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Abstract. The problem of determining an optimal training schedule for
a locally recurrent neural network is discussed. Specifically, the proper
choice of the most informative measurement data guaranteeing the reli-
able prediction of the neural network response is considered. Based on
a scalar measure of the performance defined on the Fisher information
matrix related to the network parameters, the problem was formulated
in terms of optimal experimental design. Then, its solution can be read-
ily achieved via the adaptation of effective numerical algorithms based
on the convex optimization theory. Finally, some illustrative experiments
are provided to verify the presented approach.

1 Introduction

A training of neural network, being the dynamic data-driven process requires a
proper selection of measurement data to provide satisfactory representation of
the modelled system behaviour [1,2]. In practice, this is equivalent to determina-
tion of a limited number of observational units obtained from the experimental
environment in such a way as to obtain the best quality of the system responses.

The importance of input data selection has already been recognized in many
application domains [3]. One of the most stimulating practical examples is Fault
Detection and Identification (FDI) of industrial systems [4]. A crucial issue
among the fundamental tasks of failure protection systems is to provide reliable
diagnosis of the expected system state. To produce such a forecast, however, an
accurate model is necessary and its calibration requires parameter estimation.
Preparation of experimental conditions in order to gather informative measure-
ments can be very expensive or even impossible (e.g. for the faulty system states).
On the other hand, the data form real-world system may be very noisy and us-
ing all the available data may lead to significant systematic modelling errors. In
result, we are faced with the problem of optimal choice of the available training
data in order to obtain the most accurate model.

Although it is well known that the training quality for neural networks heavily
depends on the choice of input sequences, surprisingly, there have been relatively
few contributions to experimental design for those systems [5,6] and, in addition,
they focus mainly on the multi-layer perceptron class of networks. The appli-
cability of such a static type of networks for the modelling of dynamic systems
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is rather limited. Recently, the problem of optimal selection of input sequences
in the context of dynamic neural networks has been discussed by the authors
in [7,4], where the problem is formulated in spirit of optimum experimental de-
sign theory for lumped systems [8]. However, the simulation results presented
therein concern the training of the single dynamic neuron only. The contribution
of this work is to extend this approach to the locally recurrent neural network
with one hidden layer which can be applied in real-world systems. Moreover, to
illustrate the delineated approach some experiments are performed using real
process data.

2 Dynamic Neural Networks

The topology of the neural network considered is analogous to that of the multi-
layered feedforward one and the dynamics are reproduced by the so-called dy-
namic neuron models [9,10,4]. The state-space representation of the neuron is
shown in Fig. 1. In this paper a discrete-time dynamic network with n time
varying inputs and m outputs is discussed. The description of such kind of a
dynamic network with v hidden dynamic neurons, each containing an r-th order
IIR filter, is given by the following nonlinear system:{

x(k + 1) = Ax(k) + Wu(k)
y(k) = Cσ(Bx(k) + Du(k) − g)T

, (1)

where N = v × r represents the number of model states, x ∈ R
N is the state

vector, u ∈ R
n, y ∈ R

m are input and output vectors, respectively, A ∈ R
N×N

is the block diagonal state matrix (diag(A) = [A1, . . . , Av]), W ∈ R
N×n (W =

[w11T , . . . , wv1T ]T , where wi is the input weight vector of the i-th hidden neu-
ron), and C ∈ R

m×v are the input and output matrices, respectively, B ∈
R

v×N is a block diagonal matrix of feedforward filter parameters (diag(B) =
[b1, . . . , bv]), D ∈ R

v×n is the transfer matrix (D = [b01w
T
1 , . . . b0vwT

v ]T ),
g = [g1 . . . gv]T denotes the vector of biases, and σ : R

v → R
v is the nonlin-

ear vector-valued function. The presented structure can be viewed as a network
with a single hidden layer containing v dynamic neurons as processing elements
and an output layer with linear static elements. For structural details of the
network considered, the interested reader is referred to [4,11].

Ai

bi
0

biz−1wi 1 σ(·) yi(k)u(k)
xi(k)xi(k+1)

++

Fig. 1. State-space form of the i-th neuron with IIR filter
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3 Optimal Sequence Selection Problem

3.1 Statistical Model

Let yj = y(uj ; θ) = {y(k; θ)}Lj

k=0 denote the sequence of network responses for
the sequence of inputs uj = {u(k)}Lj

k=0 related to the consecutive time instants
k = 0, . . . , Lj < ∞ and selected from among an a priori given set of input
sequences Ud = {u1, . . . , uP }, where Ud ⊂ U . Here θ represents a p-dimensional
unknown network parameter vector which must be estimated using observations
of the system (i.e. filter parameters, weights, slope and bias coefficients).

From the statistical point of view, the sequences of observations related to P
input sequences may be considered as

zj(k) = yj(k; θ) + εj(k), k = 0, . . . , Lj , j = 1, . . . , P, (2)

where zj(k) is the output and εj(k) denotes the measurement noise. It is cus-
tomary to assume that the measurement noise is zero-mean, Gaussian and white,
i.e.

E[εi(k)εj(k′)] = v2δijδkk′ , (3)

where v > 0 is the standard deviation of the measurement noise, δij and δkk′

standing for the Kronecker delta functions.
An additional substantial assumption is that the training of the neural net-

work, equivalent to the estimation of the unknown parameter vector θ, is per-
formed via the minimization of the least-squares criterion

θ̂ = arg min
θ∈Θad

P∑
j=1

Lj∑
k=0

‖zj(k) − yj(k; θ)‖2, (4)

where Θad is the set of admissible parameters. It becomes clear that since yj(k; θ)
strongly depends on the input sequences uj it is possible to improve the training
process through appropriate selection of input sequences.

3.2 Sequence Quality Measure and Experimental Design

In order to properly choose the input sequences which will be most informative
for the training of the dynamic network, a quantitative measure of the goodness
of parameter identification is required. A reasonable approach is to choose a
performance measure defined on the Fisher Information Matrix (FIM), which is
commonly used in optimum experimental design theory [12,8,13].

Sequences which guarantee the best accuracy of the least-squares estimates
of θ are then found by choosing uj , j = 1, . . . , P so as to minimize some scalar
measure of performance Ψ defined on the average Fisher information matrix
given by [14]:

M =
1

PLj

P∑
j=1

Lj∑
k=0

H(uj , k)HT (uj , k), (5)
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where

H(u, k) =
(

∂y(u, k; θ)
∂θ

)
θ=θ0

(6)

stands for the so-called sensitivity matrix, θ0 being a prior estimate to the un-
known parameter vector θ which can be obtained from previous experiments or
alternatively some known nominal values can be used [15,16,14,17].

Such a formulation is generally accepted in optimum experimental design for
nonlinear dynamic systems, since the inverse of the FIM constitutes, up to a
constant multiplier, the Cramér-Rao lower bound on the covariance matrix of
any unbiased estimator of θ [13], i.e.

cov θ̂ � M−1. (7)

Under somewhat mild assumptions [16,17], it is legitimate to assume that our
estimator is efficient in the sense that the parameter covariance matrix achieves
the lower bound.

As for criterion Ψ , various choices are proposed in the literature [13,8], but
the most popular choice is so-called D-optimality (determinant) criterion:

Ψ(M ) = − log detM ; (8)

which minimizes the volume of the uncertainty ellipsoid for the parameter esti-
mates. The introduction of an optimality criterion renders it possible to formu-
late the sensor location problem as an optimization problem:

Ψ
[
M(u1, . . . , uP )

]
−→ min (9)

with respect to uj , j = 1, . . . , P belonging to the admissible set U .
The direct consequence of the assumption (3) is that we admit replicated in-

put sequences, i.e. some ujs may appear several times in the optimal solution
(because independent observations guarantee that every replication provides ad-
ditional information). Consequently, it is sensible to reformulate the problem so
as to operate only on the distinct sequences u1, . . . , uS instead of u1, . . . , uP by
relabelling them suitably. To this end, we introduce r1, . . . , rS as the numbers
of replicated measurements corresponding to the sequences u1, . . . , uS . In this
formulation, the uis are said to be the design or support points, and p1, . . . , pS

are called their weights. The collection of variables

ξP =
{

u1, u2, . . . , uS

p1, p2, . . . , pS

}
, (10)

where pi = ri/P , P =
∑S

i=1 ri, is called the exact design of the experiment.
The proportion pi of observations performed for ui can be considered as the
percentage of experimental effort spent at that sequence. Hence, we are able to
rewrite the FIM in the form

M(ξP ) =
S∑

i=1

pi
1
Li

Li∑
k=0

HT (ui, k)H(ui, k). (11)
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Here the pis are rational numbers, since both ris and P are integers. This leads
to a discrete numerical analysis problem whose solution is difficult for standard
optimization techniques, particularly when P is large. A potential remedy for
this problem is to extend the definition of the design. This is achieved through
the relaxation of constraints on weights, allowing the pis to be considered as
real numbers in the interval [0, 1]. This assumption will be also made in what
follows. Obviously, we must have

∑S
i=1 pi = 1, so we may think of the designs

as probability distributions on U . This leads to the so-called continuous designs,
which constitute the basis of the modern theory of optimal experiments [8,13].
It turns out that such an approach drastically simplifies the design, and the
existing rounding techniques [8] justify such an extension. Thus, we shall operate
on designs of the form

ξ =

{
u1, u2, . . . , uS

p1, p2, . . . , pS
;

S∑
i=1

pi = 1; ∀i pi � 0

}
, (12)

which concentrates Pp1 observational sequences for u1 (so we repeat approxi-
mately Pp1 times the presentation of this sequence during the training of the
network), Pp2 for u2, and so on. Then we may redefine optimal design as a
solution to the optimization problem

ξ� = arg min
ξ∈Ξ(U

Ψ [M (ξ)], (13)

where Ξ(U) denotes the set of all probability distributions on U .

3.3 Characterization of Optimal Solutions

In the remainder of this chapter we shall assume that H ∈ C(U ; Rp). The
following characterizations of the optimal design ξ� can be derived in a rather
straightforward manner from the general results given in [14] or [17].

Theorem 1. An optimal design exists comprising no more than p(p+1)/2 sup-
port sequences. Moreover, the set of optimal designs is convex.

The practical importance of this property cannot be underestimated since we
can restrict our attention to the designs with limited number of sequences what
significantly reduces the complexity of resulting optimization problem. But the
next theorem is essential for the approach considered and provides a tool for
checking the optimality of designs. It is usually called an equivalence theorem
[18].

Theorem 2 (Equivalence theorem). The following conditions are equiva-
lent:

(i) the design ξ� minimizes Ψ(M) = − ln detM(ξ),
(ii) the design ξ� minimizes maxui∈U φ(ui, ξ) , and
(iii) maxui∈U φ(ui, ξ) = p,
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and the so-called sensitivity function

φ(ui, ξ) = trace
(

1
Li

Li∑
k=0

HT (ui, k)M−1H(ui, k)
)

is of paramount importance here as it can be interpreted in terms of average
variance of the estimated system response being the natural measure for the
quality of the training process. From the result above it comes immediately
that suppressing the maximal level of the prediction variance is equivalent to
the optimization of the D-optimality criterion. This paves the way to almost
direct application of numerous efficient algorithms known from experimental
design theory to the discussed problem. Since analytical determination of optimal
designs is difficult or impossible even for very simple network structures, some
iterative design procedures will be required. A simple computational scheme for
that purpose is given in the next section.

4 Selection of Training Sequences

In the case considered in the paper, a computational algorithm can be derived
based on the mapping T : Ξ(U) → Ξ(U) defined by

T ξ =
{

u1, . . . , uS

p1φ(u1, ξ)/p, . . . , pSφ(uS , ξ)/p

}
. (14)

From Theorem 2 it follows that a design ξ� is D-optimal if it is a fixed point of
the mapping T , i.e.

T ξ� = ξ�. (15)

Therefore, the following algorithm can be used as a generalization of that pro-
posed in [19, p. 139] for the classical optimum experimental design problem
consisting in iterative computation of a D-optimum design on a finite set:

Step 1. Guess a discrete starting design ξ(0) such that p
(0)
i > 0 for i = 1, . . . , S.

Choose some positive tolerance η 	 1. Set 
 = 0.
Step 2. If the condition

φ(ui, ξ(�))
p

< 1 + η, i = 1, . . . , S

is satisfied, then STOP.
Step 3. Construct the next design ξ(k+1) by determining its weights according

to the rule

p
(�+1)
i = p

(�)
i

φ(ui, ξ(�))
m

, i = 1, . . . , S,

increment k by one and go to Step 2.

The convergence result of this scheme can be found in [17].
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5 Illustrative Example

Simulation setting. All experiments were carried out using the AMIRA DR300
laboratory system. This laboratory system is used to control the rotational speed
of a DC motor with a changing load [4]. A separately excited DC motor was
modelled by using the dynamic neural network presented briefly in Section 2. The
output signal was the rotational speed (T ) measured by an analog tachometer.
The input signal (U) was selected as a sum of sinusoids:

U(k) = 3 sin(2π1.7k) + 3 sin(2π1.1k − π/7) + 3 sin(2π0.3k + π/3) (16)

The structure of the neural network model (1) was selected arbitrarily and had
the following structure: one input, three IIR neurons with second order filters and
hyperbolic tangent activation functions, and one linear output neuron. Taking
into account that a neural network is a redundant system, some of its parameters
are not identifiable. In order to apply optimum experimental design to the neuron
training, certain assumptions should be made. So, without loss of generality, let
us assume that the feedforward filter parameter b0 for each hidden neuron is fixed
to the value of 1. This reduces the dimensionality of estimation and assures the
identifiability of the rest of the parameters (i.e. it assures that the related FIM
is non-singular).

At the beginning, the network was preliminarily trained in order to obtain
the initial parameters estimates. Feeding the laboratory system with signal (16),
a learning set containing 500 samples was formed, and then the training pro-
cess was carried out off-line for 2000 steps using the Extended Dynamic Back-
Propagation (EDBP) algorithm [7]. At the second stage of the training, the
learning data were split into 20 time sequences, containing 150 consecutive sam-
ples each. The design purpose was to choose from this set of all learning patterns
the most informative sequences (in the sense of D-optimality) and their presen-
tation frequency (i.e. how often they should be repeated during the training).
To determine the optimal design, a numerical routine from Section 4 was im-
plemented in the form of the Matlab program. All the admissible learning
sequences taken with equal weights formed the initial design. The accuracy of
the design algorithm was set to η = 10−2.

Results. The network was preliminarily trained and the initial network parame-
ters estimates are presented in the second column of Table 1. In this case the Sum
of Squared Errors (SSE) calculated using the training set was equal to 5.7001.
After that, the training of the network was continued in two ways. The first way
was to use the optimal training sets selected during the optimum experimental
design phase. The second way was to use random sequences as the training ones.
The purpose of these experiments is to check the quality of parameter estimation.
In the case considered here the optimal design consists of the sequences 5, 6, 8
and 16. For a selected design, each distinct sequence was replicated proportion-
ally to its weight in the design with total number of replications assumed to be
P = 10. For example, if the optimal design consists of the four aforementioned
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sequences with the weights 0.3, 0.1, 0.3 and 0.3, respectively, then during the
training the 5-th, 8-th and 16-th sequences were used three times each, and the
6-th sequence only once (in random order). The training procedure was repeated
10 times using different measurement noise affecting the output of the system.
The statistics are presented in Table 1. As we can see there, the application of
training sets selected according to the optimal design leads to the better accura-
cies of parameter estimates than in the case of randomly selected training sets.
It is observed that the standard deviation of each network parameter has lower
value in the case of the optimal design what means the more reliable estimate
of a given parameter.

The uncertainty of the network response prediction is examined based on
the parameter estimates determined using the optimal and random designs. The
testing phase of each of 10 realizations of locally recurrent network was performed
using 1000 samples different from the training ones, and for each realization the
quality measure in the form of the SSE was calculated. The results of testing are
presented in Table 2. Looking at these results one can state that using random
design it is possible to obtain a good generalization of the network, e.g. networks
9 and 10, but the results of training are not repetitive as in the case of optimal
design when 9 of 10 training run give the similar good results. This fact, in
connection with the plot of response prediction variance (Fig. 2) clearly shows

Table 1. Sample mean and the standard deviation of parameter estimates

para- initial sample mean standard deviation

meter value random design optimal design random design optimal design

w1 0.3232 0.2867 0.2894 0.0104 0.0028
w2 0.9000 0.9105 0.9082 0.0034 0.0009
w3 0.0758 0.0898 0.0789 0.0194 0.0027
b11 0.8328 0.8187 0.8195 0.0040 0.0011
b21 -0.6316 -0.6053 -0.6072 0.0078 0.0019
b31 0.8558 0.8616 0.8581 0.0079 0.0011
b12 0.7892 0.7742 0.7747 0.0042 0.0011
b22 0.0631 0.0910 0.0897 0.0082 0.0019
b32 0.5745 0.5808 0.5812 0.0076 0.0011
a11 0.1258 0.1302 0.1301 0.0012 0.0003
a21 0.0853 0.0807 0.0812 0.0015 0.0004
a31 -0.4171 -0.4196 -0.4170 0.0055 0.0015
a12 0.1656 0.1703 0.1703 0.0012 0.0003
a22 0.0266 0.0217 0.0221 0.0016 0.0004
a32 -0.5566 -0.5587 -0.5562 0.0052 0.0015
g1 -0.3794 -0.4057 -0.4024 0.0132 0.0055
g2 -0.3978 -0.3599 -0.3673 0.0206 0.0089
g3 0.3187 0.3040 0.3136 0.0189 0.0008
c1 -0.4908 -0.4905 -0.4893 0.0081 0.0032
c2 0.7773 0.7708 0.7716 0.0078 0.0035
c3 0.4540 0.4438 0.4408 0.0075 0.0006
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Table 2. Results of network testing –
SSE measure

Network Random Optimal
realization design design

1 29.7367 31.0998

2 27.4287 26.5564

3 42.4463 26.4758

4 85.8052 26.6182

5 99.5833 26.4214

6 82.9475 26.4577

7 35.3615 26.6521

8 29.6130 26.5550

9 26.8438 26.5030

10 26.2403 26.2885
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Fig. 2. Variances of the model response
prediction for the optimum design (dia-
monds) and random design (circles)

that training based on optimal learning sequences leads to greater reliability of
the network response as the maximal variance level can be significantly reduced.

Taking into account the computation burden, for the case considered here
the selection of the optimal plan lasted 9 seconds. For comparison, the 500
training steps carried out off-line with the sequence of the length 500 lasted
117.18 seconds. Summarizing, the process of the optimal design selection by
itself does not significantly prolongate the overall training procedure.

6 Conclusions

The results reported in this paper show that some well-known methods of opti-
mum experimental design for linear regression models can be easily extended to
the setting of the optimal training sequence selection problem for dynamic neu-
ral networks. The clear advantage of the proposed approach is that the quality
of the training process measured in terms of the uncertainty of network response
prediction can be significantly improved with the same effort spent on training
or, alternatively, training process complexity can be reduced without degrading
the network performance.

The proposed approach was also tested using other network structures. Exper-
iments were carried out for a locally recurrent network with two hidden neurons
as well as for a network with five hidden neurons. In each case considered, the
results are similar to these presented in the paper taking into account the relia-
bility of parameters estimates.

Future research will be focused on the application of other methods for deter-
mining optimal designs, namely methods which do not determine the presenta-
tion frequency, thus its practical application is easier.
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