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Abstract. In a typical reinforcement learning (RL) setting details of the
environment are not given explicitly but have to be estimated from obser-
vations. Most RL approaches only optimize the expected value. However,
if the number of observations is limited considering expected values only
can lead to false conclusions. Instead, it is crucial to also account for the
estimator’s uncertainties. In this paper, we present a method to incorpo-
rate those uncertainties and propagate them to the conclusions. By being
only approximate, the method is computationally feasible. Furthermore,
we describe a Bayesian approach to design the estimators. Our exper-
iments show that the method considerably increases the robustness of
the derived policies compared to the standard approach.

Keywords: Reinforcement learning, model-based, uncertainty, Bayesian
modeling.

1 Introduction

In reinforcement learning (RL) [12] one is concerned with finding a policy, i.e., a
mapping from states to actions, that moves an agent optimally in an environment
assumed to be a Markov decision process (MDP) M := (S, A, P, R) with a state
space S, a set of possible actions A, the system dynamics, defined as probability
distribution P : S ×A×S → [0, 1], which gives the probability of reaching state
s′ by executing action a in state s, and a reward function R : S × A × S → R,
which determines the reward for a given transition. If the parameters of the MDP
are known a priori, an optimal policy can be determined, e.g., using dynamic
programming. Often, however, the MDP’s parameters are not known in advance.
A common way of handling this situation is model-based RL, where one first
estimates a model of the MDP from a number of observations and then finds an
optimal policy w.r.t. that model. In general, such a policy will not be optimal
w.r.t. the real MDP. Especially in case of a limited number of observations the
estimated MDP has a high probability to differ from the real one substantially.
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In this case, it is in particular possible to derive a policy that will perform badly
when applied to the real MDP.

By incorporating the model estimators’ uncertainties into the determination
of the policy it is possible to weaken this problem. In recent work by Schneegass
et al. [10] uncertainty propagation (UP) was applied to the Bellman iteration to
determine the Q-function’s [12] uncertainty and derive uncertainty incorporating
policies. While the algorithm described in [10] provides significant advantages
over methods not considering uncertainty, it adds a huge computational burden
for updating the covariance matrix in each iteration. In this paper, we propose an
algorithm called the diagonal approximation of uncertainty incorporating policy
iteration (DUIPI) for discrete MDPs that represents an efficient way of using UP
to incorporate the model’s uncertainty into the derived policy by only consider-
ing the diagonal of the covariance matrix. Only considering the diagonal neglects
the correlations between the state-action pairs, which in fact are small for many
RL problems, where on average different state-action pairs share only little prob-
abilities to reach the same successor states. DUIPI is easier to implement and,
most importantly, lies in the same complexity class as the standard Bellman
iteration and is therefore computationally much cheaper than the method con-
sidering the full covariance matrix. Although some of the results obtained with
DUIPI are not as good as those of the full-matrix method, the robustness of the
resulting policies is increased considerably, compared to the standard Bellman
iteration, which does not regard the uncertainty. In this context it furthermore
is advisable to use Bayesian statistics to model the a posteriori distributions of
the transition probabilities and rewards in order to access the estimators’ un-
certainties properly. Additionally, it allows the specification of prior knowledge
and the user’s belief.

There have already been a number of contributions that consider uncertain-
ties when estimating MDPs. E.g., the framework of robust MDPs has widely
been studied (e.g., [8,1]), in which one assumes that all uncertainties can only lie
within a bounded set. One tries to find policies optimizing the worst case within
that set, which often results in too conservative policies. Within the context of
Bayesian RL, incorporation of prior knowledge about confidence and uncertainty
directly into the approached policy is possible. E.g., Engel et al. applied Gaus-
sian processes for policy evaluation by updating a prior distribution over value
functions to posteriors by observing samples from the MDP [4,5]. Ghavamzadeh
and Engel presented additional Bayesian approaches to model-free RL [6,7]. Us-
ing Gaussian processes inherently introduces a measure of uncertainty based on
the number of samples. When dealing with model-based approaches, however,
one starts with a natural local measure of the uncertainty of the transition prob-
abilities and the rewards. In that context, related to the present paper is work
by Delage and Mannor [3], who used convex optimization to solve the percentile
problem and applied it to the exploration-exploitation trade-off. Model-based
interval estimation (MBIE) was also used for efficient exploration by using local
uncertainty to derive optimistic exploration policies, e.g., [11].
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The remainder of the paper is organized as follows. In sec. 2 we describe
how to incorporate knowledge of uncertainty into the Bellman iteration using
UP, sec. 3 presents ways of parameter estimation. Experiments and results are
presented in sec. 4. Sec. 5 finishes the paper with a short conclusion.

2 Incorporation of Uncertainty

Our notion of uncertainty is concerned with the uncertainty that stems from the
ignorance of the exact properties of the real MDP, as they are usually unknown
and must be estimated from observations. With an increasing number of observa-
tions the uncertainty decreases; in the limit of an infinite number of observations
of every possible transition the uncertainty vanishes as the true properties of the
MDP are revealed. For a given number of observations the uncertainty depends
on the inherent stochasticity of the MDP; if the MDP is known to be completely
deterministic, one observation of a transition is sufficient to determine all prop-
erties of that transition; the more the MDP is stochastic, the more uncertainty
will remain for a fixed number of observations. It is important to distinguish this
uncertainty from an MDP’s inherent stochasticity.

We want to use the knowledge of uncertainty to determine an optimal Q-
function Q∗ with its uncertainty σQ∗. In a second step it is then possible to
change the Bellman iteration to not only regard a Q-value but also its un-
certainty, resulting in a policy that generally prefers actions that have a low
probability of leading to an inferior long-term reward.

2.1 Determining the Q-Function’s Uncertainty

To obtain the Q-function’s uncertainty, we use the concept of uncertainty prop-
agation (UP), also known as Gaussian error propagation (e.g., [2]), to propagate
the uncertainties of the measurements, i.e., the transition probabilities and the
rewards, to the conclusions, i.e., the Q-function and policy. The uncertainty of

values f(x) with f : R
m → R

n is determined as (σf)2 =
∑

i

(
∂f
∂xi

)2

(σxi)2. The
update step of the Bellman iteration,

Qm(s, a) :=
∑

s′
P̂ (s′|s, a)

[
R̂(s, a, s′) + γV m−1(s′)

]
, (1)

can be regarded as a function of the estimated transition probabilities P̂ and
rewards R̂, and the Q-function of the previous iteration Qm−1 (V m−1 is a subset
of Qm−1), that yields the updated Q-function Qm. Applying UP to the Bellman
iteration, one obtains an update equation for the Q-function’s uncertainty:

(σQm(s, a))2 :=
∑

s′
(DQQ)2(σV m−1(s′))2 +

∑

s′
(DQP )2(σP̂ (s′|s, a))2 +

∑

s′
(DQR)2(σR̂(s, a, s′))2, (2)
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DQQ = γP̂ (s′|s, a), DQP = R̂(s, a, s′) + γV m−1(s′), DQR = P̂ (s′|s, a).

V m and σV m have to be set depending on the desired type of the policy (stochas-
tic or deterministic) and whether policy evaluation or policy iteration is per-
formed. E.g., for policy evaluation of a stochastic policy π

V m(s) =
∑

a

π(a|s)Qm(s, a), (3)

(σV m(s))2 =
∑

a

π(a|s)2(σQm(s, a))2. (4)

For policy iteration, according to the Bellman optimality equation and result-
ing in the Q-function Q∗ of an optimal policy, V m(s) = maxa Qm(s, a) and
(σV m(s))2 = (σQm(s, argmaxa Qm(s, a)))2.

Using the estimators P̂ and R̂ with their uncertainties σP̂ and σR̂ and starting
with an initial Q-function Q0 and corresponding uncertainty σQ0, e.g., Q0 := 0
and σQ0 := 0, through the update equations (1) and (2) the Q-function and
corresponding uncertainty are updated in each iteration and converge to Qπ

and σQπ for policy evaluation and Q∗ and σQ∗ for policy iteration. Q∗ and σQ∗

can be used to obtain the function

Qu(s, a) = Q∗(s, a) − ξσQ∗(s, a), (5)

specifying a performance limit which, when the policy π∗ is applied to the real
MDP, will be exceeded with probability Pr(Z(s, a) > Qu(s, a)) = F (ξ), where
Z is the (unknown) Q-function of π∗ for the real MDP. F (ξ) depends on the
distribution class of Q. E.g., if Q is normally distributed, F is the distribution
function of the standard normal distribution. Note that a policy based on Qu,
i.e., πu(s) = arg maxa Qu(s, a), does not in general improve the performance
limit, as Qu considers the uncertainty only for one step. In general, Qu does not
represent πu’s Q-function, posing an inconsistency. To use the knowledge of un-
certainty for maximizing the performance limit (as opposed to the expectation),
the uncertainty needs to be incorporated into the policy-improvement step.

2.2 Uncertainty-Aware Policy Iteration

The policy-improvement step is contained within the Bellman optimality equa-
tion as maxa Qm(s, a). Alternatively, determining the optimal policy in each
iteration as

∀s : πm(s) := arg max
a

Qm(s, a) (6)

and then updating the Q-function using this policy, i.e.,

∀s, a : Qm(s, a) :=
∑

s′
P̂ (s′|s, a)

[
R̂(s, a, s′) + γQm−1(s′, πm−1(s))

]
, (7)

yields the same solution. To determine a so-called certain- or ξ-optimal policy
that maximizes the performance limit for a given ξ, the update of the policy
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must not choose the optimal action w.r.t. to the maximum over the Q-values
of a particular state but the maximum over the Q-values minus their weighted
uncertainty:

∀s : πm(s) := arg max
a

[Qm(s, a) − ξσQm(s, a)] . (8)

In each iteration, the uncertainty σQm has to be updated as described in sec.
2.1, setting V m and σV m as for deterministic policy evaluation.

The parameter ξ controls the influence of the uncertainty on the policy. Choos-
ing a positive ξ yields uncertainty avoiding policies, with increasing ξ a worst-
case optimal policy is approached. A negative ξ results in uncertainty seeking
behavior.

2.3 Non-convergence of DUIPI for Deterministic Policy Iteration

While it has been shown that conventional policy iteration in the framework
of MDPs is guaranteed to converge to a deterministic policy [9], for ξ-optimal
policies derived by the algorithm presented in sec. 2.2 this is not necessarily
the case. When considering a Q-value’s uncertainty for action selection, there
are two effects that contribute to an oscillation of the policy and consequently
non-convergence of the corresponding Q-function.

First, there is the effect mentioned in [10] of a bias on ξσQ(s, π(s)) being larger
than ξσQ(s, a), a �= π(s), if π is the evaluated policy and ξ > 0. DUIPI is not
affected by this problem due to the ignorance of covariances between Q and R.
Second, there is another effect (by which DUIPI is affected) causing an oscillation
when there is a certain constellation of Q-values and corresponding uncertainties
of concurring actions. Consider two actions a1 and a2 in a state s with similar
Q-values but different uncertainties, a1 having an only slightly higher Q-value
but a larger uncertainty. The uncertainty-aware policy improvement step would
alter πm to choose a2, the action with the smaller uncertainty. However, the
fact that this action is inferior might only become obvious in the next iteration
when the value function is updated for the altered πm (and now implying the
choice of a2 in s). In the following policy improvement step the policy will be
changed back to choose a1 in s, since now the Q-function reflects the inferiority
of a2. After the next update of the Q-function, the values for both actions will
be similar again, because now the value function implies the choice of a1 and
the bad effect of a2 affects Q(s, a2) only once.

2.4 Risk-Reduction by Diversification through Stochastic Policies

With stochastic policies it is possible to construct an update-scheme that is
guaranteed to converge, thus solving the problem of non-convergence. Moreover,
it is intuitively clear that for ξ > 0 ξ-optimal policies should be stochastic as
one tries to decrease the risk of obtaining a low long-term reward (because the
wrong MDP has been estimated) by diversification.
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The resulting algorithm initializes the policy with equiprobable actions. In
each iteration, the probability of the best action according to Qm

u (equation (5))
is increased by 1/m, m being the current iteration, while the probabilities of all
other actions are decreased accordingly:

∀s, a : πm(a|s) :=

⎧
⎨

⎩

min(πm−1(a|s) + 1/m, 1), if a = aQm−1
u

(s)
max(1−π(s,a

Q
m−1
u

(s))−1/m,0)

1−π(s,a
Q

m−1
u

(s)) πm−1(a|s), otherwise

(9)
aQm−1

u
(s) denotes the best action according to Qm−1

u , i.e, aQm−1
u

(s) =
argmaxa Qm−1(s, a)−ξσQm−1(s, a). Due to the harmonically decreasing change
rate convergence as well as reachability of all possible policies are ensured.

3 Modeling of Estimators and Their Uncertainty

There are several ways of modeling the estimators for the transition probabilities
P and the reward R. In the following we will present the frequentist approach
using relative frequency as well as a Bayesian approach.

3.1 Frequentist Estimation

In the frequentist paradigm the relative frequency is used as the expected tran-
sition probability. The uncertainty of the according multinomial distribution is
assumed to be

(σP̂ (s′|s, a))2 =
P̂ (s′|s, a)(1 − P̂ (s′|s, a))

nsa − 1
, (10)

where nsa denotes the number of observed transitions from (s, a).
Using the same concept for the rewards and assuming a normal distribution,

the mean of all observed rewards of a transition (s, a, s′) is used as reward ex-
pectation, their uncertainties are

(σR̂(s, a, s′))2 =
var(R̂(s, a, s′))

nsas′ − 1
, (11)

with nsas′ being the number of observed transitions (s, a, s′).
Although the estimation of the transition probabilities using relative frequency

usually leads to good results in practice, the corresponding uncertainty estima-
tion is problematic if there are only a few observations, because in that case the
uncertainties are often underestimated. For instance, if a specific transition is
observed twice out of two tries (nsas′ = nsa = 2), its uncertainty σP̂ (s′|s, a) = 0.

3.2 Bayesian Estimation

Assuming all transitions from different state-action pairs to be independent of
each other and the rewards, the transitions can be modeled as multinomial dis-
tributions. In a Bayesian setting, where one assumes a prior distribution over the
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parameter space P (sk|si, aj) for given i and j, the Dirichlet distribution with
density

Pr(P (s1|si, aj), . . . , P (s|S||si, aj))αij1,...,αij|S| =

Γ(αij)
∏|S|

k=1 Γ(αijk)

|S|∏

k=1

P (sk|si, aj)αijk−1, (12)

αij =
∑|S|

k=1 αijk, is a conjugate prior with posterior parameters αd
ijk = αijk +

nsiajsk
, αd

ij =
∑|S|

k=1 αd
ijk. Choosing the expectation of the posterior distribution

as the estimator, i.e., P̂ (sk|si, aj) = αd
ijk/αd

ij , the uncertainty of P̂ is

(σP̂ (sk|si, sj))2 =
αd

ijk(αd
i,j − αd

ijk)

(αd
ij)2(α

d
ij + 1)

. (13)

Note that αi = 0 results in a prior that leads to the same estimates and slightly
lower uncertainties compared to the frequentist modeling of sec. 3.1. On the
other hand, setting αi = 1 leads to a flat, maximum entropy prior that assumes
all transitions from a state to all other states equally probable.

Both settings, αi = 0 and αi = 1, represent extremes that we believe are
unreasonable for most applications. Instead, we model our prior belief by setting
αi = m

|S| , where m is the average number of expected successor states of all state-
action pairs and |S| is the total number of states. This choice of αi realizes an
approximation of a maximum entropy prior over a subset of the state space with
a size of m states. This way most of the probability is “distributed” among any
subset of m states that have actually been observed, the probability of all other
(not observed) successor states becomes very low. Compared to the maximum
entropy prior with αi = 1 one needs only a few observations for the actually
observed successor states to be much more probable than not observed ones.
At the same time, the estimation of the uncertainty is not as extreme as the
frequentist one, since having made the same observation twice does not cause
the uncertainty to become zero. Estimating m from the observations can easily
be added.

4 Experiments

We conducted experiments with DUIPI as presented here and the full-matrix
algorithm using the frequentist as well as the Bayesian estimators described in
the previous section.1

4.1 Benchmark: Wet-Chicken 2D

The benchmark problem used was Wet-Chicken 2D, a two-dimensional version
of the original Wet-Chicken benchmark [13]. In the original setting a canoeist
1 Source code for the benchmark problem as well as a DUIPI implementation is avail-

able at http://ahans.de/publications/icann2009/

http://ahans.de/publications/icann2009/
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Fig. 1. Performance of policies generated using standard policy iteration (‘•’ marks),
DUIPI (black lines), and the full-matrix method [10] (gray lines). ξ = 0.5 is indicated by
‘×’ marks, ξ = 1 by ‘+’ marks. Solid lines represent policies generated using frequentist
estimators, dashed lines represent policies generated using Bayesian estimation.

paddles on a one-dimensional river with length l and flow velocity v = 1. At
position x = l of the river there is a waterfall. Starting at position x = 0 the
canoeist has to try to get as near as possible to the waterfall without falling
down. If he falls down, he has to restart at position x = 0. The reward increases
linearly with the proximity to the waterfall and is given by r = x. The canoeist
has the possibility to drift (x−0+v = x+1), to hold the position (x−1+v = x),
or to paddle back (x − 2 + v = x − 1). River turbulence of size s = 2.5 causes
the state transitions to be stochastic. Thus, after having applied the canoeist’s
action to his position (also considering the flow of the river), the new position
is finally given by x′ = x + n, where n ∈ [−s, s] is a uniformly distributed
random value. For the two-dimensional version the river is extended by a width
w. Accordingly, there are two additional actions available to the canoeist, one
to move the canoe to the left and one to move it to the right by one unit. The
position of the canoeist is now denoted by (x, y), the (re-)starting position is
(0, 0). The velocity of the flow v and the amount of turbulence s depend on y:
v = 3y/w and s = 3.5 − v. In the discrete problem setting, which we use here,
x and y are always rounded to the next integer value. While on the left edge of
the river the flow velocity is zero, the amount of turbulence is maximal; on the
right edge there is no turbulence (in the discrete setting), but the velocity is too
high to paddle back.

4.2 Results

We performed experiments with a river size of 10x10 (100 states) and 20x20 (400
states). For both settings a fixed number of observations was generated using
random exploration. The observations were used as input to generate policies
using the different algorithms. The discount factor was chosen as γ = 0.95. Each
resulting policy was evaluated over 100 episodes with 1000 steps each. The re-
sults are summarized in fig. 1 (averaged over 100 trials). For clarity only the
results of stochastic policies are shown (except for ξ = 0, i.e., standard policy
iteration), they performed better than the deterministic ones in all experiments.
Usually a method like DUIPI aims at quantile optimization, i.e., reducing the
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Fig. 2. Left: histograms of average rewards of 104 policies with ξ = 0 (solid), ξ = 1
(dashed), and ξ = 2 (dotted). For the generation of each policy 4 × 104 observations
were used. Right: mean (solid) and 0.1-quantile (dashed) average rewards of policies
with ξ = 0 (‘•’ marks), ξ = 0.5 (‘×’ marks), and ξ = 1 (‘+’ marks).

probability of generating very poor policies at the expense of a lower expected
average reward. However, in some cases it is even possible to increase the ex-
pected performance, when the MDP exhibits states that are rarely visited but
potentially result in a high reward. For Wet-Chicken states near the waterfall
have those characteristics. An uncertainty unaware policy would try to reach
those states if there are observations leading to the conclusion that the prob-
ability of falling down is low, which in fact is high. In [10] this is reported as
“border-phenomenon”, which by our more general explanation is included. Due
to this effect it is possible to increase the average performance using uncertainty
aware methods for policy generation, which can be seen from the figure. For
small numbers of observations and high ξ-values DUIPI performs worse as in
those situations the action selection in the iteration is dominated by the uncer-
tainty of the Q-values and not the Q-values themselves. This leads to a preference
of actions with low uncertainty, the Q-values play only a minor role. This effect
is increased by the fact that due to random exploration most observations are
near the beginning of the river, where the immediate reward is low. Using a
more intelligent exploration scheme could help to overcome this problem. Due
to the large computational and memory requirements the full-matrix method
could not be applied to the problem with river size 20x20. Moreover, results of
the full-matrix version with Bayesian estimation are not shown as they would
not have been distinguishable in the figure.

Fig. 2 compares uncertainty aware and unaware methods. Considering the
uncertainty reduces the amount of poor policies and even increases the expected
performance (ξ = 0.5). Setting ξ = 1 results in an even lower probability for
poor policies at the expense of a lower expected average reward.

Table 1. Computation times to generate a policy using a single core of an Intel
Core 2 Quad Q9550 processor

method Wet-Chicken 5x5 Wet-Chicken 10x10 Wet-Chicken 20x20

full-matrix 5.61 s 1.1 × 103 s —
DUIPI 0.002 s 0.034 s 1.61 s
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5 Conclusion

In this paper, we presented DUIPI, a computationally very feasible algorithm
for incorporation of uncertainty into the Bellman iteration. It only considers the
diagonal of the covariance matrix encoding the covariance. While this causes
the algorithm to be only approximate, it also decreases its complexity, decreas-
ing the computational requirements by orders of magnitude. Moreover, we pro-
posed a Bayesian parameter estimation that incorporates prior knowledge about
the number of successor states. Our experiments show that DUIPI increases
the robustness and performance of policies generated for MDPs whose exact
parameters are unknown and estimated from only a fixed set of observations.
In industrial applications observations are often expensive and arbitrary explo-
ration not possible, we therefore believe that for those applications knowledge of
uncertainty is crucial. Future work will consider application of UP to RL algo-
rithms involving function approximation and utilizing knowledge of uncertainty
for efficient exploration.
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