rate 0.95 0.40 0.45 0.48

of the solution can be extracted from the mesh structure shown in Fig. 4.
Table 4 shows that the gradient of hierarchical edge-based a posteriori er-
ror estimator, ‖∇d̃h‖L2(Ω), correlates with ‖∇dh‖L2(Ω) even on anisotropic
meshes. Similarly to the previous experiment, the L2-norms of these estima-
tors exhibit different behavior.
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Fig. 4. Experiment 4: The adaptive meshes with roughly 2000 triangles minimizing
the L2-norm of the hierarchical error estimator d̃h (left) and its gradient (right)

5 Conclusion

We presented a new technology for generating meshes minimizing the in-
terpolation and discretization errors or their gradients. The cornerstone of
this methodology is construction of a space metric from edge-based error
estimates. For the interpolation error, these estimates were computed explic-
itly. For the discretizations error, we used the hierarchical error estimators
based on enrichment of the linear finite element space with quadratic bubble
functions associated with mesh edges. We proved and verified with numeri-
cal experiments, that for a mesh with Nh triangles, the error is proportional
to N−1

h and the gradient of this error is proportional to N
−1/2
h , which are

optimal asymptotics.
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Abstract. A simple strategy for generating anisotropic meshes is introduced. The
approach belongs to the class of metric-based mesh adaptation procedures where
a field of metric tensors governs the adaptation. This development is motivated
by the need of generating anisotropic meshes for complex geometries and complex
flows. The procedure may be used advantageously for cases where global remeshing
techniques become either unfeasible or unreliable. Each of the local operations used
is checked in a variety of ways by taking into account both the volume and the
surface mesh. This strategy is illustrated with surface mesh adaptation and with
the generation of meshes suited for boundary layers analysis.

Two simple mesh operators are used to recursively modify the mesh: edge col-
lapse and point insertion on edge. It is shown that using these operators jointly
with a quality function allows to quickly produce an quality anisotropic mesh.
Each adaptation entity, ie surface, volume or boundary layers, relies on a specific
metric tensor field. The metric-based surface estimate is used to control the de-
viation to the surface and to adapt the surface mesh. The volume estimate aims
at controlling the interpolation error of a specific field of the flow. The boundary
layers metric-based estimate is deduced from a level-set distance function.

Keywords: Anisotropic Mesh Adaptation; Surface Remeshing; Metric-Based Error
Estimate; Boundary Layers Mesh Generation; Level-Set Function.

1 Introduction

Generating a valid tetrahedral mesh for a given domain Ω of R3 of any arbi-
trary complexity is still a tedious task. The difficulty increases mainly with
the complexity of the boundary ∂Ω of Ω. In addition, a second factor that
impacts substantially the complexity is the way ∂Ω is meshed. Isotropically-
meshed surfaces with a smooth element-size variation are generally easier to
mesh than anisotropically-meshed surfaces with strong size variations. This
is particularly true when one considers the set of methods that have demon-
strated a good efficiency and reliability to produce a volume mesh from given
complex surface mesh: advancing front method [28, 34], constraint global De-
launay [4, 18, 19] or a combination of both [33]. These methods have now
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attained a sufficient level of maturity to handle very complex geometries as
long as the surface mesh of ∂Ωh is isotropic. When dealing with anisotropic
surface meshes, the frontal methods generally do not succeed to close the
front, while the Delaunay-based generally will fail during the boundary re-
covery phase. Consequently, being able to certify that during an adaptive
procedure any of this methods will succeed is not at all guaranteed. Con-
sequently, it is of great interest to develop techniques that modify a mesh
locally [9, 13, 36] while keeping a valid 3D mesh. In this paper, the empha-
sis is put on anisotropic meshes that correspond to the case where previous
methods are the most susceptible to fail.

We concentrate on mesh-relative classical tasks required for a complete
adaptive CFD (Computational Fluid Dynamics) run: the surface remeshing,
the volume remeshing and the boundary layers mesh generation. Each task
on its own has blossomed into a large field of research in the mesh-generation
community. However, these tasks are often studied independently and with-
out the constraints of keeping a valid 3D mesh. The approach followed here
is to deal conjointly with these three tasks starting from an initial mesh and
using the metric-based framework. The paper is organized as follow. In Sec-
tion 1, the classical metric-based framework is recalled. Then, the main imple-
mentation choices for the adaptive mesh generator are discussed (Section 2).
Section 3 deals with the derivation of metric-based estimates for controlling
the interpolation error of a solution field, the deviation to a surface and for
monitoring the generation of a boundary layers grid. Mesh modification op-
erators are introduced in Section 4, along with numerical examples.

2 Metric-Based Anisotropic Local Remeshing

We briefly recall the main concepts of metric-based mesh adaptation. This is
done in a generic way without having a specific problem at hand. Thereafter,
the use of the local mesh generator is considered in the context of the full
adaptive process.

2.1 Metric Tensors in Mesh Adaptation

Metric-based mesh adaptation is an elegant concept introduced in the pio-
neering works [10, 20]. It (theoretically) allows to transform any unstructured
uniform mesh generator into an anisotropic one. This is done by computing
the distance in a Riemannian space instead of the classical Euclidean met-
ric space. The adaptive mesh generator aims at creating a unit-mesh in this
space. In the following, we recall the continuous definition inherited from
differential geometry considerations [7, 12] with their implementation in the
mesh generator [17]. Each continuous definition is then accompanied with its
discrete counterpart.

A metric tensor field of Ω is a Riemannian metric space denoted by
(M(x))x∈Ω, where M(x) is a 3× 3 symmetric positive definite matrix. Tak-
ing this field at each vertex xi of a mesh H of Ω defines the discrete field
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Mi = M(xi). If N denotes the number of vertices of H, the linear discrete
metric field is denoted by (Mi)i=1...N . As M(x) and Mi are symmetric def-
inite positive, they can be diagonalized in an orthonormal frame, such that

M(x) = tR(x)Λ(x)R(x) and Mi = tRiΛiRi,

where Λ(x) and Λi are diagonal matrices composed of strictly positive
eigenvalues λ(x) and λi and R and Ri orthonormal matrices verifying
tRi = (Ri)−1. Setting hi = λ−1

i allows to define the sizes prescribed by
Mi along the principal directions given by Ri. Note that the set of points
verifying the implicit equation txMi x = 1 defines a unique ellipsoid. This
ellipsoid is called the unit-ball of Mi and is used to represent geometrically
Mi as in Figure 1.

Fig. 1. Some unit-elements with respect to a 3D metric represented by its unit-ball.

The two fundamental operations in a mesh generator are the computation
of length and volume. The distance of an edge e = [xi,xj ] and the volume of
an element K are continuously evaluated in (M(x))x∈Ω by:


M(e) =
∫ 1

0

√
te M(xi + t e) e dt and |K|M =

∫
K

√
det(M(x)) dx

From a discrete point view, the metric field needs to be interpolated [17]
to compute approximate length and volume. For the volume, we consider a
linear interpolation of (Mi)1...N and the following edge length approximation
is used:

|K|M ≈
√√√√det

(
1
4

4∑
i=1

Mi

)
|K| and 
M(e) ≈

√
teMi e

r − 1
r ln(r)

, (1)

where |K| is the Euclidean volume of K and r stands for the ratio√
teMi e/

√
teMj e. The approximated length arises from considering a

geometric approximation of the size variation along end-points of e: ∀t ∈
[0, 1] h(t) = h1−t

i ht
j .

The task of the adaptive mesh generator is then to generate a unit-mesh
with respect to (M(x))x∈Ω. A mesh is said unit when it is only composed of
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unit-volume elements and unit-length edges. Practically, these two require-
ments are combined in a quality function computed in the metric field. A
mesh H is said to be unit with respect to (M(x))x∈Ω when each tetrahedron
K ∈ H defined by its list of edges (ei)i=1...6 verifies:

∀i ∈ [1, 6], 
M(ei) ∈
[

1√
2
,
√

2
]

and QM(K) ∈ [α, 1] with α > 0 , (2)

with:

QM(K) =
36
3

1
3

|K| 23M∑6
i=1 
2

M(ei)
∈ [0, 1]. (3)

A classical and admissible value of α is 0.8. This value arises from some
discussions on the possible tessellation of R3 with unit-elements [30]. Some
unit-elements with respect to a 3D metric are depicted in Figure 1.

2.2 Adaptive CFD Simulations

The complete adaptive algorithm for steady simulations is composed of the
following steps.

1. Compute the flow field (i.e. converge the flow solution on the current
mesh);

2. Compute the metric estimates: surface, volume, boundary layers, etc.
3. Generate a unit mesh with respect to these metric fields;
4. Re-project the surface mesh onto the true geometry using the CAD data;
5. Interpolate the flow solution on the new adapted mesh;
6. Goto 1.

We briefly describe steps 1., 4. and 5. while steps 2. and 3. are discussed in
details in Sections 3 and 4. Note that all operations are done on a volume
mesh. Furthermore, any of these operations delivers a valid volume mesh,
even for the surface mesh adaptation or the projection of the continuous
surface using the CAD.

Flow solver. The flow solver employed is FEFLO. FEFLO was conceived as
a general-purpose CFD code based on the following general principles:

1 Use of unstructured grids (automatic grid generation and mesh refine-
ment);

2 Linear finite element discretization of space (one element-type code for
simplicity and speed);

3 Edge-based data structures for speed;
4 Separate flow modules for compressible and incompressible flows;
5 ALE formulation for moving grids;
6 Embedded surface or immersed body options for complex, dirty geome-

tries;
7 Overlapping grids or gliding regions for rotating bodies;
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8 Bottom-up coding from the subroutine level to assure an open-ended,
expandable architecture to consider new turbulence models, Riemann
solvers and limiters;

9 Optimal data structures for different architectures.

The code has had a long history of relevant applications [5, 6], and has been
ported to both shared memory [24] and distributed memory [38] machines.

Surface representation. The surface representation is given by either ana-
lytical surfaces (Coon’s patches, planes, ...) or discrete triangulations (STL,
tri-files, ...). Each patch is bound by a set of unique lines that are shared
between patches. After introducing of new points on the surface, the surface
is interrogated and the point is placed on the correct surface position. This
may yield elements with negative volumes, particularly if the mesh is coarse.
Therefore, an iterative algorithm is employed to project smoothly the point
to the true surface while keeping only positive-volume elements.

Solution interpolation. The solution interpolation step uses a simple linear
interpolation scheme.

Comments on the data structures. During step 3., a discrete geometry is
used, so that (costly) requests to CAD are only done during step 4.. Nor-
mals, tangents, ridges and corners are stored on each boundary point. Then
elements surrounding elements and triangles surrounding triangles are used.
With these data structures, the ball of elements for a vertex, the shell of an
edge, and the topological neighbors of a vertex are recovered on-the-fly very
quickly. We refer to [17] for the practical algorithms.

3 Metric-Based Estimates

As stated in Section 2, using a metric-based adaptive mesh generator provides
an elegant way to keep the mesh generator independent of the problem at
hand. In the sequel, we illustrate and review the derivation of several metric
fields for the following tasks: adapting the mesh to a solution field by con-
trolling the interpolation error, adapting the mesh to control the deviation
to a surface, and, finally, adapting a mesh to create a boundary layers mesh
as required in RANS (Reynolds-Average Navier-Stokes) simulations. We first
introduce two techniques intensively used the sequel: the anisotropic mesh
gradation and the Log-Euclidean framework.

3.1 Techniques for Enhancing Robustness and Performance

The metric field provided has a direct, albeit complex, impact on the qual-
ity of the resulting mesh. A smooth and well-graded metric field makes the
generation of the anisotropic mesh generation easier and generally improves
the final quality. We consider two techniques that tend to give a substan-
tial positive impact on the quality of the resulting mesh: The anisotropic
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mesh gradation tends to smooth the metric field, while the Log-Eucidean
interpolation allows to properly define metric tensors interpolation, thereby
preserving the anisotropy even after a numerous interpolations.

Anisotropic mesh gradation. The mesh gradation is a process that smoothes
the initial metric field that is generally noisy as it is derived from discrete
data. Gradation strategies for anisotropic meshes are available in [1, 8, 22].
From a continuous point of view, the mesh gradation process consists in
verifying the uniform continuity of the metric field:

∀(x,y) ∈ Ω2 ‖M(y) −M(x)‖ ≤ C‖x − y‖2,

where C is a constant and ‖.‖ a matrix norm. This requirement is far more
complex that imposing only the continuity of (M(x))x∈Ω . From a practical
point of view, this done that by ensuring that for all couples (xi,Mi) defined
on H verify:

∀(xi,yj) ∈ H2 N (‖xi−yj‖2)Mi∩Mj =MjandN (‖xi−yj‖2)Mj∩Mi=Mi,

where N (.) is a matrix function defining a growth factor and ∩ is the classical
metric intersection based on simultaneous reduction [17]. This standard al-
gorithm has O(N2) complexity. Consequently, less CPU-intensive correction
strategies need to be devised; we refer to [1] for some suggestions. Note that
bounding the number of corrections to a fixed value is usually sufficient to
correct the metric field near strongly anisotropic areas as the shocks. Two op-
tions are used in this paper giving either an isotropic growth or an anisotropic
growth acting:

N (dij)Mi =

⎛⎝η1(dij)λ1

η2(dij)λ2

η3(dij)λ3

⎞⎠
with

(i) ηk(dij) = (1 +
√

teij Mi eij log(β))−2 or (a) ηk(dij) = (1 + λk dij log(β))−2,
(4)

where dij = ‖xj − xi‖2, eij = xj − xi and β the gradation parameter > 1.
The isotropic growth is given by law (i) while the anisotropic by law (a).
Note that (i) is identical for all directions, contrary to anisotropic law (a)
that depends on each eigenvalue along its principal direction. In the sequel,
we use the gradation to smooth the transition between the various metric
fields: surface and volume, surface and boundary layers, etc.

Log-Euclidean framework. After each point insertion or during the compu-
tation of edge-lengths, a metric field must be interpolated. Interpolation
schemes based on the simultaneous reduction [17] lack several desirable the-
oretical properties. For instance, the unicity is not guaranteed. A framework
introduced in [3] proposes to work in the logarithm space as if one were in
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the Euclidean one. Consequently, a sequence of n metric tensors can be in-
terpolated in any order while providing a unique metric. Given a sequence
of points (xi)i=1...k and their respective metrics Mi, then the interpolated
metric in x verifying

x =
k∑

i=1

αi xi, with
k∑

i=1

αi = 1,

is

M(x) = exp

(
k∑

i=1

αi ln(Mi)

)
. (5)

On the space of metric tensors, logarithm and exponential operators are
acting on metric’s eigenvalues directly:

ln(Mi) = tRi ln(Λi)Ri and exp(Mi) = tRi exp(Λi)Ri.

Numerical experiments confirm that using this framework during interpo-
lation allow to preserve the anisotropy. Note that the evaluation of length
given by (1) corresponds to the Log-Eucldiean interpolation between the two
metrics of the edge extremities.

3.2 Lp Norm Interpolation Error

Controlling the linear interpolation error of a given flow field allows to derive
a simple anisotropic metric-based estimate [10] by considering an error bound
involving a recovered Hessian [37] of the numerical solution. Note that this
approach has already demonstrated its efficiency on numerous 3D real-life
problems [2, 9, 14, 31, 35, 39, 41]. In this paper, instead of classical error equi-
distribution issued from an L∞ norm, we prefer to control the Lp norm of the
interpolation error. Such control allows to recover the order of convergence of
the scheme on flows with shocks and to capture of the scales of the numerical
solution [31].

Given a numerical solution uh (density, pressure, mach numbers, . . . ), the
point-wise metric tensor is given by:

MLp(uh) = det(|HR(uh)|) −1
2p+3 |HR(uh)|, (6)

where HR(.) stands for an operator that from uh recovers some approximated
second derivatives of uh. Then |HR(uh)| is deduced from HR(uh) by taking
the absolute value of the eigen-values of HR(uh). Most common operators
are deduced from a double L2 projection or by the use of the Green formula.
A numerical review of HR operators is given in [42]. When applied to a
given smooth continuous function u, it has been proven [11, 29] that for any
unit-mesh H of Ωh with respect to MLp will verify the following bound:
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‖u − Πhu‖Lp(Ωh) ≤ C N− 2
3

(∫
Ω

det(|H(u)|) p
2p+3

) 2p+3
p

, (7)

where here H(u) is the true Hessian of u, Πhu the linear interpolate of u on
H and C a constant that only depends on the quality (computed in MLp) of
H. Note that (7) gives a practical way to control the level of error ε that is
desired. Estimating the right-hand-side of (7) with HR(uh) instead of H(u)
gives a first ε0 error level so that to get an ε level of error, it is sufficient to
scale (6):

MLp(uh, ε) =
(ε0

ε

)
det(|HR(uh)|) −1

2p+3 |HR(uh)|,

In the sequel, the interpolation error is controlled in L2 norm exclusively,
while the HR operator is based on the Green formula.

3.3 Geometric Estimate for Surfaces

Controlling the deviation to a surface has been studied in previous works. We
may cite [23] for isotropic remeshing and [16, 15] for anisotropic remeshing.
Apart from their efficiency, these methods were initially thought to work only
on surface meshes, i.e without keeping a valid volume mesh. This additional
requirement just implies another constraint that consists in verifying that
each modification engenders a valid mesh (with a positive volume element
check). Following these previous works, we introduce a metric-based error
estimate such that the length in these surface metric measures the distance to
the surface. Moreover, we assume that the initial mesh has an in-homogeneous
error level control to the surface deviation. This assumption is particularly
true in many engineering application where designers know a priori areas
of interest. For instance, in aerodynamics the wings are generally meshed
finer than the fuselage. The proposed error estimate is thought to preserve
this initial in-homogeneity in the error distribution during the adaptation
process.

We recall that the surface remeshing is done by considering only discrete
data in order to avoid requests to CAD (done in another phase). Prior to sur-
face remeshing, normals and tangents are assigned to each boundary point.
We denote by ni the normal of the vertex xi. As in [16], a quadratic surface
model is computed locally around a surface point xi. Starting from the topo-
logical neighbors of xi, the coordinates of each point are mapped onto the lo-
cal orthonormal Frenet frame (ui,vi,ni) centered in xi. Vectors (ui,vi) lie in
the orthogonal plane to ni. We denote by (uj , vj , σj) = (txj .ui,

txj .vi,
txj .ni)

the new coordinates of vertex xj . xi is set as the new origin so that
(ui, vi, σi) = (0, 0, 0). The surface model consists in computing by a least
squares approximation a quadratic surface:

σ(u, v) = au2 + bv2 + cuv, where (a, b, c) ∈ R3. (8)
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The least squares problem gives the solution minimizing

min
(a,b,c)

∑
j

|σj − σ(uj , vj)|2,

where j is the set of neighbors of xi. Note that 3 neighbors points are neces-
sary to recover the surface model. With our insertion strategy (see Section 4),
the degree of the surface point is 4. Even if this number seems sufficient, some
information are added in order to be more robust. The normals (that are not
recovered from discrete data except from discrete attached surface type) are
then added. To this end, mid-edge points are recovered from the following
quadratic formula:

x = (1 − t)2(1 + 2t)x1 + t(1 − t)2r1 + t2(3 − 2t)x2 − t2(1 − t)r2, with

ri = ‖e‖2
ni × (e× ni)

‖ni × (e × ni)‖2
and t ∈ [0, 1],

(9)

where e is an edge issued from xi and xj a neighbor of xi. Finally, if the
degree of xi is d the size of the linear system to solve becomes 2d. The linear
system involving the d neighbors and d mid-points is:

AX = B ⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2
1 v2

1 u1v1

...
...

...
u2

d v2
d udvd

u2
1
2

v2
1
2

u 1
2
v 1

2

...
...

...
u2

d
2

v2
d
2

u d
2
v d

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎝ a

b
c

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

...
σd

σ 1
2
...

σ d
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where (u i
2
, v i

2
, σ i

2
) are mid-points local coordinates recovered using (9). The

least square formulation consists in solving tAA = tAB. From this point, one
may applied the surface metric given in [16]. We propose here a simplified
version. We can first remark that the orthogonal distance from the plane
n⊥

i onto the surface is given by σ(u, v) by definition. The trace of σ(u, v)
on n⊥

i is a function that gives directly the distance to the surface. The 2D
surface metric M2D

S such that the length 
M2D
S

((u, v)) is constant equal to ε

is easy to find starting from the diagonalization of the quadratic function (8).
Geometrically, it consists in finding the maximal area metric included in the
level-set ε of the distance map. We assume that M2D

S admits the following
decomposition:

M2D
S = (ūS , v̄S)

(
λ1,S 0
0 λ2,S

)
t(ūS , v̄S), with (ūS , v̄S) ∈ R2×2.

If we want to achieve the same error as the initial mesh, we compute ε =
minj |σ(uj , vj)| among the neighbors of xi. The 2D metric achieving an ε
error becomes:
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M2D
S (ε) =

1
ε
M2D

S .

The final 3D surface metric in xi is:

MS(ε) = (uS ,vS ,ni)

0
BBBB@

λ1,S

ε
0

0
λ2,S

ε
0

0 0 h−2
max

1
CCCCA t(uS ,vS ,ni),

(
uS = ūS(1)ui + ūS(2)vi,

vS = v̄S(1)ui + v̄S(2)vi.

(10)

The parameter hmax is initially chosen very large (e.g. 1/10 of the domain
size). This normal size is corrected during various steps. A first anisotropic
gradation using (4)(a) is applied on surface edges only. The surface metric
is then intersected with any computation metrics as given by (6). These two
steps set automatically a proper element size in the normal direction.

3.4 Boundary Layers Metric

Boundary layers mesh generation has been devised to capture accurately the
speed profile around a body during a viscous simulation. The width of the
boundary layer depends on the local reynolds number [26]. So far, the gener-
ation of the boundary layer grids has been carried out by an extrusion of the
initial surface along the normals to the surface [25] or by local modification of
the mesh [32]. Note that using the normals as sole information requires several
enrichments to obtain a smooth layers transition on complex surfaces [27]. In
this paper, boundary layer mesh generation is based on a continuous field:
the distance to the body. A classical adaptive strategy is then devised to
recover by local modification the boundary layers. This distance to the body
allows automatically to deactivate the boundary layers mesh generation on
geometry details that are smaller than the boundary layer size. Using the
gradient of the distance map allows to approximate the normals to the initial
body surface, whatever the initial position in space. This strategy can be
used on an existing volume mesh that could be adapted. Note that typical
studies in areodynamics consists in running a fisrt computation without the
boudary layers mesh (Euler mesh). The viscous simulation is done in a second
step. Consequently, it may be of interest to be able to generate, for complex
geometries, a boundary layer while keeping intact the previous adaptation
issued from non viscous simulations.

We now introduce the required steps to compute the boundary layers met-
ric ensuing from a body:

- Compute the distance map Φ to the body,
- Recover the surface mesh metric with a mean size in the normal direction,
- Compute the boundary layers metric Mbl.

Step 1. is done using classical algorithms of level-set methods [26, 40]. This
step can be done quickly and has generally a complexity of O(N ln(N)) where
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N is the number of points in the current mesh. (Furthermore, note that from
a practical point of view, this function is evaluated only in the vicinity of
the body). From this scalar field, its linear gradient is recovered using a L2

projection. Note that we have ‖∇Φ(x)‖2 = 1, ∀x ∈ Ω. The gradient is used
to emulate normals to the body. For no extra cost, the body’s face for which
the minimum distance is reached is also stored for each point of the volume.

The surface metric recovery of step 2 takes advantage of the Log-Euclidean
framework. Starting from the ball of surface elements (K)P∈K of body point
P , the unique surface metric tensor MK (for which K is unit) is computed
by solving the following 3 × 3 linear system:

(S)

⎧⎪⎨⎪⎩

2
M2D

K
(e1) = 1


2
M2D

K
(e2) = 1


2
M2D

K
(e3) = 1 .

where (ei)i=1,3 are elements edges expressed in the local surface plane coor-
dinates. (S) has a unique solution as long as the aera of K is not null. 2D
metrics (M2D

K )P∈K metrics are transcribed into 3D metrics (MK)P∈K by
prescribing a mean size in the normal direction to the face. The logarithm of
each metric is computed so that a classical Euclidean mean weighted by the
elements’ area is done. Finally, the body point metric MP is mapped back
using the exponential operator:

MP = exp
(∑

P∈K |K| ln(MK)∑
P∈K |K|

)
.

Step 3 gives the final boundary layers metric. We describe it for a continuous
exponential law of the form h0 exp(αφ(.)), where h0 is the initial boundary
layer size and α the growing factor. Note that its application for any discrete
law is straightforward to implement. For a volume point xi, the boundary
layers metric depends on the body point Pi for which the minimum distance
is reached. The following operations conclude this step:

3.1 Compute the local Frenet frame (ui,vi,∇Φ(xi)) associated with ∇Φ(xi)
3.2 Set the size in the normal direction to hni = h0 exp(α Φ(xi)), the sizes in

the orthogonal plane to:

hui = (tui MPi ui)
−2

,

hvi = (tvi MPi vi)
−2

,

3.3 The final metric is given by:

Mbl(xi) = t(ui,vi,∇Φ(xi))

⎛⎝h−2
ui

h−2
vi

h−2
ni

⎞⎠ (ui,vi,∇Φ(xi)). (11)
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4 Quality-Driven Local Mesh Operators

This section describes the local operators used to adapt the mesh. For each
operator, numerical results using the metric estimates derived in Section 2
are shown.

4.1 Insertion and Collapse

To generate a unit-mesh in a given metric field (Mi)i=1...N , two operations
are recursively used: edge collapse and point insertion on edge.

The starting point for the insertion of a new point on an edge e is the
shell of e composed of all elements sharing this edge. Each element of the
shell is then divided into two new elements. The new point is accepted if
each new tetrahedron has a positive volume. When a point is inserted on
an boundary edge, either a linear approximation of the surface is used or a
quadratic recovery using the edge point normals (9).

The edge collapse starts from the ball of the vertex to be deleted. Again,
for the deletion of points inside the volume, the only possible rejection is
the creation of a negative volume element. A special care is also required to
avoid the creation of an element that already exists, see Figure 2 (left and
middle). The rejections are more complicated in the case of a surface point.
We first avoid each collapse susceptible to modify the topology of the object.
This is simply done by assigning an order on each surface point types: corner,
ridge (line), inside surface. The collapse can also be rejected if the normal
deviation between old and new normals becomes too large. Currently, if n
denotes the normals to an old face, we allow the collapse if each new normal
ni verifies tnni > cos(π/4). Note that the control to the surface deviation is
given by the surface metric and so it does not need to be handled directly in
the collapse operation.

With these operations, the core of the adaptive algorithm consists in scan-
ning each edge of the current mesh and, depending on its length, creating a
new point on the edge or collapsing the edge. An edge is declared too small
or too large according to the bounds given in (2). Without any more consid-
erations, such adaptive mesh generator is known not to be efficient and to
require a lot of CPU consuming optimizations as point smoothing and edge
swapping. This inefficiency is simply due to the locality of these operations.
Comparing to an anisotropic Delaunay kernel [13], when an edge needs to be
refined, the metric lengths along the orthogonal directions are controlled by
the creation of the cavity. Consequently, in one shot, the area of refinement
must be large. With the present approach, the size is controlled along one
direction only (along the edge being scanned). Consequently, one can reach
intractable configurations where the same initial edge is refined successively
to get the desired size whereas the sizes in the other directions get worse. A
typical configuration is depicted in Figure 2 (right).

A simple way to overcome this major drawback is to use the quality func-
tion (3) together with the unit-length check. This supplementary check can
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A
B

A

B

Fig. 2. Left and middle, volume and surface collapse of edge AB leading to the
creation of an element that already exists . Right, Example where an edge is recur-
sively refined to get a unit-length without checking the length requirement in the
edge’s orthogonal direction; the configuration may lead to edges acting as a barrier
for future refinement.

be done at no cost since a lot of information can be re-used: the volume is
already computed, as well as the length of the edges. By simply computing
the quality function, we give to these operators the missing information on
the orthogonal directions of the current scanned edge. For an optimal per-
formance, two parameters are added in the rejection cases: a relative quality
tolerance qr ≥ 1 and a global quality tolerance qa. Indeed, it seems particu-
larly interesting not to try to implement a full descent direction by imposing
the quality to increase on each operation. We prefer to allow the quality to
decrease in order to get out of possible local minima. Consequently, a new
configuration of elements is accepted if:

qr Qini
M ≤ Qnew

M and Qnew
M < qa,

where Qini
M is the worse element quality of the initial configuration and Qnew

M
is the worse quality of the new configuration. This approach is similar to the
simulated annealing global optimization technique [21]. Note that the current
version does not fully implement the classical metropolis algorithm where the
rejection is based on a random probability. To ensure the convergence of the
algorithm, the relative tolerance qr is decreased down to 1 after each pass of
insertions and collapses. At the end of the process, the absolute tolerance qa

is set up to the current worse quality among all elements. We now give some
illustrative examples using the quality-driven insertion and collapse.

Figures 3, 4, 5 and 6 give anisotropic meshes obtained by applying only
these two operators during the refinement process. The first example is a
supersonic flow inside an inlet. It only involves the control of the interpola-
tion error (6) on the Mach variable. The surface adapted mesh and the Mach
number iso-values are depicted in Figure 3. The final mesh is composed of
70 000 tetrahedra. 5 iterations were performed to reach this accuracy. De-
spite the small number of elements, most of the features of the flow are well
captured: strong amplitudes shocks are refined so as contact discontinuities
emitted from the inlet spike. The second example is a supersonic flow inside
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Fig. 3. Supersonic flow inside a scramjet. Only quality-driven insertion and collapse
were used. Top, surface anisotropic mesh and bottom, mach iso-values. Both strong
amplitude shocks and small amplitude shear layers are captured.

Fig. 4. Supersonic flow simulation inside a curved wedge. Only quality-driven
insertion and collapse were used. From left to right, adapted surface mesh, density
solution field and closer view of the surface mesh around the shock.

a curved wedge geometry. It involves the surface metric-based estimate (10)
along with the control of the interpolation error (6) of the density variable.
The results are depicted in Figure 4. The final mesh is composed of 8 000
tetrahedra with a resolution in the shock of 0.001m, see Figure 4 (right).
This example illustrates how metric-based mesh adaptation gives an optimal
distribution of the degree of freedom even though a very small number of
elements is used.
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Fig. 5. Supersonic flow around a model missile. Only quality-driven insertion and
collapse with anisotropic mesh gradation were used. Top, from left to right, CAD of
the missile composed of 8 winglets having a quasi-null thicknes and adapted surface
mesh. Bottom, cut in the volume mesh behind the missile (left) and cut along the
symmetry plane in the volume mesh (right).

In the following examples, an anisotropic volume gradation (4)(a) is per-
formed on the volume metric field prior to the refinement. We now consider
the accurate prediction of the flow field around the supersonic missile model
where the CAD is depicted in Figure 5 (top left). The surface and the vol-
ume mesh are adapted to the Mach number in L2 norm. The deviation to the
surface is controlled by using surface metric (10) with ε = 0.001. A specific
anisotropic re-meshing of the leading edges is also added. The cruise speed
of the missile is Mach 2. The final mesh is composed of almost 600 000 tetra-
hedra. Surface mesh adaptation and volume mesh adaptation are perfectly
combined. In particular, the complexity of the flow on the missile geometry
appears clearly in Figure 5 (top right and bottom). Similarly, the complexity
of the flow field in the volume is also well captured, see Figure 5 (bottom).
Note that the supersonic missile model offers a large panel of challenges both
for mesh adaptation and flow computation. Indeed, the very small thickness
of the wings is one of the typical difficulties when attempting to mesh it in an
anisotropic way using global methods. The last example is a transsonic flow
around Onera M6 wing. The CAD is depicted in Figure 6 (left). The wing
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Fig. 6. Transsonic flow around Onera M6 wing. Only quality-driven insertion and
collapse with anisotropic metric gradation were used. From left to right, CAD of the
geometry, adapted surface mesh with a cut along the symmetry plane, and volume
adapted mesh in the wake of the wing.

is flying at Mach 0.8 with an angle of attack of 1.5 degrees. At this speed
regime, a strong shock appears on the wing profile as depicted in Figure 6
(middle). Despite the strong amplitude of the shock, the wake is also well
captured when using multi-scale metric (6), see Figure 6 (right). The final
adapted mesh is composed of 170 000 vertices and 950 000 tetrahedra.

4.2 Using the Boundary Layers Metric

We illustrate in this section the practical use of the boundary layers metric
derived in Section 3.4.

Using (11) directly to generate a unit mesh is usually intractable due to
the small required sizes (around 10−6m). As pointed out by the previous
examples, a classical iterative mesh adaptation procedure can reach quite
easily a precision of 10−3m near a shock after several adaptation steps. An
example of a unit-mesh with respect to (11) for a minimal size of 0.005m is
depicted in Figure 7 (left). In comparison with structured boundary layers
grids, this result does not seem optimal in term of number of nodes and
edges alignment. A first improvement to this direct approach is to build the
boundary layers mesh layer by layer. The gradient of the distance map to the
body is used as a relevant information for points location and edges alignment.
In this respect, instead of generating a unit mesh in (11) directly, the quality
computed in (11) is used to recover locally quasi-structured elements using
swaps of edge and point smoothing, see Figure 11 (middle). More precisely,
the algorithm for the current layer starts from the upper surface mesh of the
previous layer and is composed of the following steps:

• Insert point at the current layer size along the closest edge to the gradient
of the distance map Φ using the insertion of Section 4;
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Fig. 7. From left to right, boundary layers mesh generation with a unit mesh ap-
proach using (11), structured layer generated and recovered using quality computed
in (11), and structured layer with the uniform mesh from which it was generated.

• Align edges selected for refinement with the gradient of the distance map.
This step is equivalent to the classical point smoothing [17];

• Optimize the mesh by swapping edges while controlling the quality com-
puted using (11) in order to recover a structured layer.

A first layer created from a uniform mesh is depicted in Figure 7 (mid-
dle). The regular structure of the layer is fully recovered. The interaction
between the structured layer and the uniform mesh is depicted in Figure 7
(right). This algorithm allows the creation of a boundary layers mesh from
an adapted mesh while preserving the anisotropy. An example is depicted
in Figure 8 where 10 boundary layers are added to an initial anisotropic
mesh. The minimal size is 10−5m. Almost 25 000 tetrahedra are added to the

Fig. 8. Anisotropic mesh where 10 boundary layers were generated with a minimal
size of 10−5m (left), footprint of the boundary layers mesh near the shock (right).
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initial mesh composed of 55 000 tetrahedra and 10 800 vertices. Moreover, this
recovery process is faster than the traditional unit-mesh generation process.

5 Conclusions and Future Work

Local anisotropic remeshing has been introduced in this preliminary study
as a reliable, alternative solution to global remeshing. To this end, the adap-
tation of the surface and the volume are done simultaneously in order to
ensure that a valid mesh is available for computation after each remeshing
phase. All mesh modification operators are thought as being able to handle
a complete volume mesh as input. The technique used is based on edge in-
sertion and collapse. Apart from their inherent simple formulation, they turn
out to be efficient once they are monitored by a quality function. In terms of
complexity, this approach seems much more simple that the generalization of
the Delaunay kernel for anisotropy. It appears to provide a good compromise
between simplicity and efficiency. For generality, the mesh generator uses
the classical metric-based framework. It allows to take as an input various
metric fields issued from differents tasks. Several metric fields for controlling
the adaptation of the surface mesh or creating boundary layers have been
derived. Currently work is directed at:

• The full interaction between the boundary layers metric and the interpo-
lation error metric;

• Improving the robustness of surface remeshing for complex geometries,
• Improvements in boundary layers mesh generation, ie, taking into ac-

count the curvature of the distance map in order to simulate multi-normals
behavior;

• Better vector-based edge alignment in order to reduce the number of nodes
in the boundary layers, thereby tending to the number of nodes given by
a truly structured grid;

• The application of the boundary layers metric to the case of shocks or
any physical features of the flow.

More generally, this approach is currently tested on unsteady-problems and
on RANS simulations with embedded and immersed bodies.
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1 Introduction

Discretization methods, such as the finite element method, are commonly
used in the solution of partial differential equations (PDEs). The accuracy
of the computed solution to the PDE depends on the degree of the approx-
imation scheme, the number of elements in the mesh [1], and the quality of
the mesh [2, 3]. More specifically, it is known that as the element dihedral
angles become too large, the discretization error in the finite element solution
increases [4]. In addition, the stability and convergence of the finite element
method is affected by poor quality elements. It is known that as the angles
become too small, the condition number of the element matrix increases [5].

Recent research has shown the importance of performing mesh quality im-
provement before solving PDEs in order to: (1) improve the condition num-
ber of the linear systems being solved [6], (2) reduce the time to solution [7],
and (3) increase the solution accuracy. Therefore, mesh quality improvement
methods are often used as a post-processing step in automatic mesh genera-
tion. In this paper, we focus on mesh smoothing methods which relocate mesh
vertices, while preserving mesh topology, in order to improve mesh quality.

Despite the large number of papers on mesh smoothing methods (e.g.,
[8, 9, 10, 11, 12, 13, 14]), little is known about the relative merits of using
one solver over another in order to smooth a particular unstructured, finite
element mesh. For example, it is not known in advance which solver will
converge to an optimal mesh faster or which solver will yield a mesh with
better quality in a given amount of time. It is also not known which solver
will most aptly handle mesh perturbations or graded meshes with elements of
heterogeneous volumes. The answers may likely depend on the context. For
� This work was funded in part by NSF grant CNS 0720749, a Grace Woodward

grant from The Pennsylvania State University, and an Institute for CyberScience
grant from The Pennsylvania State University.
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example, one solver may find an approximate solution faster than the others,
whereas another solver may improve the quality of meshes with heterogeneous
elements more quickly than its competitors.

To answer the above questions, we use Mesquite [15], a mesh quality im-
provement toolkit, to perform a numerical study comparing the performance
of several local mesh quality improvement methods to improve the global ob-
jective function representing the overall mesh quality as measured with var-
ious shape quality metrics. We investigate the performance of the following
gradient-based methods: steepest descent [16] and Fletcher-Reeves conjugate
gradient [16], and the following Hessian-based methods: quasi-Newton [16],
trust-region [16], and feasible Newton [17]. Mesh quality metrics used in this
study include the aspect ratio [18], inverse mean ratio [19, 20], and vertex con-
dition number metrics [21]. The optimization solvers are compared on the basis
of efficiency and ability to smooth several realistic unstructured tetrahedral fi-
nite element meshes to both accurate and inaccurate levels of mesh quality. We
used Mesquite in its native state with the default parameters. Only Mesquite
was employed for this study so that differences in solver implementations, data
structures, and other factors would not influence the results.

In this paper, we report the results of an initial exploration of the factors
stated above to determine the circumstances when the various solvers may
be preferred over the others. In an effort to make the number of experiments
manageable, we limit the number of free parameters. Hence, we consider a
fixed mesh type and objective function. In particular, we use unstructured
tetrahedral meshes and an objective function which sums the squared quali-
ties of individual tetrahedral elements. The free parameters we investigate are
the problem size, initial mesh configuration, heterogeneity in element volume,
quality metric, and desired degree of accuracy in the improved mesh.

The main results of this study are as follows: (1) the behavior of the opti-
mization solvers is influenced by the degree of accuracy desired in the solution
and the size of the mesh; (2) most of the time, the gradient-based solvers ex-
hibited superior performance compared to that of the Hessian-based solvers;
(3) the rank-ordering of the optimization solvers depends on the amount
of random perturbation applied; (4) the rank-ordering of the optimization
solvers is the same for the affine perturbation meshes; (5) the rank-ordering
of the majority of the solvers is the same for graded meshes; however, the rank
of conjugate gradient is a function of time; (6) graded meshes are sensitive
to changes in the mesh quality metric.

2 Problem Statement

2.1 Element and Mesh Quality

Let V and E denote the vertices and elements, respectively, of an unstruc-
tured mesh, and let |V | and |E| denote the numbers of vertices and elements,
respectively. Define VB and VI to be the set of boundary and interior mesh
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vertices. Let xv ∈ Rn denote the coordinates for vertex v ∈ V . For the pur-
poses of this paper, n = 3. Denote the collection of all vertex coordinates by
x ∈ Rn×|V |. Let e be an element in E. Finally, let xe ∈ Rn×|e| the matrix of
vertex coordinates for e.

We associate with the mesh a continuous function q : Rn×|e| → R to
measure the mesh quality as measured by one or more geometric properties
of elements as a function of their vertex positions. In particular, let q(xe)
measure the quality of element e. We assume a smaller value of q(xe) indi-
cates a better quality element. A specific choice of q is an element quality
metric. There are various metrics to measure shape, size, and orientation of
elements [22].

The overall quality of the mesh is a function of the individual element
qualities. The mesh quality depends on both the choice of the element quality
metric q and the function used to combine them.

2.2 Aspect Ratio Quality Metric

An important parameter in this study is the choice of mesh quality metric. In
general, we expect that the results could vary significantly depending on the
choice of mesh quality metric. Thus, we consider three mesh quality metrics
in this study, starting with the aspect ratio.

Various formulas have been used to compute the aspect ratio. The aspect
ratio definition we employ is the one implemented in Mesquite. In particular,
it is the average edge length divided by the normalized volume. Thus for
tetrahedra, the aspect ratio is defined as follows:(

l21 + l22 + · · · + l26
6

)
/

(
vol × 12√

2

)
,

where li, i = 1, 2, . . . , 6 represent the six edge lengths, and vol represents its
volume.

2.3 Inverse Mean Ratio Quality Metric

In order to derive the inverse mean ratio mesh quality metric, we let a, b, c,
and d denote the four vertices of a tetrahedron labeled according to the right-
hand rule. Next, define the matrix A by fixing the vertex a and denoting by
e1, e2, and e3 the three edge vectors emanating from a towards the remaining
three vertices. Then, A = [e1; e2; e3] = [b − a; c − a; d − a]. Next, define
W to be the incidence matrix for the ideal element which is an equilateral
tetrahedron in the isotropic case. In this case,

W =

⎛⎜⎝ 1 1
2

1
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0
√

3
2

√
3
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Next, let T = AW−1 transform the ideal element to the physical element.
Finally, the inverse mean ratio of a tetrahedral element is as follows:

‖T ‖2
F

3|det (T ) | 23 .

2.4 Vertex Condition Number Quality Metric

In order to specify the vertex condition number quality metric, we first define
some notation. Let x be any vertex of an element. Let xk denote the kth

neighboring vertex, for k = 1, 2, . . . , n. Define k edge vectors ek = xk − x.
Then the Jacobian of the element is given by the matrix A = [e1 e2 · · · en] .
Using A, we can define its vertex condition number as follows:

‖A‖F ‖A−1‖F ,

where ‖ · ‖F denotes the Frobenius matrix norm.
All three mesh quality metrics range from 1 (for an equilateral tetrahedron)

to ∞ (for a degenerate element). Invalid elements can be detected by the
inverse mean ratio mesh quality metric when a complex value results.

2.5 Quality Improvement Problem

To improve the overall quality of the mesh, we assemble the local element
qualities as follows: Q =

∑
e q(xe)2, where Q denotes the overall mesh quality,

and q(xe) is the quality of element e. We compute an x∗ ∈ Rn×|V | such that
x∗ is a locally optimal solution to

min
x

Q(x) (1)

subject to the constraint that xvB = xvB , where xVB are the initial bound-
ary vertex coordinates. In addition, we require that the initial mesh and
subsequent meshes to be noninverted. This translates to the constraint
det(A(i)) > 0 for every element. In order to satisfy the two constraints,
Mesquite fixes the boundary vertices and explicity checks for mesh inversion
at each iteration.

3 Improvement Algorithms

In this paper, we consider the performance of five numerical optimization
methods, namely, the steepest descent, conjugate gradient, quasi-Newton,
trust-region, and feasible Newton methods, as implemented in Mesquite. The
steepest descent and conjugate gradient solvers are gradient-based, whereas
the remaining three are Hessian-based, i.e., they employ both the gradient
and Hessian in the step computation. We describe each method below.



A Comparison of Gradient- and Hessian-Based Optimization Methods 635

3.1 Steepest Descent Method

The steepest descent method [16] is a line search technique which takes a
step along the direction pk = −∇f(xk) at each iteration. In Mesquite the
steplength, αk, is chosen to satisfy the Armijo condition [23], i.e.,

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)T pk

for some constant c1 ∈ (0, 1), which ensures that the step yields sufficient
decrease in the objective function.

3.2 Conjugate Gradient Method

The conjugate gradient method [16] is a line search technique which takes a
step in a direction which is a linear combination of the negative gradient at
the current iteration and the previous direction, i.e.,.

pk = −∇f(xk) + βkpk−1,

where p0 = −∇f(x0). Conjugate gradient methods vary in their computa-
tion of βk. The Fletcher-Reeves conjugate gradient method implemented in
Mesquite computes

βFR
k =

∇f(xk)T∇f(xk)
∇f(xk−1)T∇f(xk−1)

.

Care is taken in the line search employed by Mesquite to compute a steplength
yielding both a feasible step (i.e., one which does not result in a tangled
mesh) and an approximate minimum of the objective function along the line
of interest.

3.3 Quasi-Newton Method

Quasi-Newton methods [16] are line search (or trust-region) algorithms which
replace the exact Hessian in Newton’s method with an approximate Hessian
in the computation of the Newton step. Thus, quasi-Newton methods solve
Bkpk = −∇f(xk), for some Bk ≈ ∇2f(xk) at each iteration in an attempt to
find a stationary point, i.e., a point where ∇f(x) = 0. The quasi-Newton im-
plementation in Mesquite [15] is a line search that approximates the Hessian
using the gradient and true values of the diagonal blocks of the Hessian.

3.4 Trust-Region Method

Trust-region methods [16] are generalizations of line search algorithms in that
they allow the optimization algorithm to take steps in any direction provided
that the steps are no longer than a maximum steplength. Steps are computed
by minimizing a quadratic model of the function over the trust region. The
trust region is expanded or contracted at each iteration depending upon how
reflective the model is of the objective function at the given iteration.
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3.5 Feasible Newton Method

The feasible Newton method [17] is a specialized method for mesh quality
improvement. In particular, it uses an inexact Newton method [24, 16] with an
Armijo line search [23] to determine the direction in which to move the vertex
coordinates. At each iteration, the algorithm solves the Newton equations via
a conjugate gradient method with a block Jacobi preconditioner [24]. The
solver also obtains good locality of reference.

4 Numerical Experiments

In this section, we report results from four numerical experiments designed
to determine when each of the five solvers are preferred according to their
time to convergence for local mesh smoothing. All solvers are implemented in
Mesquite 2.0, the Mesh Quality Improvement Toolkit [15], and were run with
their default parameter values. We solve the optimization problem (1) on a
series of tetrahedral meshes generated with the CUBIT [25] and Tetgen [26]
mesh generation packages. We consider the following geometries: distduct,
foam, gear, hook [27] and cube. Sample meshes are shown in Figure 1. In
the first three experiments, we study the effects of three different problem
parameters on the time taken to reach x∗, a locally optimal solution. The
problem parameters of interest are: problem size, initial mesh configuration,
and grading of mesh elements. For each of the three parameters studied,
we create a set of test meshes in which we isolate the parameter of interest
and allow it to vary; these experiments were inspired by [28, 29]. Particular
attention was paid to ensure that the remaining parameters were held as
constant as possible. Due to space limitations, we have omitted most of the
tables of initial mesh quality statistics which demonstrate this. In the fourth
experiment, we investigate the effect that mesh quality metric has on solver
performance.

Because the objective functions used for our experiments are non-convex,
the optimization techniques may converge to different local minima. To ensure
that this did not effect our study, we verified for each experiment whether
or not the solvers converge to the same optimal mesh by comparing vertex
coordinates of the optimal meshes.

In the following subsections, we describe the problem characteristics of
the test meshes in terms of the numbers of vertices and elements, initial
mesh quality (according to the mesh quality metric of interest), and param-
eter values of interest (such as magnitude of perturbation). We then specify
performance results for the five optimization solvers. In all cases, the solu-
tion is considered optimal when it has converged to six significant digits.
The machine employed for this study is equipped with an Intel P4 processor
(2.67 GHz). The 32-bit machine has 1GB of RAM, a 512KB L2 cache, and
runs Linux.
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(a) Gear mesh (b) Foam mesh (c) Distduct mesh

(d) Hook mesh (e) Cube mesh

Fig. 1. Sample meshes on the gear, foam, distduct, hook, and cube geometries.
Geometries (a)-(d) were provided to us by Dr. Patrick Knupp of Sandia National
Laboratories [27].

4.1 Increasing Problem Size

To test the effect that increasing the problem size has on optimization solver
performance, we used CUBIT to generate a series of tetrahedral meshes with
an increasing number of vertices while maintaining uniform mesh quality
and element size. A series of meshes were generated for the distduct, foam,
gear, and hook geometries shown in Figures 1(a) through 1(d); for each series
of meshes, the number of elements is increased from approximately 5000 to
500,000 elements.

In the creation of the test meshes, care was taken to ensure that, for each
mesh geometry, we achieve our goal of maintaining roughly uniform element
size and mesh quality distributions. Table 1 shows the initial and final aspect
ratio quality before and after conjugate gradient method was applied on three
of the meshes. Such changes in mesh quality were typical of the results seen
in this experiment.

For each mesh geometry, when the aspect ratio mesh quality metric was
employed, the time to convergence required increased linearly with an in-
crease in problem size. Figure 2 illustrates this trend for the use of the var-
ious solvers on the distduct geometry. Solver behavior was identical on the
remaining geometries; in particular, the solvers also converged to the same
optimal meshes. Thus, additional figures have been omitted. This is expected
as the number of iterations to convergence is more or less a constant, and
the time per iteration increases linearly with the number of elements used for
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Table 1. Initial and final mesh quality after smoothing the distduct mesh with the
conjugate gradient method using the aspect ratio mesh quality metric

Distduct Mesh Mesh Quality (Aspect Ratio)
# Vertices # Elements Phase min avg rms max std dev

1,262 5,150
Initial 1.00557 1.33342 1.35118 2.71287 0.218363
Final 1.00077 1.27587 1.28932 2.83607 0.185684

19,602 99,895
Initial 1.0007 1.28014 1.29531 10.3188 0.197718
Final 1.00065 1.21742 1.22755 4.8624 0.157424

92,316 498,151
Initial 1.00009 1.27055 1.28513 18.5592 0.193054
Final 1.00004 1.18949 1.1977 18.5592 0.139968

local mesh smoothing. There are instances where a deviation from linearity
is seen in larger meshes. These are likely due to limitations on the size of the
mesh which can fit in the cache; small meshes may fit entirely in the cache,
whereas larger meshes may only partially fit in the cache.

We now examine the behavior of the various solvers on the distduct meshes
with the use of the aspect ratio quality metric. For engineering applications,
a highly accurate solution is not often needed or even desired. Thus, we con-
sider partially-converged as well as fully-converged solutions. In each case, we
consider smoothing with 85%, 90%, and 100%-converged solutions; the results
are shown in Figure 2. The legend for the remaining plots in the paper is as
follows: ‘circle’ (steepest descent), ‘triangle’ (conjugate gradient), ‘diamond’
(quasi-Newton), ‘square’ (trust-region), and ‘star’ (feasible Newton).

In all the cases, i.e., for the 85%−, 90%-, and 100%−converged solutions,
the five optimization solvers converged towards the same optimal mesh. For
the 85%−converged solutions, feasible Newton is the fastest method to reach
an optimal solution (see Figure 2(a)); few iterations were required since the
initial CUBIT-generated meshes were of fairly good quality. Feasible Newton
was possibly the quickest method since it takes fewer iterations than the
other methods; however, each iteration takes a greater amount of time than
the other solvers. The ranking of all solvers in order of fastest to slowest on
the larger meshes is: feasible Newton < steepest descent < conjugate gradient
< trust-region < quasi-Newton. For the smaller meshes, the rank-ordering is:
conjugate gradient < feasible Newton < steepest descent < trust-region <
quasi-Newton. In general, the gradient-based solvers (i.e, steepest descent and
conjugate gradient) performed better than the Hessian-based solvers (trust-
region and quasi-Newton). However, feasible Newton, which is a Hessian-
based solver, performed very competitively. This is likely due to the fact that
local mesh smoothing was performed with a highly-tuned solver. In addition,
the rank ordering of the solvers depends on the mesh size as noted above.

In the majority of the 90%-converged solution cases (see Figure 2(b)), the
conjugate gradient algorithm reached convergence faster than the other meth-
ods. This was followed by the steepest descent, feasible Newton, trust-region,
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(a) 85%-converged solution
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(b) 90%-converged solution
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(c) 100%-converged solution

Fig. 2. Mesh smoothing to various convergence levels: (a) 85%-converged solu-
tion; (b) 90%-converged solution; (c) 100%-converged solution. Results are for the
distduct meshes with the aspect ratio quality metric.

and quasi-Newton methods, respectively. This ordering is different than that
which was obtained for the 85% case. Because local mesh smoothing was
performed, only one vertex in the mesh is moved at a time. The steepest de-
scent and conjugate gradient methods use only the gradient of the objective
function to move a vertex to its optimal location. The other methods also use
the Hessian of the objective function to move the vertex. The calculation of
the Hessian adds computational expense, making the Hessian-based methods
comparatively slower. However, Hessians may effect local mesh smoothing re-
sults less than global mesh smoothing results where the Hessian matrices are
much larger. The conjugate gradient method is superior to steepest descent
since it uses gradient history to determine the optimal vertex position.

In the majority of the 100%-converged solution case (see Figure 2(c)), the
conjugate gradient algorithm was the fastest to reach convegence for smaller
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meshes; however, the steepest descent method proved to be faster for larger
meshes. This is probably due to the increase in memory which is required
for larger meshes. Eventually the increased requirements on the performance
of the cache may slow down the conjugate gradient algorithm relative to the
steepest descent algorithm since it must store and access an additional vector.

In conclusion, the behavior of the optimization solvers is influenced by the
degree of accuracy desired in the solution and the size of the mesh. Most of the
time, the gradient-based optimization solvers exhibited superior performance
to that of the Hessian-based solvers.

4.2 Initial Mesh Configuration

In order to investigate the effect that the initial mesh configuration (as mea-
sured by distance from optimal mesh) had on the performance of the five
solvers, a series of perturbed meshes, based on the 500,000 element distduct,
foam, gear, and hook meshes from the previous experiment, were designed.
In particular, the meshes were smoothed initially using the aspect ratio mesh
quality metric. Then, random or systematic perturbations were applied to
the interior vertices of the optimal mesh. For all experiments, the perturba-
tions were applied to all interior vertices and to a randomly chosen subsets of
vertices of size 5%, 10%, 25%, and 100% of the interior vertices. The formulas
for the perturbations are as follows:

Random: xv = xv +αvr, where r is a vector of random numbers generated
using the rand function, and αv is a multiplicative factor controlling the
amount of perturbation. For our experiments, we chose a random value for
αv; the resulting meshes were checked to verify that they were of poor quality.

Translational: xv = xv + αs, where s is a direction vector giving the coor-
dinates to be shifted, and α is a multiplicative factor controlling the degree
of perturbation. In this case, we consider the shift with s = [1 0 0]T and
α values ranging from 0.016 to 1.52 were used to maximize the amount of
perturbation a particular mesh could withstand before the elements became
inverted. Thus, the specific value of α chosen for a mesh depended upon the
size of the elements.

Random Perturbations

The results obtained here differ somewhat from the results obtained from
the scalability experiment above. They are similar in that the gradient-based
methods performed better than the Hessian-based methods. This can be at-
tributed to the greater computational expense of computing the Hessian ma-
trices for a smaller payoff in terms of a decrease in the objective function.
The main difference here is that, in almost all cases, the steepest descent
algorithm performs better than the conjugate gradient algorithm.

For this experiment, the meshes to be smoothed were perturbed from the
fully optimized CUBIT-generated meshes. Thus, the initial meshes are of
poorer quality. Starting with poor quality meshes, i.e., far away from an
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optimal mesh, had a very significant impact on the performance of the solvers.
There are cases when the conjugate gradient method does better than the
steepest descent method when the quality of the input mesh is reasonably
good. In this case, all solvers converged to the same optimal mesh.

However, when we start with a poor quality initial mesh, a coarse-scale
improvement in the the mesh is needed. Once the mesh has been sufficiently
smoothed, fine-scale improvements can be obtained through the use of supe-
rior solvers. In most cases, because the perturbation was large, coarse-scale
smoothing was needed. As a result, the performance of steepest descent was
the best (also due to the lower complexity of the algorithm). When the per-
turbations were small, fine-scale smoothing requirements imply that superior
methods will converge faster. This was indeed seen when the perturbations
were small. The conjugate gradient method’s performance was better than
that of steepest descent in such cases. However, the Hessian-based methods
were slower because of their inherent computational complexity. Figure 3(a)
shows typical objective function versus time plots for our experiments.

The behavior of the trust region method was distinctly different than that
of the other algorithms. For small perturbations from the optimal mesh, the
behavior of the trust-region method almost coincided with that of the other
methods in the quality versus time plots. Figure 3(b) below illustrates an
example of such behavior.

However, when the perturbations were large, the trust-region method was
much slower than the other methods in terms of time to convergence. This
is due to the constraint of the spherical trust-region bounding the maximum
acceptable steplength at each iteration. This conservative approach slows the
time to convergence of the trust-region method. It was also observed that,
for large perturbations, the steepest descent method does not converge to
the same optimal mesh as the other methods. In particular, it converges to
an optimal mesh with a higher objective function value. The plot shown in
Figure 3(c) is a good example of the dismal performance of the trust-region
and steepest descent methods in the large perturbation case.

In conclusion, the rank-ordering of the optimization solvers depends upon
the amount of random perturbations applied to the initial meshes in the
context of mesh smoothing using the aspect ratio quality metric. In particular,
all five methods performed competitively for the small perturbation case;
however, the steepest descent and conjugate gradient methods performed the
best. In the case of medium-sized perturbations, the steepest descent method
performed the best, and the trust-region method performed very slowly. The
other three methods exhibited average performance. Finally, for the case of
large perturbations, the trust-region method is very slow to converge, and
the steepest descent method may converge to a mesh of poorer quality.

Affine Perturbations

In order to determine the effect that affine perturbations had on the per-
formance of the optimization solvers, the affine (translation) perturbation
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(a) 10% interior vertices perturbed
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(b) 10% interior vertices perturbed
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(c) 5% interior vertices perturbed

Fig. 3. Typical results from the random perturbation experiment. Results were
obtained by smoothing the 500,000 element meshes using the aspect ratio quality
metric. (a) The result is for the gear mesh with 10% of its vertices perturbed;
because the perturbation was small, the behavior of the trust-region method was
almost coincident with that of the other solvers. (b) The result is for the distduct
mesh with 10% of its vertices perturbed; here the trust-region method is competitive
when the initial mesh is of reasonable quality due to the medium-size perturbation.
(c) The result is for the distduct mesh with 5% of its vertices perturbed. Because the
perturbations were large, the steepest descent and trust-region methods performed
very poorly.

shown above was applied to all interior mesh vertices once the appropriate
initial 500,000 element distduct, foam, gear, and hook meshes were smoothed
according to the aspect ratio mesh quality metric.

The qualities of the interior elements of the perturbed meshes were
still fairly good since the transformation applied was affine; however the
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(a) Mesh smoothing of affinely per-
turbed distduct mesh
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(b) Mesh smoothing of affinely
perturbed gear mesh

Fig. 4. Typical results for the affine perturbation experiment using the aspect ratio
for local mesh smoothing. The results are for smoothing the distduct and hook
meshes with 500,000 elements after all interior vertices were affinely perturbed.

qualities of the boundary elements was much worse. It is expected that the
convergence plots for all of the solvers will start with rapid decrease in the
objective function and will end with a small decrease in the objective func-
tion. This is because the initial meshes were created by applying as large an
affine perturbation as possible before mesh inversion occurred, thus generat-
ing meshes rather far away from the optimal ones. This behavior is typical
and is observed in the plots shown in Figure 4. The time taken per non-
linear iteration varies with the computational complexity of the algorithm.
However, the objective function values (for the various solvers) remain rather
similar over the first few iterations until, eventually, more vertex movement
occurs, and the objective function values become less predictable. However,
all solvers did converge to the same optimal mesh.

The steepest descent method, being the least computationally expensive
method, spends less time per iteration and converges to an optimal mesh
fairly quickly. The ranking of the optimization solvers for the affine pertur-
bation meshes is as follows: steepest descent < conjugate gradient < feasible
Newton < trust-region < quasi-Newton. This rank-ordering demonstrates
that methods for which every iteration is faster converge before methods for
which each iteration is slower.

In conclusion, the optimization solvers exhibited a distinct rank-ordering
for the affine perturbation meshes in the context of local mesh smoothing
using the aspect ratio quality metric. In particular, the rank-ordering was as
follows: steepest descent < conjugate gradient < feasible Newton < trust-
region < quasi-Newton.
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4.3 Graded Meshes

Our second test set was generated using Tetgen in order to test the effect
that grading of mesh elements has on the performance of the five optimiza-
tion solvers, as graded meshes have a larger distribution of element mesh
qualities. For this experiment, three sets of structured tetrahedral meshes
were generated which contain the same numbers of vertices and elements but
whose elements have different volumes. The meshes were constructed on a
cube domain having a side length of 20 units. In the first set of meshes, the
vertices were evenly distributed in two of the three axes, but, for the other
axis, half of the vertices were placed in first 10%, 20%, 30%, or 40% of the
volume. Two additional sets of test meshes were created with the density of
vertices varying in two and three directions instead of variation in only one
direction. After the point clouds were created, Tetgen was used to create a
volume mesh of the cube domain. The resulting Delaunay meshes, which were
created without using any quality control features, was used for the graded
mesh experiment. See Figure 1(e) for an example of a mesh created with half
of its vertices occupying 30% of the space in all three axes and distributed
uniformly throughout the rest of the cube volume.

This mesh generation technique results in a structured mesh with het-
erogeneous elements in terms of volume. In particular, approximately one-
fourth, one-half, and one-fourth of the mesh elements can be considered small,
medium, and large, respectively. All of the meshes generated contain 8000
vertices and 41,154 tetrahedra.

The results obtained from this experiment are shown in Figure 5. The mesh
smoothing results for the graded meshes are similar to those observed in the
affine perturbation case. The main difference between the two experiments is
the behavior of the conjugate gradient method. For the graded meshes, there
is a definite hierarchy among the other four solvers; the rank-ordering is as
follows: steepest descent < feasible Newton < trust-region < quasi-Newton.
However, the rank of the conjugate gradient method with respect to the other
solvers varies as a function of time.

In conclusion, the rank-ordering of the conjugate gradient method varied
as a function of time as the graded meshes were smoothed using the aspect
ratio mesh quality metric. However, the rank-ordering of the remaining four
optimization solvers was as follows: steepest descent < feasible-Newton <
trust-region < quasi-Newton.

4.4 Mesh Quality Metric

Our final experiment was designed to investigate the effect of the choice of
mesh quality metric on the performance of the optimization methods. For
this experiment, we investigated the performance of the various methods on
the distduct, foam, gear, hook, and cube meshes by repeating a subset of the
above experiments for the inverse mean ratio and vertex condition number
quality metrics.
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(b) 40%

Fig. 5. Mesh smoothing results for the graded meshes using the aspect ratio mesh
quality metric. The percentages indicate the amount of volume used by the first
half of the vertices in a given axis within the cube domain.

The results of performing the scaling experiment for the inverse mean ratio
and vertex condition number quality metrics are the same as those for the
aspect ratio mesh quality metric described above.

Performing the random perturbation experiment for the inverse mean ratio
and vertex condition number quality metrics yielded results that were qual-
itatively the same, i.e., the results could be classified into one of the above
three cases depending upon how large were the perturbations.

The results of performing the affine perturbation experiment for the inverse
mean ratio and vertex condition number mesh quality metric yielded results
similar to those when the aspect ratio mesh quality metric was used.

Performing the element heterogeneity experiment for the inverse mean ra-
tio mesh quality metric yielded results that were the same as those observed
earlier for the aspect ratio mesh quality metric. However, the results are dif-
ferent for the vertex condition number mesh quality metric. When the vertex
condition number metric is employed for mesh smoothing in the context of the
graded mesh experiment, we observe a small rise in the objective function af-
ter a significant initial decrease as seen in Figure 6. The plots in this figure are
for the cube meshes with vertices in all three axes distributed nonuniformly
to create graded meshes with elements of heterogeneous volume. Although
such behavior is rare, it is possible, as local mesh smoothing is being applied
with a global objective function. Further investigation into the cause of such
behavior for the meshes in this experiment is needed.

In conclusion, the scaling experiment results were insenstivive to the choice
of mesh quality metric. However, the perturbation and element heterogeneity
results were indeed sensitive to the choice of mesh quality metric. Further
research is needed to identify additional contexts where the choice of mesh
quality metric influences optimization solver behavior.
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Fig. 6. Mesh smoothing results for the cube meshes with heterogeneous element
volumes using the vertex condition number mesh quality metric. The percentages
indicate the percentage of volume used by the first half of the vertices in all three
axes within the cube domain.

5 Future Work

The results in this study are specific to local mesh quality improvement of
unstructured tetrahedral meshes via five optimization solvers, namely, the
steepest descent, Fletcher-Reeves conjugate gradient, quasi-Newton, trust-
region, and feasible Newton methods, with mesh quality measured according
to the three specified quality metrics, namely the aspect ratio, inverse mean
ratio, and vertex condition number. The results we obtained may vary dra-
matically if global mesh quality improvement methods were used instead of
the local ones studied here [28, 29]; hence, we plan to investigate global ver-
sions of these solvers in future work. In addition, vertex ordering has been
shown to play an important role in convergence of the Feasnewt solver when
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used for local mesh optimization [30]; thus, we will also investigate the effect
of vertex ordering in the future. We also plan to investigate the role that other
non-shape quality metrics have on the mesh optimization methods with the
goal of identifying other contexts where quality metrics influence optimiza-
tion solver behavior. Finally, we plan to investigate the use of hybrid solvers
to improve optimization solver performance.
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