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Abstract. For most kernel-based clustering algorithms, their performance will
heavily hinge on the choice of kernel. In this paper, we propose a novel kernel
learning algorithm within the framework of the Local Learning based Cluster-
ing (LLC) (Wu & Schölkopf 2006). Given multiple kernels, we associate a non-
negative weight with each Hilbert space for the corresponding kernel, and then
extend our previous work on feature selection (Zeng & Cheung 2009) to select
the suitable Hilbert spaces for LLC. We show that it naturally renders a linear
combination of kernels. Accordingly, the kernel weights are estimated iteratively
with the local learning based clustering. The experimental results demonstrate the
effectiveness of the proposed algorithm on the benchmark document datasets.

1 Introduction

In the past few decades, the kernel methods have been widely applied to various learn-
ing problems, where the data is implicitly mapped into a nonlinear high dimensional
space by kernel function [3]. Unfortunately, it is known that the performance heavily
hinges on the choice of kernel, and the most suitable kernel for a particular task is often
unknown in advance. Thereby, learning an appropriate kernel, is critical to obtain an
improved performance for the employed kernel-based inference method.

In this paper, we are particularly interested in the problem of kernel learning for
clustering. In the literature, the kernel learning has been extensively studied for the su-
pervised learning contexts. However, this issue remains less explored in unsupervised
problems, due to the absence of ground truth class labels that could guide the learn-
ing for “ideal” kernels. Until very recently, several algorithms have been proposed to
address this issue for clustering. Some approaches [4,5] directly learn the kernel pa-
rameters of some specific kernels. Though improvement is often achieved, extension
of the learning method to other kernel functions is often nontrivial. A more effective
framework, termed as the multiple kernel learning [6], learns a linear combination of
base kernels with different weights, which will be estimated iteratively with the infer-
ence process [7,8]. This strategy may bring potential advantages over those which try to
obtain a single best kernel, through exploiting the complementary information among
different kernels. In [7], the algorithm tries to find a maximum margin hyperplane to
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cluster data (restricted to binary-class case), accompanied with learning a mixture of
Laplacian matrices. In [8], clustering is phrased as a non-negative matrix factorization
problem of a fused kernel matrices. Nevertheless, both approaches in [7,8] are global
learning based. Their performance may be degraded when samples are less separable
from a global view.

Under the circumstances, we therefore propose a novel multiple kernel learning
method within the framework of the Local Learning based Clustering (LLC) [1], which
aims at optimizing the local purity requirement of clustering assignment. It is expected
that it will produce a more reliable intermediate clustering result when the samples are
globally less separable. We associate a non-negative weight with each Hilbert space (or
called the feature space interchangeably) for the corresponding kernel, and then extend
our previous work on feature selection [2] to select the suitable Hilbert spaces for LLC.
Such strategy naturally leads to learn a linear combination of all the available kernels at
hand. Accordingly, an algorithm is developed in which the combination coefficients of
kernels are estimated iteratively with the local learning based clustering.

The remainder of the paper is organized as follows: Section 2 gives an overview of
local learning based clustering algorithm. We present the proposed method in Section 3.
In Section 4, the experiments on several benchmark datasets are presented. We draw a
conclusion in Section 5.

2 Overview of the Local Learning Based Clustering Algorithm

Let us first introduce the indicator matrix that will be used later. Suppose n data points
X = {xi}n

i=1(xi ∈ R
d) will be partitioned into C clusters. The clustering result can

be represented by a cluster assignment indicator matrix P = [pic] ∈ {0, 1}n×C, such
that pic = 1 if xi belongs to the cth cluster, and pic = 0 otherwise. The scaled cluster
assignment indicator matrix used in this paper is defined by: Y = P(PT P)−

1
2 =

[y1,y2, . . . ,yC ], where yc = [y1c, . . . , ync]T ∈ R
n(1 ≤ c ≤ C), is the c-th column

of Y ∈ R
n×C . yic = pic/

√
nc can be regarded as the confidence that xi is assigned to

the cth cluster, where nc is the size of the cth cluster. It is easy to verify that YT Y = I,
where I ∈ R

n×n is the identity matrix.
The starting point of the LLC [1] is that the cluster assignments in the neighborhood

of each point should be as pure as possible. Suppose there exists an arbitrary Y at first,
for each xi, a regression model is built with the training data {(xj , yjc)}xj∈Ni(1 ≤ c ≤
C, 1 ≤ i, j ≤ n), where Ni denotes the set of neighboring1 points of xi (not including
xi itself). The output of the local model is of the following form: f c

i (x) = xT θc
i , ∀x ∈

R
d, where θc

i ∈ R
d is the local regression coefficients vector. Here, the bias term is

ignored for simplicity, provided that one of the features is 1. In [1], θc
i is solved by:

min
θc

i

C∑

c=1

n∑

i=1

[ ∑

xj∈Ni

β(yjc − xT
j θc

i )
2 + ‖θc

i‖2
]
, (1)

1 The k-mutual neighbors are adopted in order to well describe the local structure, i.e. xj is
considered as a neighbor of xi only if xi is also one of the k-nearest neighbors of xj .
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where β is a trade-off parameter. Denote the solution to the linear ridge regression
problem (1) as θc∗

i , the predicted cluster assignment for the test data xi can then be
calculated by: ŷic = f c

i (xi) = xT
i θc∗

i = αT
i yc

i , where

αT
i = βxT

i (βXiXT
i + I)−1Xi, (2)

Xi = [xi1 ,xi2 , . . . ,xini
] with xik

being the k-th neighbor of xi, ni is the size of Ni,
and yc

i = [yi1c, yi2c, . . . , yini
c]T .

After all the local predictors have been constructed, LLC aims to find an optimal
cluster indicator matrix Y via minimizing the overall prediction errors:

C∑

c=1

n∑

i=1

(yic − ŷic)2 =
C∑

c=1

‖yc − Ayc‖2 = trace(YT TY), (3)

where T = (I − A)T (I − A), A is an n × n sparse matrix with its (i, j)-th entry aij

being the corresponding element in αi by (2) if xj ∈ Ni and 0 otherwise.
As in the spectral clustering [9,10], Y is relaxed into the continuous domain while

keeping the property YT Y = I for (3). LLC then solves:

min
Y∈Rn×C

trace(YT TY) s.t. YTY = I (4)

A solution to Y is given by the first C eigenvectors of the matrix T, corresponding to
the first C smallest eigenvalues. The final partition result is obtained by discretizing Y
via the method in [10] or by k-means as in [9].

3 Multiple Kernel Learning for Local Learning Based Clustering

The LLC algorithm can be easily kernelized as in [1], by replacing the linear ridge re-
gression with the kernel ridge regression. Under the circumstances, selecting a suitable
kernel function will be a crucial issue. We extend our previous work of feature selec-
tion for LLC [2] to learn a proper linear combination of several pre-computed kernel
matrices.

In the kernel methods, the symmetric positive semi-definite kernel function K :
X × X → R, implicitly maps the raw input features into a high-dimensional (pos-
sibly infinite) Reproducing Kernel Hilbert Space (RKHS) H, which is equipped with
the inner product < ·, · >H via a nonlinear mapping φ : X → H, i.e., K(x, z) =<
φ(x), φ(z) >H. Suppose there are L different available kernel functions {K(l)}L

l=1.
Accordingly, there are L different associated feature spaces {H(l)}L

l=1. Since it is un-
known which feature space should be used, an intuitive way is to use them all by con-
catenating all feature spaces into an augmented Hilbert space: H̃ =

⊕L
l=1 H(l), and

associate each feature space with a relevance weight τl (
∑L

l=1 τl = 1, τl ≥ 0, ∀l), or
equivalently the importance factor for kernel function K(l). Later, we will show that
performing LLC in such feature space is equivalent to employing a combined kernel
function: Kτ (x, z) =

∑L
l=1 τlK(l)(x, z) for LLC. A zero weight τl will correspond

to blend out the feature space associated with the corresponding kernel similar to the
feature selection in [2]. Our task is to learn the coefficients {τl}L

l=1 which can lead
to a more accurate and robust performance. Subsequently, an algorithm that iteratively
performs clustering and estimates the kernel weight is developed.
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3.1 Update Y for a Given τ

First of all, given a τ , the nearest neighbors Ni for LLC algorithm will be re-found by
the τ -weighted squared Euclidean distance in H̃, i.e.:

dτ (x1,x2) = ‖φ(x1) − φ(x2)‖2
τ = Kτ (x1,x1) + Kτ (x2,x2) − 2Kτ (x1,x2). (5)

Then the local discriminant function in the H̃ can be written as follows:

f c
i (φ(x)) = φ(x)T wc

i + bc
i , (6)

where φ(x) = [φ1(x) φ2(x) · · · φL(x)]T ∈ R
D, φl(x) ∈ R

Dl is the sample mapped
by the lth kernel function,

∑L
l=1 Dl = D, D and Dl are the dimensionalities of H̃

and H(l), respectively. Taking the relevance of each feature space for clustering into
account, the regression coefficient wc

i ∈ R
D and the bias bc

i ∈ R now will be solved
via the following weighted l2 norm regularized least square problem:

min
wc

i ,bc
i

C∑

c=1

n∑

i=1

[ ∑

xj∈Ni

β(yjc − φ(xj)T wc
i − bc

i )
2 + wcT

i Λ−1
τ wc

i

]
, (7)

where Λτ is a diagonal matrix with the vector τ̃ = (τ1, . . . , τ1︸ ︷︷ ︸
D1

, . . . , τL, . . . , τL︸ ︷︷ ︸
DL

)T in

the diagonal, and
∑L

l=1 τl = 1, τl ≥ 0 ∀l. Similar to [2], the weighted l2 norm (i.e.,
the second term in the square bracket of (7)) with τ defined on the standard simplex is
able to provide adaptive regularization: a large penalty will be imposed on the elements
of wc

i corresponding to the feature spaces associated with irrelevant kernels. Thus, an
improved clustering result can be expected because the vanishing elements in wc

i will
eliminate the feature spaces with irrelevant kernels from the prediction (c.f. (6)).

After removing the bias term by plugging its optimal solution

bc
i =

1
ni

eT
i (yc

i − φ(Xi)T wc
i ), (8)

into (7), where ei = [1 1 · · · 1]T ∈ R
ni , we can reformulate the primal problem (7) as

follows:

min
wc

i

C∑

c=1

n∑

i=1

[
β‖Πiyc

i − (φ(Xi)Πi)T wc
i ‖2 + wcT

i Λ−1
τ wc

i

]
, (9)

where Πi = Ini − 1
ni

eieT
i and Ini ∈ R

ni×ni is a unit matrix, ΠiΠi = Πi. Then we
consider the dual formulation of the (9) in terms of wc

i . Denote

ζc
i = (φ(Xi)Πi)T wc

i − Πiyc
i , (10)

then the Lagrangian for problem (9) is

L({ζc
i ,w

c
i , γ

c
i}) =

C∑

c=1

n∑

i=1

(
β‖ζc

i‖2 + wcT
i Λ−1

τ wc
i

)
(11)

−
C∑

c=1

n∑

i=1

γcT
i

(
(φ(Xi)Πi)T wc

i − Πiyc
i − ζc

i

)
,
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where γc
i ’s with γc

i ∈ R
ni are the vectors of Lagrangian dual variables. Taking the

derivatives of L w.r.t. the primal variables ζc
i and wc

i , and setting them equal to zero,
we obtain:

ζc
i = −γc

i

2β
, wc

i =
Λτφ(Xi)Πiγ

c
i

2
, (12)

and finally we obtain the dual problem:

max
γc

i

C∑

c=1

n∑

i=1

− 1
4β

γcT
i γc

i −
1
4
γcT

i Πiφ(Xi)T Λτφ(Xi)Πiγ
c
i + γcT

i Πiyc
i =

max
γc

i

C∑

c=1

n∑

i=1

− 1
4β

γcT
i γc

i −
1
4
γcT

i ΠiKτ
i Πiγ

c
i + γcT

i Πiyc
i . (13)

with φ(Xi)T Λτφ(Xi) =
∑L

l=1 τlφl(Xi)T φl(Xi) =
∑L

l=1 τlK
(l)
i = Kτ

i , where

K(l)
i ,Kτ

i ∈ R
ni×ni are the base and combined kernel matrices over xj ∈ Ni, respec-

tively, i.e., K(l)
i = [K(l)(xu,xv)] and Kτ

i = [Kτ (xu,xv)], for xu,xv ∈ Ni. For fixed τ
constrained on the simplex, the convex combination of the positive semi-definite kernel
matrices : Kτ

i =
∑L

l=1 τlK
(l)
i is still a positive semi-definite kernel matrix. There-

fore, the problem in (13) is an unconstrained concave quadratic program whose unique
optimal solution can be obtained analytically:

γc∗
i = 2β(Ii + βΠiKτ

i Πi)−1Πiyc
i . (14)

Then altogether with (8), (12) and (14), the predicted indicator value at point xi for the
cth (c = 1, . . . , C) cluster can be calculated by (6): ŷic = f c

i (φ(xi)) = φ(xi)T wc
i +

bc
i = αT

i yc
i , with

αT
i = β(kτ

i − 1
ni

eT
i Kτ

i )Πi

[
Ii − (β−1I + ΠiKτ

i Πi)−1ΠiKτ
i Πi

]
+

1
ni

eT
i , (15)

where kτ
i ∈ R

ni denotes the vector [Kτ (xi,xj)]T for xj ∈ Ni.
To obtain Y, we will first build the matrix T by (3) with αi defined in (15), using

the combined kernel Kτ (xi,xj) =
∑L

l=1 τlK(l)(xi,xj). Then Y is given by the first
C eigenvectors of T corresponding to the C smallest eigenvalues.

3.2 Update τ for a Given Y

Subsequently, the L kernel combination coefficients {τl}L
l=1 will be recomputed based

on the current estimation for Y. We propose to estimate τ using the projected gradient
descent method as in [11,12].

With fixed Y and neighborhood determined at each point, an optimal τ is expected
to minimize:

P(τ ), s. t.
L∑

l=1

τl = 1, τl ≥ 0, ∀l, (16)
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where P(τ ) = minwc
i

∑C
c=1

∑n
i=1

[
β‖Πiyic − (φ(Xi)Πi)T wc

i‖2 + wcT
i Λ−1

τ wc
i

]
.

In general, it can be solved by the projected gradient descent method through the up-
date equation τ (new) = τ (old) − η∇P , as given Y and Ni such that P(τ (new)) ≤
P(τ (old)), where η is the step size, and ∇P is the projected gradient. It is expected that
the local regression model derived from τ (new) should be better than the one derived
from τ (old). Nevertheless, since both Y and Ni depend on τ as shown in Section 3.1,
they need to be recomputed as in Section 3.1 once τ is updated.

Then the key issue is to obtain the derivatives of P(τ ) in analytic forms. In order
to do so, we resort to the dual of P(τ ) which has been investigated in Sub-section 3.1,
and is rewritten below:

D(τ ) = max
γc

i

C∑

c=1

n∑

i=1

− 1
4β

γcT
i γc

i −
1
4
γcT

i ΠiKτ
i Πiγ

c
i + γcT

i Πiyc
i . (17)

Note (9) is convex with respect to wc
i . By the principle of strong duality, we have

P(τ ) = D(τ ). Furthermore, as {γc∗
i } in (14) maximizes D, according to [13], D(τ )

is differentiable if {γc∗
i }’s are unique. Fortunately, this unicity is guaranteed by the

unconstrained concave quadratic program in (13). Moreover, as proved in Lemma 2 of
[14], D(τ ) can be differentiated with respect to τ as if {γc∗

i } did not depend on τ .
Finally, we have:

∂P
∂τl

=
∂D
∂τl

= −1
4

C∑

c=1

n∑

i=1

γc∗T
i ΠiK

(l)
i Πiγ

c∗
i = −1

4

n∑

i=1

trace(γ∗T
i ΠiK

(l)
i Πiγ

∗
i ),

(18)

where γ∗
i = [γ1∗

i , . . . , γC∗
i ] ∈ R

ni×C .
Note the equality and non-negative constraints over the τ have to be kept inviolate

when updating τ along the descent gradient direction. We use the same strategy as in
[12] by first projecting the gradient to enforce the equality, and then ensuring that the
descent direction does not lead to negative τl. That is, each element of the reduced
gradient ∇P is designed as follows:

(∇P)l =

⎧
⎪⎨

⎪⎩

∂P
∂τl

− ∂P
∂τm

, if l 	= m and τl > 0;
∑

μ�=m,τµ>0

(
∂P
∂τm

− ∂P
∂τµ

)
, if l = m;

0, if τl = 0 and ∂P
∂τl

− ∂P
∂τm

> 0,

(19)

where m = argmaxl τl. When updating τ by τ (new) = τ (old) − η∇P , we first try η
with the maximal admissible step size ηmax which sets τν to zero, where

ν = arg min
{l|(∇P)l>0}

τ
(old)
l

(∇P)l
, ηmax =

τν

(∇P)ν
. (20)

If D(τ (trial)) ≤ D(τ (old)), where τ (trial) = τ (old) − ηmax∇P , τ gets updated;
otherwise, a one-dimensional line search for η ∈ [0, ηmax] is applied. Algorithm 1
describes the steps to update τ .
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Algorithm 1. Update kernel weight vector τ with the current Y and Ni

Compute the projected gradient ∇P by (19);
Compute the maximal admissible step size ηmax by (20);
τ (trial) = τ (old) − ηmax∇P ;

Compute D(τ (trial)) with {γ∗
i } calculated from Kτ(trial)

=
∑L

l=1 τ
(trial)
l K(l);

if D(τ (trial)) ≤ D(τ (old)) then
η = ηmax;

else
Perform line search for η ∈ [0, ηmax] along ∇P ;

end
τ (new) = τ (old) − η∇P ;

3.3 The Complete Algorithm

The complete local learning based clustering algorithm with multiple kernel learning
(denoted as LLC-mkl) is presented in Algorithm 2. The loop stops when the relative
variation of the trace value in (4) between two consecutive iterations is below a thresh-
old (we set it at 10−4 in this paper), indicating the partitioning has almost been stabi-
lized. After the convergence, Y is discretized to obtain the final clustering result with
the k-means as in [9].

Algorithm 2. Multiple kernel learning for local learning based clustering algo-
rithm

input : L base kernel matrices K(l)’s, size of the neighborhood k, trade-off parameter β
output: Y, τ

Initialize τl = 1
L

, for l = 1, . . . , L;1

while not converge do2

Find k-mutual neighborhoods, using the metric defined in (5);3

Construct the matrix T by (3) with αi given in (15), and then solve the problem (4)4

to obtain Y;
Update τ with the steps described in Algorithm 1;5

end6

4 Experimental Results

Experiments on document clustering were conducted with LLC-mkl. The characteris-
tics of the benchmark document datasets used in this experiment are summarized in
Table 1.

– CSTR: This is the dataset of the abstracts of technical reports published in the De-
partment of Computer Science at a university between 1991 and 2002. The dataset
contains 476 abstracts, which are divided into four research topics.

– WebACE: This dataset is from WebACE project, and it contains 2340 documents
consisting of news articles from Reuters news service with 20 different topics in
October 1997.
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Table 1. Characteristics of the document datasets

Dataset Number of Samples Number of Classes
(n) (C)

CSTR 476 4
WebACE 2340 20
tr11 414 9
tr31 927 7

– tr11 and tr31: Both of the two datasets are from the CLUTO toolkit [15], they
contain 414 and 927 articles categorized into 9 and 7 topics, respectively.

To pre-process the CSTR and WebACE datasets, we remove the stop words using a
standard stop list, all HTML tags are skipped and all header fields except subject and
organization of the posted articles are ignored. Then each document is represented by
the term-frequency vector (Bag-of-Words). The datasets associated with the CLUTO
toolkit have already been preprocessed. For all datasets, we used the top 1000 words
by mutual information with class labels. For comparison, the counterpart unsupervised
multiple kernel learning algorithm based on NMF [8] (denoted as NMF-mkl) was con-
ducted. We also compared with the self-tuning spectral clustering [4] (denoted as Self-
TunSpec), which tries to build a single best kernel for clustering. The algorithm in [7]
is not compared because the optimization software in [7] cannot deal with the datasets
that have too many samples and will cause memory overflow on the datasets used in
this paper. Furthermore, we simply set the number of clusters equal to the number of
classes in each dataset for all the algorithms without considering the selection of the
optimal number of clusters, which is beyond the scope of this paper . We evaluated the
performance with the clustering accuracy (ACC) index [1] for all algorithms. The sen-
sitivity of the proposed LLC-mkl algorithm with respect to k and β will be presented at
the end of this section.

We applied the LLC-mkl with altogether 10 pre-computed base kernels, i.e., 7 RBF
kernels K(xi,xj) = exp(−‖xi − xj‖2/2δ2), with δ = const ∗ D, where D is
the maximum distance between samples, and const varies in the pre-specified range
{0.01, 0.05, 0.1, 1, 10, 50, 100}, 2 polynomial kernels K(xi,xj) = (1 + xT

i xj)d with
degree d = {2, 4}, and a cosine kernelK(xi,xj) = xT

i xj/(‖xi‖·‖xj‖). All the kernels
have been normalized through: K(xi,xj)/

√K(xi,xi)K(xj ,xj). Besides, we also im-
plemented the case where each time a single candidate kernel K(l)(l = 1, . . . , 10) was
adopted in the LLC algorithm in which the local prediction is performed with kernel
ridge regression. The best (denoted as LLC-bkernel) and the worst (denoted as LLC-
wkernel) performance out of the 10 kernels were reported. NMF-mkl was applied on
the same 10 base kernels. The adjacency matrix in SelfTunSpec [4] was built by its local
scaling method [4] on the dataset. For NMF-mkl and SelfTunSpec, we only reported the
best accuracy among extensive trials of their free parameters. For LLC-mkl, the mean
and standard deviation of ACC with k = 30, β = 10 over 10 runs were reported. The
results are summarized in Table 2.

From Table 2, we could first observe that there is a big gap between the best and the
worst performance of LLC with different choices of kernel. On the tr11 and tr31
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Table 2. Accuracies of various methods on the document datasets

Data Set LLC-wkernel LLC-bkernel LLC-mkl NMF-mkl SelfTunSpec
CSTR 0.3487 0.7374 0.8508±0.0012 0.6387 0.5210
WebACE 0.2436 0.4885 0.6316±0.0215 0.4960 0.4880
tr11 0.4251 0.5966 0.5609±0.0166 0.5145 0.4106
tr31 0.5297 0.6721 0.6512±0.0007 0.5372 0.4412
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Fig. 1. The parameter sensitivity studies of LLC-mkl algorithm. (a) varying the size of neighbor-
hood with β being fixed at 10; (b) varying β with the size of neighborhood fixed at 30. The values
on each line represent the average ACC over 10 independent runs.

datasets, the performance of LLC-mkl is close to that of the LLC with the best kernel,
but obviously LLC-mkl is more sensible for practical application where we often do not
know which kernel is the best a priori. On the CSTR and WebACE datasets, the LLC-
mkl even outperforms the LLC with the best kernel. Namely, by combining multiple
kernels and exploiting the complementary information contained in different kernels,
the LLC-mkl indeed improves the robustness and accuracy of LLC. Compared to NMF-
mkl which is derived globally, the LLC-mkl is consistently superior over it on these four
datasets. A plausible reason is that the document datasets are very sparse, therefore the
entries in the kernel matrix may resemble to each other from the global view or on
a large scale. Thereby, finding the similar points locally may produce more reliable
intermediate clustering result to guide the kernel learning. From Table 2, it can also be
seen that the LLC-mkl and NMF-mkl both outperform the selfTunSpec which tries to
construct a single “best” kernel in this experiment.

The effects of these two parameters, i.e., k and β, on the performance of LLC-mkl
are presented in Figure 1. From Figure 1, it can be seen that the proposed LLC-mkl
algorithm with k = 30 ∼ 50 and β ∈ [0.01, 10] could produce considerably accurate
results and the performance does not vary much.

5 Conclusion

In this paper, a novel kernel learning approach has been proposed for the local learning
based clustering, where a combination of kernels is jointly learned with the clustering.
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It is addressed under a regularization framework by taking the relevance of each kernel
into account. Experimental results have shown that the proposed kernel learning method
is able to improve the robustness and accuracy of the basic local learning clustering.
Furthermore, it generally outperforms the state-of-the-art counterparts, especially when
the samples are less separable from a global view.
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