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Abstract. Implementing probabilistic models in Very-Large-Scale-Integration
(VLSI) has been attractive to implantable biomedical devices for improving sen-
sor fusion. However, hardware non-idealities can introduce training errors, hin-
dering optimal modelling through on-chip adaptation. This paper investigates the
feasibility of using the dynamic current mirrors to implement a simple and pre-
cise training circuit. The precision required for training the Continuous Restricted
Boltzmann Machine (CRBM) is first identified. A training circuit based on accu-
mulators formed by dynamic current mirrors is then proposed. By measuring the
accumulators in VLSI, the feasibility of training the CRBM on chip according to
its minimizing-contrastive-divergence rule is concluded.

Keywords: Minimising Contrastive Divergence, Dynamic Current Mirrors,
Probabilistic Model, Boltzmann Machine, On-chip training.

1 Introduction

As probabilistic models are able to generalise the natural variability in data, the VLSI
implementation of probabilistic models has been attractive to implantable biomedical
devices [1] [2]. However, seldom probabilistic models are amenable to the VLSI im-
plementation. Among the proposed probabilistic models in VLSI [3] [4] [5], the Con-
tinuous Restricted Boltzmann Machine (CRBM) has been shown capable of modelling
biomedical data with a hardware-friendly training algorithm, which minimises the con-
trastive divergence (MCD) between training and modelled distributions [6] [7]. How-
ever, experiments in [7] revealed that offsets in training circuits limited the minimum
achievable divergence, preventing the CRBM microsystem from modelling data opti-
mally. To make useful the VLSI implementation of the CRBM and many other models,
it is important to develop a simple circuit capable of realising contrastive training rules
with satisfactory precision.

This paper examines the feasibility of using dynamic current mirrors to realise
contrastive-divergence training algorithms on-chip with satisfactory precision. As
continuous-valued models are inherently more sensitive to the existence of training er-
rors, the satisfactory precision refers to the capability of training the CRBM microsys-
tem to model both artificial and real biomedical (ECG) data satisfactorily.
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2 The CRBM Model

The CRBM consists of one visible and one hidden layers of stochastic neurons with
inter-layer connections only [7]. The number of visible neurons corresponds to the di-
mension of data, while that of hidden neurons is chosen according to data complex-
ity [7]. Let wi j represent the bi-directional connection between neurons si and s j. The
stochastic state of a neuron si is defined by [7]

si = ϕi (ai · (Σ jwi j · s j + Ni (0,σ))) (1)

where Ni (0,σ) represents a Gaussian noise with zero mean and variance σ2, and ϕi (·)
a sigmoid function (e.g. tanh(·)) with asymptotes at ±1. Parameter ai controls the slope
of the sigmoid function and thus the variance of si, such that the neuron is either near-
deterministic ( small ai ), or continuous-stochastic ( moderate ai ), or binary-stochastic
( large ai ). Let λ represent the parameter {wi j} or {ai}. Parameters in a CRBM mi-
crosystem are trained by the simplified MCD algorithm [3]

�λ = ηλ · (〈si · s j
〉

4 −
〈
ŝi · ŝ j

〉
4) (2)

where ŝi and ŝ j denotes the one-step Gibbs-sampled states [7], ηλ the updating rate,
and 〈·〉4 taking the expectation over four training data. The difference between

〈
si · s j

〉
4

and
〈
ŝi · ŝ j

〉
4 corresponds to the contrastive divergence between training and modelled

distributions [6] and has to be minimised. For training {ai}, s j and ŝ j in Eq.(2) are
replaced by si and ŝi, respectively.

3 Maximum Offsets Tolerable by the CRBM

The CRBM has been realised as a VLSI microsystem containing six neurons with on-
chip training circuits [3]. However, hardware nonidealities in training circuits prevents
the CRBM system from modelling data optimally, and it was shown that the overall
effect of hardware nonidealities can be modelled as the ”biased” training algorithm

�λ = ηλ · (〈si · s j
〉

4 −
〈
ŝi · ŝ j

〉
4 +�T ) (3)

where �T represents the offset that limits the minimum contrastive divergence achiev-
able by on-chip training circuits. Although the offset varies from one circuit to an-
other, it is assumed to be identical in simulation for simplicity. Based on the software-
hardware mapping derived in [3], the following subsections simulate the behaviour of
a CRBM microsystem with Eq.(3), and identify the maximum offsets (�T ) the system
can tolerate. The value of tolerable offsets will be given in terms of percentage, normal-
ized with respect to the maximum value of |〈si · s j

〉
4 | = 1. ( i.e. �T = 1 % refers to

�T = 0.01 in Eq.(3) ).

3.1 Quantitative Index for Offset Tolerance

As a generative model, the CRBM learns to ”regenerate” training data distribution.To
identify an index for measuring quantitatively how well the CRBM models a dataset, the
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Fig. 1. (a) Artificial training data with two clusters of Gaussian-distributed data points. (b) The
statistical density of the training data. (c)(d): The statistical density of 20-step reconstructions
generated by the CRBM after (c)20000 (d)30000 training epochs.
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Fig. 2. (a) The projection of 500 ECG training data to its first two principle components. The
projection of the five abnormal ECGs are denoted by black crosses. (b)(c)(d): Results of training
the CRBM to model ECG data with �T = 0.2% for all parameters. (b) (b) The normal and
(c)the abnormal ECGs in training dataset (grey) and the reconstruction by the trained CRBM
(dashed). (d) Responses of hidden neuron h3 to 1700 testing data. maxV, minV, maxQ, and minQ
correspond to the maximum and minimum responses to abnormal heartbeats, and maximum and
minimum responses to normal heartbeats, respectively.
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Table 1. Tolerable offsets with four-data, sign-valued training algorithm, four-data, real-valued
training algorithm, and single-datumn training algorithm

METHOD\MODELLED DATA TWO-CLUSTER ECG

Four-data, sign-valued 1% 0.2%

Four-data, real-valued 1% 0.3%

Single-data, real-valued 0.2% 0.05%

CRBM with two visible and four hidden neurons, as shown in Fig.1, was first trained
with the ideal algorithm (Eq.(2)) to model the artificial data in Fig.1(a). The dataset
contains one elliptic and one circular clusters of 200 Gaussian-distributed data points
whose statistical density is shown in Fig.1(b). Let PT (v) and PM(v) represent the dis-
tribution of training data and the distribution modeled by the CRBM, respectively. The
Kulback-Leibler (KL) Divergence defined as Eq.(4) [8] measures the difference between
PT (v) and PM(v).

G = ΣvPT (v)log
PT (v)
PM(v)

(4)

where v denotes the subset of visible states, and G equals zero when PT (v) = PM(v).
As not all distributions can be described by explicit equations, PT (v) and PM(v) were
statistically-estimated by dividing the two-dimensional space into 10x10 square grids,
counting the number of data points in each grid, and normalising the counts with respect
to the total number of data points. Fig.1(c)(d) shows the statistical density of 20-step
reconstructions generated by the CRBM after 20000 and 30000 training epochs, respec-
tively. The G values calculated according to Eq.(4) are shown at the bottom-left corner
of each subfigure, indicating that the KL-divergence is a reliable index for measuring
quantitatively the similarity between training and modelled distributions. Similar results
are obtained for other data like doughnut-shaped distribution. As the training updates of
most parameters become negligible after G < 0.8, it is chosen as the criterion for identi-
fying the tolerable offsets for the CRBM. When all parameters ({wi j}, {avi}, and {ahi})
experience offsets, the maximum offsets the CRBM can tolerate to model artificial data
was identified to be 1% (Table 1).

3.2 Modelling Real Heartbeat Data with Offsets

The tolerable offset for modelling high-dimensional, real-world data was examined
in the context of recognising electrocardiograms (ECG), extracted from the MIT-BIH
database as in [9] [10]. The training dataset contains 500 heartbeats with only 5 abnor-
mal heartbeats. The testing dataset contains 1700 heartbeats with 27 abnormal heart-
beats. Each ECG trace was sampled as a 65-dimensional datum, and Fig.2(a) shows the
projection of the training dataset onto its first two principle components. Although the
dimension reduction made the quantitative index G remain applicable, pilot simulation
showed that modelling training data satisfactorily did not guarantee the detection of ab-
normal heartbeats with 100% accuracy. This was because the projected distributions of
normal and abnormal heartbeats at low dimension overlap with each other, as obviated
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by Fig.2(a). (the data remain separable in high dimensions). Therefore, detection with
100% accuracy was used as a stricter criterion for identifying the tolerable offsets for
modelling ECG data. Extensive simulations further showed that the CRBM tolerated
an offset of only 0.2% to model ECG data (Table 1). With �T = 0.2%, the trained
CRBM was able to reconstruct both normal and abnormal ECG signal satisfactorily, as
shown in Fig.2(b)(c). In addition, Fig.2(d) shows the responses of hidden neuron h3 to
1700 testing data {d}, calculated according to Eq.(5). The abnormal heartbeats can be
detected with 100% accuracy by setting any threshold between minV and maxQ.

h3 = ϕ(a3 · (w(3) ·d)) (5)

3.3 Tolerable Offsets for Different Training Strategies

As implementing training circuits with an offset less than 0.2% is quite a challenge, we
further investigated the possibility of releasing the strict requirement with two modi-
fied training strategies, (a)updating parameters with real-valued contrastive divergence
(
〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4) instead of taking only its sign and (b)updating parameters with

real-valued contrastive divergence datum by datum [11]. The last two rows of Table 1
summarise the maximum offsets the CRBM can tolerate to model artificial and ECG
data with the different training strategies. Comparison with the first row indicates that
four-data, real-valued adaptation does enhance the tolerance against offsets slightly,
while single-datum adaptation degrades the tolerance significantly. The latter demon-
strates that calculating the expectation value, i.e. accumulating opinions from multiple
data, is important for estimating the ”contrastive divergence” between distributions.

4 The Contrastive-Divergence Training Circuit Based on Dynamic
Current Mirrors

Although an offset smaller than 0.3% remains challenging, the dynamic current mirrors
(DCMs) were reported to have errors smaller than 500ppm [12] [13]. Therefore, we
propose the training circuit in Fig.3 that uses DCMs to calculate

〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4 or

(si · s j − ŝi · ŝ j) in contrastive-divergence training rules. Each DCM works as a regis-
ter, using the same transistor (M1 or M2 in Fig.3(a)) to sample and transfer currents.
The mismatching errors in conventional current mirrors, i.e. the main cause of train-
ing offsets in [10], are thus avoided. Fig.3(a) shows the accumulator consisting of one
NMOS (M1-M1c) and one PMOS (M2-M2c) DCMs. The DCM training circuit realises
the single-datum training algorithm by simply three steps. Iin in Iin in Fig.3(a) repre-
sents si · s j or ŝi · ŝ j calculated by the multiplier. At the first step with switches SIN , SD1,
and SG1 cloased, the current representing si · s j is sampled into the NMOS DCM, and
then stored as the voltage across the capacitor C1 after SIN and SG1 become opened.
At the second step, switches SD2 and SG2 are closed to copy the same current into the
PMOS DCM. The sampled current is stored as a voltage across the capacitor C2 after
SD2 and SG2 are opened. At the third step, Iin representing ŝi · ŝ j is sampled and stored
in the NMOS DCM by repeating the first step. Finally, closing SD1, SD2, and SOUT

gives an output current proportional to (si · s j − ŝi · ŝ j). To implement the four-data
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training algorithm, the circuit in Fig.3(a) functions as an accumulator that calculates〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4. The first and the second steps described above are carried out once

to store si · s j of the first datum into the PMOS DCM. At the third step, let Iin corre-
spond to si · s j of the second datum. Closing SIN , SD1, SG1, and SD2 stores the sum of
si · s j of both data into the NMOS DCM. Repeating the second and the third steps al-
ternatively then sums up si · s j of multiple data and stores it into the NMOS DCM. To
calculate the contrastive divergence,

〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4 two identical accumulators are

employed as in Fig.4(b). The top accumulator calculates
〈
si · s j

〉
4 and stores the value

into its PMOS DCM, while the bottom one simply stores
〈
ŝi · ŝ j

〉
4 into NMOS DCM.

As soon as switch SOUT is closed, an output current proportional to
〈
si · s j

〉
4−

〈
ŝi · ŝ j

〉
4

is produced. Finally, IOUT is directed into the charge amplifier in Fig.3(c) which func-
tions as the low-impedance reference voltage (VREF) in Fig.3(b). IOUT hen modifies the
voltage stored across CF , which represents a parameter value of the CRBM.

The DCM training circuit in Fig.3 is capable of realising the three contrastive-
divergence training algorithms in Table 1, as well as other contrastive training rules
in [8] [14] [15] [16]. The learning rate ηλ in Eq.(2) can be defined by the period of clos-
ing SOUT . Unlike the DCMs in [12] [13], the DCMs in Fig.3 have not only to transport
currents of various values but also to function as both accumulators and subtractors,
coping with a wide range of currents. Cascode transistors M1a and M2a in Fig.3(a)
are therefore employed to reduce the effect of channel-length modulation by fixing the
drain voltage of M1 and M2, respectively.

The DCM training circuit also suffers from offsets introduced by the nonlinearity
of multipliers and the charge-injection errors. The former can be easily avoided by us-
ing a multiplier with symmetric outputs, for example, the modified Chible multiplier
proposed in [3]. As for the latter, complementary transistors can be used as switches
to compensate for charge-injection errors. However, the simulation normally underesti-
mates the charge-injection errors. The DCM accumulators in Fig.3(a) and (b), exclud-
ing the multiplier, were thus fabricated with the TSMC 0.35um 2P4M CMOS process
to investigate the precision achievable by the proposed training circuits.

For the single-datum training algorithm, Iin was designed to range from 1μA to 3μA
corresponding to si · s j = −1 and ŝi · ŝ j = 1, respectively. To minimise the dependence
of charge injection on Iin, the charge-injection error is minimised at Iin = 2μA. For four-
data training algorithm, Iin was designed to range from 0.25μA to 0.75μA, such that the
accumulation of four data still ranges from 1μA to 3μA, allowing the minimisation of
charge-injection error to remain at Iin = 2μA.

5 Measurement Results

With Iin generated from a Source Meter (Keithley 2602), the output of the DCM accu-
mulators were connected to a current-voltage(I-V) converter, which emulated VREF in
Fig.3 and converted Iout into a voltage of Vo = VREF −Hf · Iout with Hf = 1650(V/A).
The voltage change �Vo = Vo −VREF = −Hf · Iout at the instant of closing SOUT was
then measured. With digital-control clocks generated by a Field-Programmable-Gate-
Array (FPGA) chip, the DCM accumulators were set easily to calculate (si · s j− ŝi · ŝ j)
or

〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4.
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Fig. 3. The proposed DCM training circuit consisting of (a) a multiplier and the DCM accumu-
lator calculating (si · s j− ŝi · ŝ j), or (b) the DCM accumulator calculating (

〈
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〉
4 −

〈
ŝi · ŝ j

〉
4),

and, (c) the charge amplifier
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Fig. 4. Measured V0 =VREF −Iout ·Hf for single-datum training with Iin = 1μA. (a) without offset
(b) with offset. The digital signals from top to bottom correspond to SIN , SD1, SG1, SD2, SG2, and
SOUT in Fig.3.

(a) (b)

Fig. 5. Measured V0 =VREF − Iout ·Hf for four-data training with Iin = 0.25μA. (a) without offset
(b) with offset. The digital signals from top to bottom correspond to SIN , SD1, SG1, SD2, SG2, and
SOUT for accumulator A and those of accumulator B in Fig.3.
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Fig. 6. Statistical histogram of the offset errors measured from a DCM training circuit set to carry
out single-data training algorithm

Table 2. TMeasured offsets in the calculation of (si · s j− ŝi · ŝ j)

si · s j ŝi · ŝ j MEAN ERROR STD. DEV.

1μA 1μA 0.38% 0.56%

2μA 2μA 0.19% 0.39%

3μA 3μA 0.45% 0.63%

Table 3. Measured offsets in the calculation of
〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4

si · s j(μA) ŝi · ŝ j(μA) MEAN ERROR STD. DEV.

0.25+0.25+0.25+0.25 0.25+0.25+0.25+0.25 1.31% 0.38%

0.5+0.5+0.5+0.5 0.5+0.5+0.5+0.5 2.21% 0.55%

0.75+0.75+0.75+0.75 0.75+0.75+0.75+0.75 3.61% 0.63%

For calculating (si · s j− ŝi · ŝ j), the measured Vo in response to a constant Iin of 1μA,
i.e. si · s j = ŝi · s j = −1, is shown in Fig.4. Although �V0 ideally equaled zero, �V0

measured from the same circuit either approximated zero or varied from one trial to
another. Similar results were observed when calculating

〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4, as shown

in Fig.5. Normalising �V0 with respect to 1.65V (the �V0 for Iout = 1μA representing
|Si · s j| = 1) gives the offset errors in terms of percentage. Fig.6 shows the statistical
distribution of the offsets measured from 1000 trials of calculating (si · s j − ŝi · ŝ j). In-
terestingly, the offsets exhibit a uniform distribution instead of staying constant, and the
variance is greater than the mean value.

The offsets in the DCM accumulators were caused by charge-injection errors, leak-
age currents of C1 and C2, and clock jitters generated by the FPGA chip. To investigate
the contribution of leakage currents, two types of digital clocks were used to buffer Iin

to Iout by storing Iin in the NMOS DCM, transferring it to the PMOS DCM, and sub-
sequently outputing the current. One clock differs from the other mainly by shortening
the period of opening SG1 and SG2. Shortening the period improved the mean errors
from -8.09% to -6.38%, while the standard deviations of the two cases are comparable



418 C.-C. Lu and H. Chen

( 3.45%). Therefore, leakage currents mainly affect the mean errors, while clock jitters
have dominant effects on the variance. Accumulating four Iin caused mean errors to in-
crease by more than four times, while the standard deviations remained about the same.
Charge injection thus also affected mainly the mean errors.

Table 2 summarises the performance of the DCM accumulator in calculating (si ·
s j− ŝi · ŝ j) with different Iin. The mean errors became significantly smaller than 6.38%,
indicating that charge-injection and leakage-current errors in the NMOS and PMOS
DCMs cancelled with each other largely through the subtraction operation. Complete
cancellation was difficult because the current representing (si · s j in the PMOS DCM
unavoidably suffered from extra switching events than the current representing ŝi · ŝ j) in
the NMOS DCM. Moreover, Table 2 reveals that the randomness in offsets was also re-
duced by the subtraction operation. Table 3 summarises the performance in calculating〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4. Compared to Table 2, the mean errors all became higher because

charge-injection and leakage-current errors were accumulated. Nevertheless, the stan-
dard deviations in both tables are comparable, confirming that clock jitters dominate to
introduce the randomness in offsets.

6 Modelling Data with Uniformly-Distributed Offsets

To simulate the performance of a CRBM microsystem with the proposed DCM train-
ing circuits, �T in the training rule was replaced by a uniform random variable with
nonzero mean (μT ) and a standard deviation (σ) of 0.7%, the measured maximum
deviation. Under the existence of �T for all parameters, the maximum mean offsets
(μT ) that the CRBM can tolerate to model both artificial and ECG data are identified
and summarised in Table 4. Compared to Table 1, the tolerance is slightly improved.
This feature agrees with the finding that randomness releases the precision required for
training a multi-layer-perceptron [17] [18]. The CRBM is able to correct training errors
whenever the random offset is small, and thus to discourage the saturation of parameter
values. Therefore, it is important to know when to stop training once the data distri-
bution is modelled, so as to prevent �T from dominating to causes all parameters to
saturate. Fortunately, the G value could be used as a reliable indicator for when to stop.

Table 4. Tolerable mean offsets by the CRBM with different training strategies

METHOD\MODELLED DATA TWO-CLUSTER ECG

Four-data, sign-valued 2% 0.3%

Four-data, real-valued 2% 0.5%

Single-data, real-valued 0.5% 0.1%

7 Conclusion

The feasibility of minimising contrastive divergence on-chip with DCMs has been care-
fully investigated by both behavioural simulation of the CRBM microsystem and the



Minimising Contrastive Divergence with Dynamic Current Mirrors 419

VLSI implementation of DCM accumulators. The simulation indicates that the CRBM
can tolerate a maximum offset of only 0.3% to model real biomedical (ECG) data satis-
factorily, and that the tolerance can be slightly-improved by real-valued adaptation. On
the other hand, measurement results of DCM accumulators indicate that the accumu-
lation errors in DCMs can be largely cancelled by the subtraction operation essential
for the contrastive-divergence training. As the mean offsets in Table II are all smaller
than 0.5%, i.e. the tolerable offset for four-data, real-valued trainning in Table 4, us-
ing four DCM accumulators (Fig.3(a)) to calculate

〈
si · s j

〉
4 −

〈
ŝi · ŝ j

〉
4 would allow us

to avoid the accumulation error in Table 3 while achieving satisfactory precision. This
suggestion will be further confirmed with the VLSI implementation of the full training
circuit.
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