


Lecture Notes in Computer Science 5769
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Cesare Alippi
Marios Polycarpou
Christos Panayiotou
Georgios Ellinas (Eds.)

Artificial
Neural Networks –
ICANN 2009

19th International Conference
Limassol, Cyprus, September 14-17, 2009
Proceedings, Part II

13



Volume Editors

Cesare Alippi
Politecnico di Milano, Dipartimento di Elettronica
Piazza L. da Vinci 32, 20133 Milano, Italy
E-mail: alippi@elet.polimi.it

Marios Polycarpou
Christos Panayiotou
Georgios Ellinas
University of Cyprus, Department of Electrical and Computer Engineering
75 Kallipoleos Street 1678 Nicosia, Cyprus
E-mail: {mpolycar, christosp, gellinas}@ucy.ac.cy

Library of Congress Control Number: 2009933887

CR Subject Classification (1998): F.1, I.2, I.4, I.5, I.6, J.3, C.1.3, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-04276-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04276-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12757459 06/3180 5 4 3 2 1 0



Preface

This volume is part of the two-volume proceedings of the 19th International Confer-
ence on Artificial Neural Networks (ICANN 2009), which was held in Cyprus  
during September 14–17, 2009.  The ICANN conference is an annual meeting spon-
sored by the European Neural Network Society (ENNS), in cooperation with the In-
ternational Neural Network Society (INNS) and the Japanese Neural Network Society 
(JNNS). ICANN 2009 was technically sponsored by the IEEE Computational Intelli-
gence Society. This series of conferences has been held annually since 1991 in various 
European countries and covers the field of neurocomputing, learning systems and 
related areas.  

Artificial neural networks provide an information-processing structure inspired by 
biological nervous systems. They consist of a large number of highly interconnected 
processing elements, with the capability of learning by example. The field of artificial 
neural networks has evolved significantly in the last two decades, with active participa-
tion from diverse fields, such as engineering, computer science, mathematics, artificial 
intelligence, system theory, biology, operations research, and neuroscience. Artificial 
neural networks have been widely applied for pattern recognition, control, optimization, 
image processing, classification, signal processing, etc.  

In 2009, the ICANN conference was organized by the KIOS Research Center for 
Intelligent Systems and Networks and the Department of Electrical and Computer 
Engineering of the University of Cyprus. The conference was held at the seaside city 
of Limassol, which is the second largest city in Cyprus. The participants had the op-
portunity to enjoy the technical program, as well as the rich cultural heritage of Cy-
prus, whose 9,000-year cultural legacy has been at the crossroads of world history. 
Currently, Cyprus is a full member of the European Union that combines European 
culture with ancient enchantment. 

Out of approximately 300 paper submissions to ICANN 2009, the Program Committee 
selected about 200 papers, which are published in the two volumes of these proceedings. 
The selection of the accepted papers was made after a thorough peer-review process, where 
each submission was evaluated by at least three reviewers. The submitted papers were 
authored by peer scholars coming from 47 countries, which geographically cover the 
whole planet (Europe, Middle East, Africa 69%; Asia/Pacific 18%; Americas 13%). The 
large number of accepted papers, variety of topics and high quality of submitted papers 
reflect the vitality of the field of artificial neural networks. In addition to the regular 
papers, the technical program featured keynote plenary lectures by worldwide renowned 
scholars, two tutorials on exciting new topics, two competitions on immunology and 
environmental toxicology prediction, and two workshops. One of the workshops was 
supported by the EU-sponsored COST Action ìIntell igent Monitoring, Control and 
Security of Critical Infrastructure Systems” (IntelliCIS). 

The two-volume proceedings contain papers on the following topics: Learning Algo-
rithms; Computational Neuroscience; Hardware Implementations and Embedded Sys-
tems; Self Organization; Intelligent Control and Adaptive Systems; Neural and Hybrid 
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Architectures; Support Vector Machines; Recurrent Neural Networks; Neuro-informatics 
and Bioinformatics; Cognitive Machines; Data Analysis and Pattern Recognition; Signal 
and Time Series Processing; Applications; Neural Dynamics and Complex Systems; 
Vision and Image Processing; Neuro-evolution and Hybrid Techniques for Mobile 
Agents Control; Neural Control, Planning and Robotics Applications; Intelligent Tools 
and Methods for Multimedia Annotation; Critical Infrastructure Systems. 

It is our pleasure to express our gratitude to everybody that contributed to the  
success of ICANN 2009. In particular, we thank the members of the Board of the 
European Neural Networks Society for entrusting us with the organization of the con-
ference, as well as for their assistance during the preparation of ICANN 2009. Special 
thanks to the President of ENNS, Wlodzislaw Duch, who helped significantly toward 
the success of the conference. We would like to express our sincere gratitude to the 
members of the Program Committee and all the reviewers, who did a tremendous job 
under strict time limitations during the reviewing process. We thank the members of 
the Organizing Committee for the great effort in the organization of the conference 
and the members of the Local Organizing Committee for their assistance. We are 
grateful to the University of Cyprus (ECE Department) and the Cyprus Tourist Or-
ganization for their financial support. We thank the conference secretariat, Top Kinisis, 
and especially Christina Distra, for their excellent and timely support in the organiza-
tion of the conference. We are grateful to several researchers at the University of Cy-
prus and the Politecnico di Milano, who assisted in various ways in the organization of 
ICANN 2009, and especially Alexandros Kyriakides and Andreas Kartakoullis, who 
spent several days working on the formatting of the final proceedings, and Manuel 
Roveri, who addressed several software-related and procedural problems raised during 
the review process. We would also like to thank the publisher, Springer, for their co-
operation in publishing the proceedings in the prestigious series of Lecture Notes in 
Computer Science. Finally, we thank all the authors who contributed to this volume 
for sharing their new ideas and results with the community. We hope that these ideas 
will generate further new ideas and innovations for the benefit of society and the envi-
ronment.  

July 2009 Cesare Alippi 
Marios Polycarpou 

Christos Panayiotou 
Georgios Ellinas 
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Fernando Corbacho

Bayesian Estimation of Kernel Bandwidth for Nonparametric
Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Adrian G. Bors and Nikolaos Nasios

Using Kernel Basis with Relevance Vector Machine for Feature
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Frédéric Suard and David Mercier

Acquiring and Classifying Signals from Nanopores and Ion-Channels . . . 265
Bharatan Konnanath, Prasanna Sattigeri, Trupthi Mathew,
Andreas Spanias, Shalini Prasad, Michael Goryll,
Trevor Thornton, and Peter Knee

Hand-Drawn Shape Recognition Using the SVM’ed Kernel . . . . . . . . . . . . 275
Khaled S. Refaat and Amir F. Atiya

Selective Attention Improves Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Antti Yli-Krekola, Jaakko Särelä, and Harri Valpola
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Rodolfo V. Garćıa, Fernando Rojas, Jesús González,
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Abstract. Seizures prediction may substantially improve the quality of

life of epileptic patients. Processing EEG signals, by extracting a con-

venient set of features, is the most promising way to classify the brain

state and to predict with some antecedence its evolution to a seizure con-

dition. In this work neural networks are proposed as effective classifiers

of brain state among 4 classes: interictal, preictal, ictal and postictal.

A two channels set of 26 features is extracted. By correlation analysis

and by extracting the principal components, a reduced features space is

obtained where, by an appropriate neural network, over 90% successful

classifications are achieved, for dataset with several patients from the

Freiburg database.

Keywords: Classification, Neural Networks, Feature Selection, PCA,

Correlation, Epilepsy, Seizure Prediction, EEG Processing.

1 Introduction

Epilepsy is one of the most common neurological disorders, affecting people of all
ages. This disease is characterized by recurrent abnormal electrical discharge of
a group of neurons. Seizures, according with their location can produce strange
sensations, emotions, convulsions, muscle spasms and loss of consciousness, de-
creasing social and professional capacities of the patient [1]. About 60 million
people in the world have epilepsy [2] and approximately 75% of them can be
controlled by medications or curable by surgery. Unfortunately, the remaining
25% do not respond to available therapies and cannot control the disease, which
cause a risk of serious injury and an intense feeling of helplessness that has a
strong impact on the patient’s everyday life [3].

During the past decades, several studies have evidenced that seizures do not
begin abruptly but develop several minutes before clinical symptoms which lead
to the possibility of their prediction. Therefore, patients can be forewarned to

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 1–9, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.dei.uc.pt


2 A. Ventura et al.

take timely safety and preventive steps and thus substantially improve their
quality of life [4]. With EEG it is possible to record local voltage potentials
corresponding to large neural populations. Then the seizure prediction can be
summarized into extracting features from the EEG and classify into interictal
(normal state), preictal (approach of a crisis), ictal (elapse of a crisis) or postictal
(after the crisis) [5]. The great question is to find a good group of features to
obtain a classifier with high sensitivity (being able to predict seizures) and high
specificity (avoiding false alarms) [6].

When developing classifiers, such as neural networks, one ought to consider
several aspects. Besides the architecture of the neural network, the selection of a
better subset of features plays an important role. The performance of a classifier
actually improves when redundant features are removed from the original set.

Assessing the accuracy of neural networks employing feature selection meth-
ods for epilepsy prediction has been the subject of a few studies [7,8,9], but not
in a classifier oriented approach.

In the present work different classifiers with different feature selection are
compared in order to get insights into the best strategy to built an alarming
system.

The organization of the paper is as follows: the next section describes the
extraction of the original set of features and the methods used to select a better
subset; Section 3 introduces the neural networks used as classifiers; In section 4
detailed information about the experiments and their results are presented and
finally in section 5 the conclusions are discussed.

2 Patient’s Dataset

The data used in this study was collected from three patients from the Freiburg
Center for Data Analysis and Modeling Database [10]. Patients 8 and 19 suffer
from a frontal lobe epilepsy and patient 12 from a temporal lobe epilepsy.

The EEG data was acquired using a Neurofile NT digital video EEG sys-
tem with 128 channels, 256Hz sampling rate, and a 16 bit analogue-to-digital
converter.

2.1 Two Channels Features Set

Two channels were considered to build the original set of features, being one
located in the epileptic focus. By this way it is possible to consider the dynamics
in both channels, hoping that its differences will contribute to the class sepa-
rability. Applying energy concepts, wavelet transform, nonlinear dynamics, 26
features have been extracted, listed in Table 1. The methods were developed in
Matlab and its appropriate toolboxes [11], and other freely available software,
such as the nonlinear time series analysis TSTOOL) [12].

Energy analysis is based on the algorithm presented in [13]. EEG signal is pro-
cessed through two windows with different length to analyze energy patterns: a
short-term energy observation window and a long-term energy observation win-
dow. The short term window is a later subset of the long term window, aiming
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Table 1. The 13 extracted features from EEG to be used in classification of the brain

state

Concept Feature

Nonlinear System Dynamics Correlation dimension
Max Lyapunov Exponent

Wavelet Transform coefficient energy

short term energy band (0Hz - 12.5Hz)
long term energy band (0Hz - 12.5Hz)
short term energy band (12.5Hz - 25Hz)
long term energy band (12.5Hz - 25Hz)
short term energy band (25Hz - 50Hz)
long term energy band (25Hz - 50Hz)
short term energy band (50Hz - 100Hz)
long term energy band (50Hz - 100Hz)

Signal Energy
Energy level
Energy variation (short term energy)
Energy variation (long term energy)

to compute a rate of energy growth since one of the major characteristics of a
seizure is a dramatic increase in electric energy in EEG signals. The main objec-
tive is to observe energy patterns before epileptic seizures, confirming eventually
the increase of energy bursts in the periods that precede seizures. A similar
displacement is applied to both windows and both end at the same time point.

Wavelet coefficients have been considered in the same approach as the energy
signal, to a similar energy analysis, allowing identification of rate variations
in the different frequency bands that constitute the EEG signal. The mother
wavelet used in the presented study was daubechies-4 and the decomposition
was completed with four levels.

Nonlinear analysis faces the EEG as trajectories of a nonlinear system. Two
nonlinear dynamic features, the maximum Lyapunov exponent and the corre-
lation dimension, through a sliding window, are computed using [12]. The con-
struction of the attractor, after the determination of the parameters time delay
and the embedding dimension, allows the calculation of the maximum Lyapunov
exponent and the correlation dimension. The estimation of the maximum Lya-
punov exponents consists in the quantification of the exponential growth of the
average distance between two nearby trajectories of the attractor. In our case
the estimation is performed by error aproximation (TSTOOL). Correlation di-
mension is determined by takens estimator method [12].

The joint analysis of the extracted features created a 13-dimension space which
represents the EEG signal in several components (energy signal, frequency and
system dynamics). The objective of the study is to investigate the eventual
occurrence of hidden characteristics in data such that clusters can be discovered
allowing an acceptable classification of EEG data into 4 classes:

– interictal (normal EEG pattern)
– preictal (two minutes prior to the seizure onset)
– ictal (the seizure onset)
– postictal (two minutes subsequent to seizure end)

The extracted features are sampled with a constant 5s interval. One cycle is
composed by series of these 4 classes.
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2.2 Feature Selection and Feature Space Reduction

Correlation analysis. Correlation is widely used in statistics as it describes
the degree of relationship between two variables.

Analysing the 26x26 correlation matrix, one of those with correlation above
90% has been eliminated. Moreover, the correlation above the threshold between
the two features should exist in all patients. By this procedure, a subset of the
original features with 18 features has been obtained, listed in table 2.

Table 2. New Set of Features

Extraction Technique Features
Channel 1 Channel 2

Nonlinear Dynamics Correlation dimension Correlation dimension
Max Lyapunov Exponent Max Lyapunov Exponent

Wavelet Transform

Energy STE 1 Energy STE 1
Energy STE 2

Energy STE 3
Energy STE 4

Energy LTE 1
Energy LTE 2 Energy LTE 2

Energy LTE 3
Energy LTE 4 Energy LTE 4

Signal Energy Energy STE
Energy LTE Energy LTE

Independent Correlation. Some studies point out that a trained neural net-
work’s performance decreases when tested with different patients [7,14,15], lead-
ing to the conclusion that for each patient a proper neural network, with a proper
set of features, must be engineered. By this perspective, the need for the same
number of features for every patient becomes dispensable. Furthermore, as we
remove more features highly correlated, the performance of the neural network
for that patient may actually improve.

Keeping this in mind, at this step we continued using the correlation, only
this time we remove all the features with a correlation above the threshold and
regardless of any other patient, hence the use of “independent” in the term.

Principal Component Analysis. Principal Component Analysis (PCA) has
been called one of the most valuable results from applied linear algebra. PCA is
used abundantly in all forms of analysis, from neuroscience to computer graphics.
With minimal additional effort PCA provides a roadmap for how to reduce a
complex data set to a lower dimension to reveal the sometimes hidden, simplified
structure that often underlie it. A more detailed explanation about PCA can be
found in [16].

To proceed with this method we used Matlab (princomp), to obtain the princi-
pal components coefficients and their variances. To project into a new dimension
we considered the coefficients which retain 99% of the variance. With this, we
achieved a reduction of about 50% in the number of original features, and were
able to keep 13 features from patient 8; also 13 features from patient 12; and
finally 11 features from patient 19.
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Once more, like independent correlation, by using PCA, which may return
different subsets of features for each patient, we are not interested in applying
the same neural network to different patients.

3 Neural Networks (NN)

In the present work three neural networks (Feed-Forward Backpropagation Net-
work, Layered-Recurrent Network and Radial Basis Network) have been selected.
Although we have tested for many others types of NN, these three presented bet-
ter results in a computational time considered reasonable.

3.1 Feed-Forward Backpropagation Networks (FF) /
Layered-Recurrent Networks (LRN)

These neural networks consist of two layers’ network, with the hidden layer
composed by ten neurons with logsig or tansig as the transfer function and
the output layer composed by four linear neurons. LRN also have a feedback
loop around the hidden layer, providing a single delay to the network. Gradient
descent weight and bias and Levenberg-Marquardt backpropagation were used
as learning and training functions, respectively.

3.2 Radial Basis Function (RBF)

Radial Basis Networks are two layers networks, with the first layer composed by
radial basis transfer functions and the second layer with linear neurons. Radial
Basis Network adds neurons to the hidden layer until it meets the mean squared
error goal. The spread constant used was 1.0.

4 Experiments

4.1 Evaluation

In order to compare across the different methods and cases, three performance
criteria were used: (1) accuracy (the closeness by which a set of measurements ap-
proaches the true value), (2) sensitivity (the ability to classify positive cases (pre-
ictal)) and (3) specificity (the ability to classify negative cases (non-preictal)). A
high sensibility and a high specificity are required to be considered as useful in
a clinical environment. The datasets were previously classified by a neurologist
into the four stages of an epileptic cycle.

Accuracy(%) =
CorrectCases

TotalCases
× 100 (1)

Sensitivity(%) =
TruePositives

T ruePositives + FalseNegatives
× 100 (2)

Specificity(%) =
TrueNegatives

T rueNegatives + FalsePositives
× 100 (3)
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Table 3. Results Table, LogSig as Transfer Function SS - Sensitivity, SP - Specificity,

AC - Accuracy

Trained Tested FF
SS SP AC

Pat 8 Pat 12 0 100 42,5
Pat 19 0 100 73,5

Pat 12 Pat 8 0 90,9 25,6
Pat 19 0 94,1 9,9

Pat 19 Pat 8 0 83,5 51,5
Pat 12 50,4 15,9 11

Table 4. Results Table, LogSig as Transfer Function SS - Sensitivity, SP - Specificity,

AC - Accuracy PCA - Principal Component Analysis None - The original Dataset

ICorr - Independent Correlation

FF LRN
SS SP AC SS SP AC

Correlation
Pat 8 93,8 99,8 96,9 93,8 98,8 96,5
Pat 12 92,5 99,0 96,7 92,5 99,5 97,6
Pat 19 87,5 98,6 96,5 92,5 99,5 96,7

PCA
Pat 8 90,6 99,8 95,6 100 97,4 94,1
Pat 12 97,5 99,3 97,1 100 99,5 97,4
Pat 19 92,5 98,3 95,4 90,0 97,6 95,6

None
Pat 8 87,5 96,7 94,7 96,9 99,8 95,6
Pat 12 92,5 99,8 96,9 90,0 99,5 96,9
Pat 19 95,0 98,8 97,1 92,5 99,3 96,9

ICorr
Pat 8 96,9 98,1 91,6 84,4 98,3 93,8
Pat 12 100 98,1 94,5 97,5 98,8 95,2
Pat 19 45,0 99,3 92,1 47,5 98,3 92,5

4.2 Results

Several studies have shown that each patient should have his/her own epileptic
prediction mechanism, each neural network is tested with a single patient, the
one whose dataset was applied for training. Table 3 demonstrates the decrease of
performance results, when the neural network is tested with different patients’s
dataset of those the network was trained.

To build the train and test set the 70% empirical rule was followed. This rule
states that 70% of the dataset should be used as a train set and the rest (30%)
as a test set. To carry out this rule, from each subset of 3 entries, 2 were taken
as train data and the other one as test data.

The results obtained using Feed-Forward Backpropagation Network (FF) and
Layered-Recurrent Network (LRN) are shown in tables 4 and 5. For each table
we tested with different transfer functions: logsig for table 4 and tansig for table
5. The results are very similar, but some improvement is noticed in table 4. In
table 6 we used Radial Basis Function as neural network. The results presented
in this table are worse than the results obtained with other neural networks
(table 4 and 5).
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Table 5. Results Table, Tansig as Transfer Function SS - Sensitivity, SP - Specificity,

AC - Accuracy PCA - Principal Component Analysis None - The original Dataset

ICorr - Independent Correlation

FF LRN
SS SP AC SS SP AC

Correlation
Pat 8 87,5 99,3 96,5 81,3 99,3 95,6
Pat 12 100,0 99,3 98,2 92,5 98,8 96,9
Pat 19 97,5 97,8 96,7 95,0 98,6 97,1

PCA
Pat 8 93,8 99,3 96,9 90,6 100 97,1
Pat 12 97,5 99,5 97,1 100 99 97,4
Pat 19 82,5 99 96,9 90 99,3 97,4

None
Pat 8 87,5 98,1 94,5 87,5 99,8 95,6
Pat 12 100 99,3 98 95 99,8 97,8
Pat 19 77,5 98,3 93,8 85 98,1 94,9

ICorr
Pat 8 87,5 97,9 91,9 46,9 99,1 90,5
Pat 12 97,5 98,8 95,8 97,5 99,3 95,8
Pat 19 47,5 99 93 75 97,3 93

Table 6. RBF Results Table SS - Sensitivity, SP - Specificity, AC - Accuracy PCA

- Principal Component Analysis None - The original Dataset ICorr - Independent

Correlation

RBF
SS SP AC

Correlation
Pat 8 90,6 92,4 85,7
Pat 12 62,5 99,0 73,0
Pat 19 62,5 61,7 45,1

PCA
Pat 8 78,1 90,3 83,1
Pat 12 77,5 96,1 84,0
Pat 19 60,0 70,1 62,2

None
Pat 8 90,6 92,2 88,6
Pat 12 72,5 99,8 86,2
Pat 19 55 75,9 68,8

ICorr
Pat 8 78,1 91,7 82,4
Pat 12 60 94 78,9
Pat 19 35 65,1 53,2

5 Conclusions

The quality of a set of features used in a neural network has a direct effect on the
neural network’s performance. A set of features highly correlated between them
may lead the neural network to a local minimum error during the training epochs
and, consequently, to a poor performance of the network. Furthermore, as the
number of features increases, the computational cost of using a neural network
also augments. Therefore, an optimal subset of features should be extracted
before applying them to a neural network.

In this paper different approaches were studied to reduce the dimensionality
of the original set of features extracted from an EEG signal. The first approach
(hereafter “correlation”) considers the correlation between features of each pa-
tient and removes it if the same feature has a correlation above 90% in every
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patient. This experience may be useful when applying the same classifier mech-
anism to all patients. However, some studies have revealed that each patient
should have his/her own classifier. Our second approach (hereafter “indepen-
dent correlation”) follows the latter idea by removing the feature in each patient
regardless the other patient’s features’ correlation. The last approach uses the
Principal Components Analysis (hereafter “PCA”) technique selecting the vec-
tors that retain 99% of the total variance between the data.

The experiments show very similar results between approaches. There is a
slight degradation of results using the “independent correlation”. This degrada-
tion may be caused by the loss of information that had been removed along the
reduction process, albeit the fact that the same feature has a correlation above
90% with another. The “correlation” has some good results. However, the prob-
lem of the wrongly removed features, mentioned before, may arise once more.
Moreover, the study involved in the process of feature selection between all the
patients increases with the number of patients, becoming unattainable at a cer-
tain point. Finally, PCA exhibited the best results in the experiment, proving
to be a good method for the selection of a subset of features for each individual.

Several approaches have been studied to overcome the problem of feature ex-
traction/selection and it is difficult to say which one should be used. Therefore,
further work comparing different methods of feature extraction/selection, like
Independent Component Analysis, Kruskal-Wallis, Genetic Algorithms , multi-
dimensional scaling, or others , should be considered.
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Abstract. This is an application paper of applying standard methods of

computational intelligence to identify gene diagnostic targets and to use

them for a successful diagnosis of a medical problem - acute graft-versus-

host disease (aGVHD). This is the major complication after allogeneic

haematopoietic stem cell transplantation (HSCT) in which functional

immune cells of donor recognize the recipient as “foreign” and mount an

immunologic attack. In this paper we analyzed gene-expression profiles

of 47 genes associated with allo-reactivity in 59 patients submitted to

HSCT. We have applied 2 feature selection algorithms combined with 2

different classifiers to detect the aGVHD at on-set of clinical signs. This is

a preliminary study and the first paper which tackles both computational

and biological evidence for the involvement of a limited number of genes

for diagnosis of aGVHD. Directions for further studies are outlined.

Keywords: Neural Networks, Feature Selection, GEP, GVHD, Gene

selection, Machine Learning.

1 Introduction

With the completion of the first draft of the human genome the task is now to be
able to process this vast amount of ever growing dynamic information and to cre-
ate intelligent systems for detection, prediction and knowledge discoveries about
human pathology and disease. When genes are in action, the dynamics of the pro-
cesses in which a single gene is involved are very complex, as this gene interacts
with many other genes and mediators, and is influenced by many environmental
factors. The genes in an individual may mutate, change slightly their code, and
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may therefore express differently at a next time. Modeling these events, learning
about them and extracting knowledge, is major goal for bioinformatics [1,2].The
branch of information sciences for the analysis, modeling and knowledge discov-
ery of biological phenomenons such as genetic processes is bioinformatics. The
potential applications of microarray technology are numerous and include iden-
tifying markers for classification, diagnosis, disease outcome prediction, target
identification and therapeutic responsiveness [1,2]. However microarray analysis
might not identify unique markers (e.g. a single gene) of clinical utility for same
diseases. Indeed, diagnosis and prediction of the biological state/disease is likely
to be more accurate by identifying clusters of gene expression profiles (GEPs)
performed by macroarray analysis. Based on profile, it ’s possible to set a di-
agnostic test, so a sample can be taken from a patient, the data related to the
sample processed, and a profile related to the sample obtained [2]. This profile
can be matched against existing gene profiles and based on similarity, it can be
confirmed with a certain probability a diagnosis of disease or if the patient is
at risk of developing it in the future. We apply this approach to detect acute
graft-versus-host disease (aGVHD) in allogeneic hematopoietic stem cell trans-
plantation (HSCT), a curative therapy for several malignant and non malignant
disorders [3]. Acute GVHD remains the major complication and the principal
cause of mortality and morbility following HSCT [4,5]. At present, the diagnosis
of aGVHD is merely based on clinical criteria and may be confirmed by biopsy
of one of the 3 target organs (skin, gastrointestinal tract, or liver) [6]. The sever-
ity of aGVHD is graded clinically from I to IV using a standardized system,
with increased mortality rates associated with significant aGVHD (grades II-
IV), [7]. There is no definitive diagnostic blood test for aGVHD, although a lot
of blood proteins have been described as potential biomarkers in small studies
[8,9]. A recent report indicates a preliminary molecular signature of aGVHD in
allogeneic HSCT patients [10]. In the current project, our primary objective was
to validate a novel and not invasive method to confirm the diagnosis of aGVHD
in HSCT patients at onset of clinical symptoms. For this purpose, a database
has been built by pre-processing experimental measures, and features were se-
lected to enable a good class separation without using all features and facing
the ”curse of dimensionality” problem, i.e., an excessive number of training in-
puts that increases the system complexity without remarkable advantages in
terms of prediction performances. This problem can be considered as a typical
inverse problem of pattern classification starting from experimental database.
The proposed approach, exploits a Correlation-based Feature Selection (CFS)
algorithm combined with a neural network (ANN) classifier and also a wrapper
method combined with the Naive Bayesian classifier to select the most impor-
tant features (genes) for the diagnosis. This is the first paper which discusses
both computational and biological evidence to confirm the early statement of
aGVHD based on selected genetic diagnostic markers. The organization of the
rest of the paper is as follows: in section 2 the data analyzed and feature subset
selection techniques in order to reduce the number of variables are described; in
section 3 the Neural Network classifier is described; finally, in section 4 and 5
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the results of the diagnostic method are discussed and conclusions are inferred
with some possible future applications.

2 Methodology

In this paper we consider two general approaches to feature subset selection,
more specifically, wrapper and filter approaches, for gene selection. Wrappers
and filters differ in the evaluation of feature subsets. Filter approaches remove
irrelevant features according to general characteristics of the data. Wrapper ap-
proaches, by contrast, apply machine learning algorithms to feature subsets and
use cross-validation to evaluate the score of feature subsets. In theory, wrappers
should provide more accurate classification results than filters [11]. Wrappers
use classifiers to estimate the usefulness of feature subsets. The use of “tailor-
made” feature subsets should provide a better classification accuracy for the
corresponding classifiers, since the features are selected according to their con-
tribution to the classification accuracy of the classifiers. The disadvantage of
the wrapper approach is its computational requirement when combined with
sophisticated algorithms such as support vector machines. As a filter approach,
CFS was proposed by Hall [12]. The rationale behind this algorithm is “a good
feature subset is one that contains features highly correlated with the class, yet
uncorrelated with each other”. It has been shown in Hall [12] that CFS gave
comparable results to the wrapper and executes many times faster. It will be
shown later in this paper that combining CFS with a suitable ANN, provides a
good classification accuracy for diagnosis of aGVHD.

2.1 Experimental Data

Fifty-nine HSCT patients were enrolled in our study between March 2006 and
July 2008 in Transplants Regional Center of Stem Cells and Cellular Therapy “A.
Neri” Reggio Calabria, Italy, during a Governative Research Program: “Project
of Integrated Program: Allogeneic Hemopoietic Stem Cells Transplantation in
Malignant Hemopathy and Solid Neoplasia Therapy - Predictive and prognostic
value for graft vs. host disease of chimerism and gene expression”. Because ex-
perimental design plays a crucial role in a successful biomarker search, the first
step in our design was to choose the most informative specimens and achieve
adequate matching between positive cases aGVHD (YES) and negative controls
aGVHD (NO) to avoid bias. This goal is best achieved through a database con-
taining high-quality samples linked to quality controlled clinical information.
Patients with clinical signs of aGVHD (YES) were selected, and in more than
95% of them aGvHD was confirmed by biopsy including those with grade I.
We used 26 samples from aGVHD (YES) patients that were taken at the time
of diagnosis and we selected 33 samples from patients that didn’t experienced
aGVHD (NO). All together YES/NO patient groups comprised a validation set.
Total RNA was extracted from whole peripheral blood samples using a RNA
easy Mini Kit (Qiagen) according to the manufacturer’s instructions. Reverse
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transcription of the purified RNA was performed using Superscript III Reverse
Transcriptase (Invitrogen). A multigene expression assay to test occurrence of
aGVHD were carried out with TaqMan� Low Density Array Fluidic (LDA-
macroarray card) based on Applied Biosystems 7900HT comparative dd CT
method, according to manufacturer’s instructions. Expression of each gene was
measured in triplicate and then normalized to the reference gene 18S mRNA,
who was included in macroarray card. About the project of macroarray card, we
selected 47 candidate genes from the published literature, genomic databases,
pathway analysis. The 47 candidate genes were involved in immune network and
inflammation pathogenesis.

2.2 Feature Subset Selection

Feature Selection is a technique used in machine learning of selecting a subset of
relevant features to build robust learning models. The assumption here is that
not all genes measured by a macroarray method are related to aGVHD classi-
fication. Some genes are irrelevant and some are redundant from the machine
learning point of view [13]. It is well-known that the inclusion of irrelevant and
redundant information may harm performance of some machine learning algo-
rithms. Feature subset selection can be seen as a search through the space of
feature subsets. CFS evaluates a subset of features by considering the individual
detector ability of each feature along with the degree of redundancy between
them.

CFSs =
k · r̄cf√

k + k · (k − 1) · r̄ff

(1)

where:

• CFSS is the score of a feature subset S containing k features
• rcf is the average feature to class correlation (f ∈ S)
• rff is the average feature to feature correlation

The distinction between normal filter algorithms and CFS is that while normal
filters provide scores for each feature independently, CFS presents a heuristic
“merit” of a feature subset and reports the best subset it finds. To select the
genes with CFS, we have:

a. Choose a search algorithm,
b. Perform the search, keeping track of the best subset encountered accord-

ing to CFSS ,
c. Output the best subset encountered.

The search algorithm we used was best-first with forward selection, which starts
with the empty set of genes. The search for the best subset is based on the
training data only. Once the best subset has been determined, and a classifier
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Table 1. The 13 genes selected from CFS and their name and meaning

Gene Name Official full name Immune function

BCL2A1 BCL2-related protein A1 Anti- and pro-apoptotic regulator.

CASP1 Caspase 1, apoptosis-related

cysteine peptidase

Central role in the execution-phase of cell

apoptosis.

CCL7 chemokine (C-C motif) lig-

and 7

Substrate of matrix metalloproteinase 2

CD83 CD83 molecule Dendritic cells regulation.

CXCL10 chemokine (C-X-C motif)

ligand 10

Pleiotropic effects, including stimulation

of monocytes, natural killer and T-cell

migration, and modulation of adhesion

molecule expression.

EGR2 Early growth response 2 transcription factor with three tandem

C2H2-type zinc fingers.

FAS TNF receptor superfamily,

member 6)

Central role in the physiological regula-

tion of programmed cell death.

ICOS Inducible T-cell co-

stimulator

Plays an important role in cell-cell signal-

ing, immune responses, and regulation of

cell proliferation.

IL4 Interleukin 4 Immune regulation.

IL10 Interleukin 10 Immune regulation.

SELP selectin P Correlation with endothelial cells.

SLPI Stomatin (EPB72)-like 1 Elemental activities such as catalysis.

STAT6 transducer and activator of

transcription 6, interleukin-4

induced

Regulation of IL4- mediated biological re-

sponses.

has been built from the training data (reduced to the best features found), the
performance of that classifier is evaluated on the test data. The 13 genes selected
by CFS are reported in Table 1. A leave-one-out cross validation procedure was
performed to investigate the robustness of the feature selection procedures. In
29 runs, the subset of 13 genes was selected 28 times (96%) by CFS. Now it is
possible to use a classifier to estimate the usefulness of feature subset.

2.3 Wrapper Method

While CFS assigns a score to subset of features, wrapper approaches take biases
of machine learning algorithms into account when selecting features. Wrapper
apply a machine learning algorithm to feature subsets and use cross-validation
to compute a score for them. In general, filters are much faster than wrappers.
However, as far as the final classification accuracy is concerned, wrappers nor-
mally provide better results. The general argument is that the classifier that
will be built from the feature subset should provide a better estimate of accu-
racy than other methods. The main disadvantage of wrapper approaches is that
during the feature selection process, the classifier must be repeatedly called to
evaluate a subset. For some computationally expensive algorithms such as SVMs
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or artificial neural networks, wrappers is very heavy. To select the genes using a
wrapper method, we have to:

(a) Choose a machine learning algorithm to evaluate the score of a feature subset.
(b) Choose a search algorithm.
(c) Perform the search, keeping track of the best subset encountered.
(d) Ouput the best subset encountered.

As machine learning algorithm we used simple Bayesian classifier näıve Bayes, it
assumes that features are independent given the class. Its performance on data
sets with redundant features can be improved by removing such features. A for-
ward search strategy is normally used with näıve Bayes as it should immediately
detect dependencies when harmful redundant features are added.

Also here the search algorithm was best-first with forward selection, starting
with the empty set of genes. We reported accuracy estimates for classifiers built
from the best subset found during the search. The search for the best subset is
based on the training data only. Once the best subset has been determined, and
a classifier has been built from the training data (reduced to the best features
found), the performance of that classifier is evaluated on the test data. Genes
selected from wrapper method are in table 2. Most of the genes selected are

Table 2. The 7 genes selected from wrapper and their name and meaning

Gene Name Official full name Immune function

CASP1 Caspase 1, apoptosis-related

cysteine peptidase

Central role in the execution-phase of cell

apoptosis.

EGR2 Early growth response 2 transcription factor with three tandem

C2H2-type zinc fingers.

CD52 CD52 antigen B-cell activation.

SLPI Stomatin (EPB72)-like 1 Elemental activities such as catalysis.

ICOS Inducible T-cell co-

stimulator

Plays an important role in cell-cell signal-

ing, immune responses, and regulation of

cell proliferation.

IL10 Interleukin 10 Immune regulation.

CXCL10 chemokine (C-X-C motif)

ligand 10

Pleiotropic effects, including stimulation

of monocytes, natural killer and T-cell

migration, and modulation of adhesion

molecule expression.

also part of the 13 genes selected using the CFS method and the only two
genes that are different are actually correlated to other genes from the set of 13
genes. A leave-one-out cross validation procedure was performed to investigate
the robustness of the method over the training set: in 29 runs, the subset of 7
genes was selected 26 times (90%) by the näıve Bayes wrapper. In section 4 it
has been show the performance of this technique estimated on the testing data.
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3 Neural Network Model for Early Diagnosis Using the
Selected Gene Diagnostic Markers

Artificial neural networks (ANNs) are commonly known as biologically inspired,
highly sophisticated analytical techniques, capable of modeling extremely com-
plex non-linear functions. Formally defined, ANNs are analytic techniques mod-
eled after the processes of learning in the cognitive system and the neurological
functions of the brain and capable of predicting new observations (on specific
variables) from other observations (on the same or other variables) after execut-
ing a process of so-called learning from existing data [14]. Here we have used
the selected 13 genes via the filtering CFS method and a popular ANN architec-
ture called MLP with back-propagation (a supervised learning algorithm). The
MLP is known to be a robust function approximator for prediction/classification
problems. The training data set had 29 patient samples (13 aGVHD(Yes) and 16
aGVHD(No)). The test data set consisted of 30 patient samples (13 aGVHD(Yes)
and 17 aGVHD(No)). After the step of test, final results has been obtained ac-
cording Fig. 2. The ANN’s outputs were:

• 0, if aGVHD diagnosis was Yes;
• 1, if aGVHD diagnosis was No.

The ANN based system was trained with adaptive rate of learning during a
period of 500 epochs. The ANN, according to a consequence of the Kolmogorov’s
theorem [15], has a hidden layer with 27 neurons; activation functions are: tan-
sigmoid between input and hidden layer, and pure linear between hidden and
output layer (Fig. 1). After the training phase, the ANN has been tested; final
results are shown in section 4.

13 127

Fig. 1. Structure of the implemented ANN: b{1} and b{2} represent the biases of input

and hidden layers respectively; IW{1, 1} and LW{2, 1} represent the weights for the

input and the hidden layers respectively. 13 is the number of ANN-inputs (i.e., neurons

in the input layer), 27 is the number of hidden neurons and 1 is the number of the

ANN-outputs (i.e., output neuron).

4 Results

In this ANN, the 13 genes were inputs and the evaluation of syndrome was
output. We have explored different kinds of ANN [16], have compared them to
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Fig. 2. Observed classes of patients and results obtained by ANN

Table 3. Experimental results of a CFS with ANN classifier and a wrapper method

combined with the nave Bayesian classifier. The starting set has been divided in training

set and test set, a leave one-out cross-validation has been calculated for the two subsets.

Method Training set Test set

CFS-ANN 28(29) 29(30)

Wrapper-nave Bayes 26(29) 29(30)

improve results and our experimental runs also proved the notion that for this
type of classification problems MLP performs better than other ANN architec-
tures such as radial basis function (RBF), recurrent neural network (RNN), and
self-organizing map (SOM). The final obtained results were good, and tell us
that it was possible to diagnose the aGVHD using a restrict number of vari-
ables. Only 1 case escaped our classification model (Fig. 2), which achieves 96%
accuracy in a leave one-out cross-validation on the training set and 97% on the
test data set. In this section we want to report also the results of the classification
system based on Wrapper and näıve Bayesian approach and to compare it with
the ANN classification results. In table 3 it’s showed that Wrapper approach is
less robust of CFS approach with an accuracy of 90% on the training data set,
but for the classification aim, Wrapper with näıve Bayes classification technique
gave the same results of ANN, 97% of accuracy. In patients with aGVHD (YES),
level expression of immune gene pattern showed a different behaviour: BCL2A1,
CASP1, CCL7, CD83 were up-expressed than reference normal value (it’s as-
sumed to be = 1). For these genes it’s very important to establish the cut-off ex-
pression value correlating with event. In contrast, CXCL10, EGR2, FAS, ICOS,
IL-4, IL-10, SELP, SLP1, STAT6 was always down-regulated during aGvHD
and before of pharmacological treatment. When clinical manifestation was re-
sulted, expression level of all significant genes was strongly increased. In aGVHD
(NO) group, for all genes the transcriptosome expression showed a very high
value.
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5 Conclusion and Future Work

We examined the immune transcripts to study the applicability of gene expres-
sion profiling (macroarray) as a single assay in early diagnosis of aGVHD. Our
interest was to select a low number of molecular biomarkers from an initial
gene panel and exploiting this to validate a fast, easy and non-invasive diag-
nostic tool. The proposed method provides a good overall accuracy to confirm
aGVHD development in HSCT setting, as istology demonstrated. Concerning
biological point of view, our results were highly reliable: others have reasoned
that Th2 cell therapy could rapidly ameliorate severe aGVHD via IL-4 and IL-
10 mediated mechanisms [17]. It’s noteworthy that in our study a set of genes,
indicated by computational analysis, included same mediators of Th2 response
such as IL10, and signal transducer and activator of transcription 6, interleukin-
4 induced (STAT6). All these were strongly down-regulated in aGVHD (YES)
setting suggesting an absent control mediated by Th2 cells. Therefore, we high-
light the fact that defective expression of ICOS impaired the immune protective
effectors during clinical aGVHD. This evidence is in according to previous re-
ported about ICOS as regulatory molecule for T cell responses during aGVHD.
It has been showed that ICOS signal inhibits aGVHD development mediated by
CD8 positive effector cells in HSCT [18]. According to previous reports, medi-
ators of apoptosis cells and dendritic cell activators were involved.All together
our results strongly outlined the importance and utility of non-invasive tool for
aGVHD diagnosis based on GEP. We believe that to achieve an advantage from
GEP performance, it’s very important known: a) the transcript levels of immune
effector cells in early time post-engraftment to better understand polarization
of Th2 cell, b) the CD8 positive cell action. In conclusion, in current practice,
tissue biopsies are performed to confirm this diagnosis and our molecular tool
may obviate the need for an invasive procedure.This study demonstrated, for
the first time, that with the use of our computational intelligence approach to
select gene diagnostic targets and use them for an early diagnosis of aGVHD
with 97% accuracy in the test data set of HSCT population. We plan to extend
the system as a personalized model to capture peculiarity of patients through an
optimization method [19,20]. A further approach to feature selection and model
creation is the so called integrated approach [21], where features and model pa-
rameters are optimised together for a better accuracy of the model, which is an
extension of the wrapper approach. The authors are engaged in this direction.
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Abstract. Different algorithms have been proposed in the literature

to cluster gene expression data, however there is no single algorithm

that can be considered the best one independently on the data. In this

work, we applied the concepts of Meta-Learning to relate features of

gene expression data sets to the performance of clustering algorithms. In

our context, each meta-example represents descriptive features of a gene

expression data set and a label indicating the best clustering algorithm

when applied to the data. A set of such meta-examples is given as input

to a learning technique (the meta-learner) which is responsible to acquire

knowledge relating the descriptive features and the best algorithms. In

our work, we performed experiments on a case study in which a meta-

learner was applied to discriminate among three competing algorithms

for clustering gene expression data of cancer. In this case study, a set

of meta-examples was generated from the application of the algorithms

to 30 different cancer data sets. The knowledge extracted by the meta-

learner was useful to understanding the suitability of each clustering

algorithm for specific problems.

1 Introduction

New biotechnology methodologies, such as microrrays, allow the measurement
of the expression of all genes of a cell sample. Medical researchers can use such
methodologies to measure the expression of cancer cell samples of several patients
with distinct cancer types. With these data, machine learning methods can be
applied to perform computational diagnosis, i.e., to classify the type of a cancer
cell based only on the gene expression profile. Another analysis of particular
interest is the application of clustering to search for cancer tissues sharing similar
molecular signatures. As demonstrated in [1] and [2], this kind of analysis does
not only allows to distinguish between distinct cancer types, but also it has lead
to the discovery of new cancer sub-types. Such gene expression data sets impose
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several challenges to clustering methods, as they usually have a small number of
observations (<100 cancer tissues), high dimensionality (> 1,000 of genes), the
distribution of cancer types is unbalanced and there is a high level of noise [3].

While several clustering methods have been proposed in the bioinformatics
literature, there is no consensus in the community on which method should
be preferably used [4,5,6]. Recently, [7] performed a large scale evaluation of
classical clustering methods over 35 data sets of cancer gene expression, which
showed that k-means and mixture of multivariate Gaussians had best clustering
performance for most of the data sets. That work also showed that hierarchical
methods perform poorly for the majority of the sets. Despite of these experi-
mental evidences, medical researchers are still faced with the question on which
is the most appropriate method for a particular data set. As in other Machine
Learning domains, there is a large variety of clustering algorithms considered
suitable to be employed in the cluster analysis of given gene expression data
sets. The selection of such algorithms requires empirical knowledge that is not
easy to acquire. In general, the choice of algorithms is basically driven by the
familiarity of biological experts to the algorithm, rather than the characteristics
of the algorithms themselves and of the data [6].

This work is a first attempt to investigate the performance of clustering algo-
rithms on gene expression data, by extracting rules that relate the characteristics
of the data sets of gene expression to the performance achieved by the algorithms.
The proposed work is directly derived from the Meta-Learning framework [8,9],
originally proposed to support algorithm selection for classification and regres-
sion problems. According to [10], Meta-Learning can be defined by consider-
ing four aspects: (a) the problem space, P , representing the set of instances of
a given problem class (usually classification and regression problems); (b) the
meta-attribute space, M , that contains characteristics used to describe the prob-
lems (e.g., number of training examples, correlations between attributes, among
others); (c) the algorithm space, A, that is the set of candidate algorithms to
solve the problems in P ; (d) a performance metric, Y , that measures the perfor-
mance of an algorithm on a problem (e.g., classification accuracy estimated by
cross-validation).

In this framework, Meta-Learning receives as input a set of meta-examples,
in which each meta-example is derived from the empirical evaluation of the
algorithms in A on a given problem in P . More specifically, each meta-example
stores: (1) the values of the meta-attributes M extracted from a problem; and (2)
the best candidate algorithm, considering the performance information Y . Hence,
the meta-learner is only another learning technique that relates a set of predictor
attributes (the meta-attributes) to a target attribute (the best algorithm).

The concepts of Meta-Learning have been extensively applied to select algo-
rithms for classification and regression tasks (e.g., [11,12]). In recent years, Meta-
Learning has been extended to other domains of application, as reported in [10].
In [13,14], for instance, the authors proposed the use of Meta-Learning to select
algorithms for time series forecasting. In [15], the authors applied Meta-Learning
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to support the design of planning systems. In [16], Meta-Learning is employed
to analyze the performance of meta-heuristics for optimization problems. Con-
sidering these applications, Meta-Learning can be viewed as a more general
framework to algorithm selection. Hence, one would expect it to be useful in
analyzing experiments in clustering of gene expression data.

In the current work, we applied a Meta-Learning procedure to analyze the
experiments performed with three clustering algorithms (k-means, finite mixture
of Gaussians and spectral clustering), since they were the winners among the
seven clustering methods considered initially, on 30 data sets of cancer gene
expression. Each data set was described by 13 descriptive meta-attributes and
associated to a class label, which indicates the best clustering algorithm among
the three candidates. In order to verify the viability of our proposal, different
learning techniques (including Support Vector Machines, k-NN and two ensemble
techniques) were used as meta-learners. We also applied the MLRules ensemble
algorithm to extract interpretable knowledge, which provided useful insights on
what makes an algorithm to perform better than another.

Section 2 describes the generation of meta-examples in our domain, as well as
the techniques used for Meta-Learning. Section 3 introduces the experiments that
evaluate the Meta-Learning process and discusses the obtained results. Finally,
Section 4 presents some final remarks and future work.

2 Experimental Work

This research is directly derived from a previous work [7], in which we performed
an empirical evaluation of clustering methods on different data sets of cancer
gene expression. In the present work, we applied Meta-Learning to analyze the
results of our clustering experiments, aiming to extract useful knowledge for
selecting clustering methods. In this section, we briefly describe the experiments
performed in [7], followed by the description of how the meta-examples were
produced in the current work.

In [7], seven distinct clustering algorithms were analyzed: single linkage (SL),
complete linkage (CL), average linkage (AL), k-means (KM), finite mixture of
Gaussians (FMG), spectral clustering (SP), and Shared Nearest Neighbors al-
gorithm (SNN). Also, four different proximity measures were employed, when
applicable: Pearson’s Correlation coefficient, Cosine, Spearman’s correlation co-
efficient and Euclidean Distance. In the case of the Euclidean Distance, four
different versions were applied: original (Z0), standardized (Z1), scaled (Z2) and
ranked (Z3). The algorithms were evaluated in [7] over a set of 35 microarray
datasets (See Table 1). These data sets present different values for characteris-
tics such as type of microarray chip (second column), number of samples (third
column), number of classes (fourth column) and distribution of samples within
the classes (fifth column). In terms of the data sets, it is important to point out
that microarray technology is usually available in two different platforms, cDNA
and Affymetrix.
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2.1 Meta-data

For each gene expression data set, we generated a meta-example composed by
features (meta-attributes) that describe the data set and a label indicating the
algorithm that obtained the best results. The criterion used for this labeling
process and the meta-attributes considered are described in this section.

Table 1. Gene expression data sets considered

Dataset Name Array Type N k Samples per class Class label
Armstrong-2002-v1 Affy 72 2 24, 48 FMG
Armstrong-2002-v2 Affy 72 3 24, 20, 28 FMG
Bhattacharjee-2001 Affy 203 5 139, 17, 6, 21, 20 FMG

Chowdary-2006 Affy 104 2 62, 42 -
Dyrskjot-2003 Affy 40 3 9, 20, 11 FMG
Golub-1999-v1 Affy 72 2 47, 25 KM
Golub-1999-v2 Affy 72 3 38, 9, 25 -
Gordon-2002 Affy 181 2 31, 150 FMG
Laiho-2007 Affy 37 2 8, 29 SP

Nutt-2003-v1 Affy 50 4 14, 7, 14, 15 FMG
Nutt-2003-v2 Affy 28 2 14,14 FMG
Nutt-2003-v3 Affy 22 2 7,15 -

Pomeroy-2002-v1 Affy 34 2 25,9 FMG
Pomeroy-2002-v2 Affy 42 5 10, 10, 10, 4, 8 SP
Ramaswamy-2001 Affy 190 14 11, 10, 11, 11, 22, 10, 11, 10, 30, 11, 11,11, 11, 20 KM

Shipp-2002-v1 Affy 77 2 58,19 SP
Singh-2002 Affy 102 2 50, 52 SP
Su-2001 Affy 174 10 26, 8, 26, 23,12, 11, 7, 27, 6, 28 KM

West-2001 Affy 49 2 25,24 FMG
Yeoh-2002-v1 Affy 248 2 43, 205 FMG
Yeoh-2002-v2 Affy 248 6 15, 27, 64, 20, 79, 43 KM

Alizadeh-2000-v1 cDNA 42 2 21, 21 KM
Alizadeh-2000-v2 cDNA 62 3 42, 9, 11 FMG
Alizadeh-2000-v3 cDNA 62 4 21, 21, 9, 11 FMG

Bittner-2000 cDNA 38 2 19, 19 KM
Bredel-2005 cDNA 50 3 31, 14, 5 FMG
Chen-2002 cDNA 179 2 104, 75 -

Garber-2001 cDNA 66 4 17, 40,4, 5 FMG
Khan-2001 cDNA 83 4 29, 11, 18, 25 -

Lapointe-2004-v1 cDNA 69 3 11, 39, 19 FMG
Lapointe-2004-v2 cDNA 110 4 11, 39, 19, 41 KM

Liang-2005 cDNA 37 3 28, 6, 3 FMG
Risinger-2003 cDNA 42 4 13, 3, 19, 7 KM

Tomlins-2006-v1 cDNA 104 5 27, 20, 32, 13, 12 KM
Tomlins-2006-v2 cDNA 92 4 27, 20, 32, 13 KM

Performance evaluation. In order to evaluate the performance of each com-
bination of algorithm and proximity measure considered, an external validation
index was used, the corrected Rand (cR) index [17]. The corrected Rand index
takes values from -1 to 1, with 1 indicating a perfect agreement between the
partitions generated by the clustering algorithm and the true classes known a
priori, and values near 0 or negatives corresponding to cluster agreement found
by chance. Unlike the majority of other indices, the cR is not biased towards a
given algorithm or number of clusters in the partition [17].

The labeling of each meta-example was done according to the following pro-
cedure: at first, for each clustering algorithm, we selected the proximity measure
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that achieved the best results, i.e., the largest cR indices. In order to do so, we
took into account only the partition with the number of clusters equal to the
number of actual classes in the respective data set [7]. Finally, in order to detect
the best algorithm for each data set, a ranking of the algorithms was made.

Only three algorithms were selected as class labels: FMG, KM and SP, since
they were the only winners. In case of ties among these three algorithms, the
data set on which it happened was excluded for generating a meta-example.
This occurred in five data sets, indicated in Table 1 by a “-” at the last column.
Hence, an actual number of 30 meta-examples were produced.

Meta-attributes. For the construction of the meta-dataset we used a set of 14
descriptive attributes (meta-attributes). Some of them were first proposed for the
case of supervised learning tasks [9]. Recently, they have been also employed in
the non-supervised learning context [18]. The samples (examples) considered in
our study are labeled, i.e., they have a class label vector Y = {yi}, yi ∈ {1, ..., k},
where k is the number of classes for each data set. The class distribution among
examples can be defined as C = {c1, ..., ck}, cj =

∑N
j 1(yi = j). Based on this

and in other statistics, we define our set of meta-attributes as:

1. LgE: log10 of the number of examples. A raw indication of the available
amount of training data.

2. LgREA: log10 of the ratio of the number of examples by the number of
attributes. A rough indicator of the number of examples available to the
number of attributes.

3. PMV: percentage of missing values. An indication of the quality of the data.
4. MN: multivariate normality, which is the proportion of examples transformed

via T 2 that are within 50% of a Chi-squared distribution (degree of freedom
equal to the number of attributes describing the example). A rough indicator
of the approximation of the data distribution to a normal distribution.

5. SK: skewness of the T 2 vector. Same as the previous item.
6. Chip: type of microarray technology used (either cDNA or Affymetrix).
7. PFA: percentage of the attributes that were kept after the application of the

attribute selection filter.
8. PO: percentage of outliers. In this case, the value stands for the proportion

of T 2 distant more than two standard deviations from the mean. Another
indicator of the quality of the data.

9. NRE: normalized relative entropy. An indicator of how uniformly examples
are distributed among classes, i.e. the divergence between the actual class
distribution and an uniform distribution. Its calculation is made using the
Kullback-Leibler divergence equation, normalized by 2 log k, where k is the
total number of classes. Let P (cj) = cj

N be the probability of the uniform
class distribution, the normalized entropy is given by the equation:

NE =

∑k
j=1 P (cj) log(P (cj)

1/k )

2 log k
(1)
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10. SC10: “small” clusters. A measure of the number of classes with size inferior
to the threshold θ = 10. Its value is given by: SCθ =

∑k
j=1 1(cj < θ)/k.

11. SC15: same measure of previous item, but with its threshold set to θ = 15.
12. BC: “big” clusters. A measure of the number of classes with size superior to

the threshold θ = 50, given by: BCθ =
∑k

j=1 1(cj > θ)/k.
13. k-NN outliers: classification error obtained by the k-NN algorithm (k = 3)

[19]. Another indicator of the quality of the data.

2.2 Meta-learner

We evaluated six algorithms as meta-learners: J48, PART, MLRules [20], Ran-
dom Forest, k-Nearest Neighbors (k-NN) and also Support Vector Machines
(SVM). With the exception of the SVM experiments, which were performed
using the libSVM1 package, all experiments were executed within the WEKA
framework 2.

The J48 algorithm is the WEKA implementation of the C4.5 decision tree
algorithm. The varied parameters were the confidence factor (from 2−15 to 215)
and the minimum number of instances per leaf (from 2 to 7). Another method
considered is the PART algorithm, which actually builds a partial C4.5 decision
tree in each iteration, making the “best” leaf into a rule. For the experiments
with PART, we used the same parameter values evaluated for the J48 algorithm.

The random forest algorithm belongs to the so-called “ensemble methods”,
a combination of various methods that generate many classifiers (in this case,
decision trees) aggregating their results. This method has several features, which
include the possibility to be used on a mixture of discrete and continuous de-
scriptors, to classify binary or multi-class data sets and work with data sets
where there are more variables than observations. The algorithm also presents
good performance even when most predictive variables are noise [21]. For this
work, we fixed the number of trees parameter to 100 and varied the number of
attributes to be selected in each tree from 1 to 15. Another ensemble method
evaluated was the Maximum likelihood rule ensembles (MLRules), which is a re-
cent rule induction algorithm for solving classification problems via probability
estimation. The ensemble is built minimizing the negative loglikelihood to esti-
mate the class conditional probability distribution. We varied the minimization
technique (Newton and gradient) and the shrinkage parameter in {0.1, 0.2, ..., 1}.

SVMs are supervised learning methods that construct a separating hyper-
plane in an n-dimensional space, trying to maximize the margin between the
classes. We executed the experiments considering polynomial and RBF kernels.
For polynomial kernel, we varied the cost and the degree parameters in the in-
tervals [2−15, 215] and [2, 6] respectively. For RBF kernel we varied both the cost
and gamma parameters in the interval [2−15, 215]. For the k-NN algorithm, we
varied k in the interval [1, 20].

Classification experiments were developed according to the leave-one-out pro-
cedure, with some remarks: as the class distribution of the meta-examples was
1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2 http://www.cs.waikato.ac.nz/ml/weka/
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unbalanced (class distribution is, respectively, 16 examples for FMG, 10 for KM
and 4 for SP), this could led to overfitting towards the classes with larger num-
ber of examples (FMG and KM). So, in order to make class distribution more
uniform, each example from the FMG, KM and SP classes was replicated 2, 3
and 8 times, respectively. This replication process was performed only in the
training data. Thus, by doing so, an example would never be at the same time
on the training and test sets. Rule extraction experiments were developed em-
ploying the same balanced data, except by the fact that we did not evaluate the
accuracy of the obtained model using the leave one out procedure: instead, we
utilized the full training set.

3 Results and Discussion

3.1 Meta-learner

The average test accuracy of the leave-one-out experiments realized with the five
methods compared can be seen in Table ??. According to this table, Random
Forest obtained the best classification accuracy followed by MLRules. All other
methods had a cross-validation accuracy equal or lower than the base line error
(taking the majority class as reference). This is probably a consequence of the
difficulty of the classification problem, as there are very few samples to classify
(30 samples) and one of the classes (SP) has only four samples. Ensemble meth-
ods, like Random Forest, are often expected to have a better performance on
such difficult classification scenarios, which is confirmed in our study.

Table 2. Accuracy rates - runs over balanced meta-data

Method Accuracy
PART 40.00%
J48 30.00%
MLRules 56.67%
k-NN 53.33%
SVM 53.33%
Random Forest 63.33%
Base Line Error 53.33%

3.2 Rule Mining

The next step in our analysis was to extract interpretable knowledge from the
meta-learning learning analysis of the data. Our goal is to discover explana-
tory (partial) models of performance of clustering algorithms on cancer gene
expression data. Observing the generated rules, one can notice the suitability of
clustering algorithms studied, as well as the actual relations to characteristics
(meta-attributes), with respect to the underlying structure in the data sets.

In order to do so, we used the MLRules algorithm with all data as training
set and Newton steps as minimization technique and shrinkage to 0.5. A total of
100 rules were generated, but we selected only the ten rules with biggest weights
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Fig. 1. Rules induced by the MLRules algorithm

for analysis. The produced rules can be seen in Figure 1. They are listed in a
pseudo-code like structure to ease readability.

Here, at each rule one can find, respectively, the method indicated (KM, FMG
and SP), the number of meta-examples classified by the node and how many are
misclassified (in parenthesis), as well as the rule weight. Interestingly to notice
that, in general, rules that suggest the KM method involves the LgE and the ERN
meta-attributes. This agrees with literature information, in which this method
tends to find equal sized clusters (low ERN, rules 3 and 6) and is very sensitive
to a small number of training patterns (low LgE, rules 5 and 6). We can also
observe the presence of the meta-attribute PO (percentual of outliers) requiring
bigger values in most of the rules that suggest the MFG method, an indication
that this method presents good tolerance to datasets with a high number of
outliers (rules 1, 2 and 9). Only one rule related to the Spectral algorithm was
generated (rule 8), possibly due to the small number of examples labeled with
this class available. The Spectral method employed in [18] is based in a Gaussian
similarity function, which matches the requirements of data normality. This fact
agrees with the assertive MN > 0.419 on rule 8. Furthermore, the rule suggests
the use of the Spectral method in the presence of outliers.

Another interesting fact is the presence of chip type in rule 3. It is well known
in the microarray literature that cDNA and Affymetrix chips generate expression
values with distinct characteristics [22]. The cDNA arrays are based on log-ratios
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of the expression between the reference cell (tumor) and a control cell (healthy
cell), whereas Affymetrix data is based only on the tumor cell and expression
values should reflect the absolute count of transcripts in that cell. As a result,
the log-ratios used in cDNA measurements make the expression values to have
a normal distribution. Differently, Affymetrix expression values are positive and
have a distribution skewed towards lower expression values. Furthermore, mea-
surements of cDNA chips are less susceptible to probe problems in a specific chip,
as a problematic probe will have the same effects to both control and reference
values [22]. While there is no consensus in the microarray literature regarding
the data quality and microarray platform, the cDNA chip type verification on
rule 3 is another indication that data from cDNA microarrays are less sensitive
to noise, suggesting the k-means method in this case.

The rules induced by MLRules could be susceptible to overfitting, as
there are very few examples in the data sets. Nevertheless, as discussed in pre-
vious paragraphs, the rules extracted are in accordance to general knowledge in
the clustering literature. Thus, rather than proposing the use of the rules and the
attribute thresholds in their own, we interpret them as “soft” guidelines to the
choice of a clustering method given a certain cancer gene expression data set.

4 Final Remarks

In this paper, we presented a preliminary study that explores the ability to
automatically generate rules to guide the choice of clustering algorithms for
gene expression data. One of the our main contributions is to show that two
rule-based ensemble classifiers — random forests and MLRules — on average,
presented the most accuracy rates in predicting the best clustering algorithm for
gene expression data sets. We emphasize that the classification problem analyzed
here is a difficult one, as there are very few meta-examples. Thus, no classification
method had a high classification accuracy.

Another contribution of this work was to extract rules for the selection of
clustering algorithms, by using an rule ensemble algorithm. Overall, the rules ex-
tracted give us some interesting guidelines for choosing the method. For instance,
in the case of gene expression data from cDNA microarrays, k-means method
should not be used when class size distribution is not uniform. Although, when
a large number of samples is present, the method is preferred. Finite mixture of
Gaussians should be used when there are few samples and a non-uniform class
distribution. In cases where the data follows a normal distribution and there’s a
large amount of outliers, Spectral clustering is adequate. Such guidelines, based
on meta-attributes of data sets, had not been empirically demonstrated before
in the gene expression literature. As a future work, we will try to increase the
number of meta-examples, as well as investigate other meta-attributes.

Acknowledgments. The authors would like to thank CNPq (Brazilian Agency)
for its financial support.
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Abstract. The results of neurophysiology and biology about early vi-

sion inspire us to establish an effective and economical computational

model. As the most important part of the early vision, retina is a com-

plex but orderly structure, in which the first essential information is pro-

cessed preliminarily. In this paper, according to anatomic structure, a

multi-layer digital retina model is presented to simulate biological retina

and it is placed in a physical visual field of a reduced eye to analyze

why the retina can be capable of fulfilling all tasks. The model tries to

reach a kind of feasible balance among hardware complexity, computing

load and performance as the retina does. This research also contributes

to the design and implementation of artificial retina chips to improve

perception of visually impaired patients.

Keywords: retina, early visual information processing, neural network.

1 Introduction

Target tracking, Robot navigation, autopilot, and the traffic control etc. enhance
the requirement for digital image processing, especially for real-time image pro-
cessing technology. The traditional methods of digital image processing mainly
deal with images via spatial domain processing or via frequency domain process-
ing. These methods seem to take a long time but act to be low efficiency. These
real-time image processing applications demand higher processing rates (10-1000
Gops/s) [1] than can be provided by commercial microprocessors (1-5 Gops/s).
The mechanism of the higher mammals’ vision, which is precise and complex,
can immediately sense the environment information and then does rapid judg-
ment. Now, even the most advanced artificial vision system is still nowhere near
of the human retina on capacity of information processing. Therefore, it is very
useful to develop a new way of machine vision from the perspective of simu-
lation of neurophysiology structure and psychological process. In the design of
artificial retina chips, it’s more instructive to explore how the physical retina co-
ordinates the information processing requirement and neural structure. Is there
possible that we might find a way not only to save energy but also maintain
good performance like our retina does? Therefore, it’s necessary to analyze the
self-adjustment property of physical retina to improve the design and implemen-
tation of the artificial retina. This paper presents the retinal early visual model
integrating the physiological structure and computer model closely, which not

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 30–39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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only simulates the multi-layer structure of the retina and the ganglion cell recep-
tive field, but also simulates the precise retinal cells distribution, so the model
is more accurate and very similar to the real retina mechanism. Meanwhile, a
large numbers of photographs of the real world have been tested, and then the
self-adjustment properties of ganglion cells were verified to achieve a feasible
balance among hardware complexity, processing time and accuracy.

2 Model Design on Simulating Information Processing of
Biological Retina

2.1 Computation Model of Retina Structure

In the field of vision, retina is crucial for both biology research and computer
modeling. As the most important part of the early vision, retina is a complex
but orderly structure, in which the first essential information is processed pre-
liminarily. The intricate structures of retina are corresponding to its various
functions. Retina is composed by the multi - layer cells, the most important of
three layers from the outside to inside are the photoreceptor cell layer, bipolar
cell layer and the ganglion cell layer. Each layer contains more than one type of
cell. Figure 1 illustrates the retina visual information processing flow. Based on

Fig. 1. Retina information process flow. The model contains three main cell layers. It

shows the cells network and the vision information process flow.

the simplified structure, a reduced eye model was used in our model. According
to the physiological size of retina, the physical model projects simulated point
to the retina with similar triangles. The algorithm diagram is shown in Figure2.
It shows the mapping between the point of outer scene and the receptor cell po-
sition of retina. Rmax = 27.5mm.Θmax = 70o, d = Rmax ∗ tan(Θ) = 10mm,D
is adjustable.Θ ≤ Θmax, (x, y) = (X ∗ 10/D, Y ∗ 10/D).
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Fig. 2. Receptor cell’s position point mapping model

(a) mean rod density (b) mean cone density

Fig. 3. Regional distribution of mean Rod and Cone Density

Osterberg drew the famous density map about the rod cells and the cone
cells of the human retina with eccentricity in 1935. Since then, several studies
have been reported about the number and density of the photoreceptors. After
comparing the diverse data, we decided to follow the Jost B. Jonas’s data[2] as
Fig. 3.

It provides an excellent basis for defining sampling accuracy of image in dif-
ferent locations. According to distribution density and sampling locations of the
rod cells and cone cells, we consider retina as the disk which is composed of a
center in fovea and several rings. Rod cells and cone cells in the different bands
have different density. We simplify the distribution of cone cells and rod cells in
the retina as Fig. 4.

The following pseudo-code describes the retina cells generation in the first
quadrant.

1) Calculate the side length of the inscribed square and circumscribed square
as L1, L2, and simulate every ring.

2) Generating ring cell matrix according to the density D of ring cells and
describing these with four two-dimensional matrixes and (Figure 5).‘m’ means
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(a) Different rod rings density (b) Different cone rings density

Fig. 4. Density of Rod and Cone rings

the number of cells in the horizontal direction, and ’n’ is the number of cells in
the vertical direction.m = (L2− L1) ∗ √D, n = L1 ∗ √D

3) Generating the position of cell point in each matrix respectively. For matrix
Am∗n:(x, y)i,j = (L1+ i ∗ 1/

√
D, j ∗ 1/

√
D);for matrix Bm,m,(x, y)i,j = (L1+ i ∗

1/
√

D, L1+j ∗1/
√

D), for matrix Cn∗m,(x, y)i,j = (i∗1/
√

D, L1+j ∗1/
√

D), i ∈
[0, m− 1], j ∈ [0, n− 1].

To improve the performance of program, we calculate each point in the square
area. But in the final output, we remove the points outside the gray areas.

Fig. 5. The cell matrix of retina
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2.2 Distribution Model of the Receptive Field of Retina Ganglion
Cells

For cone pathway, the convergence degree of cone cells and ganglion cells changes
in the range of 5-18 degrees[13]. Linear formula of the cone-ganglion convergence
is shown as follows:

Convergencecone−ganglion = �0.47 ∗Rganglion + 5� . (1)

Convergencecone−ganglion means the convergence degree from cone cells to gan-
glion cell.Rganglion means the distance from ganglion cells to the retina center.
For rod pathway, the convergence degree of rod cells and ganglion cells changes
in the range of 100-1500 degrees[14][15]. Linear formula of the rod-ganglion con-
vergence is shown as follows:

Convergencerod−ganglion = �53.8 ∗Rganglion + 27.5� . (2)

According to the formula (1) and (2), we can get the convergence degree of any
ganglion cells in any position. And then, we can get the receptor cells of certain
ganglion cells through gradually expanding scan radius of receptive field from
inner to outer.

2.3 Algorithm Model of Photoreceptors

The cone cell algorithm model. According to sensitive curves of photore-
ceptor cells drawn by Dowling in the 1987, the cone cells can be divided into
three types in the light-visible area from 400nm to 700nm, which are respec-
tively sensitive to the wavelength of 560nm, 530nm and 430nm, as Fig.6 show:
In the RGB color model, the three wavelengths of light correspond to R, G and
B color values. We design the similar sensitivity curve based on the RGB color
model, firstly we make a transformation for the R, G, B among the value of

Fig. 6. Different cone response to different wavelength light
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0 255: B ∈ [0, 0xFF ], G ∈ [0x100, 0x1FF ], R ∈ [0x200, 0x2FF ], then trans-
late the RGB value for standardization based on the formulaR = R/767, G =
G/767, B = B/767. We use quadratic curve (3) to simulate cone sensitive curve
approximately.

R(λ) = −a ∗ (λ − F )2 + c. (3)

R(λ) means the output of a single cell, λ is the input of a single cone cell,
F as sensitive color constants,a,c are the coefficients,a � 0, 0 ≺ c ≤ 1. When
F=1/6,F=1/2 and F=5/6, the cone cell is respectively sensitive to blue, green
or red light, but different response curves overlap in the edge. To simulate the
physiological responsive characteristic of photoreceptor cells, we limit response
value of the photoreceptor cells in the range 0-1, so we set a=16,c=1 .

In this experiment, we did not care how to represent and transport color
information. What we focus on is the number of activated cells and response
intensity of every cell, so we use average weighted formula (4) to simulate the
final output value of cone cells. The quantities of three types cone cells are equal.
In the same density region, they are cross-distributing uniformly.

Rcone(r, g, b) =
R(r)2 + R(g)2 + R(b)2

R(r) + R(g) + R(b)
. (4)

The rod cell algorithm model. Rod cell is the carrier of luminance infor-
mation responding to the light intensity. In traditional image processing, we use
gray value to represent the luminance of a pixel, so it’s reasonable that we use the
gray value to map the response intensity. We translate the color RGB value into
the gray value as the input of rod cell. According to ITU-R BT.601a standard
formula recommended by International Telecommunication Union to transform
a colorful image to gray imageGray = 0.299*R + 0.587*G + 0.114*B. We just
choose one behind the decimal, and then we get the function (5).

Rrod(r, g, b) = (0.6 ∗ g + 0.3 ∗ r + 0.1 ∗ b)/255. (5)

2.4 Algorithm Model of Ganglion Cells

Ganglion cells have the center-surrounding receptive field structure. We use
model (6) to imitate the output of ganglion cells, satisfying the standards of
DOG model.

R
(x,y)
ganglion(r, g, b) = R

(x,y)
center(r, g, b)−R

(x,y)
surround(r, g, b) (6)

In which,R(x,y)
ganglion(r, g, b) means the output of ganglion cells in the retina po-

sition (x,y);R(x,y)
center(r, g, b) means the output from the central receptive field of

ganglion cells in the retina position (x, y);R(x,y)
surround(r, g, b)is the output of the

surrounding ganglion cells located in the retina location(x, y). For the cone
cells,R(x,y)

center(r, g, b) =
∑

center Rcone(r, g, b),
R

(x,y)
surround(r, g, b) =

∑
surround Rcone(r, g, b);
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for the rod cells,R(x,y)
center(r, g, b) =

∑
center Rrod(r, g, b),

R
(x,y)
surround(r, g, b) =

∑
surround Rrod(r, g, b);

3 Experiment and Results Analysis

3.1 Experimental Results and Analysis for Real Scene Photos

We tested and verified 63 real scene photos with different complexity to calcu-
late the activation rate of ganglion cells (Fig.7), and we classified these complex
photos by their degree of complexity to analyze the relationship between the
output characteristics and input complexity when retina cells handle the differ-
ent complexity of visual information. As results of experiments show, for real

(a) Relative Ganglion output in cone

Pathway

(b) Relative Ganglion output in rod Path-

way

Fig. 7. Rod and Cone Pathway

stationary scenes, about 80%ganglion cells are activated, but the ganglion cells’
outputs are mainly in the range of 10%-20% of the max output. It indicates
ganglion cells are in a state of low energy consumption when human’s retina is
receiving static visual information. Most ganglion cells are not at work under
this kind of status. They are possibly in a state of rest or waiting for other in-
formation input. The retina will balance the input information processing and
the complexity of hardware: sufficiently receiving outside stimulation as well as
completely processing visual information under the limited hardware condition.

3.2 Analysis for All Activated Ganglion Cell Position

To clearly show position and output of activated ganglion cells in cone-ganglion
and rod-ganglion pathway, the paper combined two pathways into one output.
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In our experiment, we only choose one quarter–the upper-right quarter of the
retina because four quarters of retian are basically symmetrical with each other.
we depicted the pixels which activated ganglion cells in the image, then we set
gray value of each pixel according to ganglion cells output.

The experiment takes the real world image (Figure11a) as input and the
experiment results is shown (Figure11b). From results of experiment, we can

(a) input image (b) result image

Fig. 8. Input image and result image

learn that the fovea has high visual acuity because cone cells are intensive in
this region. The resolution is also high in fovea just like the lower left of the
image. When the distance between photoreceptor and fovea center increases,
the visual acuity decreases gradually. The results of experiment do verify these
characteristics of retina in information processing.

3.3 Verification on Self-adjustment Property of Retina

Generally, all characteristics of the retina network are finally exhibited in the
receptive field of ganglion cells. Changing different background image or changing
moving object velocity, receptive field size would change correspondingly. This
dynamic characteristic is extremely important in physiology. For example, in a
dark environment, receptive field would become bigger to acquire more light in a
larger area to sense the general information. At the same time, visual acuity has
to adjust to be low. When we need to distinguish the slight differences, receptive
field would turn to be smaller so as to improve space acuity.

We take cone-path as an example to verify this amazing characteristic, we
adjust the convergence to change the size of receptive field, and then we record
the corresponding complexity, scanning efficiency, computing load and accuracy.
The model complexity is defined as the total connections between photoreceptors
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and ganglion cells. Scanning efficiency is a measure that estimates how fast the
center area may scan all visual field by a way like oculomotor phenomenon.
Computing load is defined as the computational intensity. Accuracy is defined
as a ratio of edge coverage. Obviously, all characteristics have direct relations
with receptive field size. The results of experiment is shown below Fig.9.

Fig. 9. The balance of parameters in different retina designs

Fig.9 is an illustration of retina designs with different parameters. With the
growth of convergence from 5 to 14, the ratio of accurate coverage and compu-
tational intensity increase, but the later increases more steeply. And other two
measures of hardware complexity and scanning efficiency are nonmonotonic. It
is obvious that when the convergence is 9 the hardware complexity reduces to
55% of maximum complexity and scanning efficiency can stay at near 80% of the
best efficiency, meanwhile the computational intensity is no more than 30% of
maximum intensity. This means that the size-changeable receptive fields model
can balance the hardware resource, processing precision, computational intensity
very well.

4 Discussions

This model verified the research of physiology and psychology from the per-
spective of visual information processing, and brought up the new field and
direction for the physiology and psychology. This model has not yet simulated
the dynamic information input. We will take the real-time visual information
processing model as the next target for our study.

Acknowledgments. Our research is supported by National Natural Science
Foundation of P. R. China (60303007) and Shanghai Science and Technology
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Abstract. We extend an attention-and brain-based based architecture

for mental simulation to allow for subliminal or creative thinking as part

of a thinking sequence. In particular a mechanism for switching between

attended and subliminal thinking is proposed. A simulation of this ar-

chitecture is then presented, specifically for the task of ‘Unusual uses of

a cardboard box’.

Keywords: thinking, reasoning, cognition, observational learning,

consciousness.

1 Introduction

Numerous cases of successful thinking at an unconscious level are recounted in a
recent book by Gladwell [5], where a ‘thin slicing’ (rapid) method of assessment
of a situation leads to optimal recognition, as compared to a slower and more
deliberate perusal. He quotes the psychologist [12], who says we toggle back and
forth between our unconscious and conscious modes of thinking, depending on
the situation.

How can we begin to understand at a brain and model level how such uncon-
scious thinking is achieved? Here we regard the crucial part of thinking as that
of mental simulation, where trains of thought can be regarded as sequences of
mental states which lead from one initial (present) state to a final (goal) state.
This latter state may be well-defined beforehand, or it may only be determined
by the application of a success criterion, such as through some form of template
indicating that the final state satisfies a further set of conditions. This is what
occurs in mathematical thinking towards proving a theorem, when the steps in
the proof of the theorem will, as they approach a crucial such step, lead to the
satisfaction of some internally created criterion.

We conclude from this that in order to create a cognitive machine, one that can
‘think’ we need to allow for processing at two levels: one being the conscious one,
the other being unconscious. These two levels would seem to occur sequentially,
with the unconscious steps guided by well-used rules or meeting some essential
criterion, but lying outside attention control. However they can emerge into
consciousness if some important criterion is met in one of the states of the
unconscious sequence.

Unconscious processing is crucial in creative activity: in painting, musical
composition, photography, writing and so on. Such subliminal creativity has
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even been proposed as antithetic to consciousness and advocates have proposed
to strongly play down the role of conscious processing [6]. Here we consider that
both components – the subliminal and the consciously controlled forms – of
thought should be considered together in order to understand them. To do that
we need to understand, through architecture building and simulation, of what
each of the two components consists and how they complement each other.

In order to develop a suitable architecture to achieve such two-level processing,
we will therefore present and analyse a neural (brain-guided) architecture that
is able to support mental simulation as a process of ‘thinking about the world’
by means of the pairs of forward and inverse internal models it contains. This
model allows for cycling through a set of neural loops to emulate the manner
in which actions on objects in the external world will lead from a given initial
state to a valuable final one. In this way the mental simulation process of the
‘world model in the head’ produces a limited version of thinking, one without
the necessary conscious component.

We extend this attention-controlled model of thinking to include an alternate
route outside the control of attention. It is that route, we suggest, that involves
creative processing, and leads to solutions of seemingly impossible problems
through a period of subliminal processing.

In the next section we present the architecture we regard as at the basis
of cognitive processing and consider the manner in which mental simulation
can occur as part of this processing. We have already used this architecture
in modelling results from a complex paradigm used in studying observational
learning on infants, to which we refer for a fuller account [11]. In section 3 we
consider in more detail the manner in which two levels of thinking processing –
conscious and subliminal - can be achieved by modifications to the overall mental
simulation architecture. This requires an additional attention control system
that can lead to the switching between conscious and unconscious process in
thinking, which as noted earlier occurs sequentially in creative thinking. The
following section 4 looks at the simulation of learning in the well known creative
task of thinking of unusual uses for a specific object. The final section concludes
the paper.

2 The Architecture of Mental Simulation

The brain basis for the architecture from which we start is that originally pro-
posed for mental simulation [11]. With attention added, this architecture is that
shown in figure 1. Each box represents a component processing area that receives
input from one or more other areas and passes output to other processes.

Here we briefly describe the function of each module. Details of the model
neuron used are given in full in the appendix, and where coding differs from the
use of dedicated nodes to represent individual elements, this is specified.

Vision - This represents the basic visual input available to the model. We model
this in an extremely simple manner - the region has dedicated nodes each of which
holds a possible view available to the model, and they are activated depending
on the simulation setup.
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Fig. 1. Details of the Full Mental Simulation Loop with Visual Attention. The functions

of the various modules present in the figure are described in the text.

Object codes - Here objects already known to the system are stored, such that
they can be activated by the object representation module. Each object has a
corresponding node.

Goals - Here the simulation’s current goal is stored and used to influence be-
haviour. Goals are represented by dedicated nodes. The module stores higher
level end goals (such as opening a box) without specific details of how those
goals are to be accomplished.

Subgoals - This region codes for lower level goals that form the components of a
higher level directive - for example when opening a box subgoals might include
unlatching the lid, or removing a cover. The subgoals are coded as dedicated
nodes.

Affordances - This area relates objects to their uses. We suggest that object
uses are coded as the affordances offered by those objects, which can then be
realised through actions used on those affordances. These are coded by nodes
representing these affordances (such as the affordance of opening primed by a
box object).

Actions – Here the actions necessary to achieve affordances have representations.
These representations are primed by the affordances module, so the affordance
of opening would activate an action representing a specific opening movement.

Inverse model – The IM is used to determine what action will achieve the goal
supplied to it given the current working visual state. In a simple simulation,
this output is produced by predetermined connections between a set of possible
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visual states and goal nodes, and output actions. These can also be learned
through Hebbian style plasticity. The IM outputs the result coded as an action
the system can perform

Working memory (action) – This area acts as a buffer for the actions produced
by the IM, as one of a set of precoded action representations.

Forward model – The FM calculates the effect of a proposed action on the
current state of the real or imagined world. This produces a new state. Similarly
to the IM the module contains state nodes and action nodes as inputs, which
are connected to state nodes as outputs, with connectivity that can either be
pre-wired or learned.

Working memory (visual state) – This area holds the currently imagined visual
state (as one of a set of possible states represented by dedicated nodes) produced
by the forward model in a buffer such that it can be supplied to the inverse model
to reach the next step towards achieving the simulated goal.

Long term memory – This allows information to be supplied to the forward
model about the consequences of actions that require extra knowledge, such as
imagining the room that lies behind a door and would be visible as a result of
opening that door.

The attention control modules and connections in the architecture of figure 1
are as follows:

The Visual Attention Inverse Model Controller (denoted IMC (visual) in the
figure): This module sends an attention feedback signal to the vision modules.
Only one such module is shown in figure 1 but sensory attention can also be
directed to object codes and possibly to affordances, so these modules should
also be connected to the IMC(visual). The function of this attention signal is
to amplify neuron activity relevant to the goal being pursued by attention (and
reduce that caused by distracters).

The connection from the Goals module to the IMC (visual): This connection
biases the competition assumed to be occurring on the IMC (visual) so as to
allow for the attainment of attention amplification satisfying the focussing of
attention on the goal object.

The connection from the Vision module to the Working Memory (visual state)
module: This allows for the attention-amplified lower level activations represent-
ing the attended object to attain the visual state working memory so as to be
available for report (so be in consciousness).

The connection from the Inverse model to the Action module: This connection
enables the action u generated by the inverse model to be used to bias the Actions
module representations. This causes as output from the Action module that
action representation corresponding to u. Such a biasing process corresponds
to the model of motor attention of [10], in which the Actions module acts as



44 M. Hartley and J.G. Taylor

the plant in a control model in which the action IMC is the inverse model of
figure 1. We see that the Taylor-Fragopanagos model is extended, in figure 1, by
the presence of the forward model, thereby allowing more flexibility by possible
imagined manipulations of the visual state to check for modifications a given
action could produce. We emphasise that the visual state influence on the action,
in both the original model and our present one, is that of the attended state in
consciousness. We should add that this is not the only influence on the Actions
module: there is also input from Affordances, as is expected also to influence the
action being generated. This affordance may have been in consciousness (with
suitable further connections to allow the affordance values to be attended to
and the resultant activation attain a relevant working memory site) or not in
consciousness (as in the connectivity of figure 1).

The architecture of figure 1, without the visual attention components men-
tioned above, was used in [11] to model the results of observational learning by
infants in a paradigm requiring a sequence of movements to open a hierarchy
of boxes contained in boxes. This was achieved in the simulation by the infant
performing a mental simulation of each stage of the box openings, and then per-
forming such action in reality. There was no need for use of the visual attention
components of the architecture of figure 1 since there was only one object in the
field of view and also there were only the simplest forms of internal models (the
FM and IMC). At no point was there need to filter out distracters, nor to allow
lateral spreading of activity in object maps in order to solve difficult problems
by analogy. How this latter feature of attention and its removal allow for creative
thinking will be considered in the next section.

3 The Mechanism of Conscious Attention in Thinking

We consider the architecture of figure 1 as supporting the process of thinking at
the two levels we described in the introduction: at conscious and at unconscious
levels. In order to switch between these levels it is necessary to consider in more
detail than heretofore the visual attention components in the architecture of
figure 1, especially the visual attention inverse model controller and the further
attention connections included in figure 1. It is through these, in concert with the
other modules already present and some additional ones to be mentioned, that
it will be possible to see how two levels of processing, conscious and unconscious,
will be possible with the architecture.

We described briefly in the previous section the manner in which visual ac-
tivity can be used as part of the motor control system. In addition, and as seen
from the architecture of figure 1, it is also possible to see how the position of
the Working Memory (visual state) module as sandwiched between the forward
and inverse models allows there to be consciousness of the set of visual states in
a mental simulation loop. Numerous neural models of consciousness have been
proposed ([11,2] and references therein), but few have used attention as the gate-
way to consciousness. One such model is the CODAM model ([9] and references
therein), where CODAM stands for Corollary Discharge of Attention Model; we
refer interested readers to that reference.
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We need now to consider how the visual states in a mental simulation loop can
be taken out of consciousness but yet be part of the mental simulation loop. This
can be achieved by the insertion of a switching device to allow output from the
forward model to avoid the Working Memory (visual state) module, so totally
avoid conscious report. This switching device is based on an error module, as
in the CODAM model of attention [9]; we propose it is part of the cingulate
activity in the brain.

The mechanism to achieve mental simulation at a non-conscious level is by
means of the connection lines in figure 1 described in the previous section, which
avoid the Working Memory (visual state) module:

1. The direct connection from the forward model to the inverse model. This en-
ables the inverse model to produce the next action to achieve the
sub-goal.

2. The direct connection from the visual state module to the forward model.
This will allow generation of the next state brought about by the new output
of the inverse model and the visual state.

3. Recurrent connection of the FM to itself if there is a sequence of virtual
states to be traversed.

Let us turn to the example mentioned in section 1, of giving unusual uses for an
object: we take a cardboard box as an example. We can say “As a hat” as one
such unusual use. That could arise from the flow of information in our brains:

Cardboard box (in picture or as words) → input processing → box nodes in
object map → hat nodes in object map (by learnt lateral connections) → hat
nodes in affordance map (by direct connections from the hat node in the object
map and by lateral connections from the box representation of affordances to
the hat representation there) → test of viability of putting on the box as a hat.

If the test of viability works, then the ‘putting on hat’ action becomes attended
to and there is report, either by putting on the box as a hat or saying “As a
hat”. If the box is too large to fit stably on our head then we put it on our head
and keep our hands on it to steady it; if the box is too small then we may desist
from saying it could be used as a hat, or try it on as a little ‘pillar box’ hat.

These various responses indicate that we try out subliminally what happens
if we try to put the box on our head, using the simulation loop. If successful and
the action is viable then we attend to it, and hence report it. If it is not we move
on to another subliminally-analysed use.

To achieve the subliminal processing stage as well as the final report there
must be an attention switch, generated as part of the IMC(visual), so that when
there is an attention control signal output there is normal transmission from the
forward and inverse models to their relevant working memory modules shown
in figure 1. When there is no attention then the mental simulation loop circuit
functions without the relevant working memory modules. It thus functions in a
subliminal or unconscious manner. There will need to be an extra module for
assessing the relevance of states achieved during this unconscious activation of
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the loop; that will be fed by the forward model in parallel with the self-recurrence
(or external running of the FM) and the signal to the inverse model. Given an
error-based output from this assessment module then its output would be used
to bring attention to the final state and the sequence of intermediate states
(assumedly not many) so as to attain the sub-goal more explicitly.

The reason for the presence of the switch itself is that of allowing the reason-
ing process to go ‘underground’ when an apparently insuperable obstacle is met
by the conscious reasoning system. This may be seen as part of the extended
reasoning system discussed, for example, in [1]. However such a switching pro-
cess plays a crucial role in the truly creative cognitive process. When a blockage
is met in ‘simpler’ logical reasoning then the attention control of processing has
to loosen its iron grip on what is allowed to follow what in the processing, with
increased reasoning and recall efficiency by subliminal-level processing. This fea-
ture is well known, for example, in answering quiz questions and solving puzzles
of a variety of sorts. So the switch into the subliminal mode may be achieved in
the case of quizzes or creative processes such as painting or other artistic acts
from the start of the search or creation process. In more general reasoning, the
creative and subliminal component need only be used at points where logic gives
out and more general ‘extended’ and creative reasoning has to step in.

In the case of our example of unusual uses of the cardboard box, the attention
switch is assumed to be turned off by the goal ‘unusual uses’, since we know that
going logically (and consciously) through a list of all possible uses of anything
will not get us there, nor any other logically-based search approach. We have
learnt that we need to speak ‘off the top of our head’, in an unattended manner.
So we can regard, in a simulation of this task, that we are not using attention
at all after the switch has turned it elsewhere, or reduced it to a very broad
focus.

From this point of view there may well be access by the internal models during
this creative phase to a considerable range of neural modules for memory of both
episodic and semantic form right across the cortex. The best approach to model
this would thus be to have these connections develop as part of earlier learning
processes, but such they can function initially in an attentive phase and then be
useable in a subliminal one. But the presence of the unattended learning of the
required lateral connections may also be possible and need to be considered.

4 Simulation Results for Unusual Uses of a Cardboard
Box

To simulate the paradigm involving imagining unusual uses of a cardboard box,
we emphasise certain aspects of the model described in section 1. In particular
we need to allow the use of lateral spreading with object and affordance codes
and look at the more specific effects of attention. We can see the architecture
of the model to be used here in figure 2 (as an extension of parts of figure 1 to
handle the switch between attended and unattended processing).
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Fig. 2. Simplified Brain-Based Architecture for Creativity: Solving the ‘Unusual Uses

Task’. The functions of the specific modules are specified in the text.

Here we explain the overall function of the specific modules used, giving details
as far as the scope of the paper permits:

Meta goal – The overall goal of the simulation is to find unusual uses of the
cardboard box. As part of this process, simple action/object goal pairs are cre-
ated, so we need to code both the overall goal of imagining unusual uses and the
immediate goals that are tested to see if they are unusual. We have not speci-
fied the immediate goals, since we are unclear if these are used in the creative,
unattended lateralisation processing. If the processing is automatic from the af-
fordance/action codes module to the action being taken, and then used by the
mental simulation loop, then no such immediate goals module is needed; that
is what has been used in our architecture and simulation. If needed it can be
included between the affordance codes and the mental simulation loop without
any expected change in the results we report below. The meta goal is coded as a
single dedicated node (with the possibility of adding more nodes for expansion,
either as a distributed representation or to include other meta goals.).

Object codes - Here objects are represented by single nodes. Lateral excitatory
connections between the nodes allow similar objects to be activated by this
spreading, in addition to visual stimulation. It is these lateral connections which
allow analogy.

Affordance codes - The affordance module contains nodes representing specific
affordant actions that can be used on objects (such as the action of opening a
box). These are primed by the object code module using pre-selected connections.

Mental simulation loop – In the full model shown in figure 1, the mental simu-
lation loop incorporates a forward model (FM), inverse model (IM) and buffer
working memories. In unattended mental simulation we suggest that these work-
ing memories are not active, such that activity passes straight between the FM
and IM. The forward model generates an expected result of carrying out the
action (these are pre-coded in this simplified model) while the inverse model
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determines the action necessary to achieve a suggested state. The function of
the mental simulation loop in this simulation is to test subliminally the pairs
of objects and affordances/actions generated by the lateral spreading to see if
they are considered “unusual”. If the use is considered unusual then attention is
brought back to the system. We have not included these working memory buffers
in figure 2.

Error monitor – The error monitor is needed to determine whether a given
object/action pair tested by the mental simulation loop has fulfilled the goal cri-
terion of being “unusual”. If this criterion is met, it then activates the attention
control module such that attention is restored to the goal of finding an unusual
use for the box. In this simulation the error monitor compares the selected ac-
tion result (passed on from the mental simulation loop) against an internally
maintained list of those considered novel.

Attention – Here we use a more specific property of the attention control sys-
tem than that used so far. In particular we now require the attention system
to control lateral spreading in both object and affordance modules by inhibition
of lateral connections. In our model, this occurs by output from the attention
module stimulating the inhibitory connections present in the object code mod-
ule. When attention is focussed, representations will be activated singly in each
region, while after the removal of attention activity can spread to similar repre-
sentations (we assume that the organisation of the module is such that similar
objects are laterally connected). How this attentional attenuation of lateral con-
nection takes place at the neurobiological level is indicated to some extent by
studies of visual attention [3,4]. We have not included the working memory
buffers, present in figure 1, in figure 2, so as to keep the architecture as simple
as possible, although they should be there; they play no direct role in our simple
simulation.

We can see the flow of activations of the simulation areas in the following
chart. Activation can be split into two phases, where the first activates the goal
of finding an unusual use and tries the action of opening the box which is found
not to be unusual. The second, after attention is relaxed, spreads activity such
that the extra object (the hat) and its affordances become involved.

The flow paths in the upper diagram carry attention-controlled processing.
That in the lower diagram have no attention focussed on them, so allowing more
lateral spreading between concepts, as shown in the first line of that flow.

We then simulate the model using a neural network simulation package de-
signed for simple timestep simulations and record the activations for key nodes
which we can then plot using a spreadsheet based graph tool. We look at acti-
vations of specific nodes from the model in the following figure 5.

Here we see that initially attention is active. Presentation of the box activates
the corresponding object representation – the action of opening. This pair of ob-
ject/action (open box) is tested by the mental simulation loop (see next figure 5).
This fails to achieve the overall goal of finding an unusual use of the box and the
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Fig. 3. The Information Flow during the Creative Act

Fig. 4. The Dynamical Activations of the Neurons Involved in the Simulation I, acti-

vation level is a percentage of maximum output

error monitor then turns off attention. This allows lateral spreading to activate
the hat object through lateral spreading from the box object. The hat object
then activates the affordant action of wearing.

Figure 5 gives the activation of the mental simulation area as well as the goal
and attention areas. We see two peaks in activation for the MS loop, the first
being when the object/action pair “open box” is considered and the second when
the pair “wear box” is tested. After this second pair is seen to achieve the goal,
attention is reactivated. This reactivation of attention allows reporting of the
goal achievement to occur, and also stabilises the representation of the selected
action and object by inhibiting the lateral spreading.
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Fig. 5. The Dynamical Activations of the Neurons Involved in the Simulation II, acti-

vation level is a percentage of maximum output

5 Conclusions

We have presented a complex architecture for mental simulation and more gen-
eral thinking. This latter, in figure 2, creates two levels of thinking. One is that
of conscious thought, whose sequential structure is strongly controlled by atten-
tion on goals and the sequences of mental states needed to arrive at them. The
other is at a subliminal level. The switch from one to the other was determined
in our model by an error processor, indicating that the goal was not directly
achievable by conscious or attention-based methods. The attention focus was
then switched elsewhere or to a broad focus, so that lateral spreading in concept
and other modules could be used to cause activations in the internal models
of the simulation loop so as to allow for a larger search process. This latter is
regarded as the basis of creativity. The specific example we developed (unusual
uses for a hat) used argument by analogy (through lateral spreading), which has
been argued for by some as basic to all creativity [7]. It is clearly so for surrealist
artists (consider Duchamp’s famous urinal, used unusually in an art gallery as
an exhibition), and can be seen to be so for a much broader range of creativity
in art and literature.

An important component in the success of such subliminal thinking is clearly
the size and storage capacity of the modules involved in the process. The larger
such sizes (developed through attention-controlled learning) then the more ef-
fective will be the creative process in attaining a solution to the task. This may
help explain why the various factors which have been explored for creativity by
such as the Torrance Creativity Tests (TTCT) [12], including fluency, flexibility,
adaptability and perseverance, appear to be correlated. These creativity metrics,
in our approach, are expected to be correlated, since they will depend on the
capacity of the network of modules most crucially involved in the creative act;
this network depends crucially on the subset involved in lateral spreading in an
attention-free manner.
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There are numerous open questions posed by this work. Firstly they involve
the details of the brain processes, as predicted by our model architecture (this
may be regarded as the ground truth of the model). Is the activation of cingulate
especially concerned with the switching process, and acting as an error moni-
tor? If it were then there should be a correlation between such activation and
the resulting spreading of activity in the object and affordance modules (tem-
poral lobe and tempero-parietal junction). There are further predictions made
by the model, such as the further on- or off- switches during such creative rea-
soning expected in parietal sites of the visual IMC for attention; these switches
would be expected to be absent in attention switching per se. Other than these
unanswered questions arising from the model there is considerable ground truth
supporting the underlying attention model of thinking of figure 1 [11] as well as
its extension to figure 2 (part of the cingulate as acting as an error corrector, for
example).

We make use of the concept of a “meta goal”, which is an overall goal (in
this case to find unusual objects) that relies on testing combinations of actions
and objects that also in some sense represent goals (such as “open box” or
“wear box”). How and where these different types of goal are coded is not fully
understood at present. It can be conjectured to arise from a hierarchy of self-
organising maps in prefrontal cortex, with the highest level corresponding to that
of meta-goals. Additionally, the mechanism by which removal of attention allows
lateral spreading of activation within object codes is unclear – while similar
mechanisms are known to exist for spatial attention this process takes place in a
higher level of representational space. With topography in the relevant concept
space, then removal of attention (acting in a topographic manner) would remove
inhibition of distracters, seen as nearby concepts; in this manner there would be
lateral spreading.

The way in which the lateral spreading might work also has significant ef-
fect on the types of creative reasoning possible. For example a small cardboard
box may be considered similar to a hat, while a large cardboard box is like
a car. However a car is unlike a hat, and two cardboard boxes are like each
other. Whether object coding contains both semantic and physical properties
and how factors such as object scale are coded is an interesting topic for further
research.

There are also many questions about the developmental aspects of the modules
of figures 1 and 2: are they learnt under attention or is there also unattended
learning occurring during visual processing? This could be tested by detecting
the ability of an infant to creatively handle a new object subliminally even
though it had only been exposed to it without any attention given to it. This
and numerous other questions are open and of interest to study.
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Appendix - Model Details

The model is implemented using a simple neural simulation programming
language.

Modules in the model contain graded nodes, the parameters of which are
described below. More complex modules (such as the IMC and FM) use dedicated
non neural processing structures. The dedicated nodes consist of graded neurons,
the membrane potential of which obeys the equation:

C
dV

dt
= gleak(V − Vleak) (1)

Where C is the capacitance of the neuron, gleak its leak conductance, Vleak its
equilibrium potential and I its input current. The output of these graded neurons
follows the form:

Iout =
Ibase

1 + e
V

Vscale

(2)



Mental Simulation, Attention and Creativity 53

Here Ibase and Vscale are constants controlling the maximum neuron output and
its scaling. Parameters have the following default values:

Table 1. Neuron Parameter Values

Parameter Value Units

C 25 nF
gleak 0.025 μS
Vleak -70 mV
Ibase 1 μA
Vscale 0.001 mV

Table 2. Neuron Connection Weights

Meta goal to Error monitor 0.5

Visual system to Object codes 1

Visual system to FM 1

Object codes (lateral spreading) 0.2

Object codes to Affordance codes 1

Object codes to MS loop 0.5

Affordance codes to MS loop 0.5

FM to IMC 1

IMC to FM 0.5

MS loop to Error monitor 0.5

Error monitor to Attention -1

Attention to Object codes lateral spreading -2

These parameter values are chosen to give suitable neuronal response times,
changing the parameters significantly would alter the timing response of the
neurons and prevent proper operation of the model.

Connections between modules are subject to the following weights (normalised
such that relative connection strengths are emphasised):

These connection strengths are chosen through testing the model through a
range of parameters. The values are important to within about 30%; beyond this
the simulation results change significantly.
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Abstract. At the ground of most brain computations may be minimal

abstract selectional machines (ASMs) implementing optimal algorithms

of recent binary signal detection theory (BSDT). Using the BSDT ASMs,

such fundamental cognitive notions as subjectivity and the meaning of

a message have already been defined mathematically. BSDT neural net-

work assembly memory model provides strict and biologically plausible

definition of optimal assembly memory units (AMUs, implementations of

ASMs) which may be considered as ‘atoms’ of consciousness (AOCs). The

idea of an AOC is here developed into an ‘atom’ of consciousness model

(AOCM) — a mathematical theory of consciousness. Neuronal computa-

tional structures leading to the emergence of subjective experience or a

‘quale’ (a formal solution of the ‘hard problem’ of consciousness) are pre-

sented as complex dynamical hierarchical associations of AMUs/AOCs

of infinite prehistory. Within the AOCM framework some cognitive phe-

nomena are explained and it has been demonstrated that unified and

modular biological models of consciousness are not antithetical.

Keywords: Neural networks, memory, semantic information, context,

binding, feeling, thinking, qualia, neural Darwinism, micro-consciousness.

1 Introduction

Human consciousness is now studied by natural sciences [1,2] and, as any natural
phenomenon, it demands to be described on a strict mathematical background
which, in spite of many efforts, is absent until now. The main obstacle is the in-
ability of available theories to introduce a mathematical definition of subjectivity
— fundamental human cognitive faculty to experience internal feelings, thoughts
and other private events available to the experiencing subject only (that is the
so-called ‘hard problem’ of consciousness [3]).

In present work, assuming that the brain is a selectional device [1], a model
of consciousness defined in mathematical terms — an ‘atom’ of consciousness
model (AOCM) — is built on the basis of recent binary signal detection theory
(BSDT, [4]), BSDT neural network assembly memory model (NNAMM, [5]) and
BSDT minimal abstract selectional machines (ASMs, [6]). ASM theory gives a
rigorous definition of subjectivity and, together with mentioned and other BSDT
results [7,8], underlies mathematically the AOCM discussed below.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 54–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 ASMs and AMUs/AOCs of the BSDT

The BSDT ([4] and references therein) defines in an N -dimensional binary vector
space 2N different N -dimensional binary vectors x with spin-like components
xi = ±1, reference vector x = x0 representing the information stored or that
should be stored in a neural network (NN), and noise x = xr. Vectors x(d) (x0
damaged to the damage degree, d) are introduced by using a ‘replacing’ coding
rule:

xi(d) =
{

xi
0 if ui = 0

xi
r if ui = 1 , d =

∑
ui/N, i = 1, . . . , N, (1)

where ui are marks, 0 or 1 (if ui = 1 then in x0 its ith component, xi
0, is

replaced by the ith component of noise, xi
r; otherwise xi

0 remains intact). If m is
the number of ui = 1 then d = m/N , 0 ≤ d ≤ 1; q = 1− d is a fraction of intact
components of x0 in x(d) or an intensity of cue, 0 ≤ q ≤ 1. As the total number
of vectors x(d) is 3N , each x can be presented by at least one of x(d) [4,8].

Binary data coded as described are decoded by a two-layer NN with N model
neurons in its entrance and exit layers. For perfectly learned intact NN storing
one reference pattern only, x0, its synapse matrix elements are wij = xi

0x
j
0 = ±1.

The NN’s input x = xin is decoded (x0 is identified in xin) successfully if it is
transformed into the NN’s output xout = x0 (such an xin is called successful
input, xsucc); additional ‘grandmother’ neuron checks this fact. If xout = x0,
xin is interpreted as x0 damaged by noise; otherwise as a sample of noise, xr.
BSDT NN decoding algorithm can also be presented in functionally equivalent
convolutional and Hamming distance forms each of which is optimal (the best)
in the sense of pattern recognition quality [4].

2.1 ASMs, Meaning, Subjectivity, Qualia and Awareness

ASM theory [6] applies the BSDT to optimal selections. The ASMs (minimal ab-
stract selectional machines) are hypercomplex super-Turing goal-specific learn-
able selectional devices whose properties are defined by their prehistories having
evolutionary and developmental components. ASM prehistory defines both the
ASM itself (complete process of its creation including causes, forces, rules, etc)
and the meaning of x0 selected by it, M(x0). M(x0) is the content of prehistory
of ASM selected the x0 and may be in either implicit, Mimpl(x0), or explicit,
Mexpl(x0), form. An ASM’s internal architecture, the set of its parameters, its
relations to the environment, etc in their primary intrinsic physical (material,
truly continuous, implicit) form constitute jointly the Mimpl(x0) which, due to its
objective material essence, is always true but never available outside the ASM.
In that sense, Mimpl(x0) is fundamentally subjective and may be interpreted as
a quale [1-3] of the x0 and all others xin = xsucc recognized as x0 by this ASM.
In other words, Mimpl(x0) is the prehistory recorded in the form of intrinsic
physical properties of the ASM selected the x0 and has no symbolic form even
in principle.

To communicate the Mimpl(x0) to a distant ASM, the ASM-sender has ini-
tially to transform its Mimpl(x0) into a symbolic form. The description obtained
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is explicit meaning of x0, Mexpl(x0), that can already be available for an ASM-
receiver. Because separate ASMs have no tools to watch themselves, without
help they cannot read out their own physical states in order to translate their
implicit meanings into an explicit (symbolic/sign) form. For this reason, ASMs
can exchange by symbolic information if they are inherent parts of an ASM soci-
ety1 — a set of interacting ASMs equipped additionally by sensory and executive
devices [6]. As ASM prehistory spans infinitely back in time [6], Mexpl(x0) (its
complete text written by using, e.g., −1s and +1s) has in general infinite2 length
or Kolmogorov complexity [9] and, consequently, cannot be communicated.

This paradox can be solved supposing that all ASMs share common initial
parts of their prehistories interpreted as their common context (or semantic
cue, c) of infinite length: Mexpl(x0) = x0 + c where ‘+’ means an adjunction
of strings (in Kolmogorov complexity theory, x0 and c are called prefix and
cylinder [9, p.13-14]). If for the ASM-sender (ASMi) and ASM-receiver (ASMj)
their meanings are respectively Mexpl(x0)i = x0 + ci and Mexpl(x0)j = x0 + cj

then their ‘difference,’ excluding common infinite initial parts of ci and cj , is
ΔMexpl(x0)ij = |ci−cj| = Δcij . The smaller the Δcij , the greater the similarity3

between ASMi and ASMj is; for ASMs of the same category, Δcij = 0. For
correct decoding (‘understanding’) the Mexpl(x0)i by ASMj , given their common
infinite context, it is enough to have a finite amount, x0+Δcij , of bits of semantic
information. Hence, for communicated ASMs, it is their common context that
makes possible conventional computations over infinite strings Mexpl(x0).

Cosmological models predict that total number of bits available in the universe
has to be either ∼ 10120-10122 or infinity [10]. All extant life on the Earth has
a universal ancestor — the basis of the universal phylogenetic tree [11]. The
later the tree’s peripheral branching occurs, the longer the common evolution
prehistory of related animal species is and the shorter their individual evolution
stories are. These findings support assumptions on both the one-side infinity of
Mexpl(x0) and the identity of initial infinite parts of Mexpl(x0), for respective
ASMs, in animals of cognate species.

Passive ASMs are devoted to a routine feedforward classification of their in-
puts, xin. Active ASMs are designed to search, among their inputs xin, successful
ones, xsucc, corresponding to a given x0. An active ASM runs in a cyclic manner
while an xsucc will be found or while the number of consecutive failure attempts
achieves a limit defined beforehand. In latter case, active ASM requests for an
explicit advice from ASM society whether or not to continue the search [6].

1 The size of ASM society, though not specified here, must be larger than a threshold.
2 Finite-length Mexpl(x0) may represent pure mathematics. In this special case,

Mexpl(x0) has no corresponding Mimpl(x0) and defines e.g. a calculus’ vocabulary,

axioms, formation and inference rules and, as a result, its meaningless signs and

mathematical truths [13]. They become meaningful when the calculus will be em-

bedded into a real-world model whose meaning, as the meaning of any real-world

notion, is specified by its Mimpl(x0) and/or by its Mexpl(x0) of already infinite length.
3 In algorithmic/Kolmogorov complexity theory, similarity is defined in another way —

as the length of the shortest algorithm for transforming the comparing strings one

into the other [9].
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Operating over qualia, Mimpl(x0), or/and over end-side finite fractions, x0+Δcij ,
of infinite meaningful strings Mexmpl(x0) that have common infinite initial parts
(context), ASM society generates the required advice. We interpret this essen-
tially nontrivial act as an act of awareness of the meaning of x0, M(x0), in an
‘aha moment’ [12]; otherwise M(x0) remains unconscious.

2.2 AMUs/AOCs for Memory and Consciousness

The NNAMM [4,5] applies the BSDT to solving memory-related problems. Ac-
cording to it, a cell assembly or a cell ‘coalition’ [2], responding to a perceptual
stimulus and corresponding to a particular AMU, is allocated and activated by
a dynamic spatiotemporal synchrony mechanism. This AMU (assembly mem-
ory unit, it stores an x0) is associated with AMUs representing other elements
of this stimulus, they may in turn be associated with AMUs representing fea-
tures/attributes of these elements, etc (in such a way a hierarchy of overlapping
AMUs is built, (2) and Fig. 1). The NNAMM implies also a specific stage of
memory running — memory activation — when target AMU is allocated and
activated together with AMUs connected to it (they constitute its contextual
surround, ‘fringe’ or ‘penumbra’ [2]). Target AMU is an AMU responding to
focal stimulus/feature — stimulus in the focus of attention. If it is activated
then other AMUs closely associated with it are also activated. Within particular
set of interacting AMUs, constituting working, ‘fleeting’ or ‘iconic’ memory, the
trace x0 from one AMU may be used as a cue by another one.

Each BSDT AMU is constructed as specific to its memory trace complicated
hierarchy of BSDT universal NN units (UNNUs) [5,7]. The hierarchy’s lower-
level UNNUs and its apex UNNU are real-neuron implementations of passive
and active ASMs, respectively; each of them is learned to remember its specific
reference pattern x0 and is feeding by vectors xin produced, in a feedforward fash-
ion, by lower-level UNNUs for higher-level ones. Thus, particular AMU stores
its memory item in a semi-representational way: as representational code x0
remembered in an apex UNNU and, simultaneously, as specific to this memory
record hierarchy of learned UNNUs generating, for the apex UNNU, its inputs
xin from continuous input sensory signals. We refer to particular AMU or its
complete learned UNNU-hierarchy as a neural subspace [7] which is an imple-
mentation of a partial ASM society. The whole memory (neural space), a set of
interactive AMUs understanding as their complete hierarchies of UNNUs, is a
counterpart to the whole ASM society.

In an AMU, its low-level UNNUs run routinely and meanings of their x0
never become conscious. But its apex UNNU (and, consequently, its complete
hierarchy) cannot run without advices from ASM/AMU society and every time,
when the AMU requests for such an advice, the meaning of its x0 becomes
aware (conscious). For this reason, any AMU may be interpreted as an ‘atom’
of consciousness (AOC) [5] where ‘atom’ means ‘the smallest entity having that
(emergent) property.’ An AMU/AOC is a brain-scale object because its most
probable biological implementation includes, though widely distributed but in-
dividually specified, neural circuits related to the cortex (e.g., here the networks
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housing NN memories themselves may be stored [5]) and brain subcortical areas
(e.g., thalamus, serving as an ASM’s N -channel scanner [6], or hippocampus and
amygdala where ’grandmother’ neurons may be placed [7]). It is important that
in the construction of real AMUs/AOCs (their hierarchies of UNNUs) not only
the brain but also body peripheral neural circuits, serving senses and motion,
may be involved. That is one of the reasons why BSDT AOC idea is consistent
with popular concept of embodied cognition [14].

AMU is an implementation of ASMs for solving memory-related problems,
AOC is an AMU applied to solving consciousness-related problems. Hence, in
relevant context, these terms can next be used either differently or as synonyms.

3 Dynamic Hierarchical Associations of AMUs/AOCs

Let AMU is a real-brain assembly memory unit in its primary physical form
while the same in italic, AMU , is its complete symbolic description: AMU =
Mexpl(x0). In further equations (including Sect. 5) we shall use AMU and
Mexpl(x0) because, as any other formulae, these ones can have a sign form while
AMU implicit meaning, Mimpl(x0), has not. Thus, AMUi is, though of infinite
length but complete, symbolic description of an AMUi representing a working,
‘fleeting’ or ‘iconic’ memory for a scene/stimulus at the ith instant. The AMUi

in its active state is
AMUi = AMU t

i +
∑
j �=t

AMU j
i , (2)

where AMU j
i (j = 1, ..., J) represents the jth feature/attribute of the ith scene

and J is the number of these features. Equation (2) defines also an AMU hier-
archy (cf. Fig. 1) where AMUi and AMU j

i correspond to a higher-level (apex
or dominant) AMU and to one of its lower-level AMUs, respectively (dominant
AMU defines its relation to lower-level AMUs and their relations to each other).
The sign ‘=’ means ‘includes dominant AMU and,’ the sign ‘+’ means ‘associa-
tions with dominant and other AMUs.’ In words: an active memory state with
the dominant AMUi includes AMUi itself and J memories AMU j

i interacting
with the AMUi and each other with strengths that are not specified so far.
Each AMU j

i could in turn be written as AMU j
i =

∑
AMU jk

i where an AMU jk
i

(k = 1, ..., K) is the kth feature of the AMU j
i , each AMU jk

i could in turn be
written as AMU jk

i =
∑

AMU jkl
i where an AMU jkl

i (l = 1, ..., L) is the lth
feature of the AMU jk

i and so forth. The depth of hierarchy (maximal number of
AMU upper indices) and the size of it (total number of AMUs constituting it)
are not limited in theory; in practice, AMUs with small activities are excluded
from the consideration. For the depth and the size of a hierarchy, 3-5 useful
levels [15] and magical short-term memory capacity for 4 or 7±2 items [16] may
respectively be considered as their empirical upper limits. In right-hand side of
(2), AMU t

i and separate ‘sum’ of AMUs are respectively focal AMU and its
context or ‘fringe.’ For an acute attentive state, activation degree of the AMU t

i

(target AMU) is larger than that for its ‘fringe’; for a diffuse attentive state,
activities of constituting it AMUs have rather similar values.
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Fig. 1. An AMU/AOC hierarchy representing a percept of an entire scene and its mi-

crogenesis [17]; two unspecified modalities are taken into account. Circles, dominant

AMUs specified on the right (their UNNU hierarchies are not shown); numbers inside

the circles, superscripts designating the AMUs; empty circle, dominant AMU of the

scene; shadowed circle, focal AMU (AMU21
i , here the scene’s dominant AMU and focal

AMU are not coincide). For Modality 1, rectangles encompass subhierarchies dynam-

ically synchronized during time periods indicated in their left-hand top corners (the

subhierarchy’s dominant AMU and the time of its binding share their indices); binding

periods for particular subhierarchies are related on the top (this relation shed also light

on progressive microgenesis [17] of the AMU hierarchy — time asynchrony of neural

activity leading to the emergence of unconscious percept of entire scene from uncon-

scious percepts of its parts); Ti, the scene’s time of binding or psychological refractory
period [18]; as locations of circles 1 and 32 are ambiguous, their synchronization pe-

riods, T 1
i and T 32

i , may be from ranges T jkl
i ≤ T 1

i ≤ T j
i and T jkl

i ≤ T 32
i ≤ T jk

i ,

respectively (circles 1 and 32 are actually shown at their lowest and highest possible

levels). Bidirectional arrows connect higher-level AMUs (left-hand side of (2)) with

lower-level AMUs (right-hand side of (2)) and reflect recurrent processing of sensory

signals, e.g. [19]. For the hierarchy presented, fractal-like ‘sum’ of its AMUs is as follows

(for a given level of the hierarchy, the signs ‘=’ are typed with a fixed indention):

AMUi = AMU1
i + AMU2

i + AMU3
i ,

AMU2
i = AMU21

i + AMU22
i + AMU23

i ,
AMU3

i = AMU31
i + AMU32

i + AMU33
i ,

AMU21
i = AMU211

i + AMU212
i ,

AMU22
i = AMU232

i ,
AMU23

i = AMU231
i + AMU232

i + AMU233
i ,

AMU31
i = AMU23

i ,
AMU33

i = AMU331
i + AMU332

i + AMU333
i ,

AMU212
i = AMU231

i .
AMUs are fed by bottom-up signals (from sense organs, upward arrows) and top-down

signals (from higher-order brain areas, downward arrows) though the whole hierarchy

is mainly built in bottom-up direction. The tight relations between memory and con-

sciousness (i.e., AOC = AMU) reflect the intentionality [1] of consciousness (i.e., that

consciousness is in general about objects or events); memory and attention systems,

though distinct, are rather common.
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Equation (2) demonstrates that BSDT memories, at all levels of their hier-
archies, are functionally and structurally self-similar or fractal-like. In (2), de-
spite its final form, there is a content (reflecting, e.g., a machinery generating
AMUs/AOCs) cannot be understood within the BSDT because it is devoted to
discrete signal processing only and all extremely rich wave processes, responsi-
ble e.g. for the synchronization of patterns of neural activity, remain beyond its
scope [8]. Analogous/continuous signals, which are well suited for transferring
information along rigidly defined/hardwired pathways, BSDT takes into account
implicitly; explicitly it deals with symbolic, spike-based signaling, which is bet-
ter if in a system (e.g., the brain) permanent redirection of information flows is
required to respond to permanently changing environment.

Almost everything we said of AMUs concerns AOCs including their biological
ground, structure and even the magic number of simultaneously aware stimuli. If
in (2) to supersede all AMUs by respective AOCs then it will describe a percept
of a stimulus/scene and its attributes to be aware (see Fig. 1 for some details).

4 The ‘Hard Problem’ and Complex Scene Awareness

We follow the view [1] according to which a theory has only to explain (not to
reproduce) subjective phenomena. Our consideration is also constrained to pri-
mary (sensory) consciousness [1]. Higher-order consciousness is in general outside
of the story.

Figure 1 shows at a given moment a dynamically constructed AMU/AOC hi-
erarchy for the percept of a complex scene consisting of some elements or features
represented by their AMU subhierarchies. Each AMU is connected to its specific
UNNU hierarchy either directly or through its lower-level AMUs. Generation of
apex AMU inputs, xin, is time-consuming; the time required depends on sense
organ and particular UNNU hierarchy. Dominant AMU of each (sub)hierarchy
receives its inputs after a time period needed for the binding of their lower-level
AMUs taken together with their UNNU hierarchies. This progressive specifica-
tion and stabilization of the scene’s percept is known as microgenesis [17] (see
also Sect. 5.2). The scene’s AMU hierarchy is created for Ti ∼ 250-500 ms (that
is psychological refractory period [18]). During the Ti, parameters of AMU hier-
archy of interest are tuned to current pattern of sensory signals for processing it
routinely. If this pattern (the scene or its viewpoint) changes then, for the new
one, previous parameter tuning becomes inappropriate, all attempts to recognize
new pattern with old parameter tuning end in failure, the scene’s dominant AMU
requests for AMU society advice and previous scene’s unconscious quale becomes
conscious (see Sects. 2.1, 2.2) while the AMU hierarchy is tuning to new pattern
of activity. New sensory pattern (scene, its quale) becomes conscious when it
will be replaced by the next one, etc. Hence, the scene’s feeling/quale gradually
emerges before and independently of the act of its awareness.

As the meaning of x0 selected/recalled/recognized by the scene’s AMU is
defined as a process of selection, perceptual memory trace x0 is jointly specified
by all consistently activated links of the chain ‘sense organ – sensory pathways
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(UNNU hierarchy) – their apex AMU storing the x0.’ This structure and its
ongoing activity lead to the emergence of unconscious feeling or quale of the
current x0-specific sensory input (e.g., the feeling of the color red, Mimpl(x0)).
Unconscious quale of the scene (which may then become conscious, see above) is
hierarchically constructed of unconscious qualia of its components (Fig. 1) in the
process of implicit (with no appeal to AMU/AOC society) perceptual thinking
implying that all qualia are from a very-high-dimensional qualia space [1].

If perceptual chain is disrupted then its vivid quale disappears/mitigates but
neural activity of the chain’s last link, apex AMU, can be interpreted as an
abstract thought of this quale which can also be generated by top-down signals,
without any activity in sensory pathways. A thought of x0 could participate in
(serial/logical) associations with other (abstract) thoughts or in the process of
abstract (‘higher order’) thinking.

Additionally to thalamocortical (and cortico-thalamo-cortical) activity needed
for running each AMU, feeling (a counterpart to phenomenal, verbally unre-
portable, consciousness [20]) requires the activity in sensory pathways while ab-
stract thinking (a counterpart to access, verbally reportable, consciousness [20])
does not. These two patterns of neural activity may correspond to two hypo-
thetical patterns of neural correlates of consciousness (NCC), phenomenal NCC
and access NCC [20], and may respectively substantiate implicit (automatic)
and explicit (voluntary controlled) styles of learning, memory and behavior.

5 The AOCM and Other Consciousness Theories

5.1 AOCM and Unified Models of Consciousness

One of central ideas of popular theory of neuronal group selection (TNGS or neu-
ral Darwinism) is dynamic core hypothesis [1]. The dynamic core is a temporally
ordered, serial and changeable process of neuron brain activity underlying a per-
son’s conscious experience. Current dynamic core pattern or functional cluster
is associated with a current conscious state from a repertoire [1,21] of such pos-
sible states which is ‘as large as one’s experience and imagination.’ Functional
cluster is an instant implementation of the dynamic core and in that sense they
are equivalent at a moment (during the Ti, cf. Fig. 1). Each functional cluster
consists in turn of many neuronal groups which ‘are more strongly interactive
among themselves than with the rest of the brain.’ Their interaction ‘is achieved
through the process of reentry — the ongoing, reversal, highly paralleled signal-
ing within and among brain areas’ [21].

By analogy with Sect. 3 and (2), we can write FCi =
∑

NGj
i where at the

ith time moment FCi and NGj
i are infinite symbolic descriptions of the ith

functional cluster and the jth neuronal group of the FCi, respectively (dynamic
core is a sequence of FCi). This equation reflects also other suggestion of the
TNGS: within a short time period the distributive neuronal processes underly-
ing the unified consciousness are highly differentiated (represented by different
rather separate neuronal groups and functional clusters) and, simultaneously,
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highly integrated (neuronal groups are strongly interactive among themselves
constituting the current functional cluster).

If to posit additionally that functional clusters and their neuronal groups are
structurally and functionally similar organized (i.e., the forms of their formal
sign representations are equivalent, FC = NG; this assumption is absent from
the TNGS and makes up our expanded TNGS), then the analogy between the
AOCM and the (expanded) TNGS becomes practically complete and we could
believe that FC = NG = AOC. If it is, then (cf. (2))

FCi = FCt
i +

∑
j �=t

FCj
i , NGi = NGt

i +
∑
j �=t

NGj
i , FCi = NGt

i +
∑
j �=t

NGj
i , (3)

where FCt
i (or NGt

i) represents the scene’s ‘target’ or focal functional cluster
(or neuronal group) while separate sum represents its context or ‘fringe.’

The AOCM and the TNGS share also the assumption on the role, for con-
sciousness, of evolution and development, of brain thalamocortical system, of
synchrony and memory. Unlike the TNGS, the AOCM allows the existence of
‘grandmother’ neurons.

5.2 AOCM and Modular Models of Consciousness

The idea of modularity of consciousness was inspired by neurophysiological and
neurological data, highlighting multiple spatially separate and functionally dif-
ferent brain areas for processing perceptual inputs of different modalities or sub-
modalities, and by psychophysical experiments, revealing a temporal asynchrony
in perceiving different visual scene attributes. Additionally, ‘activation of spe-
cific neural regions might not only correlate with specific perceptual experiences
but could be sufficient to cause them’ [23] or ‘processing sites are simultaneously
perceptual sites’ [22].

It is supposed [22], perceptions of separate attributes (their micro-conscious-
nesses) appear in brain modules processing respective sensory data. They are
distributed in time and space and organized hierarchically because submodalities
differ in their processing times. Macro-consciousness is introduced for binding the
micro-consciousnesses. Unified consciousness is hypothesized as consciousness of
‘a perceiving person,’ it is consciousness of micro- and macro-consciousnesses
and ‘requires communication with others and, especially, the use of language.’

By analogy with Sect. 3 and (2), at the ith time moment, Ti, we can write
MCi =

∑
mCj

i where MCi and mCj
i are the ith macro-consciousness and the

jth micro-consciousness of the MCi, respectively; the sum reflects the binding
of micro-consciousnesses into a macro-consciousness. In this case Ti is explicitly
treated as consisting of the ijth time periods, T j

i , distributed according to their
temporal hierarchy (Fig. 1) and representing time intervals needed to perceive
the scene’s separate ijth attributes.

If to posit additionally that macro-consciousnesses and their micro-conscious-
nesses are structurally and functionally similar organized (i.e., the forms of their
formal symbolic descriptions are equivalent, mC = MC; this assumption is
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absent from original micro-consciousness theory and makes up its expanded ver-
sion we introduce) then the analogy between the AOCM and (expanded) micro-
consciousness theory becomes practically complete and we could believe that
mC = MC = AOC. If it is, then (cf. (2))

MCi = MCt
i +

∑
j �=t

MCj
i , mCi = mCt

i +
∑
j �=t

mCj
i , MCi = mCt

i +
∑
j �=t

mCj
i , (4)

where MCt
i (or mCt

i ) represents the scene’s ‘target’ or focal macro- (or micro-)
consciousness while separate sum represents its context or ‘fringe.’

The micro-consciousness theory’s three-level hierarchy is consistent with the
AOCM if to accept the upper limits (see Sect. 3) for the number of hierarchical
levels, 3-5 [15], and working memory capacity, 4 or 7±2 [16]. The AOCM implies
(Sect. 4) the binding of unconscious qualia of the scene’s attributes into its entire
unconscious quale which may then become conscious. The micro-consciousness
theory assumes conversely that conscious quale of a scene is produced by the
binding of already conscious qualia of its attributes (that is a ‘post-conscious’
binding [22]). This confusion disappears if to remember that the AOCM predicts
directly (see Fig. 1) a temporal asynchrony in perceiving different the scene’s
attributes in experiments designed [22] to separately observe these attributes by
compulsory disrupting the entire scene percept’s microgenesis.

Thus, expanded TNGS (Sect. 5.1) and expanded micro-consciousness the-
ory (Sect. 5.2) are practically equivalent in the sense of their formal structural,
functional and computational organization. Of this, taking into account that the
former and the latter are respectively unified and modular models, follows that,
in contrast to [21], they and their original versions are actually not antithetical.
Fractal-like self-similarity of these theories says that in the brain there is no
higher-order executive system or ‘homunculus’ (but see [2]).

6 Conclusion

On the basis of BSDT formal definition of subjectivity, and without any appeal
to non-physical or unknown physical forces, a biologically plausible mathemati-
cal theory of consciousness — an ‘atom’ of consciousness model (AOCM) — has
been introduced and a solution of the ‘hard problem’ of consciousness has been
proposed. Within the AOCM, the unity and possible modularity of consciousness
as well as some particular cognitive phenomena are explained. Simple compu-
tational examples providing, e.g., performance of conscious face recognition can
be found in ref. 7.
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13. Nagel, E., Newman, J.R.: Gödel’s Proof, rev. edn. New York Uni. Press, New York

(2001)

14. Clark, A.: Supersizing the Mind. Oxford Uni. Press, Oxford (2008)

15. Ullman, S.: Object Recognition and Segmentation by a Fragment-based Hierarchy.

Trends Cogn. Sci. 11, 58–64 (2007)

16. Glassman, R.B.: Topology and Graph Theory Applied to Cortical Anatomy May

Help Explain Working Memory Capacity for Four or Three Simultaneous Items.

Brain Res. Bull. 60, 25–42 (2003)

17. Bachmann, T.: Microgenetic Approach to the Cognitive Mind. John Bendjamins

Publ., Amsterdam (2000)

18. Pashler, H.: Dual-Task Interference in Simple Tasks: Data and Theory. Psych.

Bull. 116, 220–244 (1994)

19. Lamme, V., Roelfsema, P.: The Distinct Models of Vision Offered by Feedforward

and Recurrent Processing. Trends Neurosci. 23, 571–579 (2000)

20. Block, N.: Two Neural Correlates of Consciousness. Trends Cogn. Sci. 9, 46–52

(2005)

21. Tononi, G., Edelman, G.M.: Consciousness and Complexity. Science 282,

1846–1851 (1998)

22. Zeki, S.: The Disunity of Consciousness. Trends Cogn. Sci. 7, 214–218 (2003)

23. Cooney, J.W., Gazzaniga, M.S.: Neurological Disorders and the Structure of Hu-

man Consciousness. Trends Cogn. Sci. 7, 161–165 (2003)



Generalized Simulated Annealing and Memory
Functioning in Psychopathology

Roseli S. Wedemann1, Luı́s Alfredo V. de Carvalho2, and Raul Donangelo3
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Abstract. We compare the use of Generalized Simulated Annealing (GSA) to
the traditional Boltzmann Machine (BM), to model memory functioning, in a
neural network model that describes conscious and unconscious processes in-
volved in neurosis, which we proposed in earlier work. Modules corresponding
to sensorial and symbolic memories interact, representing unconscious and con-
scious mental activity. We previously developed an algorithm, based on known
microscopic mechanisms that control synaptic properties, and showed that the
network self-organizes to a hierarchical, clustered structure. Some properties of
the complex networks which result from this self-organization indicate that the
use of GSA may be more appropriate than the BM, to model memory access
mechanisms. We illustrate the model with simulations.

1 Introduction

Freud observed that neurotic patients systematically repeated symptoms in the form of
ideas and impulses and called this tendency a compulsion to repeat [1], which he related
to repressed or traumatic memory traces [2]. These traumatic and repressed memories
are knowledge which is present in the subject, but which is not accessible to him through
symbolical representation. It forms the unconscious mind and as it cannot be expressed
symbolically, it does so through other body response mechanisms, in the form of neu-
rotic (unconscious) symptoms, similar to reflexes. With the term symbolic expression
we refer to the association of symbols to meaning as in language and also other nonlin-
guistic forms of expressing thought and emotions, such as artistic representations (e.g., a
painting or musical composition) and remembrance of dreams. Neurotics have obtained
relief and cure of painful symptoms through a psychoanalytic method called working-
through, which aims at developing knowledge regarding the symptoms by accessing
unconscious memories and understanding and changing the analysand’s compulsion to
repeat [1]. It involves mainly analyzing free associative talking, symptoms, parapraxes
(slips of the tongue and pen, misreading, forgetting, etc.), dreams and also that which
is acted out in transference.
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We have described a model in [3,4,5], where we proposed that the neuroses mani-
fest themselves as an associative memory process, where the network returns a stored
pattern when it is shown another input pattern sufficiently similar to the stored one
[6]. We modeled the compulsion to repeat neurotic symptoms by supposing that such
a symptom is acted when the subject is presented with a stimulus which resembles a
repressed or traumatic memory trace. The stimulus causes a stabilization of the neural
net onto a minimal energy state, corresponding to the memory trace that synthesizes
the original repressed experience, which in turn generates a neurotic response (an act).
The neurotic act is not a result of the stimulus as a new situation but a response to the
repressed memory trace. We mapped the linguistic, symbolic, associative process in-
volved in psychoanalytic working-through into a corresponding process of reinforcing
synapses among memory traces in the brain.

These connections should involve declarative memory, leading to at least partial
transformation of repressed memory to consciousness. This has a relation to the impor-
tance of language in psychoanalytic sessions and the idea that unconscious memories
are those that cannot be expressed symbolically. A model emphasizing brain mecha-
nisms for attention, which is essential for conscious activity and which we have not
modeled, is discussed in [7]. We propose that as the analysand symbolically elaborates
manifestations of unconscious material through transference in psychoanalysis, he re-
configures the topology of his neural net, by creating new connections and reinforcing
or inhibiting older ones. The network topology which results from this reconfiguration
process will stabilize onto new energy minima, associated with new acts.

Memory functioning was originally modeled by a Boltzmann Machine (BM). How-
ever, the power-law and generalized q-exponential behavior we have found, for the
node-degree distributions of the network topologies generated by our model, indicate
that they may not be well described by Boltzmann-Gibbs (BG) statistical mechanics,
but rather by Nonextensive Statistical Mechanics (NSM) [8,9,10]. We have thus mod-
eled memory by a generalization of the BM called Generalized Simulated Annealing
(GSA) [9]. In GSA, the probability distribution of the system’s microscopic configura-
tions is not the BG distribution, assumed in the BM, and this should affect the chain of
associations of ideas which we are modeling.

We review in Section 2 the main features of our associative memory model for the
neuroses. In Section 3, we discuss the use of the BM and GSA as memory access
mechanisms and in Section 4, we show computer simulation results with properties of
these mechanisms. We then draw some conclusions and perspectives for future work.

2 Hierarchical Memory Model for the Neuroses

We proposed a memory organization [4,5], where neurons belong to two hierarchically
structured modules corresponding to sensorial and symbolic memories (see Fig. 1).
Traces stored in sensorial memory represent mental images of stimuli received by sen-
sory receptors. Symbolic memory stores higher level representations of traces in sen-
sorial memory, i.e. symbols, and represents brain structures associated with symbolic
processing, language and consciousness. Sensorial and symbolic memories interact,
producing unconscious and conscious mental activity. If the retrieval of a sensorial
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Fig. 1. Memory modules which represent storage of sensorial input and symbolic representations,
and also memory traces which can or cannot become conscious

memory trace can activate retrieval of a pattern in symbolic memory, it can become
conscious. We refer to the work of Edelman [11] for a neurophysiological discussion of
these issues.

Memory functioning was initially modeled in [3,4,5] by a BM with N neurons,
where node states take binary values and connections have symmetrical weights [6]
wij = wji. The states Si of the units ni, take binary output values in {0, 1}. Because
of the symmetry of the connections, there is an energy functional

H({Si}) = −1
2

∑
ij

wijSiSj , (1)

which allows us to define the BG distribution function for network states

PBG({Si}) = exp
[
−H({Si})

T

]
/
∑
{Si}

exp
[
−H({Si})

T

]
, (2)

where T is the network temperature parameter. The corresponding transition probability
(acceptance probability) from state S ≡ {Si} to S′, if H(S′) ≥ H(S), is given by

PBG(S → S′) = exp
[
H(S)−H(S′)

T

]
. (3)

Pattern retrieval on the net is achieved by a standard simulated annealing process, in
which T is gradually lowered by a factor α, according to the BG distribution, given by
Eq. (2). A detailed treatment of the BM may be found in [6].

Brain neural topology is structured by cooperative and competitive mechanisms, con-
trolled by neurosubstances, where neurons interact mainly with nearby neighbors, hav-
ing fewer long-range synaptic connections to distant neurons [11,12]. This is started and



68 R.S. Wedemann, L.A.V. de Carvalho, and R. Donangelo

controlled by environmental stimulation and is the process whereby the environment
represents itself in the brain. We thus summarize the clustering algorithm we developed
based on these mechanisms [4,5] to model the self-organizing process which results in
a structured, clustered topology of each memory module. In Step 1, neurons are uni-
formly distributed in a bi-dimensional square sheet. In Step 2, we assume a Gaussian
approximation for the numerical solution of the diffusion equation of neural substances
that control neural competition and cooperation. A synapse is allocated to connect two
neurons ni and nj , according to a Gaussian probability distribution Pij of the distance
that separates the pair, with standard deviation σ. A synapse connecting ni to nj has
strength proportional to Pij and weights are symmetrical. Step 3 clusterizes neurons in
the memory sheets, based on mechanisms for forming cortical maps [4,5,6,13], where a
group of neurons spatially close to each other represents a sensorial stimulus or an idea.
Step 4 regulates synaptic intensities by strengthening synapses within a cluster and
reducing synaptic strength between clusters, disconnecting them. Neurons that have re-
ceived stronger sensorial stimulation and are more strongly connected, stimulate their
neighborhoods and promote still stronger connections.

We represent the association of ideas or symbols (such as in culture and language)
by long-range synapses, which should connect clusters by considering the basic Heb-
bian learning mechanism [6,11,12], where synaptic growth between two neurons is pro-
moted by simultaneous stimulation of the pair. Since we are still not aware of synaptic
distributions which result in such topologies, as a first approximation, we allocated
synapses randomly among clusters. If the synapse connects clusters in different mem-
ory sheets (sensorial and symbolic memories), its randomly chosen weight is multiplied
by a real number ζ in the interval (0, 1], reflecting the fact that, in neurotic patterns, sen-
sorial information is weakly accessible to consciousness, i.e. repressed.

A full description of the algorithms in the model, with memory storage and retrieval
and working-through simulation, can be found in [3,4,5].

3 Generalized Simulated Annealing

In neural network modeling, temperature is inspired from the fact that real neurons fire
with variable strength, and there are delays in synapses, random fluctuations from the
release of neurotransmitters, and so on. These are effects that we can loosely think of
as noise [6,12], and we may thus consider that temperature in BMs controls noise. In
our model, temperature allows associativity among memory configurations, lowering
synaptic inhibition, in an analogy with the idea that freely talking in analytic sessions
and stimulation from the analyst lower resistances and allow greater associativity.

The BM differs from a gradient descent minimization scheme, in that it allows the
system to change state with an increase in energy, depending on the temperature value,
according to Eq. (3). The Boltzmann distribution function favors changes of states with
small increases in energy, so that the machine will strongly prefer visiting state space
in a nearby energy neighborhood from the starting point.

The topologies we have generated with the algorithm reviewed in Section 2 are hi-
erarchically clustered [5], containing synapses that connect neurons that are nearest
neighbors in spatial coordinates, and also long-range synapses. In Fig. 2 [14], we show
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the average node degree (k) distributions for 10000 different initial topologies, gener-
ated with the clustering algorithm [4,5], for different values of N , such that Nsens =
Nsymb = N/2 of them belong to sensorial and symbolic memories respectively and
σ = 0.58. Other model parameters are also described in [4,5].

Figure 2 shows an asymptotic power-law behavior with exponent γ ≈ −3.2, which
indicates scale independence [10]. It is known that random graphs follow the Poisson
distribution of node degrees [10]. For N = 4000, the deviation from the fit by the Pois-
son distribution, Pλ(k) = λk exp(−λ)/k!, for k > 10 is quite evident. The deviation
from Poisson for higher values of k may be attributed to the cooperative-competitive
biological mechanisms mentioned earlier, which introduce structure. Smaller values
of k correspond to neurons that did not participate significantly in the competition-
cooperation process and hence, distributions for small k are approximately fitted by
Poisson forms.

Figure 2 also shows a fit by a generalization of the q-exponential function [10,15]
given by

Pq(k) = p0k
δ 1[

1− τ
μ + τ

μe(q−1)μk
] 1

q−1
, (4)

where p0, δ, τ, μ and q are additional adjustable parameters. The curves indicate that
asymptotically, the power-law and generalized q-exponential fits are appropriate, with
q ≈ 1.113. This is a common feature of many biological systems and indicates that they
may not be well described by BG statistical mechanics [16].

There is no theoretical indication of the exact relation between network topology
and memory dynamics. There have been some indications that complex systems which
present a power-law behavior (are asymptotically scale invariant) may be better de-
scribed by the NSM formalism [8,9,10,16]. Since the neural systems we are studying
do not have only local interactions and present the scale-free topology characteristic, we
have begun to investigate memory dynamics with a generalized acceptance probability
distribution function [9] for a transition from state S to S′, if H(S′) ≥ H(S), given by

PGSA(S → S′) =
1

[1 + (qA − 1)(H(S′)−H(S))/T ]1/(qA−1) , (5)

where qA is a model parameter and other variables and parameters are the same as
defined in Section 2.

If one substitutes Eq. (5) for Eq. (3) in the simulated annealing algorithm of the BM,
the resulting procedure is called GSA [9]. The GSA procedure presented in [9] also
proposes a visiting distribution function for generating the possible states S′, which we
have not yet studied. In the qA → 1 limit, GSA recovers the BM. The acceptance prob-
ability distribution given by Eq. (5) should allow more associativity among memory
states, with transitions to more distant minima in the energy functional H than Eq. (3),
during the annealing process. This implies that the GSA machine will tend to make
many local associations (state transitions) and, more often than the BM, will also make
looser, more distant associations. This should correspond to a more flexible and creative
memory dynamics in the brain.
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Fig. 2. Average node degree distributions for various N [14]. The fit by Eq. (4) corresponds to
q = 1.113, p0 = 610, δ = 4.82, τ = 2.34 and μ = 0.014. The Poisson fit corresponds to
N = 2950 and λ = 6.4. For large k, there is an exponential finite size effect.

4 Simulation Illustration and Network Properties

We have thus constructed a generalization of the BM, employed in our previous work,
and modeled memory access functioning with GSA [9], derived from the just men-
tioned nonextensive formalism. In GSA, the probability distribution of the system’s mi-
croscopic configurations is not the BG distribution, assumed in the BM, and this should
affect the chain of associations of ideas which we are modeling. To illustrate this, we
compare the energies of the patterns accessed by the BM and GSA at two different ini-
tial temperatures. States activated by stronger synaptic connections have lower energies
(see Eq.( 1)) and, although there is degeneracy (different states corresponding to the
same energy value), since the acceptance probability distributions of the BM and GSA
depend on the energies of states, the frequency of visits to energy states reflects the
efficiency of the methods in exploring possible memory configurations. Since we are
searching for local minima, we use lower initial temperature values and higher values
of the annealing schedule α.

Simulation of memory access is very time consuming and thus, in the following sim-
ulations, we have analyzed small networks with N = 32 and Nsens = Nsymb = 16.
Memory sheets have size 1.5 X 1.5, σ = 0.58 and ζ = 0.5, as before. Although this net-
work size is extremely small, it has allowed a preliminary illustration of the model. We
are considering parallelizing the algorithms, in order to consider larger networks. The
simulation experiment followed was to perform up to 10000 minimization procedures,
starting each one from a different random network configuration, which was presented
to both the BM and GSA. When a new minimum energy pattern is found, it is stored
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and the procedure is repeated from other random starting configurations, otherwise the
search stops. We note in Figs. 3(a) and 3(b) that, for T = 0.2, there are patterns found
by GSA that are not found using the BM, while the opposite takes place at T = 0.1
(Figs. 3(c) and 3(d)). For the experiment described above, GSA appears to visit state
space more loosely at higher temperatures, while the traditional BM visits state space
more uniformly at lower temperatures. For lower temperatures, the BM functions more
like a gradient descent method, and randomly generated patterns will stabilize at the
closest local minima. We see in Figs. 4(a) and 4(b) that, for T = 0.2, when we lower
the value of qA, GSA becomes less associative and finds less patterns.
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Fig. 3. The numbers taken as abcissas in (a) and (b), and in (c) and (d), identify the same patterns.
(a) Upper left, energy of stored patterns visited by the BM for T = 0.2. (b) Upper right, energy
of stored patterns visited by GSA for qA = 1.4 and T = 0.2. (c) Lower left, similar to (a) for
T = 0.1. (d) Lower right, similar to (b) for qA = 1.4 and T = 0.1.

In order to understand the features of GSA that led to the results presented in Fig. 3,
we compare in Fig. 5 the frequency with which the different minimum energy states
corresponding to patterns are found, with the BM and with GSA, for qA = 1.4. Both
calculations were performed at T = 0.2, which corresponds to the upper row of Fig. 3.
In the case of GSA, the frequency with which the hardest to detect patterns are found is
much larger than the corresponding ones in the BM. In particular, several patterns that
are not found by the BM are detected employing GSA. This corresponds to the gaps
encountered in the spectrum shown in Fig. 3(a). If the number of iterations allowed in
the experiment were increased, the patterns detected through both procedures should
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Fig. 4. (a) On the left, energy of stored patterns visited by GSA for qA = 1.3. (b) On the right,
similar to (a), for qA = 0.7. In both cases T = 0.2.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

-66 -64 -62 -60 -58 -56

F
re

qu
en

cy
 o

f v
is

its

Energy

Simulation BM

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

-66 -64 -62 -60 -58 -56

F
re

qu
en

cy
 o

f v
is

its

Energy

Simulation GSA

Fig. 5. (a) On the left, visiting frequency to stored patterns by the BM for T = 0.2. (b) On the
right, similar to (a) for GSA at qA = 1.4 and the same temperature.

eventually coincide, and the gaps disappear. However, our intention is to find minima
without an exhaustive search procedure, but guided by the probability distribution func-
tion for network states. GSA tends to prefer the lower energy states, but will also find,
with low probability, higher energy states. One can observe an exponential upper limit
for the frequency of visits, as a function of energy for GSA. The BM tends to visit states
with a more uniform distribution of frequencies, as is expected from the characteristic
of the locality of visits of state space, which we mentioned in the end of Section 3.

5 Conclusions

We have previously proposed a memory organization, where two hierarchically struc-
tured modules corresponding to sensorial and symbolic memories interact, producing
sensorial and symbolic activity, representing unconscious and conscious mental pro-
cesses. This memory structure and functioning along with an adaptive learning process
is used to explain a possible mechanism for neurotic behavior and psychoanalytical
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working-through. The model emphasizes that symbolic processing, language and mean-
ing are important for consciousness [4,5].

The complex network topologies which result from the self-organizing processes,
based on biological mechanisms, which we have modeled have properties that are com-
mon features of many biological systems and indicate that they may not be well de-
scribed by BG statistical mechanics, but rather by NSM. These mechanisms are charac-
teristic of much of the brain’s functioning and suggest the use of GSA to model memory
functioning and the way we associate ideas in thought. The study of network quanti-
ties such as node degree distributions and clustering coefficients may indicate possible
experiments, that would validate models such as the one presented here.

Temperature and noise in the simulated annealing process that occurs in the model
for memory activity should be related to associativity. Very high temperatures allow the
production of logically disorganized thought, because they allow associations of exces-
sively distant, usually uncorrelated ideas. In the model we have presented, temperature
and qA-values regulate associativity among memory configurations, in an analogy with
the idea that freely talking in analytic sessions and stimulation from the analyst lower
resistances and allow greater associativity. We are continuing systematic study of the
parameter dependency of the model and its interpretation and also expanding and gen-
eralizing it to treat new features and phenomena, as well as larger networks.

Our main contribution in recent work has been to propose a neuronal model, based
on known microscopical, biological brain mechanisms, that describes conscious and
unconscious memory activity involved in neurotic behavior, as described by Freud. The
model emphasizes that symbolic processing, language and meaning are important for
consciousness. Although biologically plausible, in accordance with many aspects de-
scribed by psychoanalytic theory and clinical experience, and based on simulations, the
model is very schematic and we do not sustain or prove that this is the actual mecha-
nism that occurs in the human brain. It nevertheless illustrates and seems to be a good
metaphorical view of facets of mental phenomena, for which we seek a neuronal sub-
stratum, and suggests directions of search.
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Abstract. Polychronization has been proposed as a possible way to investigate
the notion of cell assemblies and to understand their role as memory supports
for information coding. In a spiking neuron network, polychronous groups (PGs)
are small subsets of neurons that can be activated in a chain reaction according
to a specific time-locked pattern. PGs can be detected in a neural network with
known connection delays and visualized on a spike raster plot. In this paper, we
specify the definition of PGs, making a distinction between structural and dynam-
ical polychronous groups. We propose two algortihms to scan for structural PGs
supported by a given network topology, one based on the distribution of connec-
tion delays and the other taking into account the synaptic weight values. At last,
we propose a third algorithm to scan for the PGs that are actually activated in the
network dynamics during a given time window.

1 Introduction

One of the main challenges in cognitive science is to understand how knowledge is
represented and processed in the brain. From the early notions of cell assemblies [5]
and “grand-mother cells” (see [4]), many open questions are still debated. What is the
support of memory? How and where information is coded in the brain activity? The
recent hypothesis that information could be encoded by precise spike timings gives
arguments for the thesis of temporal rather than spatial cell assemblies. Pointing out
the fact that connection delays have non uniform values between neurons in the brain,
Izhikevich proposed the concept of polychronization [7], which is far richer than the
current concepts of synchronization and synfire chains [1]. Also in computer science
the concept of polychronization yields valuable tracks for defining new learning rules
in spiking neuron networks [10] and polychronous groups have been confirmed to play
the role of dynamical cell assemblies in a classification task [9]. Studying PGs and
understanding their role in information coding could help improving both the network
structure and the effectiveness of learning rules acting on delays.

So far, no formal definition has been given for a polychronous group, and only spe-
cific methods to inventory them have been proposed [6,8]. In section 2 we give a precise
definition of a polychronous group (PG), making a distinction between structural and
dynamical PGs. In section 3 we present three algorithms and data structures to inven-
tory all polychronous groups of a given network topology and to detect which groups
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c© Springer-Verlag Berlin Heidelberg 2009
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are triggered in spike activity. In section 4 we give a complexity analysis of the al-
gorithms, and we present experimental measurements: Number of PGs (mean values,
from several experiments) when varying different parameters.

2 Definition of Polychronous Groups

2.1 PG Definition

In the founding paper [7] polychronization denotes the fact that several neurons can be
activated in a chain reaction according to a specific time-locked pattern of firings, not
only in pure synchrony. A polychronous group is characterized by a precise temporal
pattern of firings, in a subset of neurons, that is more likely to happen than just by
chance in neural activity. Such patterns are intrinsically based on the network topology:
connectivity, synaptic weights and especially conduction delays.

In recent work [8] a polychronous group, referred to as a polygroup1, is defined as
the set of neurons that supports the time-locked pattern. We state that the set of neu-
rons involved in the temporal pattern is not enough to characterize the PG. Indeed, if
one neuron can appear in more than one PG, it is clear that a given set of neurons
could also fire with several different timings, and support or participate to more than
one PG. The chain reaction that defines a PG is a series of causal interactions between
neurons, such as [N1, t1], [N2, t2], ..., [Ni, ti]⇒ [Nj , tj ], where a pair [Nk, tk] denotes
a spike fired by neuron Nk at time tk. The chain is started by a specific firing pat-
tern of a small number s of neurons, the triggering neurons, further named triggers.
Hence we propose to define a PG by a list of triggers associated to a temporal firing
pattern:

Fig. 1. Graphs for two polychronous groups: the 21 − 52 − 76 (7, 7, 0) (left PG) and the
19 − 55 − 76 (0, 11, 13) (right PG). They share neuron 76 among their respective sets of
triggers.

Definition 1. A s-triggered polychronous group refers to the set of neurons that can
be activated by a chain reaction whenever the triggers Nk(1 ≤ k ≤ s) fire according to
the timing pattern tk(1 ≤ k ≤ s). The PG is denoted by: N1−N2−...−Ns(t1, ..., ts)
where the firing times tk are listed in the same order as the corresponding triggers Nk.

1 We do not use the term polygroup because it might bring confusion with other uses in Physics.
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To decide whether a neuron could be activated by counting the number of spikes it
recieves simultaneoulsy, we follow Izhikevich [7] by extending the notion of simulta-
neous arrival to a short time range denoted jitter.

A graphical representation of a PG can be plotted on a spike raster plot of the net-
work activity, focusing attention on a subset of neurons, and drawing additional links
for representing the causality of interactions (see Figure 1). Such a representation is a
subgraph of the neural activity, where a vertex is a pair [Nk, tk], and a directed edge
denotes the causal influence from a pre-synaptic neuron to a post-synaptic one.

2.2 Structural PGs vs. Dynamical PGs

Definition 1 allows to inventory all the possible s-triggered polychronous groups sup-
ported by a given spiking neuron network with known connectivity and conduction
delays, disregarding weight values. Since such PGs depend on the network architecture
only, they are structural and we call them the supported PGs.

However, synaptic weights are usually subject to learning rules and their values
change through time, which can influence the decision whether a certain amount of
spikes simultaneoulsy incoming to a neuron Nj is sufficient or not for triggering a spike
fired by Nj . Then we define adapted PGs by applying Definition 1 in taking into ac-
count the membrane potential dynamics of neurons and the values of synaptic weights
for finding the causal relations yielding a neuron Nj to actually fire a spike at time tj .
Since activated PGs do not depend on the network dynamics (e.g. under the influence
of a given input), they are also structural PGs.

Another question is to find which PGs actually appear in the spike activity of a neu-
ron network during a given time window. These PGs are a subset of the structural PGs
and we call them activated PGs. Unlike structural PGs, activated polychronous groups
are dynamical PGs, since they depend on the network dynamics.

3 Scanning for Polychronous Groups

Algorithms 1 and 2 are designed to scan for supported PGs and adapted PGs respec-
tively. They are based on a given network topology, with known connectivity, conduc-
tion delays and synaptic weights. In Algorithm 1, all the combinations of s neurons are
tested as possible triggers, under the hypothesis that NbSpikesNeeded are required
to generate a causal relation making a neuron Nj to spike (s and NbSpikesNeeded
are set by the user). Actual post-synaptic potentials (PSPs) are not taken into account
in Algorithm 1 whereas in Algorithm 2, the decision to let a neuron Nj spike requires
the computation of the weigthed PSPs recieved by Nj . In Algorithm 2, the amount of
incoming spikes can differ from NbSpikesNeeded, a parameter which is no longer
useful (s is still required and set by the user). Algorithm 3 is written to scan for the ac-
tual appearance of previously inventoried adapted polychronous groups in the network
activity during a time slice of simulation data (with varying inputs, for instance).

All three algorithms are suited for any model of neuron that can be run in event-
driven mode. Algorithm 2 uses the neuron model equation to decide whether the neuron
spikes or not, on the basis of its recent PSP history. This constraint may be relaxed for
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Algorithm 1 that can be straightforward adapted to more general neuron models, since it
is only based on spike events, and do not take care of the intrinsic dynamics of neurons.

The model neuron we used for experiments has the following characteristics (based
on SRM0 [2]): The firing threshold ϑ is set to a fixed negative value (e.g. ϑ = −50 mV )
and the threshold kernel simulates an absolute refractory period τabs, when the neuron
cannot fire again, followed by a reset to the resting potential urest, lower than ϑ (e.g.
urest = −65 mV ). We assume that the simulation is computed in discrete time (with
0.1 ms time steps). The variables of each neuron are updated at each new incoming
spike (event-driven programming), which is sufficient for computational purpose.

The network structure is typical of Reservoir Computing methods: Connections be-
tween neurons are drawn randomly, according to a given connectivity; Weights start
from 0.5 as initial value and can vary under STDP, a temporal Hebbian rule of synaptic
plasticity; Delays are fixed but random, between 1 and 20 ms.

3.1 Definitions

Notations
n : number of neurons in the network
Ni : neuron numbered i

NTk : triggering neuron numbered Tk, with k from 1 to s

t : current time (virtual biological time, in simulations)
dij : conduction delay on the connection from Ni to Nj

wij : synaptic weight from Ni to Nj , equals 0 if connection does not exist.

Data structures
Post-Synaptic Potentials. A PSP is denoted PSPtpsp,Nl,Nm : Post-Synaptic Potential

evoked at time tpsp by a pre-synaptic neuron Nl on a post-synaptic neuron Nm.
Event queue. The queue EventQueue is the structure for processing simulation

events (evoked PSPs). It contains the events ordered by their chronological occurence
in the future.

PSP list stored in neurons. For the purpose of our algorithms, we need to store, for
each neuron, the list of the spikes it recieved during a given time course elapsed, the
Jitter (see Section 2.1). This list is called PSPListi, for neuron Ni.

Data structure for a PG. When a PG is calculated, informations have to be stored :

– timings tT1 , ..., tTs of the triggers NT1 to NTs ;
– for each PSP, PSPtpsp,Nl,Nm , the ID of Nm and its spike-firing time, the ID of Nl

and the time of evocation of the PSP.

Variables
NbTriggeringConnectionsi : number of connections received by Ni from triggers
MaxPotentiali : maximum membrane potential that neuron Ni might reach under the action
of triggers
tLastSpikei : time of most recent firing of neuron Ni, initialized to −RefractoryPeriode, so
that previous spikes are already out of refractory periode
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Parameters
s : number of triggers, fixed for every polychronous groups
NbSpikesNeeded : number of simultaneous impinging spikes necessary to trigger a new spike
in any neuron
Jitter : time range for spikes to be considered as “simultaneous”
NbSpikesMax : maximum number of spikes in a polychronous group
NbSpikeMin : minimum numer of spikes in a polychronous group for it to be saved
MaxT imeSpan : maximum time span of the polychronous group
MinT imeSpan : minimun time span of the polychronous group
PSPStrength : amplitude of a Post Synaptic Potential (PSP)
RestingPotential : default membrane potential of a neuron when it has no input
Threshold : membrane potential value above which the neuron spikes
RefractoryPeriode : time after a spike, during which a neuron cannot fire again

3.2 Algorithms

Algorithm 1. In order to list the supported PGs, we first look at all the combinations
of a given number s of neurons. We check each combination, looking for neurons that
might be excited enough to fire in turn, because they recieve more than a certain amount
of spikes, NbSpikesNeeded. If such neurons exist, then the combination becomes a
set of triggers. We simulate the firing of the triggers with the right starting timing and
record the propagation of the neural activity, until it dies or it reaches an upper limit
MaxT imeSpan set for the time span of a PG. Moreover, we limit the record to a given
number of neurons NbSpikesMax in order to truncate the possible cyclic PGs.

In this algorithm, the propagation of the activity is based on the number of spikes
recieved by each neuron in a time window. For instance, the neurons may be param-
eterized so that they fire whenever they are impinged by at least three spikes within a
millisecond. A full description, in pseudo-language, is given in Annex.

Algorithm 2. The principle of this algorithm is very similar to the previous one, except
that the decision of firing or not is based on the level of the membrane potential, which
depends on (a) the weights of the incoming connections that will modulate the increase
of the membrane potential and thus the probability to generate a new spike and (b) the
elapsed time since the previous PSP.

As in Algorithm 1, we look at all the possible combinations of s triggers, except that
neuron activity is calculated upon its membrane potential exceeding or not the firing
threshold. In this algorithm, the propagation of the activity is based on the fact that the
mambrane potential exceedes the threshold. See Annex.

Algorithm 3. Algorithm 3 is written to scan for the appearance of known polychronous
groups (already detected by Algorithm 1 or 2) in the activity recorded from a simulation,
during a given time range.

In order to detect the activation of a PG in a particular time window in the recorded
activity of a simulation (Algorithm 3), it would be ideal to check if the whole group is
activated. For sake of computational time, we only look for the firing of the triggers of



80 R. Martinez and H. Paugam-Moisy

the PG, with the good timing pattern within a precision of Jitter. We based this algo-
rithmic simplification on the assumption that the activation of the triggers will activate
the tail of the polychronous group with little change, which is likely if the known PG
has been previously detected to be an adapted PG, but could fail in case of supported
PGs.

1: // We look for the actual activation of known PGs in a temporal range [Start; End]. For
each neuron Ni, the list of spikes fired by this neuron between times Start and End is
stored already (i.e. we assume that the spike raster has been recorded).

2: Let Spikemi be the mth spike of the list of spikes fired by Ni, at time tSpikemi

3: for all PG triggered by {NT1 , NT2 , ... , NTs } with timing {tT1 , tT2 , ... , tTs } do
4: ∀SpikemT1 at time tSpikemT1
5: if ∀k ∈ [T2; Ts], ∃ SpikemTk at time tSpikemT1

+ (tTk − tT1) then
6: Save activation of PGs at time tSpikemT1

− tT1

7: end if
8: end for

4 Complexity Study and Experiments

4.1 Computational Complexity

First, the complexity estimation for Algorithm 1 is developed below. The complexity
of Algorithm 2 and Algorithm 3 will be discussed afterwards.

Let c be the connectivity of a network, i.e. the probability that one neuron projects
a connection to another. Let AC = (n− 1)× c be the average number of connections
recieved by any neuron in the network. Remind that s is the number of triggers.

The number of combinations to parse is Cs
n = n!

s!(n−s)! . For each combination, we
search for neurons that recieve concurrent connections from triggers and count such
connections. This step is computed with complexity O(n + s×AC).

The probability that a neuron recieves k = NbSpikesNeeded connections from
other neurons, with k ≤ s, is ck. We watch which neurons have enough input connec-
tions to trigger a new spike. For each excited neuron, we initialise the calculation of the
corresponding PG and enqueue the spike events, i.e. s×AC operations.

The while block is the most difficult to evaluate because of the various parameters it
envolves. In worst case, all n neurons will recieve NbSpikesNeeded spikes, and spike
in turn. Then there would be n× k events to process, and n×AC new PSP to enqueue.
Neurons would spike again as soon as they can, in regard to their refractory period.
There should be at most M/R × n × AC events to process in the whole calculation,
where M = MaxT imeSpan and R = RefractoryPeriode.

Hence, the overall complexity Xalgo1 of Algorithm 1, in worst case, is :

Cs
n︸︷︷︸

combin.

×[ (n + s×AC)︸ ︷︷ ︸
search triggers

+ (s× AC)× (ck)︸ ︷︷ ︸
nb triggers

×( s×AC︸ ︷︷ ︸
init. spikes

+ M/R× n×AC)︸ ︷︷ ︸
worst case events

]
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Since s � n, the number of combinations Cs
n can be approximated by

(
n
s

)s
and

AC = (n− 1)× c replaced by c× n, which yields an upper bound for Xalgo1:

Xalgo1 ≤ 1 + s× c

ss
ns+1 +

ck+2

ss−2 ns+2 +
M

R
× ck+2

ss−1 ns+3 (1)

It results that the complexity Xalgo1 is of order O(ns+3) in worst case. In practical
cases, spiking neuron networks usually have a sparse connectivity. Fixing the order
of magnitude of the connectivity c to 1/

√
n looks like a realistic estimation, both for

artificial networks (e.g. c = 0.1 in a network of 100 neurons, when computing with
spiking neuron networks) and biological networks (around 105 connections per neuron
between 1011 neurons in the human brain). Replacing c by n−1/2 in Equation (1) gives:

Xalgo1 ≤ 1
ss

ns+1 +
1

ss−1 ns+1/2 +
1

ss+2 ns +
M

R
× 1

ss−1 ns+1 since k ≥ 2 (2)

Finally, in practical cases, the complexity of Algorithm 1 is of order O(ns+1).
The complexity Xalgo2 of Algorithm 2 is similar to Xalgo1 because both algorithms

have the same control structure. Running Algorithm 2 should be slightly more time
consuming if the neuron model is complex.

The complexity Xalgo3 of Algorithm 3 is of order O(P ∗ S/n), where P is the
number of known polychronous groups (computed by Algorithm 1 or 2), and S the
total number of spikes in the time slice chosen for scanning the network activity.

4.2 Experiments

A direct comparison with other algorithms is not straightforward since the Izhikevich’s
code available on [6] starts from cutting off the weights under an arbitrary value of
0.95, and does not exactly compute any of the PG categories we defined. The Maier &
Miller’s method [8] (noted “MM algo” in Table 1) is close to Izhikevich’s one: both are
based on a n × tmax matrix of spike arrival counts, with the risk of consuming a huge
amount of memory, since tmax is the maximum time to which the simulation is run.

In Table 1, NbSpikesNeeded = s = 3. The first two lines show the strong influence
of the connectivity c on the number of PGs. In the next three lines, the network size is
varied with an adapted value of c in order to keep fixed the degree of the connection
graph. Different parameters of the neuron model (with coherent value of Jitter) highly

Fig. 2. PGs timespan comparison

Table 1. Experimental measurements

n c Jitter supported PGs adapted PGs MM algo.
100 0.1 1ms 13.6 13.2 13.6
100 0.2 1ms 1295 1308 1300
100 0.18 1ms / 0.4 697 / 697 702 / 72 732
200 0.09 1ms / 0.4 295 / 295 274 / 16 289
500 0.036 1ms / 0.4 103 / 103 112 / 6 107
200 0.09 1.2ms 431 434
200 0.09 1.0ms 295 289
200 0.09 0.7ms 176 167
200 0.09 0.5ms 79 67
200 0.09 0.1ms 0 0
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influence the number of adapted PGs (but not sructured PGs). The last line shows that an
absence of tolerance (Jitter = 0.1ms = simulation time step) could lead to an absence
of PGs. With NbSpikesNeeded = 2, n = 100 and c = 0.18 (not in Table 1), there are
387 supported PGs with s = 3 triggers, but only 4 with s = 2.

Figure 2 shows that the distribution of the PGs timespans (time from the spike of
the earliest trigger to the spike of the latest neuron belonging to the PG) is similar for
supported and adapted PGs, for different network sizes. Moreover, such a time span
distribution is comparable to Izhikevich’s observation ([7], p.127).

5 Discussion

We have proposed to clarify the definition of a polychronous group and set a standard
notation, taking into account both the set of triggers and their specific firing pattern. We
make a distinction between three categories of PGs, whether they are scanned from the
network architecture only, or they take into account the variations of weights under a
learning algorithm, or they are scanned for reflecting the dynamical activity inside the
network in response to input data. Though designed for the analysis of simulations with
spiking neuron network models, the algorithms could also be applied to real data since
multi-neuron activities appear to be recordable in natural neuron networks [3].
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4: for all i from 1 to n do
5: NbTriggeringConnectionsi = 0
6: end for

7: // Count connections comming from triggers, to find common triggers output neurons
8: for all p from 1 to s do
9: for all i with wiTp �= 0 do
10: NbTriggeringConnectionsi = NbTriggeringConnectionsi + 1
11: end for
12: end for

13: for all p from 1 to s do
14: for all i with wiTp �= 0 do

15: NbPSPi = 0 // Reset count of PSP evoked in Ni in the last Jitter ms

16: if NbTriggeringConnectionsi � NbSpikesNeeded then
17: // Reset NbTriggeringConnectionsi

18: NbTriggeringConnectionsi = 0

19: // A spike from Ni is triggered.
20: We will calculate the PG with trigger neurons {NT1 , NT2 , ... , NTs } firing at Ni

21: firing with timing {dmax − dT1i , dmax − dT2i, ... , dmax − dTsi}
22: with dmax = max(dT1i, dT2i, ..., dTsi)
23: thus triggering neuron Ni.

24: Add triggering spikes to PG. // Store triggering spikes to the PG data structure
25: PGSpikeCount = s // Count of spikes in this PG
26: t = 0 // Initialise clock

27: // Enqueue PSPs from triggers starting at t = 0.
28: for all neuron Nh recieving a connection from NTk

, ∀k from 1 to s do
29: Enqueue the new upcoming PSP evoked in Nh at time t + (dmax − dTki) + dTkh by the spike

from NTk

30: end for

31: while (PGSpikeCount<NbSpikesMax) and (PSP queue not empty) and (t<MaxTimeSpan)
do

32: Consider next upcoming PSP PSPtpsp,Nl,Nm evoked at time tpsp with

33: Nl : firing pre-synaptic neuron of the spike that evoked PSPtpsp,Nl,Nm

34: Nm : post-synaptic neuron in which the PSP is evoked

35: t = tpsp

36: NbPSPm = NbPSPm + 1
37: for all PSPtpsp,No,Nm with t − tpsp > Jitter do

38: Erase PSP // Erase PSPs evoked in Nm older than t − Jitter ms.
39: end for

40: if (t − tLastSpikem > RefractoryPeriode) and (NbPSPm � NbSpikesNeeded)
then

41: // Nm fires a spike
42: tLastSpikem = t
43: Add a spike from Nm at time t, to PG
44: PGSpikeCount = PGSpikeCount + 1
45: for all neuron Nm recieving a connection from Nl do
46: Enqueue an upcoming PSP evoked in Nm at time t + dlm by the spike from Nl

47: end for
48: end if
49: end while

50: if PGSpikeCount > NbSpikeMin then
51: Save the PG
52: end if
53: end if
54: end for
55: end for
56: end for
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B Algorithm 2

N.B. Red printing is for the lines that differ from Algorithm 1.

1: for all combination of s neurons out of n neurons of the network do
2: // Look for PGs triggered by this combination

3: for all Neuron Ni, output of a triggering neuron do
4: NbPSPi = 0 // Count of PSP evoked in Ni in the last Jitter ms
5: Potentiali = RestingPotential // Set initial membrane potential for Ni

6: MaxPotentiali = Potentiali +
∑

Tj
wTjiPSPStrength

7: if MaxPotentiali � Threshold then
8: // A spike from Ni is triggered.
9: We will calculate PG with trigger neurons {NT1 , NT2 , ... , NTs } firing at Ni

10: firing with timing {dmax − dT1i , dmax − dT2i, ... , dmax − dTsi}
11: with dmax = max(dT1i, dT2i, ..., dTsi)
12: thus triggering neuron Ni.

13: Add triggering spikes to PG. // Store triggering spikes to PG data structure
14: PGSpikeCount = 0 // Count of spikes in this PG
15: t = 0

16: // Enqueue PSPs from triggers
17: for all neuron Nh recieving a connection from NTk

, ∀k from 1 to s do
18: Enqueue the new upcoming PSP evoked in Nh at time t +(dmax − dTki)+dTkh by the spike from

NTk

19: end for

20: while (PGSpikeCount<NbSpikesMax) and (PSP queue not empty) and (t<MaxTimeSpan)
do

21: Consider next upcoming PSP PSPtpsp,Nl,Nm evoked at time tpsp with

22: Nl : firing pre-synaptic neuron of the spike that evoked PSPtpsp,Nl,Nm

23: Nm : post-synaptic neuron in which the PSP is evoked

24: t = tpsp

25: for all PSPtpsp,No,Nm with t − tpsp > Jitter do

26: Erase PSP // Erase PSPs evoked in Nm older than t − Jitter ms.
27: end for

28: // Re-evaluate decreasing membrane potential, with regard to last spike impact recieved tf

29: Potentialm = η(Potentiall , tf )
30: Potentialm = Potentialm + wlm × PSPStrength

31: if (Potentialm � Threshold) then
32: // Nm fires a spike
33: Add a spike to from Nm at time t, to PG
34: PGSpikeCount = PGSpikeCount + 1
35: for all neuron Nm recieving a connection from Nl do
36: Enqueue an upcoming PSP evoked in Nm at time t + dlm by the spike from Nl

37: end for
38: end if
39: end while

40: if PGSpikeCount > NbSpikeMin then
41: Save the PG
42: end if
43: end if
44: end for
45: end for
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Abstract. We propose to model human reasoning tasks using completed

logic programs interpreted under the three-valued �Lukasiewicz semantics.

Given an appropriate immediate consequence operator, completed logic

programs admit a least model, which can be computed by iterating the

consequence operator. Reasoning is then performed with respect to the

least model. The approach is realized in a connectionist setting.
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1 Introduction

It has been widely argued in the field of Cognitive Science that logic is in-
adequate for modelling human reasoning (see e.g. [3]). In this context, “logic”
is meant to be classical logic and, indeed, classical logic fails to capture some
well-documented forms of human reasoning. However, in the field of Artificial
Intelligence many non-classical logics have been studied and widely used. These
logics try to capture many assumptions or features that occur in commonsense
reasoning like, for example, the closed world assumption or non-monotonicity.

Recently, in [19] Stenning and van Lambalgen have suggested that completed
logic programs under the three-valued Fitting semantics [9] can adequately model
many human reasoning tasks. In addition, they propose a connectionist realiza-
tion of their approach.

While trying to understand Stenning and van Lambalgen’s approach we made
the following observations: (i) �Lukasiewicz semantics [17] seems to be better
suited for the approach as the law of equivalence holds under this semantics,
whereas it does not hold under Fitting semantics. (ii) [19] contains some (minor)
errors. (iii) The immediate consequence operator introduced in [19] differs in a
subtle way from the one in [9] and it turned out, that the latter is inadequate
for human reasoning. (iv) The core method, a connectionist model generator for
logic programs first presented in [12], can easily be adapted to handle Stenning
and van Lambalgen’s approach.

The paper discusses these observation by presenting three-valued logics, logic
programs, their completion semantics as well as their immediate consequence
operators in Section 2, by specifying an algorithm for mapping Stenning and van
Lambalgen’s immediate consequence operator onto a recurrent neural network
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Table 1. Truth tables for 3-valued logics

¬
� ⊥
⊥ �
U U

∧ ∨ →K →�L ↔K ↔�L ↔C

� � � � � � � � �
⊥ � ⊥ � � � ⊥ ⊥ ⊥
U � U � � � U U ⊥
� ⊥ ⊥ � ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ � � � � �
U ⊥ ⊥ U U U U U ⊥
� U U � U U U U ⊥
⊥ U ⊥ U � � U U ⊥
U U U U U � U � �

with feed-forward core in Section 3, by showing how some human reasoning
task can be adequately modelled in the proposed logic and its connectionist
realization in Section 4, and by discussing our findings in Section 5.

2 Logics, Programs and Consequence Operators

2.1 Three-Valued Logics

In this paper we consider (propositional logic) languages over an alphabet con-
sisting of (propositional) variables, the connectives {¬,∧,∨,→,↔} and paran-
thesis. We will consider various three-valued logics based on the semantics of
their connectives (see Table 1): �Lukasiewicz has proposed {¬,∧,∨,→�L,↔�L}
[17], Kleene uses {¬,∧,∨,→K,↔K} in his strong three-valued logic [16] and
{¬,∧,∨,→K,↔C} is suggested by Fitting for logic programming [9] and used
by Stenning and van Lambalgen to model human reasoning [19].

An interpretation is a mapping from the language to the set of truth values
{�,⊥, U}. Using Table 1 an interpretation for a given formula is uniquely deter-
mined by specifying the values for the propositional variables occurring in it. We
will represent interpretations by pairs 〈I�, I⊥〉, where I� ∩ I⊥ = ∅, I� contains
all variables which are mapped to �, I⊥ contains all variables mapped to ⊥, and
all variables which occur neither in I� nor in I⊥ are mapped to U. We use IF

and I�L to denote that an interpretation I uses Fitting or �Lukasiewicz semantics,
respectively. Furthermore, let I denote the set of all interpretation. (I,⊆) is a
complete semilattice (see [9]). Finally, an interpretation I is said to be a model
for a formula G iff I(G) = �.

One should observe, that the law of equivalence (for all interpretations I:
I(F ↔ G) = I((F → G) ∧ (G → F ))) holds under �Lukasiewicz semantics, but
not under Fitting semantics.

2.2 Programs

A (program) clause is an expression of the form A← B1∧ . . .∧Bn, n ≥ 1, where
A is an atom and each Bi, 1 ≤ i ≤ n, is either a literal (i.e., atom or negated
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atom), � or ⊥. A is called head and B1∧. . .∧Bn body of the program clause. � is
a valid formula, whereas ⊥ is an unsatisfiable one. One should observe that the
body of each clause is non-empty. A clause of the form A← � is called positive
fact. A clause of the form A← ⊥ is called negative fact. A (logic) program is a
finite set of clauses. Two examples are P1 = {p← q} and P2 = {p← q, q ← ⊥}.

2.3 Completion

Let P be a program. It is turned into a single formula in the following way:

1. All clauses with the same head A← Body1, . . . , A← Bodyn are replaced by
the single formula A← Body1 ∨ . . . ∨ Bodyn.

2. The resulting set is replaced by its conjunction.
3. If A is a variable occurring in P with no clause in P of the form A← Body,

then add A← ⊥.
4. All occurrences of ← are replaced by ↔.

The resulting formula is called completion of P and is denoted by comp(P). If
the third step is omitted, then the resulting formula is called weak completion
of P and is denoted by wcomp(P). For example, wcomp(P1) = (p ↔ q) �=
comp(P1) = (p↔ q) ∧ (q ↔ ⊥) = comp(P2) = wcomp(P2).

Let I = 〈{p, q}, ∅〉. Then, IF (P2) = I�L(P2) = �, whereas IF (comp(P2)) =
I�L(comp(P2)) = ⊥. The completion forces all models to map q to ⊥, and the
same holds for the weak completion.

Let I = 〈∅, ∅〉. Then, IF (p↔ p) = �, whereas IF (p← p) = U. In other words,
I is a model for the completed program p ↔ p, but it is not a model for p ← p
under the Fitting semantics. On the other hand, I�L(p↔ p) = I�L(p← p) = �.

2.4 Consequence Operators

In [9] Fitting has defined an immediate consequence operator ΦF,P(I) =
〈J�, J⊥〉, where J� = {A | A ← Body ∈ P and I(Body) = �} and J⊥ =
{A | for all A ← Body ∈ P : I(Body) = ⊥}. One should note that IF (Body) =
I�L(Body) because the body of a clause is a conjunction of literals. Fitting has
shown that ΦF,P is monotone on (I,⊆). We call I is a fixed point for Fitting
operator if and only if ΦF,P(I) = I.

Proposition 1. ΦF,P is continuous and admits a least fixed point lfp(ΦF,P).

Proof. Because our programs are finite and, thus, the underlying alphabet and
all directed subsets of I are finite, we find that a monotone ΦF,P is also con-
tinuous (see e.g. [20]). Hence, ΦF,P admits a least fixed point, which can be
computed by iterating ΦF,P starting with the empty interpretation. �

lfp(ΦF,P ) is equal to the least model of comp(P) under Fitting semantics. For
example, lfp(ΦF,P1) = lfp(ΦF,P2) = 〈∅, {p, q}〉.

In [19] Stenning and van Lambalgen have defined a slightly different immedi-
ate consequence operator: ΦSvL,P(I) = 〈J�, J⊥〉, where J� = {A | A← Body ∈
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P and I(Body) = �} and J⊥ = {A | there exists A ← Body ∈ P and for all
A ← Body ∈ P : I(Body) = ⊥}. They showed that this operator is also mono-
tone. Similarly, I is a fixed point for Stenning and van Lambalgen operator if
and only if ΦSvL,P(I) = I

Proposition 2. ΦSvL,P is continuous and admits a least fixed point lfp(ΦSvL,P).

This result can be proven along the lines of the proof of Propostion 1. For exam-
ple, lfp(ΦSvL,P1) = 〈∅, ∅〉 and lfp(ΦSvL,P2) = 〈∅, {p, q}〉. In addition, Stenning
and van Lambalgen make the following claims, where they assume that models
are defined with respect to Fitting semantics:

A. The least fixed point of ΦSvL,P can be shown to be the minimal model of P
(Lemma 4(1.) in [19]).

B. All models of comp(P) are fixed points of ΦSvL,P (Lemma 4(3.) in [19]).

Both claims are false. Consider P1 = {p ← q} and let I = 〈∅, ∅〉. As discussed
before, lfp(ΦSvL,P1) = I, but IF (P1) = U; thus, we have obtained a counter
example for A. One should observe that the minimal models of P1 under Fitting
semantics are 〈{p}, ∅〉 and 〈∅, {q}〉, both of which are not fixed points of ΦSvL,P1 .
Now let I ′′ = 〈∅, {p, q}〉 and I ′ = 〈∅, {p}〉. I ′′F (comp(P1)) = �, but ΦSvL,P1(I ′′) =
I ′, ΦSvl,P1(I ′) = I, and ΦSvL,P1(I) = I; thus, we have obtained a counter
example for B.

Problem A. can be overcome if we interprete programs under �Lukasiewicz
semantics. For the discussed example we find I�L(P1) = �, which is no coincidence
as we will show in the sequel.

Proposition 3. (i) If I�L(wcomp(P)) = � then ΦSvL,P(I) ⊆ I.
(ii) If ΦSvL,P(I) = I then I�L(wcomp(P)) = �.

Proof Sketch. (i) If I�L(wcomp(P)) = � then for for each equivalence A ↔
Body1 ∨ . . . ∨ Bodyn occurring in wcomp(P) we find that

I�L(A) = I�L(Body1 ∨ . . . ∨ Bodyn). (1)

Now let I = 〈I�, I⊥〉 and 〈J�, J⊥〉 = ΦSvL,P(〈I�, I⊥〉). By definition of ΦSvL,P
we find J� ⊆ I� and J⊥ ⊆ I⊥ given (1). Hence, ΦSvL,P(I) ⊆ I.

(ii) Suppose ΦSvL,P(I) = I. Let F := A↔ Body1∨. . .∨Bodyn be an arbitrary
but fixed conjunct occurring in wcomp(P). If I�L(A) = �, then there exists
A ← Bodyi ∈ P such that I�L(Bodyi) = �. Hence, I�L(Body1 ∨ . . . ∨ Bodyn) = �
and, consequently, I�L(F ) = �. The cases I�L(A) = ⊥ and I�L(A) = U follow
similarly. Because F was arbitrary but fixed we conclude I�L(wcomp(P)) = �.�

Proposition 4. If I = lfp(ΦSvL,P) then I�L(wcomp(P)) = I�L(P) = �.

Proof Sketch. From Proposition 3(ii) we learn that I = lfp(ΦSvL,P) entails
I�L(wcomp(P)) = �. Moreover, I�L(wcomp(P)) = � iff for each equivalence A↔
Body1 ∨ . . . ∨ Bodyn occurring in wcomp(P) we find that I�L(A) = I�L(Body1 ∨
. . . ∨ Bodyn). A careful case analysis reveals that I�L(P) = � holds. �
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3 The Core Method

In [12] a connectionist model generator for propositional logic programs using
recurrent networks with feed-forward core was presented. It was later called the
core method [2]. The core method has been extended and applied to a variety of
programs including modal (see e.g. [7]) and first-order logic programs [1]. It is
based on the idea that feed-forward connectionist networks can approximate al-
most all functions arbitrarily well [14,11] and, hence, they can also approximate –
and in some cases compute – the immediate consequence operators associated
with logic programs. Moreover, if such an operator is a contraction mapping on
a complete metric space, then Banach’s contraction mapping theorem ensures
that a unique fixed point exists such that the sequence constructed from apply-
ing the operator iteratively to any element of the metric space converges to the
fixed point [10]. Turning the feed-forward core into a recurrent network allows
to compute or approximate the least model of a logic program [13].

Kalinke has applied the core method to logic programs under the Fitting se-
mantics presented in Section 2 [15]. In particular, her feed-forward cores compute
ΦF,P for any given program P . Seda and Lane showed that the core method can
be extended to many-valued logic programs [18]. Restricted to three-valued logic
programs considered here, their cores also compute ΦF,P . In the sequel, these
approaches are modified in order to compute ΦSvL,P .

Given a program P , the following algorithm translates P into a feed-forward
core. Let m be the number of propositional variables occurring in P . Without
loss of generality, we may assume that the variables are denoted by natural
numbers from [1, m]. Let ω ∈ R

+.

1. The input and output layer is a vector of binary threshold units of length
2m representing interpretations. The 2i − 1-st unit in the layers, denoted
by i�, is active iff the i-th variable is mapped to �. The 2i-th unit in the
layers, denoted by i⊥, is active iff the i-th variable is mapped to ⊥. Both,
the 2i− 1-st and the 2i-th unit, are passive iff the i-th variable is mapped to
U. The case where the 2i− 1-st and the 2i-th unit are active is not allowed.
The threshold of each unit occurring in the input layer is set to 1

2 . The
threshold of each 2i − 1-st unit occurring in the output layer is set to ω

2 .
The threshold of each 2i-th unit occurring in the output layer is set to
max {ω

2 , l − ω
2 }, where l is the number of clauses with head i in P .

In addition, two units representing � and ⊥ are added to the input layer.
The threshold of these units is set to − 1

2 .
2. For each clause of the form A← B1∧. . .∧Bk occurring in P , do the following.

(a) Add two binary threshold units h� and h⊥ to the hidden layer.
(b) Connect h� to the unit A� in the output layer. Connect h⊥ to the unit

A⊥ in the output layer.
(c) For each Bj , 1 ≤ j ≤ k, do the following.

i. If Bj is an atom, then connect the units B�
j and B⊥

j in the input
layer to h� and h⊥, respectively.
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ii. If Bj is the literal ¬B, then connect the units B⊥ and B� in the
input layer to h� and h⊥, respectively.

iii. If Bj is �, then connect the unit � in the input layer to h�.
iv. If Bj is ⊥, then connect the unit ⊥ in the input layer to h⊥.

(d) Set the threshold of h� to k − ω
2 , and the threshold of h⊥ to ω

2 .
3. Set the weights associated with all connections to ω.

Proposition 5. For each program P, there exists a core of binary threshold
units computing ΦSvL,P .

Proof. Assume that the input layer is actived at time t such that it represents an
interpretation I. Then, at time t + 1 an h�-unit representing A← B1 ∧ . . .∧Bk

in the hidden layer becomes active iff all units representing B1 ∧ . . . ∧ Bk in
the input layer are active, i.e., if I(B1) = . . . = I(Bk) = �. Likewise, at time
t + 1 an h⊥-unit representing A ← B1 ∧ . . . ∧ Bk in the hidden layer becomes
active iff one unit representing the negation of B1 ∧ . . . ∧ Bk in the input layer
is active, i.e., if I(¬B1) ∨ . . . ∨ I(¬Bk) = �. At time t + 2 a unit representing
A in the output later becomes active iff there is an active h�-unit representing
A← B1 ∧ . . . ∧Bk at time t + 1. Likewise, at time t + 2 a unit representing ¬A
in the ouput layer becomes active iff all h⊥ units reprenting rules with head A
are active at time t + 1. Thus, the core is a direct encoding of ΦSvL,P . �

Given a program P and its core, a recurrent network can be constructed by
connecting each unit in the output layer to its corresponding unit in the input
layer with weight 1. In Figure 1 the construction is illustrated.

Proposition 6. For each program P, the corresponding recurrent network ini-
tialized by the empty interpretation will converge to a stable state which corre-
sponds to the least fixed point of ΦSvL,P .

Proof. The result follows immediately from the construction of the recurrent
network using Propositions 4 and 5. �

4 Human Reasoning

In this section we will discuss some examples taken from [3]. These examples
were used by Byrne to show that classical logic cannot appropriately model
human reasoning. Stenning and van Lambalgen argue that a three-valued logic
programs under a completion semantics can well model human reasoning [19].
Moreover, as we will see, the core method presented in Section 3 serves as a
connectionist model generator in these cases.

Consider the following sentences: If Marian has an essay to write, she will
study late in the library. She has an essay to write. In [3] 96% of all subjects
conclude that Marian will study late in the library. The two sentences can be
represented by the program P3 = {l ← e ∧ ¬ab, e ← �, ab ← ⊥}. The first
sentence is interpreted as a licence for a conditional and the atom ab is used to
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Fig. 1. The stable states of the feed-forward cores for P1 (left) and P2 (right), where

all connections have weight ω, active units are shown in grey and passive units in white.

The recurrent connections between corresponding units in the output and input layer

are not shown.
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Fig. 2. The stable state of the feed-forward core for P3

cover all additional preconditions that we may be unaware of. As we know of
no such preconditions, the rule ab← ⊥ is added. The corresponding network as
well as its stable state are shown in Figure 2. From lfp(ΦSvL,P3) = 〈{l, e}, {ab}〉
follows that Marian will study late in the library.

Suppose now that the antecedent is denied: If Marian has an essay to write,
she will study late in the library. She does not have an essay to write. In [3]
46% of subjects conclude that Marian will not study late in the library. These
subject err with respect to classical logic. But they do not err with respect to
the non-classical logic considered here. The two sentences can be represented by
the program P4 = {l← e∧¬ab, e← ⊥, ab← ⊥}. The corresponding network as
well as its stable state are shown in Figure 3. From lfp(ΦSvL,P4) = 〈∅, {ab, e, l}〉
follows that Marian will not study late in the library.

Now consider an alternative argument: If Marian has an essay to write, she
will study late in the library. She does not have an essay to write. If she has
textbooks to read, she will study late in the library. In [3] 4% of subjects conclude
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Fig. 3. The stable state of feed-forward core for P4

that Marian will not study late in the library. These sentences can be repre-
sented by P5 = {l ← e ∧ ¬ab1, e ← ⊥, ab1 ← ⊥, l ← t ∧ ¬ab2, ab2 ← ⊥}.
Due to lack of space we leave the construction of the network to the interested
reader. From lfp(ΦSvL,P5) = 〈∅, {ab1, ab2, e}〉 follows that it is unknown whether
Marian will study late in the library. One should observe that lfp(ΦF,P5) =
〈∅, {ab1, ab2, e, t, l}〉 and, consequently, one would conclude that Marian will not
study late in the library. Thus, Fitting’s operator leads to a wrong answer with
respect to human reasoning, whereas Stenning and van Lambalgen’s operator
does not.

As final example consider the presence of an additional argument: If Marian
has an essay to write, she will study late in the library. She has an essay to write.
If the library stays open, she will study late in the library. In [3] 38% of subjects
conclude that Marian will study late in the library. These sentences can be rep-
resented by P6 = {l← e ∧ ¬ab1, e← �, l ← o ∧ ¬ab2, ab1 ← ¬o, ab2 ← ¬e, }.
As argued in [19] the third sentence gives rise to an additional argument for
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Fig. 4. The stable state of feed-forward core for P6
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studying in the library, viz. that the library is open. Likewise, there must be
a reason for going to the library like, for example, writing an essay. The cor-
responding network as well as its stable state are shown in Figure 4. From
lfp(ΦSvL,P6) = 〈{e}, {ab2}〉 follows that it is unknown whether Marian will study
late in the library.

5 Discussion

We propose to use the �Lukasiewicz semantics for three-valued logic programs
in the area of human reasoning. Returning to our last example, lfp(ΦSvL,P6) =
〈{e}, {ab2}〉 is a model for both, the weak completion of P6 and P6 itself, under
the �Lukasiewicz semantics, whereas it is – somewhat surprisingly – a model for
the weak completion of P6 but not for P6 under the Fitting semantics. Under the
�Lukasiewicz semantics the completion of a three-valued logic program is exactly
what completion was originally thought of, viz., the addition of the only-if halves
to a program specifying the if-halves [4]. Nevertheless, whether �Lukasiewicz se-
mantics is adequate for human reasoning in a broader sense remains to be seen.

We showed that the core method can be adapted to implement the revised
immediate consequence operator of Stenning and van Lambalgen. We presented
an algorithm for constructing the networks and proved that the networks settle
down in a state encoding the least fixed point of the operator. Although our
networks consist of logical threshold units, they can be replaced by bipolar sig-
moidal ones while preserving the relationship to logic programs by applying the
method first presented in [8] (see also [5]). The modified networks can then be
trained using backpropagation or related techniques, rule extraction methods
can be applied to the trained networks and the neural-symbolic cycle can be
closed. On the other hand, to the best of our knowledge there is no evidence
that backpropagation is neurally plausible.

In our networks units come in pairs, where the first (second) element rep-
resents the fact that the corresponding variable or formula is mapped to true
(false). In [19] similar networks are proposed – albeit in a three-dimensional set-
ting – and, in addition, the elements of each pair inhibit each other. From a
logical point of view such an inhibition is unnecessary – it can never be the case
that both elements are active – as long as the units of the input layer are not
externally activited. In a general setting, however, where context information
is used to activate the input units, such inhibitory connections establishing a
winner-take-all behaviour are very useful. Unfortunately, the presented results
concerning the core networks and their relation to logic programs do not apply in
this case anymore unless we would be able to show that ΦSvL,P is a contraction.

In [19] integrity constraints and abduction are suggested to handle additional
human reasoning tasks. We would like to investigate whether the techniques
developed in [6] can be applied to model the tasks in a connectionist setting.

In the field of Logic Programming Fitting’s three-valued (first-order) logic
has been used in termination analysis. It remains to be seen whether these
results carry over to �Lukasiewicz semantics. How important is Stenning and van
Lambalgen’s operator from a logic programming perspective?
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Abstract. Simbed, standing for similarity-based embedding, is a new

method of embedding high-dimensional data. It relies on the preservation

of pairwise similarities rather than distances. In this respect, Simbed can

be related to other techniques such as stochastic neighbor embedding and

its variants. A connection with curvilinear component analysis is also

pointed out. Simbed differs from these methods by the way similarities

are defined and compared in both the data and embedding spaces. In

particular, similarities in Simbed can account for the phenomenon of

norm concentration that occurs in high-dimensional spaces. This feature

is shown to reinforce the advantage of Simbed over other embedding

techniques in experiments with a face database.

Keywords: Nonlinear dimensionality reduction, similarity measure,

manifold learning, stochastic gradient, multiscale optimization.

1 Introduction

Dimensionality reduction is the task of finding faithful, low-dimensional repre-
sentations of high-dimensional data. Although the case of clustered data can be
considered, it usually relies on the assumption that the data are sampled from a
smooth manifold. For instance, if the underlying manifold is a linear subspace,
then methods such as principal component analysis (PCA) [12] or classical metric
multidimensional scaling [21] can be successfully applied. However, these tech-
niques are not optimal if the manifold is heavily curved or folded [19]. This issue
can be addressed by using methods of nonlinear dimensionality reduction [10]
(NLDR) instead of a linear projection. The development of nonlinear variants
of MDS lead in the early sixties to many techniques that are based on the prin-
ciple of distance preservation. Nonmetric MDS [18,8] and Sammon’s nonlinear
mapping [15] (SNLM) are the best known methods in this family. The eighties
and early nineties saw the advent of methods related to artificial neural net-
works and soft-computing. Auto-encoders with multilayer perceptrons [7] and
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Kohonen’s self-organizing maps [6] (SOMs) are the most prominent examples
in this trend. Since the late nineties and the seminal paper describing kernel
PCA [17], many recent develoments in NLDR have targeted spectral embed-
ding [16]. Isomap [19] and locally linear embedding [14] are probably the most
representative methods in this branch. Spectral methods provide the guarantee
of finding the global optimum of their cost function. In contrast, methods based
on other optimization techniques generally do not offer this advantage. How-
ever, they usually compensate for this drawback by the capability of handling a
broader range of cost functions. Successful nonspectral methods are for instance
curvilinear component analysis [1,4] (CCA), stochastic neighbor embedding [5]
(SNE), and its variant t-SNE [20].

This paper introduces Simbed, a new NLDR method that relies on similarity
matching in order to embed data in a low-dimensional space. Simbed’s most
prominent feature is its principled way of computing pairwise similarities that
accounts for the phenomenon of norm concentration [3]. Briefly put, this term
refers to the fact that the norm of high-dimensional vectors tends to have a
low variance/expectation ratio. Hence, Simbed owns a decisive advantage when
it comes to real-life data that combine non-negligible noise with a high dimen-
sionality. The paper also weaves connections with other methods that involve
similarities, such as SNE and t-SNE. An unexpected relationship with CCA is
also pointed out, which shows that CCA is closer to similarity matching than to
distance preserving techniques such as SNLM.

The rest of this paper is organized as follows. Section 2 introduces nota-
tions for distances and gives a principled definition of pairwise similarities in
high-dimensional spaces. Section 3 describes a cost function that assesses the
similarity matching, along with an algorithm that optimizes it. Section 4 points
out some connections with other techniques, such as CCA and t-SNE. Section 5
gathers some experimental results with both artificial and real data. Finally,
Section 6 draws the conclusions.

2 Distances and Similarities

Let Ξ = [ξi]1≤i≤N denote a data set of N vectors picked in an M dimensional
space. The symbol δij denotes the pairwise Euclidean distance ‖ξi − ξj‖2.

In order to define a similarity measure, let us consider vector ξi and an
isotropic k-dimensional normal distribution centered on it, with k ≤ M . We
define the similarity of ξj with respect to ξi to be the probability of the event
‖ξ − ξi‖2 ≥ δij where ξ ∼ N (ξi, λI). In other words, the similarity is the prob-
ability of observing a larger distance than the measured value and thus varies
between 0 and 1. The normality assumption allows us to write ‖ξ−ξi‖2/λ ∼ χk,
where χk denotes a chi distribution with k degrees of freedom [2]. The probability
density function of c ∼ χk is given by

p(c, k) =
√

2
Γ (k/2)

( c

21/2

)k−1
exp(−c2/2) , (1)
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where Γ is the Gamma function. Therefore, the similarity between ξi and ξj can
be defined by

σij(λ, k) .= Prob [δij ≥ λc] =
∫ ∞

δij

p(z/λ, k)
λ

dz = Q

(
δ2
ij

2λ2 ,
k

2

)
, (2)

where c ∼ χk and Q is the regularized upper incomplete gamma function. This
definition contains two free parameters, namely λ and k.

Standard deviation λ reflects the fact that the proposed similarity measure is
a scale-dependent concept. Hence, this parameter basically sets up the threshold
between the ‘local’ neighborhood of some vector and the rest of the space. Its
value can then be arbitrarily fixed by the user. If we consider that Ξ contains
noisy vectors sampled from some manifold, λ should not go below the (local)
noise standard deviation. Similarly, larger values than max1≤i,j≤N δij make little
sense. As will be shown later on, a multiscale or multiresolution approach that
explores several values of λ can be useful.

As to k, which specifies the number of degrees of freedom, its optimal value
depends on λ. If λ is close to the standard deviation of the noise, k should be
equal to M , since noise indifferently spans all dimensions of space. For slightly
larger values of λ, noise becomes negligible and the manifold can be locally
approximated by a linear subspace with as many degrees of freedom as the
manifold intrinsic dimensionality. For larger values of λ, k should be chosen
according to the global shape of the manifold, which is difficult to investigate.

It is noteworthy that for appropriate values of k and λ the proposed similarity
can account for the phenomenon of norm concentration [3]. Defining the simi-
larity with a Gaussian kernel (this turns out to be the case k = 2) does not offer
this possibility. The model behind the proposed similarity can be refined, for in-
stance by using anisotropic normal distributions, but this introduces additional
parameters.

3 Matching the Pairwise Similarities

NLDR aims at finding a low-dimensional representation of data set Ξ. Let X =
[xi]1≤i≤N denote this representation and let P be its dimensionality. Symbol dij

refers to the pairwise Euclidean distance ‖xi − xj‖2. As in the previous section,
we can define the similarity between xi and xj in the same way, i.e.

sij(λ, l) .= Prob [dij ≥ λc] = Q

(
d2

ij

2λ2 ,
l

2

)
, (3)

where c ∼ χl. Scale parameter λ can be reused from the previous definition,
since we look at the same scale in both high- and low-dimensional spaces. The
key difference lies in l, whose value is simply equal to embedding dimensionality
P in this case.
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Having defined the similarity measures in both spaces, one can try to match
them by minimizing the mean square error

E(X,Ξ, λ, k, l) =
1

N2

N∑
i=1

N∑
j=1

(σij(λ, k)− sij(λ, l))2 (4)

with respect to X. The intuition behind this cost function is similar to that be-
hind distance preservation: building a low-dimensional representation that pre-
serves pairwise distances or similarities hopefully keeps neighboring data items
close to each other, while maintaining the gap between dissimilar ones. Simbed
—which stands for similarity-based embedding— minimizes (4) by performing
a stochastic gradient descent such as in [1]. For this purpose, we separately con-
sider all terms of the outer sum in the cost function. They can be written as

Ei(X,Ξ, λ, k, l) =
1

N2

N∑
j=1

(σij(λ, k)− sij(λ, l))2 . (5)

The partial derivative of Ei(X,Ξ, λ, k, l) with respect to xj is

∂Ei(X,Ξ, λ, k, l)
∂xj

=
2

N2 (σij(λ, k)− sij(λ, l))
p(dij/λ, l)

λ

xj − xi

dij
. (6)

This leads to the iterative update xj := xj + Δx(t,i)
j for 1 ≤ j ≤ N , where

Δx(t,i)
j = −α(t) ∂Ei(X,Ξ, λ(t), k(t), l)

∂xj
. (7)

Index t denotes the current iteration (or ‘epoch’) and α(t) is the step size (or
learning rate). At each iteration, index i runs over the whole data set. Each
iteration thus performs N2 updates for a time complexity of O(N2).

In the spirit of a pseudo-Newton optimization scheme, an appropriate value
of α(t) should be related to the second-order derivative. A single value of α(t)

that fits for all i and j should satisfy the second inequality in∥∥∥∥∥∂2Ei(X,Ξ, λ(t), k(t), l)
∂x2

j

∥∥∥∥∥
2

≤ 2
(λ(t)N)2

≤ 1
α(t) . (8)

The first inequality gives an upper bound of the second partial derivative. There-
fore, α(t) should be lower than (Nλ(t))2/2. In a classical stochastic gradient
descent, α(t) should slowly decay [13]. This can be indirectly achieved by pro-
gressively reducing λ(t) in a multiscale approach. The principle of a multiscale
optimization is rather simple and consists in ‘blurring’ the cost function in the
early part of the process. Doing so smooths out narrow pits and peaks, thus
putting the emphasis on the widest and deepest basins. Next, the amount of
blur is slowly reduced as the optimization progresses. Hence, a multiscale strat-
egy increases the probability of finding the global optimum. As a matter of fact,
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Simbed’s cost function can be optimized with a multiscale scheme because it can
be written as a continuous function of smooth and rapidly decaying kernels. The
parameters to be optimized, namely the coordinates in X, exclusively appear in
the arguments of these similarity kernels.

The efficiency of a multiscale optimization increases if scale parameter λ slowly
decays. In the case of a stochastic gradient descent, we can combine the de-
cay of λ with that of the step size. Simbed relies on the schedules given by
λ(t) = 4 max1≤i,j≤N δij/t and α(t) = 0.1(Nλ(t))2. The latter fulfills the inequal-
ity mentioned in the previous section and ensures that ‖Δx(t,i)

j ‖2 slowly vanishes
as t grows to infinity. In practice, Simbed runs for at most T iterations but an
early stop is possible when the criterion

N∑
i=1

N∑
j=1

∣∣∣∣(d
(t)
ij

)2
−

(
d
(t−1)
ij

)2
∣∣∣∣ ≤ ε

N∑
i=1

N∑
j=1

((
d
(t)
ij

)2
+

(
d
(t−1)
ij

)2
)

, (9)

is met, in which d
(t)
ij refers to the pairwise distance at the end of iteration t. As

to dimensionality parameter k, the constant value P can be used for noisefree
data, whereas a schedule such as k(t) = P + (M − P )t/T can be adopted for
noisy data.

The initialization of the algorithm can be achieved with a P -dimensional PCA
projection. During the stochastic gradient descent, it is advised to randomly per-
mute the order of the updates with respect to index i in (7). A reinitialization of
the random number generator with always the same seed makes the optimization
fully deterministic, provided the data vectors are not permuted in Ξ from run
to run. These permutations can be avoided by computing c = arg mini

∑N
j=1 δ2

ij

and by sorting the vectors in Ξ according to δcj.

4 Connection with Other Techniques

Simbed can be related to several other methods described in the literature, such
as SNE, t-SNE, CCA, and SOMs. SNE and t-SNE follow the same paradigm
as Simbed, that is, similarity matching with a stochastic optimization scheme.
However several important differences can be pointed out.

First, the pairwise similarities used in Simbed involve cumulative distribution
functions whose value depends only on the corresponding distances. In contrast,
SNE and t-SNE rely on empirical probability density functions defined as

σij(λ) .=
g(δij/λ)∑
m �=n g(δmn)

and sij
.=

h(dij)∑
m �=n h(dmn)

, (10)

where g(u) = exp(−u2/2) and either h(u) = g(u) for SNE or h(u) = 1/(1 +
u2) for t-SNE (h(u) is proportional to a Student’s t pdf with one degree of
freedom). These similarity functions involve a softmax denominator; it ensures
that

∑
i�=j σij(λ) =

∑
i�=j sij = 1. Such a normalization makes all similarities

interdependent and leads to paradoxical situations. For instance, equalities g = h
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and δij = λdij do not imply σij(λ) = sij . On the other hand, similarities in
Simbed are such that δij = dij ⇔ σij(λ) = sij , provided k = l or δij = 0.

The second difference between Simbed and SNE/t-SNE results from the first
one. Simbed estimates the similarity matching between the high- and low-
dimensional spaces with a mean square error. In comparison, similarities in
SNE and t-SNE are pdfs and their matching is thus computed by sums of
Kullback-Leibler divergences in the cost function (see [20] for details and vari-
ants). This is a key point knowing that the particular choice of the similarity
measure deeply impacts the form of the stochastic gradient update. The Gaus-
sian functions in SNE lead to simplifications in the KL divergences whereas
this does not happen in t-SNE. In (symmetric) SNE, the stochastic gradient
update is proportional to (σij(λ) − sij)(xj − xi) whereas it is proportional to
(σij(λ) − sij)(1/(1 + dij))(xj − xi) in t-SNE. This additional factor in t-SNE
explains why it outperforms SNE [20]. Such a damping factor that decreases
with respect to dij can be also found in Simbed as well as in CCA. This factor
accounts for the capability of these methods to ‘tear’ manifolds [1,4,9].

A third difference concerns the absence of multiscale approach in SNE and
t-SNE, although such a strategy has proved to be useful in methods such as
CCA, SOMs and their variants.

The connection between Simbed and CCA can be investigated by looking at
the terms of CCA’s cost function, which are written as Ei(X,Ξ, λ) =

∑N
j=1(δij−

dij)2H(λ− dij), where H denotes Heaviside’s step function. The stochastic gra-
dient update is proportional to (1− δij/dij)H(λ− dij)(xj −xi). Although CCA
is often related to Sammon’s nonlinear mapping and other methods based on
distance preservation, it can easily be cast within the framework of similarity
preservation. For this purpose, we can equivalently rewrite CCA’s cost function
as Ei(X,Ξ, λ) =

∑N
j=1(σij(λ) − sij(λ))2, where σij(λ) .= (λ − δij)H(λ − dij)

and sij(λ) .= (λ − dij)H(λ − dij). While sij(λ) satisfies all conditions to be a
similarity function, positivity of σij(λ) can be enforced by the approximation
σij(λ) ≈ (λ − δij)H(λ− δij), which leads to

∂Ei(X,Ξ, λ)
∂xj

=
(

1− δij

dij
− (δij − λ)H(δij − λ)

dij

)
H(λ− dij)(xj − xi) . (11)

The only difference with CCA’s genuine gradient is the additional term in the
first factor, which is non-zero only if dij < λ < δij . This shows that CCA is
closely related to similarity-based embedding and that the multiplication by a
Heaviside function in its cost function plays a much more important role than a
simple weighting of the cost function terms, such as in SNLM.

5 Experiments

The experiments involve several data sets as well as several NLDR techniques.
The first data set contains 750 vectors that sample a Swiss roll with uniform
distribution. Its equation is written as ξ = [

√
u cos(3π

√
u),
√

u sin(3π
√

u), v]T ,
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where random parameters u and v have uniform distributions between 0 and 1.
The second data set stems from the same manifold and includes 750 vectors as
well, but these have three additional coordinates that are kept constant. Gaussian
noise with standard deviation 0.05 is added to all six dimensions. The third data
set contains 1965 pictures of B.J. Frey’s face [14]. Each face is 20 pixels wide and
28 pixels high. After concatenation into 560-dimensional vectors, PCA achieves
a first dimensionality reduction that leaves 20 coordinates.

Simbed is compared to t-SNE, CCA, SNLM, and PCA, whose result serves as
baseline. Two versions of Simbed are used, one with constant and equal values
for k and l, the second with the adaptive schedule for k. The implementation of t-
SNE is provided by the authors of [20]; the ‘perplexity’ (i.e. the scale parameter)
is left to its default value. CCA is implemented as in [4], with a constant step
size that is equal to 0.2. The scale parameter follows a similar schedule as in
Simbed, except that λ(1) is doubled; the stopping criterion is the same. SNLM
is implemented as in [15] with a step size equal to 0.3. All methods are fed with
pairwise Euclidean distances, no geodesic distances are used.

Performance assessment is achieved by means of the criteria proposed in [11].
These criteria look at K-ary neighborhoods around each vector in the data space
as well as in the embedding space. The first criterion is denoted by QNX(K)
and reflects the overall quality of the embedding; its value corresponds to the
average percentage of identical neighbors in both spaces. The second criterion is
denoted by BNX(K) and reveals the ‘behavior’ of a NLDR method. A positive
value indicates that distant points are embedded close to each other whereas a
negative one indicates that close neighbors are embedded far away. Results for
the three data sets are shown in Figs. 1 to 3. Each figure includes three panels;
the first one spans the interval 1 ≤ K ≤ N − 1, whereas the small ones on the
right focus on small values of K, for each criterion separately.

As to the noisefree Swiss roll, CCA slightly outperforms all other methods
for small values of K. Simbed closely follows, whereas t-SNE comes third and
precedes both SNLM and PCA. On the other hand, the global shape of the
manifold is best preserved by PCA and SNLM, followed by Simbed, CCA, and
t-SNE. Simbed thus reaches the best ‘global-local’ tradeoff. The multiscale opti-
mization of CCA and Simbed actually leads to flatter curves than for the other
methods. For this noisefree data set, Simbed with k = l = 2 performs slightly
better than the variant with an increasing value of k, as expected.

The situation gets reversed in Fig. 2 for the noisy Swiss roll. Thanks to its use
of similarity kernels with heavier tails in the embedding space than in the data
space, t-SNE unfolds the Swiss roll better than the other methods and achieves
the best performance for small values of K. Simbed is second and its version
with an increasing k takes advantage of its more appropriate noise model. CCA
comes next and precedes both SNLM and PCA.

The results for the face bank are shown in Fig. 3. Simbed with increasing
values of k clearly outperforms the version with constant k. CCA climbs on
the third step, followed by SNLM and PCA. Despite numerous attempts, t-
SNE has never converged. As can be seen, similarity matching proves to be very
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Fig. 1. Quality assessment for the embeddings of the noisefree Swiss roll
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Fig. 2. Quality assessment for the embeddings of the noisy Swiss roll
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Fig. 3. Quality assessment for the embeddings of the face bank

efficient for this very high-dimensional data set. More importantly, the successive
performance leaps between CCA and the two versions of Simbed indicate that
the definition of the similarity kernel plays a key role as to the quality of the
results. In the case of this data set, shifting from the piecewise linear kernel of
CCA to smooth kernels that take into account the properties of high-dimensional
spaces proves to be decisive.

6 Conclusion

Simbed is a new method of nonlinear dimensionality reduction that relies on
similarity matching. It has two prominent features. First, it involves a principled
similarity measure that can cope with the phenomenon of norm concentration
in high-dimensional spaces. Second, its cost function can be optimized with a
multiscale approach, which diminishes the probability of getting stuck in a local
optimum. Simbed can be related to other methods such as SNE and t-SNE, and
it also extends CCA.

Experiments with both artificial and real data show that Simbed compares to
some of the best NLDR methods. It can provide excellent quantitative results
in the case of noisy and very high-dimensional data, such as face images.
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Abstract. In recent years, more and more attention has been paid on

learning in structured domains, e.g. Chemistry. Both Neural Networks

and Kernel Methods for structured data have been proposed. Here, we

show that a recently developed technique for structured domains, i.e.

PCA for structures, permits to generate representations of graphs (specif-

ically, molecular graphs) which are quite effective when used for predic-

tion tasks (QSAR studies). The advantage of these representations is

that they can be generated automatically and exploited by any tradi-

tional predictor (e.g., Support Vector Regression with linear kernel).

Keywords: PCA for graphs, prediction on structured domains,

supervised learning.

1 Introduction

Principal Component Analysis (PCA) ([3]) constitutes one of the oldest and
best known tools in Pattern Recognition and Machine Learning. It is a powerful
technique for dimensionality reduction, while preserving much of the relevant
information conveyed by a set of variables. It is theoretically well founded and
reduces to the solution of an eigenvalue problem involving the covariance (or cor-
relation) matrix of the available data. More recently, exploiting the well known
kernel trick, Kernel PCA ([7]), which is a nonlinear form of PCA, has been pro-
posed. Through the kernel trick, it is possible to implicitly project data into
high-dimensional feature spaces. PCA is then performed in feature space, dis-
covering principal directions that correspond to principal curves in the original
data space. By defining a kernel on structured data, such as sequences, trees, and
graphs, it is also possible to apply PCA to application domains where it is natural
to represent data in a structured form; just to name a few, Chemistry, Bioin-
formatics, and Natural Language Processing. One problem with using KPCA
in structured domains is that kernels are usually defined a priori and because
of that they may not capture the structural features that are relevant for the
task at hand. Explicit common structural features can be captured by data min-
ing for graphs, however this is usually a time consuming approach that has no
guarantee to return relevant structural features.
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In this paper, we investigate how the recent definition of PCA for structures
[9,5,10] can be used to define informative vectorial representations for graphs
amenable to treatment by state of the art classification and prediction tech-
niques. Specifically, we have considered the prediction of biological activity of
chemical compounds (Quantitative Structure-Activity Relationship, or QSAR
for short) on two datasets involving chemical compounds. On this datasets, we
observed that Support Vector Regression using a linear kernel is much more effec-
tive when applied to representations of molecules based on PCA for graphs than
using representations that are standard in QSAR studies, i.e. autocorrelation
MEP vectors [1].

2 Principal Components Analysis for Vectors and
Structures

One of the aims of standard PCA ([3]) is to reduce the dimensionality of a data
set, while preserving as much as possible the information present in it. This
is achieved by looking for orthogonal directions of maximum variance within
the data set. The principal components are sorted according to the amount of
variance they explain, so that the first few retain most of the variation present in
all of the original variables. It turns out that the qth principal component is given
by the projection of the data onto the eigenvector of the (sample) covariance
matrix C of the data corresponding to the qth largest eigenvalue.

From a mathematical point of view, PCA can be understood as given by an
orthogonal linear transformation of the given set of variables (i.e., the coordinates
of the vectorial space in which data is embedded):

yi = Axi (1)

where xi ∈ R
k are the vectors belonging to the data set, and A ∈ R

r×k is
the orthogonal matrix whose qth row is the qth eigenvector of the covariance
matrix. Typically, larger variances are associated with the first p < k principal
components. Thus one can conclude that most relevant information occur only
in the first p dimensions. Given a fixed value for p, principal components allow
also to minimize the reconstruction error, i.e.

A(p) = argmin
M∈R

p×k

∑
i

‖xi −MTMxi‖2

where the rows of A(p) ∈ R
p×k corresponds to the first p eigenvectors of C. In

fact, let X = [x1,x2,x3, . . . ,xn]T then, by imposing with no loss in generality
that ‖w‖ = 1, the direction of maximum variance can be computed as

w∗ = arg max
‖w‖=1

wTXTXw = arg max
‖w‖=1

wTCw.

This is a constrained optimization problem that can be solved by optimizing the
Lagrangian

L(w, λ) = wTCw − λ(wTw − 1).



PCA-Based Representations of Graphs for Prediction in QSAR Studies 107

By differentiating the Lagrangian with respect to w and equating to zero leads
to the following symmetric eigenvalue problem Cw = λw. Thus the first prin-
cipal direction corresponds to the eigenvector with maximum eigenvalue, while
the other principal directions correspond to the other eigenvectors (pairwise or-
thogonal by definition), sorted according to the corresponding eigenvalues.

2.1 Sequences and Graphs

Given a temporal sequence x1,x2, . . . ,xt, . . . of input vectors1, where t is a dis-
crete time index, in [9] it is proposed to model the sequence through the following
linear dynamical system:

yt = Axt + Byt−1 (2)
so to extend the linear transformation defined in eq. (1) by introducing a mem-
ory term involving a non-null matrix B ∈ R

r×r. The basic idea is to look for
the minimum value of r such that the input sequence can be fully reconstructed
starting from the final state vector yn ∈ R

r. We say that the input sequence can
be fully reconstructed if, starting from the state vector yn obtained applying
eq. (2) (sequence encoding), all the xt, t = 1, . . . , n, can be generated by ap-
plying recursively the two linear transformations xt = ATyt and yt−1 = BTyt

(sequence decoding).
By using the initial condition y0 = 0 (the null vector), and the dynamical

linear system (2), the state vectors generated by a single sequence x1,x2, . . . ,xt,
. . . ,xn, can be collected as rows of a matrix, which can be written as

Y =

⎡⎢⎢⎢⎢⎢⎣
yT

1
yT

2
yT

3
...

yT
n

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
xT

1 0 0 0 · · · 0
xT

2 xT
1 0 0 · · · 0

xT
3 xT

2 xT
1 0 · · · 0

...
...

...
...

...
...

xT
n xT

n−1 xT
n−2 · · · xT

2 xT
1

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Ξ

⎡⎢⎢⎢⎢⎢⎢⎣
AT

ATBT

ATB2T

...
ATBn−1T

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Ω

,

where Ξ is a data matrix collecting all the (inverted) input subsequences (includ-
ing the whole sequence) as rows, and Ω is the parameter matrix of the dynamical
system. Notice that rows of Ξ can be considered as snapshots of a stack after
each reading of a new input, i.e. the t-th row represents the status of the stack
after that the input vectors x1,x2, . . . ,xt have been read.

In [9] it is observed that the sequence can be encoded with no loss of informa-
tion by a dynamical system with optimal matrices A and B, if all the eigenvec-
tors of the covariance matrix 1

nΞTΞ corresponding to non-null eigenvalues are

used. Specifically, given the tiny spectral decomposition of 1
nΞTΞ = U(p)ΛU(p)T

where the columns of U(p) are the p eigenvectors corresponding to non-null eigen-
values, let s = nk, and

Pk,s ≡
[
Ik×k

0(s−k)×k

]
, and Rk,s ≡

[
0k×(s−k) 0k×k

I(s−k)×(s−k) 0(s−k)×k

]
,

1 In the following, for the sake of presentation, we assume E[xt] = 0.
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then we have

A = U(p)TPk,s ∈ R
p×k, and B = U(p)TRk,sU(p) ∈ R

p×p. (3)

Matrix Rk,s implements a shift operator into the dynamical system memory
stack, while Pk,s implements a push operator on the same stack. In fact, if we
consider rows ξt and ξt−1 of Ξ, we have ξT

t = Pk,sxt + Rk,sξ
T
t−1.

The same result can be obtained by considering more sequences. For example,
let consider two sequences (xa

1 ,xa
2 ,x

a
3 ,xa

4) and (xb
1,xb

2), coded into the matrices
Ξa and Ξb, respectively. Then, these can be collected together into the matrix

Ξ =
[

Ξa

Ξb 02×2

]
and treated as described above.

When considering the possibility to extend the dynamical system to graphs,
either with directed or undirected edges, two problems need to be faced: i)
how to deal with cycles during the encoding; ii) how to identify the origin and
destination of an edge during decoding.

In [5], these two problems are solved through a coding trick. The basic idea is
to enumerate the set of vertexes following a given convention and representing
a (directed or undirected) graph as an (inverted) ordered list of vertex’s labels
associated with a list of edges for which the vertex is origin and where the
position in the associated list is referring to the destination vertex. The idea is
that the list is used by the linear dynamical system during encoding to read one
by one the information about each vertex and associated edges, pushing the read
information into the internal stack. Decoding is obtained by popping from the
internal stack, one by one, the information about vertexes and associated edges.

The proposed linear dynamical system supporting the above idea is defined
as

yi = Wv[vT
label,v

T
edges]

T + Wyyi−1 (4)

where i ranges over the enumeration of the vertexes, i.e. positions in the list
representing the graph, vlabel ∈ R

k is the numerical encoding of the current
label, vedges ∈ R

N is the vector representing the information about the edges
entering the current vertex where N is the maximum number of vertexes that
the system can manage for a single input graph, and y0 is the null vector. Thus
[vT

label,v
T
edges]

T ∈ R
d, where d = k + N .

In Figure 1 we have reported an example of how vertexes of the molecular
graph of Aziridine can be coded. Assuming that the Nitrogen atom is coded by
label [001], the Carbon atom by label [010], and the Hydrogen atom by [100],
and assuming vertex enumeration shown on the left side of the figure, on the
right side of the figure we have reported how the information about each ver-
tex is coded. Specifically, the Nitrogen atom is inserted first (n1) in the stack.
Because of that, no edge is represented. Then a Carbon atom is inserted (n2),
and it is connected with the Nitrogen atom already in the stack. The insertion
of the second Carbon atom (n3) comes also with the edge connecting it to the
already inserted Carbon atom and the edge connecting it to the already inserted
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vertex (atom) label undirected edge with
n1 n2 n3 n4 n5 n6 n7 n8

n8 (H) 1 0 0 0 0 1 0 0 0 0 0
n7 (H) 1 0 0 0 0 1 0 0 0 0 0
n6 (H) 1 0 0 0 1 0 0 0 0 0 0
n5 (H) 1 0 0 0 1 0 0 0 0 0 0
n4 (H) 1 0 0 1 0 0 0 0 0 0 0
n3 (C) 0 1 0 1 1 0 0 0 0 0 0
n2 (C) 0 1 0 1 0 0 0 0 0 0 0
n1 (N) 0 0 1 0 0 0 0 0 0 0 0

input sequence coding the full Aziridine molecular graph ([x8,x7,x6,x5,x4,x3,x2,x1])
[1000010000,1000010000,1000100000,1000100000,1001000000,0101100000,0101000000,0010000000]

Fig. 1. Examples of vertexes’ coding for the molecular graph of Azeridine. Here k = 3

and N = 8. The input sequence representing the molecular graph, where the label

information is shown in italics, is shown as well. Notice that, in the sequence the last

column of the matrix is not reported since in chemical compounds no self-connection

on vertexes is allowed.

Nitrogen atom, and so on2. In Figure 1, the input sequence coding the full Aziri-
dine molecule is shown as well.

The space embedding the explicit representation of the stack is Nd since no
more than N vertexes can be inserted. It should be noted that this size of the
stack is needed only if the input graphs are directed, and the above system is
basically equivalent to system (2) for sequences. However, if undirected graphs
are considered, a specific state space optimization can be performed. In fact,
when inserting the first vertex into the internal stack only the first entry of the
vector vedges may be non null (the one encoding the self-connection), since no
other vertex has already been presented to the system. In general, if vertex i is
being inserted, only the first i components of vedges may be non null. Because
of that, the shift operator embedded into matrix Wy may “forget” the last
component of each field into which the internal stack is organized. Formally, the
shift operator described above can be implemented by the following matrix

S ≡

⎡⎢⎢⎢⎢⎢⎢⎣
0d×s

I(d−1)×(d−1) 0(d−1)×(s−d+1)
0(d−2)×d I(d−2)×(d−2) 0(d−2)×(s−2(d−1))
0(d−3)×(2d−1) I(d−3)×(d−3) 0(d−3)×(s−3(d−1))

· · ·
0(k+1)×(s−k−1) I(k+1)×(k+1)

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

and the solution matrices defined as Wv ≡ U(p)TPd,s and Wy ≡ U(p)TSU(p).
In [10] different strategies to speed-up the spectral decomposition of the data

matrix Ξ, which can be quite large, in the case of discrete labels have been
suggested. One of the most effective strategies to reduce the size of Ξ, after
2 For chemical compounds, atoms’ occurrence order in the canonical SMILE represen-

tation can be used as enumeration of vertexes. Moreover, the entry for an edge can

code the type of bond, e.g. for a double bond the number 2 can be used.
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removal of null columns, is the substitution of rows rj with multiplicity μj > 1
by a single occurrence of the row √μjrj , which does not modify the spectrum
of the matrix.

3 Prediction for Graphs

The idea explored in this paper is to use the dynamical system described by
eq. (4), which is a linear recurrent neural network, to project the graphs belong-
ing to the dataset into a vectorial space of dimension p. The obtained vectorial
representations, or just some of its components, i.e. the ones corresponding to
the first q principal components, can then be used to train any state of the art
classifier or predictor. It must be observed that the proposed approach is differ-
ent by an approach where an extended representation of each graph is generated
for each graph in the dataset and then PCA computed. In fact, in this latter case,
the substructures belonging to the graphs are not considered and consequently,
the representation space obtained by PCA is much smaller, i.e., considering n
graphs, no more than n principal directions can be obtained. On the contrary,
by considering all the m substructures belonging to the graphs, as generated by
the encoding procedure3, we have m  n and a richer representation space is
generated. In addition, if a specific substructure is very frequent, the principal
direction accounting for that substructure will be more important than principal
directions that account for less frequent substructures.

In order to assess the usefulness of the proposed approach, we have performed
some experiments involving chemical compounds, represented through the asso-
ciated molecular graph. We have selected two datasets which are representative
of the type and size of data typically involved in QSAR studies for drug de-
sign. Then, on a prediction task, we have compared the results obtained using
Support Vector Regression [8] on two different vectorial representations. The
first representation is typically used in QSAR studies and is based on the use
of autocorrelated molecular descriptors encoding for the Molecular Electrostatic
Potential (autoMEP) [1]. These descriptors are derived from a classical point
charge model, and their computation is quite involved. The second representa-
tion is obtained by the proposed approach, i.e. principal components of graphs.

We start the description by first presenting the datasets, then the prediction
tasks and related evaluation measure, and finally the obtained results.

3.1 Datasets

An important task in medicinal chemistry is the definition of computational
models for the prediction of properties of interest for drug design, such as the
quantitative prediction of relative binding affinity of chemical compounds with
respect to a given receptor. The human adenosine A2A receptor (hA2AR) has
been discovered to be involved in some neurological disorders, such as Parkinson’s
3 Notice that which substructure is generated by the encoding procedure depends on

the definition of the associated dynamical system.
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Table 1. Occurrences of atoms symbols in the chemical datasets and some of their

statistical properties

Chemical Symbol C N O S F Cl Br H

Frequency in A2A 2444 913 317 16 16 25 25 2224

Frequency in A3 2115 808 256 6 16 32 13 1822

Dataset Num. of Max. number Max. number Avg. number Tot. number

molecules atoms bonds atoms (bonds) items (atoms+bonds)

A2A 127 61 66 47.09 (50.89) 12,443

A3 104 69 73 48.73 (52.80) 10,559

or Huntington’s diseases, and for this reason it is important to develop predic-
tive models for this receptor [2]. Dataset A2A involves a collection of 127 known
human A2A antagonists, i.e. pyrazolo-triazolo-pyrimidine and triazolo-pyridine
analogues [4]. In this dataset, 8 distinct atoms (C, N, O, S, F, Cl, Br, H) occur. In
Table 1 we report the frequencies of such atoms through the compounds as well
as some general statistics. A second dataset consists of a group of 104 pyrazolo-
triazolo-pyrimidines, which are antagonists of the human adenosine A3 receptor
(hA3R), that have a potential application in the tumor growth inhibition and
in the treatment of glaucoma. The set of occurring atoms into the A3 dataset is
the same as the A2A dataset, with of course different frequencies, as reported in
Table 1, where other general statistics about the compounds in the dataset are
presented. Two different types of vectorial representations for the molecules of
the datasets have been considered. The first representation type is obtained by
resorting to a standard molecule representation in QSAR studies, i.e. autocorre-
lation MEP vectors. This representation has been introduced by Gasteiger and
collaborators [1] as molecular descriptors computed on the molecular surface.
Ligands and proteins interact through molecular surfaces and, therefore, clearly,
the representations of molecular surfaces have to be sought in the endeavour
to understand the biological activity. In our case, twelve autocorrelation coef-
ficients were calculated. This transformation produces a unique fingerprint of
each molecule under consideration. The autocorrelation vectors were calculated
by Surface module of the Adriana suite4. The second representation type has
been obtained by computing the first q principal components of the molecular
graphs.

3.2 Prediction Task and Evaluation Measure

The computational task for both datasets is to accurately predict the (A2A or A3)
receptor-binding affinity, as measured by pKi. Specifically, the target for each
molecule is represented by the negative logarithmic value of the corresponding
hA2AR or hA3R binding constant Ki (pki = − logKi ). The binding constant
(Ki) is a concentration value, expressed in nanomolar (nM) units. It is a measure

4 ADRIANACode; version 2.0; Molecular Networks GmbH: Erlangen, Germany, 2005.
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of the strength of the binding affinity between the ligands (in our case antag-
onists) and the receptor, that represents the biological target. In general lower
Ki values (and higher pKi values) correspond to more potent antagonists. The
target values for the A2A dataset range over the interval [−3.14, 0.92], while the
target values for the A3 dataset range over the interval [−3.65, 0.85]. To address
the regression tasks, we used Support Vector Regression [8] over either the vec-
torial representations of molecules obtained by autoMEP or PCA for graphs as
outlined in the paper.

The quality of the models was assessed by using a standard measure in QSAR
studies, i.e. the correlation coefficient R between the predicted and the experi-
mental values for pKi. R ranges from −1 to 1, with value 1 indicating the highest
possible quality for the model. Due to the small size of the two datasets, we de-
cided to evaluate the merits of the two different representation schemes by using
a leave-one-out approach. Consequently, denoting with ti the target associated
with the i-th input vector xi and with SV Ri(xi) the output to xi of the SVR
trained by using all the training examples except for the i-th example, we used
the following definition of leave-one-out R

Rloo =
1

n−1

∑n
i=1

(
ti − t

) (
SV Ri (xi)− SV R

)√∑n
i=1(ti−t)2

n−1

√∑n
i=1(SV Ri(xi)−SV R)2

n−1

(6)

where

t =
∑n

i=1 ti
n

and SV R =
∑n

i=1 SV Ri (xi)
n

.

3.3 Results

AutoMEP representations of molecules are constituted by twelve indicators, re-
gardless of the dataset where the molecules belong to. Concerning molecules’s
representations obtained by PCA for graphs, in the second column of Table 2
we have reported, for each dataset, the size of the full data matrix Ξ. In the
third column of Table 2 we have reported the size of Ξ after removal of null
columns and redefinition of the rows as described in Section 2.1. It can be ob-
served that there is a significant reduction of the size of Ξ with a computational

Table 2. Sizes of the full and reduced data matrix Ξ for the datasets. Since nodes in

molecular graphs cannot have self-connections, the number of columns for the full data

matrix Ξ is given by mk + 1
2
m(m− 1), where m is the maximum number of nodes in a

single graph for the dataset. The size of the data embedding space is reported as well.

Dataset size size size embedding

full Ξ reduced Ξ space

A2A 5980 × 2318 3752 × 1544 1438

A3 5068 × 2898 3130 × 1759 1459
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Fig. 2. Rloo values obtained by SVR, using a linear kernel (Lin) or a gaussian ker-

nel (Gauss) for the A2A and A3 datasets. Correlation values obtained by using PCA

for graphs are plotted versus the number of principal components used to represent

the molecules. Correlation values obtained by autoMEP (where each molecule is repre-

sented by 12 numerical features) are constant (since they do not depend on the number

of principal components). For dataset A3, the SVR with linear kernel using autoMEP

representations got a very low figure (Rloo = 0.716).

effort which is O(r log(r) + c), where r is the number of rows and c the number
of columns. Principal directions are then computed starting from the reduced
Ξ matrix. In the fourth column of Table 2, for each dataset, we have reported
the number of principal directions, i.e. eigenvectors with non-null eigenvalues of
the correlation matrix, we obtained. This number corresponds to the size of the
space embedding all the data. It can be observed that both datasets have an
embedding space of similar dimension.

For the PCA based representation of molecules, we have considered different
numbers of components. Specifically, we have considered the first q = 100w
principal components where w = 1, 2, . . . , 14.

Concerning SVR using linear kernel, we have considered C = 10a with a ∈
{−4,−3,−2,−1, 0,1, 2, 3} and ε = 10zv with v ∈ {0.01, 0.03, 0.06} and z ∈
{0,−1,−2}. For autoMEP representations, since they are constituted by just 12
features, we considered also a gaussian kernel with parameter γ. In this case, we
run a preliminary set of experiments to determine the “best” range for the hyper-
parameters for each dataset. This lead to the determination of the following set of
values for dataset A2A: C as above, ε ∈ {0.2, 0.22, 0.26, 0.4, 0.42, 0.45, 0.47, 0.52,
0.6, 0.63, 0.67, 0.7, 0.78}, γ = 10a with a ∈ {−4,−3,−2,−1, 0, 1}. For dataset
A3, we used C = 50 + 10a with a = 1, . . . , 15, ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9}, and γ = 0.005 + 0.01z with z = 0, 1, . . . , 5.

In Figure 2 we have reported the Rloo results obtained by SVR for the different
representation methods, number of principal components for PCA for graphs, ker-
nels, and datasets. It can be observed that best results for Rloo most of the times
are obtained by PCA based representations. Specifically, the best results for the
A2A dataset are obtained with k = 500 (Rloo = 0.855929) and for the A3 dataset
are obtained with k = 300 (Rloo = 0.893401). For dataset A3, the SVR with linear
kernel using autoMEP representations got a very low figure (Rloo = 0.716).
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We also tried to combine together the two representations: for the A2A dataset
we concatenated for each graph the autoMEP representation with the “best”
PCA based representation with 500 components, while for the A3 dataset the
auto MEP representation was combined with the PCA based repersentation
with 300 components. No significative variations on the results were obtained:
Rloo = 0.85163 for the A2A dataset, and Rloo = 0.897032 for the A3 dataset.

4 Conclusion

We have investigated how effective are the vectorial representations derived by
PCA for graphs in prediction tasks involving chemical compounds. Specifically,
we have compared the results obtained by Support Vector Regression using the
representations of molecules based on PCA for graphs versus ad hoc representa-
tions that are standard in QSAR studies, i.e. autocorrelation MEP vectors. The
PCA for graphs based representations clearly outperform autocorrelation MEP
vectors.

For the future, we plan to investigate whether the proposed approach is com-
petitive also with respect to more sophisticated approaches, such as graph kernels
defined for Chemoinformatics (e.g. [6]). We also need to assess the performance
of Recurrent Neural Network models trained on the sequential representations
of molecules used by PCA for graphs.
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Abstract. This paper provides a new insight into unsupervised fea-
ture extraction techniques based on subspace models. In this work the
subspace models are described exploiting the dual form of the basis vec-
tors. In what concerns the kernel based model, a computationally less
demanding model based on incomplete Cholesky decomposition is also
introduced. An online benchmark data set allows the evaluation of the
feature extraction methods comparing the performance of two classifiers
having as input the raw data and the new representations.

1 Introduction

Finding better representations of a given set of data with more informative
features is sometimes fundamental to improve the performance of a classifier.
Often not all original features are appropriate, and even the number of features
might be too large to conduct an efficient training. Subspace techniques can be
applied as unsupervised feature generators simultaneously providing dimension
reduction and more suitable representations.

Principal Component Analysis (PCA) is a subspace technique widely used in
many fields like face recognition [1] and related computer vision tasks [2]. In this
application a new representation of a given data set is formed by a linear com-
bination of the original features whereby the data is projected onto orthogonal
basis vectors. These projections represent new features which are non-correlated
and even can be of smaller number. This model also implies that the original
features are linear combinations of these projections. This assumption is a lim-
itation if it is to model highly complex data. Kernel PCA methods are well
suited in such cases to find the non-linear principal components. And in a classi-
fication task, the new representation provided by the non-linear kernel methods
belongs to a new space (called feature space) where the data most probably
become linearly separable [3]. The main characteristic of kernel methods is that
the non-linear components (in input space) are computed via a transformation
to a space of higher dimension. In this feature space, the main steps of the PCA
are formulated using dot products. However, the non-linear mapping and the
dot product are performed simultaneously using kernel functions [4],[3]. The pa-
rameters of these functions are the features in the input space, thus avoiding an
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explicit mapping to the higher dimensional space. Kernel methods are computa-
tionally demanding whenever it is needed to manipulate huge training data sets.
If the kernel (dot product) matrices are large, then their storage as well as their
eigendecomposition might be prohibitive in any practical application because of
memory limitations. Besides this, the basis vectors of the subspace have to be
written in their dual form, i.e., as a linear combination of the training set. So,
in a classification task, the training set has also to be available even during the
testing phase of the classifier, i.e. , even when the parameters of the subspace
model do not change.

In this work we show different strategies to perform feature extraction either
in input or feature space. In input space the features are calculated by using
the PCA decomposition. In feature space KPCA and greedy KPCA are applied.
The latter is based on an incomplete Cholesky approach to compute the new
representation of the training data set in feature space. Then, the dual form
of the kernel subspace model is computed, formed by a subset of the training
set which turns the model less demanding, during the application to new data.
Another issue to be discussed is the influence of centering the data on the models.
The proposal is to perform the centering and simultaneously maintain the new
representation of the training data set non-correlated. The numerical simulations
compare the performance of classifiers using kernel features, principal component
features and a direct classification of the raw data using two classifiers: the
nearest neighbor (NN) and linear discriminant function (RL). Furthermore, to
evaluate the impact of the projective techniques, a comparative study with the
best results published in [5] is presented and discussed.

2 Subspace and Classification

With subspace methods, denoising or classification is achieved by projecting the
data onto basis vectors (U), i. e. by computing products between the data vectors
and basis vectors. The projections constitute the new representation of the data
which can be a simple linear combination of the input data (PCA projections)
or it can represent non-linear components of the data (KPCA projections). In a
classification task the projections are then the input to the classifier. During the
training phase the basis vectors are computed and the projections are used to
adapt the parameters of classifiers. Afterwards, the performance of the classifier
is evaluated with the projections of new data (test data) onto the basis vectors
computed using the training set. These steps are the same either using PCA or
KPCA, the differences are only concerned with the introduction of a kernel to
replace the dot products.

2.1 Subspace Model

Using the dual form to describe the basis vector matrix U, the basis vectors
(columns of the matrix) are obtained as a linear combination of the training
data set, either in input space or after a non-linear mapping. Considering that
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the mapped training data set is Φ = [φ(x1), φ(x2) . . . φ(xN )], the basis vector
matrix reads

U = ΦVD−1/2 (1)

In this form the matrices V and D are obtained by computing the eigende-
composition of the kernel matrix K = ΦTΦ. Usually the eigenvectors, i.e. the
columns of V, are ordered according to the value of the corresponding eigen-
values, the diagonal of matrix D. Assuming that the eigenvalues are ordered in
decreasing order,λ1 >, λ2, . . . > λL . . . > λlast,the number (L) basis vectors can
be chosen according to the percentage of variance of the data to be kept in the
new representation. Afterwards the mapped training data set Φ projected into
the basis vector leads to new representation,

Z = D−1/2VT ΦTΦ (2)

where each column (j) of Z, of dimension L, is the representation of xj in the
feature space. The substitution of the kernel matrix by its eigendecomposition
in previous equation leads to Z = D1/2VT . Then, the new representation of
the training data set is non-correlated, i.e. , ZZT is a diagonal matrix. Also
notice that a low-rank approximation for the kernel matrix K can be obtained
by computing ZT Z. If the dimension of Z is L, the approximation corresponds
to the L leading eigenvalues and related eigenvectors. Furthermore, note that
the Principal Component Analysis model and its corresponding projections can
be obtained by substituting the mapped data set (Φ) by the raw data set X =
[x1, ...,xN ] in the previous equations. Due to lack of space those descriptions are
omitted and it can also be verified that the properties discussed above are also
accomplished.

2.2 Basis in Input Space

The common approach to compute the matrix of basis vectors U = [u1, ...,uL]
is to perform the eigendecomposition of the covariance matrix (or the scatter
matrix S = XXT ). However, instead of computing S, a matrix of dot products,
the kernel matrix (K = XTX) can be an alternative. This strategy is often used
when the dimension of the data D , as in case of face recognition applications,
is larger than the size of the training set N to avoid the eigendecomposition of
the scatter matrix. Taking the singular value decomposition (SVD) of the data,
we can establish the relations between eigenvectors of both matrices and the
non-zero eigenvalues of both matrices, that are identical [6].

2.3 Basis in Feature Space

In feature space, the dot products are evaluated by kernel functions using the
data in input space. For example, with the radial basis function (RBF), the dot
product between a pair of points is

φT (xi)φ(xj) = k(xi,xj) = ki,j = exp

(
−‖xi − xj‖2

2σ2

)
(3)
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where σ is a value to be assigned according to the range of values of the data set.
Thus the matrix of dot products K = ΦTΦ can be calculated easily this way.
Each entry ki,j is the result of the dot product between a pair (i, j) of mapped
examples of the training set. As referred before the drawbacks of these methods
are

– the size of K. The eigendecomposition of large matrices can be unfeasible in
practical applications requiring the manipulation of large data sets.

– the dual form of the model (eqn. 1). This form in kernel methods needs
that the training set must be stored, even during the test phase, to compute
the projections of any new point φ(y) into the model. This is because the
mapping is never explicitly computed but is simultaneously obtained with
dot product (eqn.3)- the so called kernel trick.

In the next section a method is suggested to deal with both problems. The kernel
matrix of the complete training set is not computed and the eigendecomposition
is performed with matrices of smaller size (R < N). The description of the model
is then also based on a subset of the training data set.

2.4 Basis Vectors and Cholesky Decomposition

The Cholesky decomposition is a decomposition of an N×N symmetric positive
matrix into the product of a N × N triangular matrix by the transpose of the
triangular matrix. The incomplete approach with symmetric pivoting leads to
R × N matrix, C, which allows to compute an approximation of the original
matrix controlling the error of the approximation. In [7] and [8] an algorithm
is proposed which allows the computation of the decomposition of the kernel
matrix having as input the training data set X. The outcomes of the algorithm
are the indexes of the pivoting and the matrix is

C =
[
L L−T Krs

]
(4)

The pivoting scheme leads to the division of the training set into two subsets
which can identified also using a block notation X = [Xr Xs ] . Then, the ap-
proximation of the kernel matrix K̃ = CT C can be expressed with four blocks:
the upper left block matrix Kr = LTL has dimension R × R, the upper right
block matrix Krs has dimension R×(N−R), the lower left block is KT

rs and the
lower right block matrix KT

rsK
−1
r Krs has dimension S × S where S = N − R.

The block Kr is the kernel matrix of the subset Φr ≡ φ(Xr) and Krs corre-
sponds to the kernel matrix between the subsets. It can be easily shown that the
last block represents an approximation of the corresponding block of the original
matrix which should be Ks = ΦT

s Φs ≡ φT (Xs)φ(Xs) [9]. The minimization of
trace(Ks−KT

rsK
−1Krs) = trace(Δs) is used as criterion to the pivoting scheme

of the incomplete Cholesky algorithm [8]. The goal is to iteratively construct C
so that trace(Δs) < ε, is an user defined threshold. The pivoting is the choice
of the index of the elements in Xs that is moved to Xr in each iteration [6],[9].
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The matrix C can also be used to form an orthogonal representation of the
training data set in the feature space

Z = VT
q C (5)

where Vq is the eigenvector matrix of the matrix Q = CCT . Note that L ≤
R projections can be considered by choosing L eigenvectors that correspond
to the largest eigenvalues. Furthermore note the new representation is always
non-correlated, i.e. ZZT is diagonal whatever the value of L (< R). A simple
manipulation of Z leads to the description of the subspace model in its dual form

Z = VT
q C = VT

q L−TΦT
r

[
Φr Φs

]
(6)

Consequently, the basis vector matrix can be written as

U = ΦrL−1Vq (7)

So, the dual form of the basis vector matrix is written using only a subset of
the training data set thus reducing the storage and computational requirements
during testing phases of the classifier. It has to be noticed that the vectors form
an orthogonal basis in the feature space, i.e., UT U = I. Several algorithms [10],
[11], [12] lead to similar solutions by exploiting the idea that there are samples
in the training set that can be expressed as a linear combination of others.

2.5 Centering the Data

All previous deductions were conducted assuming that the data is centered. In
the input space this can considered a pre-processing step that must be accom-
plished before computing the scatter or kernel matrix and before projecting any
new data vector. So computing the mean of the training set xmean, the mean
must be subtracted from every data vector whether it belongs to the training
set or not.

KPCA and a complete training set: In feature space centering the mapped data is
a more elaborate procedure that must performed mostly during the computation
of the projections. To facilitate the exposition, let’s consider a vector m with N
elements all of which equal 1/N , and a matrix M filled with N column vectors
m. Therefore to project a new data point φ(y) and to take into account the
centered training data set, the following operations need to be integrated into
the dot product

(Φ−ΦM)T (φ(y) −Φm) (8)

The first term removes the mean to the training data set, the second subtracts
the mean of the training set from the new data. Then the manipulation of the
previous expression results into four terms that contribute to the L projections
in the feature space of the input data point y as

zy = D−1/2VT (ΦT φ(y) −MTΦT φ(y) −ΦTΦm + MTΦTΦm) (9)
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The last two terms only depend on the training set and they are present in
every data point projected into U, so they can be stored in advance and consti-
tute a bias term that is present in every projection. It can be easily shown that
projecting the complete training set Φ to obtain Z, the last three terms within
parenthesis arise from the centered kernel matrix Kc = (I−M)ΦT Φ(I−M),
where I is an N × N identity matrix. Then, to accomplish non-correlated pro-
jections for the training data set the matrices V and D should be obtained from
the eigendecomposition of Kc. It should also be noticed that with an RBF kernel
the dot products in feature space are always less than the unit (see eqn. 3). And
in particular the contribution of the last two terms depends on the parameter σ
of the kernel function.

KPCA and a reduced training set: The starting point of a Cholesky approach is
the incomplete Cholesky decomposition of the full matrix. The projections can
be written (see eqn.5), in order to turn the projections related to the centered
data, the low rank approximation of the kernel matrix can be centered K̃c =
(I−M)CT C(I−M) where the mean Cm is subtracted from every column of
C. In that case the eigenvectors Vq must be computed with Q after centering
the matrix C. Then, the term b = VT

q Cm should also be subtracted from every
data projected onto the model (see eqn.7).

zy = UT φ(y) − b (10)

3 Numerical Simulations

The effectiveness of the subspace feature extraction methods discussed above is
evaluated by comparing the performance of the classifiers. For that we carried out
experiments on thirteen artificial and real world data sets available on Gunnar
Ratsch’s web site (accessible at http://ida.first.fraunhofer.de/projects/bench).
The data sets represent benchmarks and several algorithms [5], [13], [14], in
wich it has been been applied to these data sets. In this work generalization
error rates of the classifiers are presented using as input: the raw data, the PCA,
the KPCA, and greedy KPCA projections.

Data sets. Table 1 resumes the information of the 13 data sets. All data sets
have 100 random partitions of pairs training/test sets, except Splice and Image
which have 20 partitions. On each partition data sets, different classification
algorithms were used, the second column shows the average and the standard
deviation of the generalization error published in [5]. Furthermore, it is possible
to download from the web page the generalization errors for every partition of
data.

Evaluation. The performance of classifiers is used to illustrate the influence of
projecting the data into the different models. Two classifiers were considered:
one-nearest neighbor (NN) and the linear discriminant function (RL). With an
NN classifier, each element of the test set is classified according to the nearest
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Table 1. Data set description. The results of t-test (95%): Best results of [5] versus
raw data classification (column I1) and Raw data versus PCA projections (column I2),
where ⊕ accepts H0 and � rejects H0.

Data description Projections PCA t-test
D N Benchs [5] L NN L RL I1 I2

G
ro

u
p

1

B. Cancer (BC) 9 200 25.9 ± 4.6 9 32.5 ± 4.8 2 26.2 ± 2.3 ⊕ ⊕
Diabetis (Di) 8 468 23.5 ± 1.7 8 30.1 ± 2.0 8 23.4 ± 1.7 ⊕ ⊕
German (GR) 20 700 23.6 ± 2.1 20 29.4 ± 2.4 17 23.9 ± 2.1 ⊕ ⊕
Heart (Hr) 13 170 16.0 ± 3.3 9 22.0 ± 3.1 10 15.9 ± 3.1 ⊕ ⊕
F. Solar (FS) 9 400 32.4 ± 1.8 9 39.0 ± 4.9 6 32.9 ± 1.8 ⊕ �
Thyroid (Ty) 5 140 4.4 ± 2.2 3 3.9 ± 2.1 5 14.7 ± 3.2 � ⊕
Titanic (Ti) 3 150 22.4 ± 1.0 1 33.0 ± 11.0 3 22.6 ± 1.0 ⊕ ⊕
Twonorm (Tn) 20 400 2.7 ± 0.2 1 3.4 ± 0.5 1 2.3 ± 0.1 � �

G
ro

u
p

2 Image (Im) 18 1010 2.7 ± 0.7 13 3.30 ± 0.5 18 16.5 ± 0.98 � ⊕
Ringnorm (Rg) 20 400 1.6 ± 0.1 6 21.3 ± 1.2 19 24.6 ± 0.7 � �
Splice (Sp) 60 1000 9.5 ± 0.7 6 22.4 ± 1.4 60 16.31 ± 0.6 � ⊕
Waveform(Wv) 21 400 9.8 ± 0.8 2 11.7 ± 0.7 2 12.6 ± 0.7 � �
Banana (Ba) 2 400 10.7 ± 0.4 2 13.6 ± 7.0 1 46.9 ± 7.0 � ⊕

neighbor in the training set. In case of linear discriminant functions, the weight
vectors are computed within the training data set by using the mean-square-
error criterion [15]. In spite of having two classes, the multi-class strategy is
followed and each element in the test set is assigned to the class whose discrim-
inant function has the largest value. The averages (and standard deviation) of
the generalization error rates are presented. The difference between error per-
centages achieved by pairs of methods are also compared using t-test with 95%
significance. The statistical test has been carried out in an attempt to reject !
or accept ⊕ the null hypothesis (H0), i.e, the equality of mean performance of
both methods.

3.1 Linear Features

Both classifiers were applied to the raw data. The results of the classification
leads us to organize the data sets into two groups (see table 2). In the first
group (group 1), at least one of the classifiers achieves an error rate comparable
to the ones published in [5]. In the remaining five data sets (the group 2) the
performance was far from the results presented in [5]. A t-test is used to compare
the best result with the ones published, and the H0 is rejected in the group 2
and it is accepted in group 1 except for two data sets (see column I1 of table 1).
The data is pre-processed using PCA and its L projections are used as input to
the classifiers. The number of projections was varied from 1 to D (the number of
features of raw data). In table 1, for each data set the average minimum error rate
and the corresponding dimension (L) of the new data representation are shown.
Globally we verified that the error rate of the linear discriminant classifier is
similar to the one achieved with the raw data. Using a t-test to compare the
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best results of raw data versus PCA projections, the H0 hypothesis is accepted
for most of the data sets, except in four data sets (see column I2 of table 1).
However, also to be noticed is that in some data sets a considerable dimension
reduction is reached. The most significant occurs in the twonorm data set where
D = 20 and L = 1 for both classifiers and in both cases the performance improves
when compared with the raw data version. In the case of the RL classifier the
result is even better than the result published in [5]. In this case H0 hypothesis
is rejected (see column I1 and I2 of table 1).

3.2 Non-linear Features

Both versions of KPCA are used to compute the model: the first depends on the
full training set (KPCA) and the second depends on a subset with R elements
(greedy KPCA). In both cases the number of projections varied from L = 1 up
to R. Both models are computed using centered versions of the kernel matrices
as proposed before. Using the RBF kernel function to evaluate the dot products,
a value must be assigned to σ. This parameter is often a variable of the exper-
imental studies [16] or it is optimized using a cross validation strategy using
the training data [13]. In this study, the value of σ2 is chosen as the average of
euclidian squared distances of each training vector to the center of training set.
Notice that the choice of sigma also interferes with the size R of the subset to be
included in the basis vector model of greedy KPCA. If the decay of eigenvalues is
too smooth the complete training set will be chosen in the incomplete Cholesky
decomposition using a fixed threshold for the approximation error. The thresh-
old 0.01N was considered, because with the RBF kernel the trace of the kernel
matrix is always the size of training data set.

In table 2 the average error rates and standard deviation are shown. Column
I1 shows the result of the t-test between the results of [5] and either the NN
or the RL classifier . And we can see that the H0 hypothesis is accepted in
all but the German data set. We can see that in group 1 there is no significant
improvement in the performance of the classifiers using the non-linear features of
the data sets. In most cases the minimum error rate is achieved using a number
(L > D) of projections higher than the dimension (D) of the raw data. One
of the exceptions is the twonorm where L = 1 as in input space. Another t-
test was performed to see how the number of projections can affect the results.
The error rates were compared to the error rates achieved when the number of
projections is L = D, KPCAD. The column I2 of table 2 shows the result and
it can be verified that the H0 hypothesis is rejected in group 2 and accepted in
group 1. Furthermore, notice that with the linear discriminant function the best
performance is achieved with L > D with the exception of the waveform set.

Table 2 also shows the performance of classifiers using the greedy KPCA to
compute projections and we can verify that the results are similar to the ones
computed with KPCA. The null hypothesis is accepted for every data set (see
column I3). The number of projections used in both methods was not always the
same, but considering that the second method is obtained using an approxima-
tion of the kernel matrix, some variations had to be expected. In what concerns
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Table 2. Error rate (%) using KPCA and greedy KPCA. Results of t-test: Best
versus KPCA (column I1), KPCA versus KPCAD (column I2) and greedy KPCA
versus KPCA (column I3) where ⊕ accept H0 and � reject H0.

KPCA H0 greedy KPCA H0

L NN L RL I1 I2 R L NN L RL I3
BC 7 32.5 ± 4.8 21 25.2 ± 4.5 ⊕ ⊕ 90 7 32.5 ± 4.8 22 25.2 ± 4.5 ⊕
Di 17 25.3 ± 1.8 10 23.2 ± 1.6 ⊕ ⊕ 140 61 30.2 ± 1.9 10 23.1 ± 1.6 ⊕
Gr 12 30.0 ± 2.5 12 23.3 ± 2.1 � ⊕ 400 13 29.1 ± 2.4 12 23.4 ± 2.3 ⊕
Hr 8 22.7 ± 3.4 12 15.8 ± 3.0 ⊕ ⊕ 110 48 22.79 ± 2.9 11 15.8 ± 3.1 ⊕
FS 55 32.2 ± 0.5 25 32.1 ± 0.6 ⊕ ⊕ 74 70 35.3 ± 0.7 48 33.8 ± 0.6 ⊕
Ty 6 4.0 ± 2.2 15 5.8 ± 2.4 ⊕ ⊕ 25 6 3.9 ± 2.2 25 5.3 ± 2.3 ⊕
Ti 9 32.3 ± 1.1 10 22.3 ± 1.0 ⊕ ⊕ 10 10 31.1 ± 1.4 6 21.8 ± 1.0 ⊕
Tn 1 3.4 ± 0.4 1 2.3 ± 0.1 ⊕ ⊕ 285 1 3.5 ± 0.6 1 2.3 ± 0.1 ⊕
Im 23 2.8 ± 0.6 75 7.9 ± 1.3 ⊕ � 120 21 2.9 ± 0.7 80 8.1 ± 1.2 ⊕
Rg 40 3.5 ± 0.4 25 1.6 ± 0.1 ⊕ � 262 45 3.8 ± 0.4 31 1.7 ± 0.1 ⊕
Sp 600 7.5 ± 2.6 720 4.3 ± 2.1 ⊕ � 874 620 7.7 ± 2.6 764 4.4 ± 2.1 ⊕
Wv 29 9.7 ± 0.7 2 12.0 ± 0.8 ⊕ � 258 30 9.8 ± 0.3 2 12.0 ± 0.7 ⊕
Ba 5 13.6 ± 0.4 34 10.7 ± 0.4 ⊕ � 15 15 13.6 ± 0.7 5 10.8 ± 1.8 ⊕

the approximation, we see that, using the same threshold, the relative decrease
(N/R) of the number of examples to describe the model is very heterogenous, it
ranges from 1.1 to 26.6, but in 7 data sets is higher than 2.

4 Concluding Remarks

In this work we introduce projective subspace techniques and cast them in a
concise presentation by using the dual form for the models. Besides that an al-
gorithm to compute the KPCA model using a subset of the training data set
using a greedy approach is also presented. We further consider the centering
problem and adapt the model description to remove the mean of the data. We
verify that these techniques have a different impact on the performance of the
classifiers. The reason is mostly related to the data characteristics. We showed
that for some data sets the performance achieved using raw data is similar to the
results published [5]. In these data sets a dimension reduction by PCA yields
similar results. It can also be verified that for these data sets, using KPCA
projections, the generalization errors rate remains roughly constant. The other
group are nonlinear data sets. The performance on the high-dimensional feature
space clearly improves, and is comparable to the one described in [5]. Another
aspect to point out is that with KPCA projections the linear discriminant func-
tion classifier performs better than the nearest neighbor one, in 10 of the 13
data sets. Confirming that having decision functions based on an hyperplane is
possible but the dimension has to increase like in the case of banana data sets.
The numerical simulations corroborate that the greedy approach to KPCA does
not harm the performance.
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Abstract. A new classification algorithm based on combination of ker-

nel density estimators is introduced. The method combines the estima-

tors with different bandwidths what can be interpreted as looking at the

data with different “resolutions” which, in turn, potentially gives the al-

gorithm an insight into the structure of the data. The bandwidths are

adjusted automatically to decrease the classification error. Results of the

experiments using benchmark data sets show promising performance of

the proposed approach when compared to classical algorithms.

Keywords: kernel density estimation, classification, density estimators

combination.

1 Introduction

Classification based on density estimators is one of the basic methods used in
machine learning (see e.g. [1] for an introduction to the subject). Among the
non-parametric density estimation methods, the most popular are the Gaussian
Mixture Model (GMM) and the Kernel Density Estimator (KDE), the latter
also called the Parzen windows method. In KDE, in order to get the density
estimate in a given point, a distance-based influence of all points from the train-
ing set on that point is calculated. A “kernel function” is used to put a rela-
tively greater emphasis on points that are closer than on those which are placed
further. Typically, kernel’s definition includes a parameter called “bandwidth”
which determines how much emphasis is put on the closest points.

A method to estimate the density (but not to make a classification) using a
linear combination of predefined GMMs and KDEs was introduced in [2]. The
parameters of the combination are computed using the stacking meta-learning
method with the EM algorithm. In [3], another fusion of GMM and KDE is
proposed. The GMM algorithm is used to assign a weight to each of the prede-
fined KDE models. Yet another meta-learning approach – boosting – is proposed
in [4]. The base boosted classifiers are simple algorithms based on KDE; each
of the training points gets a different weight in each algorithm’s iteration. A
different meta-learning approach is proposed in [5]. Authors use ensemble aver-
aging method based on GMMs to estimate the density. Boosting and bagging

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 125–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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meta-learning algorithms are also used in [6] for the density estimation. The
EM algorithm is used to maximize training data likelihood but the classification
error is not directly optimized. In [7], authors describe an algorithm which uses
“Gaussian product kernel estimators” where the bandwidths are chosen inde-
pendently for each class-dimension combination. What is more, the bandwidths
can vary depending on the localization in the feature space.

In this paper, we propose a new classification method which is based on a
combination of KDEs. The algorithm is significantly different from each of the
above mentioned methods, since it optimizes directly the classification error
and does not use explicitly any meta-learning algorithm. The combined kernels
bandwidth is not predefined but adjusted to the data.

The method exhibits some similarities to the Ghosh et al. approach [8], where
the authors introduced a method which is at heart a binary classifier. They
search for an optimal bandwidth using the cross-validation method for each of
the 2 classes independently. As a result, they obtain a pair of bandwidth values
which can be interpreted as a point in a 2-dimensional bandwidth space. In order
to classify a given test point, a couple of density estimations are made. Each of
them corresponds to a pair from the neighborhood of the optimal bandwidth
values pair in the bandwidth space. The estimation results are transformed in a
certain way and their weighted sum is computed. The sum yields the final classes
probabilities. The main difference between the method presented in [8] and our
approach is that the latter one is simpler (and possibly faster) because the pa-
rameter space that is searched is one-dimensional instead of two-dimensional.

The paper is organized as follows: Sect. 2 contains a description of the pro-
posed algorithm, Sect. 3 presents results of the tests on benchmark data sets
and comparison with the literature results, Sect. 4 concludes the paper.

2 Algorithm Description

Every classification machine learning algorithm has two modes of operation:
training phase and classification/recall phase. In Sections 2.1, 2.2, 2.3 we describe
the classification phase and Sect. 2.4 contains a description of the training phase.

2.1 Introduction

The problem of classification is to create a decision rule d(x) : R
d → {ω1, ω2,

. . . , ωc} to classify a d-dimensional observation (point) x into one of c classes ωi.
The rule is usually built using the observations from a training set, its robustness
is tested on the observations from a testing set. One possibility to create such a
rule is to employ the Bayesian classifier of the form

dB(x) = arg max
wi

P̂ (ωi|x) = arg max
wi

p̂(x|ωi)P̂ (ωi)
p̂(x)

, (1)

where P̂ (ωi|x) is a posterior probability estimator of class ωi, P̂ (ωi) is a prior
estimator of class ωi (in practice, it is equal to the fraction of observations from
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a given class in the training set), p̂(x|ωi) is an estimated probability density
function of class ωi, and p̂(x) =

∑c
i=1 p̂(x|ωi)P̂ (ωi) is a normalization factor.

All of the quantities in this formula are simple to compute except for the class
probability density estimate p̂(x|ωi).

One of the most popular density estimators is the Kernel Density Estimator.
When applied in the Bayesian classifier, it has the form of

p̂h(x|ωi) =
1
|Di|

∑
x′∈Di

1
hd

φ
(x− x′

h

)
, (2)

where Di is the set of observations belonging to class ωi, the function φ(x) :
R

d → [0,∞) is a density function called “kernel function” and h is a smoothing
factor called “bandwidth”.

One of the most popular choices for the kernel function is the Gaussian kernel.
In the general case, it has the form of

φ(x) =
1

(2π)d/2|Σ|1/2 exp
[
−1

2
(x− μ)TΣ−1(x − μ)

]
, (3)

where the covariance matrix Σ is responsible for the hyper-ellipsoidal shape of
the kernel (cf. [1, Sect. 2.5.2]). Generally, the shape of the kernel should be ad-
justed to match the layout of the training points in the feature space. There are
two approaches to reach this goal. The first one is to set an appropriate shape
of the kernel i.e. to adjust the covariance matrix to match the data. The second
one is to let the covariance matrix be fixed and equal to the identity matrix
Σ = I (the shape of the kernel will be circular in this case) and to transform
the feature space instead (this method was used e.g. in [7]). We have chosen
the second approach because it makes the algorithm simpler to analyze and is
less computationally intensive. During the experiments, two different transfor-
mations were used: standardization and whitening, the latter implemented with
Principal Component Analysis (PCA).

2.2 Combination of Estimators

The kernel’s bandwidth parameter specifies how smooth the resulting estima-
tion of density function will be. The larger the factor, the smoother and less
concentrated on the training points the estimation of the density function. We
can also interpret the bandwidth as a “resolution” of the data view – the larger
the bandwidth, the smaller resolution and the more general view on the data
(i.e. the density assumes similar values even in distant points of the space, which
makes them difficult to distinguish).

The main idea presented in this paper is to combine a certain number of KDEs
with different bandwidths which are selected to match the analyzed data set.
Such an approach of looking at the data with different “resolutions” should give
a better insight into the data structure and result in a better classification than a
method using a single “resolution”. In this “multi-resolution” case, the formula
for posterior probability estimator will be an average of different-bandwidth
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KDEs: p̂(x|ωi) = 1
E

∑E
j=1 p̂hj (x|ωi), where E is the number of KDEs, and hj is

individual bandwidth of j-th KDE.
The other underlying idea is to make the estimators’ bandwidths related in

some way. It is proposed that bandwidths of different estimators decrease in an
exponential manner. This way it is possible to combine vastly different data view
“resolutions”. As a result, bandwidth is a function of the following form:

hj(a) = hmin + aj(hmax − hmin) , (4)

where j ∈ {1, . . . , E} is an estimator number, a ∈ [0, 1] is a parameter deter-
mining how fast the bandwidths decrease, [hmin, hmax] is a range of bandwidth
values.

2.3 Bandwidth Range

The first question to be answered is what is a “sensible” bandwidth range in
(4). If one uses a very small bandwidth, numerical problems occur. If a given
testing point is far from any other point in the training set, then every class-
conditional density in the given point will be close to zero and, as a result, p̂(x)
in the denominator of the Bayes classifier formula (1) will be close to zero. For
a sufficiently small bandwidth, the value will be smaller than the computer’s
machine precision and, as a consequence, assumed to be equal to zero. This, in
turn, will make the formula impossible to evaluate. The next problem is that
for small bandwidths one can get unreliable and possibly misleading information
for classification [8, Sect. 2.2]. To deal with these problems, we decided to take
an approach similar, but not the same, to the one presented in [8]. We chose a
small ratio 1

ξ of the smallest non-zero percentile of the pairwise distances of the
transformed data points from the training set as the lower limit. The ξ is a radius
of a sphere which contains 99% of kernel’s probability mass – it is assumed that
outside this sphere, the kernel’s influence on the overall density is negligible.
In the presented algorithm, the Gaussian kernel is used, and for such a kernel
it can be shown that ξ =

√
F−1

χ2(d)(0.99), i.e. it is a square root of inverted χ2

distribution function with d degrees of freedom in point 0.99.
The proposed solution is not always sufficient to solve the above mentioned

problems. In extreme situations, an outlier point can be situated far away from
all the training points, and in such case the algorithm would not be able to
evaluate the formula (1) even for larger bandwidths. We can note that in such
situations (i.e. outlier point or, equivalently, a very small bandwidth) the KDE
classification result mimics the result of Nearest Neighbor algorithm [9, p.251].
Thus, if the denominator of the formula (1) is equal to zero (i.e. the value is
smaller than the computer’s machine precision), the probabilities that would
be yielded by the Nearest Neighbor algorithm are returned as the classification
result.

The upper limit of the bandwidth range, on the other hand, is set to be
the 99-th percentile of pairwise distances of the transformed data points in the
training set. As can be seen, when calculating the lower and the upper limits,
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small and large percentiles are used instead of simply using the minimum and
the maximum. The reason is making the calculations resistant to outlier points,
which could unnecessarily widen the bandwidth range. Apart from that, the
estimation of both lower and upper limits is rather conservative.

2.4 Algorithm Training

In this section the training phase in which the parameters of KDEs combination
(especially a) are computed is described. Parameter a in (4) is selected to min-
imize the classification error on the training set. The classification error that is
minimized is the Mean Squared Error (MSE) defined as

MSE(P̂ (·),D) =
1
|D|

∑
x∈D

c∑
i=1

(P̂ (ωi|x)− ti(x))2 , (5)

where D is the data set on which the error is computed, P̂ (ωi|x) is the algo-
rithm’s posterior probability estimation for class ωi, and ti(x) is a vector whose
i-th component, where i corresponds to the actual class ωi, is 1 and all other
components are 0.

The training phase of the algorithm consists of several steps. 1) As the first
step, the sequence of the training instances is randomly permuted. The ran-
domization is required for the cross-validation folds (which are created from the
data in later steps) to be independent as much as possible (e.g. we do not want
to cumulate all of the samples from one class in one fold) which is a standard
requirement in the cross-validation method. It is worth noting that, apart from
this step, the algorithm is completely deterministic. 2) In the next step, the data
is transformed. The transformation parameters (e.g. for standardization trans-
formation: sample expected values and sample standard deviations) are saved –
they will be used later to build the classification error function. 3) Next, us-
ing the transformed data, a “sensible” bandwidth range (as it was described in
Sect. 2.3) is calculated. The range will be searched for the optimal bandwidth
value. 4) Finally, in the last step, the value of a that minimizes the 10-fold strat-
ified cross-validation estimator of a classification error function is searched for.
The minimization is performed in a exhaustive way with a grid-search method.
In this method, we compute the value of the cross-validation estimator function
in 100 equidistant points from range [0, 1] (see Fig. 1 for an example of examined
error values and location of the optimal a). As a result of the training phase, the
optimal a is obtained along with the transformation parameters, transformed
data and bandwidth range. These values will be used later in the classification
phase.

The construction of 10-fold stratified cross-validation estimator of the clas-
sification error function needs some further explanation. First, 10 splits of the
training data are created. Each split consists of two disjoint data sets: the fitting
set D which is used to train the classifier, and the validation set Dv which is
used to compute the classification error of the trained algorithm. For each split,
the classification MSE (5) defined as Error(a) = MSE(P̂ (·; a),Dv) is calculated,
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Fig. 1. An example of classification errors for different parameter a values. The algo-

rithm with 2 KDEs and standardization transformation is tested on the Boston housing
data set. Examined error types: cross-validation MSE on the training set (line 1 ), cross-

validation error rate on the training set (line 2 ), MSE on the test set (line 3 ), error

rate on the test set (line 4 ). The optimal a value found by the algorithm is equal to the

global minimum of the cross-validation MSE error on the training set (vertical line).

where a is the bandwidths’ decrease parameter from (4), P̂ (ωi|x; a) is the pos-
terior probability estimator from (1) dependent on a. The MSE function is used
instead of direct use of the error rate function (i.e. misclassification ratio) be-
cause it seems to be less affected by the random dependencies in the data (see
Fig. 1). The function uses the training set transformation computed in step 2 of
the training phase to transform the data in each of the cross-validation splits.
The reason the transformation is not computed for every split’s fitting set in-
dependently, as would a standard cross-validation procedure suggest, is that we
want the bandwidths calculated for every split to correspond to the same values
in the original non-transformed space. If the transformations were calculated
independently, the same bandwidth value would correspond to different band-
width values in each split in the original space. The priors used in each split are
also estimated on the whole training set (for similar reasons).
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3 Experiments

The efficacy of the proposed algorithm was compared with the results published
in [10] and [8]. In [10], the authors consider 33 classification algorithms and verify
them using different data sets, which establishes a broad comparison base for
the proposed algorithm. Among the data sets examined in [10], the ones that
matched the proposed algorithm (i.e. sets with numerical attributes only) were
chosen. The raw error rates used for comparison were retrieved from the article’s
appendix available at one of the author’s website. In [8], on the other hand, the
authors compare the algorithm they introduced with literature results. The same
data is used in this paper to compare our method with that of [8].

The following data sets were used in the experiments: Boston housing (Boston
housing, used in [10]), breast cancer (Wisconsin breast cancer data set, collected
at the University of Wisconsin by W.H. Wolberg [11], used in [10]), glass (forensic
glass data, used in [8]), Indian diabetes (PIMA Indian diabetes, used in [10]),
liver disorders (BUPA liver disorders, used in [10]), Ripley’s synthetic (Ripley’s
synthetic data, used in [8]), satellite image (StatLog satellite image, used in [10]),
sonar (sonar data, used in [8]), vehicle silhouette (StatLog vehicle silhouette,
used in [10]). All of the data sets except for Ripley’s synthetic were downloaded
from the UCI Machine Learning Repository [12]; the Ripley’s synthetic data set
was downloaded from [13]. In the cited articles, some of the original data sets
were preprocessed and we executed the same preprocessing steps. When testing
our algorithm, we followed the methodology used in adequate articles with an
exception for the holdout experiments (for data sets with a selected testing set).
The holdout experiments were executed 10 times instead of once, because our
algorithm is non-deterministic and repeating the experiment several times results
in a more unbiased efficacy estimation.

3.1 Results

During the experiment, the algorithm was tested with data standardization
transformation and number of estimators equal to: 1 (E=1 ), 2 (E=2 ), 5 (E=5 ),
or the number of classes in the data set (E=cl.no.). For comparison, the algo-
rithm was also tested with data whitening transformation and the number of
estimators equal to: 1 (PCA E=1 ), or the number of classes in the data set
(PCA E=cl.no.).

Four of the algorithms yielded results better than the literature ones on at
least one data set (see Table 1), and one of them (E=2 ) yielded results better
than the literature ones on 2 data sets. On average, the results yielded by E=2,
E=5, E=cl.no. were better than the results of the simplest version E=1 (average
differences equal to .0035, .0018, .002, resp.); the results yielded by PCA E=1,
PCA E=cl.no. were worse (average differences equal to -.01, -.012, resp.).

When comparing the classification results, it might be helpful to check at
which quantile is a given result situated among the literature results (Fig. 2)
(the quantiles were calculated using ecdf function in the R environment [14]).
This method potentially allows to assess if the improvement of the result is
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Table 1. Comparison of experimental results. Error rate (misclassification error) for

different algorithm versions and different data sets was measured. The results that are

better than the best literature result (best lit.) are marked with an asterisk. All of the

results are given with the same number of decimal places as in the respective literature

source.

data set best lit. E=1 E=2 E=5 E=cl.no. PCA E=1 PCA E=cl.no.

Boston housing .221 .239 .247 .249 .245 .243 .247

breast cancer .0278 .0323 .0323 .0323 .0323 .0661 .0661

glass .236 .252 .233* .247 .247 .271 .308

Indian diabetes .221 .251 .256 .259 .256 .264 .269

liver disorders .279 .405 .365 .365 .365 .321 .310

Ripley’s synthetic .090 .105 .094 .097 .094 .105 .094

satellite image .098 .097* .095* .095* .096* .292 .288

sonar .135 .194 .222 .216 .222 .181 .181

vehicle silhouette .145 .286 .285 .284 .286 .208 .205

meaningful (e.g. the same error rate improvement for a difficult data set can be
more important than for a simple one). As can be seen in Fig. 2, the results of all
of the algorithm’s versions were situated among the top-50% literature results
in 4 out of 9 examined data sets (except for PCA E=1 where the ratio was 5
out of 9). On average, the quantile results yielded by E=2, E=cl.no. were better
than the results of the simplest version E=1 (average differences equal to .0168,
.0101, resp.); the results yielded by E=5, PCA E=1, PCA E=cl.no. were worse
(average differences equal to -.0034, -.11, -.0797, resp.).

In summary, the results yielded by all of the algorithm’s versions are promis-
ing when compared to the literature results. Although the error rate on some
of the data sets was high, it can be argued that according to the no free lunch
theorem [1, Sect. 9.2.1] no single classifier can achieve great results on all of the
problems. Furthermore, the algorithms that used the whitening transformation
generally yielded worse results than the others. On the other hand, the whitening
transformation improved the results on some of the data sets (see e.g. results on
data set liver disorders in Fig. 2), so we can conclude that this transformation
can improve or worsen the results depending on the data. What is more, al-
though various algorithm’s versions excelled in the classification of various data
sets, the version which seemed to be generally the best is the one which uses
two KDEs with standardization transformation (E=2 ). This version yielded the
results that were better than the best literature results on two data sets: glass
and satellite image. The results were also better, on average, than the results
of the simplest version which uses one KDE (E=1 ); this observation justifies
application of 2-element KDEs combination instead of a simpler version with a
single KDE.
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Fig. 2. Comparison of the experimental results with the literature results. Each panel

contains relative error rates of a certain algorithm version on different data sets. Each

point corresponds to a quantile position of the experiment result among the literature

results. For example, in the panel E=1, 4 results are among 50% best literature results

and 5 results are among 50% worst literature results. Points at quantile 0 correspond

to the results that are as good as the best literature result or better; points at quantile

1 correspond to the results that are as bad as the worst literature result or worse.

4 Conclusions and Future Work

A new classification algorithm based on a combination of Kernel Density Esti-
mators, where the classification error is minimized directly is presented in the
paper. The algorithm performs well on the benchmark data sets when compared
to the literature results; one of the algorithm’s versions yields the results which
are better on two data sets than the best ones reported in the literature. These
results confirm the algorithm’s potential, especially in the domains related to
the examined data sets. It will be the object of further research to examine the
detailed characteristics of these data sets, and, as a result, to determine which
algorithm version matches best each data set domain.

The next steps of the algorithm’s development involve applying a numeri-
cal optimization method (e.g. one of the pseudo-Newton algorithms) instead of
the exhaustive optimization currently employed, which should result in signifi-
cantly shorter training times. Other extension paths concern testing other KDEs
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combination functions, applying other kernel types (e.g. p-Gaussian), and re-
moving non-typical observations (similarly to [15]) from the training set which
may lead to better classification results.

Acknowledgments. The authors would like to thank prof. Jan Mielniczuk for
valuable suggestions concerning the algorithm’s design and development.
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Abstract. Joint approximate diagonalization is one of well-known

methods for solving independent component analysis and blind source

separation. It calculates an orthonormal separating matrix which diago-

nalizes many cumulant matrices of given observed signals as accurately as

possible. It has been known that such diagonalization can be carried out

efficiently by the Jacobi method, where the optimization for each pair of

signals is repeated until the convergence of the whole separating matrix.

Generally, the Jacobi method decides whether the optimization is actu-

ally applied to a given pair by a convergence decision condition. Then,

the whole convergence is achieved when no pair is actually optimized any

more. Though this decision condition is crucial for accelerating the speed

of the whole optimization, many previous works have employed simple

conditions based on an arbitrarily selected threshold. In this paper, we

propose a novel decision condition which is based on Akaike information

criterion (AIC). It is derived by assuming each cumulant matrix to be a

sample generated independently. In each pair optimization, the condition

compares the reduction rate of the objective function with a constant de-

pending on the number of cumulant matrices. It involves no thresholds

(and no parameters) to be set manually. Numerical experiments ver-

ify that the proposed decision condition can accelerate the optimization

speed for artificial data.

1 Introduction

Independent component analysis (ICA) is a widely-used method in signal pro-
cessing [1,2]. It solves blind source separation problems under the assumption
that source signals are statistically independent of each other. In the linear model
(given as x = Ws), it estimates the mixing matrix W and the source signals s
from only the observed signals x. The dimension of x corresponds to the number
of signals N . Joint approximate diagonalization [3,4] is one of efficient methods
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for estimating W . Now, Δpq is defined as an N ×N matrix whose (i, j) element
is κijpq . Here, κijpq is the 4-th order cumulants of x. It is easily proved that
Δ̃pq = V ΔpqV

′ is a diagonal matrix for any p and q if V is the accurate sepa-
rating matrix. Therefore, W can be estimated as V which diagonalizes Δpq as
accurately as possible for many p’s and q’s. The most well-known joint diagonal-
ization algorithm is JADE [3], where q is given as the same value of p. Besides,
because x is assumed to be pre-whitened, V is constrained to an orthonormal
matrix. Then, the estimated separating matrix V̂ is given as

V̂ = argminV

∑
i,j �=i,k

(κ̃ijkk)2 (1)

where Δ̃kk = (κ̃ijkk). Because it is relatively difficult to calculate V̂ directly,
the Jacobi method is often used. The method optimizes the objective function
ψ =

∑
i,j �=i,k (κ̃ijkk)2 only for each pair (i, j). By sweeping the optimizations

over all the pairs repeatedly, the whole V can be estimated. Because V is an
orthonormal matrix, each pair optimization is given as a 2 × 2 rotation matrix
(cosφ, sin φ;− sin φ, cosφ) which has only a single parameter φ. Because each
pair optimization can be solved analytically and efficiently, JADE is known to
be quite efficient.

In this paper, we focus on the convergence decision in each pair optimization.
Generally, the Jacobi method decides whether the convergence is achieved for
each pair, then actually optimizes the pair only if the convergence is not achieved.
If the convergence of every pair is achieved, the convergence of the whole esti-
mated matrix is declared. If the decision method can remove adequately un-
necessary pair optimizations, the computational costs can be reduced. So, the
decision method is crucial for the efficiency and the convergence rate of the Ja-
cobi method. However, most of previous works have employed simple decision
methods, for example, whether the estimated φ̂ is over a threshold ε. Here, we
propose a new decision condition based on Akaike information criterion (AIC).
AIC is a measure of the “goodness” of a probabilistic model for given samples
and is often used in the model selection [5,6]. AIC is based on a mathematical
framework explaining “Occam’s razor,” and can suppress the increase of unnec-
essary parameters of the model. This property is suitable for the decision on
each pair optimization.

This paper is organized as follows. In Section 2, the JADE algorithm and AIC
are briefly explained. In Section 3, a new decision condition for each pair opti-
mization and an extension of JADE are proposed. In Section 4, some numerical
experiments show that the proposed method improves the convergence rate of
JADE. Lastly, this paper is concluded in Section 5.

2 Background

2.1 JADE Algorithm

As shown in the above, JADE [3] is a joint approximate diagonalization algo-
rithm which minimizes ψ =

∑
i,j �=i,k (κ̃ijkk)2 by the Jacobi method. Now, the
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pair optimization for (i, j) is given as follows. By picking up the terms depending
on i and j, the objective function is simplified into

ψ(i,j) =
∑

k

(κ̃ijkk)2 . (2)

By using the rotation angle φ and the original κijkk of x, κ̃ijkk is given as

κ̃ijkk = − sinφ (cosφ · κiikk + sin φ · κjikk) + cosφ (cosφ · κijkk + sinφ · κjjkk) .
(3)

It has been shown that there exists the analytical solution of φ̂ minimizing ψ(i,j)

(see [3] for the details). In consequence,
(
cos φ̂, sin φ̂

)
is given as the principal

eigenvector of a 2× 2 matrix GGt where

G =
(

g11 g12 . . . g1N

g21 g22 . . . g2N

)
, (4)

g1k = κiikk − κjjkk , and g2k = κijkk + κjikk

Then, the complete description of JADE is given as follows:

1. Initialization. Whiten x and calculate the cumulant matrices Δ̃kk = (κ̃ijkk)
for k = 1, . . . , N . Besides, V = IN (where IN is the N×N identity matrix).

2. Sweep. For every pair (i, j),
(a) Calculate GGt and φ̂,
(b) If φ̂ > ε (a small threshold), do the actual rotation of V by φ̂ and update

Δkk := Δ̃kk for every k.
3. Convergence decision of the whole matrix. If no pair has been actually rotated

in the current sweep (in other words, φ̂ ≤ ε holds for every pair), end.
Otherwise, go to the next sweep.

It is valuable to note that the computational costs of φ̂ is much less than those
of the update of the cumulant matrices Δkk := Δ̃kk if N is large. In the former,
because the calculation of GGt is dominant and G includes only O (N) elements,
the cost is O (N). On the other hand, because the latter has to update all the
cumulants depending on i or j (including κilkk (l �= i, j)), its cost is O

(
N2

)
.

Therefore, the computational costs of JADE can be reduced by employing an
adequate convergence condition depending on only φ̂.

2.2 AIC

Akaike information criterion (AIC) is a measure of the “goodness” of a prob-
abilistic model g (z|θ) for given samples z’s, where θ denotes the adjustable
parameters of the model. Though the usual likelihood is give as

∑
z log g (z|θ),

it can be increased without restriction by employing more complex models in-
cluding more number of parameters. On the other hand, AIC takes into consid-
eration the distance between the given model g (z|θ) and the “true” model. In
consequence, AIC is given as

AIC = −2
∑
z

log g
(
z|θ̂

)
+ 2K (5)
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where θ̂ is the optimized θ maximizing the likelihood and K is the number of
parameters in θ. It can be proved under some assumptions and approximations
that a probabilistic model with less AIC is nearer to the true model (see [6]
for the details). The term 2K can be regarded as a penalty for increasing the
number of parameters. So, it is expected to suppress the maximization of the
objective function with unnecessary (and often harmful) parameters. Besides, if
the model g (z|θ) assumes Gaussian-distributed errors with a constant variance,
Eq. (5) is simplified further into

AIC = N log σ̂2 + 2K. (6)

Here, σ̂2 is the estimated variance of errors
∑

k δ̂2
k

N , where δ̂k is a residual error
for each sample k under θ̂.

3 Method

3.1 Decision Method Based on AIC

The essential conception is to regard the set of the four variables (κiikk , κjjkk ,
κijkk , and κ̃ijkk) as a sample z in the optimization of a pair (i, j). Here, each
k = 1, . . . , N is regarded as a trial in sampling. Then, AIC can be calculated by
δ̂k = κ̃ijkk for φ̂ and the number of parameters K = 2 where θ consists of φ̂ and
σ̂2. The change of AIC by a pair optimization (denoted by δAIC) is given by

δAIC

=

(
N log

∑
k (κ̃ijkk)2

N
+ 2 (Kcur − 1 + 2)

)
−

(
N log

∑
k (κijkk)2

N
+ 2Kcur

)

= N log
∑

k (κ̃ijkk)2∑
k (κijkk)2

+ 2 (7)

where Kcur is the number of parameters which has been optimized so far. The
term “-1” in (Kcur − 1 + 2) is caused by the elimination of one parameter σ2 =∑

k κ2
ijkk

N (the variance in the current state). Because AIC has to be reduced
(δAIC < 0), the decision condition in a pair optimization is given by∑

k (κijkk)2 −∑
k (κ̃ijkk)2∑

k (κijkk)2
> 1− exp

(
− 2

N

)
. (8)

The left and right terms can be regarded as the reduction rate of the objective
function

∑
k (κijkk)2 and the threshold, respectively. If N is large, the threshold

is close to 2
N .

Remarks. Because the above derivation is based on some approximations and
assumptions whose validity is not theoretically verifiable, only numerical exper-
iments can verify the effectiveness of this decision condition (see Section 4).
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Nevertheless, we now focus on the essential assumption that κijkk (including
κiikk, κjjkk , and κ̃ijkk for fixed φ̂) is regarded as a sample at the k-th trial. In
other words, it asserts that κijkk is statistically independent of κijll for l �= k.
In the following, we show that this assumption approximately holds if the initial
separating matrix is given randomly. For simplicity, the cumulants are assumed
to be accurately estimated by the large number of x. By x = Ws (W = (wij)
is orthonormal), κijkk (i �= j) is given as

κijkk =
∑

p

wipwjpw
2
kpκsource

p (9)

where κsource
p is the kurtosis of the p-th source. Then, κijkk =

∑
p αpw

2
kp and

κijll =
∑

p αpw
2
lp where the variable αp does not depend on k and l. Thus, if w2

kp

and w2
lp are statistically independent, κijkk and κijll are independent similarly.

The independence is not destructed by any rotations of the cumulant matrices.
Therefore, if the initial W is given randomly, the essential assumption always
holds approximately.

3.2 Extension of JADE with AIC-Based Decision

A simple extension of JADE can be constructed by replacing the decision con-
dition φ̂ > ε with Eq. (8). But, as will be shown in Section 4, the condition is
not suitable for the convergence phase. Therefore, the following algorithm of two
stages is constructed:

1. Do the JADE algorithm with the decision condition Eq. (8) for each pair
optimization until the convergence.

2. Continuously, do the usual JADE algorithm with the condition φ̂ > ε.

This algorithm is called JADE-AIC hereafter.

Remarks. It will be observed in Section 4 that Eq. (8) rejects necessary rotations
at the convergence phase. It is probably one of the significant reasons that the
derivation of Eq. (8) implicitly assumes that every κijkk converges to 0. Because
the number of sample is limited in practice, the optimum of κijkk (denoted by
κ̂ijkk) is not equal to 0 generally. Therefore, the following condition is preferable
at the convergence phase:∑

k (κijkk)2 −∑
k (κ̃ijkk)2 −∑

k (κ̂ijkk)2∑
k (κijkk)2 −∑

k (κ̂ijkk)2
> 1− exp

(
− 2

N

)
. (10)

Because it is difficult to estimate κ̂ijkk in advance, the condition φ̂ > ε is em-
ployed at the convergence phase in this paper.

3.3 Extension by BIC

BIC (Bayesian information criterion) is another well-known criterion measuring
the “goodness” of a model [7,6]. BIC is given as

BIC = −2
∑
z

log g
(
z|θ̂

)
+ log (N)K (11)
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where the constant factor 2 in the penalty term of AIC (Eq. (5)) is replaced by
a factor log (N) depending on the number of signals N . Because log (N) > 2
in almost all cases, BIC rejects the increase of the number of parameters more
strongly than AIC. BIC can be utilized also as the decision condition in our
proposed method. In this case, Eq. (8) is replaced with∑

k (κijkk)2 −∑
k (κ̃ijkk)2∑

k (κijkk)2
> 1− exp

(
− log (N)

N

)
. (12)

By this condition, the JADE-BIC algorithm can be constructed in the same way
as in Section 3.2.

4 Results

Here, the proposed JADE-AIC and JADE-BIC algorithms are compared with
usual JADE in blind source separation of artificial data and an image separation
problem. Regarding artificial data, three experiments were carried out by 10, 20,
and 30 sources (N = 10, 20, and 30). In each experiment, a half of the sources
were generated by the Laplace distribution (super-Gaussian) and the other half
by the uniform distribution (sub-Gaussian). The number of samples was set to
100000, and the mixing matrix W was randomly generated. Regarding the image
separation, the sources were 12 grayscale images of 256×256 pixels from SIDBA
and a 12×12 mixing matrix was given randomly, where N = 12 and the number
of samples is 65536. In JADE, the decision condition φ̂ > ε were used (ε = 10−6).
In addition, the following condition was also used:

N2 ∑
k

(
(κijkk)2 − (κ̃ijkk)2

)
∑

k (κ̃kkkk)2
> ε2 (13)

where ε2 was set to 10−3. Eq. (13) has been implemented in a public JADE
package at http://www.tsi.enst.fr/~cardoso/Algo/Jade/jadeR.m. It is an
ad-hoc condition measuring the effect of the pair optimization to the objective
function ψ. Eq. (13) was also employed as the decision condition for comparison.
JADE with Eq. (13) is called JADE2 here. Besides, JADE-AIC without the
second stage (usual JADE) is also used for comparison at the convergence phase.
It is called JADE-AIC-raw. Similarly, JADE-BIC-raw was also used.

Fig. 1 shows the decreasing curves of Amari’s separating errors [8] along the
number of the actual rotations by JADE-AIC, JADE-BIC, and JADE. The sep-
arating error is defined as the sum of normalized non-diagonal elements of the
product of the estimated separating matrix and the given mixing one. If the
error is equal to 0, the estimated separating matrix is equivalent to the inverse
of the mixing one except for scaling factors. They were averaged over 10 runs.
JADE-AIC-raw, JADE-BIC-raw, and JADE2 were omitted in Fig. 1. It is be-
cause the distinct differences about those methods were observed only in the
convergence phase (in Fig. 2). It shows that JADE-AIC and JADE-BIC were

http://www.tsi.enst.fr/~cardoso/Algo/Jade/jadeR.m
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Fig. 1. Decreasing curves of separating errors along the number of the actual rotations

(N = 10, 20, and 30) for artificial data. Dashed: JADE-AIC. Dotted: JADE-BIC. Solid

curves: JADE.
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always superior to JADE after the same number of actual rotations. Though the
threshold in Eq. (8) depends on N , the superiority of JADE-AIC and JADE-
BIC were always observed irrespective of N . Regarding the comparison of AIC
with BIC, JADE-BIC seemed to be slightly superior to JADE-AIC for larger N .
But, the difference was not distinct. Fig. 3 shows the results in image separa-
tion. It shows that JADE-AIC and JADE-BIC were superior to JADE even for
an actual application. Fig. 2 is an enlargement of Fig. 1-(c) at the convergence
phase. It shows the decreasing curves of the separating errors on a log scale
from the 600-th rotations by JADE-AIC, JADE-AIC-raw, JADE-BIC, JADE-
BIC-raw, JADE, and JADE2. JADE-AIC and JADE-AIC-raw (using only the
AIC-based decision condition) branched off around the 800-th rotation. Simi-
larly, JADE-BIC and JADE-BIC-raw did around the 700-th one. It shows that
the information-criteria-based conditions Eqs. (8) and (12) were no longer effec-
tive at the convergence phase. Except for JADE-AIC-raw and JADE-BIC-raw,
almost the same optimum was achieved. The curves of JADE-AIC and JADE-
BIC were almost the same at the convergence phase. Though JADE-AIC and
JADE-BIC were slightly inferior to JADE2 around the 1000-th rotations, the
final optima of JADE-AIC and JADE-BIC were slightly superior to JADE2. It
shows that JADE-AIC and JADE-BIC were effective even at the convergence
phase but some further improvements may be needed. In summary, those results
verified that the utilization of the information criteria such as AIC and BIC in
JADE is effective especially at the early phase. Besides, the information-criteria-
based methods are effective even at the convergence phase.

5 Conclusion

In this paper, we proposed a new decision condition of the Jacobi method in
joint approximate diagonalization. The condition is naturally derived from AIC
and does not involve any threshold to be set manually. Besides, an extension of
JADE with the condition is proposed. The numerical experiments verified the
effectiveness of the proposed method.

Though the information criteria such as AIC and BIC are widely used in order
to estimate the number of sources [9], they give a criterion for estimating the
“goodness” of the whole separating matrix. On the other hand, the proposed
method focuses on each pair optimization and the information criterion is es-
timated for only a pair. The numerical results suggest that such pair-focused
utilization of the information criteria is effective in signal processing.

Currently, though numerical results suggest the superiority of the proposed
method, the theoretical foundation is not sufficient. For example, the validity of
the application of AIC to each pair optimization is not theoretically guaranteed
yet. We are now constructing a more rigorous theoretical framework for this
method. Besides, the current condition is useful only at the early phase. We are
now planning to construct a new condition suitable for the convergence phase by
assuming different probabilistic models of cumulants and estimating their optima
at the convergence in advance. We are also planning to extend our approach to
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general ICA frameworks such as information theoretic ones and to utilize other
information criteria. In addition, we are planning to apply the proposed AIC-
based condition to our previously-proposed ICA algorithm named LMICA [10].
LMICA is a quite efficient Jacobi method which optimizes only the significant
pairs. So, the proposed condition seems suitable for the method. This work is
partially supported by Grant-in-Aid for Young Scientists (KAKENHI) 19700267.
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Abstract. In this study we propose a systematic methodology for con-

structing a sparse affinity matrix to be used in an advantageous spec-

tral clustering approach. Newton’s equations of motion are employed

to concentrate the data points around their cluster centers, using an

appropriate potential. During this process possibly overlapping clusters

are separated, and simultaneously, useful similarity information is gained

leading to the enrichment of the affinity matrix. The method was further

developed to treat high-dimensional data with application to document

clustering. We have tested the method on several benchmark data sets

and we witness a superior performance in comparison with the standard

approach.

1 Introduction

Given a set of data points, the problem of clustering is to discover a number
of subsets, called clusters, that contain points with similar properties. In the
literature there is a plethora of clustering approaches that have been proposed
rather recently. In this work we concentrate on the class of methods which are
based on spectral clustering [1], [2]. Spectral clustering has become increasingly
popular during the last decade. Such algorithms are based on similarity infor-
mation between data points. That is, similar data points (or points with high
affinity) are more likely to belong to the same cluster than points with low affin-
ity. These kind of algorithms have proved to be quite successful in numerous
application domains, such as computer vision [3], [4], [5], speech recognition [6],
bioinformatics [7], [8], text mining [9], etc.

Spectral clustering techniques make use of information obtained from an ap-
propriately defined affinity matrix. Their primary strength is their ability to
treat complex data shapes where other well-known methods (such as k-means)
either cannot be directly applied, or fail. The similarity matrix must be built
in such a way so as to reflect the topological characteristics of the data set. In
addition sparsity is another desired property, since it offers computational ad-
vantages [2], [10]. In applications of computer vision and related problems, the
similarity matrix is naturally sparse due to the local character of the similarities.

Methodologies leading to sparse affinity matrices have been proposed in the
past [2]. For instance, the ε-neighborhood technique connects only points whose
pairwise distances are smaller than ε. Another similar method is the (mutual)

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 145–154, 2009.
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k-nearest neighbor, where every point is connected only with its k nearest neigh-
bors. However, these methods heavily depend on the choice of the control pa-
rameter (ε or k) that acts as a threshold for cutting some edges of the associated
graph.

We present here an alternative spectral clustering method that consists of
two phases. The data points are initially manipulated in a way suggested in
the Newtonian clustering [11], where the original data set is transformed and
the cluster appearance becomes more prominent. This is done via a dynamic
procedure based on Newton’s equation of motion using a properly constructed
potential function. During the next phase, the affinity matrix is calculated not
in the usual way, but with extra information embedded that was gained in the
previous phase. At the same time this information has a sparsifying effect, and
hence our affinity matrix is both sparser and richer. We further modified our
method in order to treat problems of high dimensionality, such as those ap-
pearing in document clustering. The modification is carried out by choosing a
different potential function and likewise a slightly different equation of motion.
We have tested our method on a suite of well known benchmarks ranging from
continuous feature data to image segmentation and document clustering prob-
lems. We compare to the standard spectral clustering method and the classical
k-means algorithm.

In section 2 we lay out an algorithmic description of the proposed Newtonian
spectral clustering while in section 3 we report experimental results for several
data sets. Finally in section 4 we summarize and conclude with some remarks.

2 The Proposed Method

2.1 Spectral Clustering with a Dynamic Procedure

Let the set X = {x1, . . . , xN} denote the input set of N observations that we
want to partition into K groups. We consider that the data points correspond
to particles of unit mass, interacting via a two-body attractive, short-range
potential. Let Vij be the potential between particles located at points xi and
xj . In this section we will consider a simple potential of Gaussian form given by:

Vij = − exp(−||xi − xj ||2
2σ2 ) , (1)

where the scale parameter (σ) determines the range of the potential. The value
of σ is important since it affects the dynamic procedure that shrinks the clusters,
as well as the performance of the subsequent spectral clustering application. The
determination of this parameter will be detailed later on.

Under this consideration, the data points move under the influence of a force.
Data that move toward different clusters either repel each other, or they are too
far to interact. We expect that after an ample number of steps in time, points
belong to the same cluster will come together forming to shrank clusters. The
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proposed dynamic procedure is governed by the Newton’s equations of motion,
which are:

d2xi(t)
dt2

= −∇i

N∑
j=1
j �=i

Vij ≡ Fi, ∀i = 1, 2, · · · , N . (2)

The initial positions are taken to be the original data points, i.e. xi(t = 0) = xi

(∀i = 1, . . . , N), while the initial velocities (vi ≡ dxi

dt
) are set to zero. We

integrate the equations of motion in small time steps δt, considering that the
forces Fi remain constant during this short time interval. At each step we reset
the velocities to zero in order to avoid artifacts due to “heating”. Hence we
obtain the following motion scheme:

xi(t + δt) = xi(t) +
1
2
δt2Fi . (3)

Since the interaction is attractive, after a time period T the particles belonging
to the same neighborhood-cluster will concentrate around its center. So an ini-
tially spread–out cluster is being shrunk as a result of the dynamic procedure.
The simulation terminates, after a certain number of steps or when the steps
become too small and further iterations hardly make any difference. Two typical
examples are presented in Fig. 1 (a) and (c), where the initial data points (red)
are concentrated (black) after 100 steps.
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Fig. 1. Two typical examples of the effect of the dynamic procedure

The path traveled by each particle can offer useful information. In particular,
at the end of the dynamic process every point xi = xi(0) has been moved into a
new position xi(T ). Let distij(t) denote the distance between two points xi and
xj at time t. The elements of the affinity matrix A are then given by:

Aij = bij exp(−dist2ij(T )
2σ2 ) , (4)

where bij = 0 if distij(T ) > distij(0) and bij = 1 otherwise. The above rule
denotes that when two points move apart, they belong to different cluster and
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hence have zero affinity. Points that cluster together have a prominent affin-
ity since distij(T ) < distij(0). Figure 1 (b) and (d) shows the sparsity of the
affinity matrix in the case of the two artificial data sets of Figure 1 (a) and (c),
respectively. More than 20% of the Affinity matrix elements are discarded (white
pixels) due to the shrinking effect.

Spectral clustering is based on the data set’s affinity matrix. In the litera-
ture there are several variations of the standard methodology described in [1],
which we follow in our study. After having calculated the affinity matrix A, the
Laplacian matrix L is then given by

L = D−1/2AD−1/2 , (5)

where D is a diagonal matrix with elements Dii =
∑N

j=1 Aij . The Laplacian
matrix is known to be symmetric and positive semi-definite. Next, the K nor-
malized eigenvectors u1, . . . , uK of matrix L (where K is the desired number of
clusters) that correspond to the largest eigenvalues are computed and eventually
fed into the k-means algorithm in order to estimate the final clustering solution.

Estimating the scale parameter σ2. As mentioned before, the determination
of the scale parameter σ is crucial and has to be chosen carefully. Sparse data
sets require a longer range than dense data sets. Hence σ depends on the data
set. An automatic determination of its value was suggested in [1] by running the
clustering algorithm repeatedly for a number of values of σ and selecting the one
which provides the least distorted clustering solution.

In this direction, we present here a more systematic methodology. The average
nearest-neighbor (NN) distance and order statistics are keys to our analysis. In
particular, let the average NN distance of order m be given by

< dm >=
1
N

N∑
i=1

d(i)
m , ∀ m = 1, 2, · · · , N − 1 , (6)

where d
(i)
m is the distance between point at xi and its mth nearest neighbor. We

studied its variance σ̃2
m as obtained by

σ̃2
m =

1
m

m∑
k=1

(
< d2

k > − < dk >2) , (7)

using order statistics. It was found in [11] that in the case of a single cluster the
functional form of σ̃2

m is given as

σ̃2
m = α(m + 1)2 + β(m + 1) . (8)

When there are more than one clusters within the data set, < dm > acquires
discontinuities and the cumulative quantity σ̃2

m is given by a superposition of
translated quadratics. Then, the value for the range of the potential is estimated
by finding the number of neighbors m∗ for which the second difference of σ̃2

m

m+1
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(with respect to m) vanishes. Figure 2 illustrates this behavior by plotting the
quantity σ̃2

m

m+1 versus m, in the case of two typical examples of Fig. 1. As our
experiments have shown, there is a wide stability region around m∗ for estimat-
ing the range value (σ2 = σ2

m∗), where the performance of our approach was
identical. A detailed description of the above method for estimating the proper
value of σ can be found in [11].
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σ̃2

M,m

m + 1
with respect to m where the

number m∗ is estimated

2.2 Extension to Document Clustering

An important issue in clustering is treating high-dimensional data. Since spectral
clustering is a common technique used for this purpose, we have tried to adjust
the proposed method to deal with such problems. Document clustering is a very
interesting application in text mining and information retrieval, aiming to the
division of a collection of documents into groups based on their similarity.

In our study, each input document is transformed into a feature vector xi ∈
RM , where M is the size of the corpus vocabulary, such that every feature
denotes the weight of the corresponding term. We have applied the TF-IDF (term
frequency, inverse document frequency) weighting scheme for creating feature
vectors. Moreover, the proximity between each pair of documents is computed
used the cosine similarity metric. Since documents are normalized vectors, the
similarity measure is reduced to the following simple rule:

Vij = xT
i xj . (9)

The above metric is also used as the potential function Vij during the New-
tonian dynamic procedure (see Eq. 1 - Eq. 3). The introduction of such kind of
potential requires an alternative motion scheme of data points. Now, the inter-
action is not always attractive. Naturally, any particle is influenced positively
from similar documents (that belong to the same cluster) and their interaction
is attractive (positive force). In the opposite case, dissimilar document vectors
have a repulsive effect to the particle and thus offering a negative sign force
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within its motion update rule. It can be easily found that the formulation of the
force Fi now becomes as:

Fi =
N∑

j=1
j �=i

cij(t)xj , where cij(t) =
{

+1 if Vij > V ij/2
−1 otherwise

. (10)

In fact the quantity V ij/2 acts as a threshold similarity value for distinguishing
between attractive and repulsive documents.

3 Experimental Results

Several experiments have been performed in order to examine the effectiveness
of the proposed Newtonian Spectral Clustering approach (NSC). We have con-
sidered both simulated data sets and other widely used benchmarks. We com-
pare with the standard Spectral Clustering (SC) and the traditional k-means
algorithm. During all experiments the number of Newtonian steps was fixed at
T = 100, while the value of time step was set to δt = 10−5. Moreover, both
approaches, NSC and SC, used the same value of σ in the Gaussian similarity
function as estimated by the proposed method. Finally, since we were aware of
the true class label of data, all clustering methods were evaluated using the pu-
rity metric (classification accuracy), by assuming that all objects of a cluster are
assigned to its dominant class.

The first series of experiments was performed on two simulated datasets (150
points per class) with two class (K = 2) presented in Fig. 1 (a) and 1 (c). By
considering different levels of noise, we performed 50 experiments for each noise
value and kept record of the mean accuracy for every method. The depicted
comparative results are illustrated in the two diagrams of Fig. 3 in terms of dif-
ferent noise values. As it was expected, in the first data set with two spheres all
three methods displayed identical behavior, since data were generated by sam-
pling from two Gaussian densities that have the same spherical-type covariance
matrix of the form σ2I. In the second data set (Fig. 1 (c)) which is more com-
plex with two concentric clusters, our method performs better than the standard
SC method especially in high-level noisy environments. The traditional k-means
algorithm fails in situations with non-spherical data shapes.

Additional experiments were made using four known benchmarks (Fig. 4).
The first one Fig. 4(a) is a two-class problem with a moon and a sun shape,
while the next Fig. 4(b) is the CRAB data set of Ripley [12], that contains
N = 200 data belonging to four clusters (K = 4). Here, we have created a 2-
dimensional data set by projecting the data on the plane defined by the second
and third principal components. We have also studied two UCI benchmarks [13]
the renowned Fisher-IRIS data set Fig. 4(b) with N = 150 points belonging
to three clusters (K = 3) (projected on the plane using the first two principal
components), and the wine set consisted of N = 178 K = 3-classes data with 13
features (were we have applied zero-mean normalization). Table 1 summarizes
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Fig. 4. Three known benchmarks used in our experiments: (a) the moon & sun, (b)

the crabs and (c) the iris data set

the results obtained by the application of the three comparative approaches to
the above mentioned data sets. In these cases the performance of NSC and the
SC yielded comparable results, while being superior to k-means.

We have also applied our method to tackle the problem of image segmen-
tation. For this purpose, we have selected six colored images from the Berkeley
segmentation database1 presented in Fig. 5, all with resolution around 150×150.
We note here that in this series of experiments, since the number of input data is
large, we have followed the Nyström method [14] for finding a numerical approxi-
mation to eigendecomposition. Fig. 5 illustrates the segmentation results of each
method, where in the reconstructed images every pixel takes the intensity value
of the cluster center that belongs. It is interesting to notice here that the NSC
creates much smoother regions in comparison with the standard SC. We believe
that if we take into account additional information, such as spatial, texture, etc.
the resulting segmentation will be improved.

Finally, we have studied the performance of our method when dealing with
high-dimensional spaces. For this purpose we have selected sets of documents

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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original NSC SC K-means

Fig. 5. Segmentation results obtained by three comparative clustering methods in six

real colored images. NSC creates smoother regions.
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Table 1. Comparative results using four known experimental data sets

Experimental dataset Performance of
NSC SC k-means

moon & sun (Fig. 4(a)) 0.94 0.94 0.92

crabs (Fig. 4(b)) 0.94 0.93 0.93

iris (Fig. 4(c)) 0.93 0.91 0.89

wine 0.98 0.98 0.97

and in particular four subsets of the popular 20-Newsgroup collection2. Their
characteristics are presented in Table 2. The first set Talk3 consists of documents
of the talk subjects (politics.guns, politics.mideast, politics.misc), the next two of
scientific documents (crypt, electronics, med, space), and the fourth set has docu-
ments from five newsgroups (comp.graphics, rec.motorcycles, rec.sport.baseball,
sci.space, talk.politics.mideast). Table 2 shows also the results from the above
data obtained by both approaches, NSC and SC. As it can be observed, the per-
formance of our method is significantly better showing that the proposed way
of constructing affinity matrix is worthwhile in high-dimensional data. Several
other experiments were made with other subsets from the same data collection
with similar results.

Table 2. Document data used in our experiments and the accuracy results obtained

by both NSC and SC methods

Document dataset Performance of

name description NSC SC

Talk3 N = 300, K = 3, M = 4515 0.78 0.71

Science4-400 N = 400, K = 4, M = 4855 0.71 0.62

Science4-2000 N = 2000, K = 4, M = 10250 0.74 0.73

Multi5 N = 500, K = 5, M = 5589 0.75 0.63

4 Conclusions

In this study we presented a novel method, the Newtonian spectral clustering,
that inherits from Newtonian clustering information such that renders possible
the formation of a proper affinity matrix that is sparse and contains enriched
information. An extension of this approach has also been presented in order to
deal with high-dimensional data such as documents. We have applied the method
to several benchmark problems and we noticed performance superior to the
standard spectral clustering approach. It is our intention to further pursue and
develop the method to handle different problems with complex type of data such
as time-series, multimedia data, discrete sequences, etc. Finally, the persistent
2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
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issue of discovering the optimal number of clusters may be examined in the
framework of this method as well.
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Abstract. We present a method for finding nominally conditioned poly-

nomials to fit multivariate data containing both numeric and nominal

variables. Here a polynomial is accompanied with a nominal condition

stating when the polynomial is applied. Our method employs a four-layer

perceptron (MLP) having shared weights. To get succinct polynomials,

we employ weight sharing method called BCW, where each weight is al-

lowed to be one of common weights, and a near-zero common weight can

be eliminated. BCW performs bidirectional search to obtain an excellent

set of common weights. Moreover, we employ the Bayesian Information

Criterion (BIC) to efficiently select the optimal model parameters. In

our experiments the proposed method successfully restored the original

polynomials for artificial data, and found succinct polynomials for real

data sets, showing excellent generalization.

Keywords: polynomial regression, multi-layer perceptron, weight shar-

ing, rule extraction, information criteria.

1 Introduction

Discovering understandable numeric relationships such as polynomials from data
is one of the key issues of data mining. Given multivariate data containing both
numeric and nominal variables, we consider finding nominally conditioned poly-
nomials, where each polynomial is accompanied with a nominal condition stating
when the polynomial is applied.

To find nominally conditioned polynomials, there has been a combinatorial
approach, such as ABACUS [1] and GMDH [4]. However, such a search-based
approach intrinsically has the limited scalability due to combinatorial explosion.
As an alternative, a connectionist numeric approach, such as RF6.4 [12] and
REFANN [11], has been investigated. RF6.4 can solve this problem by using a
four-layer perceptron and rule restoring, free from combinatorial explosion.

To find succinct results from data in the context of neural networks, we focus
on weight sharing [3], where weights are divided into clusters, and weights within

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 155–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the same cluster have the same value called a common weight. A common weight
very close to zero can be removed. Thus, a weight sharing problem is to find
both a set of adequate common weights and their mapping onto neural network
weights.

As for weight sharing, there have been basic ideas, such as OBS [2] and soft
weight sharing. OBS iteratively prunes the least influential weight using Hessian-
based computation. We employ weight sharing called BCW (bidirectional clus-
tering of weights) [13], which uses Hessian-based computation. In a merging
phase, BCW iteratively merges common weights, and in a splitting phase it
does the reverse operation. These two phases are repeated in turn to find a
globally excellent set of common weights.

When we apply weight sharing BCW to connectionist polynomial regression
RF6.4, we should determine vital model parameters. The existing method [13]
uses cross-validation for model selection, requiring heavy computation. This pa-
per employs the Bayesian Information Criterion (BIC) [10] instead. Since BIC
doesn’t need repetitive learning, we can select the optimal model very fast.

Section 2 explains connectionist polynomial regression RF6.4, and Section 3
explains weight sharing method BCW. Section 4 explains how to apply BCW to
RF6.4 using BIC, and Section 5 evaluates the performance of RF6.4+BCW+BIC
using artificial and real data sets.

2 Connectionist Polynomial Regression: RF6.4

Basic Framework. Let (q1, ..., qK1 , x1, ..., xK2 , y) or (q, x, y) be a vector of
variables, where qk and xk are nominal and numeric explanatory variables, and
y is a numeric dependent variable. For each qk we introduce a dummy variable qk�

defined as follows: qk� = 1 if qk matches the �-th category, and qk� = 0 otherwise.
Here � = 1, ..., Lk, and Lk is the number of distinct categories appearing in qk.

As a true model governing data, we consider the following set of regression
rules. A regression rule represents a nominally conditioned polynomial.

if
∧
k

∨
qk�∈Qi

k

qk� then y = φ(x; wi), i = 1, ..., I∗. (1)

Here Qi
k and wi denote a set of qk� and a weight vector respectively used in the

i-th rule. As a regression function φ(x; wi), we consider the following multi-
variate polynomial, whose power values are not restricted to integers. A weight
vector wi is composed of weights wi

0, wi
j and wi

jk .

φ(x; wi) = wi
0 +

Ji∑
j=1

wi
j

K2∏
k=1

x
wi

jk

k = wi
0 +

Ji∑
j=1

wi
j exp

(
K2∑
k=1

wi
jk ln xk

)
. (2)

To express a nominal condition numerically, we introduce the following.

c(q; vi) = σ

(
K1∑
k=1

Lk∑
�=1

vi
k�qk�

)
, (3)

where vi is composed of vi
k� and σ(h) = 1/(1 + e−h). When we consider
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vi
k� =

⎧⎨⎩
β2 if qk� ∈ Qi

k,
−β1 if qk� /∈ Qi

k and qk�′ ∈ Qi
k for some �′ �= �,

0 if qk�′ /∈ Qi
k for any �′,

(4)

where β1  β2  0, we see the numeric function c(q; vi) can approximate well
the truth value (1 or 0) of the nominal condition of the i-th rule.

Hence a total set of regression rules shown in Eq. (1) can be represented by a
single numeric function shown in Eq. (5). The function can be learned by using
a single four-layer perceptron as shown in Fig. 1. Here θ is composed of weights
v0r, vjr , vrk�, and wjk. How to find the optimal numbers of hidden units, J∗ and
R∗, will be described in Section 4.
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Fig. 1. Four-layer perceptron for RF6.4

f(q, x; θ) = c0 +
J∑

j=1

cj exp

(
K2∑
k=1

wjk ln xk

)
, (5)

c0 =
R∑

r=1

v0rσr, cj =
R∑

r=1

vjrσr, σr = σ

(
K1∑
k=1

Lk∑
�=1

vrk� qk�

)
, (6)

Rule Restoring. Rule restoring [9] extracts a set of regression rules from a
learned four-layer perceptron. It goes in two steps. In the first step, coefficient
vectors cμ = (cμ

0 , cμ
1 , ..., cμ

J∗) for all the data points μ = 1, ..., N are quantized into
I representatives {ai = (ai

0, a
i
1, ..., a

i
J∗) : i = 1, ..., I}. For vector quantization

(VQ) we employ the K-means [6] due to its simplicity, to obtain such I disjoint
subsets {Gi : i = 1, ..., I} that the distortion dV Q is minimized. How to find the
optimal number of regression rules, I∗, will be mentioned in Section 4.

dV Q =
I∑

i=1

∑
μ∈Gi

‖cμ − ai‖2, ai =
1
Ni

∑
μ∈Gi

cμ. (7)
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In the second step, the final rules are obtained by solving a simple classification
problem whose training data are {(qμ, i(qμ)) : μ = 1, ..., N}, where i(qμ) indi-
cates the representative label of the μ-th data point. Here we employ the C4.5
decision tree generation program [8] due to its wide availability.

3 Weight Sharing Method: BCW

Basic Framework. Let E(w) be an error function to minimize, where w de-
notes a vector of weights (w1, ..., wd, ..., wD). Then, we define a set of disjoint
clusters Ω(G) = {S1, ..., Sg, ..., SG}, where Sg denotes a set of weight numbers
such that S1 ∪ ...∪ SG = {1, ..., D}. Also, we define a vector of common weights
u = (u1, ..., ug, ..., uG)T associated with a cluster set Ω(G) such that wd = ug if
d ∈ Sg. Let û be a vector obtained by training a neural network whose structure
is defined by Ω(G).

Now we consider a relation between w and u. Let eD
d be the D-dimensional

unit vector whose elements are all zero except the d-th element which is equal
to unity. Then the weights w can be expressed using a D ×G transformational
matrix A as follows.

w = Au, A =

[∑
d∈S1

eD
d , ...,

∑
d∈SG

eD
d

]
. (8)

Note that the mapping between a matrix A and a cluster set Ω(G) is one-to-
one. Therefore, the goal of our weight sharing is to find Ω(G∗) which minimizes
E(Au), where G∗ is the optimal number of clusters.

Below we outline the BCW (bidirectional clustering of weights) [13]. Since a
weight sharing problem may have many local optima, BCW repeats merge and
split operations in turn to find a globally excellent solution.

Bottom-up Clustering. A one-step bottom-up clustering transforms Ω(G)
into Ω(G− 1) by a merge operation; i.e., clusters Sg and Sg′ are merged into a
cluster S̃g = Sg ∪ Sg′ . We want to select a suitable pair so as to minimize the
increase of E(w) as defined below. Here H(w) denotes the Hessian of E(w).

DisSim(Sg, Sg′) =
(ûg − ûg′)2

(eG
g − eG

g′)T (AT H(ŵ)A)−1(eG
g − eG

g′)
. (9)

This is the second-order criterion for merging Sg and Sg′ , called the dissimilar-
ity. We select a pair of clusters which minimizes DisSim(Sg, Sg′) and merge the
two clusters. After the merge, the network with Ω(G − 1) is retrained. This is
the one-step bottom-up clustering with retraining.

Top-down Clustering. A one-step top-down clustering transforms Ω(G) into
Ω(G + 1) by a split operation; i.e., a cluster Sg is split into two clusters S′

g and
SG+1 where Sg = S′

g ∪ SG+1. In this case, we want to select a suitable cluster
and its partition so as to maximize the decrease of the error function.
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Just after the splitting, we have a (G+1)-dimensional common weight vector
ṽ = (ûT , ûg)T , and a new D × (G + 1) transformational matrix B defined as

B =

⎡⎣∑
d∈S1

eD
d , ...,

∑
d∈S′

g

eD
d , ...,

∑
d∈SG

eD
d ,

∑
d∈SG+1

eD
d

⎤⎦ . (10)

Then, we define the general utility as follows. The utility values will be positive,
and the larger the better. Here g(w) denotes the gradient of E(w).

GenUtil(Sg, SG+1) = κ2fT (BT H(Bṽ)B)−1f . (11)

κ = g(Bṽ)T
∑

d∈SG+1

eD
d , f = eG+1

G+1 − eG+1
g , (12)

When a cluster g to split is unchanged, fT (BT H(Bṽ)B)−1f won’t be signif-
icantly changed. Since κ is the summation of gradients over the members of a
cluster G + 1, the gradients to add together should have the same sign if you
want a larger κ2. Thus, the gradients of the cluster are sorted in ascending order
and examined is only splitting into smaller-gradients and larger-gradients. Ex-
amining all such candidates, we select the cluster to split and its splitting which
maximize the criterion (11). After the splitting, the network with Ω(G + 1) is
retrained. This is the one-step top-down clustering with retraining.

BCW Procedure. The procedure of BCW is shown below, where h denotes
the width of search. It always converges since the number of different A is finite.

Step 1: Get the initial set Ω(D) through learning. Perform scalar quantization
for Ω(D) to get Ω1(2). Remember the matrix A(0) at Ω1(2). t← 1.

Step 2: Perform repeatedly the one-step top-down clustering with retraining
from Ω1(2) to Ω(2+h). Update the best performance for each G if necessary.

Step 3: Perform repeatedly the one-step bottom-up clustering with retraining
from Ω(2+h) to Ω2(2). Update the best performance for each G if necessary.
Remember A(t) at Ω2(2).

Step 4: If A(t) is equal to one of the previous ones A(t−1),...,A(0), then stop
and output the best performance of Ω(G) for each G as the final result.
Otherwise, t← t + 1, Ω1(2)← Ω2(2) and go to step 2.

4 Applying BCW to Connectionist Polynomial
Regression Using BIC

This section explains how to apply BCW to connectionist polynomial regression
RF6.4 together with the following model selection. Given data, we don’t know
in advance the optimal numbers J∗ and R∗ of hidden units, the optimal number
I∗ of regression rules, or the optimal number G∗ of BCW clusters. Therefore,
we need criteria suitable for selecting them. As such criteria, we employ the
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Bayesian Information Criterion (BIC) [10]. Compared to other means such as
cross-validation or bootstrap method which need heavy repetitive learning, BIC
can select the optimal model in much less time because we need only one learning
for each value of J , R, I, and G.

The whole procedure of RF6.4+BCW+BIC goes as follows.

(step 1). Train the four-layer perceptron without weight sharing for each com-
bination of J = 1, 2, ... and R = 1, 2, ..., and select the J and R which minimizes
the following equation as J∗ and R∗. Here θ̂J,R denotes an estimate for the
model having J and R hidden units. Since M is the number of weights, we have
M = JK2 +R(Kall +J +1), where Kall is the total number of dummy variables.

BIC(J, R) =
N

2
log

(
1
N

N∑
μ=1

(
f(xμ; θ̂J,R)− yμ

)2
)

+
M

2
log N (13)

(step 2). Train the perceptron of J∗ and R∗ with weight sharing BCW, and
select the G which minimizes the following equation as G∗. Here θ̂G denotes an
estimate for the model having G clusters.

BIC(G) =
N

2
log

(
1
N

N∑
μ=1

(
f(xμ; θ̂G)− yμ

)2
)

+
G

2
log N (14)

(step 3). Train the perceptron of J∗ and R∗ under the condition of G∗ clusters
with a near-zero common weight pruned.
(step 4). Quantize the coefficient vectors using the K-means algorithm for each
I = 1, 2, ..., and select the I which minimizes the following equation as I∗. As
for BIC(I), we adopt Pelleg’s X-means approach [7].

BIC(I) = −
I∑

i=1

Ni log Ni +
N

2
log |Σ̂|+ 1

2

N∑
μ=1

(cμ − a(μ))T Σ̂
−1

(cμ − a(μ))

+
I(J∗ + 2)

2
log N, where Σ̂ =

1
N − I

I∑
i=1

∑
μ∈Gi

(cμ − a(μ))(cμ − a(μ))T(15)

(step 5). Solve the classification problem using the C4.5 program [8] to get the
final result.

5 Experimental Evaluation

Artificial Data. We consider the following set of regression rules.⎧⎪⎪⎨⎪⎪⎩
if q21 ∧ q31 then y = 1 + 2x2

1x2x
0.5
3 + 3x2x

0.5
3 x2

4x5,
if q22 ∧ q31 then y = 2− x2

1x2x
0.5
3 + x2x

0.5
3 x2

4x5,
if (q12 ∨ q13) ∧ q32 then y = −3 + x2

1x2x
0.5
3 − x2x

0.5
3 x2

4x5,
if q11 ∧ q32 then y = 2 + 3x2

1x2x
0.5
3 + 4x2x

0.5
3 x2

4x5,

(16)
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Here we have 15 numeric and 4 nominal explanatory variables with L1=3,
L2 = L3=2, and L4=5. Note that variables q4, x6, ..., x15 are irrelevant. For
each data point, values of xk and qk were randomly taken from the range (1, 2)
and from its categories respectively, while the corresponding y was calculated
using Eq. (16) with Gaussian noise N (0, 0.3) added. Training data size was 500
(N=500).

The initial weight values were randomly generated from the range (−1, +1).
The learning was terminated when each element of the gradient got less than
10−5. BCW was applied only to weights wjk since their simplicity is directly
linked to the readability. We set the width of BCW as h=10. The numbers of
hidden units were changed from one (J=1, R=1) to five (J=5, R=5), and the
number of rules was change from one (I=1) to ten (I=10). Note that J∗=2,
G∗=4, and I∗=4 for our artificial data.

Table 1 compares the frequency with which BIC(J, R) was minimized out of
100 runs. From the table we have J∗=2 and R∗=3. For any run we have J∗=2,
which is correct. As for R, most runs supported R=3, while 14 runs supported
R=4, which is no problem since we can restore the original rules even if R=4.

Table 1. Frequency with which BIC(J, R) is minimized (artificial data)

model J=1 J=2 J=3 J=4 J=5

R=1 0 0 0 0 0

R=2 0 0 0 0 0

R=3 0 86 0 0 0

R=4 0 14 0 0 0

R=5 0 0 0 0 0

Table 2 compares the frequency with which BIC(G) was minimized out of
100 runs. Note that each run was performed under the model where J∗=2 and
R∗=3. From the table we can select the optimal number of common weights,
G∗=4, which is correct.

Table 2. Frequency with which BIC(G) is minimized (artificial data)

G 2 3 4 5 6 7 8 9 10 11 12 total

Freq. 0 0 83 12 5 0 0 0 0 0 0 100

Figure 2 shows how training error MSE and BIC(G) changed through BCW
learning under the model where J∗=2 and R∗=3. The bidirectional clustering
was repeated twice until convergence. The figure shows G∗=4 since BIC(G) was
minimized at G=4, which is located at iteration No. 19.

At this point we have J∗=2, R∗=3, and G∗=4. Then, we pruned the near-
zero common weight, and retrained the network. Table 3 compares the frequency
with which BIC(I) was minimized out of 100 K-means runs. From the table we
have the optimal number of rules, I∗=4, which is correct.
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Fig. 2. Bidirectional clustering for artificial data

Table 3. Frequency with which BIC(I) is minimized (artificial data)

I 1 2 3 4 5 6 7 8 9 10 total

Freq. 0 0 0 82 10 5 0 0 0 3 100

By applying the C4.5 program, we have the following set, almost equivalent to
the original Eq. (16). Note that the rule set is free from any irrelevant variables.
The CPU time required for RF6.4+BCW+BIC was about 11 min.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if q21 ∧ q31 then
y = 1.008 + 1.982x2.011

1 x1.052
2 x0.498

3 + 2.983x1.052
2 x0.498

3 x2.011
4 x1.052

5
if q22 ∧ q31 then

y = 2.012− 1.000x2.011
1 x1.052

2 x0.498
3 + 0.970x1.052

2 x0.498
3 x2.011

4 x1.052
5

if (q12 ∨ q13) ∧ q32 then
y = −2.980 + 1.128x2.011

1 x1.052
2 x0.498

3 − 0.991x1.052
2 x0.498

3 x2.011
4 x1.052

5
if q11 ∧ q32 then

y = 1.975 + 3.065x2.011
1 x1.052

2 x0.498
3 + 4.042x1.052

2 x0.498
3 x2.011

4 x1.052
5

Real Data Sets. We evaluated the performance of RF6.4+BCW+BIC using
10 real data sets1. Table 4 shows specs of the data sets, and the optimal model
parameters obtained using RF6.4+BCW+BIC. Here K2 and Kall denote the
1 Cpu and Boston data sets were taken from UCI Repository of ML Databases. College,

cholesterol, b-carotene, mpg, lung-cancer and wage data sets were from StatLib.

Yokohama data set was from Web page of Kanagawa Pref.,Japan. Baseball data set

was taken from the directory of Japanese professional baseball players in 2006.
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total numbers of numeric explanatory variables and dummy variables respec-
tively. Before processing, all numeric variables are normalized as follows.

x̃k =
xk

max(xk)
, ỹ =

y −mean(y)
std(y)

(17)

The initial weight values and stopping criteria are set in the same way as de-
scribed previously. We varied model parameters as follows: J=1,..,5, R=1,...,5,
G=2,...,12, and I=1,...,10. These ranges were determined considering computa-
tional cost and our earlier experiments. These model parameters were optimized
sequentially in the same way as described before. Table 4 shows we have a small
number of common weights implying the succinctness of the resulting rules.

Table 4. Specs and optimal parameters (real data sets)

data set contents N K2 Kall J∗ R∗ G∗ I∗

cpu performance of cpu 205 6 26 3 3 6 6

Boston housing prices in Boston 486 12 76 2 1 12 10

college instructional expenditure of colleges 1,129 11 51 2 2 10 9

cholesterol amount of cholesterol 297 5 13 2 3 6 8

b-carotene amount of beta-carotene 315 10 6 1 4 8 6

mpg fuel cost of cars 388 5 28 2 3 6 5

lung-cancer survival time of lung cancer patients 126 3 6 3 5 4 4

wage wages of workers per hour 534 2 14 4 3 5 7

Yokohama housing prices in Yokohama 558 4 23 5 2 6 5

baseball annual salaries of baseball players 219 10 14 3 4 8 6

We compared the generalization performance of RF6.4+BCW+BIC with
other regression methods. The performance was measured by 10-fold cross-
validation. As other methods we considered the following five: linear multiple

Table 5. Comparison of cross-validation errors (real data sets)

data set MR QT HME MLP RF6.4 RF6.4+BCW

cpu 4.609E+3 4.301E+3 1.453E+3 1.566E+3 2.021E+3 1.363E+3
Boston 2.355E+1 1.350E+1 1.209E+1 9.450E+0 9.262E+0 7.533E+0
college 9.570E+6 9.703E+6 8.661E+6 6.910E+6 6.330E+6 8.283E+6

cholesterol 2.641E+3 2.584E+3 2.502E+3 2.577E+3 2.446E+3 2.418E+3
b-carotene 2.989E+4 2.928E+4 2.895E+4 2.893E+4 2.958E+4 2.646E+4

mpg 1.809E+1 1.622E+1 1.392E+1 1.373E+1 1.283E+1 1.495E+1

lung-cancer 2.284E+4 2.136E+4 2.154E+4 2.156E+4 2.172E+4 1.857E+4
wage 2.124E+1 1.884E+1 1.925E+1 1.864E+1 1.849E+1 1.830E+1

Yokohama 1.232E+9 4.151E+8 3.790E+8 3.462E+8 3.911E+8 4.667E+8

baseball 1.755E+7 1.849E+7 1.406E+7 1.670E+7 1.732E+7 1.620E+7
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regression (MR), linear quantification theory type 1 (QT) [14], HME [5], multi-
layer perceptron (MLP), RF6.4 without BCW.

Table 5 compares the generalization performances. RF6.4+BCW+BIC
showed the best performance for 6 data sets out of 10. When we compare its
performance with that of plain RF6.4, we see BCW+BIC surely contributed to
the improvement in generalization.

6 Conclusion

We applied weight sharing BCW to connectionist polynomial regression using
BIC for model selection. In our experiments the combined method finds a set of
very succinct polynomials having excellent generalization.
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Abstract. The statistical pattern recognition based on Bayes formula

implies the concept of mutually exclusive classes. This assumption is

not applicable when we have to identify some non-exclusive properties

and therefore it is unnatural in biological neural networks. Considering

the framework of probabilistic neural networks we propose statistical

identification of non-exclusive properties by using one-class classifiers.

Keywords: Probabilistic neural networks, Non-exclusive classes, One-

class classifiers, Biological compatibility.

1 Introduction

The statistical approach is known to enable general and theoretically well justi-
fied decision making in pattern recognition. Given the probabilistic description
of the problem in terms of class-conditional probability distributions, we can
classify objects described by discrete or continuous variables. The Bayes formula
provides full classification information in terms of a posteriori probabilities of a
finite number of classes. A unique decision, if desirable, can be obtained by means
of Bayes decision function which minimizes the probability of error. We recall
that the classification information contained in the a posteriori probabilities is
partly lost if only a unique decision is available [5].

On the other hand, introducing Bayes formula, we assume that the uncondi-
tional distribution of the recognized data vectors can be expressed as a weighted
sum of class-conditional distributions, according to the formula of complete prob-
ability. In this way we implicitly assume the classes to be mutually exclusive.
Nevertheless, the probabilistic classes may overlap in the sample space, they are
mutually exclusive just in the sense of the complete probability formula.

The abstract statistical concept of mutually exclusive classes is rather unnat-
ural in biological systems since most real life categories are non-exclusive. In
this respect the multiclass Bayes decision scheme is unsuitable as a theoretical
background of neural network models. In the following we use the term prop-
erty to emphasize the fact that the recognized object may have several different
properties simultaneously. In order to avoid the strict assumption of mutually

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 165–174, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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exclusive classes we propose recognition of properties by probabilistic neural net-
works based on one-class classifiers. We assume that for each property there is
a single training data set. To identify a property we evaluate the log-likelihood
ratio of the related conditional probability distribution and of the product of un-
conditional univariate marginals. Hence the only information about alternative
properties is assumed to be given in the form of global marginal distributions of
all involved variables. The proposed recognition of properties has two qualitative
advantages from the point of view of biological compatibility: a) it is applicable
both to the non-exclusive and exclusive properties (cf. Sec. 5) and b) provides a
unified approach to recognition of properties and feature extraction (cf. [4]).

The concept of probabilistic neural networks (PNNs) relates to the early work
of Specht [10] who proposed a neural network model closely related to the non-
parametric Parzen estimates of probability density functions. In comparison with
other neural network models the PNN of Specht may save training time essen-
tially but, according to Parzen formula, one neuron is required for each training
pattern. Moreover, there is a crucial problem of the optimal smoothing of Parzen
estimates in multidimensional spaces. The PNN approach of Specht has been
modified by other authors and, in some cases, simplified by introducing finite
mixtures [9]. In this paper we refer mainly to our results on PNNs published in
the last years (cf. [3] - [6]). Unlike previous authors we approximate the class-
conditional probability distributions by finite mixtures of product components.
The product-mixture-based PNNs do not provide a new technique of pattern
recognition but they may contribute to better understanding of the functional
principles of biological neural networks [3], [4].

In the following we first discuss the theoretical differences between multiclass
classifiers (Sec. 2) and one-class identification of properties (Sec. 3). In Sec. 4 we
summarize basic features of probabilistic neural networks and their application
to identification of properties. In Sec. 5 we compare both schemes in application
to recognition of handwritten numerals.

2 Multiclass Bayes Decision Scheme

Considering the statistical pattern recognition we assume that some multivariate
observations have to be classified with respect to a finite set of mutually exclusive
classes Ω = {ω1, . . . , ωK}. The observation vectors x = (x1, x2, . . . , xN ) ∈ X
from the N -dimensional space X (which may be real, discrete or binary) are
supposed to occur randomly according to some class-conditional distributions
P (x|ω) with a priori probabilities p(ω), ω ∈ Ω. Recall that, given an observation
x ∈ X , all statistical information about the set of classes Ω is expressed by the
Bayes formula for a posteriori probabilities

p(ω|x) =
P (x|ω)p(ω)

P (x)
, P (x) =

∑
ω∈Ω

P (x|ω)p(ω), x ∈ X (1)

where P (x) is the joint unconditional probability distribution of x.
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The posterior distribution p(ω|x) may be used to define a unique final decision
by means of the Bayes decision function 1

d : X → Ω, d(x) = arg max
ω∈Ω
{p(ω|x)}, x ∈ X (2)

which is known to minimize the probability of classification error.
Remark 2.1. The Bayes decision function is a typical multiclass classifier di-
rectly identifying one of a finite number of classes on output. A weak point
of Bayes classification is the unknown probabilistic description to be estimated
from training data. In multidimensional spaces the number of training samples is
usually insufficient to estimate the underlying distributions reliably and, in case
of large data sets, even the computational complexity may become prohibitive.

Alternatively there are numerous non-statistical methods like support vector
machines, AdaBoost, back-propagation perceptron and others having proved
to yield excellent results in different practical problems. Unlike Bayes formula
they are typically based on complex separating surfaces suitable to distinguish
between two classes. In such a case the multiclass problems have to be reduced to
multiple binary problems. It is possible to construct individual binary classifier
for each class (one-against-all approach), to distinguish each pair of classes (all-
pairs method) [8], or to use a more general method of error-correcting output
codes which can utilize binary classifiers for all possible partitions of the set
of classes [2]. We recall that, by nature of the underlying separating planes,
multiclass solutions based on binary classifiers are discrete and therefore the a
posteriori probabilities, if desirable, have to be approximated by heuristic means.
There is no exact relation to the probability of classification error, usually the
learning algorithm minimizes some heuristic criterion (e.g. a margin-based loss
function [1]). As it can be seen, from the point of view of “binary” approximating
multiclass decision functions, the concept of properties is basically irrelevant. �

3 Identification of Properties

In case of non-exclusive classes we assume that the multivariate observations may
have some properties from a finite set Θ = {θ1, . . . , θK}. Considering a single
property θ ∈ Θ we are faced with a two-class (binary) decision problem. For any
given sample x ∈ X we have to decide if the property is present or not. In other
words, the decision is positive, (θ) if the property has been identified and negative,
(θ̄) if it has not been identified. Since both alternatives are mutually exclusive,
we can solve the binary classification problem in a standard statistical way. In
full generality we denote p(θ) the a priori probability that the property θ occurs
and p(θ̄) = 1 − p(θ) denotes the complementary a priori probability that the
property is missing. Analogously, we denote P (x|θ) and P (x|θ̄) the conditional
probability distributions of x ∈ X given the property θ and θ̄ respectively. Thus,
given the probabilistic description of a binary problem {θ, θ̄} we can write

P (x) = P (x|θ)p(θ) + P (x|θ̄)p(θ̄), x ∈ X , (p(θ̄) = 1− p(θ)) (3)
1 Here and in the following we assume that possible ties are uniquely decided.
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and by using Bayes formula

p(θ|x) =
P (x|θ)p(θ)

P (x)
, p(θ̄|x) =

P (x|θ̄)p(θ̄)
P (x)

. (4)

we obtain the related decision function in the form

Δ : X → {θ, θ̄}, Δ(x) =
{

θ, p(θ|x) ≥ p(θ̄|x),
θ̄, p(θ|x) < p(θ̄|x), x ∈ X . (5)

Remark 3.1. As mentioned earlier (cf. Remark 2.1), the problem of mutually
exclusive classes can be formally decomposed into a set of “one-against-all” bi-
nary classification problems. If we define for each class ωk ∈ Ω the property
θ = {ωk} and the opposite property, θ̄ = Ω \ {ωk}, then we can construct the
two corresponding components P (x|θ)p(θ) and P (x|θ̄)p(θ̄) in terms of the class
conditional distributions P (x|ω). In particular, we can write

P (x|θ)p(θ) = P (x|ωk)p(ωk), p(θ) = p(ωk), (6)

P (x|θ̄)p(θ̄) =
∑

ω∈Ωk

P (x|ω)p(ω), p(θ̄) =
∑

ω∈Ωk

p(ω), Ωk = Ω \ {ωk}. (7)

Expectedly, the classification accuracy of the multi-class decision function (2)
may be different from that of the binary decision functions (5) based on the
distributions (6) and (7). We discuss the problem in Sec. 4 in detail. �

Let us recall that by introducing binary classifiers we assume the training data
to be available both for the property θ and for its opposite θ̄. Unfortunately, in
real life situations it is often difficult to characterize the negative property θ̄ and
to get the corresponding representative training data. In such cases the binary
classifier (5) cannot be used since the probabilistic description of the negative
property is missing. In this sense the identification of properties is more naturally
related to one-class classifiers [11], [12] when only a single training data set for
the “target” class is available.

Given some training data set Sθ for a property θ ∈ Θ, we can estimate the
conditional distribution P (x|θ) and the property θ could be identified by simple
thresholding. Nevertheless, the choice of a suitable threshold value is difficult
if any information about the opposite property θ̄ is missing [12]. In the follow-
ing we assume a general “background” information in the form of unconditional
marginal distributions Pn(xn) of the variables xn which is applicable to all prop-
erties θ ∈ Θ. This approach is motivated by the underlying PNN framework since
the information about the unconditional marginal probabilities Pn(xn) may al-
ways be assumed to be available at the level of a single neuron.

In order to identify a property θ ∈ Θ we propose to use a one-class-classifier
condition based on the log-likelihood ratio

πθ(x) = log
P (x|θ)∏

n∈N Pn(xn)
≥ ε. (8)
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Note that asymptotically the mean value of the criterion πθ(x) converges to
the Kullback-Leibler discrimination information between the two distributions
P ∗(x|θ) and

∏
n∈N Pn(xn)

π̄θ =
1
|Sθ|

∑
x∈Sθ

log
P (x|θ)∏

n∈N Pn(xn)
→

∑
x∈X

P ∗(x|θ) log
P ∗(x|θ)∏

n∈N Pn(xn)
. (9)

The last expression is nonnegative and for independent variables it is zero. In this
sense it can be interpreted as a measure of dependence of the involved variables
distributed by P ∗(x|θ) (cf. [3]).

We recall that the criterion πθ(x) does not depend on the a priori probability
p(θ). The property θ ∈ Θ is identified if the probability P (x|θ) is significantly
higher than the corresponding product probability

∏
n∈N Pn(xn). The threshold

value ε in (8) can be related to the log-likelihood function of the estimated
distribution P (x|θ) (cf. (21)). Thus the only information about the negative
properties θ̄ is contained in the unconditional product distribution

∏
n∈N Pn(xn)

which implies the assumption of independence of the variables xn.

4 Probabilistic Neural Networks

Considering PNNs we approximate the class-conditional distributions P (x|ω) by
finite mixtures of product components

P (x|ω) =
∑

m∈Mω

F (x|m)f(m), F (x|m) =
∏

n∈N
fn(xn|m). (10)

Here Mω are the component index sets of different classes, N = {1, . . . , N} is
the index set of variables, f(m) are probabilistic weights and F (x|m) are the
products of component specific univariate distributions fn(xn|m).

In order to avoid the biologically unnatural complete interconnection of neu-
rons we have introduced the structural mixture model [5], [6]. In particular,
considering binary variables xn ∈ {0, 1}, we define

F (x|m) = F (x|0)G(x|m, φm)f(m), m ∈ Mω (11)

where F (x|0) is a “background” probability distribution defined as a fixed prod-
uct of global marginals

F (x|0) =
∏

n∈N
fn(xn|0) =

∏
n∈N

ϑxn
0n(1− ϑ0n)1−xn , (ϑ0n = P{xn = 1}) (12)

and the component functions G(x|m, φm) include additional binary structural
parameters φmn ∈ {0, 1}

G(x|m, φm) =
∏

n∈N

[
fn(xn|m)
fn(xn|0)

]φmn

=
∏

n∈N

[(
ϑmn

ϑ0n

)xn
(

1− ϑmn

1− ϑ0n

)1−xn
]φmn

.

(13)
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The main advantage of the structural mixture model is the possibility to confine
the decision making only to “relevant” variables. Making substitution (11) in
(6), we can express the probability distributions P (x|ω), P (x) in the form

P (x|ω) =
∑

m∈Mω

F (x|m)f(m) = F (x|0)
∑

m∈Mω

G(x|m, φm)f(m), (14)

P (x) =
∑
ω∈Ω

p(ω)P (x|ω) = F (x|0)
∑

m∈M
G(x|m, φm)wm, wm = p(ω)f(m).

As the background distribution F (x|0) cancels in the Bayes formula we obtain

p(ω|x) =

∑
m∈Mω

G(x|m, φm)wm∑
j∈M G(x|j, φj)wj

=
∑

m∈Mω

q(m|x), ω ∈ Ω. (15)

q(m|x) =
wmG(x|m, φm)∑
j∈M wjG(x|j, φj)

, x ∈ X . (16)

Thus the posterior probability p(ω|x) becomes proportional to a weighted sum of
the component functions G(x|m, φm) each of which can be defined on a different
subspace. In other words the input connections of a neuron can be confined to an
arbitrary subset of input nodes. The structural mixtures (14) can be optimized
by means of EM algorithm in full generality (cf. [3] -[6]).

In view of Eq. (15) the structural mixture model provides a statistically correct
subspace approach to Bayesian decision-making. In particular, considering Eq.
(15), we can write the decision function (2) equivalently in the form

d(x) = ωk :
∑

m∈Mωk

q(m|x) ≥
∑

m∈Mω

q(m|x), ∀ω ∈ Ωk, x ∈ X . (17)

Remark 4.1. Applying binary classifier (5) to the multiclass problem of Remark
3.1, we can write (cf. (4), (6), (7))

Δ(x) = {ωk} : p(ωk|x) ≥ p(Ωk|x) = 1− p(ωk|x), x ∈ X (18)

and, after substitution (15), we obtain the following equivalent form of Eq. (18)

Δ(x) = {ωk} :
∑

m∈Mωk

q(m|x) ≥ 1
2
, x ∈ X . (19)

Condition (19) is stronger than (17) and, unlike the multiclass decision function
(17), it may happen that no class will be identified by the binary classifiers
(18) for a given x ∈ X . However, the two different decision functions (17) and
(19) will perform comparably in multidimensional problems. In high dimensional
spaces the mixture components F (x|m) in (14) are almost non-overlapping and
therefore the conditional weights q(m|x) have nearly binary properties by taking
values near zero or one. It can be seen that if for some m0 ∈ Mωk

the value



Recognition of Properties by Probabilistic Neural Networks 171

q(m0|x) is near to one then both the multiclass and binary classifiers (17) and
(19) will decide equally d(x) = Δ(x) = ωk. In numerical experiments we have
obtained false positive and false negative frequencies differing in both schemes
in several units only. �

The structural mixture model (14) is particularly useful to identify the properties
by means of the one-class-classifier condition (8). In view of definition of the
background distribution F (x|0) and considering the properties θ = {ω}, ω ∈ Ω
defined by numerals, we can write (cf. (8), (12), (14)):

πω(x) = log
[

P (x|ω)∏
n∈N Pn(xn)

]
= log

∑
m∈Mω

G(x|m, φm)f(m) ≥ εω. (20)

The mean value of the criterion πω(x) is actually maximized by EM algorithm
since the background distribution F (x|0) is fixed and a priori chosen. Thus, hav-
ing estimated the conditional distributions P (x|ω) we can derive the threshold
values εω for each property ω ∈ Ω from the related log-likelihood function:

εω =
c0

|Sω|
∑

x∈Sω

πω(x) =
c0

|Sω |
∑

x∈Sω

log
∑

m∈Mω

G(x|m, φm)f(m). (21)

Here the coefficient c0 can be used to control the general trade-off between the
false positive and false negative decisions.

The proposed statistical recognition of properties based on the threshold con-
dition (20) is closely related to the mutually exclusive Bayesian decision making.
Note that by choosing ω ∈ Ω which maximizes πω(x) we obtain Bayes decision
function very similar to (17). The only difference is the missing a priori proba-
bility p(ω) which implies the latent assumption of equiprobable classes.

5 Numerical Example

To illustrate the problem of recognition of properties we have applied PNNs to
the widely used benchmark NIST Special Database 19 (SD19) containing about
400000 handwritten numerals. It is one of the few sufficiently large databases to
test statistical classifiers in multidimensional spaces. The SD19 digit database
consists of 7 different parts - each of about 60000 digits. They were written by
Census Bureau field personnel stationed throughout the United States, except
for one part (denoted as hsf4) written by high school students in Bethesda,
Maryland. Thus different parts of the SD19 database differ in origin and also
in the quality. In particular, the digits written by students are known to be
more difficult to recognize. Unfortunately, in the report [7] there is no unique
recommendation concerning the choice of the training and test set respectively,
except that the hsf4 data should not be used as a test set. A frequent choice of
the test set is to use numerals written by “independent” persons - not involved in
preparation of training data. However, the use of “writer independent” test data
is incorrect from the statistical point of view. The purpose of any benchmark data
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Table 1. Recognition of numerals from the NIST SD19 database by differently complex

structural mixtures. The classification error is given in the last row.

Experiment No. I II III IV V VI VII VIII

Number of Components 10 40 80 100 299 858 1288 1571

Number of Parameters 10240 38758 77677 89973 290442 696537 1131246 1462373

Classification error in % 11.93 6.23 4.81 4.28 2.93 2.31 1.95 1.84

Table 2. Classification error matrix obtained in the Experiment VIII. Each row con-

tains frequencies of decisions for test data from a given class. The last column contains

percentage of false negative decisions. The last row contains the total frequencies of

false positive decisions in percent of all test patterns.

CLASS 0 1 2 3 4 5 6 7 8 9 false n.

0 19950 8 43 19 39 32 36 0 38 17 1.1 %

1 2 22162 30 4 35 7 18 56 32 6 0.9 %

2 32 37 19742 43 30 9 8 29 90 16 1.5 %

3 20 17 62 20021 4 137 2 28 210 55 2.6 %

4 11 6 19 1 19170 11 31 51 30 247 2.1 %

5 25 11 9 154 4 17925 39 6 96 34 2.1 %

6 63 10 17 6 23 140 19652 1 54 3 1.6 %

7 7 12 73 10 73 4 0 20497 22 249 2.1 %

8 22 25 53 97 30 100 11 11 19369 72 2.1 %

9 15 13 25 62 114 22 3 146 93 19274 2.5 %

false p. 0.09% 0.07% 0.27% 0.20% 0.17% 0.23% 0.07% 0.16% 0.33% 0.35% 1.84%

is to test the statistical performance of classifiers regardless of any “practically
useful” aspects. For this reason the statistical properties of the training- and test
data should be identical since otherwise we test how the classifier “overcomes”
the particular differences between both sets. In order to guarantee the same
statistical properties of both training and test data sets we have used the odd
samples of each class for training and the even samples for testing. We have
normalized all digit patterns (about 40000 for each numeral) to a 32x32 binary
raster. In order to increase the natural variability of data we have extended the
training data sets four times by making three differently rotated variants of each
pattern (by -10,-5,+5 degrees) - with the resulting sets of about 80000 patterns
for each numeral. The same procedure has been applied to the test data, too.

First, considering the problem of mutually exclusive classes, we have used
the training data to estimate the class-conditional mixtures for all numerals
separately by means of EM algorithm. Each digit pattern has been classified by
the a posteriori probabilities computed for the most probable variant of the four
rotated test patterns, i.e. for the variant with the maximum probability P (x).
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Table 3. Identification of properties (numerals) by means of one-class classifier. Each

row corresponds to one test class, the columns contain frequencies of the identified

numerals respectively.

CLASS 0 1 2 3 4 5 6 7 8 9 false n.

0 18815 2 954 23 30 292 76 0 406 103 6.8 %

1 6 21857 55 46 2756 111 52 4436 5039 410 2.2 %

2 4 9 18660 105 5 2 6 6 207 3 6.9 %

3 6 2 43 18971 1 1733 0 12 3177 373 7.7 %

4 1 0 6 1 18494 5 5 83 265 3229 5.5 %

5 7 2 4 918 0 17211 35 0 1246 282 6.0 %

6 50 10 30 0 60 888 18833 0 360 1 5.7 %

7 1 5 601 324 209 4 0 19817 242 6735 5.4 %

8 9 13 22 620 19 289 6 5 18201 154 8.0 %

9 3 4 6 70 1722 90 2 1060 1266 18667 5.6 %

false p. 0.0% 0.0% 0.9% 1.0% 2.4% 1.7% 0.1% 2.8% 6.1% 5.6% 6.0%

This approach simulates a biological analyzer choosing the best position of view.
Table 1 shows the classification accuracy of differently complex mixture models,
as estimated in eight independent experiments. The total numbers of mixture
components and of the component specific parameters (

∑
m

∑
n φmn) are given

in the second and third row of Tab. 1 respectively. The last row contains the
classification error in percent. It can be seen that the underlying mixture model
is rather resistant against overfitting.

Table 2 comprises detailed classification results of the decision function from
the Experiment VIII (cf. Tab. 1, last column) in terms of error frequency matrix.
Each row contains frequencies of different decisions for the respective class with
the correct classifications on diagonal. The last “false negative” column contains
the error frequencies in percent. Similarly, the last “false positive” row of the
table contains frequencies of incorrectly classified numerals in percent.

Table 3 shows how the properties (numerals) can be identified by means of one-
class classifier (20). The threshold values have been specified according to the Eq.
(21) by setting c0 = 0.75 after some experiments2. Each column contains frequen-
cies of decisions obtained by the one-class classifier (20) for the respective numeral
(first row). Hence, the numbers on the diagonal correspond to correctly identified
numerals. The last column contains percentage of false negative decisions defined
as complement of the correctly identified patterns. The last row contains percent-
age of the false positive decisions which correspond to incorrectly identified nu-
merals. Note that the only difference between Tables 2 and 3 is the information
about the mutual exclusivity of the recognized numerals which is not available in
case of properties. As the a priori probabilities of numerals are nearly identical,
the resulting tables reflect the net gain provided by the Bayes formula.

2 A validation set would be necessary to optimize the trade-off between the false neg-

ative and false positive decisions and also the underlying mixture complexity.
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6 Concluding Remark

We propose to identify properties by means of one-class-classifier based on the
log-likelihood ratio which compares the conditional probability distribution of
the “target” property with the product of univariate marginals of the uncon-
ditional background distribution. The only information about the “negative”
properties is contained in the global univariate marginals of involved variables.
In the numerical example we compare the problem of identification of properties
with the standard “multiclass” Bayes decision function. The proposed identifica-
tion of properties performs slightly worse than Bayes rule because of the ignored
mutual exclusivity of classes. On the other hand recognition of properties should
be more advantageous in case of non-exclusive classes. The method is applicable
both to the non-exclusive and exclusive properties and provides a unified ap-
proach to recognition of properties and feature extraction in the framework of
probabilistic neural networks.
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Abstract. The Adjusted Rand Index (ARI) is frequently used in clus-

ter validation since it is a measure of agreement between two partitions:

one given by the clustering process and the other defined by external

criteria. In this paper we investigate the usability of this clustering val-

idation measure in supervised classification problems by two different

approaches: as a performance measure and in feature selection. Since

ARI measures the relation between pairs of dataset elements not using

information from classes (labels) it can be used to detect problems with

the classification algorithm specially when combined with conventional
performance measures. Instead, if we use the class information, we can

apply ARI also to perform feature selection. We present the results of

several experiments where we have applied ARI both as a performance

measure and for feature selection showing the validity of this index for

the given tasks.

1 Introduction

One of the main difficulties in classification problems consists on the correct eval-
uation of the classifier performance. This is usually done by applying a common
performance measure like the Mean Squared Error (MSE) or the Classification
Correct Rate. Other measures like AUC (area in percentage under the Receiver
Operating Characteristic (ROC) curve), Sensitivity and Specificity, are also used
specially for two class problems like those involving medical applications. All
these measures compare the labeled outcome of the supervised classification al-
gorithm with the known labeled targets. By doing this they evaluate how good
the algorithm has labeled the input data according to the required target labels.
This can lead to poor results derived only by the fact that the output labels could
be switched even if the classes are well identified. In these cases we deemed use-
ful the introduction of a measure that can evaluate how well the algorithm split
the input data in different classes by looking at the relation between elements of
each class and not to the given labels. This is the main reason for our proposal
of using a clustering validation measure in supervised classification problems.

Usually, as we will show on the experiments, the ARI performs in a similar
way as other common measures. Lower values for bad classification results and
higher values for good classification results. We advise to include ARI in the set of

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 175–184, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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performance measures usually used on the evaluation of supervised classification
algorithms.

Since ARI is a measure of agreement between partitions and the target data
is partitioned by means of the labeling we can also use ARI to perform feature
selection if we split each feature in non-overlapping equal intervals and compare
the partition derived from the split with the one given by the targets. By doing
this we are evaluating each feature’s discriminant power and we can rank the
features according to the computed ARI value. We can then select the most
discriminant features to apply in our classification algorithm.

This work is organized as follows: the next section introduces the Adjusted
Rand Index; Section 3 explains how we intend to use ARI as a performance
measure for supervised classification problems and for feature selection; Section 4
presents several experiments that show the applicability of the proposed measure
with results detailed in Section 5. In the final section we draw some conclusions
about the paper.

2 The Adjusted Rand Index

There are several performance indices for cluster evaluation. Indices are measures
of correspondence between two partitions of the same data and are based on how
pairs of objects are classified in a contingency table.

Consider a set of n objects S = {O1, O2, ..., On} and suppose that U =
{u1, u2, ..., uR} and V = {v1, v2, ..., vC} represent two different partitions of the
objects in S such that ∪R

i=1ui = S = ∪C
j=1vj and ui ∩ ui′ = ∅ = vj ∩ vj′ for

1 ≤ i �= i′ ≤ R and 1 ≤ j �= j′ ≤ C. Given two partitions, U and V , with R
and C subsets, respectively, the contingency Table 1 can be formed to indicate
group overlap between U and V .

Table 1. Contingency Table for Comparing Partitions U and V

Partition V

Group v1 v2 · · · vC Total

u1 t11 t12 · · · t1C t1.

U u2 t21 t22 · · · t2C t2.

.

..
.
..

.

..
. . .

.

..
.
..

uR tR1 tR2 · · · tRC tR.

Total t.1 t.2 · · · t.C t.. = n

In Table 1, a generic entry, trc, represents the number of objects that were
classified in the rth subset of partition R and in the cth subset of partition C.
From the total number of possible combinations of pairs

(
n
2

)
from a given set we

can represent the results in four different types of pairs:
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a - objects in a pair are placed in the same group in U and in the same group
in V ;
b - objects in a pair are placed in the same group in U and in different groups
in V ;
c - objects in a pair are placed in the same group in V and in different groups
in U and;
d - objects in a pair are placed in different groups in U and in different groups
in V .

This leads to an alternative representation of Table 1 as a 2× 2 contingency
table (Table 2) based on a, b, c, and d.

Table 2. Simplified 2 × 2 Contingency Table for Comparing Partitions U and V

Partition V

U
Pair in Pair in

same group different groups

Pair in same group a b
Pair in different groups c d

The values of the four cells in Table 2 can be calculated using the values of
Table 1 by:

a =
R∑

r=1

C∑
c=1

(
trc

2

)
=

(
R∑

r=1

C∑
c=1

t2rc − n

)
/2 (1)

b =
R∑

r=1

(
tr.

2

)
− a =

(
R∑

r=1

t2r. −
R∑

r=1

C∑
c=1

t2rc

)
/2 (2)

c =
C∑

c=1

(
t.c
2

)
− a =

(
C∑

c=1

t2.c −
R∑

r=1

C∑
c=1

t2rc

)
/2 (3)

d =
(

n

2

)
− a− b− c =

(
n

2

)
−

R∑
r=1

(
tr.

2

)
−

C∑
c=1

(
t.c
2

)
+ a

=

(
R∑

r=1

C∑
c=1

t2rc + n2 −
R∑

r=1

t2r. −
C∑

c=1

t2.c

)
/2

(4)

where trc represents each element of the R× C matrix of Table 1.
Using these four values we are able to compute several performance indices

that we will present in the following paragraphs.
Together with the well known Jaccard Index [1], the Rand Index (RI), pro-

posed by Rand [2], was, and still is, a popular index and probably the most used
for cluster validation. Rand Index can be easily computed by:

RI =
a + d

a + b + c + d
(5)
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and it basically weights those objects that were classified together and apart
in both U and V . There are some known problems with RI such as the fact
that the expected value of the RI of two random partitions does not take a
constant value (say zero) or that the Rand statistic approaches its upper limit
of unity as the number of clusters increases. With the intention to overcame
these limitations researchers have created several different measures. Examples
are the Fowlkes-Mallows [3] Index (a/

√
(a + b)(a + c)) or the Adjusted Rand

Index (ARI) proposed by Hubert and Arabie [4] as an improvement of RI. In
fact ARI became one of the most successful cluster validation indices and in [5]
it is recommended as the index of choice for measuring agreement between two
partitions in clustering analysis with different numbers of clusters. ARI can be
computed by

ARI =

(
n
2

)
(a + d)− [(a + b)(a + c) + (c + d)(b + d)](
n
2

)2 − [(a + b)(a + c) + (c + d)(b + d)]
(6)
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ARI =

(
n
2

)∑R
r=1

∑C
c=1

(
trc

2

)− [∑R
r=1

(
tr.

2

)∑C
c=1

(
t.c

2

)]
1
2

(
n
2

) [∑R
r=1

(
tr.

2

)
+

∑C
c=1

(
t.c

2

)]− [∑R
r=1

(
tr.

2

)∑C
c=1

(
t.c

2
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with expected value zero and maximum value 1.

3 Using ARI as a Performance Measure and for Feature
Selection

When using classification algorithms one must use performance measures to
evaluate the classification results. There are some well known performance mea-
sures with their inherent advantages and drawbacks. For a detailed comparison
of performance measures for classification please refer to [6].

The simple use of the classification correct rate in percentage (COR) may lead
to erroneous conclusions specially if we are dealing with unbalanced data sets.
Consider the case of a two-class problem with one class having 90% of the cases.
If all the outputs of the classification algorithm are from the majority class we
will get a COR value of 90 that can be misleading specially if one intends to
detect and classify the minority class (e.g. medical applications), therefore one
should be aware that special care must be taken when using COR in problems
with low representative classes.

There are some performance measures specially suited for two-class problems
that one must definitely use when working with these kind of datasets. Examples
of these measures are:

– AUC: The area in percentage under the Receiver Operating Characteristic
(ROC) curve, which measures the trade-off between sensitivity and speci-
ficity in two-class decision tables [7]. The higher the area the better is the
decision rule.
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– BCR: The balanced correct rate defined as 50 a
a+b + 50 d

c+d in percentage.

These two measures are based on the resulting 2 × 2 decision table, consider-
ing as abnormal class the one with lesser cases. They are specially suitable for
unbalanced datasets where an optimistically high COR could arise from a too
high sensitivity or specificity. AUC and BCR give an adequate picture in those
situations.

The same way we use BCR or AUC for two-class unbalanced datasets we can
also use ARI for unbalanced datasets with any number of classes. By analyzing
each pair of elements ARI will measure not only the correct separation of el-
ements belonging to different classes but also the relation between elements of
the same class. In a certain way this measure pays more attention to the relation
between elements than to the relation between each element and its target label.
We can say that ARI evaluates the capability of the algorithm to separate the
elements belonging to different classes.

Consider we have a two-class problem with half of the data belonging to each
class and we apply a classification algorithm. Suppose that the result of the
classification algorithm is a classification matrix (confusion matrix) with half of
the elements as False Positives and the other half as False Negatives. In this
case the COR is 0% meaning that the algorithm is a total disaster in terms of
classification goal but, the ARI value is 1 (maximum) meaning that the algorithm
is doing the correct distinction between classes but the problem is only with the
data labeling. The elements are well separated but the given labels are incorrect
or there is some problem in the implementation of the algorithm (we could
be facing the perfect lying machine!). By combining ARI with other measures
we can gain valuable information about the performance of our classification
algorithm.

We also used ARI to perform feature selection. Since ARI gives a measure
of the agreement between partitions and in classification problems the training
data is partitioned by means of the given labels we can make a partition for each
feature and compare it with the one given by the labels. To do this we rank the
feature values by splitting them in non-overlapping equal intervals (categories)
that could be as many as the number of classes. These intervals will define the
partition to use, together with the class partition, in the computation of ARI
index. Let us consider a simple example just to clarify this concept. Table 3 rep-
resents the values of two features from a given dataset with 12 elements with the
respective class labels. By computing the ARI value for features 1 and 2 using the
partition defined by the class labels Pc = {{a, b, c, d}, {e, f, g, h}, {i, j, k, l}} and
the partition defined for each feature Pfeat1 = {{a, b, c, e}, {d, f, h, l}, {g, i, j, k}},
Pfeat2 = {{e, i, j, k, l}, {f, g, h}, {a, b, c, d}} we can rank the features according
to their ARI value. In the presented case the feature with highest ARI is feat2
and therefore is the most discriminant feature.

ARI will give us the feature’s discriminant power. Having ranked the existent
features we select a certain number of the most discriminant ones to use in our
classification algorithm. This approach is suitable for datasets with an extremely
large number of features like those related with gene expression.
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Table 3. A simple example to illustrate the use of ARI for feature selection

Element a b c d e f g h i j k l

Class label 1 1 1 1 2 2 2 2 3 3 3 3

feat1 0 0.3 0.1 0.5 0.2 0.4 0.7 0.5 0.9 1 0.7 0.4

feat2 1 0.8 0.9 0.7 0.2 0.4 0.4 0.5 0 0.1 0.1 0.2

4 Experiments

In the context of using ARI as a performance measure we have performed some
experiments in artificial and real-world datasets. As artificial datasets we used
checkerboard datasets such as the one shown in Figure 1. Checkerboard datasets
are complex, controllable and unbalanced datasets. We used two different con-
figurations: 2×2 and 4×4 checkerboards. For each one of the configurations we
built three datasets with different numbers of elements (points) but with a com-
mon characteristic: a fixed number of elements belonging to the minority class
(100). The percentage of elements of this minority class is 50, 25 and 10% of
the total number of elements. The names of these datasets in Table 5 have the
following meaning: CheckN×N(T, p) means ”checkerboard N×N dataset with a
total of T elements, p% of them of the minority class”.

Fig. 1. An example of the 4×4 checkerboard dataset with 400 points (100 elements in

the minority class: dots). Dotted lines are for visualization purpose only.

The real-world datasets are summarized in Table 4, with the top ones being
the two-class datasets, the middle ones the datasets with more than two classes
(multi-class problems) and the bottom ones the datasets used for feature selection.
Almost every datasets can be found in the UCI repository [8] with the exception
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Table 4. The real-world datasets

Data set
number of number of number of number of

elements features classes elem. per class

Clev. Heart Disease 2 297 13 2 160-137

Diabetes 768 8 2 500-268

Ionosphere 351 34 2 225-126

Liver 345 6 2 200-145

Sonar 208 60 2 111-97

Wdbc 569 30 2 357-212

Breast Tissue 106 9 6 21-15-18-16-14-22

Clev. Heart Disease 5 297 13 5 160-54-35-35-13

Glass 214 9 6 70-76-17-13-9-29

Iris 150 4 3 50-50-50

Wine 178 13 3 59-71-48

Leukemia 72 7129 2 47-25

Arcene 100 10000 2 44-56

of Olive [9], Breast Tissue [10] and Leukemia [14]. The datasets differ a lot among
them specially in what concerns the number of features and their topology.

We used neural networks (MLP’s) as classification algorithms in all problems
and for the two-class problems we also used Support Vector Machines [11] that
are known to be an excellent classifier for these kind of problems. In the ex-
periments with MLP’s we used the following architectures: as many inputs as
the number of features, one hidden layer and one output layer for the two-class
problems and as many outputs as the number of classes for multi-class prob-
lems. The number of hidden neurons, nh, was chosen in order to assure a not
too complex network with acceptable generalization. For that purpose we took
into account the minimum number of lines needed to separate the checkerboard
classes and the well-known rule of thumb nh = w/ε (based on a formula given in
[12]), where w is the number of weights and the expected error rate. Other MLP
characteristics were chosen following [13]: all neurons use the hyperbolic tangent
as activation function; as risk functional we used the MSE and as learning algo-
rithm the backpropagation (BP) of the errors. The inputs were all pre-processed
in order to standardize them to zero mean and unit variance. In all experiments
we used the 2-fold cross validation method. In this method in each run half of
the data set is randomly chosen for training and the other half for testing, then
they are used with reverse roles (the original training set becomes the test set
and vice-versa). Each experiment consisted of 20 runs of the algorithm. After the
20 runs the mean and standard deviation of the following performance measures
were computed: AUC, COR, BCR, and ARI for the two-class problems; COR
and ARI for the multi-class problems.
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In the context of using ARI for feature selection we performed exploratory
experiments in two data sets: a Mass-spectrometric Data for detecting cancer
and; a Microarray Gene Expression Data for detecting Leukemia referred in Ta-
ble 4 as Arcene and Leukemia respectively. In both experiments we used several
different values for the number of intervals (categories) to split each feature and
we find better results when choosing values for the number of intervals around
the double of the number of classes. We selected 50 features from the 10000 of
Arcene and 15 features from the 7129 of Leukemia. We have applied a Naive
Bayes classifier in both cases.

5 Results

In Table 5 we show the mean and standard deviation (in brackets) of the several
performance measures for the performed experiments with two-class and multi-
class problems and the results for the feature selection data sets. In multi-class
problems we only computed the COR, BCR and ARI performance measures
since AUC is mainly for two-class problems (we also compute AUC in our daily
experiments with multi-class problems since it can be obtained from the confu-
sion matrix, however in that kind of problems it has a different meaning, reason
for not showing AUC in the results because it’s not appropriate for the presented
comparison).

The results for the multi-class problems show a straight correlation between
ARI and the traditional indices, specially BCR, a more reliable performance
measure. The results for the Glass dataset deserve a special attention. We can
see that the ARI value is more related with BCR than with COR. This is due
to the characteristics of this dataset. This is a highly unbalanced dataset and
by analyzing the confusion matrices (due to lack of space we do not show here
the confusion matrices) we can see that the predictions are mainly restricted to
3 classes (classes 1,2 and 6) reason for the different ARI value. The results show
that ARI is a good performance measure for multi-class problems.

The results of the two-class problems clearly show that ARI also gives valuable
information regarding the performance of the classification algorithms. Higher
values of ARI are related with higher values of the other indices. The extremely
small ARI values for Liver dataset clearly points to a very complex dataset with
extremely overlapping classes. When analyzing the confusion matrices we see
that there are an extremely high number of misclassified elements (almost 40%
of the data). These are the situations where the ARI values are smaller. Results
for Diabetes also present some of this behavior.

We also can see that the ARI results for the SVM are always lower than the
ones for MLP. We do not have an explanation for this, specially considering that
the other performance measures do not show this same behavior.

In the feature selection problems the results for Leukemia are better than
those published in [14] and for Arcene the results are not as good as those
reported but we were not able to get access to all the data to perform a fair
comparison. However we think that these results are very promising.
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Table 5. The results with real-world and artificial datasets

Dataset Performance Measures

Two-class AUC COR BCR ARI

Cleaveland HD 2 MLP 0.89 (0.01) 82.42 (1.08) 82.12 (1.03) 0.36 (0.03)

SVM 0.90 (0.01) 83.31 (0.97) 82.90 (0.96) 0.18 (0.02)

Diabetes MLP 0.83 (0.01) 76.58 (0.88) 72.44 (0.92) 0.20 (0.01)

SVM 0.82 (0.01) 75.34 (2.01) 67.85 (2.91) 0.15 (0.01)

Ionosphere MLP 0.90 (0.02) 87.81 (1.21) 84.05 (1.58) 0.56 (0.04)

SVM 0.98 (0.01) 94.26 (0.75) 93.11 (0.85) 0.45 (0.03)

Liver MLP 0.72 (0.02) 68.52 (1.97) 67.00 (1.98) 0.07( 0.01)

SVM 0.73 (0.02) 70.23 (2.49) 67.61 (2.76) 0.05 (0.02))

Sonar MLP 0.89 (0.03) 78.82 (2.51) 78.59 (2.56) 0.33 (0.06)

SVM 0.93 (0.02) 84.71 (2.01) 84.34 (2.05) 0.23 (0.03)

Wdbc MLP 0.99 (0.001) 97.39 (0.67) 97.04 (0.71) 0.87 (0.02)

SVM 0.99 (0.002) 96.79 (0.62) 96.43 (0.66) 0.28 (0.02)

Check2×2(1000,10) MLP 0.63 (0.16) 95.32 (1.26) 76.97 (6.51) 0.61 (0.10)

SVM 0.99 (0.01) 98.39 (0.49) 92.55 (2.43) 0.53 (0.03)

Check2×2(400,25) MLP 0.96 (0.08) 95.57 (2.53) 92.47 (4.73) 0.75 (0.09)

SVM 0.99 (0.004) 95.11 (1.13) 92.22 (1.83) 0.65 (0.03)

Check2×2(200,50) MLP 0.98 (0.01) 92.85 (2.48) 92.87 (2.48) 0.67 (0.06)

SVM 0.98 (0.01) 92.40 (2.09) 92.42 (2.10) 0.45 (0.05)

Check4×4(1000,10) MLP 0.71 (0.05) 93.66 (0.76) 70.77 (3.63) 0.48 (0.06)

SVM 0.98 (0.01) 96.04 (0.55) 82.04 (2.60) 0.27 (0.02)

Check4×4(400,25) MLP 0.88 (0.03) 86.22 (1.61) 77.96 (3.80) 0.48 (0.06)

SVM 0.96 (0.01) 89.70 (1.37) 84.06 (2.07) 0.35 (0.02)

Check4×4(200,50) MLP 0.83 (0.05) 78.54 (3.80) 78.51 (3.79) 0.30 (0.07)

SVM 0.91 (0.02) 83.18 (2.56) 83.12 (2.54) 0.24 (0.04)

Multi-class

Breast Tissue 64.01 (3.47) 62.40 (3.47) 0.46 (0.04)

Cleaveland HD 5 58.55 (1.43) 58.55 (1.43) 0.42 (0.03)

Glass 63.13 (3.56) 53.02 (3.56) 0.29 (0.04)

Iris 96.47 (1.17) 96.17 (1.47) 0.90 (0.03)

Olive 94.19 (0.73) 94.19 (0.72) 0.90 (0.01)

Thyroid 95.19 (3.09) 92.64 (3.09) 0.84 (0.09)

Wine 97.42 (1.31) 97.42 (1.30) 0.92 (0.04)

Arcene 0.76 74.00 74.00 0.22

Leukemia 0.98 91.18 92.50 0.67

6 Conclusions

We presented and proposed in this work the use of an unsupervised classification
performance measure in supervised classification problems. We have presented
several experiments that show the validity of ARI index as a performance mea-
sure in classification both in two-class and multi-class datasets. We have showed
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that ARI is especially good for multi-class classification. By analyzing the rela-
tions between pairs of elements belonging to each predicted class and the corre-
spondent label ARI gives valuable information about the correct separability of
the classes.

We also presented two preliminary experiments that show that ARI can also
be used for feature selection specially for datasets with a high number of features
but we are conscious that this issue deserves a more detailed study particularly to
evaluate the influence of the number of intervals (categories) in the final results.

Finally, we must say that we use this index in our daily experiments and it
shows to be useful in some of them, therefore we advise all the researchers to
include this index as a measure of performance of their classification algorithms.
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Abstract. This paper proposes a novel Mass Spectrometry data profiling method
for ovarian cancer detection based on negative correlation learning (NCL). A
modified Smoothed Nonlinear Energy Operator (SNEO) and correlation-based
peak selection were applied to detected informative peaks for NCL to build a pre-
diction model. In order to evaluate the performance of this novel method without
bias, we employed randomization techniques by dividing the data set into testing
set and training set to test the whole procedure for many times over. The clas-
sification performance of the proposed approach compared favorably with six
machine learning algorithms.

Keywords: negative correlation learning, bioinformatics, proteomics, data
mining.

1 Introduction

Ovarian cancer is aggressive: it is rarely detected in early stage and when detected in
late stages, e.g., stage III and beyond, the 5-year survival rate is only approximately
15% [6]. Detection of early-stage ovarian cancer can reduce the death rate significantly.
For example, the reported 5-year survival rate is about 90% for those women detected
in stage I. Cancer antigen 125 (CA125) has been introduced for cancer diagnosis [21].
However, the accuracy for early-stage cancer diagnosis is very low (about 10%) and is
prone to large false positive rate.

In recent year, Mass Spectrometry (MS) as a proteomics tool is applied for early-
stage ovarian cancer diagnosis. This new proteomics tool is simple, inexpensive and
minimally invasive [20]. The first application of MS to the early-stage ovarian can-
cer diagnosis was done by Petricoin [17]. The author employed genetic algorithms
(GAs) coupled with clustering analysis to generate diagnosis rule sets to predict ovar-
ian cancer. The study was based on the SELDI-TOF (Surface-enhanced Laser Des-
orption/Ionzation Time-Of-Flight) low-resolution MS data. With the advance of the
mass spectrometry technology, high-resolution SELDI-TOF was employed and studied
by the same authors to discriminate ovarian cancer from normal tissue. This dataset
is collected with extensive quality control and assurance (QC/QA) analysis which are
supposed to have superior classification patters when compared to those collected with
low-resolution instrumentation [6]. In their paper, the sensitivity and specificity were
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c© Springer-Verlag Berlin Heidelberg 2009
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claimed to be both almost 100%. However, a reproducing study done by Jerries [12]
shows that the performance of the best prediction model generated by their GA only
achieved 88% accuracy at 25th percentile and 93% accuracy at 75th percentile.

Recently, in attempt to improve the accuracy of identifying cancer on the high-
resolution SELDI-TOF ovarian cancer data, Yu et.al. [19] proposed a method that con-
sists of Kolmogorov-Smirnov (KS) test, wavelet analysis and Support Vector Machine
(SVM). The average sensitivity and specificity are 97.38% and 93.30%. Before the
classification using SVM, the proposed method selected 8094 m/z values via KS test
and further compressed to a 3382-dimensional vector of approximation coefficients
with Discrete Wavelet Transformation (DWT). Although the accuracy achieved by the
procedure was improved, the biological interpretability was greatly sacrificed since
the 3382-dimensional DWT coefficient vector for classification is not biologically
meaningful.

In this paper, we propose a novel MS data profiling method based on a novelensem-
ble learning technique, Negative Correlation Learning (NCL) for ovarian cancer detec-
tion, which can generate more accurate and biologically meaningful results. We firstly
employed MS data preprocessing techniques for signal denoising, peak detection and
selection proposed in [10]. The selected peaks will be used for NCL to build a predic-
tion model. We compared the classification performance of NCL with Support Vector
Machines (SVM), Prediction Analysis for Micro-arrays (PAM), Bagging, and Random
Forests (RF). We also compared the proposed method with Linear Discriminant Anal-
ysis (LDA) and Quadratic Discriminant Analysis (QDA).

The paper is organized as follows: Section 2 describes details of the proposed meth-
ods, followed by the detailed setting of our experiments, control parameter selection
and experimental results in Section 3. Finally, Section 4 concludes the paper.

2 Peak Detection and Classification Algorithms

The proposed profile method consists of the two major steps: data preprocessing and
NCL classification model. In the data preprocessing step, there are five components: 1).
data preprocessing; 2). SNEO based peak detection; 3). peak calibration; 4). correlation-
based peak selection; 5). peak qualification. In the following subsections, we give de-
tails of each step.

2.1 Data Preprocessing

Data preparation. As the m/z data points of each original MS spectrum are different,
in order to compare different spectra under the same reference and at the same reso-
lution, we homogenize the m/z vector using a resampling algorithm in the MATLAB
Bioinformatics Toolbox.

We correct the baseline caused by the chemical noise in the matrix or by ion over-
loading using the following procedure: 1). estimated the baseline by calculating the
minimum value within the width of 50 m/z points for the shifting window and a step
size of 50 m/z points; 2). regresses the varying baseline to the window points using a
spline approximation; and 3). subtract the resulting baseline from the spectrum. Finally,



Profiling of Mass Spectrometry Data for Ovarian Cancer Detection 187

each spectrum was normalized by standardizing the area under the curve (AUC) to the
median of the whole set of spectrum. The dataset is split for training and testing as
detailed in Section 3.

Modified SNEO based Peak Detection Algorithm. Smoothed Non-linear Energy Op-
erator (SNEO), or also known as the Smoothed Teager Energy Operator, has been used
to detected hidden spikes in EEG and ECG biomedical signal. The method is sensi-
tive to any discontinuity in the signal. It was shown by [16] that the output of SNEO
is the instantaneous energy of the high-pass filtered version of a signal. For MS data,
true peaks can be regarded as instantaneous changes in the signal. Therefore, the SNEO
is ideal for the detection peaks in MS data because of its instantaneous nature. The
generalized SNEO Ψs is defined as [16]:

Ψs[x(n)] = Ψ [x(n)]⊗ w(n) (1)

Ψ [x(n)] = x2(n)− x(n + j)x(n− j) (2)

where ⊗ is the convolution operator and w(n) is a smoothing window function; in this
study, bartlett window function is used. Usually, the step size j is set to be 1 which gives
us a standard SNEO. For the high-solution MS data, we selected the step size j = 3,
which gives the best classification results.

Conventionally after applying SNEO to pre-emphasize peaks in the signal, potential
peaks are detected using a threshold approach [16]. However, our research indicated
that the threshold method is not suitable for MS peak detection since the background
noise, e.g., false peaks, is non-stationary and there is no precise knowledge on the en-
ergy distribution of the true peaks and background noise. In this study, we replace the
threshold detection method by a naive peak finding algorithm: we firstly calculate the
first derivatives in the SNEO emphasized signals, then those local maximum will be
detected as peaks. Obviously, this naive peak finding algorithm detects true peaks as
well as a large number of false peaks. We therefore employ a filter-based peak selection
algorithm as detailed in Section 2.1 to filter out false peaks.

Peak calibration. After the peak detection, it is necessary to calibrate the peaks in
order to alleviate the impact of the m/z axis shifting problem. We divide each spectrum
into windows with an equal number of m/z values. The selection of an optimal number
of m/z values is done by experiments as detailed in 3.3. At each m/z point in each
window, the total number of peaks across all the spectra is calculated. The m/z point
that has the highest number of peaks within the window is set as the calibration m/z
value. Then the peaks in all spectra within the window are moved to this calibrated
m/z point. For each spectrum, if there is more than one peak in the m/z window, only
the highest peak will be moved to the calibrated m/z point, all the other lower intensity
peaks will be removed. We plot a MS spectrum of a cancer sample and peaks detected
and calibrated by our method in Figure 1.

Correlation-based Peak Selection. The correlation-based feature selection [8] uses a
correlation based heuristic to determine the usefulness of feature subsets. The useful-
ness is determined by measuring the “merit” of each individual feature for predicting
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Fig. 1. MS spectrum of an ovarian cancer sample, peaks detected and calibrated by our SNEO
peak detection and calibration method

the class label as well as the level of inter-correlation among them. First, an evaluation
function is defined as:

Gs =
krci√

k + k(k − 1)rii

(3)

where k is the number of features in the subset; rci is the mean feature correlation with
the class, and rii is the average feature intercorrelation.

Equation (3) is the core of the feature selection algorithm. With this evaluation func-
tion, heuristic search algorithm then can be applied to search the feature subset with
the best merit as measured in Equation (3). In the implementation, a best first heuris-
tic search strategy was used to search the feature subset space in reasonable time. The
peak selection algorithm starts from the empty set of features and uses a forward best
first search to search an optimal subset. The stopping criterion of five consecutive fully
expanded non-improving subsets was used [8].

There are two approaches to measure the correlation between features and the class
(rci), and between features (rii). One is based on classical linear correlation and the
other is based on information theory. The correlation-based feature selection employed
here used the information theory based approach since it can capture correlations that
are either linear or nonlinear. For details of implementation, please refer to [8].

Peak Qualification. After applying the correlation-based peak selection to the detected
peaks from the training set, a small set of peaks then can be generated. This set of peaks
will be used as inputs for NCL to build a prediction model. Based on the selected peak
set from training set, we construct m/z windows using the same width as used in the
calibration step. For each spectrum in test set, peaks detected by SNEO peak detection
algorithm is qualified by the constructed m/z windows, that is, only those peaks within
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the m/z windows will be used as inputs in testing. If there are more than one peak in a
m/z window in a spectrum, only the highest peak will be retained.

2.2 Negative Correlation Learning

Ensemble of multiple learning machines, i.e. a group of learners that work together as a
committee, has attracted a lot of research interests in the machine learning community
because it is considered as a good approach to improve the generalization ability [9].

Negative Correlation Learning (NCL) [14,13] is a successful ensemble technique and
it has shown a huge number of empirical applications [15,11,3,7,5]. NCL introduces a
correlation penalty term into the cost function of each individual network so that each
neural network minimizes its MSE error together with the correlation of the ensemble.

Given the training sets {xn, yn}N
n=1, NCL combines M neural networks fi(x) to

constitute the ensemble.

f̄(xn) =
1
M

M∑
i=1

fi(xn). (4)

In training network fi, the cost function ei for network i is defined by

ei =
N∑

n=1

(fi(xn)− yn)2 + λpi, (5)

Algorithm Negative Correlation Learning (NCL)
Input: the training set D = {xn, yn}N

n=1, integer M specifying size of en-
semble, the learning rate η in backpropagation (BP) algorithm and integer T
specifying the number of iterations.

For t = 1, · · · , T do:

1. Calculate fens(xn) = 1
M

∑M
i=1 fi(xn).

2. For each network from i = 1 to M do: for each weight wi,j in network i,
perform a desired number of updates,

ei =
N∑

n=1

(fi(xn)− yn)2 − λ

N∑
n=1

(fi(xn)− fens(xn))2,

∂ei

∂wi,j
= 2

N∑
n=1

(fi(xn)− yn)
∂fi

∂wi,j
− 2λ

N∑
n=1

(fi(xn)− fens(xn))(1 − 1
M

)
∂fi

∂wi,j
,

Δwi,j = −2η

{
N∑

n=1

(fi(xn)− yn)
∂fi

∂wi,j
− λ

N∑
n=1

(fi(xn)− fens(xn))(1 − 1
M

)
∂fi

∂wi,j

}
.

Output: NCL ensemble

f(x) =
1
M

∑
i

fi(x).

Fig. 2. Negative Correlation Learning Algorithm
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where λ is a weighting parameter on the penalty term pi:

pi =
N∑

n=1

⎧⎨⎩(fi(xn)− f̄(xn))
∑
j �=i

(
fj(xn)− f̄(xn)

)⎫⎬⎭
= −

N∑
n=1

(fi(xn)− fens(xn))2 . (6)

The first term in the right-hand side of (5) is the empirical training error of
network i. The second term pi is a correlation penalty function. The purpose of mini-
mizing pi is to negatively correlate each network’s error with errors for the rest of the
ensemble. The λ parameter controls a trade-off between the training error term and the
penalty term. With λ = 0, we would have an ensemble with each network training with
plain back propagation, exactly equivalent to training a set of networks independently of
one another. If λ is increased, more and more emphasis would be placed on minimizing
the penalty. The algorithm is summarized in Figure 2.

For the NCL model, we used radial basis function (RBF) networks as base classifiers.
The training of RBF network is separated into two steps. In the first step, the means μk

are initialized with randomly selected data points from the training set and the variances
σk are determined as the Euclidean distance between μk and the closest μi(i �= k, i ∈
{1, · · · ,K}). Then in the second step we perform gradient descent in the regularized
error function (weight decay)

min e =
1
2

N∑
n=1

(yn − f(xn))2 + α
K∑

k=1

w2
k . (7)

In order to fine-tune the centers and widths, we simultaneously adjust the output
weights, the RBF centers and variances. Taking the derivative of Equation (7) with
respect to RBF means μk and variances σ2

k we obtain

∂e

∂μk
=

N∑
n=1

(f(xn)− yn)
∂f(xn)
∂μk

, (8)

with ∂f(xn)
∂μk

= wk
xn−μk

σ2
k

φk(xn) and

∂e

∂σk
=

N∑
n=1

(f(xn)− yn)
∂f(xn)
∂σk

, (9)

with ∂f(xn)
∂σk

= wk
‖x−μk‖2

σ3
k

φk(xn). These two derivatives are employed in the mini-

mization of Equation (7) by scaled conjugate gradient descent, where we always com-
pute the optimal output weights in every evaluation of the error function. The optimal
output weights w can be computed in closed form by

w = (ΦTΦ+ αI)−1ΦT y, (10)

where y =(y1, · · · , yn)T denotes the output vector, and I an identity matrix.
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3 Numerical Experiments

3.1 Datasets

The SELDI-TOF high resolution ovarian cancer dataset OC-WCX2-HR was collected
by NCI-FDA using a hybrid quadruple time-of-flight spectrometer with extensive qual-
ity control and assurance (QC/QA) analysis, which are supposed to have superior classi-
fication patters when compared to those collected with low-resolution instrumentation.
The dataset consists of 216 samples, of which 95 control and 121 cancer. Each spec-
trum contains 350,000 m/z values. We condensed the spectrum into 7064 m/z values
following [6].

3.2 Experimental Setting

The objective of our experiments is to assess the classification performance of our
proposed method. In order to evaluate the classification performance of the proposed
method with minimal bias, we employed the same experimental setting used in [12],
which is also similar to the “proportional validation” in [19] by randomly splitting all
the datasets into a training set and a test set. 52 control samples and 53 cancer sam-
ples from the OC-WCX2-HR dataset were selected for training data, the rest 43 control
samples and 68 cancer samples were set aside for evaluation as a blind dataset. These
same settings were used in [6] and [12].

For comparison purpose, we ran experiments on the dataset with Bagging [1], RF [2],
SVM [4], PAM [18], LDA and QDA. We investigated the classification performance
of these machine learning algorithms in comparison with NCL on the same peak set
extracted by SNEO peak detection and correlation based peak selection algorithms.

We first carried out preliminary experiments to select optimal parameters for each
algorithm as detailed in Section 3.3. Then based on the optimal parameters, we executed
the experiments to evaluate the classification performance.

3.3 Parameter Selection

For the SNEO peak detection method, there is no tunable parameter. However, in the
peak calibration step, the calibration window width is adjustable. Following [10], we
selected calibration window width of 10, which generated the best results.

For Random Forests classifier, we tuned the following parameters: the number of
candidate variables for each split and the minimum size of terminal nodes. We search
the grid {1, 2, · · · , 8} × {100, 200, · · · , 500} on the training data.

The shrinkage parameter of PAM was selected by 10-fold cross-validation as sug-
gested by [18].

For SVM we used C-classification with RBF kernel. In order to select optimal pa-
rameters for SVM, e.g., kernel parameter σ and cost C, we executed grid search on{
2−10, 2−9, · · · , 25

}× {2−5, 2−4, · · · , 210
}

by 10-fold cross-validation.
In the Bagging algorithm, 100 classification and regression trees are grown in each

Bagging ensemble.
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Table 1. Test set accuracy (%) percentiles of the dataset OC-WCX2-HR from 50 runs of NCL and
6 other machine learning algorithms. The 6 machine learning algorithms used the peaks selected
by the proposed SNEO peak detection and correlation based selection method.

Algorithm Test set accuracy 25th Test set accuracy 75th
Overall Sensitivity Specificity Overall Sensitivity Specificity

NCL 93.69 93.83 92.48 97.39 98.30 97.39
PAM 90.99 86.78 94.67 94.60 92.30 97.99
RF 91.89 89.28 91.07 96.40 94.64 98.27

SVM 92.79 94.83 87.75 95.50 98.31 96.15
Bagging 90.54 93.10 87.23 95.04 96.28 94.23

LDA 88.29 82.76 92.45 93.68 95.00 98.21
QDA 91.89 89.47 90.90 95.49 96.61 97.92

We use the traditional Linear Discriminant Analysis (LDA) and Quadratic Discrimi-
nant Analysis (QDA). In matlab, the LDA and QDA are called by the classify function.

The number of hidden nodes in RBFs of the NCL model is randomly selected but
restricted in the range of 5 to 15. The ensemble consists of 100 RBF networks.

3.4 Experimental Results

In total, 128 peaks were detected and selected as biomarkers. These peaks were then
used for NCL to build a prediction model.

The overall average accuracy obtained by our method from 50 runs is 95.16% with a
standard deviation of 2.75%. The average sensitivity and specificity are 96.21%
with a standard deviation of 2.83% and 93.96% with a standard deviation of 3.9%,
respectively.

The results obtained from 6 other machine learning methods on the same training set
and test set are presented in Table 1. It can be seen from the table that the SVM and RF
algorithms generated better results than the other machine learning algorithms but still
worse than the results generated by NCL.

Jeffries et al. [12] employed GA coupled with clustering analysis on the same dataset,
the overall average accuracy from 50 runs of the GA was only 88% and 93% at 25 and
75 percentiles, respectively, which is far worse than the results obtained by our proposed
method. Apart from its poorer accuracy, the GA based method actually fall into the
whole-spectrum method since the method treated each m/z point in the spectrum as a
separate test. The outputted biomarkers were a set of significant m/z values but were
not necessarily a peak set. Therefore, the biological interpretation of their results is not
guaranteed.

In [19], the average sensitivity and specificity were improved to 97.47% and 93.35%
in 1000 independent 2-fold proportional validation using SVM. These results are
slightly better than the results generated by our method. However, in their study, KS
test and Discrete Wavelet Transform (DWT) were employed to reduce the dimension-
ality of the data. The biological interpretability of this method was greatly sacrificed
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since the features used for classification were a set of coefficients of DWT, which are
even less biologically meaningful than a set of m/z values.

4 Conclusion

In this study, we have propose a novel MS data profiling method for ovarian cancer
detection based on a novel ensemble method, Negative Correlation Learning (NCL). To
our best knowledge, it is the first time NCL have been applied to proteomics.

In order to assess the classification performance of the proposed method, we eval-
uated our method on one high resolution ovarian cancer dataset using the same ex-
perimental settings used in [6] and [12]. We compared the proposed profiling method
with six machine learning algorithms. The experimental results show that the proposed
method can generate excellent classification accuracy. Results from our method are also
better than most of the results in the literature, even some whole-spectrum methods. The
most notable merit of our proposed method is that, besides its excellent classification
performance, it obtains more biologically meaningful results, e.g., a parsimonious set
of peaks, for further study and validation.
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Abstract. The k Nearest Neighbor classifier has been applied to the

identification of cancer samples using the gene expression profiles with

encouraging results. However, the performance of k-NN depends strongly

on the distance considered to evaluate the sample proximities. Besides,

the choice of a good dissimilarity is a difficult task and depends on the

problem at hand.

In this paper, we learn a linear combination of dissimilarities using a

regularized version of the kernel alignment algorithm. The error function

can be optimized using a semi-definite programming approach and incor-

porates a term that penalizes the complexity of the family of distances

avoiding overfitting.

The method proposed has been applied to the challenging problem

of cancer identification using the gene expression profiles. Kernel align-

ment k-NN outperforms other metric learning strategies and improves

the classical k-NN based on a single dissimilarity.

1 Introduction

DNA microarrays provide rich profiles that are used in cancer prediction con-
sidering the gene expression levels across a collection of related samples. This
technology has been applied to the identification of cancer samples with encou-
raging results [2].

The k Nearest Neighbor (k-NN) classifier has been widely applied to the iden-
tification of cancer samples using the gene expression profiles. However, k-NN
relies strongly on the distance considered to evaluate the object proximities.
The choice of a dissimilarity that reflects accurately the proximities among the
sample profiles is a difficult task and depends on the problem at hand [4]. More-
over, there is no optimal dissimilarity in the sense that each dissimilarity reflects
different features of the data and misclassifies frequently a different subset of
patterns [3]. Therefore, different dissimilarities should be integrated in order to
reduce the misclassification errors.

Several authors have proposed techniques to learn the metric from the data
[17,18]. Some of them, are based on linear transformations of the Euclidean
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metric [15,17] that fail often to reflect the proximities among the sample profiles.
Other approaches such as [18] are more general, but are prone to overfitting
when the sample size is small because they learn the metric without taking into
account the generalization ability of the classifier. Besides, they rely on complex
non-linear optimization algorithms.

Our approach integrates a set of heterogeneous dissimilarities that reflect diffe-
rent features of the data in order to reduce the classification errors. To this aim,
a linear combination of dissimilarities is learnt considering the relation between
kernels and distances. Each dissimilarity is embedded in a feature space using
the Empirical Kernel Map [13]. Next, learning the dissimilarity is equivalent to
optimize the weights of the linear combination of kernels. The combination of
kernels is learnt in the literature [1,5] maximizing the alignment between the
input kernel and an idealized kernel. However, this error function does not take
into account the generalization ability of the classifier and is prone to overfitting.

In this paper, we consider a regularized version of the kernel alignment pro-
posed by [1]. The linear combination of kernels is learnt in a HRKHS (Hyper
Reproducing Kernel Hilbert Space) following the approach of hyperkernels pro-
posed in [11]. This formalism exhibits a strong theoretical foundation, is less
sensitive to overfitting and allow us to work with infinite families of distances.

The algorithm has been applied to the identification of human cancer samples
using the gene expression profiles with remarkable results.

This paper is organized as follows: Section 2 introduces briefly the idea of
Kernel Alignment, section 3 presents the algorithms considered to learn a li-
near combination of dissimilarities. Section 4 illustrates the performance of the
algorithm in the challenging problem of gene expression data analysis. Finally,
Section 5 gets conclusions and outlines future research trends.

2 Kernel Target Alignment

Let X be a compact subset of R
d where d is the space dimensionality. The

function k : X × X → R is a kernel if it is symmetric and semi-definite positive
(see [14] for more details). Given two kernels k1 and k2 and a sample S, the
empirical alignment evaluates the similarity between the corresponding kernel
matrices. Mathematically it is defined as:

A(S,K1,K2) =
〈K1,K2〉F√〈K1,K1〉F 〈K2,K2〉F

, (1)

where K1 denotes the kernel matrix for the kernel k1, and 〈K1,K2〉F =∑
ij K

1
ijK

2
ij = Tr(K1K2) is the Frobenius product between matrices. If the ker-

nel matrices K1 and K2 are considered as bidimensional vectors, the alignment
evaluates the cosine of the angle and is a similarity measure.

For classification purposes we can define an ideal target matrix kernel as
K2 = yyT , where y is the vector of labels for the sample S. K2(xi, xj) = 1 if
y(xi) = y(xj) and −1 otherwise. Substituting K2 in equation (1) the empirical
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alignment between the matrix kernel K1 and the target labels for the sample S
can be written as:

A(S,K1, yy
T ) =

yTK1y

m‖K1‖F
, (2)

where m is the size of the training set S.
It has been shown in [1] that the empirical alignment is stable with respect

of different splits of the data and that larger values for the alignment increase
the separability among the classes.

3 Learning the Metric in a HRKHS Using Kernel
Alignment

In order to incorporate a linear combination of dissimilarities into k-NN, we
follow the approach of Hyperkernels developed by [11]. To this aim, each distance
is embedded in a RKHS via the Empirical Kernel Map (see [13,7] for details).
Next, a regularized version of the alignment is introduced that incorporates a L2-
penalty over the complexity of the family of distances considered. The solution
to this regularized quality functional is searched in a Hyper Reproducing Kernel
Hilbert Space. This allows to minimize the quality functional using a semidefinite
programming approach (SDP).

Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym} be a finite sample of trai-
ning patterns where yi ∈ {−1,+1}. Let K be a family of semidefinite positive
kernels. Our goal is to learn a kernel of dissimilarities [7] k ∈ K that repre-
sents the combination of dissimilarities and that minimizes the empirical quality
functional defined by:

Qalign
emp (K,X, Y ) = 1−A(K,X, Y ) = 1− yTKy

m‖K‖F
, (3)

where K is the matrix kernel of k. However, if the family of kernels K is complex
enough it is possible to find a kernel (k∗ = yT y) that achieves training error equal
to zero overfitting the data. To avoid this problem, we introduce a term that
penalizes the kernel complexity in a Hyper Reproducing Kernel Hilbert Space
(HRKHS) [11]. This HRKHS is generated by a hyperkernel defined as follows.
Let X be a non-empty set and X = X × X the compounded index set. Then
k : X × X → R is a hyperkernel if it is symmetric and positive semi-definite.

Thus, the quality functional optimized by the regularized kernel alignment
can be written as:

Qreg(k,X, Y ) = Qalign
emp (K,X, Y ) +

λQ

2
‖k‖2

H , (4)

where ‖ ‖H is the L2 norm defined in the Hyper Reproducing Kernel Hilbert
space generated by the hyperkernel k. As we will see next, the kernel k that
minimizes (4) belongs to this HRKHS and therefore can be written as a linear
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combination of hyperkernels. λQ is a regularization parameter that controls the
complexity of the resulting kernel. For a rigorous definition of the HRKHS the
reader is referred to [11].

The following theorem allows us to write the solution to the minimization of
this regularized quality functional as a linear combination of hyperkernels in a
HRKHS.

Theorem 1 (Representer theorem for Hyper-RKHS [11]). Let X, Y be
the combined training and test set, then each minimizer k ∈ H of the regularized
quality functional Qreg(k,X, Y ) admits a representation of the form:

k(x, x′) =
m∑

i,j=1

βijk((xi, xj), (x, x′)) (5)

for all x, x’ ∈ X, where βij ∈ R, for each 1 ≤ i, j ≤ m.

However, we are only interested in solutions that give rise to positive semidefinite
kernels. The following condition over the hyperkernels [11] allow us to guarantee
that the solution is a positive semidefinite kernel.

Property 1. Given a hyperkernel k with elements such that for any fixed x ∈ X ,
the function k(xp, xq) = k(x, (xp, xq)), with xp,xq ∈ X , is a positive semidefinite
kernel, and βij ≥ 0 for all i, j = 1, . . . ,m, then the kernel

k(xp, xq) =
m∑

i,j=1

βijk(xi, xj , xp, xq) (6)

is positive semidefinite.

Now, we address the problem of combining a finite set of dissimilarities. As we
mentioned earlier, each dissimilarity can be represented by a kernel using the
Empirical Kernel Map. Next, the hyperkernel is defined as:

k(x, x′) =
n∑

i=1

ciki(x)ki(x′) (7)

where each ki is a positive semidefinite kernel of dissimilarities, ci is a constant
≥ 0 and n is the number of dissimilarities.

Now, we show that k is a valid hyperkernel: First, k is a kernel because it can
be written as a dot product 〈Φ(x), Φ(x′)〉 where

Φ(x) = (
√
c1 k1(x),

√
c2 k2(x), . . . ,

√
cn kn(x)) (8)

Next, the resulting kernel (6) is positive semidefinite because for all
x, k(x, (xp, xq)) is a positive semidefinite kernel and βij can be constrained to be
≥ 0. Besides, the linear combination of kernels is a kernel and therefore is posi-
tive semidefinite. Notice that k(x, (xp, xq)) is positive semidefinite if ci ≥ 0 and
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ki are pointwise positive for training data. Both Laplacian and multiquadratic
kernels verify this condition.

Finally, we show that the resulting kernel is a linear combination of the original
ki. Substituting the expression of the hyperkernel (7) in equation (6), the kernel
is written as:

k(xp, xq) =
m∑

i,j=1

βij

n∑
l=1

clkl(xi, xj)kl(xp, xq) (9)

Now the kernel can be expressed as a linear combination of base kernels.

k(xp, xq) =
n∑

l=1

⎡⎣cl m∑
i,j=1

βijkl(xi, xj)

⎤⎦ kl(xp, xq) (10)

Therefore, the above kernel introduces into the k-NN a linear combination of base
dissimilarities represented by kl with coefficients γl = cl

∑m
i,j=1 βijkl(xi, xj).

The previous approach can be extended to an infinite family of distances. In
this case, the space that generates the kernel is infinite dimensional. Therefore,
in order to work in this space, it is necessary to define a hyperkernel and to
optimize it using a HRKHS. Let k be a kernel of dissimilarities. The hyperkernel
is defined as follows [11]:

k(x, x′) =
∞∑

i=0

ci(k(x)k(x′))i (11)

where ci ≥ 0 and i = 0, . . . ,∞. In this case, the non-linear transformation to
feature space is infinite dimensional. Particularly, we are considering all powers
of the original kernels which is equivalent to transform non-linearly the original
dissimilarities.

Φ(x) = (
√
c1 k(x),

√
c2 k

2(x), . . . ,
√
cn k

n(x)) (12)

where n is the dimensionality of the space which is infinite in this case.
As for the finite family, it can be easily shown that k is a valid hyperkernel

provided that the kernels considered are pointwise positive. The inverse multi-
quadratic and Laplacian kernels satisfy this condition. The following proposition
allows us to derive the hyperkernel expression for any base kernel.

Proposition 1 (Harmonic Hyperkernel). Suppose k is a kernel with range
[0, 1] and ci = (1− λh)λi

h, i ∈ N, 0 < λh < 1. Then, computing the infinite sum
in equation (11), we have the following expression for the harmonic hyperkernel:

k(x, x′) = (1− λh)
∞∑

i=0

(λhk(x)k(x′))i =
1− λh

1− λhk(x)k(x′)
, (13)

λh is a regularization term that controls the complexity of the resulting kernel.
Particularly, larger values for λh give more weight to strongly non-linear kernels
while smaller values give coverage for wider kernels.
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3.1 Kernel Alignment k-NN in a HRKHS

We start with some notation that is used in the kernel alignment algorithm.
For p,q,r ∈ R

n, n ∈ N let r = p ◦ q be defined as element by element mul-
tiplication, ri = pi × qi. Define the hyperkernel Gram matrix K by Kijpq =
k((xi, xj), (xp, xq)), the kernel matrix K = reshape(Kβ)(reshaping an m2 by 1
vector, Kβ, to an m×m matrix), where β are the linear coefficients in equation
(5) that allow us to compute the kernel as a linear combination of hyperkernels.
Finally, 1 a vector of ones.

The optimization of the regularized quality functional (3) for the kernel align-
ment in a HRKHS can be written as:

max
k∈H

tr(KyyT ) +
λQ

2
‖k‖2

H (14)

subject to ‖K‖2
F = C (15)

(16)

where λQ is a parameter that penalizes the complexity of the family of kernels
considered, ‖K‖2

F = tr(KKT ) =
∑

ij(Kij)2 is the Frobenius norm of the kernel
and C is a constant such that the denominator in equation (2) is restricted to
be constant while the numerator is maximized.

The minimization of the previous equation leads to the following SDP opti-
mization problem [6].

min
β

1
2
t1 +

λQ

2
t2 (17)

subject to β ≥ 0 (18)

‖K 1
2 β‖ ≤ t2, 1Tβ = 1 (19)[

K y
yT t1

]
� 0 (20)

Once the kernel is learnt, the first k nearest neighbors are identified considering
that the Euclidean distance in feature space can be written exclusively in terms
of kernel evaluations:

d2
e(xi, xj) = k(xi, xi) + k(xj , xj)− 2k(xi, xj) (21)

where k is the kernel of dissimilarities learnt by the regularized kernel alignment
algorithm introduced previously.

The computational complexity of the algorithm is high because we have to
estimate m2 coefficients βij . However, it can be significantly reduced if the Hy-
perkernel {k((xi, xj), .)|1 ≤ i, j ≤ m2} is approximated by a small fraction of
terms, p � m2 for a given error using the incomplete Cholesky factorization
method.
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4 Experimental Results

The algorithms proposed have been applied to the identification of several cancer
human samples using microarray gene expression data.

We have chosen problems with a broad range of signal to noise ratio, different
number of samples and varying priors for the larger category. All the datasets
are available from the Broad Institute of MIT and Harvard. Next we detail the
features and preprocessing applied to each dataset.

The first dataset consists of frozen tumors specimens from newly diagnosed,
previously untreated MLBCL patients (34 samples) and DLBCL patients (176
samples). They were hybridized to Affymetrix hgu133b gene chip containing
probes for 44000 genes [9]. The raw intensities have been normalized using the
rma algorithm [3]. The second problem we address concerns the clinically impor-
tant issue of metastatic spread of the tumor. The determination of the extent of
lymph node involvement in primary breast cancer is the single most important
risk factor in disease outcome and here the analysis compares primary cancers
that have not spread beyond the breast to ones that have metastasized to axillary
lymph nodes at the time of diagnosis. We identified tumors as ’reported negative’
(24) when no positive lymph nodes were discovered and ’reported positive’ (25)
for tumors with at least three identifiably positive nodes [16]. All assays used
the human HuGeneFL Genechip microarray containing probes for 7129 genes.
The third dataset [8] addresses the clinical challenge concerning medulloblas-
toma due to the variable response of patients to therapy. Whereas some patients
are cured by chemotherapy and radiation, others have progressive disease. The
dataset consists of 60 samples containing 39 medulloblastoma survivors and 21
treatment failures. Samples were hybridized to Affymetrix HuGeneFL arrays
containing 5920 known genes and 897 expressed sequence tags.

All the datasets have been standardised subtracting the median and dividing
by the Inter-quantile range. The rescaling were performed based only on the
training set to avoid bias.

In order to assure a honest evaluation of all the classifiers we have performed
a double loop of crossvalidation [12]. The outer loop is based on stratified ten
fold cross-validation that iteratively splits the data in ten sets, one for testing
and the others for training. The inner loop perform stratified nine fold cross-
validation over the training set and is used to estimate the optimal parameters
avoiding overfitting. The stratified variant of cross-validation keeps the same
proportion of patterns for each class in training and test sets. This is necessary
in our problem because the class proportions are not equal. Finally, in order
to evaluate the accuracy of the classifiers the misclassification rate is reported.
This metric computes the proportion of samples misclassified, it is easy to inter-
pret and allow us to compare with the results obtained by previously published
studies.

Regarding the value of the parameters, ci = 1/n for the finite family of dis-
tances where n is the number of dissimilarities which is fixed to 6 in this paper.
The regularization parameter λQ = 1 which gives good experimental results for
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all the problems considered. Finally, for the infinite family of dissimilarities, the
regularization parameter λh in the Harmonic hyperkernel (13) has been set up
to 0.6 which gives an adequate coverage of various kernel widths. Smaller values
emphasize only wide kernels. All the base kernel of dissimilarities have been
normalized so that all ones have the same scale. Three different kernels have
been considered, linear, inverse multiquadratic and Laplacian.

The number of genes has been reduced using an standard f -statistics [3]. The
optimal values for the kernel parameters, the number of genes and the nearest
neighbors considered have been set up by crossvalidation and using a grid search
strategy.

We have compared with the Lanckriet formalism [6] that allow us to incor-
porate a linear combination of dissimilarities into the SVM considering the con-
nection between kernels and dissimilarities, the Large Margin Nearest Neighbor
algorithm [15] that learns a Mahalanobis metric maximizing the k-NN margin
in input space and the classical k-NN with the best dissimilarity for a subset of
six measures widely used in the Microarray literature.

Table 1. Empirical results for the k-NN classifier considering different distances. The

ν-SVM based on coordinates and the best dissimilarity have also been considered.

Technique DLBCL-MLBCL Breast LN Medulloblastoma

ν-SVM (Coordinates) 16% 8.16% 16.6%
ν-SVM (Best Distance) 11% 8.16% 13.3%

k-NN Euclidean 10% 10% 10%

k-NN Cosine 15.1% 6% 10%

k-NN Manhattan 10% 12% 16.6%
k-NN Correlation 23% 18% 15%

k-NN χ2 16% 6% 10%

k-NN Spearman 31% 28% 23.3%

From the analysis of tables 1 and 2, the following conclusions can be drawn:

– Kernel alignment k-NN outperforms two widely used strategies to learn the
metric such as Large Margin NN and Lanckriet SVM. The first one is prone
to overfitting and does not help to reduce the error of k-NN based on the
best dissimilarity. Similarly, our method improves the Lanckriet formalism
particularly for Breast LN problem in which the sample size is smaller.
Kernel alignment k-NN is quite insensitive to the kind of non-linear kernel
employed.

– Kernel alignment k-NN considering an infinite family of distances outper-
forms k-NN with the best distance and the ν-SVM, particularly for breast
cancer and Leukemia DLBCL-MLBCL. The infinite family of dissimilarities
helps to reduce the errors of the finite counterpart particularly for breast
cancer. This suggests that for certain complex non-linear problems, the
non-linear transformation of the original dissimilarities helps to improve the
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Table 2. Empirical results for the kernel alignment k-NN based on a combination of di-

ssimilarities. For comparison we have included two learning metric strategies proposed

in the literature.

Technique DLBCL-MLBCL Breast LN Medulloblastoma

Kernel align. k-NN

(Finite family, linear kernel)

10% 6% 11.66%

Kernel align. k-NN

(Infinite family, linear kernel)

10% 4% 10%

Kernel align. k-NN

(Finite family, inverse kernel)

10% 8% 10%

Kernel align. k-NN

(Infinite family, inverse kernel)

9% 4% 10%

Kernel align. k-NN

(Finite family, laplacian kernel)

9% 6% 8.33%

Kernel align. k-NN

(Infinite family, laplacian kernel)

9% 4% 10%

Lanckriet SVM 11% 8.16% 11.66%
Large Margin NN 17% 8.50% 13.3%

classifier accuracy. We report, that only for the Medulloblastoma and with
Laplacian base kernel the error is slightly larger for the infinite family. This
suggests that the regularization term controls appropriately the complexity
of the resulting dissimilarity.

– Table 1 shows that the best distance depends on the dataset considered and
that the performance of k-NN depends strongly on the particular measure
employed to evaluate the sample proximities. Finally, an interesting result is
that k-NN outperforms the ν-SVM algorithm for all the datasets.

5 Conclusions

In this paper, we propose two methods to incorporate in the k-NN algorithm
a linear combination of non-Euclidean dissimilarities. The family of distances is
learnt in a HRKHS (Hyper Reproducing Kernel Hilbert Space) using a Semi-
definite Programming approach. A penalty term has been added to avoid the
overfitting of the data. The algorithm has been applied to the classification of
complex cancer human samples.

The experimental results suggest that the combination of dissimilarities in
a Hyper Reproducing Kernel Hilbert Space improves the accuracy of classifiers
based on a single distance particularly for non-linear problems. Besides, this ap-
proach outperforms other learning metric strategies widely used in the literature
and is robust to overfitting.

Future research trends will apply this formalism to integrate heterogeneous
data sources.
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Abstract. Data with multiple representations (views) arise naturally in

many applications and multi-view algorithms can substantially improve

the classification and clustering results. In this work, we study the prob-

lem of multi-view clustering and propose a multi-view convex mixture

model that locates exemplars (cluster representatives) in the dataset by

simultaneously considering all views. Convex mixture models are simpli-

fied mixture models that exhibit several attractive characteristics. The

proposed algorithm extends the single view convex mixture models so as

to handle data with any number of representations, taking into account

the diversity of the views while preserving their good properties. Empir-

ical evaluations on synthetic and real data demonstrate the effectiveness

and potential of our method.

Keywords: clustering, mixture models, multi-view learning.

1 Introduction

The most common approach for the machine learning setting, is to assume that
data are represented in a single vector or graph space. However, in many real-
life problems multi-view data arise naturally. Multi-view data are instances that
have multiple representations (views) from different feature spaces. Usually these
multiple views are from different vector spaces or different graph spaces or a
combination of vector and graph spaces. The most typical example are web
pages. Web pages can be represented with a term vector for the words in the
web page text, another term vector for the words in the anchor text and a
hyper-link graph.

The natural and frequent occurrence of multi-view data has raised interest in
the so called multi-view learning. The main challenge of multi-view learning is to
develop algorithms that use multiple views simultaneously, given the diversity of
the views. Most studies on this topic address the semi-supervised classification
problem and multi-view classification algorithms have often proven to utilize
unlabeled data effectively and improve classification accuracy (e.g. [1,2,3]).

This work focuses on multi-view unsupervised learning and particularly in
multi-view clustering. Multi-view clustering explores and exploits multiple rep-
resentations simultaneously in order to produce a more accurate and robust

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 205–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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partitioning of the data than single view clustering. The available literature for
this topic (e.g. [4,5,6,7]) is still limited, with encouraging results though. Borrow-
ing the terminology of [7], there exist two approaches in multi-view clustering:
centralized and distributed. Centralized algorithms simultaneously use all avail-
able views to cluster the dataset, while distributed algorithms first cluster each
view independently from the others, using an appropriate single view algorithm,
and then combine the individual clusterings to produce a final partitioning.

Most studies in multi-view clustering follow the centralized approach and
extend well-known clustering algorithms to the multi-view setting. Bickel and
Scheffer [4] developed a two-view EM and a two-view k -means algorithm under
the assumption that the views are independent. They also studied the problem of
mixture model estimation with more than two views and showed that co-EM [8]
is a special case of their formulation [9]. De Sa [5] proposed a two-view spectral
clustering algorithm that creates a bipartite graph of the views and is based on
the “minimizing-disagreement” idea. This method also assumes that the views
are independent. An algorithm that generalizes the single view normalized cut to
the multi-view case and can be applied to more than two views was introduced
by Zhou and Burges [6]. Following the distributed approach, Long et al. [7]
proposed a general model for multi-view unsupervised learning which handles
more than two views and representations from both vector and graph spaces.

In this paper we follow the centralized approach and present a multi-view clus-
tering algorithm based on the convex mixture model of Lashkari and Golland [10].
Convex mixture models are a special case of mixture models that identify exem-
plars in the dataset by optimizing a convex criterion and have shown promising
results in [10]. One of many attractive features is their applicability when only
the dataset pairwise distance matrix is available and not the data points. The
proposed multi-view convex mixture model finds exemplars based on all views
and handles any number of views. The experiments with our algorithm demon-
strate a considerable improvement on the clustering results compared to i) single
view convex mixture models applied on the individual views and ii) single view
convex mixture models that use the concatenation of the views.

The rest of this paper is organized as follows. Section 2 reviews the single view
convex mixture model, while the proposed multi-view algorithm is presented in
section 3. The experimental evaluation on artificial data and linked documents
is discussed in section 4 and section 5 concludes this work.

2 Convex Mixture Models

Exemplar-based mixture models [10], also called convex mixture models (CMM ),
result in soft assignments of data points to clusters and in the extraction of repre-
sentative exemplars from the dataset. They are simplified mixture models whose
components equal in number the dataset size, the components’ distributions are
centered at the dataset points, thus representing all data points as cluster center
candidates (candidate exemplars), and the only adjustable parameters are the
components’ priors.
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Given a dataset X = {x1,x2, . . . ,xN} , xi ∈ �d the convex mixture model
distribution is Q(x) =

∑N
j=1 qjfj(x), x ∈ �d, where qj denotes the prior prob-

ability of the j-th component, satisfying the constraint
∑N

j=1 qj = 1, and fj(x)
is an exponential family distribution on random variable X with its expecta-
tion parameter equal to the j-th data point. Taking into account the bijection
between regular exponential families and Bregman divergences [11], we write
fj(x) = C(x) exp(−βdϕ(x,xj)) with dϕ denoting the Bregman divergence cor-
responding to the components’ distributions.

A clustering is produced by maximizing the log-likelihood L
(
{qj}N

j=1 ;X
)
,

shown in (1), over {qj}N
j=1 s.t.

∑N
j=1 qj = 1. The constant β controlls the sharp-

ness of the components and also the number of clusters identified by the convex
mixture model when the soft assignments are turned into hard ones. Higher β
values result in more clusters in the final solution.

L
(
{qj}N

j=1 ;X
)

=
1
N

N∑
i=1

log

⎡⎣ N∑
j=1

qjfj(xi)

⎤⎦ =
1
N

N∑
i=1

log

⎡⎣ N∑
j=1

qje
−βdϕ(xi,xj)

⎤⎦
+ const. (1)

The log-likelihood function (1) can be expressed in terms of the Kullback-
Leibler (KL) divergence if we define P̂ (x) = 1/N,x ∈ X to be the empirical
distribution of the dataset and by noting that

D(P̂‖Q) = −
∑
x∈X

P̂ (x) logQ(x)−H(P̂ ) = −L
(
{qj}N

j=1 ;X
)

+ const. , (2)

where H(P̂ ) is the entropy of the empirical distribution that does not depend
on the parameters of the convex mixture model. Now the maximization of (1)
is equivalent to the minimization of (2). This minimization problem is convex
and can be solved with an efficient-iterative algorithm. As proved in [12], the
updates on the components’ prior probabilities are given by

q
(t+1)
j = q

(t)
j

∑
x∈X

P̂ (x)fj(x)∑N
j′=1 q

(t)
j′ fj′(x)

(3)

and the algorithm is guaranteed to converge to the global minimum as long as
q
(0)
j > 0, ∀j. The prior probability qj associated with data point xj is a measure

of how likely this point is to be an exemplar and will be of great importance
when we present our multi-view algorithm in section 3.

Clustering with a convex mixture model requires to select a value for the
parameter β (0 < β < ∞). It is possible to identify a reasonable range of β
values by determining a reference value β0. In [10], the following empirical value
(4) has been proposed, achieving good results in their experiments.

β0 = N2 logN/
∑
i,j

dϕ(xi,xj) (4)
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Convex mixture models showed their potential when a Gaussian convex mix-
ture model, i.e. with Euclidean distance as the Bregman divergence, outper-
formed a fully parametrized Gaussian mixture model in [10]. This proved that
the smaller flexibility of convex mixture models, as {qj}N

j=1 are the only param-
eters, is well compensated by their ability to avoid the initialization problem
and always locate the global optimum. Another important feature is that only
the pairwise data distances take part in the calculation of the priors, thus the
values of the data points are not required. As stated in [10], the method can be
extended to any proximity data as long as the distance matrix D is available,
by simply replacing dϕ(xi,xj) with Dij in (1) and the convexity is not affected.

3 Multi-view Convex Mixture Models

Motivated by the potential and the advantages of the convex mixture models of
section 2, in this work we extend them to data with multiple representations.
Following the centralized approach, exemplars are identified by defining for each
view a convex mixture model distribution, with common priors qj across all
views, as well as the corresponding empirical distribution and minimizing the
KL divergence between those two distributions summed over all views.

3.1 Model Description

Suppose we are given a dataset with N instances, X = {x1,x2, . . . ,xN}, and
for each instance V views are available. Let us define X =

{X 1,X 2, . . . ,X V
}
,

such that X v contains the representations of the instances in the v-th view, i.e.
X v = {xv

1 ,x
v
2 , . . . ,x

v
N}, xv

i ∈ �dv

. Also, assuming that no prior information
for the data is available in any view, define for each view a uniform empirical
dataset distribution (5), as in [10], and also a convex mixture model distribution
(6). Note that all distributions {Qv(x)}V

v=1 share the same prior probabilities
{qj}N

j=1, but have different component distributions fv
j (x).

P̂ v(x) =
{ 1

N , x ∈ X v

0, otherwise (5)

Qv(x) =
N∑

j=1

qjf
v
j (x) = Cv(x)

N∑
j=1

qje
−βvdv

ϕ(x,xv
j ) , x ∈ �dv

(6)

Our aim is to locate high quality exemplars (cluster centroids) in the dataset,
by considering all views simultaneously, around which the remaining instances
will cluster. To achieve this, the proposed multi-view convex mixture model min-
imizes the sum of the KL divergences between the empirical distribution and the
convex mixture distribution of each view, given by the following equation:

min
q1,...,qN

s.t.
∑N

j=1
qj=1

{
V∑

v=1

D(P̂ v‖Qv) = −
V∑

v=1

∑
x∈X v

P̂ v(x) logQv(x)−
V∑

v=1

H(P̂ v)

}
, (7)
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where H(P̂ v) is the entropy of the empirical distribution of the v-th view that
does not depend on the parameters of the multi-view convex mixture model.

It is well known that the sum of convex functions is also a convex function.
Therefore, the above optimization problem, which is a generalization of the single
view case, is also convex, since its objective function is the sum of the single view
objectives which are convex functions. To solve (7) the same efficient-iterative
algorithm as in (2) can be used. It can be shown that the updates on the com-
ponents’ prior probabilities are given by

q
(t+1)
j =

q
(t)
j

V

V∑
v=1

∑
x∈X v

P̂ v(x)fv
j (x)∑N

j′=1 q
(t)
j′ f

v
j′(x)

(8)

and the algorithm is guaranteed to converge to the global minimum as long as
q
(0)
j > 0, ∀j. The prior qj associated with instance xj is again a measure of how

likely this instance is to be an exemplar and takes into account all views.
In the derivation of the above multi-view convex mixture model the following

facts were considered. Different views can have very different statistical proper-
ties, therefore we allow the convex mixture model distribution (6) of each view
to have its own β value and Bregman divergence, i.e. different component distri-
butions. For example, for one view we can use a Gaussian CMM and for another
a Bernoulli CMM. An important property of the single view convex mixture
model is convexity and we wish to preserve this property in the multi-view set-
ting. As a result, summing the single view objectives to construct the multi-view
objective is a natural choice. Finally, since our target is to extract representative
exemplars from the dataset based on all views, we require all convex mixture
model distributions to have common priors qj . Intuitively, this means that an
instance whose corresponding prior probability has a high value, is more or less
a good exemplar in all views.

3.2 Algorithm Implementation

We follow the same steps as in [10] to implement the algorithm that optimizes
(7). Letting sv

ij = exp(−βvdv
ϕ(xv

i ,x
v
j )) and using an auxiliary matrix Z and an

auxiliary vector n we update the prior probabilities qj as follows:

Z
(t)
iv =

N∑
j=1

sv
ijq

(t)
j , n

(t)
j =

1
V

V∑
v=1

N∑
i=1

P̂ v(xv
i )sv

ij

Z
(t)
iv

, q
(t+1)
j = n

(t)
j q

(t)
j , (9)

where q
(0)
j > 0 for all instances we want to consider as possible exemplars.

Obviously, our formulation requires only the pairwise distances in each view and
not the instances themselves in order to calculate the priors. Thus it can be
extended to use proximity values, analogously to the single view case.

Suppose we wish to partition a multi-view dataset into M disjoint clusters
C1, C2, . . . , CM using the multi-view convex mixture model. To identify M ex-
emplars (cluster centroids), the instances with the M highest qj values are de-
termined. Specifically, we run the algorithm until the M highest qj values corre-
spond to the same instances for a number of consecutive iterations. Moreover, we
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require that the order among the M highest qj values remains the same during
these iterations. This convergence criterion differs from that in [10]. After finding
the M exemplars, we assign each of the remaining N −M instances to cluster
Ck, associated with the k-th exemplar, that has the largest posterior probability
over all views, according to (10). Note that we refer to the exemplar instances
as XE =

{
xE

1 ,x
E
2 , . . . ,x

E
M

} ⊂ X and their prior probabilities and component
distributions in the v-th view as qE

k and fvE
k (x), k = 1, . . . ,M respectively.

Ck =
{
xE

k

} ∪{xi

∣∣∣∣∣
V∑

v=1

qE
k f

vE
k (xv

i )∑N
j=1 qjfv

j (xv
i )

>

V∑
v=1

qE
l f

vE
l (xv

i )∑N
j=1 qjfv

j (xv
i )
, ∀l �= k,xi /∈ XE

}
(10)

A final issue on the implementation of the multi-view convex mixture model
is the choice of appropriate values for the βv parameters. Since a separate single
view convex mixture model is defined for each view, we can identify a reasonable
range of βv values in the same way as in the single view case. Following the ideas
of the single view setting the following empirical βv

0 value is derived:

βv
0 = N2 logN/

∑
i,j

dv
ϕ(xv

i ,x
v
j ) . (11)

As for the complexity of the algorithm, calculation of the auxiliary quantities
and the update of the priors costs O(N2V ) scalar operations per iteration. If the
distance matrices of the views are not given, computing the sv

ij quantities usually
costs O(N2V d), d = max

{
d1, d2 . . . , dV

}
. Assuming τ iterations are required

until convergence, the overall cost becomes O(N2V (τ + d)) scalar operations.

4 Experimental Evaluation

We aim to examine whether simultaneously considering all views helps to im-
prove the clustering results obtained from the individual views, i.e. compare
single view clustering to multi-view clustering. Since a very common approach
to cluster multiple represented data is to concatenate all the views and then
apply a single view algorithm on the concatenated view, we wish to investigate
whether a multi-view algorithm provides any gains compared to a single view al-
gorithm applied on the concatenated view. To answer these questions, we study
the performance of the single view and multi-view convex mixture model on
multi-view artificial data and two collections of linked documents, where multi-
ple representations for the data occur naturally.

In all experiments we use Gaussian convex mixture models (Gaussian CMM),
i.e. dv

ϕ(xv
i ,x

v
j ) = ‖xv

i −xv
j‖2, ∀v and a uniform empirical dataset distribution (5).

We report clustering results i) separately for each view, ii) for the concatenated
view and iii) for the multiple views. To assess the clustering quality we use the
average entropy metric, as in [4,5,9], which measures the impurity of the returned
clusters. Average entropy is given by (12), where N is the dataset size, M the
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Fig. 1. Examples of the artificial dataset: (a) the original dataset generated from three

Gaussian distributions belonging to three classes; (b) one of the five views for ω = 50

and zero translation; (c) clustering into three clusters with the three-view dataset

(ω = 50, βv = βv
0 ) using a Gaussian multi-view CMM. Only 25 instances are misplaced.

number of clusters, c the number of classes, nj
i the number of points in cluster

i from class j and ni the size of the i-th cluster. Lower average entropy values
indicate that each cluster consists of instances belonging to the same class.

H =
M∑
i=1

ni

N

⎛⎝− c∑
j=1

nj
i

ni
log

nj
i

ni

⎞⎠ (12)

4.1 Artificial Dataset

As a first step towards evaluating the performance of the multi-view convex
mixture model, we generated a synthetic dataset, illustrated in Fig. 1(a) and
consisting of 700 instances, from three two-dimensional Gaussian distributions.
Each distribution represents a different class. Views were constructed with the
following mechanism: for each view, we equally translated all instances of the
original dataset and randomly selected ω of them to be moved to a different
class. For example, assume that instance xi had been selected, shown in circle in
Fig. 1(a), that was generated by the first distribution (first class). We randomly
picked one of the other two classes and generated a new point from the corre-
sponding Gaussian distribution. This point, shown in circle in Fig. 1(b), is the
representation of instance xi in the view. Hence, an instance of the first class is
now wrongly represented as an instance belonging to another class.

The above view generation mechanism will help us discover if simultaneously
considering multiple views can correct some of the errors of the individual views
and approach the optimum of H = 0 achieved by a convex mixture model on the
well separated original dataset, since a convex mixture model on a single view
will most probably misclassify all ω instances. For the experiments ω = 50 and
five views were generated, one of which is illustrated in Fig. 1(b). Five multi-view
datasets were created, containing 1, . . . , 5 of the five views respectively. Results
for these datasets are reported in Fig. 2(a) for three clusters and βv = βv

0 , ∀v.
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Fig. 2. Artificial dataset results with Gaussian CMMs in terms of entropy for different

number of views and three clusters

The multi-view convex mixture model constantly achieves the lowest entropy
and it always outperforms the model that uses the concatenated view. Four of
the five individual views have an entropy around 0.3 while one has H = 0.57.
This view is included in the three-view dataset and explains the peak in the
graph for the single views average. The corresponding clustering is illustrated
in Fig. 1(c). At the same time our method achieves H = 0.08 with five views,
confirming that it can considerably boost the clustering performance. Finally,
the multi-view convex mixture model takes advantage of every available view as
the entropy constantly falls as the number of views increases.

We also executed the same experiments as above, but with views for which
ω = 200. Fig. 2(b) depicts the results for this case. The multi-view convex
mixture model is again the best algorithm and for five views it achievesH = 0.41,
which is almost half the entropy of the individual views average and 33% less
than the entropy of the concatenated view.

4.2 Document Archives

We selected two archives of linked documents. The WebKB dataset is a collection
of academic web pages from computer science departments of various universi-
ties, while the Citeseer dataset is a collection of scientific publications. Both are
very popular datasets for evaluating multi-view clustering algorithms [4,5,9] and
multi-view classifiers [1,2]. We used the Bickel and Scheffer [9] version in which
both collections have six classes and two or three views respectively. The first
view of web pages is their text and the second the anchor text of the inbound
links. Publications are represented in terms of a text view, consisting of the title
and abstract of each paper, and two link views, made up of the inbound and
outbound references. For some of the web pages no inbound links with anchor
text exist, while some papers do not have inbound or outbound references. Such
instances were removed, resulting in 2076 web pages and 742 papers.

For each view we generated tfidf vectors and normalized them to unit length
(normalized tfidf), so that square Euclidean distances reflect the commonly used
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Table 1. WebKB results with Gaussian CMMs in terms of entropy and six clusters

Method-View
WebKB Entropy

βv = βv
0 βv = αβv

0

Single view CMM-text 1.54 1.49 (α = 1.5)

Single view CMM-anchor text 1.55 1.44 (α = 3.5)

Single view CMM-concat. text & anchor text 1.56 1.48 (α = 1.7)

Multi-view CMM-text & anchor text 1.5 1.4 (α = 1.5)

Table 2. Citeseer results with Gaussian CMMs in terms of entropy and six clusters

Method-View
Citeseer Entropy

βv = βv
0 βv = αβv

0

Single view CMM-text 1.61 1.56 (α = 0.5)

Single view CMM-inbound references 1.65 1.65 (α = 1)

Single view CMM-outbound references 1.57 1.56 (α = 1.5)

Single view CMM-concat. text & two link views 1.6 1.54 (α = 1.5)

Multi-view CMM-text & two link views 1.5 1.5 (α = 1)

cosine similarity. Both datasets were partitioned into six clusters. Tables 1 and 2
report results for the WebKB and Citeseer collections respectively, where the
multi-view convex mixture model is compared to its single view counterpart.

In a first series of experiments we set βv = βv
0 , ∀v. As can be seen, the multi-

view algorithm improves the clustering of the individual and concatenated views,
making once again apparent the potential of our method and the advantages of
using simultaneously multiple views. Remarkably, for both datasets the concate-
nated view’s performance is even worse than that of some of the single views.
This result explains the need to develop multi-view algorithms and not resort to
tricks that allow single view algorithms to handle multiple represented data.

We also investigated the impact of the βv parameter by searching around the
range of values defined by βv

0 and selecting the fraction α of βv
0 that yields the

smallest entropy (shown in parentheses in Tables 1, 2). A decrease in entropy
for the two collections can be observed and again the multi-view convex mixture
model is the best performer. Note that setting βv = βv

0 is the best choice for
the inbound references view and the multi-view setting (α = 1) of the Citeseer
dataset, indicating that βv

0 provides a good range of values for the βv parameter.

5 Conclusions and Future Work

We have proposed the multi-view convex mixture model, a method that extends
convex mixture models [10] to the multi-view case and identifies exemplars in the
dataset by simultaneously considering all available views. The main advantages
of our method are the convexity of the optimized objective, the ability to handle



214 G. Tzortzis and A. Likas

views with different statistical properties and its applicability when only pairwise
distances are available and not the data points. Our empirical evaluation with
multi-view artificial data and two popular document collections, showed that the
presented algorithm can considerably improve the results of a single view convex
mixture model based either on the individual views or the concatenated view.

As for future work, we plan to compare our algorithm to other multi-view
methods and experiment using additional datasets so as to thoroughly inves-
tigate the potential of the multi-view convex mixture model. We also aim to
use multi-view convex mixture models in conjunction with other clustering algo-
rithms which will treat the exemplars as a good initialization. Finally, another
interesting research direction is the assignment of different weights to different
views and the ability to learn those weights automatically under our framework.

Acknowledgments. We would like to thank Steffen Bickel and Tobias Scheffer
for kindly providing their processed datasets.
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Abstract. Given any modeling problem, variable selection is a prepro-

cess step that selects the most relevant variables with respect to the

output variable. Forward selection is the most straightforward strategy

for variable selection; its application using the mutual information is

simple, intuitive and effective, and is commonly used in the machine

learning literature. However the problem of when to stop the forward

process doesn’t have a direct satisfactory solution due to the inaccura-

cies of the Mutual Information estimation, specially as the number of

variables considered increases. This work proposes a modified stopping

criterion for this variable selection methodology that uses the Markov

blanket concept. As it will be shown, this approach can increase the per-

formance and applicability of the stopping criterion of a forward selection

process using mutual information.

Keywords: Variable Selection, Mutual Information, Function

Approximation.

1 Introduction

Selecting the most relevant features in a problem before building up a learning
machine is a key preprocess step. The identification of redundant and irrelevant
variables provide better generalization capabilities, a better interpretability of
the constructed model and diminishes the computational cost of the learning
process. Given a modeling case in which a set of input/output data D is given
with input variables X = {x1, x2, . . . , xn} and output variable Y = y, the ob-
jective of a variable selection process is to select the variables xi that are most
relevant to predict the value of Y . This problem is very complex, specially in
function approximation problems in which the variables involved are continuous.
Among the different strategies of variable selection applied to function approxi-
mation problems, forward selection using the Mutual Information (MI) criterion
is a commonly used approach [1] [2].

Forward selection is a straightforward variable selection strategy, and is based
on the following: starting with an empty subset of variables XG = {}, the
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variable that added to the current XG provides the largest amount of mutual
information with respect to the output variable Y will be added to it. It is an
iterative process that is repeated until the mutual information of the current
subset XG with respect to Y , i.e. I(XG, Y ), stops increasing. Other variable se-
lection strategies include backward selection, forward-backward selection, subset
selection and block-addition and block-deletion selection; however those strate-
gies are normally more complex, and they haven’t showed to obtain better results
comparing to forward selection.

The Mutual Information criterion is traditionally a well known and used cri-
terion that has a strong theoretical background based on Shannon’s Information
Theory. A new estimator for continuous variables based on the k-nearest neigh-
bors [3] has shown to provide more robust results in comparison with other
histogram or kernel-based MI estimators, and has received increasing attention
in the recent literature. The problem with this estimator (and in general of any
other estimator or criterion) is that it suffers from the curse of dimensional-
ity, i.e. the problem caused by the exponential increase in volume associated
with adding extra dimensions to a (mathematical) space [4]. Laterally, although
in theory the MI should not decrease when additional variables are taken into
account, in practice this happens for this estimator under some conditions in
a forward selection process, showing a decrease trend of the MI estimation as
the number of variables considered increases [1]. As this last work showed, the
immediate stopping criterion of forward selection isn’t robust as it might stop
too early due to those effects. This work presents a modified stopping criterion
for the forward selection strategy using Mutual Information, which is based on
a heuristic derived from the Markov blanket concept [5][6]. In the simulations
section it will be shown that this novel stopping criterion can improve the per-
formance of the traditional forward selection strategy.

The rest of the paper is organized as follows. Section 2 reviews the concepts
of mutual information, forward selection and Markov blanket. Section 3 presents
the proposed forward selection with modified stopping criterion. Section 4 re-
views the Least Squares Support Vector Machine paradigm using efficient learn-
ing. Section 5 presents comparative results on three well known data sets. The
main conclusions of the work are drawn in section 6.

2 Background

2.1 Mutual Information

Shannon’s mutual information (also called cross-entropy) between X and Y can
be defined as the amount of information that the group of variables X provide
about Y , and can be expressed as

I(X,Y ) = H(Y )−H(Y |X), (1)

where H(Y ) is the entropy (measure of uncertainty) of the variable Y , and
H(Y |X) is the conditional entropy of Y given X . The mutual information
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I(X,Y ) thus represents the decrease of uncertainty on Y once we know X .
Due to the mutual information and entropy properties, the mutual information
can also be defined as

I(X,Y ) = H(X) +H(Y )−H(X,Y ), (2)

from which we can easily see that I(X,Y ) = I(Y,X). To estimate the mutual
information, only the estimate of the joint probability density function (PDF)
between X and Y is needed [2]. For continuous variables, this estimation is very
complex. This work will use a mutual information estimator based on the k-
nearest neighbors technique [3]. The curse of dimensionality and the consequent
possible systematic decrease of the MI with increasing size of the groups of
variables involved [1] are the problems that this estimator presents.

Therefore no matter which is the strategy used to design a variable selection
methodology, if comparisons are made between mutual information estimations
among medium or large groups of variables, the performance of the method can
be affected. The higher the number of input dimensions, the higher the number
of samples needed to adequately cover the input space and obtain a reliable
estimation.

2.2 Forward Selection Using Mutual Information

Given the above definitions, the objective of a forward variable selection process
can be defined as finding a subset XG ⊂ X such that

I(X,Y ) ≈ I(XG, Y ). (3)

A forward selection approach would start with an empty subset XG = {} and
add input variables to the selected set as the mutual information with respect to
the output variable of the selected subset increases. The iterative process would
add a new variable xi to the current subset if

I({XG ∪ xi}, Y ) > I(XG, Y ). (4)

The xi would be selected as the variable that makes I({XG ∪ xi}, Y ) highest.
This procedure is fast and straightforward comparing to the other strategies
used in the literature.

The stopping criterion of this iterative strategy is the case in which the con-
dition in equation 4 does not hold. The evaluation of this condition requires the
comparison of two mutual information estimations. Both the curse of dimen-
sionality problem and the possible systematic decrease of the MI estimations as
the number of variables considered increases affect this stopping criterion. The
performance of this strategy is therefore not guaranteed. In [1], it is suggested
the use of the permutation test to calculate a threshold to stop the forward
procedure. This technique however can presents a missleading operation when
the input variables are interrelated among each other. The k-nn approach using
Euclidean distance, on which the MI estimator is based, is very sensitive to the
addition of a random variable to a set of closely valued variables, which is the
normal case in for example spectrometric and time series prediction problems.
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2.3 Markov Blankets

Markov blankets were first introduced in the variable selection literature in the
work by Koller and Sahami [5]. Markov blankets are defined in a set of variables
Z as:
Definition: Let M be a subset of variables taken from Z that does not contain
xi. We say that M is a Markov blanket for xi if I({M ∪ xi}, Z − {M ∪ xi}) ≈
I(M,Z − {M ∪ xi}).
That is, a Markov blanket Mi of a variable xi in a problem with variables Z,
is a subset of variables that contains all the information that xi has of Z. This
concept provides a different point of view in order to deal with problems with a
high number of variables. From the previous definition, the following corollary
is immediate:
Corollary: given a modeling problem with X as set of input variables and Y the
output variable. Given a subset XG of X , and an input variable xi ∈ {X−XG}.
Assume that some subset Mi of XG is a Markov blanket of xi in Z = {X,Y }.
Then I(XG, Y ) ≈ I(XG ∪ {xi}, Y ).
This corollary is immediate since from the definition it is straightforward that
I(Mi, Y ) ≈ I(Mi ∪ {xi}, Y ). The corollary states that when evaluating the rele-
vance of a variable xi with respect to the output variable, given a certain subset
XG, if there is a Markov blanket Mi of xi in XG, its added relevance will be
null. Thus, intuitively, variables for which we find Markov blankets in XG will
not be added to the current XG in a forward selection procedure.

However, finding either a true or even an approximate Markov blanket of a
variable in a set of variables might be very hard; it is a task similar to a variable
selection process, in the sense that it is intended to find a subset of variables
according to a certain minimization criterion. In the literature [5][6], this theo-
retical approach is used to design an heuristic to estimate Markov blankets for
the variables, to deal with the given variable selection problem.

3 Modified Stopping Criterion for Forward Selection

The most straightforward heuristic for the estimation of the Markov blankets of a
variable xi in a problem with variables X is to select the subset of variables most
interrelated with it in X . It is in principle expectable (although not necessarily),
that the variables in the Markov blanket Mi of a variable xi will be quite strongly
correlated with it. Then the set of p variables in X most interrelated with xi

will be taken as the approximation of Markov blankets of a variable xi in a
problem. In order to identify the variables most interrelated with a variable xi,
the mutual information with respect to the rest of variables will be calculated
I(xi, xj), ∀i, j = 1 . . . n.

The idea under the application of the Markov blanket concept for the design of
a modified stopping criterion is the following: a candidate Markov blanketMi will
be found in XG for the newly added variable xi. If Mi is in fact a good Markov
blanket approximation, then the condition I(Mi, Y ) ≈ I(Mi∪{xi}, Y ) will hold,
and therefore for the previous corollary, I(XG, Y ) ≈ I(XG ∪ {xi}, Y ), i.e. the
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Algorithm 1. Forward selection with Markov-blanket based stopping criterion
Calculate the MI between every two input variables Interrelation(i, j) = I(xi, xj)

Starting with an empty subset of variables XG = {}
repeat

select the variable xi that added to the current XG obtains highest I({xG∪xi}, Y )

let the candidate Markov blanket Mi be the set of p variables in XG for which

Interrelation(i, j) is highest.

Compute the additional information that xi provides with respect to Y given Mi,

i.e., compute I({Mi ∪ xi}, Y ) and I(Mi, Y )

until I({Mi ∪ xi}, Y ) ≈ I(Mi, Y ) showing that there is not additional information

provided by xi with respect to that already present in XG.

stopping criterion holds. Otherwise, if I(Mi ∪ {xi}, Y ) > I(Mi, Y ), then Mi is
not a good Markov blanket approximation of xi, and then it will be supposed
that there is not a Markov blanket of xi in XG; then xi is considered to be
relevant with respect to Y .

Therefore, according to the forward selection strategy and the calculation of
the approximate Markov blankets of the variables described before, the proposed
forward selection procedure with modified stopping criterion stays as shown in
algorithm 1.

The advantage of using Markov blankets candidates in the variable selection
process is the following. As seen from the corollary in the previous section,
it is equivalent to perform the comparison I(XG, Y ) ≈ I({XG ∪ xi}, Y ) than
I(Mi, Y ) ≈ I({Mi ∪ xi}, Y ). However there is a great advantage in evaluating
the mutual information in the second case comparing to the first one: the size
of the set of variables is lower than for the first possibility, thus diminishing the
problems related to the dimensionality of the sets of variables in the mutual
information estimators, and increasing its robustness. The estimation of the
difference in mutual information of the selected set of variables when adding
a new one (see equation 4), is translated into a similar estimation but using a
lower-sized set of variables. If the Markov blanket estimation for the variable
is correct, this approach leads to the same theoretical result, but avoiding the
estimation of the mutual information among large-sized groups of variables.

In order to evaluate the effectiveness of the proposed forward filtering ap-
proach, it is necessary to evaluate its behavior using a certain learning method-
ology and compare their performance. The following section shortly reviews the
paradigm chosen: the Least Squares Support-Vector-Machines learning method-
ology for function approximation problems. It also describes an optimized tech-
nique to improve their computational cost in training.

4 Efficient Training of Least-Squares Support Vector
Machines

Least Squares Support Vector Machines (LS-SVMs) [7], also known as the
Kernel Ridge Regression method (KRR) [8], are a kernel-based paradigm
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specially well suited for function approximation problems. The main advantages
of the LS-SVMs for regression with respect to traditional Support Vector Re-
gression (SVR), is their easier mathematical resolution, and that the parameter
ε from the SVR disappears and number of Lagrange multipliers is reduced to
half. The LS-SVMs on the other hand have the disadvantage that they don’t
generate sparse models.

In case we consider Gaussian kernels, σ is the width of the kernel, that together
with the regularization parameter γ, are the hyper-parameters of the problem.
Note that in the case in which Gaussian kernels are used, the models obtained
resemble Radial Basis Function Networks (RBFN); with the particularities that
there is an RBF node per data point, and that overfitting is controlled by a
regularization parameter instead of by reducing the number of kernels [2].

In LS-SVM, the hyper-parameters of the model can be optimized by cross-
validation. Nevertheless, in order to speed-up the optimization, a special formu-
lation for a reduced cost evaluation of the cross-validation error of order l (l-fold
CV) taken from the work [9] was used. With this formulation, the error evalua-
tion cost of cross-derivation does not depend on the order l, but on the number
of data points of the problem, since in fact the computational cost is dominated
by the inversion of the kernels K activation matrix. Such inversion is performed
through a Cholesky decomposition; the most efficient exact algorithm for this
case is O(N3) where N is the number of samples.

In order to perform the evaluation of the performance of the stopping criteria
in the forward selection strategy, it is necessary to learn a number of LS-SVMs,
each one considering the eventual state of the selected subset in the iterative
process XG of the variable selection process. This requires therefore the training
of a considerable number of LS-SVM, depending on the problem. In this work,
this process was distributed in a computer cluster, so that each training process
of a LS-SVM was sent to a different node. This way the computational time
was reduced in a factor of N (considering a computer with N nodes, ignoring
communication delays), supposing that every execution takes the same amount of
computational time. The executions were performed in the Ness supercomputer
at the EPCC in the University of Edinburgh. The system runs linux and it has
two back-end X4600 SMP nodes, both containing 16 processor-cores with 2GB
of memory per core. The programming interface used for the simulations was
MPIMEX [10] under MATLAB.

5 Simulations

This section presents a comparative to evaluate the performance of the proposed
approach for forward selection with modified stopping criterion. A number of sig-
nificant function approximation examples typically used in the machine learning
literature as benchmarks has been considered, including spectrometric problems
and time series prediction problems.

In the simulations performed in this work the parameter p, that defines the size
of the Markov blanket approximations was assigned a medium value p = 2 for
the tradeoff between effectiveness and avoidance of the dimensionality problem.
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5.1 Results

This subsection will first show the evolution of the designed algorithm for a river
flow time series prediction problem: it measures the monthly river flow in 1000
acre-feet of the Snake River near Moran, Wyoming among 1904-1994 [11]. For
this example, 500 data samples were considered for training, and 500 for testing
[12]. The objective is to obtain a prediction model to estimate

ŷ(t + 1) = F (y(t), y(t− 1), . . . , y(t− 49)) (5)

It is intended to use a forward variable selection approach to select the most
relevant variables (among the previous 50 values, X = {y(t) . . . y(t − 49)}) to
predict Y = ŷ(t+1) using the training data set. A code for the k-nearest neigh-
bors mutual information estimator can be found in [13]. The mutual information
estimation was improved using L-fold resampling, and the k parameter in the
MI estimator was obtained according to the work in [1]. Figure 1 shows the



222 L.J. Herrera et al.

Table 1. Markov blankets for variables added to XG in the iterative forward process,

for the river flow time series problem. C1 = I({XG ∪ xi}, Y ) -I(XG, Y ) see figure 1;

C2 = I({MI ∪ xi}, Y ) - I(MI , Y ) see figure 2

added Mi candidate added Mi candidate

It. variable xi of xi in XG C1 C2 It. variable xi of xi in XG C1 C2

1 36 - - - 6 24 {23,48} -0.0187 0.0449

2 1 36 0.12 0.12 7 11 {12,1} -0.0088 0.0283

3 23 {1,36} 0.023 0.023 8 22 {23,24} -0.0173 -0.0126

4 12 {1,36} 0.0063 0.012 9 10 {11,12} -0.0055 0.0031

5 48 {36,1} -0.0064 0.0140 10 34 {36,12} -0.0054 -0.0543

36 1 23 12 48 24 11 22 10 34
−0.06
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Fig. 3. Evolution of the quantity I({Mi ∪ xi}, Y )− I(Mi, Y ) with respect to Y in the

iterative forward variable selection approach

evolution of the mutual information of the current selected subset of variables
XG with respect to the output variable Y in the iterative forward process. It
is observed that the maximum of the quantity I(xG, Y ) is obtained when XG

includes 4 variables; from this point as the size of XG increases, the value of
I(xG, Y ) decreases.

Figure 2 shows the evolution of the test error in the iterative forward selection
process. As it is observed, the mutual information forward stopping criterion
does not identify correctly the correspondence with the optimal performance in
the iterative process, as it stops too early. The best subset of variables should
include at least 6 variables to obtain the best performance (RMSE = 776, with
four variables RMSE = 810).

Table 2 shows the sequence of Markov blanket candidates selected for each
variable added to XG according to algorithm 1. Figure 3 shows the evolution of
the quantity I({Mi∪xi}, Y )−I(Mi, Y ), that controls the modified stopping of the
algorithm for that sequence. The proposed criterion would stop when checking
the addition of variable y(t − 22), as the Markov blanket condition provides
a negative value, showing that y(t − 22) provides no additional information
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Table 2. Evaluation of the traditional and the proposed stopping criteria for the

forward selection in the Mackey-Glass and the Tecator Meat function approximation

problems

Forward criterion Proposed approach First optimal found

Size of XG Test Error Size of XG Test Error Size of XG Test Error

Mackey Glass 3 4.5e-03 7 1.6e-05 8 1.0e-05

Tecator Meat 3 1.0e-01 6 5.9e-02 6 5.9e-02

from what variables {y(t − 23), y(t − 24)} present in XG already provide. As
it is observed, the criterion based on the candidate Markov blankets presents a
better correspondence with the real optimal performance in the given problem.
According to this criterion, the selected subset of variables XG has size equal to
7, that corresponds to the best local minimum area seen in figure 2.

The following table shows the results and performance for other two well
known problems: the Mackey-Glass time series, including 50 previous regressors
to predict y(t+ 1), having 500 training data samples and 500 test data samples;
the Tecator meat data set is a spectrometric data set consisting of 100 spectral
input variables and one output variable (as in [2], the spectra are reduced to
zero mean and unit variance, keeping the original mean and standard deviation
as two additional variables to avoid loss of information).

6 Conclusions

Forward selection with mutual information is a straightforward and widely used
strategy for variable selection. However it presents the problem that establishing
an adequate stopping criterion is an unsolved question. This work has presented
an alternative stopping criterion based on Markov blankets for forward selec-
tion using the k-nearest neighbors mutual information estimator for function
approximation problems. In this context, the traditional forward stopping crite-
rion can be far from optimality due to the deficiencies of the mutual information
estimator. The proposed approach shows a better approach to optimality in the
examples used. For the evaluation of the performance of the alternatives in the
forward process, Least Squares Support Vector Machines have been used, using
an efficient training to avoid the large computational cost.
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project (RII3-CT-2003-506079), with the support of the European Community -
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Features and Metric from a Classifier Improve
Visualizations with Dimension Reduction

Elina Parviainen and Aki Vehtari

Helsinki University of Technology,
Department of Biomedical Engineering and Computational Science

Abstract. The goal of this work is to improve visualizations by using a
task-related metric in dimension reduction. In supervised setting, metric
can be learned directly from data or extracted from a model fitted to
data. Here, two model-based approaches are tried: extracting a global
metric from classifier parameters, and doing dimension reduction in fea-
ture space of a classifier. Both approaches are tested using four dimension
reduction methods and four real data sets. Both approaches are found
to improve visualization results. Especially working in classifier feature
space is beneficial for showing possible cluster structure of the data.

Keywords: dimension reduction, visualization, classification, metric,
feature space.

1 Introduction

A successful visualization makes discussions and presentations about data more
concrete and easy to follow; a bad one may just add to the cognitive load of a
listener. Visualizations should not only be readable but also be related to the
application at hand. If we are dealing with a classification task, we would like
also our visualizations to bring forth factors having a great impact on classifica-
tion. However, if visualization is done without regard to the classification task,
variables having biggest effect on visualization results may not be those most
relevant for classification.

In this paper, we show how we can exploit information a classifier model
has learned about the covariance structure of the data, and use it in dimension
reduction for more task-related visualizations. Very little extra work is needed;
we don’t need to learn a metric separately, or to do separate feature extraction,
but just use the knowledge we get as a side-product of model fitting.

Our paper is motivated by having worked with a health care application. In
health care, a black-box solution is not enough, but the results and their ex-
planations need to be studied in more detail. Especially groups of patients with
any specific characteristics are of interest. Therefore, we would like the visual-
izations clearly show any cluster structure in the data. Clustering algorithms are
known to be affected by the metric used, and we expect also the visualizations,
especially on data with some cluster structure, to be affected by a metric.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 225–234, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We approach the problem from two different angles. First, we can see the clas-
sifier as having learned a (global) metric from the data. The metric information
is contained in the model parameters, and we show how to extract a metric in
the form of a similarity matrix. We term this metric approach. Secondly, we can
use a familiar euclidean metric, but work in classifier feature space. As the model
has been trained to perform a certain task, the latent features learned contain
information relevant to that task, and should therefore give a more task-related
visualization than using the raw data. To this we refer as feature approach.

In this work we use Gaussian processes (GP), [1] and multilayer perceptron
networks (MLP) [2] . It should be possible to handle other kernel based models
similarly to GP and models, which can be interpreted as feature extractors, like
MLP. Our examples are from binary classification tasks, but the same technique
should be usable for regression models or multiclass classifiers.

2 Related Work

Using a good distance metric, whether as a metric or as a kernel, has been
found important for performance of classifiers and clustering algorithms. Some
of these metrics and kernels could probably be used for better visualizations as
well. Learning metrics and kernels has been done both for unsupervised case
[3,4], unsupervised specifically for dimension reduction in [5], and in supervised
context for better classification [6,7,8]. Using similarity information from an
existing probability model has been studied e.g. in [9] and [10]. These works
start with a generative model and build a kernel for classification.

Metric information from a predictive model has been used for improving vi-
sualizations with self-organizing maps [11], and same technique could probably
be used for other dimension reduction methods. Of the papers mentioned here,
this is probably closest to our work. The approach of [11] uses local metric based
on Fisher information. Local metric captures well the covariance structure of
data, but determining the distance between two points becomes computation-
ally intensive since it requires integration (or an approximation thereof) over
the metric. We use both a global metric, which is computationally cheap, and
features, which capture local behavior without requiring much computation. We
reduce ourselves to two specific classes of models, whereas [11] uses a generic
model.

3 Metric Approach

We extract metric information from GP and MLP models in the form of a sim-
ilarity matrix S with elements sij . If needed, it is converted into a dissimilarity
matrix D of elements dij by

d2
ij = sii + sjj − 2sij ,

which produces a valid dissimilarity even for similarities produced by non-
stationary covariance functions (like NN below).
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3.1 Metric from GP

Gaussian processes are a kernel method, in which prior assumptions about func-
tion to be fitted are presented by choosing a covariance function. Optimal values
for its parameters are found during training. Covariance function evaluated at
data points using these parameters gives a similarity matrix which we use in
dimension reduction. Here we use neural network (NN) covariance [12]

kNN (x,x′) =
2
π

sin−1 2x̃TΣx̃′√
(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)

. (1)

where x̃ = [1 x] is an augmented input vector and Σ is a diagonal matrix with
variances of inputs. We chose NN covariance both because it has performed well
in our applications and for its connection to extracting features from an MLP
model (below).

3.2 Metric from MLP

NN covariance (1) is derived by integrating over the weights of an MLP net-
work with an infinite number of hidden units. This leaves variances of inputs
as parameters. To extract a metric from MLP, we can use our trained classifier
network as an approximation to the hypothetical MLP of NN derivation. Even
though 10 or 20 hidden units may seem like a poor substitute for an infinite
number of units, our results show that the approximation may be good enough
for practical purposes.

As an approximating MLP, we use a network of one hidden layer of H units,
working on C-dimensional input x = [x1, x2, . . . , xC ]. Weights wch are from input
xc to hidden unit h, and hidden units have biases bh. In the output layer, weights
w′

h are for hidden unit h, and bias is b′.
The output of hidden unit h for data point x is given by

zh(x) = σ(
C∑

c=1

wchxc + bh) , (2)

where σ(·) is a sigmoid function used in hidden units, and hidden unit outputs
are combined into the output of the network as

y =
H∑

h=1

w′
hzh(x) + b′ . (3)

After training the network, we have estimates for all weights and biases available.
To use MLP weights to approximate the NN covariance (1), we set

Σ = diag(var({b∗}), var({w1∗}), var({w2∗}), . . . , var({wC∗})) ,

where variance is taken over the hidden units (∗ denotes numbers from 1 to H).
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4 Feature Approach

We extract features f corresponding to data points as described below. To get
a dissimilarity matrix D, we compute squared pairwise euclidean distances of
the features and normalize them to range [0, 1]. For similarity-based methods we
transform this matrix into a similarity matrix S of elements

sij =
√

1− d2
ij .

4.1 GP as Feature Extractor

A covariance function computes a mapping from data space to model feature
space. In feature space, each data point is represented by its similarities to all
other data points. If data set size N is big, it is also possible to use only a subset
of it for GP training, and compute similarities to training points only. Features
for data point xi are simply the values in the ith column of the covariance matrix,

f = [k(xi,x1), k(xi,x2), . . . , k(xi,xN )] ,

with k(·, ·) the covariance used in the GP model, evaluated using the parameter
values found during model training.

4.2 MLP as Feature Extractor

An MLP network with one hidden layer can be considered as a feature extractor.
The hidden units form different features from the data, and the output layer does
classification or other computation in the feature space. The outputs of the MLP
hidden layer (2) become the features for data point xi,

f = [z1(xi), z2(xi), . . . , zH(xi)] .

5 Dimension Reduction Methods

Dimension reduction is a problem of finding a low-dimensional (for visualization
purposes usually 2D or 3D) target space presentation for points lying in a high-
dimensional data space. For this work we have chosen four dimension reduction
methods that use either similarities (kernel PCA) or dissimilarities (t-SNE, Sam-
mon mapping, Isomap) as inputs. Such a method can be easily adapted to use
a new (dis)similarity measure by using a similarity derived from the model as
kernel matrix (kernel PCA) or replacing pairwise distances (other methods) by
a dissimilarity matrix. As a base case to which we compare our method we use
pairwise euclidean distances of original data points, transformed into similarities
when needed.
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T-SNE [13] is developed for 2D and 3D visualizations. It tries to ensure both
target space proximity of nearby data points and large target space distance
of distant data points. Distances are transformed into conditional probabilities,
which tell how probably a point has another point as its neighbor. Locations
for target space points are found by minimizing the Kullback-Leibler divergence
between neighborhood probabilities in data space and target space.

Sammon mapping [14] is a version of metric multidimensional scaling (MDS).
It finds locations for target space points such that interpoint distances match,
as closely as possible, the distances between original data points. Discrepancy
between target distances and data space distances can be measured using various
goodness-of-fit functions, of which the Sammon criterion is one often used in data
visualization.

Isomap [15] is designed for finding lower-dimensional manifolds embedded in a
high-dimensional space. It performs a preprocessing step for MDS. Where plain
MDS uses euclidean distances, measured in data space, Isomap calculates an
approximate geodesic distance along a low-dimensional manifold, and then uses
MDS.

Kernel PCA [16] is one of nonlinear generalizations of principal component
analysis (PCA). It performs PCA in a feature space determined by a kernel. We
use a similarity measure derived from a classifier as a kernel.

6 Experiments

We have tried both metric and feature approaches using the four dimension
reduction methods introduced above, using four different data sets. All data
sets are associated with a binary classification task. Data sets d1 (19 covariates,
continuous and binary) and d2 (17 covariates, continuous and binary) are from
health care applications we work with 1 , and d3 (9 covariates, continuous) and d4
(16 covariates, binary) are publicly available 2. Binary classifiers (MLP and GP)
were trained on all data sets. Classification results are presented as probability
p of belonging to class 1.

Similarity and dissimilarity matrices representing global metric information
were built for each data set/model combination (as explained in Sect. 3) and
these were used in dimension reduction methods. This forms the cases for the
metric approach, presented in figures as ‘GP metric’ and ‘MLP metric’.
1 d1 is data on institutionalization of elderly, analyzed in co-operation with Dr. Matti

Mäkelä, City of Vantaa and National Institute for Health and Welfare, and d2 is data
on rehabilitation of hip fracture patients [17,18], from collaboration project with Dr.
Reijo Sund, National Institute for Health and Welfare.

2 d3 is Wisconsin Breast Cancer Database (from Dr. William H. Wolberg of University
of Wisconsin Hospitals, Madison) and d4 is 1984 United States Congressional Voting
Records Database; both available at http://archive.ics.uci.edu/ml/.
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Fig. 1. Visualizations using t-SNE (perplexity=30)

Fig. 2. Visualizations using Sammon mapping
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Fig. 3. Visualizations using Isomap (k=15)

Fig. 4. Visualizations using kernel PCA
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For the feature approach, features were extracted from the models (for details
see Sect. 4) and similarity and dissimilarity matrices for dimension reduction
were built using euclidean distances of the features. These cases are labeled ‘GP
features’ and ‘MLP features’ in the figures.

7 Results

The results are shown in Figs. 1, 2, 3 and 4. The column on the left, labeled
“distance”, is the base case where dimension reduction is done using euclidean
distances of the original data points. Colors show the class probability, as pre-
dicted by the classifier from which the metric or features were extracted.

Two types of changes are seen when metric or feature approach is compared
to the base case. Sometimes, points which nearly co-located in the base case are
more clearly spread out and form areas of same color. In other cases, a more
clear cluster structure is visible.

A clearer spreading of points, same color areas or color gradients can help a
human user study connections of the classification result and covariates. When
compared to a plot of covariate values, covariates with great impact can be recog-
nized and hypotheses about possible covariate interactions generated. Therefore,
we consider this kind of result to be an improvement, if the base case does not
show clear areas.

What we by choice would like to see, however, is any cluster structure the
data might have. This could lead to automatic or semi-automatic recognition of
possible interesting subgroups of the data, e.g. different risk groups in a health
care application. Of course, it is seldom clear what exactly should be considered
a cluster, and the 2D visualization might be more or less true to structure of the
original data. But if no structure at all is seen, the visualization does not help us
to even suspect the data might have clusters. A change from no clusters image
to one with more structure is therefore considered a good result.

The images speak best for themselves, but in Table 1 we give our (necessarily
subjective) evaluation of the results. The two types of changes are termed ’H’

Table 1. Evaluation of results. ‘H’ stands for ‘could benefit a human user’ and ‘C’
is ’could improve workings of a clustering algorithm’. As explained in the text, ‘C’ is
considered a better result than ‘H’. If the visualization with metric or features remains
at the same level with the base case, the entry is marked with ‘-’.

t-SNE Sammon Isomap kernel PCA together
d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4 H C

GP features - C C C - - C C H - H C H - - C
MLP features - C C C - H - C H - H C H H C C 8 14
GP metric - - - C H - H H H - H C H H C C
MLP metric - - - - - - H - H - H - H H C - 12 5
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(could benefit a human user) and ’C’ (could improve workings of a clustering
algorithm). Both conditions were judged visually. Using features improves results
in 22 cases of the 32 tried; 14 of these show cluster structure more clearly than
the base case. The metric approach improves results in 17 cases, in 5 of them
clusters are seen more clearly.

8 Discussion and Conclusions

In this work, we experimented with exploiting the metric and feature informa-
tion a classifier learns from the data, for visualizing the data using dimension
reduction to 2D space. We used a binary classifier, but the same technique could
be used with multiclass classifiers or regression models. For classification we
used Gaussian processes and multilayer perceptron networks, and for dimension
reduction, t-SNE, Sammon mapping, Isomap and kernel PCA.

We tried two different approaches, using a global metric and using features.
We compared these approaches to visualizing the data as such, and also assessed
the relative performance of the two approaches. Both approaches improved the
quality of visualizations, but metric approach fell second to feature approach
in most cases. When dimension reduction was done using features, readability
of the visualizations was improved in 2/3 of the cases tried, and with metric
approach, in about half of the cases. Especially cluster structure of the data was
seen more clearly with features than when using a global metric.

In this work, we demonstrated usefulness of our method in rather informal
way, and the next step will be a more rigorous analysis of the results. Using
a single quantitative criterion will hardly be enough, since evaluation of the
results intertwines questions about quality of visualization (e.g. preservation of
distances or trustworthiness of mapping), goodness of clustering, and assessing
the effect of the chosen metric.

We assume the feature approach worked better because the features, unlike a
global metric, are able to capture local variations of data. With this assumption,
it would be interesting to see how features would compare to learning a local
metric from the data or extracting it from a model, e.g. as in [11].

As conclusion of this work, we recommend doing 2D visualization with di-
mension reduction using features learned by a model, instead of using the data
as such. No separate metric learning of feature extraction phase is needed,
but features are easily obtained from GP or MLP model. If modeling and di-
mension reduction are to be done anyway, doing the visualization in feature
space can improve the results with negligible implementation and running time
costs.

Division of work. Ideas and experiments in this paper are those of the first
author. The second author has supervised the work, commenting on text and
ideas.
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Autónoma de Madrid, 28049 Madrid, Spain
2 Cognodata Consulting, Calle Caracas 23, 28010 Madrid, Spain

Abstract. We introduce the Partition Negentropy Criterion (PNC) for

cluster validation. It is a cluster validity index that rewards the aver-

age normality of the clusters, measured by means of the negentropy, and

penalizes the overlap, measured by the partition entropy. The PNC is

aimed at finding well separated clusters whose shape is approximately

Gaussian. We use the new index to validate fuzzy partitions in a set of

synthetic clustering problems, and compare the results to those obtained

by the AIC, BIC and ICL criteria. The partitions are obtained by fitting

a Gaussian Mixture Model to the data using the EM algorithm. We show

that, when the real clusters are normally distributed, all the criteria are

able to correctly assess the number of components, with AIC and BIC

allowing a higher cluster overlap. However, when the real cluster distri-

butions are not Gaussian (i.e. the distribution assumed by the mixture

model) the PNC outperforms the other indices, being able to correctly

evaluate the number of clusters while the other criteria (specially AIC

and BIC) tend to overestimate it.

Keywords: Clustering, Cluster validation, Mixture Model, Negentropy,

EM algorithm.

1 Introduction

Cluster analysis [1] deals with the automatic partition of a data set into a finite
number of natural structures, or clusters. The elements inside a cluster must
be similar, while those belonging to different clusters must not. Clustering al-
gorithms are usually divided into crisp and fuzzy. In crisp clustering, each data
point is uniquely assigned to a single cluster. On the contrary, fuzzy cluster-
ing allows each point to belong to any of the clusters with a certain degree of
membership.

A standard approach in fuzzy clustering is model clustering, where it is
assumed that the observed data are generated from a mixture of probability
distributions (clusters or components). The mathematical structure of these dis-
tributions is assumed to be of a certain type (usually Gaussians) but the specific
parameters (e.g. means and covariances) must be found. Once the number of

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 235–244, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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components and their parameters have been selected following some strategy,
the degree of membership of the point x with respect to the cluster c is usually
related to the probability p(c|x).

There exist different methodologies to select the parameters of the mixture
model, the most popular being the Expectation-Maximization (EM) algorithm
[2]. However, a common problem is how to determine the correct number of
components in the mixture. A different but closely related problem is how to
measure the validity of the outcomes of a particular fuzzy clustering method.
This is the subject of cluster validation [3], whose objective is to provide a
quality measure, or validity index, that allows to evaluate the results obtained
by a clustering algorithm. Many cluster validity indices have been proposed in
the literature, including geometric [4,5,6], probabilistic [7,8,9], graph theoretic
[10], and visual [11,12] approaches.

In the context of density estimation using mixture models, different strategies
have been explored to automatically select the number of mixture components
[13,14,15,16], the most popular being the Akaike’s Information Criterion (AIC)
[17] and the Bayesian Inference Criterion (BIC) [18,19]. The last two approaches
are based on the maximization of criteria that combine a term based on the like-
lihood of the observations and a term that penalizes the complexity of the model.
In principle, they could also be used as validity indices in model clustering, to
compare models with different number of components and thus automatically
select the number of clusters. This possibility has been deeply explored in the
literature, and different indices based on these and similar criteria have been pro-
posed to validate clustering partitions and assess the number of components in
clustering problems using mixture models [7,8,20]. In particular, the Information
Completed Likelihood (ICL) [21,22], which is essentially the BIC criterion penal-
ized by subtraction of the estimated partition mean entropy, has been shown to
outperform AIC and BIC when the focus is clustering rather than density esti-
mation. The AIC and BIC criteria do not explicitly penalize the overlap amongst
the clusters, and so they tend to overestimate the number of cluster components
when the kind of distribution followed by the real clusters does not match the
distribution assumed by the mixture model [21].

In this article we present the Partition Negentropy Criterion (PNC), a new
cluster validity index which combines a term that rewards the average normality
of the clusters and a term that penalizes the average overlap. The normality of
a cluster is computed using the negentropy, while the average overlap is mea-
sured by the partition entropy. Here we use the new index to validate Gaussian
mixtures that are fitted with the EM algorithm, and compare its performance to
the AIC, BIC and ICL criteria in a set of synthetic clustering problems. We first
check that the PNC is able to assess the correct number of components in prob-
lems where the underlying cluster distributions are Gaussian. When the Gaus-
sian clusters are highly overlapped the AIC and BIC criteria obtain a slightly
better detection rate, that is they are able to assess the number of components
under higher overlap, than the ICL and the PNC. However, in situations where
the underlying cluster distributions are not purely Gaussian, the AIC and BIC
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criteria systematically overestimate the number of components, regardless of the
separation amongst the clusters. In these cases only the ICL and the PNC ob-
tain satisfactory results. In particular, the proposed PNC index provided a high
detection rate and the lowest overestimation rate in all the tests performed.

2 The Partition Negentropy Criterion

In this section we develop the Partition Negentropy Criterion, a cluster validity
index whose aim is to find well separated clusters as normally distributed as
possible. The normality of a cluster is characterized by means of its negentropy,
a standard measure of distance to normality which computes the difference be-
tween the cluster’s entropy and the entropy of a Gaussian distribution with the
same covariance matrix [23]. The negentropy of a continuous random variable X
is defined as:

J(X) = Ĥ(X)−H(X) (1)

where H(X) is the differential entropy of X and Ĥ(X) is the differential en-
tropy of a normal distribution with the same covariance matrix. The Gaussian
distribution maximizes the differential entropy for a given covariance matrix
[24], so the negentropy is always non-negative, being zero if and only if X is
normally distributed. The maximum entropy property associated to the normal
distribution also provides a hint on why normality is a desired property of any
cluster. Maximum entropy, or equivalently maximum uncertainty, implies min-
imum structure, and so a normally distributed cluster can not be expected to
contain other substructures.

Let us consider a set of data points {xi} and a fuzzy partition p(c|xi) into
a set of clusters C. Our goal is to obtain a cluster validity index that rewards
partitions into well separated Gaussian clusters. We will measure the quality of
the partition by:

H(C|X) + J(X|C) (2)

The first term measures the average degree of overlap amongst the clusters,
while the second corresponds to the average negentropy of the clusters, which
measures how distant they are from a Gaussian distribution. So minimization
of this expression will favour partitions that consist of well separated normally
distributed clusters. We can write J(X|C) as:

J(X|C) = Ĥ(X|C)−H(X|C) (3)

And, using basic properties of the conditional entropy [24], rewrite it as:

J(X|C) = Ĥ(X|C) +H(C)−H(X)−H(C|X) (4)

Note that the term H(X) is constant for the problem, and so it can be ignored
when minimizing the expression in 2. The term Ĥ(X|C) can be expressed as:
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Ĥ(X|C) =
nc∑

c=1

p(c)Ĥ(X|c) (5)

where the sum extends to all the nc clusters in C, p(c) is the a-priori probability
of cluster c, and Ĥ(X|c) is the differential entropy of the cluster c assuming
normality, that is:

Ĥ(X|c) =
1
2

log |Σc|+ d

2
log 2πe (6)

where Σc is the covariance matrix of cluster c and d is the dimension of X. If we
substitute equations 4, 5 and 6 into expression 2, and neglect terms that do not
depend on the partition C, we obtain the Partition Negentropy Criterion as:

PNC(C) =
1
2

nc∑
c=1

p(c) log |Σc| −
nc∑

c=1

p(c) log p(c) (7)

Given different partitions of a data set, we will select that with a lower PNC.

3 Evaluation of the PNC

To test the new cluster validity criterion we use the PNC to validate fuzzy par-
titions resulting from the application of the EM algorithm to a set of synthetic
problems, and compare the results to those obtained with the AIC, the BIC,
and the ICL criteria. For every problem we follow the same approach. First,
the EM algorithm is used to fit a set of Gaussian mixtures with different num-
ber of components. Then, for each index (AIC, BIC, ICL, PNC) we select the
mixture which provides the best index value. We compute the PNC by directly
substituting the covariance matrices and the prior probabilities given by the EM
algorithm into equation 7.

3.1 Two Simple Examples

We will first illustrate the PNC with two simple examples consisting of three well
separated clusters in two dimensions. In the first case each cluster consists of
1000 points drawn from a normal distribution with covariance matrix equal to the
identity matrix, Σ = I, and centered at μ1 = (0, 0), μ2 = (5, 0), and μ3 = (5, 5)
respectively (see figure 1). For this problem we have run the EM algorithm to fit
a mixture of nc Gaussians, with nc ∈ {1, 2, 3, 4, 5}. The algorithm has been run
10 times for each nc. The best partitions according to each of the four validity
criteria are shown in figures 1A (AIC), 1B (BIC), 1C (ICL), and 1D (PNC). The
solid lines represent the contours of the Gaussian components. Note that for
well separated normal clusters all the criteria select partitions with the correct
number of clusters (nc = 3).
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Fig. 1. Assessment of the number of clusters in a problem consisting of a mixture of

three Gaussian distributions in 2D. The EM algorithm has been run 10 times for each

number of components (ranging from 1 to 5), and the best solution according to the

four criteria is selected. A. Akaike’s criterion (AIC). B. Bayesian inference criterion

(BIC). C. Information Completed Likelihood (ICL). D. Partition Negentropy Criterion

(PNC).

The second problem consists of three non-Gaussian clusters of 1000 points
each. In polar coordinates, the clusters follow a gamma distribution in the radius
and a uniform distribution in the angle. The gamma distribution has a shape
parameter k = 2 and a scale parameter θ = 1.5. The three clusters are centered
at μ1 = (0, 0), μ2 = (15, 0), and μ3 = (15, 15) respectively. As before, we have
run the EM algorithm 10 times for each nc, and we have selected the best
partitions according to the four validity criteria. The results are shown in figures
2A (AIC), 2B (BIC), 2C (ICL), and 2D (PNC). Note that, although the clusters
are easily separable, only the PNC is able to correctly assess the number of
clusters (nc = 3). The other criteria overestimate the number of components.
The AIC and BIC select partitions with nc = 5 clusters, while the ICL selects a
partition with nc = 4 clusters.

These examples show that standard criteria such as AIC, BIC or ICL can
perform poorly as cluster validity indices when the underlying data distribution
does not match the assumed mixture model. On the other hand, the PNC shows
a good performance even when the cluster distributions are not pure Gaussians.
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Fig. 2. Assessment of the number of clusters in a problem consisting of a mixture of

three non-Gaussian distributions in 2D. The EM algorithm has been run 10 times for

each number of components (ranging from 1 to 5), and the best solution according to

the four criteria is selected. A. Akaike’s criterion (AIC). B. Bayesian inference criterion

(BIC). C. Information Completed Likelihood (ICL). D. Partition Negentropy Criterion

(PNC).

3.2 Number of Detected Clusters Versus Inter-cluster Distance

As a second test we consider the assessment of the number of components in
problems consisting of two spherical clusters with covariance matrices equal to
the identity matrix, Σ = I, and 1000 points each in two dimensions. The dis-
tance between the cluster centers is varied in order to obtain problems with dif-
ferent degree of overlap. We want to study the performance of the PNC and the
other criteria as a function of the overlap for different cluster shapes. The shape
of the clusters is modeled according to the following four kinds of probability
distributions:

1. Pure normal distribution. Its covariance matrix is equal to the identity ma-
trix, Σ = I.

2. Truncated normal distribution. Points are generated using a pure normal
distribution, and those whose distance to the mean exceeds 1.8 times the
standard deviation are discarded. A scaling factor is applied to ensure that
the resulting distribution has a covariance matrix Σ = I.
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3. Uniform distribution inside a circle. The circle radius is selected such that
the covariance matrix is Σ = I.

4. Gamma-uniform distribution. The same distribution as in the second exam-
ple of section 3.1 is used. The shape parameter of the gamma is k = 2, and
the scale parameter is selected to ensure that the resulting distribution has
a covariance matrix Σ = I.

In all the cases the first cluster is centered at μ1 = (0, 0) and the second one at
μ2 = (d, 0), where d is the inter-cluster distance. For each problem and for values
of d ranging between 0 and 5, we use the EM algorithm to fit a Gaussian mixture
with a number of components nc ∈ {1, 2, 3, 4, 5}. As before, the EM algorithm
is run 10 times for each nc and the best partition according to each of the four
criteria is selected. A total of 40 different problems are generated for each d
in order to average. In figure 3 we plot the average number of clusters in the
best partition selected by each criterion versus the inter-cluster distance. When
the clusters follow a Gaussian distribution (figure 3A), the average number of
clusters selected by all the criteria is between 1 and 2. As we can see AIC and
BIC can stand a higher overlap than the other indices. On the other hand, when
the underlying cluster distribution is not Gaussian (figures 3B, 3C and 3D) AIC
and BIC tend to overestimate the number of clusters for any degree of overlap. In
these cases only the ICL and PNC criteria provide satisfactory results. The ICL
criterion admits a slightly higher overlap, but it also overestimates the number
of components for gamma-uniform distributed clusters at high d. At the price of
a higher tendency to merge overlapping clusters, the proposed PNC is the only
index that correctly assesses the number of clusters for all the considered cluster
shapes when the clusters are well separated.

3.3 Number of Clusters in Randomly Generated Problems

Finally, we make the last test using 1000 randomly generated problems. Each
problem contains three clusters in two dimensions, but the shape, orientation,
position and scale of the clusters are selected randomly. The 4 cluster shapes
of section 3.2 are considered. As for previous tests, the EM algorithm is used
to fit a Gaussian mixture model to each problem. We try different number of
components, nc ∈ {1, 2, 3, 4, 5}, and the algorithm is run 5 times for each nc.
Then the four validity criteria are used to select a preferred partition. In table
1 we show the percentage of problems for which each criterion selects a parti-
tion with 1, 2, 3, 4 or 5 clusters. Note that the PNC is the one which selects
the correct number of clusters (nc = 3) with a higher probability (76% of the
problems). In addition, it only overestimates the number of clusters for the 9%
of the problems. The ICL follows closely (72.4% of correct partitions and 15.5%
of overestimation), but AIC and BIC perform very poorly and they only se-
lect the correct number of clusters for the 11.6% and the 26% of the problems
respectively.
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Fig. 3. Average number of clusters selected by the four considered validity criteria

versus inter-cluster distance. A. The two clusters are normally distributed. B. The

clusters are Gaussians without tails. C. The clusters are uniformly distributed inside

a circle. D. The clusters follow a gamma-uniform distribution.

4 Discussion

In this article we have presented the Partition Negentropy Criterion (PNC), a
cluster validity index whose aim is to find clearly separated clusters whose shape
is as Gaussian as possible. The index measures the normality of the clusters
using the negentropy, and it measures the cluster separation using the partition
entropy. We investigated the performance of the PNC using synthetic clustering
problems, where the ability to assess the number of clusters was compared to the
AIC, BIC and ICL criteria. We first checked that the PNC is able to determine
the correct number of clusters in problems whose data points are generated from
a mixture of well separated Gaussian distributions. We observed, however, that
the performance degrades when the Gaussians are overlapped. In these cases the
PNC obtains a similar performance to ICL, but slightly worst than AIC and
BIC. On the other hand, we showed that the PNC provides good results even
when the data are generated from mixtures of non-Gaussian distributions. In
such situations the PNC is still able to detect the correct number of clusters,
outperforming the other criteria, which are more prone to overestimate this
number.
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Table 1. Percentage of data sets for which each criterion predicts 1, 2, 3, 4 or 5 clusters

nc AIC BIC ICL PNC

1 0.0 0.0 0.2 0.6

2 0.3 0.5 11.9 14.4

3 11.6 26.0 72.4 76.0

4 27.7 38.7 14.1 5.2

5 60.4 34.8 1.4 3.8

Although the results here presented are promising, future work using real
datasets is needed in order to validate the proposed criterion. On the other
hand, the mathematical simplicity of the PNC, whose evaluation involves just
the computation of the determinants of the covariance matrices of each cluster,
may permit an analytical study of its performance. This is specially interesting
as it would allow to compare the PNC to other indices at the mathematical level.

In the present work, the calculation of the mixture model parameters via EM
is conceptually separated from the validation step, in which the validity indices
are used to evaluate the outcomes of a particular run of the algorithm. Given
the mathematical simplicity of the PNC, we believe that it could be possible
to integrate it into an EM algorithm, thus obtaining an iterative procedure
that simultaneously searches for the number of clusters and the mixture model
parameters.

Finally, we will investigate how the PNC could be extended to deal with
variables which are not continuous.
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Abstract. Kernel density estimation (KDE) has been used in many

computational intelligence and computer vision applications. In this pa-

per we propose a Bayesian estimation method for finding the bandwidth

in KDE applications. A Gamma density function is fitted to distributions

of variances of K-nearest neighbours data populations while uniform dis-

tribution priors are assumed for K. A maximum log-likelihood approach

is used to estimate the parameters of the Gamma distribution when fit-

ted to the local data variance. The proposed methodology is applied in

three different KDE approaches: kernel sum, mean shift and quantum

clustering. The third method relies on the Schrödinger partial differen-

tial equation and uses the analogy between the potential function that

manifests around particles, as defined in quantum physics, and the prob-

ability density function corresponding to data. The proposed algorithm

is applied to artificial data and to segment terrain images.

Keywords: Kernel density estimation, bandwidth, quantum clustering.

1 Introduction

There are two approaches for data modelling in statistics: parametric and non-
parametric, depending on whether there is a model assumption or not. Kernel
density estimation (KDE) is a non-parametric approach in which the kernel
function is centered at each data sample location while exerting an influence
in the region around it. A scale parameter, also called bandwidth or window
width controls the kernel function smoothing over the surrounding space. In this
study we consider three different nonparametric modelling methods. The first
one represents the probability density function (pdf) by simply summing the
kernel functions for all data [1]. The mean-shift is an updating algorithm which
employs the local gradient for finding the maxima of the pdf representation [2].
A method which relies on the analogy between the pdf representation and the
quantum potential of physical particles, was proposed in [3] and analysed in [4].

The performance of KDE methods does not depend on the actual kernel
function [5] but on the value of the kernel’s bandwidth [6,7,8]. The bandwidth
is responsible for smoothing the resulting KDE representation as well as for
defining an appropriate mode localization. The algorithms used for finding the
bandwidth can be classified into two categories: quality-of-fit and plug-in meth-
ods. The first category uses cross-validation by leaving certain data samples out
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while approximating the pdf with the sum of kernels located at the remaining
data. The plug-in methods calculate the bias in the pdf approximation such that
it minimizes the mean integrated square error (MISE) between the real density
and its kernel-based approximation [5,8,10,11]. However, the plug-in algorithms
require an initial pilot estimate of the bandwidth for the iterative processing [9].

In this paper we consider that the kernel bandwidth corresponds to a local
data variance estimate. Such variances are calculated from randomly sampled
K-nearest neighbours, when assuming a prior distribution for K, in a Bayesian
framework. The proposed bandwidth estimation method is employed in three
KDE methods: kernel sum, mean shift and quantum clustering. These methods
are applied for segmenting modulated signals and terrain topography estimated
from radar images [12]. Quantum clustering is described in the context of KDE
in Section 2 while the inferrence of the bandwidth parameter is described in
Section 3. Experimental results are provided in Section 4 and the conclusions
are drawn in Section 5.

2 Kernel Density Estimation Using Quantum Mechanics

Various kernel density estimation methods have been used in pattern recognition
and computer vision including the mean shift [2] and the classical approach of
kernel sums [1]. In the following we describe in detail a KDE method called
quantum clustering [3]. In quantum clustering each data sample is associated
with a particle that is part of a quantum mechanical system. The activation
field at a location X, calculated from N data samples {Xi, i = 1, . . . , N} is
given as in classical KDE by the sum of kernels centered at the data samples:

ψ(X) =
N∑

i=1

exp
[
− (X−Xi)2

2σ2

]
(1)

where σ represents the bandwidth parameter.
According to the fifth postulate of quantum mechanics, a quantum system

evolves according to the Schrödinger differential equation. The time-independent
Schrödinger equation is given by:

Hψ(X) ≡
(
−σ2

2
∇2 + V (X)

)
ψ(X) = E · ψ(X) (2)

where H is the Hamiltonian operator, E is the eigenvalue energy level associated
with a specific particle orbit, ψ(X) corresponds to the state of the given quantum
system, V (X) is the Schrödinger potential and ∇2 is the Laplacian. In quantum
mechanics, the potential V (X) is given and equation (2) is solved in order to find
solutions ψ(X). In this case, ψ(X) describes the probability of locating a particle
on a specific orbit. From the computational intelligence perspective we consider
the inverse problem by assuming known the location of data samples and their
state as given by equation (1). This location is considered as a solution for (2),
subject to the calculation of a set of constants. In equation (2) the potential is
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always positive, V (X) > 0. After replacing ψ(X) from (1) into (2), we calculate
the Schrödinger potential for the given data set as, [3,4]:

V (X) = E − d

2
+

1
2σ2ψ(X)

N∑
i=1

‖X−Xi‖2 exp
(
−‖X−Xi‖2

2σ2

)
(3)

From the statistics point of view, the quantum potential formulation can be
written as:

V (X) = E − d

2
+
∑N

i=1 ‖X−Xi‖2P (X|Xi)
2σ2 (4)

where P (X|Xi) is the a posteriori probability for X, given the data samples
{Xi, i = 1, . . . , N}. This expression represents the weighted Euclidean distance
from X to a set of given data samples, where the weights are represented by
its a posteriori probabilities. This resulting function models the hypersurface
of the potential function produced by the quantum clustering algorithm that
depends on the bandwidth σ. Data clusters are indicated by maxima in (1) and
by minima in the quantum potential from (3).

3 Bayesian Estimation of the Bandwidth

Estimating the bandwidth in KDE is very important, particularly in applica-
tions where we need to detect the local extrema of the pdf. Classical statistics
estimation methods such as those using the quality-of-fit and plug-in are known
to provide biased estimates for the bandwidth leading to either spurious bumpi-
ness or oversmoothing in the resulting pdf approximation [6,7,9]. In this study
we propose a Bayesian approach for the estimation of the scale σ.

3.1 Defining Local Neighbourhoods

The proposed approach considers that the bandwidth σ can be associated with
the local data spread, which is statistically characterized by the variance. Let us
consider that the bandwidth is modelled by the a posteriori probability density
function p(s|X), where s is the statistical variable associated with the bandwidth,
and X represents a data sample. Because the bandwidth determines the local
smoothness in the resulting pdf approximation, it should be calculated from a
data subset defined locally. Let us consider K, the number of nearest neighbours
to a specific data sample Xi. All the other data samples are ordered according
to their Euclidean distance to Xi. The proposed approach estimates the ker-
nel bandwidth using the statistics of the variances corresponding to K-nearest
neighbours (KNN) data sample populations [13], where K < N .

Let us assume n neighbourhoods of various sizes {Kj, j = 1, . . . , n}. We define
a probability density function of the bandwidth p(s|X) that is expressed as a
pseudo-likelihood of the form:

P (s|X) =
n∏

j=1

P (s|XKj ) (5)
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where P (s|XKj ) represents the probability of the bandwidth depending on Kj

nearest neighbourhood data samples to XKj . These probabilities can be evalu-
ated over an entire range of Kj :

P (s|XKj ) =
∫

P (s|Kj ,XKj )P (Kj |XKj )dKj (6)

and after using the Bayes rule we obtain:

P (Kj |XKj ) =
P (XKj |Kj)P (Kj)

P (XKj )
(7)

where P (XKj |Kj) is the probability of the data sample population depending on
the specific neighbourhood size. In the following we consider P (Kj) as a uniform
distribution limited to the range [K1,K2].

The bandwidth estimation approach consists of three steps which are outlined
in the graphical model from Figure 1. In our case, the only necessary elements
are the bounds of the uniform distribution characterizing P (Kj), as given by
Kj ∈ [K1,K2], j = 1, . . . , n.

K

N X

α     βK

^

KNN Maximum
log−likelihood

s

σ

K

j

1 s

s j

2

P ( K  ) P (  | K  , X )

Fig. 1. Graphical model describing the stages for estimating the bandwidth σ̂

3.2 Statistic Modelling of the Local Variance

After sampling Kj from the uniform distribution P (Kj), we randomly sample
the given data set {Xi, i = 1, . . . , N} and consider these samples as centers for
evaluating their Kj-nearest neighbours (KNN). The Kj-nearest neighbours are
selected according to their Euclidean distances to sampled Xi′ . This results in
data sets XKj for which we calculate the variance as:

si =

Kj∑
k=1

‖Xi,(k) −Xi′‖2

Kj − 1
(8)
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where {Xi,(k), k = 1, . . . ,Kj} are the nearest neighbours to the sampled data
Xi′ . The estimate si from (8) is considered as a random variable, whose statistics
can be used for inferring the bandwidth σ̂. The main idea behind the proposed
methodology is that the bandwidth should be a measure depending on the dis-
tribution of local data variance.

The distribution of variances for data samples that are generated indepen-
dently from the Normal distribution with mean 0 and variance 1 are modelled
by the Chi-square distribution. Gamma distribution is a generalization of the
Chi-square distribution, and is suitable for modelling distributions of data sam-
ple variances in the case when we have no knowledge about the underlying data
distribution. Due to its generality, Gamma distribution can model the band-
width distribution for kernels that are not necessarily Gaussian. The Gamma
probability density function is given by the following expression:

P (s|α, β) =
βαsα−1

Γ (α)
e−βs (9)

where s ≥ 0, α > 0 is the shape parameter and β > 0 is the scale parameter of
the Gamma distribution. Γ (·) represents the Gamma function:

Γ (t) =
∫ ∞

0
rt−1e−rdr (10)

After calculating the local variance for each of the data subsets describing
P (s|XKj ) and after taking into account P (Kj), when varying uniformly Kj ∈
[K1,K2], we form a data set corresponding to the random variable s calculated
as in (8). The proposed approach relies on fitting the Gamma pdf from (9) to
the resulting empirical distribution of si.

3.3 Estimating Gamma Distribution Parameters

Two methods have been proposed for estimating the parameters of a Gamma
distribution: data moments and the maximum likelihood estimation [14]. The
data moments method lacks the efficiency required for estimating the shape
parameter of the Gamma distribution. The likelihood function corresponding to
the distribution from (9) is:

L(α, β) =
M∏
i=1

p(s|α, β) =
βαM

ΓM (α)

[
M∏
i=1

si

]α−1

e−β
∑M

i=1 si (11)

where we consider M data samples {si|i = 1, . . . ,M}, each representing the
variance of a local neighbourhood, calculated according to equation (8). We
estimate the parameters α and β by equating the likelihood derivatives to zero
resulting in the following system of equations:⎧⎪⎪⎨⎪⎪⎩

ln(α̂)− Γ ′(α̂)
Γ (α̂)

+ ln

[
(
∏M

i=1 si)1/M

s

]
= 0

β̂ =
α̂

s

(12)
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where s is the sample mean for the variable s:

s =
∑M

i=1 si

M
(13)

The third term from the first equation of the system provided in (12) is the
logarithm of the ratio between the geometric and arithmetic means. The first
nonlinear equation from (12) is solved using the Newton-Raphson iterative al-
gorithm with respect to α̂, [14]. This results in the following updating equation:

α̂t+1 = α̂t −
ln(α̂t)− Ψ(α̂t) + ln

[
(
∏M

i=1 si)1/M∑M
i=1 si

]
1/α̂t − Ψ(α̂t)

(14)

where Ψ(α̂t) is the Digamma function, which represents the logarithmic deriva-
tive of the Gamma function:

Ψ(α̂) =
Γ ′(α̂)
Γ (α̂)

(15)

where Γ (·) is provided in (10) and Γ ′(·) represents its derivative. After estimat-
ing α̂ at the convergence of (14), we replace it in the second equation from (12)
and estimate β̂. A good initialization for the Newton-Raphson optimization is
achieved when using the moments method estimate for α̂, [4]. The Gamma dis-
tribution defined by the parameters α and β is used afterwards for inferring the
kernel bandwidth.

4 Experimental Results

The proposed methodology of bandwidth selection is embedded into three dif-
ferent KDE based methods: classical kernel sum, mean shift and quantum clus-
tering. In the first example we consider phase-shifting-key modulated signals
(8-PSK) which correspond to 8 clusters, whose centers are located radially at
equal angles from each other. The perturbation channel equations for 8-PSK
signals assuming interference are :

xI(t) = I(t) + 0.2I(t− 1)− 0.2Q(t)− 0.04Q(t− 1) +N (0, 0.11)
xQ(t) = Q(t) + 0.2Q(t− 1) + 0.2I(t) + 0.04I(t− 1) +N (0, 0.11)

where (xI(t), xQ(t)) makes up the in-phase and in-quadrature signal compo-
nents at time t on the communication line, and I(t) and Q(t) correspond to
the signal symbols and where we also consider additive Gaussian noise with
SNR = 22 dB. We have generated 960 signals, by assuming equal probabilities
for all inter-symbol combinations. After modelling the local variance using the
Gamma distribution we use its mean as a bandwith and embed it into the three
KDE based methods. Consequently, we segment the resulting potential function
into the component clusters, each associated with a signal. The kernel sum and
quantum potentials, calculated according to (1) and (4), for the kernel sum and
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Fig. 2. Blind detection of 8-PSK modulated signals using various methods. The inter-

mediate mean shifts are shown by “+” while the mean shifts obtained at convergence

are indicated with larger circles in (b).
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Fig. 3. Finding the number of modes in corrupted 8-PSK data

quantum clustering, respectively, are displayed in Figs. 2(a) and 2(c), while the
mean-shift intermediary and final results are provided in Fig. 2(b).

By looking to local maxima in the potential function surfaces we identify the
modes, each corresponding to a source signal when using all three computational
intelligence approaches described in Section 2, and when varying the bandwidth
σ. The number of detected modes for the corrupted 8-PSK data are shown in
Fig. 3. The range of σ̂, estimated according to various intervals of K, is shown
in between two dashed vertical lines in each of the plots from Fig. 3. A series
of bandwidth estimators are considered for the given data and the resulting
estimates are provided in Table 1. The bandwidth estimates include the classical
rule-of-thumb bandwidth σ̂ROT = 1.06S/N1/5, where S is the standard deviation
of the data set and N is the number of data, and Silverman estimate σ̂SROT [7].
Other comparative bandwidth estimators are the Terrell bandwidth σ̂TER from
[5] and Sheather and Jones from [10] which is denoted as σ̂SJ . The “Rule-of-
Thumb” and “Direct Plug-in” methods from [11] are denoted as σ̂RSW−ROT

and σ̂RSW−DPI . The bandwidth estimated by using the proposed methodology
is denoted as σ̂G. When looking to the valid mode range 8-PSK there are three
methods which provide suitable bandwidth for the classical kernel sum approach
but none for the other two KDE-based methods. It can be observed that the
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Table 1. Bandwidth estimation using various methods

σ̂ROT σ̂SROT σ̂TER σ̂SJ σ̂RSW−ROT σ̂RSW−DPI σ̂G

0.1729 0.1469 0.1867 0.0850 0.0470 0.0696 0.19-0.36

Table 2. Blind detection of 8-PSK modulated signals

Method MSESM MSEO

Kernel sum 0.0024 ± 0.0007 0.0041 ± 0.0007

Mean shift 0.0168 ± 0.0097 0.0200 ± 0.0109

Quantum clustering 0.0009 ± 0.0003 0.0022 ± 0.0004

(a) Wales (b) Mean-shift (c) Quantum clustering.

(d) Titan (e) Mean-shift (f) Quantum clustering.

Fig. 4. Topographical segmentation of SAR images from Wales (a) and Titan (d) using

the mean shift in (b) and (e), and quantum clustering in (c) and (f)

results provided by the proposed bandwidth estimation method is almost always
included in the right range of values for all three KDE methods according to the
plots from Fig. 3. Table 2 provides the bias and confidence intervals in blind
detection of modulated signals for 8-PSK when estimating locations of cluster
centers. We calculate the mean square error between the detected centers and the
sample mean (MSESM) as well as the mean square error between the cluster
centers and the ground truth centers (MSEO). The number of clusters was
always estimated correctly as 8. As it can be observed from Table 2, quantum
clustering provides better results than the other methods.

In another application we consider Synthetic Aperture Radar (SAR) images
representing terrain information from Wales and Titan, a moon of Saturn, as
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Fig. 6. Quantum potential for the topography orientaion from the SAR images

shown in Figs. 4(a) and 4(d), respectively. We aim to identify various topographic
regions in these images according to the local surface orientation clustering. In
[12] a surface orientation estimation method was used for SAR images of terrain.
The histograms of local neighbourhood distances for Kj ∈ [N/20, N/2], where
N is the data size, are shown when fitted to Gamma distributions in Figs. 5(a)
and 5(b) for Wales and Titan data, respectively. The quantum potentials ψ(x)
from (1) are shown in Figs. 6(a) and 6(c) for the two data sets. The vector field
of surface normals is segmented based on the vector orientation similarity. Each
segmented region corresponds to a local maxima in ψ(x) or to a local minima
in V (x). The segmentation of SAR images in topographic regions based on the
orientation of the local surface normals is shown in Figs. 4(b) and (e), when using
the mean shift method, and in Figs. 4(d) and (f), for the quantum potential.
Both methods use the estimated kernel bandwidth as shown in the plots from
Fig 5 for each of the images, respectively.
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5 Conclusions

This paper proposes a methodology for estimating the bandwidth in nonpara-
metric modelling. Three different kernel-based non-parametric estimation meth-
ods are considered: kernel sum, mean shift and quantum clustering. The third
approach employs the Shrödinger partial differential equation for calculating
the quantum potential in a certain location. For estimating the scale parameter
we employ a Bayesian approach by calculating variances of sampled K-nearest
neighbourhoods. The prior for K is assumed to be a bounded uniform distribu-
tion. We fit the distribution of variances with a Gamma function and evaluate its
parameters using maximum log-likelihood estimation. The proposed algorithm
is applied in artificial data and for segmenting vector fields of surface normals
extracted from radar images of terrain.
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Abstract. This paper presents an application of multiple kernels like

Kernel Basis to the Relevance Vector Machine algorithm. The framework

of kernel machines has been a source of many works concerning the merge

of various kernels to build the solution. Within these approaches, Kernel

Basis is able to combine both local and global kernels. The interest of

such approach resides in the ability to deal with a large kind of tasks

in the field of model selection, for example the feature selection. We

propose here an application of RVM-KB to a feature selection problem,

for which all data are decomposed into a set of kernels so that all points

of the learning set correspond to a single feature of one data. The final

result is the selection of the main features through the relevance vectors

selection.

Keywords: Relevance Vector Machine, Multiple Kernel, Kernel Basis,

Feature Selection.

1 Introduction

During the last decade, Kernel Machines have been developed significantly, be-
cause of their ability to deal with a large variety of data, for example Sup-
port Vector Machines [12], kernel PCA [9] or kernel Fisher discriminant [7].
Approach involved by many kernel machines aims at defining a prediction func-
tion according to a weighted linear combination of kernel functions : f(x) =∑n

i=1 wi ·K(x,xi) +w0. Among the cited algorithms, the SVM are particularly
well known for their performance and their ability to face a large variety of
dataset problems.

However, using a single kernel can be a limitation for some tasks, since all
features are merged into a single kernel. To face this limitation, multiple kernel
framework aims at using a set of kernels, instead of a single one, [5], by using
a set of kernels. Lanckriet and Bach [1] have adapted this framework has been
particularly to SVM thanks to composite kernel, by proposing to build a linear
combination of kernels coming from various descriptors or a subset of data or a
set of kernels with different parameters. The prediction function is then of the
form : f(x) =

∑n
i=1 αi

∑k
j=1 βj ·Kj(x,xi) + b.

A probabilistic model has also been developped to deal with such composite
kernel [3], which shows the interest of such framework.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 255–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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However, using a composite kernel have some restrictions, since the same set
of kernels is used for all vectors of the solution, so that we can not merge global
and local kernels to define the solution.

We consider here an other definition of multiple kernel, namely the Kernel
Basis, which has been adapted recently to the Least Angle Regression Stepwise
algorithm [2] by Guigue et al. [13]. The aim is to define the original kernel by
concatenating a set of kernels, so that the algorithm can adapt a specific subset of
kernels for each vector of the solution. Compared with the composite kernel, the
kernel basis is able to deal both with local and global kernel. The prediction func-
tion of the kernel basis is then defined by : f(x) =

∑n
i=1

∑k
j=1 wi,j ·Kj(x,xi)+w0.

But the LARS algorithm imposes a regularization parameter which helps to
tune the complexity of the solution. The interest of such parameter is to limit
the number of vectors, but can also impose a cross validation step.

In this paper we are looking at the Relevance Vector Machine algorithm pro-
posed by Tipping et al. [11]. This method is based on a Bayesian approach which
expects to maximize the distribution probability according to the linear com-
bination of the relevance vectors. We propose here to define a multiple kernel
like Kernel Basis, and to adapt it to the RVM algorithm. The interest is to go
deeper in the model selection task, by applying a specific kernel for each relevance
vector, so that we can modeling the data distribution with more efficiency.

To show the interest of our approach, we will present some preliminary results
obtained for a feature selection task. The set of kernels is composed here by
computing one kernel for each feature of each data. The feature selection is
then operated by selecting the best kernels. We will compare the performance
obtained on three different benchmark datasets with the state of the art. Results
will show that the RVM-Kernel Basis is very promising, since it performs as well
as SVM composite kernel but implies also a more sparse solution. The sparsity
of the solution is a major advantage in such field of real time computation, for
example. A sparse solution has also a higher generalization capacity.

2 Relevance Vector Machine

In the first part, we will present briefly the RVM algorithm and the way to apply
a multiple kernel strategy. The relevance vector machine is a probabilistic sparse
kernel model that has been introduced by M. Tipping in 2000 [11,14].

The aim is to reveal the underlying distribution of a set of data {xi, yi}i=1...n,
where x ∈ R

d. Each data is associated with a label y defined by p(y|x) ∼
N (f(x), σ2), with the standard deviation coming from the addition of a gaussian
noise : ε ∼ N (0, σ2). The decision function is of the form :

f(x) =
n∑

i=1

wi · Φ(x,xi) + w0 (1)

with Φ a kernel function, w the coefficient associated to each support vector.
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So we can rewrite the probability of the data according to the parameters :

p(y|w, σ2) =
1

(σ
√

2π)n
exp− 1

2σ2 ‖y−Φw‖2
(2)

with Φ a n× (n + 1) matrix containing the kernel and a bias : Φ =

⎡⎢⎣ 1
...
1
K

⎤⎥⎦ .

The key of this approach is to define a prior on each coefficient wi. According
to the Automatic Relevance Determination[6] mechanism, all coefficient which
are unecessary are pruned. This mechanism can explained the sparsity of the
solution, since it prunes all parameters that add complexity to the probabilistic
model. By pruning coefficients, the likelihood is then maximised regarding the
input data. For further information the reader can refer to [11], this paper also
presents the adaptation of this algorithm for the classification case.

3 Extension of RVM to Multiple Kernel - Kernel Basis

A recent approach in SVM pushed by Lankriet and Bach [1] , introduced the
notion of multiple kernel learning, more precisely a composite kernel, by consti-
tuting a set of kernels, where each kernel has been obtained with different kernel
formulation or parameters. The prediction function is then written :

f(x) =
n∑

i=1

αi

k∑
j=1

βj ·Kj(x,xi) + b. (3)

The solution is build around a composite kernel, that is to say that only one
kernel is applied to all vectors. This approach has been proposed to tackle the
descriptor fusion problem, by merging in a single kernel a set of kernels coming
from different descriptors. It can also solve the problem of kernel parameter
setting, since we can propose kernels from the same data but with a different
parametrization.

However, this method assigns the same kernel for all support vectors without
taking into account the impact of local kernels. Our problematic is to be able to
assign specific kernel for each vector, which can be written:

f(x) =
n∑

i=1

k∑
j=1

wi,j · Φj(x,xi) + w0. (4)

Instead of using a couple of weighting coefficients (w ∈ R
n and β ∈ R

d), this
formulation is based on a weighting coefficient w ∈ R

n×d. We can then apply for
each vector a specific set of kernels.

The difference between composite kernel and kernel basis is illustrated on
figure 1, where one can see that the kernel basis is able to assign for each vector
a specific kernel which considers only one feature (RV 1 and 2) or two features
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Fig. 1. This example shows the difference between RVM Kernel Basis (left) and SVM

Composite Kernel (right). The Kernel Basis is able to adapt a specific kernel for each

vector, namely a kernel based on ’x’, a second on ’y’ and the third combines ’x’ and

’y’. The composite kernel aims at defining a unique kernel for all vectors.

(RV3), whereas a composite kernel can only consider the same kernel for all
vectors.

One possible way to write this function is to define a kernel basis as described
in [4,13]. This definition aims at decompose the kernel Φ into different blocks.
The multiple kernel is then composed like a Kernel Basis :

Φ =

⎡⎢⎣ 1
...
1

K1 K2 . . . Kk

⎤⎥⎦ , (5)

for k kernels when a bias is added. This matrix has a size of n× (n× k), so we
can associate a weight wi with each column. If we consider that all columns are
independant, we can finally write the prediction function with :

f(x) =
n∗k∑
i=1

wi · φi(x) + w0. (6)

This formulation shows that we can deal with relevance vectors, each one defined
by at least one kernel function. Since the formulation of Tipping can deal with
non-Mercer kernels, the extension of RVM to multiple kernel is well adapted
with a Kernel Basis approach.

4 Experimental Results

In the last section, we will present some results to illustrate our approach. We
propose here to use the RVM-Kernel Basis for a task of feature selection. Starting
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from a dataset {xi, yi}i=1..n of n data x ∈ R
d, the aim is to build a kernel Φ

which has a size of n rows and n × d columns. Applying the RVM algorithm
helps us to select the vectors to build the solution.

The more pertinent features are those corresponding to the selected vec-
tors, so that we can simply count the number of times a features has been
selected.

We compare the performance with a composite kernel approach, namely the
SVM-MKL. The kernel set is constituted with d kernels of size n×n. The feature
selection is operated here by considering the value of the weighting coefficients
β (see eq. 3) associated with each kernel in the linear combination. The weight
of a feature is directly linked with the β value. We are using the SVM-MKL im-
plementation for Matlab proposed by Rakotomamonjy et al. [8], that we already
used for a task of image descriptors fusion [10].

We are using some datasets available on the UCI website (http://archive.
ics.uci.edu/ml/) which are frequently used for machine learning benchmark :
Boston Housing, Auto Mpg and Blood transfusion.

For each dataset, we first evaluated the performance of a single kernel, that
is to say when only one kernel is used for all features. We tested different pa-
rameters for the kernel, namely a gaussian kernel for different bandwidths and a
polynomial kernel of different orders. So that we obtained a reference to assess
the multiple kernel approach. We carried a 4 fold cross validation for each kernel
parameter.

In order to make our results comparable, we organized randomly the cross
validation but used the same data for all tests. Concerning the multiple kernel,
we set the same kernel parameter for all features, which can be considered as sub-
optimal, but since our data are normalized to obtain a mean of 0 and a standard
deviation of 1, this compromise is justified. At the moment, we are limited by the
memory aspect of such algorithms, but this aspect is a perspective for our future
works, by integrating the kernel parameter choice during the optimization.

Since the SVM algorithm involves some parameters within the optimization
procedure, we have to set the weight of the misclassified points of the learning
set (C), and the width of the regression tube (ε). We tried an exhaustive list
of values for each parameter and retained the parameters corresponding to the
best performance.

To estimate the performance, we have computed the mean squared error, for
the regression case, and the AUC value, that is to say the area under the roc
curve for the classification case.

The multiple kernel set is built differently in SVM and RVM. For the SVM,
we define one kernel for each feature (which produces a kernel of size n×n× d),
so that the SVM will select a subset of kernels and a set of support vectors. For
the RVM the kernel basis has an original size of n× (n× d), and the algorithm
selects a subset of vectors among the n × d available. This can explained the
fact that the percentage of relevance vectors have no correspondence between
the single and kernel basis cases.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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Auto MPG. The first dataset : AUTO MPG estimates the pollution emission of
a car, by considering some mechanical characteristics of a vehicle. The database
contains 398 cars, each one described by 7 features.

We have reported in table 1 the performance obtained for RVM and SVM
approach for both single and multiple kernel. We report only the performance
corresponding to the best parameter set (C, ε) for the SVM.

One can see that when using a single kernel, the SVM obtained a better score
with an error of 2.74 against 2.84 for the RVM. When we use a multiple kernel,
both algorithms improved their performance, with a significant improvement for
the RVM-KB, which reached an error of 2.7.

However, we have to note that, due to its sparse solution, the RVM requires
only 101 vectors, that is to say 101 scalars, to build the solution. The SVM
requires a larger solution that implies 6 kernels and 292 points, that is to say
1752 scalars. In terms of percentage, the RVM retains 4.2% of the learning
set against 97% for the SVM. The RVM percentage is computed as follows :

#RV

#Data×%CrossV alidation×#kernels
=

101
398× 3/4× (7 + 1)

.

Table 1. Performance obtained for AUTO dataset. We report here for each algorithm,

for both single and multiple kernel the error and the size of the solution, according to

different kernel parameter setting.

AUTO
RVM SVM

Single Kernel Kernel Basis Single Kernel

ε = 0.2 , C = 100

Composite Kernel

ε = 0.1, C = 10
Kernel error #RV (%) error #RV (%) error #SV (%) error #SV (%) #kernels

gaussian 0.1 24.69 82 (27.55%) 3.14 1128 (51.4) 7.68 293 (98.16) 3.11 293 (98.2) 7

gaussian 0.5 8.99 174 (58.29%) 3.06 549 (23) 4.00 279 (93.4) 2.84 291 ( 97.4) 7

gaussian 1 4.47 64 (20.85%) 2.74 352 (14.8) 3.34 273 (91.46) 2.70 292 (97.8) 6

gaussian 2 2.84 20 (6.70%) 2.74 222 (9.3) 2.78 272 (91.12) 2.8 293 (98.4) 1

gaussian 3 2.86 18 (6.20%) 2.77 186 (7.8) 2.74 272 (91.12) 2.82 294 (98.6) 1

gaussian 5 2.97 13 (4.27%) 2.9 664 (27.8) 2.79 268 (89.78) 2.9 294 (98.6) 1

gaussian 10 3.20 18 (6.20%) 2.86 175 (7.3) 2.89 277 (92.80) 3.25 292 (97.8) 1

gaussian 20 5.20 8 (2.76%) 2.84 254 (10.6) 3.27 283 (94.81) 3.78 294 (98.6) 1

poly 1 23.80 1 (0.34%) 23.8 0.75 (0.03) 3.46 280 (93.80) 3.47 295 (98.8) 1

poly 2 2.93 18 (6.20%) 2.83 118 (4.9) 2.82 273 (91.46) 2.81 294 (98.6) 1

poly 3 3.40 44 (14.74%) 2.70 101 (4.2) 5.48 275 (92.13) 4.96 294 (98.6) 1

We have detailed on table 2 the mutiple kernel solution for RVM and SVM.
We have reported the number of relevance vectors for the RVM and the total
weight according to each feature. We simply added all the weights for all vectors
using a given feature. Concerning the SVM, we report the weighting coefficient
of each kernel of the composite kernel. This coefficient is directly linked to the
feature pertinence. As we can see, SVM put a more important weight to the
last kernel which contains all features (β = 0.75), but we can observe some
similarities by comparing RVM-KB and SVM-MKL. For example, kernels 5 and
7 are neglicted in both cases, whereas kernels 1, 3 and 4 have a major weight.
Considering the features 5 and 7 : acceleration and origin, this selection seems
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Table 2. Auto MPG : details of the RVM-KB and SVM-MKL solution. For each

feature, we report the number of relevance vectors and the cumulated weights, and

for the SVM-MKL we detail the weight of each kernel for the linear combination of

kernels.

RVM-KB SVM-MKL

kernel Feature(s) #RV
∑

i |wi| β

1 # cylinders 18.2500 0.1886 0.0081

2 displacement 13.2500 0.0596 0.0323

3 horsepower 10.2500 0.2772 0.0289

4 weight 7.7500 0.2242 0.1053

5 acceleration 1.0000 0.0029 0

6 model year 38.2500 0.2147 0.0724

7 origin 0 0 0

8 [1-7] 12.2500 0.0328 0.7530

to be valuable, since the objective is to estimate the consumption of the car, so
the other attributes seem to be more significant, namely the weight, horsepower
or cylinders.

Boston Housing. The second dataset : Boston Housing, has been originally
performed in the RVM article of Tipping. This regression task aims at predicting
the value of a residential house by considering a set of features describing the
environment, local supplies or roads. 506 prices are given, each one described by
13 features.

As we said above, we tried different kernel parameters to estimate the perfor-
mance with a single kernel. We then accomplished the same procedure with the
multiple kernel approach.

We report the results on the table 3 for both single and multiple kernel. Using
only a single kernel, SVM performs better than RVM with an error of 3.27
against 3.81. For the multiple kernel approach, both SVM and RVM increase
their performance, but the RVM has a major gain and reached an error of 3.22.
Another point is the sparsity of the solution, which is also in favor of the RVM
due to the lower number of points necessary : 322 scalars for the RVM against
375× 7 for the SVM.

We have also reported the details of the multiple kernel solution in table 4,
which clearly shows that both algorithms are able to select the more significant

Table 3. Best performance for single and multiple kernel for both RVM and SVM. For

each case, we report the kernel parameter, the performance (error) and the size of the

solution.

BOSTON Kernel error #RV (%)

RVM Gaussian 5 3.81 30 (7.8)

RVM-KB Gaussian 2 3.22 322 (6.1)

BOSTON Parameters Kernel error #SV (%)

SVM ε = 0.05,C = 100 Gaussian,3 3.27 373 (98)

SVM-MKL ε = 0.01,C = 10 Gaussian,1 3.26 375 (98)
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Table 4. Details of the RVM-KB and SVM-MKL solution for the Boston dataset. For

each feature, we report the number of relevant vectors and the cumulated weights, and

for the SVM-MKL we detail the weight of each kernel for the linear combination of

kernels.

RVM-KB SVM-MKL

Kernel Feature(s) #RV
∑

i |wi| β

1 Criminal rate 5.7500 0.0050 0.0040

2 Residential % 74.2500 0.0005 0

3 Industrial % 13.0000 0.0014 0

4 River distance 11.7500 0.0006 0

5 % NOx 16.0000 0.0037 0.0104

6 # rooms 15.0000 0.0035 0.1271

7 Age 3.5000 0.0008 0

8 Distance 0 0 0

9 Road 61.0000 0.0200 0

10 Tax 21.2500 0.0027 0.0181

11 Teachers 10.7500 0.0016 0.0185

12 % blacks 1.2500 0.0003 0

13 Lower salary 14.7500 0.0085 0.0939

14 [1-13] 73.7500 0.9513 0.7281

features. To assess efficiently the multiple kernel, we added to the set of kernels
a kernel computed from all data. We have to precise that the bandwidth of this
kernel is applied for each element of the vector, so that the bandwidth is com-
parable between single feature kernels and all features kernels. It is interesting
to note that SVM and RVM obtained some similarities beyond their selection,
since the last kernel (14 containing all features) obtained an important weight,
so that it can be assimilated as a single kernel, but the performance grows up
because of adding some single features.

In terms of feature selection, the SVM-MKL selected 7 kernels out of the 14
originals, and the RVM retained 9 main kernels. The 5 last kernels got a minor
weight (namely the kernels 2, 4, 7, 8 and 12). On top of that, SVM totally
removes kernels 2, 3, 4, 7, 8, 9 and 12. We can then notice the interest of RVM-
KB, which is able to add minor kernels, that is to say local kernels, in opposition
to the SVM which generally prefers to suppress this kind of kernel (β = 0).

Blood transfusion. The last experiment is a classification task based on the
Blood Transfusion dataset. The aim of such database is to predict if a person
has donated or not its blood in March 2007. The set contains 748 persons which
are characterized by 4 features, concerning the frequency and the volume.

Since it is a classification problem, we give the performance by considering
the area under the roc curve (AUC). We also report the size of the solution.

As shown on table 5, the RVM algorithm performs better than the SVM, in
both single and multiple kernel case. We have to note that the SVM-MKL does
not really takes benefit from the multiple kernel approach, since the performance
is not increasing at all. This can be explained by the fact that all features are
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Table 5. Performance obtained on the dataset BLOOD. We give the AUC value for

the best kernel parameter.

BLOOD Kernel AUC #RV (%)

RVM gaussian 10 0.744 3 (0.54)

RVM-KB poly 3 0.75 247 (11.02)

BLOOD Parameter Kernel AUC #SV (%)

SVM C = 10 gaussian 10 0.718 299 (55)

SVM-MKL C = 100 linear 0.71 378(67)

necessary, as shown on table 6. On top of that, the RVM is sparse, since for a
single kernel only 3 vectors are necessary. However, the multiple kernel lost this
sparsity, since 247 vectors are used. It should be noticed that in this case, it
means 247 scalars, since we have originally 2241 vectors in the learning set, one
vector beeing associated with one feature only. The sparsity can be explained by
the fact that this set seems to have few overlap, considering also the SVM that
retains around 50% of the learning set.

Table 6. Details of the RVM-KB and SVM-MKL solution for the Blood dataset. For

each feature, we report the number of relevant vectors and the cumulated weights, and

for the SVM-MKL we detail the weight of each kernel for the linear combination of

kernels.

BLOOD RVM-KB SVM-MKL

Kernel Feature #RV
∑

i |wi| β

1 Recency 22 0.6678 0.2484

2 Frequency 104 0.7228 0.1983

3 Monetary 104 0.7228 0.2500

4 Time 16 0.6656 0.2499

Talking about feature selection, this experiment is interesting because both
RVM-KB and SVM-MKL made the same selection. As shown on table 6, all
features are necessary to build the solution, and both give a similar weight to
all features. It means that all features are relevant for this task.

This last experiment also point out the fact that one have to take care when
building the kernel set. We have to pay attention to the fact that computing
each kernel from a single feature can fail, since we loose dependancy between
features. At the moment, we have to constitute the set of kernels for each fea-
ture combination. For example, if we have two features x1 and x2, the kernel
set is composed of K(x1, .), K(x2, .) and K(x12, .). This point is a particular
perspective, that we propose to face in a near future.

5 Conclusion

In this paper, we proposed to extend the Relevance Vector Machine to multiple
kernel as a Kernel Basis. The interest is to build a solution which combines both
local and global kernels, so that each vector uses a specific set of kernels, whereas
a composite kernel can only deal with the same kernel for all vectors.
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This approach is very useful for model selection tasks, like kernel parameter
setting or feature selection. The results we obtained on such problem have shown
that this approach is very promising since we obtained equivalent and sometimes
best performance compared to SVM using a composite kernel, with a major
advantage concerning the size of the solution. Actually, due to the sparsity of
RVM, the solution is really smaller, which is very interesting by considering real
time application, for example. The sparse aspect has also other interests that we
propose to exploit in a near future concerning the explanation of the solution.

The main drawback of the RVM-KB, resides in the computational complexity,
since we have to face a large matrix inversion, so that we can have a limitation.
However, due to the parametrization of the SVM, learning time is comparable
since we have to test different values for the SVM parameters. A last perspective
is then linked with the large dataset, that we will have to face.
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Abstract. The use of engineered nanopores as sensing elements for

chemical and biological agents is a rapidly developing area. The dis-

tinct signatures of nanopore-nanoparticle lend themselves to statistical

analysis. As a result, processing of signals from these sensors is attract-

ing a lot of attention. In this paper we demonstrate a neural network

approach to classify and interpret nanopore and ion-channel signals.

Keywords: Nanopore devices, Ion-channel sensors, Denoising using

wavelets, PCA, WHT, Sensing using nanopores and neural networks.

1 Introduction

Resistive pulse sensing or Coulter counting [1] is a wide research area centered
on nanopores. Though originally developed for counting particles suspended in
a fluid using micrometer sized pores, Coulter counting has recently been applied
at the nanoscale level [2]. Through the reduction of device aperture size to the
nanometer range, Coulter counting experiments of small particles such as DNA
molecules [3,4] and bovine serum albumin (BSA) [5] through solid state devices
as well as virus particles [6] and DNA [7] through polymer materials have been
demonstrated. In the Coulter counting experiments, individual molecules are
constrained to pass through a small constrained electric path in a suspending
fluid as shown in Fig 1(left panel). As the molecule passes through the orifice,
it causes an increase in resistance which leads to a drop in the current as shown
in Fig 1(right panel). By observing the curvature of these spikes, the size, type
and the concentration of the particles can be determined [8,9].

Ion channel proteins are naturally occurring nanopores that mediate the flow
of ions and molecules across membranes. The utility of ion channels for stochas-
tic sensing has been pioneered by Bayley and several of his collaborators [10].
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C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 265–274, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Graphical Rendering of the Coulter counter (Reproduced from [8])

Ion-channels can be engineered to act as biosensors that can detect metal ions
and organic molecules such as proteins [10,11,12]. Potential applications of ion-
channel sensing include detection of reactive molecules in pharmaceutical prod-
ucts, chemical weapons, pesticides and foodstuffs [13].

An example of an engineered pore is shown in Fig 2. An applied potential to
the pore creates a small current flow. A binding site for an analyte is engineered
into each pore. An analyte binding event to the pore causes the current to be
modulated as shown in the trace below the figure. The signature of the signal
through the pore is generally different for distinct analytes. The frequency of
occurrence of the binding events was shown to correlate with the concentration
of the analyte while parameters of the current, such as the mean duration and
amplitude correlate with the type of the analyte. Features of interest fall into
two categories: switching and non-switching [12,13,14], both of which contain in-
formation that may be important in detecting an agent. The conventional mod-
eling procedures used to classify the ion-channel signals are dwell-time analysis

Fig. 2. Single Engineered Pore (Reproduced from [10])
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[15,16,17] and Hidden Markov Models (HMMs) [18,19,20,21]. Feature extraction
for ion-channel signals have been explored in [22,23].

In this paper, we present a wavelet transform based approach for denoising
both nanopore and ion-channel signals. A two-step feature extraction process
using Walsh Transforms and Principal Component Analysis (PCA) is also tested
for ion-channel signals. Robust analyte classification is carried out for both cases
using Support Vector Machines (SVMs).

2 Data Processing for Nanopore Signals

2.1 Data Generation

Nanopore data was generated using a Coulter counting element which was con-
structed using a Teflon chamber with two baths surrounding the nanopore. The
two baths were filled with 0.1M KCl electrolyte solution. The nanopore used for
the Coulter counting experiments was patterned to a diameter of 300nm but the
measured diameter was 212 nm. The recordings were taken using the Axopatch
200B. Voltage traces were incremented from 0-200 mV in steps of 20 mV and
each trace lasted 1s. The input signal was filtered with a 5 kHz low pass filter
before the A/D conversion stage. The sampling rate was 50 kHz.

2.2 Wavelet Transform Based Signal Denoising

In the Coulter counting experiment considered in this paper, the baseline cur-
rent is at the pA level. Due to the low signal-to-noise (SNR) ratio, the signal
peaks, which indicate the transition events, can be easily corrupted. This creates
difficulties in measurement of peak parameters such as peak height, width and
shape. Hence signal denoising is essential to improve the sensitivity and accuracy
of the Coulter counters. Wavelet based denoising techniques for Coulter counting
experiments have been discussed in [24]. Denoising using the Discrete Wavelet
Transform (DWT) is a nonlinear operation and involves the following steps:

– Use a suitable wavelet transform on the noisy data to produce the wavelet
coefficients.

– Select an appropriate threshold depending on the noise variance and perform
a thresholding operation of the wavelet coefficients to remove the noise

– Zero-pad the signal appropriately and perform the inverse DWT on the
thresholded coefficients obtained from the previous step to get the signal
estimate.

While traditional linear filtering techniques provide a trade-off for noise suppres-
sion against a broadening of signal features, denoising using the DWT preserves
the sharpness of features in the original signal. The type of wavelet function,
the threshold limits and the level of decomposition is determined on a case by
case basis. In our simulations, we determined, using cross-validation, that the
biorthogonal wavelet gave the best performance. To capture most of the fea-
tures in the signal, the level of decomposition was chosen to be 3. Fig 3 shows
the reproduced signal for a sample frame.
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Fig. 3. Nanopore signal Denoising using the Discrete Wavelet Transform (DWT)

2.3 Feature Extraction: Baseline Current, Peak Height and Peak
Width

The useful features to be extracted from the nanopore signals are the baseline
current, peak height and peak width. The combination of baseline current and
height of the peak indicates whether a bead has passed through the nanopore
completely or not. The peak amplitude is proportional to the baseline current;
i.e. greater the baseline current I, greater will be the drop in current ΔI for
beads of the same diameter [9]. The width of the peak is proportional to the
diameter of the bead [9]. Fig 4 shows a sample event, where the bead collided
with the pore but bounced back (A) and a few milliseconds later passed through
the pore (B).

2.4 Event Classification Using Neural Networks

Support vector machines (SVMs) are widely used for solving binary classifi-
cation problems [25]. SVMs are decision machines that rely on transforming
lower-dimensional data into higher dimensional patterns, so that data from two
categories can always be separated by a hyperplane, in accordance with Cover’s
Theorem [26].

1.36 1.365 1.37 1.375 1.38 1.385

x 10
4

10.4

10.45

10.5

10.55

10.6

10.65

Sample Index

Cu
rre

nt 
in 

pA

Consecutive Drops in Baseline Current with Different Amplitudes

 

 

Measured Signal
Denoised Signal

A

B

Fig. 4. Sample Nanopore Events
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The SVM uses the concept of the margin, which is defined to be the smallest
distance between the decision boundary and any of the samples [27]. The sup-
port vectors are the training samples that are closest to the decision boundary
and thus define the optimal separating hyperplane. In support vector machines
the decision boundary is chosen to be the one for which the margin is maxi-
mized. It can be shown that the larger margin minimizes the total generaliza-
tion error [26]. The choice of the nonlinear function that maps the input into a
higher-dimensional space is usually dependent on the problem domain. Usually
polynomial or radial basis functions are used to perform the mapping.

Experimental data for eight different bias voltages, ranging from 0-200mV,
with 40,512 samples at each bias voltage are available. A rectangular window of
size 1000 samples with no overlap was used to segment the data. In each segment,
peaks were extracted using a gradient method. Each peak was labeled either as
an event or a non-event. An event indicates that a bead passed through the
nanopore completely whereas a non-event indicates either: (i) a bead bounced
back instead of passing through the nanopore or (ii) a spike due to noise. In
the given dataset, 3979 peaks were extracted from the signals, out of which 75
peaks indicated events. Peak width, mean baseline current and drop in current
amplitude were chosen as features. The dataset was partitioned into a training
set (containing 34 events and 1923 non-events) and a test set (containing 41
events and 2056 non-events).

3 Data Processing for Ion-Channel Signals

3.1 Data Generation

Multiple recordings of OmpF ion channels of E. coli in a lipid bilayer across a
50 μm wide pore in silicon, sandwiched between reservoirs containing bathed in
a 1M KCl solution are used for generating experimental data. Each recording is
generated using a sampling rate of 10 kHz for 4 seconds and an applied voltage
of 200 mV. The current amplifier employed was a HEKA EPC-8, operating at
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Fig. 5. Top panel: Current Recording for the OmpF ion channel in a membrane across

a 50 μm wide pore, bathed in 1M KCL solution. Bottom panel: Ion-channel Signal

denoising using the Discrete Wavelet Transform (DWT).
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Fig. 6. Left Panel: Basic two class, four state model used by QUB to simulate two

analyte ion channel. Right Panel: 8000 ms simulation using QUB.

a gain of 1mV/pA, using a resistive feedback headstage. The input signal was
filtered using an 8-pole Bessel filter with a corner frequency of 1kHz before the
A/D conversion. The command voltage was generated by a National Instruments
6251 DAQ board.

As shown in Fig 5, we demonstrate that the Discrete Wavelet Transform can
be used for denoising ion-channel signals also using the same technique discussed
in Sec 2.2. The Haar wavelet, with the level of decomposition set to 8, was found
to give the best performance.

Since experimental data for two-analyte simulations are not yet available,
we have used the QUB scientific package to generate synthetic data [28]. Fig
6(left panel) shows a sample 4-state Markov model used for generating data
and a sample trace is shown in Fig 6(right panel). We constructed models to
simulate responses of two highly similar analytes which closely resemble the
authentic data. Utilizing multiple recordings, an input data matrix of dimension
400 × 10000 is formed by extracting four 10,000 point sequences of one second
duration from each recording for a total of 50 input files for each analyte.

3.2 Feature Extraction Using Principal Component Analysis

Signals are often processed in the transform domain as they offer attractive ben-
efits like compactness, reduction in computational complexity and robustness
to noise. Feature extraction from ion-channel sensor signals using the Walsh-
Hadamard Transform (WHT) has been described in [22]. The WHT is able to
represent signals with sharp discontinuities more accurately using fewer coeffi-
cients. For a given window size N , it was determined that 20% of the WHT
coefficients represents 90% of the signal energy. Thus by discarding the coeffi-
cients that do not contribute significantly to the signal energy, the size of the
dataset was reduced by 80%. Even after WHT is performed, further dimension-
ality reduction is required on the dataset. For example, N = 4096, the size of the
transformed dataset is 400×819. It is likely that many of the selected coefficients
are highly correlated and there is scope for further compaction.
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Principal components analysis (PCA) is a commonly used linear technique
for dimensionality reduction. It performs a linear mapping of multidimensional
data to a lower dimensional space while retaining as much as possible of the
data variability. It was determined that that the first 10 components account for
99% of the total variance. Thus we project the data on the bases represented by
the 10 principal components. Now the dimension of the dataset is 400×10. This
dataset is used as input to the pattern classification algorithms.

3.3 Analyte Classification

Since we are dealing with a binary classification problem, support vector ma-
chines (SVMs) were used in this case also. As mentioned earlier, the dataset
consists of 400 vectors. The transformed dataset is randomly permuted and
partitioned into a training set of 200 vectors and test set of 200 vectors. To
compensate for the small size of the dataset, m-fold cross-validation was used
for model selection [29].

4 Results

All simulations were run on MATLAB version 7.5. The Spider toolbox [30] was
used for classification using SVMs.

4.1 Nanopore Signals

The classification performance using SVMs are shown in Table 1. The best per-
formance was obtained using RBF kernels using a kernel width of 5. All the
events were captured correctly and only one non-event was wrongly labeled as
an event. The best performance using a polynomial kernel function (of order 5)
is also given in Table 1.

Table 1. Classification Performance on the Test Set

Kernel Used Classification (%)

RBF 97.56

Polynomial 95.13

4.2 Ion-Channel Signals

The goal of the SVM is to classify input data as quickly as possible and therefore
a smaller window length would be preferable. However, there has to be sufficient
transition data contained in the input window in order to be able to characterize
the signal. For this reason, for each scenario, three different window lengths, N =
4096, 2048 and 1024, were considered. The results of our simulations are shown
in Table 2. Polynomial kernels (of order 8) and RBF kernels (of width 6) were
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found to yield the best results. Our results indicate that as the window length
decreases, the error rate increases for all classifiers. This is due to the fact that
not only are less coefficient values being used to characterize the signal, but
fewer binding events are occurring giving rise to the possibility that there is not
enough signal data contained in the windowed segment.

Table 2. Classification Performance on the Test Set

Kernel Classification (%)

Used N = 1024 N = 2048 N = 4096

RBF 69.0 74.5 80.5

Polynomial 66.5 72.5 80.0

5 Conclusion

Denoising signals using DWT was demonstrated for nanopore signals. Three
features extracted from the peaks that occur in the signal - peak width, peak
amplitude and mean baseline current were used to detect the passage of a bead
through the nanopore. Classification was carried out using SVMs with 96 % ac-
curacy. Denoising using DWT was demonstrated for experimental data. Feature
extraction and pattern classification for discriminating between two highly simi-
lar analytes was carried out for ion-channel signals. Two-stage feature extraction
using WHT and PCA provided feature vectors that could be used for classifica-
tion using the four algorithms. Classification accuracy is at the 80th percentile
for a frame length, N = 4096. We plan to improve the accuracy of the classifiers
using real data generated from experiments.
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Abstract. We describe an application of the novel Support Vector Ma-

chined Kernel (SVM’ed Kernel) to the Recognition of hand-drawn

shapes. The SVM’ed kernel function is itself a support vector machine

classifier that is learned statistically from data using an automatically

generated training set. We show that the new kernel manages to change

the classical methodology of defining a feature vector for each pattern.

One will only need to define features representing the similarity between

two patterns allowing many details to be captured in a concise way. In

addition, we illustrate that features describing a single pattern could also

be used in this new framework. In this paper we show how the SVM’ed

Kernel is defined and trained for the multiclass shape recognition prob-

lem. Simulation results show that the SVM’ed Kernel outperforms all

other classical kernels and is more robust to hard test sets.

Keywords: Shape recognition, Support Vector Machine, Kernel,

Similarity.

1 Introduction

Structured diagrams are very prevalent in many document types. Most peo-
ple who need to create such diagrams use structured graphics editors such as
Microsoft Visio [16]. Structured graphics editors are extremely powerful and ex-
pressive but they can be cumbersome to use [17]. It was shown through extensive
timing experiments that structured diagrams drawn by hand takes only about
10% of the time it takes to draw one using a tool like Visio [10]. This indicates
the value of automated recognition of hand-drawn diagrams.

One of the main steps in the problem of diagram understanding is the recogni-
tion of individual hand-drawn shapes. The input to the shape recognition system
is a geometric hand-drawn shape. Whereas, the output is its classification to one
of predefined classes.

In the classical classification framework, shapes are first converted to feature
vectors which are then used to train the classifier. At the point of replacing the
shape by a feature vector representing it, a significant amount of information is
lost. This could be easily noticed when we discover that we could not recover
the shape pattern once converted to a feature vector.

In other problems, sometimes representing the pattern by a feature vector
could be problematic. For example if we would like to represent a document by

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 275–284, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a feature vector, we could use a dictionary to create a feature vector of word.
This could lead to a huge number of features. An alternative and seemingly
more efficient way is to define a feature vector that represents the similarity
between a pair of documents. In such case we could just define a vector that
consists of a few simple and effective high level features. This similarity vector
could, for example, consist of the number of common stemmed words between
the pair of documents, the number of common named entities, the number of
common semantic relations, and finally a binary feature showing whether the
two documents were extracted from the same source or not. This suggests that
a significant achievement could be acquired, if we could change the classification
framework to using feature vectors that represent the similarity between a pair
of patterns rather than using feature vectors that represent single patterns.

SVM is a suitable classifier for applying this new framework. In SVM, the
classical kernels take two feature vectors as input (each feature vector represents
a pattern) and return a real number representing the similarity between them
[1]. In order to make use of high level similarity features as stated previously, a
domain expert is required to invent a user defined kernel which is an algorithm
that measures the similarity between two patterns without converting them to
feature vectors. The domain expert is required in order to determine the contri-
bution of each component similarity feature to the final similarity measure. This
is a time consuming task since it has to be done for each problem. Moreover,
a hard quantitative approach would lead to more consistent performance, and
allows the use of cutting edge optimization methods.

We propose a novel kernel function that is extracted from data through a
statistical learning procedure. The input of this new kernel function will be only
one feature vector representing the similarity between the two input patterns.
We name our new proposed kernel the SVM’ed-Kernel.

We propose a method to automatically generate a recreated training set from
the original training set. The recreated training set is then used to learn the
SVM’ed-Kernel. Interestingly, the SVM’ed-Kernel will be learned as a separate
SVM classification problem. Once trained, the SVM’ed-Kernel will then be used
as a kernel function in the original classification SVM problem.

Using the SVM’ed-Kernel, we do not need to define features to represent a
single pattern. We will only need to define features that represent the similarity
between a pair of patterns. This allows novel features to be defined that could
not have been defined using the classical feature definition framework.

Moreover, a simple similarity feature between a pair of patterns could elimi-
nate a large number of features representing a single pattern as it was shown in
the example of representing a document by a feature vector. This contributes to
dimensionality reduction.

In the SVM’ed-Kernel, the contribution of each similarity feature to the final
similarity measure is learned statistically from the recreated training set. This
eliminates the need for a domain expert, allows the definition of novel high level
similarity features, and leads to optimizing the contributions of the different
similarities.
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In this paper, we describe the application of the SVM’ed Kernel to the Recog-
nition of hand-drawn shapes. The SVM’ed Kernel will allow adding a chain code
similarity feature representing the similarity between a pair of patterns that will
boost the accuracy significantly.

This paper is organized as follows: Section 2 describes the related work. In
Section 3 we introduce preliminaries of SVM as a classifier. The SVM’ed Kernel
will be presented in Section 4. Section 5 describes the shape recognition problem.
Finally we introduce the experimental results in section 6. The paper ends with
a conclusion and future work in section 7.

2 Related Work

Many kernels have been proposed in the SVM literature. We divide the related
work into general kernels and specific user-defined kernels. The general kernels
are not defined for a specific problem. On the other hand, the user defined kernels
are domain dependent and they are defined specifically for the problem at hand.

From among the general proposed kernels, Thadani et al [2] creates a kernel
function suitable for the training data using a genetic algorithm mechanism.
They showed that their genetic kernel has good generalization abilities when
compared with the polynomial and the radial basis kernel functions. Kong et al
[3] proposed the autocorrelation kernel by borrowing this concept from signal
processing. The autocorrelation functions give comparable results to the RBF
kernel when used to classify some UCI datasets. George et al [4] proposed a
Sinc-Cauchy hybrid wavelet kernel and shows that it is admissible which means
that it is positive definite [1]. They used it for the classification of Cardiac Sin-
gle Photon Emission Computed Tomography images and Cardiac Arrhythmia
signals. Their experimental results showed that promising generalization can be
achieved with the hybrid kernel compared to conventional kernels. Wang et al
[5] proposed the Weighted Mahalanobis Distance Kernels. They first find the
data structure for each class in the input space via agglomerative hierarchical
clustering and then construct the weighted Mahalanobis distance kernels which
are affected by the size of clusters they reside in. They showed that, although
WDM kernels are not guaranteed to be positive definite or conditionally positive
definite, satisfactorily classification results can still be achieved because regular-
izes in SVMs with WDM kernels are empirically positive in pseudo-Euclidean
spaces.

From among the specific user-defined kernels, XU et al [6] proposed using the
weighted Levenshtein distance as a kernel function for strings. They used the UCI
splice site recognition dataset for testing their proposed specific kernel which got
the best results in this problem. Wu et al [7] proposed a new user-defined ker-
nel for RNA classification. They showed that the new kernel takes advantage of
both global and local structural information in RNAs. Their experimental results
showed that the new kernel outperforms existing kernels when used to classify
non-coding RNA sequences. Yan et al [8] proposed the position weight subse-
quences kernel (PWSK) that could be used for identifying gene sequences. This
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kernel was used for splice site identification and the performance was better than
that of the string subsequences kernel (SSK). Cuturi et al [9] proposed a mutual
information kernel for strings which borrows techniques from information the-
ory and data compression. They showed that their kernel reported encouraging
classification results on a standard protein homology detection experiment.

Our proposed kernel falls in the general kernels class while having the ability
of defining similarity features which have been only used in specific user defined
kernels. Moreover, it does not need a domain expert to determine the contri-
bution of each similarity feature to the similarity measure since the kernel is
learned statistically from data.

For the problem of shape recognition, Valveny and Marti discussed a method
for recognizing hand-drawn architectural symbols [13] using deformable template
matching. They achieved recognition rates around 85%, but did not discuss
how the user might correct an incorrect recognition. Notowidigo and Miller [14]
presented a novel approach to creating structured diagrams. There system aims
to provide drawing freedom by allowing the user to sketch entirely off-line using
a pure pen-and paper interface. The system can infer multiple interpretations for
a given sketch to aid during the user’s polishing stage. The UDSI program uses a
novel recognition architecture that combines low-level recognizers with domain-
specific heuristic filters and a greedy algorithm that eliminates incompatible
interpretations. Refaat et al (2008) [10] has proposed a new approach for context-
independent hand-written diagram recognition using support vector machines
achieving an acceptable segmentation accuracy and approaching 90% recognition
accuracy.

3 Preliminaries

The basic idea of SVM classifiers is to map a given data set from input space into
higher dimensional feature space , called dot product space, via a map function
φ , where

φ : RN −→ F (1)

Then, it performs a linear classification in the higher dimensional space . This
requires the evaluation of dot products:

k(x, y) = (φ(x), φ(y)) (2)

Where k is called the kernel function. If F is high dimensional, the right hand
side of equation (2) will be very expensive to compute [1]. Therefore, ker-
nel functions are used to compute the dot product in the feature space using
the input parameters which means that the mapping to is done implicitly. A
kernel function returns a real number representing the similarity of its two input
patterns. There are many types of kernels such as the RBF kernel, given by:

k(x, xi) = e−‖x−xi‖2/2σ2
(3)

Other similar kernels are also widely used.
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The function used for the assignment of new objects to one of the two classes
is called the decision function which takes the form:

f(x) =

{
+1 if

∑l
i=1 αiyik(x, xi) + b > 0,

−1 if otherwise.
(4)

Where, l denotes the number of training patterns
x denotes the unseen pattern vector
xi denotes training pattern vector
yi denotes the label of the training pattern
b denotes constant offset (or threshold)
1 and − 1 are the labels of the decision classes
The parameters αi

′s are computed as the solution of a quadratic programming
problem.

4 The SVM’ed Kernel

The SVM’ed-Kernel could be used in any machine learning task that requires a
kernel function. In this paper we illustrate its use as a kernel function for support
vector machine classification problems.

Internally, the SVM’ed-Kernel is constructed as a support vector machine
classification problem. Therefore we have two SVMs; the first one is the original
SVM classification problem which we will call it the original SVM, while the
other is the one used as a kernel function which we call it the SVM’ed-Kernel.

This SVM’ed-Kernel will be trained using a recreated training set extracted
from the original one. The steps to create and use the SVM’ed-Kernel are: A.
Define a feature vector representing the similarity between a pair of patterns,
B. Automatically generate the recreated training set from the original one. C.
Train the SVM’ed-Kernel as a normal classification problem using the recreated
training set in B. D. Use the trained SVM’ed-kernel as a kernel function in the
original SVM problem. E. Train the original SVM using the SVM’ed-Kernel.

We now explain each step in details. In step A, we define a feature vector that
represents the similarity between two patterns. For example in a text catego-
rization classification problem where we need to classify a document according
to whether it is related to either sport or politics. One could define a similarity
feature vector of two features. The first feature could be the number of common
words after stemming, while the second one could be the number of common
semantic relations.

In step B, assume that we have an original simple training set similar to that
in Table 1. To create the recreated training set that will be used to train the
SVM’ed-Kernel, we select every pair of patterns from the original training set
(order is not important). So we have pattern 1 and pattern 2, pattern 1 and
pattern3, pattern 2 and pattern 3, pattern 2 and pattern 4, and so on. We label
each pair as being matching (1) if the two patterns have the same label in the
original training set or not matching (-1) if they have different labels. Table 2
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Table 1. The original training set

patterns class label 1 or -1

pattern 1 1

pattern 2 -1

pattern 3 1

pattern 4 -1

Table 2. The recreated training set

patterns class label 1 or -1

pattern 1 and pattern 2 -1

pattern 1 and pattern 3 1

pattern 1 and pattern 4 -1

pattern 2 and pattern 3 -1

pattern 2 and pattern 4 1

pattern 3 and pattern 4 -1

illustrates the recreated training set. One can see here that the recreated training
set is of larger size than the original training set.

In step C, we first convert each pair in the recreated training set, created in
step B, to a feature vector using the similarity feature vector definition we have
defined in step A. After that, we train the SVM’ed-Kernel as a normal SVM
classification problem using the recreated training set and any arbitrary kernel.
The output of this SVM classifier will be a label indicating whether the two
input patterns are matching or not. After training, we save the SVM trained as
our SVM’ed-Kernel after removing the decision component from the function in
equation (4), to be in the form

f(x) =
l∑

i=1

αiyik(x, xi) + b (5)

The decision component was removed because we are interested in the real value
returned from (5), which represents how confident we are in the match. A larger
returned value represents a better match (high similarity) and vice versa. Figure
1 shows three pairs, from the recreated training set, and their locations from the
decision boundary of the SVM’ed-Kernel. When substituting in equation (5),
pair one’s similarity feature vector will return a positive number indicating high
similarity between this pair. On the other hand, pair two’s similarity feature
vector will return a smaller positive number indicating that this pair is less
similar than pair one. Finally, pair three’s vector will return a negative number
indicating low similarity between this pair.

The training patterns in the recreated training set were used to determine the
maximal margin classifier. The distance of a new pair from the maximal margin
classifier decision boundary is a direct measure of the similarity between the two
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pair 1

pair 2

pair 3

Fig. 1. Three pairs and their locations from the decision boundary of the SVM’ed-

Kernel

patterns of this pair due to the way we formed the recreated training set in B
and the definition of the similarity feature vector in A.

In step D, we use our trained SVM in C as our kernel function in the original
SVM problem. In our work we have added an offset to the output of the SVM’ed-
Kernel so that the similarity measure returned becomes always positive.

In step E, we train our original SVM using our SVM’ed-Kernel and the orig-
inal training set. After training the original SVM, the original SVM model is
ready for the real operation phase. We conclude here that the original SVM
classifier component does not require the pattern to be extracted to a feature
vector on its own. It takes the form:

f(pattern) =
l∑

i=1

αiyiSV K(pattern, patterni) + b (6)

where SV K is the SVM’ed-Kernel in the form:

SV K(patternx, patterny) =
l ′∑

j=1

αjyjk(m(x, y),mj) + b′ (7)

Where, mj denotes a similarity feature vector of a support vector pattern for
the SVM’ed-Kernel.
m(x, y) denotes the feature vector representing similarity between patternx and
patterny.
yi denotes the label of the ith pattern in the original training set.
yj denotes the label of the jth pair in the recreated training set.
b and b′ denote constant offsets (or thresholds).
k denotes an arbitrary kernel function.
l and l′ denote the number of training patterns in the original and the recreated
training sets respectively.
The parameters αi

′s and αj
′s are computed as the solutions of quadratic pro-

gramming problems.
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5 Shape Recognition

In our previous work [10], a number of basic features were extracted from each
shape for the purpose of serving as inputs to the classifier. The features were
selected to be size and orientation independent. The basic shape features used are
Ach, the area of the convex hull;Pch, its perimeter;Aer, the area of the rectangle
enclosing the convex hull of the shape and having the minimum area;Alq, the
area of the maximum area inscribed quadrilateral that fits inside the convex hull
of the shape [12];Alt, the area of the maximum area inscribed triangle that fits
inside the convex hull of the shape [12];Plt, its perimeter;Her, the height of the
rectangle enclosing the convex hull of the shape and having the minimum area;
and Wer, its width.

The features used in the SVM model were: Pch2/Ach, Ach/Aer, Alq/Aer,
Alq/Ach, Alt/Alq, Alt/Ach, Plt/Pch,andHer/Wer. For the SVM’ed Kernel, we
decided to make use of the features already designed before together while adding
a novel high level similarity feature to show the power of the novel proposed
kernel.

The similarity feature vector definition that is defined for the sake of the
SVM’ed-Kernel was defined simply to be the subtraction of the two original
feature vectors of the two input patterns. However, we have added a single
similarity feature that represents the similarity between a pair of patterns. This
feature was a modified chain code distance measure [15].

6 Testing Results

In our experiments, we trained the system using hand-drawn circles, triangles,
rectangles, diamonds and ellipses from Refaat et al data set (2008) [10], we
have added some new shapes to the set to increase its size. We divided the new
extended data set into 750 patterns for training and we kept two test sets unseen.
The first test set is a normal one of 236 patterns while the other one consists of
234 hard patterns. In the hard test set the shapes may be drawn similar to more
than one shape class and it is the responsibility of the model to discover its true
class. The hard test set was created in order to measure our models’ robustness to
hard patterns or shapes drawn carelessly. We used the SVM’ed Kernel with the
pairwise classification method [1] to handle the multiclass problem. A recreated
set was generated from the training set of each pair of classes. Each recreated
set was then used to train an SVM’ed Kernel which was used subsequently as
a kernel function for the corresponding binary classifier. All SVM’ed Kernels
use the rbf kernel with the gamma parameter set to 2. We did not perform any
tuning for the gamma of the rbf kernel used by the SVM’ed Kernels.

We compared the test accuracy of the SVM’ed Kernel to that achieved by
Refaat et al (2008) SVM model and also to that achieved by using the rbf kernel
with the pairwise classification method. In the last case, by trial and error, the
gamma parameter was chosen to be set to 2. We used SVMlight [11] in all our
simulations. Table 3 shows the testing accuracies of the three models for both
the normal and the hard sets.
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Table 3. Testing Accuracies

Test Set-Model RBF gamma = 2 pairwise Refaat 2008 SVM’ed Kernel pairwise

normal 81.355% 88.135% 92.796%

hard 61.96% 69.23% 85.89%

The testing results showed that the SVM’ed kernel outperforms Refaat et al
2008 in both the normal and the hard sets by about 4.6% and 16.5% respectively.
The reason of this significant gain was that the SVM’ed kernel used the modified
chain code similarity measure. This mutual feature could not have been used by
the classical kernels because it represents a pair of patterns rather than only one.
In addition, the SVM’ed kernel did not neglect the predefined classical features
which made it act as a statistical integrator of all information about the task of
shape recognition.

7 Conclusion and Future Work

In this paper, we proposed the application of the SVM’ed-Kernel function to
the problem of shape recognition. We showed how the SVM’ed Kernel allows
defining features of similarity between a pair of patterns. In addition, we showed
that the old feature definitions for single patterns could also be used by just
subtracting each two corresponding features. In the shape recognition problem,
the enhancement was about 4.5 % in the normal test set and interestingly about
16.5% in the hard test set. In our future work, we are going to use the SVM’ed-
Kernel in various real world applications in both Natural Language Processing
and Bioinformatics.
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Abstract. We demonstrate that selective attention can improve learn-

ing. Considerably fewer samples are needed to learn a source separation

problem when the inputs are pre-segmented by the proposed model. The

model combines biased-competition model for attention with a habitua-

tion mechanism which allows the focus of attention to switch from one

object to another. The criteria for segmenting objects are estimated from

data and are shown to generalise to new objects.

Keywords: Selective attention, perceptual learning, segmentation.

1 Introduction

Learning task-relevant feature and object representations is a crucial problem
for an autonomous agent trying to cope in a real-world environment. Sometimes
the problem can be facilitated by collecting data from controlled environments,
leading for instance to reduced noise and fewer objects present simultaneously.
Such simplifications allow even fairly difficult problems to be solved with the
current machine learning methods.

In many situations, however, these controlled environments cannot be pro-
vided due to cost, infeasibility of human intervention or other reasons. In those
cases, the system should be able to learn feature and object representations au-
tonomously. Furthermore, the learnt representations should be relevant for the
tasks the agent faces. For these really difficult cases, machine learning research
has provided us with painfully few methods.

The key problem is that the relevant associations and relations are complex
and dynamic. As an example, let us consider the interplay between the visual and
the motor system in picking up an object. There are many degrees of freedom
in the task: the object can be in several places with respect to the hand and the
head, the eyes can be viewing in several directions and the hand can be in several
orientations, just to name a few. Yet, the autonomous agent should be able to
learn the associations that are needed to perform the task of picking up the
object. In any particular context of hand, eye and object positions, there exist
many simple correlations between the needed motor output and the visual input.
However, averaged over all the contexts, the correlations cancel each other out.
Thus the agent needs a representational system that can learn and use dynamic
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associations and relations that describe the short-lasting correlations between
the different modalities.

The best example of a system that has been able to solve the above problems
is the human brain. In neuroscience, it is known that attention plays a key role
in perceptual learning [1]. The purpose of this paper is to discuss the information
processing mechanisms of attention and to show that it can facilitate learning
of feature and object representations.

2 Attention and Learning

From psychophysical experiments it has become clear that attention plays a
significant role in learning. For instance, Ahissar et al. [1] showed that attention
guides low-level perceptual learning by focusing the representational capacity
(low-level perceptual discriminations) to features that are relevant for the task
at hand.

There is experimental evidence to support the idea that attention is realised
by a competitive binding process that forms functional networks dynamically [2].
This dynamical binding has been shown to gate the coherence between cortical
areas, thereby affecting the associations learnt between these areas [3].

Taken together, it seems plausible that selective attention and the formation
of dynamical bindings are the necessary ingredients by which a large learning
system can deliver training signals from distant areas, such as from motor cortex
to visual cortex [4].

In order to use attention for perceptual learning in machine learning context,
it is necessary to 1) implement a model which gives rise to attention, 2) learn the
parameters of the model, making attention adaptive, and 3) use it successfully
to facilitate perceptual learning. Although each of these three aspects have been
studied independently and in pairs, to our knowledge the model presented in
this article is the first to combine all three into a functional model.

2.1 Gestalt Principles

When we humans see a new object, we may not know its identity but we can
nevertheless tell what is part of the object and what is not. In other words, we
are able to segment out an object without having seen it before.

In perceptual psychology, the rules of the organisation of perceptual scenes
are called Gestalt principles [5]. Psychologists have identified several principles,
such as proximity, common fate, similarity, continuity, closure, symmetry and
convexity. The Gestalt principle of continuity is illustrated in Figure 1a, where
the human visual system groups some of the line segments to form a circle.

What makes the Gestalt principles interesting in the current context is that
they can be learnt from data. In neural terms, the Gestalt principles can be
implemented by giving positive connections between certain neurons in one area
and some other neurons in an adjacent area. Learning the connections can be
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(a) (b)

Fig. 1. a) Because of the Gestalt principles, a circle is perceived rather than some other

grouping of the lines. b) Gestalt grouping of the neurons. The lines are features coded

by different neurons. The shades of gray illustrate the connection strengths between

the neurons on the right and the neuron on the left, darker meaning stronger. The

lateral connections are stronger when the Gestalt principle is better fulfilled.

based on simple correlations found in the data. For example, features responding
to lines of certain orientation in one part of the visual field are more probably
co-activated with features of similar orientation in some other part of the visual
field. This mechanism is illustrated in Fig. 1b.

These “neural” Gestalt rules can be learnt from the data and they operate
on the level on individual feature-coding neurons. The principle is therefore
applicable to any modality and also between modalities unlike, for example,
many segmentation procedures that make use of the spatial structure of visual
images. Moreover, the neural Gestalt rules can be learnt locally and in parallel. In
the visual domain this means that the local correlations found in familiar objects
generalise to new objects which have different overall shapes but nevertheless
obey the same local correlations.

2.2 Biased-Competition Model for Attention

Contextual (predominantly top-down) biasing of local lateral competition had
been proposed as a model of covert attention in humans [6]. Usher and Nierbur [7]
then suggested a computational model for biased competition that has been
shown to replicate many attentional phenomena, for instance both bottom-up
and top-down aspects of attention [8].

Deco and Rolls [8] also showed that it is possible to learn the weights for
contextual biasing by the mechanism outlined in Sec. 2.1. In other words, the
neural Gestalt rules can be applied in a relatively straight-forward manner to
implement selective attention.
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2.3 Suggested Model

One shortcoming of the previously suggested biased-competition models is that
they converge to a representation of one of the objects present in the inputs and
then will not switch attention to other objects unless the input changes. This is
in contrast with human covert attention which keeps switching between salient
objects even when the stimulus does not change.

Models with changing attention usually have some kind of habituation mech-
anism which assures that attention will not get stuck with one object (e.g., [9]).
Habituation means that active neurons gradually get “tired”, thereby decreasing
the stability of the currently active population of neurons. After the support for
a population erodes, another population of recovered neurons takes over and the
original tired population starts recovering.

Taken together the model has four key mechanisms:

1. Bottom-up input which mostly determines the activation level of the neuron,
2. Contextual (lateral or top-down) input which reflects learnt Gestalt princi-

ples,
3. Local competition which is biased by the contextual input and
4. Habituation which ensures that the winning population gradually gets tired

and makes room for the winning population.

A more detailed description of the implementation is given in Sec. 3. However,
it should be emphasised that the exact details of these mechanisms are not
important although they of course need to fit together.

2.4 Relation to Previous Work

Several systems have been suggested that segment objects and represent them
sequentially. Many of them are based on weakly coupled oscillators or other re-
lated mechanisms (e.g., [10,11,12,13]). Biased competition has the added benefit
that it not only groups objects but can also select among them. This will be
important when scaling up the system.

There are only a few examples of tackling the problem of using attention
to improve learning. Selective attention was used for improving learning by
Walther et al. [14] but their selective attention specialised in the visual domain
and did not use learnable Gestalt rules which could be applied in any modality
and even across modalities. Learning associations between different features has
also shown to improve with attention by Kruschke [15], but his model has an
external teacher controlling the attention.

3 Experiments

In this section, we use artificially generated data to demonstrate that it is possi-
ble and useful to combine attentional mechanisms and learning of feature repre-
sentations in a single scheme. The Gestalt principles are first learnt on one data
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set. The resulting lateral connections are then used for segmenting new objects.
We show that this greatly improves learning at the next stage, for which we
used FastICA [16]. The MATLAB scripts for performing the experiments can be
downloaded at http://www.lce.hut.fi/research/eas/compneuro/
repository/attention_learning.zip.

3.1 The Data

We generated artificial data which had “objects” analogous to closed contours.
For instance, the closed contour in Fig. 1a (circle) consists of 12 line segments
which follow the local Gestalt rule of continuation. Our objects had five 100-
dimensional patches (analogous to line segments) that were connected cyclically
as shown in Fig. 2. Each object had one active element on each patch. In other
words, an object was a 500-dimensional binary vector with five ones and 495
zeros.

I I I I I

G

GGGG

Fig. 2. The structure of the data is an idealisation of the Gestalt rules for closed

contours (Fig. 1). Each of the five patches consists of 100 elements. According to the

Gestalt rules (G), each element has five permissible neighbours in the adjacent patch.

The model structure is similar, with local inhibitory connection (I) and excitatory

lateral connections (G).

The objects were generated as follows. First the Gestalt rules (G in Fig. 2),
which hold for all objects, were chosen randomly. Each element had five randomly
selected permissible neighbours in both the adjacent patches. The five active
elements of each object were selected in stages: 1) select one of 100 elements
on the first patch, 2) select one of the five permissible elements (out of 100) on
the second patch, 3) repeat for all the patches and finally 4) accept or reject
the object depending on whether the element on the last patch is a permissible
neighbour of the selected element on the first patch. On average there are 3,125
different objects that fulfil our continuity rules. The exact number depends on
the Gestalt rules which were randomised.

We used these objects to generate noisy data which follow a linear indepen-
dent component analysis (ICA [17]) model. Each 500-dimensional sample vector
was a sum of five randomly selected objects and additive binary noise with 25

http://www.lce.hut.fi/research/eas/compneuro/
repository/attention_learning.zip
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ones and 475 zeros. A noisy sample vector together with the five constituent
objects are depicted in Fig. 3a.

3.2 Learning the Gestalt Principles

We selected 20 objects which were reserved as “new objects” for the testing
phase. We generated a data set with 10,000 samples using the remaining objects
(3,105 objects on average). The lateral connections where then set to the values
corresponding to the covariances between the input elements. Note that it would
be difficult to learn reliably any correlations between 3,105 objects from such
a small data set but it is perfectly feasible to estimate the correlations of the
constituent elements. The estimated covariances are noisy but good enough for
the next stage.

3.3 Biased-Competition Model with Habituation

As explained in Sec. 2.3, the biased-competition model used for segmenting data
has four mechanisms: 1) bottom-up inputs drive the activations, 2) contextual
input, which biases 3) local competition, and 4) habituation. The structure of the
model (Fig. 2) reflects the structure of the data: there are five areas (each with
100 neurons) laterally connected by the weights learnt with the procedure ex-
plained in the previous section. Local inhibition operates within each individual
area and is denoted by I in the figure.

One of us has previously shown that biased competition is fully compatible
with competitive learning which can learn meaningful features from bottom-up
inputs [18]. Here we simplified the situation by assuming that the bottom-up
inputs are already the input features to be represented. The neurons thus get
bottom-up activations x which are simply the data samples.

Contextual lateral input from previous activations y(t − 1) modulates the
bottom-up activations as follows:

y∗i (t) = [(gi(t) + αaiy(t − 1))xi]+ , (1)

where ai is a row vector of lateral connections implementing the estimated
Gestalt rules and α = 0.1. The term gi(t) is a gain which implements the habit-
uation and will be explained shortly. The activations y∗i (t) are restricted to be
positive.

After this, lateral competition selects the final activations

yi(t) = [y∗i (t)− Iarea]+ , (2)

where Iarea is a function of y∗i (t) within an area. All the neurons in one area have
the same Iarea. This inhibitory term is adapted with a fast time-constant such
that the target sparseness would be reached. We use the following sparseness
measure for a local activation pattern yarea:

s(yarea) =
1

||yarea||
∑

i ∈ area

yi . (3)
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Fig. 3. a) A sample input, on the top row. The next row is the same input without noise.

This noiseless input is used to produce the segmentation on the right (b). This input

consists of the five shown objects. b) An example of segmentation of the noiseless input

on the left (a). The 10 consequent time steps are taken after 50 steps after introducing

the input. Two examples: In the first row, the 2nd and the 4th objects are seen. The

3rd object is growing from t = 1 until t = 4, and then starts to disappear.

On each time step, the local inhibition Iarea is adjusted to make the pattern
closer to the right sparseness level. We chose it to be the sparseness of the vector
in which there are three ones and 97 zeros.

Habituation was implemented as follows. The gains are adjusted on each time
step with a slower time-constant than the inhibition. The updates try to match
the average activity with the original input: E{yi} ≈ xi. On each time step, gi

is increased (decreased) a little if the moving average of yi is below (above) xi.

3.4 Results

An example of the segmentation dynamics is shown in Figure 3b. In the seg-
mented representations, individual objects can be seen to appear and disappear
more or less coherently. Note that for the sake of visual clarity, the segmentation
dynamics is shown for the noiseless input from Figure 3a although all data used
in the learning experiments contained noise.
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The success of the segmentation was measured by separating new objects with
the model. Recall that the lateral weights were estimated from data which lacked
the 20 objects reserved for testing. These previously unseen objects were used
for generating new samples, again with five objects added together with noise.

The biased-competition model with habituation segmented each original input
sample into many new samples. First we let the network converge for 100 time
steps and then we used the following 30 samples as inputs to FastICA. Each
original sample was therefore expanded into 30 segmented samples.

We measured the accuracy of separation by a modified Amari index (for the
original, see [19]):

a(C) =
1
N

N∑
i

⎛⎝ N∑
j

C2
ij

maxk C2
kj

− 1

⎞⎠ , (4)

where Cij corresponds to the ith separated signal using the jth object as the
input. The Amari index is a standard way of measuring separation success.

ICA was done with different numbers of samples to both the original samples
and the segmented samples generated by the proposed model. We used FastICA
2.5 package [16] with deflatory estimation and pow3 non-linearity, which in this
case was more robust than the usually recommended tanh-nonlinearity. Because
of local minima, different initialisations give different results. We used 30 dif-
ferent initialisations for each number of samples, and for each object, chose the
component that gives the smallest Amari index.

The results are shown in Figure 4. ICA for the original non-segmented data
needs about a hundred times as much samples as does ICA for the segmented
data. For fine-tuning though, the non-segmented case seems to be better. The
segmentation gives rough guesses about what the objects could be, but can also
sometimes break them, and move the fixed points of the FastICA algorithm. The
segmented case Amari index saturated to 1 milliAmaris at about 200 samples.
The non-segmented case got better results with N > 7000.

4 Discussion

In this paper we demonstrated that selective attention can improve learning.
We concentrated on showing that, with pre-segmentation, considerably fewer
samples are needed to learn meaningful features. The segmentation was based
on lateral connections whose strengths were estimated from another data set.
The setting thus mimicked a situation where local Gestalt rules have already
been learnt from past experience, allowing new objects to be segmented and thus
greatly reducing the number of samples needed for learning about new objects.
In this paper the learning task was chosen to be independent component analysis
but reduced learning time should generalise to other types of associative learning
as well due to reduced amount of distractors.
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Fig. 4. Separation results with segmented and original data are shown. The separation

quality is measured with a modified Amari index which measures the deviation of the

unmixing matrix from optimal. Segmenting the data reduces the number of samples

needed for reaching a given value of Amari index by roughly a factor of 100.

In the reported experiment, the segmentation principles were learnt offline. In
actual use, it would be more useful to learn the object representations and the
segmentation principles at the same time in a feedforward-feedback loop. This
would, for instance, allow selective attention to guide the learning by discarding
some structure in the data and focusing the representational capacity to relevant
features. However, it will also be necessary to take into account the danger of
run-away learning of self-induced correlations. Similar problems arise in learning
any non-directed graphs, such as Markov fields [20]. A popular solution is to
have two separate learning stages: one driven by the input and another, sleep-
like, driven by expectations. The idea is to forget the unwanted representations
during the sleep stage. When learning and forgetting balance each other, the
learnt weights have captured the statistics of the input.

The model proposed in this article is based on biased-competition model which
has been shown to be able to implement attention in large hierarchical networks.
We have previously shown that the model is compatible with competitive learn-
ing and thus can learn meaningful bottom-up features under the guidance of
selective attention [18]. In this paper, we added a mechanism for habituation
which allows the focus of attention to change from one object to another and
then showed that the resulting segmentation greatly improves associative learn-
ing. We believe that this work provides a fruitful starting point for future efforts
in building a representational system flexible and powerful enough for an au-
tonomous agent to survive in a complex real-world environment.
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Abstract. The studied problem is prediction of time series based on

preceding values of several time series (a multi-dimensional time series).

Besides prediction itself, the task is finding precursors, i.e. determination

of a set of the most significant input features in coordinates ”initial time

series – lag”. A four-stage prediction algorithm based on neural network

committee has been suggested, implemented and studied. The algorithm

has been successfully tested on one model problem and on one real world

problem.

Keywords: time series prediction, neural network committee, precursor,

multi-dimensional time series.

1 Introduction

Consider a multi-dimensional time series (TS) being an aggregate of several
single-dimensional TS, each describing time changes of the value of some physical
feature φi characterizing the object of study.

In the process of prediction, one should take into consideration the values
of the physical features not only in a single point in time, but within some
interval in the past. Therefore, for each TS, delay embedding is performed, i.e.
each physical feature gives rise to a set of input features (input variables of the
problem), which are the values of this physical feature in adjacent time moments
in the past.

One of the shortcomings of such approach is significant increase in the total
number of the input features of the problem, which becomes equal to the product
of the number of physical features and the embedding depth (embedding window
width). Decreasing the embedding depth for some physical features based on a
priori information may somewhat simplify the problem, but it does not eliminate
it. Large number of input features hampers the work of the prediction system,
increases the building time of the prediction and deteriorates its quality. Besides
that, sense analysis of the interconnections between the input features and the
predicted variable becomes even more difficult.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 295–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In connection with that, besides prediction itself, one more very important
task is finding precursors, i.e. determination of a set of the most significant
input features in coordinates ”physical feature – lag”. The four-stage algorithm
based on neural network (NN) committee, which is considered in this study, has
been intended to solve both problems – prediction and search for precursors in
multi-dimensional time series.

This study is the development of preceding studies [1,2,3,4].

2 Problem Statement and Description of the Algorithm

Assume that occurrence of the event that is interesting for the researcher is
preceded by some (unknown) combination of the values of the input features,
which we shall call phenomenon. Assume that the delay between emergence of
the phenomenon and occurrence of the event is fixed for this type of phenomenon
(yet also unknown). Say in this case that this phenomenon initiates this event.
Assume also that the search interval for the delay between the phenomenon and
the event occurrence is given, and that maximum duration of the event set a pri-
ori (initiation interval Tinit) is much less than the search interval. Call precursor
a combination of only those input features that are significantly connected with
the occurrence of the event, and that can be used for its prediction. The main
notions are illustrated in Fig. 1. Note that all the same considerations and the
same approach are applicable to the solution of the prediction problem not for
binary events, but for continuous valued sought-for quantity (SQ), i.e. the value
of the predicted variable changing in a continuous range.

The general problem of prediction of event occurrence (of the SQ value) and
analysis of the TS is split within the described context into the following stages:

1. Forming of the initial feature set (multi-dimensional TS) describing the stud-
ied object. Assume that the researcher has manually formed a preliminary
feature set, i.e. he has selected a number of TS that may in his opinion refer
to genesis of the predicted events. This number may turn out to be quite
large, making the input dimensionality of the next stage extremely high,
taking into account that this input dimensionality (the number of input fea-
tures) is equal to the product of the number of features in the preliminary
set and the number of time steps in the initiation interval. Therefore it seems
reasonable to perform an adaptive estimation of significance of the physical
features in the preliminary set in order to exclude the least significant ones
from the following consideration. To perform such an estimation, the quick-
est of the methods of significance analysis of the input variables can be used
(again, because of high dimensionality of data). The spectrum of methods of
significance analysis of the input variables, which can be used, can be found
in [4]. In this study, the cross-correlation method was used at this stage.

2. Finding within the search interval the most probable phenomenon caus-
ing the event, determination of the duration of the phenomenon (initia-
tion interval), and determination of the delay between the phenomenon
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(event initiation) and the event itself. This task can be solved by the original
NN algorithm for analysis of multi-dimensional TS, developed by the authors
[1,2,3] and based on use of an NN committee. A ”by-product” of this stage
of analysis is creation of a system that is already capable to predict the event
(the SQ value), as the criterion of correct finding of the phenomenon (correct
determination of the delay) is the precision of the prediction. The quality of
prediction at this stage can be improved by using a hierarchical NN struc-
ture based on the stacked generalization principle [5]. Unfortunately, at this
stage it is possible only to make a prediction of the event (the SQ value)
with some precision, but it is impossible to understand why it has happened
and by what combination of features (precursor) it has been initiated.

Fig. 1. Illustration of the main notions

3. To answer the question ”why”, i.e. to extract the precursor of the event,
it is necessary to perform additional analysis of the phenomenon with the
purpose to determine significance of separate input features making up the
phenomenon, from the point of view of predicting the event. To solve this
problem, one may use the full spectrum of the methods of analysis of input
variable significance [4]. The combination of the most significant input fea-
tures thus extracted makes up the precursor, whose dimensionality is much
lower than that of the initial problem. This fact makes sense analysis of the
results easier, and it may allow one to understand, what the precursor means
in the terms of the initial problem.

4. At the final stage, one may put the question of solving the event (the SQ
value) prediction problem again, using as input variables only the features
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making up the precursor. To improve the quality of the prediction, here one
can apply a committee of neural network based algorithms.

It should be stressed that at both stages where determination of significance
of features is performed, the final criterion of the necessity of including this or
that variable in the model is influence of taking this variable into account on the
performance quality of the base predicting model. For example, a perceptron
with one hidden layer and fixed settings can be used as such model. Prior to
any experiments, the base model over all the available input variables is built.
Then the available algorithms of analysis of feature significance are used to
determine one or several least significant features, and a new model is built that
is completely like the base one except that it does not take into account the
selected low-significant features. If the prediction quality of the new model turns
out to be not worse than the quality of the base one, a conclusion can be drawn
that the discarded variables were really insignificant for the prediction problem
being solved.

With such an approach, it is guaranteed that, moving from the first stage of
problem solution to the following ones, the prediction quality will improve or,
at any rate, will not degrade, while the complexity of the predicting model (and
therefore time required to build it) will decrease.

It should be stressed that the main part of the whole four-stage sequence is
the original algorithm for time series analysis presented by the authors before
[1,2,3], that is used at Stage 2. However, in this study it is demonstrated that
incorporating this algorithm into the described four-stage sequence (combining
the algorithm with different methods of applying feature selection) results in
models with higher quality.

3 Results

3.1 Criterion of Model Quality

Throughout Section 3, the main statistics that is used to estimate the quality
of the predicting model is the multiple determination coefficient R squared. In
this study, the following definition of R squared was used:

R2 = 1−
∑

(y − ỹ)2∑
(y − y)2

(1)

Here y is the true value of the predicted TS for a sample;
ỹ is the value predicted by the studied model for the same sample;
y is the average value of y over all samples of a data set.
Thus, R squared compares the error of the studied model to that of the trivial

benchmark model that is a simple average over the whole data set. R squared
equal to 1 describes a model with zero prediction error, while negative value of
R squared corresponds to a very poor model whose prediction ability is worse
than that of the trivial benchmark model.
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3.2 Model Problem

An attempt of predicting values of the following functional dependence has been
made:

y = 1.5 ∗ x(−21)
1 + 3 ∗ x(−23)

2 − 2 ∗ x(−43)
3 − 4.5 ∗ x(−70)

4 + 2 ∗ x(−66)
5 (2)

Here x(−n)
i is the value of TS xi n steps ago;

x1(t) are the values of a TS consisting of random numbers in the range from
0 to 1, smoothed by averaging over 100 preceding values and then normalized
into [0,1] range;
x2(t) are the values of another completely similar TS calculated from another

set of random numbers;
x3(t) are the values of a TS calculated by the formula z = sin(t/300) +

cos(t/150) + sin(t/200 + 1) and then normalized into [0,1] range;
x4(t) are the values of a binary TS, equal to 1, if the tens digit in the decimal

representation of t is greater than the hundreds digit, and 0 otherwise;
x5(t) are the values of the TS x4(t) smoothed by averaging over 100 preceding

values and then normalized into [0,1] range.
Such time series was suggested to model common behavior of real world prob-

lems, combining time series of different nature (in this case, random, harmonic
and binary) to form predictors for the value of the studied SQ or for the studied
event.

The preliminary feature set, except the TS x1 . . . x5, included also TS rnd1
and rnd2, pseudorandom sequences of numbers in the range from 0 to 1.

All TS x1 . . . x5, rnd1, rnd2, y were represented by sequences of 65336 samples.
To solve the problem, delay embedding has been performed to the depth of

100 (search interval was equal to 100); then the data was sequentially divided
into training, test and examination sets with 70:20:10 ratio.

First stage. Correlations of all the 700 input features with output variable y
have been calculated. Table 1 lists the maximum values over the whole search
interval of the correlation coefficient r with the output variable for all the features
corresponding to each physical feature of the preliminary feature set. One can see
that the physical features that are pseudorandom sequences significantly differ
from all others by small values of r maximum and of its standard deviation,
allowing one to discard them from future consideration.

Second stage. A NN committee (perceptrons with 8 neurons in the single
hidden layer) has been trained first for initiation interval equal to 50 and over-
lapping interval for neighboring networks in the committee equal to 49. Note
that due to use of test set, the results were practically independent of the num-
ber of neurons in the hidden layer in a quite wide range; the same refers to all
the other experiments described below. Therefore, in all cases we performed test
experiments with number of neurons in the hidden layer equal to powers of 2 (4,
8, 16, 32, and 64) and selected the number that gave the best results.
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Table 1. Results of the first stage for the model problem

Variable x1 x2 x3 x4 x5 rnd1 rnd2

r max 0.078 0.170 0.208 0.923 0.349 0.011 0.008

St. deviation of r 0.022 0.037 0.002 0.243 0.111 0.002 0.002

The result presented in Table 2 (the value of multiple determination coefficient
R2 on examination set close to the absolute one) has been obtained in the delay
range from 21 to 70; as can be seen from formula (2), this is exactly the case.
Attempts of window narrowing demonstrate degradation of the results, which
evidences the fact that the event duration is from 46 to 50. Thus, the event
turned out to be limited with physical features x1 . . . x5 and the delay range
from 21 to 70.

Table 2. Results of the second stage for the model problem

Initiation interval 25 40 45 50

R2 on examination set 0.928 0.952 0.957 1.000

Third stage. To extract the precursor, the method of progressive build-up
of neural networks has been applied. Perceptrons with 8 neurons in the single
hidden layer were used. First, 50 ∗ 5 = 250 perceptrons with one input were
trained; the best result has been obtained when the feature corresponding to x4
variable with delay equal to 70 was used as the precursor (Table 3). At the next
iteration, each of the remaining 249 features was in turn added to the selected
one; the best result has been demonstrated by the network that had the precursor
composed of the features x(−70)

4 and x
(−59)
5 . In the same way, 6 iterations were

performed. The precursor composed of the 6 features listed in Table 3, provided
the value of multiple determination coefficient close to the ideal one. Note that 4
of the 6 extracted features participate in formula (2), and they were determined
correctly; the fifth one differs from the remaining true feature only by a small
delay of 2, which is not significant, as the corresponding time series x3 is a slowly
changing one.

Provided the fact that the NN model obtained at the third stage performed
prediction with a very high precision, the fourth stage for this problem was not
necessary.

Another model problem differed from the described one by the following.
Prediction of the value of continuous variable y has been changed to prediction
of events. The event was defined based on the value of variable y; the event was
considered to happen in the current moment if the modulus of the value of y
variable in this moment exceeded 2, and in the preceding moment it was less than
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Table 3. Results of the third stage for the model problem

Iteration 1 2 3 4 5 6

Feature added x
(−70)
4 x

(−59)
5 x

(−45)
3 x

(−23)
2 x

(−21)
1 x

(−66)
1

R2 on exam. set 0.861 0.916 0.954 0.990 0.999 1.000

2. The number of events defined in this way was 1225 for 65360 data patterns,
i.e. the events presented less than 1.9% of the data set. Unfavorable ratio of
the determined classes is typical for most problems connected with prediction of
events.

The results of solving this problem with the current version of the algorithms
turned out to be unsatisfactory. ”False alarms”, i.e. erroneously predicted events
(type I errors), were practically absent (on the examination set, 5 patterns of
12778, or 0.04%); however, the rate of misses (events not predicted by the system,
type II errors) turned out to be unacceptably high (195 of 269, or more than
72% of misses). Note that earlier tests on other model binary valued problems
performed by the authors [6] showed that even the single algorithm of Stage
2 with no feature selection could be efficient for binary valued problems, with
low rates of both Type I and Type II errors. The poor result obtained in this
study for the discussed problem may be explained by the pointed low fraction of
events in the total number of patterns. Therefore, the algorithm needs additional
methods to be included, that would allow the system to work successfully in the
conditions of strong misbalance of classes.

3.3 Real World Problem

The considered problem was analysis of the influence of solar wind (SW) on
the magnetic field of Earth. For quantitative description of perturbations of the
magnetic field of Earth, different geomagnetic indexes are introduced. In this
study, the so called Dst index [7] was used; its hourly values were provided by
world data center WDC-C2 Kyoto [8]. Physical investigations showed [7] that
the value of Dst index is most influenced by such variables as the components
of interplanetary magnetic field (IMF), SW velocity and proton density in SW.
As input data for prediction of Dst index value, the values of the following
SW parameters and IMF parameters, recorded by ACE satellite [9], were used:
the values of IMF components in two different coordinate systems Bx, By GSE,
By GSM , Bz GSE, Bz GSM , IMF modulus B magn, proton density in SW n,
SW velocity v and temperature T . Gaps present in the data, not numerous, were
removed by linear interpolation. Besides physical features mentioned above, the
following timing variables were used: year, month of year (month), day of month
(day), hour of day (hour), sine and cosine of hour of year, reduced to year period
(sin t, cos t). The thus obtained set of 15 physical features was expanded by
three time series of the same length from completely different problems, without
any matching in time, taken from [10] (CompGen, Physio, Astro), and also two
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pseudorandom sequences of numbers (rnd1, rnd2). Thus, the preliminary set of
physical features consisted of 20 time series. Each of them was normalized into
[-1,1] range. The total number of patterns in this problem was about 59000.

To solve the problem, the time series were embedded to the depth of 48 hours
(the search interval was equal to 48), then the data was sequentially divided into
training, test and examination sets with 70:20:10 ratio.

First stage. Correlations of all the 20 ∗ 48 = 960 input features with output
variable y have been calculated. For each physical feature of the preliminary set,
the maximum value of the correlation coefficient r with the output variable y
over the whole search interval has been calculated. As the threshold value for
discarding physical features, the maximum value of correlation of y variable with
five sets of pseudorandom numbers with length equal to that of the initiation
interval, was accepted; this value turned out to be equal to 0.0123. Using this
threshold, the following physical features were discarded: hour (0.0086), rnd2
(0.0059), and rnd1 (0.0055). All the other variables divided by the level of r into
two groups: significant B magn (0.528), v (0.451), Bz GSM (0.406), Bz GSE
(0.341), T (0.310), year (0.240), and n (0.237), and less significant – all others,
with r lying in the range from 0.0706 (sin t) to 0.0145 (CompGen). At this stage,
one should prefer a more conservative strategy, discarding only the features with
r below the threshold.

Second stage. A NN committee (perceptrons with 16 neurons in the single
hidden layer) has been trained for four values of initiation interval length: 4, 8,
16, and 24 hours. The results (the values of multiple determination coefficient
R2 on training, test, and examination sets, averaged over three experiments) are
presented in Table 4, where the results obtained for initiation interval equal to
search interval are also given for comparison. In all cases, the optimal position
of the initiation interval was that with minimal delays; the upper-bound esti-
mation of the phenomenon duration was 16 hours, based on the results on all
the three sets. Significant difference of the results on different sets is connected
with the fact that the sets were extracted sequentially, while the whole period
of observation corresponded to gradual reduction of the solar activity at the fall
of the 11-year cycle.

Third stage. To extract the precursor, the method of progressive build-up of
neural networks has been applied. Perceptrons with 8 neurons in the single hid-
den layer were used. Network build-up was performed in the same way as for
the model problem, except for the facts that at each iteration 3 best variable
sets from the preceding iteration were used as basis for build-up, and that each
network was trained 3 times (with different initial weights). As the result of
network build-up, the precursor that was found to be optimal was a set of 12
most significant features; the values of R2 are presented in Table 5. The list of
the selected features included: Bz GSM lagged for 2, 3, 6, 9, 11, and 15 hours;
B magn lagged for 2, 8 and 14 hours; n lagged for 1 hour; v lagged for 14 hours,
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Table 4. Results of the second stage for the real world problem

Initiation interval 4 8 16 24 48

R2 on training set 0.659 0.713 0.757 0.778 0.739

R2 on test set 0.509 0.588 0.631 0.667 0.456

R2 on examination set 0.375 0.436 0.400 0.360 -0.091

and sin t lagged for 7 hours. In the whole, the selected features match physical
notions about the studied problem [7].

Fourth stage. At this stage, the prediction problem was solved based on the set
of features selected at stage 3, with the help of a perceptron with three hidden
layers containing 24, 16, and 8 neurons. As can be seen from Table 5, the results
have been improved for all the three sets of data.

Table 5. Comparison of the results of the second, third, and fourth stages for the real

world problem

Stage 2 3 4

R2 on training set 0.757 0.686 0.693

R2 on test set 0.631 0.652 0.660

R2 on examination set 0.400 0.361 0.374

4 Conclusion

A four-stage algorithm based on neural network committee for prediction and
search for precursors in multi-dimensional time series has been suggested, imple-
mented, and studied. The algorithm allows increasing efficiency of prediction and
extracting the precursor (a combination of the most significant input features,
defined in coordinates ”initial time series – lag”). The suggested algorithm has
been successfully tested on two problems with continuous output, and demon-
strated its efficiency.

Testing of the algorithm on one model problem with binary output revealed
a very high rate of false alarms, due to strong misbalance of classes. Therefore,
while the general algorithm outline may remain the same for both continuous
valued and binary output problems, supplementary algorithms need to be in-
cluded in the method to handle misbalanced classes.

The program of future studies will also include: expansion of the range of
methods used for selection of significant variables; use of NN committee at the
last stage of the algorithm; use of the stacked generalization approach to work
with NN committees at the second and the fourth stages of the algorithm; com-
parison of the results to those produced with other standard methodologies, such
as recurrent NN or similar.
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Abstract. In this paper, we investigate the application of adaptive en-

semble models of Extreme Learning Machines (ELMs) to the problem of

one-step ahead prediction in (non)stationary time series. We verify that

the method works on stationary time series and test the adaptivity of

the ensemble model on a nonstationary time series. In the experiments,

we show that the adaptive ensemble model achieves a test error compa-

rable to the best methods, while keeping adaptivity. Moreover, it has low

computational cost.

Keywords: time series prediction, sliding window, extreme learning ma-

chine, ensemble models, nonstationarity, adaptivity.

1 Introduction

Time series prediction is a challenge in many fields. In finance, experts predict
stock exchange courses or stock market indices; data processing specialists pre-
dict the flow of information on their networks; producers of electricity predict
the load of the following day [1,2]. The common question in these problems is
how one can analyze and use the past to predict the future.

A common assumption in the field of time series prediction is that the un-
derlying process generating the data is stationary and that the data points are
independent and identically distributed (IID). Under this assumption, the train-
ing data is generally a good indication for what data to expect in the test phase.

However, a large number of application areas of prediction involve nonstation-
ary phenomena. In these systems, the IID assumption does not hold since the
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system generating the time series changes over time. Therefore, contrary to the
stationary case, one cannot assume that one can use what has been learned from
past data and one has to keep learning and adapting the model as new samples
arrive. Possible ways of doing this include: 1) retraining the model repeatedly
on a finite window of past values and 2) using a combination of different models,
each of which is specialized on part of the state space.

Besides the need to deal with nonstationarity, another motivation for such an
approach is that one can drop stationarity requirements on the time series. This
is very useful, since often we cannot assume anything about whether or not a
time series is stationary.

To construct the ensemble model presented in this paper, a number of Extreme
Learning Machines (ELMs) [3] of varying complexity are generated, each of which
is individually trained on the data. After training, these individual models are
combined in an ensemble model. The output of the ensemble model is a weighted
linear combination of the outputs of the individual models. During the test
phase, the ensemble model adapts this linear combination over time with the
goal of minimizing the prediction error: whenever a particular model has bad
prediction performance (relative to the other models) its weight in the ensemble
is decreased, and vice versa. A detailed description can be found in Section 2.3.

In the first experiment, we test the performance of this adaptive ensemble
model in repeated one-step ahead prediction on a time series that is known to
be stationary (the Santa Fe A Laser series [4]). The main goal of this experiment
is to test the robustness of the model and to investigate the different parameters
influencing the performance of the model. In the second experiment, the model
is applied to another time series (Quebec Births [5]) which is nonstationary and
more noisy than the Santa Fe time series.

Ensemble methods have been applied in various forms (and under various
names) to time series prediction, regression and classification. A non-exhaustive
list of literature that discusses the combination of different models into a single
model includes bagging [6], boosting [7], committees [8], mixture of experts [9],
multi-agent systems for prediction [10], classifier ensembles [11], among others.
Out of these examples, our work is most closely related to [10], which describes
a multi-agent system prediction of financial time series and recasts prediction
as a classification problem. Other related work includes [11], which deals with
classification under concept drift (nonstationarity of classes). The difference is
that both papers deal with classification under nonstationarity, while we deal
with regression under nonstationarity.

In Section 2, the theory of ensemble models and the ELM are presented, as
well as how we combine both of them in the adaptive ensemble method. Section
3 describes the experiments, the datasets used and discusses the results.

2 Methodology
2.1 Ensemble Models

In ensemble methods, several individual models are combined to form a single
new model. Commonly, this is done by taking the average or a weighted average
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of the individual models, but other combination schemes are also possible [11].
For example, one could take the best n models and take a linear combination of
those. For an overview of ensemble methods, see [8].

Ensemble methods rely on having multiple good models with sufficiently un-
correlated error. The individual models are typically combined into a single
ensemble model as follows:

ŷens(t) =
1
m

m∑
i=1

ŷi(t)), (1)

where ŷens(t) is the output of the ensemble model, ŷi(t) are the outputs of the
individual models and m is the number of models.

Following [8], it can be shown that the variance of the ensemble model is lower
than the average variance of all the individual models:

Let y(t) denote the true output that we are trying to predict and ŷi(t) the
estimation for this value of model i. Then, we can write the output ŷi(t) of model
i as the true value y(t) plus some error term εi(t):

ŷi(t) = y(t) + εi(t). (2)

Then the expected square error of a model becomes

E[
{
ŷi(t)− y(t)

}2] = E[εi(t)2]. (3)

The average error made by a number of models is given by

Eavg =
1
m

m∑
i=1

E[εi(t)2]. (4)

Similarly, the expected error of the ensemble as defined in Equation 1 is given
by

Eens = E

[{ 1
m

m∑
i=1

ŷi(t)− y(t)
}2]

= E

[{ 1
m

m∑
i=1

εi(t)
}2]

. (5)

Assuming the errors εi(t) are uncorrelated (i.e. E[εi(t)εj(t)] = 0) and have zero
mean (E[εi(t)] = 0), we get

Eens =
1
m
Eavg. (6)

Note that these equations assume completely uncorrelated errors between the
models, while in practice errors tend to be highly correlated. Therefore, errors are
often not reduced as much as suggested by these equations, but can be improved
by using ensemble models. It can be shown that Eens < Eavg always holds. Note
that this only tells us that the test error of the ensemble is smaller than the
average test error of the models, and that it is not necessarily better than the
best model in the ensemble. Therefore, the models used in the ensemble should
be sufficiently accurate.
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2.2 ELM

The ELM algorithm is proposed by Guang-Bin Huang et al. in [3] and makes
use of Single-Layer Feedforward Neural Networks (SLFN). The main concept
behind ELM lies in the random initialization of the SLFN weights and biases.
Under the condition that the transfer functions in the hidden layer are infinitely
differentiable, the optimal output weights for a given training set can be deter-
mined analytically. The obtained output weights minimize the square training
error. The trained network is thus obtained in very few steps and is very fast to
train, which is why we use them in the adaptive ensemble model.

Below, we review the main concepts of ELM as presented in [3]. Consider a
set of M distinct samples (xi, yi) with xi ∈ R

d and yi ∈ R; then, a SLFN with
N hidden neurons is modeled as the following sum

N∑
i=1

βif(wixj + bi), j ∈ [1,M ], (7)

with f being the activation function, wi the input weights to the ith neuron in
the hidden layer, bi the biases and βi the output weights.

In the case where the SLFN would perfectly approximate the data (meaning
the error between the output ŷi and the actual value yi is zero), the relation is

N∑
i=1

βif(wixj + bi) = yj, j ∈ [1,M ], (8)

which can be written compactly as

Hβ = Y, (9)

where H is the hidden layer output matrix defined as

H =

⎛⎜⎝ f(w1x1 + b1) · · · f(wNx1 + bN )
...

. . .
...

f(w1xM + b1) · · · f(wNxM + bN )

⎞⎟⎠ , (10)

and β = (β1 . . . βN )T and Y = (y1 . . . yN )T .
Given the randomly initialized first layer of the ELM and the training inputs

xi ∈ R
d, the hidden layer output matrix H can be computed. Now, given H and

the target outputs yi ∈ R (i.e. Y), the output weights β can be solved from the
linear system defined by Equation 9. This solution is given by β = H†Y, where
H† is the Moore-Penrose generalized inverse of the matrix H [12]. This solution
for β is the unique least-squares solution to the equation Hβ = Y. Overall, the
ELM algorithm then is:
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Algorithm 1. ELM
Given a training set (xi, yi),xi ∈ R

d, yi ∈ R, an activation function f : R �→ R and N
the number of hidden nodes,

1: - Randomly assign input weights wi and biases bi, i ∈ [1, N ];

2: - Calculate the hidden layer output matrix H;

3: - Calculate output weights matrix β = H†Y.

Theoretical proofs and a more thorough presentation of the ELM algorithm
are detailed in the original paper [3].

2.3 Adaptive Ensemble Model of ELMs

When creating a model to solve a certain regression or classification problem,
it is unknown in advance what the optimal model complexity and architecture
is. Also, we cannot always assume stationarity of the process generating the
data (i.e. in cases where the IID assumption does not hold). Therefore, since the
information that has been gathered from past samples can become inaccurate,
it is needed to keep learning and keep adapting the model once new samples
become available. Possible ways of doing this include: 1) retraining the model
repeatedly on a finite window into the past and 2) use a combination of different
models, each of which is specialized on part of the state space. In this paper, we
employ both strategies in repeated one-step ahead prediction on (non)stationary
time series. On the one hand, we use diverse models and adapt the weights with
which these models contribute to the ensemble. On the other hand, we retrain
the individual models on a limited number of past values (sliding window) or on
all known values (growing window).

Adaptation of the Ensemble. The ensemble model consists of a number of
randomly initialized ELMs, which each have their own parameters (details are
discussed in the next subsection). The model ELMi has an associated weight wi

which determines its contribution to the prediction of the ensemble. Each ELM is
individually trained on the training data and the outputs of the ELMs contribute
to the output ŷens of the ensemble as follows: ŷens(t + 1) =

∑
i wiŷi(t+ 1).

Once initial training of the models on the training set is done, repeated one-
step ahead prediction on the ’test’ set starts. After each time step, the previous
predictions ŷi(t−1) are compared with the real value y(t−1). If the square error
εi(t− 1)2 of ELMi is larger than the average square error of all models at time
step t− 1, then the associated ensemble weight wi is decreased, and vice versa.
The rate of change can be scaled with a parameter α, called the learning rate.
Furthermore, the rate of change is normalized by the number of models and the
variance of the time series, such that we can expect similar behaviour on time
series with different variance and ensembles with a different number of models.
The full algorithm can be found in Algorithm 2.



310 M. van Heeswijk et al.

Adaptation of the Models. As described above, ELMs are used in the ensem-
ble model. Each ELM has a random number of input neurons, random number
of hidden neurons, and random variables of the regressor as input.

Besides changing the ensemble weights wi as a function of the errors of the
individual models at every time step, the models themselves are also retrained.
Before making a prediction at time step t, each model is either retrained on a
past window of n values (xi, yi)

t−1
t−n (sliding window), or on all values known so

far (xi, yi)
t−1
1 (growing window). Details on how this retraining fits in with the

rest of the ensemble can be found in Algorithm 2.
As mentioned in Section 2.2, ELMs are very fast to train. In order to further

speed up the retraining of the ELMs, we make use of PRESS statistics, which
allow you to add and remove samples from the training set of a linear model
and give you the linear model that you would have obtained, had you trained
it on the modified training set. Since an ELM is essentially a linear model of
the responses of the hidden layer, PRESS statistics can be applied to (re)train
the ELM in an incremental way. A detailed discussion of incremental training
of ELMs with PRESS statistics falls outside the scope of this paper, but details
on PRESS statistics can be found in [13].

Algorithm 2. Adaptive Ensemble of ELMs
Given a set (x(t), y(t)),x(t) ∈ R

d, y(t) ∈ R, and m models,

1: Create m random ELMs: (ELM1 . . . ELMm)

2: Train each of the ELMs individually on the training data

3: Initialize each wi to 1
m

4: while t < tend do
5: generate predictions ŷi(t + 1)

6: ŷens(t + 1) =
∑

i wiŷi(t + 1)

7: t = t + 1

8: compute all errors → εi(t − 1) = ŷi(t − 1) − y(t − 1)

9: for i = 1 to #models do
10: Δwi = −εi(t − 1)2 + mean(ε(t − 1)2)

11: Δwi = Δwi · α/(#models · var(y))

12: wi = max(0, wi + Δwi)

13: Retrain ELMi

14: end for
15: renormalize weights → w = w/ ||w||
16: end while

3 Experiments

3.1 Experiment 1: Stationary Time Series

The Santa Fe Laser Data time series [4] has been obtained from a far-infrared-
laser in a chaotic state. This time series has become a well-known benchmark
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in time series prediction since the Santa Fe competition in 1991. It consists of
approximately 10000 points and the time series is known to be stationary.

The adaptive ensemble model is trained on the first 1000 values of the time
series, after which sequential one-step ahead prediction is performed on the fol-
lowing 9000 values. This experiment is repeated for various combinations of
learning rate α and number of models in the ensemble. Each ELM has a regres-
sor size of 8 (of which 5 to 8 variables are randomly selected) and between 150
and 200 hidden neurons with a sigmoid transfer function.

Figure 1 shows the effect of the number of models on the prediction accuracy.
It can be seen that the number of models strongly influences the prediction
accuracy and that at least 60 models are needed to get good prediction accuracy.
Figure 2 shows the effect of the learning rate on the prediction accuracy. The
influence of the various (re)training strategies can be found in Table 1. This table
also shows that the method is able to achieve a prediction accuracy comparable
to the best methods [14].

Table 1. MSEtest of ensemble for laser (training window size 1000)

retraining

learning rate #models none sliding growing

0.0 10 39.39 58.56 34.16

0.1 10 28.70 37.93 18.42

0.0 100 24.80 33.85 20.99

0.1 100 17.96 27.30 14.64

Figures 3 and 4 show the adaptation of some of the ensemble weights over the
length of the entire prediction task.
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3.2 Experiment 2: Nonstationary Time Series

The Quebec Births time series [5] consists of the number of daily births in
Quebec over the period of January 1, 1977 to December 31, 1990. It consists of
approximately 5000 points, is nonstationary and more noisy than the Santa Fe
Laser Data.

The adaptive ensemble model is trained on the first 1000 values of the time
series, after which sequential one-step ahead prediction is performed on the fol-
lowing 5000 values. This experiment is repeated for varying learning rates α and
numbers of models. Each ELM has a regressor size of 14 (of which 12 to 14
variables are randomly selected) and between 150 and 200 hidden neurons.

Figure 6 shows the effect of the number of models on the prediction accuracy.
It can be seen that the number of models strongly influences the prediction
accuracy, as was the case with the Santa Fe time series. However, we need more
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Table 2. MSEtest of ensemble for Quebec Births (training windows size 1000)

retraining

learning rate #models none sliding growing

0.0 10 594.04 479.84 480.97

0.1 10 582.09 479.58 476.87

0.0 100 585.53 461.44 469.79

0.1 100 567.62 461.04 468.51

models in order to get a good prediction accuracy. Figure 7 shows the effect
of the learning rate on the prediction accuracy. The influence of the various
(re)training strategies can be found in Table 2.

3.3 Discussion

The experiments clearly show that it is important to have a sufficient number
of models (more is generally better). Furthermore, the shape of the learning
rate graph is independent of the number of models, which means that these
parameters can probably be optimized independently from each other. We are
currently performing a more thorough statistical analysis for determining the
best strategy for optimizing the parameters. However, the results suggest that
choosing the number of models high and choosing a sufficiently large learning
rate (i.e. α = 0.1) is a good and robust strategy.

The results also show that the proposed adaptive ensemble method is able to
achieve a prediction accuracy comparable to the best methods [14], and is able
to do so for both stationary and nonstationary series. An added advantage of
the method is that it is adaptive and has low computational cost.



314 M. van Heeswijk et al.

4 Conclusions
We have presented an adaptive ensemble model of Extreme Learning Machines
(ELMs) for use in repeated one-step ahead prediction. The model has been
tested on both stationary and nonstationary time series, and these experiments
show that in both cases the adaptive ensemble method is able to achieve a
prediction accuracy comparable to the best methods. An added advantage of the
method is that it is adaptive and has low computational cost. Furthermore, the
results suggest that we can make good guesses for the parameters of the method
(i.e. choose number of models sufficiently large and choose learning parameter
α = 0.1). We are currently performing more thorough statistical analysis of the
model, in order to determine the best strategy for optimizing the parameters.
In addition, we would like to extend the model to include other models like OP-
ELM [15] and investigate how we can guide adding new models to the ensemble
in an online fashion, in order to introduce an extra degrees of adaptivity.
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Abstract. An application of multiway spectral clustering with out-of-

sample extensions towards clustering time series is presented. The data

correspond to power load time series acquired from substations in the

Belgian grid for a period of 5 years. Spectral clustering methods are

a class of unsupervised learning algorithms where the solutions can be

obtained from the eigenvectors of a Laplacian matrix derived from the

data. Nonlinearity can easily be added to the analysis by the use of non-

linear similarity functions that can be regarded as Mercer kernels. In this

paper, a weighted kernel PCA formulation to spectral clustering is used

to find interpretable customer profiles underlying the power consump-

tion load time series. The main advantage of the interpretation as kernel

PCA is the extension of the clustering model to out-of-sample points.

The clustering model can be trained, validated and tested in a learning

framework working directly with the data and without the use of pre-

modeling steps. The experimental results with real-life data demonstrate

the applicability of the multiway spectral clustering method compared

to an existing method pre-modeling the data based on periodic autore-

gressions (PAR).

1 Introduction

Spectral clustering provides a powerful unsupervised learning tool to find similar
patterns underlying the data. These methods are typically expressed as relax-
ations of NP-hard graph partitioning problems. Although several spectral clus-
tering methods have been proposed in the literature [1,2,3], they all share the
use of information contained in the eigenspectrum of Laplacian matrices derived
from the data. Spectral clustering can be also interpreted as a kernel method
when the chosen similarity gives rise to pairwise similarity matrices with positive
eigenvalues. Kernel-based modeling is a powerful and elegant way of introduc-
ing nonlinearity into the analysis. However, in practice, the models can become
too general for the application at hand with a high risk of overfitting. A careful
and systematic parameter selection is thus needed in order to obtain relevant
and informative groupings among the data. A recent approach linking spectral
clustering with a form of weighted kernel PCA has been proposed in [4]. This
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method fits into the least squares support vector machine (LS-SVM) [5] frame-
work for kernel-based learning. One of the main advantages of this approach is
the possibility to extend the clustering model to out-of-sample points without
the need of approximation or ad-hoc schemes.

This paper contains an application of the multiway spectral clustering with
out-of-sample extensions introduced in [4] towards clustering time series. Time
series data pose a challenge to standard clustering methods due mainly to the
high-dimensionality. The particular dataset corresponds to readings of the power
load measure at 245 different substations in the Belgian grid for a period of 5
years. The objective is to identify types of costumers underlying the data. This
task is particularly important for short, mid and long-term planning in the elec-
tricity sector. An approach to cluster this type of data was proposed in [6]. This
approach uses a pre-modeling scheme based on periodic autoregressions (PAR)
in order to reduce the dimensionality together with representing the time series
independent of seasonal and calendar variations. In a later stage, k-means was
used to find the clusters. Pre-modeling can be useful for interpretability and
dimensionality reduction but there might be a loss of information while trying
to pre-model the complete set of load time series with the same template. The
proposed approach aims at obtaining interpretable customer profiles of power
load consumption by clustering the data directly in a learning framework with
model selection and without the use of pre-modeling steps. This paper is orga-
nized as follows. Section 2 contains a short description of the dataset used in the
sequel. Section 3 summarizes classical spectral clustering. In Section 4, the mul-
tiway formulation to spectral clustering introduced in [4] is described. Section
5 reviews a model selection method. Section 6 contains the clustering results of
an existing methodology and the proposed approach and in Section 7, we give
conclusions.

2 Power Load Time Series

A time series dataset containing readings of the power load measured at 245
different high voltage - low voltage substations in the Belgian grid is used in
this paper. The power load was measured every hour for a period of 5 years.
The data characterize different profiles of load consumption such as business,
residential and industrial. Each time series was normalized to have zero mean
and unitary standard deviation. Figure 1 shows one particular time series of the
dataset. The yearly cycles are visible together with the daily cycles. From the
daily cycle it is also possible to visualize morning, noon and evening peaks.

3 Classical Spectral Clustering

3.1 Spectral Graph Theory

Given a set of N data points {xi}N
i=1, xi ∈ R

d and some similarity measure
sij ≥ 0 between each pair of points xi and xj , an intuitive form of representing
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Fig. 1. Example of time series from the power load dataset. Yearly and daily cycles

are visible. It is also possible to visualize morning, noon and evening peaks.

the data is using a graph G = (V , E). The vertices V represent the data points
and the edge eij ∈ E between vertices vi, vj has a weight determined by sij . The
affinity matrix of the graph is the matrix S with ij-entry Sij = sij . The degree
of vertex vi is defined as degi =

∑N
j=1 sij , the degree matrix D is the matrix

D = diag([deg1, . . . ,degN ]) on the diagonal.
A basic problem in graph theory is the graph bipartitioning problem, that is

to separate the graph G into two disjoint sets A,B based on a cut criterion. The
resulting sets should be disjoint: A ∩ B = ∅ and A ∪ B = V . This problem has
been extensively studied [7] and several cut criteria have been proposed [8,1]. The
normalized cut NCut [1] is a common bipartitioning criterion and is defined as
NCut(A,B) = cut(A,B)/Vol(A) + cut(A,B)/Vol(B), where Vol(A) ≡ ∑

i∈A di

denotes the volume of the set A.

3.2 Multiway Cut Criteria

A more general problem in graph theory is the so called multiway cut. In this
case, the aim is to partition the graph into k > 2 disjoint parts A1, . . . ,Ak,
with A1 ∩ . . . ∩ Ak = ∅. The multiway NCut problem as introduced in [9] is
minG k − trace(GT L̂G) such that GTG = Ik, where L̂ = D−1/2LD−1/2 is the
normalized Laplacian and G ∈ {0, cL}N×k is a cluster indicator matrix with one
non-zero entry per row (indicating cluster membership) and cL is a normalization
constant. Minimizing the multiway Ncut is NP-hard. Relaxing G and allowing to
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take real values leads to a special form of Fan’s theorem [10] where the relaxed
optimal solution is given by:

G̃� = BRL,

where B ∈ R
N×k is any orthonormal basis of the k-th principal subspace of L̃

and RL is an arbitrary rotation matrix. Roughly speaking, the relaxed solution of
the multiway NCut is contained in the eigenvectors corresponding to the largest
k eigenvalues of the normalized Laplacian up to arbitrary rotations.

Several methods to convert the partitioning information contained in the
eigenvectors to clusters have been proposed [1,11]. A popular method introduced
in [1] consists of reclustering and consists of computing the top k eigenvectors of
the multiway NCut problem and then applying k-means onto them. Reclustering
works well only if the clusters in the space represented by the eigenvectors are
spherical and well separated.

3.3 Markov Random Walks

A Markov random walks view of spectral clustering was discussed in [12]. A
random walk on a graph consists of random jumps from vertex to vertex. The ij-
th entry of the stochastic transition matrix P = D−1S represents the probability
of moving from node i to node j in one step. The corresponding eigenvalue
problem becomes Pr = ξr. Maximizing the random walks model is equivalent
to minimizing the binary NCut and can be interpreted as finding a partition of
the graph in such a way that the random walk remains most of the time in the
same cluster with few jumps to other clusters.

In the ideal case of a graph with k disconnected components, the transition
matrix P will have k eigenvalues equal to 1. The eigenvectors corresponding to
these unitary eigenvalues are the indicator functions to the respective discon-
nected components and the clustering is trivial because each cluster is repre-
sented as a single point in R

k. This also corresponds to the piecewise constant
property of eigenvectors discussed in [12].

4 Spectral Clustering via Weighted Kernel PCA

In this Section, we summarize the multiway formulation for spectral clustering
introduced in [4]. This algorithm considers weighted kernel PCA with D−1 as
the weighting matrix to perform spectral clustering. The formulation fits into
a constrained optimization framework typical of least squares support vector
machines (LS-SVM). The choice of D−1 as the weighting matrix is motivated by
the random walks model of spectral clustering. Moreover, [4] can be interpreted
as a weighted centered version of the random walks algorithm with bias terms
and out-of-sample extensions.
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4.1 Multiway Formulation

Given training data {xi}N
i=1, xi ∈ R

d, the primal problem is formulated as
follows:

min
w(l),e(l),bl

JP =
1

2N

k−1∑
l=1

γle
(l)T

D−1e(l) − 1
2

k−1∑
l=1

w(l)T

w(l) (1)

such that e(l) = Φw(l) + bl1N , l = 1, . . . , k − 1

where k is the number of desired clusters, γl ∈ R
+ are regularization constants,

e(l) = [e(l)1 ; . . . ; e(l)N ] is the l-th score variables vector, bl are bias terms, Φ is
the N × nh feature matrix Φ = [ϕ(x1)T ; . . . ;ϕ(xN )T ], ϕ(·) : R

d → R
nh is the

mapping to a high dimensional feature space F of dimension nh (which can
be infinite dimensional) and l = 1, . . . , k − 1. Thus, each training data point
xi ∈ R

d is represented as point in the score variables space ei ∈ R
k−1, ei =

[e(1)i , . . . , e
(k−1)
i ]. After binarization, the score variables become cluster indicators

q
(l)
i = sign(e(l)i ), i, . . . , N, l = 1, . . . , k−1. The Lagrangian of the constrained opti-

mization problem (1) is expressed as L(w(l), e(l), bl;α(l)) = JP−
∑ne

l=1 α
(l)T (

e(l)−
Φ(l)w(l)−bl1N

)
where α(l) ∈ R

N are Lagrange multiplier vectors. Using the KKT
optimality conditions ∂L/∂e(l) = 0, ∂L/∂w(l) = 0, ∂L/∂α(l) = 0, l = 1, . . . , k−1,
eliminating w(l), e(l), bl leads to (γl/N)D−1MDΦΦ

Tα(l) = α(l) where

MD = IN − 1
1T

ND
−11N

1N1T
ND

−1. (2)

Applying the kernel trick K(xi, xj) = ϕ(xi)Tϕ(xj), and defining λl = N/γl leads
to the following eigenvalue problem:

D−1MDΩα
(l) = λlα

(l), j = 1, . . . , k − 1 (3)

where Ω is the kernel matrix with ij-th entry Ωij = K(xi, xj). Note that the
matrix D−1MDΩ is not symmetric but it is the product of two symmetric pos-
itive semidefinite matrices therefore its eigenvalues are real [13]. The bias terms
become bl = − 1

1T
N D−11N

1T
ND

−1Ωα(l), l = 1, . . . , k − 1, and the projections of
the training points onto the eigenvectors can be expressed in terms of the dual
variables: e(l)i = w(l)T

ϕ(xi) + bl =
∑N

j=1 α
(l)
j K(xi, xj) + bl.

4.2 Out-of-Sample Extension and Encoding/Decoding

In classical spectral clustering, the cluster indicators obtained from the eigenvec-
tors are defined only for training data. Extensions to compute cluster indicators
for unseen points are typically done in an ad-hoc manner using the Nyström ap-
proximation [14]. However, due to the primal-dual nature of the weighted kernel
PCA framework, it is possible to extend the clustering model to out-of-sample
points in an straightforward way using the projections onto the eigenvectors.
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Fig. 2. Toy dataset illustrating piecewise constant eigenvectors and projections. Left:
Training data consisting of 3 Gaussian clouds and N = 600 points. Center: Piecewise

constant eigenvectors α(1), α(2) obtained by solving (3) with an RBF kernel, σ = 0.5.
Right: Corresponding projections of the full dataset Ntotal = 1, 200. Note that the

clusters are represented in the eigenvectors and the corresponding projections in dis-

tinct quadrants.

Given a set of Ntest test points {xtest
t }Ntest

t=1 , the score variables for these points
become: z(l)

t = w(l)T

ϕ(xtest
t ) + bl =

∑N
j=1 α

(l)
j K(xtest

t , xj) + bl and the cluster

indicators are given by q̆
(l)
t = sign(z(l)

t ), l = 1, . . . , k − 1, t = 1, . . . , Ntest.
The final clustering is obtained through encoding the k− 1 binary indicators.

Each training point xi ∈ R
d has an associated binary encoding qi ∈ R

k−1. From
the clustering indicators qi a codebook is formed with the k binary encodings
with most occurrences [4]. Figure 2 illustrates a simple example with 3 Gaussian
clouds in a 2D space. Note that, the eigenvectors are piecewise constant thus
representing each cluster as a single point in a different quadrant. The out-of-
sample extension induced by the projections displays a line structure which can
be used for model selection as will be discussed in the sequel. The decoding
step consists of comparing the cluster indicators for out-of-sample data with
each codeword in the codebook and selecting the encoding that minimizes the
Hamming distance.

5 Model Selection

Model selection is a critical issue in unsupervised learning methods such as
spectral clustering. Typically, the number of clusters k and the kernel param-
eters are chosen in a heuristic way. However, by means of the out-of-sample
extensions, it is possible to perform model selection in an intuitive and straight-
forward way. A model selection criterion called the Balanced Line Fit (BLF)
was introduced in [4]. The clusters are represented as lines in the score vari-
ables space for well-chosen parameters. Thus, it becomes important to charac-
terize the fitness of a particular cluster to a line. The BLF as defined in [4]
is a weighted sum of a collinearity measure called the linefit and a measure of
the balance of the obtained clusters: BLF(k) = ηlinefit(k) + (1 − η)balance(k),
where η controls the importance given to the collinearity measure with respect
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to the balance, 0 ≤ η ≤ 1, linefit(k) = 1
k

∑k
p=1

k−1
k−2

(
ζ
(p)
1∑
l ζ

(p)
l

− 1
k−1

)
where

ζ
(p)
1 ≥ . . . ≥ ζ

(p)
k−1 are the ordered eigenvalues of the sample covariance matrix

C
(p)
Z̃

= (1/|Ap|)Z̃(p)T

Z̃(p), p = 1, . . . , k, Z̃(p) ∈ R
|Ap|×(k−1) is the matrix rep-

resenting the zero mean score variables for out-of-sample data assigned to the
p-th cluster. The term ζ

(p)
1 /

∑
l ζ

(p)
l indicates how much of the total variance

is contained on the top eigenvector of C(p)
Z̃

. In this way, if the validation score

variables for the p-th cluster are collinear, then ζ
(p)
1 /

∑
l ζ

(p)
l equals 1. The addi-

tional terms in the linefit normalize the criterion between 0 and 1. The balance
measure is defined as balance(k) = min{|A1|, . . . , |Ak|}/max{|A1|, . . . , |Ak|}.
The balance index equals 1 when the clusters have the same number of elements
and tends to 0 in extremely unbalanced cases. Note that, the linefit is defined
only for k > 2. For k = 2, a slight modification of the BLF was discussed in [4].

6 Experimental Results

6.1 Existing Methodology

An approach to cluster the load time series was proposed in [6]. This method
computes a Typical Daily Profile (TDP) from the identified parameters in a Pe-
riodic Autoregression (PAR) system estimated for each times series, later per-
forming k-means on the TDPs. PAR models allow the autoregression parameters
to vary according to cyclic patterns (such as hours, days, years, seasons). These
models have been used for forecasting in economical modeling and electricity
price modeling. The method proposed in [6] aims at representing the time series
as an hourly PAR model of order 48 with additional exogenous variables account-
ing for monthly and weekly cyclic variations together with temperature effects.
The PAR parameters can be obtained by solving an Ordinary Least Squares
(OLS) system. A TDP was defined in [6] as a convergence vector of the PAR(48)
model after extracting all exogenous information. The main advantage of a TDP
is that it represents a daily load profile independent of the seasonal and calendar
variations. In summary, [6] creates a TDP for each time series which implies a
dimensionality reduction from 43, 824 to 24. PCA is then applied over the TDP
to capture 99% of the information explained by the variance. This corresponds to
a further reduction to 9 dimensions. The last step consists of applying k-means
over the 9 principal components of the typical daily profile. Figure 3 shows the
clustering results. Several types of customers can be identified from the results,
particularly clusters 1 and 2 which corresponds to residential profiles, clusters 6
and 7 which display a commercial profile, clusters 4, 5, 8 show a profile typical
of street lighting and certain industrial activities taking place during the night.

6.2 Proposed Clustering Scheme

The proposed scheme consists of clustering directing the time series in a learning
framework with model selection without any premodeling steps. The training
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Fig. 3. Typical daily profile (TDP) clustering results using the method proposed in [6]

which corresponds to preprocessing the TDP with PCA to reduce the dimensionality

to 9 and then applying k-means

scenario consists of 123 time series for training and 122 times series for validation.
Each time series is a 43, 824-dimensional vector with zero mean. The training /
validation sets were randomized 10 times and the model selection results report
average values. We used the BLF for tuning the number of clusters and the RBF
kernel parameter σ. The η parameter was set to 0.5 hence, giving equal weight
to the linefit and to the balance. The tuning range for the RBF kernel parameter
was varied from 500 to 2, 000 in 100 steps. The number of clusters k ranged from
2 to 12. The choice for the 500 as the minimum value of the range is motivated by
the fact that with lower values the RBF kernel matrix was tending to the identity
matrix which has trivial eigenspace with no discriminatory information about the
clusters. On the other hand, values greater than 2, 000 led to a almost constant-
valued kernel matrix independent of the data. The maximum of the BLF gives
the optimal number of clusters and the optimal value for σ. Figure 4 shows the
model selection results. The BLF detected 7 clusters and the optimal σ value was
200. For visualization purposes, each time series is transformed into a mean daily
pattern by averaging the corresponding 1, 824 24-hour non-overlapping windows.
This mean daily pattern is similar to the TDP but differs in the sense that we
did not model any periodicity or exogenous variables. Moreover, the mean daily
pattern is computed after the clustering has been performed and serves only for
visualization and clustering interpretation purposes. Figure 5 shows the mean
daily patterns for the 245 time series using the multiway spectral clustering with
parameters k = 7, σ = 200 obtained through model selection with the BLF.
The obtained clusters also display typical customer profile information. Namely,
cluster 1 suggests residential behavior with morning and evening peaks. Cluster
5 characterizes low consumption during the day increasing during the night.
Clusters 2, 6 and 7 suggest commercial or business profiles while cluster 3 and
4 display load behavior with no particular associated profile.
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Fig. 5. Clustering results using the proposed methodology. The results show typical

customer profiles while clustering the data directly without pre-processing. The x-axis

corresponds to the hour of the day while the y-axis is the normalized load.

7 Conclusions

We have presented an application of the multiway spectral clustering method
with out-of-sample extensions towards grouping types of customers in power
load time series. The proposed scheme can be applied directly to the raw data
without the need of pre-modeling steps. The parameters of the clustering model
are obtained in a learning framework using training and validation scenarios.
The experimental results show the applicability of the proposed methodology
using a real-life high-dimensional dataset compared to an existing approach using
periodic autoregressions.
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Abstract. Various complex phenomena exist in the real world. Then,

many methods have already been proposed to analyze the complex phe-

nomena. Recently, novel methods have been proposed to analyze the

deterministic nonlinear, possibly chaotic, dynamics using the complex

network theory [1, 2, 3]. These methods evaluate the chaotic dynamics

by transforming an attractor of nonlinear dynamical systems to a net-

work. In this paper, we investigate the opposite direction: we transform

complex networks to a time series. To realize the transformation from

complex networks to time series, we use the classical multidimensional

scaling. To justify the proposed method, we reconstruct networks from

the time series and compare the reconstructed network with its original

network. We confirm that the time series transformed from the networks

by the proposed method completely preserves the adjacency information

of the networks. Then, we applied the proposed method to a mathemat-

ical model of the small-world network (the WS model). The results show

that the regular network in the WS model is transformed to a periodic

time series, and the random network in the WS model is transformed

to a random time series. The small-world network in the WS model is

transformed to a noisy periodic time series. We also applied the proposed

method to the real networks - the power grid network and the neural net-

work of C. elegans - which are recognized to have small-world property.

The results indicate that these two real networks could be characterized

by a hidden property that the WS model cannot reproduce.

1 Introduction

Various networks exist in the real world, for example, the Internet, WWW, neu-
ral networks, power grid networks, and so on. These real networks often have

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 325–334, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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complex structures. The complex network theory has emerged in 1998 as a new
theory to analyze such complex structures. The complex networks widely dis-
tribute in several fields such as biology, sociology, physics, and so on. In the
last decade, researches on the real networks have been drastically advanced and
many methods to analyze the complex networks have been proposed. The com-
plex network theory clarifies that complicated network structures in the real
world could be described by a common and hidden rule [4, 5, 6].

On the other hand, to analyze complex phenomena in the real world, for exam-
ple, air temperature, brain wave, heartbeat, and so on, the nonlinear dynamical
system theory has been used. The nonlinear dynamical system theory has an
impact that a low dimensional nonlinear dynamical system could produce com-
plicated behavior. Even if the deterministic nonlinear dynamical systems produce
the complex phenomena, the time series observed from the complex phenomena
can be analyzed by using time series analysis method based on the nonlinear
dynamical system theory.

Recently, novel methods have been proposed to analyze the nonlinear dynam-
ical systems using the complex network theory [1, 2, 3]. In Refs. [1, 2], networks
are constructed from attractors of the nonlinear dynamical systems and an ob-
served time series. The networks are analyzed by the methods of the complex
network theory. In Refs. [1, 2], it is clarified that the networks transformed from
chaotic time series have several characteristic features, such as the small-world
property [1] and the fit-get-rich property [2]. These features in the transformed
networks reflect important properties of the chaotic dynamical systems, for ex-
ample, orbital instability, self-similarity, and stretching and folding mechanism.
In this sense, to analyze the networks through the nonlinear dynamical system
theory is an interesting field which expresses the nonlinear dynamical system
from different viewpoints.

In this paper, we take an opposite direction: we transform a network to
a time series. We realize the transformation of the network to the time se-
ries by the classical multidimensional scaling [7]. To show that the proposed
method is an invertible transformation, we reconstruct the original network
from the time series transformed from the networks. The time series trans-
formed from the networks by the proposed method can completely preserve
the adjacency relationship between nodes in the networks. Then, we apply the
proposed method to the famous Watts-Strogatz model that can produce the
small-world network. In addition, we investigate the properties of the time se-
ries generated from real networks. As a result, the time series transformed from
different real networks show different spectral structures, although the original
networks of the time series have the same property, called small-world prop-
erty [6] in the complex network theory. These results indicate that the proposed
method reveals hidden structure of the complex networks which cannot be clar-
ified yet.
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2 Transformation from Networks to Time Series

2.1 Classical Multidimensional Scaling

We use the classical multidimensional scaling (CMDS) to transform a network
to a time series. Multidimensional scaling (MDS) is a set of mathematical tech-
niques. It enables us to generate representation of objects which preserves given
dissimilarities between the objects. The CMDS is one of the MDS. The CMDS
might find multi-dimensional coordinates for many points which preserve dis-
tance information between any two points in Euclidean space. Let the
ith point in an m-dimensional Euclidean space be xi (i = 1, . . . , n) where
xi = (xi1, xi2, . . . , xim)ᵀ. Then, the coordinate matrix X is represented as fol-
lows:

X = {x1,x2, . . . ,xn}ᵀ. (1)

The distance between the ith point and the jth point is given by

d2
ij = |xi − xj|2 = (xi − xj)ᵀ(xi − xj) = |xi|2 + |xj |2 − 2xᵀ

i xj. (2)

Then, the matrix D(2) = {d2
ij} can be represented as the following equation:

D(2) = diag(XXᵀ)1n1ᵀ
n + 1n1ᵀ

ndiag(XXᵀ)− 2XXᵀ, (3)

where 1n = (1, . . . , 1)ᵀ is a vector of n ones and diag(XXᵀ) is a square matrix in
which the elements are all zero except the diagonal element. Even if we only have
distance information between the points, we can obtain the coordinate matrix
X by using Eq. (3) and a centering matrix J . Let an inner product matrix be
P = {pij}, where pij = xᵀ

i xj . Then, P is written by the following equation:

P = −1
2
JD(2)J, (4)

where the centering matrix, J = In − n−11n1ᵀ
n, where In is the identity matrix

of size n. Using Eqs. (3) and (4), the matrix P can be rewritten by the following
equation:

P = −1
2
J [1n1ᵀ

ndiag(XXᵀ) + diag(XXᵀ)1n1n
ᵀ − 2XXᵀ]J

= JXXᵀJ

= XcXc
ᵀ (5)

where Xc = JX . Here, P is a symmetric and positive semi-definite matrix whose
rank is m. Because P has m positive eigenvalues and n − m zero eigenvalues,
the spectral decomposition of the matrix P is written by

P = SmΛmS
ᵀ
m = (SmΛ

1/2
m )(SmΛ

1/2
m )ᵀ, (6)



328 Y. Haraguchi et al.

where Λ1/2
m is the diagonal matrix of the square root of eigenvalues {λi} of P and

Sm is the matrix of eigenvectors. The eigenvalues satisfy λ1 ≥ λ2 ≥ . . . ≥ λm > 0
and λm+1 = λm+2 = . . . = λn = 0. Then, Λ1/2

m is given by

Λ1/2
m =

⎛⎜⎜⎜⎝
√
λ1 O√

λ2
. . .

O
√
λm

⎞⎟⎟⎟⎠ . (7)

From Eqs. (5) and (6), the coordinate matrix Xc(= JX) is equal to SΛ
1/2
m .

In the proposed method, we define the distance between any two nodes in
a network using the adjacency relationship among the nodes and generate the
coordinate vectors from the distance matrix. Considering the coordinate vectors
as a time series, we can generate the time series from the networks.

2.2 The Proposed Method

Now, our purpose is to generate a time series which preserves the adjacency
relationship of nodes in a network. Thus, it is necessary to generate the distance
matrix which preserves the adjacency relationship of the nodes in the network. So
we generate the distance matrix D = {dij} from the adjacency matrix A = {aij}
according to the following rules:

dij =

⎧⎪⎨⎪⎩
0 (i = j),
w (aij = 0, i �= j),
1 (aij = 1),

(8)

where w(> 1) is the weight between two disconnected nodes. Equation (8) comes
from a simple idea that the distances between disconnected nodes should be
larger than the distances between connected nodes. The distance of Eq. (8) sat-
isfies the distance axiom. Applying the CMDS to the distance matrix D produced
by the above procedure, CMDS arranges the nodes of the network in such a way
that their adjacency relationship is preserved. Then, we can obtain the coordi-
nate vectors which completely preserve the distance relationship between each
node (Eq. (8)). Here, we now only consider undirected and unweighted networks,
then the distance matrix D is symmetric. Namely, the existence of the solution
of CMDS is guaranteed, then we obtain non-negative eigenvalues of the matrix
D. Although the coordinate obtained by using CMDS has a rotational freedom
around the origin, it does not affect the construction process of the time series
from the network. Even if the coordinate vectors rotate, the adjacency informa-
tion is preserved. If the coordinate vectors preserve the adjacency relationship, or
the structural feature of the network, then the coordinate vectors represent the
structural properties of the network. Thus, considering the coordinate vectors as
a time series and analyzing the time series by the method of the nonlinear time
series analysis, we can evaluate the networks through the nonlinear time series
analysis.
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3 Experiments

We apply our proposed method to a mathematical model and real networks. We
introduced the WS model [6] that can reproduce small-world property as the
mathematical model. We used the power grid network and the neural network
of C. elegans [6] as the real network.

According to the procedure described in Ref. [6], we start from the regular
network which has 1,000 nodes and 100 degree. Then, we rewire all the edges
with the rewiring probability p = 0.0, 0.1, and 1.0. We transform these networks
to time series and calculate their power spectra. Here, we use the eigenvector of
the maximum (first) eigenvalue as the time series because the first eigenvector
most represent the adjacency relationship of the network.

In addition, to check the validity of the proposed method, we re-transform
the transformed time series by the proposed method to a network. We take the
following procedure:

1. Set R(i, j) = 0 (1 ≤ i ≤ N, 1 ≤ j ≤ N) where R represents the adjacency
matrix of the reconstructed network and N is the number of nodes in the
network.

2. Calculate m-dimensional coordinate values xi from the transformed time
series s1(t), s2(t), . . . , sm(t) according to the following equation:

xi = (s1(i), s2(i), . . . , sm(i)). (9)

3. Calculate the distances between two points dij = |xi − xj| for all i and j.
If the distance dij < θ, set R(i, j) = 1. We decide the threshold θ which
satisfies the condition that the reconstructed network has as many edges as
the original network.

After the above-mentioned procedure, we compare R with the adjacency matrix
of the original network O and evaluate how the proposed method preserves the
adjacency information by the following value:

C(O,R) =
|K(O) ∩K(R)|

|K(O)| , (10)

where K(A) is a set of elements which satisfies aij = 1 in the adjacency matrix
A = {aij}, and is defined by Eq. (11):

K(A) = {i, j| aij = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n}. (11)

In Eq. (10), |K(O)| represents the number of elements in K(O), and |K(O) ∩
K(R)| represents the number of elements in K(O)∩K(R). If C(O,R) = 1, R is
perfectly the same as O, namely, our method completely preserves the adjacency
information of the original network in the transformed time series.
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4 Results

4.1 Network Reconstruction from Transformed Time Series

At first, we show that the original network can be reconstructed from the time
series generated by the proposed method. From Fig. 1, the value of C(O,R) is
close to 0 if w = 1 because it is impossible to distinguish the adjacent nodes and
the nonadjacent nodes. On the other hand, C(O,R) becomes slightly lower than
unity if w increases. The reason is that the points which satisfy the distance
relationship given by the matrix D cannot be arranged in Euclidean space. For
example, assuming the case of three nodes as shown in Fig. 2, when w > 2,
we cannot arrange the points with d12 = w, d13 = 1, and d23 = 1 in Eu-
clidean space. This simple example clearly explains that we cannot take a large
value of w.
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Fig. 1. Relation between the weight w and C(O, R) between the original network and

the reconstructed network. The result of (a) the WS model with p = 0.0 (×), p = 0.1
(), and p = 1.0 () and (b) the power grid (×) and the C. elegans ().
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Fig. 2. The example for the case that the coordinate which preserve the distance

relationship does not exist in Euclidean space

The results indicate that depending on the network structure, the weight value
w is so constrained that we cannot get the coordinate which completely preserve
the adjacency information of D. When 1 < w ≤ 1.01, for all the networks, the
value of C(O,R) takes 1. Namely, we can obtain the time series which completely
preserve the adjacency relationship of the networks with the value w selected in
the range 1 < w ≤ 1.01. In the following analyses, we fix w = 1.01.

4.2 Time Series Generated by the Proposed Method

The time series transformed from the WS model and its power spectrum are
shown in Figs. 3, 4, and 5. Figures 6 and 7 are the results of real networks
(power grid and C. elegans) for the same experiments. From Figs. 3 and 5,
our method transforms the regular network (p = 0.0) and the random network
(p = 1.0) in the WS model to periodic and random time series. In addition, the
time series generated from the small-world network (p = 0.1) exhibits a noisy
periodic time series. These results indicate that randomness in the WS model
corresponds to the noise intensity of the transformed time series.
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Fig. 3. (a) Time series of the WS model (p = 0.0) and (b) its power spectrum
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Fig. 4. (a) Time series of the WS model (p = 0.1) and (b) its power spectrum
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Fig. 5. (a) Time series of the WS model (p = 1.0) and (b) its power spectrum
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Fig. 6. (a) Time series of the power grid network and (b) its power spectrum

Figures 6 and 7 are the results for the power grid network and the neural
network of C. elegans. Although these two real networks and the WS model with
p = 0.1 have a common property called the small-world [6], transformed time
series (Figs. 6(a) and 7(a)) show different property. For example, the time series
generated from the power grid network has almost always small amplitudes but
the amplitude becomes large when 4300 < t < 4500. The oscillation of the time
series generated from the power grid network is obviously different from the other
time series for the small-world network, the WS model (p = 0.1) and the neural
network of C.elegans. The time series generated from the neural network of C.
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Fig. 7. (a) Time series of the neural network of C. elengans and (b) its power spectrum

elegans exhibits noisy periodic time series like the time series for the WS model
(p = 0.1). However, the noise in the time series transformed from the neural
network of C. elegans is not uniform and the noise intensity of the time series
is larger than that for the WS model. Thus, the time series transformed from
the neural network of C. elegans exhibits different property from that of the WS
model. From these results, our method can reveal a hidden complex structure
that the real networks have. The proposed method evaluates complexity in the
network from different viewpoints.

5 Conclusions

In this paper, we proposed a method for transforming a network to a time
series. In the proposed method, we decided the distances between any two
nodes in the network using the information of adjacency relationship of the
nodes. Applying classical multidimensional scaling to the distance matrix of
the network, the coordinate vectors were generated. We analyzed the coordinate
vectors as the time series. In numerical simulations, we generated the time se-
ries from the networks of the WS model and two real networks: the power grid
network and the neural network of C. elegans. As a result, a periodic time series
and a random time series were generated from the regular network and the ran-
dom network of the WS model, respectively. On the other hand, the small-world
network of the WS model was transformed to the noisy periodic time series.
From the result for the WS model, noise intensity of the time series transformed
from the networks depends on the rewiring probability p. It can be said that the
time series transformed by the proposed method reflects the randomness of the
networks. In addition, we reconstructed the network from the time series trans-
formed from an original networks and compared the reconstructed network with
the original networks. As a result, we can make the time series which preserves
the adjacency information of the original networks by the proposed method be-
cause the original networks and the time series transformed from the networks
are invertible. From these results, the time series transformed from the real net-
works by the proposed method shows different spectral structure, although the
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original networks of the time series have a same property characterized by the
conventional properties in the complex network theory. Therefore, we can per-
ceive a new aspect of complex networks which could not be obtained by the
conventional method [6]. As a future work, we will apply the proposed method
to various networks and analyze the obtained time series using the method of
nonlinear time series analyses such as the Lyapunov spectrum analysis and the
fractal dimensional analysis.

The authors thank Dr. Y. Hirata (the University of Tokyo) for his valuable
comments and discussion. The research of T.I. is partially supported by Grant-
in-Aid for Exploratory Research (No. 20650032) from JSPS.
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Abstract. The Amateur Service is allocated approximately 3 MHz of

spectrum in the HF band (3-30MHz) which is primarily used for long

range communications via the ionosphere. However only a fraction of

this resource is usually available due to unfavourable propagation con-

ditions in the ionosphere imposed by solar activity on the HF channel.

In this respect interference is considered a significant problem to over-

come, in order to establish viable links at low transmission power. This

paper presents the development of a set of Neural Network ensembles

which can serve as a tool for predicting the likelihood of interference

in the frequency allocations utilized by amateur users. The proposed

approach successfully captures the temporal and long-term solar depen-

dent variability of congestion, formally defined as the fraction of chan-

nels within a certain frequency allocation with signals exceeding a given

threshold.

1 Introduction

The importance of the amateur radio service is recognized worldwide as it serves
as a significant spectrum resource at an international level. In particular, during
major disasters, public protection, humanitarian and disaster relief operations
amateur radio frequencies have supported auxiliary or emergency communica-
tions when communications infrastructures have suffered considerable damage.
The number and variety of transmission modes used by radio amateurs are
significantly expanding, creating internal pressures within the amateur services
for their accommodation at the expense of users of established modes such as
single-sideband telephony. These new modes include digital voice, data and im-
age. Their use improves the efficiency of amateur operations, but also increases
the popularity of Amateur Radio and therefore the level of interference which
gives rise to increased spectral congestion. This challenge is in addition to the
high variability of the HF channel communication properties which vary on a
24-hour, seasonal, and long-term time scales reducing the useful frequency range
of the HF spectrum. It is also subjected to extreme solar driven ionospheric
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Table 1. Amateur user allocation frequency ranges

Frequency

Code Range (MHz)

2 1.810 - 1.850

26 7.000 - 7.100

50 14.000 - 14.350

62 18.068 - 18.168

71 21.000 - 21.450

82 24.890 - 25.000

92 28.000 - 28.500

93 28.500 - 29.000

94 29.000 - 29.700

phenomena leading to a variety of propagation impairments such as high atten-
uation, multipath, doppler spread and deep fading. Under these circumstances
a measure of the level of interference experienced by an amateur user would
be an important decision support tool that could serve as guide for adjust-
ments of appropriate communication parameters like transmission frequency and
power.

This paper presents the development of an ensemble (committee) of Neural
Networks (NNs) for each amateur frequency allocation, see table 1, which can
predict the likelihood of spectral congestion in that allocation. This study is a
continuation of our previous work [1,2,3], in which single NNs were shown to be
very successful in modelling the variation of congestion. In this paper we focus
on a different user type (Amateur users) and extend our original approach to
ensembles of NNs in an effort to obtain more accurate predictions.

Neural Network ensemble is a learning approach where a number of NNs are
trained on the same task and their predictions are then combined to form the
final prediction of the system. This approach leads to the significant improvement
of the generalisation ability of a NN system [4] and has been successfully applied
to many different areas such as medical diagnosis [5], face recognition [6], and
optical character recognition [7].

The interference measurements used for the development of the ensembles
are part of a dataset recorded at Linkoping (Sweden) in the frames of a long-
term project being undertaken jointly by the University of Manchester and by
the Swedish Defence Research Establishment, to measure systematically and to
analyse the occupancy of the entire HF spectrum.

The rest of this paper is structured as follows. Section 2 describes the pro-
cedure followed for the measurement of the congestion values and Section 3
discusses the special characteristics that Amateur bands exhibit with respect to
the measured parameter. Section 4 first details the parameters that were used
as inputs to the ensembles, while it then describes their development. Finally,
Section 5 presents the procedure followed in the experiments and the obtained
results, while Section 6 gives the concluding remarks of the paper.
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Fig. 1. Congestion measurement in an

amateur user allocation

Fig. 2. Communication via the

ionosphere

2 Measurement of HF Spectral Occupancy

The measure of occupancy used is congestion (Q), which is defined to be the
probability that the RMS value of the output signal produced by a bandpass
filter of a given bandwidth, placed at random in a given ITU defined frequency
allocation, exceeds a predefined threshold level [8,9,10]. For the purpose of tak-
ing occupancy measurements the HF spectrum was divided into 95 allocations,
which are shared by twelve different types of user [9]. The dataset of 24-hour
occupancy measurements used for the model development was recorded over a
period of six years (April 1994 to January 2000). 24-hour measurements of occu-
pancy were obtained once a week by stepping a filter of 1 kHz bandwidth through
each of the 95 ITU user defined allocations, spending 90ms at each increment.
The fraction of the allocation spectral width for which the RMS signal level at
each step exceeded a defined field-strength threshold level was determined (see
Figure 1). A value of zero represents an empty band and a value of one a fully
congested band at that particular threshold level. This defines the congestion
(Q) for that allocation, for the corresponding threshold level [8,9]. A single con-
gestion value represents an ITU frequency user allocation occupancy; thus the
same congestion level will apply to contiguous 1 kHz channels within an alloca-
tion. For all 95 user allocations, a complete measurement of the HF spectrum
resulted in 95(allocations) × 5(thresholds) × 24(hours) = 11400 experimental
congestion values, which constitutes a complete 24-hour measurement. However
in this paper only allocations that are dedicated to Amateur users (see Table 1)
are considered in the modelling process so the congestion values per measure-
ment taken into account are 1080. A total of 197 measurement sessions were
carried out corresponding to a total of 23640 congestion values for each Ama-
teur allocation.

3 HF Channel Propagation and Amateur User
Occupancy Characteristics

The ionosphere is the medium which supports long-distance communication in
the HF spectrum. By exploiting the ability of the ionosphere to reflect HF radio
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(a) High Day (b) Low Day

(c) High Night

Fig. 3. Congestion of amateur user allocations in the HF spectrum

waves (skywaves) radiating upward at some angle from the antenna we can
establish long-distance communication links at relatively low cost (figure 2). The
ionosphere is defined as a region of the earth’s upper atmosphere where sufficient
ionisation can exist to affect the propagation of radio waves in the frequency
range 1 to 30 MHz. It ranges in height above the surface of the earth from
approximately 50 km to 600 km. The upper atmosphere is partially ionised, the
level of ionisation at various altitudes being governed by the intensity of the solar
radiation and the ionisation efficiency of the neutral gases in the atmosphere.
The influence of this region on radio waves is accredited to the presence of
free electrons. The density of free electrons at a given height in the ionosphere
depends upon the strength of the solar ionising radiation and is therefore a
function of time of day, season, geographical location and solar activity [10].

At night-time and also at low solar activity periods the usable frequencies that
can be supported for ionospheric propagation are significantly lower because the
ionisation of the ionosphere diminishes. As a consequence the available spectrum
is limited and gives rise to overcrowded low frequency allocations. This is evident
in figure 3 where the usage of amateur frequency allocations (shown in black
colour) at high solar activity period (figure 3a) adjusts to the available spectrum
at a low solar activity daytime period (figure 3b) and also at night-time period
(figure 3c).
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(a) Allocation 26 (b) Allocation 50

Fig. 4. Long-term and seasonal variation of congestion in the lower (a) and upper (b)

part of the HF spectrum

(a) Lower part (b) Upper part

Fig. 5. Typical diurnal variation of congestion in the lower (a) and upper (b) part of

the HF spectrum

In figure 4 the measured congestion is plotted (with dots) for two amateur
frequency allocations for a specific time together with the 50-day running mean of
the daily sunspot number (an index of solar activity depicted as a continuous line
in the background). This figure shows that congestion decreases for high sunspot
number periods in allocation 26 (7.000 - 7.100 MHz) at the lower part of the
spectrum and increases in allocation 50 (14.000 - 14.350 MHz) at the higher part
of the spectrum. This is due to the fact that as solar activity increases, amateur
users tend to move form lower to higher frequency allocations in an effort to
take advantage of the favourable propagation conditions and avoid interference
from other amateur users at the lower frequency allocations. The same figure
also demonstrates the seasonal variation of congestion in each allocation. This
is a consequence of the seasonal variation of the usable frequencies supported
by the ionosphere, in response to seasonal change in extreme ultraviolet (EUV)
radiation from the Sun [10].

Examples of typical variation of congestion with time of-day are given in
figure 5 for amateur allocations in the lower and upper part of the HF spectrum
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for low and high sunspot activity. An example of typical occupancy encountered
in the lower portion of the HF band is given in figure 5a for allocation 26, from
which significant 24-hour variation of congestion can be observed, peaking during
the night. Conversely, in the upper portion of the HF band a complete reversal of
24-hour variation is observed as shown in figure 5b for allocation 71, which again
shows significant 24-hour variation, but in this case occupancy is greatest by day.

4 Model Development

4.1 Input Parameters

As the variation of occupancy of the HF spectrum is primarily dependant on
prevailing ionospheric conditions, the input parameters used were selected so
as to represent the known variations that give rise to the most characteristic
properties of the ionosphere as a communications channel.

The first input parameters used correspond to the hour of the day and day
of the year information so as to capture the short-term 24-hour and seasonal
variability of congestion. In order to avoid unrealistic discontinuity at the mid-
night boundary the hour of the day, hour, 0 ≤ hour ≤ 23 was converted into its
quadrature components according to:

sinhour = sin

(
2π

hour

24

)
(1)

and

coshour = cos

(
2π

hour

24

)
. (2)

Similarly the day of the year daynum, 1 ≤ daynum ≤ 365 was converted to:

sinday = sin

(
2π

daynum

365

)
(3)

and

cosday = cos

(
2π

daynum

365

)
. (4)

The fifth input parameter captures the solar long-term variation, as the running
mean value of the daily sunspot number (R) which is a well established index of
solar activity. A 50-day running mean value of the daily sunspot number (R50)
was found to be the optimum parameter to represent the long-term variation of
congestion [3]. The sixth and final parameter was the signal threshold ST that
was used for the measurement.

4.2 Neural Network Ensembles

A Neural Network Ensemble was developed for each one of the 9 amateur user
allocations (see table 1). The Neural Networks (NNs) composing each ensemble
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were feed forward networks with one input, one hidden and one output layers.
Their input layer consisted of six units, one for each of the parameters described
in Subsection 4.1: cosday (CD), sinday (SD), coshour (CH), sinhour (SH),
50-day running mean of the daily sunspot number (R50) and signal threshold
(ST ). Their output layer consisted of a single unit whose target output was the
congestion for the corresponding input.

All units of the networks had a logistic sigmoid activation function whose
outputs lie in the range [0,+1]. One advantage of this activation function is that
its range of outputs coincides with the range of possible congestion values so no
transformation of the network outputs was needed.

The development of the NNs was performed using the MATLAB Neural Net-
work Toolbox [11]. The NNs were trained using the Levenberg-Marquardt back-
propagation algorithm with early stopping based on a set of validation examples.
This was considered as the best choice of algorithm to be used as it appears to
be the fastest method for training moderate-sized feed-forward networks [11].

The diversity in the ensemble was introduced from three different sources.
The first of these was the use of a fold cross validation process, as suggested
in [12]. More specifically the examples available for training were split in three
parts and three sets of NNs were trained, each using one of the three parts of
examples as a validation set and the two remaining parts as training set. The
two other sources of diversity were the variation of the number of hidden units of
the NNs and the random initialization of their weights. The ensembles consisted
of networks with five different numbers of hidden units {6, 9, 12, 15, 18}, while
three networks with different initial weights were trained for each one. Therefore,
each ensemble consisted of 3× 5× 3 = 45 NNs in total.

The fusion of the predictions produced by each member of the ensemble was
performed by computing their average. The prediction of the ensemble for a new
instance xj was

f̂(xj) =
1
45

45∑
i=1

f̂i(xj), (5)

where f̂i(xj) is the prediction of the ith NN of the ensemble for xj . It is worth to
mention that alternative ways of combining the individual NN predictions based
on their performance on the corresponding validation sets were also atempted.
Their results however, were more or less the same with those obtained using (5),
which was much simpler.

5 Experiments and Results

The experiments performed followed a 10-fold cross validation procedure. More
specifically the 197 measurement sessions were split into 10 parts of almost
equal size (7 parts of 20 sessions and 3 of 19 sessions) and the predictions for
each part were obtained using an ensemble trained on the examples of the other
9 parts. Thus, the results reported here are over all 23640 congestion values for
each allocation. Note that all 120 congestion values of each measurement session
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Table 2. Performance comparison of the single Neural Network and Ensemble Models

RMSE CC

Allocation Single NN Ensemble Improvement Single NN Ensemble

2 0.0863 0.0825 4.4% 0.892 0.902

26 0.0762 0.0736 3.5% 0.930 0.935

50 0.0397 0.0382 3.9% 0.891 0.900

62 0.0293 0.0289 1.3% 0.520 0.534

71 0.0146 0.0141 3.3% 0.737 0.755

82 0.0117 0.0112 4.1% 0.694 0.719

92 0.0114 0.0110 3.6% 0.768 0.780

93 0.0066 0.0064 2.0% 0.757 0.760

94 0.0056 0.0054 3.7% 0.513 0.549

(a) Allocation 26 (b) Allocation 94

Fig. 6. Measured and predicted long term variation of congestion in the lower and

upper parts of the HF spectrum

were treated as a group so that there was no temporal correlation between the
examples in the training and test parts. Of course the examples were randomized
before each experiment and the predictions obtained were then mapped back to
their original order. Furthermore, before conducting our experiments all input
parameters were normalized setting the mean value of each input to 0 and its
standard deviation to 1.

For comparison reasons the same experiments were also performed with single
NNs. Exactly the same type of NNs were used and the same 10-fold coross
validation process was followed. In this case the validation set of each NN was
formed by randomly selecting 1/10th of the training examples, while in an effort
to avoid local minima the training of each NN was repeated 10 times and the
trained NN that gave the best performance on the validation set was selected
for application to the test examples. The choice of the number of hidden units
was also based on the performance of the networks on their validation sets. NNs
with the five different numbers of hidden units {6, 9, 12, 15, 18} used in the
ensembles were developed and the one with the best validation set performance
was selected for each allocation.
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(a) Allocation 2 (b) Allocation 26

(c) Allocation 50 (d) Allocation 71

Fig. 7. Examples of 24-hour measured and predicted congestion

Table 2 presents the results of both the sigle NN and the Ensemble on each
amateur allocation, in terms of their Root Mean Squared Error (RMSE) and
of the correlation coefficient (CC) between their predictions and the measured
congestion values. In addition, it gives the percentage of improvement in RMSE
that each ensemble achieved over the corresponding single NN. The values re-
ported in this table show that the ensembles outperform the corresponding single
NNs in all 9 allocations. It is important to note that this improvement in per-
formance, although not very big, was obtained at no extra cost. For each of the
five numbers of hidden units that were tried the corresponding single NN was
trained 10 times, so a total of 5× 10 = 50 NNs were trained and evaluated on
their validation set in order to select the one that was used to obtain the final
results reported in table 2, while each ensemble consisted of only 45 NNs.

Figure 6 shows the long-term seasonal measured and predicted congestion
for allocations 26 and 94 at 12:00. This figure demonstrates that the different
occupancy characteristics are captured by the ensembles both in the lower and
upper parts of the HF spectrum. The successful performance of the ensembles is
also supported by the plots of measured and predicted 24-hour congestion values
in figure 7. The improvement in performance of the ensembles over single NNs
is also evident in these plots.

6 Conclusions

In this study we have developed a set of NN ensembles for the prediction of
occupancy in HF Amateur allocations. The ensembles were trained on extensive
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24-hour occupancy measurements taken over a period of six years. The resulting
ensembles improved on the results of single NNs and successfully captured the
24-hour, seasonal and long-term trend in the variability of congestion. As a result,
they can provide a useful decision support tool for adjustments of appropriate
communication parameters like transmission frequency and power.
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Abstract. We propose a novel method to predict stock price based on

the Neural Associative Memory with Self-Organizing and Incremental

Neural Networks (SOINN-AM). Our method has two advantages: 1) the

predictor can determine its inner state space by the input training pat-

terns automatically, 2) the predictor can modify itself by online-learning.

Consequently, the predictor is more flexible for real world data than

previous prediciton approaches. We demonstrate effectiveness of our ap-

proach with experiment result on real stock price data from the US and

Japan market in 2002 - 2004.

Keywords: Associated-memory, Self-Organized Incremantal Neural

Network (SOINN), Singal prediction.

1 Introduction

In recent years, the algorithmic trading is widely spreading the financial markets.
And the stock price prediction technology is attracting more and more atten-
tion from the financial industry and the research community. Several machine
learning methods, such as neural networks and reinforcement learning, have been
employed to solve this problem. However, most of these approaches require com-
plicated design for the learning model which turns out to be impractical in the
ever-changing real-world market.

Neural network essentially defines a mapping M: X→Y. It is relatively
straight-forward to be used to forecast market movement as long as we assign
price-related information to the input and output layer. For example, we can feed
the input layer with stock price of today and moving average of the last 2 weeks,
and forecast the price of tomorrow at the output layer. Although some successful
experimental results have been reported by using neural network, the difficulty
lying here is that we usually do not know how to implement the layer structure
of the network to efficiently reflect the nature of the stock price, and the best
optimized network structure may vary from stock to stock, which prevented the
neural network strategy from being widely applied in the real-world market.

Reinforcement learning is a kind of learning algorithm about how an agent
can take action in an environment to maximize its long-term reward. During
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the training process, the agent initially takes random actions and rewards will
be given as a measure of how “profitable” these actions are, and the agent will
optimize its action on a step-by-step basis. When the training process is over,
the agent will map the states of the environment to the actions that it should
take in those states.

Table 1 shows a typical learning result (inner state space) that we will likely
have after employing reinforcement learning on forecasting stock price. In table 1,
the state space is represented by different ranges of the stock price, and possible
actions in these states are buy, sell and hold. After training the agent with
historical price information, each action of each state will have a potential reward
value, and in our decision making process, the agent will tend to take the action
which maximizes its reward in that state. It is very obvious that strategy as
simple as the example above is not profitable in the real market. But it does
give us a glimpse on how reinforcement learning works in the financial market.

Although reinforcement learning is widely used in forecasting stock price in
the research community, it also has its own critical flaw, that is, it is usually
highly heuristic on determining the structure of the state space, and the proper
state space could vary from stock to stock, which means that the user of the
reinforcement learning strategy may end up struggling to design a proper state
space for his portfolio. This is exactly the problem we will try to address in our
proposed method.

Fig. 1. Basic structure of neural network

Table 1. Example of reinforcement

learning result

State(Stock Price)
Action

Buy Sell Hold

0 - 10 5 0 1

11 - 50 3 -2 2

51 - 100 1 4 2

100 < 2 3 4

2 Proposed Method

In this section, we will introduce SOINN and SOINN-AM, as they are the basis
of the proposed method, and end up with details of our predictor.

2.1 Self-Organized Incremantal Neural Network (SOINN)

SOINN [1] is a two-layered neural network used for unsupervised data clustering
and topology learning. It is flexible in terms of online learning while being robust
against noise at the same time. Fig. 2 shows the basic structure of SOINN. There
are 2 layers in the SOINN structure, both of which share very similar clustering
algorithm. The input patterns are initially clustered at layer 1, and the topology
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Fig. 2. Basic structure of SOINN Fig. 3. Input Pattern

is then obtained at layer 2. For instance, noise-tainted patterns in Fig. 3, where
there are A, B, C, D, E, 5 regions, each of which represents a unique distribution
of data, are input into SOINN. The clustering result at layer 1 and the topology
obtained at layer 2 are shown in Fig. 4 and Fig. 5, respectively.

Fig. 4. Clustering Result Fig. 5. Obtained Topology

2.2 Associated Memory with SOINN (SOINN-AM)

SOINN-AM [2] is an extension of SOINN to associative memory. It is also com-
posed of 2 layers, but the first layer is only an “input layer”, where the “key
pattern” and the “recalled pattern” are combined as an associative pair to be
later clustered by SOINN, while the second layer is called “competitive layer”,
which is essentially the first layer of SOINN. The basic structure of SOINN-AM
is shown in Fig. 6.

There are 2 phases working sequentially in the framework of SOINN-AM. The
first one is called “training phase”, and the second one is called “recalling phase”.
In the training phase, key pattern and recalled pattern are obtained by the input
layer and combined as an associative pair, which will then be rendered to the
competitive layer to be clustered. The recalling phase occurs after the associative
pairs have been properly clustered. The key pattern given by the user will go to
the SOINN layer directly, to find the associative pair which bears the highest
similarity with it. The recalled pattern part of that associative pair will be
output as the answer to the given key pattern. Fig. 7 gives an example of the
recalled result of SOINN-AM.
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2.3 Our Predictor

Overview. Our predictor is essentially an extension of SOINN-AM to time
series data. The predictor has an exactly same two-layered structure as SOINN-
AM shown in Fig. 6, but it varies in the fashion how the associative pair is
formed and how the similarity between patterns is defined. And for the sake of
avoiding confusion, we use the term “predicted pattern” in the context of our
predictor to refer to the “recalled pattern” in SOINN-AM.

In the training phase, a piece of stock prices is broken into 2 consecutive
parts, the key pattern part and the predicted pattern part, and treated together
as an associative pair, which will later be input into competitive layer to be
clustered. At the competitive layer, associative pairs are called as “nodes”, which
are connected with one another by edges or not, according to their relative
distances. All nodes that are directly or indirectly connected by edges form a
“class” and class is represented by a prototype node, whose weight is the average
weight of all of the nodes that belong to that class. Besides, the concept of the
age of node and edge is introduced as our measure against noise. Nodes and
edges are considered to be results of random noise if not having been updated
for a certain period of time and will be removed automatically.

In the predicting phase, the stock price of the recent few days is used as our
“key pattern”. It goes to the competitive layer to find the node which bears
the highest similarity with it and label the node as the “winner node” and the
class that node belongs to the “winner class”. The predicted pattern part of the
prototype of the winner class is output as our prediction result for the future
stock price. That is to say, the strategy of our predictor is essentially to find
the “historically most possible” upcoming pattern. Note that we output the
prototype of the winner class instead of outputting the winner node directly, as
a bid to eliminate the influence of noises.

Fig. 6. Basic Structure of SOINN-AM Fig. 7. Recalled result of

SOINN-AM

Preparation. Notations used in the following explanation are followings. Note
that each node represents one “associative pair”, and each edge connects two
nodes.
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M dimension of the key pattern
N dimension of the predicted pattern
F key pattern of the associative pair
R predicted pattern of the associative pair
Ic associative pair
A set of generated nodes
Wi weight of the i-th node
Ni set of neighbors of the i-th node

np the number of times that new patterns are pre-
sented after latest removing nodes

di similarity threshold of the i-th node
Λedge the lifetime of edges
χi the number of times that the i-th node be-

comes the winner node
δr similarity threshold at the predicting phase
λ frequency of node removal
‖a− b‖ similarity between pattern aand pattern b

Training Algorithm (1)

1) Initialize A as an empty set, and setnp to 0.
2) Randomly select price data of M consecutive days as the key pattern F , and

the following N consecutive days as the predicted pattern R
3) Input F and R to the input layer
4) Combine F and R as Ic = (F ,R)
5) Render Ic to the SOINN layer
6) If there are no less than 2 nodes at the SOINN layer, go to 7). Otherwise,

generate a new node with weight of Ic, and set χi to 1, then go to 15)
7) Find the first winner node r whose weight Wr is the nearest to Ic and the

second winner node q whose weight Wq is the second nearest toIc.
8) Verify if ‖Ic −Wr‖ < dr, ‖Ic −Wq‖ < dq

where:

di =

⎧⎨⎩ max
Kthnode∈Ni

‖Wi −Wk‖ (if Ni = φ)

min
Kthnode∈A

‖Wi −Wk‖ (if Ni = φ)

If true, go to 9). Otherwise, generate a new node with the weight of Ic, and
set χi to 1, then go to 12)

9) If there is no edge between r and q, create one between them.
10) Set the age of the newly created edge to 0.
11) Increase the age of all edges emanating from r by 1, then remove edges with

ages greater than Λedge.
12) Increase χr by 1 and addΔWr andΔWi to the weights of r and its neighbors

where
ΔWr = 1

χr
(Ic −Wi)

ΔWi = 1
100χr

(Ic −Wi) (i ∈ Nr)
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13) If np‖λ, remove nodes with less than 1 neighbors; reset np to 0.
14) Go to 2) if there are remaining training data.
15) Classify the nodes.
16) Generate/Update prototype node for each cluster.
17) Training phase ends.

In step 8), we check if the winner node r and the second winner node q should
belong to the same class. If the distance between Ic and Wr, and the distance
between Ic andWq are both less than a certain similarity threshold di, a new
edge will be created between r and q, which means that they are of the same
class from now on. The similarity threshold of any node is defined as the farthest
distance between the node and any other neighboring nodes (nodes that belong
to the same class), or the nearest distance between the node and any other nodes
in case the node does not have any neighboring nodes. If the requirements of the
threshold are not met, the newly input node is considered to be an independent
node and it will be added to A directly.

The purpose of step 12) is to reflect the influence of the newly-input node
to the current SOINN network. The winner node and the nodes in the winner
class will be moved towards the newly-input node by a certain distance. In order
to achieve a balance between the increment of the network and the storage of
already-learnt knowledge, the distance to be moved is divided by χi, which is
the number of times that the i-th node becomes the winner node, to ensure that
node with more “winning history” is less liable to the influence of new nodes.

Training Algorithm (2): Classifying the Nodes. Here we describe how to
classify the nodes, which has not yet been explained in step 15 of the training
phase algorithm. The classification of nodes is conducted by the following steps:

1) Initially, none of the nodes are labeled as a member of any class.
2) Randomly select node i. Label i as a member of a new class if i has at least

one neighboring node.
3) All nodes that are linked directly or indirectly with node i are labeled as

members of the same class.
4) Back to 2) if there is any node with at least one neighboring node.
5) Classification ends.

Predicting Algorithm

1) Input pattern K as associative key
2) Calculate the similarity between K and each node i according to:

dki = ‖K −WF
i ‖ Where : Wi =

[
WF

i

WR
i

]
3) Find the node i = c, which minimizes dki.
4) Find the prototype node of the class that node c belongs to.
5) The predicted pattern part of the prototype is output as the prediction result.
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3 Experiment

3.1 The Prediction of the US Market

The objective of this experiment is to demonstrate the effectiveness of our pre-
dictor on the US Stock Market. The experimental result will be compared with
the method proposed by H. Li, C.H. Dagli and D. Enke [9], which is an imple-
mentation of reinforcement learning.

A. Experimental Dataset. The dataset used in this experiment is collected
from Yahoo! Finance, which has already been plot in Fig 10 and Fig 11. For the
sake of comparison, stock indexes of S&P500 and NASDAQ from 1998 to 2002,
inclusive, are used as the training dataset, and those of 2003 are used as the
test dataset. As stock splits, dividends, distributions and rights offerings may
happen in the real market, daily adjusted closing price is used instead of the real
closing price to ensure the continuity of the experimental data.

Fig. 8. Historical Price of S&P500

(1998-2003)

Fig. 9. Historical Price of NASDAQ

(1998-2003)

B. Procedure of Prediction. First of all, the dimension of the key pattern is
set to 9, and that of the predicted pattern is set to 1, that is to say, we will use
price information of 9 consecutive days to forecast the coming 1 day.

Besides, there are two parameters to be set in SOINN, the Dead-Edge Time
and Remove-Node Time, which are the parameters used by SOINN to remove
unnecessary edges and nodes to eliminate the influence of noises. In this case,
they are set to 50 and 200, respectively, which are large enough values so that
SOINN virtually does not conduct any reduction of edges, and only remove
unnecessary nodes very occasionally (More details will be given in section 5).

After having finished setting the parameters, training data are randomly
picked up from the training dataset and input into to the predictor for 5000
times, and test data are also randomly selected and input for 1000 times to
check if the predicted price matches the real price:

(Po > Pi and Ro > Ri) or (Po < Pi and Ro < Ri)
Where:
Pi average of the key pattern part of the predicted price
Po average of the predicted pattern part of the predicted price
Ri average of the key pattern part of the real price
Ro average of the predicted pattern part of the real price
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This is to say that the prediction result is regarded as correct as long as the
trend of the predicted price matches that of the real price.

C. Experimental Result. The experimental result is shown in Table 2. As we
can see from the table, the proposed method outperformed the reinforcement
learning approach significantly in terms of the S&P500 index. Although the
conventional reinforcement learning approach showed better performance for the
NASDAQ index, our predictor still forecasts the indexes more precisely on an
average basis. Besides, we want to point out once more that there is no need to
design the state space for our predictor while it is quite a challenge in the case
of reinforcement learning.

Table 2. Prediction result

S&P500 NASDAQ Average

Reinforcement

Learning 53.30% 79.76% 66.53%

Proposed Method

(SOINN-AM) 72.30% 63.90% 68.10%

3.2 Trading on the Japan Market

The objective of this experiment is to demonstrate the profitability of our pre-
dictor on the Japan Stock Market. Unlike the former experiment, in which we
only predicted the trend of the price movement, in this experiment, a trading
strategy will be adopted so that our predictor is able to make order to the mar-
ket based on its prediction result. To begin with, a näıve strategy is employed
in this experiment:

1. If the prediction result shows that the stock price will rise the next day, use
all available cash to take long position at the current market price, and clear
the position at the end of the next day.

2. If the prediction result shows that the stock price will fall the next day, use
all available cash to take short position at the market price, and clear the
position at the end of the next day.

In this strategy, we take both long and short position to ensure that the experi-
mental result is “market neutral”. And for the sake of simplicity, trading cost is
not included in this experiment, and we assume that we are able to execute all
of our orders, which is reasonable for we only order at the current market price.
Finally, the experimental result will be compared with the approach proposed
by T. Matsui and H. Ohwada [8], which is an implementation of reinforcement
learning and pair trading.

A. Experimental Dataset. The dataset of this experiment is collected from
Yahoo! Japan Finance, which has already been plot in Fig 12 and Fig 13.
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Fig. 10. Stock Price of Toyota (2002-2005)

Fig. 11. Stock Price of Honda (2002-2005)

For the same reason in experiment 4.1, daily adjusted closing prices of Toyota
and Honda from 2002 to 2004, inclusive, are used as the training dataset, and
those of 2005 are used as the test dataset.

B. Procedure of Prediction. The selection of parameters is same as that of
experiment 4.1, except that the test data starting from 1/1/2005 are input into
the predictor sequentially, instead of being randomly picked up from the test
dataset. Since our predictor forecasts the future price at the end of every day,
order will be made to the market once a day.

C. Experimental Result. Table 3 shows the result of this experiment. The
annual return of our predictor is 36.78%, which is significantly higher than the
25.60% profit of the reinforcement learning approach.

3.3 Experiment of Online Learning

In this section, we will experimentally demonstrate the online learning ability of
the proposed method. As has been pointed out at the beginning of this paper,
one of the biggest problems of reinforcement learning in forecasting the stock
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Table 3. Prediction result

Toyota Honda Average

Proposed Method

(SOINN-AM) 68.95% 4.60% 36.78%

price is that the state space has to be designed by the user, which to a very
large extent is in fact a matter of experience. In addition, the reinforcement
learning model usually is unable to adapt to new state space in the middle
of the training process. Therefore, reinforcement learning is considered to be
inflexible in terms of online learning. However, in our approach, the training
patterns are clustered automatically and new cluster is automatically created
to accommodate new patterns, saving the user from designing the state space,
which makes our predictor much more adaptive to online learning.

In the experiment of the previous section, although the average annual return
of Toyota and Honda is much higher than our benchmark approach, trades of
Honda stock only generate a 4.60% annual return, which is still far from satis-
factory. In the experiment below, we will attempt to address this problem by
online learning.

A. Experimental Dataset. Dataset of the previous experiment is continued
to be used in this section.

B. Procedure of Prediction. First of all, we complete the training process
of Honda as we did in section 4.2. As has been proved already, the predictor at
this moment is not yet very profitable on the market of year 2005. Therefore, we
additionally use data of the first half of 2005 to adapt the predictor and test its
performance with the data of the second half of 2005.

C. Experimental Result. The annual return of Honda after online learning is
presented in Table 4. The predictor generates an annual return of 12.66% after
online learning, compared with the 4.60% annual return before it. It is clear that
the profitability of our predictor is significantly improved by online learning.

Table 4. Prediction result

Offline Learning Online Learning

Annual Return

of Honda 4.60% 12.66%

4 Consideration

In this section, we will consider about several aspects of the proposed approach,
including the selection of parameters and the problem of overfitting.
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4.1 The Parameters of SOINN

Λedge, or dead-edge time, is one of the most important parameters in SOINN.
SOINN periodically removes edges with ages greater than Λedge, so as to prevent
itself from being flooded with noises or any other useless information.

However, to find the proper Λedge is a tricky problem and there is no golden
rule guiding us to the best value. We use the training dataset of Toyota of section
4.1 to conduct cross validation, as an attempt to shed some light on the best
optimized value of Λedge. The experimental result is shown in Table 5.

Table 5. The profitability of the predictor after conducting cross validation

Training by ’03-’04 Training by ’02 and ’04 Training by ’03+’04

Λedge Tested by ’02 Tested by ’03 Tested by ’02 Average

(Reverse order)

5 2.36% 1.72% 11.96% 5.35%

10 -8.95% 7.25% 25.84% 8.05%

20 -6.38% 31.49% 1.27% 8.79%

30 11.08% 33.06% -7.20% 12.31%

50 11.08% 33.06% 4.80% 16.31%

In our first attempt, the predictor is trained by the data of 2003 and 2004, and
then tested by those of 2002. The result shows that the most profitable model
can be constructed at Λedge=30 or 50. We want to notify the reader here that it
is reasonable for the predictor to have multiple optimized values for Λedge, for in
this case Λedge=30 is in fact a large enough value that no edge can be removed
during the training process. Therefore, Λedge=50 will have the same effect and
as a matter of fact, in this specific case, any value greater than 30 can be used
as the optimized Λedge.

Furthermore, we use data of 2004 and 2002 as the training set and those of
2003 as the test set. Similar result is obtained here that the predictor shows best
performance at Λedge=30 or 50.

Lastly, the data of 2004 and 2003 are used as the training set while those of
2002 are used as the test set. Note that data of 2004 and 2003 are input into
the predictor sequentially, which is in reverse order with what we did in the first
attempt. This time the result is a bit more complicated than the first two. The
best optimized value appears at the point that Λedge=10.

Although it is difficult to find a constant Λedge which suits all kinds of data, it
is fairly obvious that the average profitability of the predictor is still proportional
to Λedge. Thus, in our practice, we fix Λedge at 50 in spite that it is not always
the best optimized value, which means, in our predictor, the removal of dead
edges will never be conducted. In fact, setting Λedge in this manner is common
in applications based on SOINN, such as SOINN-DP [3].
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4.2 The Dimension of Train/Test Data

The major parameters of the input layer of the proposed method are the di-
mensions of the key pattern and the predicted pattern, which in our previous
experiments, were set to 9 and 1. That is to say, we would predict the upcoming
1 day price based on the prices of last 9 consecutive days.

Table 6 shows the precision rate of the predictor as we gradually adjust the
dimensions of the key pattern and the predicted pattern. The result shows that
the precision rate of prediction improves as we increase the dimension of the
key pattern. This is in line with our instinctive perception that key pattern with
more detailed information will associate more accurate prediction result.

Table 6. Annual returns for different combinations of dimensions

Key:Predicted ratio 6:4 7:3 8:2 9:1

Toyota 64.70% 68.20% 69.70% 66.10%

Honda 63.20% 63.40% 65.00% 63.10%

5 Conclusion

In this paper we proposed a novel Associated-Memory based predictor for stock
price. Our SOINN-AM predictor estimates future stock price by recalling learn-
ing result from input stock price time series. With experiment results on several
stock price data of the US and Japan market in 2002-2004, we demonstrate the
effectiveness of our approach that SOINN-AM based predictor can gain more
profitable than the conventional approaches like reinforcement learning.

Our predictor can automatically determine its inner state space according
to the training patterns without any help, which the conventional approaches
needed. Additionally our method can modify itself by online learning. Conse-
quently our method is more flexible and more applicable in the ever-changing
real-world financial market. In future, we will evaluate our predictor on a large
scale stock price data and improve its prediction accuracy.
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Abstract. Often packet traffic data is non-stationary and non-gaussian.

These data complexity causes difficulties in its analysis by standard

techniques and new methods must be employed. Recent theoretical and

applied works have demonstrated the appropriateness of wavelets for

analyzing multivariate signals containing non-stationarity and non-

gaussianity. This paper presents a new pre-processing method, a multi-

scale PCA that combines a wavelet filtering method with principal

component analysis (PCA), for a noise free independent component anal-

ysis (ICA) model. By applying the proposed method to a set of test data

coming from simulations of a packet switching network (PSN) model we

see improvements of data analysis results.

Keywords: Independent Component Analysis, Multi-scale Principal

Component Analysis, Wavelet Transform, De-nosing.

1 Introduction

Independent component analysis (ICA) [1] is an important method for extracting
useful information from mixture data [2]. It belongs to a class of blind source
separation methods for separating data into informational components. When
ICA model reflects well the relationship between the underlying source signals
and data mixtures, the obtained components are statistically independent and
tend to be more non-gaussian than data mixtures. As a multivariate statistical
method, ICA is strongly related to principal component analysis (PCA) and
factor analysis (FA) [3]. Instead of finding independent components from a set of
data mixtures, PCA searches for uncorrelated components that have the largest
variance and FA looks for correlated components that lead to minimum values
of independent residuals among the sets of data mixtures. There are several
definitions of ICA including noise free and noisy ICA models ([1], [4]). Most of
the research focuses on a noise free ICA model because it is less computationally
intensive than the noisy ICA model ([1], [4]). In order to improve the result of
data analysis some current works in the field modify the noise free ICA model.
Noise free ICA mixture was first studied by Lee [5] to capture potentially different
class of signals for the purpose of better representation of data through a mixture

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 358–367, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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model. Zhou [6] used ICA mixture with the hidden Markov model (HMM) to
investigate the usefulness of the method in video content analysis. From the
application domain point of view, the noise free ICA model has been successfully
used in studies of biomedical signal processing. In biomedical applications, ICA
has been used for removing artifacts from the ECG data [7] or for detection of
Functional MRI activation data [8]. Because of the importance and frequent use
of a noise free ICA model and the fact that data usually contains noise, a de-
noising procedure is required. In practice when ICA is used, a PCA whitening
approach is usually applied to remove the effect from a Gaussian noise before a
final procedure of ICA is implemented. Application of PCA whitening procedure
to mixture data seems to be beneficial when a signal contains a Gaussian white
noise. However, various types of data coming from complex systems have locally
high frequency noise or corrupted irregular noise which is not of interest and
has to be removed. The PCA whitening procedure may not work well for this
type of noise. In biomedical data, such as ECG data, the corrupted or irregular
component in the noisy signal is part of the signal that is of importance. In this
case, an elimination of such irregularity may have serious implications for the
validity of ECG test and the use of ICA has to be treated carefully. This rises
up an important practical issue when for the sake of analysis is beneficial to
use ICA, because, the preprocessing step in an ICA algorithm may affect the
performance of ICA. In many practical applications, the observed data are non-
stationary time series. Application of wavelet filtering method to this type of data
is advisable because of good localization properties of wavelet method. Thus,
wavelet filtering combined with PCA whitening as a preprocessing procedure in
ICA may become useful approach in dealing with the noisy mixtures of data, in
particular, the signals with important corrupted components.

With these motivations in mind we organize the paper as follows. In Sec-
tion 2 we provide a brief description of wavelet method combined with PCA,
namely multi-scale PCA ([10], [11]). Section 3 discusses the proposed preprocess-
ing method for ICA. Section 4 provides a justification for the appropriateness of
using the proposed method in our study of network traffic data; and sections 5
reports on conclusions. The software used for the paper is available upon request
from the first author.

2 Combining Wavelet and PCA

Wavelet transform decomposes an original signal into elements of multi-scale
subspaces that are spanned by the dilated and translated version of a mother
wavelet [9]. In discrete wavelet transform (DWT), the mother wavelet func-
tions provide different wavelet scaling filters H and wavelet details filters G.
DWT method recently has been used in PCA, called often, multi-scale PCA.
In multi-scale PCA approach, first, a n × n DWT matrix W is applied to a
n × p processed data matrix of mixtures Φ, which transforms Φ to WΦ ≡ Φ∗.
For DWT with level L, W can be defined as, W = [HL,GL,GL−1, · · · ,G1]T ,
where HL and Gi, 1 ≤ i ≤ L are row vectors. In the above, if H represents
projection on the wavelet scaling function and G is projection on the wavelet
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Fig. 1. The plot (a) is the autocorrelation function of AR(1) process with parameter

φ1 = 0.9 and the plots (b)-(f) are the autocorrelation functions of the wavelet coeffi-

cients at each level when a level 4 DWT with the Haar wavelet basis was applied to

the original data

details, then HL is obtained by applying L times the wavelet scaling filter H
and Gi is obtained by applying H filter i− 1 times and the wavelet details filter
G once. The filtering operations H and G depend on the wavelet basis func-
tion, that is, different wavelet basis leads to different forms of filtering operation.
The wavelet coefficients at each level i can be obtained by the following itera-
tive procedure of applying filtering on the wavelet coefficients at level i− 1. For
i = 1, A1 = HΦ, D1 = GΦ, where A1 and D1 are the wavelet scaling coeffi-
cients and the wavelet details coefficients at level 1, respectively. For 2 ≤ i ≤ L,
this procedure is defined as Ai = HAi−1, Di = GDi−1, where Ai and Di

are the wavelet scaling coefficients and the wavelet details coefficients at level
i, respectively. After taking DWT of Φ, PCA is applied at each level of the
wavelet coefficients matrix. This procedure eliminates the principal components
loading and their scores [3] that correspond to smaller eigenvalues and it recon-
structs the wavelet coefficients by using the selected significant components P̂
and their associated scores L̂ at each level i, that is, ÂL = L̂LP̂

T

L, D̂i = L̂iP̂
T

i ,
for 1 ≤ i ≤ L. The reconstructed signal is then obtained by taking the PCA
of wavelet approximations plus principal components of the wavelet details at
each level. Therefore, the wavelet coefficient matrix Φ∗ may be reconstructed by
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Fig. 2. The plot (a) is the autocorrelation function of AR(1) process with parameter

φ1 = 0.9 and the plots (b)-(f) are the autocorrelation functions of the wavelet coeffi-

cients at each level when a level 4 SDWT with Haar wavelet basis was applied to the

original data

Φ̂∗ ≡ [ÂL, D̂L, · · · , D̂1]T and the de-noised data matrix Φ̂ is obtained by taking
inverse wavelet transform. That is, Φ̂ = W∗Φ̂∗, where W∗ is the inverse wavelet
transform operator associated with the DWT operator W .

One of the important aspects of this methodology is the fact that orthogo-
nality of the wavelet transform maintains the variance-covariance structure of
the processed data [3]. This means that the variance-covariance matrix of the
processed data and the wavelet coefficients matrix of DWT of the processed data
are the same. For the wavelet transform one may use a non-orthogonal wavelet
basis or even a stationary DWT (SDWT) [9]. However, using SDWT may create
potential problems coming from altering the variance-covariance matrix because
the SDWT makes the signals more autocorrelated due to the redundancy of the
wavelet coefficients.

3 Independent Component Analysis with Wavelet and
PCA

Noise free ICA model is important and popular in applications. Wavelet fil-
tering and PCA are two popular preprocessing methods in data analysis and
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Fig. 3. The plot (a) is the autocorrelation function of time series simulated from a

standard normal distribution and the plots (b)-(f) are the autocorrelation functions of

the wavelet coefficients at each level when a level 4 SDWT with Haar wavelet basis

was applied to the original data

often used as preprocessing methods for ICA. The use of wavelet filtering as a
preprocessing method may cause lost of some important and significant infor-
mation at some wavelet details and, PCA may not work well for non-stationary
data. This work focuses on the improvement of data analysis using noise free
ICA by combining wavelet method and PCA as a preprocessing approach to
avoid the potential problems caused by wavelet filtering or PCA preprocessing
method. For signal mixtures X ≡ (X1(t),X2(t) · · · ,Xp(t)) being a set of obser-
vations of random variables with t as a time index or a sample index, and for a
p × p mixing matrix A, a noise free ICA model can be described as X = SA,
S ≡ (S1(t),S2(t) · · · ,Sp(t)), where Si(t), for 1 ≤ i ≤ p, are called independent
components. In practice, the number of source signals may not be equal to the
number of mixtures and also only two or three independent components may
be of interest. To achieve a dimension reduction for multivariate data X , PCA
is applied to reduce the dimension of data mixtures before ICA is used. Before
we discuss the proposed preprocessing method, we first introduce the concept
of wavelet ICA which is related to ICA with multi-scale PCA. In wavelet ICA,
DWT multiplies X from the left by wavelet decomposition matrix W for a col-
umn vector Xi(t) with index i. This gives X ∗ = WX = WSA = S∗A, where
S∗ is the wavelet transform of source signals S. By taking the inverse wavelet
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Fig. 4. The plot (1) is a blocky function; the plot (2) is a heavy Sine, which is regular

except around time 300 and 750. The plot (3) and (4) are the sum and the difference

between the blocky function and the heavy Sine, respectively. Multivariate Gaussian

white noise exhibiting strong spatial correlation is added to the resulting four signals

to produce plot (5)-(8) in the second column. The plots (5)-(8) are the input signals

for ICA.

transformation, one is able to reconstruct the original data mixtures X and
source signals S as the discrete wavelet transformation does not influence the
estimate of the mixing matrix A. However, the benefit of conducting analysis
in wavelet domain is a multi-resolution of ICA, because ICA is applied to the
wavelet coefficients at each level. In an application to signal reconstruction, a
wavelet ICA is applied only to wavelet details at the selected level. The wavelet
approximation coefficients should be retained at the same form and the lower
level of wavelet detailed should be eliminated. The main idea of wavelet ICA
is to reconstruct data mixtures X that are less noisy. The main drawback of
this method is that wavelet ICA is not able to separate source signals S from
mixtures. One can only obtain the source signals at each selected level. Because
of this, we propose an ICA with a multi-scale PCA method that can give better
result in separating the source signals from the mixtures after preprocessing data
in time domain. The procedure is described as follows: first one obtains de-noised
mixtures using a multi-scale PCA approach according to the goal of the quality
of signal reconstruction, then one applies ICA to reconstructed signals to sepa-
rate the source signals. Mathematically, X̂ = W∗X̂ ∗, where X̂ is reconstructed
data matrix from the multi-scale PCA of X and X̂ ∗ is the matrix of significant
wavelet coefficients after applying PCA. Then one finds source signals for the
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(a) The plots of (1) and (2) are the es-

timated source signals under the noise

free ICA model.
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(b) The plots of (3) and (4) are the es-

timated source signals under ICA with

the orthogonal DWT and PCA.

Fig. 5. The wavelet decomposition level is 5; 1 PC is retained for wavelet details at

level 3 & 4; 0 PCs are retained for wavelet details at level 1& 2; 2 PCs are retained for

wavelet approximation and the final PCA. The wavelet basis is Haar wavelet.

reconstructed signals X̂ = S∗A∗, where S∗ are source signals and A∗ is the mix-
ing matrix. The important aspect of this approach is that one is able to separate
source signals by combining wavelet and PCA because signals are de-noised in
wavelet domain using PCA and wavelets and source signals are separated in the
original domain. An ICA with a multi-scale PCA becomes a conventional ICA
if all principal components of all wavelet coefficients at all levels are kept. If
the wavelet coefficients at smaller levels are eliminated and all principal com-
ponents of remaining coefficients are kept, this proposed method becomes ICA
on a low-pass filtered mixtures. An ICA with a multi-scale PCA can eliminate
both stationary and non-stationary noise by controlling the number of principal
components of wavelet coefficients at each level.

4 A Case Study of ICA with Multi-scale PCA

In this section we study the performance of the proposed method in obtaining
a set of source signals from data mixtures with known structure and from data
mixtures with unknown structure. We first show the effect of the application
of DWT and SDWT on the autocorrelation of signals. From Figure 1-3 we ob-
serve that the orthogonal DWT appears to perform well in de-correlating the
autocorrelated data at each wavelet decomposition level, but the application of
SDWT creates more autocorrelation for both autocorrelated and i.i.d data at
each wavelet decomposition level. This indicates that the orthogonality of pre-
processing method for ICA is an important feature as the non-orthogonal DWT
not only has a problem in de-correlating a correlated signal but also creates au-
tocorrelation for i.i.d data. Next, we investigate the goodness of the proposed
method and compare it with the standard procedure of ICA when applied to
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(b) The plots (3) and (4) are the es-

timated source signals using ICA with

SDWT and PCA under level 3 wavelet

decomposition; 1 PC is retained for

wavelet details at level 2 & 3; 0 PCs

are retained at level 1; 2 PCs are re-

tained for wavelet approximation.

Fig. 6. Plots (a) and (b) are under the method of ICA with SDWT and PCA with

different wavelet decomposition levels. The wavelet basis is Haar wavelet.
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(b) The figure displays the log trans-

formed number of packets in transit

signals reconstructed using ICA with

orthogonal DWT with Haar wavelet

basis and PCA. The wavelet decompo-

sition level is 5.

Fig. 7. ICA with orthogonal DWT and PCA is used to reconstruct signals

the mixtures of two well known source signals a blocky function and a heavy
Sine shown in Figure 4. We use ICA and ICA with the multi-scale PCA to ex-
tract the underlying source signals. In this paper, we present results when for
WT we used the Haar wavelet basis. The results obtained using other types of
wavelet basis will be discussed elsewhere. The FastICA algorithm is used to find
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independent non-gaussian components for in the cases. Figure 5b shows that
ICA with the multi-scale PCA performs better in source signal extraction than
the standard ICA shown in Figure 5a. The obtained source signals using ICA
with orthogonal DWT and PCA are close to the true ones when one retains only
the significant principal components in wavelet coefficients at each level. Fig-
ure 6 shows that the method of ICA using SDWT and combined with PCA can
not successfully separate the source signals due to the change of the variance-
covariance matrix after taking SDWT. This may imply that noise within the
signal and a choice of wavelet transform may seriously impact the performance
of ICA search algorithm. The results in Figure 5 and Figure 6 suggest that ICA
using orthogonal DWT and combined with PCA should be considered for the
case study of network traffic data.

In this paper, we analyze number of packets in transit (NPT) signals. They are
simulation traffic data generated by a network traffic simulator called Netzwerk-
1[12]. The NPT is an important aggregate measure of network performance
providing information about how congested is the network. We analyze six dif-
ferent NPT signals generated by Netzwerk-1 for different combinations of edge
cost functions and network source loads [12] used in the simulator set-up. Each
signal is the mean function calculated from a total of 24 samples that are inde-
pendently simulated using Netzwerk-1. The length of each signal is 6000. The
natural logarithm is applied to NPT time series to speed up the convergence
of ICA algorithm. Figure 7a shows the log transformed original NPT signals
and Figure 7b shows the reconstructed ones using ICA with orthogonal DWT
and PCA. Only the first 3 PCs of wavelet approximation and the first 3 PCs
of final reconstruction are retained in the multi-scale PCA procedure. After
the multi-scale PCA of log transformed NPT data, the original signals are re-
covered by only 3 source signals as can be seen from Figure 7b. The recon-
structed signals are less noisy and can serve as smoother versions of the original
signals.

5 Conclusions

In this paper, we present a new preprocessing method for the standard ICA,
namely, a multi-scale PCA to handle a noise contained in mixture data. This
preprocessing method potentially achieves data dimension reduction through
PCA procedure. The results of the case study show that the proposed method
outperforms the standard ICA and is promising in improving the performance
of extractions of non-gaussian components when orthogonal DWT is used. Our
study suggests that orthogonal DWT should be chosen when the multi-scale
PCA is used in preprocessing for ICA. Thus, it appears that for some types of
network traffic data ICA method with the multi-scale PCA preprocessing could
be useful in reconstructing the original data from a set of source signals with
fewer number of signals than the set of the original signals.
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Abstract. The processes giving rise to an event related potential engage

several evoked and induced oscillatory components, which reflect phase or

non-phase locked activity throughout the multiple trials. The separation

and identification of such components could not only serve diagnostic

purposes, but also facilitate the design of brain-computer interface sys-

tems. However, the effective analysis of components is hindered by many

factors including the complexity of the EEG signal and its variation over

the trials. In this paper we study several measures for the identification

of the nature of independent components and address the means for ef-

ficient decomposition of the rich information content embedded in the

multi-channel EEG recordings associated with the multiple trials of an

event-related experiment. The efficiency of the proposed methodology is

demonstrated through simulated and real experiments.

Keywords: EEG, ICA, ERP, time-frequency measures, PCA.

1 Introduction

Event related or event locked activity induced by an external or internal stimu-
lus involves both phase locked and non-phase locked rhythmic oscillations. Event
related potentials (ERP) encompass the phase-locked (evoked) activity at differ-
ent frequency bands. Recent studies have also revealed EEG responses non-phase
locked to the event occurrence (induced), which vary with stimulus and interact
with the ERP. Traditional ERP analysis considers the averaged signal over trials
as to increase signal-to-noise ratio. The process of averaging, however, suppresses
any other induced activity of non phase-lock nature associated with the event
or stimulus. Such activity is often measured by the power of the AM demod-
ulated signal at specific frequency bands, after the subtraction of the evoked
activity [1,2]. Furthermore, time-frequency (TF) analysis has become important
for assessing both evoked and induced brain activity from event-related EEG
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recordings. In this paper we use the term ERP to denote all processes in an
event-related experiment. The P300 ERP waveform, as a response to oddball
experiments, is perhaps the most widely studied response due to the variety of
activations it produces. Through TF analysis, theta and delta-band activities
have been shown to underlie its formation, whereas alpha is also induced during
the P300 response.

Several neurophysiological studies indicate that the evoked processes possibly
originate from stable phase-locking transient synchronization of brain regions,
with different signal peaks being evoked from specific brain regions at distinct
frequency bands. Furthermore, the induced activity has been attributed to phase-
resetting of ongoing EEG activity at various topological areas. Because of their
different neurophysiological origin of evoked and induced activity, the analysis of
both types of signal waveforms is useful in the analysis of event related recordings
[1]. Results on real data recordings demonstrated that the number of independent
components that correspond to event-related activity, phase-locked or not, is
between five to fifteen independent components for a 31 electrodes montage
[3]. The interpretation and analysis of distinct content of the EEG recordings
becomes difficult not only by the complexity of information messages but also by
the unavoidable signal mixing at the electrodes, produced by volume conduction
effects [3].

In the above context it is quite important to provide efficient means of de-
composing the multichannel EEG signal into meaningful components. Prominent
methods that have been proposed for signal and energy-content decomposition
include the independent component analysis (ICA) of EEG channels and the
principal component analysis (PCA) of the TF energy spectra of EEG channels.
In this paper we propose an improved decomposition of ERP information con-
tent through pre-filtering of the EEG signal. The proposed scheme employs ICA
decomposition in order to select specific components for EEG filtering and then
exploits PCA decomposition of the TF representation for efficient analysis of the
overall EEG content over all trials. It is shown that the filtered signal preserves
the relevant information and allows the separation and interpretation of infor-
mation content more clearly than the original EEG signal, either for phase or
non-phase locked activity. Thus, the proposed scheme can be effectively used for
the detailed analysis and synthesis of ERP responses, for diagnostic purposes or
for design of BCI systems.

Overall, the contribution of the paper is identified in the following areas. 1)
It provides distinct interpretations on the usefulness of ICA decomposition of
EEG vs. the PCA decomposition of its TF map. The former is mainly used for
the decomposition of EEG into meaningful sub-components that can be directly
related to brain source activity. The latter is primarily used for a detailed analysis
of the content of EEG channels or ICA components. It is most appropriate for
the analysis of summarized information content of the EEG over all channels and
trials. 2) It provides measures for the interpretation and quantization of non-
phase locked synchronization over trials. 3) It establishes a rigorous scheme for
considering significant ICs through their time-space-frequency distribution along
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with their repeatability along multiple trials. 4) It defines an algorithmic scheme
for filtering EEG based on only the important components and then analyzing
the TF content of the filtered EEG in terms of principal components identified
over all channels and repeated trials. These innovative aspects are established
in the methodological and demonstrated in the experimental sections.

2 Methodology of Signal and Content Decomposition

Considering the wealth of information embedded in EEG recordings, it is quite
important to provide efficient means of decomposing the multi-channel EEG
signal into meaningful components. Towards this direction, the method of inde-
pendent component analysis (ICA) provides a tool of EEG decomposition into
spatially fixed, timely localized, maximally independent components. This de-
composition is compliant with the neurophysiological attributes of brain sources
and has received significant attention in ERP analysis [6,7]. Studies have shown
that ICA applied to EEG datasets can separate data into physiologically and
functionally distinct sources, while separating non-brain artifact signals, as eye
movement, line noise and muscle activities. Furthermore, under the assumption
of spatially consistent sources, the ICA decomposition can be performed in a
concatenated trials scheme, with the EEG signal extended by one trial following
the other, in the same way for each channel. Besides its increased stability and
generalization capabilities, the concatenated trials approach has the add-on ad-
vantage of preserving the correspondence of components throughout the trials,
while it is effective in recovering the inter-trial variability of sources (derived
components) [5]. Thus, the content of each ICA component can be subsequently
analyzed in several perspectives including its topological origin, the time and
frequency distribution of its energy, as well as its coherence over trials.

Focusing on the analysis of the content of EEG signal rather than its concrete
components, a more detailed decomposition scheme has been proposed on the
basis of principal component analysis (PCA) of the TF energy spectra of all EEG
channels [8,9]. This analysis decomposes the energy content of the entire set of
EEG signals into orthogonal, spatially localized components, which are consis-
tently induced by all channels. In this form, the PCA decomposition acts as a
well established data reduction scheme in order to extract the major character-
istics composing the entire ERP data, from the wealth of information embedded
in its multichannel TF representation. In this paper we implement TF decom-
positions by means of the Wavelet transform using the complex Morlet wavelet
functions. Brief details of the ICA and PCA decompositions are provided in
Sections 2.1 and 2.2, respectively.

In order to simultaneously cope with the content of multi-trial EEG record-
ings, which is often the case in the analysis of evoked response experiments due
to the low SNR at individual trials, PCA decomposition has been attempted
on summary TF maps of all channels. Specific forms of content summarization
schemes include the TF energy maps of the average signal for each electrode, as
well as on the TF inter-trial coherence maps, which are obtained form the TF
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signal maps of the individual trials and reflect the coherence among trials at each
time and frequency bin. Inter-trial coherence metrics that can be employed in
the construction of summarization TF maps are presented in Section 2.3. In this
form, which is extensively studied in our work, the PCA analysis reveals major
components that are consistent with all trials and all signal channels. Notice
that the potential of summary TF maps in compacting the detailed content of
a time-signal in multiple trials can be very useful for content analysis and vi-
sualization of EEG channels, but also for content analysis and characterization
of independent components, in order to assess their significance in the forma-
tion of the recorded EEG signal. Thus, we propose to filter the EEG recordings
by back-projecting only the significant component identified by the TF content
analysis, as described in Section 2.4.

2.1 Independent Component Analysis on EEG Data

Let the n EEG channels be arranged as rows of a matrix X with dimensions nxt,
where t denotes the number of signal samples. Independent component analysis
performs blind separation of the observed data X using the restriction that the
resulting components arranged in a similar form in a component matrix S are
maximally independent. Alternatively, ICA computes an unmixing matrix W,
which multiplied with the observed data X results in a matrix S of independent
components. Mapping the weights of W-1 on the electrodes provides a scalp
topography of the projection of each component. This presumes that the source
locations are spatially fixed and the independent components reveal the time-
course activation of each source. In the examples section we utilize the scalp
topography of each components in order to infer the brain area of its origin.
Another fundamental assumption in ICA decomposition is that the number of
sources is the same as the number of electrodes, which is questionable given the
wealth of information encoded into the EEG signal. Applying ICA decomposition
to few data channels should, thus, result in some or all extracted components
being mixture of sources, summing up the activity from more than one neuronal
assembly. Even in this case, however, ICA should efficiently arrange for these
mixtures to have minimal common or mutual information [4]. In this paper, we
attempt to provide a further unmixing of information sources by filtering the
EEG channels from potential noise sources and preserving only relevant ICA
components in the filtered EEG signal.

2.2 Principal Component Analysis on Time-Frequency Data

The PCA approach employed here is a general data reduction technique for TF
signal representations. Methods developed for this purpose are often simplistic,
considering the entire surface of TF representation as a collection of time-series
signals each filtered to a certain range of frequencies. The PCA method employed
here was recently developed [7], offering a data driven method for decomposing a
dataset of TF surfaces. The application of PCA to timefrequency energy is much
the same as its application to signals specified in the time or frequency domain.
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Each timefrequency surface is rearranged into a vector, recasting the timefre-
quency energy into concatenated time segments each of different frequency con-
tent. In this form, the PCA data is formulated into a matrix of trials in rows and
different points of activity (different timefrequency point) in columns. This ar-
rangement is still amendable to decomposition, since PCA makes no assumption
about the ordering of the columns for decomposition.

Overall, starting from the time-frequency surface of each channel, we form a
three-dimensional matrix of channel x time x frequency. Then, we concatenate
the time and frequency dimensions into a single dimension, obtaining the repre-
sentation of the two-dimensional data matrix X (in the dimensions of: channels
x time-frequency). The PCA analysis is performed on this domain, resulting in
the principal-components matrix S. Finally, by folding this matrix back to three
dimensions, we obtain the time-frequency surfaces of the principal components.
The number of principal components can be decided in terms of the singular
values of the decomposition.

2.3 Coherence Metrics

In order to quantify phase locked coherence along the trials, we can utilize the
intertrial coherence TF maps for all channels [8]. This measure, referred to as
phase intertrial coherence (PIC), reflects the phase-locked consistency among
trials and is derived from the analysis of TF maps of individual trials at each
specific channel. It is defined as

cpic[k] =
|∑i xi[k]|∑

i |xi[k]| ≤ 1 (1)

where Xi[k] denotes the frequency coefficient at the i-th trial and the k-th fre-
quency tick. Equality holds if and only if all trials involve the same signal with
the same phase. This metric is expanded to the time-frequency representation
of a signal, with k and t indicating the frequency and time ticks, respectively.

For the quantification of event related but not phase-locked activity, we pro-
pose a related measure for the analysis of non-phase locked activity based on
the energy distribution over the TF domain for all different trials of the sig-
nal. More specifically, we introduce the so-called phase-shift intertrial coherence
(PsIC), which is defined as

cPsIC [k, t] =
∑

i |xi[k]|2
maxk,t

∑
i |xi[k]|2 ≤ 1 (2)

where equality implies the same magnitude of X[k,t], even with different shifts at
each trial, so that it highlights frequency bands of increased energy in all trials.
Recall that these measures can be applied to summarize the information content
within a single electrode or a single ICA component over all trials.

These maps, along with the TF energy spectrum, will be used for the char-
acterization of relevant content, as each one emphasizes on different aspects of
synchronous activity. Notice that both the phase and the shift-phase coherence
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factors can be utilized as global metrics on a multi-trial signal (channel or com-
ponent), measuring its overall intertrial coherence (preferably at specific bands).
In this form, they can be effectively used for significance ranking of compo-
nents in each band. Alternatively, they can be computed for each tick in the
time-frequency representation, in order to provide timely localized maps of the
coherence over trials.

2.4 Selection of ICA Components for EEG Filtering

In this paper the analysis of information content is attempted on both the orig-
inal EEG signal and its filtered version, which engages only relevant ICA com-
ponents. Recall that these components are obtained from a concatenated trials
ICA decomposition, so that they can easily be split into the corresponding trials.
The selection of relevant components is of particular interest in this work. We
propose and test two different selection schemes, guided by specific assumptions
on the properties of underlying brain sources. In the first scheme we exploit the
fact that the P300 waveform has a specific form in both its time structure and
its frequency content, which should be exemplified in all relevant components of
the ERP signal. Thus, for each ICA component we consider its back-projection
into channels and we form the average (over all trials) back-projected compo-
nent on channel Cz. We select those components that express high correlation
with the average EEG signal on Cz and also reflect high frequency energy at the
frequency bands of interest. In the second scheme, we exploit the coherence met-
rics on the TF decomposition of each component over all trials, so that we select
components with maximally coherent activation (phase or non-phase locked) on
the particular frequency bands of interest (mainly delta, theta and alpha).

Both schemes allow for the separate study of each ICA component at different
frequency bands. This study of components is in accordance with the nature of
sources comprising the EEG signal, since the neuronal assemblies organize and
operate at specific frequency bands. Furthermore, through the separate con-
sideration of frequencies, we can allow for the preservation of non-phase locked
activities, which would have been lost in considerations of the time-domain signal
(e.g. averaging, which suppresses the energy of individual frequency components
occurring at the same time interval) [2]. Notice that even though the two schemes
originate from different considerations, they both share similar attributes. The
first scheme is essentially based on the time and frequency content of compo-
nents, whereas the second one considers their consistency at specific frequency
bands throughout the trials. Their conceptual similarity is further verified in the
examples section, where the selection of ICA components is discussed.

3 Experimental Results

3.1 Experiments on Simulation Data

The simulated dataset is used in order to demonstrate the effects of spatial
mixing and the need for ICA preprocessing. Toward this direction, we created
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a dataset consisting of five sources, each sampled at 1024Hz, which are mixed
to only four channels using a 5x4 mixing matrix. The mixing weights for each
channel were calculated as to reflect sources arriving from different origins (dif-
ferent topographies). The first four sources simulate signal peaks at different
time locations and at 3, 6, 8 and 9HZ, respectively, whereas the fifth source sim-
ulates noise with ongoing EEG power spectrum. The TF energy maps of the four
mixed channels are depicted in figure 1a. Following PCA decomposition of the
TF maps, the resulting principal components are depicted in figure 1b, where we
observe that the information content cannot be efficiently unmixed; the principal
components form a mixture of the different sources in the TF surface. In the se-
quel, we apply ICA decomposition on the dataset. The independent components
can separate the EEG-like noise, but the other components are mixture of the
initial sources. By removing the noise-like component and back-projecting the
remaining components to the channels, we obtain a filtered dataset, whose TF
maps are depicted in figure 1c. Despite the remaining effects, the channels appear
as much simpler mixtures. Applying PCA decomposition on these TF surfaces
provides the results of figure 1d, which separate well each single source utilized
in the mixture. The color-maps for all representations range from minimum to
maximum values individually for each component; the actual values of color-bars
are not important, since we only consider the content of each component and do
not compare components themselves.

Fig. 1. Time frequency measures for the simulated data. 1a) First row: TF energy maps

of the four channels; 1b) second row: four PCA components of original TF energy maps;

1c) third row: four PCA components of filtered TF maps.

3.2 Experiments on Real EEG Data

We applied the proposed scheme for improving content identification on 27-
channel recordings from an auditory oddball experiment. The dataset was pro-
vided by the Ecological University of Bucharest, Romania and was obtained
after an approved ethics protocol. Recordings were captured from 9 healthy
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participants (3 females and 6 males), who had no history of neurological or
psychiatric disorder. Signals were digitally sampled at 1024Hz, with a high pass
filter of cut-off frequency 0.016Hz. A stimulator provided 40 2kHz target tones
(20%) and 160 1kHz non-target tones (80%). The inter-stimulus interval was
1.29s. The records used for analysis last 683ms and contain 700 samples after
the stimulus. The auditory oddball experimental set-up is expected to produce
both phase-locked oscillations, especially in the theta and delta bands related to
P300 activity (including P3a and P3b components [10]), and non phase-locked
(induced) oscillatory activity, particularly related to alpha-range event related
desynchronization (ERD).

In order to filter the EEG recordings, we applied ICA on the concatenated
trials dataset of each subject. For the 27 resulting independent components, we
attempted an evaluation of their significance in the original signal, based on the
two selection approaches aiming at discriminating event related activity from
irrelevant brain and artifact activations. Recall that the first scheme relies on
the similarity of the average back-projected component with the form of the
recorded average signal, whereas the second scheme utilizes the intertrial coher-
ence measures as to assess the relative consistency of components throughout
the trials. A good subset of components selected by the two methods is common,
whereas other components are structurally different. More specifically, the com-
mon components have frequency content primarily in the delta and theta bands.
A closer inspection revealed that these components reflected phase-locked acti-
vations. This result was expected, since the method based on the average ERP
waveform is biased towards phase-locked activity, which is primarily expressed
in these specific bands. On the other hand, for the method using coherence mea-
sures the results are more balanced with components expressing phase-locked
theta and delta bands as well alpha non-phase locked activity. Some selected
components are displayed for comparison in figure 2.

Regarding the information content of the original and filtered EEG with the
proposed approach, the results are illustrated in figures 3 and 4, respectively.
From the measures in figure 3 regarding the original EEG recordings, we can
observe that the principal components have mixed activations in frequency con-
tent, which obscures the evaluation of these findings. Alternatively, for the fil-
tered EEG in figure 4, the results reveal more clear information regarding the
underlying frequency activities. In particular, the energy of the fourth compo-
nent in Fig.3 (fourth column) has faded out for all three measures considered,
indicating that no useful information has been allocated to this component. Fig.
4 presents a different image, where all four components bear useful informa-
tion. Furthermore, the PCs of the two coherence measures depicted in rows 2
(PIC measure) and 3 (PsIC measure) reflect better frequency concentration in
the filtered compared to original signal. In particular, the second component
(2nd column) of Fig.3 appears to be distributed into multiple frequency bands,
whereas its counterpart of Fig.4 reflects good localization, i.e. theta phase-locked
and alpha non-phase locked activity.
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Fig. 2. Time frequency measures for selected (two) ICA components; each row depicts

one component. First column displays the average TF energy, second column: phase-

locked coherence, third column: non-phase-locked coherence, fourth column: brain to-

pography of component.

Fig. 3. First four principal components of coherence measures (PCA applied on time-

frequency surfaces). Original data decomposition: 3a) First row displays the PCs of

average TF energy, 3b) second row: PCs of phase-locked coherence, 3c) third row: PCs

of non-phase-locked coherence.

Fig. 4. First four principal components of coherence measures (PCA applied on time-

frequency surfaces). Filtered data decomposition: 4a) First row displays the PCs of

average TF energy, 4b) second row: PCs of phase-locked coherence, 4c) third row: PCs

of non-phase-locked coherence.



Decomposition Methods for Detailed Analysis of Content in ERP Recordings 377

4 Conclusions

The methodology developed in this paper addresses several concepts useful in the
analysis of event-related EEG recordings. First, it provides measures for iden-
tifying and separating phase from non-phase locked activity and facilitates the
rejection of noise activity and artifacts. Furthermore, our analysis provides the
means of summarizing the extensive time-frequency information content embed-
ded into a multi-trial, multi-channel EEG signal by means of coherence measures.
Our methodology makes a clear distinction between signal and content decom-
position for complex multi-trial, multi-channel EEG signals, the first using ICA
on concatenated trials and the second using PCA on the summary TF maps
for all channels. Finally, it demonstrates the benefits of pre-filtering the EEG
signal as to remove the effects of irrelevant sources in the analysis of the relevant
content.
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Abstract. Most astronomic databases include a certain amount of ex-

ceptional values that are generally called outliers. Isolating and analysing

these “outlying objects” is important to improve the quality of the orig-

inal dataset, to reduce the impact of anomalous observations, and most

importantly, to discover new types of objects that were hitherto unknown

because of their low frequency or short lifespan. We propose an unsuper-

vised technique, based on artificial neural networks and combined with

a specific study of the trained network, to treat the problem of outliers

management. This work is an integrating part of the GAIA mission of

the European Space Agency.

1 Introduction

This study is an integrating part of the European Space Agency’s mission GAIA,
and is based on a previously defined taxonomy of celestial bodies that will be
observed by means of a spectrophotometer on board. Other groups that work
on the same project will be in charge of classifying the sources into each of the
predefined object types. But there remains a certain group of rare objects that,
even though they undoubtedly belong to one of the predefined classes, cannot
be identified to belong to a concrete type with an adequate level of reliability.
On the one hand, the proposed outliers analysis tries to identify clusters in this
particular group of objects so as to be able to analyse them more efficiently.
On the other hand, our analysis will also provide useful information to other
work groups in the shape of a study of residual examples that were not classified
appropriately.

Spectral classification is a well-known problem in the field of astrophysics. Its
object of study is the electromagnetic radiation of the light spectrum that is
emitted by stars and other objects. At first spectral classification was carried
out by hand, but technological evolution and new data sources have put at
� Spanish MEC project ESP2006-13855-CO2-02.
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our disposal such large amounts of information, that the manual procedures
became too slow and subjective and research started focusing on automatized
techniques. In that respect, Artificial Intelligence techniques (especially Artificial
Neural Networks and Expert Systems) have proven their usefulness in various
spectral classification tasks ([3], [7], [2],[4], [6], [1], [5]).

Modern telescopes are equipped with spectrometers that cover a significant
number of objects per “frame”. Not only current and planned data sources, but
also spatial missions such as the GAIA mission (whose launch is foreseen for
2011), will provide large amounts of spectra belonging to various components
of our galaxy. This type of information must be handled automatically. A long
and complex data analysis will allow scientists to transform GAIA’s signal into
parameters that can be used to define the nature of the observed objects and,
finally, classify and parameterize them.

In order to manage the tasks and human resources, the GAIA team has divided
the work into areas or Coordination Units (CU); each CU is subdivided into
work groups with specific tasks or Working Packages (WP). Our research team
is part of CU 8 and in charge of WP 36, called “Outlier Analysis”. Our work
consists in analysing the objects that other teams, i.c. WP 21 (Discrete Source
Classifier) and WP 24 (Object Clustering Analysis), are unable to classify with
an acceptable degree of reliability and have identified as “outliers”.

2 Objectives

Automatic information processing techniques are not flawless, and for certain
objects it will be impossible to obtain a classification with an adequate degree
of reliability. This is due to various reasons: because their nature is different
from that of the known objects, because of measurement errors, because the
objects (e.g. a star) are very distant, or simply because a certain type of noise
accompanies the information. These objects are called “outliers” and constitute
our object of study as an integrating part of the GAIA research consortium.

Therefore the main objective of the system consists in performing an initial
approach to data analysis on outliers detected from RP/BP spectra. Outliers
are objects that cannot be identified by DSC (GWP-S-8310) or OCA (GWP-
S-8350) as belonging to any known GAIA-class. The objective of the Outliers
Analysis WP is to analyse the data on outliers, in particular by submitting them
to non-supervised cluster analysis and establishing the natural classes both by
statistical methods and Artificial Intelligence techniques. A secondary objective
of this WP is to label such classes in order to check whether any of them are
misclassified known objects.

Initially, all the resulting groups of the outlier analysis are unknown, meaning
that we are able to identify them but unable to give them a name (or label),
since we do not, in principle, know what they are. Subsequently, each group
identified by module Outlier Analysis can reflect two different realities:
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1. The objects that are classified under this identifier cannot be assigned to a
label

2. Some of the already grouped outliers could be assigned a label, either by iden-
tifying them in the position error boxes of selected astronomical databases
and surveys, or with the help of a human expert who has identified the com-
mon properties among objects populating that outlier class. As soon as this
assignation has taken place, the data that are classified under this identifier
will be named according to the explanatory label.

The label is only a more or less appropriate name that a user can give to the
cluster. The really important data are the objects that are grouped together in
a cluster, because they are related in some way. The objective of this work is
not to discover what the relationship is, but to carry out the classification.

3 Material and Methods

3.1 Data

Our object of study is the electromagnetic radiation of the objects that are
observed by the GAIA telescopes. At the present moment, the data of which we
dispose are simulated and compiled in spectral libraries. Objects in the spectral
libraries BP/RP (Blue Photometric / Red Photometric) are simulated, as are
the parallax and the proper motion, including random error. GAIA observed
every part of the sky between 40 and 200 times in the course of five years. GAIA
prism spectra are obtained in two channels, one for the blue channel (BP) and one
for the red channel (RP), with cut-offs defined by the (silver) mirror response
in the bluechannel, CCD QE in the red channel, and bandpass filters in the
middle.

The outlier spectra identification was performed in the DSC WP, as mentioned
above, and the resulting spectra set is the input of the algorithm that will be
described in this work. The method considered for the outlier detection was to
select all the sources with maximum probability for a single class of 0.6 or less,
i.e. the type of objects that are considered not well classified and are therefore
outliers for us.

Table 1. Outlier data distribution

Run 1 Object type Number of objects Percentage

STAR 37845 (73%)

GALAXY 1780 ( 4%)

QUASAR 916 ( 2%)

PHYSBINARY 11046 (21%)

Total 51588
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Table 1 shows the distribution of the objects in types. It is not an optimal
distribution, but it is the best that could be obtained until now to carry out the
tests, whose results will be shown in section (5).

3.2 Clustering Algorithm

Our purpose is to group the outliers in such a way that the more their spec-
tra resemble each other, the more likely they are to be classified into the same
category. We also wish to know the relationships that exist between the identi-
fied groupings, with a view to subsequent analyses, such as the identification of
spectra that are mixtures of objects.

We have opted for classification by means of Artificial Neural Networks, more
concretely with unsupervised training algorithms: given the fact that we do not
know the correct classification of the “outliers”, we do not dispose of sufficient
information to apply a supervised technique. We can nevertheless dispose of this
information to carry out tests with the already trained algorithm, because at
this point in the project we are working with simulated data. In any case, the
unsupervised perspective is the adequate one for this work, because when working
with real data, we have no knowledge on the concrete classification values.

In order to group the spectra that represent outliers, we have designed an
algorithm that uses neural networks of the “SOM” type, i.e. the “Self Organizing
Maps” ([8]) type, to carry out clustering tasks. This neural network architecture
is a competitive architecture that applies unsupervised training and the Kohonen
training algorithm ([8]) to identify the relationships of similarity between data,
and allows us to carry out the groupings. A SOM network consists of two layers:
the input layer and the output layer. Whereas the number of process elements of
the input layer is determined by the dimension of the spectrum, for the output
layer there is no concrete reference with which to determine the correct number
to carry out the grouping. We have therefore tested various configurations in
this layer, as can be seen in section 5.

3.3 Hardware and Software Tools

Our experiment required a rack of four servers equipped with two Intel Xeon
Quad Core processors and 16 GB RAM each. This hardware architecture allowed
us to launch a total of 32 parallel trainings (eight per computer) without any
significant impact on the equipments productivity.

The neural networks and the processing algorithms were implemented in
JAVA (requirement of the GAIA project). The neural networks were defined and
trained with a tool that was developed by our research group: XOANE ([9]), eX-
tensible Object Oriented Artificial Neural Networks Engine, is a tool that allows
us to arbitrarily shape network architectures, training algorithms, and tests. We
use this framework instead of other, more popular ones (e.g: Matlab), because
its execution times are shorter and it enables us to obtain intermediate results
that allow us to select the best intermediate network to perform the clustering
for each experiment.
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4 Analysis Tasks

The Kohonen algorithm provides us with an unsupervised technique to train
the self-organized maps. This means that we need measurements to quantify,
a posteriori, the result of the learning task. We do not know a priori whether
the training has resulted in a network that is well adjusted to the problem
determined by the training patterns. To make this measurement, we focused the
result analysis on trying to quantify the quality of the training by identifying
the nature of the clusters that took shape at the network output (groupings of
objects in determined process elements). For this analysis, we used the same
training patterns, but taking into account their correct classification - this being
an information that was not considered for the network learning because in a
real situation it will not be available.

The experiment is marked by a series of problems inherent to the data. On
the one hand, as could be observed in section 3.1, the training set is not well
distributed between the different classes, due to the fact that we are treating
outliers, i.c. spectra of objects that other groups could not assign to one of the
existing object classes; this implies that we have no control over this distribution.
On the other hand, some of the object spectra that we treat as outliers are a
mixture of other objects, which only increases the confusion. It is only normal
that the training is conditioned by these factors.

The proposed analysis method will try to measure these aspects on the basis of
the way in which the Kohonen algorithm tries to group the output objects. The
application of the learning algorithm has taught us that the process elements
near the output represent object groups that, in turn, are similar and therefore
more likely to be of the same type than those that were classified into distant
process elements. This constitutes the basis of the entire analysis development:
identify areas of process elements, at the output of the neural network, that
represent the same object type.

4.1 Frequency Maps

Once the learning is accomplished, we analyse the resulting network: for each
example that we know to be correctly classified, we register the result of its
classification (process element that was activated); subsequently we carry out a
recount for each individual process element to know how many objects of each
type it was able to classify. In order to visualize this result we have reflected it
in an image according to the following method:

– We select one of the known object classes that constitute the set of classes
of the training set patterns.

– Each pixel of the resulting image represents a process element of the network.
– For the selected object type, we establish the pixel color according to the

number of times that the selected process element was activated for this type
of object, and represent this as follows: F k

ij , i.e. we represent the number
of times that the process element located in position (i, j) on the map is
activated (remembering that the map is rectangular) for object type K.
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– When all the examples have gone through the previous step, we scale the
resulting values so that they can be drawn. The result is an image in grey
scales, where 0 represents black and 1 represents white, based on the fol-

lowing formula: fk
i,j = fk

i,j

Nk
, i.e. we calculate the number of times that the

process element is activated compared to the number of elements of that
class of which we dispose.

Figure 1 shows several images of this type. It gives us an idea of how the objects
of a certain type are distributed among the network output and, hence, if the
map can be segmented to define the areas that classify each object type.

5 Results

Section 4 has defined a method to carry out an a posteriori analysis of the result
of a network training. This analysis is based on the way in which the training is
performed and gives us a general idea of the dispersion of objects of a specific
type on the map. At the same time, it is a tool that helps us to visually compare
the existing confusion between certain objects and estimate how well the training
has gone. We have converted this intuitive idea into something more fomal by
elaborating a numeric comparative based on the analysis of a confusion matrix
that informs us, for each object type, on the number and detail of badly classified
objects. Figure 1 shows a classification example that visualizes how the training
has distributed the classes between the different process elements of the network
output layer.

When observing Figure 1, we can extract useful information. We can conclude,
for instance, that galaxies constitute a clearly distinguishable group of objects,
because when we compare their image with that of other objects, we find that
they belong to areas where the other images show void spaces. On the other hand,
quasars are the least numerous objects in the training set, and then there are
the physical binaries and stars, whose high confusion level (upper part of map)
may appear to be a bad result, but we must remember that physical binaries are
also made of stars, and it is therefore to be expected that the spectra of both
show certain similarities.

Since size restrictions of this article do not allow us to show the numerical
analysis for a map of 2500 elements, we prepared the same experiment with a
more reduced and manageable map of 10x10 process elements, shown in Figure
2, that assembles the objects of interest. We can observe the number of times
a process element is activated after having fed the network with the training
set. The grey tones represent the map segmentation, and the colours represent,
going from light to dark tones, Physical Binaries, Quasars, Stars, and Galaxies.

Table 2 shows the confusion matrix for the classification example shown in
Figure 2; the percentages refer to the map areas that represent the object types
mentioned in the previous section.

When looking closely at the result, we can observe that the areas were selected
so as to minimize (as much as possible, depending on the nature of the treated
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Fig. 1. Analysis of each object type with frequency maps

Fig. 2. SOM activation distribution

information) the false positives: the area selected for the galaxies represents only
66% of the galaxies, but since the percentage of other objects in the same area is
very low, an activated process element in this area is very likely to be a galaxy.

The map shown in Figure 1 has the highest resolution considered in this
context: it was configured with a distribution of 50x50 process elements. We
have also tried to expand the map and observe its evolution: Figure 3 shows an
example of a training experiment with increasing map sizes.
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Table 2. Percentage of the distributions of the object types in the selected areas for

each object type in the map (confusion matrix)

% Phys. Bin. Star Quasar Galaxy

Phys. Bin. 64 28 0 8

Star 31 52 8 9

Quasar 4 13 78 5

Galaxy 13 20 1 66

Fig. 3. Different SOM output layer dimensions: 5x5, 10x10, and 50x50 process elements

6 Conclusions

An inherent problem of information that proceeds from spectra such as the
ones described in section 3.1 is that the objects strongly resemble each other in
shape, which complicates their classification. In this respect, the size of the map
is fundamental when segmenting the areas that represent certain object types:
a map of reduced dimensions creates enormous confusion, because one and the
same process element will be activated indistinctively for different object types
and make the analysis useless. To counter this problem, we developed a strategy
based on progressively increasing the map size until areas appear that identify,
as reliably as possible, a certain type of object. However, the arbitrary increase
of map sizes may also produce negative effects: the training time of a very large
network increases exponentially, and after the learning there may remain a high
percentage of process elements that, instead of representing one of the predefined
classes, represent a misleading mixture of various, inconcrete object types. This
is due to the fact that during the learning they were dragged towards an area of
the input space under the influence of the neighbouring process elements.

The map configurations that we have tested are the following: 5x5, 10x10, and
50x50 in a rectangular map. This represents 25, 100, and 2500 process elements
respectively at the network output. As can be observed in the Results section,
more concretely in Figure 3, the definition of the map is a highly relevant factor,
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because it allows us to segment objects that in a more reduced map would be
classified into one and the same process element.

We must consider the fact that we are working with outliers, i.e. objects that
were already classified previously with another technique and identified as rare,
“outlying” objects. The nature of the treated information, as well as the way of
obtaining this information, result in training sets that are not well distributed
among the different object types.
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Abstract. The paper presents examples of using ANNs and other ma-

chine learning (ML) techniques to assess uncertainty of a mathematical

(computer-based) model M . Two approaches have been developed to es-

timate parametric and residual uncertainty, and they were tested on pro-

cess based hydrological models. One approach emulates computationally

expensive Monte Carlo simulations, and the second one uses residuals

of a calibrated model M outputs to assess the remaining uncertainty of

this model. ML models are trained to approximate the functional rela-

tionships between the input (and state) variables of the model M and

the uncertainty descriptors. ML model, being trained, encapsulates the

information about the model M errors specific for different conditions

in the past, and is used to estimate the probability distribution of the

model M error for the new model runs. Methods are tested to estimate

uncertainty of a conceptual rainfall-runoff model of a catchment in UK.

Keywords: artificial neural networks, machine learning techniques,

modelling uncertainty, clustering.

1 Introduction

Since a model in only an abstraction of reality, there is a good share of sim-
plifications and idealisations. Models predictions are far from being exact and
subjected to different degree of uncertainty. Uncertainty of the model predictions
are resulting mainly from the inadequate model structure, input and parameter
uncertainty. A deterministic model M of a real-world system predicting a system
output variable y∗ given input vector x, initial condition of the state variables
so and the vector of the parameters θ is considered. Let y be the measurement
of an unknown true value y∗, made with error εy. Various types of errors propa-
gate through the model M while predicting the observed output y and have the
following form:

y = M(x, s, θ) + εs + εθ + εx + εy. (1)

where εs , εθ and εx are the errors associated with the model structure M ,
parameter θ and input vector x, respectively. In most practical cases, it is difficult
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to estimate the error components of Eq (1) unless some important assumptions
are made. Thus, the different components that contribute to the total model error
are generally treated as a single lumped variable and Eq (1) can be reformulated
as:

y = M(x, s, θ) + ε. (2)

where ε is the total remaining (or residual) error between the observed response
y and the corresponding model response ŷ . Before running the model M , the
components of the model, i.e. input data vector x, initial conditions so, parame-
ters vector θ and the model structure itself have to be specified, while the output
or model response ŷ and the state variable s are computed by running the model.
These components may be uncertain in various ways to various degrees; the con-
sequences of these uncertainties will be propagated into the model states and
the outputs.

A number of methods were proposed to estimate model uncertainty of model
M . In general, these methods can be grouped into six categories: (a) analytical
methods (b) approximation methods, (c) simulation and sampling-based meth-
ods (e.g., [1]), (d) Bayesian methods (e.g., “generalized likelihood uncertainty
estimation” (GLUE) [2]), (e) methods based on the analysis of model errors
(e.g., [3]) and (f) methods based on fuzzy set theory (see, e.g., [4]).

Most of the existing methods (e.g., categories (c) and (d)) analyze the uncer-
tainty of the uncertain input variables by propagating it through the model M
to the outputs, and hence requires the assumption of their distributions. Most
of the approaches based on the analysis of the model M errors require certain
assumptions regarding the residuals (e.g., normality and homoscedasticity). Ob-
viously, the relevance and accuracy of such approaches depend on the validity
of these assumptions. The fuzzy theory-based approach requires knowledge of
the membership function of the quantity subject to the uncertainty which could
be very subjective. Furthermore, the majority of the uncertainty methods deal
only with a single source of uncertainty. For instance, Monte Carlo (MC) based
methods analyze the propagation of uncertainty of parameters θ (measured by
the probability distribution function, pdf) to the pdf of the output. Similar types
of analysis are performed for the input or structural uncertainty independently.
Note, the methods based on analysis of model errors typically compute the un-
certainty of the optimal model (with the calibrated parameters and the fixed
structure), and not of the class of models (i.e. a group of models with the same
structure but parameterized differently) as, for example, MC methods do.

MC based method for uncertainty analysis of the outputs of such models is
straightforward, but becomes impractical in real time applications when there is
no time to perform the uncertainty analysis because the large number of model
runs is required. Shrestha et al. [5] presented a novel methodology to replicate
computationally expensive MC simulations using machine learning techniques.
In a separate line of research, Shrestha and Solomatine [6] presented the basis
of a novel method to estimate the uncertainty of the optimal model i.e. residual
uncertainty that takes into account all sources of errors without attempting to
disaggregate the contribution given by their individual sources. The approach
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is referred to as an “uncertainty estimation based on local errors and cluster-
ing” (UNEEC). The method uses clustering and machine learning techniques to
estimate the uncertainty of a process model by analyzing its residuals (errors).
This paper presents some preliminary results of the experiments for both param-
eteric uncertainty and residual uncertainty of the output of the process based
hydrological model with application to the Brue catchment in UK.

2 Methodology

2.1 Model of Residual Uncertainty

The UNEEC method estimates the residual uncertainty associated with the given
model structure M , and parameter set θ by analyzing historical model residuals ε
which is an aggregate effect of all sources of error. The historical model residuals
(errors) between the model prediction ŷ and the observed data y are the best
available quantitative indicators of the discrepancy between the model and the
real-world system or process, and they provide valuable information that can be
used to assess the predictive uncertainty. The residuals and their distribution
are often the functions of the model input variables and can be predicted by
building separate model mapping of the input space to the model residuals.

Uncertainty estimated with the UNEEC method is consistent only for the
given model structure and the parameter set θ. It does not mean that the model
structure and parameter uncertainty are ignored, but it is assumed that the
uncertainty associated with the wrong model structure, inaccurate parameter
values, and observational errors (if any) are manifested implicitly in the model
residuals. This type of uncertainty analysis based on the model residuals is differ-
ent from the classical uncertainty analysis methods where uncertainty of parame-
ters, input data (presented by pdf) or plausible model structures are propagated
to the pdf of the output.

The UNEEC method consists of three main steps which are described briefly
in this subsection.

Clustering the data. Clustering of data is an important step of the UNEEC
method. Its goal is to partition the data into several natural groups that can be
interpreted. By data we understand here the vectors of some variable (input)
space, and the input space here means not only input variables of the process
model, but also all the relevant state variables which characterizes different mech-
anism of the modeled process. It is assumed that the input data belonging to the
same cluster will have similar characteristics and correspond to similar real-life
situations. Furthermore, the distributions of the model errors within different
clusters have different characteristics. This assumption would be reasonable to
test before using this method. In hydrological modeling, for exampe, this as-
sumption seems to be quite natural: a hydrological model is often inaccurate
in simulating extreme events (high consecutive rainfalls) which can be identi-
fied in one group by the process of clustering resulting in high model residuals
(wide error distribution). When data in each cluster belongs to a certain class
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(in this case, a hydrological situation), local error models can be built: they will
be more robust and accurate than the global model which is fitted on the whole
data.

Estimating probability distribution of the process model error. Real-
life models are typically non-linear, complex and contains many parameters. This
will hinder the analytical estimation of the pdf of the model error. Thus the
empirical pdf of the model error for each cluster is independently estimated by
analyzing historical model residuals on the calibration data. In order to avoid a
biased estimate of pdf or its quantiles of the model error, it is important to check
if there is any over-fitting by the process model on the calibration data. Note
that when dealing with limited calibration data, the empirical distribution might
be a very poor approximation of the theoretical distribution, so the reliability of
such a method depends on the availability of data.

Since the pdf of the model error is estimated for each cluster, it depends on the
clustering method used. For example, in the case of K-means clustering where
each instance of data belongs to only one cluster, the quantiles are taken from the
empirical error distribution for each cluster independently. However, in the case
of fuzzy clustering method (FCM) where each instance belongs to more than one
cluster, and is associated with several membership functions, the computation
of the quantiles should take this into account. The following expression gives the
pth [0, 1] quantile of the model error for cluster i :

ecpi = εt t :
t∑

k=1

μi,k < p

n∑
t=1

μi,t (3)

where t is the maximum integer value running from unity that satisfies the
above inequality, εt is the residual associated with the tth data (data are sorted
with respect to the associated residual), and μi,t is the membership function of
the tth data to cluster i. This is not the only way of calculating quantiles for
fuzzy clusters, and we tested several of them before choosing the one presented;
unfortunately the space available does not allow for providing the details.

Building a model for probability distribution of the process model
error. In order to predict the quantiles of the process model error for the unseen
input vector, a machine learning model was built which will have predictive
power after being trained using the calibration data. This model is referred to
as an uncertainty model U. In order to train the model U, the quantiles of the
model error has to be estimated for the individual input data vector from the
historical data. The estimation of quantiles for the individual input data vector
depends on the types of clustering techniques employed. In the case of fuzzy
clustering an approach that can be termed fuzzy committee is used to compute
the quantiles for each individual input data vector and given by:

ep
t =

c∑
i=1

μ
2/m
i,t ecpi /

c∑
i=1

μ
2/m
i,t (4)
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where ep
t is the pth quantile of the error for tth input data, ecpi is the pth quantile

of the error for cluster i, and m is the smoothing exponential coefficient. Once the
quantiles of the model error for each example in the training data are obtained,
machine learning model U is constructed:

ep = Up(x) (5)

Model U, after being trained on input data X , encapsulates the pdf of the model
error and maps the input vector x to the pdf or quantiles of the process model
error. It is worthwhile noting that the model U can take any form, from linear to
non-linear regression function such as an artificial neural network (ANN). The
choice of the model depends on the complexity of the problem to be handled
and the availability of data. Once the model U is trained on the calibration data
X , it can be employed to estimate the quantiles or the pdf of the model error
for the new data input.

The quantile of the predictive uncertainty of the model output can be esti-
mated as:

yp = ŷ + ep (6)

where yp is the pth quantile of the model output. In order to estimate, for ex-
ample, 90% prediction interval, it is necessary to build two models, U5 and U95,
that will predict 5% and 95% quantiles, respectively. Details of the methodology
can be found in Shrestha and Solomatine [6].

2.2 Model of Parametric Uncertainty

The MC simulation is performed by running the model M multiple times either
changing the input data x or parameters vectors or even the structure of the
model or combination of them. For assessing parametric uncertainty we assume
that the model structure and the input data is certain (correct), so mathemati-
cally this can be expressed as:

ŷt,i = M(x, θi); t = 1, 2, ..., n; i = 1, 2, ..., s (7)

where θi is the set of parameters sampled for ith run of MC simulation, ŷt,i

is the model output of the tth time step for ith run, n is the number of time
steps and s is the number of simulations. Having large enough realizations of
MC simulations, the statistical properties such as moments or quantiles or even
cumulative distribution function of the model prediction at any time step can be
estimated. If the model predictions are weighted by likelihood as done in GLUE
methodology, then the prediction quantile at any time step is given by

P (ŷt < Q̂(p)) =
n∑

i=1

wi|ŷi,t < Q̂(p) (8)

where ŷt is the model output at time step t, ŷt,i, is the value of model outputs
at time t simulated by the model M(x, θi) at simulation i, Q̂(p) is p% quantile,
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wi is the likelihood weight given to the model output at simulation i. Quantiles
obtained in this way are conditioned on the inputs to the model, model structure,
and the weight vector wi.

Once the quantiles are estimated in the calibration period, the next step is
to build the machine learning models that can learn the complex relationship
between the quantiles and the input variables. Instead of building the model for
quantiles directly, we build the model for the transferred variable ΔQ̂(p):

ΔQ̂(p) = Q̂(p)− ȳ. (9)

where ȳ is the calibrated model output. Model V encapsulating the functional
relationship between the input data x and the variable ΔQ̂(p) will take the
following form:

ΔQ̂(p) = V (x) + ξ. (10)

where ξ is residual error in estimating quantiles. Once the model V is trained
using the input data from the calibration period, the trained model is used
to estimate the variable ΔQ̂(p). Then the prediction quantile is computed by
substituting the variable to the Eq (10):

Q̂(p) = V (x) + ȳ. (11)

More details of the methodology can be found in Shrestha et al. [5].

3 Case Study

To test the two methods, a hydrological model is used in the role of model M .
The Brue catchment, located in UK, is selected as the case study. The catchment
has a drainage area of 135 km2 with the average annual rainfall of 867 mm and
the average river flow of 1.92 m3/s, for the period from 1961 to 1990. Splitting
of available data set is done as follows: one year hourly data from 1994/06/24
05:00 to 1995/06/24 04:00 was selected for calibration and data from 1995/06/24
05:00 to 1996/05/31 13:00 was used for the verification (testing).

A simplified version of the HBV-96 model was used as the process model
to simulate river flows for the case study. The HBV model [7] is a rainfall-
runoff model, which includes conceptual numerical descriptions of hydrological
processes at the catchment scale.

4 Results and Discussions

A version of the HBV model with 9 parameters (4 parameters for soil, and 5 for
the response routine) was used. The model was first calibrated using the adaptive
cluster covering algorithm, ACCO [8], part of GLOBE tool [http://www.data-
machine.com]. Nash and Sutcliffe efficiency (CE) was the objective function.
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Fig. 1. Fuzzy clustering of the input data in the calibration period (from 1994/06/24

05:00 to 1995/06/24 04:00)

For the calibration period CE was 0.96 . The model was validated by sim-
ulating the flows for the independent validation data set, and CE was 0.83.
The analysis of the model residuals in the calibration period shows that model
residuals are highly correlated with the observed flows. The most of the high
flows have relatively high residuals whereas low flows have small residuals. The
presence of heteroscedasticity in the residuals is observed as well.

4.1 Residual Uncertainty

Fuzzy clustering of the input data for the calibration period is shown on Figure 1.
The input data (in this figure discharge data) is attributed to one of those clusters
(cluster C1 through C5) to which the data has the highest degree of membership.
Cluster C2 contains input examples with very low runoff, whereas cluster C4 is
associated with very high values of runoff. Fuzzy C-means clustering is able
to identify clusters corresponding to various mechanisms of runoff generation
process such as high flow, low flow, medium flow etc.

90% prediction interval was estimated by building two independent models
for 5% and 95% quantiles of the model errors. Figure 2 shows the estimated 90%
prediction intervals in the validation period. M5 model tree [9] was used as a re-
gression model. It was found that 90.8% of the observed data points are enclosed
within the computed 90% uncertainty bounds. Detail analysis reveals that 6.8%
of the validation data points fall below lower bound whereas only 2.4% data
points fall above upper bound. This difference is consistent with the fact that
the simulation model M is biased and overestimates the flow on the validation
data. In order to check if the percentage of the bracketed data points are more
or less similar for any range of river flows, we have compared the histogram of
the observed river flows which are outside the bounds with the observed ones.
The results, which was not presented here, reveals that the distribution of the
observed flows which are outside the uncertainty bounds is relatively consistent
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Fig. 2. Comparison of 90% prediction bounds estimated with the UNEEC, GLUE, and

Meta-Gaussian approach in the validation period

with the observed ones. The average values of uncertainty bounds is 1.50 m3/s.
This value is reasonable if compared with the order of magnitude of model error
in test data (root mean squared error was 0.97 m3/s).

We compared the prediction bounds estimated by the UNEEC method with
those computed by the GLUE (Beven and Binley, 1992) and meta-Gaussian
methods [3]. The GLUE method is setup as follows: (a) Prior feasible ranges of
parameter values are set to be the same as those used in automatic calibration
of the HBV model; (b) Uniform sampling was used to sample the parameter set
from the feasible parameter ranges; (c) Likelihood measure was based on the
coefficient of model efficiency, CE criterion; (d) Rejection threshold values was
set to 0.7; (e) The number of behavioral parameter sets was set to 3000. In meta-
Gaussian method, the pdf of the model error, conditioned by the contemporary
value of the simulation is carried out by using a meta-Gaussian model. The space
does not allow to provide the detailed description of the experiments with these
two methods and readers are referred to above citations.

The comparison results are presented in Figure 2. It is noticed that 62% and
84.8% of the observed discharge in the validation data fall inside the 90% predic-
tion bounds estimated by the GLUE and Meta-Gaussian method, respectively.
The widths of the prediction bounds estimated by GLUE and Meta-Gaussian
methods are 1.28 m3/s and 1.31 m3/s, respectively.

4.2 Parametric Uncertainty

ANN-based uncertainty model V trained to replicate the MC simulations, and it
was tested on the verification data set. It is worth mentioning that theoretically
we can use othe machine learning methods instead of ANN, however in many
experiemtns ANNs appeared to be the preferred option. We have also done
experiments with other machine learning techniques, but the space does not
allow to report these results.
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Fig. 3. Hydrograph of 90% prediction bounds estimated by MC simulation and ANN

in verification period

The same data set used for calibration and verification of HBV model were
used for training and verification of model V , respectively. However, for proper
training of the ANN model the calibration data set is segmented into two sets;
15% of data sets for cross validation (CV) and 85% for training. CV data set
was used to identify the best structure of ANN. In this paper, a multilayer
perceptron network was used; optimization was performed by the Levenberg-
Marquardt algorithm. The hyperbolic tangent function was used for the hidden
layer with linear transfer function at the output layer. The maximum number
of epoch was fixed to 1000. Trial and error method is adopted to determine the
optimal number of neurons in the hidden layer, testing a number of neurons
from 1 to 10. It was observed that 7 and 8 neurons give the lowest error on CV
set for 5% and 95% quantiles, respectively and the following results correspond
to six hidden nodes.

90% prediction interval was estimated by building two independent models of
5% and 95% quantiles of MC realizations. Figure 3 shows the hydrograph with
the 90% uncertainty bounds predicted by ANN together with the MC simulation
uncertainty bounds in the verification period. The correlation coefficient between
(CC) for 5% quantiles of MC realizations and ANN prediction is 0.857 in ver-
ification. CC is 0.80 for 95% quantiles. ANN reproduces the MC simulations
uncertainty bounds reasonably well, in spite of the low correlation of the input
variables with the PIs. Inspite of some errors, the predicted uncertainty bounds
follow the general trend of MC uncertainty bounds. Noticeably the model fails
to capture the observed flow during one of the peak events (bottom left figure).
Note however, that the results of ANN model and MC simulations are visually
closer to each other than both of them to the observed data.

Detailed analysis reveals that estimated uncertainty bounds contain 77.00%
of the observed runoffs, which is very close to the MC simulation result (77.24
%). The average width of prediction intervals estimated by ANN is narrower
(1.93 m3/s) compared to the value obtained with MC simulations (2.09 m3/s).
Further analysis of the results reveals that 14.74% of the observed data are below
the lower uncertainty bounds whereas 8.01% of data are above the upper bounds.
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The paper presents two methods using ANNs and other machine learning
technique to assess parameter and residual uncertainty of a rainfall-runoff model.
These methods are computationally efficient and applicable to complex models.

The first method, to analyse the residual uncertainty of the model, assumes
that the model error (mismatch between the observed and modeled value) is an
indication of model uncertainty. The novelty of the approach is in the follow-
ing: (a) no assumptions made about the pdf of residuals; (b) the uncertainty
model is specialized for particular hydrometeorological conditions identified by
fuzzy clustering; and (c) use of machine learning techniques. The second method
uses ML as a surrogate fast model replicating the results of Monte Carlo based
simulations for parametric uncertainty analysis.

These methods were used to estimate the uncertainty of a conceptual hy-
drological model. The comparisons with other uncertainty estimation methods
(GLUE, meta-Gaussian) show that the presented methods generate consistent
and interpretable uncertainty estimates, and this is an indicator that they can
be valuable tools for assessing uncertainty of various predictive models.
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Abstract. One of the important directions of research in geophysical

electrical prospecting is solution of inverse problems (IP), in particular,

the IP of magnetotellurics – the problem of determining the distribu-

tion of electrical conductivity in the thickness of earth by the values of

electromagnetic field induced by ionosphere sources, observed on earth

surface. Solution of this IP is hampered by very high dimensionality of

the input data (∼103–104). Selection of the most significant features for

each determined parameter makes it possible to simplify the IP and to

increase the precision of its solution. This paper presents a comparison

of two modifications of the developed algorithm for multi-step selection

of significant features and the results of their application.

Keywords: inverse problems, feature selection, data compression, neural

networks.

1 Introduction

This study is devoted to development of an algorithm for selection of signifi-
cant features in neural network based solution of the inverse problem (IP) of
magnetotellurics (MT) in geophysics. Solution of such problem is the process
of creation of an operator mapping a data vector of the values of electromag-
netic field observed on earth surface to the vector of the sought-for geophysical
parameters of the section. These parameters include distribution of electrical
conductivity in different points of the studied region, geometrical dimensions of
separate sub-regions (geological structures) etc. Actual sections are extremely
complex and require a very large number of parameters to describe them, thus
leading to the known instability (incorrectness) of MT IP [1].

Neural networks (NN) are one of the instruments used to solve IP, including
solving IP of MT [2]. The merits of NN used in solution of IP are high noise
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immunity, stability in respect to contradictory data, possibility of training by
examples etc. [3].

If an adequate analytical or computational model of the studied object is
available, it can be used to produce (by solving the direct problem) a data array
for NN training, with necessary representativity in the space of the determined
parameters. It is clear that in this case the precision of problem solution depends
on adequateness of the model. As a rule, MT models have a large number of
input (observed) features and a large number of determined parameters even for
two-dimensional problems, leading to a decrease in stability of the IP solution
in the whole, and to a significant increase of the demands to computational
resources. Thus, the dimensionality of 2D MT IP considered in this study is
about DI = 6.5 · 103 at the input (the dimension of the vector of the observed
values) and about DO = 3 · 102 at the output (dimensionality of the vector
describing the distribution of electrical conductivity). The simplest method to
reduce the output dimensionality of a problem is to divide it into DO problems
with one output each. However, this does not eliminate the difficulties connected
with high input dimensionality of the problem.

Reduction of the input dimensionality can be achieved in two ways: by selec-
tion of the most significant input features for the given problem or by compres-
sion of the input data with transformation of coordinates in the initial feature
space. For the latter, linear Principal Component Analysis (PCA) or non-linear
PCA implemented as an auto-associative memory NN [4] can be used. This sec-
ond approach is more computationally expensive, but it may provide stronger
compression. However, the first approach makes it possible (along with saving
computational cost) to check the sense of the extracted set of significant features
from physical point of view, i.e. using the available a priori information on the
possible influence of some or other input variables on the output variable. In
this study, the reduction of the input dimensionality by selection of significant
features (SSF) is considered.

2 Structure of Input Data of the Problem

The input data in the 2D MT IP considered in this study have the follow-
ing structure. Registration of intensity of the variable electro-magnetic field is
performed separately for modules and phases of electrical and magnetic fields;
therefore, the data are naturally separated into 4 components: ρE, ϕE, ρH and
ϕH. Then, registration is carried out separately at 13 frequencies. Finally, reg-
istration is performed in 126 points (pickets) on earth surface, separated from
each other by a distance from 1 to 10 km. Therefore, the total dimensionality of
the input data makes:

4(components)× 13(frequencies)× 126(pickets) = 6552. (1)

It is clear that such knowledge of the input data structure enables using physical
considerations to test the plausibility of the selected features. Thus, for exam-
ple, electromagnetic vibrations at different frequencies penetrate earth down to
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different depth; the most significant features for determination of electrical con-
ductivity in a given point should correspond to fields measured in the pickets
nearest to this point. It was expected that using adaptive SSF algorithms will
allow one to determine quantitative borders of the pointed effects.

3 SSF Algorithms

In this study, the following three-step algorithm for IP solution using SSF has
been suggested and considered (Fig. 1, 2).

Prior to solution (step 0), the ‘base’ neural network (NN) is trained that solves
the inverse problem without SSF (6552 inputs, 1 output). The statistics of this
network are recorded for subsequent comparison with the results demonstrated
by networks after SSF. In this study, SSF was performed by two alternative
methods: with NN weight analysis (NNWA, [5]) only, and with the help of cor-
relation analysis (CA).

To eliminate influence of random factors in initialization of NN weights and
in random choice of the order of pattern selection, every experiment with NN
included 5 runs of networks with the same parameters; the tables below display
the results averaged over all such runs.
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At the first step of the first modification of the algorithm (Fig. 1), all the input
features of the problem are divided into 4 groups corresponding to 4 components
of the field, and for each of the groups the SSF task is performed by NNWA
method. The quality of the IP solution by the obtained networks is estimated
for each of the components. To determine the significance threshold for feature
selection, the initial set of input features for each network was enlarged with 10
‘noise’ features taking on random values.

To take part in the second step, only those input features were selected that
had larger weight than every of the ‘noise’ features in all the 5 runs of the first
step. If there turned out to be too few of such features (20 or less), the features
that had larger weight that all ‘noise’ features in 4 runs of 5, were also selected.

At the second step (Fig. 1), all the input features selected at the first step were
combined together; new 10 ‘noise’ features were added to them. This joint set was
used to solve the IP again, and the most significant variables were determined
by NNWA method.

It should be noted that at this step the determined values of significance of the
‘noise’ features turned out to be unsuitable as a threshold for further selection
of features, as it was done at the preceding step. The reason of this was that
the values of their significance were nearly always lower than those for all the
informative (non-‘noise’) features. That is why at this step we used the average
significance over all the features plus one standard deviation as the threshold
value for selection. Only those features were selected to pass to the next stage,
whose significance was higher than the pointed threshold not less than in 4 of
5 runs. If the number of such features turned out to be too small (20 or less),
the precision of the IP solution significantly degraded. Therefore, in such cases
the average significance over all the features (without standard deviation added)
was used as the threshold. Such criteria of selection are challengeable and they
may be modified during further investigations of the algorithm.

As an alternative method for selection of input features for the second step
networks, correlation analysis (CA) was used (Fig. 2). In this case, only those
features were selected whose correlation with the output variable was higher
than that for all the 10 additional ‘noise’ features.

Finally, at the third stage in both variants (Fig. 1, 2) the IP was solved using
only the significant variables selected at the second step.

In addition, note the following peculiarities of the algorithm implementation.

1. To perform NNWA, perceptrons with a single hidden layer (HL) were used. If
a network with several HL was used for this purpose, the picture turned out
to be less contrast, and the algorithm performed worse. For final solution
of the IP at the third step, perceptrons with 1 and 3 HL were used. The
precision of the IP solution in all cases was higher for the perceptron with 3
hidden layers, which results are presented.

2. The array of input data contained 30000 samples divided into sets in the
following way: training set – 70%, test set – 20%, examination set – 10%.
All the presented results were obtained on the examination set.
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4 Results of the Inverse Problem Solution Using SSF

The results of the IP solution at different steps of the algorithm are presented
in Tables 1, 2, 3 and in Figs. 3, 4, 5.

It should be noted that the inverse problems have been solved for the whole
set of 336 output variables, corresponding to the values of electrical conductivity
in 336 different blocks of the studied underground region. The presented results
correspond to 170 blocks lying in the central part of the studied region; solution of
the IP for all the other blocks is needed only for consequent solution of the direct
problem based on the results of the IP solution in the whole region. Note that
such calculations have been also conducted, and the errors for the reconstructed
field values were small enough, thus confirming the validity of the approach in
the whole. However, these results are not presented here, as they lie apart from
NN application.

The quality of the solution depends strongly on the depth where the corre-
sponding block is located – IP solution quality degrades with depth. This effect
can be easily explained from physical point of view – but the results of the IP
solution by NN allow estimating the quantitative borders and the scale of the
pointed effect.

The most informative statistics describing the quality of the IP solution are
the multiple determination coefficient, R squared (RSQ), and the mean squared
error (MSE). Figures 3, 4 display the dependence of these statistics on depth
(in km), each value being averaged over all runs of each network and over all
studied underground blocks residing at the same depth, for each step of both
algorithms. Fig. 5 displays the dependence of the number of selected features
on depth, with the same averaging, for steps 2 and 3 of both algorithms (as the
number of variables at steps 0 and 1 was constant, it is not displayed in Fig. 5).
The error bars for each dependence correspond to the standard deviation for
averaging over all blocks residing at the same depth (for some curves, the error
bars are not visible as they lie within the size of the markers). For step 1, the
results displayed are those for the best component (ϕH for depth 0.5 km and ρE
for all the other depths).

Tables 1, 2 and 3 present the same statistics in numerical form, for several
most informative depths, including the one with the best solution quality (1 km)
and the one with the worst solution quality (22.5 km).

From the comparative analysis of the obtained results, the following conclu-
sions can be drawn.

1. The suggested three-step algorithm of significant features selection turned
out to be efficient. The results obtained at the third step demonstrate no-
ticeable increase in the precision of the IP solution compared to the base
network, with significant (about two orders of magnitude) reduction of the
number of the input features.

2. The key issue in the efficiency of IP solution is presumably the number of
input features. The optimal number of input features lies in the range from
20 to about 100, depending on the complexity of the specific problem being
solved.
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Table 1. Average values of R squared versus depth at different steps of both algorithms

Step \ Depth, km 0.5 1 1.5 3.5 10 22.5 30

0 0.839 0.937 0.815 0.267 0.126 0.021 0.085

1 0.602 0.856 0.668 0.319 0.188 0.037 0.120

2, NNWA 0.912 0.967 0.906 0.519 0.255 0.053 0.130

2, CA 0.935 0.953 0.918 0.516 0.262 0.070 0.173

3, NNWA 0.937 0.984 0.949 0.605 0.291 0.061 0.145

3, CA 0.964 0.979 0.954 0.566 0.271 0.075 0.180

3. The way of selection of significant features influences the process of calcu-
lations noticeably. In general, use of much more computationally efficient
CA as a method of preliminary selection at the second step (Fig. 2) brings
results (Fig. 3, 4) similar with those obtained by the algorithm using NNWA
at all the three stages (Fig. 1). However, great speed increase obtained by
using CA at step 2 instead of training four NN at step 1, is to a significant
degree compensated by much longer training of NN at steps 2 and 3, due to
the fact that the number of significant features (used as input features of the
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Table 2. Average values of mean squared error versus depth at different steps of both

algorithms

Step \ Depth, km 0.5 1 1.5 3.5 10 22.5 30

0 0.463 0.289 0.496 0.988 1.077 1.139 1.108

1 0.796 0.475 0.745 0.983 1.047 1.138 1.091

2, NNWA 0.350 0.218 0.363 0.812 1.001 1.123 1.083

2, CA 0.305 0.258 0.336 0.815 0.996 1.112 1.061

3, NNWA 0.292 0.149 0.265 0.735 0.975 1.117 1.072

3, CA 0.226 0.173 0.252 0.768 0.987 1.109 1.050

Table 3. Average number of selected features versus depth at different steps of both

algorithms

Step \ Depth, km 0.5 1 1.5 3.5 10 22.5 30

0 6552 6552 6552 6552 6552 6552 6552

1 1638 1638 1638 1638 1638 1638 1638

2, NNWA 105.7 129.4 86.3 111.0 124.6 129.7 150.2

2, CA 169.5 248.6 155.9 217.3 235.6 276.1 434.3

3, NNWA 32.9 47.2 29.8 41.6 44.6 42.5 47.2

3, CA 58.8 68.2 54.7 74.2 79.3 88.1 148.5

networks of step 2) selected by CA is much greater (nearly twice as great
as that selected by the algorithm using only NNWA). In the whole, both
algorithms have their merits: the one with NNWA only (Fig. 1) provides a
smaller set of significant variables, while the one with CA (Fig. 2) in the
whole works faster, especially if all NN calculations are performed on CPU
without using GPU-based NN accelerator.

4. Analysis of the list of variables adaptively selected by the SSF algorithms
shows that this list agrees well with a priori physical considerations on rel-
ative importance of the features. The most significant features are values
of the fields measured in some area around the point at earth surface ly-
ing above the center of the block whose conductivity is being measured, in
some range of the most significant frequencies. With increasing depth of the
studied block, the area of the significant pickets becomes wider, and the set
of the most significant frequencies is shifted towards lower frequencies. The
obtained results provide quantitative estimates of these dependences.

5. With increasing depth of the studied block, the quality of IP solution rapidly
degrades (Figs. 3, 4; Tables 1, 2). One can point out three depth ranges
with different quality of IP solution: ranges of good IP solution (depths down
to about 2.5 km), moderate quality IP solution (from 2.5 to about 10 km),
and poor IP solution (deeper than 10 km). Note that the dependence of the
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number of the selected significant features on the depth of the studied block
is very weak (Fig. 5, Table 3).

5 Conclusion

An adaptive algorithm for selection of significant features in neural network
based solution of the inverse problem of magnetotellurics, has been elaborated.
The algorithm has two modifications: one is based only on neural network weight
analysis, the other one also uses correlation analysis at one of the steps of the
algorithm.

It has been demonstrated that use of the developed algorithm allows increas-
ing precision of the IP solution, with simultaneous reduction of the necessary
computational resources. Analysis of the set of the selected features depending
on the depth of the point whose conductivity is determined, allows one to draw
some conclusions that are interesting from physical point of view, and that match
a priori physical considerations.

Further development of the studies will include use of other SSF methods,
perfection of the selection algorithm, and further increase of the precision of the
IP solution by combining classification of initial data and selection of significant
features.
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Abstract. Least Squares Support Vector Machines (LS-SVM) are the

state of the art in kernel methods for regression and function approxima-

tion. In the last few years, these models have been successfully applied

to time series modelling and prediction. A key issue for the good per-

formance of a LS-SVM model are the values chosen for both the kernel

parameters and its hyperparameters in order to avoid overfitting the un-

derlying system to be modelled. In this paper an efficient method for

the evaluation of the cross validation error for LS-SVM is revised. The

expressions for its partial derivatives are presented in order to improve

the procedure for parameter optimization. Some initial guesses to set the

values of both kernel parameters and the regularization factor are also

presented. We finally conduct some experiments on a time series data

example using a number of methods for parameter optimization for LS-

SVM models. The results show that the proposed partial derivatives and

heuristics can improve the performance with respect to both execution

time and the optimized model obtained.

1 Introduction

Least Square Support Vector Machines (LS-SVMs) [1] have been successfully
applied to regression and function approximation problems. Although they have
proved to be very reliable obtaining good performances and very accurate results,
they present some drawbacks:

– The selection of the kernel function could be difficult.
– The optimization of the parameters of the kernel function is computationally

intensive.
– The generated models could be huge, because they include all training data

inside.

In the literature, the kernel functions used are almost all variants of radial basis
functions (RBF) [2] and the analysis of the problem is centered mainly in the
feature selection procedure, i.e. which features must be taken into account for

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 406–415, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the problem [3] [4]. The values of the parameters in most cases are usually set by
optimizing the cross validation error of the models, although some other criteria
are available such as the Bayesian Likelihood [5] [6] or some bounds on the
training error [7]. In the most popular implementation of LS-SVM for Matlab,
LSSVMlab1, both the Bayesian and the cross validation error-based optimization
are available. In the latter case, the software searches in the parameters’ space
by means of a grid search algorithm, that is very computational intensive for
large grid sizes, high cross validation orders and big number of parameters. The
exception to this is the special case of the Leave-One-Out cross validation, for
which in LSSVMlab an efficient procedure is implemented based on the inversion
of the kernel matrix for all the training data. In [8] and [9] expressions for the
evaluation of the cross validation error are presented that are efficient and with
a computational complexity independent of the order. This paper focus on the
efficient and accurate optimization of the cross validation error of arbitrary order
versus the parameters using information about the gradient.

The rest of the paper is organized as follows: Section 2 will briefly introduce the
LS-SVM model for regression, and we will provide expressions for the evaluation
of the cross validation error and for the partial derivatives of the cross validation
error with respect to the parameters of the model; Section 3 will tackle the same
objectives, but for the special case of unbiased LS-SVM models; Section 4 will
present some initial guesses for the non-linear parameters of the model; Finally,
in Sections 5 and 6 some experiments will be presented and final conclusions will
be drawn.

2 Least Squares Support Vector Machines (LS-SVM)

Given a set of function samples of the form {(x1, y1), . . . , (xn, yn)} ⊂ X × R,
where n is the number of samples, the classic linear LS-SVM model for regression
relates inputs X with the output Y by minimizing the objective function:

min
w∈X, b,ei∈R

τ(w, b, e) = 1
2‖w‖2 + γ 1

2

n∑
i=1

e2i ,

(yi − (〈w, x〉+ b)) = ei, ∀i = 1, . . . , n.
(1)

where w, b are the parameters of the linear approximator, γ > 0 is a regular-
ization parameter and ei is the error for the i-th sample (e = {e1, e2, · · · , en}).
Since this is a typical problem of optimization of a differentiable function with
restrictions, it can be solved by using Lagrange multipliers (αi), leading to:[

0 1T
N

1N Ω + I/γ

] [
b
α

]
=
[

0
y

]
(2)

where Ωij = 〈xi, xj〉 and I is the identity. Applying the well-known Kernel Trick,
Ωij = k(xi, xj), the problem can be extended to non linear cases. The modelled

1 http://www.esat.kuleuven.ac.be/sista/lssvmlab/

http://www.esat.kuleuven.ac.be/sista/lssvmlab/
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function can be written in terms of coefficients αi, b and values of the kernel
function k:

f(x) =
n∑

i=1

αik(x, xi) + b. (3)

2.1 Evaluation of the l-fold Cross-Validation Error for LS-SVM

In order to avoid that the LS-SVM model overfits the data it learns from, it
is important to measure its performance when approximating data which have
not been used during the training process. One of the most common methods of
obtaining a model with good generalization capabilities consist in minimizing not
just the training error but the cross-validation error. The l-fold cross-validation
error of a model is obtaining by dividing the available data in l sub-sets and,
alternately using one of the sub-sets as test data and the rest as training data.
Therefore, a total of l models are trained and cross-validated.

In [9], a reduced cost method for the evaluation of l-fold cross-validation error
for LS-SVM is presented. To compute the cross-validation error of order l the
following expression can be used:

MSEl-fold =
1
n

l∑
k=1

|β(m)|∑
j=1

β
(m)
j

2
(4)

where β = [β(1), β(2), · · · , β(l)]T is defined as β(m) = C−1
mmα

(m). Please, note
that α = [α(1), α(2), · · · , α(l)]T here is not the same of equation (2), but given
from:

α = Cy (5)

C =

⎡⎢⎢⎢⎣
C11 C12 · · · C1l

CT
12 C22 · · · C2l

...
...

. . .
...

CT
l2 CT

2l · · · Cll

⎤⎥⎥⎥⎦ = K−1
γ +

1
d
K−1

γ 1n1T
nK

−1
γ (6)

d = −1T
nK

−1
γ 1n (7)

Kγ = K + I/γ (8)
Kij = k(xi, xj ;Θ) (9)

where I is the identity matrix and Θ is the vector of parameters for the kernel k.
The computational cost is independent from l, the fold order, being dominated
by the costs of the inversion of the matrix Kγ .

2.2 Partial Derivatives of the l-Fold Cross-Validation Error for
LS-SVM

In the last sub-section we have stated that our main objective when optimiz-
ing a LS-SVM model with good generalization properties is to minimize the
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cross-validation error. In order to accomplish the actual minimization, we need
the expressions of the partial derivatives of the l-fold cross-validation error (Eq.
4) with respect to a given parameter p (that can be the regularization factor γ or
any kernel parameter). After some algebra, we obtain the following expressions:

∂MSEl-fold

∂p
=

2
n

l∑
k=1

|β(m)|∑
j=1

β
(m)
j

[
∂β(m)

∂p

]
j

(10)

∂β(m)

∂p
=

∂C−1
mm

∂p
α(m) + C−1

mm

∂α(m)

∂p
(11)

∂α(m)

∂p
=

∂Cmm

∂p
y(m) (12)

∂C−1
mm

∂p
= −C−1

mm

∂Cmm

∂p
C−1

mm (13)

∂C

∂p
=

⎡⎢⎢⎢⎢⎢⎣
∂C11
∂p

∂C12
∂p · · · ∂C1l

∂p
∂CT

12
∂p

∂C22
∂p · · · ∂C2l

∂p
...

...
. . .

...
∂CT

l2
∂p

∂CT
2l

∂p · · · ∂Cll

∂p

⎤⎥⎥⎥⎥⎥⎦ (14)

∂C

∂p
=

∂K−1
γ

∂p
+
∂d−1

∂p
K−1

γ 1n1T
nK

−1
γ · · · (15)

+
1
d

(
∂K−1

γ

∂p
1n1T

nK
−1
γ +K−1

γ 1n1T
n

∂K−1
γ

∂p

)
(16)

∂d−1

∂p
=

1
d2 1T

n

∂K−1
γ

∂p
1n (17)

∂K−1
γ

∂p
= −K−1

γ

∂Kγ

∂p
K−1

γ (18)

Therefore, as expected, the partial derivative of the cross-validation error with
respect to parameter p depends on ∂Kγ

∂p , the partial derivative of Kγ = K+ I/γ.
For each p = θ ∈ Θ, the derivative depends on the specific kernel function k, but
for p = γ it is ∂Kγ

∂p = −I/γ2.
The evaluation of the partial derivatives implies the inversion of the matrix

Kγ , that has a computational complexity of O(N) = N3 with exact methods,
and depends on the computation of the partial derivatives of the kernel function
with respect to its parameters, that must be provided for each particular kernel.

In sum, with the use of the above equations a Conjugate Gradient (CG)
scheme can be used to optimize both the regularization factor γ and the ker-
nel parameters in a LS-SVM model. We should here point out that in [1] it is
recommended to optimize in different levels the kernel parameters and the reg-
ularization factor γ). As we are not guaranteed the convergence to the global
optimum, it is recommended to use several optimization stages from different
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starting points. In section 4 we will also provide some initial guesses for these
starting points in order to provide a faster route to the global solution.

3 Unbiased LS-SVM

For function approximation, it is often preferred to use an unbiased version of LS-
SVM. The elimination of the bias simplifies the expressions, considering that the
functions to model have zero mean, a condition that can be imposed without loss
of generality. Given a set of function samples {(x1, y1), . . . , (xn, yn)} ⊂ X × R,
where n is the number of samples, the unbiased LS-SVM model for regression
relates inputs X with the output Y by the following optimization problem:

min
w,ei∈R

τ(w, e) = 1
2‖w‖2 + γ 1

2

n∑
i=1

e2i ,

(yi − (〈w, x〉)) = ei, ∀i = 1, . . . , n.
(19)

that leads again to the use of Lagrange multipliers α and, finally, to solve the
linear system:

[Ω + I/γ] [α] = [y] (20)

where Ωij =< xi, xj >, the scalar product between a pair of input vector, I
is the identity matrix and γ is the regularization factor. If the scalar product
operation in the input space is substituted by a scalar product in a feature space
given by a kernel function k(x, x′) =< φ(x), φ(x′) >, where φ is the function
that map points from input space to the feature space, then Ωij = k(xi, xj) and
the actual model would be given by:

f(x) =
n∑

i=1

αik(x, xi). (21)

3.1 l-Fold Cross-Validation Error for Unbiased LS-SVM

The reduced cost method to evaluate the l-fold cross-validation error in the
special case of unbiased LS-SVM is:

MSEl-fold =
1
n

l∑
k=1

|β(m)|∑
j=1

β
(m)
j

2
(22)

β(m) = C−1
mmα

(m) (23)
C = K−1

γ (24)

where α is the same of equation (20) and Kγ the same of equation 8.
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3.2 Partial Derivatives of the l-Fold Cross-Validation Error for
Unbiased LS-SVM

Again, in the special case of using unbiased LS-SVM, the partial derivatives of
the l-fold cross-validation error (22) with respect to a given parameter p (that
can be γ or a kernel parameter) would stay as:

∂MSEl-fold

∂p
=

2
n

l∑
k=1

|β(m)|∑
j=1

β
(m)
j

[
∂β(m)

∂p

]
j

(25)

∂β(m)

∂p
=

∂C−1
mm

∂p
α(m) + C−1

mm

∂α(m)

∂p
(26)

∂α

∂p
=

∂K−1
γ

∂p
y (27)

4 Guesses for the Initialization of the LS-SVM
Parameters

In this section, some guesses are given to initialize the regularization factor
γ from training data. Nevertheless, it is not possible to do the same for the
parameters of any arbitrary kernel. Therefore, we will concentrate on the most
common case, the Radial Basis Function (RBF) kernel (29) which has only one
parameter, σ.

4.1 Initialization of the Regularization Parameter γ

In the paper [6] it is shown that the optimization problem of a LS-SVM model
given by equation (19) can be rewritten as:

min
w,ei∈R

τ(w, e) = μ 1
2‖w‖2 + ξ 1

2

n∑
i=1

e2i ,

(yi − (〈w, φ(x)〉)) = ei, ∀i = 1, . . . , n.
(28)

where γ = ξ/μ, 1/ξ = σ2
e , where σ2

e is the variance of the noise in the data and
μ is the parameter that controls the regularization of the model.

Without prior information to set the μ value, we let μ be set to 1 provided
all data is normalized with mean 0 and standard deviation 1. The ξ parameter
depends on the variance of the noise in the data. We can estimate this noise
variance, σ̂2

e , using the non parametric estimators delta or gamma test, as rec-
ommended in [10] in which it is also pointed out that the gamma test is more
reliable than the delta test for data of dimensionality higher than four. Thus, our
initial guess for the regularization factor γ in a LS-SVM model will be γh = 1/σ̂2

e ,
where σ̂2

e is evaluated from the data using the delta or the gamma test.
In the worst case, all data are pure noise, so σ2

e = σ2
y and a minimum γ value

can be set as γmin = 1/σ2
y. A reasonable range to search for an initial value of γ
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could be [γmin, γh], but if we rely on non parametric noise estimation methods
we can use values very close to γh.

In [11] it is demonstrated that the presence of noise in the input vectors
makes that the delta and gamma test, instead of approximating the variance of
the noise, give a measure of the variance of the effective noise in the output. The
value of the variance of the effective noise is larger than the variance of the noise
itself, but a better approximation cannot be performed anyway.

Since in order to use regression methods for time series prediction the in-
put/ouput vectors have to be generated from the time series, the input vectors
will always have noise. So a reasonable range to search the γ value in a range
centered on γh could be [0.5 · γh, 2 · γh].

4.2 Initial Guess for the σ Parameter of the RBF Kernel

Considering the most common case of LS-SVM model for regression, i.e., the
LS-SVM model with RBF kernel, whose equation is:

k(x, x′) = exp
(
− 1
σ2 ‖x− x′‖2

)
. (29)

the σ value is related to the distance between training points and to the smooth
interpolation of the resulting model from the I/O data: higher values of σ give
smoother functions. It can be expected to find a good σ in [σmin, σmax], where
σmin is the minimum distance (non zero) between 2 training points and σmax is
the maximum distance between 2 training points. But a smaller, but reasonable,
parameter search space for σ could be the range [0.5 · σ, 2 · σ], centered in σ =
0.5 · (σmax + σmin) that can be used as a good enough starting point.

In order to use this kernel in the expressions obtained in the previous sections,
we need the derivative of the kernel function with respect to its parameter σ:

∂k(x, x′)
∂σ

= exp
(
− 1
σ2 ‖x− x′‖2

)
1
σ4 ‖x− x′‖2. (30)

5 Experiments

To test the proposed optimization methods and the heuristics for the initial-
ization of the parameters for LS-SVM models with RBF kernel, the Mackey-
Glass time series is used. The Mackey-Glass time series [12] is a very well-
known benchmark for time series modelling and prediction. It is an artificial
time series without noise, that has been widely used in the literature for the
comparison of neuro-fuzzy and other nonlinear models. In our experiments,
1000 data points of the series, y1, ..., y1000, were taken, and normalized with
zero mean and unit variance. Gaussian additive noise of zero mean and con-
trolled variance σ2

e = {0, 1, 10−1, 10−2, 10−3, 10−4} was added to this sequence
of data, ŷi = yi + N(0, σ2

e), in order to test the non parametric noise estima-
tion, and confirm that the presence of noise in the inputs can make it fail. From
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Table 1. Optimizations with RBF kernel using heuristics for Mackey-Glass with noise

on all series. σ2
e : variance of the added Gaussian noise; NNE: evaluated variance of noise

with non parametric noise estimation; NRMSENNE best training error that can be

reached evaluated from NNE; Method: Heuristic, using γh, σ, Gridsearch using reduced

cost evaluation of 10 fold cross-validation error in range [0.5 · γh, 2 · γh], BFGS applied

from γh, σ, Iterative Local Search (of BFGS) applied from γh, σ; T: time in seconds;

f.e.: number of cross-validation error evaluations performed; 10-CVE: final value of 10

fold cross-validation error reached. Best values of T and 10-CVE in bold.

Method Training Test T f.e. 10-CVE

Heuristic 5.58e-03 4.95e-03 2.10e-01 0 1.38e-04

σ2
e 0 GS 5.51e-03 4.88e-03 1.33e+01 100 1.37e-04

NNE 1.00e-06 BFGS 4.49e-03 4.03e-03 6.99e+00 22 1.25e-04

NRMSENNE 1.00e-03 ILS 4.49e-03 4.03e-03 4.47e+01 100 1.25e-04
LSSVMlab 5.61e-03 4.97e-03 3.61e+02 100 1.38e-04

Heuristic 1.19e+00 1.27e+00 1.91e-01 0 1.53e+00

σ2
e 1 GS 1.20e+00 1.27e+00 1.34e+01 100 1.52e+00

NNE 1.38e+00 BFGS 1.20e+00 1.27e+00 3.68e+00 12 1.52e+00
NRMSENNE 1.17e+00 ILS 1.20e+00 1.27e+00 3.22e+01 100 1.52e+00

LSSVMlab 1.20e+00 1.27e+00 3.55e+02 100 1.53e+00

Heuristic 4.16e-01 4.27e-01 1.91e-01 0 2.02e-01

σ2
e 1.00e-01 GS 4.23e-01 4.29e-01 1.34e+01 100 2.01e-01

NNE 1.86e-01 BFGS 4.21e-01 4.27e-01 3.40e+00 11 2.00e-01
NRMSENNE 4.31e-01 ILS 4.21e-01 4.27e-01 3.10e+01 100 2.00e-01

LSSVMlab 4.18e-01 4.28e-01 3.56e+02 100 2.02e-01

Heuristic 1.45e-01 1.46e-01 1.91e-01 0 2.55e-02

σ2
e 1.00e-02 GS 1.31e-01 1.48e-01 1.34e+01 100 2.45e-02

NNE 1.63e-02 BFGS 1.33e-01 1.46e-01 4.33e+00 14 2.44e-02
NRMSENNE 1.28e-01 ILS 1.33e-01 1.46e-01 3.10e+01 100 2.44e-02

LSSVMlab 1.45e-01 1.46e-01 3.61e+02 100 2.55e-02

Heuristic 5.38e-02 5.60e-02 1.91e-01 0 3.74e-03

σ2
e 1.00e-03 GS 4.72e-02 5.50e-02 1.34e+01 100 3.42e-03

NNE 2.44e-03 BFGS 4.79e-02 5.55e-02 5.55e+00 18 3.41e-03
NRMSENNE 4.94e-02 ILS 4.79e-02 5.55e-02 2.91e+01 100 3.41e-03

LSSVMlab 5.39e-02 5.61e-02 3.62e+02 100 3.74e-03

Heuristic 1.77e-02 2.19e-02 1.91e-01 0 5.43e-04

σ2
e 1.00e-04 GS 1.64e-02 2.09e-02 1.35e+01 100 5.27e-04

NNE 3.18e-05 BFGS 1.61e-02 2.07e-02 4.34e+00 14 5.26e-04
NRMSENNE 5.64e-03 ILS 1.61e-02 2.07e-02 2.80e+01 100 5.26e-04

LSSVMlab 1.77e-02 2.19e-02 3.62e+02 100 5.43e-04

the noisy data ŷ1, ..., ŷ1000, inputs and output vectors were created in the form
[ŷt−24, ŷt−18, ŷt−12, ŷt−6, ŷt], and half of the vectors were used for training and
half for test. For the LS-SVM models, the heuristics were applied and tested
using the reduced-cost evaluation procedure of the 10 fold cross-validation error
(which is one of the most common orders used in literature):
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1. Directly: fixing the values of the parameters γh, σ.
2. A grid-search procedure: the same used on LSSVMlab with the range sug-

gested in Section 4.
3. A local search procedure: using the Broyden-Fletcher-Goldfarb-Shanno

method, BFGS, with initial point (γh, σ)
4. A global search procedure: Iterative Local Search using as local search BFGS

with initial point (γh, σ).

The LSSVMlab toolbox was also used. The training and test errors are given
independently from translation and scale factors using the Normalized Root
Mean Square Error [13] (NRMSE =

√
MSE/σ2

y, where MSE is the Mean

Square Error and σ2
y the variance of the function to model). The evaluated best

training NRMSE error computed from the non parametric noise error will also be
shown. All the software was implemented in Matlab, and the experiments were
executed on a personal computer with an Intel Core 2 Quad CPU at 2.83GHz
and 8 GB of RAM. Finally, the number of evaluations of the cross-validation
procedure was limited to 100 in the experiments.

The results obtained are shown in Table 1. As can be seen from the table,
the procedure to evaluate the cross-validation error from [9] is faster than the
naive implementation for this case (see rows labelled GS y LSSVMlab). It is also
shown that the evaluation of the partial derivatives (used in BFGS and ILS )
adds some overhead to the evaluation of the cross-validation error but allows
us to reach a local optima with less number of evaluations. The initial point
for the optimization procedures has an important influence on the results. In
this case the global search procedure (ILS ) only reached a better solution than
a local search procedure (BFGS ) in the case of noise-free data. It is worth to
recall that the number of evaluations required by BFGS to converge is quite
smaller than the maximum allowed in most cases (exceptions for σ2

e = 1.0e−2 y
σ2

e = 1.0e− 4). It is remarkable the relative good results reached using only the
heuristic initialization of the parameters in the models (rows labelled Heuristic).

6 Conclusions

In this paper we have obtained the expressions of the derivatives of the reduced
cost evaluation of an arbitrary order cross-validation error for LS-SVM models.
Some guesses have also been given for the initial values of the regularization
factor γ of the LS-SVM model and for the RBF kernel parameter σ. All the
expressions were implemented in Matlab. In the experiments we have compared
the results obtained by a derivative-free procedure (gridsearch), a conjugate gra-
dient procedure, and a global search procedure (Simulated Annealing guided by
gradient). Time and error measures were taken and compared with the most
popular implementation of LS-SVM for matlab, LS-SVMlab, for the well-known
Mackey-Glass time series. The results confirm that the use of our reduced-cost
expressions achieves performances that outperforms the naive implementation
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used in LS-SVMlab, and that gradient-based procedures can optimize the pa-
rameters more efficiently that other methods that don’t use this information.
The validity of the given heuristics has also been confirmed for this example.
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Abstract. In Independent Factor Analysis (IFA), latent components (or

sources) are recovered from only their linear observed mixtures. Both the

mixing process and the source densities (that are assumed to be gener-

ated according to mixtures of Gaussians) are learned from observed data.

This paper investigates the possibility of estimating the IFA model in its

noiseless setting when two kinds of prior information are incorporated:

constraints on the mixing process and partial knowledge on the cluster

membership of some examples. Semi-supervised or partially supervised

learning frameworks can thus be handled. These two proposals have been

initially motivated by a real-world application that concerns fault diag-

nosis of a railway device. Results from this application are provided to

demonstrate the ability of our approach to enhance estimation accuracy

and remove indeterminacy commonly encountered in unsupervised IFA

such as source permutations.

Keywords: Independent Factor Analysis, mixing constraints, semi-

supervised learning, diagnosis, railway device.

1 Introduction

The generative model involved in Independent Component Analysis (ICA) as-
sumes that observed variables are generated by a linear mixture of independent
and nongaussian latent variables. Furthermore, when the IFA model is consid-
ered, each latent variable has its own distribution, modeled semi-parametrically
by a mixture of Gaussians (MOG) and the number of mixtures can differ from
the number of sources. The IFA model introduced by [5] can indeed handle both
square noiseless mixing and the general case where the data are noisy. These
models yield reliable results provided the independence assumption is satisfied
and the postulated mixing model suited to the physics of the system. Other-
wise, they fail to recover the sources. Several extensions of the basic ICA model
have been proposed to improve its performance. The main approaches exploit
temporal correlation [6], positivity [7,3,11] or sparsity [8,9].

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 416–425, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we propose two extensions of the basic noiseless IFA model. The
first one concerns the possibility of incorporating independence hypotheses be-
tween some latent and observed variables. Such hypotheses can be derived from
physical knowledge available on the mixing process. This kind of approach has
not been applied within the framework of IFA, but it has been widely considered
in factor analysis [10] and, more specifically, in the structural equation model-
ing domain [12]. The second extension incorporates additional information on
cluster membership of some samples to estimate the IFA model. In this way, the
semi-supervised learning framework can be handled. Considering the graphical
model of IFA shown in Figure 1, the mixing process prior consists in omitting
some connections between observed (X) and latent (Z) variables. The second
prior means that additional information on the discrete latent variables (Y ) is
taken into account.

1

1

1
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s

s
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...

... ...

...

...
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S

S

Fig. 1. Graphical model for Independent Factor Analysis

This article is organized as follows. We will first present IFA model estimation
by maximum likelihood in a noiseless setting. In Section 3 and 4, the problem
of learning the IFA model with prior knowledge on the mixing process and on
the cluster membership of some samples will be addressed. In Section 5, the
approach will be applied to diagnosis problem for which the impact of using
priors will be evaluated. The paper ends with a conclusion.

2 Background on Independent Factor Analysis

ICA and IFA aim at recovering independent latent components from their
observed linear mixtures. In its noiseless formulation (used throughout this pa-
per), the ICA model can be expressed as x = A z, where A is a square ma-
trix of size S × S, x the random vector whose elements (x1, . . . ,xS) are the
mixtures and z the random vector whose elements (z1, . . . , zS) are the latent
components. Thanks to the noiseless setting, a deterministic relationship be-
tween the distributions of observed and latent variables can be expressed as:
fX (x) = 1

| det(A)|f
Z(A−1 x). The probability density functions of the sources

can be fixed using prior knowledge, or according to some indicator that allows
switching between sub and super Gaussian densities [1]. An alternative solution,
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referred to as IFA, consists in modeling each source density as a mixture of
Gaussians (MOG) so that a wide class of densities can be approximated [4,5]:

fZs(zs) =
Ks∑
k=1

πs
kϕ(zs;μs

k, ν
s
k), (1)

with ϕ(.;μ, ν) the density of a Gaussian random variable of mean μ and variance
ν. This model is close to ICA with a Mixture of Gaussians model for the sources.
The problem consists in estimating both the mixing matrix and the MOG pa-
rameters from the observed variables alone. Considering an iid random sample
of size N , the log-likelihood has the form:

L(ψ;X) = −N log(| det(A)|) +
N∑

i=1

S∑
s=1

log

(
Ks∑
k=1

πs
kϕ
(
(A−1xi)s, μ

s
k, ν

s
k

))
. (2)

where ψ is the IFA parameter vector ψ = (A,π1, . . . ,πS ,μ1, . . . ,μS ,ν1,
. . . ,νS), with A the mixing matrix, πs the vector of cluster proportions of source
s which sum to 1, μs and νs the vectors of size Ks containing the means and
the variances of each cluster. Maximum likelihood of the model parameters can
be achieved by an alternating optimization strategy. The gradient algorithm
[14] is indeed well suited to optimize the log-likelihood function with respect to
the mixing matrix A when the parameters of the source marginal densities are
frozen. Conversely, with A kept fixed, an EM algorithm can be used to optimize
the likelihood function with respect to the parameters of each source. These re-
marks have led to the development of a Generalized EM algorithm (GEM) able
to simultaneously maximize the likelihood function with respect to all the model
parameters [18].

3 Constraints on the Mixing Process

This section investigates the possibility of incorporating independence hypothe-
ses concerning relationships between some latent and observed variables in the
ICA model. Such hypotheses are often deduced from physical knowledge of the
mixing process. The hypothesis that we consider in this section has the follow-
ing form: Xh ⊥⊥ Zg, which means that Xh is statistically independent from Zg.
Making this kind of hypothesis constraints the form of the mixing matrix as
shown by the following proposition, which has been proven in [13]:

Proposition 1. In the noiseless ICA model, we have :

Xh ⊥⊥ Zg ⇔ Ahg = 0. (3)

The log-likelihood has to be maximized under the constraint that some of the
mixing coefficients are null, and gradient ascent is only performed with respect
to the non-null coefficients. In this case, the initialization and the update rule
of the mixing matrix are given by A(0) = C • A(0), A(q+1) = A(q) + τ C •ΔA(q)

where • denotes the Hadamard product between two matrices and C a binary
matrix of which the elements are Chk = 0 if Zk ⊥⊥ Xh, Chk = 1 otherwise.
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4 Semi-supervised Learning in IFA

The IFA model is often considered within an unsupervised learning framework.
This section considers the learning of this model (in its noiseless setting) in
a partially-supervised learning context where partial knowledge of the cluster
membership of some samples is available. For that purpose, a generalized likeli-
hood function has to be defined and an EM algorithm dedicated to its optimiza-
tion has to be set up. In the general case, we will assume a learning set of the form
: Xiu = {(x1,m

Y1
1 , . . . ,mYS

1 ), . . . , (xN ,m
Y1
N , . . . ,mYS

N )}, where mY1
i , . . . ,mYS

i is
a set of basic belief assignments or Dempster-Shafer mass functions [15,13] en-
coding our knowledge on the cluster membership of sample i for each one of
the S sources, Ys = {c1, . . . , cKs} is the set of all possible clusters for source s.
Depending on the choice of the mass functions, this formulation can therefore
be seen as addressing a more general framework that encompasses unsupervised,
supervised and partially-supervised learning paradigms as mentioned in Table
1. The concept of likelihood function has strong relations with that of possibil-

Table 1. Different learning paradigms and soft labels

Mass function plausibility

Unsupervised ms
i (Ys) = 1, plsik = 1,∀k

Supervised ms
i (ck) = 1 plsik = 1, plsik′ = 0, ∀k′ �= k

Partially supervised ms
i (C) = 1 plsik = 1 if ck ∈ C, plsik = 0 if ck /∈ C

ity and, more generally, plausibility, as already noted by several authors [15].
Furthermore, selecting the simple hypothesis with highest plausibility given the
observations Xiu is a natural decision strategy in the belief function framework.
We thus propose as an estimation principle to search for the parameter value
with maximal conditional plausibility given the data: ψ̂ = argmaxψ plΨ (ψ|Xiu).

Parameter estimation in a mixture model with belief function-based labels
was already addressed in [13]. In this context, a likelihood criterion taking into
account soft labels has been defined and an EM algorithm dedicated to its op-
timization has been presented. In this article, we propose an extension of such
study to the IFA model in which partial knowledge of some cluster memberships
is incorporated. The following proposition, proved in [13], gives the expression
of the generalized likelihood criterion for the IFA model.

Proposition 2. If the labels are assumed to be mutually independent and inde-
pendent from the samples X that are i.i.d. generated according to the the gener-
ative IFA model setting, then the logarithm of the conditional plausibility of the
model parameters vector ψ given the learning set Xiu is given by:

log
(
plΨ (ψ|Xiu)

)
= −N log(| det(A)|)+

N∑
i=1

S∑
s=1

log

(
Ks∑
k=1

plsikπ
s
kϕ
(
(A−1xi)s, μ

s
k, ν

s
k

))
+ cst. (4)
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where plsik is the plausibility that the sample i belong to cluster k of the latent
variable s, (computed from the soft labels mYs

i ), and cst is a constant independent
of ψ.

In a semi-supervised learning context, the IFA model is built from a combination
of M labeled and N −M unlabeled samples. For labeled samples, the plausi-
bilities used as labels are crisp and we have plsik = lsik ∈ {0, 1}Ks, lsik = 1 if
sample i comes from cluster ck of sources s and lsik = 0 otherwise. For unlabeled
samples, plsik = 1 for all clusters k and sources s. Consequently, the criterion can
be decomposed into two parts corresponding, respectively, to the supervised and
unsupervised learning examples and criterion (4) can be rewritten as:

L(A;X) = −N log(| det(A)|) +
M∑
i=1

S∑
s=1

Ks∑
k=1

lsik log
(
πs

kϕ
(
(A−1xi)s, μ

s
k, ν

s
k

))
+

N∑
i=M+1

S∑
s=1

log

(
Ks∑
k=1

πs
kϕ
(
(A−1xi)s, μ

s
k, ν

s
k

))
. (5)

A Generalized EM algorithm (GEM), (Algorithm 1) can be designed to simul-
taneously maximize the likelihood function with respect to all the model pa-
rameters. This algorithm is similar to the EM algorithm used to estimate IFA
parameter in an unsupervised setting, except for the E step, where the posterior
probabilities tsik are only computed for the unlabeled samples. The updating of
the mixing matrix also takes into account the mixing constraints and depends
not only of the latent variables, but also of the labels.

5 Fault Diagnosis in Railway Track Circuits

The application considered in this paper concerns fault diagnosis in railway track
circuits. This device will first be described and the problem addressed will be
exposed. An overview of the proposed diagnosis method will be presented.

5.1 Track Circuit Principle

The track circuit is an essential component of the automatic train control system
[17]. Its main function is to detect the presence or absence of vehicle traffic within
a specific section of railway track. On French high speed lines, the track circuit is
also a fundamental component of the track/vehicle transmission system. It uses
a specific carrier frequency to transmit coded data to the train, for example the
maximum authorized speed on a given section on the basis of safety constraints.
The railway track is divided into different sections. Each one of them has a
specific track circuit consisting of the following components:

– A transmitter connected to one of the two section ends, which delivers a
frequency modulated alternating current;

– The two rails that can be considered as a transmission line;
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Algorithm 1. Pseudo-code for noiseless IFA with prior knowledge on labels
and mixing constraints.

Input: Centered observation matrix X, cluster belonging for the M labeled

data lsik, constraints matrix encoding independence hypothesis C.

# Random initialization of parameters vector ψ(0), q = 0

while Convergence test do

Z = X
(
A(q)−1

)t

# Source update

forall s ∈ {1, . . . , S} and k ∈ {1, . . . , Ks} do

t
s(q)
ik = lsik, ∀i ∈ {1, . . . , M}

t
s(q)
ik =

π
s(q)
k ϕ(zis; μ

s(q)
k , ν

s(q)
k )∑Ks

k′=1 π
s(q)

k′ ϕ(zis; μ
s(q)

k′ , ν
s(q)

k′ )
, ∀i ∈ {M + 1, . . . , N}

forall s ∈ {1, . . . , S} and k ∈ {1, . . . , Ks} do

π
s(q+1)
k = 1

N

∑N
i=1 t

s(q)
ik

μ
s(q+1)
k = 1∑N

i=1 t
s(q)
ik

∑N
i=1 t

s(q)
ik zis

ν
s(q+1)
k = 1∑

N
i=1 t

s(q)
ik

∑N
i=1 t

s(q)
ik (zis − μ

s(q+1)
k )2

G = g(q+1)(Z) # Update of G, gs(zis) =
∑Ks

k=1 t
s(q+1)
ik

(zis−μ
s(q+1)
k

)

ν
s(q+1)
k

,

# Natural gradient

ΔA =
(
A(q)−1

)t (
1
N

∑N
i=1 g

(
z
(q)
i

)
z
(q)
i

t − I
)

τ∗ = Linearsearch(A(q),C • ΔA) # Linear Search for τ
A(q+1) = A(q) + τ∗.C • ΔA # mixing matrix Update
# source normalization to remove scale indetermination
q ← q + 1

– At the other end of the track section, a receiver that essentially consists of a
trap circuit used to avoid the transmission of information to the neighboring
section;

– Trimming capacitors connected between the two rails at constant spacing to
compensate for the inductive behavior of the track. Electrical tuning is then
performed to limit the attenuation of the transmitted current and improve
the transmission level. The number of compensation points depends on the
carrier frequency and the length of the track section.

The rails themselves are part of the track circuit, and a train is detected when
its wheels and axles short-circuit the track. The presence of a train in a given
section induces the loss of track circuit signal due to shorting by train wheels. The
drop of the received signal below a preset threshold indicates that the section is
occupied. The different parts of the system are subject to malfunctions that must
be detected as soon as possible in order to maintain the system at the required
safety and availability levels. In the most extreme case, this causes an unfortunate
attenuation of the transmitted signal that leads to the stop of the train. The
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Fig. 2. Examples of inspection signals

purpose of diagnosis is to inform maintainers about track circuit failures on the
basis of the analysis of a specific current, recorded by an inspection vehicle.
This paper will focus on trimming capacitor faults that affect their capacitance.
Figure 2 shows an example of the inspection signal when the system is fault-free
while the others correspond to a defective 9th capacitor. The aim of the diagnosis
system is to detect faults in the track circuit and localize the defective capacitor
by analyzing the measurement signal.

5.2 Overview of the Diagnosis Method

The track circuit can be considered as a large-scale system made up of a series
of spatially related subsystems that correspond to the trimming capacitors. A
defect on one subsystem is represented by a continuous value of the capacitance
parameter. The proposed method is based on the following two observations (see
Figure 2). First, the inspection signal has a specific structure, which is a succes-
sion of so many arches as capacitors; an arch can be approximated by a quadratic
polynomial ax2 + bx+ c. Second, each observed arch is influenced by the capac-
itors located upstream (on the transmitter side). The proposed method consists
in extracting features from the measurement signal, and building a generative
model as shown in Figure 3, where each observed variable Xis corresponds to
the coefficients (bis, cis) of the local polynomial approximating the arch located
between two subsystems. Only two coefficients are used because of continuity
constraints between each polynomial, as their exists a linear relationship be-
tween the third coefficient and the three coefficients of the previous polynomial.
The continuous latent variable Zis is the capacitance of the ith capacitor and the
discrete latent variable Yis corresponds to the membership of the capacitor state
to one of the three states: fault-free, minor defect, major defect. As there is no
influence between a trimming capacitor state and the inspection signal located
upstream from it, some connections between latent and observed variables are
omitted. This information will be also introduced in the model estimation using
constraints on the mixing matrix. We can clearly see that this model is closely
linked to the IFA model represented in Figure 1. Considering the diagnosis task
as a blind source separation problem, the IFA model can be used to estimate the
mixing matrix A and thereby to recover the latent components (capacitances)
from the observed variables alone. As already explained, a piecewise approach
is adopted for the signal representation: each arch is approximated by a second
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Continuous latent variables : 
capacitances 

Observed variables : 
coefficients of the local polynomial  

Discrete latent variables : 
states of the capacitors 

Fig. 3. Generative model for the diagnosis of track circuits represented by a graphical

model including both continuous and discrete latent variables

degree polynomial of which two coefficients are used as observed variables for
each node in the model of Figure 1, which results in 2 × S observed variables.
Given an observation matrix, the aim is to recover S latent variables from 2×S
observed ones with the hope that they will be strongly correlated with the vari-
able of interest, i.e., capacitances. As prior information on the mixing matrix is
available, PCA cannot be used for preprocessing because the mixing structure
would be lost. 2 × S latent variables are therefore extracted: S latent variable
densities corresponding to capacitances are assumed to be mixtures of three
Gaussian components, one for each state of the capacitors while the S other
variables are assumed to be noise variables and are thus modeled by simple
Gaussian distributions. It can be noticed that with standard IFA model, S la-
tent variables can be recovered from 2× S observed ones. But in this paper, we
consider the noiseless IFA model which seems to be straightforward to incorpo-
rate prior information and to recover the sources from the data.

6 Results and Discussion

To assess the performances of the approach, we considered a track circuit of
S = 18 subsystems (capacitors) and a database containing 2500 noised signals
obtained for different values of the capacitance of each capacitor. 500 were used
in the training phase, while the 2000 others were employed for the test phase.
The experiments aim at illustrating the influence of both the number of labeled
samples and the use of the mixing matrix constraints on the results. The model
provides two levels of interpretation corresponding to discrete and continuous
latent variables, but we only discuss in this paper the results for the continuous
latent variables. Figure 4 shows the mean of the absolute value of the correla-
tion between estimated latent variables and capacitances as a function of the
number of labeled training samples, when the mixing matrix is constrained or
not. Note that the case of unlabeled samples without constraints illustrates the
performances of the traditional IFA model (without any prior), which are very
poor as our criterion is sensitive to source permutation. When more labeled sam-
ples are used, the permutations of the sources are avoided and the performances
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Fig. 4. Results of IFA with (–), without constraints (- - ) when the number of labeled

samples varies between 0 and 500 and supervised IFA without constraints (-. -. )

reach a more satisfactory level. Twenty random starting points were used for the
GEM algorithm and only the best solution according to the likelihood was kept.
This figure clearly highlights the benefit of using constraints when the amount
of labeled samples is small. As expected, when the number of labeled data in-
creases, the mean correlation also increases to reach a maximal value of 0.84 for
the constrained IFA model with 250 labeled sampled and for the unconstrained
one with 350 labeled samples. When a sufficient amount of labeled samples is
provided to the model (> 350), the prior on the mixing process does not signifi-
cantly improve the performances. It can also be noticed that unlabeled samples
improve the performances of the approach, particularly when the size of the
labeled learning data is small. Further improvement of the overall performance
level would require a non-linear model.

7 Conclusion

In this paper, we have proposed a method for learning parameters of the IFA
model while incorporating two kinds of prior information related to the mixing
process on the one hand, and the cluster membership of some training samples
on the other hand. In this context, a criterion was defined and a GEM algo-
rithm dedicated to its optimization was described. The proposed method has
been applied to fault diagnosis in railway track circuits. The diagnosis system
aims at recovering the latent variables linked to the defects from their linear ob-
served mixtures (features extracted from the inspection signal). A comparison
between standard and proposed IFA models has been carried out to show that
our approach is able to take advantage of prior information, thus significantly
improving estimation accuracy and removing indeterminacy of the unsupervised
IFA such as permutation of sources. Further studies will be carried out to incor-
porate nonlinearity and also to take into account imprecise and uncertain cluster
memberships such as supplied by human experts.
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Abstract. The performance of a perceptual hashing system, which is

often measured by discrimination and robustness, is directly related to

the features that the system extracts. In this letter, a new speech hash-

ing scheme based on short-time stability is presented. The characteris-

tic of natural speech that the principal components of linear prediction

coefficients among neighboring frames tend to be very similar is uti-

lized to generate the hash sequence. Experimental results demonstrate

the effectiveness of the proposed scheme in terms of discrimination and

robustness.

Keywords: Perceptual hashing, short-time stability, Linear Prediction

Coefficients (LPCs), Principal Component Analysis (PCA).

1 Introduction

Perceptual hashing (also known as fingerprinting) scheme summarizes the mul-
timedia content into a concise signature sequence, which can then be used to
identify the original content. It provides fast and reliable means for protection,
management, and indexing of multimedia contents. Promising applications of au-
dio perceptual hashing include broadcast monitoring, connected audio, filtering
for file sharing, and automatic organization of music library [1]. Unlike cryp-
tographic hashing, which dramatically changes when a single bit of the input
content changes [2], perceptual hashing is insensitive to ”reasonable” degrada-
tions, such as filtering, amplitude boosting/cutting, re-quantizing, normalizing,
inverting and so forth, but is sensitive to the change in content.

The most important properties that perceptual hashing scheme must satisfy
are discrimination and robustness [3]:
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– Discrimination (collision free): The hash sequence should reflect the content
of the data in a unique way. In other words, data with perceptually different
content should yield different hash sequences;

– Robustness (invariance under perceptual similarity): The hash sequence gen-
erated from the data, which is subjected to certain non-malicious manipula-
tions, such as low-pass filtering, amplitude boosting/cutting, re-quantizing,
normalizing, inverting and so forth, is equal or similar to that generated from
the original data.

Due to wide application, audio perceptual hashing scheme has been widely
studied recently [4]. Most of the available audio hashing schemes are based on
well known audio features, such as Fourier coefficients [5], Short Time Fourier
Transform (STFT) feature [6], Mel Frequency Cepstral Coefficients (MFCC)
[7], spectral flatness [8], and the derived quantities, such as derivatives, means
and variances of audio features. Haitsma [1] gets the hash sequence based on
extracting 32 bit sub-fingerprint, which are generated by looking at energy dif-
ferences along the frequency and the time axes. Park [9] introduces alternatives
to the frequency-temporal filtering combination for an extension method of [1] to
achieve robustness to channel and background noise under the conditions of the
real situation. Özer [10] presents audio hash function based on periodicity series
of the fundamental frequency and on singular-value description of the cepstral
frequencies. They achieve satisfactory discrimination and robustness. Seo utilizes
the spectral sub-band centroid (due to its resilience against equalization, com-
pression and noise addition) [11], the first-order normalized moment, the second-
order normalized moment and the spectral flatness measure [12], respectively, to
generate hash sequence. Jiao [13] proposes a perceptual audio hashing scheme
in compressed domain based on Modified Discrete Cosine Transform (MDCT)
coefficients, which are intermedial decoding results in MPEG Layer 3 (MP3)
and MPEG Advanced Audio Coding (AAC) systems. In [14], a randomization
scheme controlled by a random seed is introduced during both compressed do-
main feature extraction and hash modeling to increase the security of the scheme
proposed in [13].

There is few speech perceptual hashing scheme available [15]. In [16], a speech
hash scheme integrated with Mixed Excitation Linear Prediction (MELP) codec
is proposed. It utilizes partial bits of the speech bitstream, the Linear Spectral
Frequencies (LSFs), for hash generation, so that it is highly robust to speech
parametric coding. However, it is just suited for compressed domain speech
signal. In this paper, a speech hash scheme on PCM source is proposed. The
characteristic of natural speech that the principal components of LPCs among
neighboring frames tend to be very similar is utilized to generate the hash se-
quence. Experimental results demonstrate the effectiveness of the proposed hash-
ing scheme in terms of discrimination and robustness. The remainder of this
letter is organized as follows. Section 2 describes the proposed speech hashing
scheme in detail. Section 3 evaluates the proposed hashing scheme. Section 4
concludes the paper.
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Fig. 1. Block diagram of the hash sequence generation based on short-time stability

2 Proposed Speech Hashing Scheme

2.1 Fundamental Theory

Linear prediction modeling is a widely used method for representing the fre-
quency shaping attributes of the vocal tract. It characterizes the shape of the
spectral of a short segment of speech with a small number of parameters, the
Linear Prediction Coefficients (LPCs), which are widely used in speech coding,
speech enhancement and speech recognition [17]. In the proposed speech hashing
scheme, first, the original speech is segmented into equal frames, on which the
linear prediction analysis is performed to extract corresponding LPCs. Next, con-
sidering the Gaussian signal suppression property of high-order cumulant [18],
the fourth order cumulant of the LPCs of each frame is calculated to reduce
Gaussian noise interference. Then, Principal Component Analysis (PCA) is per-
formed on the obtained fourth order cumulant to get the principal components,
on which Vector Quantization (VQ) is performed to get the VQ indices. Finally,
the statistical characteristic of the VQ indices among neighboring frames is an-
alyzed to generate the hash sequence. The Block diagram of the hash sequence
generation based on short-time stability is shown in Fig. 1.

2.2 Hash Generation

Let s = {s(n)|n = 1, · · · , L} be the original speech signal, the hash sequence
generation procedure can be described as follows:

Step 1: Segment the original speech s into M equal frames, denoted as fi =
{fi(n)|n = 1, · · · , l; i = 1, · · · ,M}. And to reduce edge effect, window each frame
fi, i = 1, · · · ,M with hamming window to get f̂i, i = 1, · · · ,M .
Step 2: Perform linear prediction analysis on f̂i, i = 1, · · · ,M to get its
pth-order LPCs, denoted as xi = {xi(n)|n = 1, · · · , p; i = 1, · · · ,M}, with
the autocorrelation method of autoregressive modeling [19]. And for each
xi, i = 1, · · · ,M , calculate its fourth order cumulant, denoted as
x̂i = {x̂i(n)|n = 1, · · · , p; i = 1, · · · ,M}.
Step 3: First, generate matrix x by using x̂i, i = 1, · · · ,M as its column vectors
as follows

x = [x̂1, x̂2, · · · , x̂M ] (1)

and calculate the covariance matrix of x, denoted as cx, with

cx = E(x− x̄)(x− x̄)T (2)
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where x̄ is the mean vector of each sub-vectors x̂i, i = 1, · · · ,M . Assume the
eigenvalues of cx are λ1, λ2, · · · , λp (λ1 ≥ λ2 ≥ · · · ≥ λp), and the corresponding
eigenvectors are e1, e2, · · · , ep, then the matrix e = [e1, e2, · · · , ep] is called the
basic function of PCA. Next, de-correlate x using e as follows

y = e× x (3)

to get matrix y and generate a new matrix ŷ = [ŷ1, ŷ2, · · · , ŷM ] with 1 to Q
rows of y.
Step 4: Obtain the Vector Quantization (VQ) code book c by performing LBG
algorithms [20] on the training set that is composed of ŷi, i = 1, · · · ,M . And
then perform VQ on each ŷi, i = 1, · · · ,M with c to get the corresponding VQ
index, denoted as y(i), i = 1, · · · ,M .
Step 5: Calculate the variance of y(i) and its surrounding indices y(i − 1) and
y(i+ 1) to get σ2(i) with

σ2(i) =
1
3

m=i+1∑
m=i−1

y2(m)−
[

1
3

m=i+1∑
m=i−1

y(m)

]2

(4)

And generate the hash sequence, denoted as h = {h(i)|i = 1, · · · ,M}, by com-
paring σ2(i), i = 1, · · · ,M with the the median of σ2(i), i = 1, · · · ,M as follows

h(i) =

{
1, if σ2(i) ≥ σ̃

0, otherwise
(5)

where σ̃ is the median of σ2(i), i = 1, · · · ,M .

2.3 Hash Matching

In the hash matching, two speech clips are declared similar if the distance be-
tween their hash sequences is below a certain threshold. The problem could be
formulated as the hypothesis testing process with the following two hypothesizes
[21]:

– H0: Two speech clips are from the same speech clip if the distance of their
hash sequences is below the threshold α;

– H1: Two speech clips are from the different speech clip if the distance of
their hash sequences is above the threshold α.

For the selection of α, there is a tradeoff between the False Accept Rate (FAR)
and the False Rejection Rate (FRR). FAR is the probability that hypothesis
H0 is accepted when the hypothesis H1 is true. FRR is the probability that
hypothesis H1 is accepted when the hypothesis H0 is true.

In this letter, the similarity of two speech clips is measured by Hamming
distance (i.e. the number of different bits of two hash sequences). Bit Error Rate
(BER), which is the ratio of the number of different bits to the total number of
bits, is used in our experiments.
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3 Performance Evaluation

The performance of the proposed speech hashing scheme in terms of discrimina-
tion and robustness is tested. It is shown that perceptually distinct input speech
clips result in different hash sequences, while perceptually similar speech clips
result in similar hash sequences.

In the database we do experiments on, there are 1000 speech clips (16 bits
signed, 8 kHz sampled and about 4 seconds long) extracted from speech of dif-
ferent content spoken by male and female talkers. And nine manipulations are
performed on the original speech clip to get the manipulated ones. These ma-
nipulations include low-pass filtering, re-quantizing, amplitude boosting/cutting,
normalizing, inverting and so forth, which are described in detail later in this
section.

3.1 Discrimination

Since the speech clips are randomly chosen, BER value is a random variable.
Then the distribution of BER is analyzed to evaluate the discrimination of the
proposed hashing scheme. The hash sequences of 1000 speech clips are cross
matched and 499500 comparisons between speech clips with different content
have been done. The probability distribution of BER is shown in Fig. 2.

It is shown that BER has a normal distribution approximately. The expected
value μ is 0.4242 and the standard deviation σ is 0.0464. And then, the FAR
could be given in (6). The FAR at different BER threshold are listed in TABLE
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Fig. 2. Normal probability plot of the BER between each pair of hash sequences

generated from speech clips with different content
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Table 1. FAR at different BER threshold

α FAR

0.10 2.2177 × 10−10

0.15 2.2905 × 10−7

0.20 7.4182 × 10−5

0.25 7.5335 × 10−3

I.
FAR = f(α|μ, σ) =

1
σ
√

2π
e

−(α−μ)2

2σ2 (6)

It is proved that the hash sequence extracted by the proposed hashing scheme
is unique to different content.

3.2 Robustness

On each of the 1000 speech clips, nine kinds of signal processing manipulations
are performed to generate 9000 processed ones. The nine processing manipula-
tions include:

– Amplitude boosting: The amplitude of the speech is boosted by 2dB and
3dB, respectively;

– Amplitude cutting: The amplitude of the speech is cut by 2dB and 3dB,
respectively;

– Inverting: The phase of the speech is inverted;
– Hard-limit: Max amplitude limit is -0.1 dB, input is boosted by 6 dB, look

ahead time is 7 ms and release time is 100 ms;
– Normalizing: The speech is normalized to 90%;
– Re-quantizing: The 16-bit speech signal has been re-quantized up to 32

bits/sample and back to 16 bits/sample;
– Low-pass filtering: The speech is low-pass filtered using 10-tap Butterworth

filter with cutoff frequency 4kHz.

To evaluate the risk of collision, the worst Intra matching is compared with the
best Inter matching for each original speech clip in the database. Given a refer-
ence original speech clip, the 9000 processed speech clips are classified into Intra
and Inter processed speech clips depending on whether they have been derived
from the reference speech clip or not. The BER between the hash sequence
extracted from the original speech clip and each one of the hash sequences ex-
tracted from the processed speech clips are computed. Fig. 3 presents the worst
Intra BER and the best Inter BER for each speech clip in the database. It is
shown that all Intra BER lie below 0.20 and that all Inter BER are larger than
0.2. So BER is an efficient way to compare two hash sequences and that 0.2 is
a good threshold to decide whether two speech clips are perceptually similar or
not.
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The FAR − FRR curves are shown in Fig. 4, where FRR is the number
of mismatched hash sequences normalized by the number of comparisons be-
tween speech clips of similar content, and FAR is the number of matched hash
sequences normalized by the number of comparisons between speech clips of
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different content. It can be seen that there is no intersecting point on the
FAR−FRR curves in Figure 4 and that if the BER threshold is set to 0.20, it
is reliable for us to tell whether two speech clips are perceptually similar or not.

The above experimental results and the data analysis show that the proposed
hashing scheme achieves satisfactory discrimination and robustness needed for
perceptual hashing system.

4 Conclusion

An efficient speech hash scheme based on short-time stability is presented. The
characteristic of natural speech that the principal components of LPCs among
neighboring frames tend to be very similar is utilized to generate the hash
sequence. Although the VQ indices of the speech manipulated by the signal
processing manipulations, such as amplitude boosting/cutting, inverting, hard-
limiting, normalizing, re-quantizing, low-pass filtering and so forth, may be very
different from the original one, the variance of neighboring indices does not vary
too much. This is the reason why the proposed scheme achieves great robust-
ness. Furthermore, since the short-time stability varies among different speech
signal, the hash vector generated from distinct speech source is different. Thus
the proposed scheme has satisfactory discrimination.

Security issue becomes important when perceptual hash is applied in speech
content authentication. In order to increase unpredictability of the proposed
scheme, our future work will concentrate on the design of key-based randomiza-
tion scheme for the proposed hash function.
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Abstract. In the paper we propose a new method for designing and

reduction of neuro-fuzzy systems for stroke diagnosis. The concept of

the weighted parameterized triangular norms is applied and neuro-fuzzy

systems based on fuzzy S-implications are derived. In subsequent stages

we reduce the linguistic model. The results are implemented to solve the

problem of stroke diagnosis.

Keywords: fuzzy logic, logical neuro-fuzzy systems, interpretability, re-

duction, merging, stroke diagnosis.

1 Introduction

In recent years various neuro-fuzzy systems have been studied in the literature
(see e.g. [9]-[12], [17]-[18], [24]-[27]). They have many applications in different
fields (see e.g. [20]), e.g. they allow to overcome problems of analyzing medical
data characterized by qualitative character and incompleteness of the informa-
tion. Recently several algorithms have been proposed to increase interpretability
and accuracy and decrease complexity of fuzzy rule-based systems. For various
methods of designing fuzzy rule-based systems the reader is referred to [2]-[8],
[13]-[22]. In this paper we propose a new algorithm, called ABGE (best global
eliminations algorithm), to design and reduce neuro-fuzzy systems. Our previous
algorithm CEA (algorithm of consecutive eliminations), presented in [5] and [8],
was oriented to the most possible simplification of the system structure for the
price of a system accuracy. In the context of differential stroke diagnosis prob-
lem it was not desirable property. The algorithm studied in this paper allows to
obtain a better accuracy and a reasonable degree of a complexity reduction.
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We will consider multi-input, single-output a neuro-fuzzy system of the logical
type (see e.g. [24], [26]), mapping X → Y, where X ⊂ Rn and Y ⊂ R. The
fuzzy rule base of these systems consists of a collection of N fuzzy IF-THEN
rules in the form

Rk :
[
IF x1 is Ak

1 AND . . .AND xn is Ak
n THEN y is Bk

]
, (1)

where x = [x1, . . . , xn] ∈ X, y ∈ Y, Ak
1 , A

k
2 , . . . , A

k
n are fuzzy sets characterized

by membership functions μAk
i
(xi), Ak = Ak

1 ×Ak
2 × . . .×Ak

n, and Bk are fuzzy
sets characterized by membership functions μBk (y), respectively, k = 1, . . . , N ,
and N is the number of rules. The defuzzification is realized by the COA (center
of area) method defined by the following formula

ȳ =
R∑

r=1

ȳB
r μB′

(
ȳB

r

)
/

R∑
r=1

μB′
(
ȳB

r

)
, (2)

where membership function of B′, obtained from the linguistic model (1), is
given by

μB′
(
ȳB

r

)
=

N

T
k=1

{
μB̄k

(
ȳB

r

)}
. (3)

Each of N rules (1) determines a fuzzy set B̄k ⊂ Y characterized by

μB̄k

(
ȳB

r

)
= μAk→Bk

(
x̄, ȳB

r

)
= Ifuzzy

(
μAk (x̄) , μBk

(
ȳB

r

))
, (4)

where ȳB
r denotes centers of the output membership functions μBr (y), i.e. for

r = 1, . . . , R,

μBr

(
ȳB

r

)
= max

y∈Y
{μBr (y)} , (5)

and R is the number of discretization points of the integrals in the continuous
version of the COA method.

This paper is organized into six sections. In Section 2 the description of a
neuro-fuzzy system is given. In Section 3 the reduction of a neuro-fuzzy system
is presented. In Section 4 we describe algorithm for merging of similar input and
output fuzzy sets. Section 5 shows the simulation results. Conclusions are drawn
in Section 6.

2 Description of Neuro-fuzzy System

Let us introduce weights wτ
i,k ∈ [0, 1], k = 1, . . . , N , i = 1, . . . , n, describing

importance of antecedents and weights wagr
k ∈ [0, 1], k = 1, . . . , N , describing

importance of rules. Now the linguistic model (1) is transformed to the following
description

R(k):
[
IFx1isAk

1

(
wτ

1,k

)
AND. . .ANDxnisAk

n

(
wτ

n,k

)
THENyisBk

]
(wagr

k ) . (6)
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In order to incorporate weights into description of neuro-fuzzy systems (2) we
proposed [26] the adjustable weighted t-norm

↔
T

∗ {
a1,k, . . . , an,k;wτ

1,k, . . . , w
τ
n,k, p

τ
k

}
=

↔
T

∗
{ak;wτ

k, p
τ
k} =

↔
T
{

1− wτ
1,k (1− a1,k) , . . . , 1− wτ

n,k (1− an,k) ; pτ
k

} (7)

to connect the antecedents in each rule, k = 1, . . . , N , and the adjustable
weighted t-norm

↔
T

∗
{a1, . . . , aN ;wagr

1 , . . . , wagr
N , pagr} =

↔
T

∗
{a;wagr, pagr} =

↔
T {1− wagr

1 (1− a1) , . . . , 1− wagr
N (1− aN ) ; pagr}

(8)

to aggregate the individual rules in the logical models, respectively. In formula
(7) parameters ai,k, i = 1, . . . , n, k = 1, . . . , N , correspond to the values of
μAk

i
(x̄i), whereas parameters ak, k = 1, . . . , N , in formula (8) correspond to the

values of μB̄k

(
ȳB

r

)
. It is easily seen that formula (7) can be applied to the evalua-

tion of an importance of input linguistic values, and the weighted t-norm (8) to a

selection of important rules. We use notation
↔
T

∗
{a1, . . . , an;w1, . . . , wn, p} and

↔
S
∗
{a1, . . . , an;w1, . . . , wn, p} for adjustable weighted triangular norms, and no-

tation
↔
T

∗
{a1, . . . , an; p} and

↔
S
∗
{a1, . . . , an; p} for adjustable triangular norms.

The hyperplanes corresponding to them can be adjusted in the process of learn-
ing of an appropriate parameter p. Fuzzy norms (7) and (8) are parameterized
by parameters pτ

k, k = 1, . . . , N , and pagr, respectively.
In the paper we propose the adjustable version of an S-implication

Ifuzzy (μAk (x̄) , μBk (y)) =
↔
S
{
1− μAk (x̄) , μBk (y) ; pI

k

}
. (9)

t-conorm in formula (9) is parameterized by parameters pI
k, k = 1, . . . , N . In our

study we use Dombi families [24] of adjustable triangular norms.
Neuro-fuzzy architectures developed so far in the literature are based on the

assumption that number of terms R in a formula (2) is equal to the number of
rules N . In view of the above assumptions formula (2) takes the form

ȳ = f (x̄) =

R∑
r=1

ȳr

N
↔
T

∗

k=1

⎧⎪⎪⎨⎪⎪⎩
↔
S

⎧⎨⎩1− ↔
T

∗{μAk
1
(x̄1) , . . . , μAk

N
(x̄N ) ;

wτ
1,k, . . . , w

τ
n,k, p

τ
k

}
,

μBk (ȳr) ; pI
k

⎫⎬⎭ ;

pagr

⎫⎪⎪⎬⎪⎪⎭
R∑

r=1

N
↔
T

∗

k=1

⎧⎪⎪⎨⎪⎪⎩
↔
S

⎧⎨⎩1− ↔
T

∗{μAk
1
(x̄1) , . . . , μAk

N
(x̄N ) ;

wτ
1,k, . . . , w

τ
n,k, p

τ
k

}
,

μBk (ȳr) ; pI
k

⎫⎬⎭ ;

pagr

⎫⎪⎪⎬⎪⎪⎭
. (10)

The following parameters of a system (10) for stroke diagnosis are subject to
learning by using the backpropagation method: (i)Parameters x̄A

i,k and σA
i,k of
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input fuzzy sets Ak
i , k = 1, . . . , N , i = 1, . . . , n, and parameters ȳB

k and σB
k

of output fuzzy sets Bk, k = 1, . . . , N , (ii)Weights wτ
i,k ∈ [0, 1], k = 1, . . . , N ,

i = 1, . . . , n, of importance of antecedents and weights wagr
k ∈ [0, 1], k = 1, . . . , N ,

of importance of rules, (iii)Parameters pagr, pI
k, pτ

k, k = 1, . . . , N , of adjustable
triangular norms used for aggregation of rules, connections of antecedents and
consequences and aggregation of antecedents, respectively, (iv)Discretization
points ȳr, r = 1, . . . , R.

3 Reduction of a Neuro-fuzzy System (10)

Now we will develop new algorithms of reduction of a neuro-fuzzy system (10).
The algorithms are based on analysis of weights in antecedents of the rules
wτ

i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N , and weights in aggregation of the rules
wagr

k ∈ [0, 1], k = 1, . . . , N .
The flowcharts in Fig. 2.a and Fig. 2.b comprise 4 parts. First, we determine

performance of the initial system (before the reduction process); for example,
in the case of the classification we determine a percentage of mistakes of the
system. The weights wx

i ∈ [0, 1], i = 1, . . . , n, are calculated using

wx
i =

1
N

N∑
k=1

wτ
i,k. (11)

In consecutive stages we reduce number of discretization points, number of in-
puts, number of rules and number of antecedents. If, e.g. reduction of the i-th
input is acceptable (i.e. it does not worsen the system accuracy determined be-
fore reduction) then that input is eliminated, otherwise we do not reduce it.

The algorithm of consecutive eliminations (CEA),developed by us in [8], is ori-
ented to the most possible simplification of the system structure. The underlying
idea based on consecutive eliminations of contradicted, non-active and unimpor-
tant elements of the system starting from discretization points, and next inputs,
whole rules and, finally, antecedents of rules. If a specific reduction, e.g. reduc-
tion of a specific input, is acceptable (accuracy of the system is not worse than
before the reduction), then the reduction is accepted, otherwise it is cancelled.
The flowchart of the algorithm is depicted in Fig. 2.a.

The algorithm proposed in this paper, called by us the best global eliminations
algorithm (ABGE), is oriented to the searching, across all the parameters of the
system, of an element whose reduction is the most advantageous from the point
of view of the accuracy. If there is such an element, its reduction is performed and
the search is repeated, if not, then the reduction algorithm is stopped. This idea
takes into account the fact that if e.g. an element of the linguistic model causes
the biggest mistakes in the system’s performance, then the reduction should be
started from that element, temporary ignoring elements with less adverse impact
on the system. The flowchart of the algorithm is depicted in Fig. 2.b.
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Fig. 1. Consecutive mergings algorithm (CMA)

4 Merging of Similar Input and Output Fuzzy Sets in a
Neuro-fuzzy System (10)

In Section 3 we eliminated in a system (10) such elements as discretization
points, input features, rules and antecedents. The elimination of these elements
did not worsen the accuracy of a system (10) and simultaneously increased its
transparency and decreased computational burden. Despite of the reduction,
in the linguistic model still exist similar fuzzy sets. Such fuzzy sets should be
automatically detected, merged and shared by different rules.

In Fig. 1 we present the algorithm of consecutive mergings algorithm (CMA).
The algorithm is initialized by the performance determination (number of cor-
rectly classified samples) of a system (10) before merging. Next, we compare all
combinations of input fuzzy sets corresponding to particular input features. The
comparison is based on the discrete version of similarity measure [4].
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(12)
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Fig. 2. Algorithms of reduction of a neuro-fuzzy system (10) for stroke diagnosis: a)

consecutive eliminations algorithm (CEA), b) algorithm of the best global eliminations

(ABGE)
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where J is the number of discretization points, and Ak1
i and Ak2

i , i = 1, . . . , i,
k1 = 1, . . . , N , k2 = 1, . . . , N , are fuzzy sets described by Gaussian membership
functions. Their centers are located in points x̄A

i,k1
and x̄A

i,k2
, widths are denoted

by σA
i,k1

and σA
i,k2

. The discretization is defined in the interval [x̄min, x̄max], where

x̄min=min {x̄min1 , x̄min2}=min
{
x̄A

i,k1
−σA

i,k1

√
−ln (ψ) ,x̄A

i,k2
−σA

i,k2

√
−ln (ψ)

}
(13)

and

x̄max=max {x̄max1 , x̄max2}=max
{
x̄A

i,k1
+σA

i,k1

√
−ln (ψ) ,x̄A

i,k2
+σA

i,k2

√
−ln (ψ)

}
.

(14)
In our simulations J = 100 and ψ = 0.01. Values x̄min1 , x̄min2 , x̄max1 , and x̄max2

in formulas (13) and (14) follow from the solution of equations⎧⎨⎩Gauss
(
x̄; x̄A

i,k1
, σA

i,k1

)
= ψ ⇒ {x̄min1 , x̄max1}

Gauss
(
x̄; x̄A

i,k2
, σA

i,k2

)
= ψ ⇒ {x̄min2 , x̄max2}

(15)

with respect to x̄.
For each pair of input fuzzy sets we determine the value of similarity measure

given by formula (12). If that value exceeds the threshold smin (in our simulations
in Section 5 we assume that smin = 0.5) then the input fuzzy sets are merged.
More precisely, Gaussian fuzzy sets Ak1

i and Ak2
i are replaced by fuzzy set Ak

i ,
which is also Gaussian with the center and width given by

x̄A
i,k =

x̄A
i,k1

· wτ
i,k1

+ x̄A
i,k2

· wτ
i,k2

wτ
i,k1

+ wτ
i,k2

(16)

and

σA
i,k =

σA
i,k1

· wτ
i,k1

+ σA
i,k2

· wτ
i,k2

wτ
i,k1

+ wτ
i,k2

. (17)

In formulas (16) and (17) we take into account the importance of merged an-
tecedents, described by values of weights wτ

i,k1
and wτ

i,k2
. The importance of the

antecedent Ak
i being a result of merging antecedents Ak1

i and Ak2
i is described

by

wτ
i,k =

(
wτ

i,k1
+ wτ

i,k2

)
/2. (18)

After each merging a simplified a neuro-fuzzy system is trained by a single epoch
and then tested. Testing enables to evaluate the influence of merging on accuracy
of the simplified system. If the merging does not worsen the accuracy then the
simplified system replaces the previous one. Otherwise, the merging is canceled
and the initial system is restored. This procedure is performed for all combina-
tions of antecedents corresponding to all input features.
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In a similar way we merge the output fuzzy sets Bk, k = 1, . . . , N . The only
difference is that the centers and widths of merged fuzzy sets are given by

ȳB
k =

ȳB
k1

+ ȳB
k2

2
(19)

and

σB
k =

σB
k1

+ σB
k2

2
. (20)

The procedure described in points 3 and 4 leads to reduced (Fig. 2) and simplified
(Fig. 1) fuzzy model which is less complex and more understandable than the
initial system (10).

5 Simulations Results

The stroke data, obtained from Institute of Neurology, Russian Academy of
Medical Sciences, contains 298 instances and each instance is described by 30
attributes (for details see [21]). In our experiments all sets are divided into a
learning sequence (268 sets) and a testing sequence (30 sets). Out of 298 data
samples, 211 cases represent ischemic stroke (IS), 73 cases represent hemor-
rhagic stroke (HS) and 14 cases describe subarachnoid hemorrhage (SAH). In our
simulations we used a neuro-fuzzy system (10) with seven rules, thirty inputs,
Dombi triangular norms, Gaussian membership functions and the momentum
backpropagation learning method with 100000 epochs, and learning coefficients
alpha=0.25 and mi=0.05. The experimental results are depicted in Table 1 and
Table 2. Comparing our previous algorithm CEA with the algorithm ABGE we
see that algorithm studied in this paper allows to obtain a better accuracy and
a reasonable degree of a reduction.

Our interest in differential stroke diagnosis is justified by the following cir-
cumstances. The death rate caused by vascular diseases in Russia is one of the
highest in the world. Among all death cases caused by cerebral-vascular pathol-
ogy the stroke diagnosis with the pointing of its type is fixed only in 21% of
the cases, non-differential diagnosis like “poor brain blood circulation” - in 39%
of cases. It is registered about 400 000 stroke annually and the rate of diseases
among the population of able-bodied age is permanently increasing. Death rate
because of stroke reaches 40% and 62% of the persons who survived after a stroke
become invalids. The prevention has crucial importance in death reduction and
invalidity reduction caused by the stroke. The essential effect gives the optimiza-
tion of the patient aid system based on heterogeneity concept. That’s why it is of
great importance to provide comprehensive support to medical staff in making
the fast and exact diagnostic decision that defines further tactics of treatment.
It is important for stroke type diagnosis as well as for pathogenetic subtype of
ischemic stroke diagnosis. It is also very important to make quality differential
clinical diagnosis of stroke type in short time. Usually rate of mistakes in the
diagnosis is in the range of 20-45%. So the problem of decision support in making
a competent diagnosis is of a great interest for medical doctors.
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Table 1. Simulation results

No Sequence Neuro-fuzzy system (10) for stroke diagnosis

before reduction after reduction CEA after reduction ABGE

1 learning 94.40[%] 94.40[%] 95.90[%]

2 testing 93.33[%] 93.33[%] 96.67[%]

Table 2. Simulation results

No Degree of Neuro-fuzzy system (10) for stroke diagnosis

after reduction CEA after reduction ABGE

1 parameters number reduction 46.80[%] 15.30[%]

2 rules number reduction 14.28[%] 0.00[%]

3 inputs number reduction 20.00[%] 13.33[%]

4 antecedents number reduction 49.04[%] 16.19[%]

5 discretization points number reduction 14.28[%] 14.28[%]

6 degree of learning time reduction 59.33[%] 25.10[%]

6 Conclusions

In the paper we described a new methods for designing and reduction of a neuro-
fuzzy system for stroke diagnosis. From simulations it follows that the reduction
process of neuro-fuzzy structure based on adjustable weighted triangular norms
do not worsen the performance of this structure. It was possible to quickly detect
the inputs which can be eliminated. Our methods allows to decrease the number
of parameters in neuro-fuzzy structure for stroke diagnosis and consequently the
learning time.
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18. �Lȩski, J.: A Fuzzy If-Then Rule-Based Nonlinear Classifier. Int. J. Appl. Math.

Comput. Sci. 13(2), 215–223 (2003)

19. Manley-Cooke, P., Razaz, M.: An efficient approach for reduction of membership

functions and rules in fuzzy systems. In: Proc. of the 2007 IEEE Int. Conf. on

Fuzzy Systems, pp. 1–6 (2007)

20. Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: survey in soft computing

framework. IEEE Trans. Neural Networks 11(3), 748–768 (2000)

21. Rebrova, O., Kilikowski, V., Olimpieva, S., Ishanov, O.: Expert system and neural

network for stroke diagnosis. International Journal of Information Technology and

Intelligent Computing 1(2), 441–453 (2006)

22. Riid, A., Rustern, E.: Interpretability of Fuzzy Systems and Its Application to

Process Control. In: Proc. of the 2007 IEEE Int. Conf. on Fuzzy Systems, pp. 1–6

(2007)

23. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2007)

24. Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers,

Dordrecht (2004)

25. Rutkowski, L.: New Soft Computing Techniques for System Modeling. In: Pattern

Classification and Image Processing. Springer, Heidelberg (2004)

26. Rutkowski, L., Cpa�lka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Net-

works 14(3), 554–574 (2003)

27. Yager, R.R., Filev, D.P.: Essentials of fuzzy modelling and control. John Wiley &

Sons, Chichester (1994)



LS Footwear Database - Evaluating Automated
Footwear Pattern Analysis

Maria Pavlou and Nigel M. Allinson

University of Sheffield

m.pavlou@shefield.ac.uk,

n.allinson@sheffield.ac.uk

Abstract. Footwear marks recovered from crime scenes are an impor-

tant source of forensic intelligence or evidence - for some crime types,

there is a greater probably to recover footwear marks than fingerprint

ones. Currently the process of identifying a specific shoe model from the

10,000s of possibilities is a time-consuming task for expert examiners. As

with many other crime marks, for example latent fingerprints, there is

an increasing need for automation. The emergent research effort in this

field has been hampered by the lack of a suitable dataset of footwear im-

pressions. We present, here, a substantial and fully characterized dataset

together with a proposed methodology for its use.

1 Introduction

This paper introduces the important class of forensic imagery, namely footwear
impressions and describes the first openly available database that will not only be
an aid in the study of footwear pattern recognition but provide a new challenge
to the computer vision (CV) community. Details of the database can be found
at URL: http://eeepro.sheffield.ac.uk/footwear

Footwear marks provide a useful source of intelligence and evidence in the
application of forensics for policing and security. Similar to latent fingerprints,
footwear marks are very frequently left behind on surfaces at crime scenes [1] and
can be recovered to provide useful evidential clues and sometimes strong court-
room evidence. Footwear mark examination has historically been an important
tool of forensics, which is now increasingly being employed by authorities. A
heightened demand for computer-assisted automation will require considerable
research effort as well as the development of accepted standards and experimen-
tal methodologies for evaluation. We provide our database to deal with some of
the shortcomings in this research area with the intention of encouraging wider
participation and elevating the quality of contributions.

1.1 Footwear Mark Etiology

The outsole is the underside of footwear and commonly describes a tread pattern
which is usually distinctive to the make and model of a shoe as friction skin ridge
patterns of fingers are unique to an individual. The contact of the outsole with

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 445–454, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Recording the outsole pattern using inkless chemical printing

various surfaces results in the formation of a (footwear) mark via the deposition
or removal of material such as dust or blood. There are numerous methods by
which these are detected, recorded and preserved and details can be found in
[1, 2]. Briefly, these range from using specialized lighting, chemical developers
and adhesive lifting techniques. Prints of the outsole can also be made directly
by inking or dusting the outsole, e.g. with fine aluminum powder; and more
commonly with inkless chemical printing (ICP) involving the transfer of chemical
reactants onto special sensitized paper [3]. (Fig. 1). The last mentioned method
is most commonly employed by Police (detention centers) to record impressions
of a suspect’s shoes. The resulting impression can then be used for one-to-one
comparison, or can be scanned for computer-based processing.

1.2 Function and Application

Footwear marks found at crime scenes can contain sufficient characteristics to as-
certain the manufacturer and model of the outsole, and can potentially be linked
to the wearer. These characteristics are called class and individual character-
istics. The former refers to the tread pattern and other manufacturing defects
which are distinct to a particular model of footwear and the process of its pro-
duction, while the latter refers to wear-and-tear artifacts making the impression
unique to a specific outsole [1, 3].

In a forensic setting, comparisons of these characteristics can be made be-
tween items of recovered footwear, their reproduced marks and marks found as
evidence. These comparisons can provide conclusive links and be used as court
room evidence. Outside the forensic setting, class characteristics can be use-
ful for proactive screening and intelligence gathering. The widespread collection
footwear evidence from detainees and suspects at detention centers can be corre-
lated with evidence in relation to other offenses in a local area, such as burglaries
[3].

1.3 Challenges for Computer Vision and Machine Learning

The comparison of class and individual characteristics in crime scene marks
(commonly called latent marks) has largely been performed manually by forensic
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professionals with an intimate knowledge of their etiology. Impressions are often
of poor quality, confounded by details of the underlying surface and may only
represent a partial impression of the entire outsole. These factors make their
automatic comparison a very difficult, if not impossible, option and means that
expert examiners will continue to play an active role for the foreseeable future as
in the case for latent fingerprints. The automation of mark identification based
on class characteristics however has been recently considered in the research
literature [4–9]. The majority of these works, however, have considered essentially
what are correlation-based methods and this has been due to the nature of
footwear pattern data.

Typically face and other general object recognition tasks employ models con-
structed on a priori knowledge, such as their structure, which depend on these
characteristics remaining fairly consistent to allow discrimination between other
objects. Footwear patterns, however, cannot easily be characterized with some
consistent structural form, such as possessing two eyes, a nose and mouth with
a fairly consistent spatial arrangement. As a result footwear patterns have a
significantly higher inter-class variation (Fig. 2) and learning a model over the
general object class (i.e. outsoles) is therefore difficult. This problem is becoming
more evident in the general object recognition literature [10], and is increasingly
tackled using information theoretic models due to the increasing availability of
image data. The CV problem is further exacerbated by large intra-class varia-
tions evident in real-world datasets of footwear marks. These variations manifest
as large appearance changes due to the process of collection and capture and also
importantly due to wear-and-tear of outsoles over their usable lifetime. These
variations can be quite extreme sometimes changing the appearance of a mark
completely or making it look similar to other marks. Therefore a solution rely-
ing on optimizing some discriminant (e.g. inter- over intra-class correlation) over
the classes becomes less suitable especially in the absence of some stabilizing a
priori structure (e.g. a physical model of how outsoles wears over use). In ad-
dition footwear pattern identification is a large scale, high multi-class task (in
the order of 104 classes) with some classes having similar appearance and little
discriminating characteristics. Combined with the operational needs for robust-
ness, accuracy and efficiency in a forensic setting using the type of real-world data
found in such a setting we see automated footwear pattern matching/retrieval
as being an interesting challenge for the research community.

1.4 Proposal and Contribution

This application area is still quite immature compared to, say, face recognition,
fingerprint matching and some other general object recognition tasks, which have
gained mainstream acceptance and adoption. There is also an increasing demand
for robust and accurate analysis and search technologies in the forensic arena,
which should be developed around common protocols and widespread evaluation.
Specifically for footwear pattern analysis there is a gap in accepted standards,
datasets, methods and measures for evaluating systems and algorithms. These
have been a key shortcoming in the past ten years of research on the topic



448 M. Pavlou and N.M. Allinson

Fig. 2. Some examples form the LS footwear dataset showing (from left to right) varia-

tions in appearance due to wear, print fading, pattern complexity, scale and footedness

that can, in part, be attributed to the absence of publicly available datasets
and a lack of consensus for evaluation. To encourage and support increased
research in this field we provide an extensive dataset of footwear patterns and
experimental protocols that draw from lessons learned in CV research on face
and object recognition [11–14]. We believe this will encourage open research
and lay ground for a fruitful effort towards acceptance and adoption of pattern
analysis technologies for footwear and other forensic marks.

2 The Lancashire-Sheffield Dataset

We present a dataset derived from footwear mark archives held by the Lancashire
Police, UK, and prepared for digital consumption at the University of Sheffield.
Hence our database is named Lancashire-Sheffield (LS) Footwear dataset and is
intended to address a main shortcoming of research in computer-based footwear
mark analysis. The chief aspects of the database are that it is readily available
and, in part, open. Importantly it is also representative of real-world footwear
marks and this refers to the large range of variation in appearance evident in
marks typically collected across police forces. This includes variations due to
aspects described in Sect. 1.1 and 1.2 (e.g. wear-and-tear), degradation of inter-
mediate preservation methods (e.g. print fading), and also due to the process
of digital capture (e.g. capture fidelity, compression). Fig. 2 shows examples
of the database images. These variational elements are important as they de-
pict real-world noise with which to provide more robust assessment. Without
this real-world noise, researchers are tempted to artificially degrade samples by
adding artifacts such as Gaussian or salt-and-pepper noise which provide no
meaningful assessment to the task. We view this one of the main contributions
of our dataset.
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Fig. 3. Distribution of the make-model classes in the LS Dataset

Before proceeding with the details of the database, we present some summary
statistics and properties.

– The database contains 4,633 images of whole impressions of footwear out-
soles.

– The make and model of each impression in the image is given as ABC###,
where ABC and ### correspond to the manufacturer name and model
number respectively.

– The database contains images of 1,077 different make-model marks or classes.
Of these the majority have a corresponding left and right imprint, and a
proportion have more than one example of left and right pair from a different
outsole of the same make and model. Figure 3 shows a distribution of the
class numbers.

– The images are available as ∼4,000 by ∼2,000 pixel, 8bit grey, JPEG 2000
image files with 15:1 compression and 8 levels of compression.

– A proportion of this dataset is sequestered as suggested in the Face Recog-
nition Grand Challenge [12], to limit bias when algorithm development is
unfairly tuned to the test data. Appropriate suggestions for constructing
target and query subsets from the public portion of this database are dis-
cussed in Sect. 2.2

2.1 Database Construction and Composition

The LS dataset consists of images of footwear patterns captured using the ICP
method, which reliably captures the state of the tread pattern normally in con-
tact with the ground. We use state to refer to the stage of wear of the outsole
tread that will produce different patterns throughout a shoe’s usable life. The
ICP samples are then scanned at 600 dpi and saved as compressed JPEG 2000
images as specified above. It should be noted that the quality of prints in this
dataset are highly varied for the following reasons:
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– The samples have originated from footwear with varying degrees of wear and
from different owners (who may have different gait characteristics). Hence
similar make-model treads can appear quite different.

– The samples have been collected from archives where some prints have faded
considerably.

– The care taken to produce well-inked ICP samples was not controlled, result-
ing in varying degrees of completeness. This is not to say that the dataset
contains partial prints.

– Samples have originated from footwear of varied size, ranging from UK 3 to
UK 11.

– Although all samples are upright they are not consistently aligned or centered
within the ICP print and subsequently for any sample image.

All samples in the dataset can be considered as full prints, i.e. depicting the whole
of the outsole tread pattern. Both left and right tread patterns are present in
the dataset, although these may not be of the corresponding left or right shoe
pair. As mentioned above some ICP may not be consistently developed but
they are not considered as partial prints. For testing purposes partial prints
can be artificially generated and this is discussed in Sect. 3.1. Samples have
not been aligned or centered as they reflect real-world forensic data for which
some means of normalization needs to be proposed. Providing any pre-proposed
normalization would imply some agreed consensus on the structure of footwear
patterns, which as suggested in Section 1.3 is not entirely possible and is left
open to the research community. The high degree of variability in appearance
of the dataset makes it a very difficult task for algorithm development, yet it
exemplifies very closely the type of data which can be expected in the field.

We briefly summarize some basic statistics of the dataset from Fig 3 which
represents the cardinality distribution of pattern classes:

– More than half of the database consists of pattern classes with only two
examples or less.

– Less than 10% of patterns classes have 10 or more examples per class.

The prevalence of the pattern classes in the database loosely reflects their preva-
lence in real-life as collected by the Lancashire Police. However strong statements
cannot be made due to the selection criteria used when scanning the database
and a fixed upper limit on the maximum number of examples to retain (this was
set at 40 images/class). Moreover, the types of footwear and hence pattern class
will always be a function of the current fashion trends and the production life
of any particular footwear model by manufacturers.

A further characteristic of the dataset is that it is populated with a number
of pattern classes which have similar appearance yet have different class labels.
These are not mislabeled samples or duplications but occur when manufacturers
have used the same outsole pattern for a range of shoe models or where outsoles
have been copied in the production of counterfeits. It is clear that these patterns
will impose an upper limit on performance scores as we cannot expect automated
methods to distinguish their classes. However, we have chosen not to remove
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these patterns as they can be useful in assessing how automated system perform
with regard to pattern similarity ranking. That is, we can begin to ask, “How
well does a system return similar looking patterns?”

2.2 Suggested Dataset Usage

The first task a forensic officer will undertake with any collected footwear pattern
is to ascertain the make and model of the outsole. This is a pattern search or
matching task where we would like to determine the similarity of patterns in a
reference set to a query pattern. This is similar to the classification paradigm
in face recognition in which there is a fixed gallery of test subjects for whom
training images are available. The goal is to find matches of so-called probe
images to members of the gallery.

As suggested by the statistics of the dataset and feedback from users there
are two modes under which any system will perform. The first is where samples
of a pattern class are abundant allowing the modeling of within class variations.
Of concern here is whether the model learnt is robust enough to these variations
while still being discriminative. The second operational mode arises where users
are concerned with identifying uncommon patterns with few examples per class.
In this case it is harder to model within-class pattern variations and hence the
task becomes a filtering problem. Here we are concerned with how patterns can
be compared despite there possibly being large within-class variations between
the query and available reference patterns.

The LS dataset is divided into two subsets that are constructed to reflect the
distribution of sample prevalence of the whole dataset. The first subset, “A”,
is for public release while subset “B” is reserved for competitive and controlled
assessment of algorithms. We also propose two experimental views of these sub-
sets, based on the two modes of operation described above, and suggest suitable
guidelines to construct target/query (train/test) partitions.

Public Release Dataset - Subset A. This dataset is composed of 300 pattern
classes having 2 samples each and 100 classes having 6 samples each. This dataset
can be obtained by request from the URL given in Sect. 1 and will be delivered on
suitable storage media along with guideline documentation and some predefined
experimental partitions as described below. We encourage researchers to pay
attention to these guidelines.

Sequestered Dataset - Subset B. This dataset is composed of 827 classes
for which there is an overlap with subset A for 150 classes. The total number of
samples amounts to 3433. We invite research teams to participate in a compet-
itive evaluation of their work on this subset. Requests for participation can be
made at the URL in Sect. 1 previously mentioned, and teams must then provide
binaries of their algorithms.

Filter Experiment - View 1. This view is useful when assessing the per-
formance of systems where few samples per class are available and for which
learning a model over the data is difficult. An example of such an approach is
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described in [7] where footwear patterns are filtered using the Fourier Transform.
For dataset A, sample target and query divisions are specified in view1 target.txt
and view1 query.txt. Only one sample per class is available in the target list,
which must be compared to those in the query list. These partitions do not de-
scribe a closed set over their class associations. In other words not all sample
classes in the target list also appear in the query list. Other partitions of this
data are possible and we ask the reader to take note of the guidelines in Sect.3.

Model Experiment - View 2. This view can be used to assess approaches
using some form of model learning. For dataset A, a leave-one-out train/test
partition is specified in view2 train.txt and view2 test.txt which can be applied
in a classification paradigm. Again these partitions do not describe a closed set
over their class associations.

3 Experimental Guidelines

Although a section of the LS dataset (subset B) is reserved for controlled and
competitive assessment we anticipate that the public portion (subset A) will
be used in reporting results within the research community. We hope that some
basic guidelines will be adhered to as these will benefit the community in general
and raise the quality of research in this field. As a first step, we recommend any
performance results be reported using the suggested experimental view partitions
descried above. Other partitions of subset A may be possible if it suits some
specific aspects or scenarios under which a system is being tested. We only ask
that some general points be adhered to, namely:

– Any target/query (train/test) partitions must be exclusive over their sam-
ples. That is to say no sample should appear in both the target and train
partitions as this would be fitting to the test data and produces biased per-
formance results [11, 15, 16]. This also applies to samples for which mirrored
duplicates and “partials” have been generated (see Sect. 3.1 below).

– Images should not be “enhanced” or “degraded” with artificial noise. We feel
that there is a large degree of variation already present in the data and no
further modification is needed.

– Image sizes may be changed as needed however we ask that any modification
is clearly reported.

– Other modifications such as scaling, translation, and rotation can be applied
when testing systems on these aspects. However our first point should still be
observed; that is no generated sample or its original should appear in both
target and query partitions, and they should not be distributed across parti-
tions. For example, given patterns X and Y where Y is generated from X, Y
should not feature in a query partition with X as its target and visa versa.

3.1 Partial Prints and Mirrored Duplicates

We expect that some researchers would like to evaluate performance on so-called
“partial” prints. These are not to be confused with partial latent prints obtained
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from crime scenes. In general the idea here is to ascertain if identification is
still possible despite fairly significant occlusions of the footwear pattern. We
recommend that researchers employ the methodology described in [7].

As mentioned previously, samples have originated from both left and right
footed outsoles, and it will not always be the case that footwear will be matched
in this respect between target and query. This scenario will also be typical in
any real-world application, and so no attempt has been made to align target and
query within the experimental views described above. It may be useful therefore,
to generate mirrored versions of samples at training time or when comparing
targets. This obviously will depend on the sensitivity to pattern structure of a
proposed solution. For example, it is expected that correlation-based methods
will be more sensitive than information theoretic approaches which might only
consider content with perhaps a loose reliance on structure.

Again we stress that for both variations on the dataset described here we ask
that the experimental guidelines be observed.

3.2 Performance Evaluation

There are many methods for reporting the final performance of a classifica-
tion, verification or retrieval systems, including percentiles-by-rank, Receiver
Operator Characteristic (ROC) and Precision-Recall (PR) curves. We ask that
researchers, at a minimum, report their results using the ROC curve in the
classification and verification paradigms and with PR curves in the context of
information retrieval systems. Usually these quantities are calculated as a func-
tion of the threshold imposed on an similarity metric between target and query
samples. Further reading on these topics can be found in [17, 18].

It will also be informative to present results using a percentiles-by-rank curve
as this can give some indication of the ranking ability of proposed algorithms.
This makes sense in the context of footwear pattern searching where users would
like to see a list of potential matches returned by similarity strength.

4 Conclusion

We have introduced a new database, The Lancashire-Sheffield Footwear dataset
to provide help in building some common consensus for evaluation and exper-
imental procedures within the CV research community. Additionally we have
indicated a means of undertaking widespread assessment by inviting competitive
participation on substantial and real-world dataset. We believe the LS database
is, at the time of writing, the only publicly available footwear database and one
that provides a significant challenge to the CV research community. We hope
this will provide stimulus and lay ground for other rigorous contributions.
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Abstract. Within the framework of aging materials inspection, one of

the most important aspects regards defects detection in metal welded

strips. In this context, it is important to plan a method able to dis-

tinguish the presence or absence of defects within welds as well as a

robust procedure able to characterize the defect itself. In this paper an

innovative solution that exploits a rotating magnetic field is presented.

This approach has been carried out by a Finite Element Model. Within

this framework, it is necessary to consider techniques able to offer ad-

vantages in terms of sensibility of analysis, strong reliability, speed of

carrying out, low costs: its implementation can be a useful support for

inspectors. To this aim, it is necessary to solve inverse problems which

are mostly ill-posed: in this case, the main problems consist on both the

accurate formulation of the direct problem and the correct regulariza-

tion of the inverse electromagnetic problem. In the last decades, a useful

and very performing way to regularize ill-posed inverse electromagnetic

problems is based on the use of a Neural Network approach, the so called

“learning by sample techniques”.

Keywords: Neural Networks, Void Characterization, Welded strips, Ro-

tating Magnetic Field.

1 Introduction

In many industrial and civil applications, materials and structures are subjected
to various manufacturing and service conditions which make it imperative to
enhance the predictive capabilities of modeling various types of defects. For in-
stance micro-crack, micro-voids which precede possible fracture growth. A typi-
cal framework where the problem can be encountered is the welding process, i.e.
the application of a joint on two or more pieces. In the welding strip, matter of
discontinuity appears at micro-scale as either spherical or elliptical air bubbles.
These discontinuities cause a stress concentration, modifying the constitutive
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response of the material, or, in other words, building a damage within the ma-
terial. The latter phenomenon represents the initial step to crack extension and,
consequently, the voids’ detection and control should be investigated by means
of reliable devices and procedures. The quality of a welded joint depends on the
product allocation. In fact, some types of welding are suitable for a particular
case, the same type of welding will not be eligible in another situation. The
quality is devised according to the intended use of the joint, but it takes into
account all factors that may affect the welding. Scientific literature suggests a
lot of different solutions for the problem of material inspection. Nowadays, the
mostly used techniques are based on Non Destructive Testing and Evaluation
(NDT/E), having a very important role in inspecting aging materials for in-
dustrial applications or within the framework of civil engineering. Within this
framework, it is very important to plan a suitable method able to distinguish
the presence or absence of defects within welds as well as a robust procedure
able to characterize the defect itself: its implementation can be a useful support
for inspectors. But, in order to characterize the defects within the inspected ma-
terials, it is necessary to solve an inverse problem which are mostly ill-posed.
In this case, the main problems consist on both the accurate formulation of
the direct problem and the correct regularization of the inverse electromagnetic
problem. In the last decades, a useful and very performing way to regularize
ill-posed inverse electromagnetic problems is based on the use of the so called
“learning by sample techniques”. They allow to heuristically solve the inverse
problem, starting from the experience, and so implementing such intelligent and
non-crisp algorithms as Neural Networks, Fuzzy Inference Systems and so on.
In this paper, we propose a new way of determining the diameter of air bubbles
within welding, exploiting heuristic approaches and starting from a well known
way of inspecting welding strips [1,2]. The latter exploits a rotating magnetic
field, i.e. a magnetic field generated by a three-phase system, able to rotate in
the time-space domain [3]. The magnetic field induces eddy currents within the
inspected specimens, which are influenced by the presence of a possible defect,
e.g. voids, and in turn influences the external magnetic field. Its component nor-
mal to the upper surface of the modeled plate is measured on the specimen’s
surface. In the past, a lot of experimentations [4] and numerical modeling [4,5,6]
have been carried out in order to understand the behavior of eddy currents if
a crack occurs into the inspected materials [4,6]. In our work, we did not want
to focus our attention to cracks in homogeneous materials, but we used a Finite
Element Method (FEM) in order to characterize eddy currents into welded ob-
jects. We studied the case in which an air bubble is present into the welding, thus
weakening the strength of the finally obtained object. A number of simulations
have been carried out, involving a number of welding strips with different ellip-
tical voids, having varying shapes, locations and orientations. All the collected
data have been subsequently used in order to train and test a suitable Neural
Network in order to characterize the voids. The performances are satisfying: the
approach is able to recognize position and dimensions of very small cracks.
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1.1 An Overview of Defectiveness in Welding Strips

Welding process could induce the following relevant defects, compromising the
structural integrity of the same strips and consequently, of specific components
and structures:

– lack of fusion: if the fusion of the basic metal is excessive, continue grooves
are formed on the sides, causing a depression along the sides of the cord;
sometimes the incisions can be eliminated by using a thin covering material;

– excess of penetration on the top (dripping): if a huge quantity of metal
is caught at the top of the weld: a toe crack could be determined;

– incomplete penetration: it is caused by a lack of fusion at the welding
apex, and seriously reduces the resistance of the joint; in heading welding
made with one or more rubs, the defect can be eliminated by chiseling out
and giving an additional rub;

– gluing: it occurs when, during the welding process, the complete fusion of
metal does not take place, i.e., when the welding metal overlaps the not-yet-
fused material to weld, without a mixing between the metals;

– cracks: the most serious kind of flaws, because they originate from phenom-
ena of metallurgical nature. Since they depend on the cracking temperature,
they are named as hot or cold cracks.

Fig. 1 shows the most typical defects in metal welded strips. Sizes can vary,
greatly depending on the welding process and conditions. For instance, accord-
ing to European laws UNI EN 287-2 and UNI EN 288-4, the maximum tolerable
crack dimension is fixed to 0.5 (mm) of diameter for a circular defect. In many
cases, it is very difficult to distinguish between the kind of defects starting from
typical NDTs’ measurements. In fact, at the state-of-the-art, non destructive
identification systems allow to allocate a defect but without being able to deter-
mine its shape. In addition, different kinds of defects can cause similar signals.
Therefore, a soft computing-based approach can be very useful for an automatic
and, for instance, for real-time classification. In the following section, Rotating
Magnetic Field based on Finite Element Analysis (FEA) will be described. Sub-
sequently, techniques used for defect classification will theoretically be presented.

 

Fig. 1. Categories of discontinuity in metal welded strips
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2 On the A-ψ Formulation for Building the Dataset

For our purposes, we need to implement a suitable database, useful for subse-
quent regularization of the ill-posed inverse problem. It can be stated as follows:
evaluating the extension of voids starting from suitable data. The goal is the
detection of defects in the welding and the realization of a data set in order to
train and test a suitable Neural Network. Usually, data are represented by in-lab
measurements or numerical simulations [7]. In our case, we exploited the latter
path, modeling the direct problem through a commercial FEM software. We aim
to analyze the effectiveness of a welding performed on two slabs of structural
steel. The geometry of the examined case presents a “V” type welding, where a
bubble shaped defect has been modeled. Geometrical dimensions of our model
are listed in Table 1. For our purpose we verified the distortion of the magnetic

Table 1. General settings of numerical models

Property Setting

Material used for the specimen Stainless steel, not-magnetic, isotropic

Dimension of specimen 0.2 (m) x 0.01 (m)

Welding thickness 0.02 (m)

Electric conductivity 4.032*106 (S/m)

Minimum diameter of the defect 0.5 (mm)

Maximum diameter of the defect 1 (mm)

field density (T) [8,9] to detect the defect presence of a porosity bubble, formed
during welding process. The simulations have been carried out by changing the
size of the flaw, and exploiting the phenomenon of magnetic rotating field, since
its main advantage is the insensitivity to crack’s orientation. In the proposed
approach, we exploit the A-ψ formulation [10]. In the case of magnetostatic and
quasi-static fields, Ampère-Maxwell’s equation can be written as:

∇×H = J (1)

where H represents the magnetic field and J the current density, respectively. If
we consider a moving object with velocity v relative to the reference system, the
Lorentz force equation establishes that the force F per charge q is then given by:

F
q

= E + v ×B (2)

where E represents the electric field; v the instantaneous velocity of the object
derived from the expression of the Lorentz force and B the magnetic induction. In
a conductive medium, an observer travelling with the geometry sees the current
density (considering that σ is the electric conductivity) J = σ (E + v ×B)+Je;
therefore, we can rewrite (1) as follows:

∇×H = σ (E + v ×B) + Je (3)
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where Je [A/m2] is an externally generated current density. Considering, for a
transient analysis, the definitions of magnetic vector potential A and electric
scalar potential V :

B = ∇×A (4)

E = −∇V − ∂A
∂t

and the constitutive relationships:

B = μ0μrH ⇔ H = μ−1
0 μ−1

r B (5)

where μ0 and μr are free space and relative magnetic permeability; we may
rewrite (3), by substituting (4) and (5) in it, as:

σ
∂A
∂t

+∇× (μ−1
0 μ−1

r ∇×A
)− σv × (∇×A) + σ∇V = Je (6)

Since we are interested in perpendicular induction current, only the z-component
of A is non null. Therefore, the formulation of the 3D Equation (5) is simplified
to:

σ
∂Az

∂t
+∇× (μ−1

0 μ−1
r ∇×Az

)− σv × (∇×Az) = σ
ΔV

L
+ Je

z (7)

where ΔV is the difference of electric potential and L is the thickness along the
z-axis. The Partial Difference Equation (PDE) formulation of Equation (7) can
be written as:

σ
∂Az

∂t
+∇ · (μ−1

0 μ−1
r ∇Az

)− σv · ∇Az = σ
ΔV

L
+ Je

z (8)

In this way we calculated the magnetic vector potential A in a generic subdomain
Ω. For our aim, it is necessary to impose the boundary conditions as follows.
Magnetic field (n×H = n×H0) for boundary of air where acting the rotating
magnetic field; for remaining boundaries, included the defect, the continuity is
assured by the expression n× (H1 −H2) = 0 [11,12]. The rotation effect of the
magnetic field vector has been simulated by applying a uniform B vector, timely
rotated according to the following Euler rotation formulation [13]:[

x(t + τ)
y(t + τ)

]
=
[

cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)

] [
x(t)
y(t)

]
(9)

Table 2 resumes the values of set electrical parameters. The collected database
is composed by 1000 numerically simulated signals, characterized by defect’s
presence with different frequency values and 200 numerically simulated signals
showing absence of defect. We added gaussian noise with different magnitudes
to the retained simulation results.
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Table 2. Electrical parameters

Parameter Dimension

Frequency from 10 to 50 [Hz]

Pulse 2πf [rad/sec]

Magnetic Field 3 ∗ 10−3 [T] in magnitude

3 A Wavelet Artificial Neural Network for the Solution
of Inverse Problem

The problem of estimate the diameter of the bubble within the welding start-
ing from experimental measurements can be solved as a typical inverse problem
of pattern regression starting from computed measurements. The proposed ap-
proach, useful to detect the flaw presence, exploits Artificial Neural Network
(ANN) [14,15,16,17,18] as well as an hybrid Wavelet Transform (WT)-Principal
Component Analysis (PCA) based feature extraction approach. In this way,
peculiar features, characterizing the defect, can be selected without increasing
the computational complexity of the ANN-based classifier, in order to the re-
quirement of flaw detection. A biorthogonal 3.1 WT has been used, with four-
level multiresolution analysis (MRA). In this case, the signal is split into ai

(i = 0, ..., 3) set of so called approximation coefficients, and into di (i = 0, ..., 3)
so called details coefficients. According to the Wavelet theory [19] the approxi-
mation coefficients give information about the lower frequencies, whilst the de-
tails coefficients contain information about the signal at higher frequencies. In
our experimentations, on each signal, only the 47 a3 coefficients have been sub-
sequently selected, because they completely describe the macro-trend of each
signal. This particular WT has been selected after various tests. Moreover, with
an expert system, just the trends of these signals could be useful to discriminate
the defect presence. That is why we used only the Wavelet Approximation Coef-
ficients (WACs). We considered a fourth MRA level after a careful inspection of
the wavelet analysis at different MRA levels in order to retain as much spatial
information as possible. But, due to a still large dimension of feature space, a
PCA [20] has been exploited in reducing the number of inputs by only consid-
ering the Principal Components (PCs) whose contributions to total statistical
variance of the whole set of PCs are bigger than 4%. In this way the input num-
ber has been reduced from 47 to 6 elements, avoiding the so called problem of
“curse of dimensionality” [21]. It describes the problem caused by the exponential
increase in volume associated with adding extra dimensions to a mathematical
space. Please, pay attention that a linear mapping has been applied from wavelet
domain to PCA domain. Mathematically, a linear mapping is a linear function
between a set (domain) of independent variables and a set (co-domain) of depen-
dent variables. If a linear mapping is applied, all the mathematical properties
and characteristics of data into the domain set are retained into the co-domain
set. Thus the six inputs are not the six main important WACs, but the six PCs,
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participating to the total variance more than 4%, of the mapped WACs. More-
over, let us remark on how the WACs provide a redundant spatial information,
whereas the six PCs cover 96% of the whole wavelet spatial information, unless
those PCs have very small residuals. Thus, loosely speaking, the threshold of
4% has been set by considering a trade-off between the PCA’s residuals and
the number of components itself, in order to balance the retained information
and the problem of “curse of dimensionality”. Subsequently, collected data sets
have been normalized and split in a training and test subset. In order to set
the amount of training signals, we made a trade-off between the requirements
of an as large as possible training subset and a significant availability of testing
signals. Thus, in our experimentations, training set has been composed by 80%
of collected signals. Remaining signals compose the test subset.

Proposed computational intelligence applications utilizes a ANN as heuris-
tic pattern classifier. Its inputs are the six PCs describes above. The output of
the system is represented by the defect geometrical dimension (diameter). The
WT-PCA-ANN, having 13-neurons hidden layer according to the Kurková’s the-
orem [22], uses a Back-Propagation (BP) algorithm with adaptive rate of learning
during a period of 1000 epochs. The stopping criteria is based on the minimiza-
tion of a Mean Squared Error (MSE) and Relative Mean Real Error (RMAE)
learning performance indexes, defined in equations (10) and (11) respectively, as
a consequence of application of the BP algorithm.

MSE =
1
nw

nw∑
w=1

(
d(w) − dwj (w)

)2 (10)

RMAE =
1
nw

nw∑
w=1

∣∣d(w)− dwj (w)
∣∣

|d(w)| (11)

where nw represents the random sample size; d(w) represents the density of
distribution and dwj (w) represents the density of distribution of the j-th sample.
Best WT-PCA-ANN results are obtained with log-sigmoid activation function
between input and hidden layers, always considering a linear function between
the latter and the output layers (see Table 3 for details). Verification of the
trained network is shown in Fig. 2. Table 4 shows a comparison between actual
and estimated diameters, about the worst performances for each one of the
considered dimensions. The performances of WT-PCA-ANN are resumed by the
square of the so called Pearson’s coefficient of regression [23], i.e. the regression

Table 3. Comparison of WT-PCA-ANN training performances according to differently

exploited activation functions

Activation Function MSE [mm2] RMAE

Linear 0.0038 6.24

Tan-Sigmoid 0.003 4.20

Log-Sigmoid 0.0020 3.27
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Fig. 2. Diameter evaluation: WT-PCA-ANN estimated values vs. actual values

R-value. Please, note that R = 1 means perfect correlation. In our case, we
obtained R = 0.959 (see Fig. 2).

Table 4. Comparison between real diameter and reconstruction diameter

Actual WT-PCA-ANN

diameter [mm] estimated diameter [mm]

0.5 0.517

0.55 0.559

0.6 0.621

0.65 0.664

0.7 0.703

0.75 0.761

0.8 0.81

0.85 0.846

0.9 0.899

0.95 0.99

1 1.233
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4 Conclusions

On the basis of the numerical method presented in this paper, the authors have
developed a finite-element code for the analysis of the rotating magnetic field
for metal welding strips. For our analysis we used a classical “V”-profile welding
and simulated different sizes of defects according to the UNI EN law. Specifi-
cally, exploiting Rotating Magnetic Field using a self implemented FEA code,
a bi-dimensional time dependent model has been studied to evaluate the dis-
tortion of the magnetic field and the magnetic field density due to the defect
presence. The variation of the magnetic field H, induced by the variation of
eddy currents, particularly, the normal component of H, i.e. H⊥, is measured
by suitable sensors in order to detect the presence of cracks, since it is not influ-
enced by the exciting coils. But, if the crack’s orientation is orthogonal to the
longitudinal direction of the sensor, it could be insensitive to the crack’s pres-
ence itself. The magnetic rotating field represents an insensitive solution to the
crack’s orientation, which induces variation of the eddy current density without
a mechanical movement, with a remarkable economic saving. With these infor-
mation, a WT-PCA-ANN approach has been exploited in order to estimate the
diameter of the defect starting from signals obtained by computer simulations.
Numerically obtained rotating magnetic field signals have been used, and WACs
have been considered as features useful to train the ANN based regressor. The
proposed method provides a good overall accuracy in reconstructing the defect’s
diameter, as our experimentations demonstrate. This aspect represents an use-
ful support to the inspector, specially regarding the detection of defects with
small size, improving their resolution. At the same time, the procedure should
be validate for defect with different shape. The presented results can be consid-
ered as preliminary results; anyway, they are very encouraging, and suggest the
possibility of increasing and generalizing the performance of the WT-PCA-ANN
based classifier just refining its training step, for instance including, within the
training set, rotating magnetic field signals able to describe flaws with different
spatial extension and for different positions. The authors are actually engaged
in this direction.
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Abstract. Both symbolic knowledge representation systems and artifi-

cial neural networks play a significant role in Artificial Intelligence. A

recent trend in the field aims at interweaving these techniques, in order

to improve robustness and performance of classification and clustering

systems. In this paper, we present a novel architecture based on the con-

nectionist adaptation of ontological knowledge. The proposed architec-

ture was used effectively to improve image segment classification within

a multimedia application scenario.

1 Introduction

Intelligent systems based on symbolic knowledge processing, on the one hand,
and artificial neural networks, on the other, differ substantially. Nevertheless,
they are both standard approaches to artificial intelligence and it is very desirable
to combine the robustness of neural networks with the expressivity of symbolic
knowledge representation. This is the reason why the importance of the efforts
to bridge the gap between the connectionist and symbolic paradigms of artificial
intelligence has been widely recognised. As the amount of hybrid data containing
symbolic and statistical elements, as well as noise, increases, in diverse areas,
such as bioinformatics, or text and web mining, including multimodal application
scenarios, neural-symbolic learning and reasoning becomes of particular practical
importance. Notwithstanding the progress in this area, this is not an easy task.
The merging of theory (background knowledge) and data learning (learning from
examples) in neural networks has been indicated to provide learning systems
that are more effective than purely symbolic and purely connectionist systems,
especially when data are noisy. This has contributed decisively to the growing
interest in developing neural-symbolic systems [9,5,6,4].

While significant theoretical progress has recently been made on knowledge
representation and reasoning using neural networks, and on direct processing of
symbolic and structured data using neural methods, the integration of neural
computation and expressive logics is still in its early stages of methodological
development [6].

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 465–474, 2009.
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Adaptation of symbolic ontological knowledge from raw data is an ideal use-
case for further development and exploitation of neural-symbolic systems. Since
the pioneering work of McCulloch and Pitts, a number of systems have been
developed in the 80s and 90s, including Towell and Shavlik’s KBAN, Shastri’s
SHRUTI, the work by Pinkas [9], Holldobler [6] and Artur S. d’Avila Garcez et
al[5][4]. These systems, however, have been developed for the study of general
principles, and are in general not suitable for real data or application scenarios
that go beyond propositional logic. Only very recently, the theory has advanced
far permitting the implementation of systems which can deal with logics beyond
the propositional case [6].

This integration can be realised by an incremental workflow for knowledge
adaptation. Symbolic knowledge bases can be embedded into a connectionist
representation, where the knowledge can be adapted and enhanced from raw
data. This knowledge may in turn be extracted into symbolic form, where it
can be further used. This workflow is generally known as the neural-symbolic
learning cycle, as depicted in the following diagram.

Fig. 1. The neural-symbolic learning cycle

In this paper we focus on developing connectionist adaptation of ontological
knowledge, in particular of knowledge represented using expressive description
logics. We then show that neural-symbolic methods can be used effectively to
enhance knowledge adaptation within a multimedia application scenario. The
rest of the paper is organized as follows. Section 2 presents the proposed archi-
tecture that mainly consists of the formal knowledge and the knowledge adap-
tation components, which are described in sections 3 and 4 respectively. Section
5 presents a multimedia analysis experimental study illustrating the theoret-
ical developments. Conclusions and planned future activities are presented in
section 6.

2 The Proposed Architecture

Capitalizing these experiences our system is designated as a learning, evolving
and adapting cognitive model. Starting with basic knowledge about the nature
of the problem and by using powerful reasoning mechanisms the proposed sys-
tem gradually attempts to evolve its knowledge. In that way it incorporates its
observations along with its own or the user’s evaluation.
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Figure 2 summarizes the proposed system architecture, consisting of two main
components: the Formal Knowledge and the Knowledge Adaptation. The Formal
Knowledge stores, the terminology and assertions, constraints that describe the
problem under analysis in the appropriate knowledge representation formalism.
More specifically, the Ontologies module formally represents the general knowl-
edge about the problem.

It is actually a formal ontological description representing the concepts and
relationships of the field, providing formal definitions and axioms that hold in
every similar environment. This forms the system’s knowledge which generated
during the Development Phase by knowledge engineers and experts.

Fig. 2. The semantic adaptation architecture

Moreover, the Formal Knowledge contains the World Description that is ac-
tually a representation of all objects and individuals of the world, as well as their
properties and relationships in terms of the Ontology.It is evident that most of
the above data involve different types of uncertain information and, thus, they
can be represented as formal (fuzzy) description logic assertions connecting the
objects and individuals of the world with the concepts and relationships of the
Ontology. This operation is performed by the Semantic Interpretation module.

In real environments however, this is a rather optimistic claim. Unfortunately,
there may be lot of reasons that cause inconsistencies in the Formal Knowledge.
For example, it is impossible to model all specific environments and thus, in some
cases, conflicting assertions can arise. As a more abstract example (and more
difficult to handle), the personality and expressivity of a specific user makes some
of the axioms and constraints of the Ontology non-applicable or even wrong,
according to logical entailments or user feedback. These inconsistencies make
the formal use of knowledge that the Reasoner provides rather problematic. In
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such cases, the Knowledge Adaptation component of the system tries to resolve
the inconsistency through a recursive learning process.

The knowledge adaptation improves the knowledge of the system by changing
the world description and to some degree the axioms of the terminology of the
system. The new information as represented in a connectionist model and, with
the aid of learning algorithms, is adapted and then re-inserted in the knowledge
base through the Knowledge Extraction and the Semantic Interpretation module
for adaptation purposes.

3 The Formal Knowledge Component

3.1 Formal (Ontological) Knowledge and Connectionist Models

The focus of the proposed system architecture in Figure 2 is the adaptation of
the knowledge base, so as to deal with contextual information and raw data
peculiarities obtained from multimodal inputs. In this paper we adopt recent
results in formal knowledge representation and neural-symbolic integration. In
this framework, formal knowledge is transferred to a connectionist system and is
adapted by means of machine learning algorithms. Knowledge extraction from
trained networks is another important issue, which is included in the neural-
symbolic loop, although not studied analytically in this paper.

3.2 Kernel Definition for Description Logics

In this section recent work that extracts parameter kernel functions for individ-
uals within ontologies is presented [3,2,1]. Exploitation of these kernels permits
inducing classifiers for individuals in Semantic Web (OWL) ontologies. In this pa-
per, extraction of kernel functions is the main outcome of the Formal Knowledge
component - assisted by the reasoning engine - for feeding the connectionist-
based Knowledge Adaptation module.

The basis for developing these functions in the framework of the formal knowl-
edge is the encoding of similarity between individuals, as they are presented to
the knowledge base of the system, by exploiting semantic aspects of the reference
representations.

The family of kernel functions kF
p : Ind(A)× Ind(A) → [0, 1], for a knowledge

base K = 〈T,A〉 consisting of the TBox T (set of terminological axioms of
concept descriptions-Ontology) and the ABox A (assertions on the world state-
World Description); Ind(A) indicates the set of individuals appearing in A), and
F = {F1, F2, . . . , Fm} is a set of concept descriptions. These functions are defined
as the Lp mean of the, say m, simple concept kernel functions κi , i = 1, . . . ,m,
where, for every two individuals a,b, and p > 0,

κi(a, b) =

⎧⎨⎩
1 (Fi(a) ∈ A ∧ Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ ¬Fi(b) ∈ A)
0 (Fi(a) ∈ A ∧ ¬Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ Fi(b) ∈ A)
1
2 otherwise

(1)
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∀a, b ∈ Ind(A) kF
p (a, b) :=

[ m∑
i=1

∣∣∣κi(a, b)
m

p∣∣∣]1/p

(2)

The rationale of these kernels is that similarity between individuals is determined
by their similarity with respect to each concept Fi , i.e, if they both are instances
of the concept or of its negation. Because of the Open World Assumption for
the underlying semantics, a possible uncertainty in concept membership is rep-
resented by an intermediate value of the kernel. A value of p = 1 has generally
been used for implementing (2) in [3]. In our case, we have used the mean value
of the above kernel, which is computed through high level feature relations and
a normalized linear kernel which is computed through low level feature values.

3.3 The Reasoning Engine

It should be stressed that the reasoning engine, included in Figure 2, is of ma-
jor importance for the whole procedure, because it assists the operation of all
knowledge related components. First, during the knowledge development phase,
it is responsible for enriching manual generation of concepts and relations, so
that computation of the kernels in (1), (2) includes the fewest ambiguities possi-
ble, and any inconsistencies are removed from the knowledge representation. In
fact (1), (2) are computed, by relating every two individuals w.r.t each concept
in the knowledge base, by using the reasoning engine. In the operation phase,
it interacts with the semantic interpretation layer and the connectionist system
for achieving knowledge adaptation to real life environments. Both crisp and
fuzzy reasoners can form this engine. In our case, we have been using the FIRE
engine [12].

The FIRE system is based on Description Logic f-SHIN [11] that is a fuzzy
extension of the DL SHIN [7] and it similarly consists of an alphabet of dis-
tinct concept names (C), role names (R) and individual names (I). The main
difference of the fuzzy extended Description Logics (DL) is their assertional com-
ponent. Hence, in fuzzy DLs ABox is a finite set of fuzzy assertions of the form
〈a : C!"n〉, 〈(a, b) : R!"n〉, where !" stands for ≥, >,≤, < , for a, b ∈ I. Fuzzy rep-
resentation enriches expressiveness, so a fuzzy assertion of the form 〈a : C ≥ n〉
means that a participates in the concept C with a membership degree that is
at least equal to n. In this case a contradiction is formed when an individual
participates in a concept with a membership degree at least equal to n and at
the same time with a membership degree at-most equal to l, with l < n.

The main reasoning services supported by crisp reasoners are Abox consis-
tency, entailment and subsumption. These services are also available by FiRE
together with greatest lower bound queries which incorporate the fuzzy element.
Since a fuzzy ABox might contain many positive assertions for the same indi-
vidual, without forming a contradiction, it is of interest to compute what is the
best lower and upper truth-value bounds of a fuzzy assertion. For that purpose
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the term of greatest lower bound (GLB) of a fuzzy assertion with respect to a
knowledge base is defined.

The reason why we use fuzzy reasoning is that fuzzy assertional component
permits more detailed descriptions of a domain. In order to compute (1), (2) the
GLB reasoning service of FiRE is used, but the resulting greatest lower bound
is treated crisply. In other words, if GLB for Fi(a) > 0, then Fi(a) ∈ A, while
if GLB for Fi(a) = 0, then ¬Fi(a) ∈ A. As a future extension, we intend to
incorporate the fuzzy element in the estimation of kernel functions using fuzzy
operations like fuzzy aggregation and fuzzy weighted norms for the evaluation
of the individuals.

4 The Knowledge Adaptation Mechanism

4.1 The System Operation Phase

In the proposed architecture of Figure 2, let us assume that the set of individuals
(with their corresponding features and kernel functions), that have been used
to generate the formal knowledge representation in the development phase, is
provided, by the Semantic Interpretation Layer, to the Knowledge Adaptation
component.

Support Vector Machines constitute a well known method which can be based
on kernel functions to efficiently induce classifiers that work by mapping the
instances into an embedding feature space, where they can be discriminated by
means of a linear classifier. As such, they can be used for effectively exploiting
the knowledge-driven kernel functions in (1), (2), and be trained to classify
the available individuals in different concept categories included in the formal
knowledge. In [3] it is shown that SVMs can exploit such kernels, so that they can
classify the (same) individuals - used for extracting the kernels - accurately; this
is validated by several test cases. A Kernel Perceptron is another connectionist
method that can be trained using the set of individuals and applied to this
linearly separable classification problem.

Let us assume that the system is in its - real life - operation phase. Then,
the system deals with new individuals, with their corresponding - multimodal
- input data and low level features being captured by the system and being
provided through the semantic interpretation layer to the connectionist subsys-
tem for classification to a specific concept. It is well known that due to local or
user oriented characteristics, these data can be quite different from those of the
individuals used in the training phase; thus they may be not well represented
by the existing formal knowledge. In the following we discuss adaptation phase
of the system to this local information, taking place through the connectionist
architecture.

4.2 Adaptation of the Connectionist Architecture

Whenever a new individual is presented to the system, it should be related,
through the kernel function to each individual of the knowledge base w.r.t a
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specific concept - category; the input data domain is, thus, transformed to an-
other domain - taking into account the semantics that have been inserted to the
kernel function.

There are some issues that should be solved in this procedure. The first is
that the number of individuals can be quite large, so that transporting them in
different user environments is quite difficult. A Principal Component Analysis
(PCA), or a clustering procedure can reduce the number of individuals so as to
be capable of effectively performing approximate reasoning. Consequently, it is
assumed that through clustering, individuals become the centers of clusters, to
which a new individual will be related through (1), (2).

The second issue is that the kernel function in (1), (2) is not continuous
w.r.t individuals. Consequently, the values of the kernel functions when relating
a new individual to any existing one should be computed. To cope with this
problem, it is assumed that the semantic relations, that are expressed through
the above kernel functions, also hold for the syntactic relations of the individuals,
as expressed by their corresponding low level features, estimated and presented
at the system input. Under this assumption, a feature based matching criterion
using a k-means algorithm, is used to relate the new individual to each one of
the cluster centers w.r.t the low level feature vector. Various techniques can be
adopted for defining the value of the kernel functions at the resulting instances.
A vector quantization type of approach, where each new individual is replaced
by its closest neighbor, when computing the kernel value, is a straightforward
choice. To extend the approach to a fuzzy framework, weighted averages and
Gaussian functions around the cluster centers are used to compute the new
instances’ kernel values.

In cases that classification - of the new individual - in the specific (local)
environment and the specific individual characteristics or behaviour, remains
linearly separable, the SVM or Kernel Perceptron are retrained - including the
new individuals in the training data set, while getting the corresponding desired
responses by the User or by the Semantic Interpretation Layer - thus, adapting
its architecture / knowledge to the specific context and use.

In case the problem doesn’t remain linearly separable, we propose to use an
hierarchical, multilayer kernel perceptron, the input layer of which is identical
to the trained kernel perceptron, and which is - constructively - created, by
adding hidden neurons, and learning the resulting additional weights through a
tractable adaptation procedure [10]. The latter is achieved through linearization
of the added neurons’ activation function, while taking into account both the new
input/desired output data, as well as the previous knowledge and individuals. To
stress, however, the importance of current training data, a constraint that the
actual network outputs are equal to the desired ones, for the new individuals, is
used. As a result of this network adaptation, the system will be able to operate
satisfactorily within the user’s environment

The problem will, in parallel, be reported back to formal knowledge and rea-
soning mechanism, for updating system’s knowledge for the specific context, and
then (off-line) providing again the connectionist module of the user with a new,
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knowledge-updated, version of the system. This case is discussed in the following
subsection.

4.3 Adaptation of the Knowledge Base

Knowledge extraction from trained neural networks, e.g. perceptrons, or neuro-
fuzzy systems, has been a topic of extensive research [8]. Such methods can
be used to transfer locally extracted knowledge to the central knowledge base.
Nevertheless, the - most characteristic - new individuals obtained in the local
environment, together with the corresponding desired outputs - concepts of the
knowledge base, can be transferred to the knowledge development module of the
main system (in Figure 2), so that with the assistance of the reasoning engine, the
system’s formal knowledge, i.e., both the TBox and the ABox, can be updated,
w.r.t the specific context or user.

More specifically the new individuals obtained in the local environment form
an ABox A

′
. In order to adapt a knowledge base K = 〈T,A〉 for a defined concept

Fi using atomic concepts denoted as C, we check all related concepts denoted
as RFiC1 . . . RFiCn under the specific context, i.e. in A

′
. Let |RFiCn| denote the

occurrences of RFiCn ∈ A, t denote a threshold defined according to the data
size and Axiom(Fi) denote the axiom defined for the concept Fi in the knowledge
base (i.e. Axiom(Fi) ∈ T ). Furthermore, we write RFiCn ∈ Axiom(Fi) when
the concept RFiCn is used in Axiom(Fi) and RFiCn �∈ Axiom(Fi) when it is
not used. Knowledge adaptation is made according to the following criteria:

|RFiCn| =
⎧⎨⎩

0− t/4 If RFiCn ∈ Axiom(Fi)→ Remove RFiCn from Axiom(Fi)
t/4− t No adaptation in K
> t If RFiCn �∈ Axiom(Fi) → Axiom(Fi) ∪RFiCn

(3)
Equation (3) implies that the related concepts with the most occurrences in
A

′
are selected for the adaptation of the terminology, while those that are not

significant are removed. Currently, the DL constructor that is used for the in-
corporation of the related concept, in order to adapt the knowledge base, is
specified by the domain expert. Future work includes a semi-automatic selection
of constructors, that will be based on the inconsistencies formed by the use of
specific DL constructors for the update of the knowledge base.

5 A Multimedia Analysis Experimental Study

The proposed architecture was evaluated in solving segment classification in
images and video frames from the summer holiday domain. Such images typically
include persons swimming or playing sports in the beach and therefore we selected
as concepts of interest for this domain the following: Natural-Person, Sand,
Building, Pavement, Sea, Sky, Wave,Dried-Plant,Grass,Tree, Trunk and Ground.

Following a region-based segmentation procedure, we let each individual cor-
respond to an image segment. The low level features used as input to the system
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for each individual are the MPEG-7 Color Structure Descriptor, Scalable Color
and Homogeneous Texture together with the dominant color of each segment.
The colours used in this case are White, Blue, Green, Red, Yellow, Brown, Grey
and Black.

We used equations (1)-(2) to compute the kernel functions and transferred
them to the connectionist subsystem. In that way we trained threshold (and
multilayer) perceptrons to classify more than 3000 individuals (i.e., regions ex-
tracted from 500 images), regions to the above-mentioned concepts. We tested
the classification performance with new segments, with results reported in Ta-
ble 1. The next step was to use the improved performance of the connectioninst
model which forms a new ABox, in order to adapt the knowledge base. The roles
used in our knowledge base are above− of , below− of , left− of and right− of
that indicate the neighboring segments, and are extracted by a segmentation al-
gorithm, included in the semantic interpretation layer. The new axioms referred
to concepts Sea, Sand, Sky, Tree and Building using a neighbor criterion, that
is the related concept in the specific context. For example, the concept Sea was
defined as Sea ≡ Blue  ∃below − of.Blue. Assuming Sea as F1, then the con-
cepts formed by the combination of spatial relations with the other concepts i.e.
∃below − of.Blue,∃below − of.Brown, . . . ,∃above − of.Green, form the set of
the related concepts RF1C1 . . . RF1Cn.

Using the technique described in section 4.3, the relative concepts that play
a significant role, according to the Abox that is formed by the connectionist
model, were defined. An adapted axiom was
Sea ≡ Blue (∃below− of.Blue"∃above− of.Brown"∃above− of.White"

∃right− of.White " ∃left− of.White " ∃left− of.Blue " ∃right− of.Blue "
∃above− of.Blue " ∃below − of.Blue).

The adapted knowledge was again transferred , through (1) and (2) to the con-
nectionist system, which was then able to improve its classification performance,
w.r.t the five concepts, as shown in third column of Table 1. It is important to

Table 1. Performance after the adaptation of the knowledge base

NN Performance Adapted KB

Label Regions Precision Recall Precision Recall

Person 76 56.25% 47.3 56.25% 47.3%

Sand 116 75% 51.7% 83.1% 72.1%

Building 108 58.8% 37 72.7% 53.6%

Pavement 64 25% 18% 25% 18%

Sea 80 68.1% 75% 88% 79.2%

Sky 88 64.7% 50% 75.3% 64%

Wave 36 33.3% 66.6% 33.3% 66.6%

Dried Plant 64 50% 37.5% 50% 37.5%

Grass 80 52.3% 55% 52.3% 55%

Tree 92 63.1% 52.1% 71.2% 63.1%

Trunk 72 57.1% 22.2% 57.1% 22.2%

Ground 112 24.5% 53.5% 24.5% 53.5%
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note that the performance obtained is similar to that provided by adaptation of
the (kernel) multilayer perceptron presented in 4.2.

6 Conclusion

In this paper we presented a novel architecture based on connectionist adapta-
tion of ontological knowledge. The proposed architecture was evaluated using a
multimedia analysis experimental study presenting very promising results. Fu-
ture work, includes the incorporation of fuzzy set theory in the kernel evaluation.
Additionally, we intend to further examine the adaptation of a knowledge base
using the connectionist architecture, mainly focusing on the selection of the ap-
propriate DL constructors and on inconsistency handling.
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Abstract. An algorithm representing distribution and sell of foreign

newspaper in Croatia controlled by a human operator is designed and

performed in different modelling media including a hardware environ-

ment. The operator’s behavior modeled in hardware can be taken as a

base for developing a new kind of controller.
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1 Introduction

Informally, an operator’s algorithm is well-defined computational procedure that
takes some value (remnant), or set of values, as input and produces some value
(order), or set of values, as output. An algorithm is thus a sequence of evolving
computational steps that transform the input into the output [1]. We can also
see the algorithm as a tool for solving a similar well-specified computational
problem. The statement of the problem specifies in general terms the desired
input/output relationship. The algorithm describes a specific evolving computa-
tional procedure for achieving that input/output relationship. As input/output
relationship is in many cases represented by transfer function, it looks natural to
correlate algorithms and transfer functions especially in control engineering. In
this paper we will try to explain our efforts in seeking for the algorithm(s) that
describe human (agent) behavior in very complex environment as socio-economic
environments are by definition, but in the same time we are looking for new in-
spirations (evolving hardware) that could be used in technical environments as
control tools. The guiding principle for developing one algorithm in a software
and the other one (the same or almost the same) in two hardware environments
(SO-HA-triplet) is to compare output results and behaviors (stability) of algo-
rithms (models). One must know that the model(s) stability is out of the scope
of this paper but it will be shown implicitly.

2 A Word about Newspaper Distribution and Selling
Process

In manufacturing and other commercial settings, it is often important to allocate
resources in the most beneficial way. An oil company may wish to know where to
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place its wells in order to maximize its expected profit. A newspaper distribution
and selling agency always wants to know when, where and how to distribute
newspapers (different titles) to satisfy very variable tourist demands (see Fig. 1.
a)) and to keep remnant (the number of unsold newspapers) in a certain limits
(see Fig. 1. b)).

Fig. 1. a) An illustration of a possible normalized time distribution of Italian tourists in

Dubrovnik during August. b) Remnant of the Austrian newspaper “Kronen Zeitung”.

A newspaper distribution and selling process (NDSP) is controlled by dedi-
cated human operator. As the process become more complex (number of differ-
ent tourists grows, as well as number of newspaper titles and number of kiosks),
greater are the demands on the human operator who controls the process.

However, the human operator when performing a control task in a socio-
economic system (NDSP) often shows remarkable versatility and adaptability
in handling stable and unstable systems. Philosophically, in control engineering
terms, such “an element” human operator would be considered a time varying,
variable gain, nonlinear element. In NDSP, the human operator is performing a
single axis discrete tracking task (one track for each newspaper title) based on
a certain algorithm and is seen to be an integral part of the closed-loop control
system (see Fig. 2).

Fig. 2. Basic model of human controlled newspaper distribution and selling process
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Tracking task is done on two levels; one level is dedicated to a certain sell
point (kiosk), and the other one is correlated with tracking the remnant of each
newspaper title on the agency level. In principle every sell point has the dif-
ferent tracking algorithm for a certain newspaper title. On the other hand, for
every newspaper title on the agency level, human operator has to establish a
distinguished overall algorithm. For an agency with at least one hundred sell
points and with daily input of fifty foreign newspaper titles, five thousand plus
one tracking task must be performed daily if the NDSP is to be controlled effi-
ciently. In principle, the tracking task means making the decision for a new (or
confirming the old one) order of a certain newspaper title for a certain selling
point. In practice the decision is mainly based on remnant data, going one to
three days in the past, that are available from agency information system. For
an experienced human operator, even a quick look on those data takes about
thirty seconds to create the new (old) ordering. A field investigation done by
authors showed that the human operator in the agency needs (in average) about
16 hours for completing all his tracking tasks in a proper manner. A term “a
proper manner” in terms of control theory means that the operator, working in
a compensatory or a pursuit mode, is trying to drive the current remnants of
all selling points to a given remnant channel. The channel boundaries are set up
(given) by publishers and they are fuzzy; for German “Bild” the bound is about
30 percent of a daily order and for Austrian “Kronen” the remnant channel is
in the range from about 30 percent to round 50 percent of a daily order.

When undertaking a compensatory discrete tracking task, the operator is
presented with the error between the system input signal and the output [2].

Thus the human operator can effectively be considered as the controller ele-
ment in a servomechanism. An information system can be considered as a display
that only provides relative information. Hence, when the operator is tracking a
desired optimal ordering he cannot be certain if the displayed remnant error is
a result of his or agency performance, or the change in tourist environment (or
any combination of both). The notion of “the change in tourist environment” is
extremely wide and will not be elaborated in this paper.

In pursuit tracking, the operator perceives information about possible number
of buyers (consumers) and about the related remnant.

In practice, both tracking modes are highly affected by information delays
introduced in the NDSP. Field investigation has showed that poor management
and human resources, bad system organization and lack of adequate equipment
are main causes of many delays in the agency information system.

3 Algorithm

The algorithm defining NDSP, and an operator as an integral part of the process,
will be specified as geometric problem to be more illustrative. That approach
leads us to the notion and implementation of computational geometry as a pos-
sible problem solving tool.

Computational geometry is the branch of computer science that studies
algorithm for solving geometric problems [1]. In modern engineering and
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mathematics, computational geometry has applications in, among other fields,
computer graphics, robotics, VLSI design etc. The input to a computational-
geometry problem is typically a description of asset of geometric objects, such
as a set of points, a set of line segments, or the vertices of a polygon in coun-
terclockwise order. The output is often a response to a query about the objects,
such as whether any of lines intersect, or perhaps a new geometric object [1].

The transfer characteristic of an operator can be regarded as geometric object.
In a general way, transfer characteristic(s) of an operator (TCO) has reactive

character expressing a negative feedback sense of operator role in a NDSP:
- When the daily remnant of a certain title (newspaper) is high (over upper

bound - u.b.), the control action goes to decrease of next order. New order is
processed.

- When the daily remnant of a certain title (newspaper) is low (under lower
bound - l.b.), the control action goes to increase of next order. New order is
processed.

- When the daily remnant of a certain title (newspaper) is within permitted
remnant levels the control action will be ceased. There is no new order.

These three simple rules define a simple TCO, i.e., a simple rule base. In a
real life, the geometry (shape) of TCO emerges as result of interactive mutual
interactions between an operator and his environment. Therefore, new rules must
be added in the rule base if linguistic model of an algorithm concerning TCO
must be close to the NDSP-reality as much as it is possible. Seven IF THEN
rules are added to the rule base:

- If a remnant is zero, or close to zero level then limit the response to a certain
value (highest order level prescribed by a publisher)

- If a remnant is small and number of tourists rises then increase a next order
more then usually.

- If a remnant is small and number of tourists rises then increase a next order
more then usually taking into consideration limits posed by publisher(s).

- If remnant is to be controlled on immediate demand (publisher policy), then
make lower and upper bounds controllable via outside information.

- If a remnant is very high and a number of tourist decreases, then decrease
a next order more then usually.

Fig. 3. The geometry of TCO related to a degree of freedom (constraints)
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Fig. 4. Responses of two different operators for the same inputs (remnant, consumers)

Fig. 5. The way of comparing responses (orders) of two different operators for the same

inputs

- If a remnant is very high and a number of tourist decreases, then decrease
a next order more then usually taking into consideration demands posed by
publisher(s).

- If a remnant is 100 percent or close to 100 percent then a next order must
be limited to a minimum distribution level (some publishers want to be present
on a market regardless to an existing remnant).
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The new rule base defines the shape of TCO i.e., the freedom (constraints) of
operator acting in NDSP (see Fig. 3.).

The analytic geometry model of the algorithm describing the simplified version
of NDSP is shown in Fig. 4. Input variables and program output representing
a certain order dynamics and comparison between two operators are shown in
Fig. 5. The C++ algorithm flowchart of the operator and the process is shown
in Fig. 6.

4 Algorithm Hardware Fitting

Algorithm hardware fitting, in general, is the translation of a mathematical
or empirical (linguistic) relationship (between a dependent variable, i.e. output
and one or more independent variables, i.e. input (s)), from one medium,such
as a table, a mathematical formula, a string of numbers, a set of curves or
a collection of logical (linguistic) control rules, to another medium, usually a
physical-realizable device or system having an output and one or more inputs
[3].

An algorithm may be fit by an “exact” relationship, or it may be somehow
approximated.

There are three basic steps in the algorithm hardware fitting. The first step
is the establishment of a close-enough approximation in terms of ideal building
blocks, that is, a conceptual model. The second step is the hardware embod-
iment of the algorithm specifics such as statements concerning “IF THEN -
condition(s)” and “FOR/NEXT- loop(s)”, distributive ALU-elements, etc. orig-
inated in the conceptual model.

On that stage input/output communications must be considered, as well as
taking hardware-body information sensitivity into account if hardware model
must act as an hardware agent in a certain environment. The third step is suc-
cessful employment of actual (new) circuit devices to embody the function within
an acceptable set of constrains, such is range, scale factor, drift, response time,
complexity, cost, etc.

5 D-Operators

TCO-synthesis will be based on hardware circuits called D-operators that use
ideal diodes. For switching purposes, the “ideal diode” is a one way switch that is
open when the imposed voltage is of one polarity and closed when the polarity is
opposite. The ideal diode operator is a voltage to voltage circuit that would have
the same response as a circuit that used an ideal diode as switching element: the
output voltage is zero for one polarity; it increases linearly with input when the
polarity changes (see Fig. 7.).

The ideal diode operator can also be considered as a “zero-bound” circuit
[3]. In a special cases, when | Vo | = | Vi | these circuits can be considered as
D - operator circuits because they can be used in synthesis of different trans-
fer characteristics. The ideal diode operators are useful in precision dead zone,
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Fig. 6. Developing the algorithm in C++ environment
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Fig. 7. Four D operators in EWB presentation

bounds, and absolute-value circuits and in function fitting with piecewise-linear
approximations (different fuzzy membership functions).

6 Hardware Implementation

Decision, as a notion dedicated to the medium of computer programming and/or
control, in the medium of electronics is presented through the geometry and the
scale of the operator transfer characteristic. On the x - axis, representing the
remnant, there are three zones; the dead zone means “stop” in programming
sense (order is unchanged), while two reactive zones with positive and negative
gain respectively open the way for the realization of “FOR/NEXT - statement”.
Wiring (in control sense - feedback) is done to give a path for the effective
realization of FOR/NEXT - loop in the circuit; triggered TCO starts to evolve.

The logic unit introduced in this circuit is simple; a battery (initial condition),
adder and three sample and hold circuits driven by a sequencer circuit are making
explicit logic in the hardware implementation. Implicit part of the circuit logic
is introduced through the circuit design and its wiring as it is shown very clearly

Fig. 8. Hardware model of the algorithm includes the process, operator and

environment
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Fig. 9. The response of AI operator to tourist dynamics

in Fig. 8. Existing arithmetic is distributed through this circuit; operations of
addition, division, subtraction and multiplication are done around the circuit
(see Fig. 8.).

Graph shown in Fig. 9. presents states in the hardware model of the process,
including AI-operator in his process work.

If we want to identify our hardware model of the operator as an agent in AI
(DAI) sense then we must consider standard AI (DAI) - agent attributes and
architectures.

7 Discussion

In this paper an algorithm derived from human behavior (operator) in a socio-
economic process is presented. The algorithm has been modeled in two (three)
different media; as computer program and as a hardware circuit.

SO-HA-triplet is of crucial importance when human behavior is to be modeled
in an artificial environment and when humans will be involved in a process of ver-
ification and validation of the model(s) and its outputs (results). SO-HA-triplet
generate virtual reference environment as state and responses of the system can
be compared.

Hardware modeling of the operator is based on a family of IC circuits called
D - operators. D - operators can be used in synthesis of different transfer char-
acteristics that can relate electronic and human environments.

The shape of those characteristics can be efficiently controlled by applied
voltage (information).

The implementation of the algorithm in a hardware environment was chosen
deliberately as the first step (premise) of a possible application of the algorithm
for control tasks in a technical environment.

The future work can be multidimensional: from comparing models’ behav-
ior(s) and stability and fitting models in possible applications in a real NDSP
to analyzing the operator as an agent (see Fig. 10).

Operator can be easily seen as an agent (controller) that maintain state.
It has internal data structure which is used to record information about the



484 D. Kovacevic et al.

Fig. 10. Abstract architecture of an operator that maintain state

environment state and history. The agent starts in some initial internal state
i0. It then observes (see1(k) function) its process environment state s1 = r(k)
(remnant in k moment). The internal state of the agent is then updated via next1
function, becoming set to next1(i(k), r(k)). The action selected by the agent is
then action(next1(i(k), r(k))) (see Fig. 4). This action (order) is performed, and
agent enters another cycle, perceiving the world via see1 and see2 (if it exists)
updating its current initial state via next2 (if see2 exists) and current process
state next1. Note that current initial internal states i0(k) = next2(i0(k), see2(s2))
representing information about current remnant channel) of the agent depends
on percepts (see2(s2)) from business environment (for example publisher).
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Abstract. The main objective of this paper is to investigate and pro-

pose a new approach to distinguish between two classes of beats from the

ECG holter recordings - the premature ventricular beats (V) and the nor-

mal ones (N). The integrated methodology consists of a specific sequence:

R-peak detection, feature extraction, Principal Component Analysis di-

mensionality reduction and classification with a neural classifier. ECG

beats of holter recordings are described using means as simple as pos-

sible resulting in a description of the QRS complex by features derived

mathematically from the signal using only R-peak detection. For this re-

search work, normal (N) and ventricular (V) beats from the well known

MIT-BIH database were used to test the proposed methodology. The

results are promising paving the way for the more demanding multiclass

classification problem.

Keywords: Holter monitoring, PCA, Neural Networks, MLP

classification.

1 Introduction

Many different methods have been proposed to solve the crucial problem of
long-term holter recordings evaluation, which could be transformed into the
classification problem of discriminating between normal ‘N’ and a variety of other
beats, mainly premature ventricular ‘V’ beats and supraventricular beats (S).

A lot of research effort has been put to investigate and propose methods
to examine and classify the holter recordings based on beat-shape description
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parameters [1], shape descriptive parameters transformed with the Karhunen-
Loeve method [2], and hermite polynomials [3]. Some other research proposals
use time-frequency features [4] and features obtained from heartbeat interval
measurements [5,6] in order to identify cardiac arrhythmia.

For any classification problem, in order to compare different approaches, the
setup of the experiments, where the type of the training and the selection of
testing sets are defined, is of major importance. In most problems, there are two
main setups to be considered: training based on a local learning set [7] and on a
global learning set [8].

In holter monitoring, the main reason for using local learning is the fact that
beats within one patient tend to look alike - but tend to differ widely among dif-
ferent patients - therefore using locally trained classifiers usually leads to better
overall results in a personalized medical approach where the patient himself is
its own control. In the case of global training the records used for training the
classifier are distinct from those used for testing - warranting therefore better,
if the data are representative, generality of the classifier.

In this paper we investigate a new configuration to deal solely with distin-
guishing between normal and ventricular beats [9] where global training fashion
is considered; for our testing we use a reduced representation of the original
beats coming from the MIT-BIH database [10] and a neural network classifier.
The results of the proposed approach are then compared with other published
methods using the metrics of sensitivity and specificity.

The rest of the paper is organized as follows: Section 2 presents the proposed
methodology to handle the data and extract the specific set of features. Section
3 briefly describes the classification methods involved. In Section 4 the selection
of the training and testing sets is described and the results are presented. Section
5 concludes the paper giving some directions for future research.

2 Handling of Data and Feature Extraction

2.1 Preprocessing

For this research work in order to prepare the Holter records, all data records
were re-sampled to 500Hz from the original 360Hz. No filtering was performed
on any of the signals.

The detection and localization of the R-peak is of paramount importance in
the subsequent analysis. For the detection of R-peaks of our data set, the method
proposed firstly by Christov [11] was applied. The feature set that is used here
is based solely on the R-peak findings - we do not use any other measurement
of beat’s characteristic points. More specifically the maximum of the major R-
peak is found and a window of 128 samples with R peak centered on position
64 is selected for further computations. Fig. 1 presents the result of the applied
method for the two different classes under investigation. As it can be seen the
“mean” N and V beats have quite a distinct morphology (even though some
beats can deviate quite a lot from these shapes, constituting what is widely
known as “outliers”). The extracted features are described in the next section.



Discriminating between V and N Beats from ECGs 487

Fig. 1. The “mean” N and V beat waveforms as they were calculated using the MIT

database

2.2 Feature Extraction and Selection

Usually feature sets for beat characterization use time intervals, amplitudes and
their ratios based on the important points measured from the signal [9].

Here, we propose the use of a feature set consisting of features that are com-
puted solely on the 128 samples around the R-peak. We propose to use features
that were selected after visually inspecting the waveforms coming from different
classes. These features as proven by the classification results can quantify the
difference between the 2 classes.

More specifically the feature set consists of nine measures. Three of them are
directly calculated from the truncated signal; namely, the minimum value of the
second half of the signal (i.e. from sample 64 till the end of the signal) along
with the location of the minimum, and the standard deviation (using all 128
samples).

The rest 6 features are calculated by processing the binary sequences that are
constructed after thresholding the first order difference of the original signal and
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Fig. 2. Transformation of the original signal into a binary sequence

Fig. 3. Experimental “pdfs” of the minimum value for the N (blue) and V (red) class

the second order difference of the original signal. Fig. 2 depicts the transforma-
tion of the original signal into a binary sequence as described above.

For each one of the two aforementioned sequences the Shannon entropy is
calculated (eq. 1). The two binary sequences are then combined creating a 4-
level sequence (a two digit binary word can be described by one digit of an
“alphabet” with base 4). The Shannon entropy of this sequence constitutes the
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third feature and the probabilities (ratios of occurrences) of the three out of the
four levels (including the fourth would be redundant) completes the feature set.

Entropy = −
K∑

n=1

pn ln(pn) (1)

Fig. 3 depicts the “pdfs” (histograms with a superimposed spline curve for il-
lustration purposes) of the distribution of the minimum value of the waveform
for the two classes. As it can be seen this feature captures the variation between
the 2 classes. The rest of the features (not shown here) also have distributions
that show the potential benefit of being used for this particular discrimination
task.

The feature set is mainly based on the ability to find correctly the maxima of
the major R-peak. Then all the features are computed based on the “truncated”
signal itself without the need of any other measurements. Therefore this feature
set could be a very useful model for classifying the data obtained by telemedicine
application devices. In the proposed approach, we have no information from the
depolarization phase of the beat cycle - since the behavior of the T-wave varies
wildly in terms of shape and length and therefore it would be necessary to employ
additional measurement of the end of T-wave.

It is also apparent that some of those features might be correlated. But, it
is well known that when we use neural networks classifiers, it is beneficial to
feed them with uncorrelated features and also to get rid of redundant informa-
tion. Thus, in the proposed methodology a dimensionality reduction stage was
included before the neural network stage.

2.3 Dimensionality Reduction

It is well known that in pattern recognition tasks, usually potential improve-
ment (better generalization) can be achieved by using fewer features than those
available [12]. Actually, literature proposes during the development of a classi-
fier to extract several features, which may convey redundant information about
the pattern-class of interest. Therefore, in the proposed approach we included a
Principal Component Analysis (PCA) stage so that to un-correlate the originally
extracted features using a linear transformation [12].

PCA, or Karhunen-Loeve transformation, is an approach to perform dimen-
sionality reduction by linear combination of the original features in such a way
that preserves as much of the relevant information as possible [12,13]. This
method computes eigenvalues of the correlation matrix of the input data vec-
tor and then projects the data orthogonally onto the subspace spanned by the
eigenvectors (principal components) corresponding to the dominant eigenvalues.
Even if the whole set of the eigenvectors is retained, this may also lead to an
improvement of the classification performance, because the new set has features
that are uncorrelated and this, in general, improves the classification capabilities
of a classifier.
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3 Neural Network Classification

Artificial Neural Networks (ANNs) are increasingly and successfully used in clas-
sification problems. They are structures composed of many simple processing
elements, that operate in parallel and whose main function is determined by the
network’s structure, the strength of their connection and the processing carried
out by the processing elements (artificial neurons). They are capable of finding
commonalities in a set of seemingly unrelated data and for this reason are used
in a growing number of classification tasks.

Among the numerous ANN paradigms encountered in the literature [12], the
Multi-layer Perceptron (MLP) is the most widely used in the field of pattern
recognition [12,13,14]. Training of an MLP is often formulated as the minimiza-
tion of an error function, such as the total mean square error between the actual
output and the desired output summed over all available data. While the sum-
of-squares error function is appropriate for regression, for classification problems
it is often advantageous [14,15] to optimize the network using the cross entropy
error function (eq. 2), i.e. optimizing the network to represent the posterior
probabilities of each class [12,13].

E = −
N∑

n=1

c∑
k=1

{tnk ln yn
k + (1 − tnk ) ln(1− yn

k )} (2)

where N is the number of training samples and c the number of classes, tnk ∈
{0, 1} is a binary class label, (k=1,. . . ,c) of the nth data sample and yn

k is the ac-
tual output of the kth neuron of the ANN, when the nth data sample is presented
at its input.

For this case, we use the logistic activation function for the hidden layer units
and the softmax (eq. 3) activation function for the output nodes [13,14].

yj =
exp(aj)∑
i exp(ai)

(3)

where ai is the intermediate linear output of an artificial neuron.
The above configuration has proven to be more appropriate for classifica-

tion purposes with many successful implementations [13,14]. Therefore, in this
research work the above formulation has been adopted.

4 Experimental Results

For evaluation of the proposed approach, we used the commonly used MIT-BIH
database [10]. There are two ways of training the classifiers with this database.

The first one is to use local training - using vertical division of the database.
That means that, usually, the beginnings of each of the recordings from the
database are used for training and remaining parts of each of the recordings are
used as a testing set. Although this type of training brings usually results close to
absolute sensitivity and specificity as it is often encountered in the literature e.g.
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[1,7], it is very controversial from the point of view that any practical application
would require additional annotation of at least a short part of each patient’s
recordings. On the other hand global training implies that the records used for
training the classifier are distinct from those used for testing. This means that
no additional annotation is needed and the classifier can be directly used on any
new patient.

After considering the above mentioned advantages and disadvantages the re-
sults reported in the next section are based on the global classification approach
using 44 of the MIT recordings and employing the leave one out technique. In
other words each time 43 recordings were used for training the classifier and 1
for testing.

Since one of the classes is heavily underrepresented in the given dataset (this is
not a flaw of the data, it is “just the way things are”), this makes training of the
MLP problematic. This means that we are running the risk to build a classifier
heavily biased to classify everything as N class. Different approaches have been
proposed in order to alleviate this problem. In our case we downsampled the N
class (only during the creation of the train set) taking one every 14 samples.
By doing so we have “pushed” the MLP to better learn the V class since in the
problem at hand having a high sensitivity is a bit more significant than having
a very high specificity (a very high specificity is achieved in almost all similar
studies as reported in the conclusion section).

As mentioned in Section 2, after the feature extraction stage, we have included
a dimensionality reduction stage based on PCA. In PCA, selecting the number
of the retained Principal Components constitutes another design parameter and
more than one “criteria” can be found in order to guide the selection process
[15]. However, usually the selection is based on a trial and error approach. In our
case through an initial experimentation phase using a simple classifier we found
out that five to seven Principal Components yield similar results. As a result we
selected to retain six of them. Among the different configurations of the MLP
(10, 15, 20 and 25 neurons in the hidden layer were tested using a small subset
of the dataset in a few preliminary runs without however a thorough search into
the parameter search) the one with 20 neurons yields slightly better results.

The overall procedure is depicted in Fig. 4. In total the classifier (6-20-2)
managed to classify correctly 58651 out of the 67264 N beats and 5535 out of
the 5997 V beats resulting in sensitivity equal to 92.30% and specificity equal to
87.20%. The results are summarized in Table 1 for each one of the 44 recordings.

Fig. 4. Overall procedure
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Table 1. Classification results for all 44 recordings

Record # N beats # V beats Correctly Correctly

Number classified N beats classified V beats

100 2234 1 2234 (100%) 1 (100%)

101 1855 0 1841 (99.25%) 0 (-)

103 2077 0 2070 (99.66%) 0 (-)

105 2521 41 2190 (86.87%) 38 (92.68%)

106 1504 518 1501 (99.80%) 441 (85.14%)

108 1735 14 860 (49.57%) 6 (42.86%)

109 0 38 0 (-) 37 (97.37%)

111 0 1 0 (-) 0 (0%)

112 2532 0 2388 (94.31%) 0 (-)

113 1784 0 1781 (99.83%) 0 (-)

114 1815 43 1644 (90.58%) 39 (90.70%)

115 1948 0 1935 (99.33%) 0 (-)

116 763 41 148 (19.40%) 41 (100%)

117 1529 0 1224 (80.05%) 0 (-)

118 0 2 0 (-) 1 (50%)

119 1539 443 1538 (99.94%) 440 (99.32%)

121 1856 1 1849 (99.62%) 1 (100%)

122 2471 0 2462 (99.64%) 0 (-)

123 1510 3 1462 (96.82%) 3 (100%)

124 0 47 0 (-) 42 (89.36%)

200 1479 724 1294 (87.49%) 701 (96.82%)

201 588 4 585 (99.49%) 0

202 2056 19 2024 (98.44%) 7 (36.84%)

203 2519 396 1093 (43.39%) 328 (82.83%)

205 448 10 448 (100%) 10 (100%)

207 0 104 0 (-) 80 (76.92%)

208 1584 990 1556 (98.23%) 943 (95.25%)

209 2616 1 2582 (98.70%) 1 (100%)

210 319 24 297 (93.10%) 14 (58.33%)

212 920 0 895 (97.28%) 0 (-)

213 2636 220 2078 (78.83%) 220 (100%)

214 0 18 0 18 (100%)

215 3191 164 2005 (62.83%) 143 (87.20%)

219 2010 64 1677 (83.43%) 58 (90.63%)

220 1949 0 1670 (85.69%) 0

221 2026 396 2015 (99.46%) 388 (97.98%)

222 2057 0 1962 (95.38%) 0

223 2024 473 1942 (95.95%) 367 (77.59%)

228 1684 361 1571 (93.29%) 351 (97.23%)

230 2250 1 912 (40.53%) 1 (100%)

231 314 2 314 (100%) 1 (50%)

232 0 0 0 (-) 0 (-)

233 2226 830 1915 (86.02%) 813 (97.95%)

234 2695 3 2689 (99.78%) 1 (33.33%)
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5 Conclusions

It is essential to compare the proposed integrated methodology with the work
of other researchers but it is important to bear in mind two distinguishing
points where this work is unique. First of all, there are, at least according to
the best of our knowledge, no recent works dealing with global classification of
ECG signals. And most important in this work, we introduced and used only
mathematically obtained features derived from the ECG signal utilizing
only the detected R-peak.

However, there exist research works dealing with global classifiers, using the
MIT-BIH database to distinguish ‘N’ and ‘V’ beats, usually with slight modifi-
cations in the way of obtaining the global training/testing for each one of them.
Hu and his coworkers [8] achieved global accuracy of 62.2% for distinguishing
‘N’ and ‘V’ beats. The sensitivity and specificity achieved in [7] is about 80%.
Jekova et al [17] reports sensitivity 78.79% and specificity of 80.61% on the global
training set when distinguishing also right and left bundle branch blocks. Lower
numbers but on a more difficult task are reported in [1] with 86.7% specificity
and 67.3% sensitivity for V beats when classifying holter beats into five classes
on the MIT database.

There are also works trying to distinguish between N and V beats using simple
features derived from one-lead signal where only R-peaks were computed. In [18]
Tsipouras et al. have used HRV for classification obtaining sensitivity 87.27%
and specificity of 94.77% on the MIT database - but they did not use global
training. In [19] four descriptive parameters were used for beat classification but
the experiments were performed on the selected signals only, with unspecified
training routine.

To sum up our results are at all times at least as good as and in some occa-
sions better than those reported in the literature. The prime novelty of this work
is the proposal of a new combination of features for the discrimination of “V”
and “N” beats. A neural network classifier has been employed using the cross
entropy error function which usually performs better for classification problems.
The results are very promising and in the next phase of our research we will
test the usefulness of our approach on the more demanding problem of distin-
guishing between five beat categories. Towards this path we will also experiment
with more advanced methods for the construction of our classifier (i.e. an in-
cremental building of the hidden layer) since the discrimination of five classes
increases the need for a more customized classifier. Moreover more elaborated
techniques for handling imbalanced data sets might be needed (i.e. Synthetic Mi-
nority Oversampling Technique (SMOTE) [20]). Finally, we will test our method
using the AHA database which will allow for the generality of our approach to
be examined.
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Abstract. Mapping brain activity patterns in external actions has been

studied in recent decades and is the base of a brain-computer interface.

This type of interface is extremely useful for people with disabilities,

where one can control robotic systems that assist, or even replace, non

functional body members. Part of the studies in this area focuses on

noninvasive interfaces, in order to broaden the interface usage to a larger

number of users without surgical risks. Thus, the purpose of this study is

to assess the performance of different pattern recognition methods on the

classification of mental activities present in electroencephalograph sig-

nals. Three different approaches were evaluated: Multi Layer Perceptron

neural networks; an ensemble of adaptive neuro-fuzzy inference systems;

and a hierarchical hybrid neuro-fuzzy model.

Keywords: Brain Computer Interface, artificial neural network, neuro-

fuzzy, hierarchical network.

1 Introduction

The development of interfaces between humans and machines has been an ex-
panding field in the last decades, including several interfaces using voice, vision,
haptics, electromyography (EMG) signals, electroencephalography (EEG) sig-
nals, as well as and combinations of these, as communication support [1].

Recent studies [2-3] have shown the possibility of online brainwaves analyses to
derive information about the subject’s mental state, which can then be mapped
onto some external action such as selecting a letter from a virtual keyboard or
moving robotics devices. Systems that utilize these brainwaves are called Brain
Computer Interface (BCI) [4].

People who have severe motor disabilities, that are partially or totally par-
alyzed, can use BCI as an alternative communication and control channel that
does not depend on the brain’s normal output pathway - peripheral nerves and
muscles. Hence, BCI enhances these persons’ quality of life [5].

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 495–504, 2009.
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BCIs can be noninvasive or invasive. The latter faces substantial technical
difficulties and entails significant clinical risks: they require that recording elec-
trodes are implanted in the cortex and are functional for long periods. Most
importantly, however, is the risk of infections and other damages to the brain
[6]. On the other hand, non-invasive BCIs are based on the EEG analysis asso-
ciated with various brain function aspects [7], offering, therefore, a more secure
and accessible interface.

Pattern classification of brain activity is one of the important aspects in BCI
systems [8]. Artificial Neural Networks have already been applied to the classifi-
cation of brain activities, attaining better performance than traditional methods
[9].

In [10], a Probabilistic Neural Network (PNN) [11-12] and a Multi-Layer Per-
ceptron (MLP) neural network [12-13] have been used as classifiers to recog-
nize five different mental activities in noninvasive BCIs. These models presented
promising results, but due to the inherent complexity of the problem, more com-
plex models are necessary to achieve more accurate classification rates. As in [10],
no user-independence is evaluated in this paper.

Therefore, this paper presents the study of more efficient classifiers in order to
increase the hit rate in pattern classification of mental activities. Three different
models were developed: a MLP neural network, for comparison purposes, and two
hybrid approaches, consisting of an ensemble of ANFIS (Adaptive Neuro-Fuzzy
Inference Systems) [14-15] models and a hierarchical neuro-fuzzy classifier.

This paper is organized in four additional sections. Section 2 presents the real
database used in this study. Section 3 describes in details the proposed classifi-
cation models. Section 4 presents the results obtained with all three models and,
finally, section 5 discusses the conclusions of this work.

2 Mental Activities Database

The mental activity database was obtained from [10], where an electroencephalo-
graph, composed of ten electrodes placed on the user’s scalp (according to In-
ternational System 10-20 [16]), was implemented (Fig. 1). Usual classification of
the main EEG rhythms is based on five frequency ranges [17], called: delta (0
to 4 Hz), theta (4 to 8 Hz), alpha (8 to 13 Hz), beta (13 to 30 Hz), and gamma
(higher than 30 Hz). After an independent analysis of each frequency range,
better results were obtained in delta band [10]. Therefore, in order to reduce the
number of inputs for the neural network and hybrid models, as well as to allow a
direct comparison between studies, only delta band was considered in this study.
Using the knowledge of the brain activity specialization and electrodes positions
(see Fig. 1), it is possible to discard six electrodes readings, reducing the relevant
signals to four (C3, C4, P3 and P4) [10].

In order to capture useful information in the time and frequency domain,
wavelet transform [18] was used to preprocess the EEG signals. The mean of the
wavelet coefficients of the four relevant signals in the delta band were selected
as inputs of the neural network and hybrid models.
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Fig. 1. Electrodes positions from the International System 10-20

The database was created by asking the user to carry out 100 trials for each
of the five chosen mental activities: motor imagery of the forefinger movement to
the right side (RM), motor imagery of the forefinger movement to the left side
(LM), 3D rotation of a cube (CR), arithmetic operation of subtraction (AS),
and the mental state of relax (MR) [10]. The produced data was divided into
70% for training, 15% for validation, and 15% for testing. Figure 2 presents
the histogram analysis of wavelet coefficients averages obtained from the four
selected electrodes. As can be noticed from Figure 2, the EEG signals contain
outlier values that can be visually detected as the ones located far from the value
with samples concentration.

To reduce outliers, two distinct data pre-processing were evaluated. In the
first approach (see Fig. 3), outliers were replaced by neutral values (mean of the
other values). In the second approach, signal values were also linear normalized,
in addition to outliers’ replacement (see Fig. 4).

3 Brain Activities Classification Models

3.1 MLP Neural Network

The first proposed classification model is a single MLP Neural Network, which
was developed in Matlab Neural Network Toolbox for comparison reasons. The
MLP is composed of four inputs, one hidden layer and five neurons in the output
layer, one for each of the five chosen mental activities. The best MLP configura-
tion in terms of number of neurons in the hidden layer and number of training
epochs was obtained by evaluating the best performance in the validation set.
Different neural networks were trained for maximum 5000 epochs, changing the
number of neurons on the hidden layer from 2 to 15 and the learning rate from
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Fig. 2. Histogram of C3, C4, P3 and P4 respectively

Fig. 3. Histogram with outliers’ replacement of C3, C4, P3 and P4 respectively

0.2 to 0.8. The number of neurons in the hidden layer was chosen as the one that
presented the lowest mean between minimum validation errors for all learning
rates used. Similarly, the learning rate was chosen to present the lowest validation
error for the selected number of neurons on the hidden layer.
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Fig. 4. Histogram with outliers’ replacement and normalization of C3, C4, P3 and P4

respectively

Table 1. MLP Neural Network parameters

Database

No Pre-Processing Outlier

Replacement

Outlier Replace-

ment and Normal-

ized

Neurons on Hidden

Layer

10 5 8

Learning Rate 0.72 0.59 0.43

Momentum 0.9 0.9 0.9

This methodology was applied to define the neural network topology for each
pre-processing applied to the database, resulting in different topologies. Table 1
presents the obtained topologies for each of the three different configurations.

3.2 Ensemble of ANFIS Models

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) [14-15] were already proposed
as good classifiers to pattern recognition for brain-computer interfaces [19]. The
main advantage of this hybrid neuro-fuzzy system is the ability to provide lin-
guistic rules that indicate the relation of the input variables and the output
classification variable. Although ANFIS models are of Takagi-Sugeno type [20]
(rules’ consequents are singletons or a linear combination of the input variables),
they are more interpretable than artificial neural networks.
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Fig. 5. Classifier model based on an ensemble of ANFIS models

In this study, an ensemble of five ANFIS classifiers is proposed (Fig. 5): each
one specialized in one of the five possible mental tasks classification. The final
ensemble classification is accomplished by applying the MAX operator among
subsystems output value, that is, the final classification of the mental activity is
indicated by the ANFIS model with the highest output value.

Each subsystem was trained with backpropagation algorithm in the Matlab
Fuzzy Toolbox, with maximum training epochs specified by the validation set
(early stopping process) to avoid overfitting.

Each ANFIS subsystem was trained with two and three fuzzy sets per input
signal. The best generalization performance was obtained with two fuzzy sets,
resulting in 16 fuzzy rules. Different shapes were also evaluated for the fuzzy
sets (triangular and bell function), with the best performance attained with bell
shape.

3.3 Hierarchical Hybrid Model

The third classification model was proposed after evaluating the classification
performance of the ANFIS ensemble. By analyzing the resulting confusion ma-
trix of the ANFIS ensemble (see results presented in Table 3 for the database
with outlier replacement), it is possible to verify that the majority of missed
classification is bettween “LM” and “CR” patterns.

Therefore, a hierarchical hybrid structure was modeled (Fig. 6), composed
of four ANFIS classifiers, trained to recognize “RM”, “LM or “CR”, “AS”
and “MR”, and one MLP neural network to identify between “LM” and “CR”
patterns when “LM or CR” has been pre-classified by its respective ANFIS
subsystem.

The same four input signals are applied to all classifiers, and the final system
response depends on the ANFIS classifiers. If the ANFIS subsystem trained to
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Table 2. ANFIS classifier confusion matrix

RM LM CR AS MR

RM 9 3 0 3 0

LM 0 7 8 0 0

CR 0 0 15 0 0

AS 0 2 0 13 0

MR 0 0 0 0 15

Fig. 6. Hierarchical model

identify LM or CR provides the highest output level among all subsystems, the
hierarchical hybrid system response is given by the MLP network classification
(MAX between LM and CR outputs). Otherwise, the final response is provided
by ANFIS with the highest output value.

The methodology described in Section 3.1 used to define the MLP neural
network topology was also applied to train the MLP subsystem in the hierarchical
hybrid model. The ANFIS topology used in the hierarchical hybrid model is also
the same applied in the ANFIS ensemble.

Table 3 presents the new confusion matrix obtained with the hierarchical
hybrid model, using the same dataset provided in Table 2. As can be observed,
the discrimination between “LM” and “CR” classes has improved considerably,
maintaining the accuracy in the other classes.

4 Results

The three classification models described in the previous sections were evaluated
in the testing datasets described in Section 2, that is, the dataset with no pre-
processing, dataset with outlier replacement and dataset with normalization and
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Table 3. Confusion matrix of hierarchical model

RM LM CR AS MR

RM 9 1 3 2 0

LM 0 13 2 0 0

CR 0 0 15 0 0

AS 0 0 0 15 0

MR 0 0 0 0 15

Table 4. Classifiers hit rates

MLP ANFIS Ensemble Hierarchical Hybrid Model PNN1 MLP1

No Pre-Processing 83% 72% X 83% 63%

Outlier Replacement 86% 78% 89% X X

Outlier Replacement

and Normalization

85% 76% X X X

outlier replacement. The classification results of all models are presented in Table
4. The obtained results were also compared with the ones presented in [10],
where a PNN and another MLP neural network have been tested with the same
database.

As can be observed from Table 4, the best performance was obtained with the
outlier replacement pre-processing, for both MLP and ANFIS ensemble. There-
fore, the hierarchical hybrid model was only evaluated with this dataset, improv-
ing accuracy to almost 90%. By using data pre-processing and the hierarchical
structure, better results than the ones presented in [10] were obtained.

5 Conclusions

This paper presented the evaluation of three different classification models for
the discrimination of mental activities for a noninvasive BCI (Brain Computer
Interface) application.

The models presented in this paper were proposed to improve the classifica-
tion performance presented in previous work [10], where a Probabilistic Neural
Network and a Multi-Layer Perceptron were used as classifiers. By analyzing the
difficulty in separating some of the brain activities, a hierarchical hybrid model
was proposed, which led to a better overall classification accuracy, as well as
better classification per class.

The ANFIS ensemble classifier proposed did not provide good results when
compared to a simple MLP neural network. Better results can be obtained if
neuro-fuzzy systems specifically developed for classification problems are used
in the ensemble formation, such as the Inverted BSP System [21-22]

1 Results obtained in [10].
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According to other studies [23-24], alpha and beta bands contain the relevant
information for mental activity analyses in a BCI application. So a new database
including these bands will be created for future work to test the classification
models proposed. Closed-loop feedback learning will be also implemented in
order to improve signals quality, making pattern recognition easier. Considering
a better scenario, future works should present better results.
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Abstract. The paper presents concept of vector parameters character-

izing creditworthiness of municipalities and its modelling possibilities.

Based on designed model and structures of radial basic functions neural

networks, the modelling is realized with the aim to classify municipalities

into classes. Further, the article includes sensitivity analysis of individual

parameter vector components. Sensitivity analysis represents exploring

contributions of individual vector components to classification quality.
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1 Introduction

Municipal creditworthiness is an independent expert evaluation based on com-
plex analysis of all known municipal creditworthiness parameters. Municipal
creditworthiness evaluation is currently being realized by methods combining
mathematical-statistical methods and expert opinion [1]. However, they are con-
sidered to be rather subjective and inaccurate [1]. Besides these methods for
municipality creditworthiness evaluation, there were also models based on com-
putational intelligence designed. For example, hierarchical structures of fuzzy
inference systems [2], unsupervised (supervised) methods [3], [4] and neuro-fuzzy
systems [5] were designed for municipal creditworthiness evaluation. The use of
the mentioned methods has proved to be problematic in some respects. Expert
knowledge is required for rule base design in hierarchical structures of fuzzy infer-
ence systems [2]. Similarly, clusters have to be labelled by expert and, moreover,
generalization ability of unsupervised methods is limited [3]. Large rule base has
been obtained by neuro-fuzzy systems leading to difficult interpretation of the
models. On the other hand, low number of rules implies low classification accu-
racy in neuro-fuzzy systems [5]. The output of the methods is represented by an
assignment of the i-th object oi∈O, O={o1,o2, . . . ,oi, . . . ,on} to the j-th class

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 505–514, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



506 V. Olej and P. Hajek

ωi,j∈Ω, Ω={ω1,j,ω2,j, . . . ,ωi,j, . . . ,ωn,j} [2], [3], [4] and [5]. Based on the facts
mentioned we can state, that the methods capable of processing and learning
the expert knowledge, enabling their user to generalize and properly interpret,
have proved to be most suitable for municipal creditworthiness modelling. The
use of the outputs of unsupervised methods along with the classification capa-
bilities of Radial basis function (RBF) neural networks [6] seems to realize the
presented needs.

Radial basis function neural networks were independently proposed by many
researchers [7], [8], [9], [10], [11], and are a popular alternative to the feed-forward
neural networks (FFNNs) [10]. They are also good at modelling nonlinear data
and can be trained in one stage rather than using an iterative process as in
FFNNs, and also learn the given application quickly. The way in which the RBF
neural networks are used for data modelling is different when realizing classi-
fication process and approximating time series. In the first case, the inputs of
the RBF neural networks are represented by feature vectors, while each output
corresponds to a class. In the second case, RBF neural network inputs are rep-
resented by data samples and certain time-lags, while the RBF neural network
has only one output representing a signal value.

In the paper there is a concept of parameters vector x=(x1,x2, . . . ,xk, . . . ,xm)
for municipal creditworthiness evaluation [2], [3], [4] and [5]. Further, based on
data analysis, data representation method via data matrix P is designed and
formalized. Then it is possible to design a model for modelling municipal cred-
itworthiness evaluation with designed RBF structure. That consists of data pre-
processing, clustering by Kohonen’s self-organizing feature maps (KSOFMs) and
class ωi,j∈Ω labelling based on expert opinion and municipal creditworthiness
classification oi∈O to classes ωi,j∈Ω. By means of sensitivity analysis, we survey
contribution of individual parameters vector x=(x1,x2, . . . ,xk, . . . ,xm) compo-
nents to classification quality of the i-th object (municipalities) oi∈O to the j-th
class ωi,j∈Ω. The final part of the paper includes the analysis of the results and
comparison to other classification methods.

2 Problem of Municipal Creditworthiness Evaluation

In [2], [3], [4] and [5] common categories of parameters there are mentioned (eco-
nomic, debt, financial and administrative categories). The economic, debt and
financial parameters are pivotal. Economic parameters (x1,x2,x3,x4) affect long-
term credit risk. The municipalities with more diversified economy and more
favourable social and economic conditions are better prepared for the economic
recession. Debt parameters (x5,x6,x7) include the size and structure of the debt.
Financial parameters (x8,x9,x10,x11,x12) inform about the budget implementa-
tion. Their values are extracted from the municipality budget. The design of pa-
rameters vector x=(x1,x2, . . . ,xk, . . . ,xm), m=12, based on previous correlation
analysis and recommendations of notable experts, can be realized as presented
in Table 1. The parameters x3 and x4 are defined in the r-th year and parameters
x5 to x12 as the average value of the r-th and (r-1)th years.
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Table 1. Municipal creditworthiness parameters design

Parameters

Economic x1 = POr, POr is population in the r-th year. Higher value of x1 entails

especially higher municipal tax revenues.

x2 = POr/POr−s, POr−s is population in the year r-s, and s is the

selected time period. Economic growth of the municipality leads to the

growing number of its inhabitants.

x3 = U, U is the unemployment rate in a municipality.

x4 =
∑k

i=1 (EPOi/EIN)
2
, EPOi is the employed population of the munic-

ipality in the i-th economic sector, i=1,2, . . . ,k, EIN is the total number

of employed inhabitants, k is the number of the economic sector.

Debt x5 = DS/PR, x5∈<0,1>, DS is debt service, PR are periodical revenues.

It measures the ability of the municipality to pay off the DS from regular

budget revenues.

x6 = TD/PO, TD is a total debt.

x7 = SD/TD, x7∈<0,1>, SD is short-term debt.

Financial x8 = PR/CE, x8∈ R+, CE are current expenditures. If it is constantly

greater than 1, the municipality implements the budget well.

x9 = OR/TR, x9∈<0,1>, OR are own revenues, TR are total revenues.

x10 = CAE/TE, x10∈<0,1>, CAE are capital expenditures, TE are total

expenditures. It indicates capital activity of the municipality.

x11 = CAR/TR, x11∈<0,1>, CAR are capital revenues.

x12 = LA/PO, [Czech Crowns], LA is the size of the municipal liquid

assets. Municipal assets are often used as bank’s credit collateral.

Several Czech municipalities oi∈O have the class ωi,j∈Ω assigned by special-
ized agencies. Moreover, the municipalities in micro-region Pardubice, the Czech
Republic, have no class ωi,j∈Ω assigned. However, the descriptions of classes
ωi,j∈Ω can be designed based on expert opinion (Table 2). Then the municipal-
ities oi∈O can be labelled with classes ωi,j∈Ω following this description.

Based on the presented facts, the data matrix P can be designed as follows

P=

x1 . . . xk . . . xm

o1 x1,1 . . . x1,k . . . x1,m ω1,j
. . . . . . . . . . . . . . . . . . . . .
oi xi,1 . . . xi,k . . . xi,m ωi,j
. . . . . . . . . . . . . . . . . . . . .
on xn,1 . . . xn,k . . . xn,m ωn,j

,

where oi∈O, O={o1,o2, . . . ,oi, . . . ,on} are objects (municipalities), xk is the k-th
parameter, xi,k is the value of the parameter xk for the i-th object oi∈O, ωi,j is
the j-th class assigned to the i-th object oi∈O, pi=(xi,1,xi,2, . . . ,xi,k, . . . ,xi,m) is
the i-th pattern, and x=(x1,x2, . . . ,xk, . . . ,xm) is the parameters vector.
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Table 2. Descriptions of classes ωi,j∈Ω

Description

ωi,1 High ability of a municipality to meet its financial obligation. Very favourable

economic conditions, low debt and excellent budget implementation.

ωi,2 Very good ability of a municipality to meet its financial obligation.

ωi,3 Good ability of a municipality to meet its financial obligation.

ωi,4 A municipality with stable economy, medium debt and good budget imple-

mentation.

ωi,5 Municipality meets its financial obligation only under favourable economic

conditions.

ωi,6 A municipality meets its financial obligations with difficulty, the municipality

is highly indebted.

ωi,7 Inability of a municipality to meet its financial obligation.

3 Basic Notions of RBF Neural Networks

The term RBF neural network [6] means any kind of FFNN that uses RBF as an
activation function. Using RBF neural network for classification is suitable, since
in most cases a specific group of input vectors pi belongs to one of classes ωi,j∈Ω,
which are sought by RBF neural network. It is, therefore, possible to pick a group
representative and consider its surroundings as the set within output of required
class ωi,j∈Ω. Moreover, RBF neural networks defined in this fashion are, in term
of approximation natural, because approximation is realized by functions, which
influence the final function only in the surroundings’ center ci of the RBF neuron
and not in the whole function range. The j-th output f(x,H,w) of RBF neural
network can be defined this way

f(x,H,w) =
q∑

i=1

wj,i × hi(x), (1)

where H={h1(x),h2(x), . . . ,hi(x), . . . ,hq(x)} is a set of activation functions of
RBF neurons (RBF functions) in hidden layer and wj,i are synapse weights.
Each of m components of vector x=(x1,x2, . . . ,xk, . . . ,xm) is an input value for
q activation functions hi(x) of RBF neurons. The j-th output f(x,H,w) of RBF
neural network represents linear combination of outputs from q RBF neurons
and corresponding synapse weights wj,i.

Input layer of RBF neural network provides loading of individual input sam-
ples pi=(xi,1,xi,2, . . . ,xi,k, . . . ,xi,m). Synapse weights W(m,q) between input
and hidden layer are not used by RBF neural networks. This neural network in-
cludes exactly one hidden layer. Reason to hidden layer number limitation is the
fact, that each from m input vector values x=(x1,x2, . . . ,xk, . . . ,xm) is used as
an activation function parameter H={h1(x),h2(x), . . . ,hi(x), . . . ,hq(x)} of RBF
neurons, where q is a number of neurons in the hidden layer. Activation function
hi(x) of RBF neurons in the hidden layer is a special class of mathematical func-
tions, whose main characteristics is monotonous rising or falling with increasing
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distance from center ci of activation function hi(x) of RBF neuron. Neurons of
hidden layer can use as activation function hi(x) of RBF neurons for example
Gaussian and rotary Gaussian activation function (one- and two-dimensional
RBF), multisquare and inverse multisquare activation function, Cauchy’s, etc.
For classification problem, Gaussian activation function hi(x) is preferred. It is
possible to present it like this

f(x,C,R) =
q∑

i=1

exp(−‖x− ci‖2

ri
), (2)

where x=(x1,x2, . . . ,xk, . . . , xm) represents input vector, C=(c1,c2, . . . ,ci, . . . ,cq)
are centres of activation functions hi(x), and R=(r1,r2, . . . ,ri, . . . ,rq) are radiuses
of activation functions hi(x).

Neurons of output layer represent only weighted sum of all inputs coming
from the hidden layer. Activation function of neurons in the output layer can
be linear, eventually unit jump in order to convert the output to binary form.
In RBF neural network learning process [12], [13], [14] it is required to set a
number of centres ci of activation function hi(x) of RBF neurons and to find the
most suitable positions for RBF centres ci. Other parameters are radiuses ri of
centres ci, gradient of activation functions hi(x) of RBFs and synapse weights
W(q,n) setup between hidden and output layer. Design of appropriate number
of RBF neurons in hidden layer is presented in [8] and [9]. Possibilities of centres
ci recognition are mentioned in [12] as a random choice. This easiest method
uses fixed gradient of activation functions hi(x) of RBF neurons. Their position
is chosen randomly from a set of training data. This approach presumes that
randomly picked centres ci will sufficiently represent data entering the RBF
neural network. This method is suitable only for small sets of input data. If
used on larger sets, it often means quick and needless increase in RBF neuron
numbers in hidden layer and therefore unjustified complexicity of neural network.
The second approach to locating centres ci of activation functions hi(x) of RBF
neurons can be realized by K-means algorithm [15].

4 Modelling and Analysis of the Results

Municipal creditworthiness modelling represents a classification problem. It is
possible to be modelled by supervised methods (if classes ωi,j∈Ω of the objects
are known) or by unsupervised methods (if classes ωi,j∈Ω are not known). Data
pre-processing is carried out by means of data standardization. Thereby, the
dependency on units is eliminated. The KSOFMs assign municipalities to clus-
ters [4], [5]. Subsequently, the clusters are labeled with classes ωi,j∈Ω based on
expert opinion. The outputs from the KSOFM are used as the inputs of the
RBF neural networks, or other neural network structures and statistic meth-
ods which realize advantages of supervised methods. Finally, sensitivity analysis
for individual vector x=(x1,x2, . . . ,xk, . . . ,xm) parameters is carried out, which
represents evaluation of contributions of individual components of vector param-
eters to classification quality. Based on presented facts, the model is designed
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Fig. 1. Model for classification of municipalities oi∈O into classes ωi,j∈Ω

for the classification of municipalities oi∈O into classes ωi,j∈Ω, Fig. 1. The fre-
quencies f of municipalities oi∈O in classes ωi,j∈Ω for the RBF neural network
are presented in Fig. 2. From Table 2 and Fig. 2 results that in term of classes
ωi,j∈Ω best objects (municipalities) are placed to class ωi,1, worst to class ωi,7.
As the data matrix P includes oi∈O, O={o1,o2, . . . ,oi, . . . ,on}, n=452, 10-fold
cross-validation was employed for testing the model. The model realizes an as-
signment of the i-th object oi∈O to the j-th class ωi,j∈Ω, Ω={ω1,j,ω2,j, . . . ,ωi,j,
. . . ,ωn,j} so that classes ωi,2,ωi,3, and ωi,4 have the highest percent occurrence.
This means that objects (municipalities), which are average in terms of economic,
debt and financial parameters, prevail. Further, experiments with different RBF
neural networks’ structures show, that, with increasing number of q neurons in
the hidden layer of RBF neural network the classification accuracy value ξ [%]
rises to value q=72, then classification accuracy ξ [%] decreases. Centers ci of
activation functions of RBF neurons are found by K-means algorithm, where
radius value ri of activation function hi(x) is ri=1.6. Results of experiments are
shown in Fig. 3 and Fig. 4. Classification accuracy ξ [%] increases with rising
number of cycles up to value pc=350, then it stays without change.

In Table 3, there is a comparison of the classification accuracy ξ [%] on the
testing set to other designed and analyzed structures of neural networks and
representatives of statistical models. Concretely, we used a RBF neural network,
Learning Vector Quantization (LVQ) neural networks [16], FFNN [10], an Adap-
tive Resonance Theory and Mapfield (ARTMAP) [17], a Linear neural network
(LNN) [10], a Probabilistic neural network (PNN) [18], Support Vector Ma-
chines (SVM) [19], K-Nearest Neighbour (KNN) [20], and Multinomial Logistic
Regression Model (MLRM) [20]. The RBF neural network represents excellent
results with the maximum classification accuracy ξmax=94.69[%], the average
classification accuracy ξa=89.93[%], and the standard deviation SD=2.88[%].
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Fig. 2. Frequencies f of municipalities in classes ωi,j∈Ω for the RBF neural network

Fig. 3. Dependency of classification accuracy ξ [%] on ri values

Fig. 4. Dependency of classification accuracy ξ [%] on the number of q

The maximum classification accuracy ξmax=94.69[%] was reached based on a
number of designed RBF neural network structures.
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Table 3. Classification accuracy ξ [%] on testing data

RBF LVQ1 LVQ2 LVQ3 OLVQ1 FFNN

ξmax[%] 94.69 92.92 92.04 92.04 92.92 92.04

ξa[%] 89.93 91.33 89.91 90.09 90.44 90.56

SD[%] 2.88 0.97 1.61 1.45 1.45 1.33

ARTMAP LNN PNN SVM KNN MLRM

ξmax[%] 93.36 85.84 85.84 91.15 90.27 86.73

ξa[%] 90.34 84.60 83.34 89.76 87.46 81.42

SD[%] 3.81 0.79 1.89 1.83 3.38 5.31

The effect of input of individual vector parameters x=(x1,x2, . . . ,xk, . . . ,xm)
is tested for the MLRM on significance level p=0.05, while using Error/Baseline
(E/B) for neural networks. The results of the modelling are presented in Table
4. Statistically significant parameters of the vector x=(x1,x2, . . . ,xk, . . . ,xm)
are marked with an asterisk. For some structures from Table 3, those input
parameters are significant for which E/B>1 (i.e. the use of these parameters
leads to the reduction of Root Mean Squared Error, (RMSE)). Beta coefficient
evaluates the relative contribution of each parameter to the overall classification
of the class ωi,j∈Ω.

Table 4. Results of sensitive analysis of vector components x=(x1,x2, . . . ,xk, . . . ,xm)

x1 x2 x3 x4 x5 x6

RBF 0.997 1.000 1.033∗ 1.038∗ 1.572∗ 1.077∗
FFNN 0.990 1.030∗ 1.146∗ 1.162∗ 1.582∗ 1.388∗
MLRM -0.016 0.046 0.147∗ 0.155∗ 0.350∗ 0.417∗

x7 x8 x9 x10 x11 x12

RBF 1.030∗ 1.120∗ 1.134∗ 1.161∗ 1.022∗ 1.005∗
FFNN 1.021∗ 1.543∗ 2.181∗ 1.687∗ 1.029∗ 1.078∗
MLRM 0.210∗ -0.389∗ 0.272∗ 0.028 0.010 -0.018

There is strong evidence of a relationship of municipal creditworthiness to
economic, debt and financial parameters. From economical parameters, munic-
ipal creditworthiness is mainly influenced by the rate of unemployment x3 and
economy concentration x4 as they evaluate general economic wealth of the mu-
nicipality, and a long-term flexibility of the municipal economy. From debt pa-
rameters, it is generally debt service indicator x5 measuring the ability of the
municipality to pay off the debt service DS from regular budget revenues. Fi-
nancial parameters reporting on the quality of the budget implementation x8,
fiscal autonomy x9 and capital activity of the municipality x10 have also been
shown as key parameters to measuring creditworthiness of municipalities.
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5 Conclusion

The paper presents the problem of municipal creditworthiness evaluation. The
model design realizes municipal creditworthiness evaluation. The previous anal-
ysis of unsupervised methods [3] (KSOFM, ART-type neural networks, cluster
analysis and fuzzy cluster analysis) showed that the KSOFM is the most suitable
one for municipal creditworthiness modelling. The classes ωi,j∈Ω obtained based
on the labelling the outputs of the KSOFM are used as the inputs of the RBF
neural networks. The RBF neural networks structures were designed and studied
for the classification of municipalities oi∈O into classes ωi,j∈Ω due to its high
maximum classification accuracy ξmax [%] and average classification accuracy
ξa[%] with a low standard deviation SD[%]. In context of classification accuracy
ξ[%], dependencies of classification accuracy ξ[%] on number of neurons q and
radius value ri of activation function hi(x) are studied. The results of the de-
signed model for classification of municipalities oi∈O into classes ωi,j∈Ω show
the possibility of evaluating municipal creditworthiness of the given municipali-
ties in years to come. Based on sensitivity analysis of individual vector x=(x1,x2,
. . . ,xk, . . . ,xm) components, contributions to classification quality of i-th object
(municipalities) oi∈O to the j-th class ωi,j∈Ω are studied in terms of economic,
debt and financial parameters. Further, the model presents an easier conception
of the municipal creditworthiness for the public administration managers. Clas-
sification by the RBF neural networks was carried out in program environment
SPSS Clementine 10.1.
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A Comparison of Three Methods with Implicit
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a BCI
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Abstract. When using a pattern recognition technique to classify sig-

nals, a common practice is to define a set of features to be extracted and,

possibly after feature selection/projection, to use a learning machine in

the resulting feature space for classification. However it is not always easy

to devise the “right” set of features for a given problem, and the resulting

classifier might turn out to be suboptimal because of this, especially in

presence of noise or incomplete knowledge of the phenomenon. In this

paper we present an off-line comparison of three methods (genetic algo-

rithm, time-delay neural network, support vector machines) that leverage

different ideas to handle features; we apply them to the recognition of

the P300 potential in an EEG-based brain-computer interface. They all

performed good, with the genetic algorithm being slightly better.

Keywords: Brain-Computer Interface, P300 Potential, Time-Delay

Neural Networks, Genetic Algorithms, Support Vector Machines.

1 Introduction

A brain-computer interface (BCI) is an interface that does not entail muscle
movements, but it bypasses any muscle or nerve mediation to connect a com-
puter directly with the brain through the signals generated by the brain activ-
ity. Among the different kinds of brain activity that can be used in a BCI, the
P300 phenomenon has been known [1] and investigated for many years. It is an
event-related potential (ERP), visible in an EEG recording as a positive peak at
approximately 300ms from the event. It follows unexpected, rare, or particularly
informative stimuli, and it is stronger in the parietal area. The shape of the P300
depends on the characteristics of the stimuli and their presentation.

The P300 has been widely used for BCIs, with many variations, but in all cases
the paradigm is the same: the BCI system presents the user with some choices,
one at a time; when it detects a P300 potential the associated choice is selected.
The user is normally asked to count the number of times the choice of interest
is presented, so as to remain concentrated on the task (although the counting is
not mandatory). As the P300 is an innate response, it does not require training
on part of the user, but algorithms must adapt to the particular shape of each
user’s P300 in order to detect it. Detecting a P300 in a single trial is very difficult

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 515–524, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and, therefore, repeated stimuli are normally used to facilitate the detection of
the correct stimulus. The number of repetitions can be predetermined for each
user to get the best trade-off between speed and accuracy.

In [2], Donchin and colleagues presented the first P300-based BCI, called also
P300 speller, which permits to spell words. A 6×6 grid of letters and symbols is
presented to the user, and entire columns or rows are flashed one after the other
in random order (see Fig. 1 for an example). When the column/row containing
the desired letter is flashed, a P300 is elicited. Each one of the 6 rows and 6
columns is flashed exactly once in the first 12 stimulations; then another round
of 12 stimulations is repeated, with flashing of rows and columns done in a new
random order, and this procedure is repeated for a predefined number of times for
each letter. In [2], epochs 1.1 s long are extracted around each stimulation, and
classification is made through Stepwise Discriminant Analysis (SWDA) applied
to averages of samples from epochs relative to the same stimulation (same row
or same column).

Fig. 1. The visual stimulator for a P300-based BCI speller. Lines and rows are flashed

one at a time in random order, and the intersection between the row and the column

that elicit a P300 indicates the selected letter.

P300 has been used in other BCI experiments, with different classification
techniques. In [3], a virtual-reality system is presented where subjects oper-
ate objects selected through the P300. Classification is made by comparing the
correlation of single responses with the averages of all target and non-target re-
sponses. In [4] a wheelchair driven by a BCI is described, and P300 is recognized
through a genetic algorithm. In [5], the subjects (healthy and impaired ones)
control a cursor by choosing among four commands (up, down, left, right) via
the P300. Single-sweep detection is performed; independent component analysis
(ICA) is used to decompose the EEG signals, a fuzzy classifier selects one of
the components extracted by ICA, and a neural network classifies it as target or
non-target. The system is more effective with healthy subjects, though no exact
reason could be pinpointed. In [6], an initial attempt at using a BCI in a home
environment is reported: A person with ALS uses a P300 speller on a daily basis.
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Often in the literature (and in the works cited in the previous review) when a
pattern recognition technique is used to recognize the P300 signal, a two-stage
process is employed: feature extraction, followed by classification in this new fea-
ture space. This approach starts with the definition of a suitable set of features
to be extracted from the signal and, possibly after feature selection/projection,
it applies a learning machine on those features in order to generate a classifier.
Especially when the signal to noise ratio is very low and the a-priori informa-
tion/knowledge about the observed phenomenon is only partial, it is not always
easy to define the “right” set of features for a given signal or problem, and the
resulting classifier might turn out to be suboptimal due to the suboptimal choice
of the feature space. In these situations, the use of methods able to automatically
find the best features for classification is of uttermost importance.

In this paper we present a comparison of three methods for implicit-feature
classification applied to the recognition of the P300 event-related potential in an
EEG based brain-computer interface. These methods either use the raw signals
for classification or implement an implicit, data driven, feature extraction that
is not based on any knowledge about the phenomenon, but it is automatically
optimized for the classification task. These methods are genetic algorithms, time-
delay neural networks and support vector machines, and they are described in
details in the next section. In Sect. 3, we present and briefly discuss experimental
results on real data coming from an international BCI competition and from
recordings at the AIRLab of Politecnico di Milano.

2 Models and Methods

In this section the three methods for implicit-feature classification of the P300
are presented. Two methods, one based on a genetic algorithm and one based on
time-delay neural networks, have been developed by our group; the third, based
on support vector machines, has been replicated from the literature. Our method
to recognize P300s with a time-delay neural networks is presented here for the
first time, while the other methods have been already published. All methods
can be applied in real time on recent processors.

2.1 Genetic Algorithm

We applied the genetic algorithm described in [7] to data recorded from people
using a P300 speller in an offline fashion. In this section, only a very brief de-
scription of the algorithm is given; details are given for the fitness function, as
it differs from the one used in the cited work.

Genetic algorithms are a class of optimization algorithms that mimic the
way natural evolution works. In a genetic algorithm, a set of possible solutions
to an optimization problem are coded in strings called chromosomes ; solutions
are evaluated, and the best ones (those with highest fitness) are selected and
combined together to form new possible solutions. After enough repetitions of
this procedure, good solutions emerge.
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In the genetic algorithm used in this work, each individual (chromosome)
represents a set of possible features for discriminating the presence of a P300
in epochs of EEG recordings. Each gene encodes a feature and an EEG channel
from which to extract it; a feature is obtained by multiplying the EEG channel
by a weight function (see Fig. 2 for two examples), whose exact shape is encoded
by parameters in the genes. Genetic operators are variants of 1-point crossover
and uniform mutation, and tournament selection with elitism is used.

0

0.5

1

A1 A2
0

0.5

1

A1 A2

Fig. 2. Weight functions used for feature extraction

The fitness of a chromosome is determined by measuring the performance of
a logistic classifier on the features it encodes. To have a fair estimate of the
performance, a 4-fold cross-validation scheme on the training set is used, and
the mean performance on the 4 folds is used as the fitness.

The performance is measured as the number of correctly predicted letters,
with a little bonus for letters that can be correctly predicted with less than
the maximum number of repetitions, i.e., the number of times the whole grid is
flashed for each letter. Let us call l the number of correctly predicted letters out
of a total of n, N the number of repetitions in the data set, and ri, i = 1 . . . n,
the number of repetitions needed for the prediction of the letter i. The fitness
f , used by the genetic algorithm, is then given by

f =
1
n

(
l +

1
l

∑
i∈I

N − ri

N + 1

)
, (1)

where I is the set of correctly predicted letters. The second term in the paren-
theses computes an index, averaged over the l correct letters, that grows with
the decreasing of ri; this index is always strictly less than 1, and therefore it
contributes to the fitness less than a single correctly predicted letter. In this
way, a higher number of correct letters is always preferred to a lower number of
repetitions needed for correct prediction. Repetitions are taken in their occurring
order, and ri is computed in way such that if a letter is correctly predicted by
using the first ri repetitions, then it must be correctly predicted also by using the
first ri +1, . . . , N repetitions. In other words, if a letter were predicted correctly
after 3 repetitions, wrongly after 4, and again correctly when using 5 repetitions
or more, then ri would be 5, and not 3.

Typically a chromosome contains about 100–150 different unique features at
the end of a run of the genetic algorithm; an analysis of the combination of the
encoded features and the classifier trained on the training set allows to compute
weights assigned to individual EEG samples (see Fig. 3).
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Fig. 3. The green solid line is an example of a template found by the GA for one EEG

channel. For comparison, also the average of target (dashed red line) and non-target

(dot-dashed blue line) responses are shown.

2.2 Time-Delay Neural Networks

Neural networks can be applied for the detection of patterns in signals. In case the
signals to be processed are affected by translations and distorsions, the position
of the patterns in the input may be subject to variation. In this case a neural
network of relevant size may be required for the recognition task, with overfitting
problem that may occur if the training data is scarce.

Time-delay neural networks (TDNNs) are multilayer backpropagation neu-
ral networks that present a modular architecture with replicated weights [8].
TDNNs use sliding windows to process input signals, with windows represented
by sets of units in the input layer. The windows are partially overlapped and are
connected to a set of neurons in the next layer, which use the windows as local
receptive fields to look for local features in the input. All the windows share the
same weights for the connections to the relative neurons, enabling the network to
process several parts of the input in the same way. This replicated architecture
allow to be invariant to shifts and distortions of the input, as local feature detec-
tors scan the input. The structure is replicated in the following layers combining
the extracted features of previous layers, with the network trained through a
backpropagation algorithm. The reduced number of weights due to replication
reduces the capacity of the network, improves its generalization ability, and tends
to result in a reduced amount of data required for the training.

The idea is to feed a TDNN with raw EEG data, with the first layers that
act as feature extractors, while the remaining part of the network performs
the classification. As all the network parameters are set through the learning
procedure, it would not be necessary to explicitly design a feature extractor.

In our application a TDNN has been designed to discern between presence
or absence of a P300 in an EEG. For this classification task the window length
in the input layer has been set to 400ms, a time interval sufficient to contain
a single elicited P300. Considering that a P300 peak is elicited roughly 300ms
after a stimulation, we use 1 s epochs derived from the EEG recordings in cor-
respondence of each stimulus, starting from 200ms before the stimulation. The
derived patterns are classified by a 3-layer TDNN with a [S ×C] unit matrix as
input layer, where C represents the number of EEG channels, and S the number
of EEG samples contained in the length of an epoch (see Fig. 4). According to
the 400ms time interval set to process the input, windows of size [0.4S × C]
are applied in the input layer, with windows sliding one sample each time. Each
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Fig. 4. The TDNN used to process EEG patterns

window is fully linked to 4 neurons in the hidden layer forming a [(0.6S+1)×4]
matrix. The hidden layer and the single output unit adopt the logistic function
and are fully interconnected to perform the final classification.

As most of the examples in the data sets are relative to non-target stimuli,
a balancing of the training and validation sets is necessary to avoid undesired
bias towards non-target patterns. We have balanced the sets by discarding some
non-target recordings so that the number of non-targets is the same as targets.
For the definition and evaluation of the designed TDNNs, the Stuttgart neural
network simulator (SNNS) tool and its Java counterpart, the JavaNNS [14], were
adopted.

2.3 Support Vector Machines

We replicated also the method used by the winners of the BCI Competition
2003 [9,10], data set IIb, Kaper and colleagues from the University of Bielefeld,
Germany [11]. Their method relies more on the power of the classifier employed,
an SVM, than on signal processing, and the feature extraction is done implicitly
by the SVM; in other words, this is a blind algorithm, which does not rely on
specific knowledge about the P300.

A support vector machine (SVM) [12,13] is a supervised learning method used
for classification and regression developed by Vladimir Vapnik in the late 1970s.
In the simplest case, an SVM is a hyperplane in the space X of the samples x.
This hyperplane separates the space in two regions, one for each of the possible
labels. Samples are assigned labels depending on which side of the hyperplane
they lie (see Fig. 5). In formulas:

f(x) = sign(f∗(x)) (2)
f∗(x) = 〈w,x〉+ b . (3)
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Fig. 5. SVM: the maximum-margin (optimal) hyperplane in the non-separable case.

Support vectors are surrounded by a circle.

The hyperplane is found through an optimization algorithm in such a way to
maximize the distance of the plane from the nearest samples (margin in SVM
terminology) and minimize the number of misclassified samples. In mathematical
terms, this goal can be written by introducing slack variables ξi, i = 1 . . .N so
that the SVM minimizes

‖w‖2 + C
∑

i

ξi (4)

subject to

yi (〈w,x〉 + b) ≥ 1− ξi (5)
ξi ≥ 0 (6)

The parameter C can be varied to shift the trade-off between margin and errors.
It is possible to extend the idea to non-linear SVMs by mapping samples x in

a higher-dimensional space H by means of non-linear function Φ : X → H. The
separating hyperplane is now to be found in H. By using a Φ such that H and
Φ satisfy Mercer’s condition [13], it is possible to find a kernel function K such
that 〈Φ(xi),Φ(x)〉 = K(xi,x), where K(·, ·) is much easier to compute than the
inner product in H. The discriminating function becomes

f∗(x) =
∑

i

αiyiK(xi,x) + b , (7)

where xi are support vectors, i.e., the training samples closest to separating
hyperplane and all the misclassified training samples, and αi are coefficients
found by the training process.

In Kaper’s method, an epoch begins at the time of stimulus, and ends 600ms
after. Epochs are bandpass filtered between 0.5 and 30Hz, and then normalized
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to the [−1,+1] interval. The training set is balanced by taking only two non-
target examples from each repetition, which already contains exactly two target
examples, and an SVM is trained directly on the balanced training set. In this
case, the normalized EEG samples are used as features for the classification.

In order to find out the unknown letter in the test set, several repetitions are
combined together. Starting from the first repetition, a score is assigned to each
row and column. Scores from different repetitions are added together, and the
row and the column with the maximum total score after the last repetition is
selected and the corresponding letter is chosen. This procedure is repeated for
each letter in the test set.

The score mentioned above is the SVM discriminant function f∗(·) in equation
(7). In this case, the kernel function K(·) is Gaussian. The parameter σ of the
kernel and the penalization coefficient C in the objective function of the SVM
are found with a cross-validation scheme on the training set.

3 Experiments and Results

We applied the methods described above to two different data sets: the data set
IIb from the BCI Competition 2003 [10], and recordings made at AIRLab, our
laboratory. Both data sets consist in EEG recordings of subjects using a P300
speller like the one described in [2], made in three sessions; in our classification
experiments, the first two sessions were used for training, and the last one was
used for testing. For the competition data set, EEG was recorded from one
subject with 64 electrodes in all positions of the 10-10 system and a sampling
frequency of 240Hz; stimuli were repeated 15 times for each letter. We used
only channels Fz, Cz, Pz, Oz, C3, C4, P3, P4, Po7, and Po8, as they gave good
results and they are the same selected by the competition winners [11]. Also,
we recorded data from five subjects in our laboratory using four channels (Fz,
Cz, Pz, Oz) at 512Hz; stimuli were repeated only 5 times per letter. The two
data sets differ also for the timing: a stimulus was given every 175ms in the
competition data set, and every 200ms in AIRLab recordings. Care has been
taken to avoid the presence strong 50Hz noise in the data; spectral analyses
confirmed this.

For GA and TDNN epochs started from 200ms before each stimuli and were
1 s long, while for SVMs they started from the stimulus time and were 600ms
long. A decimation factor of 4 was used always for AIRLab data, resulting in a
128Hz frequency, while data from the competition were decimated with different
factors because of memory constraints; a factor of 3 (resulting in 80Hz) was used
for GA, no decimation was applied for SVMs, and a factor of 2 (down to 120Hz)
was used for TDNNs.

For all three classification methods, the test results are computed in terms of
correctly classified letters in the test set, the same criterion used in the compe-
tition. Letters are selected by considering all repetitions for each letter: Classifi-
cation results related to the same stimulus (i.e., same column or row) are added
together, and the row and the column with the highest score are selected. Ta-
ble 1 shows the test results of the three methods applied to data sets described
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Table 1. Test results of the three methods applied to different data from P300 speller

tasks

Data set / Subj. GA TDNN SVM

Competition 31/31 (100%) 30/31 (97%) 31/31 (100%)

AIRLab S1 121–126/143 (85–88%) 118/143 (83%) 119/143 (83%)

AIRLab S2 89–95/165 (54–58%) 92/165 (56%) 89/165 (54%)

AIRLab S3 91–94/144 (63–65%) 65/144 (45%) 64/144 (44%)

AIRLab S4 80–85/199 (40–43%) 64/199 (32%) 92/199 (46%)

AIRLab S5 46-52/135 (34–39%) 41/135 (30%) 51/135 (38%)

above as the ratio (and the equivalent percentage) of correct letters over the
total number of letters in the test sets. For the GA, a range of values is shown
instead of a single number, as we have decided to show the entire range of values
obtained for all chromosomes with a fitness that is at least 99% of the top fit-
ness. In fact, a single GA run returns many different chromosomes that reaches
the top fitness and all these chromosomes are closely related, due to the mixing
of the genetic material. For this reason, it is not possible to summarize their
performance in one number, as by averaging, for example.

The results of the three methods are similar, though their relative strength
vary a little depending on the data set. Overall, the GA obtains the best results,
while the results of SVMs are slightly better than those of TDNNs. The per-
formances on some subjects are very low for all methods, but that is expected,
because for the AIRLab data set only 5 repetitions and 4 EEG channels are
used; such a “hard” data set makes it easier to compare the various methods.

The three methods implement the idea of implicit or automatically optimized
features in different ways. The genetic algorithm uses a fixed classifier family
and features are in a way created so as give the optimal classification results.
Although features are involved, they are not chosen in advance, and when com-
bined with the logistic classifier they naturally lead to a featureless template.
In the TDNN model, features can be thought of as if learned implicitly in the
weights of the neurons. In the case of an SVM, features cannot be pinpointed in
any particular aspect of the model.

Beside the architecture presented in Sect. 2.2, we examined other network
topologies for TDNNs, varying the number and the sizes of the hidden layers,
increasing or decreasing the epoch length and the window size, and using neurons
in the hidden layer connected to input-layer neurons relative to different numbers
of channels. The results were always worse than for the proposed TDNN, or at
most comparable with it.

The fact that the GA performed better than TDNNs and SVMs may seem
strange, as the discriminant function found by the GA is linear, while the other
two methods can find a nonlinear separation. There are two possible explanations
for this: Either the training of TDNNs and SVMs makes a bad use of the available
degrees of freedom because it needs a better tuning, or the highly noisy nature
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of the problem calls for simpler classifier. Possibly, further experiments could tell
which is the best explanation.
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Abstract. We investigate the computational capabilities of probabilis-

tic cellular automata by means of the density classification problem.

We find that a specific probabilistic cellular automata rule is able to

solve the density classification problem, i.e. classifies binary input strings

according to the number of 1’s and 0’s in the string, and show that

its computational abilities are related to critical behaviour at a phase

transition.

1 Preliminaries

Cellular automata (CA) models have been widely studied and applied in physics,
biology and computer science. They are among the simplest mathematical sys-
tems which exhibit self-organisation, complex patterning and capability of uni-
versal (Turing) computation [1,2,3]. Various authors have suggested CA as the
generic model for parallel, biologically inspired computing [1,4,5]. As such they
are closely related to neural networks [5]. In this contribution we investigate
claims regarding the computational abilities of elementary probabilistic cellular
automata.

1.1 Deterministic Cellular Automata

A deterministic cellular automaton (DCA) is specified by a d-dimensional regular
discrete lattice L with given boundary conditions, a finite set Σ of states xi

assigned to each node or cell i of the lattice and a local rule f acting on the
states in the range k of the neighbourhood N i

k of each cell i in discrete time steps.
Given some initial configuration of states, the local rule completely determines
the dynamics of the cellular automaton. In this paper we deal with finite DCA,
that is DCA with a finite number N of cells, and elementary DCA, that is
DCA with d = 1, Σ = {0, 1} and nearest neighbourhood k = 3. In this case,
there are 256 different possible local rules xi

t+1 = f(xi−1
t, xi

t, xi+1
t). The N

cells are subject to periodic boundary conditions and their states xi are updated
synchronously by the local rule. Local rules are given by a rule table.
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Example 1 (Rule 232). The rule table of the so-called majority DCA rule 232
is (f(111) = 1, f(110) = 1, f(101) = 1, f(100) = 0, f(011) = 1, f(010) =
0, f(001) = 0, f(000) = 0).
It is customary to assign a decimal number to such rule tables. One speaks of
rule 232 as the binary expansion of the decimal number 232 (232 = 11101000)
which encodes the rule table when read from left to right.

A configuration or global state xt of a CA is the string of the states of the
N cells at the time t, that is xt = (xt

0, x
t
1, ..., x

t
N−1). Starting from an initial

configuration x0, the global function or map F then maps configuration xt to
xt+1 = F (xt), thereby generating a space-time pattern. The global map F is
only indirectly given through the local rule f . A quiescent or stationary global
state x∗ is defined as x∗ = F (x∗).

Any DCA rule can be represented as a Boolean function, which is expressible
as a disjunctive normal form (DNF) [1]. The DNF is a disjunction of clauses,
where a clause is a conjunction of Boolean variables.

Example 2 (DNF of rule 232). DCA rule 232 written as a DNF is (Xi−1 ∧Xi ∧
Xi+1)∨ (Xi−1 ∧Xi ∧¬Xi+1)∨ (Xi−1 ∧¬Xi ∧Xi+1)∨ (¬Xi−1 ∧Xi ∧Xi+1) with
the Boolean variables Xi, the disjunction denoted by ∨, the conjunction by ∧
and the negation by ¬.

As outlined in [6] the DNF of CA rules can then be rewritten as algebraic
expressions which represents CA dynamics in a concise form.

Example 3 (Algebraic expression of rule 232). The algebraic expression for DCA
rule 232 is

xi
t+1 = xi−1

t · xi
t + xi

t · xi+1
t + xi−1

t · xi+1
t − 2xi−1

t · xi
t · xi+1

t (1)

We now turn to a stochastic generalisation of deterministic CA, that is proba-
bilistic CA.

1.2 Probabilistic Cellular Automata

Probabilistic cellular automata (PCA) are generalized DCA in the regard that
the states xi are stochastically updated, that is by some local probability tran-
sition function. In the case of elementary PCA this means that the probability
of having cell i the value x̃i = 1 at the time t+ 1 is given by p[x̃t+1

i |(xt
i)], where

(xt
i) are the states of the cells in the next-nearest-neighbourhood of cell i, i.e.

(xt
i) = (xt

i−1, x
t
i, x

t
i+1). The local probability transition function is subject to the

normalisation condition
∑

x̃t+1
i ={0,1} p[x̃

t+1
i |(xt

i)] = 1. The probabilistic majority
rule we will work with exemplifies the notion of elementary PCA.

Example 4 (Majority PCA rule). The rule table of the majority PCA rule is
(p(111) = 1, p(110) = ε, p(101) = ε, p(100) = 1 − ε, p(011) = ε, p(010) = 1 −
ε, p(001) = 1− ε, p(000) = 0).

That is the probability for x̃t+1
i = 1 given (xt

i−1, x
t
i, x

t
i+1) is (1, ε, ε, 1− ε, ε, 1−

ε, 1− ε, 0).
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The properties of PCA from a statistical mechanics viewpoint have been widely
discussed [7,8]. The general dynamics of PCA is given by a master equation [7,9]
which reads to

P [x̃t+1
i ] =

∑
(xi)

P[(xt
i)]
∏
i

p[x̃t+1
i |(xt

i)] (2)

where
∑

(xi) P[(xt
i)] is the sum (over all global states (xt

i)) of the probabilities
to find the PCA in some state xi at the time t and p[x̃t+1

i |(xt
i)] is the local

probability transition function.
Following the algebraic approach outlined above, the local probability transi-

tion function of the majority PCA rule can be written as

p[x̃t+1
i |(xt

i)] = xi−1
t + xi

t + xi+1
t − 2xi−1

txi
t − 2xi−1

txi+1
t − 2xi

txi+1
t + 4xi−1

txi
txi+1

t

−ε(xi−1
t + xi

t + xi+1
t − 3xi−1

txi
t − 3xi−1

txi+1
t − 3xi

txi+1
t + 6xi−1

txi
txi+1

t).

Accordingly, the dynamics of the majority PCA rule can be written as

x̃t+1
i = xi−1 + xi + xi+1 − 2xi−1xi − 2xi−1xi+1 − 2xixi+1 + 4xi−1xixi+1

−Yi(xi−1 + xi + xi+1 − 3xi−1xi − 3xi−1xi+1 − 3xixi+1 + 6xi−1xixi+1) (3)

where {Yi}N−1
i=0 is a set of iid random variables with probability distribution

p[Yi = 1] = ε, p[Yi = 0] = 1− ε (and xt
i shortened to xi).

Solving the master equation for large N is usually not feasible. In order to
simplify the treatment one works in a mean field approximation (MF). The MF
approximation assumes that the values xt

i are independent of each other and
the probability of having cell i in state xt

i is therefore given through the global
density ρt = 1

N

∑
i x

t
i. In the MF, the dynamics of the global density variable

becomes (with ρt shortened to ρ)

ρt+1 = 3ρ− 6ρ2 + 4ρ3 − ε(3ρ− 9ρ2 + 6ρ3) (4)

PCA are finite Markov chains [14]. In the case of the majority PCA rule defined
above, we have an absorbing finite Markov chain. Again, as an array of N cells
yields 2N different configurations, i.e. global states, most techniques developed
in the field of finite Markov chains are not practicable for large N . Theorems
regarding general properties of absorbing finite Markov chains can however be
of use.

2 Computing with Probabilistic Cellular Automata

The computational abilities of deterministic cellular automata (DCA) have been
early recognized and discussed in Wolfram’s contributions and by ensuing papers
[10]. The basic idea is that some input string x0 at time t = 0 is processed
to some output string xT at time T through the DCA’s time evolution. We
therefore define computation, in this context, as the global map G(x0) = xT

with G = FT (x0), that is the global map F is iterated T times. The computation
time T is the number of the discrete time steps in the DCA evolution from the
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input to the output string. The output string xT is usually, but not always, some
quiescent, i.e. stationary state.

Wolfram and other authors have described computing by DCA within formal
language theory. We follow here a different approach by, generally, adhering to
a dynamical system viewpoint on CA and, specifically, by discussing a partic-
ular exemplary problem, the so-called density classification problem. In fact, it
can be questioned whether any global map G should be called “computational”
irrespective of a specific, well-defined computational problem at hand.

The density classification problem is the computational task to classify input
strings according to their densities of 1’s and 0’s. Usually this means that the
CA should asymptotically evolve to either the 0- or 1-quiescent state, that is
the global state with all states equal 0, or 1 respectively, depending on the
initial densities. In the Markov chain liteature, this final, stationary global state
is called the absorbing state. The density classification problem is an obvious,
well-defined computational task which any basic computing device should be
able to carry out. Land and Belew have however shown that there exists no
elementary DCA able to solve the problem [11]. Later Fuks has demonstrated
that a specific PCA rule can solve the problem in a stochastic sense [12]. We
investigate a different PCA rule, e.g. the majority PCA rule introduced above,
and discuss its computational capabilities in broader terms.

2.1 PCA and DCA

As we will see, the majority PCA rule solves the density classification problem in
a stochastic sense. The basic reason for this is, that the PCA, unlike DCA, will
not get stuck in certain non-intended periodic patterns, that is certain quiescent
or periodic states. As pointed out before, a PCA rule is a stochastic combination
of DCA rules [8]. In the case of the majority PCA rule this means that we have
with a certain probability ε DCA rule 232 (the deterministic majority rule) and
with probability 1− ε DCA rule 150.

Example 5 (The majority PCA rule as a combination of DCA rules). With prob-
ability ε the majority PCA rule is equal to DCA rule 232

xt+1
i = xi−1

txi
t + xi−1

txi+1
t + xi

txi+1
t − 2xi−1

txi
txi+1

t

and with probability 1− ε DCA to rule 150

xt+1
i = xi−1

t
+ xi

t
+ xi+1

t − 2xi−1
txi

t − 2xi−1
txi+1

t − 2xi
txi+1

t
+ 4xi−1

txi
txi+1

t.

It has been shown [13] that a pair of elementary DCA, namely rules 184 and
232, can solve the density classification problem exactly. In view of the above
considerations, this comes as no surprise as a pair of DCA rules is, in a certain
sense, equivalent to a single PCA rule. In future work, we intend to study further
which combinations of DCA are equivalent to which PCA and why.
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2.2 Density Classification and Phase Transitions

We now discuss simulation results for the majority PCA and compare it with
the MF predictions. As mentioned before, the majority PCA is a finite, ele-
mentary probabilistic cellular automata with periodic boundary conditions and
synchronous updating. Because the majority PCA is a finite absorbing Markov
chain, every individual majority PCA will end up in an absorbing state after
a finite number of time steps [14], that is every input string will eventually be
classified. An ensemble of equivalent majority PCA will however show a dis-
tinct behaviour which can be approximated by the MF approach. In the MF

a b

Fig. 1. a Space-time pattern of a single majority PCA with ρ0 = 2
3
, ε = 2

3
and N = 100.

Time axis is from top down. b Dynamics of the global density for two single majority

PCA with ρ0 = 2
3
, ε = 2

3
and N = 100 and of the mean global density of an ensemble

of 100 majority PCA with ρ0 = 2
3
, ε = 2

3
and N = 100. The mean global density

fluctuates around ρ0 = 2
3
.

approach the global density for ε = 2
3 is ρt+1 = ρt, that is the global density

for an ensemble of equivalent majority PCA is preserved. For ε = 2
3 this result

holds also when using the exact local probability transition function, which can
be seen by taking expectation values of both sides of equation (3) which yields
E[ρt+1] = 1

N

∑
i E[x̃t+1

i ] = 1
N

∑
i E[xt

i] = E[ρt]. For ε = 2
3 the majority PCA

thus solves the density classification problem in the sense that input strings will
be classified correctly with a probability equal to the initial density of the input
string. For ε > 2

3 the MF approach predicts an unstable fixed point at ρ = 1
2

and stable fixed points at ε = 0, ε = 1 respectively. For ε < 2
3 the MF approach

predicts a stable fixed point at ρ = 1
2 and unstable fixed points at ε = 0, ε = 1
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Fig. 2. Dynamics of the global density in the MF approach, i.e. ρt+1 vs. ρt, for ε = 0.1, 2
3

and 0.9 respectively

respectively. The MF approach thus predicts a first-order phase transition at the
critical point ε = 2

3 in the order parameter ρ. By “first-order phase transition”
we mean, in this context, a discontinuous transition in the order parameter.

The simulation results displayed in Fig. 3 shows that there is indeed a phase
transition at ε = 2

3 , albeit of second order (i.e. a continuous phase transition).
The global density at ε = 2

3 is, as predicted, preserved. For ε > 2
3 the final global

density is below the MF prediction, but nevertheless classifies better than the
rule in [12]. For ε < 2

3 the global density rapidly tends to ρT = 1
2 .

As stated before, every individual majority PCA will eventually end up in
the absorbing state, that is in either the 0- or 1-quiescent state. We define the
accurancy of the computation as the fraction of correct solutions by the majority
PCA to the density classification problem, that is the final global density. The
efficiency of the computation is then the ratio of time to absorption T to the
accurancy. As can be inferred from Fig. 3 and 4 the computational efficiency is
highest around the critical point ε = 2

3 for initial densities ρ0 = 0.5, 1
3 , and 2

3 and
at around ε = 0.9 for initial densities ρ0 = 0.1 and 0.9. In ongoing work we study
the possibilities to derive analytical expressions formalising these observations.

There has been much speculation in recent years about computation at the
“edge of chaos” or near critical points of phase transitions, albeit no formal the-
ory, as far as we know, has elaborated on these speculations. From the majority
PCA, we first see that we have a phase transition at ε = 2

3 and an enhanced
computational capacity in the sense that there is a transition from solving one
problem, the density classification problem, to another which could be termed
the “reshuffling problem” as an input string with an arbitrary initial density will
be effectively reshuffled to a state with ρ = 1

2 . Secondly, we observe that the
“optimal” computational capability of the majority PCA, that is its efficiency
in the sense defined above, is in the vicinity of the critical point ε = 2

3 .
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Fig. 3. The global density ρ at time T = 10000 for an ensemble of 100 identical majority

PCA with N = 100 cells in dependence of the parameter ε for different initial global

densities ρ0 = 0.9, 2
3
, 0.5, 1

3
, 0.1

Fig. 4. The absorption time T for an ensemble of 100 identical majority PCA with N =

100 in dependence of parameter ε for different initial global densities ρ0. The curves

show the minimum average absorption time as the running time of the simulation was

bounded by T = 10000.
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3 Summary

In order to examine the computational abilities of probabilistic cellular automata
we have investigated a specific well-defined computational task, the density clas-
sification problem, that is the classification of binary input strings according to
the number of 1’s and 0’s in the input strings. In this contribution we showed:

1. that a simple stochastic generalisation of the deterministic majority rule 232,
that is the majority PCA rule, can solve the density classification problem
(which is not solvable by DCA) in a stochastic sense,

2. that, compared with the deterministic rule, the enhanced computational
capability is due to a stochastic combination of deterministic CA rules,

3. that the majority PCA is classifying more strings correctly above a critical
point than other rules proposed before

4. and that there is a second-order phase transition in the order parameter ρ
which is related to the computational abilities of the majority PCA.

This preliminary contribution focuses on illustrating the computational abilities
of probabilistic cellular automata within a specific computational task. Proba-
bilistic cellular automata are simple computational systems which can closely
model biological of physical systems. We believe that further investigation into
probabilistic cellular automata will shed light on the connection between actual
physical or biological systems and their computational abilities. Probabilistic
cellular automata offer a unified approach combining the methods of statistical
mechanics with the dynamical systems approach and notions of computation.
As such, they can serve as a natural benchmark for novel measures of “natural
computation” (e.g. [15]), which may eventually lead to a better understanding
of what “computation by nature” is.
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Abstract. The time delays in neural networks come from the trans-

formation of the information processing between neurons. To consider

delay-induced dynamics in neural networks, the four neurons are cou-

pled to model a called bidirectional associative memory neural network.

If the transformation time is distinct in the two direction, then two de-

lays occurs in the model. a simple but efficient method is first introduced

and then the delay-induced Hopf bifurcation is investigated and the peri-

odic approximate solution derived from the Hopf bifurcation is obtained

analytically. It can be seen that theoretical prediction is in good agree-

ment with the result from the numerical simulation, which shows that

the provided method is valid. The results show also that the method has

higher accuracy than the center manifold reduction (CMR) with norm

form theory.

Keywords: Artificial neural network, bidirectional associative memory,

delayed differential equation, Hopf bifurcation, periodic solution.

1 Introduction

To clarify the mechanism of the information processing in the brain of living
organisms, and investigate information coding of a neural network, a reasonable
mathematical model of the network is needed. In such mathematical model,
one has to consider the transformation delay in the information processing be-
tween the neurons, such as Hopfield model [1] from which the interest in inves-
tigating the dynamics of neural networks has been steadily increasing. Starting
from Kosko’s works [2], a called bidirectional associative memory neural network
(BAMNN) has kept many scientists attention for a few years. Due to bidirec-
tional structure, the BAMNNs have practical applications in storing paired pat-
terns or memories and possess the ability of searching the desired patterns via
both directions: forward and backward.
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c© Springer-Verlag Berlin Heidelberg 2009



Delay-Induced Hopf Bifurcation and Periodic Solution in a BAM Network 535

Until now, most studies was focused on the local and global stability analy-
sis for the BAMNNs with constant or varying delays, or subjected to impulses
by using the Lyapunov method or its extensive techniques [3,4,5,6,7]. It is well
known that studies on neural dynamical systems involve not only a discussion
of stability properties, but also many dynamic behaviors such as periodic os-
cillation, bifurcation and chaos. In many application, the properties of periodic
solution are of great interest. Therefore, it is quite interesting to obtain the pe-
riodic solution in a closed form from a Hopf bifurcation. Very recently, there
have been extensive literatures on bifurcation analysis of some special BAMNNs
[8,9,10]. Song et. al [8] was proposed a delay-differential equation to model a
bidirectional associative memory (BAM) neural network with three neurons.
The center manifold reduction (CMR) with the normal form technique is used
to investigate the stability and direction of the Hopf bifurcation due to delays.
Cao et al. [9] extended results of [8] to the model with four coupled neurons in
terms of the same approach. For the model considered in [8], Yan [10] employed
also the CMR to obtain the local codimension-two bifurcation. These researches
merely treated the delay-induced bifurcation qualitatively but not quantitatively
due to the restriction of using the CMR.

Fig. 1. The graph of architecture for model (1)

Motivated by such problem, we consider here a BAMNN with four neurons
and two delays. In particular, when there is only one neuron with the activation
function f1 on the I-layer and there are three neurons with respective activation
functions f2, f3 and f4 on the J-layer, the time delay of the transformation of the
information processing from the I-layer to J-layer is τ1 and that from J-layer back
to the I-layer is τ2, as shown in Fig. 1. The network schemed is modeled as [9]

ẋ1(t) = −μ1x1(t) + c21f1(x2(t− τ2)) + c31f1(x3(t− τ2)) + c41f1(x4(t− τ2)),
ẋ2(t) = −μ2x2(t) + c12f2(x1(t− τ1)),
ẋ3(t) = −μ3x3(t) + c13f3(x1(t− τ1)),
ẋ4(t) = −μ4x4(t) + c14f4(x1(t− τ1)), (1)

where xk (k = 1, 2, 3, 4) denote the state of the kth neuron, μk > 0 (k = 1, 2, 3, 4)
describe the stability of internal neuron processing between the I-layer and
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J-layer respectively, the real constants ck1 and c1k (k = 2, 3, 4) are the con-
nected weights between the I-layer and the J-layer neurons. Throughout this
paper, we assume that the activation functions fk : R → R (k = 2, 3, 4), the
connected weights ck1 and c1k(k = 2, 3, 4) in (1) satisfy the hypotheses given by

(H1) fk(x) ∈ C2(R,R), f ′
k(x) ≥ 0 and there exists a constant L > 0 such

that |fk(x)| ≤ L (k = 1, 2, 3, 4) for x ∈ R.
(H2) xfk(x) > 0, xf ′′

k (x) < 0 for x �= 0 (k = 1, 2, 3, 4).
In general, if the activation function is taken as tanh(x) or (1−e−x)/(1+e−x)

for x ∈ R to imitate the switch function, then Hypotheses (H1) and (H2) always
hold.

Our goal in this paper is to obtain the periodic solution from a Hopf bifurca-
tion in equation (1) quantitatively by introducing a simple but efficient method
[11], which has higher accuracy than the CMR with normal form.

2 Stability Analysis

It follows from (H2) that fk(0) = 0, which implies that (0, 0, 0, 0) is always
an equilibrium of (1). Letting τ = τ1 + τ2, u1(t) = x1(t − τ1), u2(t) = x2(t),
u3(t) = x3(t) and u4(t) = x4(t) yields that equation (1) is rewritten as

u̇1(t) = −μ1u1(t) + c21f1(u2(t− τ)) + c31f1(u3(t− τ)) + c41f1(u4(t− τ)),
u̇2(t) = −μ2u2(t) + c12f2(u1(t)),
u̇3(t) = −μ3u3(t) + c13f3(u1(t)),
u̇4(t) = −μ4u4(t) + c14f4(u1(t)). (2)

To determine the stability of the trivial solution for τ �= 0, the characteristic
equation of (2) at the trivial equilibrium is given by

λ4 + d3λ
3 + d2λ

2 + d1λ+ d0 + (e2λ2 + e1λ+ e0)e−λτ = 0, (3)

where d0 = μ1μ2μ3μ4 > 0, d1 = μ1μ2μ3 +μ1μ2μ4 +μ1μ3μ4 +μ2μ3μ4 > 0, d2 =
μ1μ2 + μ1μ3 + μ1μ4 + μ2μ3 + μ2μ4 + μ3μ4 > 0, d3 = μ1 + μ2 + μ3 + μ4 >
0, e0 = −(α21α12μ3μ4 +α31α13μ2μ4 +α41α14μ2μ3), e1 = −[(α21α12(μ3 +μ4)+
α31α13(μ2 + μ4) + α41α14(μ2 + μ3)], e2 = −(α21α12 + α31α13 + α41α14). When
τ > 0, one of roots in (3) can be represented in iω (ω > 0) if and only if ω2

satisfies with h(z) = 0, where

h(z) = z4 + az3 + bz2 + cz + d, (4)

and a = d2
3 − 2d2 > 0, b = d2

2 + 2d0 − 2d1d3 − e22, c = d2
1 − 2d0d2 + 2e0e2 − e21,

d = d2
0− e20,z = ω2. To consider the delay-induced periodic solution, we give two

hypothesis as follows
(H3) d0 +e0 > 0, d1 +e1 > 0, d3(d2 +e2)(d1 +e1) > (d1 +e1)2 +d2

3(d0 +e0),

(H4) z∗1 = −a

4
+ 3

√
− q

2
+
√
Δ + 3

√
− q

2
−
√
Δ > 0, h(z∗1) < 0 for Δ > 0,

where p = (8b− 3a2)/16, q = (a3 − 4ab+ 8c)/32, Δ = q2/4 + p3/27.
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It can be seen from (H3) that the Routh-Hurwitz criterion holds and all
roots of equation (3) have negative real parts if τ = 0, which implies the trivial
equilibrium of (1) is stable for τ = 0. One can conclude that h(z) = 0 has at least
one positive root z0, i.e. ω0 =

√
z0 if Hypothesis (H4) holds. Correspondingly,

values of τ can be solved in

τj =
1
ω0

[arccos(
P

Q
) + 2jπ], (5)

where P = e2ω
6
0+(d3e1−d2e2−e0)ω4

0+(d0e2+d2e0−d1e1)ω2
0−d0e0, Q = e22ω

4
0+

(e21 − 2e0e2)ω2
0 + e20. Thus, equation (3) has a pair of simple purely imaginary

roots ±iω0 at τ = τj . The obtained results is in good agreement with that by
Cao [9].

Now we illustrate Re(dλ(τj)
dτ ) > 0. According to [9], we know that the sign of

Re(dλ(τj)
dτ ) of root λ(τ) of (3) is the same as that of h′(ω2

0). If Δ > 0 and z∗1 > 0,
then h′(ω2

0) > 0. In fact, If Δ > 0, equation h′(z) = 0 has only one real root z∗1 .
Noticing that lim

z→±∞h(z) = +∞, we know that z∗1 is an unique minimum value

point of h(z) on R. Therefore, z∗1 < ω2
0 . In addition, when z∗1 > 0 and h(z∗1) < 0

hold, h′(z) > 0 for z > z∗1 . So we have the following theorem.

Theorem 1. For equation (2) with Hypotheses (H1) and(H2), three conclusions
are obtained as follows.

(a) If (H4) holds and d0−e0 < 0 or if (H3) and (H4) hold but d0−e0 ≥ 0, then
the trivial equilibrium is asymptotically stable for τ ∈ [0, τ0) and unstable for
τ > τ0. Equation (2) undergoes Hopf bifurcation at τ = τ0, where τ0 is given
by (5).

(b) The trivial equilibrium is unstable for any τ ≥ 0 if d0 + e0 < 0.
(c) Equation (2) undergoes a pitchfork bifurcation for d0 + e0 = 0.  "

Now, we apply Theorem 1 seeking for the Hopf bifurcation point in (2). Taking

c21 = c31 = c41 = 1, c12 = c13 = −2, c14 = −1,

μ1 = μ2 = μ3 = μ4 = 2, fi(x) = tanh(x) (6)

in equation (2), one has that a = 16, b = 71, c = 56 and d = −144 in (4)
since f ′(0) = 1, which yields that (H3) and (H4) hold, and d0 − e0 ≥ 0. It is
easily to see that h(z) = 0 has only a positive root z0 = 1 such that ω0 = 1
and τj = arccos(−3/5) + 2jπ (j = 0, 1, 2, ...). Theorem 1 tell us that a Hopf
bifurcation occurs in (2) at τ = τ0. The numerical method is employed to verify
the analytical prediction. Fig. 2(a) shows that all eigenvalues of (2) have strictly
negative real parts when τ1 + τ2 < τ0 = 2.2143 for τ1 = 1.2, τ2 = 0.8. However,
a pair of conjugate eigenvalues have positive real parts but all the others have
negative real parts when τ1 + τ2 > τ0 = 2.2143 with τ1 = 1.2, τ2 = 1.3, as shown
in Fig. 2(b). It follows from Fig. 2 that the trivial solution loses its stability
when τpasses through τ0 and Hopf bifurcation occurs in (4). Thus, the delay
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induces the Hopf bifurcation. This is in agreement with the analytical prediction
mentioned above. In the next section, we will give a simple but efficient method
in order to quantitatively obtain the periodic solution derived from the Hopf
bifurcation, in which one does not require the tedious CMR and normal form.

Fig. 2. Distribution of eigenvalues in (3) for (a) τ1 = 1.2, τ2 = 0.8, τ1+τ2 < τ0 = 2.2143
and (b) τ1 = 1.2, τ2 = 1.3, τ1 + τ2 > τ0 = 2.2143, where the eigenvalues with positive

real part are 0.00996238 ± 0.91491i

3 Hopf Bifurcation and Periodic Solution

In our previous work [11], a called perturbation-incremental scheme (PIS) is pro-
posed to obtain the periodic solution in a type of delayed differential equations.
The PIS is a simple but efficient method and can investigate the periodic solu-
tion derived from Hopf bifurcation due to time delays in a system of first-order
delayed differential equations both qualitatively and quantitatively. It posses of
advantages of both the CMR and method of multiple scale (MMS) [12], from
which the tedious calculation with normal form is avoided. The scheme is de-
scribed in two steps, namely, the perturbation step (noted as step one) for bifur-
cation parameters close to the bifurcation point and the incremental step (noted
as step two) for those far away from the bifurcation point. In this paper, we
only use the first step to obtain a periodic solution near a Hopf bifurcation point
in (2). Therefore, we only introduce here the first step of the PIS for readers’
convenience.

A class of delay models can be written as

Ż(t) = CZ(t) + DZ(t− τ) + εF(Z(t),Z(t− τ)) (7)

where Z(t) = (z1(t), z2(t), ..., zn(t))T ∈ Rn, C and D are n × n real constant
matrices, F(·) is a nonlinear function in its variables with F(0,0) = 0, ε is a
parameter representing the strength of nonlinear coupling, τ is the time delay,
and n a positive integer. We assume τ0 to be the critical value of a simple
Hopf bifurcation. Furthermore, the crossing speed of the root is assumed to be
nonzero, and all eigenvalues are neither zero nor purely imaginary pairs. Thus,
the system at τ = τ0 has a simple Hopf bifurcation.
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A perturbation to τ , i. e. τ = τ0 + ετε, in (7) yields

Ż(t) = CZ(t) + DZ(t− τ0) + F̃(Z(t),Z(t − τ0),Z(t − τ0 − ετε), ε), (8)

where

F̃(Z(t),Z(t − τ0),Z(t− τ0 − ετε), ε) = D[Z(t− τ0 − ετε)− Z(t− τ0)]

+ εF(Z(t),Z(t − τ0 − ετε)), (9)

if equation (8) undergoes a Hopf bifurcation at τ = τ0. We assume that Z(t) has
a periodic solution in period 2π/ω at τ ≈ τ0, given by

Z(t) = a cos(ϕ) + b sin(ϕ), (10)

where ϕ = ωt, a = (a1, a2, ..., an)T , b = (b1, b2, ..., bn)T . If a1 and b1 are inde-
pendent, ai and bi (i = 2, ..., n) are functions of a1 and b1, given by

Mb = Na, −Ma = Nb, (11)

where M = ωI + D sin(ωτ0) and N = C + D cos(ωτ0). Equation (10) in a polar
coordinate can be expressed as

Zi(t) = ri cos(ϕ+ θi), (12)

where Z(t) = (z1(t), z2(t), ..., zn(t))T , r = (r1, r2, ..., rn)T . Correspondingly, ri

are functions of r1 and θi are functions of θ1 (i = 2, . . . , n).
Based on the expression in (12), we consider the solution of (8) for a small ετε,

which means the harmonic solution of (8) can be considered as a perturbation
to that of (12) , given by

Z(t) = r(ετε) cosφ, (13)

where
dφ

dt
= ω + σ(ετε), r(0) = r, σ(0) = 0, ri(ετε) = ri(r1(ετε)) (i = 2, ..., n).

Symbol •(ετε) is denoted as •(ε) for convenience, such as, ri(ετε) are denoted as
ri(ε) and so on. A key problem arises from equation (13), that is, how to express
r1(ε) and σ(ε) in (13) as an analytical form. The following theorem provides a
method to determine them.

Theorem 2. If W(t) is a periodic solution of the equation

Ẇ(t) = −CTW(t)−DTW(t + τ0) (14)

and W(t) = W(t + 2π
ω ), then∫ 0

−τ0

[DT (W(t + τ0)−W(t + τ0 +
2π

ω + σ
)]T Z(t)dt−[WT (

2π
ω + σ

)−WT (0)]Z(0)

+
∫ 2π

ω+σ

0
WT (t)F̃(Z(t),Z(t − τ0),Z(t− τ0 − ετε), ε)dt = 0. (15)

 "
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The proof of Theorem 2 is here neglected due to the limit pages. One may also
see Ref. [11].

To apply Theorem 2 for solving r1(ε) and σ(ε), one must obtain the expression
of W(t) in (14). The periodic solution of (14) can be written as

W(t) = p cos(ϕ) + q sin(ϕ) (16)

where ϕ = ωt, p = (p1, p2, ..., pn)T , q = (q1, q2, ..., qn)T . Substituting (16) into
(14) and using the harmonic balance, one may obtain that

MTp = NTq, MTq = −NTp. (17)

If p1 and q1 are chosen to be independent, then pi and qi (i = 2, ..., n) can be
determined by (17) in terms of p1 and q1.

Now, we return to equation (2) with (6) and hope to obtain analytically
the periodic solution derived from the Hopf bifurcation by applying Theorem 2
mentioned above. To this end, the equation is rewritten as the form in (8), where

C =

⎛⎜⎜⎝
−2 0 0 0
−2 −2 0 0
−2 0 −2 0
−1 0 0 −2

⎞⎟⎟⎠ , D =

⎛⎜⎜⎝
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,F(Z(t), Z(t− τ)) =

⎛⎜⎜⎝
F1(t)
F2(t)
F3(t)
F4(t)

⎞⎟⎟⎠ ,

∼
F = D[Z(t− τ0 − ε2τε)− Z(t− τ0)] + εF(Z(t),Z(t − τ0 − ε2τε)),

and

F1 = −1
3
εx3

2(t− τ0 − ε2τε)− 1
3
εx3

3(t− τ0 − ε2τε)− 1
3
εx3

4(t− τ0 − ε2τε) + o(ε3),

F2 =
2
3
εx3

1(t) + o(ε3), F3 =
2
3
εx3

1(t) + o(ε3), F4 =
1
3
εx3

1(t) + o(ε3).

If W(t) is assumed to be a periodic solution of (14), then it can be represented
in the form of

W(t) =

⎛⎜⎜⎝
p1 cos(t) + q1 sin(t)
p2 cos(t) + q2 sin(t)
p3 cos(t) + q3 sin(t)
p4 cos(t) + q4 sin(t)

⎞⎟⎟⎠ . (18)

Substituting (18) into (17) yields that p1 = −2p2 − q2, q1 = p2 − 2q2, p3 = p2,
q3 = q2, p4 = p2, q4 = q2. Consequently, the periodic solution of (2) with (6)
can be expressed as

Z(t) =

⎛⎜⎜⎝
− 1

2εr1(2 cos((1 + ε2σ2)t+ θ)− sin((1 + ε2σ2)t + θ))
εr1 cos((1 + ε2σ2)t + θ)
εr1 cos((1 + ε2σ2)t + θ)
1
2εr1 cos((1 + ε2σ2)t + θ)

⎞⎟⎟⎠ . (19)
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Substituting (18) and (19) into (15), one can obtain an approximation (19) at
O(ε3), and r1, σ2 satisfy the following equations given by

21
8
π(εr1)3 − 5

2
π arccos(−3

5
)(ε2σ2)(εr1)− 5

2
π(ε2τε)(εr1) = 0,

21
16
π(εr1)3 + 5π

(
1 + arccos(−3

5
)
)

(ε2σ2)(εr1) + 5π(ε2τε)(εr1) = 0, (20)

where ε2τε = τ − τ0 and τ0 = 2.2143. Solving (20) yields that

εr1 = 4

√
5(τ − τ0)

21(4 + 5 arccos(− 3
5 ))

, ε2σ2 = − 5(τ − τ0)
4 + 5 arccos(− 3

5 )
. (21)

To consider the accuracy expressed in (19) with (21), we compare the present
result with that from the CMR and the numerical simulation, respectively, as

Fig. 3. Hopf bifurcation curves from the trivial solution in (2) with (6), where solid

line denotes the present solution (19) with (21), dashing line represents solution from

the CMR from [9] and star that from numerical simulation for (2) with (6)

Fig. 4. Comparison in (a) time history and (b) phase plane, between the present solu-

tion (19) with (21) (solid line) and numerical simulation (symbol stars) from (2) with

(6), where τ0 = 2.2143, τ = 2.5 or ετε = 0.2857
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shown in Fig. 3 where the result from the present method is marked in solid, that
from the CMR in dashing and the numerical simulation in symbol stars. It can be
seen that the solution from the present method is much closer to the numerical
solution than that from the CMR, especially for values far away from the Hopf
bifurcation point at τ0. For example, the approximation error of the accuracy
related to the numerical solution at τ = 2.48 is 25% for the CMR but 5.07% for
the PIS. Figs. 4(a) and 4(b) display the corresponding time history and phase
plane when τ = 2.5, It can be seen from Fig. 4 that the approximate solution
(19) with (21) is in good agreement with that from the numerical simulation.
This implies the present method has very high accuracy in quantity.

4 Conclusion

Based on Cao’s work [9] and our previous result [11], a simple but efficient
method is extended to investigate the periodic solution derived from the Hopf
bifurcation due to time delay in a BAMNN with four neurons and two delays.
This paper contributes a method to represent the continuation of the bifurcated
periodic solutions in a closed form with the quantitatively high accuracy. It can
be easily extended for more neurons and for more delays [13]. The validity of the
results is shown by their consistency with the numerical simulation. The results
obtained in this paper suggest that the method provided can be considered as an
effective approach to investigate delayed differential equations (DDEs) when the
time delay is taken into account a bifurcation parameter. Firstly, the periodic
solution obtained from the present method has higher accuracy than that from
the CMR for values of the delay not far away from to the Hopf bifurcation point.
Secondly, the present method has a very clear procedure such that some symbolic
algebraic packages, such as MATHEMATICA, can easily be programmed to
compute the solution. Thirdly, using the present method can avoid the tedious
computation often encountered in the CMR. resulting in being extended to the
study of high-codimension DDEs.

It should be emphasized that the parameter ε is not required to be small in
the present method. In fact, a suitable choice of τε can always ensure that the
value of τ = τ0 + ε2τε is in a vicinity of the Hopf point. The present paper
not only relies on providing an analytical form with a high accuracy without
the center manifold reduction and the normal form, but also on some further
considerations to computer the delay-induced periodic solution quantitatively.

The present results show the transformation delay existed in the networks
can cause storing memories failure in the brain information processing since the
BAMNNs are a neurobiologically inspired paradigm that emulates the memory
functioning of the brain. In addition, it is very difficult to measure delays in
designing a system of artificial neural networks to mimic phenomena in nature
or engineering. One has to guess these delays by the output signals of the sys-
tem in designing a system of artificial neural networks to mimic phenomena in
nature or engineering. Thus, an analytical form of the solution, even an approx-
imation, becomes of important significance since it may considered as a basis
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for estimating delays existed. This is reason that we are interested in seeking
for an analytical form of the delay-induced periodic solution in artificial neural
networks.
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Abstract. In this paper, we investigate response properties to inputs of

memory pattern fragments in chaotic wandering states among three types

of chaotic neural network (CNN) models, related with the instability of

their orbits. From the computer experiments, Aihara model shows the

highest success ratio and the shortest steps for all the memory pattern

fragments. On the other hand, Nara & Davis model and Kuroiwa & Nara

model show quite higher success ratio and shorter averaged steps than

random search. Thus, choas in the three model is practical in the memory

pattern search.

Keywords: Instability of orbit, CNN, memory search, Memory pattern

fragments, Chaotic wandering state.

1 Introduction

Recently, chaotic behaivors have been invesigated and observed in the various
fieldincluding the brain nervous system[1,2]. From the EEG experiments and
computational research on the olfactory bulb, Skarda and Freeman have shown
the following two features[2].

1. During the waiting states for unknown inputs, the dynamical response falls
into highly developed choatic attractor.

2. The response of system to memorized input shows the dynamical behaivors
of the weak chaotic attractor or limit cycles.

Thus, choatic behaviors would play the important roles in a learning process
and a recall process. In the learning process, chaos could provide driving activity
essential for memorizing novel inputs. In the recall process, chaos could ensure
rapid and unbiased access to proviously trained patterns. From the theoretical
viewpoints, Nara and Davis presented the interesting results in complex memory
search of neuron network model with multi-cyclic memory patterns[3,4].Hence,
in order to access the rapid to memory patterns, it is important to control the
chaotic wandering states.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 544–551, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we investigate response properties in memory pattern fragments
in chaotic wandering states among three types of chaotic neural network model.
We focus on the following three types of chaotic neural network models:

1. Aihara model: The existence of relative refractoriness and the continuity of
the output function introduce chaotic wandering state in system even if the
system is an isolated neuron element[5].

2. Nara & Davis model: By reducing the connectivity of synaptic connections,
chaotic wandering state is induced[3].

3. Kuroiwa & Nara model: By partly inverting synaptic connections, chaotic
wandering state apperars[6].

We hae shown that these three types of chaotic neural network model reveals
similar chaotic wandering dynamics in the space of memory patterns. Further-
more, they have the similar functional potentiality of memory searching and
synthesis[3,7,8].However, it has been still unknown whether the different poten-
tiality does underly in them, or not, In this paper, therefore, we investigate the
relationships betwwon the response properties to memory pattern fragments and
the instability of their orbits.

2 Chaotic Neural Network Model

2.1 Recurent Neural Network Model with Assocciatiev Memory

Let us explain a reccurent neural network model, briefly. The updating rule of
the reccurent neural network model is writen as follows,

ui(t + 1) =
N∑

j=1

wijzj(t), (1)

where ui(t + 1) represents an internal state of the ith element at discreet time
t, zi(t) is its output, wij is a synaptic connection between the ith element and
the jth element, and N is the total number of elements in the reccurent neural
network model.

In this paper, we employ continuous output function in order to evaluate
Lyapunov dimension,

zi(t + 1) = tanh(βui(t + 1)), (2)

where β controls steepness of the output function. In computer experiments, we
apply β = 100.0 that the function corresponds to a sign function approximately.

In this paper, the synaptic connection is defined as,

wij =
P∑

a=1

L∑
μ=1

va μ+1
i (va μ

j )†, (3)
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where va μ denotes a memory pattern vector, L and P are the number of cycles
and the number of patterns per cycle, respectively, and va P+1 = va 1. The
dagger vector of (va μ)† is given by

(va μ)† =
L∑

b=1

P∑
ν=1

(o−1)aμbνvb ν , (4)

where o−1 is the inverse of the o defined by

(oaμbν) =
N∑

k=1

va μ
k vb ν

k , (5)

Thus, according to Eq(3), P cycles and L patterns per cycle are embedded in
the recurrent neural netwrok model.

2.2 Aihara Model

In Aihara model[5], the updating rule is given by

ui(t + 1) = kui(t) +
N∑

j=1

wijzj(t)− αzi(t) +Ai, (6)

where k control a decay effect, αzi(t) denotes a relative refractoriness of the ith
element, and Ai represent a constant bias input. The output of zi(t) is given by
Eq.(2). The parameters are k, α and A which control dynamics.

Fig. 1. Memory patterns[3]. The number of cycles, L = 5, the number of patterns per

cycle, P = 6, and each pattern consists of 20× 20 pixels which take ±1. In this paper,

we identify the one face pattern with two notations, ath cyde and μth pattern, or kth

face pattern(k = a × μ, k = 1, 2, . . . , 30).

2.3 Nara and Davis Model

In Nara & Davis model,the updating tule is represented by
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ui(t + 1) =
N∑

j=1

wijεij(d)zj(t), (7)

where εij(d) denotes a matrix of binary activity values, that is,

εij(d) =

{
0 (j ∈ Fi(d))
1 (otherwise)

(8)

where Fi(d) represents a configuration of elements at which the in-coming synap-
tic connection is inhibited, and d is the connectivity which represents of remain-
ing synaptic connection, that is,

∑
j εij(d) = d. In thist model, the connectivity

d is a system parameter which control dynamics.

2.4 Kuroiwa and Nara Model

In Kuroiwa & Nara model,the updating rule is written by

ui(t+ 1) =

⎧⎪⎪⎨⎪⎪⎩
N∑

j=1
wijεijzj(t) (t = even)

N∑
j=1

wijzj(t) (t = odd),
(9)

where

εij(r) =

{
−1 (j ∈ Fi(r))
1 (otherwise),

(10)

and Fi(r) defines a configuration of elements at which a value of in-coming
synaptic connections is partly inverted with the number of r. In this model, the
inverted number of r is a system parameter which control dynamics.

3 Response properties in Memory Pattern Fragments

3.1 The Purpose and the Method of Experiment

we investigate the diffference of the response properties to memory pattern frag-
ments in chaotic wandering states among three types of chaotic neural network
model. In the computer experiments, we add a certain fragment of a memory
pattern to a chaotic wandering state, and then we focus on the folloing two
problem.

1. Success ratio : How many times does it reach the target basin within 30
iteration steps starting from different points of chaotic wandering state? In
other words, how is the searching procedure by means of chaotic wandering
effective?
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2. Averaged steps : How many steps does it take to reach the target basin
related with a memory fragment? In other words, how short is the “access”
time for the memory basin corresponding to the external input of a memory
fragment?

In adding a memory pattern fragment, the updating rule change, respectively,
as follows :

ui(t+ 1) =
N∑

j=1

wijzj(t) + kui(t)− αzi(t) +Ai + cρIi if i ∈ F (11)

ui(t+ 1) =
N∑

j=1

wijεijzj(t) + cρIi if i ∈ F (12)

ui(t + 1) =

⎧⎪⎪⎨⎪⎪⎩
N∑

j=1
wijεijzj(t) + cρIi if i ∈ F (t = even)

N∑
j=1

wijzj(t) + cρIi if i ∈ F (t = odd)
(13)

where Ii represents a memory pattern fragment with 40 pixels as shown in the
upper part of Fig.2, F denotes the configuration set of theirs, p denotes the
strength of the input, and c denotes the normalized parameter which corresponds
to the standard deviation of ui(t). In the experiments, we employ a chaotic
wandering state for each model. We set parameter values as follows:

– For Aihara model, k = 0.9, α = 1.2, A = 0.1 for all elements and the
standard deviation c = 0.86

– For Nara & Davis model, d = 390, and c = 0.04
– For Kuroiwa & Nara model, r = 214 and c = 0.34

The system parameter values are chosen in giving optimal results base on the
preliminary experiments. If the system converge the pattern related with mem-
ory pattern fragment within 30 steps of the updating rule in adding a memory

Fig. 2. Memory pattern fragments
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Fig. 3. Success ration in accessing to the target pattern. (a) Random search. (b)Aihara

model. (c) Nara & Davis model. (d) Kuroiwa & Nara model.

Fig. 4. Averaged steps in accessing to the target pattern. (a) Random search. (b)Aihara

model. (c) Nara & Davis model. (d) Kuroiwa & Nara model.

pattern fragment, we identify the search of memory pattern as success. On the
other hand, if the chaotic wandering state doesn’t converge the pattern related
with memory pattern fragment within 30 steps , we regard that it take 30 steps.
In addition, we evaluate the response feature of memory pattern fragments with
1000 steps in chaotic wandering state. Comparing with the response feature be-
tween the random pattern and chaotic wandering state, we employ the random
search. In random search, we employ the random patterns instead of the output
of chaotic neural network model and perform the same process.

3.2 Results

Results of success ration and averaged steps are given in Fig.3 and 4, respectively.
From the results, comparing the random search, the others show high success
ratio and short steps. Especially, Aihara model reveals a 99 % probability of
success ratio over the region of ρ > 1. Thus, the system accesses to the target
memory pattern with the 10 percent of memory pattern. In addition, Aihara
model shows that the averaged steps is quite small, almost around 5 steps. On
the other hand, Nara & Davis model and Kuroiwa & Nara model take lower
success ratio than Aihara model. Therefore, the average aceess time are 7 steps
and 6 steps. However, comparing with the random search, Nara & Davis model
and Kuroiwa & Nara model quickly acceess to the target pattern with high
success ratio.
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Fig. 5. The relative visiting measure to attractor basins of memory patterns

4 Discussions

Aihara model shows high success ration and short averaged steps. We consider
the reason from the viewpoint of the relative visiting measure to attractor basins
of memory patterns. Result is given in Fig.5. In Aihara model,the ratio of the
relative visiting measures show biased comparing with the basin volume and the
other models. In these parameter of Aihara model, the information dimension is
1.31. If we employ the other parameters where Aihara model reveals quite strong
chaotic behaviors with the information dimension of 2.97 and the equal ratio of
the relative visiting measures, the success ratio decreases and the averaged steps
become long. In intuitive, the equal ratio means that one can realize easier access
to each attractor of memory patterns than the case of biased ratio. However, our
results are opposite. In the case of the biased ratio with weak chaotic behaviors,
we succeeded to realize easy access. We consider that this result would relate
with edge of chaos.

5 Conclusions

In this paper, we investigate the response properties to memory pattern frag-
ments in chaotic wandering states. The three models, which are in chaotic wan-
dering states, show the higher success ratio and the shorter averaged steps to
reach the target memory pattern than random search. In other words, chaotic
wandering states are quite sensitive to the memory pattern fragments. The sen-
sitivity could play important role in realizing in memory pattern search.
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Abstract. In this paper a strategy based on differential neural networks

(DNN) for the identification of the parameters in a mathematical model

described by partial differential equations is proposed. The identification

problem is reduced to finding an exact expression for the weights dy-

namics using the DNNs properties. The adaptive laws for weights ensure

the convergence of the DNN trajectories to the PDE states. To inves-

tigate the qualitative behavior of the suggested methodology, here the

non parametric modeling problem for a distributed parameter plant is

analyzed: the anaerobic digestion system

Keywords: Neural Networks, Adaptive identification, Distributed Pa-

rameter Systems, Partial Differential Equations and Practical Stability.

1 Introduction

Many problems in science and engineering are reduced to a set of partial differen-
tial equations (DES) through a process of mathematical modeling. For instance,
linear second order parabolic partial differential equations (PDEs) appear in
time dependent diffusion problems, such as the transient flow of heat conduc-
tion . These equations define a state in both space and time. It is not easy to
obtain their exact solutions, so numerical methods must be resorted to. There are
a lot of techniques available such as the finite difference method (FDM) [1] and
the finite element method (FEM) [2]. These numerical techniques, require large
number of iterations in calculation and process the data in series. Besides, all
those methods are well defined if the PDE structure is perfectly known. Actually,
the most of suitable numerical solutions could be achieved just when the PDE
is linear. Nevertheless, there are not so many methods to solve or approximate
the PDE solution when its structure (even in linear case) is uncertain.

It is well known that Radial Basis Function Neural Networks (RBFNN) and
Multi-Layer Perceptrons (MLP) are universal approximators [3]: any continuous
function defined on a compact set can be approximated to arbitrary accuracy by
such neural networks [4]. Since the solutions to the PDE of interest are known
to be uniformly continuous and the viable sets that arise in safety problems are
often compact, neural networks seem like ideal candidates for approximating

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 552–562, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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viability problems. There are, however, relatively few works that exploit neu-
ral networks to solve PDE. [5] proposed a method for solving PDE defined in
orthogonal boxes, that relies upon an approximation composed by a MLP net-
work added to the boundary condition. The method is illustrated by solving
a variety of model problems and comparing the result with the exact solution.
Convergence is a difficult issue in this case. The results of [6] show that their
feed-forward neural network (FFNN) method for solving an elliptic PDE in 2D
required 1000 iterations for convergence. Another method for solving PDE is
presented in [7], based on a Multi- Quadric RBFNN. The proposed procedure
showed high accuracy of the solution. It is important to note, however, that the
accuracy of the RBFNN solution is heavily dependent on parameters such as
the “width” of basis functions for which there is no systematic method for de-
termining their values. These approaches have to approximate PDE solutions by
neural networks have been also been applied to some problems in control theory.
In [8] a method like this is used to solve a class of first-order partial differential
equations that arise in input-to-state linearizable control systems. The solution
of the PDE, together with its Lie derivatives, yields a change of coordinates
required for feedback linearization. In [9] a method similar to the method of [5],
has been successfully applied to steady-state heat transfer problems.

Within the NN framework, differential neural network (DNN) methodology
avoids many problems related to global extremum searching [10]. If mathematical
continuous model of the considered process is incomplete or partially known, the
DNN methodology provides an effective instrument to analyze a wide range of
problems in control theory such as identification, state estimation, trajectories
tracking and etc. [11]. Most of real systems are really difficult to be controlled
because of the lack of information on its internal structure or-and their current
states trajectories. The paper is organized as follows: in Section II, we introduce
a model given by a partial differential equation with unknown structure and
formulate the problem. In Section III the DNN identifier is proposed. Some
simulation results are presented in Section IV to show its performance. Section
V finishes the paper with some particular conclusions.

2 Distributed Parameters Plant and NN Approximation

Let us consider the partial differential equation

ut (x, t) = f (u (x, t) , ux (x, t) , uxx (x, t)) (1)

for x ∈ (0, 1), t > 0, with boundary conditions:

u(0, t) = u0, u(x, 0) = c, ux(0, t) = 0 (2)

Let f (x, t) be a piecewise continuous in t. Suppose that the uncertain nonlinear
function f (x, t) satisfies the Lipschitz condition ‖f (t, x)− f (t, y)‖ ≤ L ‖x− y‖,
∀ x, y ∈ B := {x ∈ �n | ‖x− x0‖ ≤ r}, ∀ t ∈ [t0, t1], where L is constant and
‖f‖2 = (f, f) just to ensure that there exists some δ > 0 such that the state
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equation ẋ = f (x, t) with x (t0) = x0 has a unique solution over [t0, t0 + δ] [12].
The norm defined above in (8) is given in a Sobolev space.

Definition. Sobolev space [13], Hm,p (Ω): Let Ω be an open set in R
n and let

u ∈ Cm (Ω). Define a norm on u by

‖u‖m,p :=
∑

0≤|α|≤m

⎛⎝∫
Ω

|Dαu (x)|p dx
⎞⎠1/p

, 1 ≤ p <∞

This is the Sobolev norm in which the integration is in the Lebesgue sense. The
completion of u ∈ Cm (Ω): ‖u‖m,p < ∞ with respect to ‖·‖m,p is the Sobolev
space Hm,p (Ω). For p = 2, the Sobolev space is a Hilbert space.

Now lets consider a function h0 (·) in Hm,2(Ω). By [14], h0 (·) can be rewritten
as

h0 (x) =
∑

i

∑
j

θijΨijx, θij =

+∞∫
−∞

h0 (x)Ψij (x) dx, ∀i, j ∈ Z

Last expression is called a function series expansion of h0 (x). Based on this
series expansion, a neural network takes the following mathematical structure

ĥ0 (x, θ) :=
M2∑

i=M1

N2∑
j=N1

θijΨij (x) = ΘᵀW (x)

that can be used to approximate any nonlinear function h0 (x) ∈ S with the
adequate selection of integers M1, M2, N1, N2 ∈ Z where

Θ = [θM1N1 , . . . , θM1N2 , . . . θM2N1 , . . . θM2N2 ]
ᵀ

W (x) = [ΨM1N1 , . . . , ΨM1N2 , . . . ΨM2N1 , . . . ΨM2N2 ]
ᵀ

Following the Stone Wiestrass Theorem [15], if ε (M1,M2, N1, N2) = h0 (x) −
ĥ0 (x, θ) is the NN approximation error, then for any arbitrary positive constant
ε there are some constants M1,M2, N1, N2 ∈ Z such that

‖ε (M1,M2, N1, N2)‖2 ≤ ε (3)

for all x ∈ X ⊂ �. In the case when x ∈ Xn ⊂ �n (x := [x1, x2, . . . , xn]ᵀ), the
Ψij argument (x) should be modify to (x, c) = cᵀx =

∑n
i=1 xici with c ∈ Xn as

a weighting constant vector.

Remark 1. Appropriate selection of functions Ψij (·) is an important task to con-
struct an adequate approximation of nonlinear functions. Many functions have
been reported in literature [16] that have remarkable results to approximate
nonlinear unknown functions. Which one is the most suitable basis in practical
application depends on each particular design specifications.
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Remark 2. M1,M2, N1, N2 parameters in neural network design are closely re-
lated to the quality approximation ε (M1,M2, N1, N2). Although, the NN has
been demonstrated to be effective to reproduce uncertain nonlinear functions
which satisfies the Lipschitz condition.

Following the methodology of differential neural networks, we assume that there
exists a set of parameters W i,∗

1 ∈ �s1 , W i,∗
2 ∈ �s2 , W i,∗

3 ∈ �s3 such that

ui-

t∫
0

(
Aiui+

[
W i,∗

1

]ᵀ
σ(xi)+

[
W i,∗

2

]ᵀ
ϕ(xi)ui−1-

[
W i,∗

3

]ᵀ
γ(xi)ui−2-f̃ i

)
dτ=0

where the functions σ(ui) ∈ �s1 , ϕ(ui) ∈ �s2 , γ(ui) ∈ �s3 obey the following
sector conditions:

‖σ(vi)− σ(ṽi)‖2 ≤ Lσ ‖vi − ṽi‖2
, ‖ϕ(vi)− ϕ(ṽi)‖2 ≤ Lϕ ‖vi − ṽi‖2

‖γ(vi)− γ(ṽi)‖2 ≤ Lγ ‖vi − ṽi‖2

which are bounded in U , i.e., ‖σ(·)‖2 ≤ σ+, ‖ϕ(·)‖2 ≤ ϕ+, ‖γ(·)‖2 ≤ γ+. Note
that, since one requires ∂u(x, t)/∂t in (1), the NN weights are selected to be
time varying. However, here σ(xi), ϕ(xi), γ(xi) are NN activation vectors, not
a set of eigen-functions. That is, the NN approximation property significantly
simplifies the specification of σ(·), ϕ(·), γ(·).

The terms f̃ i, called modeling errors of each NN applied for the approach of
the PDE, that is,

f̃ i:=f i −
(
Aiui+

[
W i,∗

1

]ᵀ
σ(xi)+

[
W i,∗

2

]ᵀ
ϕ(xi)ui−1+

[
W i,∗

3

]ᵀ
γ(xi)ui−2

)
– Assumption 1. The modeling error f̃ i satisfy the following group of inequal-

ities: ∥∥∥f̃ i
∥∥∥2
≤ f i

0 ‖ui‖2 + f i
1 ‖ui−1‖2 + f i

2 ‖ui−2‖2 + f i
3 (4)

and
∥∥f̄ i

∥∥2 ≤ F i
0 ‖ui‖2+ F i

1 ‖ui−1‖2+F i
2 ‖ui−2‖2+F i

3

∥∥Δi (t, x)
∥∥2+F i

4 where∥∥f̄ i
∥∥2:=

∥∥∥f̃ i +AiΔi (t, x)
∥∥∥2

– Assumption 2. The error modeling gradient is bounded as follows :
∥∥∥∇xf̃

i
∥∥∥2

≤ f i
4 ‖ui‖2 + f i

5 ‖ui−1‖2 + f i
6 ‖ui−2‖2 + f i

7 yielding to

∥∥∇xf̄
i
∥∥2 :=

∥∥∥∇xf̃
i +AiΔi

x (t, x)
∥∥∥2
≤

F i
5 ‖ui‖2 +F i

6 ‖ui−1‖2 +F i
7 ‖ui−2‖2 +F i

8

∥∥Δi
x (t, x)

∥∥2 +F i
9

where Δi (t, x) := ûi (x, t)−ui (x, t) and f i
j , F

i
k (j = 0, 7, k = 0, 9) are constants.
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3 DNN Neural Identifier for Distributed Systems

Consider the following structure of adaptive identifier

d

dt
ûi (x, t) =Aiûi (x, t)+

[
W i

1,t

]ᵀ
σ(ûi)+[

W i
2,t

]ᵀ
ϕ(ûi)ûi−1 (x, t) +

[
W i

3,t

]ᵀ
γ(ûi)ûi−2 (x, t)

(5)

∀i ∈ [3, N ] where Ai ∈ �− and where the variant in time matrices W i
1,t ∈ �s1 ,

W i
2,t ∈ �s2 , W i

3,t ∈ �s3 and ûi (x, t) is the estimate of ui (x, t) . Satisfy the
matrix differential equations

Ẇ i
1 (t) = − 2

K1

N∑
i=1

ûᵀ
i (t, x)T iσ(ûi)− 2

K1

N∑
i=1

(
Δi (t, x)

)ᵀ
P iσ(ûi)

−αi
mW̃

i
1 (t)− 2

K1

N∑
i=1

(
Δi

x (t, x)
)ᵀ
Si∇xσ(ûi)

Ẇ i
2 (t) = − 2

K2

N∑
i=1

ûᵀ
i (t, x)T iϕ(ûi)ûi−1 (t, x)− αi

mW̃
i
2 (t)

− 2
K2

N∑
i=1

(
Δi (t, x)

)ᵀ
P iϕ(ûi)ûi−1 (t, x)− 2

K2

N∑
i=1

Δi
x (t, x)ᵀ

Si∇xϕ(ûi)ûi−1 (t, x)

Ẇ i
3 (t) = − 2

K3

N∑
i=1

ûᵀ
i (t, x)T iγ(ûi)ûi−2 (t, x)− αi

mW̃
i
3 (t)

− 2
K3

N∑
i=1

(
Δi

x (t, x)
)ᵀ
Si∇xγ(ûi)ûi−2 (t, x)− 2

K3

N∑
i=1

(
Δi (t, x)

)ᵀ
P iγ(ûi)ûi−2 (t, x)

(6)
with P i, Si and T i (i = 3, N) are positive definite solutions (P i > 0, Si > 0 and
T i > 0) of the algebraic Riccati equations given by

P iAi+
[
Ai
]ᵀ
P i+P iΛi

αP
i+λmax

([
Λi

P

]−1
)
F i

3In×n+Qi
P = 0

SiAi +
[
Ai
]ᵀ
Si + SiΛi

SS
i + λmax

([
Λi

S

]−1
F i

8In×n

)
+Qi

S = 0

T iAi +
[
Ai
]ᵀ
T i + T iΛi

TT
i +Qi

T + λmax

([
Λi

P

]−1
)
F i

0In×n+(
λmax

([
Λi

S

]−1
F i

5

)
+λmax

([
Λi

T

]−1
)
f i
0

)
In×n=0

(7)

Special class of Riccati equation PA + AᵀP + PRP + Q = 0 has positive
solution if and only if [10] the following four conditions given below are fulfilled.

– Matrix A is stable,
– Pair

(
A,R1/2

)
is controllable,

– Pair
(
Q1/2, A

)
is observable,

– Matrices (A, Q, R) should be selected in such a way to satisfy the following
inequality 1

4

(
AᵀR−1-R−1A

)
R
(
AᵀR−1-R−1A

)ᵀ+Q ≤ AᵀR−1A

Last condition restricts the largest eigenvalue of R avoiding the inexistence of
Riccati equation positive solution. State estimation problem for uncertain non-
linear systems analyzed in this study, could be now stated as follows:
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Problem Statement. Under the nonlinear system with an adequate selection of
matrices Ai and with the neural network identifier structure supplied with the
adjustment law (6) (including the selection of W ∗

i , i = 1, 2, 3), the upper bound
for the estimation error β defined as

β := lim
t→∞ ‖û (t, x)− u (t, x)‖2

P (8)

P > 0, P = P ᵀ ∈ R
n×n must be obtained, and if it is possible, to reduce to its

less achievable value, using any of the free parameters participating into the NN
structure.

The following definition and proposition are needed for the main results of
the paper. Consider the following ODE nonlinear system

żt = g(zt, vt) +#t (9)

with zt ∈ �n, vt ∈ �m and #t an external perturbation or uncertainty such that
‖#t‖2 ≤ #+

Definition 1 (Practical Stability). Assume that a time interval T and a fixed
function v∗t ∈ �m over T are given. Given ε > 0, the nonlinear system (9) is
said to be ε-practically stable over T under the presence of #t if there exists a
δ > 0 (δ depends on and the interval T ) such that ztεB[0, ε], ∀ tεT, whenever
zt0εB[0, δ].

Similarly to the Lyapunov stability theory for nonlinear systems, it was ap-
plied the aforementioned direct method for the ε-practical stability of nonlinear
systems using-practical Lyapunov-like functions under the presence of external
perturbations and model uncertainties. Note that these functions have proper-
ties differing significantly from the usual Lyapunov functions in classic stability
theory.

The following proposition requires the following Lemma.

Lemma 1. Let a nonnegative function V (t) sastisfying the following differential
inequality V̇ (t) ≤ −αV (t) + β where α > 0 and β ≥ 0. Then[
1− μ

(√
V (t)

)−1
]
+
→ 0 with μ =

√
β/α and the function [·]+ defined as

[z]+ :=
{
z if z ≥ 0
0 if z < 0

Proof. The proof of this Lemma can be found in [17].

Proposition 1. Given a time interval T and a function v (·) over a continuously
differentiable real-valued function V (z, t) satisfying V (0, t) = 0, ∀ tεT is said to
be ε−practical Lyapunov-like function over T under v if there exist a constant
α > 0 such that V̇ (z, t) ≤ −αV (z, t) + H (#+) with H a bounded non-negative
nonlinear function with upper bound H+. Moreover, the trajectories of zt belongs

to the zone ε :=
H+

α
when t → ∞. In this proposition V̇ (zt, t) denotes the

derivative of V (z, t) along zt, i.e., V̇ (z, t) = Vz(z, t) · (g(zt, vt) +#t) + Vt(x, t).
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Proof. The proof follows directly from Lemma 1.

Definition 2. Given a time interval T and a function v (·) over T , nonlin-
ear system (9) is ε-practically stable, T under v if there exists an ε−practical
Lyapunov-like function V (x, t) over T under v.

Theorem. Let be the non linear system described on PDE’s unknown and
perturbed on the state and the output (1) with the conditions at the border of
Dirichlet and Neumman type defined on (2). Moreover, suppose the structure
of non-parametric adaptive identifier (5) whose parameters are adjusted as the
adaptable law given in (6). If there exists matrices Qi

P , Qi
S and Qi

T positive
defined such that the Riccati equations (7) have positive definite solutions P i, Si

and T i (i = 3, N), then the following upper bound lim
t→∞ ‖ûi (t, x)− ui (t, x)‖P ≤

ρ is ensured for the state nonparametric identification process where

ρ :=
√

min
i

(αi
m)−1

Nmax
i

(
λmax

([
Λi

P

]−1
)
F i

4 + λmax

([
Λi

S

]−1
)
F i

9

)
+
√

min
i

(αi
m)−1

Nmax
i

(
λmax

([
Λi

T

]−1
)
f i
3

)
Moreover, the weights W1,t, W2,t and W3,t are bounded with the following
bounds ‖W1,t‖ ≤ K1ρ, ‖W2,t‖ ≤ K2ρ, ‖W3,t‖ ≤ K3ρ.

Proof. The detailed proof is given in the appendix.

4 Simulation Results

For the purpose of illustrating the main theoretical results derived in previous
sections, here it is considered an anaerobic degradation system, which is realized
in a fixed bed reactor with a recirculation tank. The dynamics of the state
variables in this process are described by the following energy and mass balance
PDE:

∂X1

∂t
= (μ1 − εD)X1,

∂X2

∂t
= (μ2 − εD)X2

∂S1

∂t
=

Ez

H2

∂2S1

∂x2 −D
∂S1

∂x
− k1μ1X1

∂S2

∂t
=

Ez

H2

∂2S2

∂x2 −D
∂S2

∂x
+ k1μ1X1 − k2μ2X2

μ1 =
μ1,maxS1

S1 +KS1

, μ2 =
μ2,maxS2

S2 +KS2 + S2
2

KI2

(10)

In this equations: x(·) ∈ [0, 1] , t [d] is the evolution time of the digestion pro-
cess, Ez

[
m2d−1

]
is the dispersion axial coefficient, D

[
d−1

]
is the dilution fac-

tor, H [m] is the length of the reactor, X1
[
gL−1

]
is the acid-genic biomass,

X2
[
gL−1

]
is the metano-genic biomass, S1

[
gL−1

]
is the oxygen chemical de-

mand, S2
[
gL−1

]
is the volatile acid concentration and ε is the fraction of bactery
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Fig. 1. Chemical Oxygen Demand dynamics. Numerical trajectory produced by the

mathematical model during 10 hours (a) and estimated trajectories produced by the

DNN based identifier (b). Both trajectories are really close one each other except during

the first 1 hour.

Fig. 2. Methangenic bacteria dynamics. Numerical trajectory produced by the math-

ematical model during 10 hours (a) and estimated trajectories produced by the DNN

based identifier (b). Both trajectories are really close one each other except during the

first 1 hour.
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in the liquid phase. The biological reactor system (10) shows the following tra-
jectories for the dissolved oxygen and the methangenic bacteria concentration
(Figs. 1-a and 2-a). The initial conditions and boundary conditions used in this
numerical simulations are u(0, t) = rand(1), u(x, 0) = 10, ux(0, t) = 0. Diffu-
sion and velocity parameters (D and v) are selected as D = 0.001, v = 0.01,
c = 0.0001. The DNN identifier for PDE produces trajectories very close to
the real trajectories of the reactor model as can be seen in Figures (1-b and
2-b). There is an important zone where there exists a big difference between
real and estimated trajectories. This dissimilarity is dependent on the learning
period required to adjust the DNN identifier. The difference between the real
PDE trajectories and the estimated state produced by the DNN identifier is just
perceptible during first seconds. This error is close to zero almost during all x
and all t. This shows the efficiency of the identification process provided by the
DNN algorithm.

5 Conclusions

In this paper a new methodology to identify a class of nonlinear distributed pa-
rameter systems has been introduced. The suggested approach solves the prob-
lem of non parametric identification of uncertain nonlinear described by partial
differential equations. Asymptotic convergence for the identification error has
been demonstrated applying a Lyapunov-like analysis using a special class of
Lyapunov functional. Besides, the same analysis leads to the generation of the
corresponding conditions for the upper bound of the weights involved in the iden-
tifier structure. Learning algorithms for the adjustable weights have been intro-
duced. Practical stability results have been obtained to generate upper bounds
for the weights trajectories. Numerical example showing an anaerobic dynam-
ics demonstrates the workability of this new methodology based on continuous
neural networks.
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Appendix

Consider the Lyapunov-like functional

V (t) :=
N∑

i=1
V̄i (t, x)+

3∑
r=1

tr
{[
W̃ i

r (t)
]ᵀ
KrW̃

i
r (t)

}
V̄i (t, x) :=

∥∥Δi (t, x)
∥∥2

P i +
∥∥Δi

x (t, x)
∥∥2

Si + ‖ûi (t, x)‖2T i

(11)

Following the procedure for the second Lyapunov method, the time derivative
of Vt is

V̇ (t) = 2
N∑

i=1

((
Δi (t, x)

)ᵀ (t)P i d

dt
Δi (t, x) +

3∑
r=1

tr
{[
W̃ i

r (t)
]ᵀ
KrẆ

i
r (t)

})
+2

N∑
i=1

([
Δi

x (t, x)
]ᵀ
Si d

dt
Δi

x (t, x) + ûᵀ
i (t, x)T i d

dt
ûi (t, x)

)
(12)

Using last results and the following matrix inequality XY ᵀ + Y Xᵀ ≤ XΛXᵀ

+ Y Λ−1Y ᵀ valid for any X,Y ∈ Rr×s and any 0 < Λ = Λᵀ ∈ Rs×s then by
the Riccati equations defined in (7) and in view of the adjust equations of the
weights (6), the previous equality is simplified to

V̇ (t) ≤ −αi
mV (t) +

N∑
i=1

(
λmax

([
Λi

S

]−1
F i

9 +
[
Λi

T

]−1
f i
3 +

[
Λi

P

]−1
F i

4

))
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Taking the maximum value over i, we obtain

V̇ (t) ≤ -min
i

(
αi

m

)
V (t)+Nmax

i

(
λmax

([
Λi

S

]−1
F i

9 +
[
Λi

T

]−1
f i
3 +

[
Λi

P

]−1
F i

4

))
Applying the Lemma 1, one has

[
1− μ

(√
V (t)

)−1
]
+
→ 0 that completes the

proof.



The Lin-Kernighan Algorithm Driven by
Chaotic Neurodynamics for Large Scale

Traveling Salesman Problems

Shun Motohashi1, Takafumi Matsuura1,
Tohru Ikeguchi1,3, and Kazuyuki Aihara2,3

1Graduate school of Science and Engineering, Saitama University,

255 Shimo-Ohkubo Saitama 338–8570, Japan

{motohashi,takafumi,tohru}@nls.ics.saitama-u.ac.jp
2Graduate school of Information Science and Technology, The University of Tokyo,

4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan

aihara@sat.t.u-tokyo.ac.jp
3Aihara Complexity Modelling Project, ERATO, JST,

4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan

Abstract. The traveling salesman problem (TSP) is one of the typical

NP-hard problems. Then, it is inevitable to develop an effective ap-

proximate algorithm. We have already proposed an effective algorithm

which uses chaotic neurodynamics. The algorithm drives a local search

method, such as the 2-opt algorithm and the adaptive k-opt algorithm,

to escape from undesirable local minima. In this paper, we propose a

new chaotic search method using the Lin-Kernighan algorithm. The Lin-

Kernighan algorithm is one of the most effective algorithms for solving

TSP. Moreover, to diversify searching states, we introduce the double

bridge algorithm. As a result, the proposed method exhibits higher per-

formance than the conventional algorithms. We validate the applicability

of the proposed method for very large scale instances, such as 105 order

TSPs.

1 Introduction

In our daily life, we are often confronted with difficulties of realizing optimiza-
tion: for example, scheduling, delivery planning, circuit designing and drilling,
computer wiring, and so on. These problems are classified into discrete optimiza-
tion. In case of solving these problems, we often try to find a solution intuitively.
However, such an intuition often leads to worse situations, then it is important
to design effective algorithms systematically. To develop effective algorithms for
solving these problems, the traveling salesman problem (TSP), which is one of
the typical combinatorial optimization problems, is widely studied. The TSP is
described as follows: given a set of N cities and each distance dij between cities
i and j, find an optimal solution, or a shortest-length tour. Namely, the goal of

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 563–572, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the TSP is to find a permutation σ of the cities that minimizes the following
quantity:

N−1∑
k=1

dσ(k)σ(k+1) + dσ(N)σ(1). (1)

If dij = dji for all i and j, the TSP is symmetric, otherwise, asymmetric. In this
paper, we deal with the symmetric TSP.

For an N -city TSP, the total number of different tours is (N − 1)!/2. Then,
if the number of cities increases, the number of all possible tours exponentially
diverges, because N ! # NN . The TSP generally belongs to a class of NP-hard.
Therefore, it is commonly believed that no polynomial algorithm exists. Thus, it
is required to develop an effective approximate algorithm for finding near optimal
solutions or approximate solutions in a reasonable time.

As the approximate algorithm, several local search algorithms have already
been proposed. Among them, the 2-opt algorithm, the 3-opt algorithm and the
Lin-Kernighan algorithm[1] are famous to find near optimal solutions of the
TSP. The basic mechanism of these algorithms is to explore better solutions
from neighborhoods of the current state. Then, the algorithms search a new
state in a local space to obtain a shorter tour. For example, the 2-opt algorithm
which is one of the simplest local search methods is described as follows: first,
two links are deleted from a current tour. Second, other two links are added in
such a way that the length of a new tour is shorter than the current tour (Fig.1).
Such an exchange continues until no further improvements can be obtained.

p(i)
i

p(j)
j

p(i)
i

p(j)
j

Fig. 1. An example of the 2-opt algorithm. p(i) is the previous city of the city i.

However, it is hard to find an optimal solution by the local search methods,
because the local search methods usually get stuck at local minima. To avoid
such local minima, a wide variety of strategies have been proposed, such as a
tabu search method[2], a simulated annealing[3], a genetic algorithm[4], and so
on.

We have already proposed effective algorithms for solving TSP[5, 6, 7, 8].
In the algorithms, to avoid local minima, local search methods are driven by
chaotic neurodynamics. To realize such a chaotic search method, we introduce a
chaotic neuron model proposed by Aihara, Takabe and Toyoda[9]. The chaotic
neuron model can reproduce one of important properties which real nerve cells
have; refractoriness. Using the refractoriness implemented in the chaotic neuron
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model, the chaotic search methods can explore a searching space by avoiding local
minima.

First, a chaotic search method which drives the simplest local search method,
the 2-opt algorithm, was proposed[5, 6]. Then, this method shows higher perfor-
mance than the tabu search method[2] which has almost the same strategy of
searching solutions as the chaotic search methods.

Next, to improve the performance of the chaotic search method, a chaotic
search method using a more powerful local search method, the adaptive k-opt
algorithm (Fig. 2), has been proposed[7]. The adaptive k-opt algorithm is one
of the variable depth neighborhood search methods and changes the number of
exchanged links adaptively. As a result, this chaotic search method shows higher
performance than the chaotic search method using the 2-opt algorithm.

p(i)
i

p(j)
j

p(i)
i

p(j)
j

p(j2)

j2

p(i)
i

p(j)
j

p(j2)

j2

Fig. 2. An example of the adaptive k-opt algorithm. p(i) is the previous city of the

city i.

The Lin-Kernighan algorithm[1] is generally considered to be one of the most
effective local search methods for symmetric TSPs. The Lin-Kernighan algo-
rithm is also a variable depth neighborhood search method and improves a tour
by changing the number of exchanged links dynamically. The Lin-Kernighan al-
gorithm can search better solutions than the adaptive k-opt algorithm, because
the Lin-Kernighan algorithm can search more deeply than the adaptive k-opt
algorithm. We have already proposed a basic algorithm for avoiding the local-
minimum problem in the Lin-Kernighan algorithm by chaotic neurodynamics[8].
Although the proposed method in Ref.[8] exhibits better performance than the
conventional chaotic search methods[5, 6, 7], it is still hard to apply the proposed
method to very large scale TSP instances, because it requires much computa-
tional time to decide values of parameters[8]. In the method[8], the parameters
are decided by the standard deviation of the link length. Thus, the computa-
tional costs for calculating the standard deviation become large for very large
scale TSP instances, such as 105 order. To resolve this problem, in this paper,
we introduce a new parameter tuning method. This method tunes the scaling
parameter adaptively.

To evaluate the performance of the proposed method, we use instances with
the order of 103 ∼ 105. As a result, the proposed method shows better solutions
than the previous chaotic search methods[5, 6, 7, 8].
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2 Proposed Method

2.1 The Lin-Kernighan Algorithm Driven by Chaotic
Neurodynamics[8]

In the proposed method, we use chaotic neurodynamics[9] to drive the Lin-
Kernighan algorithm[1]. To realize the chaotic neurodynamics, we use a chaotic
neural network constructed by chaotic neurons[9]. The number of chaotic neurons
is the same as the number of cities. Each chaotic neuron is assigned to each city,
then an execution of the Lin-Kernighan algorithm is controlled by firing of the
corresponding chaotic neuron.

The chaotic neuron has a gain effect and a refractory effect. The first effect,
or the gain effect, is defined by the following equations[8]:

ξi(t+ 1) = max
j
{β(t)Δij(t) + ζj(t)}, (2)

β(t + 1) = β(t) + γ, (3)

where ξi(t + 1) expresses the gain effect; β(t) is a scaling parameter of the gain
effect at time t (β(t) > 0); Δij(t) is a difference between a current tour length
and a new tour length at time t, namely Δij(t) = D0(t)−Dij(t), where D0(t) is
the length of the current tour at time t, and Dij(t) is the new tour length offered
by the Lin-Kernighan algorithm which links the cities i and j at time t. If the
new tour length is shorter than the current tour length, the value of the gain
effect becomes positive because Δij(t) > 0. Then, the gain effect encourages the
chaotic neuron to fire.

In Eq. (3), γ is a scaling parameter of the annealing effect. The scaling pa-
rameter β(t) increases with time t. By increasing the value of β(t) gradually, a
searching space is increasingly limited as the simulated annealing[3].

The second effect, or the refractory effect, is defined by the following equation:

ζi(t + 1) = −α
s−1∑
d=0

kd
rxi(t− d) + θ, (4)

where ζi(t + 1) expresses the refractory effect. α is a scaling parameter of the
refractory effect after a neuron firing (α > 0); kr is a decay parameter of the
refractory effect (0 < kr < 1); s is a temporal period for memorizing past
outputs; xi(t) is an output of the ith neuron at time t; θ is a threshold value.
If the neuron fires in the past s steps, the right hand side of Eq. (4) becomes
negative. Namely, the refractory effect inhibits the neuron from firing for a while.
In Eq. (4), if s− 1 = t, it means that the neuron memorizes its all history from
t = 0. If we use Eq. (4) directly, it needs much amount of memory to memorize
its all history. However, Eq. (4) can be transformed into the following simple
one-dimensional difference equation:

ζi(t + 1) = krζi(t)− αxi(t) + (1− kr)θ. (5)
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Then, the output of the ith neuron is defined by the following equation:

xi(t+ 1) = f (ξi(t + 1) + ζi(t + 1)) , (6)

where f(y) = 1/(1 + e−y/ε). If xi(t+ 1) ≥ 1/2, the ith neuron fires at time t+ 1
and the Lin-Kernighan algorithm which links the cities i and j is executed. In
the proposed method, each neuron is updated asynchronously.

To solve an N -city TSP, the procedure of a single iteration in the proposed
method is shown below.

1. Let i = 1.
2. Choose the city j which maximizes the value of the gain effect of the ith

neuron. In this step, the Lin-Kernighan algorithm which links the cities i
and j is temporarily executed to obtain the value of Δij(t).

3. Calculate the output of the ith neuron xi(t + 1).
4. If xi(t + 1) ≥ 1/2, the ith neuron fires, then the Lin-Kernighan algorithm

which links cities i and j is executed.
5. If i < N , let i = i+ 1 and go to Step 2. Otherwise finish this iteration.

Next, the procedure of the Lin-Kernighan algorithm used in the Step 2 is
shown below. Note that i and j have already been selected. The Lin-Kernighan
algorithm searches better solutions by repeating a choice of a deleted link x and
an added link y.

1. Let T be initial tour (Fig. 3(a)).
2. Let G∗ = 0, m = 1, t1 is p(i), t2 is i, t3 is j, x1 is the link (t1, t2), and y1

is the link (t2, t3) (Fig.3(b)). Here, G∗ is a value of the best improvement in
the previous searches, m is the number of pairs of a deletion and an addition
of links, and p(i) is the previous city of the city i.

3. Let m increase by one. Delete xm(t2m−1, t2m) and add ym(t2m, t2m+1) by
the following steps (a)–(d). If such xm and ym cannot be found, go to Step
4.
(a) Delete xm until the following conditions is satisfied:

i. xm is not previously added.
ii. If t2m is connected to t1, the resulting configuration is a feasible tour.

(b) If f(T )− f(T ′) > G∗, set G∗ = f(T )− f(T ′) and k = m, where T is an
initial tour, T ′ is a tour constructed by connecting t2m to t1 (Fig.3(c)),
f(T ) is a length of T and k is the number of exchanged links to achieve
G∗.

(c) Add ym until the following conditions is satisfied (Fig.3(d)):
i. ym is not previously deleted.

ii. Gm > 0, where Gm =
m∑

j=1

(|xj | − |yj |).

iii. In case that ym is added, a next link xm+1 exists.
iv. |xm+1| − |ym| is maximum for all candidates of ym.

(d) If Gm > G∗, go to Step 3.
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i

j

(a)

t1

t2(= i)

t3(= j)

(= p(i))

x1

y1

(b)

t1

t2(= i)

t4

t3(= j)

(= p(i))

(= p(j))
x2

(c)

t1

t2(= i)

t4

t3(= j)

t5

(= p(i))

(= p(j))

y2

(d)

Fig. 3. An example of the Lin-Kernighan algorithm. (a) shows an initial tour, (b) shows

a case in which depth of search is 1, (c) shows a tour constructed by connecting t2m

to t1 at m = 2, and (d) shows a case in which depth of search is 2. p(i) is the previous

city of the city i, x1 and x2 are the deleted links, and y1 and y2 are the added links.

4. If G∗ = 0 and m = 2, set Δij(t) to f(T ) − f(T ′). Otherwise set Δij(t) to
G∗.

5. The procedure terminates.

In this algorithm, we also introduce a double bridge algorithm. The double
bridge algorithm is a special 4-opt local search method as shown in Fig. 4.
The double bridge algorithm is decomposed into two 2-opt improvements. The
Lin-Kernighan algorithm cannot realize such an improvement. In the proposed
method, the double bridge algorithm is executed to diversify obtained solutions
if a better solution could not be found for more than 5 iterations.

2.2 A Parameter Tuning Method

In Eq. (3), a scaling parameter β(t) increases linearly based on γ, which is decided
by the standard deviation of the link length for each instance because the range
of Δij depends on each instance[8]. However, the standard deviation of the link
length is not enough to adjust β(t), because the value of Δij(t) temporally
depends on solution states. Moreover, it is hard to apply this method to large
scale TSP instances because the calculation costs of the standard deviation is
too large to calculate in a reasonable time frame for such a case.

Then we introduce a new parameter tuning method. In this method, to obtain
the same range of ξi(t) for all instances, the scaling parameter β(t) is adjusted by
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Fig. 4. An example of the double bridge algorithm

Δij , because the range of Δij reflects a structural property of problem instances.
In addition, because the value of Δij temporally depends on solution states, an
average value of Δij at time t is used to adjust β(t+1). Then, we transform Eq.
(3) into the following equations:

β(t + 1) = β(t) +
q

Δ(t)
, (7)

Δ(t) =
1
N

N∑
i=1

|Δij(t)|, (8)

where q is a scaling parameter of the annealing effect.

3 Results

To evaluate the performance of the proposed method, we used two benchmark
problems: TSPLIB[10] and classes E and C in “8th DIMACS Implementation
Challenge”[11]. The difference between classes E and C is how cities are dis-
tributed: class E has a uniform distribution in a square and class C is clustered
in a square. We conducted numerical simulations using the gcc compiler on a
Mac mini of 1.5GHz Intel Core Solo processor with 2GB memory running on
MAC OS X 10. 4. 11.

Initial solutions are constructed by the nearest neighbor method. The param-
eters of the proposed method β(0), q, α, kr , θ and ε are fixed for all instances:
β(0) = 0, q = 0.045, α = 1.0, kr = 0.5, θ = 1.0 and ε = 0.002. The proposed
method is applied for 200 iterations. Then, to reduce computational costs, we
use two different candidate lists: nearest neighbors and quadrant neighbors. In
the nearest neighbors, the nearest cities are added to the candidate list for each
city (Fig. 5(a)). In the quadrant neighbors, first, considering each city as an
origin, the Euclidian plane is divided into four quadrants. Next, for the four
quadrants, the nearest cities are added to the candidate list. For example, if the
number of the candidates is four, for each quadrant, one nearest city is added
to the candidate list (Fig. 5(b)). If no city exists or all cities have already been
selected as candidates, no cities are added to the candidate list.

The candidate lists are constructed from 10 nearest neighbors (10NN) and 8
quadrant neighbors (8QN: 2 nearest neighbors are selected in each quadrant of
the Euclidian plane). The candidate list is used, when we decide the city j in
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(a) Nearest neighbors (b) Quadrant neighbors

Fig. 5. Difference between the nearest neighbors and the quadrant neighbors. Each

point shows cities. The city distribution is the same for both cases. The number of the

candidates is four. Black points show candidate cities for the center city(larger circles).

Step 2 of the procedure of a single iteration in the proposed method (Eq. (2))
and we decide added link ym in Step 3 of the procedure of the Lin-Kernighan
algorithm. We investigate which candidate list is more effective for the pro-
posed method. Then, the best obtained tour is improved by the Lin-Kernighan
algorithm and the double bridge algorithm until no further improvements are
possible.

Table 1 shows results for the chaotic search method using Lin-Kernighan algo-
rithm without the double bridge algorithm (CS+LK) and that with the double
bridge algorithm (CS+LK+DB). In Table 1, the results for TSPLIB instances
are expressed by percentages of average gaps between obtained solutions and the
optimal solutions. However, the optimal solution of DIMACS instances are cur-
rently unknown. Thus, the results for DIMACS instances of Table 1 are expressed
by percentages of average gaps between obtained solutions and the Held-Karp
lower bound[12, 13].

From Table 1, the performance of CS+LK+DB is higher than that of CS+LK.
These results indicate that the double bridge algorithm is effective. However, the
running time is almost same. Then, the quadrant neighbors obtain better solu-
tions than the nearest neighbors for TSPLIB instances except for pcb1173 and
DIMACS instances of class C. On the other hand, for the DIMACS instances of
class E, the nearest neighbors obtain better solutions. The reason is that in the
DIMACS instances of class E, the nearest neighbors and the quadrant neighbors
produce almost the same candidate lists, because the cities are uniformly dis-
tributed in a square. Thus, the nearest neighbors obtain better solutions than
the quadratic neighbors, because the number of candidates is larger than the
quadratic neighbors.
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Table 1. Results for the chaotic search method using Lin-Kernighan algorithm without

the double bridge algorithm (CS+LK) and that with the double bridge algorithm

(CS+LK+DB). Average gaps between obtained solutions and the best known solutions

are shown in percentage. Bold faces are the best results. Running times are shown in

second.

Gaps[%] Running times[s]

CS+LK CS+LK+DB CS+LK CS+LK+DB

Instance Candidate lists

10NN 8QN 10NN 8QN 10NN 8QN 10NN 8QN

pcb1173 0.759 0.797 0.530 0.647 16 13 16 13

rl5915 1.011 0.906 0.886 0.650 92 119 95 127

rl11849 0.890 0.807 0.694 0.594 302 372 313 381

pla33810 1.175 0.789 1.065 0.680 1637 1715 1669 1778

pla85900 0.973 0.638 0.904 0.562 7952 10834 8283 11063

E10k.0 1.502 1.588 1.325 1.367 337 337 345 340

E31k.0 1.449 1.564 1.264 1.346 1957 2031 2010 2088

E100k.0 1.463 1.571 1.291 1.347 12636 13833 13272 14311

E316k.0 1.496 1.573 1.329 1.381 101352 115714 105696 123157

C10k.0 7.533 2.111 7.352 1.976 239 205 254 216

C31k.0 7.398 2.210 7.202 2.000 831 829 918 893

C100k.0 7.433 2.255 7.258 2.137 3787 4376 4559 4886

C316k.0 7.211 2.378 7.048 2.103 35821 39212 43814 41045

4 Conclusions

In this paper, we proposed a new chaotic search method using the Lin-Kernighan
algorithm for solving TSP. From the computational experiments, the proposed
method shows higher performance for large scale instances. In the future work,
to improve performance of the proposed method, we should modify the chaotic
search method, for example we will develop an effective parameter tuning method.
The research of T.I. is partially supported by Grant-in-Aid for Scientific Research
(B) (No.20300085) from the JSPS.
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Abstract. The quadratic assignment problem (QAP) is one of the com-

binatorial optimization problems which belong to a class of NP-hard. To

solve QAP, various algorithms for finding near optimal solutions have

already been proposed. Among them, the Hopfield-Tank neural network

approach is very attractive from a viewpoint of an application of neural

dynamics to combinatorial optimization, this approach is not so effective

because of local minimum problem. To overcome this problem, a method

which uses chaotic dynamics has already been proposed. On the other

hand, to avoid undesirable local minima, dynamical noise is often used.

In this paper, we combine these two approaches–chaotic dynamics and

dynamical noise–to realize an effective approach for solving combinato-

rial optimization problems: we add dynamical noise to chaotic neural

network for solving QAP. The results show that when the small amount

of dynamical noise is added, the solving performance is much improved.

We also analyze the influence of dynamical noise to the chaotic dynamics,

and show that dynamical noise diversifies the searching states to explore

much better solutions.

1 Introduction

Many optimization problems exist in real world, for example, VLSI design,
scheduling problem, routing problem, facility layout problem, and so on. In
these problems, it is important to find the optimal solution, because it leads
to the reductions of operation costs. These problems are often formulated as a
quadratic assignment problem (QAP). QAP is one of the typical combinatorial
optimization problems, and it is widely acknowledged that QAP is one of the
most difficult NP-hard problems. Thus, it is almost impossible to find an optimal
solution in realistic time. Then, it is required to develop approximate algorithms
for finding near optimal solutions in reasonable time.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 573–582, 2009.
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As one of the approximate algorithms, a method which uses the Hopfield-
Tank neural network (HNN), or the mutual connection neural network, has been
proposed[1]. In this method, a firing pattern of HNN represents a solution. The
synaptic weights of HNN are decided so that an optimal solution is embeded in
a stable equilibrium point of HNN. Thus, by providing a good initial solution
with HNN, dynamics of HNN offers a firing pattern corresponding to the optimal
solution. However, this method gets trapped into local minima. As an approach
for avoiding such local minimum problems, a method which uses chaotic neural
network (CNN)[2] has already been proposed. It is shown that complex dynamics
of CNN is effective to avoid the local minima[3–5]. As another approach for
solving the local minimum problems, a method which uses additive dynamical
noise to HNN has been proposed[6]. By using fluctuation of chaotic noise[7, 8],
the searching state can escape from the local minima. This method shows high
performance.

In this paper, we proposed a new algorithm for solving QAP by combining
chaotic dynamics[2] and dynamical noise[6]. Namely, we add dynamical noise to
nonlinear dynamics of CNN. Combination of chaotic dynamics and dynamical
noise could lead to better performance. We first investigate how solving per-
formance of CNN with dynamical noise depends on the amplitude of the noise.
Next, we analyze the effect of dynamical noise to the chaotic dynamics and show
that the dynamical noise diversifies the searching state to explore much better
solutions.

2 Solving Quadratic Assignment Problem with Chaotic
Neural Networks

2.1 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is described as follows: given two
N × N matrices, a distance matrix D, which gives mutual distances between
locations, and a flow matrix C, which gives mutual relationships between units,
find a permutation p which minimizes the value of the objective function F (p)
shown below:

F (p) =
N∑

i=1

N∑
j=1

dijcp(i)p(j), (1)

where dij is the (i, j)th element of D, p(i) is the ith element of p, cp(i)p(j) is the
(p(i), p(j))th element of C.

2.2 Chaotic Neural Network

The chaotic neural network model is proposed by Aihara, Takabe and Toyoda[2].
This neural network model can reproduce a chaotic dynamics observed in real
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neural membrane. The dynamics of the ith chaotic neuron in the chaotic neural
network is defined as follows:

xi(t + 1) = f{
M∑

j=0

vij

t∑
d=0

kd
eAj(t− d)

+
N∑

j=0

wij

t∑
d=0

kd
fxj(t− d)

−α
t∑

d=0

kd
rxi(t− d)− θi}, (2)

where xi(t + 1) is an output of the ith neuron at time t + 1; ke, kf and kr

are decay parameters for external inputs, feedback inputs and a refractoriness,
respectively; Aj(t) is the amplitude of the jth external input at the time t;
M is the number of the external inputs; vij is a connection weight from the
jth externally applied input to the ith neuron; wij is a connection weight from
the jth neuron to the ith neuron; N is the number of neurons; α is a strength
parameter of the refractory effect; θi is a threshold of the ith chaotic neuron; f
is a continuous output function.

In the case that all three decay parameters (ke, km and kr) are equal to k, the
ith neural dynamics is reduced to the following simple forms:

yi(t + 1) = kyi(t) +
N∑

j=1

wijf(yj(t))− αf(yi(t)) + ai, (3)

xi(t + 1) = f(yi(t + 1)). (4)

where yi(t) is an internal state of the ith neuron at time t, and ai = −θi(1− k).

2.3 An Application of Chaotic Neural Network to QAP

To solve QAP of the size N by the Hopfield-Tank neural network (HNN), N×N
neurons are prepared, and they are arranged on an N × N grid. The outputs
of neurons X represent a solution p of QAP. Namely, The (i,m)th neuron xim

controls whether the ith unit is assigned to the mth location. If the ith unit
is assigned to the mth location, xim = 1, otherwise, xim = 0. Then, using X ,
Eq.(1) can be written as follows:

F (X) =
N∑

i=1

N∑
j=1

N∑
m=1

N∑
n=1

dijcmnximxjn. (5)
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To produce a feasible solution for QAP, X must satisfy the constraints that one
unit is assigned to one location and one location is assigned to one unit. These
constraints are described by the following equations:

N∑
m=1

xim = 1, (6)

N∑
i=1

xim = 1. (7)

Using Eqs.(5), (6) and (7), the objective function is calculated as follows:

F (X) = A
N∑

i=1

(
N∑

m=1

xim − 1)2

+B
N∑

m=1

(
N∑

i=1

xim − 1)2

+
N∑

i=1

N∑
j=1

N∑
m=1

N∑
n=1

dijcmnximxjn, (8)

where A and B are control parameter for the constraints of Eqs.(6) and (7).
The energy function E of such an N ×N neural network is defined as follows:

E(X) = −1
2

N∑
i=1

N∑
j=1

N∑
m=1

N∑
n=1

wim;jnximxjn +
N∑

i=1

N∑
m=1

θimxim, (9)

where wim;jn is the synaptic weight from the (j, n)th neuron toj the (i,m)th
neuron and θim are the threshold of the (i,m)th neuron. From Eqs.(5) and (9),
we determine the synaptic weight and the threshold as follows:

wim;jn = −2
(
A(1 − δmn)δij +Bδmn(1− δij) +

dijcmn

q

)
, (10)

θim = −(A+B), (11)

where δ is Kronecker’s delta and q is a normalization parameter for the product
of dij and cmn. Then, an internal state of the (i,m)th neuron is defined as follows:

yim(t+ 1) = kyim(t) +
N∑

j=1

N∑
n=1

wim;jnf(yjn(t))− αf(yim(t)) + θim(1− k), (12)

where f is a sigmoidal function

f(y) =
1

1 + exp(− y
ε )
, (13)
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where ε is a gradient parameter of a sigmoid function.
Each neuron is updated asynchronously. However, it is not so easy to generate

feasible solutions, because an internal state of the chaotic neuron takes an analog
value. Thus, we use the firing decision method[3] which can always generate a
feasible solution for QAP. The procedure is described as follows:

1. Choose an index (i,m) whose internal state yim takes the maximum value
among all the neurons. Then set the (i,m)th neuron as a firing state by
letting xim = 1(Fig.1(a)).

2. Next, other neurons in the ith row and the mth column are set to a resting
state. Namely, let xik = 0(k �= m) and xml = 0(l �= i). Then exclude the
neurons which have already been selected at Steps 1 and 2(Fig.1(b)).

3. Repeat Steps 1 and 2 until all the states of neurons are decided(Figs.1(c),(d)
and (e)).

3 Proposed Method

A method for solving QAP by using Hopfiled-Tank neural network(HNN) has
the local minimum problem. To overcome this problem, some approaches have
already been proposed, for example, additive chaotic dynamical noise to HNN
[7],[8], chaotic neural network(CNN)[3],[4], and so on. It was shown that the
method of using CNN can obtain better solutions than the method of adding
chaotic dynamical noise to HNN[9]. However, we expected that it would be more
effective to use both CNN and dynamical noise. Then, in the proposed method,
we add dynamical noise to CNN for solving QAP. The noise is added each neuron
every iteration. The internal state of the (i,m)th neuron with noise is defined
as follows:

yim(t+1) = kyim(t)+
N∑

j=1

N∑
n=1

wim;jnf(yjn(t))−αf(yim(t))+θim(1−k)+γβim(t),

(14)
where γ is a weight of dynamical noise and βim(t) is the dynamical noise which
is added to the internal state of the (i,m)th neuron at time t.

4 Results

4.1 Performance with Respect to Weight of Noise

To evaluate the performance of the proposed method, we used Nug15, Nug20,
Nug25, and Nug30 from QAPLIB[10]. Parameters of chaotic neural networks
(in Eq.(14))are as follows: A = 0.29, B = 0.29, k = 0.83, α = 1.01, ε = 0.017,
θ = 0.58, q = 350 for Nug15, q = 540 for Nug20, q = 820 for Nug25, q = 880
for Nug30. We used white Gaussian noise whose average is zero and variance
is unity. The proposed method is applied for 2000 iteration for each instance.
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⎛
⎜⎜⎜⎜⎝

yi1 yi2 yi3 yi4 yi5

y1j 0.1 0.4 0.2 0.3 0.7
y2j 0.5 0.9 0.7 0.4 0.3
y3j 0.1 0.3 0.4 0.4 0.3
y4j 0.3 0.6 0.6 0.2 0.5
y5j 0.8 0.2 0.3 0.5 0.4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

xi1 xi2 xi3 xi4 xi5

x1j 0 0 0 0 1
x2j 0 1 0 0 0
x3j 0 0 0 0 0
x4j 0 0 1 0 0
x5j 1 0 0 1 0
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(a) The (2, 2)th neuron is selected, because y22 is the largest. Then let x22 = 1.

⎛
⎜⎜⎜⎜⎝

yi1 yi2 yi3 yi4 yi5

y1j 0.1 0.4 0.2 0.3 0.7
y2j 0.5 0.9 0.7 0.4 0.3
y3j 0.1 0.3 0.4 0.4 0.3
y4j 0.3 0.6 0.6 0.2 0.5
y5j 0.8 0.2 0.3 0.5 0.4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

xi1 xi2 xi3 xi4 xi5

x1j 0 0 0 0 1
x2j 0 1 0 0 0
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x4j 0 0 1 0 0
x5j 1 0 0 1 0
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(b) Let x2k = 0(k �= 2) and xl2 = 0(l �= 2). Then exclude neurons in the 2nd row

and in the 2nd column.

⎛
⎜⎜⎜⎜⎝

yi1 yi2 yi3 yi4 yi5

y1j 0.1 0.4 0.2 0.3 0.7
y2j 0.5 0.9 0.7 0.4 0.3
y3j 0.1 0.3 0.4 0.4 0.3
y4j 0.3 0.6 0.6 0.2 0.5
y5j 0.8 0.2 0.3 0.5 0.4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

xi1 xi2 xi3 xi4 xi5

x1j 0 0 0 0 1
x2j 0 1 0 0 0
x3j 0 0 0 0 0
x4j 0 0 1 0 0
x5j 1 0 0 1 0
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(c) The (5, 1)th neuron is selected, because y51 is the largest. Then let x51 = 1.

⎛
⎜⎜⎜⎜⎝

yi1 yi2 yi3 yi4 yi5

y1j 0.1 0.4 0.2 0.3 0.7
y2j 0.5 0.9 0.7 0.4 0.3
y3j 0.1 0.3 0.4 0.4 0.3
y4j 0.3 0.6 0.6 0.2 0.5
y5j 0.8 0.2 0.3 0.5 0.4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

xi1 xi2 xi3 xi4 xi5

x1j 0 0 0 0 1
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x3j 0 0 0 0 0
x4j 0 0 1 0 0
x5j 1 0 0 1 0
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(d) Let x5k = 0(k �= 1) and xl1 = 0(l �= 5). Then exclude neurons in the 5th row

and in the 1st column.

⎛
⎜⎜⎜⎜⎝

yi1 yi2 yi3 yi4 yi5

y1j 0.1 0.4 0.2 0.3 0.7
y2j 0.5 0.9 0.7 0.4 0.3
y3j 0.1 0.3 0.4 0.4 0.3
y4j 0.3 0.6 0.6 0.2 0.5
y5j 0.8 0.2 0.3 0.5 0.4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

xi1 xi2 xi3 xi4 xi5

x1j 0 0 0 0 1
x2j 0 1 0 0 0
x3j 0 0 0 0 0
x4j 0 0 1 0 0
x5j 1 0 0 1 0

⎞
⎟⎟⎟⎟⎠
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0

0
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0
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0

1
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(e) Repeat the above procedures to select and exclude neurons.

Fig. 1. How to obtain a feasible solution. The left matrix is the internal state of neurons,

and the right matrix is the outputs of neurons.
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Figure 2 shows results for the proposed method, when we change γ from 0 to
0.005 at intervals of 0.0001. In Fig.2, the results are expressed by the average
gap of 100 trial.

Gap =
Best Obtained Solution−Optimal Solution

Optimal Solution
× 100[%]. (15)

From Fig.2, to add small amount of noise, the performance of the proposed
method is improved for all problems. However, to add larger amplitude of noise,
the performance of the proposed method becomes worse gradually. The small
amount of noise leads to more effective search, because the searching space is
extended appropriately. On the other hand, the larger amount of noise disturbs
a search, because it leads to a random search.
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Fig. 2. Average gaps from the optimal solution when noise weight γ is changed for

Nug15, Nug20, Nug25 and Nug30

4.2 Correlation Coefficient of Internal States and Fire Patterns

Next, to analyze an influence of noise, we calculate an average correlation coef-
ficient r of the internal states of neurons at every iteration, defined as follows:

r =
1

T − 1

T−1∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

i=1

N∑
m=1

(yim(t)− y(t))(yim(t + 1)− y(t + 1))√√√√ N∑
i=1

N∑
m=1

(yim(t)− y(t))2

√√√√ N∑
i=1

N∑
m=1

(yim(t + 1)− y(t + 1))2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(16)



580 T. Suzuki et al.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.001  0.002  0.003  0.004  0.005
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

A
ve

ra
ge

 G
ap

 fr
om

 O
pt

im
al

 S
ol

ut
io

n

Weight of Noize γ

Correlation
Gap

Fig. 3. Correlation coefficients of internal states and average gap from optimal solution

for Nug25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20

F
re

qu
en

cy

Gap from Optimal Solution [%]

γ=0
γ=0.001
γ=0.004

Fig. 4. Frequency distributions of instantaneous gap of each iteration for Nug25



Quadratic Assignment Problems for Chaotic Neural Networks 581

where T is the number of iterations, y(t) is an average of the internal state of
the neurons at time t, and is defined as follows:

y(t) =
1
N2

N∑
i=1

N∑
m=1

yim(t). (17)

Figure 3 shows the results for average correlation coefficient of internal states of
the neurons and average gaps from optimal solution. From Fig.3, when the noise
is not added, the correlation coefficients take large value. Namely, internal states
of neurons change slowly. On the other hand, the correlation coefficients decrease
when the amount of noise increased. The reason is that due to dynamical noise,
the dynamic range of the internal states becomes large, then the solution search
has been improved.

Next, we examine how additive dynamical noise effects quality of solutions
offered by CNN. Figure 4 shows frequency distributions of instantaneous gap of
each iteration. In Fig.4 we plot the result just after the 200th iteration. From
Fig.4, if the small amount of dynamical noise is added to the dynamics of CNN,
the frequency of good solutions (0 ∼ 5%) increases. If the amount of dynamical
noise is too large, the frequency of good solutions reduces and that of worse
solutions (5 ∼ 15%) increases. Namely, the solution search is promoted by adding
the small amount of noise. However, the large amount of noise reduces original
searching ability, then good solutions cannot be obtained.

5 Conclusions

We propose a new method for solving QAP which uses chaotic dynamics with
dynamical noise. As a result, in case of adding the small amount of dynamical
noise, the proposed method shows higher performance than the conventional
method. To analyse the property of CNN with respect to noise, we investigate
correlation coefficients of internal states of the neurons and frequency distribu-
tion of solutions. From the results, when we add dynamical noise to the chaotic
dynamics, variation of internal states of the chaotic neuron becomes large and
much better solutions are obtained. The research of T.I. is partially supported
by Grant-in-Aid for Scientific Research (B) (No.20300085) from the JSPS.
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Abstract. In this paper, the switching dynamics of recurrent neural

networks are studied. Sufficient conditions on global exponential stabil-

ity with an arbitrary switching law or a dwell time switching law and

the estimates of Lyapunov exponent are obtained. The obtained results

can be used to analyze and synthesize a family of continuous-time con-

figurations with the switching between the configurations. Specially, the

obtained results are new and efficacious for the switching between the

stable and unstable configurations. Finally, simulation results are dis-

cussed to illustrate the theoretical results.

1 Introduction

In designs and applications of dynamic systems, it is not uncommon for their
dynamics to switch between two or more configurations. A switching dynamic
system is composed of a family of configurations and a switching rule between
the configurations. Recently, there has been increasing interest in the stabil-
ity analysis and switching control design of dynamic systems (see, for example,
[1]-[11]). The motivation for studying switching systems comes from the fact
that many practical systems are inherently multimodal in the sense that several
dynamic systems are required to describe their behaviors, depending on vari-
ous environmental factors [2], and from the fact that the methods of intelligent
control design are based on the idea of switching between different controllers
[3].

For a family of linear time-invariant configurations, it was shown in [4] that,
when all configuration matrices are Hurwitz stable, the entire system is expo-
nentially stable for any switching law if the time between consecutive switchings
(called the ‘dwell time’) is sufficiently large. Hespanha and Morse extended the

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 583–592, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



584 Z. Zeng, J. Wang, and T. Huang

‘dwell time’ concept to an ‘average dwell time’ concept [5], which means that the
average time interval between consecutive switchings is no less than a specified
constant. And it is proved that, if such a constant is sufficiently large, then the
switching system is exponentially stable. The idea of specifying the total activa-
tion time period ratio of Hurwitz stable configurations to unstable configurations
is motivated by the work in [6], where all configuration matrices are assumed to
be pairwise commutative.

Hu and Michel [3] analyzed a dwell time scheme for local asymptotic stability
of nonlinear switching systems with the activation time being used as the dwell
time. In [7], some stability properties of switching systems composed of a family
of linear time-invariant configurations are studied. In addition, the obtained
results are applied to the perturbed switching systems where nonlinear norm-
bounded perturbations exist in the linear time-invariant configurations.

In [8], a class of switching Hopfield neural networks with time-varying delay
is investigated. In [9], robust stability of switching Cohen-Grossberg neural net-
works with mixed time-varying delays is considered. In [10] and [11], new stability
results for recurrent neural networks with Markovian switching are presented.

In this paper, we will analyze the stability of switching neural networks. The
remainder of this paper is organized as follows. Useful notations and definitions
are given in Section 2. In Section 3, the global exponential stability results with
arbitrary switching law and the estimates of Lyapunov exponent are discussed. In
Section 4, the global exponential stability results with dwell time switching law
and the estimates of the Lyapunov exponent are derived. Illustrative examples
are provided in Section 5. Finally, concluding remarks are given in Section 6.

2 Preliminaries

2.1 Model

Consider the recurrent neural network model with time-varying delays and
switching law σ(t) :

ẋ(t) = −Dσx(t) +Aσf(x(t)) +Bσg(x(t− τ(t))) + Jσ. (1)

This system can be regarded as the result of the following N configurations

ẋ(�)(t) = −D�x
(�)(t) +A�f(x(�)(t)) +B�g(x(�)(t− τ(t))) + J� (2)

switching from one to the others according to a switching law:

σ : [t0,+∞) → {1, 2, · · · , N}. (3)

Thus, Aσ is a piecewise constant function:

Aσ : [t0,+∞) → {A1, A2, · · · , AN}. (4)

Here, {A� : 1 ≤ � ≤ N} is a family of constant matrices describing the configu-
rations, and the integer N > 1 denotes the number of configurations. Similarly,
Dσ, Bσ, Jσ can be obtained.
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In recurrent neural network model (1), x(t) = (x1(t), x2(t), · · · , xn(t))T

is a state vector of neurons. In recurrent neural network (2), x(�)(t) =
(x(�)

1 (t), x(�)
2 (t), · · · , x(�)

n (t))T is a state vector of neurons of configuration,
D� = diag

(
d
(�)
1 , d

(�)
2 , · · · , d(�)

n

)
is a self-feedback connection weight matrix,

A� =
(
a
(�)
ij

)
n×n

and B� =
(
b
(�)
ij

)
n×n

are connection weight matrices without

delays and with delays, respectively, J� = (J (�)
1 , J

(�)
2 , · · · , J (�)

n )T is an external
input (bias) to the network, f(x(·)) =

(
f1(x1(·)), f2(x2(·)), · · · , fn(xn(·)))T and

g(x(·)) =
(
g1(x1(·)), g2(x2(·)), · · · , gn(xn(·)))T are activation functions which

satisfy
A1: ∀j ∈ {1, 2, · · · , n}, ∀r1, r2, r3, r4 ∈ �, there exist real numbers γj and μj

such that

|fj(r1)− fj(r2)| ≤ γj |r1 − r2| , |gj(r3)− gj(r4)| ≤ μj |r3 − r4| .
Hence, (2) can be rewritten as the following form:

ẋ
(�)
i (t) = −d(�)

i x(�)(t) +
n∑

j=1

a
(�)
ij fj(x

(�)
j (t)) +

n∑
j=1

b
(�)
ij gj(x

(�)
j (t− τj(t))) + J

(�)
i (5)

where 0 ≤ τj(t) ≤ τ. Throughout of this paper, we denote |u| as the absolute-
value vector; i.e., |u| = (|u1|, |u2|, · · · , |un|)T , |A| as the absolute-value matrix;
i.e., |A| = [|aij |]. Denote the vector u > 0 as ui > 0, ∀i ∈ {1, 2, · · · , n}. Denote
In×n as the n × n identity matrix. Denote ‖u‖p as the vector p-norm of the
vector u with p satisfies 1 ≤ p < ∞. ‖u‖∞ = maxi=1,2,··· ,n |ui| is the vector
infinity norm. Denote ‖A‖p as the p-norm of the matrix A induced by the vector
p-norm. Denote C0 as the set of continuous functions.

2.2 Definitions

Definition 1. If ∀� ∈ {1, 2, · · · , N}, J� = 0, and an arbitrary solution x(t) of the
neural network (1) satisfies

|xi(t)| ≤ (
n∑

j=1

sup
t0−τ≤ζ≤t0

|xj(ζ)|)βi exp{−αi(t− t0)},

where t ≥ t0 > 0, βi and αi are positive constants, then the equilibrium point
of the neural networks (1) is said to be globally exponentially stable.

Definition 2. Let Ω be solution set of the neural network (1),

λ = sup
x(t)∈Ω

limt→+∞(ln ‖x(t)‖∞/(t− t0))

is called as Lyapunov exponent.
From Definition 2, there exist positive constants β̄i, (i = 1, 2, · · · , n) such that

the state vector x(t) of the neural network (1) satisfies

|xi(t)| ≤ β̄i exp{λ(t− t0)},
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where t ≥ t0 > 0. Hence, the neural network (1) is exponentially stable when its
Lyapunov exponent is negative.

2.3 Dwell Time

Given a positive constant τd, let S[τd] denote the set of all switching signals with
interval between consecutive discontinuities no smaller than τd. The constant τd
is called the dwell time.

Morse A.S. showed that, if τd is sufficiently large, then the switching system

ẋ(t) = Aσx(t) (6)

is exponentially stable for any switching law σ ∈ S[τd] [4].
Definition 3. Given two positive constants τd, τ̄d, let BS[τd, τ̄d] denote the set of
all switching signals with interval between consecutive discontinuities at least τd
and at most τ̄d. The constant τ̄d is called the dwell time upper bound and τd is
called the dwell time lower bound.

3 Arbitrary Switching Laws

In this section, the global exponential stability results with arbitrary switching
law and the estimates of Lyapunov exponent are discussed.
Theorem 1. If ∀� ∈ {1, 2, · · · , N}, J� = 0, and there exist positive numbers
α1, · · · , αn such that ∀i ∈ {1, 2, · · · , n}

d
(�)
i αi >

n∑
j=1

(|a(�)
ij |γj + |b(�)ij |μj)αj , (7)

then the switching neural network (1) under any switching laws is globally ex-
ponentially stable with its estimated Lyapunov exponent λ̂, where

λ̂ = max
1≤�≤N

{
λ| (d(�)

i − λ)αi −
n∑

j=1

(|a(�)
ij |γj

+ |b(�)ij |μj exp{λτ})αj ≥ 0, i = 1, · · · , n
}
. (8)

Proof. Let y(t) = (y1(t), y2(t), · · · , yn(t))T = (|x1(t)|/α1, · · · , |xn(t)|/αn)T ,

y(�)(t) = (y(�)
1 (t), · · · , y(�)

n (t))T = (|x(�)
1 (t)|/α1, |x(�)

2 (t)|/α2, · · · , |x(�)
n (t)|/αn)T ,

where x(t) = (x1(t), · · · , xn(t))T is a state of (1), x(�)(t) = (x(�)
1 (t), · · · , x(�)

n (t))T

is a state of (2). Then from (5),

D+y
(�)
i (t) |(5) ≤ −d(�)

i y
(�)
i (t) +

n∑
j=1

∣∣∣a(�)
ij

∣∣∣ γj
αj

αi
y
(�)
j (t)

+
n∑

j=1

∣∣∣b(�)ij

∣∣∣μj
αj

αi
y
(�)
j (t− τij(t)), (9)

where D+ denotes upper-right Dini-derivative operator.
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Without loss of generality, let

σ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, t ∈ (t0, t1],
2, t ∈ (t1, t2],
...,
N, t ∈ (tN−1, tN ].

(10)

Let ȳ(t0) = max1≤i≤n supt0−τ<ζ≤t0 |xi(ζ)/αi| , zi(t) = yi(t) − ȳ(t0) exp{−λ̂(t −
t0)}, z(�)

i (t) = y
(�)
i (t) − ȳ(t0) exp{−λ̂(t − t0)}, then ∀t ≥ t0, zi(t) ≤ 0. Thus

yi(t) ≤ ȳ(t0) exp{−λ̂(t− t0)}, for all i ∈ {1, 2, · · · , n}, t ≥ t0. �

Corollary 1. If ∀� ∈ {1, 2, · · · , N}, J� = 0, and ∀i ∈ {1, 2, · · · , n}

d
(�)
i >

n∑
j=1

(|a(�)
ij |γj + |b(�)ij |μj), (11)

then the switching neural network (1) is globally exponentially stable with esti-
mated Lyapunov exponent λ̂ for any switching laws, where

λ̂ = min
1≤�≤N

{
λ|(d�)

i − λ −
n∑

j=1

(|a(�)
ij |γj + |b(�)

ij |μj exp{λτ}) ≥ 0, i = 1, · · · , n
}

(12)

Proof. Choose αi = 1 (i = 1, 2, · · · , n) in (15). According to Theorem 1, Corollary
1 holds. �

Remark 1. In [8] and [9], the robust stability of switching neural networks with
similar state characteristic configurations are considered. The method in proof of
Theorem 1 can also be utilized to study the robust stability of switching neural
networks with similar state characteristic configurations.

Remark 2. When N = 1, the results of Theorem 1 is the same as the so called
M -matrix criterion in [12].

4 Switching Laws with Dwell Time

In practical applications, (11) does not always hold. Without loss of generality,
we assume that ∀� ∈ {1, 2, · · · , N1},

d
(�)
i >

n∑
j=1

(|a(�)
ij |γj + |b(�)ij |μj), i = 1, 2, · · · , n; (13)

and ∀� ∈ {N1 + 1, N1 + 2, · · · , N}, there exist i ∈ {1, 2, · · · , n}, such that

d
(�)
i ≤

n∑
j=1

(|a(�)
ij |γj + |b(�)ij |μj). (14)
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For � ∈ {N1+1, N1+2, · · · , N}, it is possible that the configuration has multiple
equilibrium points. Hence, the switching recurrent neural network with configu-
rations satisfying (13) and (14) has dissimilar stability property.
Theorem 2. If ∀� ∈ {1, 2, · · · , N}, J� = 0, and

τdλ1 > 2τ̄dλ2, (15)

and for any interval [t̄, t̄+τ̄d], there exist �̄ ∈ {1, 2, · · · , N1} and t∗ ∈ [t̄, t̄+τ̄d] such
that σ(t∗) = �̄, then the switching neural network (1) under the switching laws
σ(t) ∈ BS[τd, τ̄d] is globally exponentially stable with its estimated Lyapunov
exponent λ̂, where

λ̂ = τdλ1 − 2τ̄dλ2, (16)

λ1 = max
1≤�≤N1,1≤i≤n

{
λ| d

(�)
i − λ −

n∑
j=1

(|a(�)
ij |γj + |b(�)

ij |μj exp{λτ}) ≥ 0
}

, (17)

λ2 = max
N1+1≤�≤N,1≤i≤n

{
− d

(�)
i +

n∑
j=1

(|a(�)
ij |γj + |b(�)ij |μj)

}
. (18)

Proof. From (5),

D+x
(�)
i (t) |(5) ≤ −d(�)

i x
(�)
i (t) +

n∑
j=1

( ∣∣∣a(�)
ij

∣∣∣ γj

∣∣∣x(�)
j (t)

∣∣∣
+
∣∣∣b(�)ij

∣∣∣μj

∣∣∣x(�)
j (t− τij(t))

∣∣∣ ), (19)

where D+ denotes upper-right Dini-derivative operator. Let

x̄(t0) = max
1≤i≤n

sup
t0−τ<ζ≤t0

|xi(ζ)| .

We will prove that ∀t ≥ t0, ∀i ∈ {1, 2, · · · , n},
xi(t) ≤ x̄(t0) exp{λ̂(t− t0)} (20)

via three steps.
The first step, when t ∈ [t0, t0 + τ̄d], let

zi(t) = xi(t)− x̄(t0) exp{λ2(t− t0)},
z
(�)
i (t) = x

(�)
i (t)− x̄(t0) exp{λ2(t− t0)}.

Similar to the proof of Theorem 1, we can prove that ∀t ∈ [t0, t0 + τ̄d], ∀� ∈
{1, · · · , N}, z(�)

i (t) ≤ 0.
The second step, when t ∈ [t0, t0 + τd + τ̄d], let

zi(t) = xi(t)− x̄(t0) exp{λ2τ̄d} exp{−λ1(t− t0 − τ̄d)}, (21)

z
(�)
i (t) = x

(�)
i (t)− x̄(t0) exp{λ2τ̄d} exp{−λ1(t− t0 − τd)}. (22)
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Then ∀t ∈ [t0, t0 + τd + τ̄d],

zi(t) ≤ 0. (23)

The third step, similarly, it can be proved that for all i ∈ {1, 2, · · · , n}, t ∈
[t0, t0 + τd + 2τ̄d],

xi(t) ≤ x̄(t0) exp{λ2τ̄d} exp{−λ1τd} exp{λ2(t− t0)}; (24)

for all i ∈ {1, 2, · · · , n}, t ∈ [t0, t0 + 2τd + 2τ̄d],

xi(t) ≤ x̄(t0) exp{2λ2τ̄d} exp{−λ1τd} exp{−λ1(t− t0 − 2τd)}
≤ x̄(t0) exp{−λ̂− λ1(t− t0 − 2τd)}. (25)

Hence, for k > 1, i ∈ {1, 2, · · · , n}, t ∈ [t0, t0 + 2kτd + 2kτ̄d],

xi(t) ≤ x̄(t0) exp{−kλ̂− λ1(t− t0 − 2kτd)}. (26)

Thus, the conclusion of Theorem 2 holds. �
Remark 3. When τ̄d is very large, if λ2 ≤ 0, (15) still holds.

5 Illustrative Examples

In this section, we give two numerical examples to illustrate the new results.
Example 1: Consider two configurations:(

ẋ1(t)
ẋ2(t)

)
= −

(
2 0
0 4

)(
x1(t)
x2(t)

)
+
(

0.8 1
1 −1

)(
f(x1(t))
f(x2(t))

)
; (27)

(
ẋ1(t)
ẋ2(t)

)
= −

(
5 0
0 2

)(
x1(t)
x2(t)

)
+
(

1 −1
−1 0.9

)(
g(x1(t))
g(x2(t))

)
, (28)

where f(x(t)) = (exp{x(t)} − exp{−x(t)})/(exp{x(t)}+ exp{−x(t)}); g(x(t)) =
(|x(t) + 1| − |x(t)− 1|)/2.

It is easy to prove that (27) and (28) are globally exponentially stable. In ad-
dition, (11) holds. According to Corollary 1, a switching neural network between
configurations (27) and (28) is globally exponentially stable for any switching
laws.

The transient states with some random initial conditions of the switching
system with a switching law

σ(t) =
{

1, t ∈ (2k, 2k + 1], k = 0, 1, 2, · · ·
2, t ∈ (2k + 1, 2k + 2], k = 0, 1, 2, · · · (29)

are depicted in Figure 1.
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(b) Transient behaviors of state x2(t).

Fig. 1. The states with random initial conditions and the switching law (29) in

Example 1

Example 2: Consider two configurations:(
ẋ1(t)
ẋ2(t)

)
= −

(
6 0
0 6

)(
x1(t)
x2(t)

)
+
(−1 1

1 1

)(
f(x1(t))
f(x2(t))

)
; (30)

{
ẋ1(t) = −0.1x1(t) + 0.9f(x1(t)) + 0.2f(x2(t)),
ẋ2(t) = −0.1x2(t) + 0.2f(x1(t)) + 0.9f(x2(t)),

(31)

where f(x(t)) = (exp(x(t)) − exp(−x(t)))/(exp(x(t)) + exp(−x(t))). It is easy
to prove that (30) is globally exponentially stable. In contrast, (31) has 8 equi-
librium points where only 4 equilibrium points are locally stable. The transient
states with some random initial conditions of (30) and (31) are depicted in
Figure 2.

Hence, it is impossible that these exists a common Lyapunov function for
these two configurations (30) and (31). Thus, it is necessary to find a proper
switching law such that the switching neural network is globally exponentially
stable. The switching laws with dwell time are worth studying. In addition, it
is necessary to find new methods in stability analysis of the nonlinear switching
systems. According to Theorem 2, we can always find a proper switching law
such that the switching recurrent neural network is globally exponentially stable.
In fact, from (30) and (31), λ1 = 3, λ2 = 1. If we choose the switching law such
that τd = τ̄d = 1, then the conditions of Theorem 2 are all satisfied. Hence,
the switching neural network with this switching law is globally exponentially
stable. The states with some random initial conditions of the switching system
with a switching law

σ(t) =
{

1, t ∈ (2k, 2k + 1], k = 0, 1, 2, · · ·
2, t ∈ (2k + 1, 2k + 2], k = 0, 1, 2, · · · (32)

are depicted in Figure 3.
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(b) States of (31)

Fig. 2. Transient behaviors of states of (30) and (31) with random initial conditions

in Example 2
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(b) Transient behaviors of state x2(t).

Fig. 3. Transient behaviors of states with random initial conditions and the switching

law (32) in Example 2

6 Concluding Remarks

In this paper, it is shown that the convergence behaviors of switching neural net-
works with the difference switching laws on dissimilar configurations could be
significantly different. The global exponential stability results with an arbitrary
switching law or a dwell time switching law and the estimates of Lyapunov expo-
nent are obtained. The success of the switching law with dwell time encouraged
us for further studies.

Acknowledgement. This work was supported by the Hong Kong Research
Grants Council under Grant CUHK4176/08E, the Natural Science Foundation
of China under Grant 60774051, Program for New Century Excellent Talents in
Universities of China under Grant NCET-06-0658 and Fok Ying Tung Education
Foundation under Grant 111068.



592 Z. Zeng, J. Wang, and T. Huang

References

1. Agrachev, A.A., Liberzon, D.: Lie-algebraic Stability Criteria or Switched Systems.

SIAM Journal on Control and Optimization 40, 253–269 (2001)

2. Dayawansa, W.P., Martin, C.F.: A Converse Lyapunov Theorem for A Class of

Dynamical Systems which Undergo Switching. IEEE Transactions on Automatic

Control 44, 751–760 (1999)

3. Hu, B., Michel, A.N.: Stability Analysis of Digital Feedback Control Systems with

Time-varying Sampling Periods. Automatica 36, 897–905 (2000)

4. Morse, A.S.: Supervisory Control of Families of Linear Set-point Controllers Part

1: Exact Matching. IEEE Transactions on Automatic Control 41, 1413–1431 (1996)

5. Hespanha, J.P., Morse, A.S.: Stability of Switched Systems with Average Dwell-

time. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3,

pp. 2655–2660. IEEE, New York (1999)

6. Hu, B., Xu, X., Michel, A.N., Antsaklis, P.J.: Stability Analysis for A Class of

Nonlinear Switched Systems. In: Proceedings of the 38th IEEE Conference on

Decision and Control, vol. 3, pp. 4374–4379. IEEE, New York (1999)

7. Zhai, G.S., Hu, B., Yasuda, K., Michel, A.N.: Stability Analysis of Switched Sys-

tems with Stable and Unstable Subsystems: An Average Dwell Time Approach.

International Journal of Systems Science 32, 1055–1061 (2001)

8. Huang, H., Qu, Y.Z., Li, H.X.: Robust Stability Analysis of Switched Hopfield Neu-

ral Networks with Time-varying Delay under Uncertainty. Physics Letters A 345,

345–354 (2005)

9. Yuan, K., Cao, J.D., Li, H.X.: Robust Stability of Switched Cohen-Grossberg Neu-

ral Networks with Mixed Time-varying Delays. IEEE Transactions on Systems

Man and Cybernetics Part B-Cybernetics 36, 1356–1363 (2006)

10. Shen, Y., Wang, J.: Noise-induced Stabilization of the Recurrent Neural Net-

works with Mixed Time-varying Delays and Markovian-switching Parameters.

IEEE Transactions on Neural Networks 18, 1857–1862 (2007)

11. Shen, Y., Wang, J.: Almost Sure Exponential Stability of Recurrent Neural Net-

works with Markovian Switching. IEEE Transactions on Neural Networks 20,

840-855 (2009)

12. Zeng, Z.G., Wang, J., Liao, X.X.: Global Exponential Stability of A General Class

of Recurrent Neural Networks with Time-varying Delays. IEEE Trans. Circ. Syst.

I 50, 1353–1358 (2003)



Approximation Capability of Continuous Time
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Abstract. The main goal of this study is to elucidate the theoretical ca-

pability of the continuous time recurrent neural network. In this paper,

we show that the approximation capability of the continuous time re-

current network can be extended to non-autonomous dynamical systems

with external inputs. Moreover, if the dynamical system has an asymp-

totically stable periodic solution for a periodic external input, it is shown

that the approximation can be extended to the global time interval.

Keywords: Continuous Time Recurrent Neural Network, Dynamical

system, Non-autonomous, Approximation, Capability.

1 Introduction

There are two types of neural networks. The one is the feed-forward network
with only feed-forward connections, and the other is the recurrent network with
arbitrary feedback connections. The feed-forward network defines a mapping
as the input-output relation of the network. The recurrent network defines a
dynamical system as the dynamics of the network. Clarifying the theoretical
capability of these neural networks gives important information to the learning
algorithm and its applications [1,12].

As the theoretic capability of the feed-forward neural network, the approxi-
mation possibility to several mappings has been considered. The input-output
mapping of neural networks can approximately realize any continuous mapping
with an arbitrary accuracy [2,3]. Moreover, if a given mapping is smooth, the
derivative of the mapping can be also approximated by an appropriate feed-
forward network[7]. As the theoretic capability of the recurrent neural network,
the approximation possibility to several dynamical systems has been considered.
A given trajectory of a dynamical system can be approximately realized by an
appropriate continuous time recurrent network [4]. The similar result of the dis-
crete time recurrent network for discrete systems has been shown[8,11]. However,
there are restrictions that the approximation only on some finite time interval,
and the capability of continuous time recurrent networks only to autonomous
dynamical systems.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 593–602, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, the capability of the continuous time recurrent network is fur-
ther discussed. It is shown that the approximation capability is extended to
non-autonomous dynamical systems. Moreover, if the dynamical system has an
asymptotically stable periodic solution for a periodic input, the approximation
can be extended to the global time interval.

2 Continuous Time Recurrent Neural Networks

This paper deals with the continuous time recurrent neural network (CTRNN)
defined by the following differential equations1

dxi

dt
= − 1

τi
xi +

N∑
j=1

wijσ(xj) +Bi + Ii(t), (i = 1, . . . , N), (1)

where N is the number of neurons in the network. xi, τi, Bi, and Ii(t) are
the internal state, the time constant, the internal bias, and the external input
of the i-th neuron, respectively. wij is the coupling coefficient from the j-th
neuron to the i-th neuron. σ is the activation function and thus yi ≡ σ(xi) is
the output state of the i-th neuron. In this paper, as the activation function
we use the sigmoid function (bounded, increasing, and smooth). For example,
1/(1 + e−x),tanhx, and tan−1 x satisfy the conditions.

The vectors of the internal states, the internal biases, and the external inputs
are denoted by

x(t) =

⎡⎢⎣x1(t)
...

xN (t)

⎤⎥⎦ , B =

⎡⎢⎣B1
...

BN

⎤⎥⎦ , and I(t) =

⎡⎢⎣ I1(t)...
IN (t)

⎤⎥⎦ , (2)

respectively. The matrix of the coupling coefficients is denoted by

W =

⎡⎢⎣w11 . . . w1N

...
. . .

...
wN1 . . . wNN

⎤⎥⎦ . (3)

The activation mapping σ : R
N → R

N operates the sigmoid function to each
component. When all the time constants equal τ , then (1) is represented by

dx

dt
= −1

τ
x+Wσ(x) +B + I(t). (4)

There are two types of neurons in the recurrent network. The one is the output
neuron that the state is observed as the output of the network. The other is the
hidden neuron. We assume that the number of output neurons NO, the number
1 The recurrent higher-order neural network (RHON) is considered the enhance model

of this network. Therefore the RHON inherits the approximation ability.
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of hidden neurons NH , and the number of all neurons N = NO + NH . The
states and parameters in (2) and (3) are denoted by

x(t)=
[
xO(t)
xH(t)

]
, B=

[
BO

BH

]
, I(t)=

[
IO(t)
IH(t)

]
, and W =

[
WOO WOH

WHO WHH

]
, (5)

respectively. xO, BO, and IO are R
NO

dimensional vectors of the internal states,
the internal biases, and the external inputs of the output neurons, respectively.
xH , BH , and IH are R

NH

dimensional vectors of the internal states, the internal
biases, and the external inputs of the hidden neurons, respectively. WOO is the
NO × NO coupling matrix from the output neurons to themselves, WOH is
the NO ×NH coupling matrix from the hidden neurons to the output neurons,
WHO is the NH ×NO coupling matrix from the output neurons to the hidden
neurons, and WHH is the NH ×NH coupling matrix from the hidden neurons
to themselves.

Therefore, (4) is represented by

dxO

dt
=−1

τ
xO+WOOσ(xO)+WOHσ(xH)+BO+IO(t) (6)

dxH

dt
=−1

τ
xH +WHOσ(xO)+WHHσ(xH)+BH +IH(t) (7)

separating the output neurons and the hidden neurons, where σ is the activation
mapping on R

NO

or on R
NH

.

3 Feed-Forward Neural Networks

The approximation capability of CTRNN to dynamical systems is proved by
using of the mapping approximation theorem of the three layer feed-forward
neural network (TLFNN). Here, we consider the TLFNN composed of sigmoid
middle-layer neurons, linear input-layer neurons and linear output-layer neurons.
Let N I be the number of input-layer neurons, NM be the number of middle-
layer neurons, andNO be the number of output-layer neurons. Then, the TLFNN
defines a mapping g : R

NI → R
NO

gi(x1, . . . , xNI ) =
NM∑
j=1

wOM
ij σ

⎛⎝NI∑
k=1

wMI
jk xk + bMj

⎞⎠+ bOi (8)

as the input-output relation of the network. wMI
jk and wOM

ij are the coupling
coefficients from the input-layer to the middle-layer and from the middle-layer
to the output-layer, respectively. bMj and bOi are the internal biases of the middle-
layer and the output-layer, respectively.

The vector expression of (8) is derived by

g(x) = WOMσ
(
WMIx+BM

)
+BO (9)
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where WMI = [wMI
jk ] is an NM×N I matrix, and WOM = [wOM

ij ] is an NO×NM

matrix. BM = [bMj ] ∈ R
NM

and BO = [bOi ] ∈ R
NO

are vectors. σ : R
NM → R

NM

is the activation mapping operating the sigmoid function to each component.
It has been shown that the TLFNN has the approximation capability for any

continuous mapping [2,3,7].

Foundation Theorem of TLFNN. Let U ⊂ R
m be an open set, K ⊂ U be a

compact set, and f : U → R
n be a continuous mapping. Then, for an arbitrary

ε > 0, there is a TLFNN (9) such that |f(x)− g(x)| < ε holds for all x ∈ K,
where N I = m and NO = n.

We use the following corollary that is a restated form of the foundation theorem.

Corollary 1. Let Ku ⊂ R
Nu and Kx ⊂ R

Nx be compact sets, U ⊂ R
Nu×R

Nx be
an open set including Ku×Kx, and f : U → R

n be a continuous mapping. Then,
for an arbitrary ε > 0, there is a TLFNN such that |f(u, x)− g(u, x)| < ε holds
for all (u, x) ∈ Ku×Kx, where N I = Nu+Nx, NO = n, and g is the input-output
mapping of the TLFNN.

Proof. In the foundation theorem, let m = Nu +Nx. The first Nu components of
x ∈ R

m are denoted by u, and the rest Nx components are denoted by x. Then,
(9) is represented by the form

g(u, x)=WOMσ
(
WMIuu+WMIxx+BM

)
+BO (10)

where WMIu is an NM ×Nu matrix, and WMIx is an NM ×Nx matrix. Q.E.D.

4 Pseudo Neural Systems

In [5], the relation of CTRNN and TLFNN is demonstrated by introducing the
pseudo neural system (PNS)2. The PNS is defined by

dx

dt
= −1

τ
x+W1σ(W2x+B1) +B2. (11)

We extend the PNS to adapt non-autonomous dynamical systems. The Extended
PNS (EPNS) is defined by

dx

dt
= −1

τ
x+WOOσ(x) +WOMσ(WMIuu+WMIxx+BM ) +BO. (12)

The third and fourth term of the right side of (12) correspond to the input-
output mapping (10) of the TLFNN. Therefore, the approximation capability of
EPNS to non-autonomous dynamical systems is shown as the following.

2 The affine neural dynamical system (A-NDS) was proposed as the generalized form

of the PNS, and the relation of CTRNN and A-NDS was considered[9].
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Theorem 1. Let E � R
n be a normed vector space, W ⊂ R

Nu × E be an
open set, u : R → R

Nu be a C1-mapping, f : W → E be a C1-mapping, and
suppose that x′ = f(u(t), x(t)) defines a non-autonomous dynamical system. Let
K ⊂ E be a compact set and we consider solutions of the system on a finite time
interval J = [0, T ]. Then, for an arbitrary ε > 0, there is an EPNS such that
|x(t)− z(t)| < ε holds for all x(0) ∈ K and t ∈ J , where z(t) is the solution of
the EPNS with the initial condition z(0) = x(0).

The vector field f(u(t), x(t)) in the previous theorem can be restated by
F (t, x(t)). Thus, we can use the following lemma.

Lemma 1 (Theorem3, Chap.15§1, [6]). Let W ⊂ R × E be open and f, g :
W → E continuous. Suppose that for all (t, x) ∈W , |f(t, x)− g(t, x)| < ε. Let L
be a Lipschitz constant in x for f(t, x). If x(t), y(t) are solutions to x′ = f(t, x),
y′ = g(t, y), respectively, on some interval J , and x(t0) = y(t0), then

|x(t) − y(t)| ≤ ε

L

(
eL|t−t0| − 1

)
(13)

for any t ∈ J .

This lemma shows that if there are two dynamical systems with sufficiently close
vector fields, the trajectories with the same initial condition of each system are
close on a finite time interval.

Proof (Theorem 1). Because K, J are compact and u, x are continuous,

KJ = {(u(t), x(t)); t ∈ J, x(0) ∈ K} (14)

is a compact subset of W . Thus,

Kε = {(u, x); ∃(u, y) ∈ KJ , |(u, x)− (u, y)| ≤ ε} (15)

is a compact set including KJ . Then, ε > 0 is reselected such that Kε ⊂W holds
for the given ε. Because f is C1, the restriction mapping f |Kε satisfies Lipschitz
condition. Let L be a Lipschitz constant in x for f |Kε. We set a time constant
τ > 0 and an n× n matrix WOO. For the given mapping f ,

h(u, x) = f(u, x) +
1
τ
x−WOOσ(x) (16)

is considered. By Corollary 1, there is a TLFNN (10),

|h(u, x)− g(u, x)| < η <
εL

eLT − 1
(17)

holds for (u, x) ∈ Kε. Then, the mapping

G(u, x) = −1
τ
x+WOOσ(x) + g(u, x) (18)
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satisfies

|f(u, x)−G(u, x)| < η <
εL

eLT − 1
(19)

for (u, x) ∈ Kε. The non-autonomous dynamical system z′ = G(u, z) is an EPNS.
By Lemma 1, if a solution of the dynamical system x(t) and a solution of the

EPNS z(t) have the same initial condition x(0) = z(0) ∈ K,

|x(t) − z(t)| ≤ η

L

(
eLt − 1

) ≤ η

L

(
eLT − 1

)
< ε (20)

holds for all t ∈ J . Q.E.D.

5 Approximation Capability of CTRNN

The following theorem is one of the main results in this paper.

Theorem 2. Let E � R
n be a normed vector space, W ⊂ R

Nu × E be an
open set, u : R → R

Nu be a C1 mapping, f : W → E be a C1 mapping, and
suppose that x′ = f(u(t), x(t)) defines a non-autonomous dynamical system. Let
K ⊂ E be a compact set and we consider solutions of the system on a finite
time interval J = [0, T ]. Then, for an arbitrary ε > 0, there is a CTRNN such
that

∣∣x(t)− zO(t)
∣∣ < ε holds for all x(0) ∈ K and t ∈ J , where zO(t) is the

internal state vector of the output neurons of the CTRNN with an appropriate
initial condition.

It has been shown that a given trajectory of a non-autonomous dynamical system
is approximated by an EPNS in Theorem 1. Therefore, we only show that the
EPNS can be represented by a CTRNN.

Proposition 1. For an arbitrary EPNS, there is a CTRNN that the state of
the output neurons is equal to the solution of the EPNS.

Proof. For the n dimensional EPNS(12), we consider a CTRNN with NO(= n)
output neurons and NH(= NM ) hidden neurons. Let zO be an NO dimensional
state vector, and zH be an NH dimensional state vector such that

zO = x (21)

zH = WMIuu+WMIxzO +BM . (22)

Then, (12) is denoted by

dzO

dt
= −1

τ
zO +WOOσ(zO) +WOMσ(zH) +BO. (23)

By differentiating (22) in t,

dzH

dt
= WMIu du

dt
+WMIx dz

O

dt
. (24)
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(23) is substituted for the right side of (24),

dzH

dt
=−1

τ
zH +WMIxWOOσ(zO) +WMIxWOMσ(zH)

+
1
τ
BM +WMIxBO +WMIu

(
1
τ
u+ u′

)
(25)

holds. Let

z(t)=
[
zO

zH

]
, B=

[
BO

1
τ
BM +WMIxBO

]
, I(t)=

⎡⎣ 0

WMIu

(
1
τ
u+u′

)⎤⎦ , (26)

and

W =
[

WOO WOM

WMIxWOO WMIxWOM

]
. (27)

Then, (23) and (25) are represented by (4). This system is a CTRNN. For an
initial condition x(0) of the EPNS we set the initial condition of the CTRNN as
follows:

zO(0) = x(0) , and zH(0) = WMIuu(0) +WMIxx(0) +BM . (28)

By the uniqueness of solution 3, zO(t) = x(t) holds for t ∈ R. Q.E.D.

Therefore, Theorem 2 has been proved.

6 Approximate Extended Condition

In Theorem 2, the approximation capability of CTRNN is restricted to a finite
time interval. However, we can expect that the restriction is removed, if the non-
autonomous system with a periodic external input has an asymptotically stable
periodic solution.

We describe some definitions necessary for the following discussion. Let E �
R

n, W ⊂ R
Nu×E, and f : W → E be the same defined in Theorem 2. Moreover,

let u : R → R
Nu be a C1 external input with a period T > 0 such that

u(t+ T ) = u(t). (29)

Then the flow φt : S → S of the dynamical system x′ = f(u(t), x(t)) on the
phase space S � E satisfies the following;φ0 is the identical mapping on S and
φt ◦ φs = φt+s. By using the flow, the solution with an initial value x0 ∈ S of
the dynamical system is represented by φt(x0). Moreover, in case of considering
an initial phase u(s) of the external input, we use the form φt(x0;u(s)).

3 Theorem 1,Chap.15§1,[6].
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The periodic solution with the period T satisfies

φt+T (x0;u(s)) = φt(x0;u(s)) (30)

for any t ∈ R. Then,

γ = {[u(t+ s), φt(x0;u(s))]; t ∈ R} ⊂W (31)

is called the closed orbit. We define the asymptotically stability of a periodic
solution by the following:

Definition 1. The periodic solution is called asymptotically stable when the fol-
lowing is satisfied: for any neighborhood U1 ∈W of the closed orbit γ, there is a
neighborhood U2, γ ⊂ U2 ⊂ U1, such that

[u(t+ s), φt(x0;u(s))] ∈ U1, (32)

for all [u(s), x0] ∈ U2, t ≥ 0 and

lim
t→∞ d ([u(t+ s), φt(x;u(s))], γ) = 0, (33)

where d ([u(t+ s), φt(x;u(s))], γ) is the distance of φt(x;u(s)) and the point in
γ at the same phase u(t+ s).

The following theorem is another main result of this paper.

Theorem 3. Let x′ = f(u(t), x) be a non-autonomous dynamical system with
an external input u(t) of a period T . Let φt be the flow of the system, φt(xp;u(0))
be an asymptotically stable solution with the period T , and γ ⊂W be the closed
orbit of the solution. Then, for an arbitrary ε > 0, there is a neighborhood V ⊂W
of γ and a CTRNN such that

∣∣φt(x0;u(s))− zO(t)
∣∣ < ε holds for [u(s), x0] ∈ V

and t ≥ 0, were zO(t) is the internal state of the output neurons of the CTRNN
with an appropriate initial condition.

Proof. Because u(t) has the period T ,

{u(t); t ∈ [0, T ]} × E = {u(t); t ∈ [mT, (m+ 1)T ]} × E (34)

holds for m ∈ N. It is considered that the spaces every the time T are the same.
Let the r-neighborhood of γ be defined by

Vr(γ) = {[u(s), x]; |x− φs(xp;u(0))| ≤ r, s ∈ [0, T ]} ⊂W (35)

for r > 0. For the given ε, we reselect a smaller ε > 0 that satisfies Vε(γ) ⊂W . By
the definition of asymptotically stable, there are 0 < R < ε/2 and VR(γ) that sat-
isfy [u(t + s), φt(x0;u(s))] ∈ Vε/2(γ), and limt→∞ d ([u(t+ s), φt(x0;u(s))], γ) =
0 for [u(s), x0] ∈ VR(γ) and t ≥ 0. Then, there is m ∈ N such that

[u(t+ s), φt(x0;u(s))] ∈ VR/2(γ) (36)

holds for t ≥ TC ≡ mT .
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Let D be a compact set including Vε(γ). By Theorem1, for D and TC , there is
an EPNS such that |φt(x0;u(s))−z(t)| < R/2 holds for all t ∈ [0, TC ], [u(s), x0] =
[u(s), z(0)] ∈ D. Here z(t) is the solution of the EPNS. Let V = VR(γ) be
the neighborhood of γ. Then, for [u(s), x0] = [u(s), z(0)] ∈ V and t ∈ [0, TC ],
|φt(x0;u(s))− z(t)| < R/2 < ε is satisfied. Moreover,

[u(TC + s), φTC (x0;u(s))] = [u(s), φTC (x0;u(s))] ∈ VR/2(γ) (37)

is satisfied by (36). Then,

|z(TC)− φTC+s(xp;u(0))|
≤ |z(TC)−φTC (x0;u(s))|+ |φTC (x0;u(s))−φTC+s(xp;u(0))| < R (38)

and thus [u(TC + s), z(TC)] = [u(s), Z(TC)] ∈ V holds.
Next, we consider the case of t ≥ TC . From (36), [u(t + s), φt(x0)] ∈ VR/2(γ)

is satisfied. Let φt(y0;u(s)) be a solution of the dynamical system with the
initial condition [u(s), y0] = [u(s), z(TC)] ∈ V . Then, |φt(y0;u(s))− z(t+TC)| <
R/2 and [u(t + s), φt(y0;u(s))] ∈ Vε/2(γ) hold for t ∈ [0, TC ]. Thus, for t ∈
[TC , 2TC ],

|φt(x0;u(s))− z(t)|
≤ |φt(x0;u(s))− φt+s(xp;u(0))|+ |φt+s(xp;u(0))− φt−TC (y0;u(s))|

+ |φt−TC (y0;u(s))− z(t)|
<

R

2
+
ε

2
+
R

2
< ε. (39)

Moreover, [u(s), z(2TC)] ∈ V is satisfied again by [u(TC + s), φTC (y0;u(s))] =
[u(s), φTC (y0;u(s))] ∈ VR/2(γ). Therefore, by the similar discussion, the approx-
imation can be extended, such that |φt(x0) − z(t)| < ε holds for t ≥ 0. By
Proposition 1, there is a CTRNN, and z(t) can be represented by the state of
the output neurons of the CTRNN. This theorem has been proved. Q.E.D.

In Theorem 3, we treated the initial condition in the appropriate neighborhood
V of γ. However, the initial condition is extended to the region in the basin
of γ.

Corollary 2. In Theorem 3, let K ⊂ W be a compact set in the basin of γ.
Then, for an arbitrary ε > 0, there is a CTRNN such that

∣∣φt(x0)− zO(t)
∣∣ <

ε holds for [u(s), x0] ∈ K and t ≥ 0, where zO(t) is the state vector of the output
neurons of the CTRNN with an appropriate initial condition.

Proof. Because K is in the basin of γ and φt is continuous, there is k ∈ N such
that [u(t+ s), φt(x0;u(s))] ∈ VR/2(γ) holds for t ≥ TK ≡ kT and [u(s), x0] ∈ K.
For TC and D in the proof of Theorem 3, TM = max(TC , TK) and a connected
compact set KD ⊃ D ∩ {(u(t + s), φt(x0)); [u(s), x0] ∈ K, t ∈ [0, TK ]} are con-
sidered. Then, for TM and KD, there is an appropriate CTRNN that holds this
corollary condition by the similar discussion of Theorem3. Q.E.D.
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7 Conclusions

We show that the approximation capability of the continuous time recurrent
network can be extended to non-autonomous dynamical systems. Moreover, if the
dynamical system has an asymptotically stable periodic solution for a periodic
external input, it is shown that the approximation to trajectories which converge
to the periodic solution can be extended to the global time interval. In this
paper, although the sigmoid function is assumed as the activation function, the
similar approximation capability with a more extensive activation function is
also derived by the result of [10]. The considerations about the approximation
capability to a dynamics system with bifurcation parameters, and about the
relation between the learning algorithm and the network structure based on the
approximation capability are interesting subjects.
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Abstract. Recently the notion of power law networks in the context

of neural networks has gathered considerable attention. Some empirical

results show that functional correlation networks in human subjects solv-

ing certain tasks form power law graphs with exponent approaching ≈ 2.

The mechanisms leading to such a connectivity are still obscure, never-

theless there are sizable efforts to provide theoretical models that would

include neural specific properties. One such model is the so called spike
flow model in which every unit may contain arbitrary amount of charge,

which can later be exchanged under stochastic dynamics. It has been

shown that under certain natural assumptions about the Hamiltonian

the large-scale behavior of the spike flow model admits an accurate de-

scription in terms of a winner-take-all type dynamics. This can be used

to show that the resulting graph of charge transfers, referred to as the

spike flow graph in the sequel, has scale-free properties with power law

exponent γ = 2. In this paper we analyze the spectra of the spike flow

graphs with respect to previous theoretical results based on the simplified

winner-take-all model. We have found numerical support for certain the-

oretical predictions and also discovered other spectral properties which

require further theoretical investigation.

Keywords: power law network; spike flow model; graphs spectrum.

1 Introduction

Power law networks (often referred to as scale-free networks, which sometimes
causes confusion [1]) are now an established field of study in random graph the-
ory. Diverse empirical evidence have shown that power law connectivity emerges
spontaneously in miscellaneous systems ranging from the World Wide Web [2],
science collaboration networks [3], citation networks [4], ecological networks [5],
linguistic networks [6], cellular metabolic networks [7,8] to telephone call net-
work [9,10] and many others. In many cases networks featuring power law degree
distributions also include certain structural properties which enhance tolerance
against attacks or bandwidth (the correspondence between power law degree
distribution and structural properties is not straightforward and has been dis-
cussed in [1]). It is quite natural to ask whether neural systems could benefit
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from such an architecture, and if so, whether there are any mechanisms inherent
to neural activity that might lead to a power law connectivity. Early studies of
C.elegans worm nervous system showed exponential decay of degree distribution
[11,12], however the network of C. elegans is very small (the whole organism
has only about 1000 cells, and the total number of neurons is just above 300)
whereas the mechanisms of self-organization leading to a power law structure
might emerge in larger populations of neurons with significant feedback wirings.
One strong empirical evidence that this might be the case are the results of
[13,14], which show that the network composed of centers of activity observed in
human brain by FMRI, connected whenever their activity is correlated1 above
a certain threshold is scale-free with power law exponent ≈ 2.

It is worth noting that power law graphs are usually sparse (in the sense that
the number of edges depends linearly on the number of vertices) and yet well
connected (power law graphs are more likely to form a giant component than
corresponding – in terms of edge density – Erdős- Rényi random graphs - see
chapter 6 in [15] for related study). These features seem to be advantageous
for recurrent neural networks, and indeed some studies [16,17] have proved that
power law architectures are useful for artificial NN. In that case however, the
connectivity was not a result of neural activity but was rather imposed as a
background for already existing models.

Many of the existing models describing the development of power law networks
are stemming from the model of Barabási and Albert [18] based on growth and
preferential attachment. This model however does not describe well the situation
considered in [13] since growth in this case is very limited. Another reason why
Barabási-Albert model is inadequate to the situation is that in its most natu-
ral setup it leads2 to power law exponent γ = 3 while empirical studies of [13]
strongly suggest γ = 2. In our attempt to provide a more adequate theoretical
description we have developed the so called spike flow model [19] which essen-
tially resembles a typical Boltzmann machine but has more capacitive space of
states and a bit tweaked Hamiltonian (the details are supplied in the next sec-
tion) . Quite unexpectedly the spike flow model turned out to be mathematically
tractable (at low enough temperatures), which allowed to establish explicit re-
sults [20] on the asymptotic properties of the dynamics and the emergence of
a power law charge transfer graph (referred to as the spike flow graph in the
sequel). Further theoretical research allowed to characterize the spectra of the
spike flow graph in the asymptotic regime [21]. The study of spectral proper-
ties is particularly important to determine, whether the spike flow model is an
adequate description of the mechanisms leading to power law connectivity in
nervous system. The results from [21] impose that a certain kind of power law-
like dependence should also be present in the distribution of graph eigenvalues
(in section 4 below there is a brief discussion concerning the details). In this pa-
per we provide numerical simulations which support claims of [21] which can be

1 The patient was asked to perform certain simple tasks during the measurement.
2 There are ways of reaching exponent 2 with variants of Barabási-Albert model, but

they are even less suitable for the phenomena discussed.
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regarded as a theoretical foundations of the results presented here. The theory
in [21] however, is based on the simplified asymptotic version of the model (de-
scribed below as well) whereas the presented material is based on the full-blown
version of the spike flow model. Nevertheless the results show the existence of
a spectral regime in which the predicted dependency is present. There are also
other features of the spectra which require further theoretical study.

The rest of the paper is organized as follows. In section 2 we briefly describe
the spike flow model, its basic properties and theoretical results (subsection 2.1)
and motivations for studying spectral characteristics (subsection 2.2). In section
3 we describe the numerical setup of the simulation. In further two sections we
provide results of the simulation and conclusions.

2 The Spike Flow Model

2.1 Basic Properties

The model consists of nodes σi, i = 1 . . .N . Each node’s state is described by
a natural number from some fixed interval [0,Mi]. In the scope of this paper
we assume Mi = ∞, that is the state space is unbounded (when Mi = 1 on
the other hand the model much resembles Hopfield network). The network is
built on a complete graph in that there is a connection between each pair of
neurons σi, σj , i �= j, carrying a real-valued weight wij ∈ R satisfying the usual
symmetry condition wij = wji, moreover wii := 0. The values of wij are drawn
independently from the standard Gaussian distribution N (0, 1) and are assumed
to remain fixed in the course of the network dynamics. The model is equipped
with the Hamiltonian of the form:

H(σ̄) :=
1
2

∑
i
=j

wij |σi − σj | (1)

if 0 ≤ σi ≤Mi, i = 1, . . . , N, and H(σ̄) = +∞ in the other case. Here σ̄ denotes
of the state of the whole system. The dynamics of the network is defined as fol-
lows: at each step we randomly choose a pair of neurons (units) (σi, σj), i �= j,
and denote by σ̄∗ the network configuration resulting from the original config-
uration σ̄ by decreasing σi by one and increasing σj by one, that is to say by
letting a unit charge transfer from σi to σj , whenever σi > 0 and σj < Mj .
Next, if H(σ̄∗) ≤ H(σ̄) we accept σ̄∗ as the new configuration of the network
whereas if H(σ̄∗) > H(σ̄) we accept the new configuration σ̄∗ with probability
exp(−β[H(σ̄∗)−H(σ̄)]), β > 0, and reject it keeping the original configuration
σ̄ otherwise, with β > 0 standing for an extra parameter of the dynamics, in the
sequel referred to as the inverse temperature conforming to the usual language
of statistical mechanics. In the present paper we will assume β fixed and large,
that is the system is in low temperature regime and so such ”stochastic” jumps
are rare.

Note that in this setup positive weights wi,j favor agreement of states σi

and σj , while negative weight favor disagreement. Whenever a unit of charge
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is exchanged between two nodes that fact is recorded by increasing the counter
associated with a corresponding edge. The edges (and nodes) being frequently
visited by units of charge are in the focus of our interest. We refer to the resulting
weighted3 graph as to the spike flow graph.

In [20] a number of results related to the spike flow model have been
established:

– In contrast to a seemingly complex dynamics, with high probability there is
a unique ground state of the system, in which all the charge is gathered in
a unit that maximizes

Si := −
∑
j 
=i

wij . (2)

referred to as support in the sequel. The proof goes by a mixture of rigorous
and semi rigorous calculations and has a rather asymptotic character, but is
in full agreement with numerical simulations for systems containing between
a couple hundreds to a couple of thousands of nodes.

– The system’s behavior eventually admits a particularly simple approximation
in terms of a kind of winner-take-all dynamics: almost all transfers converge
to units of higher support (referred to as the elite, while the others referred to
as the bulk), which then compete in draining charge from each other. That
is to say, whenever a pair of units is chosen, the transfer occurs from the
unit of lower support to the unit of higher support. Ultimately the unit of
maximal support gathers all of the charge and the system freezes in a ground
state. This approximation was used in [21] to establish explicit theoretical
results on the properties of the spectra of the spike flow graph.

– The node degree distribution (where by degree we mean the sum of counters
of edges adjacent to a given node4) obeys a power law with exponent γ = 2.
The proof is based on the elite/bulk approximation and properties of ordering
sequences. Again there is a strong agreement with numerical results

2.2 Spectral Properties

The graph’s spectrum (in this paper by graph’s spectrum we mean the set of
eigenvalues of the adjacency matrix, not the eigenvalues of combinatorial lapla-
cian which are also studied in the literature, see [22] for comprehensive intro-
duction) is among the most basic characteristic features, yet it provides insights
into various properties which are usually faint in the typical analysis. In [21]
some basic properties of the spectra of simplified spike flow model were investi-
gated. By the simplified version of the model here we mean a model equipped
with the asymptotic winner-take-all version of the dynamics, that is each charge
transfer occurs according the direction of increasing support (however for the
validity of spectral analysis edge directions were dropped). It is worth noting,

3 Weighted by edge counters that are not directly related to wi,j which remain fixed

as a background to the energy function.
4 Since charge transfers are directed, we distinguish in and out degrees, but asymp-

totically these two are equal in terms of distributions.
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Fig. 1. Typical evolution of the amount of charge in seven units of highest support in the

spike flow simulation. The left figure shows the system of 1000 vertices, while the right

one of 5000 vertices. At the late stage of simulation when only a few units of highest sup-

port contain any charge the winner-take-all dynamics is certainly valid. At this stage the

simulation can be simplified according to the restricted dynamics for efficiency. It is not

obvious however, at which stage the winner-take-all approximation becomes acceptable.

The study of spectral properties might shed some light into such issues.

that even though such a dynamics becomes reasonably valid in large instances
of the spike flow model after some number of steps, it is not valid in the early
stages of the simulation when there is still a lot of charge in the bulk units. Cor-
respondingly, the resulting spike flow graph may be noisy and contain various
distortions. Nevertheless the shape of the spectrum depends on global features
and should to some extent exhibit the predicted properties. The results of [21]
imply that when sorted descending, the k-th eigenvalue behaves like C

k2 for some
constant C (note, this paper [21] provides a theoretical background of the results
presented here). This result, established by investigating the spectrum of appro-
priate Hilbert-Schmidt type operators associated to the random evolution in the
asymptotic regime, is valid for the simplified spike flow graph truncated at both
ends by some δ1 and δ2 i.e. the nodes of degree less than δ1 and more than δ2
are removed from the graph. Recall that removing single vertices from the graph
is not easily expressible in terms of graph’s eigenvalues and in particular it does
not correspond to removal of any particular eigenvalues from the spectrum5.

3 Numerical Setup

The simulations were carried out with the spike flow model consisting of 5000
units in the low temperature regime (β = 100 which results in extremely rare
transitions against the energy factor). At the beginning of the simulation each
5 The resulting graph has less vertices and consequently there are less eigenvalues in

the spectrum, but these remaining eigenvalues correspond to a different adjacency

matrix.
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unit received 5 units of charge. The simulation was run until all of the avail-
able charge ended up in a small fraction of units of maximal support (5 in the
case of simulations of 5000 vertices). By then, the winner-take-all approxima-
tion becomes perfectly valid (see figure 1), and consequently at the final stage
the remaining simulation can be executed with simpler and faster version of the
dynamics (winner-take-all) without affecting the resulting spike flow graph. The
obtained weighted adjacency matrix was symmetrized by adding matrix to its
transpose (consequently edge weights in both directions were summed).

4 Results

In the present study we simulated the setup described in subsection 2.2 by
truncating empirical spike flow graph at various levels, having in mind however,
that the winner-take-all approximation is itself valid for the upper part of the
range of vertex degrees. That is, we expect that significant cutoff of low degree
vertices should not alter (interesting part of) the spectrum significantly whereas
even minor cutoff of high degree vertices might have a devastating effects on the
shape of the spectrum6 (at least at the part which is in the focus of our interest,
that is the set of largest eigenvalues). .

Fig. 2. An example spectrum of a graph consisting of 5000 vertices. The eigenvalues

were sorted descending and plotted on a log-log plot. The left figure shows the whole

spectrum, the right one only 10% largest eigenvalues. Clearly, the left linear part of the

plot behaves like y = −2x which implies that k-th eigenvalue is proportional to k−2.

This relation is only visible for the top ten eigenvalues.

The above considerations proved to be true for the investigated model. To
make things clearly visible we plotted the spectrum in the descending order on
a log-log plots (figures 2,3,4,5) with various cutoffs. We expected that the initial

6 Consequently, finding out at which point the predicted spectral properties give up

provides an insight into how accurate the winner-take-all approximation actually is.
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Fig. 3. An example spectrum of a graph consisting of 5000 vertices. The eigenvalues

were sorted descending and plotted on a log-log plot. The left figure shows the whole

spectrum, the right one only 10% largest eigenvalues. In this case however, 70% of the

nodes of lowest degrees were cut off. Nevertheless the left linear part of the plot still

behaves like y = −2x . The rightmost part of the spectrum (which corresponds to small

eigenvalues) exhibits interesting ”stair regime”, which requires further investigation.

Fig. 4. An example spectrum of a graph consisting of 5000 vertices. The eigenvalues

were sorted descending and plotted on a log-log plot. The left figure shows the whole

spectrum, the right one only 10% largest eigenvalues. In this case however, 70% of the

nodes of lowest degrees and 1% (50) of the nodes of highest degrees were cut off. A

couple of top eigenvalues behave like y = −2x . The ”stair regime” is clearly visible at

right of the spectrum.

(leftmost) part of the spectrum would form a straight line on the log-log plot
with slope of ≈ −2. Clearly such a straight line is visible on figure 2 where the
spetrum of the full (not truncated) graph is presented. This regime is valid for
about 10 largest eigenvalues (it might not seem that significant, but note that
these 10 largest eigenvalues contain notable part of the total mass of the spec-
trum), for smaller eigenvalues the approximation breaks down due to distortions
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Fig. 5. An example spectrum of a graph consisting of 5000 vertices. The eigenvalues

were sorted descending and plotted on a log-log plot. The left figure shows the whole

spectrum, the right one only 10% largest eigenvalues. In this case however, 70% of the

nodes of lowest degrees and 3% (150) of the nodes of highest degrees were cut off. Here

the y = −2x becomes irrelevant, which suggests that the property is related to the

elite part of the graph which has been fairly cut off.

related to more complex dynamics of the full blown model7. As expected, the
investigated part of the spetrum remains nearly intact (figure 3) after significant
cutoff of the low degree vertices (70% of the low degree vertices were removed).
Interestingly, the other part of the spectrum (i.e., small eigenvalues) started
to exhibit somewhat discrete decay resembling a stairway (there are groups of
eigenvalues having nearly same value). The reasons for such a spectral character-
istic are yet unclear and require further theoretical explaination. Figure 4 shows
the spectrum of the graph, whose 70% of low degree vertices and 1% of high
degree vertices were removed. Clearly the initial part of the spetrum in which
the straight line approximation is valid had shrunk to about 4 eigenvalues. The
removal of 1% of high degree vertices (50 vertices) knocks down fair amount of
the elite and consequently the winner-take-all approximation becomes inaccu-
rate. This effect is even more visible in figure 5 where 3% (150) of high degree
vertices were removed and the straight line regime is nearly absent, although
still the first two eigenvalues seem to follow the expected relation. As mentioned
earlier, the largest eigenvalues are not directly related to largest degree vertices
and the above result should rather be interpreted in terms of validity of the
winner-take-all approximation of the resulting truncated graph.

5 Conclusions

It seems that the theoretical predictions of [21] are to some extent observable in the
full blown spike flow model equipped with significantly more complex dynamics
7 This is not very surprising since the winner-take-all dynamics is certainly not valid

for low degree vertices.
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that the winner-take-all simplification. The results of [21] are themselves of rather
asymptotic character, and consequently it was not obvious whether any of the
predicted properties would be visible in the simulation of 5000 vertices, where
the winner-take-all approximation is only valid for some fraction of the units of
high support. Empirical data give insight into more complex spectral properties
of the spike flow model, notably the stairway regime which might be related to the
fact, that the truncated version of the graph can become disconnected, and conse-
quently the particular flat regions in the spectrum could be attributed to various
connected components, but this requires further investigation.
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Abstract. We explore the map x �→ (αx+γx3)e−βx2
, which depending

on the parameters displays a variety of different behaviours, both as a

single map and when arranged in a coupled map lattice. The map can

take on excitable and various oscillatory guises. For parameter values

that result in excitable behaviour, we obtain a system that is roughly

similar to a network of neurons that build up activation until they ex-

ceed the threshold and then fire some activation to their neighbours,

depleting themselves in the process. We found that a higher communi-

cation rate and a lower threshold do not necessarily, and do not linearly

result in a faster or more pervasive spread of activation. In fact, limits

to communication can help the spread of activity.

Keywords: Coupled Maps; Excitability; Activation Dynamics.

1 Map

A main characteristic of neural tissue is its excitability. Biologists define an
excitable cell as a cell that can generate an action potential at its membrane in
response to depolarization and may transmit an impulse along the membrane [1].
To model a neuron, it can be viewed as a dynamical system unit. A dynamical
system with a stable equilibrium is excitable if there is a large-amplitude piece
of trajectory that starts in a small neighborhood of the equilibrium, leaves the
neighborhood, and then returns to the equilibrium [2]. This behaviour can be
modelled by various dynamical systems, such as differential equations, maps,
and cellular automata [3].

In this work, we study a map proposed as an “excitable unit” by De Monte
et al. [4,5]:

F : x %→ f(x) = (αx + γx3)e−βx2
. (1)

De Monte et al. discuss just one set of parameter values (α=0.4, β=1, and γ=8)
and the corresponding behaviour of f , which in that case is indeed excitable. But
the map can display a greater variety of types of behaviours, not all of which
indicate excitability, when different parameter values are used. In this paper

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 613–622, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. f(x) = (0.4x + 8x3)e−x2
. Also shown are the fixed points in the positive quad-

rant (O, A and B) and the diagonal f(x) = x. The positive region near the origin is

shown at a higher magnification.

we explore this variety. We describe the variants for of a single, individual map
first; subsequently we explore some of the global phenomena obtained when such
maps are coupled into a coupled map lattice (CML).

We can get some first insight in the nature of f by showing a plot (Fig. 1)
of f(x) with respect to x for some particular parameter values, for instance the
values which are used in [4]. Since it passes through the origin (O), the map has
a fixed point (a value of x for which x(t+1) = x(t)) there. De Monte et al. claim
that the origin is the unique global attractor of this map. This means that given
infinite iterations of the map, x will always approach the origin no matter which
x(0) one starts out with. They also indicate that f has another fixed point that
is unstable: x-values close to it will, through iteration of the map, move away
from this point rather than approach it. If the map is “excited” beyond that
unstable fixed point there will be a chaotic but eventually downward transition
towards the global attractor, zero. If we concentrate on the positive quadrant,
this point corresponds to A in Fig. 1. There is a small region between the fixed
points O and A where f(x) < x. Therefore, when x is in this region, iterating
the map will make x smaller and approach zero.

But the assessment in [4] is only accurate for the particular parameter values
used. When f is excited beyond A, the next fixed point B comes into play. There
may indeed be a chaotic transition back to the [O A] region and then an approach
to O. But depending on the parameters, B can also acts as a second attractor
for the map, preventing a return to the origin. Moreover, again depending on
the parameters there can be no fixed point A and only a fixed point B. Thus,
we must investigate these different possibilities.



Activation Dynamics in Excitable Maps 615

2 Analysis

The geometrical insight in the map’s variety was obtained by varying each of
the three parameters of f while keeping the other two constant [5]. α determines
whether the map has a fixed point of type A (as in Fig. 1) or not: when f always
stays above the diagonal before it starts sloping down, there is no point A at all.
The width and height of the “bell” of f , and the fixed point B are relatively if
not entirely unaffected by the choice of α, and therefore we will use the latter to
vary the existence of A while keeping the behaviour around B roughly constant.
By varying γ we can change the height of the bell of f without affecting its
width. We will use γ mainly to vary the behaviour around B. But these fairly
independent influences of α and γ hold only when γ is relatively large. As can be
gleaned from Fig. 2 and Fig. 3 there is a more complex interplay between the two
parameters when γ is small: then γ also affects whether there is a point A at all.
Finally, β does not affect the nature of A while it affects the whole “magnitude”
of the bell. In order to evade the extra complexity of these magnitude effects,
we have chosen to keep β = 1 in the remainder of the current paper; thus we

Table 1. Iteration of map (2) with example values illustrating various types of be-

haviour of the map. Runs for 350 iterations, where x(0) = 10−5 and external pulses

of magnitude 0.5 and 3.5 are given at t = 100 and t = 200 respectively. α determines

whether the map leaves the origin spontaneously; γ whether it returns (or approaches)

it spontaneously.

α = 0.8 α = 1.2

γ = 4

γ = 5.5
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Fig. 2. Nature of the fixed point A. Black: there is no A. Grey: A exists and f does not

return below it from the neighbourhood of B. White: A exists and f returns below it

spontaneously from the neighbourhood of B.

effectively simplify the map to:

x %→ (αx+ γx3)e−x2
. (2)

Two useful criteria to describe the map’s behaviour are whether it leaves the
origin spontaneously or not, and whether it returns to the origin (or approaches
it, if it is unstable) spontaneously, or not. When not, such behaviour may be
induced through an external input.

An overview of some possible behaviours is presented in Table 1. We show
the time series for example single maps with particular α and γ values and their
reaction to external inputs at t = 100 and t = 200.

Even if A exists (meaning that [O A] is a basin of attraction for the origin)
and B is unstable, this does not always mean that the iterated map will return
from the neighbourhood of B to [O A]. To determine the condition for this to
happen, we need to find two points: the value of x for which f(x) is maximal
(xmax), and secondly the fixed point A. We will for now assume that there is
such a fixed point near the origin. Then, if

f
(
f(xmax)

)
< A (3)
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Fig. 3. λ = df/dx for fixed points A and B, depending on α and γ. The surfaces λ = 1

and λ = −1 are for reference: between them a fixed point is stable, outside them

unstable.

it means that this particular value of xmax results in the map returning to the
origin. Since xmax depends on both α and particularly γ we want to express
inequality (3) in terms of those parameters.

Requiring df(x)
dx = 0 we find that

xmax =
1
2

√
3− 2α−√4α2 − 4αγ + 9γ2

γ
. (4)

The fixed points are found by requiring that f(x)− x = 0. Solving this, we find

A,B =

√
−α

γ
−W

(−e−α
γ

γ

)
, (5)

where W is the Lambert W function, with A given using the principal branch
of W and B using the other real branch.

Using the above, Fig. 2 shows whether there exists a fixed point A, and if so,
whether f returns below it from B as per condition (3). Fig. 3 shows λ = df

dx for
A and B (where these exist): wherever |λ| < 1 the fixed point is stable.

Let us summarize Fig. 2 and Fig. 3. The black area in Fig. 2 is where there
is no (unstable, by definition) fixed point A. For the part of it where α < 1
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there is no B either, and f lies entirely below the diagonal. For the part where
α > 1 there is a fixed point B which can be a point attractor (if |λ| < 1) or an
oscillatory (periodic, intermittent or chaotic) attractor (if λ < −1). The white
area in Fig. 2 displays two unstable fixed points and a return to the origin from
the neighbourhood of B : this is the “excitable” case as in the lower left quarter
of Table 1. Finally, the grey area in Fig. 2 is the case where the map has two
different states, but external input is required for it to switch between these
two (upper left quarter of Table 1). The one state is the stable origin; for the
other state, the boundary indicated by the intersection of branch B and λ = −1
plane that divides this area in one where B is stable (fixed point attractor) and
one where B is unstable but f nevertheless does not escape B ’s neighbourhood
(periodic, intermittent or chaotic behaviour).

3 Coupled Map Lattice

We can set up lattices (or more generally networks) of instances of the map
F , coupling them with some form of communication. Then the global system
has two processes going on: one, the iterative action of f on every node in the
network, and second the interaction between the nodes. The communication can
take many forms, such as classical diffusion as in reaction-diffusion systems. We
work with a threshold variant of this:

xi,j %→ f(xi,j)+D
(
−nH(f(xi,j)−θ

)
f(xi,j)+

∑
k,l∈Ri,j

H
(
f(xk,l)−θ

)
f(xk,l)

)
, (6)

where D is the communication rate, H is the Heaviside step function, θ is a
communication threshold, and Ri,j is the set of n nearest neighbours for vertex
i, j. Equation (6) specifies that the map F is first applied to every node in the
network; subsequently those vertices that then exceed θ distribute some of their
activation to their neighbours. If this is combined with parameter values for F
that result in excitable behaviour, we obtain a system that is roughly similar to
a network of neurons that build up activation until they exceed the threshold
and then “fire” some activation to their neighbours, depleting themselves in the
process.

To observe a wave-like activation, consider the lattice of excitable maps
(Fig. 4). The values of D and θ are chosen so that when a node fires, its own
activation drops near zero, since with four neighbours 4×0.54 will be subtracted
from it, a value slightly below θ. This allows for activation to be passed on rather
than just diffused. We can see the effect of this in the following plots, showing the
lattice at different times. The spread of activation in patterns similar to circular
waves is clearly visible. The sixth plot for t = 151 shows the interference which
occurs once the boundary of the lattice is reached and the activity bounces back
into the lattice. These two phases (circular waves and interference) can also be
recognized quite clearly from Fig. 5: the rim of the lattice is reached around
t ≈ 75 and after that the more chaotic activation spreads through the grid, after
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Fig. 4. Activation spreading in a 101 × 101 excitable map lattice at t = [11, 21, 31,

41, 51, 151]. α = 0.8 and γ = 5.5; the initial value central vertex x51,51(0) = 0.5 with

all other initial values zero; D = 0.54; θ = 2.19.

which the overall activation level fluctuates just below
∑

x = 3000 (or average
x = 0.2941).

To investigate the effect of diffusion threshold θ and diffusion rate D on total
activation, consider an 11× 11 grid of excitable maps, with activation spreading
from one central node. All units start off deactivated except for the central unit,
which starts at x(0) = 0.3. In Fig. 6, we tend to get either a fully activated or a
zero activated grid, with a steep regime change in between. More intermediate
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Fig. 5. Dynamics of total activation for the lattice shown in Fig. 4

values are rarely observed. We can see from the upper case, with relatively
low initial activation, that there is not necessarily a monotonous relationship
between our independent parameters and

∑
x (the summed activation of all

nodes at t = 100). In that particular case, for very low diffusion rates high∑
x is only obtained when the diffusion threshold is low; whereas for higher

diffusion rates a very low diffusion threshold precisely results in no (or nearly
no) activation. Note that we also get no activation when the threshold value is
simply higher than the map can go, ∼ 2.4 in this case. We can understand these
results as follows. When both the diffusion rate and the threshold are high, maps
will build up activation and then spread it liberally, resulting in high

∑
x (after

100 time steps). Fig. 4 gives an example of this. When both are low (but not
too low in the case of the diffusion rate), the spread of activation will be slow
but steady, and

∑
x will be high as well. With a low diffusion rate and a high

threshold however, the spread of activation will be slow, and
∑

x is low. Finally
with a high diffusion rate and a low threshold, diffusion can spread what little
activation there is so thinly that the then only slightly activated neighbour maps
subsequently “fall asleep” towards their stable origin. This loss of activation from
the system results in low

∑
x. With a high diffusion rate it is therefore best (if

activity is desired) to have a higher threshold, so that when diffusion occurs, it
is substantial and allows the recipients of the diffused activity to stay awake for
a while and diffuse in turn. This particular nonmonotonous relationship is not
observed for higher initial activation (lower part of Fig. 6), which suggests a less
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Fig. 6. Pattern of total activation (summed activation of all nodes, at t = 100) in

11 × 11 excitable map lattice. α = 0.8 and γ = 5.5; the initial value central vertex

x6,6(0) = 0.3 (top) and x6,6(0) = 1.2 (bottom) with all other initial values zero.
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subtle and more seemingly obvious picture in which both higher diffusion rates
and lower thresholds lead to a better chance of (and slightly higher) activation.

It must be noted that a higher communication rate and a lower threshold do
not necessarily, and do not linearly result in a faster or more pervasive spread
of activation. This is somewhat counterintuitive: limits to communication help
the spread of activity.
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Abstract. Modeling the statistical structure of natural images is inter-

esting for reasons related to neuroscience as well as engineering. Cur-

rently, this modeling relies heavily on generative probabilistic models.

The estimation of such models is, however, difficult, especially when they

consist of multiple layers. If the goal lies only in estimating the features,

i.e. in pinpointing structure in natural images, one could also estimate

instead a discriminative probabilistic model where multiple layers are

more easily handled. For that purpose, we propose to estimate a clas-

sifier that can tell natural images apart from reference data which has

been constructed to contain some known structure of natural images.

The features of the classifier then reveal the interesting structure. Here,

we use a classifier with one layer of features and reference data which

contains the covariance-structure of natural images. We show that the

features of the classifier are similar to those which are obtained from

generative probabilistic models. Furthermore, we investigate the optimal

shape of the nonlinearity that is used within the classifier.

Keywords: Natural image statistics, learning, features, classifier.

1 Introduction

Natural scenes are built up from several objects of various scales. As a conse-
quence, pictures that are taken in such an environment, i.e. “natural images”, are
endowed with structure. There is interest in modeling structure of natural im-
ages for reasons that go from engineering considerations to sensory neuroscience,
see e.g. [1,2].

A prominent approach to model natural images is to specify a generative
probabilistic model. In this approach, the probabilistic model consists of a pa-
rameterized family of probability distributions. In non-overcomplete ICA, for
example, where each realization of the natural images x ∈ R

N can be written as
unique superposition of some basic features ai,

x =
N∑

i=1

aisi, (1)

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 623–632, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the parameters in the statistical model are given by the ai, see e.g. [2]. In over-
complete models, either more than N latent variables si are introduced or the
parameterization of the probability distribution is changed such that the pa-
rameters are some feature vectors wi onto which the natural image is projected
(non-normalized models, see e.g. [3,4]). Estimation of the features, i.e the ai or
wi, yields then an estimate of the probability distribution of the natural images.

The interest in this approach is threefold: (1) The statistical model for natural
images can be used as prior in work that involves Bayesian inference. (2) It can
be used to artificially generate images that emulate natural images. (3) The
features visualize structure in natural images.

However, the estimation of latent variables, or non-normalized models, pose
great computational challenges [2]. If the main goal in the modeling is to find
features, i.e. structure in natural images, an approach that circumvents this
difficult estimation can be used: For the learning of distinguishing features in
natural images, we propose to estimate instead a discriminative probabilistic
model. In other words, we propose to estimate a classifier (a neural network)
that can tell natural images apart from certain reference data. The trick is to
choose the reference data such that it incorporates some known structure of
natural images. Then, the classifier teases out structure that is not contained
in the reference data, and makes in that way interesting structure of natural
images visible. We call this approach contrastive feature learning.

This paper is structured as follows: In Section 2, we present the three parts
of contrastive feature learning: the discriminative model, the estimation of the
model, as well as the reference data. The discriminative model has one layer
of features. It further relies on some nonlinear function g(u). In Section 3, we
first discuss some properties which a suitable nonlinearity should have. Then, we
propose some candidates and go on with presenting learning rules to optimize
the nonlinearity. Section 4 presents simulation results, and Section 5 concludes
the paper.

2 Contrastive Feature Learning

2.1 The Model

Since we want to discriminate between natural images and reference data, we
need a classifier h(.) that maps the data x onto two classes: C = 1 if x is a
natural image and C = 0 if it is reference data.

We choose a classification approach where we first estimate the regression
function r(x) = E(C|x), which is here equal to the conditional probability
P (C = 1|x). Then, we classify the data based on Bayes classification rule, i.e.
h(x) = 1 if r(x) > 1/2 and h(x) = 0 if r(x) ≤ 1/2.

Our model for r(x) is a nonlinear logistic regression function:

r(x) =
1

1 + exp(−y(x))
, (2)
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where

y(x) =
M∑

m=1

g(wT
mx + bm) + γ (3)

for a suitable nonlinearity g(u) (see Section 3), and where M is not necessarily
related to the dimension N of the data x.

In a neural network interpretation, g(wT
mx + bm) is the output of node m in

the first layer. The weights of the second layer are all fixed to one. The second
layer pools thus the outputs of the first layer together and adds an offset γ, the
result of which is y(x). The network has only one output node which computes
the probability r(x) that x is a natural image.

Parameters in our model for r(x) are the features wm, the bias terms bm and
the offset γ. The features wm are the quantities of interest in this paper since
they visualize structure that can be used to tell natural images apart from the
reference data.

2.2 Cost Function to Estimate the Model

Given the data {xt, Ct}T
t=1, where Ct = 1 if the t-th input data point xt is a

natural image and Ct = 0 if it is reference data, we estimate the parameters by
maximization of the conditional likelihood L(wm, bm, γ). Given xt, class Ct is
Bernoulli distributed so that

L(wm, bm, γ) =
T∏

t=1

P (Ct = 1|xt)CtP (Ct = 0|xt)1−Ct (4)

=
T∏

t=1

rCt
t (1− rt)1−Ct , (5)

where we have used the shorthand notation rt for r(xt;wm, bm, γ). Maximization
of L(wm, bm, γ) is done by minimization of the cost function J = −1/T logL,

J(wm, bm, γ) =
1
T

T∑
t=1

(−Ct log rt − (1− Ct) log(1 − rt)) . (6)

This cost function J is the same as the cross-entropy error function [5]. Fur-
thermore, minimizing the cost function J is equivalent to minimization of the
Kullback-Leibler distance between P (C|x) and an assumed true conditional
probability Ptrue(C|x) = C.

2.3 Reference Data

In contrastive feature learning, we construct the reference data set such that it
contains the structure of natural images which we are familiar with so that the
features of the classifier can reveal novel structure.

A simple way to characterize a data set is to calculate its covariance matrix.
For natural images, the covariance-structure has been intensively studied, see
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e.g. [2] (keyword: approximate 1/f2 behavior of the power spectrum). Hence, we
take data which has the same covariance matrix as natural images as reference
data. Or equivalently, we take white noise as reference data and contrast it with
whitened natural images.

3 Choice of the Nonlinearity

3.1 Ambiguities for Linear and Quadratic Functions

We show here that the function g(u) in Equation (3) should not be linear or
quadratic.

Plugging a linear g(u) = u into the formula for y(x) in Equation (3) leads to

y(x) =
M∑

m=1

(
wT

mx + bm
)

+ γ =

(
M∑

m=1

wT
m

)
x +

(
M∑

m=1

bm

)
+ γ, (7)

so that instead of learning M features wm one could also learn only a single one,
namely

∑
m wm with bias

∑
m bm. In other words, having more than a single

feature introduces into the cost function J an ambiguity regarding the values of
the parameters wm and bm.

There are also ambiguities in the cost function if g(u) = u2. In that case, y(x)
equals

y(x) = ||W̃T x̃||2 + γ, (8)

where x̃ = [x; 1] and the m− th column of W̃ is [wm; bm]. As

||W̃T x̃||2 = ||QW̃T x̃||2 (9)

for any orthogonal matrix Q, choosing a quadratic nonlinearity leads to a rota-
tional ambiguity in the cost function. Again, many different sets of features will
give exactly the same classifier.

While the arguments just given show that the features are ambiguous for
linear and quadratic g(u) for any data set, there is another reason why they
are not suitable for the particular data sets used in this paper. In this paper,
the natural image data and the reference data have, by construction, exactly
the same mean and covariance structure. Thus, any linear or quadratic function
has, on the average, the same values for both data sets. Therefore, any linear
or quadratic classifier is likely to perform very poorly on our data. Note that
such poor performance is not logically implied by the ambiguity in the features
discussed above.

3.2 Candidates for the Nonlinearity

In the neural network literature, two classical choices for g(u) in Equation (3)
are the tanh and the logistic function σ(u),

σ(u) =
1

1 + exp(−u)
. (10)
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For zero-mean natural images, it seems reasonable to assume that if x is a natural
image then also −x. Thus, the regression function should verify r(x) ≈ r(−x)
if x is a natural image. This holds naturally if we omit the bias terms bm and
choose g(u) even-symmetric. A symmetric version of the logistic function is

g(u) = σ(u − u0) + σ(−u − u0), (11)

where 2u0 is the length of the “thresholding zone” where g(u) ≈ 0. Other simple
symmetric functions are obtained when we add a thresholding zone to the linear
and quadratic function, i.e.

g(u) = [max(0, u− u0)]1+ε + [max(0,−u− u0)]1+ε (12)

where we added ε � 1 in the exponent to avoid jumps in the derivative g′(u),
and

g(u) = [max(0, u− u0)]2 + [max(0,−u− u0)]2. (13)

In the following, we call this two functions linear-thresholding nonlinearity and
squared-thresholding nonlinearity, respectively.

3.3 Optimizing the Nonlinearity

Instead of using a fixed nonlinearity, one can also learn it from the data. For
instance, g(u) can be written as weighted superposition of some parameterized
functions gi(u; θ),

g(u) =
I∑

i=1

αigi(u; θ). (14)

Then, we can optimize the conditional likelihood, or in practice the cost function
J of Equation (6), also with respect to αi and the parameters θ.

We consider here the special case where

g(u) = α1[max(0, u− β1)]η1 + α2[max(0,−(u− β2))]η2 , (15)

for αi ∈ R, βi ∈ R, and ηi ∈ (1, 4]. We optimize thus the type of nonlinearity
of Equation (12) and (13) with respect to the size of the thresholding zone and
the power-exponent. Furthermore, the signs of the αi control whether the two
power functions in (15) are each concave-up or concave-down.

4 Simulations

4.1 Settings

We estimate the classifier with a steepest descent algorithm on the cost func-
tion J of Equation (6), where we sped up the convergence by using the rprop
algorithm [6].1 Preliminary simulations with a fixed stepsize yielded similar re-
sults. The classifier was estimated several times starting from different random
1 The multiplicative factors were η+ = 1.2 and η− = 0.5, maximal allowed change was

2, and minimal change 10−4.
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Fig. 1. Distributions of the cross entropy error J and the false classification rate for

the nonlinearities of Section 3.2. The distributions were obtained from the validation

sets and are shown as box plots. The central red line is the median, the edges of the

box are the 25th and 75th percentiles, and the whiskers extend to the most extreme

data points. Outliers are marked with a cross. The settings were as follows: Bias terms

bm were only included for the tanh and the logistic function. The shift amount u0 was

u0 = 8 for the symmetric logistic function (Symm. Logistic, see Equation (11)). For

the linear-thresholding nonlinearity (Lin thresh, see Equation (12)) and the squared-

thresholding nonlinearity (Squared thresh, see Equation (13)), we used u0 = 2. On

the training set, the minimal cross entropies J and false classification rates (“er”) for

each nonlinearity were J = 0.282, er = 0.372 for Tanh; J = 0.294, er = 0.457 for

Logistic; J = 0.231, er = 0.223 for Symm. Logistic; J = 0.202, er = 0.223 for Lin

tresh; J = 0.199, er = 0.220 for Squared thresh.

initializations. For computational reasons, we used only 5 initializations for the
simulations of Section 4.2 and 20 for those of Section 4.3. We stopped optimiza-
tion when the average change in the parameters was smaller than 10−3. The
classifier that had the smallest cost was selected for validation. The number of
features M was set to 100.

Each training sample xt was normalized to have an average value (DC com-
ponent) of zero and norm one to reduce the sensitivity to outliers. The training
set consisted of 80000 patches of natural images (size: 14× 14 pixels), and an
equal number of reference data. For validation, we used 50 data sets of the same
size as the training set. We also reduced the dimensions from 14× 14 = 196 to
49, i.e. we retained only 25% of the dimensions.

4.2 Results for Fixed Nonlinearities

Performance. First, we validated our reasoning of Section 3.1 that a linear or
quadratic g(u) is not suitable to discriminate between whitened natural images
and white Gaussian noise. Indeed, the false classification rate for the validation
sets were distributed around chance level for the linear function (mean 0.5) and
above chance level for the quadratic nonlinearity (mean 0.52).

Then, we performed simulations for the nonlinearities discussed in Section 3.2.
The generalization performance as measured by the cross entropy error function
J for validation sets is summarized in Figure 1a. The classifier with the sym-
metric logistic function has the best generalization performance. The squared-
thresholding nonlinearity, which attained the minimal value of J for the training
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Fig. 2. Conditional probability distributions r(x) = P (C = 1|x) when the input

is natural image data (blue) or reference data (red). For natural image input, r(x)

should be 1. For reference data, r(x) should be 0. The data set was chosen from the

validation sets such that the cross entropy error J was approximately the same for the

logistic nonlinearity and the squared-threshold nonlinearity. It is intuitively clear that

the distribution in (b) is better for classification, although the cross-entropies are equal

in the two cases. This seems to be because the cross-entropy gives a lot of weight to

values near 0 or 1 due to the logarithmic function.

set (see caption of Figure 1), leads to the distribution with the highest median
and a large dispersion, which seems to indicate some overlearning.

Figure 1b shows the false classification rates for the validation data. The sym-
metric nonlinearities, i.e. the symmetric logistic function and the nonlinearities
with a thresholding zone, perform all equally well. Furthermore, they outperform
the tanh and the logistic function. The performance as measured by the false
classification rate and the cross entropy lead thus to different rankings.

Figure 2 gives a possible explanation for the discrepancy between the cross-
entropies and false classification rates. The figure shows that two distributions of
the conditional probability r(x) can be rather different but, nevertheless, attain
the same cross entropy error J . For the logistic nonlinearity in Figure 2a, r(x)
is clustered around chance level 0.5. The false classification rate is therefore also
close to 0.5. On the other hand, for the same cross entropy error, the squared-
thresholding nonlinearity leads to a false classification rate of 0.35. The reason
behind its high cross entropy is that natural images (reference data) which are
wrongly assigned a too low (high) conditional probability r(x) enter logarithmi-
cally weighted into the calculation of the cross entropy.

Features. The estimated features wm when the nonlinearity g(u) is the sym-
metric logistic function are shown in Figure 3a. They are localized, oriented, and
indicatebright-dark transitions.Theyare thus“gabor-like” features.For the linear-
thresholding and squared-thresholding function, the features were similar. For the
tanh and the logistic function, however, they did not have any clear structure.
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(a) Symm. Logistic (b) Optimized nonlinearity

Fig. 3. Features wm, m = 1 . . . M = 100. The features are shown in the original image

space, i.e. after multiplication with the dewhitening matrix. For visualization purposes,

each feature was normalized to use the full range of the color-map. The black bar under

each image panel indicates the euclidean norm ||wm|| of the feature.

For the symmetric logistic function the learned offset γ in Equation (3) is
−3.54. For the linear- and squared-thresholding functions, we also have γ < 0.
For natural image input, y(x) in Equation (3) must be as large as possible so
that r(x) → 1. For reference data, y(x) should be as negative as possible. Since
the nonlinearities g(u) attain only positive values, y(x) < 0 is only possible when
wT

mx falls into the thresholding zone of the nonlinearity. The negative γ leads
then to a negative y(x). Hence, the classifiers work by thresholding the outputs
of gabor-like features. Large outputs are indicators for natural image input while
small outputs indicate the presence of reference data.

4.3 Results for Optimized Nonlinearity

Optimization of the nonlinearity in Equation (15) leads to a classifier with a
better performance than the fixed nonlinearities, see Figure 4.

Figure 5a shows the optimal nonlinearity where the offset per feature has been
added, i.e. geff(u) = g(u) + γ/M is shown. If geff(wT

mx) > 0, feature m signals
the presence of natural image data. Negative outputs indicate the presence of
reference data. The outputs are negative when, approximately, wT

mx < 0. This
is in contrast to the fixed nonlinearities where for reference data wT

mx had to be
in the thresholding zone.

The features for the optimal nonlinearity are shown in Figure 3b. They are
also “gabor-like”. Visual inspection, as well as a histogram of the normalized
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Fig. 4. Distribution of the cross entropy error J and the false classification rate for the

learned nonlinearity and, for reference, the symmetric logistic function. The optimized

nonlinearity achieves better performance both in terms of the cross entropy error J
and the false classification rate. We tested if the distributions give enough evidence

to conclude that the mean cross entropy error and the mean false classification rate

are different for the two nonlinearities. For the cross entropy error, the p-value was

0.0014. For the false classification rate, the p-value was 0 (below machine precision).

Hence, there is statistically significant evidence that their means are different, i.e.

that, on average, the classifier with the optimized nonlinearity performs better than

the symmetric logistic function. On the training set, the cross entropy error J was

0.186, and the false classification rate 0.203, cf. Figure 1.
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Fig. 5. (a) The optimal nonlinearity of Equation (15) has the parameters α1 = 1.00,
α2 = −0.40, β1 = 1.40, β2 = −0.01, η1 = 1.69, η2 = 1.10, and γ = 11.76. The negative

α2 makes the nonlinearity highly asymmetric. Note that η2 = 1.10 is the smallest

exponent which was allowed in the optimization. (b) In the calculation of the scalar

product between the features, we first normalized them to unit norm.

dot-products between the features in Figure 5b, shows, however, that the fea-
tures are more similar to each other than the features of the symmetric logistic
function. Together with the shape of the optimal nonlinearity, this suggests that
the classifier is using a different strategy than with the fixed (symmetric) non-
linearities. The negative part of the nonlinearity can be interpreted as leading
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to an interaction between features. An input is likely to be a natural image if
some of the features have with the same sign large dot-products with x, and not
with opposite signs.

4.4 Relation to Other Work

Features that are obtained from a generative probabilistic model of natural im-
ages lead also to gabor-like features as in Figure 3, see e.g. [2]. This might
reflect the relation between nonlinear neural networks and ICA [7]. However,
sign-dependent interactions between the features (see Section 4.3) has not been
found so far in generative models of natural images. Other work where learning a
discriminative model led to gabor-like features is [8] where the features emerged
from learning shape-from-shadings.

5 Conclusions

We presented an alternative to generative probabilistic modeling for the learning
of features in natural images. The features are learned by contrasting natural
image data with reference data that contains some known structure of natural
images. Here, we used a classifier with only one layer of features and reference
data with the same covariance-structure as natural images to validate the con-
cept. The learned features were similar to those of generative models. When we
optimized the nonlinearity in the classifier, we obtained a function which seems
to facilitate interaction between the features.

The presented approach can easily be extended to multi-layer architectures,
which is difficult for generative models, and also reference data that contain more
structure than the one used here. Furthermore, the method can also be used on
other kinds of data, and is not at all restricted to natural images.
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Abstract. Design of algorithms that are able to estimate video quality

as perceived by human observers is of interest for a number of appli-

cations. Depending on the video content, the artifacts introduced by

the coding process can be more or less pronounced and diversely affect

the quality of videos, as estimated by humans. In this paper we pro-

pose a new scheme for quality assessment of coded video streams, based

on suitably chosen set of objective quality measures driven by human

perception. Specifically, the relation of large number of objective mea-

sure features related to video coding artifacts is examined. Standardized

procedure has been used to calculate the Mean Opinion Score (MOS),

based on experiments conducted with a group of non-expert observers

viewing SD sequences. MOS measurements were taken for nine different

standard definition (SD) sequences, coded using MPEG-2 at five dif-

ferent bit-rates. Eighteen different published approaches for measuring

the amount of coding artifacts objectively were implemented. The re-

sults obtained were used to design a novel no-reference MOS estimation

algorithm using a multi-layer perceptron neural-network.

Keywords: Video quality assessment, no-reference approach, perceptual

quality, neural-networks, multi-layer perceptron.

1 Introduction

There is an increased need to measure and assess the quality of video sequences,
as it is perceived by the multimedia content consumers. The quality greatly
depends on the video codec, bit-rates required and the content of video material.
User oriented video quality assessment (VQA) research is aimed at providing
means to monitor the perceptual service quality.

It is well understood that the overall degradation in the quality of the se-
quence, due to encoder/decoder implementations as part of transport stream at
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various bit rates, is a compound effect of different coding artifacts. Three types of
artifacts are typically considered, pertinent to pertinent to DCT block (JPEG
and MPEG) coded data: blocking, ringing and blurring. Blocking appears in
all block-based compression techniques due to coarse quantization of frequency
components [1][2]. It can be observed as surface discontinuity (edge) at block
boundaries. These edges are perceived as abnormal high frequency components
in the spectrum. Ringing is observed as periodic pseudo edges around original
edges [3]. It is due to improper truncation of high frequency components. This
artifact is also known as the Gibbs phenomenon or Gibbs effect. In the worst
case, the edges can be shifted far away from the original edge locations. This
effect is observed as false edge. Blurring, which appears as edge smoothness or
texture blur, is due to the loss of high frequency components when compared
with the original image. Blurring causes the received image to be smoother than
the original one [4].

There is a myriad of published papers that propose different measures of
prominent artifacts which appear in coded images and video sequences [1]-
[2]. The goal of each no-reference approach is to create an estimator based on
the proposed features that would predict the Mean Opinion Score (MOS)[5] of
human observes, without using the original (not-degraded) image or sequence
data.

In the paper, the applicability of a large set of published features to the
problem of MPEG coded video quality assessment is evaluated. An approach
to the selection of the optimal set of measures is proposed, where a non-linear
estimator is trained to predict MOS. The selection of a smaller subset of objective
measures is performed by means of statistical analysis, resulting in a final set
of five basic measures. Based on the selected features, a Multi-Layer Perceptron
(MLP)[6] as a nonlinear estimator was trained to predict the MOS.

Section 2 provides an overview of the relevant published work. The methodol-
ogy used is described in Section 3. Section 4 presents the experiments conducted
to evaluate the proposed approach and results obtained. Conclusions and some
directions for future work can be found in Section 5.

2 Background and Related Work

The work presented falls within the scope of no-reference methodologies [7]. No
information regarding the original (not-coded) video is used to estimate video
quality, as perceived by human observers. A subjective quality measure typically
used is the mean opinion score (MOS), which is obtained by averaging scores
from a number of human observers[8][1]. The correct procedure for conducting
such experiments was derived from ITU-R BT.500-10 recommendations[5].

In the research presented here, 18 different measures of image and video qual-
ity have been evaluated. Since the goal of the research is to create a VQA ap-
proach able to achieve real-time processing, the measures have been selected
both for their reported results and simplicity.
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Most perceived blockiness measures are based on the notion that the block-
edge-related effects can be masked by high spatial activity in the image itself,
and that the blockiness cannot be observed in very bright and very dark regions.
Wang et al.[1] proposed a no-reference approach to quality assessment in JPEG
coded images. His final measure is derived as a non-linear combination of a
blockiness, local activity and a so-called zero-crossing measure. The combination
is supposed to provide information regarding both blockiness and blurring in
JPEG coded images.

Recently, Babu et al. [8] proposed a blockiness measure for use in VQA, which
takes effects along each edge of the block into account separately. Thus, they
derive a measure surpassing the Wang et al. approach.

Kusuma and Zepernick [7] describe three additional measures focusing on
image-activity and contrast. They propose using two different image activity
measures edge and gradient activity, as a way to detect and measure ringing and
lost blocks.

Spatial activity of the images and video frames in general has a profound
effect on the quality of video coding. Within the work presented here, additional
measures related to texture have been used to ensure a better description of the
spatial activity within the frames of the sequence. These are based on the work
Idrissi et al. [9].

Kim and Davis [10] proposed a noise and blur measure, aimed at evaluating
the quality of video within the framework of automatic surveillance. They show
their local-variance-based measure, dubbed fine-structure, able to describe video
degradation well, in terms of noise and blur. In order to arrive at a single measure
for the quality of a video sequence, based on the values of their proposed measure
obtained for the inspected frames of the sequence, they used median as a statistic
robust to outliers.

Kirenko [3] proposed simple measures for ringing effects detection, allowing
for efficient real-time implementation.

In addition to spatial activity, the coded video quality depends on the tempo-
ral dynamics of the sequence. In order to be able to capture the characteristics
of video material two motion intensity measures have been devised to describe
the average magnitude of motion in a frame: (i) global motion intensity, calcu-
lated from the global motion field, and (ii) object motion intensity, calculated
by subtracting the global motion from the MPEG motion vectors [2].

In 2005, Babu and Perkis proposed using their proposed quality measures to
train a MLP estimator of MOS [11], when JPEG coded images are concerned.
MLP has not, to the best of our knowledge, been used for VQA.

3 The Proposed Method for Video Quality Assesment

An set of 18 different features has been evaluated based on the VQEG sequences
[12]. The features,with their respective references, are listed in Table 1. To make
for an efficient VQA approach the set of features has been reduced to 5 features
deemed to describe the quality best. These five features have subsequently been
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Table 1. List of measures evaluated with pertinent references

# Feature Reference

1 Two field difference [13]

2 Variance ratio [10]

3 Blockiness [8]

4 Ringing [3]

5 Ringing 2 [3]

6 Global motion vector intensity [2]

7 Activity [1]

8 Blocking effect [1]

9 Zero-crossing rate [1]

10 Z score [1]

11 Gradient activity [7]

12 Edge activity [7]

13 Contrast [7]

14 Correlation [9]

15 Energy [9]

16 Homogeneity [9]

17 Variance [9]

18 Contrast [9]

used to train a multi-layer perceptron neural-network, as an estimator for the
MOS of new sequences.

3.1 Creating the Training Set

The training set used is based on nine SD sequences made available by Video
Quality Experts Group (VQEG) for purposes of testing the quality of video
codecs. Each sequence has been encoded using five different bit-rate settings
(0.5Mb, 1Mb, 2Mb, 3Mb, 4Mb). Values of the features have been calculated for
110 frames of the sequences, i.e. half of the frames of the sequence, distributed
uniformly. The mean opinion score (MOS), which is a subjective quality measure
obtained by averaging scores from a number of human observers, is derived
from tests created according to ITU-R BT.500-10 [5] recommendations. Double
Stimulus Continuous Quality Scale (DSCQS) method was used, where pairs of
sequences were presented to the viewer. The first one being an original sequence
and the other the processed impaired sequence. The final test video was formed
by pairing original and degraded video sequence and the observers were asked
to evaluate the quality of overall impaired sequences using a five-point grading
scale, from 1 to 5, according to perceived quality. Number of viewers had to be
at least 20 for each test run to be able to obtain statistically meaningful results,
and the test run was kept to maximum of 30 minutes in order to maintain viewer
attention. The final MOS value for a sequence is the average score over for all
observers for the sequence at a specific bit rate. The MOS values obtained for
the sequences are shown in Table 2.
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Table 2. MOS for the training sequences

Bit rate [Mb/s]

Test sequence 0.5 1 2 3 4

”Parade” 1.800 1.200 2.900 3.850 4.300

”Harp” 1.150 2.100 2.850 4.200 4.450

”Ant” 1.077 2.038 3.269 3.538 4.500

”Kayak” 1.100 1.850 3.300 3.950 4.700

”Formula” 1.885 2.385 3.308 4.192 4.231

”Food court” 1.150 2.150 3.550 4.400 4.800

”Scrolling titles” 1.450 2.800 3.650 3.950 4.400

”Football” 1.200 1.800 3.150 3.800 4.700

”Train” 1.962 1.615 3.231 4.154 4.654

3.2 Feature Ranking and Selection

To evaluate the predictive capability of each feature (measure), when MOS es-
timation is concerned, a wrapper methodology for attribute selection has been
used [14]. Each feature was evaluated separately by providing it as input of a
simple MLP, whose output was the MOS prediction. A simple Multi-layer per-
ceptron (MLP) neural-network estimator has been trained based on a single
measure. The estimators contained 3 nodes in a single hidden layer and were
trained using 50% of our data, 25% was used for validation and another 25% for
testing. A set of statistics was collected for the performance of each estimator,
including: root mean square error (RMSE), Pearson correlation, Spearman corre-
lation, maximum absolute prediction error (MAPE) and outlier ratio (OR). The
features were than ranked according to the performance of the estimators. The
ranking of measures determined through evaluation conducted on the VQEG se-
quences is shown in Table 3. The values of the statistics are listed along with the
feature number corresponding to numbers in Tables 1 and 4. Table 4 provides
the descriptions of the top-ranking features.

As the tables show, the highest ranking feature is the combined measure of
Wang et al. (the Z-score). However, since the two out of three constituents of this
measure ranked high (blocking effect and zero-crossing rate), the Z-score was not
selected for the final set of features. The rationale for this being the fact that
the MLP should be able to combine the constituents in a more informed way
and achieve better performance. Thus, the final set of features selected includes:
the blockiness measure of Babu et al., the blocking effect measure and the zero-
crossing rate of Wang et al., the edge activity measure by Kusuma and Zepernick
and the second ringing metric proposed by Kirenko. These are indicated in bold
print in Table 4.

Forward selection has been explored as an alternative to the proposed ap-
proach, where features have been added to the selected set, using progressively
more complex MLP estimators to rank the growing feature sets. Selecting the
best feature set after each iteration, yielded exactly the same ranking as the
independent analysis.
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Table 3. Feature ranking

RMSE # MAPE # Spearman # Pearson # OR #

1.0264 10 0.2853 10 0.4443 10 0.5344 10 0.0576 10

1.1320 3 0.3198 3 0.3192 8 0.3560 9 0.0365 8

1.1349 9 0.3330 8 0.2964 9 0.3534 8 0.0239 3

1.1357 8 0.3331 5 0.2635 3 0.3506 3 0.0179 6

1.1528 5 0.3377 9 0.2156 6 0.2947 5 0.0135 12

1.1684 12 0.3424 18 0.2048 5 0.2535 4 0.0100 16

1.1714 11 0.3433 12 0.1962 11 0.2495 16 0.0095 5

1.1746 4 0.3445 6 0.1833 12 0.2466 12 0.0077 4

1.1748 16 0.3446 11 0.1773 16 0.2464 7 0.0069 15

1.1755 15 0.3454 15 0.1657 7 0.2460 11 0.0064 18

1.1768 7 0.3454 4 0.1539 1 0.2460 6 0.0063 9

1.1769 6 0.3456 16 0.1362 13 0.2440 15 0.0056 11

1.1790 18 0.3471 7 0.1351 15 0.2392 18 0.0048 13

1.1945 13 0.3507 1 0.1318 18 0.1767 13 0.0043 1

1.1976 1 0.3508 13 0.0989 4 0.1638 1 0.0021 7

1.2059 17 0.3529 17 0.0661 2 0.1170 17 0.0020 17

1.2102 14 0.3532 14 0.0405 17 0.0836 14 0.0014 14

1.2154 2 0.3547 2 0.0345 14 0.0451 2 0.0002 2

Table 4. Description of top ranking features with pertinent references

# Feature Reference

3 Blockiness [8]

5 Ringing 2 [3]

8 Blocking effect [1]

9 Zero-crossing rate [1]

12 Edge activity measure [7]

10 Z score [1]

3.3 VQA Estimator

A block diagram of the proposed video-quality estimator is shown in Fig. 1.
Based on the selected set of features a MLP neural network is trained. The
network contains 5 input nodes, 7 nodes in the hidden layer and a single output
node corresponding to the MOS. No significant gain in prediction performance
has been observed when increasing the number of nodes in the hidden layer.

The video quality assessment is conducted by calculating the five selected fea-
tures for half of the frames of the sequence, uniformly distributed (i.e. the frame
rate was halved to make the approach more efficient). The features obtained for
each evaluated frame were fed into the neural network and the measure of the
quality for that frame obtained.
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Table 5. Cross-validation results

Test sequence RMSE train RMSE test RMSE test stddev

”Parade” 0.6631 0.5142 0.0747

”Harp” 0.7424 0.9697 0.0825

”Ant” 1.1410 1.1460 0.1494

”Kayak” 0.7741 0.9475 0.0428

”Formula” 0.8178 0.6938 0.1487

”Food court” 0.8263 0.9351 0.0793

”Scrolling titles” 0.7852 0.6113 0.1204

”Football” 0.6941 0.7898 0.0218

”Train” 0.8127 0.7052 0.1223

Feature
extraction

Multi-layer
perceptron

Median
filtering

VQA
estimate

Sequence

Fig. 1. Block diagram of the proposed approach

Since the standard deviation of the estimator RMSE (RMSE test stddev) over
the frames of a single sequence is relatively high, robust statistics should be used
to arrive at the final single measure of sequence video quality. Kim and Davis [10]
suggest using the median of the quality values across the frames to achieve this.
We followed their recommendation and adopted the median of values across the
evaluated frames of the sequence as the final measure of sequence quality. Median
is known to be a measure robust to the outliers, which commonly occurred in
the experiments performed.

4 Results and Discussion

Two different approaches to the testing of the proposed approach were taken:
using a part of the data as a separate test set and cross-validation.

Based on a test set comprised of 25% of data available, the proposed estimator
achieved the RMSE value of 0.6364 averaged over 20 trial runs, with a standard
deviation of 0.0241. The best published quality measure evaluated (Z-score of
Wang et al.) achieved significantly higher RMSE (1.0264), suggesting that the
proposed approach benefited from additional features introduced. The plots of of
the test set results achieved per test case (sequence coded at a specific bit rate)
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Fig. 2. Test results for the test set containing 25% of data

are shown in Fig. 2, for both the proposed approach (MLP) and Wang et al..
Estimate for a specific test case is the median value of quality estimates across
all the evaluated frames of the sequence. As the figure shows, the proposed
approach is able to achieve significantly better prediction than that of Wang
( et al.) approach.

The error on the training set comprised of 50% of the data (another 25% was
used for validation), was 0.6268, indicating that there was no over-fitting.
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To evaluate the applicability of the proposed approach to a more realistic
scenario, where quality evaluation is to be done for new sequences the likes of
which may not be present in the training set, cross-validation was performed.
This was done in a supervised way, by excluding all data pertinent to a single
sequence. The results of this nine-fold cross-validation are shown in Table 5.
While the estimator maintained a good RMSE, the results indicate that the
training set is not diverse enough to allow for balanced performance when whole
sequences are excluded. This suggests that the training set should be extended,
and possibly that specialized estimators should be constructed based on the
sequence characteristics and/or content.

5 Conclusion

A large number of features designed to detect and measure the coding artifacts
introduced by DCT block coding algorithms, has been evaluated in terms of
applicability to video-quality assessment of MPEG2 coded video sequences. An
approach to determining the correct reduced set of features, based on the training
data available has been described. A multi-layer perceptron based estimator of
MOS has been trained using the five selected features. The proposed estimator
achieved results superior to those of the single features evaluated, in terms of
RMSE, when compared on frame-by-frame basis. The results of the experiments
conducted suggest that a larger set of sequences should be used for MLP training
in order to improve performance in a general case. In addition, the sequences
could be separated into similar groups and specialized estimators constructed
for each cluster, in order to improve the performance even further.
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Abstract. We present a neural system that recognizes faces under

strong variations in pose and illumination. The generalization is learnt

completely on the basis of examples of a subset of persons (the model

database) in frontal and rotated view and under different illuminations.

Similarities in identical pose/illumination are calculated by bunch graph

matching, identity is coded by similarity rank lists. A neural network

based on spike timing decodes these rank lists. We show that identity

decisions can be made on the basis of few spikes. Recognition results on

a large database of Chinese faces show that the transformations were

successfully learnt.

Keywords: rank order coding, face recognition, pose invariance, illumi-

nation invariance, learning from examples, controlled generalization.

1 Introduction

Invariant recognition of objects is one of the most important features of the
visual system and a classical classification task for artificial neural networks.
However, invariance is not a natural generalization performed by known network
architectures.

Invariances can, to a limited degree, be learnt from real-world data based on
the assumption that temporally continuous sequences leave the object identity
unchanged [2,6,1,13].

Nevertheless, successful recognition systems have the desired invariances built
in by hand. This includes elastic graph matching [7,12], where the graph dynam-
ics explicitly have to probe all possible variations in order to compare an input
image with the stored models. Neural architectures that perform this matching
include [14,8,15], with the more recent ones being massively parallel and can
account for invariant recognition with processing times comparable to that of
the visual system. These methods work fine for the recognition of identity under
changes in translation, scale, and small deformations. The latter includes small
changes in three-dimensional pose.

Invariances for which explicit modeling is difficult, like large pose differences
or illumination changes, can be handled by elastic bunch graph matching only if
bunch graphs are supplied for a coarsely sampled set of variants, e.g., 10 different
head poses. This is problematic from a technical point of view [10], because for a

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 643–652, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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PM+45 PM+00 PM−45

Fig. 1. Bunch graphs for different poses in the CAS-PEAL database. Images in different

poses are not directly comparable because of different node numbers and strongly

distorted features.

recognition system for many persons it is infeasible to store and match all persons
in all possible poses or illuminations. It is also improbable that the brain would
employ such a strategy because of the same waste of memory resources.

We here present a system that can learn invariances in a supervised way from
a set of examples of individual objects in several instances of variations. For lack
of a better term, we refer to each coarsely sampled constant illumination or pose
angle as one situation. Invariant recognition generalizes to other objects that are
known only in one situation.

We have recently reported that such a recognition scheme can achieve pose-
invariance on the basis of similarity rank lists [9]. Here we extend this technique
by a neuronal network that implements these similarity rank lists by relative
spike timing [11]. This implementation on the one hand gives a plausible neural
network for recognition under learnt invariances. On the other hand, it suggests
a similarity function, which is different from the one used in [9]. We show that
this yields better recognition results for pose-invariant face recognition. In this
paper, we also tested the performance on illumination invariance.

2 Recognition by Similarity Rank Lists

Recognition by graph matching [7,12] compares a given probe image P with
gallery images Gg of all known persons. It first estimates the correspondences
between image points on the basis of N local features (Gabor jets) in a process
called landmark finding. Then, it calculates a similarity between persons by
adding (or averaging) local similarities SJ(P,Gg , n) of corresponding features
(n being a local feature index). The local similarity function is usually different
from the one used for landmark finding. The recognized person is then the Gg
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Fig. 2. Situation-independent recognition is mediated by a model database of some

persons in all situations. Probe and gallery images are coded into rank lists π and γ by

their similarities to the models. These rank lists are comparable, while the similarities

are not (feature indices have been dropped for clarity).

with

g = arg max
g

1
N

∑
n

SJ(P,Gg , n) . (1)

This cannot work between different situations, because the features are heavily
distorted by pose and illumination changes, for large pose differences some fea-
ture points even disappear, leaving no visual features to compare with. In order
to overcome this problem we construct a system that can look up the variations
in a set of faces which are known in all situations. A number of NV situations
are coded into a model database with NM subjects. The respective graphs are
denoted by Mv

m, where m is an index of personal identity and v one of situation.
Graphs with the same value of m are derived from images of the same person,
the ones with the same value of v show the same situation. On the basis of these
examples the variations are learnt.

Each situation requires its own similarity Sv, because the correspondence be-
tween features in different situations can not be assumed. Especially, the graphs
in different poses contain different numbers of features Nv (see figure 1).

Personal identity is coded by a similarity rank list to the models of the same
situation. The rank list for a test subject T is created as follows. First, all local
similarities Sv to all model images Mv

m are calculated. For each index n and
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situation v a rank list rv
n is created, which contains the rank of similarity for

each model index m, so that for each pair of model imagesMv
m,M

v
m′ the following

holds (rv
n(m) ∈ N0):

rv
n(m) < rv

n(m′) ⇒ Sv(T,Mv
m, n) ≥ Sv(T,Mv

m′ , n) . (2)

The most similar model candidate would be the one with rv
n(m) = 0, the follower-

up the one with rv
n(m) = 1, etc. These lists now serve as a representation of a

test image T . For varying T we will use the notation rv
n(T,m).

2.1 Invariant Recognition

For the recognition of an arbitrary subject a large gallery database is created,
which contains all known subjects in a preferred situation v = 0. For practical
purposes, this situation will be a frontal pose under frontal illumination.

Each subject Gg in the gallery is assigned a rank list representation by match-
ing each of its landmarks to those of the model subjects in the preferred situation:

γg,n(·) = r0n(Gg, ·) . (3)

For recognition we assume that a probe P v image appears in the known situation
v. This probe is also represented as a similarity rank list for each landmark of
all models in situation v:

πv
n(·) = rv

n(P v, ·) . (4)

The requirement to know the situation beforehand will be removed in section 2.4.
Now the identity of the probe image is coded into the lists πv

n, and the gallery
images into γg,n. Each entry in a rank list is the rank of similarity of that model
image to the probe or gallery image.

As the model database contains the same persons in different situations the
rank lists should be similar for the same person. This is basically a continuity
assumption on the transformations between situations: People that are similar
in one situation are also similar in any other situations.

What is required now is a similarity function between rank lists. In contrast to
the function chosen in [9] we here construct one on the basis of a neural network,
which recognizes patterns on the basis of spike arrival times.

This similarity function enables the comparison of images under pose and
illumination variation. For identification tasks it is now sufficient to store a
single image of a person in a neutral view. Images taken in different situations
can be compared to this gallery image using the rank list similarity.

2.2 Neuronal Rank List Comparison

Thorpe et al [11] have proposed a neural network that can evaluate rank codes. A
set of feature detectors responds to an input pattern such that the most similar
detector fires first. The order in which the spikes arrive can then be decoded by
a circuit depicted in the left half of figure 3.
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Fig. 3. Left: A neural circuit sensitive to the order of firing neurons, the preferred order

is stored in the weights wj (after [11]). Right; The same circuit is repeated for each

gallery image. The probe image is represented as a rank list π according according to

similarities with model images in the same situation. The similarities of the gallery to

the model images in neutral situation are coded in the weights wm,g.

We assume a neuronal module that calculates the similarity of stored model
images to the actual probe image. Each gallery subject has one representing
neuron. The similarity influences the time a neuron corresponding to this subject
sends a spike. The higher the similarity the earlier the spike.

The activation in response to a spike train aj is calculated as

A =
K∑

j=1

exp
(

order(aj)
λ

)
wj , (5)

with λ determining the activity decrease per spike. This parameter has to be
optimized, it varies with the size of the rank list. If bj is the sequence to elicit
the largest activation the weights must be

wj =
1
K

exp
(

order(bj)
λ

)
. (6)

For our purposes, such a decoding circuit is required for each gallery image Gg.
π is the rank list or the firing order of a number of NM model neurons firing
according to their similarity of each model image with index m to the probe
image. The rank list γg of gallery image Gg is coded in the synaptic weights
wm,g as follows:

wm,g =
1

NM
exp
(
γg(m)
λ

)
. (7)
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PM+45 FM+00 FM−45 FM−90

PM+00 FD+00 FD−45 FD−90

PM−45 FU+00 FU−45 FU−90

Fig. 4. Examples for pose variation (left column) and illumination variation in frontal

pose handled by the system

The activity Ag then becomes

Ag =
∑
m

exp
(
π(m)
λ

)
wm,g , (8)

=
1

NM

∑
m

exp
(
π(m) + γg(m)

λ

)
, (9)

and is interpreted as a similarity function between the rank lists π and γg.

Srank(π, γg) =
1

NM

NM∑
m

exp
(
π(m) + γg(m)

λ

)
. (10)

Besides the neural interpretation, this similarity function has yielded better
recognition results than the one used in [9].
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2.3 Recognition

So far, the feature index n has been omitted from the rank list derivations.
Clearly, the above circuit can be repeated for each feature, and the resulting
similarities are averaged over all features for a similarity between the persons.

Srecog(g) =
1
Nv

Nv∑
n=1

Srank(πv
n, γgn) . (11)

As usual, the recognized person is the one with the index g that maximizes this
similarity.

2.4 Automatic Estimation of Situation

In a realistic setting, the situation of the probe image is, of course, unknown. It
can be estimated by matching with bunch graphs of all situations, and assigning
the situation with the highest similarity:

vest = argmax
v

1
Nv

1
NM

Nv∑
n=1

NM∑
m=1

Sv(T,Mv
m, n) . (12)

In case of v situations, bunch graph matching leads to v graphs for a given
test image T . For each situation, the average similarity of that graph to all
corresponding graphs of the model is calculated. The highest similarity indicates
the estimated situation vest, which is used instead of the known situation in the
above procedure.

3 Experimental Setup

The network was tested on the CAS-PEAL face database [4]. The landmarks
are found by elastic bunch graph matching, starting from very few images, that
were labeled by hand. 24 subjects have been set aside for manual labeling. From
these, the basic bunch graphs have been built (12 for pose, 8 for illumination).

The remaining 1015 subjects have been split up into model sets and testing
sets (500 model and 515 testing for the pose case, and 100 model and 91 testing
for illumination).

From the basic bunch graphs the landmarks on the model set database have
been determined by incremental bunch graph building [9,5]. After EBGM was
performed on one situation of the model set, good matches have been added
to the bunch graph to achieve also a good match on previously poor matches.
Each situation creates a separate bunch graph. After landmarks for all model
images have been found and each bunch graph has grown to a convenient size
(15 model graphs have been added in 3 iterations), gallery registration could
begin. For registration of a gallery image, a single match has to be performed
with the bunch graph of the corresponding situation. After that, similarities to
the model images are calculated and the rank lists are created.
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Table 1. Recognition rates (all in %) with known situation are only slightly impaired

when the situation is estimated

Pose Illumination

Recognition rate with given situation 99.02 89.01

Rate of correct situation estimation 99.89 ± 0.09 91.96 ± 0.89

Recognition rate with automatically

determined situation

97.75 ± 0.50 89.97 ± 1.36

Best recognition rate reported in [3] 71 51
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Fig. 5. Cumulative match score with known situation for pose (left) and illumination

variation (right). A recognition rate of 100% is reached at rank 8 out of 515 (for pose)

and 36 of 91 (for illumination). Rank-1 recognition rates are 99% and 89%, respectively.

Identifying a probe image works as follows. A single match with the bunch
graph of the appropriate situation has to be done for landmark finding. A com-
parison with each model subject is done to calculate the rank lists. Then the
rank lists can be compared to the ones in the gallery in a cross run.

4 Results

Figure 5 shows the cumulative match scores for recognition under pose and
illumination variations. 100% recognition rate has been achieved at rank 8 for
pose and 36 for illumination. To estimate the uncertainty in the recognition
rate, the available subjects have been assigned to model or test in 100 randomly
chosen partitions. The resulting recognition rates with error bars are shown in
table 1.

In a final experiment, the decision was made on the basis of subsets of the k
most similar model candidates. This means, a decision was already made when
the first k spikes had reached the gallery neurons. The resulting recognition rates
are shown in figure 6. This shows that recognition rates are not impaired if only
the 10 most similar model candidates are used.
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Fig. 6. This curve shows the recognition rates when a recognition decision is made

before the spikes from all gallery representations are in. It can be seen that the first

10 spikes suffice to make the correct decision and even the first one is usually a good

guess.

5 Discussion

We have presented a neural network based on spike timing, which is capable of
learning the variations caused by pose and illumination changes on the basis of
examples. Decisions are made from spike timing with the most similar template
firing first. The model database holding the variations for a limited number of
persons allows the generalization of identities known only in a single situation.
The high recognition rates in comparison with previously published recognition
results on the CAS-PEAL database demonstrate that a usable model of the
variations due to pose and illumination changes has been learnt from examples.
The recognition decision can be made using early stopping, which makes the
system very fast in a parallel architecture.
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Abstract. In this paper we present a novel approach to multi–view ob-

ject recognition based on kernel methods with constraints. Differently

from many previous approaches, we describe a system that is able to ex-

ploit a set of views of an input object to recognize it. Views are acquired

by cameras located around the object and each view is modeled by a spe-

cific classifier. The relationships among different views are formulated as

constraints that are exploited by a sort of collaborative learning process.

The proposed approach applies the constraints on unlabeled data in a

semi–supervised framework. The results collected on the COIL bench-

mark show that constraint based learning can improve the quality of

the recognition system and of each single classifier, both on the original

and noisy data, and it can increase the invariance with respect to object

orientation.

Keywords: semi–supervised learning, constraints, multi–view object

recognition, kernel methods.

1 Introduction

Object recognition from static images is a wide and challenging research topic in
the fields of computer vision and pattern recognition. In the last few years several
systems and techniques have been proposed for this task[1–12]. Some of them
are single–view, in the sense that they process a single viewpoint of an object.
Objects are captured in different conditions of illumination, with occlusions or
in presence of noise [1]. In those contexts the focus is posed in finding a compact,
discriminative and robust representation of the objects in the feature space [1, 2].

When multiple viewpoints are introduced, object recognition usually performs
more accurately [3–12]. In this scenario, referred to as multi–view object recogni-
tion, a single object is represented by a set of views captured at different angles.
Some existing approaches use local feature representations to exploit the cor-
respondences among the available views [4]. The generation of 3D models from
local image features for viewpoint invariant object recognition has been studied
in [5]. Other authors jointly modeled object appearance and viewpoint or ex-
tended single–view techniques, such as the Implicit Shape Model (ISM) [13], to
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the multi–view scenario [6]. However, many of these approaches assume that a
single image is available at test time [8–12].

In this paper we investigate the problem of object recognition from multiple
views. In this case, a set of views of an object is fed as input to the system at
test time. In a real scenario this model corresponds to the situation in which a
set of cameras acquire images of a given object from different viewpoints. The
recognition system must be able to exploit the availability of multiple views to
enhance its discriminative power.

In our approach, we adopt kernel machines [14] to model each view and then
we reinforce the classifiers by combining the single decisions in a constraint
based framework, requiring coherence in the decision among different views. In
particular, unlabeled data is exploited in a semi–supervised fashion to force the
fulfillment of coherence constraints. In a wider context, our method could be
applied also with other kind of classifiers and in every situation when there is
a relationship among corresponding decisions on different representations of the
same object.

This paper is organized as follows. In Section 2 the multi–view object recog-
nition scenario is formalized. Section 3 describes constraint based learning in the
semi–supervised framework. Experimental results are collected in Section 4 and
concluding remarks are presented in Section 5.

2 Multi–view Object Recognition

In multi–view object recognition, each object is represented by a set of images
acquired from different viewpoints. Given a collection of known objects, the goal
is to correctly classify the input element into one of the known object categories.
The information contained in multiple views is more informative than the one
in a single image and it can increase the accuracy of the classifier but it can
also contain redundant data due to, for example, the overlapping regions among
different images.

In details, given a set D of objects, we consider k cameras ci, i = 1, . . . , k
that simultaneously acquire k pictures of the same object x ∈ D from k dif-
ferent points of view. Each camera produces a bidimensional representation of
x, indicated with xi. Such process can be modeled by an unknown function
gi : D → IRd, where d is the number of pixels of each acquired image, and
gi(x) = xi. The functions gi describe a complex relationship that maps the
object x in the three dimensional object space to a planar image belonging to
IRd. A collection of k views is referred to as viewset and it is indicated with
X = {x1, . . . ,xk}. Viewsets belong to the cartesian product of k sets in IRd,
V = IRd × IRd × · · · × IRd. In particular, we can define a distribution P on V
of the viewsets representing objects from D. The distribution P expresses the
correlation between different views of the same object, and regions with zero
probability correspond to unknown objects.

Given a collection of q viewsets representing the objects in D, acquired in
different conditions of illumination or with slight orientation/position changes,
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we define the set of labeled instances as L = {(Xj,h, tj) | Xj,h ∈ V ; j =
1, . . . , n; h = 1, . . . , vj}, where tj is the actual label of the j–th object de-
scribed by the viewset Xj,h, and vj is the number of viewsets available for that
object (note that q =

∑n
j=1 vj).

We model the system using n binary multi–view classifiers, in a one–against–
all strategy [15]. Moreover, we indicate with the function oj : V → [0, 1] the
output of each classifier.

First, as baseline approach, we use a single discriminating function fj : IRd →
[0, 1] as base of the j–th classifier, that makes no distinctions among the views of
an object, since it does not include any information on viewpoints. The output
of such classifier for a generic input X is then

oj(X) =
1
k

k∑
i=1

fj(xi), (1)

where the k outputs are averaged to obtain a single combined output given the
k input images.

Secondly, we separately model the data xi acquired by the camera ci with a
specific function fj,i : IRd → [0, 1]. The output function becomes

oj(X) =
1
k

k∑
i=1

fj,i(xi). (2)

In both cases, the output of each binary classifier is compared with a reject
threshold τj ∈ (0, 1]. If all oj(X), j = 1, . . . , n, are less than their corresponding
thresholds, the object is classified as not belonging to the set D. Otherwise, the
predicted class label c(X) corresponds to the index of the binary classifier with
the highest confidence, as formalized in

c(X) =

{
arg maxj

oj(X)−τj

1−τj
if ∃j (oj(X) ≥ τj)

unknown otherwise.
(3)

We exploit kernel machines [14] to model the functions fj and fj,i. Focusing
on the second approach, given a positive definite Kernel function Kj : IRd ×
IRd → IR, we indicate with H the Reproducing Kernel Hilbert Space (RKHS)
corresponding to it, and with ‖·‖H the norm ofH. From Tikhonov regularization
in a RKHS, when the loss function L is the classic squared loss, the problem
becomes an instance of ridge regression [15]. In details, for each of the k functions
of the j–th classifier we have Lj,i =

∑q
r=1(yr−fj,i(xr

i ))
2, where xr

i indicates the
r–th instance of the i–th view and yr ∈ {0, 1} is the corresponding label. The k
functions fj,i ∈ H are chosen such that

min
fj,i∈H

k∑
i=1

q∑
r=1

(yr − fj,i(xr
i ))

2 + λj

k∑
i=1

‖fj,i‖2
H, (4)

where λj is the weight of the regularization term.
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From the Representer Theorem [14] the form of functions fj,i, solution to the
Tikhonov minimization problem, is given by

fj,i(x·
i) =

q∑
r=1

wr
j,iKj(x·

i,x
r
i ), (5)

where wr
j,i are the function weights and x·

i is a generic input. Using this repre-
sentation when minimizing Eq. 4 with respect to the function fj,i, is equivalent
to solving a linear system of equations in the weights wr

j,i, r = 1, . . . , q [15].
In matrix notation, wj,i ∈ IRq is the weight vector that collects the q weights
wr

j,i, Gj,i ∈ IRp,p is the Gram matrix associated to the selected kernel function,
yj ∈ {0, 1}q is the vector that collects the q labels yr and I ∈ IRp,p is the identity
matrix. Finally,

wj,i = (λjI + Gj,i)−1yj . (6)

The solution for the baseline approach (Eq. 1) is straightforward, since it is a
just simplified case of the described one. Note that the number of parameters
for the j–th classifier in both the approaches is exactly the same. In particular
each of the k functions fj,i is composed by q weights for a total of k · q, that
is equivalent to the number of weights of fj since its representation includes all
the k · q training views.

3 Semi–supervised Learning with Constraints

Each input viewset X belongs to the space V , and in particular to regions of
V where the distribution P is non–zero. The classification approach described
by Eq. 2 models different views with independent functions, that share only the
selected kernel function and regularization weight. The set L of labeled training
instances implicitly includes the information on the data distribution, since views
of the same object are marked with the same label. If the classifier accurately
approximates training data, it is assured to model the distribution P but only
in regions of V that correspond to such data.

When unlabeled data is available, the correlation among the k views expressed
by P can be exploited as prior knowledge to improve the discriminative power
of the classifier. In particular, it introduces a dependency among the functions
fj,i that can be modeled by constraining the learning process. Each function
can benefit by taking into account the shape of the others in different, but
corresponding, regions of the space.

Ideally the functions should produce exactly the same output for the k views
of a given viewset X , since they belong to the same object. More formally, we
require the fulfillment of the following constraints⎧⎪⎪⎨⎪⎪⎩

fj,1(x1) = fj,2(x2)
fj,2(x2) = fj,3(x3)

· · ·
fj,k−1(xk−1) = fj,k(xk).

(7)
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Given a collection of m unlabeled viewsets U = {Xu ∈ V | u = 1, . . . ,m}, a
penalty term is added to the cost function of Eq. 4 to bias the learning process
by the described constraints, leading to the following new cost

k∑
i=1

∑
xr

i ∈L

(yr − fj,i(xr
i ))

2 +λj

k∑
i=1

‖fj,i‖2
H +μ

k−1∑
i=1

∑
xu

i ∈U

(fj,i(xu
i )− fj,i+1(xu

i+1))
2.

(8)
The parameter μ is the weight associated to the penalty term and it determines
how strictly the system is forced to fulfill the given constraints. The accurate
selection of the value of μ is crucial for the system performances. In fact, high
values of μ could result in a worse fitting of the labeled data, and the overall
accuracy could degenerate, moving the system towards a trivial solution where
all the functions assume values close to zero.

We solved the minimization problem of Eq. 8 by gradient descent. Since la-
beled data already fulfill the constraints, training the unconstrained classifiers
by solving the linear system of Eq. 6 will lead to a solution that is probably close
to the constrained one. Exploiting this consideration, the solution of Eq. 6 is a
promising starting point for the gradient descent, in order to reduce the number
of iteration required to achieve convergence.

4 Experimental Results

The COIL-100 database [16] is one the most used benchmarks for object recogni-
tion algorithms. It consists of a collection of multiple views of 100 objects. Each
object was placed on a turntable and every 5◦ an image was acquired, generating
a total of 72 views for object. The database is composed by the collection of 7200
color images at the resolution of 128x128 pixels (Fig. 1).

Fig. 1. Sample images from the COIL-100 database

In the last decade, a large number of experiments have been performed on
this collection [7–12]. As in many previous approaches [8–10] we rescaled each
image to 32x32 gray scale pixels in the interval [0, 1], since it has been shown
that the information coming from color is highly discriminative among objects
and it makes the learning task quite trivial [9, 11].

In a multi–view scenario we consider four cameras ci, i = 1, . . . , 4, equally
spaced around the object, that simultaneously acquire four images at 90◦ ·(i−1)
considering the reference angles provided in the COIL-100 database. Each viewset
X = {x1,x2,x3,x4} is identified by the degree of rotation of the image acquired
by the first camera, c1, that falls in the range [−45◦, 45◦].
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Differently from the experiments available in the literature, we decided to
make the recognition task more challenging by considering only a relatively small
amount of views of a sub selection of objects to train the recognizer. We defined
a set K of known objects, composed by the first 50 ones, and a set U of the
remaining 50 unknown objects. For each element in K we selected only 3 viewsets
(12 images) to train the system, each separated from the previous one by 30◦,
starting at −30◦. Similarly other 3 viewsets where selected to cross–validate
the system parameters, alternatively starting at −15◦ or −45◦ for each object1.
The other viewsets were used to test the recognition accuracy in two different
scenarios, test K and test KU. In the former, only the remaining 12 viewsets (48
images) of the known objects K are considered, whereas in the latter, also the
18 ones (72 images) that are available for each unknown object in U are added.
In other words we do not only require the ability to recognize and discriminate
known objects but also to correctly reject the unknown ones. Table 1 summaries
the details of the described experimental framework.

Table 1. The selected experimental setup. The left portion of the table details the

list of objects and total number of images in each set, whereas the right one collects

information on viewsets for “each” object of the list (j = 0, . . . ,Viewsets−1).

Set Objects Images

Training 1, . . . , 50 600

Validation 2, . . . , 50 (even only) 300

1, . . . , 49 (odd only) 300

Test K 1, . . . , 50 2400

Test KU 1, . . . , 50 2400

51, . . . , 100 3600

Set Viewsets Positions

Training 3 −30◦ + (30 · j)◦
Validation 3 −15◦ + (30 · j)◦

3 −45◦ + (30 · j)◦
Test K 12 The remaining ones

Test KU 12 The remaining ones

18 All

We trained 50 binary classifiers in a one–against–all strategy and we selected
as kernel a Gaussian function of the form Kj(x, y) = exp −‖x−y‖

2·σ2
j

. For every
classifier the optimal values of σj and of λj are determined by varying them in
the sets {1e−3, 1e−2, 1e−1, 1, 2, 3, . . . , 12} and {1e−5, 1e−4, . . . , 1} respectively,
in order to maximize the sum of accuracies on training and validation data. The
optimal rejection threshold τ∗j is determined with the same criterion.

We approached the problem using three different methods, in order to show
how the new constraints can improve the performances. First, the baseline ap-
proach of Eq. 1, where we discarded the information about the four cameras
and their positions, modeling each classifier with a single function. In the sec-
ond approach the output of every classifier is composed by the contribution of
4 functions, one for each image of the viewset, as described in Eq. 2. Finally, we
constrained the 4 functions to be coherent in a semi–supervised framework, by
minimizing the cost function of Eq. 8.

1 The views located at 45◦ · (i− 1), with i = 1, . . . , 4, were alternatively considered as

acquired by camera ci or by the following one.
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We smoothly increased the value of the penalty weight μ, ranging in [1e−2, 25].
Constraints were forced on validation data, then the thresholds τ∗j and, in par-
ticular, the optimal value of μ were determined. We selected the value of μ
that yields the best performances on both training and validation data first,
and, secondly, the value that causes a better accuracy in approximating the
given constraints. In Table 2 the resulting macro accuracies of the three de-
scribed approaches are reported. They are referred as single (classifiers with a
single function), multi (classifiers with four functions), and constrained (classi-
fiers with four functions and constraints) respectively. In Fig. 2(a) the accuracy
of the complete constraint based learner with respect to the value of μ is shown,
and the selected optimal value μ∗ is indicated with a vertical line. Similarly, in
Fig. 2(b) the average penalty value on the 50 classifiers is reported. The violation
of the constraints on the validation data decreases as the value of μ grows but
the opposite behavior can be observed on training data, since the contribution of
the approximation error becomes less important that the constraint penalty. The
optimal value μ∗ can be selected in correspondence of a roughly equivalent vio-
lation of constraints on the two data sets, as a trade–off between an appropriate
labeled data fitting and a good fulfillment of the given constraints.

Table 2. Recognition (macro) accuracies of the three proposed approaches (in per-

centage). The better results on test data are reported in bold.

Technique Training Data Validation Data Test K Data Test KU Data

Single 100 100 99.67 90.07

Multi 100 100 99.67 92.53

Constrained 100 100 99.83 94.67

The recognition accuracy of the multiple function approach is equivalent to
the single one for known objects, but when unknown objects are introduced
the multiple function technique is more robust. This is mainly due to the spe-
cific training of each function on a specific view that allows them to achieve a
more tight fitting around the positive training instances. The introduction of
constraints offers another significant increment of accuracy on such data and a
slight increment on the discrimination capability of the system. It can be clearly
seen that increasing the weight of the constraints increases the accuracy on the
test data. Moreover, beyond a certain value, the contribution of the squared loss
on labeled data becomes less significant in the cost function, and performances
decrease or become really unstable.

We tested the performances of the constraint based learner also in other differ-
ent tasks: robustness with respect to object orientation, to noise and to missing
cumulative information.

Assuming that an input object is given to the system but its actual orientation
is unknown, we checked if the model is still able to correctly recognize it. As a
consequence, if the object is rotated by 90◦ four times and four viewsets are
acquired, one of such sets must be oriented consistently with the training data.



660 S. Melacci, M. Maggini, and M. Gori

(a) (b)

Fig. 2. Recognition (macro) accuracy (a) and average penalty value (b) on training,

validation and test data in function of the penalty weight μ. The vertical line represent

the selected value of μ accordingly to the described validation criterion.

If the object is highly asymmetric and differs among the four views, then the
system should have more confidence only on the viewset aligned with respect to
the training data. Following this idea we generated the required four viewsets
for each data set in Table 1 and we fed them to the system, selecting, for each
classifier, the prediction with the highest confidence on the four “rotated” inputs.
The recognition accuracies are reported in Table 3.

Table 3. Recognition (macro) accuracies of the three proposed approaches (in per-

centage) discarding information on the right viewset orientation. The better results on

test data are reported in bold.

Technique Training Data Validation Data Test K Data Test KU Data

Single 100 100 99.67 90.07

Multi 100 99.33 99.67 91.87

Constrained 100 99.33 99.83 93.53

The results for the single function case are obviously the same of Table 2, since
we are not differently modeling the four views. The other techniques achieve the
same results on test objects with or without the information on viewset position
but when unknown objects are introduced, performances are slightly reduced.
This indicates that a small portion of unknown objects, under some viewset
orientations are wrongly recognized as known ones. The constraint based learner
keeps showing better accuracy than the other approaches on test data and, in
particular, it is still the most accurate recognizer when unknown objects are
introduced.

Another test scenario involves the introduction of noise into the acquired
images. In a real scenario this could be due to low quality or damaged cameras
or to a noisy transmission channel from cameras to the recognizing software.
We artificially introduced pseudo–random noisy values drawn from a normal
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σn = 0 σn = 0.005 σn = 0.01 σn = 0.05

σn = 0.1 σn = 0.25 σn = 0.5

(a) (b)

Fig. 3. (a) An object from COIL-100 with increasing noise ratios – (b) Recognition

(macro) accuracy on test data KU in presence of noise

distribution, with zero mean and incremental values of the standard deviation
σn, to each pixel of the images (Fig. 3(a)).

The recognition accuracies are reported in Fig. 3(b). As expected, while the
noise standard deviation increases, the performances of the three techniques
degrades gracefully. The constraint based classifier keep showing more robustness
to noisy images.

Finally, we investigate how the recognition performances of the functions that
model each view are changed after applying the constraints to the four function
classifier. We “turned off” three of the four cameras and we tried to recognize
the object by a single image. In Table 4 the resulting accuracies are reported.

Table 4. Recognition (macro) accuracies based on only one of the four functions that

compose the multi function system, with (+C ) and without constraints. The better

results on test data between each pair of functions are reported in bold.

Data fj,1 fj,1 + C fj,2 fj,2 + C fj,3 fj,3 + C fj,4 fj,4 + C

Training 100 100 100 100 100 100 100 100

Validation 85.33 91.33 74.67 75.33 95.33 95.33 62.67 71.33

Test K 94.5 97.83 85.5 92.5 98.83 99 83.5 89.17
Test KU 85.87 87.07 87.07 86.87 86.87 90.2 87.07 90.2

Interestingly, the role of the constraints appears determinant for the incre-
ments of accuracy of the single functions. The improvement of the functions
that model each view from the constrained classifier with respect to the ones
from the unconstrained system is evident. These results show that the interac-
tion among functions due to the constraints can enhance the cumulative decision
of the classifier but also the single power of each fj,i. Moreover, the lower per-
formances of the pair of functions fj,2 and fj,4 with respect to fj,1 and fj,3
indicates how the frontal and backward views, associated to the former pair, are
more discriminative that the side views for the object set of COIL-100.
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5 Conclusions and Future Work

In this paper a multi–view approach to object recognition has been presented.
The proposed kernel based method has been proved to increase the accuracy of
the classifier by exploiting a set of constraints formulated from prior knowledge
on the viewpoints. Moreover, unlabeled data has been used to require their fulfill-
ment in a semi–supervised framework. The experiments on the COIL database
have shown robustness to noise, to orientation changes and to missing input
views. Finally, the proposed approach is general, and it can be applied when a
coherent decision on different representations of the same input is required.
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Abstract. Inspired by biological findings, we present a system that is

able to robustly identify a large number of pre-trained objects in real-

time. In contrast to related work, we do not restrict the objects’ pose

to characteristic views but rotate them freely in hand in front of a clut-

tered background. We describe the essential system’s ingredients, like

prototype-based figure-ground segmentation, extraction of brain-like an-

alytic features, and a simple classifier on top. Finally we analyze the

performance of the system using databases of varying difficulty.

1 Introduction

The recognition of objects under real-world conditions is a difficult problem.
Because of this, most approaches limit the complexity by using only few objects,
restricting the pose to canonical views, or by providing controlled background
conditions. In contrast to this, we freely rotated the objects in hand in front of a
cluttered background. For this unconstrained setting, we describe a system that
can robustly identify a large number of objects in real-time.

In general, the recognition task and the given setting define the generalization
capabilities the system requires. These have to be achieved by the interplay of
the system components, but most strongly by the chosen type of object rep-
resentation. On the one hand, the representation must be specific, i.e contain
enough details to distinguish the objects. On the other hand, it must be general
to yield invariance to the expected variations.

A main distinction with regard to representations can be made between holis-
tic and parts-based approaches. Both types differ in the way they handle spatial
information. Holistic approaches look at the whole image and represent global
patterns in fixed relation to the image frame. All features are bound to a cer-
tain image location. Such representations are very specific and break down if the
constellation of features changes strongly as it is the case for occlusion and 3D
rotation. A simple holistic method might use the images directly as templates,
or learn simple global features [1]. A more advanced processing is described in
[2]. Here a hierarchical processing related to the ventral visual pathway is used,
where stages of local spatial pooling soften the rigid coding of patterns. We will
use this approach to provide a baseline for our results.
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In contrast to holistic processing, parts-based methods have in common that
they detect the presence of features or parts independent of their position in the
image. The relative position between the parts of an object can be handled dif-
ferently. Some approaches store the constellation of parts on a reduced resolution
[3] or by explicitly modeling there position by means of a Gaussian distribution.
If multiple objects are in an image, this information is necessary to bind features
to the corresponding object models. The handling of spatial information is less
specific than for holistic coding but still leads to problems when the constellation
undergoes strong changes as it is the case for 3D rotation. Additionally, these
approaches often extract features at so-called keypoints only. Keypoints are de-
termined by saliency detectors that favor parts whose position is not ambiguous
(like vertices or highly textured regions, but not parallel lines or shadings). This
is a limitation since meaningful information might be neglected.

Other parts-based approaches, like the one we use here, leave out spatial infor-
mation by determining only the maximum response of an alphabet of features to
an image [4,5]. The use of such an alphabet is motivated by biological findings.
The experiments in [6] revealed that columns in inferotemporal cortex repre-
sent a large set of complex features that can be recognized invariant to position
and other transformations. Combinations of activated columns then code for the
presence of an object [7]. Keeping only the maximum activation per feature can
be interpreted by means of neural latency coding where the highest activations
provoke the fastest response and non-optimal local responses are delayed and
usually do not contribute to further feed-forward processing.

By leaving out spatial information, these approaches implicitly assume that
only a single object is in view so that no binding is necessary. To balance this
more general type of representation the parts themselves have to be more spe-
cific and meaningful. This can be achieved in different ways. The work in [5]
uses a similar hierarchical processing like the holistic framework in [2]. But on
the highest feature layer a maximum step is performed using an alphabet with
millions of local features that were randomly selected. Finally a support vector
machine (SVM) is trained to separate the classes in this high-dimensional space.
Here the final SVM learns which parts of the large set are meaningful. In contrast
to this, we use a much smaller alphabet of so-called analytic features, which are
optimized using the supervised selection method described in [4], which will be
explained later. Because of this smaller subset our system runs in real-time.

Besides feature selection and handling of spatial information, also the coding
of the parts is important. For our analytic approach we describe the parts by
means of SIFT descriptors [3]. A SIFT descriptor is made up of a grid of lo-
cal gradient histograms. Thus it shows similarity to the response properties of
neurons in primary visual cortex. Gray-scale gradients are a very simple form
of edge detectors found in the so-called simple cells, while building of local his-
tograms is comparable to spatial pooling which is attributed to so-called complex
cells. Simple cells of a higher visual area respond to activation patterns of these
complex cells. Such patterns can be interpreted as a grid.
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Fig. 1. Basic system architecture. Using a depth criterion a region of interest is cropped

from the input image. After computing an improved mask, the response to an alphabet

of parts is calculated together with a histogram in RGB color-space. The resulting

activations are presented to the final classifier.

Previous experiments in [4] revealed that SIFT descriptors outperform the use
of gray-scale patches, which are too specific, and also patches from the output
of the hierarchy in [2], which are too general. Please note, that instead of using
the whole framework usually associated with SIFT, we use the simple maximum
step as outlined before. Additionally, we omit the use of keypoint detectors to
avoid restrictions on the parts that can be learned.

With regard to the recognition task and the system architecture, the work of
[8] is quite similar to ours. But they use a rather large alphabet of features which
is trained in an unsupervised fashion and they represent spatial relations. This
more complex and slower processing is not reflected in a gain in performance as
we report a similar performance for an even higher number of objects.

We describe the building blocks of our system in Sect. 2 with a special focus
on the learning and use of the analytic features. Later we investigate and discuss
its performance in Sect. 3 and present our conclusions in Sect. 4.

2 System

In this section we describe the essential building blocks of the system, whose
overall architecture is shown in Fig. 1.

Attention. When performing recognition tasks in unconstrained environments
(presence of background clutter and variation in object position), the system
has to decide which part of the input image should be processed. Here we use
the concept of peri-personal space [9] to generate such a hypothesis. This concept
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defines an image region in close distance range to the camera as being relevant. In
each input image a square region of interest (ROI) is defined around the current
hypothesis, whose size depends on the estimated distance. This ROI is scaled to
a fixed output resolution of 144x144 pixels. In this way, we normalize object size
variation caused by different viewing distances. We obtain the necessary depth
information from stereo disparity and employ a pan-tilt unit to actively track
the hypothesis until it violates the peri-personal constraints.

Segmentation. The size-normalized region contains the object, but also a sub-
stantial amount of background clutter. Since we do not represent spatial infor-
mation, features detected on the background would be wrongly associated to
the object. As this would harden the task of the classifier, we need to segment
the object from its background. Following the peri-personal concept, a first fore-
ground hypothesis can be derived by binarizing the depth image. Since the depth
information based on stereo disparity usually wears out at the object’s border
and cannot be estimated for non-textured regions, we apply the segmentation
method proposed by [10]. As pre-processing, this method removes all skin-colored
pixels from the foreground hypothesis, because otherwise the hand holding the
object would have a systematic influence on the result. Second, based on color
and position information a prototype-based model for foreground (i.e. every-
thing activated in the initial hypothesis) is learned and a model for background
correspondingly. Finally, these models are used to classify each pixel as being
figure or ground, where the learned prototype-specific distance metrics leads to
a good generalization performance at the border of an object. In the following,
features are extracted only at locations marked as foreground.

Feature extraction. The feature extraction is the most important part of the
system. In this work we extract features for texture and color. Texture is repre-
sented by means of analytic features as proposed in [4] which are a preselected
alphabet of SIFT-descriptors. These descriptors are widely used for coding local
texture with invariance to lighting and planar rotation [3]. For a given input
image i the response of a feature wm is determined by rmi = maxn (wm · pin),
where the pin are SIFT-descriptors from all image locations n, and · denotes
the dot product. Keeping only the maximum response of each analytic feature
over the image, we measure the pure presence of a certain object part and do
not represent their spatial constellation. This yields invariance to translation
of parts together with a strong reduction of dimensionality. In contrast to this,
the standard SIFT framework calculates descriptors at interesting keypoints and
their constellation is then matched to those of the training images. In Sect. 3 we
show that this has shortcomings for several reasons.

The alphabet of analytic features is optimized for the scenario at hand using
the selection method proposed in [4]. Starting from a large set of candidate SIFT-
descriptors, this method first evaluates how well each element m can separate
views from a single class. This is done by assigning scores smi for each combina-
tion of feature and image as shown in Fig. 2. After that, out of the candidates
a subset M is selected that can separate most of the views among the training
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images. This subset has a predefined cardinality (usually several hundreds) and
maximizes

∑
i f
(∑

m∈M smi

)
with f(z) = 1

1+e−kz and k = 3. f(z) saturates
quickly, thus forcing the selected features to distribute their scores smi over all
images. Because trying all possible subsets M is intractable, a greedy iterative
selection is used instead. The described method is dynamic in the way that it
selects more features for objects with strong variation in appearance.

To represent color we calculate a histogram in RGB color-space (6x6x6 = 216
bins) and normalize it by dividing by the highest entry. Histograms combine
robustness against view and scale changes with computational efficiency [11].
Before the calculation, we apply the color constancy method proposed by [12].

The activation of the RGB histogram bins are combined with the responses
of the analytic features to form the final feature vector.

Classification. To associate an object label to the current input image we use sim-
ple classifiers as a nearest neighbor classifier (NNC) or a single layer perceptron
(SLP). The NNC stores the feature vectors of the training images as representa-
tives anddetermines the object label for a test imagebasedonclosestEuclideandis-
tance. The SLP has a neuron for each object. Using the training data, the weights
of one neuron are adapted to produce a strong response for the corresponding ob-
ject and a low response for views of other objects. The object label of a test image
is determined by the highest activated neuron. For the real-time system we use the
SLP because it consumes drastically less memory and CPU time, and also has a
slightly higher performance for the combined use of analytic and color features.

As outlined before, the usual platform is a stereo camera head mounted on
a pan-tilt unit. When using our humanoid robot ASIMO instead, its degrees of
freedom are used to track but also follow the current peri-personal hypothesis
[13]. The proposed system runs in real-time with a frame-rate of 6Hz. The lim-
iting factor is the calculation of the analytic feature response for each possible
location in the size-normalized region of interest.

3 Results

In this section we first present results for an object database which has been
acquired to train and optimize the final real-time recognition system. Using a
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Fig. 3. HRI126 database. Database contains 126 objects with 1200 views each. Objects

were rotated in hand in front of a cluttered background.

simpler database, we later distinguish the analytic feature approach from the
standard SIFT framework.

The HRI126 database which corresponds to the scenario for the real-time
system is shown in Fig. 3. It contains 126 objects with 1200 views each. The
objects were freely rotated in hand in front of a cluttered background. Because
of this unconstrained setting the database is very difficult compared to ones used
in related work. In the following we evaluate the recognition performance and
scalability of the proposed approach and test the necessity of the segmentation
step. All training was done on the first 1000 views per object while the offline
performance was evaluated on the remaining 200 views.

In the first training step we selected 441 analytic features (see Fig. 4a) us-
ing the algorithm proposed in [4]. Combined with the 216 RGB histogram bins,
this yields a 657 dimensional feature vector for each view. Although in the fi-
nal system an SLP is used, Fig. 4b gives the result of some NNC experiments
using different representations and varying the number of representatives. Here
especially the result of two holistic approaches GRAY and C2 is important to
judge the difficulty of the database. GRAY simply uses the holistic gray-scale
images as representatives while the so-called C2-activation is the output of the
biologically inspired, edge-based, feed-forward hierarchy proposed in [2]. Both
holistic methods show a very weak performance. With many training views C2
outperforms GRAY but still does not generalize as well as the analytic approach
using few training views. One reason for this is that the coding of spatial infor-
mation is too rigid. Additionally, the local features underlying C2 are too coarse
to separate certain objects in the database, e.g. individual mobile phones. In
contrast to this ANALYTIC uses very specific features while neglecting spatial
information completely. ANALYTIC also outperforms the color histograms while
the concatenation of both complementary feature types yields the best result.
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E.g., different versions of keypads and wheels are necessary to distinguish individual

mobile phones and cars respectively. The set contains features that would not have

passed usual keypoint criteria (e.g. several versions of parallel lines). For visualization

the features are arranged using a self organizing map. b) Results of NNC experiments.

Error rate over number of training views. For GRAY not all views could be used because

of the required memory.

Similar conclusions can be drawn from the SLP experiments shown in Fig.
5a. Here the error rates of recognition are given depending on the number of
used objects. This should help to predict the scalability of the approach towards
larger number of objects. The value for 126 objects is directly the performance
of the SLP on the test images. The performance for less objects was determined
by choosing a random subset of objects and removing their test-views and SLP
neurons from the experiment. The SLP was not retrained on the remaining
objects. Interestingly, this yields better results because the SLP profits from a
high number of negative training examples. The curves show the average of 100
runs.

In general, the order from the NNC experiment is preserved. Only for AN-
ALYTIC+COLOR the SLP is better than the NNC, because it finds a better
weighting between both feature types than the simple concatenation used for
the NNC experiment. The selective use of ANALYTIC and especially COLOR
prevents the SLP from finding a good separation because of the low input di-
mensionality. In contrast to this we observed some over-fitting for C2.

For a given error rate much more objects can be distinguished by means
of analytic features than by C2. The combination ANALYTIC+COLOR again
provides the best result with an error rate of only 10.35% for 126 objects. Taken
the difficulty of the database into account this is a very high performance and
a big step towards invariant 3D object recognition. In the real-time system we
accumulate the classification results over 10 successive frames and only output
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the most voted object label. This removes outliers and thus leads to further
improvement and stability.

After having investigated the contribution of the feature extraction, Fig. 5b
sheds light on the importance of the segmentation step. The horizontal line
is the reference performance for 126 objects when using the prototype-based
segmentation proposed in [10], while the other curve gives the results when
simply placing differently sized, square masks in the center of the region. Even
in the best case such a simple mask has a 4% higher error rate. Using no mask
gives a 15% higher error rate. For too small masks there is an even higher loss
in performance. These results show that a good segmentation helps our position
invariant object representation to counteract the binding problem.

In Sect. 2 we shortly compared the basics of the analytic feature approach
with the standard SIFT framework. The effect of the differences become clear in
the results in Fig. 6. For this experiment we used the simple COIL100 database
[14]. Because of the non-cluttered background we did not use a mask and we
also abandoned the color features to get a fair comparison. Fig. 6b shows the
result of different nearest neighbor classifications where we varied the number
of stored representatives (out of 72 available ones per object) for different ap-
proaches. For the analytic approach we used the same set of 441 features that
was selected for the HRI126 database. This was done because of the low number
of available training views in the COIL100 database and the strong similarity
in the types of objects in both databases. For the SIFT framework we applied
the visual pattern recognition system (ViPR) by Evolution Robotics (see [15],
www.evolution.com) which is claimed to be the “gold standard” implementa-
tion of the SIFT approach. We optimized the parameters of this software for
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9 representatives the analytic approach has an error rate of 1% while the standard SIFT
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probability of being misclassified using the SIFT approach with 9 representatives.

best performance. As a baseline we again provide results for the use of holistic
gray-scale images and for C2.

For few training views, the analytic approach generalizes well while the SIFT
framework shows a very weak performance. A reason for this is the different
handling of spatial information. SIFT tries to re-detect the rigid constellation
of parts that was present in the training images, which usually changes strongly
under rotation in depth. Additionally, there are several objects for which the
SIFT framework completely fails, as shown by the bad convergence towards
larger numbers of training views. A reason for this is the dependency on the
(re-)detection of interesting keypoints. This breaks down for objects with little
texture, which is underlined by the order of objects in Fig. 6a. Both holistic
approaches show good convergence and an intermediate capability to generalize
from few training views, as they also use a rigid spatial representation. This
rigidness is a little softened by the hierarchical processing underlying C2.

To also compare our approach to that in [5], we trained a set of 300 ana-
lytic features for an animal vs. non-animal separation task. On the test data we
reached an error rate of 20% compared to 18% reported in [5]. This small differ-
ence makes it questionable if the hierarchical processing and the use of millions
of local features do provide a gain over our simpler and much faster method.

4 Conclusion

On the basis of a biologically motivated, parts-based representation, we de-
veloped a real-time system capable of robustly recognizing a large number of
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arbitrary objects under 3D rotation. We evaluated the scalability of the ap-
proach and showed the necessity of a good object segmentation to deal with
background clutter. The shown performance marks a major step towards invari-
ant object recognition, especially in comparison to existing work where mostly
more complex processing is used to solve easier tasks.

Using the presented pre-trained architecture as a starting point, we target at a
flexible, life-long learning system. Therefore we investigate in hierarchical classi-
fiers to deal with the increasing complexity of the scenario and in an incremental
build-up of the visual alphabet.
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Abstract. The problem of estimating motion fields from image se-

quences is essential for robot vision and so on. This paper discusses a

method for estimating an entire continuous motion-vector field from a

given set of image-sequence data. One promising method to realize ac-

curate and efficient estimations is to fuse different estimation methods.

We propose a neural network-based method to estimate motion-vector

fields. The proposed method fuses two conventional methods, the corre-

lation method and the differential method by model inclusive learning,

which enables approximation results to possess inherent property of vec-

tor fields. It is shown through experiments that the proposed method

makes it possible to estimate motion fields more accurately.

Keywords: estimation of motion field, neural network, model inclusive

learning, fusion, optical flow, correlation method, differential method.

1 Introduction

Estimating motion fields from video images is an essential problem for robot
vision and so on. In particular, it is important to develop a method for estimating
an entire continuous motion-vector field from a given set of image-sequence data.
This problem is a nonlinear function approximation problem.

In recent years, there have been increasing research interests in artificial neural
networks and many efforts have been made on applications of neural networks
to various fields. The most significant feature of artificial neural networks is the
extreme flexibility due to the learning ability and their capability of nonlinear
function approximation.

In this paper we propose a neural-network based method for estimating an
entire continuous motion-vector field from a given set of image-sequence data.
The features of the proposed methods are the model inclusive learning of neural
networks and the fusion of two different methods of estimating motion fields.
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The model inclusive learning could make approximation results possess in-
herent property of vector fields and reasonable approximation accuracy. The
inherent property of vector fields, “any vector field is composed of the sum of
two vector fields: an irrotational vector field and a solenoidal vector field” is
embedded into the approximation results.

For the problem of estimating motion fields from video images, several meth-
ods have already been proposed. Typical representatives of them are the cor-
relation method and the differential method [1]. In this paper we propose a
method to fuse these conventional methods by the model inclusive learning of
neural networks. The fusion of the two methods could compensate their defects
each other and bring better approximation results. In order to check the perfor-
mance of the proposed method experiments have been done. It is shown that the
proposed method makes it possible to estimate vector fields more accurately.

2 Model Inclusive Learning for Estimating Vector Fields

We consider a two dimensional motion-vector field and discuss a method for
approximating its entire field from a set of sample data. Let

F (x) :=
[
Fx(x)
Fy(x)

]
be a motion-vector field considered in this paper. Here x = [x, y]T denotes a
position in the two dimensional plane R2. The problem is to estimate the vector
field F (x) ∈ R2 from a given set of sample data {F (xp)} where xp denotes a
sample point.

A usual method to solve this problem by neural networks is as follows. Con-
sidering that F (x) is a nonlinear mapping with two inputs and two outputs, we
prepare a two-input and two-output neural network. The network is trained such
that, for a given set of example data {F (xp)}, xp is fed to the neural network
as its input and its output comes close to the data F (xp). Figure 1 shows a
block diagram of this learning method. The backpropagation is usually utilized
in order to adjust the weights of the neural network so as to minimize the square
error: ∑

p

{(O1 − Fx(xp))2 + (O2 − Fy(xp))2}

where O1 and O2 are the outputs of the neural network.
Note that F (x) is not merely a nonlinear function but a vector field. If a

priori knowledge on inherent properties of vector fields can be embedded into the
learning problem, the approximation result will possess the inherent properties,
and approximation accuracy and learning efficiency will be improved. Mussa-
Ivaldi proposed a method for approximating a vector field [2]. They define basis
fields by using derivatives of the Green functions and reconstruct a vector field
by superposition of the basis fields.

We have already proposed a learning method of neural networks for recon-
structing vector fields which we call model inclusive learning [3]. In the method
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Fig. 1. Conventional learning method of vector fields

we formulate the learning problem in such a way that the knowledge on the
inherent property of vector fields is included in the learning loop of neural net-
works. It is known that any vector field F (x) ∈ R2 is composed of the sum of
two vector fields as follows.

F (x) = C(x) + S(x), x = [x, y]T (1)

where C(x) and S(x) are an irrotational vector field and a solenoidal vector
field, respectively, and satisfy the following relations.

curl(C) = ∇×C(x) = 0, div(S) = ∇ · S(x) = 0 (2)

Here we introduce scalar functions U1(x) and U2(x), and express the vector
fields C(x) and S(x) as follows.

C(x) = α∇U1(x), S(x) =
(

0 β
−β 0

)
∇U2(x) (3)

where α and β are scalars. Since the above equations (3) satisfy eqs.(2), the
vector field F (x) can be expressed by using the scalar functions U1(x) and
U1(x) as follows.

F (x) = C(x) + S(x) =

⎡⎢⎣α
∂U1(x)
∂x

+ β
∂U2(x)
∂y

α
∂U1(x)
∂y

− β
∂U2(x)
∂x

⎤⎥⎦ =:
[
Fx(x)
Fy(x)

]
(4)

Considering the relation (4), we now give a new learning formulation for recon-
structing vector fields by neural networks. We formulate the learning problem
in such a way that a neural network reconstructs the vector field F (x) with
the relation (4) being satisfied. For this purpose we train the neural network
such that the vector field F (x) itself is not realized on the neural network as is
in the conventional method (Fig. 1), but the scalar functions U1(x) and U2(x)
satisfying the relation (4) are realized on the network. Figure 2 shows a block
diagram of the proposed model-inclusive learning method.
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Fig. 2. Model inclusive learning method of vector fields

We prepare a neural network with two inputs denoted by I = [I1, I2]T and
two outputs denoted by O = [O1, O2]T . For a set of sample data {F (xp)} =
{[Fx(xp), Fy(xp)]T }, the network is given the position data xp = [xp, yp]T as
its input data (I = xp) and is trained such that the outputs O1 and O2 come
close to U1(xp) and U2(xp) satisfying the relation (4), respectively. This can
be realized in the following manner. We input the position data xp = [xp, yp]T

to the neural network and calculate the derivatives of the output of the neural
network with respect to the input,

∂Ok

∂I

∣∣∣∣
I=xp

=

[
∂Ok

∂I1

∣∣∣∣
I=xp

,
∂Ok

∂I2

∣∣∣∣
I=xp

]T

, (k = 1, 2).

According to eq.(4), their linear combination(
α
∂O1

∂I1

∣∣∣∣
I=xp

+ β
∂O2

∂I2

∣∣∣∣
I=xp

, α
∂O1

∂I2

∣∣∣∣
I=xp

− β
∂O2

∂I1

∣∣∣∣
I=xp

)T

(5)

is calculated and the result is compared with the given vector data F (xp) =
[Fx(xp), Fy(xp)]T . The neural network is trained so as to minimize the error
between them. Define the performance index by

J =
1
2

∑
p

⎧⎨⎩
{(

α
∂O1

∂I1

∣∣∣∣
I=xp

+ β
∂O2

∂I2

∣∣∣∣
I=xp

)
− Fx(xp)

}2

+

{(
α
∂O1

∂I2

∣∣∣∣
I=xp

− β
∂O2

∂I1

∣∣∣∣
I=xp

)
− Fy(xp)

}2
⎫⎬⎭ . (6)
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where
∑

p stands for the summation with respect to the set of data. By mini-
mizing the performance index thus introduced, the scalar functions U1(x) and
U2(x) satisfying eq.(4) are realized as input-output relation of the neural net-
work. As the result an approximation of the vector field F (x) is obtained. Thus
the problem is reduced to finding the parameters of the neural network which
minimize J . Note that, since the parameters α and β in eq.(4) are not known
a prior, we choose not only weights of connections wij but also α and β as the
learning parameters. In order to search the values of the learning parameters
which minimize J , gradient based methods can be used, in which several useful
algorithms are available: the steepest decent algorithm, the conjugate gradient
algorithm, the quasi-Newton algorithm and so on. In gradient based algorithms,
it becomes a key how to compute the gradients of performance index, ∂J/∂wij ,
∂J/∂α, and ∂J/∂β, efficiently and accurately. Efficient algorithms for computing
them can be derived in a systematic manner by introducing the adjoint model
of neural networks [3,4].

3 Estimation Method of Motion-Vector Fields

In this section we propose an estimation method of motion-vector fields from
video images. Typical methods proposed so far are the correlation method and
the differential method [1], which possess their own good and week points. It
is desired to develop an estimation method which makes the most use of their
good points and also compensates their weaknesses. We propose a new estimation
method which fuses these two methods by the model inclusive learning of neural
networks.

3.1 Estimation of Motion Fields Based on Correlation Method

In the correlation method, firstly, motion vectors at some feature positions in
scenes of video images are calculated by using the corresponding position data
obtained from the subsequent image frames. Secondly, the entire vector field over
the whole image is estimated by using the calculated motion vectors as sample
data. Suppose that a feature of a scene of video images moves from a position
(xp, yp) to a position (x′p, y′p), the motion vector (u, v) at the feature position is
calculated as the displacement vector:

(u, v) = (x′p − xp, y
′
p − yp). (7)

Let xpc = [xpc , ypc ]T be a feature position and (upc , vpc) be the corresponding
motion vector thus obtained. The correlation method estimates the entire vector
field over the image from a set of the obtained motion vector data {(upc , vpc)} at
a given set of feature positions {xpc}. In order to realize the method by neural
networks, we utilize the method of vector field approximation by the model
inclusive learning discussed in the previous section. In the proposed correlation
method, the performance index (6) is replaced by
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Jc =
1
2

∑
pc

⎧⎨⎩
{(

α
∂O1

∂I1

∣∣∣∣
I=xpc

+ β
∂O2

∂I2

∣∣∣∣
I=xpc

)
− upc

}2

+

{(
α
∂O1

∂I2

∣∣∣∣
I=xpc

− β
∂O2

∂I1

∣∣∣∣
I=xpc

)
− vpc

}2
⎫⎬⎭ . (8)

The problem is reduced to finding the parameters of the neural network wij , and
α and β which minimize Jc.

3.2 Estimation of Motion Fields Based on Differential Method

In this subsection we propose an estimation method of motion-vector fields based
on the differential method. Let B(x, y, t) be the brightness of a position (x, y) in
an image at time t. Suppose that the brightness at each position does not vary
in a short time, the following equation holds.

Bxu+Byv +Bt = 0 (9)

where Bx = ∂B/∂x, By = ∂B/∂y, Bt = ∂B/∂t, u = dx/dt and v = dy/dt. This
equation is called the optical flow constraint. The method of estimating motion
vectors (u, v) over the entire vector field so as to satisfy the condition (9) is
called the differential method. We propose a new differential method by using the
method of vector field approximation by the model inclusive learning of neural
networks discussed in the previous section. Let Bx(xpd

), By(xpd
) and Bt(xpd

)
be the derivatives of the brightness B(x, y, t) at a point xpd

= [xpd
, ypd

]T and
time t, respectively. Given a set of data {Bx(xpd

), By(xpd
), Bt(xpd

)}, we train a
neural network such that approximations (5) of motion vectors obtained by the
the model inclusive learning of neural networks satisfy the condition (9):

Bx(xpd
)

(
α
∂O1

∂I1

∣∣∣∣
I=xpd

+ β
∂O2

∂I2

∣∣∣∣
I=xpd

)
+

By(xpd
)

(
α
∂O1

∂I2

∣∣∣∣
I=xpd

− β
∂O2

∂I1

∣∣∣∣
I=xpd

)
+Bt(xpd

) = 0. (10)

Define the performance index by

Jd =
1
2

∑
pd

{
Bx(xpd

)

(
α
∂O1

∂I1

∣∣∣∣
I=xpd

+ β
∂O2

∂I2

∣∣∣∣
I=xpd

)

+ By(xpd
)

(
α
∂O1

∂I2

∣∣∣∣
I=xpd

− β
∂O2

∂I1

∣∣∣∣
I=xpd

)
+Bt(xpd

)

}2

(11)

The problem is now reduced to finding the parameters of the neural network
wij , and α and β which minimize Jd.
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3.3 Fusion of Correlation and Differential Methods

As state above the correlation method and the differential method possess their
own good points and week points. The correlation method is very simple, but
the accuracy of the estimated motion vector (upc , vpc) sometimes becomes a
problem because of the accuracy of displacement vector estimation. Furthermore
the number of the feature positions specified in a real image is usually very small,
that is, only sparse motion vector data can be obtained. On the other hand, the
optical flow constraint (9) holds at every position over entire area of images
and the derivative data Bx(xpd

), By(xpd
) and Bt(xpd

) are obtained over entire
area of images. However in the area where the derivatives are small or almost
zero, the accuracy of the those data sometimes deteriorate significantly or it is
impossible to obtain those data. In order to make the most use of good points and
compensates weaknesses of the correlation and differential methods, we propose
a method to fuse those two methods.

Define a new performance index by the weighted sum of the performance
indexes Jc and Jd:

Jcd = aJc + bJd (12)

where a ≥ 0 and b ≥ 0 are weighting coefficients. The problem is now to reduce
to finding the parameters of the neural network wij , and α and β which minimize
Jcd, which could bring better estimation results because of the fusion of the two
methods. Note that in order to search the values of the learning parameters which
minimize Jcd, gradient based methods can also be used and efficient algorithms
for computing gradients of Jcd can be derived by introducing the adjoint model
of neural networks. Details of the derivation are omitted here.

4 Experiments

In this section we show some results of the experiments in order to demonstrate
the performance of the proposed method. In the following examples a four-layer
feedforward neural network with 5 hidden units is used. We utilize the Davidon-
Fletcher-Powell algorithm [5] as a gradient based method.

4.1 Example 1

Firstly, in order to evaluate accuracy of the proposed method, we use an ar-
tificially generated motion field obtained by moving an image. Figure 3 shows
the image which is used in order to generate a motion field artificially. The size
of the image is 256 × 256. We turn the image clockwise by 0.5 degree round
the center position (63,63) and then translate it by (+1,+1). The motion field
thus obtained is shown in Fig.4 which is the target field we will estimate. In the
images before and after this movement, five corresponding points are selected
as feature positions and the vectors at those positions as shown in Fig. 5 are
utilized in the correlation method. In the differential method, we use brightness
data at 28 × 28 lattice points which are shown in Fig. 4 as starting points of the
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Fig. 3. Image used in order to generate a

motion field artificially
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Fig. 4. Artificially generated motion field

Table 1. Accuracy of Estimated Motion Field

errors in direction (rad) errors in magnitude

proposed fusion method 1.38787 ×10−1 2.30084 ×10−1

correlation method 1.50335 ×10−1 2.76285 ×10−1

differential method 3.52294 ×10−1 1.00388

motion vectors. Under the above conditions, we perform experiments of estimat-
ing motion field by using three methods, that is, by using only the correlation
method, only the differential method and the proposed fusion method. Figure 6
shows the obtained motion field by using the proposed fusion method. Note that
the target is the artificially generated motion field and we can evaluate accuracy
quantitatively by calculating the average errors between the target vectors and
estimated ones. Table 1 shows the results thus calculated. It is observed that the
result obtained by the proposed fusion method is more accurate than those by
the other individual methods.

4.2 Example 2

In the second experiment we estimate real motion fields from image sequence
data by using the proposed method. Figure 7 shows subsequent two images taken
by a digital video camera which is set in a car moving straight ahead. The time
difference between the left and right images is 1/30 second. In the images ten
corresponding points are selected as feature positions and the vectors at those
positions shown in Fig. 8 are utilized in the correlation method. In the differential
method, we use brightness data at 28 × 28 lattice points. Figures 9, 10 and 11



Estimation Method of Motion Fields from Images 681

Y
-
a
x
i
s

X-axis

"Vectors"
"D1_points"

Fig. 5. Vectors at feature positions utilized

in the correlation method
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Fig. 6. Estimated motion field by the pro-

posed fusion method

Fig. 7. Sequence of images taken by a digital video camera

show the result obtained by only the correlation method, only the differential
method and the proposed fusion method, respectively. The feature of the target
motion vector field is as follows. The images in Fig. 7 are taken with a video
camera which is set in a car moving straight ahead and the preceding car in the
images is turning to the left. From this, the generated motion vector field should
be:

– in the area of the stationary scene the motion vectors are radiating in all
directions from a point and the length of each vector is in inverse proportion
to the distance between its position and the camera position,
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Fig. 8. Vectors at feature positions uti-

lized in the correlation method
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Fig. 9. Estimated motion field by only the

correlation method
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Fig. 10. Estimated motion field by only

the differential method
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Fig. 11. Estimated motion field by the

proposed fusion method

– in the area of the the preceding car, the motion vectors gain further in left
directional velocity, because the car is turning to the left.

It is observed from Figs. 9, 10 and 11 that the proposed fusion method catches
the feature most accurately.

5 Conclusion

In this paper we have proposed a neural-network based method for estimating
an entire continuous motion-vector field from a given set of image-sequence data.
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The features of the proposed method are the model inclusive learning and the
fusion of two conventional methods of estimating motion fields, the correlation
method and the differential method. The model inclusive learning enables ap-
proximation results to possess inherent property of vector fields with reasonable
approximation accuracy. The fusion can compensate their defects each other
and bring better approximation results. It was shown through experiments that
the proposed fusion method makes it possible to estimate motion fields more
accurately.
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Abstract. Reduced-reference paradigms are suitable for supporting

real-time modeling of perceived quality, since they make use of salient

features both from the target image and its original, undistorted version,

without requiring the full original information. In this paper a reduced-

reference system is proposed, based on a feature-based description of

images which encodes relevant information on the changes in luminance

distribution brought about by distortions. Such a numerical description

feeds a double-layer hybrid neural system: first, the kind of distortion

affecting the image is identified by a classifier relying on Support Vec-

tor Machines (SVMs); in a second step, the actual quality level of the

distorted image is assessed by a dedicated predictor based on Circular

Back Propagation (CBP) neural networks, specifically trained to assess

image quality for a given artifact. The general validity of the approach is

supported by experimental validations based on subjective quality data.

Keywords: Image quality assessment, neural networks, svm.

1 Introduction

Modern electronic imaging applications are required to guarantee the high qual-
ity of the displayed signal, and therefore should cope with the various artifacts,
due to the transmission and/or the displaying processes, that can deteriorate
original images. A post-processing system, which can both estimate the perceived
quality of displayed images and enhance them when needed, can be beneficial
for consumer electronics. Hence, understanding the mechanisms underlying the
association of a particular quality level to a visual stimulus not only is of great
interest from a scientific perspective, but is also crucial from an applicative view-
point. An accurate measurement of perceived quality can be attained by a panel
of human assessors in a subjective experiment session [1]. In fact, when aiming
at building an automated real-time system that optimizes the quality of any
input signal, an objective system for quality assessment is needed [2,3], which
bypasses any human evaluation. Objective methods rely on extracting salient
features from images and correlating them to the perceived quality. While full
reference (FR) paradigms [2,3] require full knowledge of the original image to
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assess the quality of the incoming signal, reduced reference (RR) methods only
involve a limited amount of numerical features characterizing the original signal
[2,4]. Thus, the RR paradigm can provide a successful approach for supporting
real-time modeling of perceived quality. The research presented in this paper
exploits the modeling power of computational intelligence to support a reduced-
reference, objective system for image quality assessment. A double-layer system
based on connectionist paradigms is designed to map a numerical description of
the image into quality scores. To handle different distortions, first a classifica-
tion algorithm determines the type of artifact affecting the image; then a specific
regression machine (targeted to the specific type of distortion) attains a reliable
estimation of the loss in quality of the present sample with respect to its original
version. A major advantage of the use of computational intelligent methods is
that, by training the neural network to mimic perceived image quality, one by-
passes the design of an explicit model of the human visual system. Luminance
information supports image representation; by analyzing the luminance distribu-
tion, the method gathers a feature-based description of a picture. The artifacts
brought about by digital processing affect the original luminance content of the
image, and the peculiar effects often depend on the specific artifact. The ratio-
nale of the present approach is that by comparing the statistics of the original
and distorted image one can identify both the kind and the extent of distortion.
Previous works [5,6] showed that second order statistics can apply successfully
toward that end, hence this research adopts a set of features derived from the
correlogram-based description [7,8], yielding a second-order histogram for lu-
minance. The LIVE database [9] provides the performance-evaluation testbed,
including three types of distortion: White noise, Gaussian Blur and JPEG com-
pression. Empirical results confirm the validity of the connectionist paradigm
and the effectiveness of luminance statistics for predicting image quality.

2 Objective Quality Assessment: A Reduced Reference
Approach

In reduced-reference approaches to objective quality assessment, few parameters
are extracted from the original, undistorted image and are used as a reference
for predicting the quality level of the target, distorted image. Let I(n) be the
reference image, and Ī(n,r) the image resulting from the insertion of some artifact
to I(n), being r the distortion level. Let x(n) and x(n,r) denote the numerical
representations of I(n) and Ī(n,r) , respectively. Finally, let q(n) and q(n,r) be the
subjective quality ratings for I(n) and Ī(n,r) , respectively. A reduced-reference
paradigm compares the numerical descriptors, {x(n),x(n,r)}, and estimates the
discrepancy, dS(q(n), q(n,r)) , between the subjective scores associated with the
images. At runtime, the objective information related to the original image can
be worked out before transmission, so that the resulting descriptor, x(n), can be
broadcast as metadata. Vector x(n,r) is computed from the signal at the receiver
end, and the two vectors are eventually processed to obtain quality estimates.
The assessment process includes two steps. First, the distortion affecting the
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Fig. 1. Overall scheme of the proposed system for reduced-reference objective quality

assessment

incoming video signal is identified; then, a specific estimation module quantifies
the gain/loss in quality brought about by the detected distortion. The rationale
behind such an approach is that every kind of distortion modifies the image in a
different way, thus requiring a specific objective metric. So, as soon as the set A =
{a1, a2, ..., an} of artifacts of interest is established, implementing a dedicated
quality predictor for each of them can be a successful strategy. As no a-priori
knowledge can be assumed on the nature of the distortion affecting the input
signal, an artifact detector is needed to identify the distortion (ai ∈ A) applied
to the image I(n) . This module then forwards the image descriptors to the
quality predictor Ω(ai), which finally provides an estimation for the difference
in quality dS(q(n), q(n,r)) between the reference and incoming signal, distorted
by ai. Both operations are based on the descriptors x(n) and x(n,r) . Figure 1
shows the complete framework for image quality estimation.

3 Luminance Information Extraction for Quality
Evaluation

To balance effectiveness and performance, image descriptors should be small-
sized to satisfy constraints in transmission bandwidth, yet still informative to
allow both artifact identification and quality assessment. The approach presented
here retrieves such information by analyzing the image luminance distribution,
for two main reasons: first, the relevance of luminance in quality assessment
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has been widely proved [3]; secondly, incoming signals are usually encoded in
the Y CbCr colorspace, hence the luminance channel is immediately available
for computation. The analysis of luminance distribution is based on the cor-
relogram tool [7]. The correlogram belongs to the family of the second order
histograms, just like the co-occurrence matrix, which has already been proved
effective for objective image quality estimation [5,6]. Aiming at maintaining both
local and global information in the final description, the correlogram is computed
on equally sized sub-regions of the image, and a feature-based representation is
worked out for each sub-region. Global information is obtained by using a sta-
tistical approach, finally assembling local information into a single descriptive
vector.

3.1 Local Information Extraction

A correlogram Hk
b of a sub-region b (including Wb ×Hb pixels) for a predefined

distance k, is a three-dimensional matrix that describes the spatial distribution
of luminance, color or any other image property that can be represented by
quantized values. More precisely, the correlogram describes how the spatial cor-
relation of pairs of pixels changes with distance. Formally, the entry Hk

b (i, j) of
the correlogram matrix is defined as:

Hk
b (i, j) =

∣∣∣∣{ (m,n),m < Wb, n < Hbs.t.
b[m,n] = Yi; b[p, q] = Yj ; dist(b[m,n], b[p, q]) = k

}∣∣∣∣ (1)

In this research, the luminance distribution is targeted. Thus, each matrix ele-
ment Hk

b (i, j) specifies the probability of finding a pixel with luminance Yj at
a distance k from a pixel with luminance Yi. The dist() operator denotes the
measure of distance between pixels selected to calculate the correlogram. In this
study, the dist() operator embeds the L1-norm, so, in practice, only those pairs
of pixels with a distance k in horizontal and vertical directions are considered in
the computation. The proposed system preserves local information by comput-
ing the color correlogram on sub-regions of the image. To this end, images are
split into non-overlapping square regions, each holding Nb ×Nb pixels. For each
block, the set of features Φ = {f0, f1, ..., f5}, as defined in table I, is extracted
from the correlogram.

Table 1. Features extracted from the color correlogram for images description

Feature name Definition Feature name Definition

Energy f0 =
∑

i,j [H
k
b (i, j)]2 Contrast f3 =

∑
z z2P (z)

Diagonal Energy f1 =
∑

i [Hk
b (i, i)]2 Homogeneity f4 =

∑
i,j Hk

b /[1 + (i − j)]2

Entropy f2 = −∑i,j Hk
b (i, j) log2 Hk

b (i, j) Energy Ratio f5 = f0/f1

P (z) =
∑

|i−j|=z Hk
b (i, j)
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3.2 Global-Level Numerical Representation

The local information extraction phase outputs as many values for each feature
of Φ as the number of blocks. In fact, the eventual amount of data is too large to
fit a descriptor that should be sent in real time through a communication chan-
nel. Moreover, subjective scores usually express the quality of a whole image,
and not of a set of blocks. So, from a modeling perspective, the feature-based
image description should consist of a single vector, to be associated with the
single quality score. Toward this end, block-based information is combined using
statistical descriptors, namely percentiles, to represent the distribution of a fea-
ture fu over the image. Recalling the notations used in the previous paragraphs,
the following pseudo-code can be applied to both the reference and the distorted
image for constructing the global descriptors.

Algorithm 1. Numerical representation extraction
1: (Block-Level feature extraction)

– Split Ī into Nb non-overlapping square blocks, and obtain the set B = {bm; m =

1, ..., Nb}
– For each block bm ∈ B compute the associate correlogram: Hk

bm
(i, j)

– For each matrix Hk
bm

: compute the value xu,m of each feature and obtain the

sets: Xu = {xu,m; m = 1, ..., Nb} with u ∈ Φ
2: (Global level numerical representation)

– Compute a percentile-based description of Xu; let pα be the αth percentile:

ψα,u = pα(Xu)

– Assemble the objective descriptor vector, x̄u, for the feature fu on the image

Ī

x̄u = {ψα,u; α ∈ [0, 100]} (2)

Eventually, the extraction process results in a descriptor of an image, Ī, being
a global pattern, x̄u (2). This output of the extraction process is forwarded to
the double-layer assessment system for quality estimation.

4 Machine Learning Methods for Objective Quality
Assessment

The system described in section 2 consists of two steps. First, the artifact af-
fecting the image has to be identified; secondly, the numerical representation
of the image has to be mapped into a quality score by a dedicated predictor,
which is specifically trained to assess image quality for a given artifact. The first
layer is required to solve a classification problem. When aiming to detect the
artifact ai affecting the sample Ī(n) , given m artifacts of interest a1, a2, ..., am,
the system is required to relate the input vector x̄u to a discrete value, repre-
senting ai. On the other hand, the second layer aims at mapping the numerical
descriptor x̄u into a quality score, which cannot be expressed by discrete values
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to achieve acceptable accuracy. Therefore, this module can be designed to solve
a regression problem. In both cases, the use of computational intelligence meth-
ods is appealing. The machine learning world provides excellent tools able to
handle both classification and regression supervised problems. Moreover, from
a modeling point of view, such methods appear particularly suitable to model
a highly non-linear context such as perception. Hence, in this work, two well
known tools are involved to implement the proposed system: Support Vector
Machines (SVM) for the classification task and a feed forward neural network,
namely the Circular Back-Propagation (CBP) network for the regression task.

4.1 Support Vector Machines

Support vector machines are a powerful and effective tool for binary classification
problems. Given a set of np patterns Z = {(xl, yl); l = 1, .., np; yl ∈ {−1,+1}},
a SVM relies on the solution of the following Quadratic Programming problem
to find the optimal hyper-plane w separating the two classes:

minα
1
2

np∑
l,m=1

αlαmylymK(xl,xm)−
np∑
l=1

αl (3)

subject to 0 ≤ αl ≤ C ∀l and
∑np

l=1 ylαl = 0.
In (3), αi are the SVM parameters setting the class-separating surface and C
is a fixed regularization term that rules the trade-off between accuracy and
complexity. The kernel function K() allows inner products of patterns in a higher
dimensional, transformed space, yet disregarding the specific mapping of each
single pattern; let Φ(x1) and Φ(x2) be the points in the feature space that are
associated with x1 and x2, respectively, then their dot product can be written
as < Φ(x1), Φ(x2) >= K(x1,x2) . In this paper, the conventional Radial Basis
Function (RBF) kernel has been adopted. Problem setting (3) has the crucial
advantage of involving a quadratic-optimization problem with linear constraints,
ensuring that the solution is unique. Actually, the specific choice for the kernel
parameters {C, σ} has an impact on the eventual generalization performance of
the SVM. Both theoretical [10] and empirical [11] approaches can be adopted
to determine the generalization limits. The present research follows an empirical
approach involving k-fold cross validation [11].

4.2 Circular Back-Propagation Neural Networks

In the proposed framework a Circular Back Propagation (CBP) network [12]
maps feature-based image descriptions into the associated estimates of perceived
quality, which, in the present formulation, are scalar values. The CBP network
augments the conventional MultiLayer Perceptron (MLP) architecture with an
additional input, being the sum of the squared values of all the network in-
puts. The CBP architecture can be formally described as follows. The j-th hid-
den neuron performs a non-linear transformation on the weighted combination
of the input values (i.e, the image numerical descriptor (2)) with coefficients
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wj,i ( j = 1, ..., nh; i = 1, ..., ni), as well as the output layer, which eventually
provides the actual network responses, yk, (k = 1, ..., no):

yk = sigm(wk,0 +
nh∑
j=1

wk,jaj) aj = sigm(wj,0 +
ni∑

i=1

wj,ixi +wj,ni+1

ni∑
i=1

x2
i ) (4)

where sigm(z) = (1+exp(−z))−1, and aj is the neuron activation. The quadratic
term allows the CBP network either to adopt the standard sigmoidal behavior, or
a bell-shaped radial function, depending on the data. As a major result, the CBP
network does not need any a-priori assumption to formulate the model without
affecting the fruitful properties of an MLP structure. The structural CBP en-
hancement still allows adopting conventional back-propagation algorithms [13]
for weight adjustment, yielding an effective training:

E =
1

n0np

np∑
l=1

n0∑
k=1

(t(l)k − y
(l)
k )2 (5)

where np is the number of training patterns, and tk is the desired reference
output. In the present application, k = 1 and the expected output is given by
the quality score obtained from subjective panel tests.

5 Effective Implementation

In this section a possible implementation of the double-layer system is proposed.
The artifact identification problem is tackled by an SVM-based module, while a
CBP-based architecture, maps feature-based description of images into quality
scores.

5.1 Images Feature-Based Description

Image descriptors x̄(n)
u and x̄(n,r)

u , corresponding to the reference image I(n) and
the target image Ī(n,r) respectively, are computed according to the procedure
reported in Section 3. The input image is divided into squared sub-regions of
32x32 pixels and the color correlogram is computed on the luminance component
(Y -layer) of the blocks. The set of features Φ defined in table I is then extracted
from the correlogram corresponding to each block. Finally, the global descriptor
is assembled by computing 6 percentiles of the distribution of each feature fu,
and combining them in the vector x̄(n,r)

u = {ψ(n,r)
α,u ;α = 0, 20, 40, 60, 80, 100;u=

0, 1, ..., 5} For each feature, the objective representation of the stimulus is ob-
tained simply by combining the descriptors of the original and the distorted
image:

z(n,r)
u = [x(n)

u ,x(n,r)
u ] (6)

The resulting 12-dimensional vectors z(n,r)
u , u ∈ Φ feed the double-layer quality

estimator.
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5.2 Neural-Based Quality Loss/Gain Quantification

The role of the artifact identifier module in the system is to solve a multiclass
problem, associating each zu to the appropriate artifact ai ∈ A. To implement
this multiclass classifier, several binary predictors are connected in series. In
this study three possible artifacts are considered: White noise, Gaussian Blur
and JPEG compression. The classification module is implemented using a first
SVM to select images distorted by White Noise, and a second SVM to separate
blurred images from JPEG compressed images. Both SVMs receive as input a
vector based on a single feature, namely Entropy (see f2 in table I). This feature
proved sufficiently effective for the distortion classification task. The module
assigned to quality level prediction (the second layer of the system) is composed
of as many subsystems as the number of considered distortions; in this case three.
The three prediction modules exploit an ensemble strategy [14]. To this end, each
single predictor involved in the ensemble is fed with a single, distinct feature, thus
satisfying the required hypothesis of disjoint input sub-spaces. Since the three
modules are independent from one another, each artifact-dedicated predictor
makes use of a particular pair of features, designed to be as much informative as
possible for the specific artifact. In the proposed research to quantify the effect
of white noise on quality, the pair Entropy, Contrast is used; the pair Contrast,
Homogeneity decribes blurred images and the couple Entropy, Energy Ratio is
used to characterize JPEG stimuli.

6 Experimental Results

The second release of the LIVE database [9] was used as a testbed for the per-
formance evaluation of our proposed model, being a recognized benchmark in
the image quality assessment field. In particular, the three datasets including
samples distorted with White noise, Gaussian Blur and JPEG compression were
considered. A k-fold-like strategy was adopted to prove the system to be able to
generalize independently of the specific image content used for the training. 5
folds of images were created for every dataset, each containing all the distorted
versions of a few original images, in such a way that none of the 29 image con-
tents of the LIVE belonged to more than one group. Both layers were trained
performing 5 runs, in each of which alternatively 4 of the 5 folds were used as
training data and the remaining one was used as test data. For all experiments,
the correlogram was computed for a distance k = 1 using the L1 norm. The two
SVMs of the first layer were trained independently, and for both, to tune the
kernel parameters the k-fold cross-validation technique was applied. The first
SVM was trained on a dataset resulting from the merge of the three LIVE sets,
to recognize noisy images. For this SVM, a RBF kernel hyper-parameter was set
to 1, and the parameter C was finally set to 104. The second SVM was trained
on a subset of the previous dataset, including only blurred and compressed im-
ages. Based on the cross-validation output, the parameter C was set to 105

and σ = 1. Table II reports the classification errors for each run and for both
SVM classifiers. It clearly illustrates that the first SVM has an almost-perfect
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Table 2. Performance of each SVM machine for artifact identification in terms of %

of misclassified patterns

Performance Run#1 Run#2 Run#3 Run#4 Run#5 Avg

Noise detection 0.00% 1.07% 1.09% 0.00% 0.00% 0.43%

Blur VS Jpeg Detection 1.49% 1.58% 4.84% 19.35% 12.76% 7.56%

Table 3. Performance of quality estimators in terms of percentage absolute error and

RMS between predicted and subjective quality scores

White Noise JPEG Compression Gaussian Blur

ν|err| ρ ν|err| ρ ν|err| ρ

Run #1 0.062 0.98 0.107 0.94 0.107 0.95

Run #2 0.104 0.94 0.148 0.85 0.247 0.67

Run #3 0.054 0.99 0.139 0.92 0.077 0.96

Run #4 0.062 0.98 0.092 0.94 0.129 0.91

Run #5 0.093 0.98 0.171 0.88 0.209 0.89

Average 0.075 0.97 0.131 0.91 0.154 0.88

performance, since only an insignificant percentage of patterns is misclassified.
The performance of the second SVM is worse, due to the intrinsically more
complex task. Indeed, the problem of distinguishing blur from compression ar-
tifacts is intuitively more difficult than the previous one, since the visual effects
produced by the two distortions often overlap. Nonetheless, on average the per-
centage of misclassified images is less than 8%. The three ensembles of two CBP
neural networks implementing the second layer were each trained on a different
dataset. The datasets for White Noise and Blurred images contained 145 pat-
terns; the remaining testbed included 159 JPEG compressed images. For each
image a quality score was provided in the LIVE database. The Difference Mean
Opinion Score (DMOS), originally ranging between [0,100] was remapped for
computational reasons into the range [-1, +1]. Due to the flexibility of the sys-
tem, it was possible to design the network architecture on purpose for each task.
For coherence, all the 6 neural networks shared the same input layer with the
dimensionality of the global descriptor zu. The networks for the quality esti-
mation of noisy images were equipped with 3 hidden neurons, those used for
blurred images were equipped with a 5-neurons hidden layer, while, to maximize
the generalization ability, the quality estimator for the JPEG compressed images
counted 7 hidden neurons. For performance evaluation, we define the accuracy as
the discrepancy between the objectively predicted quality change d̂S(q(n), q(n,r))
and the quality score provided by the LIVE database dS(q(n), q(n,r)). Two dif-
ferent indicators are used to evaluate the second layer subsystems accuracy: the
mean value of the absolute prediction error between dS and d̂S , ν|err|, and Pear-
sons correlation coefficient ρ [15]. Table III shows how the second layer in our
system is able to produce satisfactory quality predictions. Assessing the quality
gain/loss of noisy images, the systems mean absolute prediction error, averaged
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over the five folds, is less than 0.08 on a two points range. This implies that the
confidence in the system estimates is, on average, higher than 96%, improving
previous results [6]. Dealing with compressed images, the mean absolute predic-
tion error is 0.131, which is comparable with the results obtained in [6]. Finally,
the quality estimator for the blurred images achieves an accuracy of 92.3%, which
represents an improvement of about 1.00% with respect to previous results [6].
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Abstract. Histograms of local descriptors such as SIFT have proven to

be powerful representations of image content. Often the histograms are

formed using a clustering algorithm that compares the SIFT descriptors

with the Euclidean distance. In this paper we experimentally investigate

the usefulness of basing the comparisons of the SIFT descriptors on the

χ2 distance measure instead. The modified approach results in improved

image category detection performance when it is incorporated into a

Bag-of-Visual-Words type category detection system.

1 Introduction

In this paper we consider the problem of automatic supervised recognition of im-
age content. The recognised content can then be used as a basis for classification,
indexing or other further content-based processing of the image. Histograms of
local features have proven to be powerful representations for image classification
and object detection. Consequently, their use has become commonplace in image
content analysis tasks (e.g. [1,2]). This paradigm is also known by the name Bag
of Visual Words (BoV) in analogy with the successful Bag of Words paradigm in
text retrieval. In this analogue, images correspond to documents and quantised
local feature values to words.

Use of local image feature histograms for supervised image classification and
characterisation can be divided into several stages:

1. Selecting image locations of interest.
2. Describing each location with suitable visual descriptors (e.g. Scale-Invariant

Feature Transform (SIFT) [3]).
3. Characterising the distribution of the descriptors within each image with a

histogram, each histogram bin corresponding to a visual word.
4. Using the histograms as feature vectors representing the images in a super-

vised vector space algorithm, such as the Support Vector Machine (SVM).

All parts of the BoV pipeline are subject of continuous study. However, in this
paper we concentrate on stage 3 and regard the other stages as given. In par-
ticular, we take the local image neigbourhoods to be described with the SIFT
descriptor.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 694–703, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In order to characterise the descriptor distribution of an image with a his-
togram, one needs to define the bins of the histogram in the descriptor space.
Often this is accomplished by employing a clustering algorithm such as K-means
to the combined set of descriptors of all the considered images (e.g. [1,4]). This
general approach is followed also in this paper. The modification we propose is
that of basing the K-means clustering and histogram bin assignment on the χ2

distance measure instead of the (squared) Euclidean distance that is tradition-
ally used for comparing SIFT descriptors. The modification is motivated by the
observation that one can improve the performance of stage 4 of the BoV pipeline
if the χ2 distance is used to compare histograms of SIFT descriptors instead of
the Euclidean distance (e.g. [2]). However, also SIFT descriptors themselves (and
several other similar descriptors) resemble normalised histograms, namely his-
tograms of local edge directions. This leads to the idea of comparing also the
SIFT descriptors with the χ2 distance. This only motivates the modification, no
theoretical reason guarantees the χ2 distance to be better suited for matching
SIFT descriptors than the Euclidean distance. The actual justification needs to
be obtained empirically.

We consider the main contribution of this paper to be the experimental in-
vestigation whether the proposed distance measure modification is useful in an
image category detection task defined in the PASCAL NoE VOC 2007 object
detection benchmark [5]. More generally, we investigate whether it is useful to
compare SIFT descriptors with the χ2 distance instead of the Euclidean distance.

The rest of this paper is organised as follows. In Section 2 we review the
clustering problem and describe how the K-means clustering algorithm can be
modified to use the χ2 distance. In Sect. 3 we describe our implementation
of the BoV pipeline. Section 4 details the image category detection task and
experimental procedures that are used in the experiments of Sect. 5 to compare
the clustering and histogram forming based on either Euclidean or χ2 distance
measures. Finally, in Sect. 6 we draw our conclusions from the experiments.

2 Clustering

Given a set of N D-dimensional data points {xi}N
i=1, the goal of unsupervised

clustering is to find K D-dimensional cluster centers {mi}K
i=1 and variables

{ci}N
i=1, ci ∈ {1, 2, . . . ,K} that assign the N data points among the K clusters

so that a criterion C measuring the incompatibility of sets {xi}, {mi} and {ci}
is minimised. As the criterion, one often uses the mean point-wise quantisation
error of the form

C =
1
N

N∑
i=1

E(xi,mci) =
1
N

K∑
k=1

∑
i|ci=k

E(xi,mk). (1)

Here E(·) is a function measuring the dissimilarity of two D-dimensional vectors.
Clustering can be employed in the BoV paradigm by choosing the visual

words to be the cluster centers {mi} that result from clustering of all the local
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descriptors of interest points in all the considered images. Each single image
is then represented by a K-dimensional histogram of the cluster assignment
variables {ci} corresponding to the interest points within the image in question.

2.1 Two Distance Measures

Let us denote xi = [xi1 xi2 . . . xiD]T . The square of the Euclidean distance
metric between two vectors is given by

dE(xi,xj)2 =
D∑

d=1

(xid − xjd)2. (2)

The Euclidean distance is a natural choice for a distance measure since it usefully
reflects the closeness of points in the three-dimensional physical world when the
components of the vectors are the points’ Cartesian coordinates.

Another distance measure is the χ2 distance

dχ2(xi,xj) =
D∑

d=1

(xid − xjd)2

xid + xjd
. (3)

This measure can be used only when all the vector components are non-negative.
The measure can be interpreted as a weighted squared Euclidean distance where
the weighting compresses the variation in the components’ values by assigning
less weight to components with large values. In practice the χ2 distance has
proven to be useful for comparing histograms, e.g. in BoV systems [2,6].

2.2 K-means Clustering Algorithm

K-means [7] is a widely-used and simple clustering algorithm. In its basic form
it defines an iteration that finds a local optimum of the clustering criterion

CMSE =
1
N

N∑
i=1

dE(xi,mci)
2 (4)

obtained by setting the dissimilarity function

E(xi,xj) = dE(xi,xj)2 (5)

in (1). Each step of the iteration is guaranteed not to increase the value of the
criterion.

The iteration is started by choosing initial values for {mi}. Then the following
two steps are repeated until convergence:

1. Updating the cluster assignments {ci} according to

ci = argmin
k

dE(xi,mk). (6)



Representing Images with χ2 Distance Based Histograms 697

2. Updating the cluster centers {mi} according to

mk =

∑
i|ci=k xi∑
i|ci=k 1

. (7)

For later use we, note that step 2 can be connected to the squared Euclidean
distance measure by noticing it to be the solution of

mk = arg min
m

∑
i|ci=k

dE(xi,m)2. (8)

2.3 K-means Based on χ2 Distance

If all the components of the data points are non-negative, the squared Euclidean
distance can be replaced in the K-means algorithm by the χ2 distance by taking
the iteration steps to be

1. Updating the cluster assignments {ci} according to

ci = arg min
k

dχ2(xi,mk). (9)

2. Updating the cluster centers {mi} according to

mk = arg min
m>0

∑
i|ci=k

dχ2 (xi,m). (10)

These iteration steps are guaranteed not to increase the criterion

Cχ2 =
1
N

N∑
i=1

dχ2(xi,mci). (11)

obtained from (1) with
E(xi,xj) = dχ2(xi,xj). (12)

Thus a local minimum will be reached when the iteration is repeated until con-
vergence.

In the case of the χ2 distance the step 2 of the iteration is not as straight-
forward as in the squared Euclidean case. In fact, the optimisation must be
performed numerically. Fortunately, because of independence of the vector com-
ponents in the χ2 distance measure, we may optimise each of the components of
mk separately. In other words, the optimisation problem of step 2 can be recast
to D one-dimensional optimisation problems

mkd = arg min
m>0

∑
i|ci=k

(xid −m)2

xid +m
, d ∈ {1, . . . , D}. (13)

Figure 1 illustrates the one-dimensional optimisation problem. The crosses on
the x-axis denote sample data points. The y-coordinates of the solid and dashed
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Fig. 1. Sum of χ2 (solid line) and squared Euclidean (dashed line) distances in one

dimension

lines correspond to the sum of χ2 distances and squared Euclidean distances,
correspondingly, if the cluster center m would receive the value on x-axis. We
observe that the minima (indicated with arrows) result from somewhat different
choices of m for the two distance measures. The minimisation of sum of χ2

distances thus cannot be replaced by the more straightforward minimisation of
the sum of squared Euclidean distances if one wants to attain the convergence
to a minimum of Cχ2 .

The optimisation can be performed by first converting the constrained opti-
misation problem (13) into an unconstrained one

z∗ = argmin
z

∑
i|ci=k

(xid − z2)2

xid + z2 (14)

and after solution doing the back-substitution mkd = z2
∗. This idea corresponds

to the Newton-Raphson (NR) iteration

zt+1 = zt − ∂f

∂z
/
∂

∂z

(
∂f

∂z

)
= zt − ∂f

∂m

∂m

∂z
/
∂

∂z

(
∂f

∂m

∂m

∂z

)
(15)

with

f =
∑

i|ci=k

(xid −m)2

xid +m
=
∑

i|ci=k

(xid − z2)2

xid + z2 . (16)

Further evaluation of the derivatives is omitted here due to space reasons. In
practice just a few rounds of NR iteration is sufficient per each round of the
K-means iteration. The computational cost of the χ2 K-means is approximately
two times the cost of the Euclidean K-means, resulting mainly from more costly
evaluation of the distance measure in step 1 of the iteration.
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3 Implementation of the BoV System

In this section we describe our implementation of the Bag of Visual Words
pipeline outlined in Sect. 1. In the first stage, a number of interest points are
identified in each image. For these experiments, the interest points are detected
with a combined Harris-Laplace detector [8] that outputs around 1200 interest
points on average per image for the images used in this study. In stage 2 the image
area around each interest point is individually described with a 128-dimensional
SIFT descriptor [3], a widely-used and rather well-performing descriptor that is
based on local edge statistics.

In stage 3 each image is described by forming a histogram of the SIFT de-
scriptors. In the experiments we investigate several alternative methods for gen-
erating the histograms. The methods are detailed in Sect. 5 in conjunction with
the experiments.

In the final fourth stage the histogram descriptors of both training and test
images are fed into supervised probabilistic classifiers, separately for each of the
20 object classes. As classifiers we use weighted C-SVC variants of the SVM
algorithm, implemented in the version 2.84 of the software package LIBSVM [9].
As the kernel function g we employ the exponential χ2-kernel

gχ2(x,x′) = exp

(
−γ

d∑
i=1

(xi − x′i)
2

xi + x′i

)
. (17)

The χ2-kernel provides histogram comparison performance superior to e.g. RBF
kernel (e.g. [2]) and is thus often used in BoV systems.

The free parameters of the C-SVC cost function and the kernel function are
chosen on basis of a search procedure that aims at maximising the six-fold cross
validated area under the receiver operating characteristic curve (AUC) measure
in the training set. To limit the computational cost of the classifiers, we perform
random sampling of the training set. Some more details of the SVM classification
stage can be found in [10].

4 Image Category Detection Task and Experimental
Procedures

In the current experiments we consider the supervised image category detection
problem. Specifically, we measure the performance of several algorithmic variants
for the task using images and categories defined in the PASCAL NoE Visual
Object Classes (VOC) Challenge 2007 collection [5]. In the collection there are
altogether 9963 photographic images of natural scenes. In the experiments we use
the half of them (5011 images) denoted “trainval” by the challenge organisers.

Each of the images contains at least one occurrence of the defined 20 object
classes, including e.g. several types of vehicles (bus, car, bicycle etc.), animals and
furniture. The presences of these objects in the images were manually annotated
by the organisers. In many images there are objects of several classes present. In
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the experiments (and in the “classification task” of VOC Challenge) each object
class is taken to define an image category.

In the experiments the 5011 images are partitioned approximately equally
into training and test sets. Every experiment was performed separately for each
of the 20 object classes. The category detection accuracy is measured in terms of
non-interpolated average precision (AP) [11]. The AP values are averaged over
the 20 object classes, resulting in mean average precision (MAP) values. In the
experiment section of this paper, we report the average MAP values over the
six different train/test partitionings, along with their 95% confidence intervals.
The confidence intervals are based on the usual assumptions of normal distri-
butions and are not to be taken literally. For the purpose of comparing various
techniques, the confidence intervals arguably underestimate the reliability of the
results because of systematic differences between the six trials.

5 Experiments and Results

In the experiments we kept other parts of our BoV implementation constant but
varied the histogram generation stage. Three different types of histogram code-
books were generated by applying three different clustering algorithms to the
same random sample of all the SIFT descriptors in all the images, containing 20
interest points from each image. As the baseline clustering we selected the code-
book vectors randomly among the data points of the sample. Against this base-
line we compared the K-means clustering based on both the squared Euclidean
distance and the χ2 distance. Given the set of codebook vectors, descriptors of
all interest points were assigned to the histogram bin with the nearest codebook
vector. In the case of random and Euclidean K-means codebooks, we employed
the Euclidean distance as the basis for nearest bin selection. The χ2 distance
was used with codebooks generated by the χ2 K-means. The experiments were
repeated for several codebook sizes, ranging from 256 to 4096.

5.1 Quantisation Error

To see how well the different clustering algorithms solve the clustering problem
they were devised for—defined in terms of quantisation error—we evaluated the
mean quantisation errors defined in Sect. 2, i.e. CMSE and Cχ2 . The errors were
evaluated for the same sample of SIFT descriptors that was used to form the
codebooks.

The quantisation errors are shown seen in Table 1. We note that in terms of
CMSE, Euclidean K-means is consistently somewhat better than K-means based
on the χ2 distance, and vice versa for Cχ2 . In terms of both errors, the K-means
variants are clearly better than the random baseline. However, we also notice
that in this kind of SIFT descriptor data set, the quantisation error differences
between the K-means variants are not large. It thus seems that the squared
Euclidean distance does not order SIFT descriptors very differently from the χ2

distance. It remains to be seen in the next section, whether the orderings are
different enough to result in significantly different performance in image category
detection.
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Table 1. Quantisation errors by the different clustering algorithms

256 bins 512 bins 1024 bins 2048 bins 4096 bins

CMSE Cχ2 CMSE Cχ2 CMSE Cχ2 CMSE Cχ2 CMSE Cχ2

random selection 0.362 2.28 0.331 2.12 0.306 1.98 0.283 1.85 0.259 1.71

Euclidean K-means 0.238 1.66 0.222 1.56 0.207 1.45 0.193 1.38 0.178 1.29

χ2 K-means 0.248 1.58 0.231 1.49 0.222 1.43 0.206 1.34 0.191 1.25

0 2 4 6 8 10 12 14 16 18 20
0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

M
A

P

M
A

P

R R R R RE E E E EC C C C C{ { { { {
512
bins

1024
bins

2048
bins

4096
bins

256
bins

0.330

0.360

0.360

0.340

0.420

0.410

0.400

0.390

0.380

0.370

0.360

0.370

0.
35

5 
+

/−
 0

.0
07

0.
37

6 
+

/−
 0

.0
10

0.
38

8 
+

/−
 0

.0
08

0.
37

6 
+

/−
 0

.0
10

0.
39

2 
+

/−
 0

.0
05

0.
40

3 
+

/−
 0

.0
08

0.
38

5 
+

/−
 0

.0
11

0.
40

2 
+

/−
 0

.0
05

0.
41

0 
+

/−
 0

.0
09

0.
38

9 
+

/−
 0

.0
08

0.
40

2 
+

/−
 0

.0
09

0.
41

1 
+

/−
 0

.0
04

0.
38

4 
+

/−
 0

.0
06

0.
39

6 
+

/−
 0

.0
06

0.
41

3 
+

/−
 0

.0
06

Fig. 2. Mean average precisions (MAP) in image category detection and their 95%

confidence intervals. Bars corresponding to different clustering algorithms are indicated

by letters R (random codebook selection), E (Euclidean K-means) and C (χ2 K-means).

5.2 Category Detection Performance

The quantisation errors investigated in the previous section confirm that the
clustering algorithms solve the problem they were devised for. However, in BoV
systems clustering is used for a different purpose. There one hopes that opti-
mising the quantisation error leads to codebooks that would also lead to good
category detection performance. This sounds rather reasonable as these two dif-
ferent objectives can easily be believed to be rather similar. In our earlier exper-
iments [6], however, we have seen that this is not always the case. Clusterings
having smaller quantisation errors sometimes lead to worse category detection
performance. Thus the performance of different methods for obtaining codebooks
must be experimentally verified to see if they are useful for the purpose of BoV.

Figure 2 shows the image category detection performance in the category de-
tection task of Sect. 4 when the three different histogram generation methods
are inserted into the BoV category detection system of Sect. 3. In the SVM
detector stage of the system, all the three types of histograms are regarded as
feature vectors in the same way, i.e. the χ2 kernel is used for comparing the
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histograms in all the cases. From the figure we see that both the K-means vari-
ants lead to better category detection performance than the random baseline. χ2

distance based K-means performs still markedly better than K-means based on
the squared Euclidean distance. This result is consistently seen with codebooks
of all sizes. The development of performance with increasing codebook size is
similar to what we have observed in our earlier experiments with several cluster-
ing algorithms. For this image categorisation task, the performance peaks with
codebooks of a couple of thousand bins [6].

For the results included in the figure we applied the same distance measure
for clustering and nearest histogram bin selection when forming the histograms,
i.e. the Euclidean distance for Euclidean K-means and the χ2 distance for χ2 K-
means. We also performed experiments where we mixed the distance measures:
Euclidean K-means combined with the χ2 distance based nearest bin determina-
tion, and χ2 K-means combined with the Euclidean distance bin determination.
Both these combinations lead to performances that were between those shown
for the Euclidean and χ2 K-means.

6 Conclusions and Discussion

In this paper we have performed experiments that demonstrate that image cat-
egory detection accuracy of a SIFT-descriptor BoV system can be improved by
basing the histogram codebook selection on χ2 K-means clustering instead of
Euclidean K-means. We also observed that the accuracy could be increased by
selecting the nearest histogram bin based on the χ2 distance instead of the Eu-
clidean distance even if the codebook selection was not originally based on the χ2

distance measure. We consider the likely explanation to be that the χ2 distances
between SIFT descriptors separate the 20 image categories in the considered
VOC 2007 task better than the Euclidean distances do. We think it is plausi-
ble to hypothesise that this result would generalise also to other similar image
category and object detection tasks. However, there is no reason to believe that
even the χ2 distance would be the most suitable distance measure. A possible
future direction could be to continue along the same lines in the search for the
optimal distance measure.

Selecting histogram codebooks with the Euclidean distance based K-means re-
sults in a statistically significant improvement in category detection MAP when
compared with random codebook selection. The use of χ2 K-means results in
almost 80% larger improvement. However, in absolute terms the MAP improve-
ments may be argued to be rather small. It naturally depends on the application
whether or not the improvements in MAP are considered significant enough to
justify the computational cost of the codebook selection algorithms.

In this paper we have evaluated the χ2 distance based techniques in the case
of SIFT descriptors of image neighbourhoods. The same kind of improvements
could be expected for many other local descriptors that share the property of
resembling histograms of local edge distribution [12,13], such as variants of the
ColorSIFT descriptor [14]. This is left as a possible subject of further studies.
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One could also experiment with the incorporation of the χ2 distance in other
clustering algorithms in addition to K-means.

Acknowledgments. Supported by the Academy of Finland in the Finnish
Centre of Excellence in Adaptive Informatics Research project.
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Abstract. Estimating the degree of similarity between images is a chal-

lenging task as the similarity always depends on the context. Because of

this context dependency, it seems quite impossible to create a universal

metric for the task. The number of low-level features on which the judge-

ment of similarity is based may be rather low, however. One approach

to quantifying the similarity of images is to estimate the (joint) com-

plexity of images based on these features. We present a novel method

to estimate the complexity of images, based on ICA. We further use

this to model joint complexity of images, which gives distances that

can be used in content-based retrieval. We compare this new method

to two other methods, namely estimating mutual information of images

using marginal Kullback-Leibler divergence and approximating the Kol-

mogorov complexity of images using Normalized Compression Distance.

Keywords: Image complexity; ICA; NCD; Kolmogorov complexity.

1 Introduction

Measuring image similarity is not a simple task. Similarity is always defined at
two levels: The semantics and the syntax of an image. Two images containing
cars may be judged similar based on the fact that there are cars in both of the
images but on the other hand they may be judged dissimilar based on the make
of the car. This is an example of the semantic level. Similarly two versions of
the same image may be judged similar or dissimilar based on – for example –
different colorspaces, which is an example of the syntactic level.

The semantics of an image are dependent on the context. When one decides
whether the images containing cars are similar, it is the context that defines
whether similarity is dependent on the bare fact that there are cars in the image
or whether the make of the cars is also important. The less context-dependently
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one defines similarity, the simpler the interpretation of semantics is and the more
general the similarity measure is.

There certainly exist features which give a lot of information on the similarity
of images. The problem is that sometimes one simply does not know what the
discriminating features are and sometimes there are no clear dominating features.
In general, manually selecting one or a few simple low level features works only
for specific tasks, whereas using a large number of low level features raises the
complexity of estimation process to impractical level.

The complexity of images is a universal property which is related to similarity.
Intuitively it may be easy to decide between two images which one is more com-
plex, but one can also imagine situation when semantically completely different
images may appear equally complex. This is not a desirable result, hence com-
plexity alone may not be very good measure of similarity or distance between
images. If one is mostly interested in pair-wise distances, one can try remedy
this by looking at the joint complexity of images versus the complexity of images
separately [7]. The difference between complexity of a single image and the joint
complexity of two images is more descriptive than arbitrary complexity values
of arbitrary images alone. Of course – depending on the method used – these
values have to be normalized appropriately.

Whether the difference between joint complexity and complexity of single
image is good enough measure of similarity depends on the task in hand. As
in all data-analysis, results depend a lot on the preprocessing and especially
feature extraction. For example, measuring general image similarity may not
require any specific feature extraction (pixel level intensity and color are the
lowest level features and directly available) but if one wants to perform more
specific tasks, the importance of features used grows. For specific tasks, there
may be well established working methods and complexity-based measures of
similarity may not be very attractive. On the other hand, the attractiveness of
using complexity-based similarities is based on its universality, and the fact that
in principle one can do this completely model-free—although the results will
depend on the complexity measure chosen.

Two options for estimating the complexity of images are Shannon’s classical
information theory and algorithmic information theory. Although fundamentally
different in some basic concepts, the two theories are connected [3]. Classical
information theory have been utilized extensively in data analysis for cluster-
ing, feature selection, blind signal separation, etc. These methods maximize or
minimize certain information theoretic measures. Kolmogorov complexity based
similarity measures have been studied and used for different data [7,2]. In those
papers the authors develop and use data compression based techniques to ap-
proximate the Kolmogorov complexity. They call the distance measure normal-
ized compression distance [7].

Complexity-based methods have been applied to image analysis. In [1] these
methods are applied to earth observation imagery and in [8] approximation of
Kolmogorov complexity is applied to image classification. Both of the above
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papers use normalized compression distance as the measure of difference, hence
they belong to the methods based on algorithmic information theory.

In this paper we present a new method based on a model that approximates
the complexity of the data. The model that we use is independent component
analysis (ICA) [5]. We first build the ICA model and then estimate the image
complexity from the properties of the model. Our method can be justified from
the information-theoretic framework, and it incorporates the sparsity of data in
the complexity measure. Sparsity is a prominent statistical property of images
which may not be well-captured by other methods.

The rest of this paper is organized as follows: In Section 2 we present our
method and discuss it in the context of other complexity measures, namely mea-
suring complexity by marginal Kullback-Leibler divergence and approximating
Kolmogorov complexity. In Section 3 we present experiments using natural im-
ages and in Section 4 we present our conclusions.

2 Estimating Image Complexity

Given a general complexity measure C(x) for an image x one can try to estimate
similarities between images. A naive assumption would be that the difference
|C(x0) − C(x1)| tells the similarity between images x0 and x1. Unfortunately
such a general complexity measure does not exist. The closest thing that exists
is the Kolmogorov complexity or algorithmic entropy K(x) of the image (or any
string) x. Kolmogorov complexity is not computable, however.

Even if the complexity measure C(x) existed or Kolmogorov complexity were
computable, their value as measures of similarity would be questionable. Intu-
itively, the similarity between images does not always equal to the difference
in complexity. This is because the context plays an important role even at the
syntactic level, although not as much as in the semantic level.

An obvious way of introducing the context in the picture is to estimate the
joint complexity of images. This is still at a very low level but estimating the
complexity in the context of other image versus the complexity of single image is
more informative than arbitrary complexity values alone. Hence we are interested
in the distance that is defined as

D(x0, x1) = C(x0|x1)−min{C(x0), C(x1)}, (1)

assuming that the joint complexity is symmetric, i.e. C(x0|x1) = C(x1|x0). Also
one wants to ensure that the distance is normalized appropriately.

As it was noted above the ideal complexity measure does not exist and Kol-
mogorov complexity is not computable. One can approximate the ideal com-
plexity measure in different manners, however. Shannon’s information theory
introduced the concept of entropy, which is easily estimated from data. Entropy
can be seen also as a statistical measure of complexity. Even though Kolmogorov
complexity is not computable it can be approximated using compression based
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methods. Complexity can also be estimated from a model that approximates the
log-pdf of data as we do in this paper.

2.1 Relative Entropy as Distance Measure

Given a discrete probability distribution P Shannon’s entropy H(x) is defined
as

H(x) = −
∑

x

P (x) logP (x). (2)

Entropy is a natural measure of complexity, since it estimates the degree of un-
certainty with random variables. Intuitively it is appealing: The more uncertain
we are about an outcome of an event, the more complex the phenomenon (data,
image, etc.) is.

Given another distribution Q, the Kullback-Leibler divergence is defined as

KL(P ||Q) =
∑

x

P (x) log
P (x)
Q(x)

. (3)

KL-divergence is also called relative entropy and it can be interpreted as the
amount of extra bits that is needed to code samples from P using code from
Q. If the distributions are the same, the need for extra information is zero and
the divergence is zero as well. KL-divergence is nonnegative but not symmetric
and as such it can not be used directly as a measure of distance or dissimilarity
between distributions. The symmetry is easy to obtain, however, just by calcu-
lating and summing the KL-divergence from Q to P and from P to Q, hence
the symmetric1 version is simply

KLS(P,Q) = KL(P ||Q) +KL(Q||P ). (4)

This is not a true metric but it can be used directly as measure of distance or
dissimilarity between distributions.

Using the symmetric version of KL-divergence (Eq. 4) as the pair-wise distance
between two images is straight forward. It is not quite the ideal distance measure
in Eq. 1, but it captures the idea of estimating the complexity in the context of
another image.

2.2 Algorithmic Complexity

Kolmogorov complexityK(x) of string x is the length of shortest program p using
given description language L on a universal Turing machine U that produces the
string x.

K(x) = min
p
{|p| : U(p) = x}, (5)

1 Actually this is the original formulation that Kullback and Leibler give [6].
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where |p| denotes the length of the program p. Kolmogorov complexity is not
computable.

Conditional Kolmogorov complexity K(x0|x1) of string x0 given string x1 is
the length of shortest program that produces output x0 from input x1

K(x0|x1) = min
p
{|p| : U(p|x1) = x0}. (6)

Normalized information distance [7] is based on the Kolmogorov complexity and
is defined as

NID(x0, x1) =
max{K(x0|x1),K(x1|x0)}

max{K(x0),K(x1)} . (7)

As Kolmogorov complexity is not computable, NID neither is computable. It can
be approximated, however, using the normalized compression distance (NCD)
[7]. NCD approximates NID by using a real world compressor C and it is defined
as

NCD(x0, x1) =
C(x0, x1)−min{C(x0), C(x1)}

max{C(x0), C(x1)} . (8)

To use the NCD for measuring pair-wise distances between images one just com-
presses images separately and concatenated and observes the difference between
the compression results.

2.3 Using ICA as an Approximation for Entropy

A practical approximation of entropy can be attained by fixing some model which
approximates the log-pdf. We propose here to use this approach, in connection
with the model of independent component analysis (ICA), or equivalently sparse
coding [4]. These models are widely used in statistical image modelling. In ICA,
the pdf is approximated as

log p(x;W) =
∑

i

G(wT
i x) + log | detW| (9)

where n is the dimension of the space, the wi are linear features, collected to-
gether in the matrix W. The function G is a non-quadratic function which mea-
sures the sparsity of the features; typically G(u) = −|u| or G(u) = − log cosh(u)
are used. The latter can be considered as a smooth approximation of the former,
which improves the convergence of the algorithm. A number of algorithms have
been developed for estimation of the ICA model, in particular the matrix of
features W [5].

After the model has been estimated, we can then approximate the complexity
of x as

− E{log p(x;W)} = E{−
∑

i

G(wT
i x)− log | detW|} (10)

where the expectation is taken, in practice, over the sample.
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An intuitive interpretation of the ensuing complexity measure is also possible.
First, note that in ICA, the variance of the wT

i x is fixed to one. The first term
on the right-hand-side in (10) can thus be considered as a measure of sparsity. In
other words, it measures the non-Gaussian aspect of the components, completely
neglecting the variance-covariance structure of the data. In fact, this term is
minimized by sparse components. What is interesting is that the second term
does measure the covariance structure. In fact, we have in ICA the well-known
identity

2| detW| = | detWWT | = | detC(x)|−1 (11)

where C(x) is the covariance matrix of the data. This formula shows that the
second term in (10) is a simple function of the data covariance matrix. In fact,
log | detW| is maximum if the data covariance has a minimum determinant. A
minimum determinant for a covariance matrix is obtained if the variances are
small in general, or, what is more interesting for our purposes, if some of the
projections of the data have a very small variances. Since in ICA, we constrain
the variances of the components to be equal to one, only the latter case is
possible. Thus, our entropy measure becomes small if the data is concentrated
in a subspace of a limited dimension.

Thus, this measure of entropy (complexity) is small if the components are
very sparse, or if the data is concentrated in a subspace of limited dimension,
both of which are in line with our intuition of structure of multivariate data.

Practicalities. Remembering the ideal complexity distance in Eq. 1 we present
some remarks about the use of ICA model.

– Assuming that we want to estimate the distance between two images, we
estimate the ICA model from both images separately and combined.

– The complexity value that we get using Eq. 10 is normalized in similar
manner as the NCD in Eq. 8.

– In practice the ICA model for images is estimated from data that contains
a large number of randomly sampled image patches.

3 Experiments

We wanted to evaluate how our method relates to other complexity based meth-
ods. For that we performed experiments using a subset of images in the Univer-
sity of Washington content-based image retrieval database2.

We estimated the pair-wise distances between the subset of images using ICA,
marginal KL-divergence and NCD. All the images were in RGB colorspace. The
experiments were conducted as follows:

2 http://www.cs.washington.edu/research/imagedatabase/groundtruth/
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Fig. 1. The Spearman rank correlation between the different methods is showed when

the test images are ranked relative to every other image shown. Within each experiment

and ranking, the significance level α = 0.05 is attained by an absolute value 0.26 or

higher of correlation.

– The ICA models were estimated from data that contained 10,000 16 × 16
randomly sampled patches for each image. The data was normalized to be
of zero-mean and of unit variance as is customary.

– Marginal KL-divergences were estimated from RGB intensity histograms.
– NCDs were estimated from RGB image matrices using zlib3, which uses the

DEFLATE algorithm for compression.

All the experiments were implemented in Python4. KL-divergence and NCD
experiments were done for comparison. At this point we are not interested in
image classification or clustering: We want to inspect the results visually and
using some quantitative measure.

For the quantitative evaluation we turned the distances into rankings. This
was done relative to every image in the data set. Rankings capture quite nicely
the essential differences between the methods. For the rankings we calculated
the Spearman rank correlation in order to understand the differences. Figure 1
shows for each image the rank correlation between all the methods we tried.

First, we observe that the correlations between rankings differ significantly
depending on the image the ranking is relative to. This is actually somewhat sur-
prising. Second, we notice that for most statistically significant correlations our
method agrees more with both the KL-divergence- and the NCD-based meth-
ods, whereas the KL-divergence and NCD rankings are less correlated. This
may suggest that our method captures more general features than the other
two. Whether this works in real world applications is not sure though. Lastly we
also observe surprisingly many negative correlations and the average correlation
is rather low. This is different though if we only observe the absolute values of

3 http://www.zlib.net/
4 http://www.python.org
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Fig. 2. Two-dimensional Sammon mapping calculated from the pair-wise distances

between images, when the distances were estimated using ICA as an approximation

for entropy. Even though the Sammon mapping is used to preserve the distances in

the two dimensional visualization as well as possible, the individual rankings are not

directly comparable to the mapping.

the correlation, which is justifiable, since correlation – negative or positive – is
interesting, whereas non-correlated data does not tell us much.

Images 2 and 3 show two-dimensional Sammon mappings estimated from the
pair-wise distances between images using ICA, KL-divergence and NCD respec-
tively. Image 4 show example rankings for one reference image using all the
methods.
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Fig. 3. Two-dimensional Sammon mapping calculated from the pair-wise distances

between images, when the distances were estimated using the KL-divergence (left)

and compression-based approximation for Kolmogorov complexity, NCD (right). Even

though the Sammon mapping is used to preserve the distances in the two dimensional

visualization as well as possible, the individual rankings are not directly comparable

to the mapping.

Visually inspecting it is clear that all the methods produce different results.
It is harder to judge one better than the other, however.

It seems that the ICA method (Fig. 2, Fig. 4 left) is affected mostly by the
texture of the images. It is able to nicely group different kinds of trees according
to their appearance. The method do not seem to be very specific with regards
to the grass appearing in the images.

For the marginal KL-divergence visual experiment (Fig. 3 left, Fig. 4 middle)
the first impression is that it seem to be mostly affected by the different intensity
in the lighting in the images. That is actually quite natural since the distances
were estimated from RGB-intensity histograms. Nevertheless it also produces
reasonable results.

The results for NCD visual experiment (Fig. 3 right, Fig. 4 right) are quite
intuitive also but it is quite hard to find a common factor on which the grouping
is based. NCD seems to be mostly affected by the complexity of rather low level
features.

Finally one have to note that at their current state none of the methods
presented can compete with more specialized application specific image similarity
measures. The similarity that the methods measure is rather generic low level
similarity. On the other hand that is exactly what one expects from complexity
based similarity measures.
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Reference image

ICA KL-divergence NCD

...
...

...

Fig. 4. An example of rankings produced by the three methods. The four rows below

the reference image show two most similar and two least similar images to the reference

image. The columns are from left to right ICA, KL-divergence and NCD.

4 Conclusions

We have presented a novel method to estimate image complexity in order to
derive a pair-wise similarity measure for natural images. Our method is based
on using ICA model to estimate the entropy of images separately and combined.
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The similarity is derived from the normalized difference between the single im-
age complexity and the pair-wise complexity. This method is comparable but
not similar to other complexity based measures such as normalized compression
distance and other information theoretic entropy based methods.

Based on quantitative analysis our method seem to be somewhere in between
NCD and KL-divergence based distance measures. Visually all the methods tried,
produce reasonable results, the ICA method being more responsive to textures.

For future work one has to consider applications of the method for clustering
and classification, if not for other reasons than to get more decisive quantitative
results than those obtained from the present analysis.
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Abstract. In this paper, we propose an automatic tracking recovery tool

which improves the performance of any tracking algorithm each time the

results are not acceptable. For the recovery, we include an object identifi-

cation task, implemented through an adaptable neural network structure,

which classifies image regions as objects. The neural network structure

is automatically modified whenever environmental changes occur to im-

prove object classification in very complex visual environments like the

examined one. The architecture is enhanced by a decision mechanism

which permits verification of the time instances in which track-ing re-

covery should take place. Experimental results on a set of different video

sequences that present complex visual phenomena reveal the efficiency of

the proposed scheme in proving tracking in very difficult visual content

conditions. abstract environment.

Keywords: computer vision, object tracking.

1 Introduction

In today’s world, security of citizens in public areas continually gains research in-
terest. Computer vision tools, able to automatically detect and then recognize ac-
tions (simple or more complex) and behaviors by examining the raw video data,
can play an important role. It is usual nowadays the most frequently used public
areas and infrastructures to be monitored by multiple cameras and surveyed by
specialized employees who are responsible for setting an alert in case of an emer-
gency. However, it is very difficult for a human to continuously monitor different
video sequences in which many humans act and behave, especially when the
overwhelming majority of the content of such video files are of no important
abnormal action. In addition, there is subjectivity as far as humans’ perception
is concerned. Different humans or even the same under different circumstances
may interpret the same visual content differently affecting the security of an
area. Consequently, it would be very useful if one can embed intelligent tools
and mechanisms in surveillance systems which can (or at least assist to) detect
abnormal actions and behaviors in critical public infrastructures and areas in
which security of the visitors is of prime importance.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 715–724, 2009.
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Probably the most important research aspect for detecting behaviors and ac-
tions in video surveillance systems is motion segmentation and tracking [1] [2].
Despite the fact, however, that background subtraction methods and temporal
differencing techniques have been applied in the literature for motion segmen-
tation [3], [4], in real-life surveillance applications there exists complex visual
phenomena which makes those simple methods to be not efficiently applicable.
For this reason, other complicated moving object detection/tracking algorithms
have been proposed in the computer vision society for object tracking in com-
plex visual environments, which can be discriminated into three main categories;
motion models, search methods and appearance-based techniques [5]. In motion
models, motion information is exploited to predict the new location of an object
using either linear or non-linear approaches [6] [7]. The main drawback of these
approaches, however, is that their accuracy is dropped in the existence of agile
motion, distraction and occlusions. The search techniques exploit the assump-
tion that objects’ appearances do change from time to time and thus it presents
similar properties within adjacent frames of a video sequence. Approaches to-
wards this direction are the methods of [8] and [9]. These techniques, however,
are also sensitive to background distractors, clutter, and occlusions issues.

Other approaches use stochastic methodologies, such as the Kalman filter
[10] and the particle filter techniques [11]. The performance of a particle filter
algorithm, however, actually depends on appearance models and the similarity
measures used for object matching. For implementing accurate models for objects
appearance visual descriptors are used such as color histograms [12], contours
[13] and texture [14]. In real-life environments, however, the appearance models
can change over time due to illumination variations, complex objects’ motion,
occlusions, image distortion phenomena, etc [5]. As stochastic approaches, one
can include the Gaussian mixture models, [15], kernel density methods [16] and
Hidden Markov Models. The performance of these approaches, however, still
remains unacceptable when partial/full occlusions occur.

Generally, trackers are not involved re-initialization strategies. Though parti-
cle filter trackers support some naive re-initialization schemes, their performance
deteriorates in case of sudden changes and occlusions. Objects characteristics
vary from frame to frame. New objects may enter in the scene or others can
disappear. Objects can be partially or fully occluded while their color/texture
properties vary from time to time. Thus, it was very useful if we could be able to
include intelligent mechanisms in any tracking process which would be able to re-
initialize the tracker each time its performance is unacceptable. Such approaches,
only very recently has been proposed in the literature combining tracking meth-
ods with object detection techniques [17] [18]. In particular the work of [17]
uses a neural network structure to reclassify image regions as objects blocks.
However, the technique is applicable only for stereoscopic video sequences or
two-dimensional sequences presenting video conferences scenarios. Similarly, in
[18] tracking of multiple objects is accomplished using a coupled optimization
problem which combines a Minimum Description Length hypothesis framework
which allows our system to recover from mismatches and temporarily lost tracks.
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Despite its ability, the method of [18] suffers from reconfiguration which permits
automatic tracker initialization necessary in broad domain application scenarios.

In this paper, we address these drawbacks by proposing a novel adaptable
neural network architecture which is able to automatically recover the results of
a tracking algorithm whenever its performance is not acceptable. The network
labels in a non-linear fashion image regions as objects by exploiting visual de-
scriptors appropriately. The network is designed so that, apart from approximat-
ing the non-linear functions used for object labeling it also handles the problem
that the non-linear function to be modeled should be time varying due to the en-
vironmental changes. For this reason, an adaptable neural network structured is
adopted as in [19]. In particular, the proposed adaptable strategy is implemented
in a way that a) the non-linear model trusts as much as possible the current
conditions, and (b) a minimal degradation of the already obtained knowledge is
achieved. The proposed methodology is framed by a decision mechanism which
defines the time instances in which a new tracking activation is required.

2 Overview of the Proposed Architecture

The adopted architecture improves the performance of any object tracking algo-
rithm in complex visual conditions by incorporating an automatic tracking re-
covery mechanism. A block diagram of the architecture is shown in Figure 1.

The first component of the architecture is the tracking algorithm which identi-
fies either correctly or erroneously the objects in a scene by taking into account
an initial estimate of their position. Simultaneous to object tracking acts an-
other component which labels image regions of a scene as objects taking into
account their color/texture properties. Object identification is activated when-
ever the Decision Mechanism ascertains that the tracking performance is not
acceptable with the use of a neural network structure. Since, however, the ob-
jects characteristics change form time to time, an adaptable learning strategy is
implemented for the identification process to improve its performance in highly
dynamic environments, like the examined one. The adaptable strategy should
take into account information about the current visual content so as to update
the models of the object labeler performance to the current conditions.

Finally, a decision mechanism is included in the proposed architecture which
defines those time instances (frames) in which the tracking is not acceptable
and thus recovery should take place. The mechanism exploits the probabilistic
nature of the tracker as well as the evolution of the tracker through time.

3 Non-linear Object Identification

In this section, we propose a novel neural network structure able to automatically
improve the performance of any tracking algorithm whenever a severe deteriora-
tion takes place. To identify objects, the neural network structure takes as input
visual descriptors and then it classifies image regions as objects with respect to
these descriptors. Since, significant variations in visual descriptors are expected
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Fig. 1. proposed tracking recovery architecture

the proposed object identification scheme should vary form time to time to fit
the dynamic changes of the environment.

Let us denote as f i(n) ∈ RM a feature vector of M visual descriptors for
the nth frame of a sequence. Index ith corresponds to the ith image region of
frame nth, for instance to the ith image block. Let us denote as P

(n)
j (fi(n)),

j = 1, 2, , L the probability of the i-th image region at n-th frame to be assigned
to the j-th tracked object. Thus, we assume that L objects are available. The
function P

(n)
j (fi(n)) is unknown and is modeled in our case by a feedforward

neural network structure. That is,

P (n)(fi(n)) ≈ vT (n) ·Φ(W(n) · fi(n)) (1)

where we have omitted the object index jth for simplicity purposes. In equation
(1), we have assumed a one hidden layer neural network with one output neuron
since we focus on classification of an object. For the case of identifying multiple
objects, the scalar P (n)(fi(n)) is transformed to a vector. The v(n) are the
weights that connect the hidden neurons with the output neuron. Similarly,
W(n) is matrix the columns of which are the weights that connect the input
vector ele-ments with one hidden neuron. The Φ(·) is a vector-valued function
which returns the activation functions of the hidden neurons. In the modeling
of (1), we have assumed a linear relationship for the output neuron to yield any
degree of relevance of an image region to an object. The unknown components of
equation (1), i.e., the elements of vector v(n) and W(n) are estimated through
a training process, which uses a reduced Levenberg-Marquardt (LM).

4 The Adaptation Strategy

The parameters of the neural network model should vary from time to time. As-
suming that a slight modification of the non-linear function is adequate for mod-
eling the following stage since the environmental conditions cannot be changed
rapidly we can relate the model parameters as follows.

v(n + 1) = v(n) + dv W(n + 1) = W(n) + dW (2)
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where dv and dW are small perturbations of parameters v and W. Let us also
assume that at the nth frame, a reliable mask for all the L available objects is
derived through the tracking algorithm. Then, the labels for all the L tracked
objects and the background can be considered as known. Thus,

P (n+1)(fi(n)) = Di(n) (3)

where Di(n) are the labels (IDs) for the i-th image region at the n-th frame
ranged in [1L] since we have assumed that L objects are available. In (3), the
superscript (n+ 1) means that the output of the identification module is calcu-
lated using the new model parameters, i.e., the v(n + 1),W(n+ 1).

Exploiting equation (3), we can linearize equation (1) using a first order Taylor
series expansion. Based on [19], the differences between the labels of an image
regions before and after the adaptation, i.e., using the weights v(n + 1) and
W(n + 1) and v(n), W(n) is linearly related with the small perturbations at
time n while the parameters of the linear model only depend on the previous
coefficients v(n), W(n) . That is, it can be proved in [19] that

P (n+1)(fi(n))−P (n)(fi(n)) = vT (n) ·H ·dW · fi(n)+ dvT ·Φ(W(n) · fi(n)) (4)

which can be written as

P (n+1)(fi(n)) = P (n)(fi(n)) + Jdw (5)

where J is a matrix including elements coming from the current coefficients at
nth iteration and the small increments. More information can be found in the
appendix of [19].

Taking into account the effect of all image regions R for all the available
objects L (including the background), we can form a vector, say d, that contains
all differences of equation (5). That is,

dw = J−1 · d (6)

The number of unknown parameters dw depends on i) the number of visual de-
scriptors used for modeling the content of an image region, and ii) the complexity
of the hidden layer. As a result, three difference cases can be obtained. The first
is the one that the number of network weights is greater than the number of
linear equations of (6). Instead, for a small number of descriptors and network
size it is probable that the unknowns of (6) to be smaller than the number of
linear equations. Finally, when the number of unknowns equals the number of
linear equations then, the small increments can be straightforwardly estimated
by solving the linear system of (6).

The first two cases can be handled by the pseudo-inverse of matrix J .

5 New Data Selection and Decision Mechanism

In this section, we describe how can be obtain an estimation of (3). The labels
Di(n) can be supervisedly (manually) provided but it is more efficient to be
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provided under an automatic framework. The proposed data selection algorithm
exploits the tracking performance. In particular, initially, we detect all image
regions that have been assigned to an object by the tracker. Then we estimate
the region that is closest to the center of gravity of the tracking output. We
assume that the most confident regions are within a 67% confidence in a Gaussian
framework.

Fig. 2. A graphical representation of the proposed optimal data selection algorithm

Figure 2 presents a graphical representation of the proposed method adopted
for optimal data selection. In this case, a reliable tracked mask has been detected
and the most left, right, bottom and top lines of the region have been detected.
Then, the center of gravity of the region is calculated and the standard deviation
to achieve a very high confidence interval (i.e., 99.99%). Then, we select as data
the ones lying within a 66% confidence interval.

The goal of the decision mechanism is to automatically detect those time in-
stance (frames) which tracking recovery should take place since the performance
of the tracking algorithm cannot be considered as acceptable. Our implementa-
tion includes i) an indicator about the performance of the tracking algorithm
and ii) con-sistency between the tracking of successive frames.

If both criteria are active, meaning that a significant visual change of the
environment takes place with a simultaneous low confidence of the tracke, the
decision mechanism should be undoubtedly activated. In the vague case that
one criterions is active while the other inactive, we include additional frames
to verify the performance and with respect to their values we activate or not
tracking re-initialization.

6 Experimental Results and Comparisons with/without
Re-initialization

In the following, we evaluate the performance of the proposed tracking recovery
algorithm in a set of different video sequences, which present complex phenom-
ena such as occlusions, illumination changes, presence of multiple objects, etc.
the proposed methodology is generic and it can be applied for any tracking algo-
rithm. Thus, we need not to compare our approach with some other trackers but
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with its performance with or without initialization. Some sequences are publicly
available, such as the PETS one, so as to compare our results under a common
framework, while some others have been recorded under the framework of Eu-
ropean Union funded research projects (such as POLYMNIA [20] and SCOVIS
[21]).

Fig. 3. Tracking results for a characteristic shot of PETS sequence using without the

proposed recovery strategy

Figure 3 shows the results of a tracking algorithm (in our case using a par-
ticle filter) for a shot of PETS sequence. The specific shot depicts 19 frames in
which a full occlusion is encountered. As we observe, the tracker performance
deteriorates in the occluded regions since it is difficult in this case to monitor
the correct trajectory of the objects. We also notice that tracking is deteriorated
after the occlusion since the algorithm cannot initialize correct the samples at the
previous video frames. The results after the proposed tracking recovery scheme
are shown in Figure 4. We observe a significant improvement of the tracking
performance, robust to the full occlusion.

Fig. 4. Tracking results for a characteristic shot of PETS sequence using with the use

of the proposed recovery strategy

Figure 5 shows the results of the adaptable object identification at frames
before, during and after the full occlusion in which the tracking performance
deteriorates. In all cases, blocks 8x8 have been detected as image regions, while
the DC along with some of the 9 zig-zag scanned AC coefficients of each block
are used as appropriate visual descriptors. We notice that correct labeling is
accomplished even for this complex visual content case.
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Fig. 5. The results of the adaptable object labeling module before, during and after

the occlusion

Fig. 6. Average Values of both Objective Criteria over several different video sequences

Apart from the previous subjective evaluation, we have compared all these
sequences using two objective criteria. The first expresses how close the tracked
mask is with the reference one. This criterion is not adequate since it is possible
large parts of the reference actual object to be located outside the tracked mask
even though when C takes values close to one. This is for example the case when
the tracked mask coincides with a part (even small) of the object. For this reason,
we need another one, which presents the percentage of the reference object that
is located within the tracked mask. In case of light changes the model will be
robust as we select visual feature for object modeling that are also robust to light
changes. Otherwise, the models will be modified and the automatic selection of
the new training set will be inefficient.

Figure 6 shows the average performance for both criteria in case of 15,000
different frames of these sequences. It is clear that the proposed tracking recov-
ery scheme improves the performance but this improvement is more evident in
complex visual environments.

7 Conclusions

In this paper, we propose an automatic tracking re-initialization algorithm based
on an adaptable neural network architecture. The adopted non-linear models are
time-varying since the visual characteristics of the objects change from time to
time. The architecture is enhanced with a decision mechanism able to verify the
time instances in which tracking recovery from take place. The efficiency and
robustness of the proposed scheme has been tested on a set of real-life video
sequences in which complex motions (full and partial occlusions), illumination
changes and presence of multiple objects in the scene are encountered. The
evaluation has been performed subjectively by comparing the results among
effective tracking methods (like the particle filter one) with the proposed recovery
methodology. Additionally, two criteria are presented to objectively assess the
tracking recovery performance and compare it with other approaches presented
in the literature.
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Abstract. Pursuing an analogy to the Independent Component Analysis (ICA)
we propose a Lattice Independent Component Analysis (LICA), where ICA sig-
nal sources correspond to the so-called endmembers and the mixing matrix cor-
responds to the abundance images. We introduce an approach to fMRI analysis
based on a Lattice Computing based algorithm that induces endmembers from the
data. The endmembers obtained this way are used to compute the linear unmix-
ing of each voxel’s time series independently. The resulting mixing coefficients
roughly correspond to the General Linear Model (GLM) estimated regression pa-
rameters, while the set of endmembers corresponds to the GLM design matrix.
The proposed approach is model free in the sense that the design matrix is not
fixed a priori but induced from the data. Our approach does not impose any as-
sumption on the probability distribution of the data. We show on a well known
case study that this unsupervised approach discovered activation patterns are sim-
ilar to the ones detected by an Independent Component Analysis (ICA).

1 Introduction

Human brain mapping is a rapidly expanding discipline, and in recent years the in-
terest in novel methods for imaging human brain functionality has grown. Noninvasive
techniques can measure cerebral physiologic responses during neural activation. One of
the relevant techniques is functional Magnetic Resonance Imaging (fMRI) [13], which
uses the blood oxygenation level dependent (BOLD) contrast to detect physiological
alterations, such as neuronal activation resulting in changes of blood flow and blood
oxygenation. Since these methods are completely noninvasive, using no contrast agent
or ionizing radiation, repeated single-subject studies are becoming feasible [12].

The fMRI experiment consists of a functional template or protocol (e.g., alternat-
ing activation and rest for a certain time) that induces a functional response in the
brain.The aim of an fMRI experiment is to detect the response to this time varying
stimulus, through the examination of the signal resulting from the BOLD effect, in a
defined volume element (voxel). The functional information of a voxel has to be ex-
tracted from its time series. One fMRI volume is recorded at each sampling time instant
during the experiment. The frequency of the time sampling being determined by the

� The Spanish Ministerio de Educacion y Ciencia supports this work through grant DPI2006-
15346-C03-03.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 725–734, 2009.
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resolution of the fMRI imaging pulse sequence. The complete four-dimensional dataset
(three spatial dimensions plus one time dimension) consists of subsequently recorded
three-dimensional (3-D) volumes. The acquisition of the complete series of functional
volumes runs over periods lasting up to several minutes.

The most extended analysis approach for fMRI signals is the Statistical Parametric
Maps (SPM) [5,6] which has evolved into a free open source software package. This
method consists in the separate voxel estimation of the regression parameters of Gen-
eral Linear Model (GLM), whose design matrix has been built corresponding to the
experimental design. A contrast is then defined on the estimated regression parameters,
which can take the form of a t-test or an F-test. The theory of Random Fields is then
applied to correct the test thresholds, taking into account the spatial correlation of the
independent test results.

Approaches to fMRI analysis based on the Independent Component Analysis (ICA)
[4] assume that the time series observations are linear mixtures of independent sources
which can not be observed. ICA assumes that the source signals are non-Gaussian and
that the linear mixing process is unknown. The solutions to the ICA problem obtain
both the independent sources and the linear unmixing matrix. These approaches are
unsupervised because no a priori information about the sources or the mixing process
is included, hence the alternative name of Blind Deconvolution.

In the present work we propose the use of an heuristic algorithm, called Endmember
Induction Heuristic Algorithm (EIHA) described in detail in [7] to attack the fMRI
analysis problem. The basic assumption in this approach is that the data is generated
by a hidden process as a convex combination of a set of endmembers which are the
vertices of a convex polytope covering the data observations. This assumption is similar
to the linear mixture assumed by the ICA approach, however EIHA does not impose
any probabilistic assumption on the data. This EIHA algorithm falls more properly
in the field of Lattice Computing algorithms [8]. The endmembers discovered by the
EIHA are equivalent to the GLM design matrix columns, and the unmixing process is
identical to the conventional least squares estimator. Therefore, our approach is a kind
of unsupervised GLM whose regressor functions are discovered in the data. When we
establish an analogy with the ICA, the endmembers correspond to the unknown ICA
sources and the mixing is solved by least squares estimation.

We call Lattice Independent Component Analysis (LICA) the overall process of ap-
plying EIHA and computing the unmixing process that gives the abundance matrices
(in remote sensing terminology). The EIHA relies on the conjecture that Strong Lat-
tice Independent sets of vectors are Affine Independent, and, therefore, the vertices
of the convex polytope that explains (contains) the data. The algorithm searches for
these Strong Lattice Independent vectors by using the properties of Lattice Autoas-
sociative Memories (LAM). The main advantages that LICA can produce respect to
ICA for data analysis are the lack of strong probabilistic assumptions (independence,
non-Gaussianity) that may fail in many realistic situations. Besides the EIHA is a com-
putationally light algorithm that works on one pass over the data and does not need
optimization steps.

The outline of the paper is as follows: Section 2 introduces the linear mixing model
so that the proposed approach can be understood. Section 3 presents an sketch of the
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theoretical relation between Lattice Independence and Linear (Affine) Independence
through the LAM theory. Section 4 recalls the definition of our Endmember Induction
Heuristic Algorithm (EIHA). Section 5 gives a brief recall of ICA. Section 6 presents
results of the proposed approach on a case study. Section 7 provides some conclusions.

2 The Linear Mixing Model

The linear mixing model can be expressed as follows: x =
∑M

i=1 aisi + w = Sa + w,
where x is the d-dimension pattern vector corresponding to the fMRI voxel time series
vector, S is the d×M matrix whose columns are the d-dimension vertices of the convex
region covering the data corresponding to the so called endmembers si, i = 1, ..,M, a
is the M -dimension fractional abundance vector, and w is the d-dimension additive
observation noise vector. The heuristic algorithm EIHA described in [7] provides the
estimation of the endmembers from the data. We can not review EIHA here due to the
lack of space. The linear mixing model is subjected to two constraints on the abundance
coefficients. First, to be physically meaningful, all abundance coefficients must be non-
negative ai ≥ 0, i = 1, ..,M. Second, to account for the entire composition, they must
be fully additive

∑M
i=1 ai = 1. That means that we expect the vectors in S to be affinely

independent and that the convex region defined by them includes all the data points.
Once the convex region vertices have been determined the unmixing process is the

computation of the matrix inversion that gives the coordinates of the point relative to
the convex region vertices. The simplest approach is the unconstrained least squared
error (LSE) estimation given by: â =

(
STS
)−1

ST x. The coefficients that result from
this equation do not necessarily fulfill the non-negativity and full additivity conditions.
Moreover, the EIHA [7] always produces convex regions that lie inside the data cloud,
so that enforcing the non-negative and additivity to one conditions would be impossible
for some data points. Negative values are considered as zero values and the additivity
to one condition is not important as long as we are looking for the maximum abun-
dances to assign meaning to the resulting spatial distribution of the coefficients. These
coefficients are interpreted as the regressor coefficients corresponding to the decompo-
sition of the fMRI voxel time series into the set of endmembers. That is, high positive
values are interpreted as high positive correlation with the time pattern of the corre-
sponding endmember. The interpretation of the endmember time series pattern is rather
straightforward in some cases (i.e. the background noise), but it is difficult in general.
Therefore, the unmixing process aims to to find regions of related behavior, as it done
in ICA-based studies [4].

3 Lattice Independence and Lattice Autoassociative Memories

The work on Lattice Associative Memories (LAM) stems from the consideration of
the algebraic lattice structure (R,∨,∧,+) as the alternative to the algebraic frame-
work given by the mathematical field (R,+, ·) for the definition of Neural Networks
computation. The operators ∨ and ∧ denote, respectively, the discrete max and min
operators (resp. sup and inf in a continuous setting). Given a set of input/output pairs
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of pattern (X,Y ) =
{(

xξ,yξ
)
; ξ = 1, .., k

}
, a linear heteroassociative neural network

based on the pattern’s cross correlation is built up as W =
∑

ξ yξ · (xξ
)′
. Mimick-

ing this constructive procedure [14,15] propose the following constructions of Lattice

Memories (LM): WXY =
∧k

ξ=1

[
yξ × (−xξ

)′]
and MXY =

∨k
ξ=1

[
yξ × (−xξ

)′]
,

where × is any of the ∨� or ∧� operators. Here ∨� and ∧� denote the max and min ma-
trix product [14,15]. respectively defined as follows: C = A ∨� B = [cij ] ⇔ cij =∨

k=1,...,n {aik + bkj} , and C = A ∧� B = [cij ] ⇔ cij =
∧

k=1,...,n {aik + bkj} .
Definition 1. Given a set of vectors

{
x1, ...,xk

} ⊂ R
n a linear minimax combination

of vectors from this set is any vector x ∈R
n
±∞ which is a linear minimax sum of these

vectors: x = L (x1, ...,xk
)

=
∨

j∈J

∧k
ξ=1

(
aξj + xξ

)
, where J is a finite set of indices

and aξj ∈ R±∞ ∀j ∈ J and ∀ξ = 1, ..., k.

Definition 2. The linear minimax span of vectors
{
x1, ...,xk

}
= X ⊂ R

n is the set of
all linear minimax sums of subsets of X, denoted LMS

(
x1, ...,xk

)
.

Definition 3. Given a set of vectors X =
{
x1, ...,xk

} ⊂ R
n, a vector x ∈R

n±∞ is
lattice dependent if and only if x ∈ LMS

(
x1, ...,xk

)
. The vector x is lattice inde-

pendent if and only if it is not lattice dependent on X. The set X is said to be lattice
independent if and only if ∀λ ∈ {1, ..., k} , xλ is lattice independent of X\{xλ

}
={

xξ ∈ X : ξ �= λ
}
.

Definition 4. A set of vectors X =
{
x1, ...,xk

} ⊂ R
n is said to be max dominant if

and only if for every λ ∈ {1, ..., k} there exists and index jλ ∈ {1, ..., n} such that

xλ
jλ
− xλ

i =
k∨

ξ=1

(
xξ

jλ
− xξ

i

)
∀i ∈ {1, ..., n} .

Similarly, X is said to be min dominant if and only if for every λ ∈ {1, ..., k} there
exists and index jλ ∈ {1, ..., n} such that

xλ
jλ
− xλ

i =
k∧

ξ=1

(
xξ

jλ
− xξ

i

)
∀i ∈ {1, ..., n} .

Definition 5. A set of lattice independent vectors
{
x1, ...,xk

} ⊂ R
n is said to be

strongly lattice independent (SLI) if and only if X is max dominant or min dominant or
both.

Conjecture 1. [17] If X =
{
x1, ...,xk

} ⊂ R
n is strongly lattice independent then X

is affinely independent.

4 Endmember Induction Heuristic Algorithm (EIHA)

Let us denote
{
f (i) ∈ R

d; i = 1, .., n
}

the time series in fMRI voxels, −→μ and −→σ are,
respectively, the mean vector and the vector of standard deviations computed compo-
nentwise over the voxels, α the noise correction factor and E the set of already discov-
ered vertices. The gain parameter α controls the amount of flexibility in the discovering
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1. Shift the data sample to zero mean
{fc (i) = f (i) −−→μ ; i = 1, .., n}.

2. Initialize the set of vertices E = {e1} with a randomly picked sample. Initialize the set of
lattice independent binary signatures X = {x1} =

{(
e1

k > 0; k = 1, .., d
)}

3. Construct the LAM’s based on the lattice independent binary signatures: MXX and WXX .
4. For each pixel fc (i)

(a) compute the noise corrections sign vectorsf+ (i) = (fc (i) + α−→σ > 0) and f− (i) =

(fc (i) − α−→σ > 0)

(b) compute y+ = MXX ∧� f+ (i)
(c) compute y− = WXX ∨� f− (i)
(d) if y+ /∈ X or y− /∈ X then fc (i) is a new vertex to be added to E, execute once 3 with

the new E and resume the exploration of the data sample.
(e) if y+ ∈ X and fc (i) > ey+ the pixel spectral signature is more extreme than the stored

vertex, then substitute ey+ with fc (i) .
(f) if y− ∈ X and fc (i) < ey− the new data point is more extreme than the stored vertex,

then substitute ey− with fc (i) .

5. The final set of endmembers is the set of original data vectors f (i) corresponding to the sign
vectors selected as members of E.

Algorithm 1. Endmember Induction Heuristic Algorithm (EIHA)

of new endmembers. The detailed description of the steps in the heuristic algorithm is
presented as Algorithm 1. The starting endmember set consists of a randomly picked
pixel. However, this selection is not definitive, because the algorithm may later change
this endmember for another, more extreme, one. The noise correction parameter α has
a great impact on the number of endmembers found. Low values imply large number
of endmembers. It determines if a vector is interpreted as a random perturbation of an
already selected endmember. This algorithm does not need a priori information about
the nature of the data points that we want to detect. It runs once over the image and
finds the most salient data samples on the fly. For this reason we say that it is an on-line
algorithm.

5 Independent Component Analysis (ICA)

The Independent Component Analysis (ICA) [11] assumes that the data is a linear com-
bination of non Gaussian, mutually independent latent variables with an unknown mix-
ing matrix. The ICA reveals the hidden independent sources and the mixing matrix.
That is, given a set of observations represented by a d dimensional vector x, ICA as-
sumes a generative model x = As, where s is the M dimensional vector of indepen-
dent sources and A is the d × M unknown basis matrix. The ICA searches for the
linear transformation of the data W, such that the projected variables Wx = s are as
independent as possible. It has been shown that the model is completely identifiable
if the sources are statistically independent and at least M − 1 of them are non Gaus-
sian. If the sources are gaussian the ICA transformation could be estimated up to an
orthogonal transformation. Estimation of mixing and unmixing matrices can be done
maximizing diverse objective functions, among them the non gaussianity of the sources
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and the likelihood of the sample. We have used the FastICA [10] algorithm available at
http://www.cis.hut./projects/ica/fastica

Application of ICA to fMRI has been reviewed by [4]. Reports on the research ap-
plication of ICA to fMRI signals include the identification of signal types (task related
and physiology related) and the analysis of multisubject fMRI data. The most common
approach is the spatial ICA that looks for spatial disjoint regions corresponding to the
identified signal types. It has been claimed that ICA has identified several physiological
noise sources as well as other noise sources (motion, thermodynamics) identifying task
related signals. Diverse ICA algorithms have been tested in the literature with incon-
clusive results. Among them, fastICA, the one that we will apply in the case study, did
identify the task related signals consistently. Among the clinical applications, ICA has
been used to study the brain activation due to pain in healthy individuals versus those
with chronic pain [1], the discrimination of Alzheimer’s patients from healthy controls
[9], the classification of schizophrenia [2] and studies about the patterns of brain acti-
vation under alcohol intoxication [3].

6 A Case Study

The experimental data corresponds to auditory stimulation test data of single person1.
These data are the result of the preprocessing pipeline that removes many noise sources.
These whole brain BOLD/EPI images were acquired on a modified 2T Siemens MAG-
NETOM Vision system. Each acquisition consisted of 64 contiguous slices. Each slice
being a 2D image of one head volume cut. There are 64x64x64 voxels of size 3mm x
3mm x 3mm. The data acquisition took 6.05s, with the scan-to-scan repeat time (RT)
set arbitrarily to 7s., 96 acquisitions were made (RT=7s) in blocks of 6, i.e., 16 blocks of
42s duration. The condition for successive blocks alternated between rest and auditory
stimulation, starting with rest. Auditory stimulation was bi-syllabic words presented
binaurally at a rate of 60 per minute. Due to T1 effects it is advisable to discard the first
few scans (there were no “dummy” lead-in scans). We have discarded the first 10 scans.

Voxel time series are normalized susbtracting the mean value of each voxel time se-
ries independently, so that the plots are collapsed around the origin. This mean substrac-
tion corresponds to an scale normalization in the Lattice Computing sense. It removes
scale effects that hinder the detection of meaningful lattice independent vectors. In the
context of the GLM this normalization corresponds to the estimation of the voxel linear
model offset.

The application of the EIHA algorithm with α = 20 to the lattice normalized time
series of the whole 3D volume produces the collection of eleven endmembers shown
in figure 1. Attending to the intensity scale it can be assumed that the first endmem-
ber (top left plot) corresponds to the background (thermodynamical) noise, while the
remaining endmembers correspond to some kind of hemodynamic response pattern or
noise source. To identify the endmember which is closer to modeling the task, we com-
pute the correlation of the endmembers with the square wave represent the task. We

1 The dataset is freely available from ftp://ftp.fil.ion.ucI.ac.uk/spm/data, the file name is
snrfM00223.zip. The functional data starts at acquisition 4, image snrfMOO223-004.
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Fig. 1. Eleven endmbers detected by EIHA over the lattice normalized time series of the whole
3D volume

Fig. 2. Detected task related activations for endmember #9 from figure 1. White voxels corre-
spond to abundance values above the 99% percentile of the distribution of the abundances for this
endmember on the whole volume.

find that endmember #9 (counting row-wise in figure 1) has the maximum such correla-
tion. We present in figure 2 the activations corresponding to it, where the slices shown
roughly try to show the region of the auditory cortex were the task-related activations
are expected. Top row is the axial and coronal cut, and the bottom row shows two
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Fig. 3. Eleven time series sources detected by fastICA over the lattice normalized time series of
the whole 3D volume

Fig. 4. Detected task related activations for source #6 from figure 3. White voxels correspond
to mixing values above the 99% percentile of the distribution of the mixing coefficients for this
source on the whole volume.

sagital cuts at both sides of the brain. White voxels in this figure correspond to voxels
with abundance value above the 99% percentile of the distribution of this endmember
abundance over the whole volume. It can be appreciated that most of the activations fall
in the auditory cortex region.
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The application of the fastICA algorithm with the number of sources set to 11, to
match the number of endmembers found by the EIHA, to the lattice normalized time
series of the whole 3D volume produces the collection of eleven endmembers shown
in figure 3. Counting row-wise, source #8 may correspond to the background noise,
while source #6 is the one most correlated with the task. Figure 4 shows the axial,
coronal and sagital cuts corresponding to the auditory cortex, organized like in figure
2, with activation clusters, computed as the 99% percentile of the distribution of the
spatial mixing values for source #6 over all the volume, superimposed. The task-related
activations are localized in the auditory cortex, but they are less coherent than the EIHA
found ones.

7 Conclusions and Discussion

We have proposed and applied the endmember induction algorithm EIHA discussed in
[7] to the model-free (unsupervised) analysis of fMRI. We have discussed the similari-
ties of our approach to the ICA application to fMRI activation detection [4,18]. In our
approach the temporal sources correspond to endmembers detected by the EIHA algo-
rithm and the spatial mixing coefficients correpond to the abundance volumes obtained
by unmixing the voxel time series on the basis of the found endmembers.

The first obstacle that we find in this endeavor is that the distribution of the fMIR
voxel time series is not well aspected for the detection of Lattice Independence as a
meaningful characteristic. In fact the voxel’s fMRI time series show a dense distribu-
tion of intensity displacements from the origin, so almost all of them are lattice depen-
dent and our proposed algorithm only identifies two endmembers on the raw data. To
overcome this problem we apply a Lattice Normalization which corresponds to a scale
normalization in the sense of Lattice Computing. We substract the mean of its time se-
ries to each voxel time series. The resulting lattice normalized data set shows a much
more rich structure in terms of Lattice Independence. Our computational experiment
with a well known fMRI data set, provided with the distribution of the SPM software,
show some promising results in the sense that we can at least identify a task related
endmember, and that other effects, such as thermodynamical noise, are also clearly
identified. We have found also a strong agreement of the spatial localizations of a task
related source found by the fastICA on the same dataset, with the ones provided by our
approach. Future works must address works on clinical research, and the extension of
the approach to groups and multiple groups.
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Abstract. This paper introduces the application of the feature trans-

formation approach proposed by Torkkola [1] to the domain of image

processing. Thereto, we extended the approach and identifed its advan-

tages and limitations.

We compare the results with more common transformation methods

like Principal Component Analysis and Linear Discriminant Analysis for

a function approximation task from the challenging domain of video-

based combustion optimization. It is demonstrated that the proposed

method generates superior results in very low dimensional subspaces.

Further, we investigate the usefulness of an adaptive variant of the

introduced method in comparison to basic subspace transformations and

discuss the results.

1 Introduction

Optimizing the combustion of coal in power plants is an important task, since
increasing efficiency equals a reduction of carbon oxides (CO and CO2), nitrogen
oxides (NOx) and other greenhouse gases in the flue gas. But all data normally
measured at a plant is insufficient to build meaningful models and controllers.
Therefore, our approach includes cameras to actively observe the flame itself.
On one hand, with this additional information about the combustion process
improved controllers can be built automatically. On the other hand, relying on
image data introduces additional challenges.

The use of the original pixel space for learning algorithms that operate on
image data is a rare occurrence. The high dimensionality of this space is a
major obstacle in this respect, because this leads to a high complexity of the
learning problem and a high number of free parameters to be estimated for an
approximation or classification task. Furthermore, the feasibility of this approach
is restricted by the computational effort required to handle the data.

Hence, preprocessing is applied to extract useful information from the original
images. One way to achieve this is the use of designed features like certain
geometric shapes, intensity values or certain texture patterns. This implicitly
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requires at least a bit expert knowledge by the system designer to decide which
methods are meaningful for the given problem.

Another way to cope with the problem are feature transformation algorithms
which attempt to find an image subspace that contains much useful informa-
tion. Typically these methods are guided by a statistical criterion to achieve this
goal. Perhaps the best known representatives are Principal Component Analy-
sis (PCA) [2], Independent Component Analysis (ICA) [3], Nonnegative Matrix
Factorization (NMF) [4] and Linear Discriminant Analysis (LDA) [2]. The ba-
sic forms of these algorithms produce linear transformations only, but there are
several non-linear (e.g. kernel-based) extensions for all methods, but PCA and
ICA specifically attracted a lot of attention in this respect.

The PCA transforms data into a subspace based on the eigenvectors of the
data covariance matrix, hence this produces axes along the most variant parts of
the data. High eigenvalues mark high variant directions. The resulting subspaces
are often named according to the task, like eigenfaces or, for combustion opti-
mization, eigenflames. This technique, as well as ICA and NMF, are purely data
driven. They only consider the data intrinsic relations, but not the recognition or
approximation task to be solved. ICA tries to find subspaces that represent inde-
pendent data parts. A contrast function like Negentropy or Mutual Information
is used to measure the independence of the resulting subspace dimensions. The
NMF transformation’s unique selling point is that all subspace dimensions and
resulting data points are in fact non negative, which is a constraint for certain
application areas.

Unlike the aforementioned methods, algorithms like the LDA take the target
of the learning problem into account to find a suitable subspace representation. It
derives itself from the Fisher criterion [5] and aims at a subspace transformation
that allows a good approximation with linear learning machines.

The Maximal Mutual Information (MMI) transformation introduced by Tork-
kola [1] is similar in this respect. It takes the target values into account, but unlike
the LDA it does not make any assumptions about a specific learning machine.
Instead, it tries to maximize the information content about the target in the
new subspace. The basic ideas and mechanisms of this approach are recapped in
Sect. 2.

The application of this approach to image data is straightforward, but requires
the consideration of its limitations for this high dimensional domain. Addition-
ally, we propose an supplemental step in the algorithm to capture image specific
traits. A comparison to PCA approaches on a flame image prediction task com-
pletes Sect. 3.

Since our intended application area, the intelligent control of combustion pro-
cesses in power plants, is non-stationary, the feature extraction’s requirements
include a certain adaptivity. A comparison of different initializations, PCA and
LDA is given, and we will discuss the use of the MMI transformation as adaptive
system and the pitfalls associated in Sect. 4.
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Fig. 1. The original image data x is transformed by some function g into a lower-

dimensional space. An evaluation criterion, the Quadratic Mutual Information, mea-

sures the correspondence to the desired target value t, e.g. the nitro oxides to the

reduced images y. From this criterion, a gradient information δI/δw is derived and

used to adapt the transformation parameters w.

2 Feature Extraction Using Mutual Information
Maximization

The Maximal Mutual Information approach of Torkkola [1] is built upon the
Information-Theoretic Learning (ITL) framework introduced by Principe [6].
The idea is to find a transformation that maximizes the Mutual Information
(MI) between the transformed data in a certain subspace and the desired target
values. A number of “forces” is computed to be used as the direction in a gradient
ascent to maximize the MI.

The basic adaption loop for the optimization process is shown in Fig. 1. The
original input data sample xi is transformed by some transformation g with the
parameters w into a lower dimensional space. The transformed data is denoted
by yi. The goal is to find those transformation parameters w that confer the
most information into the lower dimensional space with respect to the target.

The update rule for the parameters of the transformation is given by the
following equation, where α denotes the learning rate

wt+1 = wt + α
∂I

∂w
= wt + α

N∑
i=1

∂I

∂yi

∂yi

∂w
. (1)

Finding the gradient ∂I/∂w can be split into the sample wise computation of
the information forces ∂I/∂yi and the adaption of the parameters ∂yi/∂w.

The second part is the simple one, since there exists a number of suitable
transformations g, e.g. linear transformations or neural networks like Radial Ba-
sis Function Networks [1] or Multi Layer Perceptrons [7]. The only requirement
is that they have to use the gradient information ∂yi/∂w to adapt their param-
eters. All following examinations are limited to the linear transformation case,
because this allows easy comparison with PCA or LDA and a visual inspection
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of the results is possible as well. The parameters w that have to be estimated
are all elements of the linear projection matrix W . The equation for the linear
transformation is given by

yi = WTxi. (2)

The size of W is dx times dy with dx > dy where dx is the number input of
dimension in X and dy is the dimensionality of the subspace. Furthermore, W
is assumed to be orthonormalized.

The calculation of the information forces ∂I/∂yi is computationally more de-
manding. The straightforward approach would be to use the well known Mutual
Information

I(Y, T ) =
∫

y

∫
t

P (y, t) log
P (y, t)
P (y)P (t)

dtdy (3)

to evaluate the correspondence between the transformed data and the target
values. But due to the associated problems of estimating this criterion in high
dimensional spaces, Torkkola proposes a non-parametric estimation based on
Quadratic Mutual Information I2

I2(Y, T ) =
∫

y

∫
t

(p(y, t)− p(y)p(t))2dtdy (4)

and kernel density estimation with Parzen windows. Application of the binomial
formula splits equation 4 in three parts which are interpreted as information
potentials and the derivatives as information forces.

∂I2

∂yi
=

∂VIN

∂yi
+
∂VALL

∂yi
− 2

∂VBTW

∂yi
(5)

VIN represents the “attractive potential” of all samples with the same/similar
target value, VALL is the same but for all samples, and VBTW is the “repul-
sive potential” (negative sign) between samples of different target values. The
derivatives show the direction each sample has to move to maximize the objec-
tive function. The actual computation of these terms is reduced to interactions
between all pairwise samples using Gaussian kernel density estimates. The reader
is referred to [1] for the details that are omitted here.

In Algorithm 1 the procedure for one adaption step is given. These steps are
repeated until convergence of the parameters w.

3 Image Data Processing

According to Torkkola [1], the previously described system is suitable for small
input dimensions, but higher dimensions can be problematic. On one hand, image
data is intrinsically high dimensional, because each pixel position is considered
an input. On the other hand, treating each pixel as an independent input channel
neglects the fact that neighbor pixels from the camera are dependent on each
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Algorithm 1. Maximal Mutual Information Adaption Step
Input: current transformation Wt, the input data X and the target values T
Output: new transformation Wt+1

Y = g(W,X) = W T X // computation of the transformed data
∂I2

∂yi
=

∂VIN
∂yi

+
∂VALL

∂yi
− 2

∂VBT W
∂yi

//estimation of the different forces
∂Y
∂W

= XT //The gradient of the linear transformation matrix W

W ‘
t+1 = Wt + α ∂I

∂W
= wt + α

∑N
i=1

∂I
∂yi

∂yi
∂W

//Adaptation step

W ‘
t+1 = GaussianFilter(W ‘

t+1) //Supplemental step for images, see Sec. 3

Wt+1 = GramSchmidt(W ‘
t+1) //Orthonormalization step to ensure W T W = I

other. We assume that informative parts of the image are not defined at pixel
level, but by a more general, arbitrary shaped region, that is approximated on the
pixel level. Thus, it is very unlikely that neighboring pixel have a rank different
information content.

To cope with this problem and forcing the filter to consider these neighbor-
hood dependencies, we introduced an additional step into the algorithm. After
computing the new filter according to the gradient information and before the
orthonormalization step, we perform a smoothing with a Gaussian filter in the
two dimensional image space on the filter mask. This does not only distribute
information between neighbor input dimensions, but increases stability and con-
vergence speed, because the algorithm finds smooth solutions. An additional
benefit is the obvious reduction of measurement noise in the observations.

This approach is not suitable for images only, but every continuous domain
that is sampled and approximated at certain points and has a clear neighborhood
definition.

We used 1.440 small images of the size 40x32 pixels which equals 1.280 input
dimensions for each sample. All images are flame pictures taken from a coal
burning power plant. An example image with a higher resolution is shown in
Fig. 2. The respective targets are measurements like the nitrogen oxides (NOx),
carbon monoxides (CO) or excess air (O2) produced by the combustion. We
used Multi Layer Perceptrons as function approximators and evaluated the per-
formance of different instances of the ITL framework with different parameters
like the dimensionality of transformed data, and compared them with results
from PCA based transformations.

The first tests were made with a visual examination of the resulting filter
masks, similar to the well known eigenfaces. Images with obvious structures are
considered “stable” solutions, while “unstable” results are characterized by high
frequent noise and no structures in the filter masks. See Fig. 3 for examples
on a higher resolution (134x100 pixels). Interestingly, if stable solutions were
found, they tend to be similar to each other, besides differences in the sign of
the filter masks, which relates to the same axis but the opposite direction. More
discussions on this topic are following in Sec. 4.

Different initializations for the transformation parameters w result in the clear
preference for PCA or LDA, since randomly initialized filters tend to produce
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Fig. 2. An example of a black and white image taken from the furnace of a coal fired

power plant. Clearly visible is the furnace located wall on the right. Roughly in the

middle of the images is the burner mouth were coal dust is inserted to the furnace and

ignites. Around this area on the wall, slag (molten ash) is visible.

unstable results. Hence the MMI method is more of an objective driven refine-
ment for these plausible starting guesses.

The possible dimensionality of the reduced feature space dy is greatly depen-
dent on the number of available samples. This makes sense with respect to the
curse of high dimensionality, because the higher the dimensionality, the more dif-
ficult it is to estimate the required probability distributions. For the presented
setup of data we noticed two things: First, the bigger dy, the more it deviates
from a PCA initialization. Second we observed that the breaking point, where
it switches from stable subspace transformations to unstable results, is between
dy = 4 and dy = 5. By doubling the number of samples to 3.600, we get stable
results in the five dimensional subspace, but dy = 6 and higher remain unstable.

Further experiments where conducted with images subscaled to an even
smaller size of 10 x 8 pixels per image. The reductions of the input dimen-
sionality dx does not improve the results considerably. On the other hand, using
images with 160x120 pixels decreased stable results to 3 dimensions. This is due
to the linear connection between dx and the number of parameters w compared
to the exponential influence of dy as discussed above.

The next experiments are conducted to test whether the MMI subspace trans-
formation yields any improvements compared to PCA-based eigenflames. Taking
the previous results into account, the target dimensionality is limited to dy <= 3
and the MMI subspace search started with an PCA initialization.

The results clearly demonstrate the benefits of the MMI approach. The ap-
proximation errors are smaller or at least in the same magnitude of the PCA-
based approach. By adding more channels, the PCA can achieve similar results
to the MMI transformation, but there is always the need of additional dimensions
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Fig. 3. (Left) A stable filter mask. (Right) An unstable one. Both subspace trans-

formations are the results of the optimization procedure described in this section and

depict the first dimension of the new subspace. The white areas are coding positive

values, the black regions negative ones, while the gray areas are near zero and thus

unimportant, like the round margin in the left image. One important fact to remem-

ber is, that the sign does not tell anything about the importance of this pixel, while

the absolute value does. This kind of visualization is comparable to Eigenflames pro-

duced by PCA, besides in this case it doesn’t depict the variances in the data, but the

information.

Table 1. Comparison of the same MLP trained with PCA subspace features or MMI

subspace features respectively for three different targets. All prediction errors are the

MSE from an independent test set. The high level of noise present in the data leads

sometimes to the effect of increasing errors when providing additional input features.

Prediction Error for CO Prediction Error for O2 Prediction Error for NOx

dy PCA MMI PCA MMI PCA MMI

1 3.11 3.07 0.90 0.24 28.88 25.99

2 3.33 2.43 0.25 0.29 35.50 25.00

3 4.07 2.66 0.22 0.28 27.65 30.26

to represent the information. Hence, we conjecture that the MMI method is able
to compress the relevant information better than the PCA eigenflames.

One negative aspect concerning the MMI approach are the computational
costs associated with the density estimation and gradient computation. While
PCA is fast to compute, MMI takes a lot of time (which is mainly dependent
on the number of input images used). For several thousand images it can easily
take one or two hours to obtain the filter masks. Hence, the MMI methods can
be applied only if there are no hard time constraints.

To conclude this section, the experiments show that it is beneficial to use the
MMI system to improve PCA based subspace transformation for image data.
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4 Adaptive Feature Transformation

It is assumed that the presented system is used as a preprocessor for a controller
or function approximator which is able to handle slow adaptations itself. The
goal for the adaptive feature extraction system is to provide similar features if
the underlying process is in a similar state, and different features in different
process states.

There are several configurations of the subspace transformation parameters w
possible that achieve a maximal value with respect to the optimization goal of
maximizing the Quadratic Mutual Information even for the optimistic case of a
single, global maximum. For example, a scaling of the matrix W with a non-zero
scalar will not change the information content of the results. All but two of the
possible solutions are eliminated during the orthonormalization step. This step
restrains all configurations in the parameter space to the hyper unit sphere. The
two remaining valid solutions are w∗ and −w∗. These transformations obviously
contain the same information, since the only discriminating feature between
data transformed by the two filter is the inverted sign. This behavior is not
desired since the same state can yield two different subspace transformations
that produce opposite transformed data, which are completely different to the
system using the transformed features.

If the process is stationary, this problem can be overcome by the use of a
suitable similarity measure to compare the old filter configuration wold to wnew

and −wnew accepting the better match. But it is quite hard to define good
similarity measures and thresholds if the process is transient. The most obvious
work around is a different starting initialization. Instead of starting from the
PCA subspace, it is possible to use the previous MMI subspace as initialization
point. Assuming that the transient process changes are slow, compared to the
adaptive updates of the filter, these changes will yield slow changes of the relevant
feature areas. Thus, the subspace transformations will be similar to each other,
which justifies the use of the previous solution as a starting point.

The actual adaptivity can be achieved on different time scales. One possibility
is to adapt the current filter into the new one after a few measurements, using
the techniques described in [1](Appendix A) where not the whole available data
is used for a adaption step but only a small subset. The extreme case is the
use of two samples. Torkkola draws them randomly, while for an online system
these samples are the last measurements. For those samples one adaption step
is applied (see Algorithm 1).

For applications with very noisy measurements, this may introduce the prob-
lem that the systems tries to adapt to the noise, rather than the underlying
process changes. Hence, slower timescales change the procedure to collecting a
certain amount of data before performing a batch update of the filter.

For the online application of the system of the power plant, we are interested
mainly in very slow changes induced by wear and tear of the furnace or coal
type changes. There are other changes on a much faster timescale, but they are
even harder to detect, due to the presence of a high measurement noise. For
the experiments presented here, a daily batch update was used. We used the
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Fig. 4. Each of the columns represents the results of the MMI adaption process for the

flame images and always shows the first component of the new subspace. The target

values used for the training process of the LDA and MMI are the corresponding ni-

trogen oxides (NOx) measurements. The differences in each row are the used subspace

transformations. First row: PCA. Second row: LDA. Third row: MMI initialized

with the current PCA result. Fourth row: MMI initialized with a global PCA result.

Fifth row: MMI initialized with the previous MMI result. The most interesting ob-

servations are the changes over time (from column to column), since smaller changes

are desired.

collected data of five elapsed days for training purposes, and the most recent
day as test set. We used this data to form PCA, LDA and MMI subspaces
for eight consecutive days. For the MMI method we employed three different
initialization points. First, we used the result of the PCA on that time frame
for this purpose. Second, a fixed eigenflames subspace transformation calculated
over the complete data was used, and third, the previous MMI result was used
for the initialization.

Some results of these experiments are shown in Fig. 4. The PCA results (first
row) are the most stable ones over time, the variance in the data over time
is similar. But here again is the possible pitfall of the sign inversion problem
between column 2 and 3. The LDA results (second row) identify big connected
regions, but the shapes are completely different each day. Independent of the
initialization, all MMI results share the tendency to produce less homogenous
regions. The MMI results based on the the PCA initializations (third and fourth
row) behave similar to the LDA subspace transformations, they are different
each day. Using the previous MMI subspaces as starting points (last row) yield
very useful but adapting filter masks.

These experiments show that the initialization with the previous MMI re-
sults is the most promising way to handle the adaptation task in a changing
environment.
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5 Conclusion and Future Work

Our experiments using the MMI feature subspace transformations for image data
processing show that the approach is indeed useful, but has its limitations. The
information extracted is either more informative for a classifier than a PCA-
based subspace, or at least it is possible to compress the same information into
a lower dimensional subspace than PCA. But to achieve stable results the use of
PCA as a initialization is required anyway, so the MMI is in practice a objective
driven refinement of the results obtained by PCA or LDA.

These positive results only hold true for rather low dimensional subspace
constructs. If the desired transformation projects into a still high dimensional
space, the MMI approach will get stuck at a local minimum very soon or venture
into directions were stable solutions are hard to find by gradient descent. In these
cases the use of LDA or PCA is superior to the MMI method.

The stepwise gradient estimation of the MMI subspace is an advantage for
an adaptive online system. It allows the use of previous solutions to estimate a
similar subspace which captures at least some changes of the underlying process
without a complete redefinition of the channels in the new subspace.

Possible directions for future work include the investigation of the extension
to nonlinear transformations like neural networks in the image domain. The
adaptive changes of the subspace transformations focus on finding that sub-
space which is most important to the tasks at hand are engineered from the
practitioners point of view. Hence investigating the connection of our proposed
system to biological inspired, attention-based systems would be an interesting
venue, too.
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Abstract. In this paper we propose a bio-inspired architecture for the

visual reconstruction of silhouettes of moving objects, based on the be-

haviour of simple cells, complex cells and the Long-Range interactions of

these neurons present in the primary visual cortex of the primates. This

architecture was tested with real sequences of images acquired in natu-

ral environments. The results combined with our previous results show

the flexibility of our propose since it allows not only to reconstruct the

silhouettes of objects in general, but also, allows to distinguish between

different types of objects in motion. This distinction is necessary since

our future objective is the identification of people by their gait.

Keywords: Bio-inspired; visual cortex; silhouettes reconstruction.

1 Introduction

Nowadays, the use of video sequences to obtain information about objects has
become one of the most challenging issues in artificial vision area. Special at-
tention has been focused on the task of detecting and recognising human figures
in motion, the main reason is that through this task many applications can be
derived, like video surveillance for security [1–3]. Basically and according to liter-
ature, the main approaches used for these applications can be classified in three
main categories.

The first one is called the 3D model-based approaches. Some of the approaches
use Bayesian information to construct a 3D model from 2D views [4–6]. Although,
the majority requires the use of multiple-views of the human body in order to
construct an accurate model of the body [7]. A lot of research has been done
under this approach with very good results. So the problem here is the integration
of the selected interest points, from multiple perspectives, for the construction
of the model, it would turn into a very complex problem as shape turns into a
more complex figure.

Another alternative to this problem is the second approach called
2D silhouette-based models. This alternative consist of identifing the subject by
matching the hypotheses of pose structure from the observation and choosing
the most similar hypothesis to the DB [8, 9]. Even though the main problem in
the results shown (over 90% of success on their DB’s) that it is obvious since the

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 745–754, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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accuracy depends on the amount and quality of the sample data. So changing
from a motion type to another (like from walking/running to dancing) is not
as transparent as it seems since new sample data must be provided in order to
achieve the recognition of the new actions [10–12].

Also there is an important detail about the last two approaches, that is, they
use databases composed of only one object in the scene. So searching for the
human shape figure, in most of the cases can be done by simply subtracting the
object from environment. But what can be done if we don’t even know the shape
of the object in motion? one possible solution is by trying to locate the areas
where motion exists, this is the main goal of the third approach, the models based
on motion, which are based on energy measurements in a spatial-temporal way
[13–15]. Besides, this approach has the capability of being environment invari-
ant, so changes in environment configuration can be easily overcome. However,
the main problem with this approach is that it uses extra information, such as
learning human actions, to identify the interest points (joints or extremities) in
order to make the recognition.

Even though this detection and recognition task requires a huge computa-
tional effort, it seems that it is a simple task for the primates. They have the
capability to generalise the detection of object shapes in environments, no matter
the presence of background motion, neither the uniformity of the illumination
conditions. Several experiments with functional MRI [16, 17] have shown clues
about the allocation and functioning of key areas involved in the localisation and
recognition of figures in motion. In the case of the visual cortex, the areas are
divided into two major pathways [18, 19], the ventral one (processing the form)
and the dorsal one (which process the spatial localisation).

Although there are very few computational models that successfully explain
or describe the functioning of this area, some good results can be found [20–22].
To achieve this goal we will explore some work that describe the capabilities of
the brain to recognise and isolate objects from background (with uncontrolled
conditions). In the following sections we will mention the biological motivations
and foundations of our work, our proposed architecture, also analyse and describe
our results, and finally we’ll mention the conclusions we have achieved so far.

2 Biological Bases

In this section we describe the biological foundations of our methodology.
Recent research on computational neuroscience has provided an improved un-
derstanding of human brain functionality and bio-inspired models have been
proposed to mimic the computational capabilities of the brain for both mo-
tion and shape perception and understanding. So the main question for us is:
how does brain subtracts figures in motion from the environment? First of all,
early visual processing comprises of the magnocellular and parvocellular path-
ways. Broadly speaking, the magnocellular pathway carries low-spatial-frequency
information, it feeds primarily into the dorsal stream and is concerned with
the spatial information (also known as “where” pathway). The parvocellular
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Fig. 1. Proposed architecture. It is composed of a bank of 2 phases and 8 oriented

simple cells, a non-liner integration complex cell model, and a Long-range mechanism

for orientations integration.

pathway carries higher-spatial-frequency information and is thought to con-
tribute to fine form vision in the ventral stream (also known as “what” pathway).

A cornerstone of our investigation are the functionality of a more specialised
type of cells in V1 area, which are presumably in charge of computation of ob-
ject’s contour, refinement and subtraction from background [23]. These tasks
are achieved by an anatomical pyramidal connectivity in V1. According to lit-
erature, it is clear that V1 primary and complex cells both react according
to its inner orientation and direction organisation. This functionality has in-
spired some work that considered the functionality of (V1) with a strong neural
cooperative-competitive interactions that converge to a local, distributed and
oriented auto-organisation [24–26].

However, one good question here is how information from oriented neurons
in V1 can be integrated to isolate the contour of objects in motion?. Thus, at
this point the problem can be separated into two tasks, the first one focused on
the extraction of objects in motion, since neurons in V1 are contrast sensitive
motion can be obtained by modelling the V1 neuron’s function in a tempo-
ral base [27]. The second problem involves the refinement of the contour, this
task is presumably located in area V1/V2, which can be explained by long-
range connections and lateral feedback between the layers of oriented cells in V1
[28–30].

Based on these clues we constructed our architecture for both human silhou-
ette detection and refinement, which is described in the following section.
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3 Proposed Architecture

The proposed architecture for visual detection of moving objects is an extension
from our previous work to detect articulated/non-articulated objects in mo-
tion [31]. This architecture is basically divided into three stages (see figure 1).
The first stage is the spatial treatment, a convolution with our Gabor-like ori-
ented filters with two phases. Next, a V1 complex cells modelled with a temporal
treatment to integrate the information from both phases of the Gabor-like filter.
And finally, we use a recurrent model proposed by Hansen and Neumann [32],
the purpose of this model is to evaluate local information with certain orienta-
tion (due to complex cells orientation responses) with a more global context and
to selectively enhance coherent activity by an excitatory process that modulates
the feedback.

It is important to mention that the used images were taken in outdoor en-
vironments, with uncontrolled conditions (neither for illumination, background
motion nor the automatic contrast adjustment of the camera), and they were
converted from RGB format to grey scale.

3.1 First Stage (A)

Our architecture applies the Gabor-like oriented filters that modelled the re-
sponses of the simple cells in V1. This filtering ensures the capability to detect
the local motion in a simple and local way, defined as follows.

Let I(x, y, t) be an image sequence representing the shape of intensity in the
time-varying image, assuming that every point has an invariant brightness. By
applying an oriented Gabor filter, Gθ,φ(x, y), we obtain :

Dθ(t) =
∫ ∫

t=0

dI(x, y, t)
dt

∗Gθ(x̂, ŷ) dx dy

=
d
∫ ∫

t=0 I(x, y, t) ∗Gθ(x̂, ŷ) dx dy
dt

(1)

where D is the result of the convolution between the Gabor functions and the
image, ∗ is the convolution function, x̂, ŷ the rotational values, φ is the phase
(φ = π,−π

2 ) and Gθ(x̂, ŷ) is computed in a standard way:

Gλ,θ,φ(x̂, ŷ) =
1

2πσxσy
e

(
− x̂2

2σ2
x
− γ2ŷ2

2σ2
y

)
e(2πi

x̂
λ +φ) (2)

This is our Gabor-like filter model the simple cells in V1 where γ is the eccen-
tricity of the receptive field, σxσy its dimensions, λ the wavelength and φ the
phase. For simplicity 0 ≤ θ = nπ/4 < 2 · π and the other parameters in the
filter were set by experimentation and considering the parameters described by
Castellanos [33].

The result of this stage is a set of oriented responses Dθ(t) which contain the
preferred responses of the simple cells in V1, for both orientations and phases.
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Generating a filter bank, for a given image, resulting into a 16-dimensional fea-
ture space for each point in the image.

The symmetrical and anti-symmetrical responses from the filter bank are
then combined to simulate the action of V1 complex cells as it is shown in the
following.

3.2 Second Stage (B)

There are biological clues ([34–36]) about the integration of several phases of
simple cells in V1 by complex cells in the same area. These complex cells have
the capability to respond selectively to lines or edges at particular orientations.
This property can be modelled by the so called Gabor energy function, which is
related to the behaviour of complex cells in V1 [37] and is defined in the following
way:

Cλ,θ(x, y) =
√
G2

λ,θ,0(x, y) +G2
λ,θ,(− 1

2 )(x, y) (3)

where Gλ,θ,0(x, y) and G2
λ,θ,(− 1

2 )(x, y) are the responses of the linear symmetric
and antisymmetric Gabor filters. The result is a new nonlinear filter bank of 8
channels, where each channel represents an orientation θ.

3.3 Third Stage (C)

In order to enhance the contribution of every oriented complex cell we use the
stage of “recurrent long-range interaction” model proposed by Hansen and Neu-
mann, at this stage, the contextual influences from complex cell responses are
modelled. Orientation-specific, anisotropic long-range connections provide the
excitatory input. The inhibitory input is given by isotropic interactions in both
the spatial and orientation domain. The spatial weighting function of the long-
range filter is narrowly tuned to the preferred orientation, reflecting the highly
significant anisotropies of long-range fibres in visual cortex. The equation for the
shunting for the long-range stage reads:

∂tWθ = −αWWθ + βWCθ(1 + η+net+θ )− η−Wθnet
−
θ (4)

where the activity of the long-range stage results from interactions between the
excitatory long-range input net+θ and the inhibitory input net−θ . The excitatory
long-range input net+θ is gated by the activity Cλ,θ to implement a modulating
rather than generating effect of lateral interaction on complex cell activities.
Similarly, the inhibition from net+θ is divisive. A difference between our archi-
tecture and the one used by Hanse and Neumann is that we are using the Gabor
filters for the simulations of simple cells in V1, since it has been proven that
its behaviour is more similar to this type of cells. Although its computational
expensiveness, due to the Gabor filter, our architecture shows higher resolution
of the silhouettes in the scene as it can be seen in the figure 2.
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Fig. 2. Comparison between responses computed with the model of Hanse and Neu-

mann (right column), and the responses computed by our architecture (left column)

Table 1. Results of the integration stage. On the left the input image, in the middle a

bank of 8-oriented complex cells from V1, and in the right the integration by the long

range mechanisms.
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Table 2. Activation patterns of neurons after Long-Range interaction process. These

graphs describes the activation patterns over the time. Note that here we remark the

correlations between local minimum values in the graph and the occlusion of a leg.

3.4 Human from Neurons Responses

Since we are searching for different patterns of activations of neurons that depend
on the type of motion presented in the sequence. Our theory is that due to the
way an articulated object moves (might be a human) it is possible to discriminate
it from other type of moving objects that are not articulated (vehicles). For this
we counted the responses and estimated the number of global activation of the
cells over the time. According to our previous results [31] this process allowed
us to distinguish between objects with an articulated (Humans) type of motion
from those that have no articulations (cars or bicycles).
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4 Results

One of the main contributions of this work is the capacity of our architecture
to achieve the process of completely extract figures in motion from background
by using biological bases. Also, this architecture helps to understand the mech-
anisms that have a key role in the generation of important information for the
reconstruction of shapes in motion in our brain. In order to test the behaviour
of the architecture we used a set of natural images, acquired in uncontrolled
outdoor conditions, see table 1.

Besides, by combining our previous technique for human detection and the
refinement of the shapes in video sequences we can isolate (by reconstructing
from multiple orientations from V1 complex cells) an object through all the
sequence of images. The result of the combination still allows the recognition
of humans in motion in the image sequence. Moreover, due to a more stable
patterns of neurons activation we identified regions of interest on the graphs,
which allow to recognise more precisely moments of the body in motion. For
example, the parts when it reaches a sudden decrease followed by an increase
of the amount of global responses represents a moment in the scene when the
one leg occludes the other, as it can be seen in the table 2. This behaviour is
repeated in even with different perspectives of the camera. The reason for this
behaviour is that even though if one leg never gets to occlude the other there is
always a point of lower motion, which occurs when one leg stops moving while
the other starts the motion process.

5 Conclusions and Future Work

In this work we presented a completely bio-inspired architecture for the recog-
nition and refinement of human shapes in motion. The architecture allows us
to achieve a good approximation to real shape of the object in motion. Even
though it can be known whether an object is a human or not before the process
of refinement, it is necessary to have a better approximation of the parts that
compose the whole object. We will use this better approximation to a real shape
to identify people based on their gait, by recognising and detecting relevant
points in the body (like joints).

However, it is important to mention that an important part of the behaviour
of the architecture is linked to the acquisition process. One of the most significant
troubles in general in the Artificial Vision area is about the uniformity of the
existing databases, it means that there is not a methodology for measuring nor
the conditions of the environment, nor the objects in motion that appear on
it. This problem requires a deeper study of the more relevant characteristics
and a methodology that allow to extract a measurement of the videos and its
conditions in order to establish a better reference point to evaluate the behaviour
of the exciting models.
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Abstract. Long Short-Term Memory (LSTM) is one of the best recent

supervised sequence learning methods. Using gradient descent, it trains

memory cells represented as differentiable computational graph struc-

tures. Interestingly, LSTM’s cell structure seems somewhat arbitrary.

In this paper we optimize its computational structure using a multi-

objective evolutionary algorithm. The fitness function reflects the struc-

ture’s usefulness for learning various formal languages. The evolved cells

help to understand crucial features that aid sequence learning.

1 Introduction

The problem of sequence learning is to learn the underlying function of a dynamic
system, so as to be able to either produce the next step in a sequence produced
by the system (sequence prediction), or to correctly classify a sequence (sequence
classification). Sequence learning is tremendously important in various applica-
tions, e.g. stock market prediction and speech and handwriting recognition.

Neural networks are among the best tools available for general sequence learn-
ing. Most often, a sliding time window approach is used, where a finite subse-
quence is presented to a feedforward neural network. This approach is ultimately
limited by the size of the time window. In the last decade, sequence prediction
using recurrent neural networks has attracted some attention because of their
simplicity and potential power. Here, the whole sequence is presented to the
network, which is then trained by backpropagation through time (BPTT) [16].
However, there are some serious practical limitations to most types of RNNs due
to their inability to capture long-term time dependencies. They suffer from the
problem of vanishing gradient [8], the fact that the gradient signal vanishes as
the error signal is propagated back through time. Because of this, events more
than 10 time steps apart can typically not be related.

1.1 Dealing with Vanishing Gradient: LSTM

One method purposely designed to avoid this problem is Long Short-Term Mem-
ory (LSTM [9]), which is a special RNN architecture capable of capturing long
term time dependencies. The defining feature of this architecture is that it con-
sists of a number of memory cells, which can be used to store activations during

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 755–764, 2009.
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Fig. 1. The incremental development of the LSTM cell. Input units are in teal, output

units in yellow. The gate units are shown as a half circle with as the output part and

two different squares as inputs. The time delayed connection is dashed, and the red

circle is the state unit. The second version of the LSTM cell adds a forget gate, and

the third version adds peepholes.

arbitrarily long time spans. Access to the memory cell is gated by units that
learn to open or close depending on the context. The memory cell’s internal
structure consists of a number of computational units, including the sigmoid
function, the tanh function, and the gating function, which are connected in a
graph structure. The fact that these units are differentiable ensures the memory
cell as a whole can be used in conjunction with BPTT, using the chain rule as
a connecting principle.

LSTM, unlike conventional RNNs, has been shown to be able to capture long-
term time dependencies, learn precise timing, and generalize well on examples
of both context-free and context-sensitive languages such as anbn and anbncn,
respectively, whereas normal RNNs completely failed to capture the underlying
structure of the problem [12]. LSTM networks have been shown to outperform
other RNNs on numerous time series requiring the use of deep memory [13].

Interestingly, the development of LSTM was incremental (see figure 1). First,
the concept of an internal state was introduced, guarded by input and output
gates [9]. A time delay connection from the state to itself with weight one ensured
that the state retained its value, unless the input gate was opened. Then, the con-
cept of a forget gate was introduced, which modulates the state’s self-connection
and enables precise timing abilities [4]. Finally, peepholes were devised, which are
direct connections from the state to all gates [5]. This final step enabled LSTM
to learn the underlying structure of the context-sensitive language anbncn up to
hundreds of time steps using just 10 sample sequences for training [3]. LSTM
has recently been shown to perform excellently on many tasks, including speech
processing and handwriting recognition (e.g. see [11]).

The incremental design evolution of the LSTM cell outlined above, taken
together with its somewhat arbitrary structure, suggests that the development
of LSTM could be retraced with artificial evolution, and that LSTM’s design
could even be bettered using the same means. In particular, we propose to use
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techniques introduced to evolve neural network topologies to evolve the internal
structure of LSTM-like memory cells, using the sequence learning capability of
networks of such cells as fitness functions.

1.2 Evolving Neural Topologies

A large body of work exists where evolutionary algorithms are used to create
and optimize topologies of neural networks. Topologies have been evolved for a
number of different purposes, including direct function approximation (without
subsequent learning), reinforcement learning, and the capacity to be trained by
gradient descent methods.

A core distinction can be made between indirect or generative approaches to
topology evolution, and direct approaches. The former try to replicate nature’s
ability to encode complex phenotypes (e.g. human brains) with vastly simpler
genotypes (e.g. human DNA), using graph rewriting systems or models of bio-
logical processes [10,7]. Apparently, the promise of scalability motivating these
approaches has so far not been realized. The latter category, which includes
the empirically successful NEAT algorithm [15], instead encodes the structure
directly into the genome. A central concept of NEAT is complexification; a net-
work starts out small, but the mutation operators can add new connections as
well as split existing connections to insert new neurons. The algorithm used in
this paper has similarities to NEAT, but lacks the recombination operator for
simplicity.

Usually, the weights of the neural connections are evolved at the same time
as the topology. However, Whiteson [17] evolved network topologies without
weights, with a fitness function based on their ability to be used as function ap-
proximators for TD-learning. Similarly, in this paper we do not evolve connection
weights, but use fitness functions based on capacity for sequence learning.

1.3 This Paper: Evolving Cell Structures

The purpose of our work is to investigate the space of architectural alternatives to
LSTM and to understand the structural features promoting successful sequence
learning through evolving structures of memory cells so as to optimize their
sequence learning capability. We view each memory cell as a miniature neural
network, consisting of a graph of connected computational units such as the
sigmoid, the tanh and the gating unit. For every run, the structure of the cell
is replicated a number of times to form a complete recurrent neural network.
We then use a NEAT-inspired direct topology evolution algorithm to evolve this
structure.

The fitness functions for structures are based on how well networks of memory
cells can learn different sequences using gradient descent. (Note that connection
weights are reset between fitness evaluations; evolution is thus not “Lamarck-
ian”). As it is crucial that all cell structures can be trained by gradient descent,
we constrain the structures to be directed acyclic graphs (DAGs) of differentiable
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Fig. 2. A network constructed with a hidden layer of three LSTM cells. The recurrent

connections from the hidden layer to itself, necessary for the cells to communicate with

each other, are shown as dashed.

units, plus time delay connections: time delay connections which may break the
DAG property but only propagate activations between time steps.

We start with evolving cells capable of learning simple versions of the prob-
lems; once these problems can be learnt satisfactorily, we increase the complexity
of the problem, a practice known as incremental evolution [6]. So as not to over-
specialize and develop cell structures only capable of learning solutions to one
type of problem, we test each cell on two problems. Using the learning capability
on each problem as a separate fitness measure means that we pose cell struc-
ture evolution as a multiobjective optimization problem, requiring the use of a
multiobjective evolutionary algorithm (MOEA) in our case the NSGA-II [2].

2 Methods

2.1 Memory Cell Representation

A memory cell structure is a set of computational units and a graph connecting
them to each other. Connections between units possess a flag indicating whether
the connection is time delayed and another flag indicating whether the connec-
tion is parameterized (i.e. has a trainable weight) or has a fixed weight of 1.0.
The former case is called a linear connection while the latter is called an identity
connection. There are several types of computational nodes: linear, sigmoid, the
hyperbolic tangent and the ‘gate’ unit, each having its own transfer function.
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– The linear node takes input x and produces output id(x) = x.
– The sigmoid node takes input x, and produces output σ(x) = 1/(1 + e−x).
– The tanh node is the hyperbolic tangent τ(x) = tanh(x).
– The gating transfer has two inputs x1 and x2 and produces g(x1, x2) =
σ(x1)x2.

The most interesting type of node used in this paper is the gating unit that was
first introduced in the LSTM cell. Its structure can be thought of as a continuous
version of the if ... then ... statement, and has two inputs: one condition
and one signal. It is this unit type that enables LSTM’s internal state to open
and close to incoming signals, depending on the context.

All units have two additional flags: one indicating whether a unit is an input
unit to the cell, i.e. receives input from outside the cell, and one indicating
whether the unit is an output unit, connecting to other cells and network outputs.

2.2 Evolutionary Algorithm

We used the NSGA-II multiobjective evolutionary algorithm (MOEA), as it is
one of the most widely used MOEAs and known for robust performance under
diverse conditions [2]. A population size of 100 was used. For simplicity, no
recombination was used; mutation was the only variation operator.

A cell structure is mutated by applying mutations from the list below, a
geometrically distributed number of times. The expected amount of mutations
is given by EM =

∑
m∈M

1
1−π[m] , where π[m] is the probability of each mutation

type. The probabilities used in our experiments are given in parentheses in the
following list of available mutations; these probabilities were chosen carefully
in order to prevent bloating of the structure. If any mutation breaks the DAG
property by making the structure cyclic, that mutation is simply rolled back.

– Add unit . A random connection is split into two parts with a new linear unit
in between. (π[·] = 0.1)

– Add gate unit . A unit is added as in Add unit but also assigned the gate
transfer function. Its second input is connected to a random unit. (π[·] = 0.2)

– Add connection. Two units are randomly chosen and connected by an iden-
tity connection which is not time delayed. (π[·] = 0.15)

– Add time delay connection. Two units are connected by an identity connec-
tion which is time delayed. This connection is allowed to break the DAG
property. (π[·] = 0.15)

– Change transfer function. The transfer function of a randomly chosen unit
is set to another transfer function. In the case of the gate transfer function,
a new connection to the second input of the unit is made. (π[·] = 0.3)

– Change connection. The type of a randomly chosen connection is switched
from identity to linear or vice versa. (π[·] = 0.25)

– Flip time delay. The time delay flag of a connection is flipped. (π[·] = 0.25)
– Flip input . The input flag of a random unit is flipped. ((π[·] = 0.15)
– Flip output . The output flag of a random unit is flipped. (π[·] = 0.15)
– Tidy up. If a random unit is not reachable from the input, or the output is

not reachable from that unit, it is removed. (π[·] = 0.5)
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2.3 Fitness Function

At every fitness evaluation, a cell structure was used to create a recurrent network
with 5 hidden memory cells connected to all inputs and all outputs. (Similar to
the LSTM network in figure 2, except for the nature and number of the cells.)
To calculate the fitness of the structure, three separate BPTT training runs were
performed using different weight initializations. (Since each unit is differentiable,
we can apply standard BPTT to learn the parameters of the network.) The
negative of the highest mean squared error was taken to be the actual fitness
value. Weights were initialized between -0.1 and 0.1, and learning rate 0.001 with
momentum 0.99 was used. Training time was set to 2000 epochs.

Formal languages. Determining whether a string of symbols belongs to a par-
ticular formal language often requires remembering some symbols in the string
seen so far, which rules out the use of non-recurrent architectures. In order
to evolve memory cells, we chose the context-free language anbn [19] (yielding
strings ST , SabT , SaabbT , SaaabbbT , etc.) and the context-sensitive language
anbncn (which yields ST , SabcT , SaabbccT , SaaabbbcccT , etc.), which require
memory of up to n and 2n time steps, respectively. Symbol strings were pre-
sented sequentially to the network, with each symbol’s corresponding input unit
set to 1, and the other set to -1. At each time step, the network must predict
the possible symbols that could come next in a legal string. The anbncn is too
hard for regular RNNs but LSTM achieves decent to superb performance on this
task [3]. To ensure that the evolved cells were not limited to being able to learn a
single language, we used the related but significantly different language anbman

as an additional objective. See [3] for a more complete explanation.

3 Results

A typical evolutionary run required roughly one hour per objective per gen-
eration on a 3 Ghz processor. Cell structures capable of learning the desired
languages were typically found within 10 generations. An overview of their per-
formance on the selected languages is given in figure 3.

In one configuration, the context-free language anbncn was used as one ob-
jective and the context-free language anbn as the other. n was increased in-
crementally as learning capacity increased; when structures had evolved that
could learn to recognize string of lengths 1-5, maximum length was increased
to 10. During runs with this configuration, the cells shown in figure 4 were
evolved.

In a second configuration, evolution started out with a context-free language
(anbn, n ∈ [1, 5]) and moved on to a multiobjective setting with one context-free
and one context-sensitive language (anbmcn and atbtct, (m,n) ∈ [1, 4]× [1, 4], t ∈
[1, 5]). In most runs with this configuration, a cell capable of learning both
languages was found.
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Benchmark

Cell anbn, nt = 0..5 anbn, nt = 0..10

Ana 8.6 19.5

Cathy 0 8.5

Charlotte 8.2 19.5

Mary 1.675 3.325

LSTM 9.6 27.5

anbncn, nt = 0..5 anbncn, nt = 0..10

Ana 18.55 47.0

Cathy 6.05 7.7

Charlotte 18.95 44.9

Mary 5.3 1.1

LSTM 15.05 44.85

anbmcn, nt = mt = 0..4

Ana 8.0

Cathy 4.37

Charlotte 8.0

Mary 2.72

LSTM 8.0

Fig. 3. Results of four evolved cells, named Ana, Cathy, Charlotte and Mary, on gram-

mar benchmarks compared to LSTM. The table reports the biggest parameter to which

a network constructed out of the indicated cells could generalize after training, averaged

over twenty runs. nt and mt give the ranges of the training sets.

3.1 Genealogical Analysis

Figure 5 depicts the evolution of a cell capable of learning the anbncn language
in about 20% of the training runs. It is interesting to note that the very first step
is just a simple recurrent network, which cannot even learn the anbn language
to more than a rudimentary level. The third stage added a new node, with a
time delay connection in and a linear connection back to the input, essentially
creating three types of recurrence to the input node. The final mutation turned
the linear connection back from the new unit into a time delay connection,
and added a new recurrent connection on the output. This suddenly enabled
several steps of recurrence, which seems to be necessary to handle more complex
languages. On the other hand, the cells Ana and Charlotte, which outperform
Mary significantly, feature only a single recurrent internal connection themselves
and are mostly constructed out of identity connections and gate units – this
makes them similar to LSTMs.

3.2 Validation: Long-Term Dependency T-Maze

In order to validate the cells found, we performed validation tests on the deep
memory T-Maze task as described in Bakker’s work [1]. The T-Maze task was
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Fig. 4. An evolved cell, named Charlotte that can reliably learn the anbncn gram-

mar (left), and two others (Cathy and Ana) that can learn the anbn grammar (right

and middle). Standard RNNs cannot learn these languages. Note the absence of any

substantial similarity in their structure.
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Fig. 5. The evolution of cell Mary. Although happening over the course of nine gen-

erations, only four mutations were needed in order to evolve a cell which is casually

able to learn the underlying structures of the context-sensitive language anbncn and

the context-free language anbman.

Cell Success ratio Average reward

Ana 0.45 -3.895

LSTM 0.35 -7.545

Charlotte 0.25 -8.915

Cathy 0.0 -54.485

Mary 0.0 -57.74

Fig. 6. The cells tested on the T-Maze task. Each cell was evaluated 20 times.

specifically designed to test a reinforcement learning algorithm’s capability to
relate events far apart in history. It involves having to remember a single obser-
vation at the beginning of the task until the very last time step. Applying the
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recurrent policy gradient algorithm [18], a learning rate of 0.01 and a momentum
of 0.99 was used in conjunction with a batch size of 100 and a discount factor of
0.99. The corridor length was set to 15.

We found that the cell structure Ana outperforms LSTM (see figure 6). Note
that this is a reinforcement learning tasks instead of a supervised training task.
This is significant, since although we evolved the cell structure to perform well
on sequence prediction, it actually peforms well on an unrelated reinforcement
learning task. This suggests the evolved cell structures might be quite general
and capable of performing substantially different tasks.

4 Conclusion and Discussion

Using an algorithm similar to neural network topology evolution algorithms, we
evolved structures for memory cells capable of learning context-sensitive formal
languages through gradient descent. The fitness functions were based on the
learning capacity of networks of such cells. The evolved memory cells were in
many ways comparable in performance to LSTM, the current state-of-the-art in
gradient-based sequence learning.

Analysis of the (very diverse) evolved cell structures and their genealogies pro-
vided interesting insights into what features contribute to the power of LSTM.
The essential ingredients of LSTM’s success seem to be (1) linear units with fixed
self-connections and (2) gate units while the precise connection structure seems
less important. It is important to note that the cells with gates significantly
outperform those without. An open question is how big the tradeoff between
performance and generality of a specific cell is. Since LSTM is used in a wide
range of applications, we believe that evolving general cells is actually quite pos-
sible. In order to evaluate the generality of our approach, it is crucial to try our
methods on more benchmark problems from other domains, combining unrelated
objectives in one single run. These could include learning to predict continuous
functions (e.g. superimposed sines), real-world sequence learning problems (e.g.
speech processing), and even reinforcement learning problems. It could also mean
using non-gradient-based training algorithms, such as evolutionary algorithms,
for some objectives. Cells developed using this method could also be incorporated
into hybrid algorithms such as Evolino [14].
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Abstract. Model complexity is key concern to any artificial learning

system due its critical impact on generalization. However, EC research

has only focused phenotype structural complexity for static problems.

For sequential decision tasks, phenotypes that are very similar in struc-

ture, can produce radically different behaviors, and the trade-off between

fitness and complexity in this context is not clear. In this paper, behav-

ioral complexity is measured explicitly using compression, and used as a

separate objective to be optimized (not as an additional regularization

term in a scalar fitness), in order to study this trade-off directly.

1 Introduction

A guiding principle in inductive inference is the concept of parsimony: given a
set of competing models that equally explain the data, one should prefer the
simplest according to some reasonable measure of complexity. A simpler model
is less likely to overfit the data, and will therefore generalize better to new data
arising from the same source. In EC, this principle has been applied to encourage
minimal phenotypic structure (e.g. GP programs, neural network topologies) by
penalizing the fitness of overly complex individuals so that selection drives the
search toward simpler solutions [13, 6, 15, 12].

The advantage of incorporating this parsimony pressure has been demon-
strated convincingly in supervised learning tasks, producing solutions that are
significantly more general. However, for dynamic tasks involving sequential de-
cisions (e.g. reinforcement learning), a phenotype’s structural complexity may
not be a good predictor of its behavioral complexity [5] (i.e. the complexity of
the observation-action sequences generated by the evolving policies). Phenotypes
that are very similar in structure, can produce radically different behaviors, and
the trade-off between fitness and complexity in this context is not clear. In this
paper, behavioral complexity is measured explicitly using compression, and used
as a separate objective to be optimized (not as an additional regularization term
in a scalar fitness), in order to study this trade-off directly.

Multi-Objective approaches have been used previously to control structural
complexity (or promote diversity [10]), but only in a supervised learning con-
text [3, 2], and always to promote parsimonious solutions. The goal here is to
look at complexity more generally, and analyze how encouraging both low and
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c© Springer-Verlag Berlin Heidelberg 2009



766 F.J. Gomez, J. Togelius, and J. Schmidhuber

action

fitness

M

phenotype

E
N
V
I

O
N

E
N

R

T

space

behavior

genotype
space

observation

Fig. 1. Genotype-Phenotype map. The complexity of evolving candidate solutions

can be computed at different levels. In sequential decision tasks, measuring the struc-

tural (model) complexity in phenotype space may not give a reliable indication of the

relative complexity of the phenotype behavior (shown as the cycling of actions and

observations of the two highlighted phenotypes).

high behavioral complexity relates to and can affect performance (fitness) in
reinforcement learning tasks.

The next section describes the general idea of complexity within the context of
EC. Section 3, presents our experiments in evolving neural network controllers
using a multi-objective evolutionary algorithm for two different reinforcement
learning tasks: the Tartarus problem, and the Simplerace car driving task. Sec-
tion 4 provides some analysis of our results and direction for future research.

2 Measuring Complexity

In evolutionary algorithms, the complexity of an individual can be measured
in the genotype space where the solutions are encoded as strings, or in the
phenotype space where the solutions are manifest.

For some problem classes and genetic representations, measuring complexity
in one space is equivalent to applying it in the other: the genotype→phenotype
mapping, G, preserves the relative complexity between individuals. When this
is not the case, it is more informative to measure the complexity phenotypes
(figure 1), after all what we are truly interested in is the complexity of solutions,
not there encodings.

For sequential decision tasks (e.g. reinforcement learning), G maps each indi-
vidual x to some form of policy, π, that implements a probability distribution
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over a set of possible actions, conditioned on the observation from the envi-
ronment. More generally, the choice of action at time t can be conditioned
on the entire history of previous observations, o ∈ O, and actions, a ∈ A:
at ← π(ot−1, at−1, . . . , o0, a0), where O is the set of possible observations, and A
is the set of possible actions. In this case, structural complexity can be mislead-
ing as policies that are structurally similar with respect to a chosen metric may
be very different in terms of behavior when they interact with the environment.
We define the behavior of individual x to be a set of one or more histories result-
ing from one or more evaluations in the environment. A behavior is therefore an
approximation of the true behavior of the individual that can only be sampled
by interaction with the environment.

Measuring behavior complexity requires computing a function over the space
of possible behaviors for a given {A,O}. A general framework, rooted in algo-
rithmic information theory [7], that can be used to quantify complexity is the
Minimum Description Length Principle [8], which states that any regularity in
the data can be used to compress it, i.e. recoding it such that it can be rep-
resented using fewer symbols. For a given compressor, and two objects (e.g.
bit-strings) of equal length, the object with the shortest compressed representa-
tion can be considered less complex as it contains more identifiable regularity [1].
In the experiments that follow, this idea is applied to assess the complexity of
evolved neural network behaviors, using an real-world compressor.

MDL inspired complexity measures have been used in conjunction with evo-
lutionary algorithms before to address bloat in Genetic Programming [6] and
to evolve minimal neural networks [13, 15, 12], i.e. to control phenotype struc-
tural complexity. In the next section, data compressibility is used to measure
the complexity of phenotype behaviors, and is used as additional objective to be
optimized in order study the interaction between fitness and complexity at the
behavioral level.

3 Experiments

To ensure a degree of generality, our experiments were conducted in two substan-
tially different reinforcement learning benchmark domains: Tartarus and Sim-
plerace. The three following objectives were used in various combinations:

1. P : the standard performance measure or fitness for the task.
2. C: the length of the behavior after applying the Lempel-Ziv [16] based gzip

compressor to it. Behaviors with low C are considered less complex as they
contain more regularity for the compressor to exploit.

3. H : the Shannon entropy of the behavior: −∑ p(xi)log(p(xi)), where each
xi is one of the possible symbols representing an action or observation in the
behavior. The entropy computes the lower bound on the average number of
bits per symbol required to represent the behavior.

Four sets of multi-objective experiments were conducted using the well-
known NSGA-II algorithm [4]. Each set used a different pairing of objectives:
MPH ,MP−H ,MPC ,MP−C , where the first subscript is the first objective
which is always maximized (P in all cases), and the second subscript is the
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second objective which is maximized, unless it is preceded by a minus sign, in
which cased it is minimized. At each generation, the scores on all three objec-
tives, {P,C,H} were recorded for two individuals in the Pareto front: the one
with highest P , and the one with the best score on the chosen complexity-related
objective.

In all of experiments, the controllers were represented by recurrent neural
networks (figure 3, details below), and the population size was 100. Each run
lasted for 4000 generations for the Tartarus problem, and 200 generations for the
Simplerace problem. No recombination was used; the only variation operator was
mutation, consisting in adding real numbers drawn from a Gaussian distribution
with mean 0 and standard deviation 0.1 to all weights in the network.

For both tasks it was not necessary to include observations in the behaviors
because the environments are deterministic and the initial states were fixed for
all individuals in a single run, so that each sequence of actions only has one
corresponding sequence of observations.

3.1 The Tartarus Problem

Figure 2a describes the Tartarus problem [9], used in the experiments. Although
the grid-world is quite small, the task is challenging because the bulldozer can
only see the adjacent grid cells, so that many observations that require different
actions look the same, i.e. perceptual aliasing. In order to perform the task suc-
cessfully, the bulldozer must remember previous observations such that it can
compute its location relative to the walls and record the locations of observed
blocks for the purpose quickly acquiring them later. In short, the agent is quite
blind which means that evolutionary search can quickly discover simple, mechan-
ical behaviors that produce better than random performance but do not exhibit
the underlying memory capability to perform well on the task.

The Tartarus controllers were represented by fully recurrent neural networks
with five sigmoidal neurons (figure 3a). Each controller was evaluated on 100
random board configurations. To reduce evaluation noise, the set of 100 initial
boards was chosen at random for each simulation, but remained fixed for the
duration of the simulation. That is, in a given run all networks were evaluated on
the same 100 initial boards. The behaviors consisted of sequences of 80 {Left=1,
Right=2, Forward=3} actions executed in each of the 100 trials.

3.2 Simulated Race Car Driving

The simplerace problem involves driving a car in a simple racing simulation
in order to reach as many randomly placed waypoints as possible in a limited
amount of time (figure 2b). There are plenty of good controllers to compare our
results with, as the game has previously been used as a benchmark problem in
several papers, and in two competitions associated with recent conferences1.

The Simplerace controllers were represented by simple recurrent networks
(SRN; figure 3b) with six inputs, eight hidden sigmoidal units, and two outputs.

1 A more complete description of the problem is available in [11], and source code can

be downloaded from http://julian.togelius.com/cec2007competition
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Fig. 2. The Tartarus (left) and Simplerace (right) tasks. The upper Tartarus

board shows a possible initial state with the six blocks and the bulldozer placed at

random squares away from the walls; the orientation the bulldozer is also random. The

bulldozer must select an action (either turn left, turn right, or go forward) at each time-

step based on the situation within its visual field (shown in white), and its internal

state (memory). The bulldozer can only move forward if its path is unobstructed or the

block in its way has no block behind it, otherwise it will remain its current position.

The lower board is a possible final state after the alloted 80 moves. The score for this

configuration is 7: two blocks receive a score of two for being in the corner, plus one

point for the other three blocks that are against a wall. The object is the drive the

car (both accelerator and steering) through as many randomly place waypoints in an

alloted amount of time.

The inputs consisted of: (1) the speed of the car, (2) the angle and (3) distance to
the current waypoint, the (4) angle and (5) distance to the next way point, and
(6) a bias term. The two output units encode nine actions using the following
scheme: the first unit steers the car, an activation of < −0.3 means “turn left”,
between −0.3 and 0.3 means “go straight”, and > 0.3, means “turn right”. The
second unit controls the forward-backward motion, < −0.3 means “go forward”,
between −0.3 and 0.3 means “put the car in neutral”, and > 0.3, means “brake”
(if the car is no longer moving forward this action puts the car in reverse). Each
network was evaluated using the same set of 10 cases (i.e. waypoint locations)
chosen at random at the beginning of each simulation, and each lasting 1000
time-steps (actions).

3.3 Results

Figures 4a and 4b show the performance, P , for the four configurations. The
“high complexity” configurations,MPH andMPC , performed significantly better
than the “low complexity”, MP−H and MP−C , on both tasks, but the effect was
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Fig. 3. (a) Tartarus and (b) Simplerace controllers. The Tartarus “bulldozer”

is controlled by a fully recurrent neural network (the recurrent connections denoted

by the large black arrow) with five units. At each time step the network outputs the

action corresponding to action unit (left, right, forward) with the highest activation

based on the state of the eight surrounding grid cells. The Simplerace car is controlled

by a simple recurrent network with eight hidden units; v, speed of the car, θc, and dc,

the angle and distance to the current waypoint, θn, and dn, the angle and distance to

the next waypoint.

PC

Tartarus Simplerace

C
om

pr
es

se
d 

 L
en

gt
h 

(C
)

Generations

Fi
tn

es
s

Generations

P−CP−H

PC
PH

P−C

P−H

PC
PH

P−H

PHP−HPH
P−C P−C

PC

 0
 3500 3000

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  20  40  60  80  100  120  140  160  180  200 2500 2000 1500 1000

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0  500  1000  1500  2000  2500  3000  3500  4000

 500 0

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  20  40  60  80  100  120  140  160  180  200

 6

 5

 4

 3

 2

 1

 4000

Fig. 4. Performance on Tartarus and Simplerace. Each curve denotes the fitness

of the best individual in each generation for each of the four multi-objective config-

urations. Each curve shows, for the each configuration, the compressed length of the

behavior of the most fit individual from each generation. Average of 50 runs.
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Fig. 5. Fitness of Most/Least complex individual. Each curve shows, for the each

configuration, the fitness score of the individual in each generation with the best com-

plexity (highest or lowest, depending on whether it is being maximized or minimized),

in terms of either C or H , depending on which is being used as the second objective.

The minimization runs are at the bottom of graph and are indistinguishable. Average

of 50 runs.

more pronounced for the Simplerace task where minimizing H interferes strongly
with fitness. The problem with selecting for low entropy solutions in Simplerace
may be that, because the task has nine actions (compared with 3 for Tartarus),
entropy can be reduced greatly by restricting the number of actions used, whereas
compression can work by forcing the sequence of actions into regular patterns
that still utilize all actions.

The difference between MPC and MPH on both tasks was not statistically
significant. Pushing complexity, either by maximizing C or H , promotes policies
that make more full use of their action repertoire. As there are many more high
complexity sequences, of a given length, than low complexity sequences (i.e. low
complexity sequences tend to be more similar), diversity in the population is
better maintained allowing evolutionary search to discover more fit solutions.

Figures 4c and 4d show the compressed length (C) of the most fit individual in
the population for the four configurations. Here, again, there is a clear distinction
between the maximization and minimization runs, as should be expected, but
the two tasks have very different regimes. In both, maximizing complexity (C
or H) increases the compressed length of the most fit individual. For Tartarus
the C of the most fit individual starts at an intermediate value of around 1300,
and then rises or drops sharply until reaching a steady value for rest of the run.
In contrast, the Simplerace runs always start with very compressible behaviors,
which gradually become more complex, even for the minimization configurations.
The reason for this is very likely due, at least in part, to the output representation
used in the Simplerace network. Because each output unit can select one of three
actions (as opposed the one-action-per-unit scheme for Tartarus), the initial
random networks will tend to have units that saturate at 0 or 1 such that the
behaviors will have very low complexity.

Figure 5 shows the fitness of the most complex individual (either in terms of
C or H , depending on the measure being optimized). For Tartarus, the most
complex individual in MPC is less correlated with fitness compared to MPH ,
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Fig. 6. Pareto Front: fitness/complexity trade-off. The plot on the left shows

a typical final Pareto front for MP−C . When behavioral complexity as measured by

compressed length is minimized, high fitness (P > 6) is not achieved, and the front

is most densely sampled near zero fitness. When behavioral complexity is maximized,

MPC , the complexity of the entire front is much higher, but the most fit individuals

are those with relatively low complexity.

suggesting that is P are C conflict more than P and H . For Simplerace, the
fitness of the least compressible behavior increases rapidly and then gradually
trends downward, whereas the fitness of the behavior with the highest entropy
rises steadily throughout the run.

The overall result is that the two measures of complexity encourage similar
performance in both tasks. This is quite different from [5]...

Figure 6 shows the Pareto fronts of the final generation of a typical MPC

and MP−C run for Tartarus (Simplerace produces very similar results, also for
the PH runs). For MP−C the most fit non-dominated individuals are also the
most complex, with most solutions concentrated around the lowest complexity.
For MPC , the complexity is in a much higher range (note the y-axis is inverted
w.r.t. MP−C), and, in contrast with MP−C , the most fit solutions are the least
complex. So while parsimony is favorable for given level of fitness, suppressing
complexity from the outset, as in MP−C , works against acquiring high fitness
(compare the max fitness in figure 4).

Figure 7 examines the relationship between complexity and generalization
in the Tartarus task (similar results were obtained for Simplerace). Controllers
were collected throughout the entire course of a run and grouped according to
training fitness (i.e. the fitness awarded on the 100-case training set used dur-
ing evolution) into fitness classes, each class spanning one fitness point. Each
data point in the graph denotes the correlation between the C of the controller’s
behavior, as measured on the training set, and the fitness on a set of 100 test
cases, for a given fitness class. For controllers with low fitness, there is a positive
correlation. That is, for a low fitness class, those controllers with high behavioral
complexity generalize better within that class. As the training fitness increases
there is a clear trend (indicated by the regression line), toward a negative cor-
relation between C and P : the lower the behavioral complexity within a given
class the better the generalization. Therefore, as performance improves it is bet-
ter to behave in a simpler (more compressible) manner in order to cope with
new cases.
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Fig. 7. Generalization trend. Each data point denotes the correlation between C
(as measure on the training set behaviors) and the fitness on a set of 100 new test

cases, for each training fitness class.

4 Discussion and Conclusions

To our knowledge this paper represents the first attempt at using an explicit
measure of behavioral complexity (as opposed to model complexity) in the context
of evolutionary reinforcement learning.

Although we have barely scratched the surface, the results of these prelimi-
nary experiments are interesting and consistent with those of heuristic shaping
techniques used in supervised learning (illustrated in figures 6 and 7), where
model complexity is given a lower priority in the early stages of learning so that
the learner acquires more degrees of freedom with which to reduce error. Once
the error reaches a set threshold, the complexity of the model is penalized to
reduce the number of free parameters and in order to improve generalization [14].

The overall effect on performance of both entropy and Lempel-Ziv (e.g. gzip)
was very similar, even though entropy is only concerned with the expected oc-
currence of each symbol in the behavior, not the ordering or structure of the
behavior; the compressor also relies on entropy to encode the behavior, though
only after analyzing the structure of the symbol sequence. The behaviors them-
selves should be analyzed to see if qualitatively different policies arise when
complexity of driven in terms of entropy, gzip, or other compressors (e.g. PPM,
bzip2) that exploit different algorithmic regularities.

For sequential decision tasks, behavior seems to be the right level at which to
compare individuals [5], but, of course, model complexity is critical in determin-
ing the range of possible behaviors available to the agent. Future work will also
look at combining structural and behavioral complexity criteria for evolutionary
methods that search, e.g. both neural network topology and weight space.



774 F.J. Gomez, J. Togelius, and J. Schmidhuber

Acknowledgments

This research was supported in part by the EU Projects IM-CLEVER
(#231711), STIFF (#231576), Humanobs (#231453), and the NSF under grant
EIA-0303609.

References

1. Baronchelli, A., Caglioti, E., Loreto, V.: Artificial sequences and complexity mea-

sures. Journal of Statistical Mechanics (2005)

2. De Jong, E.D., Pollack, J.B.: Multi-objective methods for tree size control. Genetic

Programming and Evolvable Machines 4(3), 211–233 (2003)

3. De Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting di-

versity using multi-objective methods. In: Spector, L., Goodman, E.D., Wu, A.,

Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon,

M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation

Conference, pp. 11–18. Morgan Kaufmann, San Francisco (2001)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation 6,

182–197 (2002)

5. Gomez, F.: Sustaining diversity using behavioral information distance. In:

Proceedings of the Genetic and Evolutionary Computation Conference

(to appear, 2009)

6. Iba, H., Garis, H.D., Sato, T.: Genetic programming using a minimum description

length principle. In: Advances in Genetic Programming, pp. 265–284. MIT Press,

Cambridge (1994)
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Abstract. In this paper we present neuro-evolution of neural network

controllers for mobile agents in a simulated environment. The controller

is obtained through evolution of hypercube encoded weights of recurrent

neural networks (HyperNEAT). The simulated agent’s goal is to find a

target in a shortest time interval. The generated neural network processes

three different inputs – surface quality, obstacles and distance to the

target. A behavior emerged in agents features ability of driving on roads,

obstacle avoidance and provides an efficient way of the target search.

1 Introduction

Exhaustive preprocessing techniques are usually used in design of controllers for
artificial agents (robots). Environment sensors such as cameras, radars etc. with
possibly high resolution in space and time domain are used and their outputs
are utilized to perform the desired task.

Our goal is to generate robotic controllers based on recurrent artificial neu-
ral networks trained with evolutionary algorithm. Recurrent neural networks [1]
are capable of effective temporal information processing because feedback con-
nections form a short term memory within the networks. Such controllers can
express more complex behavior.

There are many options how to transform preprocessed sensory input to ac-
tions that the robot performs in order to fulfill goals. Artificial neural networks
can play the role of a such controlling system. In artificial neural networks the
dimensionality of the sensory input was the obstacle that blocked direct pro-
cessing of e.g. camera images. To overcome this limitation, we use a hypercube
encoding of neural network weights [2], which allows to increase input vector as
well as amount of artificial neurons in the networks.

Hypercube encoding allows the large-scale neural networks to be effectively
encoded into population of individuals. A single genome size does not grow with
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the number of neurons in the network. Similarly, a resolution of the network
inputs can be extended without growth of the network genome. This is the
property of HyperNEAT algorithm used.

HyperNEAT algorithm was introduced in [2] and [3]. It is an evolutionary
algorithm able to evolve large-scale networks utilizing so called generative en-
coding. HyperNEAT evolves neural networks in a two step process: the NEAT
(see below) is used to create networks combining a set of transfer functions into
a special function. The transfer functions allow to encode symmetry, imper-
fect symmetry and repetition with variation. The composed functions are called
the Compositional Pattern Producing Networks (CPPNs). In the second step,
planned neurons are given spatial coordinates. The previously evolved CPPN is
then used to determine synaptic weights between all pairs (or subset of pairs)
of neurons. The coordinates of both neurons are fed into the CPPNs inputs, the
CPPN then outputs their connection weight. The weight is not expressed if its
absolute value is below a given threshold. Such connectivity pattern created by
CPPN is called the substrate. The important feature of HyperNEAT substrate
is that it can be scaled to higher resolutions approximately preserving its inner
structure and function.

NEAT (NeuroEvolution of Augmenting Topologies) [4] is an algorithm orig-
inally developed for evolution of both parameters (weights) and topology of
artificial neural networks. It was extended to produce the CPPNs in the Hy-
perNEAT algorithm instead of producing the neural networks directly. It works
with genomes of variable size. NEAT introduced a concept of historical markings,
which are gene labels allowing effective genome alignment in order to facilitate
crossover-like operations. Moreover, historical markings are used for computa-
tion of a genotypical distance of two individuals. The distance measure is needed
by niching evolutionary algorithm, which is a core of the NEAT. Because NEAT
evolves networks of different complexity (sizes) niching was found to be neces-
sary for protection of new topology innovations. The important NEAT property
is the complexification – it starts with simple networks and gradually adds new
neurons and connections. For evolving CPPNs, NEAT was extended to evolve
heterogeneous computational units (nodes).

1.1 Related Work

Evolution of artificial neural networks is a robust technique for development of
neural systems. Many techniques were developed for evolution of either weights
or even a structure of neural networks like e.g. Analog Genetic Encoding [5,6,7],
Continual Evolution Algorithm [8], GNARL for recurrent neural networks [9],
Evolino [10] and NeuroEvolution of Augmenting Topologies (NEAT) [4]. The
NEAT algorithm became a part of HyperNEAT algorithm as a tool for evolution
of CPPNs.

HyperNEAT algorithm was already applied to control artificial robots in a
food gathering problem [2]. A robot with a set of range-finder sensors is controlled
to approach the food. It was shown that HyperNEAT is able to evolve very large
neural networks with more than eight million connections. A very interesting
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property of the HyperNEAT is the ability to change a resolution of the substrate.
For example 11× 11 grid was resized to 55× 55 while preserving the underlying
neural network function. In the food gathering experiment the inputs indicating
whether the food is in a particular direction were arranged parallel or concentric
with the robot body. Each sensor was geometrically linked with an effector,
which drives the robot.

Our approach differs in the organization of the input sensors, which are ar-
ranged in polar rays having particular angular and distance resolution. The
sensors are sensitive to color of the surface and in fact represent a camera with
arbitrary pixel resolution.

In [11] HyperNEAT algorithm was applied in a very efficient way so that each
agent shares a portion of the substrate and neural network. The neural network
splits to local areas in the substrate geometrically but all agents share a single
substrate. This can be exploited in agents’ cooperative behavior.

In [12] it is shown that robots can complete common goals with a minimum
information coming from sensors. The robots are controlled by evolved feed-
forward neural networks.

In [13] we shown that the HyperNEAT is capable to generate neural networks
that can keep the agents stay and drive on roads. Further more, we replaced the
NEAT in HyperNEAT with Genetic Programming [14] with comparable results.

In our approach, we reduced an effort typically required to build hardware
robotic platforms such as described in [12]. We moved directly to a simulation to
concentrate on development of the robot’s control algorithms. First, we created
a simulation environment described in Section 2.1. The environment allows a
rapid development and an experimentation with simulated robots.

This paper is organized as follows. In the next section a simulation environ-
ment and a robot setup is described. Section 3 describes the experimental results.
A final section concludes the paper.

2 Experimental Setup

2.1 Simulation Environment

Experiments were performed in a simulation environment called ViVAE (Visual
Vector Agent Environment) featuring easy design of simulation scenarios in a
SVG vector format [13]. There are two types of surfaces in the simulation (a
road and a grass) with different frictions. The grass has a friction 5 times higher
than the road. Additionally, solid unmovable and movable objects can be placed
into the simulation environment. In the current experiments, we used the fixed
objects only.

ViVAE supports number of different agents equipped with various sensors for
surfaces and other objects in the scenario.

ViVAE allows easy snapshoting of the whole simulation into a sequence of
SVG frames. All agents can be tracked and their tracks recorded as a SVG path
displayed as a simulation result, see Figure 2.
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(a) (b)

Fig. 1. Organization of the HyperNEAT substrate. There are three distinct substrates

used (a) and the CPPN has 5 outputs (b). CPPN(0) output is a weight between input

surface substrate and a neuron in the upper substrate. Second, CPPN(1) output is

used as bias for neurons in the upper substrate. For a bias calculation the third and

the fourth CPPN inputs are set to 0. Third, CPPN(2) output represents connection

weights among neurons in the upper substrate. Fourth, CPPN(3) output represents

connection weights between input object substrate and neurons in the upper substrate.

Last, CPPN(4) output is used for weights between distance to target input variable

and neurons in the upper substrate. In this case, first two CPPN inputs are set to 0.

2.2 Agent Setup

The agent is driven by two simulated wheels and is equipped with sensors of
three different types. The controlling neural network is organized in a single
layer of possibly fully interconnected perceptron (global) type neurons (neurons
compute biased scalar product, which is transformed by a bipolar logistic sig-
moidal function). Steering angle is proportional to an inverse actual speed of the
robot.

The sensors as well as the neural network are spread in a substrate. Neurons
and sensors are addressed with polar coordinates, see Figure 1. Two of the
neurons in the output substrate are dedicated to control acceleration of the
wheels.

During a simulation, an agent is controlled by a neural network controller
constructed using HyperNEAT. The neural network neurons and connections
are mapped into three substrates. The CPPN has 5 outputs. Three outputs are
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used for obtaining weights among the neurons and between neurons and inputs
from the input substrates (CPPN outputs 0, 2 and 3). One CPPN output is used
to set up neurons biases (CPPN output 1). The last CPPN output (4) determines
a weight of a connection between distance to target input and particular neuron
in the neurons substrate.

The substrate resolution was chosen to be 5 polar rays of 3 sensors in both
input layers and 3× 3 neurons in the layer of neurons.

Table 1. CPPN node functions

Name Equation

Bipolar Sigmoid 2
1+e−4.9 x − 1

Linear x

Gaussian e−2.5 x2

Absolute value |x|
Sine sin(x)

Cosine cos(x)

Table 2. HyperNEAT parameters

Parameter Value

population size 100

CPPN weights amplitude 3.0

CPPN output amplitude 1.0

controller network weights amplitude 3.0

distance threshold 15.0

distance C1 2.0

distance C2 2.0

distance C3 0.5

distance CACT 1.0

mating probability 0.75

add link mutation probability 0.3

add node mutation probability 0.1

elitism per species 5%
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2.3 HyperNEAT Setup

We have used our own implementation of the HyperNEAT algorithm. The NEAT
part resembles Stanley’s original implementation. The HyperNEAT extension is
inspired mainly by the David D’Ambrosio’s HyperSharpNEAT1. Table 1 shows
CPPN node functions.

The parameter settings are summarized in Table 2. Note, that we have ex-
tended the original set of constants which determine the genotype distance be-
tween two individuals (C1, C2 and C3) by the new constant CACT . The constant
CACT was added due to the fact that, unlike in classic NEAT, we evolve net-
works (CPPNs) with heterogeneous nodes. CACT multiplies the number of not
matching output nodes of aligned link genes. The CPPN output nodes were
limited to bipolar sigmoidal functions in order to constrain the output.

3 Experimental Results

Experimental results described in Section 3.1 were intended to learn the agents
to drive on roads instead of grass surface, which has 5 times greater friction than
a road.

3.1 On Road Driving

In this experiment the agent controller used three substrates (surface input,
neurons and biases) only. The scenario contained no obstacles. And there were 5
agents in the simulation performing concurrently. The agents had no particular
target to find. Instead, the agents were trained to gain a maximum average speed
in the simulation, according to the following fitness function:

f1 =
distanceT raveled

simulationSteps+ 1
(1)

Fitness function f1 is an average speed of the simulated robots. The 1 is added
to prevent a division by zero. The speed is a meaningless variable (number of
pixels per a simulation step) but can be computed in a straightforward way and
is suitably proportional.

Figure 2 shows a final solution which was found in a generation 324. The
trajectories are smooth. Moreover, robots learned to drive on a one side of the
road to avoid mutual collisions. The complete experiment is described in [13].

3.2 Obstacle Avoidance

In this experiment the agents were equipped with an additional substrate for
connections generated by a CPPN output number 3. The last CPPN output

1 Both Stanley’s original NEAT implementation and D’Ambrosio’s HyperSharpNEAT

can be found on http://www.cs.ucf.edu/~kstanley.

http://www.cs.ucf.edu/~kstanley
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Fig. 2. Trajectories of the robots controlled by a neural network found in a generation

324. The trajectories are smooth. The robots learned how to drive on a one side of the

road (as emphasized by the red ellipse).

Fig. 3. Obstacle avoidance. This figure shows how an obstacle avoidance emerges dur-

ing an evolution. There are trajectories of an agent controlled by the best controller

found in a particular generation. We can see that after 300 generations of the evolution

run, the agent can successfully drive around the obstacle and return to the road to

reach the target. The path improved in comparison to generation 209 in which the

controller moves the agent periodically from one side of the road to the other one.
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Fig. 4. Generalization Example. The agent trajectory is depicted. The agent follows

border of an obstacle and returns to the road afterwards.

controls weights of connections to input containing sign of the actual target
distance difference. The fitness function is the following one:

f1 =
distanceT raveled

simulationSteps+ 1

(
1− targetDistance

initialTargetDistance

)
(2)

The fitness from the previous experiment is multiplied by a relative distance to
the target. Agents that find the target faster are preferred to those, which drive
on road but do not approach the target.

The controller performances obtained in the evolution are depicted in
Figure 3. Agent trajectories evolved in generations 2, 30, 209 and 300 are depicted
in a single scenario. We can see how the path was precised between generations
200 and 300. The final controller controls the agent motion to be straight on
straight roads.

The trained controller is capable of the generalization as can be seen in Figure
4. The agent follows a border of an obstacle, returns to the road and continues
the ride.

4 Conclusion

The aim of the experiments was to verify whether the HyperNEAT trained neural
network can learn to control the agent based on multiple inputs. The presented
experiments show that the HyperNEAT trained neural network controller can
process multiple inputs and utilize them to drive the agent in order to maximize
its fitness during the evolution. We used two input layers (substrates). One layer
represented surfaces, the second layer represented solid unmovable obstacle sen-
sors. An additional neural network input contains a relative difference in actual
distance to the target. Beyond previous experiments, the agents are capable to
bypass solid obstacles and drive in a direction to the target. The fitness was the
agent average speed multiplied by a relative distance to the target reached. The
agents learned to follow the roads in a direction to the target. The agents trails
were improved during the evolution to be more smooth and straight on straight
roads.

Further experiments should discover dependencies of the controller capabili-
ties on a density of the input substrates as well as a coevolution among agents
in a population, possibly in a different more complex task than approaching a
single target.
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Abstract. Sequential behavior has been the subject of numerous stud-

ies that involve agent simulations. In such research, investigators often

develop and examine neural networks that attempt to produce a sequence

of outputs. Results have provided important insights into neural network

designs but they offer a limited understanding of the underlying neural

mechanisms. It is therefore still unclear how relevant neural parameters

can advantageously be employed to alter motor output throughout a

sequence of behavior. Here we implement a biologically based spiking

neural network for different sequential tasks and investigate some of the

neural mechanisms involved. It is demonstrated how a genetic algorithm

can be employed to successfully evolve a range of neural parameters for

different sequential tasks.

1 Introduction

The ability to produce a sequence of movement is a central issue of study in
agent simulations [1,2,3]. In particular, sequences where decisions are dependent
on previous actions have been the subject of attention as they underlie many
types of complex behavior [4]. Sequence generation of this form requires short-
term memory (STM) [4] and biologically inspired solutions have employed recur-
rent neural networks for STM with considerable success [5,6]. Such approaches
employ rate based neural models which do not take temporal effects of neurons
into account, yet the temporal domain plays a fundamental role in many behav-
ioral sequences [5]. There is also accumulating evidence that timing is central
to the underlying neural circuitry in biological systems (see for example Bothe
[7] for a survey of the biological evidence, and Rieke et al.[8] for a statistical
analysis). This has prompted investigators to employ spiking networks (which
take temporal behavior into account) for agent simulations that involve tasks
such as sound localization [9,10] and navigation [11].

Such approaches typically involve altering synaptic weights using spike-timing
dependent plasticity (STDP) or by employing a genetic algorithm (GA). Spiking
models however, employ additional parameters such as time delays and refractory
constants that have significant effects on network functionality. These parame-
ters cannot be adjusted by employing a formalized approach such as Hebbian

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 784–793, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Evolving Spiking Neural Parameters for Behavioral Sequences 785

learning, but are typically either estimated or determined through trial an er-
ror. Yet for sequences where the temporal domain is fundamental, altering such
parameters could have considerable effects on results.

An important first step for investigating the role of spiking neural mechanisms
in sequence generation is therefore to demonstrate how relevant parameters can
be advantageously altered. If such an approach can be shown, it would present
a methodology for investigating neural mechanisms and developing spiking net-
work models for different behavioral sequences, in particular where timing of
movement is essential.

The current investigation describes an important proof of concept that demon-
strates how different parameters in a spiking neural network can play an impor-
tant role in sequence generation, and how such parameters can be adjusted
using a genetic algorithm. This involves a population of agents that each utilize
a recurrent spiking network to perform sequential tasks that require temporal
integration across events. An analysis is then made of the best performing agents
to assess the role of the most significant parameters and mechanisms in agent
neural networks.

2 Experimental Set-Up

Based on Fuster [4], we define a sequence where each subsequent event is depen-
dent on previous occurrences as:

f(t1) → f(t2|f(t1)) → f(t3|f(t1), f(t2)) → f(tn|f(t1)...f(tn − 1)) (1)

where f(t) represents an event in a sequence at time t and an event corresponds
to an action in a behavioral sequence such as vocalization, head movement, or
walking. In animals, such an action is propagated by motor neurons that adjust
the relevant muscles (see for example Squire et al. [12]). Computational neural
network models often adopt a similar approach for sequence generation, and for
example employ two groups of neurons to adjust left and right movement of a
robot [13], or to alter the pressure and tension for songbird vocalization [14].

The agent task we define in this work is based on the same principle of ad-
justing two parameters to generate a sequence. However, as we aim for a general
proof of concept, we simplify the model and avoid any biophysical implementa-
tion such as a vocalization tract. This also avoids assumptions about the bio-
physical model selection as well as what constitutes a successful sequence (for
example what is considered correct vocalization). Therefore, an abstract repre-
sentation, in which agents must adjust two parameters that are dependent on
previous events (as defined in Equation 1) is adopted instead. As it is help-
ful to provide a visualization of this abstract representation, in particular with
respect to neural dynamics, we provide agents with the ability to execute sim-
ple movement by employing two “wheels” (i.e. each wheel represents a variable
controlled by neural output). Further specification of this movement and the se-
quential task, is made after a description of the spiking neuron model and agent
neural network implementation has been presented.
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2.1 Spike Response Model

Neural firing was modeled using the spike response model (SRM) which has
demonstrated that it can successfully capture many of the dynamic behaviors of
biological neurons [15]. Simulations were made with two SRMs: one with spike
frequency adaptation (SFA) (Equation 2), and one without (Equation 3):

ui(t) =
∑

t
(f)
i ∈Fi

η(t− t
(f)
i ) +

∑
j

wij

∑
t
(f)
j ∈F

εij(t− t
(f)
j ) (2)

ui(t) = η(t− t
′
i) +
∑

j

wij

∑
t
(f)
j ∈F

εij(t− t
(f)
j ) (3)

where presynaptic neuron j connects to neuron i, η and ε are kernels (we use
the same kernels as Floreano & Mattiusi [13]), w denotes the synaptic efficacy, t
is the current time, t’ is the last time a neuron fired and tf denotes a neuron’s
previous firing times (indexed by f ). A neuron fires when u exceeds a threshold
value given by uthresh. Thereafter, the neuron is reset to its resting potential
urest. The SFA in Equation 2 results from negative feedback in a neuron due
to firing (also referred to as output-driven adaptation) and it is included by
summating η over previous firing times [15]. The feedback described by η depicts
the afterhyperpolarization (AHP):

η(s) = −(uthresh − urest)e
− s

τref (4)

where s = t – t’ and τref sets the time it takes for a neuron to return to its
resting potential after firing. The effect of incoming spikes declines over time such
that more recent spikes yield greater influence on the membrane potential. This
effect is dependent on the properties of the neural membrane and the synaptic
connection (time constants τm and τs respectively), expressed by:

ε(s) = e−
s−Δabs

τm (1− e−
s−Δabs

τs ) Θ(s−Δabs) (5)

Spikes do not arrive immediately, but after a time delay of Δabs, enforced by the
Heaviside step function Θ: Θ(x) = 1, x > 0 otherwise Θ(x) = 0. Input neurons
did not follow any equation but were set to fire ten times within the first 100ms
(as a response to an imaginary stimulus that signaled agents to begin).

2.2 Agent Neural Network

Each agent’s network consisted of an input, a hidden and an output layer with
18 neurons in total. This number was determined through experimentation to
be the most suitable in terms of computation time and likelihood of producing a
solution. Agents employed a 3-layered feed forward network with four different
types of neurons: input, hidden, left output, and right output. Neuron types,
time constants, and synaptic efficacies were defined in an agent’s genome such
that network structures and functionality changed throughout the application
of the genetic algorithm (see Figure 1).
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Time constants were experimentally derived within biologically plausible
ranges (which were employed to help find suitable limits): τref = 0.1ms to 50.0ms
[16], τm = 2.0ms to 60.0ms [17], τs = 0.1ms to 60.0ms [18], Δabs = 0.1ms to
60.0ms [19]. The neural threshold and resting potential (uthresh = 0.5 and urest

= 0) were set with respect to synaptic values (-1.0 to +1.0). Constraints were ap-
plied to the neural network such that input neurons did not receive connections
from other neurons, and only connected to hidden neurons (Figure 2). Hidden
neurons adjoined the input and output layer but also connected to one another.

Agent neural networks employed recurrent connections which have been shown
to provide short-term memory (STM) [5]. In a recurrent network structure, neu-
ral output is dependent on previous activity in the network, and this allows
temporal integration across previous events in a sequence of events. This pro-
vided agents with memory of previous movement such that the next step in the
sequence could be made.

Fig. 1. Each agent network is defined in an agent’s genome and consists of an input, a

hidden and an output layer. For the sake of clarity, not all connections shown.

Agents wheels provided simple motor function that allowed left and right
turns. The wheels could only turn forwards and the turning force of each wheel
was calculated according to the number of spikes received from output neurons
(denoted by nl and nr for the left and right wheel respectively). This allowed
the agents to turn at an angle a:

nl > nr : a = 2π (
nr

nl
− 1) , nr > nl : a = 2π (1− nl

nr
) (6)

Previous research has shown that directional movement can be derived from the
firing rate of neurons [20] and Equation 6 was developed on this basis. Also,
Equation 6 was designed such that altering a requires non-linear changes in nl

and nr which entails that agents cannot simply scale neural output across events
to produce a correct sequence.

2.3 Agent Task

Initially, experiments were performed where agents had to perform a sequence
that will be termed Task 1. Following an analysis of agent neural network
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mechanisms and performance in Task 1, three additional sets of experiments
(Tasks 2-4) were performed with new sequences to ascertain results. All tasks
were designed such that they required changes in the neural dynamics across
timeframes, could be executed using different sequences and neural network so-
lutions, and required different types of neural dynamics in terms of how quickly
and substantially changes in neural output needed to occur across timeframes.

Fig. 2. Example of an agent’s neural

network (not all connections shown)

Fig. 3. Two examples of sequences that

agents can produce to follow the source

Each task involved locating a source that was repositioned in a circular ra-
dius of 30 meters around each agent (see Figure 3). In Task 4, the source was
positioned at the same positions as in Task 1, but for different time durations at
each position (see Table 1). In Tasks 1-3, the source was positioned at the angles
shown in Table 1. Agents had to turn towards the source every 100ms (except
in Task 4 where this timeframe was variable) using Equation 6, but agents only
turned if both nl and nr were greater than zero.

After each turn, agents were repositioned to their original direction (set to 90◦

as shown in Figure 3) and the spike counts nl and nr in Equation 6 were reset

Table 1. Locations (for Tasks 1-3) and timeframes (for Task 4) of the source

Position Task 1 Task 2 Task 3 Task 4 Position Task 1 Task 2 Task 3 Task 4

1 0◦ 0◦ 114◦ 80ms 11 180◦ 135◦ 294◦ 120ms

2 18◦ 22.5◦ 126◦ 100ms 12 198◦ 157.5◦ 306◦ 80ms

3 36◦ 45◦ 150◦ 80ms 13 216◦ 180◦ 330◦ 100ms

4 54◦ 67.5◦ 162◦ 80ms 14 234◦ 202.5◦ 342◦ 80ms

5 72◦ 45◦ 186◦ 120ms 15 252◦ 180◦ 6◦ 120ms

6 90◦ 67.5◦ 198◦ 80ms 16 270◦ 202.5◦ 18◦ 100ms

7 108◦ 90◦ 222◦ 100ms 17 288◦ 225◦ 42◦ 80ms

8 126◦ 112.5◦ 234◦ 160ms 18 306◦ 247.5◦ 54◦ 80ms

9 144◦ 135◦ 258◦ 80ms 19 324◦ 270◦ 78◦ 140ms

10 162◦ 112.5◦ 270◦ 140ms 20 342◦ 247.5◦ 90◦ 80ms
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back to zero. Since agents were turned back to their original position after each
turn, they were not able to follow the source simply by making fixed increments
in their turns. Instead, they were required to retain memory of at least their
last turn and continue the sequence accordingly (in agreement with Equation
1). Figure 3 illustrates two possible solutions that an agent could employ to
follow the source. In the first solution the agent turns the same direction each
time, while in the second solution both left and right turns are made. The first
solution might appear relatively simple, but similar to other solutions, it requires
a non-linear increase in firing rates of output neurons (as a result of Equation
6) and agents therefore did not appear to favor this solution.

2.4 Genetic Algorithm and Agent Scoring

Agent fitness values were calculated by using the distance between the source
and agent (dagent), and the distance between the source and a point situated
one meter directly in front of the agent (dpoint):

dagent =
√

(xagent − xsource)2 + (yagent − ysource)2 (7)

dpoint =
√

(xpoint − xsource)2 + (ypoint − ysource)2 (8)

ddiff = (dagent − dpoint)28 (9)

where x and y refer to the coordinates of the agent, the point and the source
(the coordinate system was set with the agent in the center such that xagent=0
and yagent=0). Each agent was scored with a value v (initially set to zero) that
was adjusted after each timeframe (when an agent was supposed to have turned)
according to: if dpoint < dagent: v = v + ddiff , if dpoint > dagent: v = v – ddiff ,
otherwise if agent did not turn: v = v – 1.

At the end of each generation, any negative values of v were set to zero and the
fitness value was calculated as f = v/nangles (with nangles set to 20 - the number
of different source positions). Intuitively, it would seem better to calculate the
fitness values using the average angle error for an agent’s turns, but this did not
yield as good results.

The BLX-α crossover algorithm [21] was employed for the entire genome; α
was set to 0.5 and the probability of a crossover was set to 0.8. The mutation
operator was applied twice (with a probability of 0.20 in both cases): in the first
instance to end of the genome containing the neuron types, and the second time
to the rest of the genome. This approach was adopted because changing neuron
types had a substantial effect on the neural network. Without this targeted
mutation operator, neuron types were not affected often enough due to the length
of agent genomes. The probability of mutation was for similar reasons set high.
Elitism was employed (with two elites) once an agent in the population reached
an average error angle of 14◦. The population size was set to 100 and simulations
were run for 3000 generations.
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3 Results

3.1 Task 1

In Task 1, agents with average error scores of less than 7◦ were analyzed from
250 different simulations. Approximately 10% of simulations evolved agents with
error scores less than 7◦. All of these simulations utilized SFA (Equation 2);
simulations without SFA (Equation 3) are discussed in Section 3.2.

The best agents were able to perform Task 1 with an average angle error
of about 2◦ (four simulations evolved agents with such scores). One agent for
example, had an average angle error of 1.97◦ with a standard deviation of 1.48◦.
We only discuss this agent’s neural network mechanisms in the following as most
other network solutions demonstrated similar functionality.

The agent’s neural network consisted of three input neurons, ten hidden neu-
rons, and five output neurons (Figure 4 and 5). Figure 6 displays the total spikes
produced by the left and right output neurons respectively during the 100ms time
frame for each source angle. Network output to the left and right wheel increased
up until a source angle of 36◦, at which point it reached a maximum for the right
wheel and started to decline for the left wheel.

An analysis of neural dynamics found that the change at 36◦ was a result of
time delays (in particular for reccurent connections between hidden neurons) and
SFA. An example of the how time delays functioned can been seen by looking
at Figure 5 which depicts connectivity between the most active hidden neurons.
There is a strong excitatory connection from neuron 16 to 3 and from neuron 3 to
17, but a strong inhibitory connection from neuron 17 to 16. The total time delay
across this series of connections is 54ms (neglecting delays caused by processing
time in individual neurons). Therefore, if neuron 16 increases its output, it will
likely receive additional inhibition later in the sequence. This delayed recurrent
activity, along with SFA, caused a decrease in neuron 16’s firing rate at source
angle 36◦, prompting the firing decrease of output neurons at 36◦ (Figure 6).

An example SFA functionality can be seen by first looking at the output neu-
rons in Figure 6 which shows that the left wheel received input almost exclusively
from neurons 5 and 10. To measure the effects of AHP throughout the sequence,
two different summations of AHPs were made across each 100ms movement time
frame. One summation was made for iterations where neuron 5 did not produce
a spike (we term this “suppressing AHP”) and another summation was made
across all iterations (“Total AHP”). Comparing these two AHP totals through-
out the time course of a sequence provided a measure of the AHP’s effectiveness
with respect to SFA. Looking at the curves in Figure 7, it can be seen that the
slope of the suppressing AHP follows the direction of the slope of the total AHP,
except between 18◦ and 36◦, and between 54◦ and 72◦. The result between 18◦

and 36◦ is particularly interesting as there is a significant decrease in the total
AHP but a large increase in the suppressing AHP. This is a result of SFA, which
can be seen in the drop in neural output between 18◦ and 36◦ in Figure 6, and
it causes the total AHP to decrease as well. However, the large increase in the
suppressing AHP shows that the AHP played a significant role in decreasing
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Fig. 4. Neural network of agent selected for

analysis (not all connections shown)

Fig. 5. Inhibitory and excitatory

connections of hidden neurons that

fired the most. Synaptic efficacies

shown by minus and plus symbols

(one = weakest, four = strongest).

spike output between these two angles. A similar occurrence, albeit to a lesser
degree, occurs between 54◦ and 72◦ (Figures 6 and 7). In general throughout
a sequence, the degree of this SFA can be set by τref (see Equations 2 and 4)
which was therefore a central parameter in this functionality.

Additional simulations were performed to confirm the significance of the neu-
ral mechanisms observed and 100 simulations without spike frequency adaptation
were made. Agent neural networks without SFA yielded lowest error scores of 12◦

to 13◦, considerably worse than the best results of 2◦ where SFA was employed.

Fig. 6. The total number of spikes pro-

duced by left (neurons 5, 6, and 10) and

right (neurons 12 and 13). Neuron 12

was the only right output neuron that

fired for most of the sequence and it

overlaps with the ’Right Total’.

Fig. 7. The total input received, AHP sum-

mation across iterations where no spikes

were produced (“Suppressing AHP”), and

summation across all iterations (“Total

AHP”) observed for neuron 5. AHP sum-

mations are shown as absolute values.

To verify the importance of agent recurrent neural networks, 100 simulations
were performed where neural networks did not utilize recurrent or inhibitory
connections. In both cases, agents performed very poorly and achieved lowest
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error scores of about 40◦. Neural networks were also evolved without any form
of delays, such that all signals between neurons were instantaneous. This also
yielded lowest error scores of approximately 40◦. The additional simulations thus
confirmed that recurrent connections, time delays, and SFA played a central
role in altering spike output throughout the sequence. Further analysis of neural
parameters and SFA, as well as additional agent examples, can be found in [22].

3.2 Tasks 2-4

Tasks 2-4 focused on the role of SFA that was observed in Task 1 as this was
considered the most significant and surprising finding. To further assess the
significance of SFA, two sets of 30 simulations were performed for each task. In
the first set of simulations, agent neural networks utilized SFA, but in the second
set of simulations no SFA was implemented. The results of Tasks 2-4 were similar
to those observed in Task 1 and achieved the following best error scores:

Task 2(SFA) = 5.46◦, Task 2(No SFA) = 15.10◦

Task 3(SFA) = 2.05◦, Task 3(No SFA) = 18.34◦

Task 4(SFA) = 4.12◦, Task 4(No SFA) = 17.01◦

The neural networks that evolved in Tasks 2-4 revealed many of the same charac-
teristics observed in Task 1. While our analysis of these networks focused on the
spike frequency adaptation, it was also observed that time delays and recurrent
connections appeared to play a significant role as described in Task 1.

4 Concluding Remarks

Agents were able to successfully evolve neural network solutions for a range of
different sequential tasks. Time delays played a central part in this functionality,
where an increase in a neuron’s output could ultimately result in self-inhibition
due to the recurrent structure of the network, but at a later time in the sequence
when a decrease in neural firing was required. It was particularly surprising to
see the crucial role that SFA played in timely alterations of neural output at
critical points in many sequences - this also implicated an important role for
refractory time constants (see Equations 2 and 4).

Our results have shown that it is important to consider different neural pa-
rameters for sequences that require temporal integration and we have demon-
strated an approach that shows how such parameters can be determined. The
study described here encompasses a broader research program that involves the
development of neural networks for sequential behavior. Follow-up research is
applying the approach presented here to more physiologically detailed scenar-
ios to investigate vocalization sequences. This will involve further assessment of
parameters such as refractory constants and time delays and how they shape
neural dynamics. We anticipate that this line of research will provide insights
into the neural mechanisms that are involved in behavioral sequences and help
further development of neural network models where timing is important.
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Abstract. Current research in intelligent systems investigates their de-

ployment in dynamic and complex environments. Such systems require

the capability to be aware of their operating environment and to process

effectively sensory information from multiple sensory sources. The abil-

ities observed in the animal kingdom to process sensory information in

varying conditions, from many different sensory sources, is an inspiration

for intelligent systems research. Sensory processing in the mammalian

brain involves thousands of neurons in cortical columns, with extensive

interconnect. However it is known that interconnections between neurons

and thus the source of spiking activity within these biological columns is

locally based. Cortical columns are also stimulated by connections from

related areas within the brain which are dedicated to the processing of

alternative sensory stimuli. This paper reports on an approach to emu-

late biological sensory fusion, based on Spiking Neural Networks (SNN)

and Liquid State Machines (LSM), and is assessed in experiments in-

volving the control of a mobile robot in a reactive manner. The results

show that the sensory processing provided by the Liquid State Machine

enables the reactive control of the robot within its environment.

Keywords: Spiking Neural Network, Sensory Processing, Liquid State

Machines, Cortical Columns.

1 Introduction

The task of a robot exploring an environment and interacting with it, is enhanced
by access to real-time information concerning the environment’s structure, lay-
out, obstacles and configuration. This means that the robot should have contin-
uous access to the data of different sensory sources, the validity and confidence
with which the data can be regarded and a method of integrating the informa-
tion in a robust and reliable manner. Clearly the fusion of data from multiple
sensors is crucial, particularly in the case of conflicting, incomplete or uncertain
data. The development of artificial intelligence techniques to solve this problem
has traditionally been directed towards rule oriented solutions [1,2]. In these ap-
proaches, which involve the use of many complex logical tests and rules, a sensor
S1 is treated as separate and discrete from other available sensors S2, .., Sn and
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c© Springer-Verlag Berlin Heidelberg 2009
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does not reflect the possibility that there may be further information available
from the other senses S2, .., Sn which could potentially be of use in interpreting
S1. This is in contrast to biological systems [3,4] which consistently integrate
sensory data to optimize decision and responses. Approaches to emulate the
sensory fusion evident in biology include variations of Kalman filters [5] and
Dempster-Schafer methods [6]. These methods attempt to remove uncertainties
between different sensor streams S1, .., Sn. The result can be a value from the
sensors qualified by their reliability. This makes the artificial system more ro-
bust; as one sensor’s output degrades, the fusion process may allow other sources
of sensory information to mitigate the data which is lost.

Biologically inspired approaches for sensory processing include the work of
Burgensteiner, [7] who investigated the control of a mobile robot using a Liq-
uid State Machine (LSM), and achieved results comparable to a Braitenberg
controller [8]. The work is limited to infra-red sensory information and obstacle
avoidance, and the author omits a path plot for a sample run from the results
[7] instead reporting on the change of wheel speeds. Control of a robotic arm
has also been researched using LSMs [9]; this provided a method of controlling
the robotic arm and represented feedback from the robotic arm’s state; it also
enabled the LSM itself to predict the feedback expected.

A Liquid state Machine (LSM) is a computational construct designed to cap-
ture the dynamics of spiking neurons. In this work the LSM as described within
[10] is created using the toolbox presented within [11]. It is comprised of in-
puts, a column of neurons and a separate readout. It is possible to have full
connectivity from an input neuron to all neurons within the LSM column. The
number of connections is normally controlled by using the weight, length and
connection chance variables for the creation of connections. The neurons within
the column are also connected using the same method. The state of the neurons
within the column is changed by the values from the inputs. The changes are
passed through the column of the LSM via the interconnecting synapses within
the column. The changes cause ripples of activity to pass through the column
of the LSM. The state of the liquid, which is changing constantly based upon
the inputs to the LSM column, holds a record of the past inputs to the liq-
uid which has been measured to last as long as 80 ms. The state of the liquid
is classified with a readout function. The readout’s function is to classify the
state information which is available within the liquid. The readouts which are
suggested within [10,11] include Artificial Neural Networks (ANN). ANN’s are
not biologically plausible but are used within the LSM paradigm to classify the
output of the liquid which is responsible for establishing the state dependent on
the inputs and recent history.

Cortical columns are both the inspiration for the LSM [10] and can be consid-
ered as computational units within the primary sensory processing cortices. The
columns within the somatosensory cortex provide similar processing of sensory
stimulus for different areas of the body. Due to this locality of processing cortical
columns have a high degree of local connectivity but are also connected to other
brain areas which are involved in sensory processing [12].
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This paper investigates the use of Spiking Neural Networks (SNN) and LSMs
for sensory fusion of information from multiple instances of a single sense rep-
resented by infrared sensors on a mobile robotic platform. In section 2 the ap-
proach for using the LSM for sensory processing is discussed. Section 3 explains
the experimental setup and the specific LSM architecture utilised. In section 4
the experimental results are presented. Finally in section 5, a discussion of the
experiments is presented and future plans for the research summarised.

2 SNN for Sensory Processing

SNNs are believed to be biologically compatible processing structures. They
are modeled on the neurons within the brain [13] and provide a progression in
biological accuracy from second generation Artificial Neural Networks (ANN).
To date SNNs have achieved success at performing tasks such as edge detection
or motion tracking [14]. It has been shown that evolving robotic controllers is
possible using SNN’s [15].

LSM uses biological inspiration of the spiking neuron and combines this ap-
proach with established techniques from ANNs to create a hybrid method in
which the states of the liquid are interpreted using a ANN readout function.
The LSM was developed [10,11] to allow more biologically inspired SNN states
within the computations of the state of its liquid. The LSM uses recurrent con-
nections which are built into the liquid to maintain a memory of the previous
stimulus to the LSM [16].

Fig. 1. Structures of the LSM in use in this research

In this work, the Liquid State Machine (LSM), as a special case of the Spiking
Neural Network (SNN), is used as a sensory combination element of the sensory
processing system. Figure 1 shows the steps involved within the sensory pro-
cessing approach described in this paper. The sensors indicated on the right of
the figure 1 as Si are processed using the methods described in section 3.2 and
passed into the LSM, as indicated on the left of figure 1. The hypothesis is that
the LSM integrates the various sensory data to form a complete, time-dependent
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picture of the environment that stimulated the sensors. This approach means it
is unnecessary to quantify the differences between sensory sources as in other fu-
sion systems, utilizing for example the Dempster-Schafer approach. In this work
an ANN is trained to interpret the complex states which are contained within
the LSM’s internal state.

Fig. 2. Structure of the LSM in use in this research

Figure 2 illustrates the LSM structure used in this work. The sensor data is
input to the LSM via the neurons labeled as S1−6 in figure 2. The figure shows
the entire LSM structure in use for the experiments (with all six input neurons
S1−6 ). Each section of the LSM deals with a specific locale of stimulus on the
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robot and is highly locally interconnected. The structure of the LSM allows the
processing of the individual sensory inputs without distorting the processing
with data relevant to the other sensors. The LSM has an input for each of the
sensors putting data into the column of the LSM. The inputs labeled as S1−6 are
connected only to neurons in the first vertical layer of the LSM, labeled as A1−6.
These are the neurons marked 3 on the X axis of the figure 2. In the complete
structure there are 36 neurons in this section of the LSM column. The remaining
2 columns B1−6 (marked as columns 5 and 6 in figure 2) are treated as inputs
to the readout function. There are 72 neurons within that part of the network.
There are 2 horizontal layers created for each input S6

i=1. Each input neuron
(Si in figure 2) is connected to 3 of the neurons in the first layer of the LSM
column. These 3 neurons are then connected to the 6 neurons from the second
and third vertical layers, on the same horizontal layer as them. The neurons in
the 2 horizontal layers are then connected to each other based upon the method
used by Maass [10]. The number of connections is dependent upon a connection
chance of 0.9 and an average length of connection of 2. Connections to the areas
of the column for other sensory inputs have a connection chance of 0.9 and an
average length of connection of 5. Connections are made to neurons within the
single sensory processing section with short lengths so they remain within the
single sensor processing section, and also over the entire LSM to enable cross
sensor input fusion.

The LSM which is discussed within Maass’ [10,11] original papers is described
as a fixed structure with no provision for adaptation. There has however been
research into adapting the LSM structure to improve its performance, based
on a Hebbian learning approach [17]. In that approach connections within the
LSM have their weights adjusted to improve the separation between the input
classes. Determining the optimum structures within the LSM to provide the
required computations is not a trivial problem. A substantial range of structures
were investigated during this research to increase the differentiation between the
input signals and allow fusion of the input data. The architecture chosen and
presented here has emerged as a result of these experiments.

3 Experimental Methods

3.1 Robot Environment

The approach used is based upon experiments initially proposed by Braiten-
berg [8] and utilises two constrained robots environments as shown in figure 3a
and figure 3b. Two Khepera robots were used, a Khephera II for the enclosure
of figure 3a and a Khephera III for the enclosure of figure 3b. The environ-
ment in which the Khepera II robot is deployed is lined with white to increase
the reflectivity and thus the performance of the IR sensors on the robot. The
environment in Figure 3a is a rectangular environment with a floor area of ap-
proximately 0.3m2. while that of Figure 3b is set in an environment with a floor
area of approximately 0.9m2. In each experimental run, the robot is set to start
from the same position in the environment. The experiment is then performed,
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allowing the robot to run through the environment reacting to avoid obstacles
and the path taken by the robot is recorded. Infra red sensors are used in both
experiments. The Khepera II provides 8 Infra Red (IR) sensors of which the 6
forward and sideward facing sensors were used; for Khepera III only the 6 for-
ward and sidewards facing sensors were used. The sensor positions on the robots
are marked on the ’robot’ depicted in Figure 1. The IR sensors on the Khepera
II have a detection range from 0 to 1024 (sensor units) which varies depending
on the reflected IR values which are detected by the sensor. The Khepera III
uses a more recent sensor which has a larger response range of between 0 and
4096 (sensor units); again this is dependent upon reflected IR light being re-
turned. Different robots in two separate environments are used to demonstrate
the generalisability of the solution for use on different robots in alternate simple
environments.

3.2 Processing

inputfrequency =
1

Si
MR

x

− 1
(1)

The input values to the LSM are calculated from the sensor inputs Si into a
linear frequency dependent spike train. The sensory inputs are taken from the
robot sensors marked Si upon the right hand side of figure 1. They correspond to
the sensor inputs on the left of the figure 1. The input frequency is measured in
seconds and must be within the range of 0 to 1. The input frequency is calculated
using equation (1), dependent upon the maximum range MR of the sensor on
the robot. This range is adjusted by a scaling value x to ensure an appropriate
range of spiking activity in the LSM. This frequency is then converted into a
series of spike times which acts as the input to the LSM’s input neurons indicated
as Si in figure 2.

The inputs were presented to the LSM and the observed set of spiking activity
from the liquid recorded. Output values from the LSM are converted from spike
time arrays into an array of averaged activation of the corresponding neuron
for the spiking activity, which has occurred over the last few milliseconds, using
equation (2). These values are calculated every 25ms of the LSM’s simulation.
Equation (2) converts the state of the LSM into a format compatible with the
ANN. This is identified in figure 1 as the LSM state output.

z(l, k) =

⎡⎣p
l=0

⎡⎣m
k=0

n∑
j=0

e(ts(l,j)−ti(k))/τ1

⎤⎦⎤⎦n<ti(k)

(2)

In equation (2) where ts represents the spike times from the LSM recorder;
ti represents the sample times for the conversion operation; n represents the
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number of spike times ts(l) recorded for the current synapse. The number of
sample time points within ti is represented by m. The number of synapses for
which records exist is represented by p. l corresponds to the number of neurons
recorded by the recorder. The sample time periods which the output of the LSM
are being recorded for corresponds to k. The time steps here are 0.025ms in
size and cover the full period of the simulation. J corresponds to the spike time
value within the record of spiking activity. The stimulus value returned from this
connection l for the k time segment is z.

(a) IR sensory path KII Robot

(b) IR sensory path KIII Robot

Fig. 3. Robot paths for infrared obstacle avoidance

3.3 Readout

Figure 4 provides an illustration of the spiking information returned from the
LSM in figure 4a those spikes are then converted as described in Equation (2).
From these values the representative samples of the data are passed to the read-
out for classification. 8 samples are taken within a 1 second window, (see figure
4b ) from the LSM recorder to act as inputs to the readout network. The data is
presented to the readout network, provided by a ANN. The training method used
in the ANN is error back propagation based on the Scaled Conjugate Gradient
method from Matlab’s Neural Network tool. This training method was chosen
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(a) (b)

Fig. 4. Spiking output from the LSM and values returned from the output

conversion (2)

as it scales well over large training sets. The learning rate is 0.1. The structure
of the ANN used of the readout is a hidden layer of 4 log sigmoid neurons and
an output layer of 3 log sigmoid neurons. The output of the readout network is
a signal to turn right or left or to move forward.

4 Results

The behaviours observed showed that the edges of the environment were avoided,
and the environments of Figure 3a and Figure 3b were explored. When an edge
was encountered the behaviour exhibited was to turn from the obstacles, veering
off at an angle and not following the wall of the environment. A short range
was used for the sensory processing during the experiment in figure 3a to avoid
the interference from which IR distance sensors suffer. The activation at a much
greater range range than the Khepera II, was used with the Khepera III experi-
mental setup. The behaviour of the Khepera III in the environment in figure 3b
shows that this was effective in increasing the robots distance from the walls.

Table 1 attempts to quantify the performance of the approach. The values are
based upon the metrics proposed by Ceballos et al. [18]. The experimental values
are reported with the value recorded x together with the maximum possible value
y in the format x/y. This representation of gives a way of interpreting the results
which are not reported as distance values due to the accuracy of the sensors.
The first metric is represented in IR sensor units, it shows the Mean Distance
(MD) between the robot and any obstacles throughout the experiment. The
second metric is the Minimum Mean Distance (MMD) which is the minimum
value recorded for any of the IR sensors, for every time step of the experiment,
between the robot and the nearest wall. The Absolute Minimum Distance (AMD)
is the closest that the robot gets to the wall during the experiment on any of the
sensors. The encounters with the walls of the environment for the Khepera II
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Table 1. Performance Metrics for LSM Sensory Processing Robots

Run
Mean Distance

(sensor unit)

Minimum Mean

Distance (sensor

Units)

Absolute Mini-

mum Distance

(sensor units)

Total

Length

(mm)

Infra red 1st

environment

Figure 3a

806 / 1024 484/ 1024 4/ 1024 2301

Infra red 2nd

environment

Figure 3b

1782 / 4096 628/ 4096 33/ 4096 3238.7

are seen in figure 3a they are marked i to vii. The encounters with the edges of
the environment is reflected in the metric values shown in the table 1. The value
which represents the fact that the distance between the robot and the wall was
at times small is the AMD. The Total Length of the path gives an indication
of how much of the environment the robot encountered. The greater distance
traveled which is shown for the second experiment is caused by the size of the
environment

5 Conclusions

This work demonstrates it is possible to control a mobile robot from multiple
sensors using an LSM and ANN solution. The experiment were conducted in
a simple environment. Future work will expand the sensory inputs to include
sensors of different modalities such as ultrasound sensors which are available on
the Khepera III. It will also examine more complex experimental environments
for the mobile robot.

These experiments demonstrate an approach for combining multiple instances
of a single sensory modality into a bio-inspired architecture of spiking neurons,
and successfully processing the relevant data. The paper describes an effective
means of combining this information and enabling basic robotic control. It is
planned to continue this research by combining multiple different sensory modal-
ities into an extended LSM structure based upon the structure reported in this
paper,this provides a method of multi-modal sensory fusion inspired by the so-
matosensory cortex of the brain.
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Abstract. This paper’s intention is to present a new approach for

decomposing motion trajectories. The proposed algorithm is based on

non-negative matrix factorization, which is applied to a grid like repre-

sentation of the trajectories. From a set of training samples a number

of basis primitives is generated. These basis primitives are applied to re-

construct an observed trajectory, and the reconstruction information can

be used afterwards for classification. An extension of the reconstruction

approach furthermore enables to predict the observed movement fur-

ther into the future. The proposed algorithm goes beyond the standard

methods for tracking, since it doesn’t use an explicit motion model but

is able to adapt to the observed situation. In experiments we used real

movement data to evaluate several aspects of the proposed approach.

Keywords: Non-negative Matrix Factorization, Prediction, Movement

Data, Robot, Motion Trajectories.

1 Introduction

The understanding and interpretation of movement trajectories is a crucial com-
ponent in dynamic visual scenes with multiple moving items. Nevertheless, this
problem has been approached very sparsely by the research community. Most
approaches for describing motion patterns, like [1], rely on a kinematic model for
the observed human motion. This causes the drawback that the approaches are
difficult to adapt to other objects. Here, we aim at a generic, model-independent
framework for decomposition, classification and prediction. In this paper, we fo-
cus on the decomposition and prediction problem, while the classification is not
yet further investigated.

Consider the simple task for a robot of grasping an object which is handed
over by the human interaction partner. To avoid a purely reactive behavior,
which might lead to ‘mechanical’ movements of the robots, it is necessary to
predict the further movement of the human’s hand.

In [2] an interesting concept for a decomposition task is presented. Like playing
a piano a basis alphabet – the different notes – are superimposed to reconstruct

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 804–814, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the observation (the piece of music). The much less dimensional description of
when each basis primitive is used, can be exploited for further processing. While
the so-called piano model relies on a set of given basis primitives, our approach
is able to learn these primitives from the training data.

Beside the standard source separation approaches, like PCA and ICA, another
promising algorithm exists. It is called non-negative matrix factorization (NMF)
[3]. The system of basis vectors which is generated by the NMF is not orthogonal.
This is very useful for motion trajectories, since one basis primitive is allowed
to share a common part of its trajectory with other primitives and to specialize
later.

The next section introduces the standard non-negative matrix factorization
approach and two extensions that can be found in the literature. In section 3 the
new approach for decomposing motion trajectories is presented. The experiments
with their conditions and results are presented in section 4, while the paper
concludes in section 5.

2 Non-negative Matrix Factorization

Like other approaches, e. g. PCA and ICA, non-negative matrix factorization
(NMF) [3] is meant to solve the source separation problem. Hence, a set of
training data is decomposed into basis primitives:

V ≈ W ·H (1)

Each training data sample is represented as a column vector Vi within the matrix
V. Each column of the matrix W stands for one of the basis primitives. In
matrix H the element Hj

i determines how the basis primitive Wj is activated to
reconstruct training sample Vi. Since NMF is an iterative method, the training
data V can only be approximated by the product of W and H. This product
will be referred to as reconstruction R = W ·H later.

Unlike PCA or ICA, NMF aims to a decomposition, which only consists of
non-negative elements. This means that the basis primitives can only be accu-
mulated. There exists no primitive which is able to erase a ’wrong‘ superposition
of other primitives. This leads to a more specific set of basis primitives, which
is an advantage for certain applications, like face recognition [4].

For generating the decomposition, optimization-based methods are used.
Hence, an energy function E has to be defined:

E(W,H) =
1
2
‖V −W ·H‖2 (2)

By minimizing the energy equation, it is now possible to achieve a reconstruction
using the matrices W and H. This reconstruction is aimed to be as close as
possible to the training data V. No further constraints are given in the standard
formulation of the NMF. As it can be seen in equation 2, the energy function
depends on the two unknown matrices W and H.
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Since both matrices usually have a large number of elements, the optimization
problem seems to be an extensive task. Fortunately, the training samples can be
presented to the algorithm one after the other:

Vi ≈
∑

j

Hj
i ·Wj (3)

Furthermore, both matrices are adapted in an alternating fashion. This helps to
reduce the number of dimensions for the optimization process and allows a train-
ing regime with fewer examples. The algorithm is formulated in the following
description in vector-wise notation:
1. Calculate the reconstruction

Ri =
∑

j

Hj
i Wj (4)

2. Update the activities

Hj
i ← Hj

i '
VT

i Wj

RT
i Wj

(5)

3. Calculate the reconstruction with the new activities

Ri =
∑

j

Hj
i Wj (6)

4. Update the basis vectors

Wj ← Wj '
∑

i H
j
i Vi∑

i H
j
i Ri

(7)

Where the operation ' denotes a component-wise multiplication. Steps 1 to 4
are iterated until a defined convergence criterion is reached, e. g. a threshold for
the energy or the change of the energy. Details about convergence properties are
discussed in [3].

2.1 Sparse Coding

As it could be seen in equation 2 the energy function is formulated in a very
simple way. This results in a decomposition, which is quite arbitrary with no
further characteristics. This can lead, for example, to redundant information.
Especially, if the number of basis primitives is chosen higher than needed to
decompose the given training data. To compensate this drawback, it is useful
to introduce a constraint which demands a sparse activation matrix, like it was
introduced in [5]. This avoids the fact that several basis primitives are activated
at the same time, and hence are being superimposed.

E(W,H) =
1
2
‖V −W ·H‖2 + λ

∑
i,j

Hj
i (8)
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The influence of the sparsity constraint can be controlled using the parameter
λ. In this paper, we only discuss a special case for the sparsity term. A more
detailed discussion can be found in [5]. The algorithmic description is similar to
the one of the standard NMF. The only thing that has to be considered is that
the basis primitives need to be normalized.

2.2 Transformation Invariance

Beside the sparsity constraint another extension to NMF has been published
in [6]. The concept of transformation invariance allows moving, rotating, and
scaling the basis primitives for reconstructing the input. In this way, we do not
have to handle each possible transformation using separate basis vectors. This is
achieved by adding a transformation matrix T to the decomposition formulation:

V ≈ T ·W ·H (9)

However the activation matrix H has to be adapted in a way that each pos-
sible transformation carries its own activation. This can be regarded as a set
of activity matrices, with each single matrix being indexed as Hm, while m is
an index vector describing the transformation parameters (rotation, scaling and
translation).

Vi ≈
∑

j

∑
m

Hj,m
i ·Tm ·Wj (10)

For each allowed transformation the corresponding activity has to be trained
individually.

3 Decomposing Motion Trajectories

For being able to decompose and to predict the trajectories of the surrounding
dynamic objects, it is necessary to identify them and to follow their movements.
For simplification, a tracker is assumed, which is able to provide such trajectories
in real-time. A possible tracker to be used is presented in [7]. The given trajectory
of the motion is now interpreted as a time series T with values si = (xi, yi, zi)
for time steps i = 0, 1, . . . , n− 1: T = (s0, s1, . . . , sn−1).

It is now possible to present the vector T directly to the NMF approach. But
this could result in an unwanted behavior, while trying to reconstruct the motion
by use of the basis primitives. Imagine two basis primitives, one representing a
left turn and another representing a right turn. A superposition of those basis
primitives would result in a straight movement.

The goal is to have a set of basis primitives, which can be concatenated one
after the other. Furthermore, it is necessary for a prediction task to be able to
formulate multiple hypotheses. For achieving these goals, the x-t-trajectory is
transferred into a grid representation, as it is shown in figure 1. Then, each grid
cell (xi, tj) represents a certain state (spatial coordinate) xi at a certain time tj .
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Fig. 1. Motion Trajectories are transferred into a grid representation. A grid cell is set

to 1 if it is in the path of the trajectory and set to zero otherwise. Each dimension

has to be regarded separately. During the prediction phase multiple hypotheses can

be gained by superimposing several basis primitives. This is indicated with the gray

trajectories on the right side of the grid.

Fig. 2. Training with Spatio-Temporal NMF. Given is a set of training samples in

matrix V. The described algorithm computes the weights W and the corresponding

activities H. Only the weights are used as basis primitives for further processing.

Since most of the state-of-the-art navigation techniques rely on grid maps, the
prediction can be integrated easily. Grid Maps were first introduced in [8]. This
2D-grid is now presented as image-like input to the NMF algorithm using the
sparsity constraint as well as transformation invariance (See section 2.1 and 2.2
respectively). Using the grid representation of the trajectory also supports the
non-negative character of the basis components and their activities.

It has to be mentioned, that the transformation to the grid representation is
done for each of the dimensions individually. Hence, the spatio-temporal NMF
has to be processed on each of these grids. Regarding each of the dimensions
separately is often used to reduce the complexity of the analysis of trajectories
(compare [9]). Theoretically, the algorithm could also handle multi-dimensional
grid representation.
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While applying an algorithm for basis decomposition to motion trajectories it
seems to be clear that the motion primitives can undergo certain transformations
to be combined to the whole trajectory. For example, the same basis primitive
standing for a straight move can be concatenated with another one standing for
a left turn. Hence, the turning left primitive has to be moved to the end of the
straight line, and transformation invariance is needed while decomposing motion
data. For our purposes, we concentrate on translation. This makes it possible to
reduce the complexity of the calculations and to achieve real time performance.

The sparse coding constraint helps to avoid trivial solutions. Since the input
can be compared with a binary image, one possible solution would be a basis
component with only a single grid cell filled. These can then be concatenated
one directly after another. So, the trajectory is simply copied into the activities.

3.1 Training Phase

The goal of the training phase is to gain a set of basis primitives which allow
to decompose an observed and yet unknown trajectory (see Fig. 2). As it is
discussed in section 3, the training samples are transferred into a grid repre-
sentation. These grid representations are taken as input for the NMF approach
and are therefore represented in matrix V. On this matrix V the standard NMF
approach, extended by the sparsity constraint and by translation invariance, is
applied. The algorithm is summarized in Fig. 3.

Beside the computed basis primitives, the NMF algorithm also provides the
information of how each of the training samples can be decomposed by these
basis primitives.

3.2 Application Phase

As it is indicated in Fig. 4, from the training phase a set of motion primitives
is extracted. During the application phase, we assume that the motion of a
dynamic object (e. g. a person) is tracked continuously. For getting the input
for the NMF algorithm, a sliding window approach is taken. A certain frame in
time is transferred into the already discussed grid like representation. For this
grid the activation of the basis primitives is determined by trying to reconstruct
the input. For the computation the algorithm is identical to the one sketched in
Fig. 3 besides, that steps 4 and 5 can be skipped.

The standard approach to NMF implies that each new observation at the next
time step demands a new random initialization for the optimization problem.
Since an increasing column number in the grid representation stands for an
increase in time, the trajectory is shifted to the left while moving further in
time. For identical initialization, the same shift is then reflected in the activities
after the next convergence. To reduce the number of iterations until convergence,
the shifted activities from the previous time step are used as initialization for
the current one.

To fulfill the main goal discussed in this paper – the prediction of the observed
trajectory into the future – the proposed algorithm had to be extended. Since
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1. Normalize the basis vectors according to

Wj =
Wj

‖Wj‖ (11)

2. Calculate the reconstruction

Ri =
∑

j

∑
m

Hj,m
i TmWj (12)

3. Update the activities

Hj,m
i ← Hj,m

i � VT
i TmWj

RT
i TmWj

(13)

4. Calculate the reconstruction with the new activities

Ri =
∑

j

∑
m

Hj,m
i TmWj (14)

5. Update the basis vectors

Wj ← Wj �
∑

i

∑
m Hj,m

i VT
i Tm + WjW

T
j

∑
i

∑
m Hj,m

i RT
i Tm∑

i

∑
m Hj,m

i RT
i Tm + WjW

T
j

∑
i

∑
m Hj,m

i VT
i Tm

(15)

Fig. 3. Algorithmic description of the Spatio-temporal NMF

Fig. 4. The basis primitives W, which were computed during the training, are used

to reconstruct (matrix R) the observed trajectory V. This results in a set of sparse

activities – one for each basis primitive – which describe on which position in space and

time a certain primitive is used. Beside the reconstruction of the observed trajectory

(shown in Fig. 4), it is furthermore possible to predict a number of time steps into the

future. Hence, the matrix R is extended by the prediction horizon P.
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the algorithm contains the transformation invariance constraint, the computed
basis primitives can be translated to an arbitrary position on the grid. This
means that they can also be moved in a way that they exceed the borders of the
grid. Up to now, the size of reconstruction was chosen to be the same size as
the input grid. Hence, using the standard approach means that the overlapping
information has to be clipped. To be able to solve the prediction task, we simply
extend the reconstruction grid to the right – or into the future (see Fig. 4). So,
the previously clipped information is available for prediction.

4 Evaluation

Taking a closer look at the example scenario from introductory section 1 reveals
that a robust identification and tracking of the single body parts is needed.
To be comparable and to avoid errors from the tracking system influencing the
test results, movement data from the Perception Action Cognition Lab at the
University of Glasgow [10] is used. The data contains trajectories from 30 persons
is recorded performing different actions in different moods. The movement data
has a resolution of 60 time steps per second, so that an average prediction of
about 50 steps means a prediction of 0.83 seconds into the future. Since most
trackers work with a lower resolution, a prediction further into the future is still
possible.

In the next subsections, two aspects of the proposed algorithm are investigated
in detail. First, it is shown that activity shifting brings a great benefit towards
real time performance. Afterwards the focus is set to the quality of the prediction
part.

For the experiments, the size of the basis primitives was chosen to be 50× 50
grid cells (for an example see Fig. 5). The input grid size was set to 500 × 50
during the training phase and to 100× 50 during application phase for each of
the trajectories.

Fig. 5. Basis primitives gained by Spatio-Temporal NMF. The value for each grid cell

is coded in gray scale from white (low) to black (high). A certain value stands for the

influence of this grid cell, in the sense that light gray parts can be superimposed well,

while dark gray to black parts indicate unambiguous trajectory segments.
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Fig. 6. Box whiskers plot showing the convergence characteristics of the energy function

(see eqn. 2) for 15 iteration steps. For the upper (blue) plot the activities are initialized

randomly after each shift of the input data. For the lower (red) curve the activities

from the previous computations are shifted and used as initialization.

4.1 Activity Shifting

In section 3.2 it has been mentioned that the information from the previous time
step can be used as initialization for the current one. Figure 6 shows the energy
function, which is defined in equation 2, for both possibilities of initialization.
It is plotted only for a low number of iteration steps (up to 15), since already
there the effect can be observed. A single iteration step takes a time of 92 ms
with our current implementation on an Intel T2050 CPU with 1.6 GHz. For the
upper (blue) plot a random initialization of the activities was used. For the lower
(red) curve the activities from the previous computations are shifted and used as
initialization. It can clearly be seen that the convergence is faster by a number
of about 10 steps in average.

4.2 Prediction

For evaluating the quality of the prediction, the prediction is compared with the
grid representation of the actual trajectory G. For each occupied grid cell the
value of the column-wise normalized prediction is added. The sum is divided by
the length of the trajectory:

SGT =
1
|T |
∑
t∈T

PT
t ·Gt∑

i G
i
t

(16)

The normalization of the prediction is done separately for each time slice (column
in the grid).

The basis primitives can at most be shifted by their width out of the recon-
struction grid R. So the maximal size of the prediction horizon equals the width
of the basis primitives. Practically this maximum can not be reached, because
the basis primitives need a reliable basis in the part where the input is known.
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Fig. 7. (a) The mean correlation SGT (see eqn. 16) between the ground truth trajec-

tory and the prediction is plotted for each time step of the prediction horizon. A fit

value of 1.0 stands for a perfect prediction over the whole prediction horizon. As it

is expected the accuracy of the prediction decreases for a longer prediction period.

(b) The plot shows the prediction accuracy for predictions along a sample trajectory.

The 36 predictions were performed at each tenth time step of the chosen trajectory. A

fit value of 1.0 stands for a perfect prediction over the whole prediction horizon. The

constant and dotted lines (red) indicate mean and variance respectively.

Nevertheless, we have chosen to use the theoretical maximum as basis for the
evaluation.

The results are depicted in Fig. 7. The first plot (Fig. 7(a)) shows the expected
decrease of the average prediction quality over the prediction horizon. Neverthe-
less, the decrease is smooth and no sudden collapses can be observed. For Fig.
7(b) an example trajectory has been selected for the reasons of clearness. The
plot is intended to show how the algorithm behaves in practical applications.
The predictions were performed at each tenth time step of the chosen trajectory.
A fit value of 1.0 stands for a perfect prediction over the maximum prediction
horizon, with only a single hypothesis for the prediction. The value decreases
significantly with multiple hypotheses being present.

5 Conclusion and Outlook

This paper presented a new approach for decomposing motion trajectories us-
ing non-negative matrix factorization. To solve this problem, sparsity constraint
and transformation invariance have been combined. The trajectories were then
decomposed using a grid-based representation. It could be demonstrated that
the concept of activity shifting clearly decreases the number of iterations needed
until convergence. Furthermore it was shown that the proposed algorithm is able
to predict the motion into the future. The prediction occurs by a superposition
of possible trajectory alternatives, yielding a quasi-probabilistic description. At
this point, the information about the sparse activation of the basis primitives
was used only for reconstruction purposes, even though it contains significant
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information about the global motion. Therefore, it should be further evaluated
whether this information can be used as input to solve a trajectory classification
task.
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Abstract. The asymptotic tracking control problem of a class of single-

input single-output (SISO) uncertain nonlinear systems is addressed in

this paper. A single-hidden layer neural network is used as a controller

with a novel online weight training algorithm. The proposed NN weight

update law mimics standard second order sliding mode control (2-SMC)

approaches to ensure semi-global asymptotic convergence of the tracking

error to the origin with continuous control effort. A simulation study

verifies the effectiveness of the NN controller with 2-SMC-based online

training.

1 Introduction

Neural network-based adaptive control is a well-established methodology to con-
trol several classes of uncertain nonlinear systems [1]-[6]. In most of these ap-
proaches NNs are considered for their ability to approximate general unknown
nonlinear functions [7],[8]. Using Lyapunov stability arguments semiglobal uni-
form ultimate boundedness of the tracking error within some region of the origin
can be proved [1]-[6]. Asymptotic tracking results can be obtained if one aug-
ments standard adaptive NN controllers with sliding mode control terms. A well
known drawback of such an approach is the fact that the resulting control law
will suffer from chattering [9].

Recently, a novel NN-based control scheme was proposed in [10] that achieves
asymptotic tracking results without using a discontinuous sliding mode con-
troller. The proposed controller is based on the robust integral sign error (RISE)
approach of [11] which is further developed in [12]. In [10], the NN is used to
account (approximate) for a time varying nonlinearity and is augmented by the
RISE terms to guarantee asymptotic tracking.

In the spirit of [10], we attempt to answer the following important question in
this paper: Can we achieve semiglobal asymptotic tracking results using only a
NN as a (continuous) controller ? The answer to this question is affirmative and
this is accomplished by the proper selection of the NN’s weight vector update
rule.

The majority of existing NN control schemes employ some odd power of the
filtered tracking error (FTE) in their weight update laws. For example, the first
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power is used in [1]-[6] while the third power is considered in stochastic con-
trol [13],[14],[15] and sampled-data control [16]. In this paper, we propose a
sign-like NN weight update law (see (11)). An initial design is considered to
transform the unknown uncertain nonlinear system augmented model (filtered
tracking error and its derivative) into a standard form ((2) of [20]). In this way
existing results from 2-SMC theory [17]-[20] can be invoked to prove the desired
asymptotic tracking property. Finally, a simulation study is carried out to verify
the effectiveness of the proposed scheme and investigate the role of the selected
parameters (NN input vector, number of nodes) on the tracking performance.

The following notation will be used throughout the paper: || · || denotes the
standard Euclidean norm and AT is the transpose of some matrix A.

2 Plant Description and Control Problem Formulation

Let the following class of SISO systems in normal form

ẋi = xi+1 , i = 1, 2, . . . , n− 1
ẋn = a(x) + b(x)u , y = x1 (1)

where x := [x1, x2, · · · , xn]T is the state vector and u ∈ R , y ∈ R the control
input and the system output, respectively. The functions a : Rn → R , b : Rn →
R are the system’s unknown smooth nonlinearities. The control objective is the
output y(t) to asymptotically track some desired reference signal yd(t) .

Assumption 1. The sign of b(x) is known and there exists some constant b0 > 0
such that b0 ≤ |b(x)| , ∀x ∈ Rn .

Remark 1. Assumption 1 represents a controllability condition on system (1)
([5],[6]) since it implies that the smooth function b(x) is either strictly positive
or strictly negative. From now on, we assume without loss of generality that
b(x) > 0 , ∀x ∈ Rn .

Let us also define the vectors xd :=
[
yd, ẏd, . . . , y

(n−1)
d

]T , e := x − xd =
[e1, e2, · · · , en]T and the filtered tracking error s := (d/dt+λ)n−1e1 = [ΛT 1]e :=

[Λ̄T (n − 1)λ 1]e with λ > 0 and Λ :=
[
λn−1, (n − 1)λn−2, · · · , (n − 1)λ

]T
.

Then, the time derivative of s can be written as

ṡ = a(x) + b(x)u − v (2)

with v := y
(n)
d − [0 ΛT

]
e a known time-varying signal.

Assumption 2. The reference signal yd and its derivatives ẏd, ÿd, . . . , y
(n)
d are all

known, smooth and bounded i.e. there exist known ri ≥ 0 such that |y(i)
d | ≤ ri ,

i = 0, 1, . . . , n .

Lemma 1. For the filtered tracking error s it holds true that: i) if e(0) = 0,
|s(t)| ≤ C , ∀t ≥ 0 with C ≥ 0 , then e(t) ∈ Ωc with Ωc := {e : |ei| ≤
2i−1λi−nC, i = 1, 2, . . . , n} and ii) if e(0) �= 0 and |s(t)| ≤ C then e(t) will
converge to Ωc within a time constant (n− 1)/λ (see [9]).
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Lemma 1 allows us to study the convergence of s to zero in order to ensure
tracking of the output y to yd.

3 Adaptive NN Control Design

3.1 NN as a Controller

In most adaptive NN control schemes, a single-hidden-layer neural network
WTS(z) is used directly in the control law and is augmented by a linear control
term [1]-[6] or a sign error term [21] or even an integral of the sign error term [10].
The NN input vector z usually takes the form of z1 := [xT , s, v]T ⊂ Rn+2 but
we shall also consider the vectors z2 := [xT , s]T ⊂ Rn+1 and z3 := x ⊂ Rn. In
this paper, we address the following problem: If the NN control law is employed

ui = WTS(zi) , (i = 1, 2, 3) (3)

can we design an NN update algorithm such that the system output y asymp-
totically tracks the desired reference signal yd? The answer is affirmative and
a solution can be obtained by using standard results from second-order sliding
mode control theory [17]-[20].

Remark 2. The results of this paper hold true for any type of neural networks
with a globally supported basis vector such as high-order neural-networks [7],
functional link neural networks [8] etc.

3.2 NN Weight Update Law Selection Based on 2-SMC

For the control law (3) the dynamics of the filtered tracking error s given by (2)
take the form

ṡ = a(x)− v + b(x)ST (zi)W. (4)

If we now define the variables ri := ṡ (i = 1, 2, 3) and consider a differentiation
of (4) we obtain

ṡ = ri , (i = 1, 2, 3)

ṙi = fi(x,W, t) + b(x)ST (zi)Ẇ (5)

where

fi(x,W, t) :=
n−1∑
j=1

( ∂a
∂xj

+
∂b

∂xj
ST (zi)W

)
xj+1 +

[
a(x) + b(x)WTS(zi)

]
×
[
∂a

∂xn
+

∂b

∂xn
ST (zi)W + (n− 1)λ

]
− y

(n+1)
d − (n− 1)λy(n)

d

+ [0 0 Λ̄T ]e+ b(x)WT
∑

j

∂S

∂zij
żij
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and zij are the elements of the vector zi. Selecting then the NN weight update
algorithm

Ẇ = η
S(zi)

‖S(zi)‖2 , (i = 1, 2, 3) (6)

(5) yields

ṡ = ri , (i = 1, 2, 3)
ṙi = fi(x,W, t) + b(x)η (7)

where η is some signal to be designed. Standard second-order sliding mode con-
trol results [17]-[20] can now be employed to design η(t). Herein, we will use the
approach of [20] where a suitable methodology robust to measurement noise is
presented. To this end, the following Assumption is needed.

Assumption 3. The drift term fi(x,W, t) and the gain b(x) satisfy the following
inequalities

|fi(x,W, t)| ≤ Φi , 0 < b0 ≤ b(x) ≤ b1 ∀[xT ,WT ]T ∈ Ω (i = 1, 2, 3) (8)

for some positive constants b0, b1, Φi (i = 1, 2, 3) with Ω some compact set
wherein the state and NN weight trajectories evolve.

The scheme proposed in [20] considers a discrete-event system that switches
among 4 different states S+

M , S−
M , S+

m, S−
m with the following selection for η:

η =
{

Γ when in S+
m or S−

m

−Γ when in S+
M or S−

M

(9)

where Γ > 0 is the NN weight adaptation gain. Initially, if s(0) ≥ 0 the state is
set to S+

M , otherwise the state is set to S−
m. We define also the variables

sm(t) = sM (t) = s(t) , t ∈ [0, τ)
sm(t) = min{s(t), sm(t− τ)} , t ≥ τ

sM (t) = max{s(t), sM (t− τ)} , t ≥ τ (10)

for some small τ > 0 introduced to hold the maximum and minimum values of
the filtered tracking error subject to resetting at state switching.

The switching state strategy is described below (for further details see [20]):

– When in S+
M : if s(t) ≤ βsM (t) with β ∈ (0.75, 1)∩ (b1/(b0 + b1), 1) the state

switches to S+
m.

– When in S+
m: if s < 0 switch to S−

m or if s ≥ sm + (sM − sm)/N then switch
to S+

M and reset sM to s with N > 1/(1− β).
– When in S−

m: if s(t) ≥ βsm(t) switch to S−
M .

– When in S−
M : if s > 0 switch to S+

M or if s ≤ sM − (sM − sm)/N then
switch to S−

m and reset sm to s.

From (6),(9) the NN weight update algorithm takes the form

Ẇ =

{
Γ S(zi)

‖S(zi)‖2 when in S+
m or S−

m

−Γ S(zi)
‖S(zi)‖2 when in S+

M or S−
M

(11)
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Then the following theorem can be proved.

Theorem 1. Consider system (1) with the NN controller (3) and the NN weight
update law (11). If the resulting second-order sliding variable dynamics (7) satis-
fies conditions (8) of Assumption 3, then, the selection of the weight adaptation
gain

Γ = γΦi with γ ≥ 1
2[βb0 − (1− β)b1]

ensures that the system output y asymptotically tracks the reference signal yd.

Proof. The proof follows directly from the analysis carried out in Theorem 1 and
Remark 4 of [20].

Remark 3. Practically, the above Theorem ensures asymptotic tracking if a suf-
ficiently large value of the adaptation gain Γ is selected. We note that there are
no theoretical results on how the selection of the NN input vector or the NN node
number affect the output tracking performance. This is in fact an open research
problem. In the following section, wherein a simulation study is performed, we
investigate this dependence in more detail.

4 Simulation Study

To evaluate the effectiveness of the proposed approach, consider now a pendulum
plant with variable length described in [16] with dynamics given by (1), n = 2,

a(x) =
0.5 sinx1(1 + 0.5 cosx1)x2

2 − 10 sinx1(1 + cosx1)
0.25(2 + cosx1)2

b(x) =
1

0.25(2 + cosx1)2

initial conditions x(0) = [0.5 0]T and reference signal yd(t) = (π/6)[sin(t) +
sin(

√
2t)]. The adaptive NN control law of Theorem 1 is implemented with Γ =

90, β = 0.95 , λ = 5, τ = 10−4, N = 100 for the three cases (i = 1, 2, 3) of NN
input vectors z1, z2, z3. A second order NN is used in all cases with 4,3,2 inputs
and 15, 10, 6 nodes respectively. Simulation results (Figs. 1-5) illustrate that all
controllers provide effective tracking of the desired reference signal with bounded
NN weights and continuous control signals. From Fig. 1 one can observe that the
NN input vector z1 yields the best transient performance. Another simulation
test was carried out to evaluate the effect of the node number on the controllers’
tracking ability. Particularly, for i = 2 we examine the case of a second, a first
and a zero-th order NN with 10, 4 and 1 nodes respectively. We note that the
last case is identical to the controller of Theorem 1 of [20]. Fig. 6 shows that
both 1st and second order controllers perform efficiently while the zero-th order
controller fails to stabilize the system.
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Fig. 6. The tracking error for various numbers of neurons

5 Conclusion

A novel NN weight training algorithm is presented in this paper to ensure asymp-
totic output tracking when a simple single-hidden-layer NN is used as a con-
troller. The simulation study reveals that a relatively small number of nodes
suffices to obtain an excellent tracking performance.
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Abstract. The paper consider optimizing Model Predictive Control

(MPC) for nonlinear plants with output constraints under uncertain-

ties. Although the MPC technology can handle the constraint in the

model by solving constraint model based optimization task, satisfying

the plant output constraints still remains a challenge. The paper pro-

poses Robustly Feasible MPC (RFMPC), which achieves feasibility of

the outputs in the controlled plant. The RFMPC is applied to control

quantity which is illustrated by application to a Drinking Water Distri-

bution Systems (DWDS) example.

Keywords: predictive control, robust feasibility, genetic algorithms, ro-

bust output prediction, optimization, relaxation algorithm, drinking wa-

ter distribution systems.

1 Introduction

Model Predictive Control has been an advanced technology and widely used in
process control industry due to its ability to control multivariable systems with
the presence of constraints. MPC actually belongs to a class of model based
controller design concepts. The basic idea of the MPC algorithm remains un-
changed regardless whatever kind of plant models are considered. It determines
the optimal control actions by minimizing the user-defined objective function, or
performance index. The current control actions are determined on-line, at each
control step, by solving a finite-horizon open loop optimization problem, using
the current state of the plant process as the initial state. However, only the first
part of the optimized control input sequence is applied to the plant in the next
time step. At the next control step, the prediction horizon moves forward and the
same procedure repeat [2] [1]. Due to its operation on a receding horizon, MPC
is also referred as receding control horizon or moving horizon optimal control.
There are two significant factors that determine how effectively an MPC is. The
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first factor is the accuracy of the plant model since it is explicitly used to predict
the plant outputs. The second factor is how effective optimization solvers are.
Although with the best plant models, MPC technology is still challenged by the
uncertainty existing in the system such as model structure error, state estimation
error, and disturbances. Fulfilling constraints is essential in many process plants
for reason of safety, productivity, and environment protection. The controller
outputs, which are based on the plant model, may not meet the plant output
constraint due to the model-reality mismatch. The mismatch is often caused by
the difference between predicted disturbance and actual disturbance. Feasible
control input may become infeasible when they are applied to the plant if there
is no robustly feasible controller. The robustness meeting of the output con-
straints or state constraints under system uncertainties is the main objective of
the robustly feasible MPC. In this paper the optimizing RFMPC is considered.
The robust feasibility will be assessed by robust output prediction over reduced
horizon. Safety zones are employed to tighten the output constraints in order to
achieve robustly feasible control input. The control method is applied to control
quantity in DWDS.

2 Presentation of RFMPC

The structure of the RFMPC [3] consists of several units as illustrated in Fig.
1. The MPC optimizer solves the MPC optimization task to produce control
inputs. In this task, the plant outputs are predicted based on nominal model of
the plant. In the nominal model the disturbance inputs are represented by their
predictions, while the internal model uncertainties are represented by a selected
scenario. Before the control input is applied to the plant its robust feasibility is
assessed by the “Constraint Violation Checking” unit. The feasibility assessment
is based on the robust output prediction that is generated by the “Robust Out-
put Prediction” unit. Given the control input the corresponding robust output
predictions over the prediction horizon is a region in the output space in which

Fig. 1. Structure of Robustly Feasible MPC
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all the plant outputs generated by the control input and all possible scenarios
of the disturbance inputs are contained. The input robust feasibility is checked
by confronting the output constraints with the robust output prediction. If the
control feasibility passed its assessment, then the proposed control input is ap-
plied to the plant. Otherwise, robust output prediction is fed into the “Safety
Zone Generator” unit. The safety zones as such are used to tighten the output
constraints. The control actions produced by the MPC optimizer under modi-
fied (tighten) output constraints are expected to produce the real plant outputs
that satisfy the plant constraints although they still may violate the modified
constraints. Such control actions and the corresponding safety zones are called
robustly feasible.

3 Robust Output Prediction (ROP)

Vector of control input and output over the prediction horizon are respectively
defined as:

Û =

⎡⎢⎣u(t | t)...u(t+Hm − 1 | t)u(t +Hm | t)...u(t +Hp − 1 | t)︸ ︷︷ ︸
from(t+Hm)to(t+Hp)

⎤⎥⎦ (1)

Ŷ = [y(t+ 1 | t)...y(t+Hp | t)]T (2)

where u(t + i | t), y(t + i | t)are the control input and model output at time
instant t. Hm and Hp are the input horizon and prediction horizon respectively.
The robust output prediction (ROP) is an envelope over the prediction horizon

Y l
p =
[
yl

p(t + 1 | t).....yl
p(t +Hp | t)

]T
(3)

Y u
p =

[
yu

p (t + 1 | t).....yu
p (t +Hp | t)

]T (4)

where yl
p(t + k | t) and yu

p (t + k | t) are the upper and lower limits that bound
the plant output robustly at prediction time step :

yl
p(t + k | t) ≤ y(t) |t=t+k≤ yu

p (t+ k | t) (5)

The least conservative bounding envelopes yl
p(t + k | t) and yu

p (t + k | t) can be
determined as:

yl
p(t+ k | t) = min

z(1),z(2),...,z(k)
y(t + k | t) (6)

yu
p (t+ k | t) = max

z(1),z(2),...,z(k)
y(t + k | t) (7)

where uncertainty at time step i-th is z(i) ∈ [zmin, zmax
]
, ∀i ∈ 1 : Hp Since the

robust output prediction is calculated over the horizon Hp, there are Hp opti-
mization problems to be solved to find Hp values of yl

p(t+k | t) and yu
p (t+k | t).

As k increases from 1 to Hp, the optimization also increases the number of
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variables from 1 to Hp.Indeed, when k =Hp, (6) and (7) have Hp variables
z(1),z(2),...,z(Hp). The more variables the optimization has, the more comput-
ing time the solvers require. As these computations are carried out online, it is
desired to reduce the time computing as much as possible.

3.1 Stepwise Robust Output Prediction (SWROP)

In previous section, solving optimization problems (6) (7) give a least conserva-
tive solution of robust output prediction (ROP). This approach is so called exact
optimization method. In contrast to the exact optimization method, we propose
in this section an approximated optimization method where its advantage is to
reduce the optimization process computing time.

(a) SWROP stays outside LCROP (b) SWROP lies entirely inside LCROP

Fig. 2.

Instead of solving the optimization task with respect to k variables , one could
approximate least conservative robust output prediction (LCROP) by solving
the optimization tasks (6) and (7) with respect to only one variable where
z(1),z(2),.,z(k-1) are obtained from the optimization in the previous time steps.
In other words, in stead of simultaneous optimization with respect to all dis-
turbance inputs, a step by step optimization is applied with respect to one
disturbance input at the time.

yl
p(t+ k | t) = min

z(k)
y(t + k | t) |z(1)=zmin(1),...,z(k−1)=zmin(k−1) (8)

yu
p (t + k | t) = max

z(k)
y(t + k | t) |z(1)=zmax(1),...,z(k−1)=zmax(k−1) (9)

where z(i) can be obtained by solving:

zmin(i) = argmin
z(i)

y(t+ i | t) |z(1)=zmin(1),...,z(k−1)=zmin(i−1) ∀i ∈ 1 : k (10)

zmax(i) = argmax
z(i)

y(t + i | t) |z(1)=zmax(1),...,z(k−1)=zmax(i−1) ∀i ∈ 1 : k (11)
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The resulting bounding envelopes are more conservative but the computing time
is vastly reduced. Unfortunately, the expressions (8) and (9) generate the ROP
only for some class of systems. The paper objective is to apply RFMPC to
DWDS and there such class has clear interpretation, hence can clearly be iden-
tified. In order to assess the robust feasibility by SWROP, one should ensure
that the LCROP entirely remains inside the SWROP as described in Fig. 2a.
Otherwise the real output may possibly violate the upper or lower constraint
even though the SWROP does not as described in Fig. 2b. In practice, there
are some classes of system that have the characteristic as depicted in Fig. 2a
while some will have the characteristic of Fig. 2b. Hence, in order to avoid the
situation of having robustly infeasible control input, designers in practice should
take that into consideration of choosing the appropriate method to calculate the
robust output prediction.

3.2 Reduced Robust Feasibility Horizon

So far the ROP has been considered over the whole output prediction horizon
Hp set up for the RFMPC. This has been done in order to secure existence of the
robustly feasible safety zones at any control time step. However as computing
of ROP over Hp is computationally very demanding and this may not meet the
time constraints set up by on-line computing requirements. We should consider
reducing this demand by shortening the ROP horizon. Clearly the cost to be paid

Fig. 3. Example of reduced robust feasibility horizon to two time steps Hr=2

is an increased risk of non existence of robustly feasible safety zones at certain
control time steps. As only the first control action out of a whole sequence
determined by the RFMPC is applied to the plant, we must secure the robust
feasibility over the first time step. This is how far we can go with reduction of
the ROP horizon from Hp to Hr. An attractive outcome of the ROP horizon
reduction is that the very attractive computing SWROP method may become
applicable over the reduced horizon while may not be applicable over the entire
horizon. (see Fig. 3).
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4 Safety Zone Generator

Using safety zones is not a new idea to meet system constraint under unknown
factors. It is widely used in engineering area, such as conservative design in
many electrical devices. When the input from the nominal model based MPC
controller is applied to the plant, due to the uncertainties of the system, the
output constraints may not be fulfilled and their violations may be unacceptable
at certain time instants. If the violation occurs, it is important to correct or
modify the constraints that apply to the nominal MPC. Safety zones generator
is the unit that modify the output constraints via iterative scheme.

Consider over the prediction horizon, the vectors of the lower and upper lim-
its on the plant output Y min =

[
ymin...ymin

]
, Y max = [ymax...ymax] and the

vectors of the safety zones σl =
[
σl

1, ..., σ
l
Hp

]T
, σu =

[
σu

1 , ..., σ
u
Hp

]T
for the lower

and upper output constraints, respectively where σu
i and σl

i are non negative
real numbers. The vectors Y min

s = Y min + σl and Y max
s = Y max − σu are com-

posed of the lower and upper bounds of the modified output constraints over
Hp, respectively.

Fig. 4. The output constraints modified by safety zones

The “Safety Zones Generator” produces iteratively robustly feasible safety
zones by using the following relaxation algorithm [3] :

(i) Set x =
[
σl σu

]
= 0;

(ii) Solve MPC optimization task with modified output constraints and assess
robust feasibility of the solution over Hp.

(iii) A vector V composed of the output constraint violations over the predic-
tion horizon Hp is calculated as:

V =
[
V1...V2Hp

]T �
[
(Y min − Y l

p ) (Y u
p − Y max)

]T
Define: f(Vi) � max(0, Vi) and C(σl, σu) �

[
f(V1), .....f(V2Hp)

]T
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If
C(σl, σu) = 0 (12)

is satisfied then go to step (vi),
Else

go to step(iv);
(iv) Calculate the safety zone corrections by using δ(k) = −νC(x(k))
where ν = max([diag [(C(0)]]−1) is called the relaxation gain
(iv) x(k+1) = x(k) + δ(k), go to step (ii);
(v) The robustly feasible safety zones have now been found and the control

input u(t | t) is applied to the plant.

5 Optimizing Control of DWDS by RFMPC

5.1 Formulation of the Optimizing Control Problem

The main goal of DWDS is to supply water to customers and satisfy their quan-
tity and quality demand. There are two major aspects in the control of DWDS:
quantity and quality. The quality control deals with water quality parameters.
Having disallowed concentration of chemical parameter, for instance chlorine,
cause serious heath dangers. Maintaining concentrations of the water quality
parameters within the prescribed limits throughout the network is a major ob-
jective. When the quantity control is considered, the objective is to minimize
the electrical energy cost of pumping, while satisfying consumer water demand
and physical constraints such as pressure at nodes or reservoir levels, by produc-
ing optimized control input such as optimized pump speeds and valve control
schedules [4]. The uncertainty is in the demand and structure and parameters
of DWDS model. In this paper, only the quantity control aspect is considered
by applying RFMPC technique. The quality issues are addressed in [5] [6] for
example.

Objective function- pumping cost control: It is a very common control objective
to achieve the least pumping cost while satisfying constraints. Moreover, in order
to achieve a sustainable operation day after day, it is expected that tank levels
can come back to their original states after a certain period. For the DWDS
example, the network is operated daily and the prediction horizon is Hp = 24h.
It is desired that after 24 hours, the tank level could have similar level.
Hence, the overall objective function at t = t reads:

J =
t+Hp−1∑

t=t

γ(t)Δt
G∑

j=1

Uj∑
i=1

ξqj,i(t)Δhj(t)
ηj,i(t)

+ ρ
S∑

s=1
| rs(t +Hp)− rs(t) |

where Hp is the prediction time horizon,ρ is a weighting factors,γ(t) is a power
unit charge in /kWh for the (t+1) time stage,rs is the s-th reservoir/tank level, s
= 1,...,S, ξ is a unit conversion factor for electrical power relating water quantities
to electrical energies, and ηi is the pump efficiency of the i-th pump in the j-th
pump group, i = 1, ..., Uj, and j=1,...,G.
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Optimization constraints are composed of:

– Nodal flow continuity equations:
∑

j∈J−
i

qj −
∑

j∈J+
i

qj − di =
{

0 i ∈M
lqi i ∈Ml

– Water elements head-flow equations: hN+
j
− hN−

j
= Δhj(qj , uj)

where qj is the flow at arc j-th(liter/sec) ; hi is the head at node i-th(m); di

is the demand flow at node i-th(liter/sec); lqi is the leakage flow at node i-th
(liter/sec); uj is the control variable representing the state of valve or pump
at arc j-th; Δhj is the head-flow characteristic function at arc j-th; M(Ml)
is the set of non-leaky (leaky) nodes; J+

i (J−
i ) is the set of arcs whose start

(end) node are i-th; and N+
j (N−

j ) is the start (end) node of arc j-th.
– Volume mass balance equations of tanks/reservoirs.
– Output constraints. They are in the form of lower and upper bounds on

certain flows, junction heads, an on all tank heads in order to meet the tank
capacity constraints.

– Control input constraints. It can be the sequence of pump speed schedule or
the ON/OFF state of pumps and need to satisfy the physical constraints:
umin ≤ u(t+ k | t) ≤ umax

5.2 Application of RFMPC to Example Case Study DWDS

Computer implementation is based on Matlab-Epanet simulation environment.
The optimization problems are solved by standard Genetic Algorithm (GA) [10]
[7] which can be called through Matlab toolbox. Epanet is used as the water net-
work simulator generating “real-life” data [9], which are fed back to update the
initial state of the predictive controllers for each time steps. For complex DWDS,
the standard GA needs to be enhanced in order to exploit specific features of
the optimization task and achieve required computing efficiency [8].

The DWDS, which is depicted in Fig. 5 includes 1 source reservoir and 1
storage tank. Water is pumped from the reservoir source by the pump station to
the consumption nodes 2,3,4,5, and 6. The prediction horizon is Hp = 24. The
interested control input is pump speed sequence over 24 hours period. RFMPC

Fig. 5. Diagram of an DWDS example
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is applied to produce control input sequence. The tank level limits are: rmin
s ≤

rs ≤ rmax
s , and these are the output constraints. The demands are predicted

with the error of 10% at each consumption node.

Designing RFMPC. The MPC task is solved by GA solver with the opti-
mization search in the reduced space. In this search, the GA is coupled to the
Epanet simulator solving the DWDS equality constraints. A method for gener-
ating ROP is chosen by observing the simulation results shown in Fig. 6a. The
SWROP and the LCROP are applied at t = 0 over 7 time steps. It can be seen
in Fig. 6a that the SWROP method generates envelopes that are outside the
region determined by the LCROP method. Hence, the SWROP is applicable to
our example DWDS. Moreover, the envelopes calculated by the two methods are
very close over the first 6 steps. The ROP horizon therefore is further reduced
to 2 steps and the SWROP method is to be applied.

Also the relaxation gain in the algorithm for determining the robustly safety
zones (RFSZ) is selected by simulation where several gain values are tried and
the results are illustrated in Fig. 6b. The equality (12) in the step (iii) of the
RFSZ relaxation algorithm has more than one solution. Clearly, the smaller
safety zones are, the less conservative control actions are, and consequently bet-
ter controller performance is achieved. From Fig. 6b this is obtained for small
gain values. On the other hand, the computing time is essential; hence the num-
ber of iterations needed to reach the RFSZ should be minimized. This is obtained
for high gain values as described in Fig. 6b. Therefore, gain is chosen in order
to trade between the two aspects.

Simulation results. First the RFMPC is applied to the example DWDS at
t = 0. Robust feasibility at the obtained control sequence is checked over the
horizon Hr = 2 and the first two control inputs are assessed as robustly feasible.
Hence, there is no need to activate the “Safety Zone Generator”. In Fig. 7a two
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(a) Predicted tank level trajectory by

RFMPC over the horizon at time instant

t=0 and t=2

(b) Tank trajectory over the 24 hours

(c) Control actions - relative pump speed (d) Zoom-in of Fig. 7b during 4-9 hours

Fig. 7.

tank trajectories are illustrated: one in dash line is obtained by applying the
control sequence to the model with the demand prediction while the second one
in solid is the tank trajectory seen in the real system where the demand may
differ from the predicted one up to 10%. It can be seen in Fig. 7a that the upper
limit tank constraint is violated during 5 hour to 7 hour time period. Clearly,
we are not aware about this violation at t = 0. However, a lesson to be learnt
is that applying a whole control sequence obtained at t = 0 to the network is
not recommended not only in this case but in general. Therefore the RFMPC is
kept applying to produce the control actions on-line by employing feedback and
all its mechanism described in this paper.

The results are illustrated in Fig. 7b,7c,7d. It can be seen in Fig. 7b that
the upper tank level constraint had to be modified by robustly feedback safety
zones over 5, 6, and 7 time steps in order to achieve robust feedback of the
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control action over these time steps. Although the modification does not tighten
the constraints excessively its conservatism would be improved by extending the
robust prediction horizon. The details of the situation over 5, 6, and 7 time steps
are illustrated in Fig. 7d.

o assess the RFMPC feedback strength, the control actions generated on-line
are also applied to the DWDS model. The resulting tank trajectory and the
control input are shown in Fig. 7b and Fig. 7c, respectively. The two trajectories
are much closer in Fig. 7b than in Fig. 7a. Hence, possible impact of the feedback
in compensating the demand error impact is noticeable.

Lastly, as shown in Fig. 7d, the modified constraints are satisfied in the model
but not in reality. However, the actual constraint is met in reality showing the
effectiveness of the RFSZ mechanism.

6 Conclusions

This paper has further developed Robustly Feasible Model Predictive Control
Method for on line optimizing control of nonlinear plants with output constraints
under uncertainty. The RFMPC has been applied to quantity control in Drink-
ing Water Distribution Systems. It has been illustrated by simulation based on
an example DWDS. The effects of robust output prediction, shortening the ro-
bust output prediction horizon, robustly feasible safety zones, and the feedback
strength of RFMPC have been shown.
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Distributed Control over Networks Using
Smoothing Techniques
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Abstract. In this paper we propose two dual decomposition methods

based on smoothing techniques, called here the proximal center method

and the interior-point Lagrangian method, to solve distributively sepa-

rable convex problems. We show that some relevant centralized control

problems can be recast as a separable convex problem for which our dual

methods can be applied. The new dual optimization methods are suitable

for application to distributed control since they are highly parallelizable,

each subsystem uses local information and the coordination between the

local controllers is performed via the Lagrange multipliers corresponding

to the coupled dynamics or constraints.

1 Introduction

For the control problem of large-scale networked systems, centralized control is
considered impractical, inflexible and unsuitable due to information requirement
and computational aspects. The subsystems in the network may have different
authorities that prevent sending all necessary information to one processing cen-
ter. Moreover, the optimization problem yielded by centralized control is too
big for online computation. Distributed control is proposed for control of such
large-scale systems, by decomposing the overall system into small subsystems
with distinct controllers for each subsystem that collaborate to achieve global
decisions. In order to derive the local controllers we decompose the centralized
problem into a set of subproblems each solved by an individual agent. The co-
ordination of the subproblems is achieved by local communication among the
agents.

Solving the problem of how distributing effectively the computations among
the subsystems, has challenged many researchers in the last decades. Several
contributions on this subject appeared for general control problems (see e.g.
[13,11,12]) and in the model predictive control framework (see e.g. [2,3,9,10]).

Most of the computational methods for the above distributed control problems
are based on Jacobi or subgradient type algorithm which are well-known to
have a very slow convergence rate (see e.g. [8]). However, a control scheme is
practical as long as its computational complexity is very low since the solution
has to be computed fast. In this paper we show that using smoothing techniques
we can derive distributed control algorithms with a great improvement of the

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 835–844, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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convergence rate compared to the previous methods. The algorithms, called here
the proximal center algorithm and the interior-point Lagrangian algorithm (see
[6,7] for more details), involve every subsystem optimizing an objective function
that is the sum of his own objective function and a smoothing term while the
coordination between the subsystems is performed via the Lagrange multipliers.
We show that the solution of our distributed algorithms converges to the solution
of the centralized control problem and we also provide estimates for the rate of
convergence, which improve the estimates of the existing methods with at least
one order of magnitude.

The paper is organized as follows. In Section 2 we formulate a general sep-
arable convex problem followed by a brief description of two dual-based de-
composition algorithms (the proximal center and the interior-point Lagrangian
algorithm) developed recently in [6,7] for solving this type of problems. In Sec-
tion 3 we show that many relevant control problems can be recast as particular
instances of a separable convex problem and we provide alternatives to solve
them based on these two distributed algorithms but which exploit the specific
control problem structure.

2 Application of Smoothing Techniques to Separable
Convex Problems

In this section we devise two distributed algorithms for solving the separable
convex optimization problem:

f∗ = min
x1∈X1···xM∈XM

M∑
i=1

fi(xi)

s.t.
M∑
i=1

Fix
i = a, Gix

i = ai ∀i = 1 · · ·M,

(1)

where fi : R
n → R are convex functions, Xi are closed convex sets, Gi ∈ R

m×n,
Fi ∈ R

p×n, ai ∈ R
m and a ∈ R

p. For simplicity of the exposition we define x =
[(x1)T · · · (xM )T ]T , f(x) =

∑M
i=1 fi(xi), X =

∏M
i=1 Xi, and F = [F1 · · ·FM ].

The following assumptions for optimization problem (1) will be valid:

Assumption 1

(i) Each function fi is convex quadratic and Xi are compact convex sets
(ii) The matrix [diag(GT

1 · · ·GT
M ) FT ] has full column rank and {x ∈ int(X) :

Gix
i = ai ∀i, Fx = a} �= ∅.

Let 〈·, ·〉/‖ · ‖ denote the Euclidian inner product/norm on R
n. By forming the

Lagrangian corresponding to the coupling constraints (with Lagrange multipliers
λ ∈ R

p) we obtain in general a nonsmooth dual function and thus for maximizing
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it we have to use involved nonsmooth optimization techniques such as subgradi-
ent algorithm with slow convergence rate.

In order to obtain a smooth dual function we need to use smoothing techniques
applied to the ordinary Lagrangian L0 (see e.g. [1]). In [6,7] we proposed two
dual decomposition methods for (1) in which we add to the standard Lagrangian
a smoothing term μ

∑M
i=1 φXi , where each function φXi associated to the set Xi

(usually called prox function) must have certain properties explained below.
The two algorithms differ in the choice of the prox functions φXi . In this case
we define the augmented Lagrangian:

Lμ(x, λ) =
M∑
i=1

[fi(xi) + μφXi(x
i)] + 〈λ, Fx − a〉. (2)

We also define the corresponding augmented dual function:

d(μ, λ) = min
xi∈Xi,Gixi=ai

Lμ(x, λ). (3)

Denote by xi(μ, λ) the optimal solution of minimization problem in xi:

xi(μ, λ) = arg min
xi∈Xi,Gixi=ai

[fi(xi) + μφXi(x
i) + 〈λ, Fix

i〉].

We are interested in the properties of the family of augmented dual functions
{d(μ, ·)}μ>0. It is obvious that limμ→0 d(μ, λ) = d0(λ) ∀λ.

2.1 Proximal Center Method

In the sequel we briefly describe the proximal center decomposition method
whose efficiency estimates improves with one order of magnitude the bounds on
the number of iterations of the classical dual subgradient method (see [6] for
more details). In the proximal center method, the functions φXi are chosen to
be continuous, nonnegative and strongly convex on Xi with strong parameter
σi. Since Xi are compact, we can choose DXi ≥ 0 such that

DXi ≥ max
xi∈Xi

φXi (x
i) ∀i.

Lemma 1. [6] If Assumption 1 holds and the functions φXi are continuous,
nonnegative and strongly convex on Xi, then the family of dual functions
{d(μ, ·)}μ>0 is concave and differentiable at any λ. Moreover, the gradient
∇d(μ, λ) =

∑M
i=1 Fix

i(μ, λ) − a is Lipschitz continuous with Lipschitz con-
stant Dμ =

∑M
i=1

‖Fi‖2

μσi
. The following inequalities also hold: d(μ, λ) ≥ d0(λ) ≥

d(μ, λ)− μ
∑M

i=1 DXi ∀λ .

We now describe a distributed optimization method for (1), called the proximal
center algorithm:
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Algorithm PCM

0. input : λ0 and p = 0
1. given λp compute in parallel for all i

xi
p+1 = arg min

xi∈Xi,Gixi=ai

fi(xi) + μφXi (x
i) + 〈λp, Fix

i〉

2. compute ∇d(μ, λp) =
∑M

i=1 Fix
i
p+1 − a

3. find up = argmaxλ〈∇d(μ, λp), λ− λp〉 − Dμ

2 ‖λ− λp‖2

4. find vp = arg maxλ−Dμ

2 ‖λ‖2 +
∑p

l=0
l+1
2 〈∇d(μ, λl), λ− λl〉

5. set λp+1 = p+1
p+3up + 2

p+3vp.

Note that the maximization problems in Steps 3 and 4 of Algorithm PCM can
be solved explicitly and thus computationally very efficient. The main compu-
tational effort is done in Step 1. However, in some applications, e.g. distributed
control, Step 1 can be performed also very efficiently (see Section 3), making
the MPC algorithm suitable for online implementation. After p iterations of
Algorithm PCM we define:

x̂i =
p∑

l=0

2(l + 1)
(p + 1)(p+ 2)

xi
l+1 and λ̂ = λp.

In the next theorem we provide estimates for the rate of convergence:

Theorem 1. [6] Under the hypothesis of Lemma 1 and taking μ =
ε/
∑

i DXi and p + 1 = 2
√

(
∑

i ‖Fi‖2/σi)(
∑

i DXi)
1
ε , then after p iterations

−‖λ∗‖‖∑i Fix̂
i−a‖≤f(x̂)− f∗≤ε and the constraints satisfy ‖∑i Fix̂

i−a‖ ≤
ε
(‖λ∗‖+

√‖λ∗‖2 + 2
)
, where λ∗ is the minimum norm optimal multiplier.

Therefore, the efficiency estimates of Algorithm PCM is of order O(1
ε ) and thus

improves with one order of magnitude the complexity of the subgradient algo-
rithm, whose efficiency estimates is O( 1

ε2 ).

2.2 Interior-Point Lagrangian Method

In this section we describe the second decomposition method, called the interior-
point Lagrangian algorithm. In this decomposition method we add to the stan-
dard Lagrangian a smoothing term μ

∑M
i=1 φXi , where each function φXi is a

Ni-self-concordant barrier associated to the convex set Xi.

Lemma 2. [7] If Assumption 1 holds and φXi ’s are Ni-self-concordant barri-
ers associated to Xi, then the family of dual functions {−d(μ, ·)}μ>0 is self-
concordant. Moreover, the Hessian of −d(μ, ·) is positive definite and given by:

∇2d(μ, λ)=

M∑
i=1

Fi

[
H−1

i (μ, λ)GT
i

(
GiH

−1
i (μ, λ)GT

i

)−1
GiH

−1
i (μ, λ) − H−1

i (μ, λ)
]
F T

i ,

where Hi(μ, λ) = ∇2fi(xi(μ, λ)) + μ∇2φ(xi(μ, λ)).
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In conclusion dual functions {−d(μ, ·)}μ>0 are self-concordant. This opens the
possibility of deriving a dual interior-point based method for (1) using Newton
directions for updating the multipliers to speed up the convergence rate. Denote
the Newton direction associated to function d(μ, ·) at λ as follows:

Δλ(μ, λ) = −(∇2d(μ, λ)
)−1∇d(μ, λ).

For every μ > 0, we also define the Newton decrement:

δ(μ, λ) =
√
−1/μ∇d(μ, λ)T

(∇2d(μ, λ)
)−1∇d(μ, λ).

Algorithm IPLM

0. input : (μ0, λ0) satisfying δ(μ0, λ0) ≤ εV , p = 0, 0 < τ < 1 and ε > 0
1. if μp ≤ ε, then stop
2. (outer iteration) let μp+1 = τμp and go to inner iteration (step 3)
3. (inner iteration) initialize λ = λp, μ = μp+1 and δ = δ(μp+1, λ

p)
while δ > εV do
3.1 determine a step size α and compute xi(μ, λ), λ+ = λ+ αΔλ(μ, λ)
3.2 compute δ+ = δ(μ, λ+) and update λ = λ+ and δ = δ+

4. xi
p+1 = xi(μ, λ), λp+1 = λ, replace p by p + 1 and go to step 1

Theorem 2. [7] Under the hypothesis of Lemma 2 the following convergence
rate holds for the Algorithm IPLM: 0 ≤ f(xp) − f∗ ≤ Nφμp, where xp =
argminx Lμp(x, λp) and Nφ =

∑
i Ni.  "

Therefore, the complexity of the interior-point Lagrangian method (Algorithm
IPLM) is of order O(ln(μ0

ε )).

3 Distributed Control

In the rest of the paper we explore the potential of the previous two dis-
tributed algorithms, the proximal center and interior-point Lagrangian method,
in distributed control problems. We show that many relevant centralized control
schemes can be recast as separable convex problems for which our two algorithms
can be applied but exploiting the specific problem structure.

3.1 Distributed Control for Coupled Dynamics

The application that we will discuss in this section is distributed control of
large-scale networked systems with interacting subsystem dynamics, which can
be found in a broad spectrum of applications ranging from robotics to regulator
systems. We assume that the overall system model can be decomposed into M
appropriate subsystem models:

xi(k+1)=
∑

j∈N (i)

Aijx
j(k) +Biju

j(k) ∀i = 1 · · ·M, (4)



840 I. Necoara

where N (i) denotes the set of subsystems that interact with the ith subsystem,
including itself. The control and state sequence must satisfy local constraints:

xi(k) ∈ Ωi, u
i(k) ∈ Ui ∀i = 1 · · ·M and ∀k ≥ 0,

where the constraint sets Ωi ⊆ R
nxi and Ui ⊆ R

nui are usually convex, compact,
with the origin in their interior.

Performance of the system is expressed via a stage cost, which is
composed of individual separate costs assumed to have the following form:
�(x, u) =

∑M
i=1 �i(x

i, ui), where usually �i(xi, ui) is a convex quadratic function,
not necessarily strict.

The centralized control problem for this application is formulated as follows:

min
xi

l ,u
i
l

N−1∑
l=0

M∑
i=1

�i(xi
l , u

i
l) +

M∑
i=1

�fi (xi
N ) (5)

s.t. : xi
0 = xi, xi

l+1 =
∑

j∈N (i)

Aijx
j
l +Biju

j
l

xi
N ∈ Ωi, x

i
l ∈ Ωi, u

i
l ∈ Ui ∀l = 0· · ·N−1, ∀i =1· · ·M,

where N denotes the prediction horizon and �fi (xi
N ) denotes some terminal cost

introduced for stability reasons.

Theorem 3. The centralized optimization problem (5) can be written as a sep-
arable convex problem (1).

Proof : Let us introduce the following notation:

xi = (xi
1 · · ·xi

N ui
0 · · ·ui

N−1), Xi = ΩN
i × UN

i ,

fi(xi) =
N−1∑
l=0

�i(xi
l , u

i
l) + �fi (xi

N ),

where fi’s are convex quadratic functions as in Assumption 1, but not necessarily
strictly convex. Then, (5) can be recast as a separable convex program:

min
xi∈Xi

{ M∑
i=1

fi(xi) :
M∑
i=1

Fixi = a
}
, (6)

where the matrices Fi and a are defined accordingly.  "

3.2 Distributed Control for Consensus Constraints

Another important problem that arises in such large-scale networked systems is
related to consensus or rendezvous seeking which has received increasing atten-
tion in the recent literature, see e.g. [3,4], etc. In this problem each subsystem
is uncoupled of each other but the coupling is determined by the consensus or
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rendezvous point which may be either fixed a priori or considered as an additional
variable in the control problem formulation.

We consider that the whole network can be decomposed into M subsystems
having decoupled dynamics given by the following discrete-time state equations:

xi(k + 1) = Aix
i(k) +Biu

i(k) ∀i = 1 · · ·M.

Similarly as in the previous section, we assume that the control and state se-
quence must satisfy local constraints:

xi(k) ∈ Ωi, u
i(k) ∈ Ui ∀i = 1 · · ·M and ∀k ≥ 0.

The system reaches a consensus at some time N if each subsystem is at an
equilibrium at time N and the consensus or rendezvous point is also attained (see
also [4]). We assume that these two requirements can be written mathematically
as follows: there exists equilibrium points (xi(N), ui(N)), i.e. satisfying the local
linear equalities

xi(N) = Aix
i(N) +Biu

i(N)

and the consensus or rendezvous condition is expressed by the following coupling
linear (in)equalities:

M∑
i=1

F̄ix
i(N) = ā. (7)

A typical example of consensus constraints is Cix
i − Cjx

j = dij , which for
example might describe relative distance between vehicles.

The optimal control problem for the consensus or rendezvous settings can be
described as follows:

min
xi

l ,u
i
l

N−1∑
l=0

M∑
i=1

�i(xi
l , u

i
l) +

M∑
i=1

�fi (xi
N , u

i
N ) (8)

s.t. : xi
0 = xi, xi

l+1 = Aix
i
l +Biu

i
l

xi
l ∈ Ωi, u

i
l ∈ Ui ∀l = 0 · · ·N, ∀i = 1 · · ·M,

xi
N = Aix

i
N +Biu

i
N ,

M∑
i=1

F̄ix
i
N = ā.

Our goal is to design a distributed control algorithm for solving the consensus
or rendezvous problem (8) where each agent performs individual planing of its
trajectory and then negotiate with each other locally in order to achieve the
consensus.

In the next theorem we show that the optimal control problem (8) can be
written as a separable convex problem:

Theorem 4. The centralized optimization problem (8) can be written as a sep-
arable convex problem (1).
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Proof : Similarly as in Theorem 3.

In the next section we show that using the distributed algorithms based on
smoothing techniques that we have described in Section 2 the efficiency estimates
can be improved.

3.3 Practical Implementation

In this section we describe the practical implementation of the Algorithm PCM
and IPLM for the two control problems (5) and (8). Our algorithms can be
an alternative to the classical methods (e.g. Jacobi algorithm, (incremental)
subgradient algorithm, etc), leading to new methods of solution in a much faster
way making them suitable for online implementation. We will show that due
to the special structure of the control problems (5) and (8) our two algorithms
leads to decomposition in both “space” and “time”, i.e. not only over M but
also over N .

Remark 1. Note that the proximal center method can be applied to separable
convex problems with general convex functions fi, not necessarily quadratic.

For simplicity of the exposition we assume that the sets are normalized Euclidian
balls:

Ωi = {xi ∈ R
nxi : ‖xi‖ ≤ 1}, Ui = {ui ∈ R

nui : ‖ui‖ ≤ 1}.
In the proximal center algorithm we need to properly choose the function φXi

according to the structure of Xi. Given the specific structure of the set Xi in
the control formulations (5) and (8), i.e. Xi = ΩN

i × UN
i , we choose

φXi(x
i) = ‖xi‖2 =

N∑
l=1

‖xi
l‖2 +

N−1∑
l=0

‖ui
l‖2.

In the interior-point Lagrangian algorithm the prox function φXi must be chosen
as self-concordant barrier functions for the setXi. Let b(x) be the self-concordant
barrier function for the Euclidian set {x : ‖x‖ ≤ 1}. Since in the control for-
mulations that we have just described previously the set Xi = ΩN

i × UN
i , we

choose

φXi(x
i) =

N∑
l=1

b(xi
l) +

N−1∑
l=0

b(ui
l).

We further assume that the stage costs have the following quadratic structure:

�i(xi
l , u

i
l) = xiT

l Qix
i
l + uiT

l Riu
i
l,

where the matrices Qi and Ri are positive semidefinite.
Constructing the variables xi, the sets Xi and the matrices Fi, Gi as described
in Section 3, the centralized control problems (5) and (8) can be rewritten as:

min
xi∈Xi

{
M∑
i=1

xiT Qixi :
M∑
i=1

Fixi = a, Gixi = ai ∀i}, (9)
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where Qi = diag(Qi, · · · , Qi, Ri, · · · , Ri) with N terms of Qi and N terms of
Ri. Note that Xi ⊆ {x : ‖x‖ ≤ √

2N}. Furthermore, in the control formulation
(5) local equalities Gixi = ai are not present.
In the Algorithm PCM the most expensive computations are done in Step 1,
where we must solve for all i = 1 · · ·M , the following minimization problems:

min
xi∈Xi

xiT Qix
i + 〈λp, Fixi〉+ μ‖xi‖2,

with the Lagrange multipliers λp computed at previous iteration. In fact, since
Qi has a diagonal structure we can further decompose each minimization prob-
lem into 2N quadratic cost quadratic constraints problems with a particular
structure:

min
‖x‖≤1

xTQx+ 〈q, x〉, (10)

where Q is a positive definite diagonal matrix (for our example Q = Qi + μInxi

for the state variables xi
l or Q = Ri + μInxi

for the input variables ui
l. Here x

represents the state variable xi
l or control variable ui

l at step l. Note that in some
particular cases (e.g. Q = βI), the solution of (10) can be computed analytically.

In the Algorithm IPLM we must solve for all i = 1 · · ·M the following mini-
mization problems:

min
xi∈Xi

xiT Qix
i + 〈λp, Fixi〉+ μ[

N∑
l=1

b(xi
l) +

N−1∑
l=0

b(ui
l)].

which as before it can be further decomposed over the prediction horizon N in
2N problems of the form

min
‖x‖≤1

xTQx+ 〈q, x〉+ b(x),

where again x represents the state xi
l or the input ui

l at step l. Such problem
can be solved with standard interior-point solvers very easy since the dimension
of the problem is very small: nxi or nui . Note that compared to Theorem 3, in
Theorem 4 we can eliminate the variables xi

l from the optimization problem. But
then the decomposition over the prediction horizon N will not be possible.
In summary, the special structure of the control problems (5) and (8) shows
that our two algorithms lead to decomposition in both “space” and “time”,
i.e. the centralized control problem can be decomposed into small subproblems
corresponding to the spatial structure of the system (M subsystems) but also
to the prediction horizon (N the length of the prediction). Note that this is not
the case with Jacobi or primal (incremental) subgradient type algorithms. Due
to space limitations we opted to include simulations elsewhere (see also [6,7]).

4 Conclusions

The proximal center and the interior-point Lagrangian algorithm are applied
for solving distributed control problems for either dynamically coupled systems
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or uncoupled systems but with consensus constraints. We show that the corre-
sponding centralized control problems can be recast as separable convex prob-
lems for which our two algorithms can be applied. We proved that the solution
generated by our distributed algorithms converges to the solution of the central-
ized control problem and we provided also estimates for the rate of convergence
which greatly improves the convergence rates of the existing distributed algo-
rithms, e.g. Jacobi or subgradient algorithms. It was also proved that the main
steps of the two algorithms can be computed efficiently for control problems by
making use of the specific structure of the underlying control problem and thus
making these methods suitable for online implementation of the corresponding
distributed control scheme.
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Abstract. In this paper, a trajectory tracking control for a nonholo-

nomic mobile robot by the integration of a kinematic controller and

neural dynamic controller is investigated, where the wheel actuator dy-

namics is integrated with mobile robot dynamics and kinematics so that

the actuator input voltages are the control inputs. The proposed neu-

ral dynamic controller (PNDC), based on the sliding mode theory, is

constituted by a neural voltage controller (NVC) and a neural robust

compensator (NRC), which has as objective compensates the uncertain-

ties and disturbances in the dynamics. Stability analysis and numerical

simulation are provided to show the effectiveness of the PNDC.

Keywords: mobile robot, trajectory tracking, neural dynamic control,

actuator dynamics, sliding mode theory, Lyapunov method.

1 Introduction

In this paper, the wheel actuator (e.g., dc motor) dynamics is integrated with
mobile robot dynamics and kinematics so that the actuator input voltages are
the control inputs. Differently from other investigations using neural networks
in the dynamic control of mobile robots [1]-[9], the contributions are: the im-
plementation of the proposed neural dynamic controller (PNDC) based on the
partitioning of the RBFNN into several smaller subnets in order to obtain more
efficient computation; the modelling by RBFNNs of the centripetal and Cori-
olis matrix through of the inertia matrix of the mobile robot dynamics. As
a result, the obtained neural voltage controller (NVC) is modeled with static
RBFNNs only, which makes possible the reduction of the size of the RBFNNs,
of the computational load and the implementation in real time; an neural sliding
mode controller as neural robust compensator (NRC) is used as the replacement
of the discontinuous parts of the classical sliding mode controller to avoid the
chattering as well as to suppress the neural network modeling errors, bounded
unknown disturbances, and influence of payload; the PNDC neither require the
knowledge of the mobile robot dynamics nor the time-consuming training pro-
cess; the stability analysis and convergence of the mobile robot control system,
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c© Springer-Verlag Berlin Heidelberg 2009
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and the learning algorithms for weights are proved by using Lyapunov theory,
considering the presence of bounded unknown disturbances.

2 Kinematics and Dynamics of Mobile Robots

Disregarding surface friction F (q̇) and gravitational torques G(q), the dynamic
equations under nonholonomic constraints can be described by Euler-Lagrange
formulation as:

H(q)q̈ + C(q, q̇)q̇ = B(q)τ +AT (q)λ − τd, (1)

where the properties are maintained, as well as matrices, vectors, and variables
are defined as in [1]. The right side of (1) can be rewritten in the Lagrange-Euler
formulation as:∑n

j=1 hkj(q)q̈j +
∑n

j=1 ckj q̇j = B(q)τ +AT (q)λ− τd,

ckj =
∑n

i=1 cijk q̇i =
∑n

i=1
1
2

(
∂hkj

∂qi
+ ∂hki

∂qj
− ∂hij

∂qk

)
q̇i,

(2)

with the coefficient cijk is known as Christoffel symbols. The dynamic equations
of the nonholonomic mobile robot for control purposes are:

q̇ = S(q)v, H̄(q)v̇ + C̄(q, q̇)v = τ̄ − τ̄d,

H̄(q) = STHS, C̄(q, q̇) = ST (HṠ + CS), τ̄ = B̄τ = STBτ, τ̄d = ST τd,
(3)

being S(q) the Jacobian matrix, and v the actual velocity of the mobile robot
[1].

3 Actuator Dynamics

Neglecting motor inductance in the electrical part of the actuator [10], the equa-
tions governing the actuator motor can be written as:

τm = KT i, u = Rai+Kbφ̇m, (4)

where τm is the torque generated by the motor, KT is the motor torque constant,
i is the current, u is the actuator input voltage, Ra is the resistance, Kb is the
counter electromotive force coefficient, and φ̇m is the velocity of the actuator
motor. The angular velocity of the actuator motor, φ̇m, and the corresponding
wheel angular velocity ϕ̇ are related by gear ratio N as:

ϕ̇ =
φ̇m

N
, (5)

and the motor torque τm is related to the wheel torque τ as:

τ = Nτm. (6)
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The relationship between the angular wheel velocities ϕ̇ and the velocity vector
v is given by: [

ϕ̇r

ϕ̇l

]
=
[ 1

r
R
r

1
r −R

r

] [
vL

�A

]
= Xv. (7)

Using (3)-(7), the mobile robot dynamics equation (including actuator dynamics)
can be written as:

H̄(q)v̇ + C̄(q, q̇)v + τ̄d =
NKT

Ra
B̄u− N2KTKb

Ra
B̄Xv = τ̄ . (8)

4 Neural Networks Modeling by RBFNNs

Based on (1) and (3), it can be verified that H(q) is function of q only, thus,
static neural networks are enough to model them. As a consequence, the size
of the network can be much smaller compared with its dynamic counterparts.
The stability of the neural networks can be analyzed, where Ge-Lee (GL) matrix
[11], defined by {.}, and its product operator ’•’ are used. The ordinary matrix
and vector are denoted by [.]. It is well known that hkj(q) of (2) is infinite
differentiable. Thus, for hkj(q) (Figure 1) has:

hkj(q) =
∑

l

WHkjl
ξHkjl

(q) + εHkj
(q) = WT

Hkj
ξHkj

(q) + εHkj
(q), (9)

where l denotes the number of hidden neurons, WHkjl
is the weight, and:

ξHkjl
(q,mH , σH) = exp

(
−‖q−mH‖2

σ2
H

)
= exp

(
−(q−mH)T (q−mH )

σ2
H

)
. (10)

Since
∂hij

∂qk
= −2

1
σ2

H

WT
Hij

ξHij (qk −mk) + φHijk
, (11)

with φHijk
=

∂εhij

∂qk
. It is assumed that

∣∣φHijk

∣∣ has an upper limit given by εhijk
.

Based on the definition of Christoffel symbols in (2), it has:

cijk = − 1
σ2

H

(
WT

Hkj
ξHkj

(qi −mHi) +WT
Hki

ξHki

(
qj −mHj

)−
−WT

Hij
ξHij (qk −mHk

)
)

+ εCijk
,

εCijk
= −φHkji

− φHkij
+ φHijk

,

(12)

which leads to:

ckj(q, q̇i) =
n∑

i=1
cijk q̇i

= − 1
σ2

H

n∑
i=1

(
WT

Hkj
ξHkj

(qi −mHi)+

+WT
Hki

ξHki

(
qj −mHj

)−WT
Hij

ξHij (qk −mHk
)
)
q̇i + εCkj

,

(13)
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q

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

�h
kj1

�h
kj2

�h
kjl

xh
kj1

xh
kj2

xh
kjl

GAUSSIAN RBFs WEIGHTS

h (q)kj

Fig. 1. Implementation of the static neural network of hkj(q)

where εCkj
=

n∑
i=1

εCijk
q̇i. It can easily be seen that the dynamics (3) of mo-

bile robots can be constructed by using the subnets for H(q), because C(q, q̇)
can be constructed based on the parameters of H(q). Note that since the H(q)
is function of q only, the subnets are static instead of dynamic, the size of
the network is much smaller by introducing deterministic factors into the neu-
ral network model. Thus, the matrix C(q, q̇) is a function of H(q) (Figure 2),
i. e.,

C(q, q̇) = − 1
σ2

H

[
{WH}T • {ξH(q)}

]
(q −mH)T

q̇−
− 1

σ2
H

[
{WH}T • {ξH(q)}

]
q̇ (q −mH)T +

+ 1
σ2

H
(q −mH) q̇T

[
{WH}T • {ξH(q)}

]
+ EC(q, q̇).

(14)

In summary, the dynamics (3) and (8) results in:

q {w }H

T { }�H

H(q)

�H mH

C(q, q)
�

q
�

Fig. 2. Implementation of the C(q, q̇) through H(q)

τ̄ = ST
[
{WH}T • {ξH(q)}

]
z + ST τd + Ē(q, q̇, v, v̇), (15)
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with:

z = Sv̇ + Ṡv −
(
− 1
σ2

H

(q −mH)T
q̇ − 1

σ2
H

q̇ (q −mH)T

)
︸ ︷︷ ︸

x

Sv−

−
(

1
σ2

H

(q −mH) q̇T

)
︸ ︷︷ ︸

y

Sv,

Ē(.) = ST (q)EH(q)S(q)v̇ + ST (q)EH(q)Ṡ(q)v + ST (q)EC(q, q̇)S(q)v.

(16)

5 Kinematic Control

Let velocity and position of a reference robot be given as:

qr =
[
xd yd θd

]T
, vref =

[
vd ωd

]T
,

ẋr = vd cos(θd), ẏr = vd sin(θd), θ̇r = ωd,

(17)

where vd > 0 for all t is the reference linear velocity and ωd is the reference
angular velocity. Thus, the position tracking error vector is expressed in the
basis of a frame linked to the mobile robot platform as:

eq =

⎡⎣ e1e2
e3

⎤⎦ =

⎡⎣ cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤⎦⎡⎣xd − x
yd − y
θd − θ

⎤⎦ . (18)

The position error dynamics can be obtained from the time derivative of (18)
as:

ėq =

⎡⎣ ė1ė2
ė3

⎤⎦ =

⎡⎣ωe2 − v1 + vd cos(e3)
−ωe1 + vd sin(e3)

ωd − ω

⎤⎦ . (19)

An auxiliary velocity control input vc [1] that achieves tracking for (3) is given
by:

vc =
[

vd cos(e3) + k1e1
ωd + k2vde2 + k3vd sin(e3)

]
, (20)

where k1, k2, and k3 are positive parameters. To design the actuator voltage
input and generate the desired velocities vc, the auxiliary velocity tracking error
is defined as:

ec = vc − v =
[
vc1 − v1
vc2 − ω

]
=
[
e4
e5

]
. (21)

Stability and convergence analysis of this controller will be described later,
through of the choice of a Lyapunov candidate function V1, but further details
in [1].
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6 Neural Dynamic Controller (PNDC)

Let Λ be a symmetric diagonal positive definite matrix, one defines:

vr = vc + Λ
∫ t

0 ecdt, v̇r = v̇c + Λec,

r = vr − v = ec + Λ
∫ t

0 ecdt, ṙ = v̇r − v̇ = ėc + Λec

(22)

where r is a filtered tracking error term,
∫ t

0 ecdt is an auxiliary position tracking
error, which does not reflect the position tracking error eq directly, besides not
having physical meaning. One defines the control input to be of the form:

u = Ra

NKT
B̄−1

⎛⎜⎜⎜⎝ST

[{
ŴH

}T

• {ξH(.)}
]
z(.)︸ ︷︷ ︸

NV C

+ρ− γ

⎞⎟⎟⎟⎠ ,

ρ = N2KT Kb

Ra
B̄Xvr,

(23)

where
{
ŴH

}
represent estimate of true parameters of matrix {WH} of (15),

(16), and γ is the constant plus proportional rate reaching law with the aim of
compensating the bounded unknown disturbances, which is defined as:

γ = −Gsgn(r)− (Q+K + In)r, (24)

with GT = G > 0, (Q + K + In)T = (Q + K + In) > 0, and In is identity
matrix. In (24) appears the chattering phenomenon, and for his elimination
or minimization, in this control design is proposed a RBFNN, as continuous
approximation of Gsgn(r) in γ, (24), which is referred as NRC. Then,

γ = −P̂ − (Q + In)r = −
[{

ŴP

}T

• {ξP (r)}
]

︸ ︷︷ ︸
NRC

−(Q + K + In)r, (25)

with P̂ (r) being an n× 1 vector in which p̂k is the output of the i-th RBFNN.
Let us consider Lyapunov candidate function:

V2 = 1
2

(
rT H̄(q)r +

n∑
k=1

W̃T
Hk
Γ−1

Hk
W̃Hk

+

+
n∑

k=1
W̃T

Pk
Γ−1

Pk
W̃Pk

)
+
(∫ t

0 ecdt
)T

Λ
∫ t

0 ecdt,

(26)

being Γ
.k

the dimensional compatible symmetric positive definite matrices, and{
W̃.k

}
= {W.k} −

{
Ŵ.k

}
the parameter error. Clearly, V2 ≥ 0, and V2 = 0
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if only if
∫ t

o ecdt = 0, r = 0, and
{
W̃.

}
= 0. The parameter learning laws of

RBFNNs are chosen as:

˙̂
WHk

= ΓHk
• {ξHk

}
((

Sv̇r + Ṡvr − xSvr

)
rr

k
−

−rr

(
1

σ2
H

(q −mH)
)
Svr q̇k

)
−KHk

ΓHk
‖r‖ ŴHk

,

˙̂
WPk

= ΓPk
• {ξPk

(r)} rk −KPk
ΓPk

‖r‖ ŴPk
,

(27)

where K.k = K. > 0 are positive constants. After the necessary mathematical
manipulations and assumptions (similar to [12]), V̇2 stays:

V̇2 ≤ −eT
c ec −

(∫ t

0 ecdt
)T

ΛTΛ
∫ t

0 ecdt− N2KT Kb

Ra
rT B̄Xr−

−∑n
k=1(Qk − βk) |rk|2 − ‖r‖ (Kmin ‖r‖

−KH̄(
∥∥∥W̃H̄

∥∥∥
F
− WH̄max

2 )2 +KH̄

W 2
H̄max
4

−KC̄(
∥∥∥W̃C̄

∥∥∥
F
− WC̄max

2 )2 +KC̄

W 2
C̄max
4 −

−KP (
∥∥∥W̃P

∥∥∥
F
− WPmax

2 )2 +KP
W 2

Pmax
4 ),

(28)

with Kmin being the minimum singular value of K, and W.max the maximum
value of W.. Thus, V̇2 is negative as long as Qk > βk and the term in parentheses
in (28) is positive. To ensure that the global system is stable, the Lyapunov
candidate function is given as:

V = V1 + V2, V1 = k1(e21 + e22) + 2
k1

k2
(1 − cos(e3)), (29)

where V2 refers to (26). Moreover, V ≥ 0, and V = 0 if only if eq = 0, ec = 0,∫ t

o
ecdt = 0, r = 0, and

{
W̃.

}
= 0. Since V̇1 and V̇2 are negative, then V̇ is also

negative [12]. According to a standard Lyapunov theory and LaSalle lemma, all
signals ‖eq‖, ‖ec‖,

∥∥∥∫ t

0 ecdt
∥∥∥, ‖r‖, and

{
W̃.

}
are uniformly ultimately bounded.

7 Numerical Simulations

In the realization of the simulations, the kinematic and the dynamic (including
actuator dynamics) models described in [1] are used. The model parameters of
the prototype wheeled mobile robot estimated in [13] are:m = 11.0 kg, I = 1.057
kgm2, R = 0.265 m, r = 0.125 m, N = 21, KT =

[
0.057 0.051

]T Vs, Kb =[
0.057 0.051

]T Vs, and Ra =
[
0.476 0.233

]T
Ω. The reference trajectory is an

elliptical trajectory given by xr = cos(t/3), yr = 0.8 sin(t/3), θr = a tan 2(ẏr, ẋr).
The reference linear and angular velocity is given by vr =

√
ẋ2

r + ẏ2
r , ωr =

ÿrẋr−ẍr ẏr

ẋ2
r+ẏ2

r
. The trajectory starts from [xr(0), yr(0), θr(0)] = [1, 0, π/2] and the
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robot initial posture is taken as [xc(0), yc(0), θ(0)] = [1.1, 0, π/2]. The parameters
of the KC are chosen as k1 = 10, k2 = 20, k3 = 10; and the gains of the PNDC
as: NVC - Λ = diag[2], Γ

Hk
= 0.01, σ2

H = 9, KH = 0.01, Q = diag[1], and NRC
- Λ = diag[2], Γ

Pk
= 5, σ2

P = 4, KP = 0.01. The centers m. of the localised
Gaussian RBFs are evenly distributed to span the input space. A Coulomb
friction and a bounded periodic disturbance term are added to the robot system
as:

τ̄d =
[

(f1 + f1(t))sgn(v1) + 0.1 sin(2πt)
(f2 + f2(t))sgn(ω) + 0.1 cos(2πt)

]
, (30)

where f1 = 20.0, f2 = 10.0. Function f(t) is nonlinear, defined as:
[
f1(t) f2(t)

]
=[

0.0 0.0
]T if t < 8;

[
f1(t) f2(t)

]
=
[
0.0 10.0

]T if 8 ≤ t < 14;
[
f1(t) f2(t)

]
=[

40.0 0.0
]T if t ≥ 14, respectively. Thus, τ̄d is subject to a sudden change at

time goes to 8s and 14s. Moreover, in 14s, the mobile robot suddenly dropped
of an object of 2.75 kg, that is, a quarter of its original mass. The tracking
performance of the PNDC can be observed in the: Figure 3, since the mobile
robot naturally describes a smooth path tracking over the elliptical trajectory;
Figure 4 shows that the tracking errors tend to zero; Figure 5 shows that the
robot velocities tend to desired values; Figure 6 shows that the behavior of the
wheel actuator input voltages, where is important to emphasize that the PNDC
eliminate entirely the chattering.

8 Conclusions

A neural control algorithm (PNDC), considering uncertainties and disturbances
in the dynamics, as an alternative trajectory tracking problem applied to non-
holonomic mobile robot was proposed in this work. The implementation of the
PNDC is based on the partitioning of neural networks into several smaller neu-
ral subnets, in order to obtain more efficient computation. This implementation
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simplifies the design; gives added controller structure; and contribute to faster
weight tuning algorithms. The RBFNN’s used in the PNDC neither requires
an off-line learning nor the knowledge of the mobile robot’s dynamics. A neu-
ral sliding mode controller as NRC of the PNDC is used in the replacement
of the discontinuous parts of the classical sliding mode controller to avoid the
chattering as well as bounded unknown disturbances, and influence of payload.
Stability and convergence of the robot control system, and the learning algo-
rithms for weights are proved by using Lyapunov theory. The simulation results
show the effectiveness of the PNDC.
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Abstract. In Bayesian-based tracking systems, prediction is an essential

part of the framework. It models object motion and links the internal es-

timated motion parameters with sensory measurement of the object from

the outside world. In this paper a Bayesian-based tracking system with

multiple prediction models is introduced. The benefit of multiple model

prediction is that each of the models has individual strengths suited for

different situations. For example, extreme situations like a rebound can

be better coped with a rebound prediction model than with a linear one.

That leads to an overall increase of prediction quality. However, it is still

an open question of research how to organize the prediction models. To

address this topic, in this paper, several quality measures are proposed

as switching criteria for prediction models. In a final evaluation by means

of two real-world scenarios, the performance of the tracking system with

two models (a linear one and a rebound one) is compared concerning

different switching criteria for the prediction models.

1 Introduction

Visually tracking an object means to locate a moving object in space over time
by estimating the state of its dynamics. The state estimation process happens by
a fusion of state prediction for the next time slot according to a motion model on
the one hand side and a measurement of its position by means of visual sensory
input data on the other hand side. The sensory measurement has the function
to confirm or reject the state prediction ([1]).

Tracking arbitrary objects in arbitrary environments is a sophisticated task,
since several challenges have to be overcome. One challenge is to cope with the
temporarily changing environment conditions, which let the object’s features get
temporarily unselective and so the measurement unreliable. Another challenge is
the change of object’s appearance, which makes the comparison with the origi-
nal template difficult. All these possibly cause a measurement failure which may
lead to a temporarily loss of the object for several frames. For coping with these
measurement challenges, several works exist concerning multi-cue approach to
overcome temporarily failures in some features (see e.g. [2], [3]) or concerning
template adaptation to overcome appearance changes (see e.g. [4], [5]). How-
ever, the best measurement is of no help, if the state prediction is unreliable,
since sensory measurement is only an additional information for confirmation

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 855–864, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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or rejection of the state prediction. State prediction requires a model of object
motion which is used to predict the object’s state in the next time slot. Since for
arbitrary objects, there is usually no knowledge about specific prediction mod-
els available, tracking frameworks (see e.g. [6]) have to rely on rather generic
prediction models which cope well with a large variety of situations. Therefore,
a linear motion model based on a constant acceleration or even a constant ve-
locity assumption is often a choice. But a real object can also undergo a sudden
transposition maneuver, rebound, or other heavily accelerated motions. In these
cases a linear prediction model is not always appropriate.

The key idea of this paper is that a reliable prediction system should con-
tain multiple prediction models, where each model has individual advantages
for a special situation. So, the overall prediction system benefits from individ-
ual strengths of each of the single models. However, having multiple prediction
models poses the question of how to manage them. Several approaches were
proposed concerning probabilistic model management for multiple-model esti-
mations (see e.g. [7], [8]). Here, we analyze the advantages of having multiple
structurally different prediction models for visual object tracking and propose
concrete quality measures as methods for deterministic switching between the
models. This paper is structured as follows. We first introduce a simple Bayesian
tracking framework. Then we extend it by multiple prediction models, and in-
troduce methods to switch between them. Finally, we evaluate the performance
of our tracking system with multiple prediction models on test sequences.

2 Tracking Framework

The system we used to test the multiple prediction models is a correlation-based,
particle-filter tracker for locating an arbitrary object in a sequence of 2-D images.
It estimates the object’s state x = (x, y, vx, vy, ax, ay) in a recursive Bayesian
way ([1]) by incorporating measurement results gained from multiple cues.

Let xk be the state and zk the measurement at the k-th frame. Starting from
the propagation and measurement equations with additive noises ζk−1 and ηk

xk = f(xk−1) + ζk−1 (1)
zk = g(xk) + ηk (2)

and its probabilistic notation via the Bayesian state tracking formulation [1], the
belief probability density function (pdf) about the object state (posterior)

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3)

is constructed as a fusion of p(zk|xk) as the measurement expectation (likeli-
hood) and p(xk|z1:k−1) as the predicted state pdf (prior) which evolves from the
posterior pdf of the last time step by applying a transformation using a given
prediction model for state transition p(xk|xk−1) according to

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (4)
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Here p(zk|z1:k−1) is a normalization constant with

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk. (5)

In our tracking framework, the likelihood L := p(zk|xk) is obtained by comparing
the measurement result of the target object with the expected measurement
result as stated in (2). From an input image I a set of cues Ci with i = 1, . . . , N
is extracted, including e.g. RGB color, DoG edges, structure tensors. On the
other hand template cues containing the tracked object inside are stored in Ti

with i = 1, . . . , N . In addition, a window W for weighting the target object
in the templates cues Ti is given. The measurement Mi for the target object
position is gained by correlation of Ci and Ti with window W by

Mi = Corr2D {Ci,Ti,W} . (6)

The object’s expected measurement Si is calculated by auto-correlating the tem-
plate cues Ti according to

Si = Corr2D {Ti,Ti,W} . (7)

The operations in (6) and (7) are accelerated by multiplication of Ci resp. Ti

and Ti in the Fourier domain, weighted by W. With the measurement Mi

and the expected measurement Si, likelihood Li is gained (assuming a normal
distribution of measurement noise ηk with a variance of σ2

η) by

Li(x, y) ∼ exp
(
− 1

2σ2
ηi

‖(Mi −Ax,y (Si))'Ax,y (W)‖2
)
, (8)

with Ax,y as a translatory transformation operator to shift a block by (x, y) and
' as a pixel-wise multiplication of two blocks. Fusion of the likelihoods of all
cues delivers an overall likelihood L = F {L1, . . . ,LN}.

The likelihood L is used to weight the prior pdf p(xk|z1:k−1), which is ob-
tained according to formula (4), in the resampling phase of particle filtering.
The estimation process of the posterior p(xk|z1:k) is evolved by a Sample Im-
portance Resampling (SIR) Particle Filter ([1], [9]) where prior and posterior
pdfs are approximately represented by 5000 particles in the six dimensional state
space x.

3 Multiple Prediction Models

In a Bayesian tracking framework like presented here, measurement is a supple-
mentary information for correcting the guess coming from the motion prediction
model. In the case of an inappropriate motion prediction model even a good
likelihood coming from the measurement can not prevent a loss of the object.
Since a single motion prediction model can never cope with all situations, it is
beneficial to have multiple few-parameterized prediction models specialized for
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(a) (b) (c)

Fig. 1. Visualization of three different prediction models, projected to the x, y-plane.

(a) visualizes the prior distribution of a linear prediction model. One can see the uni-

directional motion from the origin and normal distribution due to noise. (b) Elastic

rebound prediction model. It shows the omnidirectional characteristic of a rebound

with no knowledge about the rebound direction and uncertainty of the rebound re-

flection factor. (c) visualizes a rebound prediction model with a preferred reflection

direction.

different kinds of motion. In this case, each of them plays its strengths on current
situations where others are unreliable. In this way the models complement one
another.

In order to show the limitation of a single prediction model, we tested our
tracking system in combination of a linear prediction model of the form

⎡⎢⎢⎢⎢⎢⎢⎣
xk

yk

vx,k

vy,k

ax,k

ay,k

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 ΔT 0 0 0
0 1 0 ΔT 0 0
0 0 1 0 ΔT 0
0 0 0 1 0 ΔT
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
xk−1
yk−1
vx,k−1
vy,k−1
ax,k−1
ay,k−1

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
ζxk−1

ζyk−1

ζvx,k−1

ζvy,k−1

ζax,k−1

ζay,k−1

⎤⎥⎥⎥⎥⎥⎥⎦ (9)

with ζ...,k−1 ∼ N(0, σ2
ζ...

) as model noise (an illustration of the linear prediction
model can be seen in figure 1(a)) using a sequence of a falling ball which rebounds
on a can, as illustrated in figure 2(a). The tracking result plotted in figure 3 shows
that the tracker loses the object after the rebound.

Since a linear prediction model has problems at the rebound, we used a second,
non-linear prediction model

⎡⎢⎢⎢⎢⎢⎢⎣
xk

yk

vx,k

vy,k

ax,k

ay,k

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx,k−1 ·ΔT + xk−1 + ζx,k−1
vy,k−1 ·ΔT + yk−1 + ζy,k−1(√

v2
x,k−1 + v2

y,k−1 + ζr,k−1

)
· cos(ξϕ)(√

v2
x,k−1 + v2

y,k−1 + ζr,k−1

)
· sin(ξϕ)

ax,k−1 + ζax,k−1

ay,k−1 + ζax,k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)
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(a)

(b)

Fig. 2. This figure shows two real-world scenarios containing 18 and 39 frames with

400 × 300 pixel resolution, respectively. In the first scenario (a) a ball is falling on a

can and rebounds to the left. A selection of the 18 frames is shown here to illustrate

the rebound. The lower right image illustrates the complete trajectory of the ball. In

the second scenario (b) a tennis ball is falling down to the floor and rebounds several

times up and down. A selection of the 39 frames is shown in these figures. The lower

right one contains the complete trajectory of the tennis ball.

with ζ...,k−1 ∼ N(0, σ2
ζ...

) and ξϕ equally distributed in [0, 2π[. This is a noisy
rebound prediction model (see figure 1(b)), that assumes that the object changes
its direction arbitrarily while keeping its velocity approximately constant. Fig-
ure 3 shows the tracking result of our framework using a rebound model with a
preferred direction (see in figure 1(c)) as a single prediction model, i.e. a mixture
between (9) and (10). The reason for using a rebound model with a preferred
direction is that a pure rebound model is obviously not suited for describing the
linear phases of the motion with sufficient accuracy. Here, the object is tracked
throughout the sequence, but the confidence is not as high as in the case of linear
prediction before rebound, since the rebound model is more unselective.

At this point it seems straightforward to assume that a switching between both
models, which corresponds to the confirmation-rejection-concept of tracking, is
a good solution to overcome the rebound in the scenario and still to have high
confidence for the posterior. The question is how to automatically find out when
to switch between prediction models. For this purpose, in the following several
quality measures for a prediction model are taken into consideration.
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Fig. 3. Tracking results using a single linear prediction model vs. using a single re-

bound prediction model with a preferred direction, without switching between both

prediction models, for the scenario shown in figure 2(a). The first plot shows the value

of the highest posterior peak, the second one the distance of the peak to the ground

truth position of the target object. Before the rebound the linear model is an appropri-

ate prediction model. Immediately after the rebound in frame 9 the linear prediction

model further predicts the object motion in same direction, whereas the target object

rebounds on the can and turns to the left. So, the target object gets lost. Using only the

rebound model with a preferred direction the target object is tracked over all frames

(with a distance of 2.19px to ground truth in average), but the standard deviation of

posterior is quite high (63.44px in average) which indicates a high uncertainty.

Highest posterior peak. The first quality measure for selecting prediction model
is the value of the highest peak of the posterior. So, the prediction model î with
the highest overall value of its posterior is chosen as the operative prediction
model:

î = arg max
i

p̂i with p̂i = max
xk

pi(xk|z1:k). (11)

Looking at the posterior value of the highest peak plot in figure 3 it can be
seen that the highest posterior peak value of the linear model decreases during
rebound (frame 9), whereas the highest posterior peak value of the rebound
model surpasses that of the linear model. Taking this as a switching criterion,
the object can be tracked successfully over the entire sequence resulting in an
overall higher posterior peak value as compared to the single prediction models.
In figure 4, we show the respective contributions of the two prediction models
(linear and pure rebound) and the posterior result gained by selection of the
best prediction model at each time step.

Quotient of standard deviations of prior to posterior. A second quality measure
is the ratio between the standard deviations of prior and posterior. A strong de-
crease from the standard deviation of prior to the standard deviation of posterior
is an indication for a reliable likelihood that is consistent with the prediction. So,
the model î with the highest quotient of standard deviation of prior to posterior
is taken as the operative model:
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Fig. 4. Switching behavior between two prediction models using the value of the highest

posterior peak as switching criterion, for scenario in figure 2(a). In the first plot the

values of the highest posterior peaks of both participating models (linear and pure

rebound) and that of the currently selected model are shown. In the second plot it is

shown which prediction model was active (the one which has the greater value at the

highest posterior peak). In the third plot the distance to the ground truth position is

shown. An average distance to the ground truth position of 2.13px indicates that the

object is never lost over the frames. With an average standard deviation of posterior

of only 16.47px the confidence is quite high.

î = arg max
i

q̂i with q̂i =
stdev(pi(xk|z1:k−1))
stdev(pi(xk|z1:k))

. (12)

Kullback-Leibler-divergence. The next quality measure is the Kullback-Leibler-
divergence ([10]), which quantifies the change of entropy of two pdfs. A higher
K-L value refers to a stronger decrease of entropy of prior to that of posterior
due to a reliable likelihood which is consistent with the prediction. So, the model
î with the highest K-L-divergence then becomes the operative model:

î = argmax
i

k̂i with k̂i =
∫

pi(xk|z1:k) · log
(

pi(xk|z1:k)
pi(xk|z1:k−1)

)
dxk. (13)

Modified Kullback-Leibler-divergence. A property of the K-L-divergence is that
it only takes the change of prior to posterior into account, but not the fact that,
on a reliable likelihood and a consistent prediction, it is easier for a prior with a
higher standard deviation to get a larger change towards posterior. That means,
under this circumstance, a model with a widely spread prior, e.g. a rebound
model, gets a higher K-L-divergence more easily than a model with a more
selective prior, e.g. a linear model. So a modified K-L-divergence weighted by
the standard deviation of prior is taken as the next quality measure, in order to
compensate this bias effect:
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î = argmax
i

m̂i with m̂i =

∫
pi(xk|z1:k) · log

(
pi(xk|z1:k)

pi(xk|z1:k−1)

)
dxk

stdev(pi(xk|z1:k−1))
. (14)

Scalar product of prior and posterior. The fifth quality measure is the scalar
product of prior and posterior. A lower scalar product refers to a larger change
from prior to posterior and thus to a reliable likelihood. In this case, we choose
the model î with:

î = argmax
i

ŝi with ŝi =
pi(xk|z1:k) · pi(xk|z1:k−1)

||pi(xk|z1:k)|| · ||pi(xk|z1:k−1)|| . (15)
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(5)

Method Average distance
to ground truth
position

Average standard
deviation of pos-
terior

(1) 2.12px 17.15px
(2) 2.12px 17.15px
(3) 2.15px 22.58px
(4) 1.89px 14.65px
(5) 2.38px 40.10px

Fig. 5. Tracker evaluation results for scenario 1 (figure 2(a)) using different switching

criteria for prediction models. For each of the five switching criteria its specific quality

measures are shown for both models in the first plot and its switching behavior in the

second plot. In the table, the average distance to ground truth position and the average

standard deviation of the posterior of the methods are shown. This table reveals that

the object is tracked successfully throughout the entire sequence. Methods 1, 2 and 4

exhibit the lowest standard deviation of posterior and appropriate points in time for

switching (a big rebound occurs at frame 9 and a small rebound at frame 14).
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Method Average distance
to ground truth
position

Average standard
deviation of pos-
terior

(1) 2.90px 10.36px
(2) 3.16px 15.78px
(3) 3.16px 14.44px
(4) 4.89px 13.30px
(5) 3.25px 20.99px

Fig. 6. This figure shows the tracker evaluation results for the scenario 2 (figure 2(b))

using different switching criteria for prediction models. For each of the five switching

criteria its specific quality measures are shown for both models in the first plot and

its switching behavior in the second plot. In the table the average distance to ground

truth position and the average standard deviation of posterior of the methods are

shown. This table reveals that the object is tracked successfully throughout the entire

sequence. Methods 1 and 4 exhibit the lowest standard deviation of posterior and

appropriate points in time for switching (big rebounds occur at frames 7, 14 and 20

and small rebounds at frame 24, 27 and 29).

4 Evaluation

We have evaluated the five methods for switching between prediction models
by means of two scenarios. One is the scenario with one big rebound shown in
figure 2(a). Another one with a series of rebounds is shown in figure 2(b). The
results of the comparative evaluations can be seen in figures 5 and 6. In no case in
the evaluations, the tracker loses the object. From all the five switching methods
the “highest posterior peack value” and “modified Kullback-Leibler-divergence”
turn out to be the best ones, since they switch at the most appropriate points
in time and provide the lowest standard deviation of posterior.
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5 Conclusion
In this paper we presented a Bayesian tracking framework in combination with
multiple structurally different prediction models. In an introductory example
it is first shown that a generic motion prediction model, e.g. a linear one, is
inappropriate for extreme situations like a rebound. A rebound model alone is
also inappropriate since it is unselective and so quite sensitive to measurement
disturbances.

A good solution is to use multiple prediction models, each of them is spe-
cialized for different situations. Appropriately switching between the prediction
models increases the overall predictive capability which the tracking performance
benefits from. An essential gain of this concept consists in a further possibility for
measurement to revise prediction by completely replacing an unsuitable predic-
tion model by a more suitable one, whereas on a single prediction model tracking
framework it is only possible to revise prediction by tuning model parameters.

The question remains how or what is the optimal criterion for switching
between models. To clarify this question five appropriate quality measures as
switching criteria are evaluated by means of real-world scenarios. The finding of
the evaluations is that prediction by switching between multiple models leads in
all cases to more reliable tracking results (in terms of average distance to ground
truth position and average standard deviation of posterior, see figures 5 and 6)
as compared to the single prediction model case. “Highest posterior peak value”
and “modified Kullback-Leibler-divergence” turned out to be the best switching
criteria.
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Abstract. The trajectory tracking control problem for the wheeled mo-

bile robot is solved using the sliding mode control. The wheeled mobile

robot is a nonlinear system. In this paper four control laws are modeled

and the system performances are investigated. The sliding mode control

laws for the trajectory tracking problem are simulated and then imple-

mented on the PatrolBot Robot. The performances are analyzed in order

to establish some rules. The analysis conclusions are based on the sim-

ulation results and on the real time implementation of the control laws

on the PatrolBot Robot.

Keywords: Mobile Robots, Nonlinear Control, Sliding Mode Control,

Trajectory Tracking.

1 Introduction

In this paper trajectory tracking problem is solved using four Sliding Mode
Control (SMC) laws. Sliding Mode control was chose because is known to possess
merits such as the invariance to parametric uncertainties as well as the capacity
to reject disturbances. However, this type of control suffers from the chattering
phenomenon which is due to high frequency switching over discontinuity of the
control signal ([1]).

Sliding Mode is also known to posses merits such as the invariance to para-
metric uncertainties. Dynamic characteristics of the reaching mode are very im-
portant, and this type of control suffers from the chattering phenomenon which
is due to high frequency switching over discontinuity of the control signal. This
aspect of the sliding mode control is further investigated in this paper using four
different control laws.

In order to handle the chattering problem two approaches are widely referred
in literature. The first one is called the continuation method because the dis-
continuous relay type actuator is replaced by a high - gain device with satu-
ration ([6]). Although this method eliminates the high frequency chattering it
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also destroys the sliding mode. In addition, the resulting physical system, often
exhibits low frequency oscillations due to unmodeled dynamics. The second ap-
proach deals directly with the reaching process since chattering is caused by the
nonideal reaching at the end of the reaching phase. This approach establishes
the reaching mode characteristics by the use of a reaching model. The resulting
method is called the reaching law method ([3]).

In this paper four different reaching laws and reaching modes are investigated.
The performances of the four laws in controlling the amplitude of the chattering
are compared in order to establish an on-line parameters adjusting procedure.

This paper is organized as follows: Section II is dedicated to the presenta-
tion of the reaching mode and switching functions for nonlinear systems. The
three stages considered for the sliding mode used for trajectory tracking problem
are presented. The four reaching laws models are also listed. In Section III the
control problem for the wheeled mobile robots is presented using the kinematic
model. The trajectory-tracking problem is treated using the sliding mode con-
trol, and the sliding manifolds equations for the four reaching laws in Section II
are presented. The commands for each controller are also obtained. Section IV is
dedicated to experimental results of the implementation of the four reaching laws
presented in Section II. Section V presents the conclusions of the implementation
on PatrolBot Robot and future work directions.

2 Reaching Mode and Control Law Design

[3] proposed a reaching law which directly specifies the dynamics of the switching
surface by the differential equation

ṡ = −Q · sgn(s)− P · h(s) (1)

where

Q = diag [q1, q2, ..., qn] , P = diag [p1, p2, ..., pn] , qi, pi > 0, i = 1, 2, ..., n

sgn(s) = [sgn(s1), sgn(s2), ..., sgn(sn)]T , h(s) = [h1(s1), h2(s2), ..., hn(sn)]T

si · hi(s) > 0, hi(0) = 0.

2.1 Reaching Laws

The four practical cases of the equation (1) used in this paper are given below.

A. Constant rate reaching ([3])

ṡ = −Q · sgn(s) (2)

This law forces the switching variable s(x) to reach the switching manifold S at
a constant rate |ṡi| = −qi. The merit of this reaching law is its simplicity. But,
as we know, if qi is too small, the reaching time will be too long. On the other
hand, a too large qi will cause severe chattering.
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B. Constant plus proportional rate reaching ([3])

ṡ = −Q · sgn(s)− P · s (3)

Clearly, by adding the proportional rate term −P · s, the state is forced to
approach the switching manifolds faster when s is large. It can be shown that
the reaching time for x to move from an initial state x0 to the switching manifold
si is finite, and is given by:

Ti =
1
pi
· lnpi · |si|+ qi

qi
(4)

C. Power rate reaching ([3])

ṡi = −pi · |si|α · sgn(si), 0 < α < 1, i = 1, ...,m (5)

This reaching law increases the reaching speed when the state is far away from
the switching manifold, but reduces the rate when the state is near the manifold.
The result is a fast reaching and low chattering reaching mode. Integrating (5)
from si = si0 to si = 0 yields

Ti =
|si(0)|1−α

(1− α) · pi
(6)

showing that the reaching time Ti, is finite. Thus power rate reaching law gives
a finite reaching time. In addition, because of the absence of the −Q · sgn(s)
term on the right-hand side of (5), this reaching law eliminates the chattering.

D. Speed control rate reaching ([7])

ṡi = −pi · exp (α · |si|) · sgn(si),
pi > 0, α > 0, i = 1, ...,m (7)

and the reaching time Ti becomes:

Ti =
1

α · pi
· (1− exp (−α · |si(0)|)) (8)

The four reaching laws presented above are used in the implementation on the
PatrolBot Robot system in order to analyze their performances.

3 Control of Wheeled Mobile Robots

The application of SMC strategies in nonlinear systems has received consider-
able attention in recent years ([8], [9], [10], [11]). A well-studied example of a
non-holonomic system is a WMR that is subject to the rolling without slipping
constraint.

In trajectory tracking is an objective to control the non-holonomic WMR to
follow a desired trajectory, with a given orientation relatively to the path tangent,
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Fig. 1. Lateral, longitudinal and orientation errors (trajectory-tracking)

even when disturbances exist. In the case of trajectory-tracking the path is to
be followed under time constraints. The path has an associated velocity profile,
with each point of the trajectory embedding spatiotemporal information that is
to be satisfied by the WMR along the path. Trajectory tracking is formulated
as having the WMR following a virtual target WMR which is assumed to move
exactly along the path with specified velocity profile.

3.1 Kinematic Model of a WMR

Figure 1 presents a WMR with two diametrically opposed drive wheels (radius
R) and free-wheeling castors (not considered in the kinematic models). Pr is the
origin of the robot coordinates system. 2L is the length of the axis between the
drive wheels. ωR and ωL are the angular velocities of the right and left wheels.
Let the pose of the mobile robot be defined by the vector qr = [xr, yr, θr]

T , where
[xr, yr]

T denotes the robot position on the plane and θr the heading angle with
respect to the x-axis. In addition, vr denotes the linear velocity of the robot, and
ωr the angular velocity around the vertical axis. For a unicycle WMR rolling on
a horizontal plane without slipping, the kinematic model can be expressed by:⎡⎣ ẋr

ẏr

θ̇r

⎤⎦ =

⎡⎣ cosθr 0
sinθr 0
0 1

⎤⎦ · [ vr

ωr

]
(9)

which represents a nonlinear system.
Controllability of the system (9) is easily checked using the Lie algebra rank

condition for nonlinear systems. However, the Taylor linearization of the system
about the origin is not controllable, thus excluding the application of classical
linear design approaches.

3.2 Trajectory-Tracking

The first case to be considered is the trajectory-tracking control. Without loss of
generality, it can be assumed that the desired traj. qd(t) = [xd(t), yd(t), θd(t)]

T



Sliding Mode Control for Trajectory Tracking Problem 869

is generated by a virtual unicycle mobile robot (see Fig. 1). The kinematic rela-
tionship between the virtual configuration qd(t) and the corresponding desired
velocity inputs [vd(t), ωd(t)]

T is analog with (9):⎡⎣ ẋd

ẏd

θ̇d

⎤⎦ =

⎡⎣ cosθd 0
sinθd 0
0 1

⎤⎦ · [ vd

ωd

]
(10)

When a real robot is controlled to move on a desired path it exhibits some
tracking error. This tracking error, expressed in terms of the robot coordinate
system, as shown in Fig. 1, is given by⎡⎣xe

ye

θe

⎤⎦ =

⎡⎣cosθd sinθd 0
−sinθd cosθd 0
0 0 1

⎤⎦ ·
⎡⎣xr − xd

yr − yd

θr − θd

⎤⎦ (11)

Consequently one gets the error dynamics for trajectory tracking as⎧⎨⎩
ẋe = −vd + vr · cosθe + ωd · ye

ẏe = vr · sinθe − ωd · xe

θ̇e = ωr − ωd

(12)

3.3 Sliding-Mode Trajectory-Tracking Control

Uncertainties which exist in real mobile robot applications degrade the con-
trol performance significantly, and accordingly, need to be compensated. In this
section, is proposed a SM-TT controller, in Cartesian space, where trajectory
tracking is achieved even in the presence of large initial pose errors and distur-
bances.

Let us define the sliding surface s = [s1 s2]
T as

s1 = ẋe + k1 · xe,
s2 = ẏe + k2 · ye + k0 · sgn(ye) · θe.

(13)

where k0, k1, k2 are positive constant parameters, xe, ye and θe are the trajectory
tracking errors defined in (11).

If s1 converges to zero, trivially xe converges to zero. If s2 converges to zero, in
steady-state it becomes ẏe = −k2 ·ye−k0 ·sgn(ye)·θe. For ye < 0⇒ ẏe > 0 if only
if k0 < k2 · |ye| / |θe|. For ye > 0 ⇒ ẏe < 0 if only if k0 < k2 · |ye| / |θe|. Finally,
it can be known from s2 that convergence of ye and ẏe leads to convergence of
θe to zero.

From the time derivative of (13) and using the reaching laws defined in (2),
(3), (5) and (7) yields:

ṡ1A = ẍe + k1 · ẋe = −q1 · sgn(s1)
ṡ2A = ÿe + k2 · ẏe + k0 · sgn(ye) · θ̇e = −q2 · sgn(s2)

(14)

ṡ1B = ẍe + k1 · ẋe = −q1 · sgn(s1)− p1 · s1
ṡ2B = ÿe + k2 · ẏe + k0 · sgn(ye) · θ̇e = −q2 · sgn(s2)− p2 · s2 (15)
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Fig. 2. Sliding-Mode Trajectory-Tracking control architecture

ṡ1C = ẍe + k1 · ẋe = −p1 · |s1|α · sgn(s1)
ṡ2C = ÿe + k2 · ẏe + k0 · sgn(ye) · θ̇e = −p2 · |s2|α · sgn(s2)

(16)

ṡ1D = ẍe + k1 · ẋe = −p1 · exp(α · |s1|) · sgn(s1)
ṡ2D = ÿe + k2 · ẏe + k0 · sgn(ye) · θ̇e = −p2 · exp(α · |s2|) · sgn(s2)

(17)

From (11), (12) and (14)-(17), and after some mathematical manipulation, we
get the output commands of the sliding-mode trajectory-tracking controller:

v̇cA = (−q1·sgn(s1)−k1·ẋe−ye·ω̇d−ẏe·ωd+vr·θ̇e·sinθe+v̇d)
cosθe

ωcA = (−k2·ẏe−q2·sgn(s2)−v̇r ·sinθe+xe·ω̇d+ẋe·ωd)
vr ·cosθe+k0·sgn(ye) + ωd

(18)

v̇cB = (−p1·s1−q1·sgn(s1)−k1·ẋe−ye·ω̇d−ẏe·ωd+vr ·θ̇e·sinθe+v̇d)
cosθe

ωcB = (−p2·s2−k2·ẏe−q2·sgn(s2)−v̇r·sinθe+xe·ω̇d+ẋe·ωd)
vr ·cosθe+k0·sgn(ye) + ωd

(19)

v̇cC = (−p1·|s1|α·sgn(s1)−k1·ẋe−ye·ω̇d−ẏe·ωd+vr·θ̇e·sinθe+v̇d)
cosθe

ωcC = (xe·ω̇d+ẋe·ωd−p2·|s2|α·sgn(s2)−k2·ẏe−v̇r ·sinθe)
vr ·cosθe+k0·sgn(ye) + ωd

(20)

v̇cD = (−p1·exp(α·|s1|)·sgn(s1)−k1·ẋe−ye·ω̇d−ẏe·ωd+vr ·θ̇e·sinθe+v̇d)
cosθe

ωcD = (xe·ω̇d+ẋe·ωd−p2·exp(α·|s2|)·sgn(s2)−k2·ẏe−v̇r ·sinθe)
vr·cosθe+k0·sgn(ye) + ωd

(21)

Let us define V = 1
2 · sT · s as a Lyapunov function candidate, therefore its time

derivative is V̇ = s1 · ṡ1 + s2 · ṡ2 = s1 · (−p1 · s1 − q1 · sgn(s1)) + s2 · (−p2 · s2 −
q2 · sgn(s2)) = −sT · p · s− q1 · |s1| − q2 · |s2|

For V̇ to be negative semi-definite, it is sufficient to choose qi and pi such
that qi, pi > 0.

The signum functions in the control laws were replaced by saturation func-
tions, to reduce the chattering phenomenon ([2], [12]).
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4 Experimental Results

In this section, experimental results of the proposed method are presented.
To show the effectiveness of the proposed sliding mode control law numeri-

cally, real experiments were carried out on the trajectory-tracking problem of a
nonholonomic wheeled mobile robot. The parameters of sliding modes were held
constant during the experiments: k1 = 0.75, k2 = 3.75, and k0 = 2.5; and the
desired trajectory is given by vd = 0.4 [m/s], ωd = 0 [rad/s].

The robot has two-level control architecture (see Fig. 2). High-level control
algorithms (including desired motion generation) are written in C++ and run
with a sampling time of Ts = 100 ms on a embedded PC, which also provides a
user interface with real-time visualization and a simulation environment. Wheel
velocity commands, ωR = vc+L·ωc

R , ωL = vc−L·ωc

R are sent to the PI controllers,
and encoder measures NR and NL are received in the robots pose estimator for
odometric computations.

The real-time experiments are carried out on PatrolBot, a general purpose
mobile robot acquired from MobileRobots Inc (see Fig. 3).

4.1 Mobile Robot Setup

PatrolBot is a programmable autonomous general purpose Service robot rover
built by MobileRobots Inc.

Technical Specifications PatrolBot has a 59cm x 48cm x 38cm, CNC aluminum
body. Its 19 cm diameter tires handle nearly any indoor surface. The two motor
shafts hold 1000-tick encoders. This differential drive platform is holonomic so
it can turn in place. Moving wheels on one side only, it forms a circle of 29 cm
radius. The robot is equipped with 1.6 GHz Intel Pentium processor and 500
MB of RAM.

Software Specifications A small proprietary μARCS transfers sonar readings,
motor encoder information and other I/O via packets from the micro controller

Fig. 3. The experimental mobile robot - PatrolBot
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Fig. 4. Experimental SM-TT control starting from an initial error state (xe(0) = −0.3,
ye(0) = −0.3, θe(0) = 0)
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Fig. 5. Longitudinal and lateral errors for experimental SM-TT control

server to the PC client and returns control commands. PatrolBot can be oper-
ated from the client or users can design their own programs under Linux or under
WIN32 using C/C++ compiler. ARIA and ARNL software supply library func-
tions to handle navigation, path planning, obstacle avoidance and many other
robotic tasks.

4.2 Real-Time Experiments Results

The real-time experiments were made for all types of reaching laws presented in
(2), (3), (5) and (7).

In Table 1 are represented 36 experiments using sliding-mode trajectory-
tracking controller for PatrolBot robot. Three experimental trials were executed
for each parameters of reaching low. The table shows the maximum (Max) and
root mean square (RMS) of errors (longitudinal - xe, lateral - ye and orientation
- θe). Root mean square error is an old, proven measure of control and quality.

RMS can be expressed as RMS =
[ 1

N

∑
x2(i)

] 1
2 .

In order to compare all the four reaching laws there was analyzed the real-
time implementation on the PatrolBot Robot. All the 36 real time experiments
were realized on a single mobile robot with the same initial error (xe = −0.3 m,
ye = −0.3 m, θe = 0).
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Table 1. Experimental Results

Q, P, α var. xe xe ye ye θe θe

Max [m] RMS Max [m] RMS Max [deg] RMS
Reaching law A.

q1 = 0.05 0.6810 0.3762 0.3000 0.1137 6.8520 0.0520
q2 = 0.5 q1 = 0.50 0.6670 0.1823 0.3000 0.1115 5.7978 0.0454

q1 = 0.95 0.6670 0.3081 0.3000 0.1126 17.3056 0.0827
q2 = 0.05 0.6670 0.1820 0.3000 0.2495 1.0542 0.0124

q1 = 0.5 q2 = 1.50 0.6790 0.1880 0.3000 0.0792 27.4962 0.0837
q2 = 2.50 0.6730 0.1866 0.3000 0.0826 25.4754 0.1063

Reaching law B.
q2 = 0.5, q1 = 0.01 0.7190 0.2031 0.3000 0.0816 27.4962 0.0836

p1 = 0.75, p2 = 1.75 q1 = 0.05 0.6790 0.1880 0.3000 0.0792 27.4962 0.0837
q1 = 0.40 0.6790 0.2966 0.3000 0.0783 27.7598 0.1037

q1 = 0.05, q2 = 0.05 0.6780 0.1875 0.3000 0.0798 25.8272 0.0808
p1 = 0.75, p2 = 1.75 q2 = 0.50 0.6790 0.1880 0.3000 0.0792 27.4962 0.0837

q2 = 2.00 0.6860 0.1944 0.3000 0.0854 34.8754 0.1942
q1 = 0.05, p1 = 0.05 0.6790 0.3133 0.3000 0.0819 27.0568 0.0877

q2 = 0.5, p2 = 1.75 p1 = 0.75 0.6790 0.1880 0.3000 0.0792 27.4962 0.0837
p1 = 1.00 0.6790 0.2020 0.3000 0.0790 27.8475 0.0841

q1 = 0.05, p2 = 0.05 0.6670 0.1828 0.3000 0.1047 6.8520 0.0457
q2 = 0.5, p1 = 0.75 p2 = 1.75 0.6790 0.1880 0.3000 0.0792 27.4962 0.0837

p2 = 2.50 0.6860 0.1930 0.3000 0.0796 34.8754 0.1310
Reaching law C.

p1 = 0.05 0.6840 0.3761 0.3000 0.0880 19.6777 0.0794
p2 = 1.75, α = 0.75 p1 = 0.50 0.6690 0.1851 0.3000 0.0829 19.3264 0.0678

p1 = 0.90 0.6690 0.2961 0.3000 0.0822 20.8196 0.0859
p2 = 0.05 0.6670 0.1820 0.3000 0.2500 1.0542 0.0122

p1 = 0.5, α = 0.75 p2 = 1.75 0.6690 0.1851 0.3000 0.0829 19.3264 0.0678
p2 = 3.00 0.6750 0.1882 0.3000 0.0846 28.8140 0.1405
α = 0.05 0.6690 0.1850 0.3000 0.0829 19.3264 0.0678

p1 = 0.5, p2 = 1.75 α = 0.50 0.6690 0.1850 0.3000 0.0829 19.3264 0.0679
α = 0.95 0.6690 0.1851 0.3000 0.0829 19.3264 0.0678

Reaching law D.
p1 = 0.05 0.6840 0.3759 0.3000 0.0880 19.6777 0.0795

p2 = 1.75, α = 0.75 p1 = 0.50 0.6690 0.1850 0.3000 0.0829 19.3264 0.0678
p1 = 0.90 0.6690 0.2961 0.3000 0.0822 20.8196 0.0860
p2 = 0.05 0.6670 0.1820 0.3000 0.2498 1.0542 0.0120

p1 = 0.5, α = 0.75 p2 = 1.75 0.6690 0.1850 0.3000 0.0829 19.3264 0.0678
p2 = 3.00 0.6750 0.1882 0.3000 0.0852 28.8140 0.1423
α = 0.05 0.6690 0.1851 0.3000 0.0829 19.3264 0.0678

p1 = 0.5, p2 = 1.75 α = 0.50 0.6690 0.1851 0.3000 0.0829 19.3264 0.0679
α = 0.95 0.6690 0.1851 0.3000 0.0829 19.3264 0.0681

In Figures 4 and 5 the experimental results for the most favorable cases are
presented. These results offer the opportunity to distinguish the performances
of the four analyzed reaching laws.

It is easy to observe in figure that the most unfavorable case is the reaching
law A. The other laws, cases B, C, and D have similar characteristics with small
differences.

In Table 1 one can observe the performances for laws C and D are equal.
The differences between law B and laws C and D (which are identical) can be
observed in Figs. 4 and 5. The same observation can be also extracted from
Table 1, where one can observe differences between RMS of xe and θe (in case
of reaching law B these values are smaller than for cases C and D).
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5 Conclusions

The paper was focused on the performances analysis of the four laws presented
in Section II. This performance analysis is based on real-time implementation
on PatrolBot Robot. All the experimental results have been presented in a table
where the position errors and their mean root square were considered.

Analyzing the performances of the four laws it is easy to see that the most
adequate laws for the trajectory tracking problem of the robot are laws C and D
(equations (5) and (7)). The most unfavorable of the four laws is law A having
the longest reaching time.
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Abstract. Fuzzy Cognitive Networks (FCN) have been introduced by

the authors recently as an extension of Fuzzy Cognitive Maps (FCM).

One important issue of their operation is the conditions under which

they reach a certain equilibrium point after an initial perturbation. This

is equivalent to studying the existence and uniqueness of solutions for

their concept values. In this paper, we study the existence of solutions of

FCNs equipped with continuous differentiable sigmoid functions. This is

done by using an appropriately defined contraction mapping theorem. It

is proved that when the weight interconnections and the chosen sigmoid

function fulfill certain conditions the concept values will converge to a

unique solution regardless the exact values of the initial concept values

perturbations. Otherwise the existence or the uniqueness of equilibrium

can not be assured. Assuming that these conditions are met, an adaptive

bilinear weight estimation algorithm is proposed.

1 Introduction

Fuzzy Cognitive Networks (FCNs) were proposed in [1] as an extension of Fuzzy
Cognitive Maps to support the close interaction with the system they describe
and consequently become appropriate for control and system identification ap-
plications [2]. Fuzzy Cognitive Maps (FCM) have been initially introduced by
Kosko [3] based on Axelrod’s work on cognitive maps [4]. They are inference
networks using cyclic directed graphs that represent the causal relationships be-
tween concepts and in the recent years have been used in various applications
[5], [6]. In order to illustrate different aspects in the behavior of the system, a
fuzzy cognitive map consists of nodes where each one represents a system char-
acteristic feature. The node interactions represent system dynamics. Different
methodologies to develop FCM and extract knowledge from experts have been
proposed in [7].

An issue that is very important, both in FCN and FCM is the conditions
under which they reach an equilibrium point. This is equivalent to studying the
existence and uniqueness of solutions for their concept values. A first study on
this subject has already been proposed by the authors in [8]. In this paper, we
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extend the study of the existence of solutions of FCNs equipped with continuous
differentiable sigmoid functions. This is done by using an appropriately defined
contraction mapping theorem. It is proved that when the weight interconnections
and the chosen sigmoid function fulfill certain conditions the concept values will
converge to a unique solution regardless the exact values of the initial concept
values perturbations. Otherwise the existence or the uniqueness of equilibrium
can not be assured. Assuming that these conditions are met, an adaptive bilinear
weight estimation algorithm is proposed, which updates both FCN weights and
the inclination of the sigmoid functions used, based on systems’ operation data. It
is proved that the algorithm guarantees the error converges to zero exponentially
fast.

The paper is organized as follows. Section 2 describes the representation and
mathematical formulation of Fuzzy Cognitive Networks. Section 3 provides the
proof of the existence solution of the concept values of a Fuzzy Cognitive Net-
work. Section 4 presents the bilinear adaptive weight estimation algorithm with
proven stability and parameter convergence, while Section 5 provides illustrative
numerical examples. Finally, Section 6 concludes the work providing also hints
for future extensions.

2 Fuzzy Cognitive Networks

A graphical representation of FCNs is depicted in Fig. 1. Each concept represents
a characteristic of the system; in general it represents events, actions, goals,
values and trends of the system . Each concept is characterized by a number Ai

that represents its value and it results from the transformation of the real value
of the systems variable, represented by this concept, either in the interval [0,1]
or in the interval [-1,1]. All concept values form Vector A are expressed as:

A=
[
A1 A2 .... An

]T
with n being the number of the nodes (in Fig. 1 n = 8). Causality between
concepts allows degrees of causality and not the usual binary logic, so the weights
of the interconnections can range in the interval [-1,1].

The existing knowledge on the behavior of the system is stored in the struc-
ture of nodes and interconnections of the map. The value of wij indicates how
strongly concept Cj influences concept Ci. The sign of wij indicates whether the
relationship between concepts Cj and Ci is direct or inverse.

For the FCN of Fig. 1 matrix W is equal to

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11 w12 w13 w14 0 w16 0 0
w21 d22 0 0 0 w26 0 w28
w31 0 d33 w34 w35 0 w37 0
w41 0 w43 d44 0 0 0 0
0 0 0 0 d55 0 w57 0
0 0 w63 w64 w65 d66 0 w68
0 0 w73 0 0 0 d77 w78
0 w82 0 0 0 w86 w87 d88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 1. An FCN with 8 nodes

The equation that calculates the values of concepts of Fuzzy Cognitive Networks,
may or may not include self-feedback. In its general form it can be written as:

Ai(k) = f(
n∑

j=1
j 
=i

wijAj(k − 1) + diiAi(k − 1)) (1)

Where Ai(k) is the value of concept Ci at discrete time k, Ai(k − 1) the value
of concept Ci at discrete time k − 1 and Aj(k − 1) is the value of concept Cj

at discrete time k − 1. wij is the weight of the interconnection from concept Cj

to concept Ci and dii is a variable that takes on values in the interval [0, 1],
depending upon the existence of “strong” or “weak” self-feedback to node i.
f is a sigmoid function commonly used in the Fuzzy Cognitive Maps, which

squashes the result in the interval [0,1] and is expressed as, f = 1
1+e−clx , where

cl > 0 is used to adjust its inclination.
Equation (1) can be rewritten as:

A(k) = f(WA(k − 1)) (2)

In the next Section we are deriving conditions, which determine the existence of
a unique solution of (2), when continuous differentiable transfer functions f are
used.

3 Existence and Uniqueness of Solutions in Fuzzy
Cognitive Networks

In this Section we check the existence of solutions in equation (2), when a con-
tinuous and differentiable transfer function is used, such as sigmoid functions
are. We know that the allowable values of the elements of FCN vectors A lie in
the closed interval [0, 1]. This is a subset of � and is a complete metric space
with the usual L2 metric. We will define the regions where the FCN has a unique
solution, which does not depend on the initial condition since it is the unique
equilibrium point.
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3.1 The Contraction Mapping Principle

We now introduce the Contraction Mapping Theorem [9].

Definition 1. Let X be a metric space, with metric d. If ϕ maps X into X and
there is a number 0 < c < 1 such that

d(ϕ(x), ϕ(y)) ≤ cd(x, y) (3)

for all x, y ∈ X, then ϕ is said to be a contraction of X into X.

Theorem 1. [9] If X is a complete metric space, and if ϕ is a contraction of
X into X, then there exists one and only one x ∈ X such that ϕ(x) = x.

In other words, ϕ has a unique fixed point. The uniqueness follows from the fact
that if ϕ(x) = x and ϕ(y) = y, then (3) gives d(x, y) ≤ cd(x, y), which can only
happen when d(x, y) = 0 (See [9]).
Equation (2) can be written as:

A(k) = G(A(k − 1)) (4)

where G(A(k − 1)) is equal to f(WA(k − 1)).
In FCN’sA ∈ [0, 1]n and it is also clear according to (2) thatG(A(k−1)) ∈ [0, 1]n.
If the following inequality is true:

d(G(A), G(A′)) ≤ cd(A,A′)

where A and A′ are different vectors of concept values and G is defined in (4),
then G has a unique fixed point A such that G(A) = A. Before presenting the
main theorem we need to explore the role of f as a contraction function.

Theorem 2. The scalar sigmoid function f , (f = 1
1+e−clx ) is a contraction of

the metric space X into X, were X = [a, b], a, b, finite, according to Definition
1, where:

d(f(x), f(y)) ≤ cd(x, y) (5)

if the above inequality is true :

cl
eclx

f2 < 1 (6)

Proof. Here f is the sigmoid function, x,y ∈ X , X is as defined above and c is
a real number such that 0 < c < 1

The inclination l of a sigmoid function f is equal to:

l =
∂f

∂x
=

cle
−clx

(1 + e−clx)2
=

cl
eclx

(
1

1 + e−clx

)2

=
cl
eclx

f2 (7)

for x ∈ X , for l also holds that:

d (f(x), f(y))
d (x, y)

≤ l (8)
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From (7) and (8) we get:

d (f(x), f(y))
d (x, y)

≤ l ≤ c < 1 (9)

if and only if the above inequality is true: cl

eclx f2 < 1

Theorem 3. There is one and only one solution for any concept value Ai of
any FCN where the sigmoid function f = 1

1+e−x is used, if:(
n∑

i=1

(cli li ‖wi‖)2
)1/2

< 1 (10)

where wi is the ith row of matrix W , ‖wi‖ is the L2 norm of wi, li is the
inclination of function f equal to li = cli

e
cli

wi·A f
2(cliwi · A), and cli is the cl

factor of function f corresponding to Ai concept.

Proof. Let X be the complete metric space [a, b]n and G : X → X be a map
such that:

d(G(A), G(A′)) ≤ cd(A,A′) (11)

for some 0 < c < 1.
Vector G is equal to:

G =
[
f(cl1(w1 · A)) f(cl2(w2 ·A)) · · · f(cln(wn · A))

]T
(12)

where n is the number of concepts of the FCN, f is the sigmoid function f =
1

1+e−x , wi is the ith row of matrix W of the FCN, where i = 1, 2, ..., n, and by
· we denote the inner product between two equidimensional vectors which both
belong in �n.

Assume A and A′ are two different concept values for the FCN. Then, we
want to prove the following inequality:

‖G(A)−G(A′)‖ ≤ c ‖A−A′‖ (13)

But ‖G(A) −G(A′)‖ according to (12) equals to:

‖G(A) −G(A′)‖ =
(

n∑
i=1

(f(cli(wi · A))− f(cli(wi · A′)))2
)1/2

According to Theorem 2 for the scalar argument of f(.), which is cli(wi · A) in
the bounded and closed interval [a, b] with a and b being finite numbers, it is
true that:

|f(cli(wi · A))− f(cli(wi · A′))| ≤ li |(cli(wi · A))− (cli(wi ·A′))|
for every i = 1, ..., n, where li = max( cli

e
cli

wi·A f
2(cliwi ·A), cli

e
cli

wi·A′ f2(cliwi ·A′)).

By using the Cauchy-Schwartz inequality we get:
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li|(cli(wi · A))− (cli(wi ·A′))| = li|cli(wi · (A−A′))| ≤ licli‖wi‖‖A−A′‖
Subsequently, we get:

‖G(A)−G(A′)‖ =
(

n∑
i=1

(f(cli(wi ·A)) − f(cli(wi ·A′)))2
)1/2

Finally: ‖G(A) −G(A′)‖ ≤ ‖A−A′‖
(

n∑
i=1

(cli li ‖wi‖)2
)1/2

A necessary condition for the above to be a contraction is:(
n∑

i=1

(cli li ‖wi‖)2
)1/2

< 1 (14)

4 Bilinear on Line Parameter Estimation of Fuzzy
Cognitive Networks

Based on the results and observations of Section 3 we are now proposing a
method of finding appropriate weight sets related to a desired equilibrium point
of the FCN. Choosing a desired state Ades for the FCN this is equivalent to
solving the equation

f−1
i (Ades

i ) = c∗liw
∗
i ·Ades (15)

with w∗
i being the ith row of W ∗ and cli is the cl factor of function f correspond-

ing to Ai concept.
In order to solve the above equation and since both c∗li and w∗

i have to be
estimated, we use a bilinear adaptive estimation algorithm [10]. Taking into
account that fi(xi) is the sigmoid function, weight updating laws are given as
follows:

The error εi(k) of the parametric discrete-time adaptive law is of the form:

εi (k) =
f−1

i (Ades
i )− cli(k − 1)wi(k − 1)Ades

c + cli(0)(Ades)TAdes + γ(wi(k − 1)Ades)2
(16)

while the updating algorithm is given by:

cli(k) = cli(k − 1) + γεi(k)(wi(k − 1)Ades) (17)

wi(k) = wi(k − 1) + αsgn(c∗li(k))εi(k)Ades (18)

where 0 < γ < 1, a, c > 0 and cli(0) > 0 is an upper bound for
∣∣c∗li(k)∣∣. wi(k)

is the ith row of W (k), which is the estimator of W ∗(k). cli(k) is the cl factor
of function f corresponiding to concept Ades

i and is the estimator of c∗li(k). A
des

is constant vector and f−1
i (Ades

i ) is also constant and scalar. α > 0, c > 0 and
γ > 0 are design parameters.

By using the above updating algorithms we can now prove that the estimators
converges to W ∗ and c∗li respectively. In Section 3 we proved that if inequality
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(10) is true then W ∗ and c∗li corresponding to the designed FCN provide a unique
solution and satisfies (15).

Proof. From (16), (17), (18) and w̃i(k) = wi(k) − w∗
i , c̃li(k) = cli(k) − c∗li we

obtain the error equation

εi(k) = − c̃li(k − 1)wi(k − 1)Ades + c∗li(k)w̃i(k − 1)Ades

c+ cli(0)(Ades)TAdes + γ(wi(k − 1)Ades)2
(19)

The updating algorithms of (17) and (18) can also be written as:

c̃li(k) = c̃li(k − 1) + γεi(k)(wi(k − 1)Ades) (20)

w̃i(k) = w̃i(k − 1) + αsgn(c∗li(k))εi(k)Ades (21)

For each node i consider the function

Vi(k) =
c̃2li(k)
2γ

+

∣∣c∗li(k)∣∣
2a

w̃i(k)w̃T
i (k) (22)

Then

ΔVi(k)=
(

c̃2
li

(k)
2γ − c̃2

li
(k−1)
2γ

)
+ |c∗li (k)|

2a

(
w̃i(k)w̃T

i (k)− w̃i(k − 1)w̃T
i (k − 1)

)
Using (20) and (21) ΔVi(k) is:

ΔVi(k) =
(

γε2
i (k)(wi(k−1)Ades)2

2 + c̃li(k − 1)εi(k)
(
wi(k − 1)Ades

))
+

|c∗li (k)|
2 sgn

(
c∗li(k)

)
εi(k)

(
w̃i(k − 1)Ades +

(
Ades
)T

w̃T
i (k − 1)

)
+

|c∗li (k)|
2 a (εi(k))

2 (Ades
)T

Ades

Taking into account that c∗li(k) =
∣∣c∗li(k)∣∣ sgn

(
c∗li(k)

)
and w̃i(k − 1)Ades =(

Ades
)T

w̃T
i (k − 1), ΔVi(k) is now equal to:

ΔVi(k) = 1
2γε

2
i (k)
(
wi(k − 1)Ades

)2 + c̃li(k − 1)εi(k)
(
wi(k − 1)Ades

)
+

c∗li(k)εi(k)
(
w̃i(k − 1)Ades

)
+ |c∗li (k)|

2 a (εi(k))
2 (Ades

)T
Ades

Using (19), ΔVi(k) is:

ΔVi(k) = 1
2γε

2
i (k)
(
wi(k − 1)Ades

)2 −
εi(k)εi(k)

(
c+ cli(0)

(
Ades
)T

Ades + γ(wi(k − 1)Ades)2
)

+
|c∗li (k)|

2 a (εi(k))
2 (
Ades
)T

Ades

Finally:

ΔVi(k) = −ε2i (k)m2(k)
[
1− γξ2(k)+|c∗li (k)|a(Ades)T

Ades

2m2(k)

]
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where m2(k) = c + cli(0)
(
Ades
)T

Ades + γξ2(k) and ξ2(k) =
(
wi(k − 1)Ades

)2
It is obvious that if 0 < γ < 1 and a, c > 0, then

γξ2(k)+|c∗li (k)|a(Ades)T
Ades

2m2(k) < 1

which implies that:
ΔVi(k) ≤ −c0ε2i (k)m2(k) ≤ 0 (23)

for some constant c0 > 0.
From (22), (23) we have that Vi(k) and therefore wi(k) ∈ L∞, cli(k) ∈ L∞

and Vi(k) has a limit, i.e., limk→∞ Vi(k) = V∞. Consequently, using (23) we
obtain

c0
∞∑

k=1
(ε2i (k)m

2
i (k)) ≤ Vi(0)− V∞ <∞

which implies εi(k)mi(k) ∈ L2 and

εi(k)mi(k) → 0 as k →∞. Since

mi(k) =
√

(c+ cli(0)(Ades)TAdes + γξ2(k)) ≥ c > 0, we also have that εi(k) ∈
L2 and εi(k) → 0 as k →∞. We have

εi(k)Ades = εi(k)mi(k) Ades

mi(k) . Since Ades

mi(k) is bounded and

εi(k)mi(k) ∈ L2, we have that εi(k)Ades ∈ L2 and∥∥εi(k)Ades
∥∥→ 0 as k →∞. This implies (using (18)) that ‖wi(k)− wi(k − 1)‖ ∈

L2 and ‖wi(k)− wi(k − 1)‖ → 0 as k →∞. Now

wi(k)− wi(k −N) =
wi(k)− wi(k − 1) + wi(k − 1)− wi(k − 2) + . . .+ wi(k −N + 1)− wi(k −N)

for any finite N . Using the Schwartz inequality, we have

‖wi(k)− wi(k −N)‖2 ≤ ‖wi(k)− wi(k − 1)‖2 + ‖wi(k − 1)− wi(k − 2)‖2 +
. . .+ ‖wi(k −N + 1)− wi(k −N)‖2

Since each term on the right-hand side of the inequality is in L2 and goes to
zero with k → ∞, it follows that ‖wi(k)− wi(k −N)‖ ∈ L2 and
‖wi(k)− wi(k −N)‖ → 0 as k →∞. Since εi(k)Ades ∈ L2 and wi(k − 1) ∈ L∞
then wi(k−1)εi(k)Ades ∈ L2∩L∞ and

∣∣εi(k)wi(k − 1)Ades
∣∣→ 0 as k →∞. This

implies (using(17)) that |cli(k)− cli(k − 1)| ∈ L2 and |cli(k)− cli(k − 1)| → 0
as k →∞. Now

cli(k)− cli(k −N) =
cli(k)− cli(k − 1) + cli(k − 1)− cli(k − 2) + . . .+ cli(k −N + 1)− cli(k −N)

for any finite N . We also have that,

|cli(k)− cli(k −N)|2 ≤ |cli(k)− cli(k − 1)|2 + |cli(k − 1)− cli(k − 2)|2 + . . .+
|cli(k −N + 1)− cli(k −N)|2
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Since each term of the right-hand side of the inequality is in L2 and goes
to zero with k → ∞, it follows that |cli(k)− cli(k −N)| ∈ L2
and |cli(k)− cli(k −N)| → 0 as k →∞.

5 Numerical Example

For the numerical example the FCN of Fig. 1 is used. The initial W and Cl

matrices of FCN is equal to:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.4 −0.5 0.7 0 0.1 0 0
0.1 1 0 0 0 0.5 0 0.2
0.2 0 1 0.9 0.7 0 0.7 0
0.5 0 0.8 1 0 0 0 0
0 0 0 0 1 0 0.4 0
0 0 0.5 0.4 0.9 1 0 0.2
0 0 0.7 0 0 0 1 0.1
0 0.4 0 0 0 0.7 −0.1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cl =

[
1 1 1 1 1 1 1 1

]

where Cl is a vector containing all the individual cli of each sigmoid function of
each node. Except from the diagonal elements, which have the value 1 and the
zero elements all other weights were randomly selected. With these matrices the
FCN reaches an equilibrium point given by the following vector A.

A =
[
0.8981 0.8147 0.9037 0.9387 0.9111 0.8704 0.8551 0.7666

]
This FCN equilibrium point fulfills eq. (10) because(

8∑
i=1

l2i c
2
li
‖wi‖2

)1/2

= 0.4585 < 1

Suppose that for the FCN of Fig. 1 the desired state is equal to:
Ades =

[
0.76 0.71 0.75 0.67 0.69 0.58 0.67 0.78

]
Applying (16), (18) and (17) the W matrix concludes to W1 matrix and cl

factors of f fuctions corresponding to Ades
i concept cocludes to Cl1 matrix, both

given below.

W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9872 0.3880 −0.5127 0.6887 0 0.0902 0 0
−0.0204 0.8875 0 0 0 0.4081 0 0.0764
−0.1766 0 0.6283 0.5680 0.3581 0 0.3680 0
0.0744 0 0.3800 0.6248 0 0 0 0

0 0 0 0 0.8907 0 0.2939 0
0 0 −0.0082 −0.0540 0.4325 0.6070 0 −0.3285
0 0 0.4500 0 0 0 0.7766 −0.1600
0 0.3529 0 0 0 0.6615 −0.1445 0.9482

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Cl1 =

[
0.9980 0.9829 0.9071 0.9315 0.9860 0.9170 0.9662 0.9911

]
For the matrices W1 and Cl1 eq. (10) is true:(

8∑
i=1

l2i c
2
li
‖wi‖2

)1/2

= 0.5359 < 1
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6 Conclusions

In this paper the existence and uniqueness of the equilibrium values of the con-
cepts of FCNs was studied. This study concerns FCNs equipped with continuous
differentiable sigmoid functions having contractive properties and is performed
using an appropriately defined contraction mapping theorem. It was proved that
when the weight interconnections fulfill certain conditions, related to the size of
the FCN and the inclination of the sigmoids used, the concept values will con-
verge to a unique solution regardless their initial values. Assuming that these
conditions are met, a bilinear adaptive estimation algorithm is proposed, which
estimates on-line both weights and the inclinations of the sigmoids of the FCN.
Future work will include the modification of the proposed algorithm so that it
takes into account the conditions derived and the development of reliable control
schemes which will use the concept of FCN and employ the theoretical results
presented here.
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Abstract. The purpose of this paper is to propose the use of ampli-

tude modulation-frequency modulation (AM-FM) features for describing

atherosclerotic plaque features that are associated with clinical factors

such as intima media thickness and a patient’s age. AM-FM analysis re-

veals the instantaneous amplitude (IA) of the media layer decreases with

age. This decrease in IA maybe attributed to the reduction in calcified,

stable plaque components and an increase in stroke risk with age. On

the other hand, an increase in the median instantaneous frequency (IF)

of the media layer suggests the fragmentation of solid, large plaque com-

ponents, which also lead to an increase in the risk of stroke. The findings

suggest that AM-FM features can be used to assess the risk of stroke

over a wide range of patient populations. Future work will incorporate a

new texture image retrieval system that uses AM-FM features to retrieve

intima and intima media layer images that could be associated with the

same level of the risk of stroke.

1 Introduction

Atherosclerosis causes enlargement of the arteries and thickening of the artery
walls. Thus clinically the intima-media thickness (IMT) is used as a validated mea-
sure for the assessment of atherosclerosis [1,2] (see Fig. 1). It was proposed but
not thoroughly investigated [3], that not only the IMT but rather the media-layer
(ML), its thickness [4,5] its textural characteristics [3], and amplitude modulation-
frequency modulation (AM-FM) [6] characteristics may be used for evaluating the
risk of a patient to develop a stroke and account in general the risk of the cardio-
vascular disease (CVD) by differentiating between patients at high and low risk for
stroke. The objective of this study is to investigate the application of amplitude-
modulation frequency-modulation (AM-FM) analysis of intima media complex
(IMC), media layer (ML), and intima layer (IL) of the common carotid artery

� Corresponding author.

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 885–894, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(CCA). Only one study [7] investigated AM-FM representations of the atheroscle-
rotic carotid plague of the CCA but not for the IMC, IL, and ML.

As shown in Fig. 1, the IL is a thin layer, the thickness of which increases with
age, from a single cell layer at birth to 250μm at the age of 40 for non-diseased
individuals [8]. In ultrasound images the media layer (ML) is characterized by
an echolucent region, predominantly composed of smooth muscle cells, enclosed
by the intima and adventitia layers (see Fig. 1, band Z6) [2,9]. Earlier research
[10], showed that the media layer thickness (MLT) does not change significantly
with age (125μm < MLT < 350μm). In recent studies by our group the median
(IQR) of IMT, MLT and intima layer thickness (ILT), were computed from
100 ultrasound images from 42 female and 58 male asymptomatic subjects aged
between 26 and 95 years old, with a mean age of 54 years to be as follows 0.66mm
(0.18), 0.23mm (0.18), 0.43mm (0.12) respectively [3,4,5].

In [11] a method has been presented for quantifying the reflectivity of the ML
of the distal CCA. It was shown that the GSM of the intima media layer is the
earliest change representing atherosclerotic disease in the arterial wall that can
currently be imaged in vivo. This may be the first marker of atherosclerosis and
may precede the development of a significant increase in IMT. This would enable
earlier identification of high-risk individuals based on the analysis of the CCA
artery wall textural and AM-FM characteristics. In [12] the authors reported on
the properties of the GSM of the IMC from a random sample of 1016 subjects
aged exactly 70. They found that the GSM of the IMC of the CCA is closely
related to the echogenecity in overt carotid plaques.

There are several studies reported earlier suggesting that the instability of
the carotid atheromatous plaque can be characterized from B-mode ultrasound
images [9,13]. In [9,13] the echogenecity in atherosclerotic carotid plaques was
evaluated through the GSM, where as in [3] the IMC the ML, and IL were
characterized based on texture feature analysis. It is evident from the visual
inspections of the IMC in the CCA that a great variation in echogenecity does
exist. However, the usefulness of this information has not yet been studied.

We propose to study changes in AM-FM characteristics that can be associated
with disease progression for different age groups and different gender. Here,
we note that for fully developed plaques in the CCA, texture features derived
from statistical, model based, and Fourier based methods, have been used to
characterize and classify carotid atheromatous plaques from B-mode ultrasound
images [13].

To the best of our knowledge no other study carried out ML and IL ultrasound
AM-FM measurements for investigating their relationship with the increase of
age and gender, and the risk of stroke based on their AM-FM characteristics.
We do note that the best known (related) results were presented in [14,15] where
it was shown that IMT increases linearly with age.

The objective of our study is to investigate whether AM-FM characteristics
extracted from the IMC, the ML, and the IL of the CCA, segmented manually
by an expert and automatically by a snakes segmentation system [5,16] can be
associated with the increase of IMT, MLT or ILT and how these are affected by



AM-FM Texture Image Analysis of the Intima and Media Layers 887

(a)

(b) (c)

(d)

Fig. 1. (a) Illustration of the intima-media-complex (IMC) of the far wall of the (b)

common carotid artery and the automatic IMC segmentation [4,16]. The media layer

(ML) is defined as the layer (band) between the intima-media and the media-adventitia

interface (band Z6), (c) extracted automated IMC, (d) extracted automated media

layer (ML) and e) extracted automated intima layer (IL).

age and gender. Ultimately, AM-FM characteristics that vary with age, gender,
or IMT, MLT or ILT might be used to assess the risk of stroke.

The paper is organized as follows. In Section 2, we provide materials and meth-
ods for the current study. Results are given in Section 3. We provide discussion
in Section 4, and give concluding remarks in Section 5.

2 Materials and Methods

2.1 Recording of Ultrasound Images

A total of 100 B-mode longitudinal ultrasound images of the CCA were recorded
using the ATL HDI-3000 ultrasound scanner (Advanced Technology Laborato-
ries, Seattle, USA). For the recordings, a linear probe (L74) at a recording fre-
quency of 7 MHz was used. Assuming a sound velocity of 1550m/s and 1 cycle
per pulse, we thus have an effective spatial pulse width of 0.22mm with an axial
system resolution of 0.11mm [16]. We use bicubic spline interpolation to resize
all images to a standard pixel density of 16.66pixels/mm (with a resulting pixel
width of 0.06mm). Furthermore, the images were normalized as described in [17].
The grayscale-normalized image was obtained through algebraic (linear) scaling
of the image by linearly adjusting the image so that the median gray level value
of the blood was 0-5, and the median gray level of the adventitia (artery wall)
was 180-190. The images were partitioned into three different age groups. In the
first group, we included 27 images from patients who were younger than 50 years
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old. In the second group, we had 36 patients who were 50 to 60 years old. In the
third group, we included 37 patients who were older than 60 years old.

2.2 Manual Measurements

A neurovascular expert manually segmented (using the mouse) the IMC [16] the
ML, and IL [4,5] on each image after image normalization by selecting 20-40
consecutive points for the adventitia, media and intima at the far wall. The
measurements were performed between 1 − 2cm proximal to the bifurcation of
the CCA, on the far wall [2], over a distance of 1.5cm. The bifurcation of the
CCA was used as a guide and all measurements were made with reference to
that region.

2.3 IMC, ML and IL Snake Segmentations

All images were automatically segmented to identify the IMC, ML, and IL re-
gions. Automatic segmentation was carried out after image normalization using
the snakes segmentation system proposed and evaluated on ultrasound images of
the CCA in [4,5,16]. The segmentation system is based on the Williams & Shah
method [18]. Using the definitions given in Fig. 1, we first segment the IMC
[16] by extracting the I5 (lumen-intima interface) and I7 boundaries (media-
adventitia interface). The upper side of the ML (see Fig. 1, Z6) was then es-
timated by deforming the lumen-intima interface (boundary I5) by 0.36mm (6
pixels) downwards and then deformed by the snakes segmentation algorithm
proposed in [16] in order to fit to the media boundary.

2.4 Amplitude-Modulation Frequency-Modulation (AM-FM)
Methods

Two AM-FM estimates were computed from the automated IMC, ML, and the
IL segmented regions of interest as follows: a) the instantaneous amplitude (IA)
and b) the instantaneous frequency (IF).

The IA models average intensity variations and the IF provide us with infor-
mation at a pixel level related with orientation variations, or structures in an
image region. We use the IF in terms of both its amplitude and its angle. Thus,
for each input image we estimate the information about: (i) the IA, (ii) the IF,
and (iii) the instantaneous frequency angle. Then, for each of the three AM-FM
parameters, we compute the histograms over the IMC, ML, and IL segmented
regions.

We consider a multi-scale AM-FM representation of digital non-stationary
images given by [19,20]:

I (k1, k2) ≈
M∑

n=1

an (k1, k2) cosϕn (k1, k2) , (1)

where n = 1, 2, . . . ,M denote different scales, an (k1, k2) denotes slowly-varying
instantaneous amplitude (IA) function and ϕn (k1, k2) denoted the instanta-
neous phase (IP). The basic idea is to let the frequency-modulated components
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cosϕn (k1, k2) capture fast-changing spatial variability in the image intensity.
The IF ∇ϕn (k1, k2) is defined in terms of the gradient of the IP: ∇ϕn (k1, k2) =
(∂ϕn/∂k1(k1, k2), ∂ϕn/∂k2(k1, k2)).

For a single-scale AM-FM representation (M = 1 in (1)), the IA and the IP
are estimated using [21]:

â(k1, k2) = |ÎAS(k1, k2)| and (2)

ϕ̂(k1, k2) = arctan

(
imag(ÎAS(k1, k2))
real(ÎAS(k1, k2))

)
, (3)

respectively, where ÎAS(k1, k2) is an extended version of the one-dimensional an-
alytic signal computed with ÎAS(k1, k2) = I(k1, k2)+ jH2d[I(k1, k2)], where H2d

denotes a two-dimensional extension of the one-dimensional Hilbert transform
operator.

The IF is computed using a variable spacing, local quadratic phase (VS-LQP)
method as described in [19,20]:

∂ϕ(k1, k2)
∂k1

∼= 1
n1

arccos
(
ĪAS(k1 + n1, k2) + ĪAS(k1 − n1, k2)

2ĪAS(k1, k2)

)
, (4)

and similarly for ∂ϕ(k1,k2)
∂k2

. In (4) ĪAS(k1, k2) = ÎAS(k1, k2)/|ÎAS(k1, k2)|, and n1
is a variable displacement from 1 to 4.

We generate a 96-bin feature vector using the histograms of each of the three
AM-FM estimates described (IA, IF magnitude (|IF|), and IF angle, 32-bin each)
on the ROI of IMC, ML, and IL segmentations. Additionally, the normal his-
togram of the ROI of the IMC, ML, and IL segmented regions, was computed
for 32 equals width bins used and was used as another feature set for comparison
purposes.

2.5 Statistical Analysis

The Mann-Whitney rank sum test (for independent samples of different sizes)
was used in order to identify if there are significant differences (SD) or not (NS)
between the extracted AM-FM features. For significant differences, we require
p < 0.05, and compare between age groups. Similarly, for comparing independent
samples from equal populations, we use the Wilcoxon rank sum test. We use the
Wilcoxon rank sum test to detect AM-FM feature differences between the IL,
ML, and IMC, for the automated segmentations. We use regression analysis to
investigate the relationship between the IMT, MLT, and ILT and medium IF
(MIF) and medium IA (MIA) and age.

3 Results

Fig. 1 illustrates an original normalized ultrasound image of the CCA with the
automated segmentation of the IMC in (b) and the extracted automated IMC,
ML and IL in (b), (c) and (d), respectively.
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The measurements were extracted using the automated IMC/ML/IL
segmentations.

Regression was also carried out for the media IA and media IF of the ML in
order to investigate their relationship with age. It was found that the IA of the
ML linearly decreases with age (IAml=0.825-0.00373*age, p = 0.005), while the
IF of the ML linearly increases with age (IFml=-0.046+0.00178*age, p = 0.001).

Table 1 presents a comparison among the high, medium and low AM-FM
features extracted from the IMC, ML, and IL for the automated segmentation
measurements based on the Mann-Whitney rank sum test for the three different
age groups, namely below 50 (< 50), between 50 and 60 (50-60) and above 60
( > 60) years old. It is shown that it is possible to differentiate between the
three different structures (IMC, IM, IL) using AM-FM features. The AM-FM
features were computed at different frequency scales, considering only horizontal
oriented filters, of the three-scale filter bank used: (i) Low frequencies (11.3 to
32 pixels wavelengths), (ii) Medium frequencies (5.7 to 16 pixels wavelengths)
and (iii) High frequencies (2.8 to 8 pixels wavelengths). It is shown from Table 1,
that there is no single feature differentiating between ML and IL, and between
the age groups.

More specifically the following observations are made using the information
from Table 1:

1. It is possible to differentiate IMC:

(a) For the ages < 50 and > 60 years old using medium IA.
(b) For the ages 50 to 60 and > 60 years old using low IA or high IF.

2. It is possible to differentiate ML:

(a) For the ages < 50 and 50 to 60 years old using medium IA.
(b) 15BFor the ages 50 to 60 and > 60 years old using high IF.

3. It is possible to differentiate IL:

(a) For the ages < 50 and > 60 years old using medium IA.
(b) For the ages 50 to 60 and > 60 years old using low IA.

4. There is no single feature differentiating between ML and IL, and between
the age groups.

4 Discussion

In this study AM-FM of the IMC, ML, and IL of 100 longitudinal ultrasound
images of the CCA of asymptomatic subjects were investigated. AM-FM anal-
ysis reveals the IA of the ML decreases with age. This decrease in IA maybe
attributed to the reduction in calcified, stable plaque components and an in-
crease in stroke risk with age. On the other hand, an increase in the median IF
of the ML suggests the fragmentation of solid, large plaque components, which
also lead to an increase in the risk of stroke. Our study also showed that the IA
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high, medium, and low components for the IMC, ML, and IL show an increasing
trend from high to low, while the IF high, medium, and low components for the
IMC, ML, and IL show a decreasing trend from high to low. The findings suggest
that AM-FM features can be used to assess the risk of stroke over a wide range
of patient populations.

Our study also showed that the IA high, medium, and low components, for
the IMC, ML, and IL show a decreasing trend from high to low, while the IF
high, medium, and low components, for the IMC, ML, and IL show a decreasing
trend from high to low. It was also shown that the AM-FM features performed
slightly better than the traditional texture features and gave better results than
simple histogram. It is also shown that almost all AM-FM (expect for the ML)
features increase with increasing age.

Texture features analysis was also carried out on the same dataset in another
study [3]. It is very important to note that texture features provided complemen-
tary information in the discrimination between age groups when compared to
the AM-FM features extracted in this study. More specifically, for the ML when
comparing the age groups < 50 and 50-60, there is significant difference for the
AM-FM IA low component (see Table 1), whereas for the texture features GSM
and SS-texture energy laws are significantly different [3]. Also, when comparing
the age groups < 50 and > 60 only texture features (GSM, contrast, complexity,
coarseness) are significantly different.

It has also been observed that there is an increase in the granularity in associ-
ation with atherosclerotic disease [22]. A granular IMC indicates more advanced
atherosclerosis, which may precede the development of significant IMT thicken-
ing. In [11] a method has been presented for quantifying the reflectivity of the
IM layer of the distal CCA. It was shown that the GSM of the IM layer is the
earliest change representing atherosclerotic disease in the arterial wall that can
currently be imaged in vivo. This may be the first marker of atherosclerosis and
may precede the development of significant increase in IMT. This would enable
earlier identification of high-risk individuals based on the analysis of the CCA
artery wall textural characteristics.

In [7] the use of AM-FM representations for the characterization of carotid
plaques ultrasound images for the identification of individuals with asympto-
matic carotid stenosis at risk of stroke was investigated. To characterize the
plaques using AM-FM features, the authors computed (i) the instantaneous am-
plitude, (ii) the instantaneous frequency magnitude and (iii) the instantaneous
frequency angle in order to capture directional information. For each AM-FM
feature, they compute the histograms over the plaque regions. The study showed
that the AM-FM features performed slightly better than the traditional texture
features and gave better results than simple histogram. In previous work [13] on
the same problem a large number of features were extracted for the classification
of carotid plaques including the traditional texture features, statistical features,
and shape.
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5 Concluding Remarks

The AM-FM analysis presented in this study was performed on the IMC, ML,
and IL, on 100 ultrasound images of the CCA of asymptomatic subjects. It was
shown that the (IA) of the media layer decreases with age and that the median
instantaneous frequency (IF) of the media layer increases with age. AM-FM
analysis reveals the instantaneous amplitude (IA) of the media layer decreases
with age. This decrease in IA maybe attributed to the reduction in calcified,
stable plaque components and an increase in stroke risk with age. On the other
hand, an increase in the median instantaneous frequency (IF) of the media layer
suggests the fragmentation of solid, large plaque components, which also lead to
an increase in the risk of stroke. The findings suggest that AM-FM features can
be used to assess the risk of stroke over a wide range of patient populations. It
may also be possible to identify and differentiate those individuals into high and
low risk groups according to their cardiovascular risk before the development of
plaques. The proposed methodology may also be applied to a group of people,
which already developed plaques in order to study the contribution of the ML
texture features to cardiovascular risk. Both groups of patients may be benefited
by prognosing and managing future cardiovascular events. The use of AM-FM
representations will also be utilised in order to provide new feature sets, which
can be used successfully for the classification of the IMC, ML and IL structures
in normal and abnormal. Future work will incorporate a new texture image
retrieval system that uses AM-FM features to retrieve intima and intima media
layer images that could be associated with the same level of the risk of stroke.
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Abstract. Current low-level feature-based CBIR methods do not pro-

vide meaningful results on non-annotated content. On the other hand

manual annotation is both time/money consuming and user-dependent.

To address these problems in this paper we present an automatic an-

notation approach by clustering, in an unsupervised way, clickthrough

data of search engines. In particular the query-log and the log of links

the users clicked on are analyzed in order to extract and assign key-

words to selected content. Content annotation is also accelerated by a

carousel-like methodology. The proposed approach is feasible even for

large sets of queries and features and theoretical results are verified in

a controlled experiment, which shows that the method can effectively

annotate multimedia files.

Keywords: image retrieval, automatic annotation of multimedia, click-

through data.

1 Introduction

The number of Web multimedia files grows in an incredibly fast way and an
urging need is related to the efficient search and retrieval of content. Considering
that the majority of multimedia files are not annotated and manual annotation
is time/money consuming, intelligent systems for automatic annotation should
be implemented.

Automatic annotation is an extremely difficult problem. Researchers try to
con-front it under several constraints. In particular concept detection through
supervised training on simple concepts such as city, landscape, and sunset, is
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proposed in [15]. Image annotation using both a structure-composition model
and a WordNet-based word saliency measure has been proposed in [7]. In [8]
ALIP is proposed, which uses a 2D multiresolution HMMs-based approach to
capture inter - and intrascale spatial dependencies of image features of given
semantic categories. The real-time image annotation system ALIPR has been
recently proposed [9]. ALIPR inherits its high-level learning architecture from
ALIP, using however a simpler modeling approach, which supports real-time
computations of statistical likelihoods. An approach to soft annotation, using
Bayes point machines to give images a confidence level for each trained seman-
tic label, is explored in [6]. Multiple instance learning based approaches have
been proposed for semantic categorization of images [5] and to learn the cor-
respondence between image regions and keywords [16]. Other interesting works
include [13] focusing on the detection of simple concepts such as indoor/outdoor,
while significant research has been directed toward detecting more challenging
concepts in the context of the TREC video benchmark [12]. Additionally large
sets of various concepts have been addressed in recent work, such as [3] and [4].
Popular approaches in concept classification mainly rely on SVMs [1], [10] or
boosting approaches [14]. However, in case of multiple-word queries, concept
classifiers are more difficult to apply since the independent training of each con-
cept classifier requires the definition of fusion rules [4], [1].

All aforementioned techniques depend on low-level visual features. However
neither a single low-level feature nor a combination has explicit semantic mean-
ing. To overcome these problems in this paper we incorporate user clickthroughs.
Having in mind that most users are unwilling to give explicit feedback, our
method is based on implicit interaction, arguing that sufficient information is
already hidden in the logfiles of WWW search engines. The whole framework is
based on associating keywords of user queries to selected multimedia files. In par-
ticular searching is performed using keywords. The search mechanism retrieves
multimedia files, some of which are selected by users. Then the proposed method
properly associates query keywords to selected files according to an unsupervised
clustering mechanism.

In this paper we focus on images, however the proposed scheme can be applied
to any other application domain. Finally robustness, scalability and flexibility
of the proposed system are evaluated in real-life settings.

This paper is organized as follows: in Section 2 the methodology of click-
through data clustering and keyword assignment are described. Section 3 ex-
hibits the advantages of the proposed system through analytical experiments.
Finally, Section 4 concludes this paper.

2 Unsupervised Clustering of Clickthrough Data and
Keyword Weighting

Clickthrough data in search engines can be thought of as triplets (q, r, c) con-
sisting of the submitted query q (consisting of some keywords), the ranking r,
and the set c of images the user clicked on. Figure 1 illustrates this with an
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example from Google image search, where the user asked for “amazing beach”,
receiving the ranking shown in Figure 1 (21 first images are presented), and then
clicking on links ranked 2nd, 3rd, 7th, 15th, 16th and 18th. Clearly, users do not
click on links at random, but make a somewhat informed choice. While click-
through data is typically noisy and particular clicks are not perfect objective
judgments, millions of clicks in an iterative and converging procedure are likely
to convey important information. The key question is: how can we extract this
information? Before analyzing clickthrough data, we first overview the recording
procedure.

Fig. 1. An example of a search for “amazing beach” in Google and the respective user

selections

2.1 Recording of Clickthrough Data

Clickthrough data recording adds little overhead without compromising the func-
tionality of a search engine. The query q and the returned ranking r can easily
be recorded whenever results are displayed to users. On the other hand clicks
can be recorded by a simple proxy system that keeps a logfile. In this paper each
query is assigned a unique ID which is stored in the query-log along with the
query words and the presented ranking. The links on the results-page presented
to the user do not lead directly to the suggested images, but point to a proxy
server. These links en-code the query-ID and the URL of the suggested image.
When the user clicks on the link, the proxy-server records the URL and the
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query-ID in the click-log. The proxy then uses the HTTP Location command to
forward the user to the target URL. This process can be made transparent to
the user and does not influence system performance.

2.2 Clustering of Clickthrough Data and Keyword Weights

By organizing the clickthrough recording procedure in the aforementioned way,
we are able to associate keywords to images based on user selections. For exam-
ple in case of the query “amazing beach” both words will be associated to every
retrieved image the user selects. If one or both of the words have been already
associated to an image by another user in a previous search session, then word
rank increases in a similar manner to a voting scheme. By this way, for exam-
ple, an image may have been associated the word “beach” ten times, the word
“amazing” five times, the word “sand” three times, the word “sunbed” one time
etc, each word corresponding to a different cluster.

Here it should be mentioned that the top 100 most common words (known also
as stop words) of the Project Gutenberg (http://www.gutenberg.org) are ignored
during association, since their semantic meaning is negligible (the, of, and, to,
in, I, that, was, his, he, it, with, is, for, as, had, you, etc). Project Gutenberg
was selected due to its vast test set (more than 25000 books with more than
1.8 billion words have been analyzed). Furthermore other word frequency lists
provide similar results for the first 100 words.

Having associated keywords to files now the question is: which of the associ-
ated words best characterize the content of the image and thus should receive
more weight? This is actually a rhetorical question. However some mathemati-
cal approaches exist. Toward this direction one of the best-known measures for
specifying keyword weights is the term frequency/inverse document frequency
(TF-IDF) measure [11]. According to this measure let us assume that N is the
total number of images that can be retrieved and presented to users and that
keyword ki appears in ni of them. Moreover, assume that fi,j is the number of
times keyword ki is associated to image Ij , according to the cluster’s popula-
tion. Then, TFi,j, the term frequency (or normalized frequency) of keyword ki

in image Ij , is defined as

TFi,j =
fi,j

maxzfz,j
(1)

where the maximum is computed over the frequencies fz,j of all keywords kz

that are associated to image Ij . However, keywords that are associated to many
images are not useful in distinguishing between a relevant image and a non-
relevant one. Therefore, the measure of inverse document frequency (IDFi) is
often used in combination with simple term frequency (TFi,j). The inverse doc-
ument frequency for keyword ki is usually defined as:

IDFi = log(
N

ni
) (2)
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Then, the TF-IDF weight for keyword ki in image Ij is defined as:

wi,j = TFi,j × IDFi (3)

and the verbal content of image Ij is defined as:

VCont(Ij) = (w1,j , ..., wk,j) (4)

Based on the previous methodology, a high keyword weight is reached by a high
term frequency (in the given image) and a low frequency of the term in the whole
collection of images; this approach hence tends to filter out common terms, by
as-signing higher weights to more distinctive keywords.

3 Experimental Results

In this section we test the proposed method with a general-purpose image
database including 1000 images. These images where selected from flickr.com
and belong to ten different general categories (landscape, monument, food, space,
painting, animal, sports, music, plant, people). In order to evaluate the perfor-
mance of our method as an automatic annotation scheme we have asked 50 users
to interact with the system and for each user we have recorded 300 interaction
sessions. By this way 15000 sessions have been recorded and analyzed in total.
The first 7500 sessions have been used as initialization sessions (first phase), since
in the beginning of the experiments images were not annotated at all. According
to this methodology images were retrieved at random, irrespectively of the search
keywords a user used. Furthermore keyword weights were also set after complet-
ing half of the experiment (when the first 7500 sessions have been completed).
Of course, especially for larger sets, other automatic methods [15], [13] could
also be incorporated in order to get better and more meaningful initialization
results.

On completing the initialization step (first phase), we observed that users
selected 2.6 images per session on average and used 1612 different keywords
during searching (excluding the 100 most common words as stated in Section 2).
At the end of this first phase 440 images were annotated with 3.66 keywords
on average. Three of these images are presented in Figure 2 together with the
associated keywords. Keyword order of appearance corresponds to the weights
in decreasing order. Next a second phase of our experiment was carried. Aim of
this phase was to pro-mote the rest of the images that have not been annotated
at all and to validate the correctness of the initial annotations.

In order to accelerate the annotation procedure, this phase started with the
estimation of a weight for each keyword, associated to each one of the 440 im-
ages. Next for each of the best three keywords of each image, clusters have
been produced. For example the cluster of images that were associated to key-
word “beach” is presented in Figure 3. Aim of such a clustering is to reduce
the number of retrieved annotated images during the second phase, by returning
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Fig. 2. Three of the 440 images that were annotated during the first phase of the

experiment. The associated keywords in weight order are: (a) food, egg, apple, rice, (b)

guitar, flute, resonator, and (c) boat, sea, sport, sail, people.

only a small part of them. This part is returned to users for validation purposes.
For example, during the second phase, when a user submits the query “beach”,
only a small number (4 images) of the cluster of Figure 3 is retrieved, while
the rest of the retrieved images are totally non-annotated. This small number
of images changes in every query, based on a Carousel algorithm [2], so that all
images belonging to a cluster have the chance to be validated in a subsequent
cycle of the experiment.

The same methodology was followed for all examined keywords, leading fi-
nally to the annotation of 673 images. Of course more images would have been
annotated if the experiment continued. Here it should be mentioned that the
proposed method does not guarantee that all images will be finally annotated.
However a large subset of them has been annotated (about 67%) and the evo-
lution of the procedure shows that further increase in the number of annotated
images can be achieved in oncom-ing sessions (Figure 4).

Now regarding accuracy of the proposed system, it is difficult to estimate the
precision and recall, since images are initially considered not to be annotated. Of
course users of flickr.com have explicitly assigned some keywords. For example in
case of the first image of Figure 2 the tags (keywords) were “garden, ingredients,
food market, olive oil, seed, meal, brown rice, oats, yeast, recipes, harvest, fall,
autumn, seasons”. As it can be observed some of the words refer to the real
content of the image, some others are irrelevant to the actual content and the
rest are general words.

In this case the only common words between our approach and the prede-
termined keywords of the flickr.com site are “food” and “rice”. Based on such
a comparison, in Figure 5 the number of images that are assigned the same
keywords (by flickr.com and by the users of the proposed system) is presented.
As it can be observed most frequently 1 or 2 words are common, while about
40 images do not share any common words. Of course it should be mentioned
that it is very difficult to compare the perception of users, something which is also
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Fig. 3. 34 out of 440 images annotated during the first phase were associated to key-

word “beach” as one of the first three keywords

out of the scope of this paper. This is why in this work we let the annotation to
the average user’s preferences, selections and understanding. All users contribute
to this task (by submitting different queries and selecting different content) and
the associated keywords correspond to the average perception.
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Fig. 4. Same annotation keywords for flickr.com and users of the proposed system. 1

and 2 words are encountered in 601 images, while 5 and 6 words just in 4 images.

Fig. 5. Same annotation keywords for flickr.com and users of the proposed system. 1

and 2 words are encountered in 601 images, while 5 and 6 words just in 4 images.

4 Conclusion and Further Work

The Internet is currently overwhelmed with images and other multimedia files.
Most of them are not annotated, while some of the annotated ones are assigned
several keywords that do not reflect the perception of the average user. To en-
sure easy sharing and effective searching over a huge and fast growing number of
online images, automatic keyword annotation is an imperative but highly chal-
lenging task. In this paper we have proposed and tested our automatic keyword
annotation system, which is based on implicit user interaction. The main frame-
work depends on recording and analyzing click through data produced during
user search sessions. In particular each time a user submits a query and se-
lects some of the retrieved images, each image is assigned the query keywords
according to a voting scheme, where weights are properly set. By this way user
perception is implicitly incorporated for automatically annotating images.
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Additionally in order to accelerate the annotation procedure, image clusters
are produced, with already annotated images. By this way in subsequent search
cycles only a small number of annotated content is retrieved for validation rea-
sons. The procedure is based on a Carousel algorithm.

Experimental results show the promising performance of the proposed system.
In the performed experiments the total number of annotated images was near
67%, presenting an increasing tendency, which however is not a proof that finally
all images will be annotated. However, even if a 70% is achieved this means that
the proposed system can significantly decrease the manual work. Here it should
be men-tioned that users participating in the experiments were informed of the
content cate-gories. Furthermore they also tried to avoid selecting images in a
random way, and thus avoid introducing any significant noise.

Future work can take many directions. First of all the initial annotation can
be per-formed by incorporating other systems that possibly recognize simple
concepts such as indoor/outdoor, landscape/cityscape, sea, sky etc. Secondly
image analysis techniques can be incorporated, instead of Carousel-like method-
ologies, during validation. Third we should further model the way of how many
opportunities should a non-annotated file receive (when retrieved and presented
to users) before being excluded from the class of a specific keyword. Finally it
would be interesting to test the system in larger dimensions (larger set of im-
ages, image categories and users) and under the existence of noise. In conclusion
the synergy of implicit user interaction and automatic annotation is a novel and
very interesting way that will probably open new horizons to the multi-media
annotation scientific area.
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Abstract. MPEG-7 visual descriptors include the color, texture and

shape descriptor and were introduced, after a long period of evalua-

tion, for efficient content-based image retrieval. A total of 22 different

kind of features are included, nine for color, eight for texture and five

for shape. Encoded values of these features vary significantly and their

combination, as a means for better retrieval, is neither straightforward

nor efficient. Despite their extensive usage MPEG-7 visual descriptors

have never compared concerning their retrieval performance; thus the

question which descriptor to use for a particular image retrieval scenario

stills unanswered. In this paper we report the results of an extended

experimental study on the efficiency of the various MPEG-7 visual fea-

tures with the aid of the Weka tool and a variety of well-known data

classifiers. Our data consist of 1952 images from the athletics domain,

containing 7686 manually annotated objects corresponding to eight dif-

ferent classes. The results indicate that combination of selected MPEG-7

visual features may lead to increased retrieval performance compared to

single descriptors but this is not a general fact. Furthermore, although

the models created using alternative training schemes have similar per-

formance libSVM is by far more effective in model creation in terms of

training time and robustness to parameter variation.

Keywords: image retrieval, multimedia annotation, MPEG-7 visual de-

scriptors, supervised classification.

1 Introduction

Automatic image annotation has gained great attention in the research commu-
nity because it deals with a real world problem which is laborious to be handled
with human intervention exclusively: Searching in image repositories of thou-
sands of images which they have not got explicit metadata assigned to them by
humans. In the MPEG-7 framework there is a special foresight for this problem
through the definition of the MPEG-7 visual descriptors [1]. These descriptors
are low-level image features proposed after an extended evaluation procedure [2].
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No doubt that much of the attention paid recently to automatic image annota-
tion and CBIR systems is due to the MPEG-7 visual content description inter-
face, which provides a unified framework for experimentation. Furthermore, the
MPEG-7 experimentation model [3] provides practical ways for the computation
of the MPEG-7 descriptors.

The performance of the MPEG-7 visual descriptors in terms of image retrieval,
however, was not examined in detail. Although inclusion of these particular de-
scriptors in the MPEG-7 protocol stack was based on experimental evaluation,
the results were not published and the experiments cannot be recreated. Investi-
gation of the performance of color and texture descriptors was reported in [2] but
the main discussion there was devoted to the introduction of these descriptors to
the research community rather than to experimental evaluation. The same holds
for the work of Bober [4], which deals with the shape descriptors. A very inter-
esting study on the MPEG-7 visual descriptors was conducted by Eidenberger
in [5]. The descriptors are evaluated using statistics obtained by three different
datasets including the one used during the MPEG-7 tests. One of the aims of the
current study is to investigate experimentally whether the conclusions made by
Eidenberger are valid in a different dataset and by using a variety of classifiers.
Spyrou in [6] investigates a variety of methods for fusing the MPEG-7 visual
descriptors for image classification. The idea is interesting but the dataset used
is small and the experiments cannot be recreated based on the description given
in the corresponding paper.

In this paper we deal with the experimental evaluation of the performance
of the MPEG-7 descriptors [1] in terms of object classification. None of the
works reported in the previous paragraph deals with object classification. This
is quite logical since the MPEG-7 visual descriptors were defined primarily for
image classification and not for object detection and classification. Furthermore,
manual annotation of image objects through definition of the blob area is much
harder than image annotation. In our study we get advantage of the availability of
a large dataset of manually annotated objects created during the FP6 BOEMIE
project [7] to perform extended experiments. We have used publicly available
tools for the computation the MPEG-7 descriptors [3] and the object model
creation (the Weka tool [8] and the libSVM [9] library integrated with Weka)
and we provide both the training and test files along with the created Weka
models [10] so as to allow experiments recreation and benchmark tests.

The paper is organized as follows: In Section 2 the MPEG-7 visual descrip-
tors used in this study are presented. The dataset used, the annotation process
and the object modeling method we have followed are explained in Section 3.
Extended experimental results are reported in Section 4. Finally, conclusions are
drawn and further works hints are given in Section 5.

2 MPEG-7 Visual Descriptors

MPEG-7 visual descriptors include the color, texture and shape descriptor. A
total of 22 different kind of features are included, nine for color, eight for tex-
ture and five for shape. The various feature types are shown in Table 1. In the
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third column of this Table is indicated whether or not the corresponding fea-
ture type is used in holistic image and/or object description. The number of
features shown in the fourth column in most cases is not fixed and depends on
user choice; we indicate there the settings in our implementation. The dominant
color features include color value, percentage and variance and require espe-
cially designed metrics for similarity matching. Furthermore, their length is not
known a priori since they are image dependent (for example an image may be
composed from a single color whereas others vary in color distribution). The
previously mentioned difficulties cannot be easily handled in machine learning
schemes, therefore we decided to exclude these features for the current experi-
mentation. The texture browsing features (regularity, direction, scale) have not
been included in the description vectors (for image and image segments) be-
cause in the current implementation of the MPEG-7 experimentation model [3]
the corresponding descriptor cannot be reliably computed (it is a known bug of
the implementation software). The shape descriptor features are computed only
on specific image regions (they are not used in the holistic image description).
The number of Peaks values of the contour shape descriptor vary depending on
the form of an input object. Furthermore, they require a specifically designed
metric for similarity matching because they are computed based on the High-
estPeak value. For these reason they have been excluded also from the segment
description vector at this stage.

Table 1. MPEG-7 visual descriptors used in the proposed classification scheme

Descriptor Type # of fea-
tures

Usage
level

Comments

Color DC coefficient of DCT (Y channel) 1 Both Part of the Color Layout descriptor
DC coefficient of DCT (Cb channel) 1 Both Part of the Color Layout descriptor
DC coefficient of DCT (Cr channel) 1 Both Part of the Color Layout descriptor
AC coefficients of DCT (Y channel) 5 Both Part of the Color Layout descriptor
AC coefficients of DCT (Cb channel) 2 Both Part of the Color Layout descriptor
AC coefficients of DCT (Cr channel) 2 Both Part of the Color Layout descriptor
Dominant colors Varies Both Includes color value, percentage and variance
Scalable color 16 Both
Structure 32 Both They used in both holistic image and image

segment description
Texture Intensity average 1 Both Part of the Homogeneous Texture descriptor

Intensity standard deviation 1 Both Part of the Homogeneous Texture descriptor
Energy distribution 30 Both Part of the Homogeneous Texture descriptor
Deviation of energy’s distribution 30 Both Part of the Homogeneous Texture descriptor
Regularity 1 Both Part of the Texture Browsing descriptor
Direction 1 or 2 Both Part of the Texture Browsing descriptor
Scale 1 or 2 Both Part of the Texture Browsing descriptor
Edge histogram 80 Both Includes the spatial distribution of five types

of edges
Shape Region shape 35 Segment A set of angular radial transform coefficients

Global curvature 2 Both Part of the Contour Shape descriptor
Prototype curvature 2 Both Part of the Contour Shape descriptor
Highest peak 1 Both Part of the Contour Shape descriptor
Curvature peaks Varies Both Describes curvature peaks in term of ampli-

tude and distance from highest peak

3 Dataset Creation and Object Modeling

For dataset creation 1952 images from the athletics domain were used. These
images were collected in the framework of the FP6 BOEMIE project [7] and ob-
jects, corresponding to humans and athletic instruments, were manually marked
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by humans creating blobs. Example of such blobs overlayed on the original im-
ages are shown in Figure 1. A total of 7686 manually annotated object instances
corresponding to eight different class objects were used in our experiments. The
eight object classes are: Person Body, Person Face, Horizontal Bar, Pole, Pil-
lar, Discus, Hammer and Javelin. The training set contains 2597 instances while
the remaining 5089 were used for test. The distribution of the various object
instances in the training and test sets are presented in Table 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Images from the athletic domain showing the detected objects (a)Person Body,

(b) Person Face, (c)Horizontal Bar, (d)Pillar, (e)Pole, (f)Hammer, (g)Discus, (h)Javelin

Object models were created using Weka tool [8]. Among a variety of possible
classifiers we decided to use (1)libSVM [9], (2) Sequential Minimal Optimization
(SMO) [11], [12] and (3) Radial Basis Function networks [13]. The latter is a
reasonable choice when dealing with multidimensional and multiclustered data
while libSVM and SMO are state of the art implementations of Support Vector
Machines. These algorithms have been reported in several publications as the
best performing machine learning algorithms for a variety of classification tasks.

During training some parameters were optimized via experimentation in order
to obtain the best performing model for each descriptor. Cost, Gamma, and
Epsilon were optimally selected for the libSVM models. For SMO models we
have experimented on the complexity constant C and then based on the chosen
kernel type, we try to get the optimum values the exponent of the polynomial
kernel or the Gamma for the RBF kernel respectively. Finally, for RBF model, the
number of clusters and ridge were tuned for each one of the MPEG-7 descriptors.
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In addition to the construction of individual models for each MPEG-7 de-
scriptor we also trained models for several descriptor combinations using feature
fusion. The parameter optimization followed was the same as the one described
earlier. All trained models as well as the Weka training files can be found at [10]
for evaluation and further experimentation.

Table 2. Dataset

Objects Number of instances Training Set Test Set

Person Body 3180 1062 2118
Person Face 3209 1044 2165
Horizontal Bar 493 164 329
Pole 229 94 135
Pillar 138 51 87
Discus 132 49 83
Hammer 142 56 86
Javelin 163 77 86

Total 7686 2597 5089

4 Experimental Results

We used the dataset and object modeling process described in the previous
section to examine the classification performance, of the eight object classes, in
terms of precision and recall values. Table 3 summarizes the results for the models
of the individual MPEG-7 descriptors while Table 4 shows the corresponding
figures obtained using descriptor combinations. The results shown in these tables
can be examined under two perspectives: First, in terms of the efficiency of the
various descriptors as far as the object classification task is concerned. Second, in
terms of the ability of the machine learning algorithms to create efficient object
class models for classification.

Concerning the classification efficiency of the individual MPEG-7 descriptors
it is evident from Table 3 that the most reliable descriptor is Edge Histogram.
Not only has the ability to discriminate the whole range of the eight classes used
but the precision and recall values obtained using this descriptor are quite good
irrespectively of the training algorithm used. This result is in full agreement
with the conclusion drawn by Eidenberger [5] who examines the efficiency of the
MPEG-7 descriptors using statistical analysis on different datasets. The second
most reliable descriptor for object classification is Color Structure. Although the
precision and recall values obtained for the classes with few training examples
(that is, all classes but Person Body and Person Face) are rather low this de-
scriptor has the potential to discriminate multiple classes irrespectively of the
training algorithm used. The Contour Shape descriptor is effective for classifi-
cation of objects having a well defined shape such as Horizontal Bar, Pole and
Pillar. In contrary, it cannot be used for the classification of Discus and Hammer.
These two classes although in principle they must have a circular shape their
inaccurate segmentation, as created by the human annotators, make them ap-
pearing extremely variable in shape. Furthermore, they have been easily confused
with Person Face as far as the shape (and probably their size) is concerned. The
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most disappointing classification performance is achieved by the Region Shape
descriptor. Although it contains much more features than the Contour Shape de-
scriptor, it is only able to discriminate Person Body and Person Face. These two
classes have a high population of training samples and are easily discriminated
by all descriptors (with some variance mainly in the precision values).

Table 3. Object classification results using the MPEG-7 visual descriptors and various

data classifiers

Classifier Descriptor Measure Object Class

Person

Body

Person

Face

Horizontal

Bar

Pole Pillar Discus Hammer Javelin

libSVM Color Layout Recall 0.818 0.876 0.152 0.252 0.241 0.060 0.151 0.163
(CL) Precision 0.772 0.796 0.370 0.301 0.236 0.208 0.342 0.219
Color Structure Recall 0.990 0.819 0.176 0.185 0.287 0.241 0.233 0.279
(CSt) Precision 0.750 0.921 0.527 0.439 0.556 0.465 0.588 0.308
Scalable Color Recall 0.817 0.847 0.313 0.400 0.333 0.145 0.314 0.070
(SC) Precision 0.813 0.895 0.256 0.214 0.240 0.333 0.375 0.222
Contour Shape Recall 0.901 0.899 0.565 0.311 0.379 0.000 0.081 0.349
(CS) Precision 0.875 0.848 0.699 0.609 0.317 0.000 0.636 0.201
Region Shape Recall 0.516 0.541 0.334 0.000 0.264 0.000 0.000 0.000
(RS) Precision 0.475 0.513 0.298 0.000 0.200 0.000 0.000 0.000
Edge Histogram Recall 0.986 0.870 0.818 0.615 0.529 0.349 0.209 0.651
(EH) Precision 0.864 0.931 0.906 0.669 0.767 0.744 0.720 0.549
Homogenous Texture Recall 0.968 0.762 0.252 0.104 0.460 0.325 0.291 0.093
(HT) Precision 0.783 0.824 0.653 0.304 0.444 0.297 0.379 0.170

SMO Color Layout Recall 0.906 0.866 0.195 0.200 0.184 0.012 0.093 0.198
(CL) Precision 0.758 0.830 0.547 0.391 0.333 0.200 0.500 0.370
Color Structure Recall 0.992 0.763 0.179 0.111 0.184 0.133 0.349 0.221
(CSt) Precision 0.720 0.931 0.476 0.283 0.410 0.500 0.612 0.171
Scalable Color Recall 0.996 0.306 0.000 0.000 0.000 0.000 0.012 0.000
(SC) Precision 0.482 0.934 0.000 0.000 0.000 0.000 1.000 0.000
Contour Shape Recall 0.903 0.892 0.714 0.289 0.506 0.000 0.000 0.081
(CS) Precision 0.868 0.840 0.685 0.639 0.270 0.000 0.000 0.467
Region Shape Recall 0.973 0.274 0.000 0.000 0.000 0.000 0.000 0.000
(RS) Precision 0.482 0.730 0.000 0.000 0.000 0.000 0.000 0.000
Edge Histogram Recall 0.981 0.876 0.828 0.556 0.586 0.325 0.244 0.698
(EH) Precision 0.874 0.928 0.906 0.688 0.680 0.692 0.636 0.546
Homogenous Texture Recall 0.943 0.635 0.256 0.091 0.325 0.102 0.232 0.000
(HT) Precision 0.738 0.741 0.606 0.320 0.331 0.215 0.220 0.000

RBF Network Color Layout Recall 0.830 0.869 0.228 0.296 0.230 0.121 0.140 0.256
(CL) Precision 0.797 0.825 0.346 0.342 0.198 0.227 0.200 0.339
Color Structure Recall 0.949 0.818 0.374 0.311 0.322 0.133 0.326 0.326
(CSt) Precision 0.842 0.915 0.547 0.269 0.235 0.220 0.467 0.181
Scalable Color Recall 0.282 0.881 0.167 0.052 0.172 0.000 0.000 0.000
(SC) Precision 0.615 0.527 0.200 0.119 0.119 0.000 0.000 0.000
Contour Shape Recall 0.914 0.883 0.559 0.311 0.379 0.000 0.058 0.302
(CS) Precision 0.870 0.854 0.669 0.618 0.260 0.000 0.556 0.193
Region Shape Recall 0.515 0.407 0.207 0.007 0.149 0.000 0.000 0.000
(RS) Precision 0.458 0.464 0.192 0.004 0.086 0.000 0.000 0.000
Edge Histogram Recall 0.985 0.785 0.520 0.637 0.482 0.361 0.670 0.581
(EH) Precision 0.798 0.909 0.945 0.601 0.646 0.411 0.697 0.471
Homogenous Texture Recall 0.953 0.695 0.204 0.074 0.402 0.157 0.244 0.000
(HT) Precision 0.743 0.765 0.632 0.312 0.321 0.245 0.212 0.000

Combinations of MPEG-7 descriptors are shown in Table 4. There, it can
be seen that classification performance is increased through the use of feature
based fusion for the majority of descriptor combinations. However, improvement
in recall and precision values is not as significant as one might expect. This can
be attributed to the variance of the feature values among different descriptors.

The efficiency of the training algorithms is examined through the effectiveness
of the created models, the time required to train the models and the robustness
to the variation of learning parameters. The libSVM algorithm requires by far the
lower time and effort to create an effective model. This is true, however, if an RBF
or a polynomial kernel is used. In such a case learning takes no more than a few
seconds for the majority of the descriptor models. Furthermore, the fluctuation in
classification performance during parameters’ tuning is significantly lower than
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that of the other two training algorithms. The models created using libSVM are
the ones that are able to discriminate between multiple classes for all individual
descriptors used. A characteristic example is the model created for the Scalable
Color descriptor. The libSVM model for this descriptor can be used for the
discrimination between the seven of the eight object classes (Javelin class is an
exception) while the corresponding SMO and RBF network models are only able
to discriminate between three classes at most.

Table 4. Object classification results using selected combinations of the MPEG-7

visual descriptors and various data classifiers

Classifier Descriptors Combination Measure Object Class

Person

Body

Person

Face

Horizontal

Bar

Pole Pillar Discus Hammer Javelin

libSVM SC and CS Recall 0.910 0.901 0.580 0.421 0.382 0.150 0.336 0.352
Precision 0.881 0.899 0.706 0.622 0.325 0.342 0.640 0.301

SC and EH Recall 0.991 0.882 0.825 0.631 0.542 0.361 0.329 0.662
Precision 0.872 0.945 0.916 0.681 0.786 0.766 0.736 0.561

CS and EH Recall 0.995 0.990 0.831 0.634 0.536 0.359 0.230 0.669
Precision 0.892 0.940 0.912 0.683 0.771 0.740 0.731 0.553

SC and CS and EH Recall 0.997 0.994 0.841 0.642 0.550 0.401 0.346 0.672
Precision 0.895 0.951 0.922 0.689 0.801 0.770 0.742 0.571

SMO SC and CS Recall 0.998 0.895 0.725 0.291 0.520 0.000 0.020 0.092
Precision 0.872 0.941 0.691 0.649 0.281 0.000 1.000 0.475

SC and EH Recall 0.999 0.881 0.835 0.568 0.589 0.331 0.251 0.703
Precision 0.875 0.942 0.910 0.691 0.689 0.699 1.000 0.559

CS and EH Recall 0.982 0.899 0.832 0.560 0.591 0.335 0.251 0.702
Precision 0.880 0.939 0.912 0.695 0.692 0.701 0.642 0.560

SC and CS and EH Recall 0.999 0.901 0.840 0.571 0.601 0.341 0.259 0.712
Precision 0.882 0.945 0.915 0.680 0.682 0.701 1.000 0.565

RBF Network SC and CS Recall 0.915 0.888 0.669 0.325 0.388 0.000 0.062 0.306
Precision 0.872 0.862 0.660 0.617 0.271 0.000 0.550 0.192

SC and EH Recall 0.988 0.895 0.529 0.652 0.488 0.370 0.679 0.592
Precision 0.802 0.909 0.952 0.601 0.652 0.412 0.709 0.469

CS and EH Recall 0.985 0.890 0.572 0.642 0.492 0.360 0.682 0.592
Precision 0.872 0.892 0.950 0.629 0.654 0.421 0.701 0.479

SC and CS and EH Recall 0.901 0.899 0.662 0.661 0.495 0.371 0.685 0.598
Precision 0.879 0.912 0.960 0.631 0.659 0.431 0.712 0.481

5 Conclusion and Further Work

An extended experimental study on the efficiency of the MPEG-7 visual de-
scriptors for object classification was presented in this paper. The use of three
different training algorithm ensures that obtained results are not biased on the
training scheme selected. The main conclusions of this work are:

1. There is a significant variation on the efficiency of the various descriptors
with the Edge Histogram descriptor having the highest performance among
all.

2. In contrary, to what one might expect the shape descriptors are not very
efficient for object classification. Especially the performance of the Region
Shape descriptor is disappointing.

3. Combination of descriptors increase the classification performance for the
majority of object classes but in most cases the improvement is negligible.

4. The use of different training schemes leads, to some extent, to models with
varying performance. However, libSVM is by far the scheme requiring the
least time to train the models and presents the highest robustness with
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respect to learning parameters’ variation. The RBF Network on the other
hand creates in several cases the most compact model in terms of file size.

Further work includes the examination of additional training algorithms as well
as other classifications schemes (decision trees, fuzzy rules, etc). In addition com-
parison of the MPEG-7 descriptor combinations using score-based and decision-
based fusion will be investigated.
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Abstract. Recent advances in digital video technology have resulted in

an explosion of digital video data which are available through the Web

or in private repositories. Efficient searching in these repositories created

the need of semantic labeling of video data at various levels of granularity,

i.e., movie, scene, shot, keyframe, video object, etc. Through multilevel

labeling video content is appropriately indexed, allowing access from var-

ious modalities and for a variety of applications. However, despite the

huge efforts for automatic video annotation human intervention is the

only way for reliable semantic video annotation. Manual video annota-

tion is an extremely laborious process and efficient tools developed for

this purpose can make, in many cases, the true difference. In this paper

we present a video annotation tool, which uses structured knowledge, in

the form of XML dictionaries, combined with a hierarchical classifica-

tion scheme to attach semantic labels to video segments at various level

of granularity. Video segmentation is supported through the use of an

efficient shot detection algorithm; while shots are combined into scenes

through clustering with the aid of a Genetic Algorithm scheme. Finally,

XML dictionary creation and editing tools are available during annota-

tion allowing the user to always use the semantic label she/he wishes

instead of the automatically created ones.

Keywords: video annotation, hierarchical classification, XML

dictionaries.

1 Introduction

Video annotation is a powerful tool for adding useful comments and explanations
to video which can serve as the first step of different data access modalities. The
use of an integrated system which can provide video annotation can greatly
simplify the process.
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However some annotation tools are available publicly, few of them are anno-
tate in multiple levels. VideoAnnEx MPEG-7 annotation tool is implemented
by IBM [1] for collaborative multimedia annotation task in distributed environ-
ment. MovieTool is developed by Ricoh for creating video content descriptions
conforming to MPEG-7 syntax interactively [2]. The IBM Multimedia Mining
Project released a Multimodal Annotation Tool, which is derived from an ear-
lier version of VideoAnnEx with special features with audio signal graphs and
manual audio segmentation functions [3]. Some other media annotation systems,
including collaborative annotations, have been developed for various purposes.
Bargeron et. al. developed an Microsoft Research Annotation System (MRAS),
which is a web-based system for annotating multimedia web content [4]. An-
notations include comments and audio in the distance learning scenario. Steves
et. al. developed a Synchronous Multimedia and Annotation Tool (SMAT) [12].
SMAT is used to annotate images. There is no granularity for video annota-
tions nor controlled-term labels. Nack and Putz developed a semi-automated
annotation tool for audio-visual media in news [11]. The European Cultural
heritage Online (ECHO) is developing a multimedia annotation tools which
allows people to work collaboratively on a resource and to add comments to
it [5].

In this paper we present a Video Annotation Tool based on MPEG-7 standard.
The tool provides various features as annotation in multiple levels based on XML
dictionaries, creation of XML dictionaries, and image watermarking. It consists
of three panels and is supported by friendly graphical user interface, making it
very practical and simple to use. The paper is organized as follows: Section 2 gives
a brief description of the Annotation Tool. In Section 3 we present the algorithm
that is used for shot clustering and scene construction. Finally, conclusions are
drawn and further work hints are given in Section 4.

2 Video Annotation Tool

We have developed an annotation tool based on MPEG-7 standard using MAT-
LAB. The tool boasts a user-friendly Graphical User Interface allowing the man-
agement of multimedia content (images and videos), video segmentation, video
and image annotation, image watermarking and creation of XML dictionaries.
The supported image and video file types loading by the annotation tool are
presented in Table 1. For the tool application, any PC can be used as far as
hardware is concerned, although as expected, the more power it has, the better
performance level it will reach. In particular, a large amount of RAM memory
will help to improve the performance.

The GUI consists of three major panels. The Video Panel provides the video
segmentation and annotation while the Image Panel provides the image anno-
tation and watermarking. The dictionaries used for annotation are created via
the third panel named Dictionary Panel. A brief description of each panel is
follows.
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Table 1. Supported file types

Visual Content Type File type Extension

images jpg, bmp, gif, tiff, png

videos mpg, avi, wav

2.1 Video Panel

An example screen of Video Panel is shown in Fig.1. The Panel consists of three
tabs. The first and second tab provide the manual and automated segmentation
respectively, while the third one accords the video annotation.

Video Segmentation. The video segmentation is performed to cut up the
video sequence into smaller video units. As is shown in Fig.1, the user is able to
select one of two available modes for video segmentation: manual and automated.
During the manual segmentation, the opened video sequence displayed in the
window on the upper left-hand corner. The user can explore it and set the shots
boundaries by specified the first and last frame of each shot. Then he choose and
set the representative frames as key-frames. The key-frame is a representative
image of the video shot segment, and thus offer an instantaneous recap of the
whole video shot. The shot frame boundaries and key-frames of each shot are
saved in an XML-file.

For the automated shot detection we used the Color Histogram Differences al-
gorithm [10]. The algorithm is one of the most trustworthy variants of histogram-
based detection algorithms and is based on the idea that the color content rapidly
changes across shots. So, hard cuts and other short-lasting transitions can be
detected as single peaks in the time series of the differences between color his-
tograms of contiguous frames or of frames a certain distance k apart.

Let pi(r, g, b) be the number of pixels of color (r, g, b) in frame Ii of N pixels.
Each color component is discretized to 2B different values, resulting in r, g, b ∈
[0, 2B − 1]. Usually B is set to 2 or 3 in order to reduce sensitivity to noise and
slight light, object as well as view changes. Then the color histogram difference
CHDi between two color frame Ii−1 and Ii is given by

CHDi =
1
N
.

2B−1∑
r=0

2B−1∑
g=0

2B−1∑
b=0

| pi(r, g, b)− pi−1(r, g, b) | (1)

If within a local environment of radius Ic of frame Ii only CHDi exceeds a certain
threshold, then a hard cut is detected. As presented in [10], for particular type
of hard cut which consists of one transitional frame, in a pre-processing stage
double peaks (i.e groups of sc = 2) contiguous CHDi exceeding threshold were
modified into single peaks at the higher CHDi.

Video Annotation. A shot video clip can simply annotated by describing
its content in its entirety. However, when the video is longer, annotation of its
content can benefit from segmenting the video into smaller units. Given the
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shot boundaries, the annotations are assigned for each video shot by using the
Video Annotation Tab. The tool uses a specific type of dictionaries based on
MPEG-7 descriptions made via the Dictionary Panel. To be more precise the
video annotation is performed through the following three steps.

First, the annotation dictionary (XML) that will be used to annotate the key-
frames of each shot is loaded. Annotation dictionaries can be created using the
Dictionary Panel as will be explained in Section 2.3. The three categories of the
dictionary are shown in the list-boxes on under left-hand, as illustrated in Fig.2.

Second, the segmented video resulted from the video segmentation procedure
is loaded and its shots are shown in shot axes at the upper right-hand corner.
After choosing a shot, its key-frames are shown in the four axes below the shot
axes. The user can choose a key-frame in order to annotate it. The chosen key-
frame can be seen in the axes at the left-hand corner.

Third, the key-frame annotation can be implemented using the dictionary
categories presented in list-boxes on under left-hand corner. The user ticks the
boxes of the most representative annotations and adds if needed free text and
key-words using the corresponding edit boxes. Annotations are shown in the
list-box on the right-hand and are saved into an XML file in the video directory.

2.2 Image Panel

The Video Annotation tab provides the capability of annotating and embedding
information into an image via the Image Panel A screen shot of Image Panel is

Fig. 1. Video Segmentation Tab
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Fig. 2. Video Annotation Tab

Fig. 3. Image Panel
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Fig. 4. Dictionary Panel

shown in Fig.3. The input image and its features are presented on the upper left-
hand corner. The user can choose between Image Annotation and Watermarking.

Image Annotation. An image can be simply annotated following the three
steps described in the previous section. The three categories of the annotation
dictionary are presented in the list-boxes (under left-hand) and the chosen image
is shown at the upper left-hand axes. The user can annotate the image by ticking
the most appropriate annotation boxes of the three lists. Free text and Key-words
edit boxes can be used for a more detailed annotation. The saved annotations
are shown in the list-box on the right-hand corner and are saved into an XML
file.

Image Watermarking. The selected image can be watermarked and saved in
any image format and in any scaling using the Watermark tab. After the water-
mark selection, the user defines the wanted width and height. The watermarked
image can be seen in the left-corner axes and can be saved in any image format.
The chosen image also can be rescaled and saved in any format, without being
watermarked using the Save Image tab.

2.3 Dictionary Panel

Dictionaries used for annotating via the Video Annotation Tool are created
at Dictionary Panel. Each dictionary consists of three different categories as
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presented in Fig.4. Each category consists of a root, a root consists of nodes,
and nodes consists of subnodes. The creation of a new dictionary is comprised
by three simple steps. First, the user defines the root for each category and
then can add nodes and subnodes in the dictionary categories. Finally, the new
dictionary is saved in an XML file.

3 Shot Clustering and Scene Construction

In this section we present a genetic algorithm which is used for scene construc-
tion through clustering of consecutive shots that have similar keyframes. The
algorithm assumes that the number of scenes, say Ns, to which a video is de-
composed is given through the MuLVAT tool. We assume also that the input
video is already cut into Nk shots with the aid of the algorithm presented in the
previous section.

We define the set K = {K1,K2, ...,KNk
} of keyframes with keyframe Ki

corresponding to shot Ci. We did not devise a particular algorithm for keyframe
selection; keyframes are selected and annotated by a human user through the
MuLVAT tool. We consider also that only one keyframe is selected per shot.

Let us define a vector of integer values in increasing order:

Idx(i) = {Idx(i)
1 , Idx

(i)
2 , ..., Idx

(i)
Ns−1}, (2)

with 1 < Idx
(i)
j < Nk, j = 1, ..., Ns − 1. Each vector Idx(i) defines a partition

P (i) = {P (i)
1 , P

(i)
2 , ..., P

(i)
Ns
} of set K with P

(i)
j corresponding to a set of consec-

utive keyframes {K
Idx

(i)
j−1

, ...,K
Idx

(i)
j −1}, while P

(i)
1 = {K(i)

1 , ...,K
Idx

(i)
1 −1} and

P
(i)
Ns

= {K
Idx

(i)
Ns−1

, ...,KNk
}. Given that each keyframe corresponds to a shot,

the partition P (i) defines a possible decomposition of input video into Ns. The
task of the genetic algorithm described next is to find a partition P (ξ) which cre-
ates the optimum decomposition of input video into Ns scenes given a properly
defined metric.

3.1 A Genetic Algorithm for Shot Clustering

Genetic Algorithms are adaptive optimization methods that resemble the evo-
lution mechanisms of biological species [6]. Feature selection is one of the areas
that GAs present excellent performance. The main advantages of GAs are:

– they do not require the continuity of parameter space and,
– they are able to efficiently search over a wide range of parameters /parameter

sets.

In a GA, the search begins from a population of PN possible solutions (in our case
strings corresponding to integer vectors Idx(i), i = 1, ..., PN of length Ns − 1,
with integer values limited to the interval [1 Nk]), and not just one possible
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solution. Solution refers to a partition P (i) as explained in the previous section.
A population of solutions guarantees that search will not be trapped in a local
optimum, especially if significant diversity exists among the various solutions.
The population of solutions tends to evolve toward increasingly better regions of
the search space through the use of certain randomized processes, called genetic
operators. Typical genetic operators are the selection, mutation and recombina-
tion. The selection process chooses strings with better objective function value
and reproduces them more often than their counterparts with worse objective
function value. Thus, a new population is formed consisting of the strings that
perform better in their environment. The recombination (crossover) operator
allows for the mixing of parental information, which is then passed to their
descendants. The initial population is randomly acquired; this means that the
first and major degree of diversity is introduced in this stage of the GA. The
second and lesser degree of diversity is introduced when the mutation operator
acts upon each string of the population. The whole evolution process stops af-
ter a predefined maximum number of iterations (generations) is reached or the
variation among population of solutions is too small.

Once the initial population has been created the process of creating new
generations starts and consists, typically, of three stages:

1. A fitness value (measure of optimality) of each string in the random popu-
lation is calculated.

2. Genetic operators, corresponding to mathematical models of simple laws of
nature, like reproduction, crossover and mutation are applied to the popu-
lation and result in the creation of a new population.

3. The new population replaces the old one.

In our case the fitness function F is a metric of similarity between keyframes
corresponding the same shot cluster divided by the similarity of keyframes corre-
sponding to different shot clusters. Equation (3) gives the mathematical notation
of the fitness function Fi corresponding to the string Idx(i) (|| · || refers to the
second norm of a multidimensional matrix):

Fi =
Ns∑
j=1

∑
Kl,Km∈P

(i)
j , l 
=m

||Kl −Km||∑
Kl∈P

(i)
j

∑
Kp∈P

(i)
k , k 
=j

||Kl −Kp|| (3)

The objective is to find the string that maximizes the fitness function F . The
realization of the genetic operators (reproduction, mutation and crossover) is as
follows:

Reproduction. The fitness function F is used in the classical “roulette” wheel
reproduction operator that gives higher probability of reproduction to the strings
with better fitness according to the following procedure:

1. An order number, say q, is assigned to the population strings. That is q
ranges from 1 to PN , where PN is the size of population.

2. The sum of fitness values (Fsum) of all strings in the population is calculated.
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3. The interval [0 Fsum] is divided into PN sub-intervals each of one being
[SFq−1 SFq] where

SFq−1 =
q−1∑
i=1

Fi, q > 1 (4)

(SFq−1 = 0 for q = 0 and q = 1)

SFq =
q∑

i=1

Fi, ∀q (5)

Fi is the value of fitness function for the i− th string (see equation 3).
4. A random real number R0 lying in the interval [0 Fsum] is selected.
5. The string having the same order number as the subinterval of R0 is selected
6. Steps (4) and (5) are repeated PN times in order to produce the intermediate

population to which the other genetic operators will be applied.

Crossover. Given two strings (parents) of length Ns − 1 an integer number
1 < r < Ns− 1 is randomly selected. The two strings retain their gene values up
to gene r and interchange the values of the remaining genes creating two new
strings (offspring). Obviously the integer numbers in offspring must be reordered
so as to correspond to vectors of integer values in increasing order.

Mutation. This operator is applied to each gene of a string and it alters its
content, with a small probability. The mutation operator is actually a random
number that is selected and depending on whether it exceeds a predefined limit
it changes the value of a gene. If gene r is to be mutated the allowable values
Idx

(i)
r for it are those in the interval (Idx(i)

r−1 Idx
(i)
r+1).

4 Conclusion

In this paper we presented a multi-level Video Annotation tool based on XML
dictionaries. It consists of three different panels and provides a friendly user
interface that seems to be powerful for various user profiles. It allows for seman-
tic labeling using structured knowledge in the form of XML dictionaries and
provides the user with a powerful algorithm for shot detection algorithm which
minimizes the human intervention for video segmentation at lowest level. XML
dictionaries, used for semantic labeling, can be derived on request and during
the annotation process maximizing the flexibility of the user. Our future work
includes ontology support, incorporation of keyframe selection methodologies
and the automatic creation of a list of semantic labels which will be proposed to
the user, for the annotation of keyframes and shots, based on machine learning
processes.
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Abstract. In this paper the sparse coding principle is employed for the

representation of multimodal image data, i.e. image intensity and range.

We estimate an image basis for frontal face images taken with a Time-of-

Flight (TOF) camera to obtain a sparse representation of facial features,

such as the nose. These features are then evaluated in an object detec-

tion scenario where we estimate the position of the nose by template

matching and a subsequent application of appropriate thresholds that

are estimated from a labeled training set. The main contribution of this

work is to show that the templates can be learned simultaneously on

both intensity and range data based on the sparse coding principle, and

that these multimodal templates significantly outperform templates gen-

erated by averaging over a set of aligned image patches containing the

facial feature of interest as well as multimodal templates computed via

Principal Component Analysis (PCA). The system achieves a detection

rate of 96.4% on average with a false positive rate of 3.7%.

1 Introduction

In recent years there has been a lot of interest in learning sparse codes for data
representation, and favorable properties of sparse codes with respect to noise
resistance have been investigated [1]. Olshausen and Field [2] applied sparse
coding to natural images and showed that the resulting features resemble recep-
tive fields of simple cells in V1. Thus, it stands to reason that the basis functions
computed by sparse coding can be used effectively in pattern recognition tasks
in the fashion introduced by Serre et al. [3], who model a recognition system
that uses cortex-like mechanisms.

Sparse coding has also been successfully applied to the recognition of hand-
written digits [4]. The authors learn basis functions for representing patches of
handwritten digits and use these to extract local features for classification.

In this work, we aim to learn a sparse code for multimodal image data, i.e.
we simultaneously learn basis functions for representing corresponding intensity
and range image patches. As a result, we obtain aligned pairs of basis functions
that encode prominent features that co-occur consistently in both types of data.
Thus, a corresponding pair of basis functions can be used to consistently extract

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 923–932, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.inb.uni-luebeck.de
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features from intensity and range data. To our knowledge, sparse representations
have not yet been learned for multimodal signals.

The considered image data was obtained by a Time-of-Flight (TOF) cam-
era [5] which provides a range map that is perfectly registered with an intensity
image (often referred to as an amplitude image in TOF nomenclature). Although
TOF cameras emerged on the market only recently, they have been used in a
number of image processing applications, such as shape from shading [6], people
tracking [7], gesture recognition [8], and stereo vision [9]. A review of publications
related to TOF cameras can be found in [10].

It has already been shown that using both intensity and range data of a TOF
camera in an object detection task can significantly improve performance in
comparison to using either data alone [11]. The fact, that a sparse code learned
simultaneously on both intensity and range data yields perfectly aligned basis
functions, allows us to extract relevant features from both types of data.

Here, we aim to learn a set of basis functions that encode structural informa-
tion of frontal face images in a component-based fashion. As a result, the basis
functions estimated by sparse coding can be regarded as templates for facial
features, such as the nose. We evaluate the resulting templates on a database
of TOF images and use simple template matching to identify the presence and
position of the nose in frontal face images. The importance of the nose as a facial
feature for problems such as head tracking was already mentioned in [12,13].

Section 2 will discuss the computation of a set of basis functions under the
constraint of the sparse coding principle. In Section 3 we discuss the procedure
of determining the basis function that yields the optimal equal error rate (EER)
in the nose detection task. Section 4 presents the results and shows that tem-
plates generated via sparse coding yield significantly better detection rates than
templates obtained by PCA or by averaging over a set of aligned image patches.

2 Sparse Features

The investigated database of frontal face images [14] was obtained using an
SR3000 TOF camera [15]. The subjects were seated at a distance of about 60
cm from the camera and were facing the camera with a maximum horizontal
and/or vertical head rotation of approximately 10 degrees. As a result, the facial
feature of interest, i.e. the nose, appears at a size of roughly 10 × 10 pixels in
the image. A number of sample images are given in Fig. 1.

As a TOF camera provides a range map that is perfectly registered with an
intensity image, we aim to learn an image basis for intensity and range simulta-
neously. To this end, the input data for the sparse coding algorithm are vectors
whose first half is composed of intensity data and the second half of range data,
i.e. in case we consider image patches of size 13× 13, each patch is represented
by a 338-dimensional vector (d = 338 = 2 ·13 ·13) where the first 169 dimensions
encode intensity and the remaining 169 dimensions encode range.

In order to speed up the training process, we only considered training data
that originated from an area of 40 × 40 pixels centered around the position
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Fig. 1. Three sample images of frontal face images taken by an SR3000 TOF camera.

The top row shows the intensity and the bottom row the range data.

of the nose. The position of the nose was annotated manually beforehand. By
this procedure we prevent the basis functions from being attracted by irrelevant
image features, and a number of 72 basis functions proved to be sufficient to
represent the dominant facial features, such as the nose or the eyes.

A common difficulty with TOF images is that the range data is relatively
noisy and that both intensity and range can contain large outliers due to re-
flections of the active illumination (e.g. if subjects wear glasses). These outliers
violate the assumed level of Gaussian additive noise in the data and can lead
the sparse coding algorithm astray. To compensate for this effect, we applied a
5× 5 median filter to both types of data. To ensure the conservation of detailed
image information while effectively removing only outliers, pixel values in the
original image Io were only substituted by values of the median filtered image
If if the absolute difference between the values exceeded a certain threshold:

Io(i, j) =
{
If (i, j) if |Io(i, j)− If (i, j)| ≥ θ
Io(i, j) otherwise .

There exist a number of different sparse coding approaches, see for exam-
ple [2,16,17]. We employed the Sparsenet algorithm [2] for learning the sparse
code. The basic principle aims at finding a basis W for representing vectors x
as a linear combination of the basis vectors using coefficients a under the as-
sumption of Gaussian additive noise: x = Wa+ε. To enforce sparseness, i.e. the
property that the majority of coefficients ai are zero, the Sparsenet algorithm
solves the following optimization problem:

min
W

E
(
min
a

(‖x−Wa‖+ λS(a))
)

. (1)

Here, E denotes the expectation and S(a) is an additive regularization term that
favors model parameters W that lead to sparse coefficients a. The parameter λ
balances the reconstruction error ε against the sparseness of the coefficients.
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In order to apply the method, the input data has to be whitened beforehand
as indicated in [2]. We applied the whitening to both types of data individually.
Only after this preprocessing step, the training data was generated by selecting
random image patches of the template size, i.e. for a patch in a given image the
corresponding intensity and range data were assembled in a single vector.

The resulting features for 19 × 19 image patches are given in Fig. 2. Facial
features, e.g. nose, eyes, and mouth, can readily be distinguished. We set the
parameter λ to a relatively high value (λ = 0.1), i.e. we enforce high sparseness,
in order to obtain this component-based representation, however we can report
that the results are not particularly sensitive to minor changes of this parameter.

3 Nose Detection

Since the basis functions computed by sparse coding in Section 2 represent fa-
cial features, it stands to reason that they can be used for object detection via
template matching. At this point two questions arise: (i) Which basis function
represents the best template, and (ii) what is the actual position of the facial
feature with respect to the center of the image patch corresponding to this ba-
sis function. A straightforward solution would be to select the most promising
feature by visual inspection and to annotate the position of the facial feature
within the image patch manually. Obviously though, this procedure is not gen-
erally applicable and is likely to yield suboptimal results.

Thus, we decided to follow a computationally more intensive procedure that,
in contrast, is fully automatic and operates in a purely data-driven fashion. For
each of the 72 basis functions we trained and evaluated a nose detector for every
possible position of the nose in a certain neighborhood around the center of the
image patch. In the case of 13 × 13 image patches we chose this neighborhood
to be 11 × 11. As a result, a total of 8712 = 72 · 11 · 11 detectors were trained.
The final detector uses the basis function and the position of the nose out of the
8712 configurations that produced the best EER on the training set.

The thresholds of each detector were simply determined by taking the mini-
mum and the maximum of the filter responses at the annotated positions of the
nose on a set of training images, i.e. upper and lower bounds for the filter re-
sponses that identify a nose were determined for both intensity and range data.
In order to identify a nose in a new image, both intensity and range were filtered
with the corresponding template images and each pixel whose filter responses
complied with the identified bounds was classified as a nose pixel. To obtain an
EER, these bounds were relaxed or tightened.

The procedure was evaluated on a data set of 120 TOF images of frontal
faces taken from 15 different subjects. To double the amount of data, mirrored
versions of the images were also added to the data set. From the total of 240 im-
ages one half was chosen at random as a training set to determine the bounds of
each classifier. These bounds were then adjusted to yield an EER on the training
set. Finally, the optimal classifier, i.e. the one out of the 8712 candidates yielding
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Fig. 2. Basis functions learned for frontal face images via the Sparsenet algorithm. The

upper and lower part of the figure show the basis functions representing intensity data

and range data, respectively. The basis functions for both types of data were learned

simultaneously and correspond pairwise, i.e. the top-left intensity feature is perfectly

aligned with the top-left range feature.

the best EER, was evaluated on the remaining 120 images that were not used
during the training process.

In order to assess the performance of the learned templates, we also evaluated
two other types of templates – “average” and “eigen” templates. The former
were generated by averaging over a set of aligned image patches containing a
nose. The latter were obtained as the principal components of these aligned
image patches. Again, we generated corresponding pairs of templates for both
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intensity and range data. The same training images, including the preprocessing,
were used as in Section 2 for the Sparsenet algorithm.

A fundamental difference between these two approaches to generating the av-
erage and eigen templates and the sparse coding method is, that the former only
yield templates in which the nose is centered in the image patch whereas the lat-
ter also produces translated versions of the nose (see Fig. 2). To guarantee a fair
comparison between the different templates we applied the following procedure:
since the optimal position of the nose within the template is not known a priori,
we generated a total of 121 13×13 templates centered at all possible positions in
a 11× 11 neighborhood around the true position of the nose, i.e. the templates
were shifted so that the nose was not positioned in the center of the template.
In correspondence to the procedure described above for the sparse-coding tem-
plates, each shifted template was then evaluated for every possible position of
the nose in a 11×11 neighborhood around the center of the image patch. For the
average templates the resulting number of possible detectors amounts to 14641.
In the case of the eigen templates, it is not apparent which principal component
should be used as a template. To constrain the computational complexity, we
considered only the first three principal components. Nevertheless, this resulted
in 43923 possible detectors. Again, the optimal average and eigen templates were
determined as the ones yielding the best EER on the training set according to
the procedure described above.

4 Results

The results of the training for the nose detection task using 13× 13 templates
are given in Fig. 3. The EER on the training set using the sparse-coding tem-
plates is 3.9%. The eigen templates achieve an EER of 6.6%, and the average
templates yield an EER of 22.5%, i.e. the EERs for these two procedures are
higher by roughly 50% and 500%, respectively. The EERs prove to be largely
independent of the training set. We ran 100 evaluations of the procedure with
random configurations of the training set and recomputed both the templates
and the classifiers in each run. The standard deviations for the three EERs over
the 100 evaluations were σ = 0.9%, σ = 1.6%, and σ = 2.3%, respectively.

Fig. 3 also shows the ROC curves for detectors that use the sparse-coding
templates computed on either intensity or range data of the TOF images alone.
Note that the EERs are dramatically higher in comparison to the detector that
uses both types of data together. This confirms results reported in [11], where
the combination of intensity and range data also yielded markedly better results
in the detection of the nose based on geometrical features.

The error rates on the test set are only slightly higher than the EERs on the
training set, which shows that the method generalizes well to new data. The false
positive rates (FPR) amount to 5.3%, 9.3%, and 24.4% for the sparse-coding,
eigen, and average templates.

The evaluation above considered only templates of a fixed size of 13 × 13
pixels. However, varying the template size reveals some interesting properties of
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Fig. 3. ROC curves of detection rate vs. false positive rate. The curves were generated

using the sparse-coding templates, the eigen templates, the average templates, and

the sparse-coding templates using only the intensity data (sparse int) or only the

range data (sparse rng). The detection rate gives the percentage of images in which

the nose was identified correctly, whereas the false positive rate denotes the percentage

of images where at least one non-nose pixel was misclassified. Thus, strictly speaking,

the curves do not represent ROC curves in the standard format, but they convey

exactly the information one is interested in for this application, that is, the accuracy

with which the detector gives the correct response per image.

the different approaches. To this end, we computed templates of size n×n, where
n = 1, 3, . . . , 19, for each approach and estimated the optimal detector according
to the same procedure outlined above. To reduce the number of possible detectors
to evaluate, the neighborhood sizes for positioning the nose and shifting the
template were reduced to 7× 7 pixels for templates with size n smaller than 13.
Again, we considered 100 random configurations of training and test set.

Fig. 4 shows the configurations of template and position of the nose within
the template that yielded the best EERs on the training set for each approach
with respect to the different template sizes.

Note that the sparse-coding templates (first two rows) exhibit a much higher
contrast in comparison to the average templates (rows three and four), especially
for larger sizes of the template. This explains the bad performance of the average
templates, because an increase in size does not add more information to the
template. This effect becomes clearly visible in Fig. 5. The plot shows the FPRs
on the test set for the different approaches over varying template sizes. One can
observe that the FPR of the average template starts to increase for templates
of size five. In comparison, the FPR of the sparse-coding templates continues to
decrease up to a template size of 19.
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Fig. 4. Optimal templates for different template sizes, where each column shows tem-

plates of odd pixel sizes ranging from 3 to 19. The first row shows the sparse-coding

templates for intensity data and the second row shows the corresponding features for

range data. Rows three and four give the average templates and rows five and six

show eigen templates. The crosses mark the estimated position of the nose within the

templates.

A decrease of the FPR can also be observed for the eigen templates up to size
11 of the template. For larger template sizes the FPR also starts to increase,
whereas the sparse-coding templates continue to achieve low FPRs, as already
mentioned above. It seems that sparse coding can exploit further reaching de-
pendencies.

A comparison of the FPRs with respect to the optimal template size for each
method reveals that the average template achieves the worst overall performance
with an FPR of 9.6% (σ = 3.5) for a 7 × 7 template. The best results for the
eigen templates were obtained with templates of size 11 yielding an FPR of
7.9% (σ = 3.2). The sparse coding templates of size 19 had the best overall
performance (FPR 3.7%, σ = 2.3), and the FPR improved roughly by a factor
of 2.5 in comparison to the best eigen template.

Note that the false negative rate for the different approaches lies well within
the error bars of the FPR in Fig. 5, as one would expect, since the classifier was
set to achieve an EER during training.
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Fig. 5. The graph shows the FPRs and standard deviations on the different test sets

for the different templates at different template sizes. The dotted lines show the corre-

sponding false negative rates.

5 Discussion

We have demonstrated how a sparse code can be learned for multimodal image
data. The resulting basis functions can be used effectively for template matching
in detecting the nose in frontal face images. The sparse-coding templates yield
significantly improved results in comparison to templates obtained by averaging
over a number of aligned sample images of noses. Templates resembling the
principal components of these aligned sample images were also outperformed,
especially for large sizes of the template.

The sparse-coding templates were learned on intensity and range data of a
TOF camera simultaneously, which yields templates that are perfectly registered
for the two different input modalities. The combination of intensity and range
data yields a greatly improved detector compared to either type of data alone.
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Abstract. The paper presents the Multiple Kernel Learning (MKL) ap-

proach as a modelling and data exploratory tool and applies it to the

problem of wind speed mapping. Support Vector Regression (SVR) is

used to predict spatial variations of the mean wind speed from terrain

features (slopes, terrain curvature, directional derivatives) generated at

different spatial scales. Multiple Kernel Learning is applied to learn ker-

nels for individual features and thematic feature subsets, both in the

context of feature selection and optimal parameters determination. An

empirical study on real-life data confirms the usefulness of MKL as a

tool that enhances the interpretability of data-driven models.

Keywords: Multiple Kernel Learning, Support Vector Regression,

Feature Selection, Wind Speed Mapping.

1 Introduction

Machine Learning Algorithms, as non linear adaptive models, are of great impor-
tance in studies of geo- and environmental spatio-temporal data [1]. The present
research deals with spatial prediction of the long term average wind speed which
is fundamental for natural resources evaluation and for planning the correct lo-
cation of wind farms and single turbines, for climatological analysis and for a
better understanding of the local topography-related patterns of wind speeds.
The complex non-linear relations with topography makes spatial wind speed
prediction a challenging case study for data-driven statistical methods.

Topographic features can be computed from the digital elevation models of
the terrain and directly used in predictive learning regression models, such as
Artificial Neural Networks and Support Vector Machines to predict the wind
speed. In such studies, however, it is equally important for a successful pre-
dictive model to serve as an exploratory tool. For example, it is essential to
determine the relevance of particular features or groups of features to yield a
better understanding of the problem at hand. Feature selection techniques aim

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 933–943, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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at this task. Other benefits of feature selection are related to the reduction of
computational time (for the final prediction model when applied operationally)
and hopefully to the enhancement of performance as a result of noisy features
elimination. There are two groups of feature selection techniques [2]: filter meth-
ods rank the features according to a predefined relevance criteria and wrapper
methods involve the predictor as a part of the selection process by analyzing
the predictive power of features. Among Support Vector Machine wrappers, the
recursive feature elimination [3] method is the most used.

In this paper we present the use of Multiple Kernel Learning (MKL) scheme
[4] based on the recently proposed SimpleMKL [5] as a wrapper method for
detecting the subsets of important features. This scheme uses the Support Vector
Regression (SVR) [6] as a predictive model. Performances of the conventional
SVR and its MKL extension are compared, and the use of MKL as a feature
exploratory tool is analyzed.

The paper is organized as follows. Section 2 presents the methods and the
algorithms. The classical methodology for wind speed mapping is reviewed and
the proposed MKL-based scheme is discussed in relation to it and the approached
case study. Section 3 describes data preparation and Section 4 presents the
results of the experiments carried out with SVR and MKL.

2 Learning with Kernel Methods

2.1 Support Vector Regression

Support Vector Regression is a non-linear robust method for regression estima-
tion [6]. SVR controls the complexity of the model and provides accurate results
when dealing with high-dimensional and noisy data by building sparse kernel
models. Using the kernel trick, the data are mapped into a higher dimensional
feature space where linear regression is achievable. The model is based on the
use of an ε-insensitive loss function, which is responsible for its sparseness. SVR
model is given by the linear expansion of kernel functions K(x,xi). It is a func-
tion encoding the dot products in the high-dimensional feature space between x
and the support vectors xi found by the model and for which their weights are
non-zero. The weights are found by quadratic programming, hence due to the
convexity of the problem its solution is unique.

2.2 Learning with Multiple Kernels

Common closed-form kernels such as the polynomial or the RBF are rigid repre-
sentations of the data, that may be replaced by more flexible and data-adapted
kernels. The use of multiple kernels can enhance the performance of the model
and, more importantly, the interpretability of the results. A multiple kernel in
the sense of [7] is built by using a convex combination of basis kernels. Thus, the
simple kernel function K(x,x′) can be replaced by

K(x,x′) =
M∑

m=1

dmKm(x,x′) with dm ≥ 0 and
M∑

m=1

dm = 1 (1)
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where dm are the weights associated to each kernel. For a given weight vector d,
the associated feature space is the vector product of all feature spacesH1, ...,HM

for which dm > 0. Multiple kernel learning aims at optimizing simultaneously
the SVM weights α and d.

This formulation is very flexible and can be used in a variety of situations:
the features passed to each kernel being defined by the user, combination of
features spaces accounting for different features, different scales (same features,
but different kernel parameters) or both can be considered. In this sense, a MKL
algorithm also acts as a kernel (and therefore feature) selection method, because
the kernels associated to zero weights are discarded from the final model.

2.3 SimpleMKL for Support Vector Regression

SimpleMKL algorithm [5] is a recently proposed efficient method for optimizing
the weighted combination of kernels of Eq. (1). Similarly to [4], SimpleMKL
wraps an SVM solver considering the kernel of Eq. (1) as a fixed single kernel.
A gradient descent on the SVR’s objective function J(d) in the space of kernel
coefficients d is iterated then. The model proposed in [5] is a general one, and
its applications to several kernel methods are illustrated. In the case of SVR,
the multiple kernel adaptation of the problem can be stated as

J(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Min

fm, b, ξi
1
2

∑
m

1
dm

‖fm‖2
Hm

+ C
∑

i(ξi + ξ∗i )
s.t. yi −

∑
m fm(xi)− b ≤ ε + ξi ∀i∑

m fm(xi) + b− yi ≤ ε + ξ∗i ∀i
ξi ≥ 0, ξ∗i ≥ 0 ∀i

(2)

which is basically the usual formulation of the SVR, apart from the function f(x),
which has been replaced by the linear combination of sub functions

∑
m fm(x).

The dual formulation of the problem of Eq. (2) is derived by using Lagrangian
multipliers:

J(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Max

α, β
∑

i(βi − αi)yi − ε
∑

i(βi + αi)
− 1

2

∑
i,j(βi − αi)(βj − αj)

∑
m dmKm(xi,xj)

with
∑

i(βi − αi) = 0
0 ≤ αi ≤ C, 0 ≤ βi ≤ C ∀i

(3)

The derivatives of J(d) for gradient descent in d-space are computed as
∂J

∂dm
= −1

2

∑
i,j

(β∗
i − α∗

i )(β
∗
j − α∗

j )Km(xi,xj) (4)

This gradient gives the direction for updating d. The updating scheme is d ←
d + γD, where γ is the step size and D is the descent direction computed using
the reduced gradient algorithm, which allows to respect the equality and the
positiveness conditions over the dm, as follows:

Dm =

⎧⎪⎨⎪⎩
0 if dm = 0 and ∂J

∂dm
− ∂J

∂dμ
> 0

− ∂J
∂dm

+ ∂J
∂dμ

if dm > 0 and m �= μ∑
ν 
=μ,dν>0(

∂J
∂dν

− ∂J
∂dμ

) for m = μ

(5)
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where μ is the component showing the highest non-zero value. The first condition
enforces the constraint on the positivity of the dm in the case when there is an
index m such that dm = 0 and the reduced gradient is greater than 0, i.e.
the coefficient is zero, but J(d) still decreases. Once the directions vector D is
computed, the descent direction is adjusted by modifying d. The adjustment
is repeated as long as J(d) decreases. This is done to avoid computing the
full gradient at each iteration and to decrease the computational burden of the
algorithm. Algorithm 1 summarizes SimpleMKL.

Algorithm 1. Simple MKL (adapted from [5])
1: initialize the weights dm = 1

M
, ∀m

2: compute the objective value J(d) according to Equation (3).

3: repeat
4: compute the reduced gradient and find the descent direction D.

Set μ = arg max dm

5: repeat {Descent direction update}
6: find the component ν = arg min−dm/Dm

7: find maximum admissible step size γmax = dν/Dν

8: update d = d + γmaxD, set Dμ = Dμ − Dν , Dν = 0 and normalize d
9: compute the new J(d)

10: until J(d) stops decreasing

11: line search along D to find the optimal γ
12: until a stopping criterion is met.

2.4 Classical Methodology for Wind Speed Mapping

The state-of-the-art statistical model for mean wind speed mapping in the Alps
[8] is built using geostatistical kriging interpolation and several ad hoc correc-
tions as follows:

Wxyz = Wx,y,z + Crc
x,y + Cbv

x,y + Csv
x,y + Cflat

x,y + Csea
x,y (6)

where Wx,y,z is the wind speed after kriging interpolation with linear slope and
altitude corrections on the measurements. Crc

x,y, Cbv
x,y, C

sv
x,y, Cflat

x,y , Csea
x,y are to-

pographic corrections to reproduce higher wind speed over ridges, big valleys,
flat regions, offshore areas and lower wind speed on canyons and narrow valleys.
Corrections are based on linear regressions with respect to specific features. This
empirical approach relies on prior physical knowledge for the generation of the
relevant terrain features. The length scales used to compute the terrain features
are set up heuristically.

3 Data Preparation with Feature Generation

The mean annual wind speed at 50m above ground (period 1987-2006) is ob-
tained from a set of permanent and temporary weather stations [9] resulting in a
total of 148 measurements. A test set of 48 measurements was reserved to carry
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out the models assessment throughout the study. Model selection was performed
by controlling the 10-fold cross-validation root-mean-squared error (RMSE) on
the training set of 100 measurements.

The first three predictive features used in this study are (X,Y,Z) coordinates.
Topography-related features were extracted from DEM using convolutional fil-
ters. Gaussian smoothing filters were used to create the first subset of features.
By subtracting the two smoothed DEM surfaces obtained with different smooth-
ing bandwidths one highlights ridges and canyons, as shown in Fig. 1. These
features are referred to as Differences of Gaussians, DoG. The set of DoGs is
generated by gradually increasing the widths of the smoothing kernels. The re-
sulting set of features describes terrain convexity at different spatial scales. The
second set of features is computed by evaluating directional derivatives at a num-
ber of different scales as well. The third set of features is generated by computing
terrain slopes with the same principles.

Finally, the resulting dataset is composed of 57 features and 1 target variable:
[X,Y,Z — 17 DoG — 21 Directional Derivatives — 16 Slopes — Wind Speed]. Consecutive
features are correlated since they are computed at similar spatial scales. MAT-
LAB software was used for the experiment. SVR and simpleMKL codes can be
downloaded from [10].

DoG Small Scale DoG Large Scale

Fig. 1. Example of features computed at different scales (differences of Gaussians)

4 Experiments and Results

The data-driven method for the task of wind speed mapping has to be inter-
pretable in describing the obtained result and exploring the spatial length scales
of the terrain features. In the next sections, SVR is applied for wind speed pre-
diction and the appropriateness of Multiple Kernel Learning SVR in providing
the means for feature selection and exploratory analysis is investigated.

4.1 Wind Speed Prediction with SVR

Comparisons between SVR trained using only X,Y,Z coordinates (SV Rx,y,z) and
SVR trained with the complete set of 57 features (SV Rx,y,z+features) is given
in Table 1. In all the experiments of this paper, the Gaussian RBF kernel was
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used. The parameters were tuned according to the minimum of 10-fold cross-
validation RMSE, resulting in: C = 1, ε = 0.7, σ = 0.6 for the SV Rx,y,z and
C = 10, ε = 0.3, σ = 5 for the SV Rx,y,z+features. An improvement in prediction
performance is observed when using the full set of features. The presence of
non-linearities in the wind-topography relationships can be observed by the low
performance of the linear SVR (linear kernel).

4.2 Analysis of Multiple Kernel Learning SVR

In this case study, the use of MKL-SVR as a predictive and feature selection
method is explored by applying it to the sets of features of increasing size. There
are two basic directions to expand the baseline kernel model using MKL. First,
it can be done in terms of the number of features (or the groups of features)
included separately through an individual kernel. Second, each feature can be
included to the model through several kernels of different parameters (for ex-
ample, bandwidths of Gaussian RBF). In the first case, MKL acts purely as
a feature selection method. In the second case, MKL is expected to select the
features and an optimal kernel parameter from the fixed set.

The following cases are considered in this study:

1. MKL− SVR4gr×1σ. MKL with 4 groups of features: first group is composed
of X,Y,Z coordinates, the second one by the features computed at small
spatial scales (Fig. 1, left), the third one and the fourth one are respectively
the feature subsets at medium and large spatial scales (Fig. 1, right). The
bandwidth of the kernel for each group is then tuned with 10-fold cross-
validation, resulting in a grid search in 4-dimensional parameter space.

2. MKL− SVR4gr×3σ. MKL with 4 groups of features as above, with 3 different
bandwidths allowed for each group. Here MKL is tested for its ability to find
appropriate bandwidth to avoid the costly cross-validation.

3. MKL− SVR57f×1σ. MKL with 57 features included with individual kernels
of fixed bandwidths. Here MKL is tested for its usefulness as a feature se-
lection method.

4. MKL− SVR57f×4σ. MKL with 57 features included with individual kernels
of 4 bandwidths of choice. MKL is tested as a method for simultaneous
feature and hyper-parameters selection.

Table 1. Performances of SV Rx,y,z and SV Rx,y,z+features

Method #Kernels Eff. #Features cv-RMSE ( m

s
2 ) test-RMSE ( m

s
2 )

SVRx,y,z 1 3 1.1141 0.9653

SVRlinearx,y,z+features 1 57 1.3346 1.0078

SVRx,y,z+features 1 57 1.0586 0.7146

MKL − SVR4gr×1σ 4 39 1.0051 0.7116

MKL − SVR4gr×3σ 12 16 1.0383 0.7977

MKL − SVR57f×1σ 57 31 1.1203 0.9868

MKL − SVR57f×4σ 228 27 1.1111 1.1141

SVR31features 1 31 1.0475 0.6487
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The obtained results are summarized in Table 1. We describe below some par-
ticular interesting findings in more details.

MKL for Selecting Groups of Features and Optimal Parameters. The
models MKL− SVR4gr×1σ and MKL− SVR4gr×3σ showed that MKL is suc-
cessful in finding appropriate hyper-parameters for the groups of features. With
the first model, the bandwidths are found with extensive grid search by cross-
validation as σ=0.5 for spatial location, σ = 3 for small scale features, σ = 3
for medium scale features and σ = 7 for large scale features. Fig. 2 (left) shows
the importance of each feature subset (weights dm provided by MKL). The large
scale features kept as a whole could be discarded.

0
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0.15
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0.25

0.3

0.35

σ=0.5

σ=3 σ=7
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Fig. 2. Weights associated to feature subsets; location and medium scale features are

the most relevant ones

SimpleMKL was able to appropriately identify the optimal bandwidth from
the set (library) of sigma={0.5, 3, 7} for each subset. Fig. 2 (right) presents
the distribution of weights dm. The results coincide well for location features,
medium and large scale features (which are almost neglected) with the ones
obtained with cross-validation.

MKL for Feature Selection. Approaching individual feature selection is pos-
sible if one provides at least one single kernel to each feature. This situation
can be further extended by providing a library of kernels to each feature, i.e.
a set of possible kernel widths. Two models are considered, MKL− SVR57f×1σ

and MKL− SVR57f×4σ. The results obtained are presented in Table 1. The first
method needs the optimization of 57 weights corresponding to the number of
features in the dataset. The second method has to optimize 57 · l weights, where
l is the number of possible kernels per feature, resulting in 228 kernels.

The weights dm after using the first method (MKL− SVR57f×1σ) are shown
in Fig. 3 (left). A total of 31 of 57 features are clearly selected. As cross-validation
is not feasible in the space of 57 parameters, MKL was applied for the latter task
as well. This second experiment was carried out by building a library composed
of 4 kernels per each feature, σ = {0.25, 0.5, 0.75, 1.5}. Features with 0 weights in
all their kernels were discarded. The experiment was repeated for 100 different
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Fig. 3. Weights associated to each feature in a single run (left) and results of selecting

features over 100 runs (right). Spatial coordinates and altitude (1:3), small scale DoG

(4:7), medium DoG (20:24), large DoG (36:42), large scale slopes (53:57) and some

directional derivatives (14, 27, 29:31) dominate.

SVR Prediction Mapping
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Fig. 4. SVR prediction mapping with the subset of 31 features; visual inspection of

wind patterns with respect to topography is also important

training-test splits of data to analyze the stability of the set of selected features.
It was observed that MKL is consistent in selecting the features and their kernel
parameters (right side of Fig. 3).

One can notice significant decrease in model performance in terms of test
RMSE (Table 1). It is due to the high number of kernels compared to the number
of training examples. MKL gives insights about the importance of single features,
but it cannot be applied as final prediction model because of the high ratio
between the number of weights and the number of training examples. In this
extreme limit of using 228 kernels for 100 training samples MKL fails to provide
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predictive model but is stable and consistent in selecting the relevant features.
Surprisingly, the use of SimpleMKL as a filter method followed by the standard
SVR applied to the set of non-zero weighted features (31 features) gives best
results with cvRMSE = 1.0475 and tstRMSE = 0.6487. Final prediction map
for the successful prediction model SVR31features is shown in Fig. 4 and the
corresponding testing scatterplot is shown in Fig. 5.

MKL and Trade-off Parameter C. MKL method was found to be very sensi-
ble to the choice of parameter C, which is known to be the parameter penalizing
the misfit to the training samples. Fig. 6 presents the results of experiments
illustrating the behaviour of MKL− SVR57f×4σ model, that is, an MKL scheme
applied for simultaneous feature and parameter selection with 228 subkernels.
For small values of C, MKL tends to select the single or few features from the
available set. With increasing C, the number of selected features increases and
they receive equal weights (the variance of the distribution of weights decreases
as shown in Fig. 6, left). The trade-off between the number of features (inter-
pretability of the model) and its predictive performance can be controlled with
cross-validation. These findings are confirmed by low testing error, Fig. 6 (right).
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5 Conclusions

Due to its robustness and suitability for working with high-dimensional input
data for modelling non-linear dependencies, Support Vector Regression provided
good results in spatial prediction of the wind speeds. To enhance the inter-
pretability of this kernel-based predictive model, in this paper we explored the
use of the Multiple Kernel Learning scheme, that wraps an SVR trained with a
linear combination of kernels and finds the optimal combination of input features.
We applied it to the predictive mapping of wind speed aiming at detecting the
optimal characteristic length scales of different topographic features influencing
the phenomenon.

The empirical studies of the real-life data provided interesting insights about
its use for feature selection. MKL scheme was found to be successful both in
detecting meaningful features and suitable kernel parameters. The sensitivity to
hyperparameters (particularly, the data fit vs. complexity trade-off parameter of
SVR) in finding the optimal distribution of weights was investigated.

The definition of the optimal kernel library (based currently on the prior
knowledge) remains an open question and it is currently one of the limitations
of the algorithm. Irrelevant kernel libraries associated with difficult and small
datasets may lead to overfitting as shown empirically in [11]. Since the distance
metrics induced by real processes is often variable over the input space, the
non-stationarity of kernel functions is also an important research issue. Future
promising perspectives for environmental data modelling concern the use of MKL
for integrating multisource data from monitoring networks, for the modeling of
joint multiscale physical processes, which need different types of kernels, and for
automatic feature selection.
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Abstract. Anomaly detection in data streams requires a signal of an

unusual event, but an actionable response requires diagnostics. Conse-

quently, an important task is to isolate to the few key attributes that

contribute to the signal from among a large collection. We introduce this

contributor problem to the machine learning community and present

a solution for monitoring in modern systems (with nonlinear reference

conditions, high dimensions, categorical attributes, missing data, and so

forth). The objective is to identify attributes that contribute to a sig-

nal, for both individual and multiple anomalies, or from several anomaly

groups. Although related to the feature selection problem, the extreme

sparseness of anomalies leads to scores that are designed specifically for

the contributors problem. Statistical criteria are provided to quantita-

tively address decision rules and false alarms and the method can be com-

puted quickly. Comparisons are made to traditional contribution plots.

1 Introduction

The importance of anomaly detection has grown from manufacturing to include
systems such as environmental, security, health, supply chains, transportation,
etc.. The goal is to monitor a data stream from a system to detect an unusual
event, with a minimum of false alarms. For modern systems, one often monitors
a large number of attributes that might be mixed (numerical and categorical),
missing, redundant with complex relationships, etc. This makes it more difficult
to diagnose a signal for an effective response. However, an anomaly often mani-
fests itself through only a fraction of the full set of attributes. Consequently, an
important task is to filter the large set of attribute to those that contribute to
the signal. These attributes can be further studied in more detail to complete
the diagnosis. The objective of this work is to identify these contributors among
a large collection of attributes. For example, suppose one monitors the RPM
of a pump, the pressure differential across the pump, and numerous other pro-
cess variables. A clog in the line could manifest itself through a high RPM but
without the expected pressure differential. These two attributes are expected
to contribute to a signal (possibly others could also) and should be a focus for
further diagnosis.
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under Grant No. 0743160.
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This diagnosis component is known in the statistical literature as a contrib-
utor problem and it occurs daily in diverse industries. The problem has been
handled previously primarily though principal components analysis (and further
comments appear below). Here we introduce a machine learning solution for
this important problem and a promising direction for further research from the
machine learning community. The objective here is to handle the complexity in
data from modern systems and still provide effective methods to identify the
contributors. The diagnosis task is related to feature selection, but typically a
signal contains only one (or a few) instances of data and this makes the con-
tribution problem more difficult. It is from such a very sparse sample that the
contributors need to be identified.

We consider anomalies that consist of either individual or small groups of in-
stances in unsupervised learning problems. These anomalies are assumed known
prior to the contributor calculations, but we summarize our approach to de-
tect anomalies in a following section. Attributes can be detected as contributors
whether they affect the signal directly or through interactive effects. We focus on
the high-dimensional problem with numerous attributes and a method that can
be computed quickly. Furthermore, we provide a statistical criterion to quanti-
tatively evaluate attributes for contributors.

Although the focus here is on contributors we briefly summarize our approach
to detect anomalies in Section 2. Section 3 describes traditional methods for the
contributor problem and Section 4 presents our new approach. Section 5 provides
illustrative examples and compares to traditional contribution plots and Section
6 provides conclusions.

2 Anomaly Detection with Artificial Contrasts

An interesting approach for anomaly detection is to transform the problem to
supervised learning. Our method was presented in detail by [1] and summarized
here. Let S0 denote a set of reference data that represents the normal operating
conditions of a system. Supplement S0 with simulated, artificial instances, de-
noted as S1, that are generated to be structureless in order to contrast with any
structure in S0. Several methods to generate the artificial data are possible. For
every numerical attribute in S0 generate uniformly distributed data in S1 that
covers the range of the attribute. For categorical attributes we usually randomly
permute the actual attribute values (and this could also be used for numerical
attributes). For each attribute, the artificial data is generated independently so
that structureless data is created in S1. Then a class attribute y is created and
defined as yi = 1 xi ∈ S0 and zero otherwise.

A suitable learner f(x) is trained to distinguish the class 0 and 1 data. Given
a future instance x0 if the learner assigns it to class 1 it can be distinguished
from the reference data in S0 and x0 is flagged as an anomaly. These results
can generalize monitoring in several directions (such as arbitrary, nonlinear ref-
erence conditions, fault knowledge, and categorical variables). High-dimensional
problems can be handled with an appropriate learner. Extensions to tune the
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algorithm were presented by [2]. A related approach for anomaly detection was
presented by [3]. An alternative method such as a density estimate would at-
tempt to learn the entire density of the S0 data. Instead the supervised learner
focuses on the differences between the S0 and S1 classes to detect changes from
S0. Anomaly detection is a only a preliminary step and the focus of the work
here is work is to determine the contributors to the signal.

3 Traditional Methods for Contributors

The contributor problem has been addressed in the statistical literature through
principal components analysis (PCA). PCA and the related partial least squares
(PLS) approach are the only methods that have been been applied to the con-
tributor problem. Only PCA is summarized here because, as discussed by [4], the
optimization used in PLS often results in a solution similar to PCA. Although
PCA is widely applied, it is rooted in normally distributed assumptions and
uses transforms to numerical attributes. PCA computes latent variables with
maximum variance subject to the constraint that the variables are orthogonal.
Also, the method is sensitive to the scale for attributes, and and therefore re-
quires that an appropriate scale be selected. In most application the attributes
are standardized (zero mean and unit standard deviation) and for simplicity we
assume this here.

Given training data with N instances and M attributes, let X denote the
N ×M matrix of standardized data. The covariance matrix calculated from this
data is

S = XT X

The data in X is summarized by derived (also called latent) attributes that are
computed from an eigenvalue and eigenvector decomposition of S. For most data
sets with sufficient sample size the eigenvalues are unique and greater than zero.
Assume that the eigenvalues of S are λ1 > λ2 > . . . > λp > 0. The kth latent
variable is Zk = Xvk for k = 1, 2, . . . , p, where vk is eigenvector corresponding
to the λk (the kth largest eigenvalue). The proportion of variability explained
by the kth latent attribute is defined to be the variance of Zk divided by the
sum of the variances of all Zk’s. This can be shown to equal

λk

λ1 + λ2 + . . .+ λp
=

λk

trS

Often K < p latent attributes are used to summarize the full data. Here K might
be selected so that the total proportion of variability explained by the first K
latent variables exceeds 80%.

Two common statistics are used to monitor for anomalies. A reduction to K
latent variables is based on the proportion of variability explained. Let {Z01,
Z02, . . . , Z0K} denote the first K latent scores for a data instance x0. Hotelling’s
T 2 statistic [5] is applied to these latent variables as follows

T 2
0 =

K∑
k=1

Z2
0k

λk
(1)
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Here T 2 measures the (Mahalanobis) distance of data instance x0 from the cen-
troid x̄ after a projection to the subspace defined by the first K latent variables.
An anomaly is signaled if this distance is too large.

Because Hotelling’s T 2 statistic is not sensitive to anomalies that are far from
the subspace of the latent variables a second statistic is used that is sensitive to
the distance from this subspace. The squared prediction error (SPE) is

SPE0 = (x0 − x̂0)T (x0 − x̂0) (2)

where x̂0 =
∑K

k=1 Z0kvk is the projection of x0 to the subspace spanned by the
first K eigenvectors v1,v2, . . . ,vK .

Given a signal from an anomaly detection algorithm the PCA contribution
score of x0 to T 2 was discussed by [6]. The kth PCA score for the x0 instance
is Z0k = xT

0 vk and term for attribute j is x0jvjk. The PCA contribution score
of attribute j for data instance x0 to T 2 as defined by [7] is

C(T 2, x0) =
K∑

k=1

Z0k(x0jvjk)
λk

(3)

and this can be interpreted as using the term x0jvjk in the T 2 statistic in (1).
Similarly, the PCA contribution score of attribute j for x0 to SPE is calculated
from the jth term of (2) as

C(SPE, x0) = (x0j − x̂0j)2 (4)

We also applied a different type of scoring function in previous work [8] but the
method proposed here is much different and easily scales to multiple attributes.

4 Contributors Algorithm

Suppose we have already dealt with anomaly detection problem using an appro-
priate learning approach. Then a supervised method can be applied to estimate
contributions to the chosen group or several groups of anomalies (identified by
the user or by an automatic clustering procedure). Let S0 denote the reference
data from normal operations and let Si, i = 1, . . . ,K denote the ith selected
group among K groups of anomalies. We define a categorical multi-class response
(which reduces to binary if there is only one group of anomalies), where class 0
corresponds to samples in S0, and class i to samples from Si, i = 1, . . . ,K. In
this supervised framework contributors can be related to important attributes in
a feature selection problem, but with some important changes. In our previous
work with the ACE feature selection algorithm [9,10,11] a hybrid of parallel and
serial tree ensembles was used. Attribute scores in a tree are often computed
from the decrease in an impurity measure (such as the Gini index). For the con-
tribution problem the attribute importance scores in a random forest (RF) tree
ensemble [12] are modified.
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Given an RF ensemble, each instance in Si follows a path through nodes (for
each tree in the ensemble) that ends at a leaf node. For each node a specific
attribute generates the split based on the change in impurity from the parent
to child node. In each tree node, instead of using the Gini index impurity re-
duction wrt a multiclass response, we use the Gini index impurity wrt a binary
response corresponding to the selected outlier group. Furthermore, if the split-
ting attribute is numerical, this index is weighted by difference of the splitting
attribute’s means in the child nodes. This allows us to target a particular group
of anomalies and factor distance into account at the same time (so that more
distant anomalies have higher contribution scores, as opposed to the plain Gini
index that only reflects separation of anomalies from other instances).

The details of the algorithm follow.

1. Define a target attribute as yi = i xi ∈ Si, i = 1, . . . ,K and zero otherwise.
2. Build an RF model for this target. Let Tk(xi) denote the predicted target

from the k-th tree for instance xi. The prediction from the ensemble is a
vote from the trees. That is, each tree generates response a Tk(xi) and the
class that has the maximum number of votes is taken as the prediction from
the ensemble.

3. Compute the contributions of an attribute to a selected group of anomalies
Sk. The contribution calculation is based on the tree ensemble. Select an
attribute Xi. For each node T in each tree, where the split variable is Xi, and
the left and right child nodes are TL, TR correspondingly, the contribution
score of Xi is increased by the following term:

Ginik(T )× |x̄i(TL)− x̄i(TR)|
std(Xi)

(5)

where x̄i(TL), x̄i(TR) are mean values of Xi variable in the child nodes
(computed from non-missing values), and std(Xi) is the standard devia-
tion of Xi calculated over the 5%-95% percentile range on the whole sample.
Here Ginik(T ) is the Gini index impurity reduction in node T wrt the bi-
nary response for group Sk with equal priors. More exactly, if we denote
counts of samples in and out of the Sk group in node T as nk0(T ), nk1(T ),
and proportions of those samples in the whole data set S, |S| = N as
pk0 = |Sk|/N, pk1 = 1 − |Sk|/N , we can define impurity for group Sk in
node T as

Ik(T ) =
2nk0(T ) · nk1(T )/(pk0pk1)
nk0(T )/pk0 + nk1(T )/pk1

then define Ginik(T ) as

Ginik(T ) = |T | · Ik(T )− |TL| · Ik(TL)− |TR| · Ik(TR) (6)

For a categorical variables the scaling term |x̄i(TL) − x̄i(TR)|/std(Xi) is
replaced by 1.

4. Incorporate statistical criteria to identify the statistically significant con-
tributors. Contribution scores from actual variables are compared to the
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corresponding scores for artificially constructed attributes that do not con-
tribute to the anomaly groups. For each actual attribute Xj we generate an
artificial attribute, denoted as X∗

j through a random permutation of the val-
ues of Xj . This artificial attribute has the same distribution as the original
attribute but no predictive power for the anomaly groups. Then we build
R small RF ensemble models Gr , r = 1, . . . , R on input data containing
both the original and artificial attributes. Typical values for R is 20 and for
the number of trees in the ensemble is 20 − 50. This can be made larger
if the number of attributes is large and our typical heuristic for the num-
ber of trees in the ensemble is min(30,

√
M) where M is number of original

attributes. After we compute the contribution score Ckjr for each outlier
group Sk, each attribute Xj , j = 1, . . . ,M , and the tree ensemble Gr and
the corresponding scores C∗

kjr for artificial attributes, we apply a statistical
test to select contribution values significantly greater than the contribution
from the artificial attributes.

To achieve this goal, we calculate an α-quantile C∗α
kjr (typically 80% ≤

α ≤ 100%) of the contribution scores C∗α
kr , j = 1, . . . ,M from all the artificial

attributes. The differences Ckjr − C∗α
kr , r = 1, . . . , R for each attribute Xj

and group Sk are compared to zero through a Student’s t-test and the p-
value (significance level). A significant p-value (< 0.05 for example) is used
to identify an attribute that contributes to a separation of group Sk. The
replicates require an attribute to be a consistently stronger contributor than
the artificial attributes. Furthermore, any standard method can be applied
to the p-values to control the false alarms. We often use the Bonferroni
adjustment and for M actual variables we require p-values smaller than
0.05/M .

On large data sets where number of samples N and number of attributes M
is large the ACE contribution method can be considerable faster than methods
rooted in linear regression like PCA. For example PCA has computational com-
plexity O(NM2 + N3) if N > M . However, most time consuming operation of
our method is building RF models. For 20 series of RF models with 30 trees,
where each tree has time complexity N · √N · √M we get O(N · √N · √M)
complexity. Even if we use above-mentioned heuristic for number of trees in
ensemble Ntrees = min(30,

√
M), we have O(N · √N ·M) complexity.

5 Experiments

The existing competitive methods for the contribution problem are PCA (or
the similar PLS approach). These can be effective for linear models and low
dimensions. Consequently it is not as useful to investigate a large collection of
data sets as it is to focus to two scenarios of interest: nonlinear models and high
dimensions with many noisy attributes. We illustrate the limitations of PCA in
these cases.
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5.1 50-Dimensional Independent Data

Reference data is simulated from 50 uncorrelated attributes with 500 instances
(rows). Each is normally distributed with mean zero and standard deviation one.
Anomalies are generated from uncorrelated normal distributions with means zero
and larger standard deviations (equal to 5). The anomalies are generated from
two of the 50 attributes and the goal is to recover these attributes. Figure 1 shows
a projection of the data to the plane defined by the two contributor attributes for
10 cases (each case has different pair of contributors). There are two anomalies
instances (shown in red).

Fig. 1. Scatter plots in the plane of the two contributor attributes for 10 cases. Each

case shows the two anomalies as open (red) circles and the reference data as the solid

central group.

Figure 2(a) shows plots of contribution scores from the ACE contribution
algorithm for the 10 cases. The bars in red are scores that are significant. The
two contributors were correctly detected except for all cases; in case 7 it happened
that only one (correctly detected) attribute separates both outliers. False alarms
also occurred in cases 3,5, and 7 but the contribution scores were still relatively
small in these cases. Among the 10 cases 48 × 10 = 480 attributes did not
contribute to the anomalies so that our false alarm rate is low.

Figures 2(b) and 2(c) show the contribution scores obtained from the PCA
statistics T 2 and SPE, respectively, for the experiments with two contributors.
Sometimes the PCA statistics can detect one of the two contributors, but in
general the accuracies are low and without a quantitative criterion it is difficult
to identify the contributors in many of these experiments (even though the data
are normally distributed).

5.2 Nonlinear Data

Another experiment considers two groups of equal size with nonlinear separation.
Two attributes (X1 and X2) contribute to the separation and 10 other random
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(a) Contributor plots from the ACE algorithm. The bars in red are scores that are

significant.

(b) Contributor plots from PCA T 2

(c) Contributor plots from PCA SPE

Fig. 2. Contributor plots from ACE, PCA SPE and T 2 for experiments with exactly

two contributors among 50. Actual contributors are shown in the Figure 1. ACE cor-

rectly detects contributes in most cases while PCA statistics can detect one of the two

contributors, but in general the accuracies are low and without a quantitative criterion

it is difficult to identify the contributors in many of these experiments.
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attributes are present in the data. A scatter plot of the data in the X1 and X2
dimensions is shown in Figure 3(a). The contribution plots from SPE, T 2 and
the ACE contribution method, are shown in the left, center, and right of Figure
3(b), respectively. The ACE contribution method correctly identifies only X1
and X2 as the contributors without false alarms. The other plots are not even
close to correct contributions.

(a) Scatter plot for two con-

tributors {X1, X2} with 10

noise attributes

(b) Contribution plots for the nonlinear data from SPE, T 2 and

the ACE contribution method, are shown in the left, center, and

right graphics, respectively

Fig. 3. For the nonlinear data ACE correctly identify attributes {X1, X2} and neither

of the PCA methods is even close to the correct solutions

6 Conclusions

The contributor problem is introduced to the machine learning community and
a solution for the complexity of data from modern systems is described. Modi-
fied scores are used in trees ensembles to account for the extreme sparseness of
anomalies. Linear methods based on principal components often fail to detect
contributors in anomaly detection, especially in the presence of noise. The lin-
ear methods are sensitive to scaling. Furthermore, linear methods rarely work
when groups are separated by a non-linear boundary. The principal component
methods only rank the attributes in terms of their separation power and do not
indicate which are irrelevant. The proposed method works equally well for linear
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and non-linear cases in terms of diagnostics. One can identify (and rank) only
attributes that contribute to the separation of the groups. It is insensitive to
noise and identifies contributions for any anomaly group including a single (or a
few data points) using a robust, nonparametric technique with statistical criteria
to select contributors.
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Abstract. Reliable localization techniques applicable to indoor environ-

ments are essential for the development of advanced location aware ap-

plications. We rely on WLAN infrastructure and exploit location related

information, such as the Received Signal Strength (RSS) measurements,

to estimate the unknown terminal location. We adopt Artificial Neural

Networks (ANN) as a function approximation approach to map vectors

of RSS samples, known as location fingerprints, to coordinates on the

plane. We present an efficient algorithm based on Radial Basis Function

(RBF) networks and describe a data clustering method to reduce the

network size. The proposed algorithm is practical and scalable, while the

experimental results indicate that it outperforms existing techniques in

terms of the positioning error.

Keywords: Localization, WLAN, Fingerprinting, Received Signal

Strength, Radial Basis Function Networks.

1 Introduction

Localization techniques are used in order to determine the position of people,
mobile devices and equipment. The provision of reliable location estimates is a
challenge, especially indoors where satellite-based positioning is infeasible. Po-
sitioning accuracy is the key issue to effectively support indoor location aware
services. Indicative applications include in-building guidance, asset tracking in
hospitals or warehouses and autonomous robot navigation.

A wide variety of localization techniques have been discussed in the literature
and can be categorized according to the type of measurements employed in the
underlying positioning algorithm. Location is estimated with angle, timing or
signal strength measurements from a number of transmitters with known loca-
tions by utilizing radio signal propagation models [1]. However, the presence of
non line-of-sight paths between the receiver and the transmitter can cause accu-
racy degradation. Especially indoors, where multipath conditions are prevalent,
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model inaccuracies may lead to high positioning errors; see [2] for an overview
of technologies for wireless indoor location systems.

Localization performance in indoor environments can be improved by utiliz-
ing a premeasured map of Received Signal Strength (RSS) measurements. In
this case, a set of predefined locations is associated with vectors containing RSS
values from neighboring transmitters. These vectors, referred to as location fin-
gerprints, are collected offline and stored in a database followed by the location
coordinates. The unknown location can then be estimated on line from the cur-
rent RSS fingerprint by finding the best match in the database. Matching is
based on a distance measure between the current and collected fingerprints or
on probability distributions [3,4,5].

Artificial Neural Networks (ANN) have been proposed as a solution to the
location determination problem [6,7,8,9,10]. We adopt ANNs in a function ap-
proximation scheme to map RSS fingerprints in the high dimensional input sig-
nal space to locations in the physical space. In the envisioned indoor localization
system data collected offline is used to train the ANN. Subsequently, when a
mobile device running a location-based application enters a building, it receives
the parameters of the trained ANN and is enabled to localize itself by using
the currently measured RSS fingerprints. As a result, it is desirable to have an
ANN-based algorithm that is computationally efficient and requires a small set
of parameters in order to keep the communication cost low. Moreover, the ANN
needs to be easily retrained in case the information in the database is outdated
or new data become available. In this context, we evaluate different ANN models
namely the Multi Layer Perceptron (MLP), Radial Basis Function (RBF) and
Generalized Regression Neural Network (GRNN) for the implementation of the
localization method.

The rest of this paper is structured as follows. In Section 2 the problem is
defined and we briefly describe the related work in this area. In Section 3 we
present the WLAN experimental setup used to conduct the measurements. The
ANN designs and the proposed method based on RBF are detailed in Section 4.
In Section 5 the positioning accuracy results are presented and we discuss the
advantages and drawbacks of the ANN implementations. Finally, Section 6 pro-
vides concluding remarks and discusses future work.

2 Indoor Localization Overview

2.1 Problem Formulation

We introduce the theoretical framework for localization techniques based on
fingerprints, assuming a WLAN infrastructure and availability of RSS measure-
ments from neighboring Access Points (AP). Let D ⊂ R

2 be a 2-dimensional
physical space denoting the area of interest. We define the finite set of locations
L ⊂ D known as reference points, where L = {�i ∈ D|�i = (xi, yi), i = 1, · · · , L}.
At each location �i ∈ L a mobile device is used to collect RSS measurements
from n neighboring APs. Thus, we form an n-dimensional input space denoted
by S. A reference fingerprint s ∈ S is a vector of RSS measurements collected



956 C. Laoudias et al.

at location �i, i.e. s = [s1, · · · , sn]T and sj denotes the RSS value related to the
j-th AP. The reference points, can be placed over a uniform grid to cover the
entire area with the desired resolution. However, the grid is usually non uni-
form and sparse due to building walls, furniture and other objects that limit
the area where measurements can be performed. At each reference point �i ∈ L
we collect a series of fingerprints s(�i,m), m = 1, · · · ,M and thus the database
contains R = L ·M fingerprints followed by the respective location coordinates.
We also define the mean value fingerprint s(�i) = 1

M

∑M
m=1 s(�i,m). During lo-

calization the goal is to obtain an estimate denoted as �̂, given a fingerprint
s′ = [s′1, · · · , s′n]T that is measured at the unknown location.

2.2 Fingerprinting Techniques

Several approaches have been discussed for indoor localization using RSS finger-
prints that are briefly described next.

In the deterministic approach, �̂ is obtained by minimizing a given norm of
the difference between s′ and the reference fingerprints. The Nearest Neighbor
method introduced in [3], assumes the Euclidean distance as the optimization
criterion and thus �̂(s′) = argmin�i ‖s′ − s(�i)‖2. In this case �̂ ∈ L. The K

Nearest Neighbors (KNN) variant [3] determines �̂ ∈ D as the centroid of the K
locations with the shortest distances between s′ and the mean value fingerprints.
Weighted versions of the KNN algorithm have also been proposed.

From a probabilistic point of view, location is determined by calculat-
ing the conditional probabilities p(�i|s′), ∀�i ∈ L. Then, the estimated loca-
tion �̂ ∈ L may be obtained by �̂(s′) = arg max�i p(�i|s′), as in [4]. Alterna-
tively, authors in [5] calculate the expected value of the location variable �,
i.e. �̂(s′) = E[�|s′] =

∑L
i=1 �ip(�i|s′), in order to obtain the Minimum Mean

Square Error (MMSE) estimate �̂ ∈ D. By application of Bayes rule the problem
reduces to calculating p(s′|�i). Assuming that RSS measurements from neighbor-
ing APs are independent we get p(s′|�i) =

∏n
j=1 p(s

′
j |�i). Different methods have

been proposed to estimate p(s′j |�i) by utilizing the fingerprints in the database,
namely the Kernel and Histogram methods [4,5]. In general, probabilistic tech-
niques achieve higher positioning accuracy compared to the deterministic ones,
at the expense of increased computational complexity.

2.3 Artificial Neural Network Approaches

In the context of ANNs, localization can be viewed as a classification problem.
Each reference point defines a class and in this case the output of the ANN is
one of the reference points �i ∈ L. Authors in [6] extend this approach by using a
L× 1 vector output for the network. The vector output provides the probability
of s′ belonging to each class and �̂ ∈ D is obtained as the weighted mean of the
respective reference points.

Alternatively, estimating current location can be viewed as a function ap-
proximation problem. The objective is to find a mapping F(s) : S → D of RSS
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fingerprints onto locations in the physical space. Recently, RBF networks have
been discussed for localization in Wireless Sensor Networks (WSN). In [7] dis-
tance measurements from three beacon nodes, instead of RSS fingerprints, are
utilized to evaluate the performance of RBF networks and compare to MLP and
Recurrent Neural Networks (RNN) architectures. In [8] location is estimated
with a RBF network using RSS measurements, however the number of neurons
in the hidden layer is decided experimentally and can be very high thus increas-
ing the computational cost. Positioning techniques based on ANNs have also
been applied to areas where WLAN infrastructure is available. Authors in [9]
propose a MLP architecture with a single hidden layer to perform localization
using RSS measurements from three WLAN APs. A GRNN architecture, which
is a RBF-type network with slightly different output layer, is proposed in [10]
to determine location using RSS values from three transmitters.

In this paper we evaluate MLP, RBF and GRNN architectures using RSS
measurements from ten WLAN APs. We focus on RBF networks and discuss
a clustering method to reduce the size of the hidden layer and improve the
computational complexity. In addition, this approach alleviates some of the over-
training problems of standard RBF networks. Experimental results indicate that
the proposed clustered RBF design outperforms the deterministic approach and
provides higher level of accuracy compared to MLP and GRNN.

3 Experimental Setup

The localization trial was carried out in a typical modern office environment at
the premises of VTT Technical Research Centre in Espoo, Finland. The mea-
surement campaign was conducted in the second floor of the 3-storey building,
where n = 10 Cisco Aironet APs that use the IEEE802.11b/g standard are in-
stalled. We developed a Site Survey software that utilizes a floorplan map to
mark L = 107 distinct reference points located 2-3 meters apart from each other
in order to cover all public spaces and meeting rooms; see Fig. 1. RSS samples
were collected with 1dBm resolution by using a WLAN-enabled smart phone.
This resolution, though accurate enough for some applications, it introduces
some “quantization” error since two locations that are very close to each other
cannot be distinguished. This resolution depicts the lower bound of the error
that any localization technique (using RSS measurements) can achieve. Typical
RSS values range from -101dBm to -34dBm in close proximity to an AP. In case
an AP was not hearable at a reference point, a small constant (-110dBm) was
used to handle the missing RSS values in the fingerprints.

We have measured 30 fingerprints per reference point and selected randomly
M = 25 out of these, corresponding to a total of R = 2675 fingerprints, which
are stored in the database. This is our training set, while the remaining 5 finger-
prints per reference point are kept as a test set for the performance evaluation
of the ANN architectures described in Section 4. Additional fingerprints were
also collected independently of the training set during a separate measurement
campaign to form a second test set by following a predefined route that consists
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Fig. 1. Floorplan map with the reference points and AP locations

of 192 locations. One fingerprint was recorded at each location and the same
route was sampled 3 times.

4 Artificial Neural Network Architectures

4.1 Multi Layer Perceptron (MLP)

The fully connected MLP network has ten inputs, corresponding to the RSS
measurements from all available APs, while the output linear layer has two neu-
rons representing the location coordinates (x, y). We use the sigmoidal transfer
function for neurons in the single hidden layer. The size of the hidden layer was
decided experimentally trying to keep it as small as possible, while preserving
an adequate level of positioning accuracy. Specifically, we reserved 20% of the
training fingerprints as a validation set and the network that achieved the best
performance on this set was selected. The synaptic weights w were determined
with the standard back propagation algorithm and the validation set was used
as an early stopping method to avoid overfitting the training data. We have also
investigated the use of a separate single output MLP network for each coordi-
nate, x and y. We employed the same validation procedure in order to decide
the network sizes, however the performance of this combination of two MLP
designs on the validation set was degraded. The MLP architecture considered in
Section 5 has 20 and 2 neurons in the hidden and output layers, respectively. We
point out that training of the MLP is rather time consuming and the network
must be retrained in case new data becomes available.

4.2 Radial Basis Function (RBF)

We examine a fully connected RBF network to approximate F(s) : S → D and
use the normalized Gaussian function for neurons in a single hidden layer. The
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network has ten inputs and two outputs. Given a fingerprint s′, the estimated
location �̂ is given by

�̂(s′) = F(s′) =
C∑

k=1

wku(‖s′ − ck‖) =
C∑

k=1

wk
ϕ(‖s′ − ck‖)∑C
j=1 ϕ(‖s′ − cj‖)

(1)

where ϕ(‖s′ − ck‖) = exp
( − β‖s′ − ck‖2

)
. The number of neurons in the hid-

den layer is C, ck is the 10-dimensional center for neuron k, and wk are the
2-dimensional weights for the linear output layer. The value of β must be ap-
propriately selected to ensure that the Gaussian basis functions are wide enough
and the resulting RBF architecture implements a smooth approximation F(s).

In the GRNN architecture each reference fingerprint defines a center ck, i.e.
C = R. The weights wk in (1) are set equal to the coordinates of the respective
reference points and in that sense �̂ is the weighted average of the reference
points whose fingerprints are closest to s′.

However, the weights wk can be determined in order to optimize the fit be-
tween F(s) and the reference data. Thus, one may select the centers ck and the
width β and then form the following set of equations

(xi, yi) =
C∑

k=1

wku(‖s(�i,m)− ck‖), i = 1, · · · , L and m = 1, · · · ,M (2)

In the standard RBF network (sRBF) each reference fingerprint defines the cen-
ter of a neuron. In this case, the system of linear equations based on (2) can be
written in matrix form as Uw = d, where U = {u(‖sj − ci‖)|(j, i) = 1, · · · , R}
and u(·) is the normalized Gaussian basis function given in (1). Matrix d con-
tains the coordinates of the reference points and the weights are easily obtained
by w = U−1d.

The number of neurons in the hidden layer can be reduced dramatically by ap-
plication of a clustering technique on the reference fingerprints. In the clustered
RBF (cRBF) architecture each center is set equal to the mean value fingerprint
s(�i). Thus, C = L and the weights are calculated in a least squares sense by
solving the overdetermined system of equations based on (2). The minimum-
norm solution for the weight vector is w = U+d, where U+ is the pseudoinverse
of matrix U defined as (UTU)−1UT.

The sRBF design guarantees exact fitting for reference data at the expense
of increased hidden layer size. Moreover, it is well known that sRBF is prone
to overfitting and exhibits inadequate generalization capabilities. In [7] it is re-
ported that sRBF outperforms cRBF for the localization problem and the po-
sitioning error is in the order of few cm. However, in that work the evaluation
was conducted in a small scale (3×3 m) experimental test bed with line-of-sight
conditions using low noise distance measurements from 3 beacon nodes. Under
realistic propagation conditions the accuracy of sRBF is degraded. We consider
the sRBF design in our evaluation to verify that when noisy RSS measurements
collected in a real-life WLAN environment are utilized, its performance is poor
compared to the clustered counterpart.
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5 Results and Discussion

The MLP, sRBF, cRBF and GRNN designs are compared in terms of the posi-
tioning error, defined as the Euclidean distance between the actual and estimated
location. We have implemented the deterministic KNN localization method [3]
and use it as baseline for our evaluation. In our experimental setup, the value
K = 2 provides the lowest positioning error and is therefore selected for the rest
of the experiments.

5.1 Test Case 1

The first test set comprises 535 RSS fingerprints in total, i.e. 5 test vectors
per reference point and has the same statistical distribution of positions as the
training set. Table 1 summarizes the accuracy results. The MLP, GRNN and
the proposed cRBF architectures are equivalent regarding the mean and median
positioning error. The results also indicate that the error in half of the location
estimates derived with the KNN algorithm is below 1.9m. This is lower compared
to MLP, GRNN and cRBF, however a considerable fraction of the KNN estimates
exhibit error higher than 10m leading to the same level of accuracy as far as the
mean error is concerned. As expected the sRBF design achieves the highest level
of accuracy for the given test set. Note that during the data collection process
the RSS level in some reference points may not vary much for certain APs
and duplicate fingerprints are recorded. Therefore, there is a high probability
that exactly the same fingerprint is present in both the training and test sets.
The sRBF design guarantees exact fitting for training data and for this reason
the median error is zero. However, sRBF is prone to overfitting and its poor
generalization capabilities are depicted in the maximum positioning error; even
moderate deviation from the training fingerprints leads to significant accuracy
degradation.

5.2 Test Case 2

The RSS fingerprints in the second test set are measured by walking inside the
area of interest. Note that most of the unknown locations do not coincide with
any reference point. Location estimates obtained with the MLP network for a
single route are depicted in Fig. 2 (dots), while the black line denotes the actual
route. The estimated locations for the same route using the sRBF and cRBF
designs are illustrated in Fig. 3 and Fig. 4, respectively. The increased number
of neurons in the sRBF network results in worse localization performance and
the estimates do not reflect the traveled route. The sRBF network is overtrained
and has essentially learned the noise in the reference fingerprints. Even when a
smaller value is used for β, in order to increase the width of the Gaussian func-
tion and create a smoother approximation F(s), sRBF fails to accurately locate
the user when new fingerprints are presented to the network. GRNN location
estimates are depicted in Fig. 5 and higher accuracy is achieved compared to
MLP and sRBF networks.
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Fig. 2. Location estimates with MLP
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Fig. 3. Location estimates with sRBF
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Fig. 4. Location estimates with cRBF
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Fig. 5. Location estimates with GRNN

Positioning error statistics pertaining to the second test set that contains
all fingerprints collected after sampling the same route 3 times are tabulated in
Table 2. The cRBF design has the best localization performance according to the
mean and median error. The standard deviation (Std) of the error is also low and
cRBF is the only network that outperforms the KNN algorithm. This is followed
by the GRNN architecture that achieves the same level of accuracy as KNN.
The sRBF design provides less accurate location estimates compared to cRBF,
GRNN and KNN. Finally, the MLP network exhibits the worst performance for
the given test set and the maximum error is surprisingly high.

The MLP has very low memory requirements for storing the network weights
and biases and essentially the fingerprint database is compressed into a small set
of parameters. Moreover, the MLP is the least computationally intensive, due
to the small number of neurons. In the sRBF and GRNN designs, the weights
and all reference fingerprints are required to perform localization, while they
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Table 1. Test Case 1

MLP sRBF cRBF GRNN KNN

Min 0.2 0.0 0.0 0.0 0.0

Max 10.0 14.3 9.1 8.2 12.2

Mean 2.7 1.9 2.6 2.7 2.5

Median 2.4 0.0 2.3 2.4 1.9

Std 1.7 3.0 1.8 1.8 2.1

Table 2. Test Case 2

MLP sRBF cRBF GRNN KNN

Min 0.1 0.1 0.2 0.1 0.0

Max 29.4 24.0 13.1 17.2 21.4

Mean 5.3 4.6 3.4 3.9 4.0

Median 4.2 3.6 3.0 3.5 3.5

Std 4.4 3.6 2.2 2.5 2.8

exhibit longer estimation time compared to MLP due to the increased network
size. Problems related to storage memory and localization time can be alleviated
by adopting the cRBF architecture. Nowadays, the memory and computational
overhead of all these ANN architectures can be well handled by high-end mobile
devices. However, the transmission overhead to communicate the ANN param-
eters to the device through the WLAN is significant, thus rendering the MLP
and the proposed cRBF designs the best candidate solutions.

The practicality and scalability of each ANN architecture are also critical is-
sues. For instance, the MLP requires long training time, while the back propaga-
tion algorithm suffers from local minima and does not guarantee optimum weight
values. Moreover, the MLP must be retrained in case additional fingerprints are
collected at new reference points to cover more rooms. Another disadvantage is
that the size of the MLP can only be decided experimentally and it is not clear
how the MLP will scale for different number of inputs, e.g. using measurements
from less than 10 APs. On the other hand, the cRBF network can be trained
faster by solving a linear system of equations, while linearity ensures that opti-
mum weight values are found. The structure and size of the neural network can
be decided in a principled manner when the cRBF design is used, thus increas-
ing its applicability to other environments. In case new reference fingerprints are
available the size of the cRBF network is easily decided, while retraining time
can be greatly reduced by using appropriate matrix operations.

6 Conclusions

We have evaluated several ANN designs to perform indoor localization by ex-
ploiting RSS fingerprints collected in a typical office environment. We rely on
WLAN infrastructure to minimize the deployment cost since no specialized
equipment is required. The proposed cRBF algorithm is a promising solution
to the location determination problem that can be easily scaled and applied to
other indoor environments with WLAN coverage. The mobile device needs to
receive only a small number of parameters through the WLAN in order to start
locating itself inside the building. Moreover, experimental results indicate that
the cRBF achieves higher level of accuracy compared to the sRBF, MLP and
GRNN designs, as well as the deterministic KNN algorithm.
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Future work will focus on further improving the cRBF approach by using a
variable selection procedure in order to limit the area where the user may reside
and determine which APs to use in the localization process. We also plan to use
an appropriate network regularization method and variable β values in the Gaus-
sian basis functions, based on the distribution of centers in the multidimensional
signal space, to achieve higher accuracy.
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Abstract. In wireless sensor networks, faulty sensors may produce in-

correct data and transmit the data to other sensors. They may cause

inappropriate data fusion. Furthermore, they would consume the limited

energy and bandwidth of sensor networks. In this paper, we propose a

distributed faulty sensor detection scheme, in which we assume that the

sensor fault probability or reliability is unknown and data to be sensed

has Gaussian distribution with unknown parameters. In the proposed

method, each sensor obtains a global convergency data through data

fusion and makes a local 3-level decision by hypothesis testing against

the global convergency data. A final decision about the sensor is then

obtained by fusing the decisions of its neighbors. The detection is car-

ried out in a distributed fashion as each sensor only communicates with

its neighbors in the entire process. Experiment results demonstrate that

the proposed algorithm is able to achieve higher detection accuracy than

existing methods even without the knowledge of sensor reliability and

parameters of data distribution.

Keywords: Consensus value, data fusion, distributed faulty sensor de-

tection, hypothesis testing, sensor fault, wireless sensor networks.

1 Introduction

Recent advancement in wireless communications and electronics has enabled
the development of low-cost wireless sensor networks. A wireless sensor network
usually comprises of a large number of small sensor nodes, which consist of
sensing, data processing and communication components. The unique features
of a sensor network, for example, random deployment in inaccessible terrains
and cooperative effort, offer unprecedented opportunities for a broad spectrum
of civilian and military applications, such as military tactical surveillance, target
detection and tracking, environment monitoring, modeling and remote sensing,
etc.

Sensor networks are usually deployed in an uncontrolled, harsh, even hostile
environments. Due to the low cost, it is not uncommon that the sensor nodes
become faulty. These faulty sensors must stop functioning to ensure the network
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quality of service. To detect the faulty sensor is not trivial because of the limited
energy and communication bandwidth. Sensor nodes are powered by battery,
which may not be replaced or recharged after deployment. It is too costly for
the base station to collect data from all nodes and detect the faulty sensors in
a centralized mode. A distributed faulty sensor detection scheme is preferred in
wireless sensor networks.

The basic idea of distributed detection [1] is to have each of the independent
sensors make a local decision and then combine these decisions at a fusion sensor
to generate a global decision. Optimal distributed designs have been sought un-
der both the Bayesian and the Neyman-Pearson performance criteria [2]. Statisti-
cally, the distributed detection could be modeled as a hypothesis test problem: n
sensors observe an unknown hypothesis; the sensor observations are independent
and identically distributed, given the unknown hypothesis; each sensor transmits
its decision over a multiple access channel to a fusion sensor; based on the re-
ceived sensor decision, the fusion sensor makes the final decision regarding the
unknown hypothesis. In many data centric applications of sensor networks, the
nearby sensors are likely to have similar measurements. In distributed detection,
we exploit the fact that sensor faults are likely to be stochastically unrelated,
while sensor measurements are likely to be spatially correlated.

Distributed averaging or average consensus in wireless sensor network is stud-
ied in [3, 4]. Their studies show that if all sensor measurements follow the same
data distribution N (μ, σ2), the maximum-likelihood estimate of μ is the aver-
age of all sensor measurements. Each sensor can obtain the maximum-likelihood
estimate or average consensus by communication with its neighbors. Since the
consensus value are common to all sensors, it is actually global information. In
this work, without knowing (μ, σ2), each sensor makes a local 3-level decision
by hypothesis testing against the consensus value, and its final decision is made
by fusing the decisions from its neighbors. Our simulation results show that
the proposed algorithm has better performance than existing ones even without
knowledge about the sensor and the data to be sensed.

In this work, our major contribution includes 1) a distributed algorithm for
faulty sensor detection without knowing sensor fault probability and parameters
of sensor data distribution; 2) the threshold in our proposed algorithm is com-
pletely independent on the sensor fault probability, which makes it very flexible
in applications. The remainder of the paper is organized as follows. In Section 2,
we state the problem and related works. In Section 3, we show how each sensor
obtains the global information through communicating with its neighbors. The
model of sensor fault is defined in Section 4. The detail of the faulty sensor de-
tection scheme is described in Section 5. In Section 6, we present our simulation
results. We conclude in Section 7.

2 Statement of the Problem and Related Works

N sensor nodes are deployed over a interested region to perform data collection
of their environment. We assume that each sensor can only communicate directly
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Fig. 1. A sensor network. Dot denotes normal sensors and square denotes faulty

sensors

with its neighbor sensors (within its communication radius) and indirectly with
other sensors through its neighbors. With broadcast/acknowledge protocol, each
sensor node is also able to locate the neighbors within its communication range.

A sensor node could make certain decision independently based on its own
measurement. The network considered is also likely to contain faulty sensor
nodes due to harsh environment and manufacturing reasons. Normally, each
sensor, may be good or faulty, communicates its own measurement with other
sensor in data fusion. It is obvious that sensor faults make the fusion unreliable,
i.e., a fusion data may exceed a tolerant range. Fig. 1 shows a sample scenario
of the sensor network. The “dot” denotes a healthy sensor while the “square”
denotes a faulty sensor. Each sensor can communicate with other sensors within
its communication radius.

Faulty sensor detection in wireless sensor networks is studied explicitly and
implicitly in the literatures [5,6,7,8]. In [5], distributed Bayesian algorithm was
proposed to detect both faulty sensors and event regions. Each sensor collects
local binary decisions from its neighbors and final decision is made based on
majority-voting. The algorithm can correct over 85% − 95% of the total faults
when the fault rate is as high as 10% in the entire network. An energy efficient
fault-tolerant detection scheme is studied in [6] by considering both noise related
measurement error and sensor fault. Two local binary decision schemes are stud-
ied under Bayesian and Neyman-Pearson frameworks. Each sensor makes a final
decision by fusing the binary decisions from its neighbors with k-out-of-n rule.
In [8], Ding et al. proposed a localized faulty sensor identification algorithm, in
which a single reading at a sensor is compared with the median of its neighbors’s
readings. If the difference is large, the sensor is likely to be faulty. The algorithm
is purely localized and requires low computational overhead, so that it can be
easily scaled to large sensor networks. Chen et al. [7] developed a distributed
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fault detection algorithm by comparing difference of two sensors’ current mea-
surements with the difference of their historical measurements. If the difference
becomes significantly large over the time, a sensor is more likely faulty. In above
studies, the data distribution or sensor fault probability or both are assumed
known. In [5,6,8], the detection threshold depends on the sensor fault probabil-
ity: when the probability changes, the threshold must be changed accordingly,
while the threshold in [7] strongly depends on the distribution of normal sensor
data and faulty sensor data.

In many applications, such as density estimation of environment [9], the pa-
rameters of data distribution is not available for sensor network in advance.
Actually, to identify the parameters is a difficult task itself. Furthermore, the
sensor fault probability is difficult to predict for sensors deployed in a harsh
environment. All these greatly limit the applicability of the previously proposed
schemes for faulty sensor detection.

3 Global Information: Distributed Average Consensus in
Networks

Distributed consensus or averaging has been extensively studied recently [10,3,4].
Let the reading of sensor node i be xi = μ+ vi ∼ N (μ, σ2), i = 1, . . . , n, where
μ is a scalar to be estimated, and the noise vi is i.i.d. Gaussian vi ∼ N (0, σ2).
In this case, the maximum likelihood (ML) estimation is the average of the
measurements xi at all sensors, i.e., μ̂ML = 1

n1Tx, where 1 denotes the vector
whose components are all ones. The associated mean-square error is 1

nσ
2. The

distributed linear iteration can be expressed in the form,

xi(t + 1) = Wiixi(t) +
∑
j∈Ni

Wijxj(t), i = 1, . . . , n. (1)

where t = 0, 1, . . . , is the discrete time index. In the vector form, (1) can be
rewritten as x(t + 1) = Wx(t). Define a t-step transition matrix,

Υ (t) = W (t− 1) . . .W (1)W (0) (2)

We have
x(t) = Υ (t)x(0) (3)

The weight matrices exist such that the states at all nodes converge to μ̂ML =
1
n1Tx, i.e.,

lim
t→∞x(t) = μ̂ML1 =

[
1
n
1Tx(0)

]
1 (4)

which is equivalent to limt→∞ Υ (t) = 1
n11T . Equation (4) should hold for any

x(0) ∈ Rn. Since all sensors in the network have the μ̂ML, it is actually global
information about the sensor network. The rule to choose the weights can be
expressed as [4],
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Wij(t) =

⎧⎨⎩
1

1+max{di(t),dj(t)} , if {i, j} ∈ E(t)
1−∑{i,k}∈E(t) Wik(t), if i = j

0, otherwise
(5)

where di(t) = ‖Ni(t)‖ is the degree (number of neighbors) of node i and E is
the set of existing connections among sensor nodes in the network.

4 Sensor Fault Model and Fusion Error

As the most common sensor fault is offset bias [13], at a given sensor, we assume
that the faulty sensor measurement might have an offset β0. The fault mode we
consider can be written as N (β0 + μ, σ2). Offset bias alters the sensor readings
uniformly by a certain value. The bias model is a drift fault model, where the
correct value is subject to alternation that is a time invariant function of the
correct value [14]. Assuming that γ of n sensors have offset bias, modeled by
N (β0 + μ, σ2), we have

1
n

n∑
i=1

xi ∼ N (μ+ γβ0, σ
2/n) (6)

The mean square error due to the sensor fault is eerr = E[(γβ0)2] for n→∞. It
is clear that when γ �= 0, eerr �= 0 asymptotically. Obviously, the error depends
on both γ and β0. The average consensus method previously discussed cannot
remove the error from the sensor fault, leading to a low fusion accuracy.

5 Faulty Sensor Detection

The average consensus discussed in the previous section is the global maximum
likelihood estimate of the sensor network and will be used for faulty sensor
detection in this section. We consider data with Gaussian distribution but with
unknown mean and variance.

We first introduce a concept of ε−consensus. Given an initial value x(0) of
a network at t = 0 and the consensus value μ = 1

n11Tx(0), we define x(tε) =
Υ (tε)x(0) the ε−consensus value at t = tε as

Prt≥tε

( |μ− x(t)|
μ

< ε

)
= 1 (7)

where ε ∈ (0, 1). Once sensor network reaches the ε−consensus με = x(tε) after
time tε, we use hypothesis testing to detect faulty sensors. Notice that each
sensor i has the same ε−consensus value μi,ε. Thus, we use με instead of μi,ε for
convenience in the following discussion.
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5.1 Hypothesis Testing

Suppose that random samples are selected from a normal distribution with un-
known parameter θ = {μ, σ2}. The null hypothesis H0 specifies that θ lies in a
particular set of possible values: Ω0 = {με, σ

2}; the alternative hypothesis H1
specifies that θ lies in another set of possible values: Ωa = {μ, σ2 : μ > με},
which does not overlap with Ω0. Let Ω = Ω0

⋃
Ωa, i.e., Ω = {μ, σ2 : μ ≥ με},

and L(Ω̂0) denote the likelihood function with all unknown parameters replaced
by their maximum-likelihood estimators, subject to the restriction that θ ∈ Ω0.
Similarly, let L(Ω̂) be obtained the same way, but with the restriction that θ ∈ Ω.
Suppose that, at sensor i, xi(1), xi(2), . . . , xi(l) constitute random samples from
a normal distribution with unknown mean μ and unknown variance σ2. We drop
the index i for convenience in the following discussion. We want to test (Test I):

H0 : μ = με versus H1 : μ > με (8)

For the normal distribution, we have

L(Ω) = L(μ, σ2) =

=
(

1√
2π

)l( 1
σ2

)l/2

exp

[
−

l∑
i=1

(x(i)− μ)2

2σ2

]
(9)

Restricting μ to Ω0 implies that μ = με. The value of σ2 that maximizes
L(με, σ

2) is σ̂2
ε = 1

l

∑l
i=1(x(i) − με)2. With simple plug in, L(Ω̂0) can be ex-

pressed as,

L(Ω̂0) =
(

1√
2π

)l( 1
σ̂2

ε

)l/2

exp−l/2 (10)

We now turn to find L(Ω̂). The unrestricted maximum-likelihood estimator of
μ is x̄ = 1

l

∑l
i=1 x(i). Therefor, for θ restricted to Ω, the maximum-likelihood

estimator of μ is μ̂ = max(x̄, με). Notice that if the actual maximum of L is
outside the region Ω, the maximum within Ω occurs at the boundary point
με [15]. Similarly, L(Ω̂) can be expressed as,

L(Ω̂) =
(

1√
2π

)l( 1
σ̂2

)l/2

exp−l/2 (11)

where σ̂2 = 1
l

∑l
i=1(x(i) − μ̂)2. Thus,

λ =
L(Ω̂0)
L(Ω̂)

=

{[ ∑ l
i=1(x(i)−x̄)2∑ l

i=1(x(i)−με)2

]l/2
, if x̄ > με

1, if x̄ ≤ με

(12)

Notice that λ ≤ 1. Thus, the rejection region is λ < k < 1, where k is the
threshold to be computed (see Equation (15)).

Assuming the alternative hypothesis H2: θ lies in another set of possible val-
ues: Ωa = {μ, σ2 : μ < με}, we can test (Test II):

H0 : μ = με versus H2 : μ < με (13)
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Similarly, we have,

λ =
L(Ω̂0)
L(Ω̂)

=

{[ ∑ l
i=1(x(i)−x̄)2∑ l

i=1(x(i)−με)2

]l/2
, if x̄ < με

1, if x̄ ≥ με

(14)

After mathematical manipulation, the threshold k can be computed based on
t-statistic. Let α be the designated significant level, ν = l − 1 the degree of
freedom, we can find tα,ν in the t-Table and get

k =
(

l− 1
t2α,ν + l − 1

)l/2

, (15)

which is independent on sensing data and sensor reliability.

5.2 Faulty Sensor Detection Scheme and Algorithm

Assume that each sensor has l observations x(1), x(2),. . . , x(l) and a ε-consensus
value με after certain iterative steps with Equation (3). We first discuss the local
decision in each sensor. For x̄ > με, sensor i starts Test I. Let ui = 1 if rejected,
which indicates that mean value of the measurements in sensor i is great than
με. Otherwise, let ui = 0. That is, the mean value of the measurements in sensor
i is equal to με. Similarly, for x̄ < με, sensor i starts Test II. Let ui = −1 if
rejected, which indicates that the mean value of the measurements in sensor i
less than με. Otherwise, let ui = 0. For x̄ = με, let ui = 0 directly. The local
decision rule can be expressed as,

ui =

⎧⎨⎩
1, if x̄i > με

0, if x̄i = με

−1, if x̄i < με

(16)

The sensor nodes collect the decisions from their neighbors and makes the deci-
sion fusion u0 by,

u0 =

⎧⎨⎩
1, u1 + · · ·+ um > 0
0, u1 + · · ·+ um = 0
−1, u1 + · · ·+ um < 0

(17)

where m is the number of neighbors of each sensor. The faulty sensor detection
rule can be expressed as,

sensor i =
{

faulty, if ui �= 0, ui �= u0
good, if ui = 0 or ui �= 0, ui = u0

(18)

The entire algorithm of distributed faulty sensor detection is summarized as
follows.
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Input: threshold k, number of measurements l
Output: faulty sensor detection result

Each sensor i obtains l measurements and με

IF x̄ > με THEN
Do Test I based on k

IF Rejected THEN
ui = 1
ELSE ui = 0
END IF

ELSE IF x̄ < με THEN
Do Test II based on k

IF Rejected THEN
ui = −1
ELSE ui = 0
END IF

ELSE ui = 0
END IF

Each sensor collects ui from its m neighbors
IF u1 + · · ·+ um > 0 THEN
u0 = 1
ELSE IF u1 + · · ·+ um = 0 THEN
u0 = 0
ELSE u0 < 0
END IF

IF ui �= 0 and ui �= u0 THEN
Sensor i is faulty
ELSE IF ui = 0 OR ui �= 0 and ui = u0 THEN
Sensor i is good
END IF

6 Simulation and Discussion

In this section, we present our simulation results for the proposed algorithm of
faulty sensor detection. The sensor network contains 100 sensors in a 10 by 10
area. The communication radius for each sensor is

√
2. Normal sensor readings

are drawn fromN (μ, σ2
1) and faulty sensor reading are drawn fromN (μ+β0, σ

2
2).

In the simulation, we choose μ = 10, σ1 = 1 and two type of sensor faults are
considered:
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Fig. 2. Detection Error Rate of Sensor Network with Positive Fault

1. positive fault: β0 = 20, σ2 = 1.

2. random fault: β0 is chosen randomly from β1 = 20 and β2 = −20. σ2 = 1.

Notice that the mean and variances can be chosen arbitrarily as long as β0 is
sufficiently large when compared with σ1 and σ2. For each type of sensor fault,
the percentage of faulty sensors r is set at 0%, 5%, 10%, 15%, 20%, 25%, 30%.
We choose ε = 0.05 in obtaining με. Each sensor takes l = 10 samples from
its environment and the corresponding threshold k = 0.0421 is computed from
Equation (15) with tα,ν = 2.821, where α = 0.01 and ν = l − 1. We repeat the
experiment with each sensor fault type 200 times. The averaged detection error
and false alarm rate are reported.

For sensor fault type 1 (β0 = 20, σ2 = 1), the consensus values corresponding
to each sensor fault rate are given in Table 1. The Average Detection Error Rate
(ADER) and Average False Alarm Rate (AFAR) with fault type 1 are shown in
Figures 2 and 3, respectively.

In these two figures, we have compared our hypothesis testing (H-testing)
method with the method proposed in [8] (Median), in which the reading at a
sensor is compared with its neighbor’s median reading - if the difference is large,

Table 1. Consensus Value με v.s. Sensor Fault Rate r for ε = 0.01

r 0% 5% 10% 15% 20% 25% 30%

με 10.05 11.18 12.11 13.05 14.06 15.03 16.02
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Fig. 3. False Alarm Rate of Sensor Network with Positive Fault

the sensor is likely to be faulty. The number of neighbors of each sensor we
choose is m = 20. Clearly, we can see that ADER (solid line) of H-testing is less
than ADER (dashed line) of Median. The AFAR of H-testing is also less than
AFAR of Median when sensor fault rate is between 0 ∼ 20%. The ADER of
H-testing is below 0.2% with sensor fault rate up to 20% and 2.1% with sensor
fault rate up to 30%.

For sensor networks with random fault, i.e., some sensors with positive bias
and some sensors with negative bias, the ADER and AFAR of both the H-testing
and the Median methods are reported in Table 2. ADER of H-testing method is
below 0.23% with sensor fault rate up to 30% except for the case of sensor fault
rate at 5%. Similarly, the H-testing method has lower AFAR than the Median
method when the sensor fault rate is below 25%. For random sensor fault rate
within 0 ∼ 5%, both methods have relative large ADER and AFAR. This is
because the mean value of good sensor readings is so close to the consensus
value with the fault rate. That creates some confusion in detection. However,
H-testing has much better performance than Median method in this fault rate
range. This will be discussed in our next research report.

In general, the H-testing method has smaller ADER and AFAR than the
Median method for both fault types. Notice that when the sensor fault rate is
0%, the Median method has high ADER and AFAR, which are above 3% for
each fault type, while H-testing method achieves less than 0.3% rates. For both
methods, ADER and AFAR of networks with random faults are smaller when
compared to that with only positive faults. The reason is that, with random
faults, the median in the Median method and the consensus value in the H-
testing method can better reflect sensing data in the network.
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Table 2. Averaged detection error rate (ADER) and average false alarm rate (AFAR)

of sensor network (10×10) with random fault. The sensor fault rate r = 0%, 5%, 10%,

15% 20%, 25%, 30%.

ADER AFAR

r H-testing Median H-testing Median

0% 0.23% 3.52% 0.23% 3.52%

5% 1.058% 2.05% 0.59% 1.52%

10% 0.07% 2.57% 0.06% 1.23%

15% 0.02% 2.37% 0.02% 0.61%

20% 0.02% 2.23% 0.02% 0.36%

25% 0.05% 2.27% 0.04% 0.16%

30% 0.13% 2.32% 0.09% 0.06%

7 Conclusion

We proposed a distributed fault sensor detection algorithm, where sensor fault
probability or reliability is unknown and data to be sensed has Gaussian distri-
bution with unknown parameters. We assume that each sensor has a consensus
value of the sensed environment by communicating with its neighbors. The pro-
posed algorithm uses the consensus value to make a local hypothesis testing for
a local decision. The final decision about a sensor is made by fusion of the local
decisions from its neighbors. The detection threshold of proposed algorithm is
completely independent on the sensor fault probability and sensor data. Our
simulation results show that the proposed faulty sensor detection algorithm has
lower detection error even without knowledge of sensor reliability and parameters
of sensed data.
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Abstract. This paper presents an approach to failure detection in civil

structure using supervised learning of data under normal conditions. For

supervised learning to work, we would typically need data of anoma-

lous cases and normal conditions. However, in reality there is abundant

of data under normal conditions, and little or none anomalous data.

Anomalous data can be generated from simulation using finite element

modeling (FEM). However, every structure needs a specific FEM, and

simulation may not cover all damage scenarios. Thus, we propose super-

vised learning of normal strain data using artificial neural networks and

make prediction of the strain at future time instances. Large prediction

error indicates anomalies in the structure. We also explore learning of

both temporal trends and relationship of nearby sensors. Most literature

in anomalies detection makes use of either temporal information or re-

lationship between sensors, and we show that it is advantageous to use

both.

1 Introduction

Civil infrastructures are an important part of society and a country’s economy.
With the recent advances in sensing technology, the care taker of civil structures
nowadays are able to obtain huge amounts of real-time data from numerous
sensors, such as strain gauges installed on their structures. The structures are
being monitored constantly by the sensors, at a high time-resolution of up to
one reading every ten minutes. However, the abundance of data poses a problem.
With the constant influx of this huge amount of real-time data, it becomes harder
for humans to analyse make sense of. As the data gathered is complex, the use of
simple threshold limits for triggering an alert is inaccurate. False alarms waste
precious time and effort and increasingly degrade the users’ confidence on the
monitoring system [1].

This paper proposes the use of an artificial neural networks to detect alarm
conditions in sensor data. To detect alarm condition that requires attention is
equivalent to detecting anomalous behaviour of the structure. Anomalous struc-
tural behaviours manifest in anomalous sensor readings. The voluminous amount
of sensor data provides much information that can be extracted. Using a ma-
chine learning approach, the problem would have been a binary classification

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 976–985, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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problem of either anomalous or non-anomalous. However, to make the binary
classification, we would need training data that belongs to each of the class.
In reality, there are much lesser anomalous training data than non-anomalous.
Furthermore, a lot of human effort is required to tag each training instance as
either anomalous or non-anomalous. While it is possible to simulate the struc-
ture using finite element modeling to generate failure cases[2][3], a specific model
has to be simulated for each civil structure and the simulation may not cover
all damage cases. Having plenty of data under normal conditions, we propose
an approach that predicts the normal behaviour. A reading is anomalous if it
deviates significantly from the prediction.

In the next section, we will present the objective of structural health moni-
toring and an overview of state-of-the-art techniques in structural health mon-
itoring. In the third section, we look at the usage of artificial neural networks
for fault detection and diagnosis in various domains. In section four, we will
introduce our method using artificial neural networks for structural health mon-
itoring. Finally, we will present experimental results using our method on real
world strain data with anomalous condition, to validate our system.

2 Structural Health Monitoring

Structural Health Monitoring (SHM) refers to the continuous monitoring of the
structure’s state properties, in order to identify anomalous structural behaviour.
The monitoring at its simplest can be done by visual inspection of the structure
or manual physical measurements of different parts of the structure. The cur-
rent state-of-the-art includes monitoring via an array of strain or optics sensors
continuously feeding data to a management system that will analyse the data
and send alerts automatically to relevant personnel [4][5].

Anomalous structural behaviour may be due to construction events such as
post-tensioning, concreting during construction, or random events such as heavy
traffic, changes in weather, rainfall, etc. These are expected loads during the
lifetime of a structure and will not affect the integrity of the structure. On the
other hand, anomalies can also be caused by deterioration in the material [6] and
damages resulting from ground movements due to nearby constructions. These
are hazardous situations and the relevant personnel must be alerted as soon as
possible.

Various techniques have been proposed to detect structural fault from sensor
data. One approach is the discrete wavelet transform (DWT). DWT is applied on
raw strain data to filter the signal into high and low frequency components. The
coefficients in the highest frequency component of the transform are then used
to identify abrupt changes in the strain values which indicate likely occurrence
of anomalous events on the structure [7].

Artificial neural networks were used as pattern classifiers to detect structural
damage in a few studies. In one study, the damaged patterns of a bridge were
generated using simulation and the neural network was trained using the gen-
erated patterns. The neural network was able to detect the damage location
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and damage level accurately when given a simulated pattern [3]. Artificial neu-
ral networks also improve on traditional vibration-based damage identification
(VBDI) techniques. It is able to detect the damage even in presence of simu-
lated measurement errors of a finite element model of a real bridge, which are
undetected by VBDI technique.[2]. Support Vector Machine (SVM) is another
pattern classifier that has been proposed to detect structural damage. In another
study, SVM was able to detect damage locations from simulated streaming data
that are compressed via wavelets [8].

3 Artificial Neural Networks in Fault Detection

The detection of fault from various measurements can be viewed as a pat-
tern recognition task that artificial neural networks are very good at. Artifi-
cial neural networks have been used for detection of damage in aerospace ma-
terial structures [9] and also in various other domains for fault detection and
diagnostic such as manufacturing, chemical plant, power generation and nuclear
plant [10][11][12].

Auto-associative neural networks (AANNs) have been used for novelty detec-
tion to diagnose damage in a simple simulated lumped-parameter mechanical
system[9]. An AANN attempts to reproduce its input at its output nodes. It
is a feedforward network with a “bottleneck” hidden layer that has lesser hid-
den nodes than input nodes. This prevents it from simply copying the input
to output nodes, and to force it to extract meaningful information from the
signals[11]. A damage to the lumped-parameter system will change the stiffness
of the structure. The AANN that has learnt the signals under normal conditions
will reproduce a different set of signals due to changes in stiffness when the
system is damaged. Thus, the new signal that differs from the original normal
signal signifies damage to the structure.

In the nuclear power plant setting, damage to the plant infrastructure was
simulated using a virtual earthquake testbed and the neural network was trained
to infer the damage from simulated data[12].

4 Using Artificial Neural Networks for Fault Detection in
Civil Structures

4.1 Patterns in Strain Data of Civil Structure

Concrete structures expand and contract due to daily temperature fluctuations.
The strain sensors on a structure also fluctuate in a manner that correlates to
temperature fluctuations. In a cluster of sensors positioned close to one another,
the fluctuation in strains of the sensors are usually highly correlated to one
another as well. However, when there is damage or underlying soil movement,
the sensors in the cluster will be affected differently due to difference in sensor
locations. When structural changes occur, the relationship between the sensors
is likely to change due to displacement or cracks in the concrete structure.
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By learning the relationship between the sensors and trends in strain data
due to temperature fluctuations, we can make a sensible forecast of the next
instance of sensor readings assuming the structure remains the same as before
without any damage or structural changes. Thus, if the actual sensor readings
differ significantly from the forecast of what the readings would be under normal
circumstances, it would be a strong suggestion of anomalies in the structure.

4.2 Learning the Patterns with Artificial Neural Networks

There are two kinds of information to be derived from the voluminous histori-
cal strain data: 1) the relationship between the sensors that are spatially close
together, and 2) the temporal trends in strain fluctuations and relation to tem-
perature fluctuations. An artificial neural network, being a universal function
estimator, is a good candidate to learn these two kinds of information from his-
torical data. We use a neural network with supervised learning for this purpose.
The learnt information in a trained network would exist in the weights of the
network connections.

Auto-associative neural networks are well known to be able to reduce mea-
surement noise from raw data, and learn a correlation model of its input[11].
An auto-associative neural network is a multilayer perceptron neural network
that approximates an identity function. Instead of simply copying its input to
its output, it has hidden layers with nodes lesser than the input or output nodes
that act as a bottleneck. The input is transformed into a lower dimension space
in the hidden layers and then transformed back to original space at the output
layer. It is possible to use AANN to learn the relationship between the strain
sensors through supervised learning of the AANN with strain data under normal
conditions.

To learn the trend in sensor strain fluctuations, we need a neural network that
is able to model the trend and predict the next instance values using the model.
A neural network with time-delayed data as input performs well at the task
of making prediction or forecasting of time series data in many domains. The
neural networks have been successful in major statistical time series forecast-
ing competition[13]. Neural networks that are fed with historical data are able
to learn the underlying “rules” of currency exchange rates through supervised
learning, and then make predictions using the trained neural network[14].

To learn both the trend and inter-sensor relationship, we propose combining
auto-associative neural networks with time-delayed data. We will show the de-
tails of the neural network structure, its training, and experimental results of
this artificial neural network in the next two sections.

4.3 Training

To enable fault detection, we aim to build an artificial neural network that is
able to generalizes well on unseen data under normal circumstances, but does not
generalizes for anomalous condition. We train a Multilayer Perceptron (MLP)
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neural network configured as an AANN with historical strain data of the struc-
ture under normal circumstances, with a standard backpropagation algorithm.
We exclude portions of the historical data where it is known to display anoma-
lies. The neural network is trained to predict the vector of sensor readings for
the next time instance, given an input vector for the current time instance. The
training data consist of tuples of (vt−1, rt), where vt−1 is the input vector cor-
responding to time instance t− 1 and rt is a vector of actual sensor readings at
time t.

The input and output of the neural network are:

Input: S0,t−1, S1,t−1, ...Sn,t−1, S0,t−2, S1,t−2, ...Sn,t−k, Tt

Output: S0,t, S1,t, ...Sn,t

where Sj,t is the sensor j’s reading at time t, Tt is temperature at time t, k, (k >
0) is the number of delayed values to use (delay number) and sensors 0 to n are
close together.

The input consists of three kinds of data: sensor readings of a cluster of sen-
sors, the sensors time-delayed values and temperature readings. The temperature
reading at each time instance is fed into the neural network as well to provide
more information. A linear regression of temperature against strain is unable to
remove temperature effect from strain data (Figure 1). Patterns still exist in the
residues of such a regression. Thus, it is left to the neural network to extract any
linear or non-linear relation between strains and temperature.

The delay number is the number of delayed sensor readings to be used in
the input. When the delay number is zero, the neural network is simply an
auto-associative neural network that has no temporal information. In the exper-
imental result section, we will show the relationship between the delay number
and the neural network’s ability to detect anomalous events. Higher delay num-
ber provides more information to the neural network with diminishing return.
While the MLP neural network is able to ignore irrelevant information, a higher

Fig. 1. Plot of regression line and actual strain values. Observe a solid streak of dots
that lies above the regression line.
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delay number results in longer training time. We find that delay number d = 8
is sufficient.

Through experimentation, we find that one hidden layer is sufficient. Ad-
ditional hidden layers neither increase accuracy nor generalization ability on
unseen normal data. We use linear units at the input and output layers, and
sigmoid units at the hidden layer. We also find that the *I/3+ number of hidden
units serves well to learn the trends and relationship, where I is number of input
variables. As the sensors’ readings and their time delayed readings are highly
correlated, the number of hidden nodes should be smaller than the number of
input nodes to force the neural network to extract meaningful information from
the high redundancy data.

Typical values of strain data are in the order of thousands, and have small
deviations in order of tens. These values are numerically ill-conditioned. Large
changes in the network weights may have little effect and this may result in slow
training with high inaccuracies[15]. We re-scale the input and target variables
to be in the range of 0.1 to 0.9 so that smaller changes in the weights are needed
during the training. For each input or target variable x, we apply

x′i =
xi − xmin

xmax − xmin
∗ 0.8 + 0.1

where x is the input variable and xmax and xmin are the maximum value and
minimum values of x respectively.

The MLP neural network is trained under generalized delta rule with weight
updates using Scipy(Scientific Tools for Python)’s fast conjugate gradient op-
timizer for 50 training iterations. Conjugate gradient minimizer is faster than
standard steepest gradient descent training and requires less training iterations.
In most cases, the MLP neural network has no significant improvement in accu-
racy after 50 training iterations.

4.4 Monitoring

After the neural network is trained, it can be used to forecast the sensor read-
ings under the assumption of normal circumstances. The input vector for the
neural network is assembled as soon as the latest sensor readings are received.
The input vector is fed into the neural network, and the neural network makes
prediction of the readings. If the deviation between the prediction and actual
reading is significant, anomaly is said to be observed. There can be a few ways to
quantify a vector of deviations to be significant. Its deviation is significant, and
thus anomalous if the more than half the sensors’ predictions have error larger
than the largest error encountered in the training data. Alternatively, statistical
hypothesis testing can be used to quantify if the errors are large enough to be
anomalous. In addition to instantaneous errors, cumulative errors over a time
period can be used to detect gradual changes, for example, gradual buildup of
stress in the structure.
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5 Experimental Result

The artificial neural network described above is tested on strain data collected
from an overhead (elevated) expressway in Singapore. There are real life occur-
rences of anomalous events in the test data, and the artificial neural network
demonstrated its ability to pick up these real anomalous occurrences.

5.1 Strain Data from Bridge

The strain gauges are installed on the piers of the bridge. There are eight sensors
per pier and 12 piers of the bridge were measured and recorded. The topological
arrangement of the eight sensors is shown in Figure 2.

(a) Plan view (b) Section view

(c) Photo of sensors on bridge

Fig. 2. Layout of 8 sensors on a bridge pier

There are temperature sensors installed along the strain sensors to record the
environmental temperature. All sensors are read at an interval of ten minutes.

5.2 Neural Network Prediction on Normal Condition

To show the ability of our neural network for prediction in normal conditions,
we tested the neural network across a period of 10 days without anomalous
occurrence. We train the neural network using data from day D-5, D-4, ... D-1,
and tested it on the period of D-5 to D+4. The result (Figure 3(a)) shows that
there is no significant prediction error throughout the period.
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(a) Normal condition (b) Presence of anomalous event

Fig. 3. Neural network prediction for normal condition and anomalous condition. In

Figure 3(b), the anomalous event occurs at 31st May 13:00. Significant prediction error

is observed from then onwards.

(a) d=0 (b) d=6

(c) d=8 (d) d=12

Fig. 4. Neural network prediction for different values of d. The anomalous event ap-

pears most obvious when d=12.
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5.3 Prediction on Anomalous Condition

We test the neural network across a period of 7 days with anomalous event
occurrence. The anomalous event was due to underlying soil movement caused
by nearby underground construction work. We train the neural network using
data from day D-5, D-4, ... D-1, and tested it on the period of D-5 to D+1. The
anomalous event occurred at day D (31st May) at 13:00 on the Figure 3(b). There
is a large prediction error when the event occurred and after the occurrence. By
having a large prediction error on anomalous condition, the neural network is
able to detect anomalous events and trigger an alarm to a human operator.

5.4 Temporal Information

Auto-associative neural network alone is able to detect some anomalous condi-
tions through its prediction error. With the addition of time delay information,
the neural network is more sensitive to anomalous conditions, showing greater
error and thus greater differentiation between non-anomalous and anomalous
cases. We show the result for one sensor with slight anomalous behaviour when
delay number d = 0 (AANN), d = 6, d = 8, and d = 12 in Figure 4.

6 Conclusion

In this paper, we presented an approach for detection of failure in civil structures
using supervised learning of data under normal conditions using ANNs. With
the proposed neural network structure, we can learn the correlation model of
a cluster of nearby sensors and the temporal trends in strain fluctuation with
regard to the environmental temperature. The neural network we proposed is a
combination of auto-associative neural network and time delay neural network.
With just one hidden layer of sigmoid units, it is able to learn the temporal trend
and relationship between nearby sensors. We also show that it is advantageous to
learn both temporal information and relationship between nearby sensors using
ANN. The presence of both temporal and inter-sensor correlation information
helps in the differentiation of anomalous and normal cases.

We built a neural network that is able to generalize well on unseen data under
normal circumstances, but does not generalize for anomalous condition. Using
the trained neural network, we can monitor realtime strain data by making
predictions of future readings based on time delayed readings of the cluster of
sensors. The trained neural network is able to make accurate predictions under
the assumption that there is no major change to the civil structure or unusual
events not seen in training data. Thus, if the prediction error is large, it is likely
that an anomalous event has occurred.
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Abstract. Next generation communication networks are moving towards au-
tonomous infrastructures that are capable of working unattended under dynam-
ically changing conditions. The new network architecture involves interactions
among unsophisticated entities which may be characterized by constrained re-
sources. From this mass of interactions collective unpredictable behavior emerges
in terms of traffic load variations and link capacity fluctuations, leading to conges-
tion. Biological processes found in nature exhibit desirable properties e.g. self-
adaptability and robustness, thus providing a desirable basis for such computing
environments. This study focuses on streaming applications in sensor networks
and on how congestion can be prevented by regulating the rate of each traffic
flow based on the Lotka-Volterra population model. Our strategy involves mini-
mal exchange of information and computation burden and is simple to implement
at the individual node. Performance evaluations reveal that our approach achieves
adaptability to changing traffic loads, scalability and fairness among flows, while
providing graceful performance degradation as the offered load increases.

Keywords: autonomous decentralized networks, congestion control,
lotka-volterra.

1 Introduction

Rapid technological advances and innovations in the area of autonomous systems push
the vision of Ambient Intelligence from concept to reality. Networks of autonomous
sensor devices offer exciting new possibilities for achieving sensory omnipresence:
small, (often) inexpensive, untethered sensor devices can observe and measure vari-
ous environmental parameters, thereby allowing real-time and fine-grained monitor-
ing of physical spaces around us. Autonomous decentralized networks (ADNs) as for
example, Wireless Sensor Networks (WSNs) [1], can be used as platforms for health
monitoring, battlefield surveillance, environmental observation, etc.
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Typically, WSNs consist of small (and sometimes cheap), cooperative devices
(nodes) which may be constrained by computation capability, memory space, com-
munication bandwidth and energy supply. The uncontrolled use of the scarce network
resources is able to provoke congestion. Thus, there is an increased need to design
novel congestion control strategies possessing self-* properties like self-adaptability,
self-organization as well as robustness and resilience, which are vital to the mission
of dependable WSNs. Biological processes which are embedded in decentralized, self-
organizing and adapting environments, provide a desirable basis for computing envi-
ronments that need to exhibit self-* properties. In addition, their constrained nature
necessitates simple to implement strategies at individual node level with minimal ex-
change of information.

Simple mathematical biology models [2] which aim at modeling biological processes
using analytical techniques and tools are often used to study non-linear systems. Pop-
ulation dynamics has traditionally been the dominant branch of mathematical biology
which studies how species populations change in time and space and the processes
causing these changes. Information about population dynamics is important for pol-
icy making and planning and in our case is used for designing a congestion control
policy. In this study, nature inspired models are employed to design a scalable and
self-adaptable congestion control algorithm for streaming media in WSNs. Based on
the Lotka-Volterra (LV) competition model, a decentralized approach is proposed
that regulates the rate of every flow in order to prevent congestion in WSNs. The
LV-based congestion control (LVCC) mechanism is targeted for dependable wireless
multimedia WSNs [3] involving applications that require continuous stream of data.

Based on analytical evaluations performed in [4], the LVCC model guarantees that
the equilibrium point of the system ensures coexistence of all flows, with stability and
fairness among active flows when some conditions (presented below) are satisfied. In
this paper, the validity of the analytical results is further investigated by simulating
complex scenarios that cannot be formally tested. Performance evaluations are based on
simulation studies conducted in Matlab and in the network simulator NS2 [5], and focus
on scalability, graceful performance degradation, fairness and adaptability to changing
conditions. Results have shown that the LVCC approach provides adaptation to dynamic
network conditions providing scalability, fairness and graceful performance degradation
when multiple active nodes are involved.

The remainder of this paper is organized as follows. Section 2 deals with the prob-
lem of congestion in ADNs and discusses previous work. Section 3 presents the analogy
between ADNs and ecosystems. Section 4 proposes our bio-inspired mechanism. Sec-
tion 5 evaluates the performance of our mechanism in terms of stability, scalability and
fairness. Section 6 draws the conclusion and future work.

2 Congestion in AD Networks

There are mainly two types of congestion in WSNs: (a) queue-level congestion and (b)
channel-level congestion. Traditionally, either high queue occupancy or queue over-
flow (queue drops) were considered to be key symptoms of congestion (queue-level
congestion). However, simulation studies conducted by [10] and [11] revealed that
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in WSNs where the wireless medium is shared using Carrier Sense Multiple Access
(CSMA)-like protocols, wireless channel contention losses can dominate queue drops
and increase quickly with offered load. The problem of channel losses (channel-level
congestion) is worsened around hot spot areas, as for example, in the area of an event,
or around the sink. In the former case, congestion occurs if many nodes report the
same event concurrently, while in the latter case congestion is experienced due to the
converging (many-to-one) nature of packets from multiple sending nodes to a single
sink node. These phenomena result in the starvation of channel capacity in the vicinity
of senders, while the wireless medium capacity can reach its upper limit faster than
queue occupancy [12]. Queue-level congestion is mainly attributed to the constrained
nature of nodes consisting an autonomous decentralized network (e.g. limited memory
and computation power), whereas channel-level congestion can be influenced by the
broadcast nature of wireless networks as well as traffic variations.

Congestion causes energy waste, throughput reduction, increase in collisions and re-
transmissions at the medium access control (MAC) layer, increase of queueing delays
and even information loss leading to the deterioration of the offered QoS and to the de-
crease of network lifetime. Also, under traffic load, multi-hop networks tend to penalize
packets that traverse a large number of hops, leading to large degrees of unfairness.

Congestion control (CC) policies in ADNs are fundamentally different than in the
traditional TCP/IP Internet, which is based on source-destination pair with reliable com-
munication model, also involving retransmission of lost packets. This reliable end-to-
end principle is tightly coupled to the client-server model of TCP/IP communication.
However, this model is not very effective for ADNs, where delivery of data to a gateway
(sink), without retransmission of any lost packets, is the normal objective. Their con-
strained and unpredictable nature provokes increased latency and high error rates that
may result in reduced responsiveness e.g. for end-to-end congestion detection, leading
to higher energy consumption (e.g. very high packet loss during long periods of con-
gestion). These problems drive the need for decentralized CC approaches adopting a
hop-by-hop model where all nodes along a network path can be involved in the proce-
dure. Each node should make decisions based only on local information since none of
them has complete knowledge of the system state.

Previous work on CC involving mathematical models of population biology was pro-
posed for the Internet on the basis of either improving the current TCP CC mechanism
[6] or providing a new way of combating congestion [7]. The study of [6] couples the
interaction of Internet entities that involved in CC mechanisms (routers, hosts) with the
predator-prey interaction. This model exhibits fairness and acceptable throughput but
slow adaptation to traffic demand. Recent work by [7] focuses on a new TCP CC mech-
anism based on the LV competition model [8], [9] which is applied to the congestion
window updating mechanism of TCP. According to the authors, remarkable results in
terms of stability, convergence speed, fairness and scalability are exhibited. However,
these approaches are based on the end-to-end model of the Internet, which is completely
different from the hop-by-hop nature of ADNs. The novelty of our approach lies in
the fact that the LV model is applied to WSNs in a hop-by-hop manner.
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3 Autonomous Decentralized Networks: An Ecosystem View

An ADN (Fig. 1) is considered to be analogous to an ecosystem. An ecosystem com-
prises of multiple species that live together and interact with each other as well as the
non-living parts of their surroundings (i.e. resources) to meet their needs for survival
and coexist. Similarly, an autonomous network consists of a large number of cooper-
ative nodes. Each node has a buffer in order to store packets and is able to initiate a
traffic flow. All traffic flows compete with each other for available network resources
in an effort to reach one or more sink nodes by traversing a set of intermediate nodes
forming a multi-hop path. Just as in an ecosystem, the goal is the coexistence of flows.

To investigate the decentralized and autonomic nature of our approach, a network
is divided into smaller neighborhoods called sub-ecosystems. Each sub-ecosystem in-
volves all nodes that send traffic to a particular one-hop-away node. The traffic flows
initiated by those nodes play the role of competing species and the buffer (queue) capac-
ity of the receiving node can be seen as the limiting resource within the sub-ecosystem.

SN

SRN

buffer

SN

SN

SN

SN

Resources:
Buffer capacity

ECOSYSTEM

Competing Species:
Traffic flows

SUB-
ECOSYSTEM RN

buffer

RESOURCES / SPECIES

SUB-
ECOSYSTEM

Fig. 1. Competition in AD networks

Within a virtual ecosystem, participant nodes may perform different roles. In partic-
ular, each node is able to either initiate a traffic flow i.e. is a source node (SN), or serve
as a relay node (RN) for multiple other flows, or perform both roles being a source-
relay node (SRN). Source nodes are basically located at the edges of a network (e.g.
leaf nodes) while relay nodes are internal nodes (e.g. backbone nodes). Our strategy
provides hop-by-hop rate adaptation by regulating the traffic flow rate at each sending
node. Each node is in charge of self-regulating and self-adapting the rate of its traf-
fic flow i.e., the rate at which it generates or forwards packets. All flows compete for
available buffer capacity at their one-hop-away receiving node. Each sending node is
expected to regulate its traffic flow rate in a way that limiting buffer capacities at all
receiving nodes along the network path towards the sink are able to accommodate all
received packets. The sending rate evolution of each flow will be driven by variations in
buffer occupancies of relay nodes along the network path towards the sink. Due to the
decentralized nature of our approach, each node will regulate its traffic flow rate using
local information (i.e. from neighbors). The number of bytes sent by a node within a
given period refers to the population size of its flow. From an ecosystem perspective,
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the population size of each traffic flow (i.e. of each species) is affected by interactions
among competing flows (species) as well as the available resources (buffers) capacities.

The proposed strategy is based on a deterministic competition model which involves
interactions among species that are able to coexist, in which the fitness of one species
is influenced by the presence of other species that compete for at least one limiting
resource. Competition among members of the same species is known as intra-specific
competition, while competition between individuals of different species is known as
inter-specific competition. One of the most studied mathematical models of population
biology, the LV competition model [8], [9], exhibits this behavior. The generalized form
of an n-species LV system is expressed by a system of ordinary differential equations:

dxi

dt
= rixi

⎡⎣1− βi

Ki
xi − 1

Ki

⎛⎝ n∑
j=1,j 
=i

αijxj

⎞⎠⎤⎦ , (1)

for i = 1, ..., n, where xi(t) is the population size of species i at time t (xi(0) > 0), ri

is the intrinsic growth rate of species i in the absence of all other species, βi and αij

are the intra-specific and the inter-specific competition coefficients respectively. In the
classical LV model, the intra-specific competition coefficient β is always equal to one.
The reason for this is explained in [4]. Also Ki is the carrying capacity of species i i.e.,
the maximum number of individuals that can be sustained by the biotope in the absence
of all other species competing for the same resource. If only one resource exists and all
species (having the same carrying capacity K) compete for it, then K can be seen as
the resource’s capacity. Next we will build on this model to develop our strategy.

4 Nature-Inspired Approach

This section distinguishes the roles of the different entities (i.e., SN, RN, and SRN)
involved in the congestion avoidance mechanism along the path towards a sink.

Source Node (SN): Pure source nodes (SNs) are end-entities (Fig. 2) which are attached
to the rest of the network through an downstream node e.g., a relay node (RN), or a
source-relay node (SRN) located closer to the sink.

Each SN is expected to initiate a traffic flow when triggered by a specific event. The
transmission rate evolution of each flow is regulated by the solution of Eq. 1 (see Eq. 2)

SN1

SN2

SN3

SNn

(S)RN
.

.
.

flow_n

flow_3

flow_2
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buffer

SN

SN

SN

SN

SN
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Fig. 2. Source nodes competing for a limiting resource at their downstream node
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that gives the number of bytes sent xi by flow i. In order to be able to solve Eq. 1 for a
single node i, it is necessary to be aware of the aggregated number of bytes sent from
all other nodes

∑n
j=1,j 
=i xj which compete for the same resource. This quantity is de-

noted by Ci. In decentralized architectures, the underlying assumption of Ci-awareness
is quite unrealistic. However, each SN can indirectly obtain this information through
a small periodic backpressure signal sent from its downstream SRN/RN (father node)
containing the total number of bytes sent from all father’s children, denoted by BS.
Each node can evaluate its neighbors’ contribution Ci by subtracting its own contribu-
tion xi from the total contribution BS as expressed by: Ci =

∑n
j=1,j 
=i xj = BS−xi.

Thus, Eq. 1 becomes:

dxi

dt
= rxi

(
1− β

K
xi − α

K
Ci

)
, i = 1, ..., n. (2)

To obtain xi Eq. 2 is integrated :

xi(t) =
wxi(0)

βxi(0) + [w − βxi(0)] e−
wr
K t

, w = K − αCi (3)

The validity of Eq. 3 is based on the assumption that K − αCi > xi. If we set α = 1
then, according to the inequality, the number of bytes sent from each node i (i.e. xi)
must not exceed the empty space left on the upstream node’s buffer (K − Ci) so as to
prevent buffer overflows. If we let K be a constant, the larger the value of α the smaller
the value of xi compared to the available buffer capacity of the upstream node.

According to [4], a network (ecosystem) of flows (species) that compete for a single
resource while the populations of bytes sent are regulated by Eq. 3 has a global non-
negative and asymptotically stable equilibrium point when inter-specific competition is
weaker than intra-specific competition i.e., β > α (α, β > 0). Under this condition, the
series of values generated by each SN converges to a global and asymptotically stable
coexistence solution given by Eq. 4. For a detailed proof of this concept refer to [4].

x∗i =
K

α(n− 1) + β
, i = 1, ..., n. (4)

In order to avoid buffer overflows, it needs to be ensured that when a system of n
active nodes converges to the coexistence solution, each node i will be able to send
less than or equal to K/n bytes. This is satisfied by Eq. 4 when α(n − 1) + β ≥ n
or β − α ≥ n ∗ (1 − α). If we set α ≥ 1 and require β > α (equilibrium stability
condition), then the aforementioned inequality is always satisfied.

Each SN evaluates Eq. 3 in an iterative manner. By iterative, we mean, roughly, that
Eq. 3 generates a series of values which correspond to number of bytes sent every period
T . The iterative form of Eq. 3 is expressed by:

xi((k + 1)T ) =
w(kT )xi(kT )

βxi(kT ) + [w(kT )− βxi(kT )] e−
w(kT )r

K T
(5)

Relay Node (RN): Pure relay nodes (RNs) are internal entities which do not generate
any packets, but forward packets belonging to several flows traversing themselves which
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RN buffer
(upstream node)buffer

buffer

incoming flow(s)

Fig. 3. Relay node creates a superflow which competes for downstream node’s buffer

compete for their resources. The main function of a RN is to combine (or multiplex) all
incoming flows into a superflow and relay it to the dedicated downstream node (SRN or
RN) as shown in Fig. 3. However, the superflow competes with other flows destined to
the same downstream node (e.g., the flow originating from SN in Fig. 3). Hence, each
RN is in charge of acting on behalf of all active upstream nodes whose flows are passing
through it when evaluating the transmission rate of the superflow (i.e. number of bytes
sent from RN within period T ). As shown in Fig. 3, each one of the four flows of the
superflow as well as the flow originating from SN should be able to allocate equal share
of the downstream node’s limiting resource. Thus, each RN allocates resources for its
active upstream nodes based on a slightly modified expression of Eq. 5 as follows:

xRN ((k + 1)T ) = m

(
w(kT )H(kT )

βH(kT ) + [w(kT )− βH(kT )] e−
w(kT )r

K T

)
, (6)

where H(kT ) = xRN (kT )
m , w(kT ) = K − αC∗

RN (kT ) and m is the total number
of active upstream nodes which belong to the tree having RN as root. The number
of bytes sent from a superflow within a period kT , namely xRN (kT ), is equal to the
aggregated number of bytes sent from m RN’s upstream source nodes which compete
for RN’s buffer. Each RN can calculate the number (m) of its active upstream nodes
by examining the source id field of each packet traversing itself. C∗

RN (kT ) reflects the
total number of bytes sent (BS) to the downstream node ((S)RN in Fig. 3) from all
competing children nodes subtracting the contribution of a single flow belonging to the
superflow. C∗

RN (kT ) can be expressed as C∗
RN = BS − xRN(kT )

n .

Source-Relay Node (SRN): A source-relay node (SRN) acts as both source and relay
node, having both functions concurrently operated as described above.

5 Performance Evaluation

Simulation studies were used to investigate how parameters affect the performance of
our mechanism in terms of sensitivity to parameters, scalability and global fairness.

As discussed above, the rates of all flows converge to a global and asymptotically
stable solution when β > α (α, β > 0). There is no upper limitation on β but as
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it becomes larger, the steady state traffic rate (Eq. 4) decreases. In this case, each node
will have to transmit data at a lower rate leading to lower quality of the received streams
at the sink. As far as r is concerned, the system of Eq. 1 has a stable equilibrium point
for any value of r > 0 [4], [14]. An upper bound for r is not analytically known,
thus can be experimentally explored. The mathematical analysis of our model gives a
general understanding of the system’s behavior on the basis of stability as function of
the α and β. However, the complexity of an ADN necessitates simulation evaluation
using plausible scenarios that cannot be formally tested. The analytical study serves as
the basis for the simulations.

In order to supplement the analytical results, some simulation experiments were con-
ducted both in Matlab and in NS2. We considered a wireless sensor network consisting
of 25 nodes which are deployed in a cluster-based topology (Fig. 4). Our mechanism
was evaluated in a static and failure-free environment. All nodes were assumed to have
the same buffer capacity K = 35KB. The time period T between successive evalua-
tions of the number of bytes sent by each SN, as well as the time between backpressure
signals was set to 1 sec. It was assumed that nodes 5, 6, 10, 14, 16 and 20 were activated
at 1T , 50T , 150T , 300T , 450T , 600T and 900 respectively. Node 14 was deactivated
at 750T . Stability and Sensitivity: Based on the analytical study of our model [4], the
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Fig. 4. Experimental cluster-based topology (all links are wireless)

satisfiability of some conditions contributes to system’s stability. Their validity was fur-
ther investigated by simulating complex scenarios that cannot be formally tested. It has
been mathematically proved that if β > α, then all sending rates converge to a stable
equilibrium value ∀r (detailed proofs in [4]). Initially, α and r were set equal to 1 while
the value of β varied.

Fig. 5(a) depicts the estimated number of bytes that can be sent per T from each
active node when β = 2. As can be observed, the system was able to re-converge to a
new stable point after a change in network state (node activation). However, fluctuations
in sending rates arose when (previously inactive) downstream nodes were not prepared
to accommodate the increasing incoming traffic before Eq. 6 converged. This behavior
was exhibited by flows initiated from nodes 10, 16 and 20. These flows were not well
behaved but exhibited some oscillatory behavior after changes in network state. Also,
some fluctuations occurred when the flow of node 14 was deactivated. Note that buffer
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Fig. 5. Estimated bytes sent/sec: (a) β = 2, (b) β = 4, when α = 1 and r = 1
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Fig. 6. Estimated bytes sent/sec: (a) α = 3, β = 4, r = 1, (b) α = 1, β = 3, r = 4

overflows never occurred since the amount of traffic that was sent by each flow was
small compared with the downstream node’s buffer capacity.

When β increased to 4 (Fig. 5(b)) all flows became well-behaved while some small
oscillations occurred as a result of changes in network state. Even though there is no
upper bound for β value, it is worth pointing out that as β increases, the equilibrium
value decreases (see Eq. 4) and the quality of the received data at the sink may be
reduced. Increasingly, the results of Fig. 5(a) and (b) suggest that β should be greater
than α but greater enough (this may depends on n) such that each node can allocate
much less than K/n. This observation is supported by Fig. 6(a) (α = 3, β = 4). When
β is much greater than α, high buffer utilization is prevented, while smooth and stable
response of traffic flows is achieved. In all the previous scenarios, the parameter r was
set to 1. Further simulation studies were carried out in order to study the influence of
r on stability. Results showed that the stability of traffic flows rates depends on r but
a different behavior was observed with the change in parameters α and β. In general,
it was shown that the flow sending rates converged when r ≤ 2.5 for quite a large
number of combinations of α and β values. Therefore, r could not grow unboundedly
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but smooth network operation could be preserved in low r values (≤ 2.5). Fig. 6(b)
illustrates large fluctuations in flow sending rates occurred for α = 1, β = 3, r = 4.

Scalability and Fairness: The system proved to be adaptable against changing traffic
load and achieved scalability by sharing buffer capacity of nodes to their active up-
stream nodes. For example in Fig. 5(b), in the presence of one sender (node 5) the
stable equilibrium point of the system given by Eq. 4 was 8750 bytes/T (clusterhead
node 1 transmitted at the same rate). When node 6 became active, each sender obtained
7000 bytes/T , while the downstream node 1 (clusterhead) was able to accommodate
both senders by increasing its rate using Eq. 6. When the number of senders scaled
up, all senders could be supported by the system by diminishing the sending rate per
node, thus offering graceful degradation. Fairness was also achieved having the avail-
able buffer capacity of each node equally shared among all activated flows.

Further simulations were conducted using the discrete event based simulator NS2 in
order to evaluate the performance of the LVCC mechanism under more realistic net-
work conditions (in terms of packet loss and delay) when multiple users are involved.
Performance was measured in terms of the packet delivery ratio (PDR), which is de-
fined as the ratio of the total number of packets received by the sink to the total number
of packets transmitted by source nodes. The following table presents the combinations
of α and β values (r = 1) that achieved the highest transmission rates (bytes sent
per T ) and the highest mean PDR for different number of active nodes. It is worth
pointing out that only the scenarios where traffic flows of all active nodes converged to
stable solutions were taken into consideration.

Table 1. Performance evaluations for realistic network conditions using NS2 [5]

No. of Active Mean Packet
α β Nodes Delivery Ratio

1.6 3.3 3 0.99
1.5 4.5 5 0.99
1.7 6.0 7 0.88
1.4 6.2 10 0.70
1.6 6.5 15 0.64
1.9 6.5 20 0.62

The results of Table 1 support previous results obtained from Matlab simulations.
It can be seen that as the number of active nodes scaled up, stable response of traffic
flows was achieved with the increase of parameter β. On the other hand, α remained
from 1.5 to 1.9 regardless of the number of active nodes. In addition, the mean PDR
decreased below 70% when more than 10 active nodes were concurrently activated in
the topology of Fig. 4. This is due to the fact that the network resources (e.g. wireless
channel capacity) were incapable of sustaining such a large number of active nodes,
resulting in high packet losses.
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6 Conclusions and Future Work

This study investigates how nature inspired models can be employed to prevent con-
gestion in ADNs. Inspiration from biological processes is drawn where global prop-
erties e.g., self-adaptation and scalability are achieved collectively without explicitly
programming them into individual nodes, using simple computations at the node level.

Motivated by the famous LV competition model, a rate-based, hop-by-hop CC mech-
anism (LVCC) was designed which aims at controlling the traffic flow rate at each send-
ing node. Simulations were performed to understand how the variations of the model’s
parameters influence stability and sensitivity. Simulation studies validated the correct-
ness of analytical results of [4] and showed that our model achieves scalability, graceful
performance degradation, adaptability and fairness. Realistic scenarios of network oper-
ation were also taken into consideration. However, for future work, further simulations
for generalized network cases are required. Also a study of the behavior of our mech-
anism is needed when dynamic network conditions in terms of offered traffic load and
node failures are considered.
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Gáti, Kristóf I-698

Gavalda, Arnau I-525

Ge, Ju Hong II-534

Georgoulas, George II-485

Gianniotis, Nikolaos I-567

Gomez, Faustino J. II-765
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Höffken, Matthias I-757

Honda, Hidehito I-678

Honkela, Timo II-305

Hora, Jan II-165
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Koutńık, Jan II-775

Kovacevic, Asja II-475

Kovacevic, Darko II-475

Kryzhanovsky, Vladimir I-844

Kukolj, Dragan II-633
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