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Abstract. This paper studies a risk minimization approach to estimate a trans-
formation model from noisy observations. It is argued that transformation mod-
els are a natural candidate to study ranking models and ordinal regression in a
context of machine learning. We do implement a structural risk minimization
strategy based on a Lipschitz smoothness condition of the transformation model.
Then, it is shown how the estimate can be obtained efficiently by solving a con-
vex quadratic program with O(n) linear constraints and unknowns, with n the
number of data points. A set of experiments do support these findings.
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1 Introduction

Non-linear methods based on ranking continue to challenge researchers in different sci-
entific areas, see e.g. [5,7]. Problems of learning ranking functions come in different
flavors, including ordinal regression, bipartite ranking and discounted ranking stud-
ied frequently in research on information retrieval. This problem will be considered
in the context of Support Vector Machines (SVM) [11,12,14] and convex optimization.
We study the general problem where the output domain can be arbitrary (with possi-
bly infinite members), but possess a natural ordering relation between the members.
This general problem was studied before in [1,7], and results can be specified to the
aforementioned specific settings by proper definition of the domain of the outputs (e.g.
restricting its cardinality to k < ∞ or k = 2).

A main trend is the reduction of a ranking problem to a pairwise classification prob-
lem, bringing in all methodology from learning theory. It may however be argued that
such an approach deflects attention from the real nature of the ranking problem. It is for
example not clear that the complexity control (in a broad sense) which is successful for
classification problems is also natural and efficient in the ranking setting. More specifi-
cally, it is often taken for granted that the measure of margin - successful in the setting
of binary classification - has a natural counterpart in the ranking setting as the measure
of pairwise margin, although it remains somewhat arbitrary how this is to be imple-
mented exactly, see e.g. [4]. In order to approach such questions, we take an alternative
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approach: we will try to learn a single function u : R
d → R, such that the natural order

on R induces the desired ranking (approximatively). Such a function is often referred to
as a scoring, ranking, utility or health function depending on the context - we will use
utility function in this text.

In the realizable case, techniques as complexity control, regularization or Occam’s
razor (in a broad sense) give a guideline to learn a specific function in case there are
more functions exactly concordant with the observed data: a simpler function has a
better chance of capturing the underlying relation. In short, we will argue that a utility
function reproducing the observed order is less complex than another concordant func-
tion if the former is more smoothly related to the actual output values. That is, if there
is an exact order relation between two variables, one can obviously find (geometrically)
a monotonically increasing function between them. This argument relates ranking di-
rectly to what is well-studied in the statistical literature as transformation models, see
e.g. [6,9]. Here the monotonically increasing mapping between utility function and out-
put is referred to as the transformation function. Now, we define the complexity of a
prediction rule for transformation models as being the Lipschitz constant of this trans-
formation function. When implementing a risk minimization strategy based on these
insights, the resulting methods are similar to the binary, hard margin SVMs, but do dif-
fer conceptually and computationally with existing ranking approaches. Also similar
in spirit to the non-separable case in SVMs, it is indicated how slack variables can be
used to relax the realizable case: we assume that an exactly concordant function can be
found, were it not for incomplete observation of the patients’ covariates.

This paper is organized as follows. Section 2 discusses in some detail the use of
transformation models and its relation with ranking methods. Section 3 introduces an
efficient estimator of such a transformation function, relying on ideas as thoroughly
used in the machine learning literature. Section 4 gives insight how our estimator can
be modified in the context of ordinal regression. Section 5 reports experimental results
supporting the approach.

2 Transformation Models and Ranking Methods

In order to make the discussion more formal, we adopt the following notation. We work
in a stochastic context, so we denote random variables and vectors as capital letters,
e.g. X, Y, . . . , which follow an appropriate stochastic law PX , PY , . . . , abbreviated
(generically) as P . Deterministic quantities as constants and functions are represented
in lower case letters (e.g. d, h, u, . . . ). Matrices are denoted as boldface capital letters
(e.g. X,D, . . . ). Now we give a definition of a transformation model.

Definition 1 (Transformation Model). Let h : R → R be a strictly increasing func-
tion, and let u : R

d → R be a function of the covariates X ∈ R
d. A Transformation

Model (or TM) takes the following form

Y = h(u(X)). (1)

Let ε be a random variable (’noise’) independent of X , with cumulative distribution
function Fε(e) = P (ε ≤ e) for any e ∈ R. Then a Noisy Transformation Model (NTM)
takes the form
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Y = h(u(X) + ε). (2)

Now the question reads as how to estimate the utility function u : R
d → R and the

transformation model h from i.i.d. samples {(Xi, Yi)}n
i=1 without imposing any distri-

butional (parametric) assumptions on the noise terms {εi}.
Transformation models are often considered in the context of failure time models

and survival analysis [8]. It should be noted that the approach which will be outlined
sets the stage for deriving predictive models in this context. Note that in this context
[3,6,9] one considers transformation models of the form h−(Y ) = u(X)+ ε, which are
equivalent in case h is invertible, or h−(h(z)) = h(h−(z)) = z for all z.

The relation with empirical risk minimization for ranking and ordinal regression
goes as follows. The risk of a ranking function with respect to observations is often
expressed in terms of Kendall’s τ , Area Under The Curve or a related measure. Here
we consider the (equivalent) measure of disconcordance (or one minus concordance)
for a fixed function u : R

d → R, where the probability concerns the two i.i.d. copies
(X, Y ) and (X ′, Y ′):

C(u) = P ((u(X) − u(X ′))(Y − Y ′) < 0). (3)

Given a set of n i.i.d. observations {(Xi, Yi)}n
i=1,

Cn(u) =
2

n(n − 1)

∑

i<j

I((u(Xi) − u(Xj))(Yi − Yj) < 0), (4)

where the indicator function I(z) equals one if z holds, and equals zero otherwise.
Empirical Risk Minimization (ERM) is then performed by solving

û = argmin
u∈U

Cn(u), (5)

where U ⊂ {u : R
d → R} is an appropriate subset of ranking functions, see e.g. [5]

and citations. This approach however results in difficult and combinatorial optimization
problems, and the current solution is to majorize the discontinuous indicator function
with the Hinge loss, i.e. I(z) ≤ max(0, 1 − z) yielding rankSVM [7]. The intrinsic
problem with such an approach is that one has O(n2) number of constraints or un-
knowns in the final optimization problem, obstructing applicability (computationally)
to many real life cases.

Now, there is an intrinsic relation with transformation models which circumvent such
problems. The crucial observation here (again) is that if a function u : R

d → R exists
such that Cn(u) = 0, one describes implicitly a monotonically increasing transforma-
tion function (see Figure 1). In the case that Cn(u) = 0 is not satisfied, we will adopt the
noisy transformation model and use the error terms (slack variables) to model the de-
viance from this assumption. This reasoning is entirely similar as is used in formulating
the hard margin Support Vector Machine, and its soft-margin variation.
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Fig. 1. The main observation relating ranking and transformation models is that if two variables
u(x) and y are perfectly concordant, they describe (implicitly) a monotonically increasing func-
tion y = h(u(x)). This means that a perfect ranking function corresponds with a (noiseless)
transformation model. Moreover, if the samples are pairwise Lipschitz, there exists a Lipschitz
transformation function. The yellow zones indicate possible function values on test samples.

3 MINLIP: A Convex Approach to Learning a Transformation
Model

3.1 Lipschitz Smooth Functions and Transformation Models

In order to overcome the difficulties of implementing the estimator given in equation
(5), we need one final ingredient. This concept will play a similar role as the margin in
Support Vector Machines for classification. We will say that the univariate function h
has a Lipschitz constant of L ≥ 0 if |h(z) − h(z′)| ≤ L|z − z′| for all z, z′ ∈ R, or
equivalently

|h(u(x)) − h(u(x′))| ≤ L |u(x) − u(x′)| , ∀x, x′ ∈ R
d. (6)

Now, since h is monotonically increasing one has also h(z) − h(z′) ≤ z − z′ for all
z ≥ z′, and restricting attention to the samples {(xi, yi)}n

i=1, one has the necessary and
sufficient conditions h(u(X(i))) − h(u(X(i−1))) ≤ L

(
u(X(i)) − u(X(i−1))

)
for all

i = 2, . . . , n. Here, we assume that the data obey a noiseless transformation model (as
in (1)), and the samples are reindexed as {(X(i), Y(i))}n

i=1 where Y(i−1) ≤ Y(i) for all
i = 2, . . . , n. Wrapping up results thus far gives us the following proposition:

Proposition 1 (Existence of h). Given a set of samples {(X(i), Y(i))}n
i=1 ⊂ R

d × R

and a function u : R
d → R, such that Y(i) ≥ Y(i−1) for all i = 2, . . . , n, and

Y(i) − Y(i−1) ≤ L
(
u(X(i)) − u(X(i−1))

)
, ∀i = 2, . . . , n, (7)

Then there exists a monotonically increasing function h : R → R such that the mapping
x to y obeys y = h(u(x)) and h has Lipschitz constant L following (6) (see Figure 1).

Before using non-linear utility functions, we will consider only linear utilities in the
next two sections.
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3.2 Kernel Based Model

Since the function u(x) = wT x can be arbitrarily rescaled such that the corresponding
transformation function has arbitrary Lipschitz constant (i.e. for any c > 0, one has
h(u(x)) = h′(u′(x)) where h′(z) = h(c−1z) and u′(x) = cu(x)), we fix the norm
wT w and try to find u(x) = vT x with vT v = 1. Hence learning a transformation
model with minimal Lipschitz constant of h can be written as

min
v,L

L2 s.t. ‖v‖2 = 1, Y(i) − Y(i−1) ≤ L
(
vT X(i) − vT X(i−1)

)
, ∀i = 2, . . . , n (8)

and equivalently substituting w = Lv as

min
w

1
2
wT w s.t. Y(i) − Y(i−1) ≤ wT X(i) − wT X(i−1), ∀i = 2, . . . , n (9)

which goes along similar lines as the hard margin SVM (see e.g.[11]). Remark that
there is no need for an intercept term here. Observe that this problem has n − 1 linear
constraints. We will refer to this estimator of w as MINLIP. We can rewrite this problem
compactly as

min
w

1
2
wT w s.t. DXw ≥ DY, (10)

where X ∈ R
n×d is a matrix with each row containing a sample, i.e. Xi = X(i) ∈ R

d,
Yi = Y(i) ∈ R. The matrix D ∈ {−1, 0, 1}(n−1)×n gives the first order differences of a
vector, i.e. assuming no ties in the output, DjY = Y(j+1)−Y(j) for all j = 1, . . . , n−1,
with Dj the jth row of D. In the presence of ties Y(j+1) is replaced by Y(i), with i the
smallest output value with Y(i) > Y(j). Solving this problem as a convex QP can be
done efficiently with standard mathematical solvers as implemented in MOSEK1 or
R-quadprog2.

3.3 The Agnostic Case

The agnostic case deals with the case where one is not prepared to make the assumption
that a function exists which will exactly extract in all cases the most relevant element.
To model this, we impute a random variable ε with expected value zero, which acts
additive on the contribution of the covariates (hence nonadditive on the final output for
general function h). Hence our model becomes

Y = h(u(X) + ε) = h(wT X + ε), (11)

as in (2). Now we suggest how one can integrate the agnostic learning scheme with the
Lipschitz-based complexity control. We will further specify the loss function � : R → R

to the absolute value loss, or �(ε) = |ε|. The reason for doing so is threefold. At first,
this loss function is known to be more robust to model misspecification and outliers
(leverage points) than e.g. the squared loss �(ε) = ε2. Secondly, this loss will result

1 http://www.mosek.org
2 http://cran.r-project.org/web/packages/quadprog/index.html
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in sparse terms, i.e. many of the estimated error terms will be zero. This in turn can be
exploited in order to obtain a compact representation of the estimate through the dual (as
is the case for Support Vector Machines (SVMs) [14], and see the following subsection).
Thirdly, the one-norm loss is found to perform well in the binary classification case as
implemented in the SVMs. However, we stress that the choice of this loss is in some
sense arbitrary, and should be tailored to the case study at hand. One can formalize the
learning objective for a fixed value of γ > 0 with errors ε = (ε1, . . . , εn−1)T ∈ R

n−1:

min
w,ε

1
2
wT w + γ‖ε‖1 s.t. D(Xw + ε) ≥ DY, (12)

where ‖ε‖1 =
∑n

i=1 |εi|. This problem can again be solved as a convex quadratic
program.

3.4 A Nonlinear Extension Using Mercer Kernels

Consider the model
u(x) = wT ϕ(x), (13)

where ϕ : R
d → R

dϕ is a mapping of the data to a high dimensional feature space
(of dimension dϕ, possibly infinite). Now w ∈ R

dϕ is a (possibly) infinite dimensional
vector of unknowns. Let Φ = [ϕ(X(1)), . . . , ϕ(X(n))]T ∈ R

n×dϕ . Then we can write
the learning problem concisely as

min
w

1
2
wT w s.t. DΦw ≥ DY, (14)

with the matrix D defined as before. This problem can be solved efficiently as a convex
Quadratic Programming (QP) problem. The Lagrange dual problem becomes

min
α

1
2
αTDKDT α − αTDY s.t. α ≥ 0n−1 (15)

where the kernel matrix K ∈ R
n×n contains the kernel evaluations such that Kij =

ϕ(Xi)T ϕ(Xj) for all i, j = 1, . . . , n. The estimated û can be evaluated at any point
x ∈ R

d as
û(x) = α̂T DKn(x), (16)

where α̂ solves (15), and Kn(x) = (K(X1, x), . . . , K(Xn, x))T ∈ R
n. A similar

argument gives the dual of the agnostic learning machine of Subsection 3.3 (12), see
e.g. [11,12,14]:

min
α

1
2
αT DKDT α − αT DY s.t.

{
−γ1n ≤ DT α ≤ γ1n

α ≥ 0n−1 ,
(17)

with K as above and the resulting estimate can be evaluated as in (16) without comput-
ing explicitly ŵ. It is seen that the nonlinear model can be estimated using a pre-defined
kernel function, and without explicitly defining the mapping ϕ(·).
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4 Learning for Ordinal Regression

Consider now the situation where the output takes a finite number of values - say k ∈ N

- and where the k different classes possess a natural ordering relation. Instead of rank-
ing all samples with its closest sample, one has to enumerate the rankings of all samples
with certain output levels with all samples possessing the closest non-equal output level.
However, when only observing a constant number k different output levels, this proce-
dure can increase the number of constraints in the estimation problem to O(n2). To
cope with this issue, we introduce unknown thresholds {vj}k−1

j=1 on the utility function,
corresponding with known output levels zj = Y j + 1

2 (Y j+1 − Y j). This implies that
one has to compare each sample only twice, namely with thresholds zj and zj+1 for
each data point in class j. This problem can be formulated as

min
w,ε

1
2
wT w + γ‖ε‖1 s.t.

{
D(Φw + ε) ≥ DY,

vj ≥ vj−1, ∀j = 2, . . . , k − 1 ,
(18)

with

w =
[

w
v

]
Φ =

[
Φ 0
0 I

]
Y =

[
Y
z

]
, (19)

where D needs to be build in such a way that DΦw equals the difference between the
utility of each point and the utility of the nearest threshold.

5 Application Studies

5.1 Ordinal Regression

In a first example 6 regression datasets3 are used to compare the performance of the
minlip model with two methods described in [4] (see Table 1). Both of these methods
optimize multiple thresholds to define parallel discriminant hyperplanes for the ordi-
nal levels. The first method (EXC) explicitly imposes the ordering of the thresholds,
whereas this is done implicitly in the second method (IMC). Tuning of the Gaussian
kernel parameter and the regularization parameter was performed with 10-fold cross-
validation on an exponential grid. After an initial search, a finer search was performed in
the neighborhood of the initial optimum. The datasets are divided into 20 folds with 10
equal-frequency bins, as in [4]. The generalization performance of the minlip method is
clearly better than for the other methods. The IMC method performs best on the small
dataset, but the minlip performance is better on larger datasets. Remark that the results
on EXC and IMC obtained here are better than reported in [4].

In a second experiment, the performance and calculation time of the minlip model
and standard rankSVM are compared on the pyrimidines dataset. Figure 2 shows the
concordance, mean average error and calculation time when varying the number of
training data points from 5 to 50. The concordance and error of both methods are com-
parable but for an increasing number of training data points the calculation time is
considerably higher for the rankSVM method.

3 These regression datasets are available at
http://www.liacc.up.pu/˜ltorgo/Regression/DataSets.html

http://www.liacc.up.pu/~ltorgo/Regression/DataSets.html
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Table 1. Test results of minlip, EXC and IMC using a Gaussian kernel. The targets of the datasets
were discretized by 10 equal-frequency bins. The results are averaged over 20 trials.

dataset mean zero-one error mean absolute error
minlip EXC IMC minlip EXC IMC

pyrimidines 0.65±0.09 0.70±0.09 0.62 ± 0.07 1.01±0.16 1.22±0.22 1.00±0.12
triazines 0.66±0.06 0.72 ±0.00 0.71±0.02 1.19±0.12 1.34±0.00 1.27±0.07

wisconsin 0.91±0.03 0.89±0.03 0.88±0.03 2.33±0.11 2.30±0.17 2.25±0.13
machine CPU 0.36±0.04 0.55±0.06 0.42±0.09 0.54±0.09 0.77±0.07 0.69±0.11

auto MPG 0.49±0.04 0.55±0.02 0.55±0.03 0.62±0.14 0.76±0.05 0.75±0.06
Boston housing 0.44±0.04 0.50±0.03 0.48±0.03 0.54±0.08 0.71±0.06 0.63±0.05

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# training data points

C
on

co
rd

an
ce

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

# training data points

M
ea

n
A

bs
ol

ut
e

E
rr

or

5 10 15 20 25 30 35 40 45 50
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

# training data points

lo
g

C
al

cu
la

ti
on

T
im

e
(s

)

Fig. 2. Comparison between minlip (black) and the standard rankSVM (grey) on the pyrimidines
dataset. The performance (concordance and mean absolute error are illustrated) of both methods
is comparable, but for a reasonable number of training points, the calculation time is considerably
lower for the first method.

5.2 Movie Recommendations

Our last application is a movie-recommendation task4. The data consists of the scores
for 6040 viewers on 3952 movies. The goal is to predict the scoring of user i on movie
j. We use the scorings of 1000 viewers as covariates to predict the scoring of the other
viewers as follows

ŝi,k =
1000∑

j=1

wi,jsj,k ,

where ŝi,k indicates the predicted score of user i on movie k, wi,j is the weight or
”importance” of user j to predict the score given by user i. sj,k represents the score of
movie k given by user j. The 1000 viewers with the highest number of rated movies
were selected as reference viewers. Another 1000 (random) viewers were used as a
validation set to tune the regularization parameterand the imputation value for scores in
case a reference viewer did not score a certain movie. The values for the regularization
parameter were selected after 10-fold cross-validation on an exponential grid. We chose
two possible values for the imputation parameter: 3, which is the mean of all possible
scores, and 2, which is one score lower than the previous one, indicating that the reason
for not seeing a movie could be that one is not interested in the movie. For the 4040
remaining viewers, the first half of the rated movies were used for training, the second

4 Data available on http://www.grouplens.org/node/73

http://www.grouplens.org/node/73


68 V. Van Belle et al.

half for testing. The performance of the minlip method was compared with 3 other
methods:

– linear regression (LREG): The score of the new user is found as a linear combi-
nation of the scores of the 1000 reference users.

– nearest neighbor classification (NN): This method searches the reference viewer
for whom the scores are most similar to the scores of the new user. The score of the
most similar reference viewer is considered as predicted score for the new viewer.

– vector similarity (VSIM): This algorithm [2] is based on the notion of similarity
between two datapoints. The correlation between the new user and the reference
users are used as weights wk,i in the formula:ŝk,j = s̄k + a

∑
i=1 wk,i(si,j − s̄i),

where s̄i represents the mean score for viewer i and a is a normalization constant
such that

∑
i |wk,i| = 1.

Three different performance measure were used for comparison of the methods:

– mean zero-one error (MZOE)
– mean absolute error (MAE)
– concordance (CONC): measuring the concordance of the test set within the train-

ing set, defined as:

CONCn(u) =
∑ nt

i=1
∑ n

j=1 I[(u(Xj)−u(Xi))(Tj−Ti)>0]

ntn , with n and nt the number of
datapoints in the training and test set respectively.

Figure 3 compares all 4 methods for the 3 considered performance measures. The mean
zero-one and mean absolute error should be as small as possible, while the concordance
should be close as large as possible. The LREG method performs the least on all mea-
sures. The VSIM method results in a good average precision and low error measures,
whereas the NN methods is better in obtaining a high concordance. The advantage of
the minlip method is that is performs good on all the measures.
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Fig. 3. Performance comparison of 4 methods: minlip (linear kernel), linear regression (LREG),
nearest neighbor (NN) and vector similarity (VSIM). Three different performance measure were
used. LREG performs the least on all measures. VSIM has low errors, whereas the NN method
has a high concordance. The advantage of the minlip method is that it performs well on all the
investigated performance measures.
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6 Conclusions

This paper proposed an efficient estimator of a transformation model from noisy obser-
vations. The motivation for considering this problem is given by describing its relation
to (i) the problem of learning ranking functions, and (ii) its relevance to estimating sta-
tistical models e.g. in a context of survival analysis. The latter topic will be the focus of
subsequent work. We conducted two experiments to illustrate the use of this estimator:
a first example on the prediction of the rankings of movies showed a good performance
on different measures where other methods performed worse regarding at least one
measure. In a second example on ordinal regression, we illustrate the reduction in cal-
culation time in comparison with the standard rankSVM method, without reduction in
performance.
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