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Abstract. This work investigates the benefits of using different distri-
bution functions in the evolutionary learning algorithms with respect to
Artificial Neural Networks’ (ANNs) generalization ability. We examine
two modification of the recently proposed network weight-based evo-
lutionary algorithm (NWEA), by mixing mutation strategies based on
three distribution functions at the chromosome and the gene levels. The
utilization of combined search strategies in the ANNs training implies
that different step sizes determined by mixed distributions will direct
the evolution towards good generalized ANNs.
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1 Introduction

Evolutionary Algorithms (EAs) have found wide application in optimization
of Artificial Neural Networks parameters, since they outperform the originally
proposed gradient-descent learning approaches in terms of computations speed,
simplicity and resistance to local minima trapping. However, mutation-based
EAs, i.e. Evolutionary Programming (EP) and Evolutionary Strategies (ES) have
proven to be more efficient in ANNs’ learning than Genetic Algorithms, which
due to their primary search operator (crossover) often face the permutation
problem [1], [2], [14].

The key aspects that EP and ES concentrate on are the self-adaptive meth-
ods for changing the strategy parameters and the distribution used in mutation.
The classical EP and ES algorithms utilize the standard normal distribution and
similar self-adaptive methods, introduced by Rechenberg [3] and Schwefel [4] for
ES and independently, by Fogel [5], [6] for meta-EP (widely known as classi-
cal EP). Later, Yao et al. [7] established that the distribution in the mutation
strategy is crucial in the determination of the mutation step size, and proposed
a novel EP technique, called the Fast Evolutionary Programming (FEP) [8],
[9], which adopts the self-adaptation strategy of the classical EP (CEP), but
uses the Cauchy distribution instead of the Gaussian one. Further, Yao inves-
tigated the impact of utilizing both Gaussian and Cauchy distributions at the
chromosome and gene level and introduced modifications of FEP, referred to
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as the improved Fast Evolutionary Programming (IFEP) and the mixed Fast
Evolutionary Programming (MEP), respectively [13].

This work is concerned with the improvement of the evolutionary learning in
ANNs. The goal for this work is to investigate the impact of mixing search bi-
ases of mutations based on three different distributions, on the generalization in
ANNs. More specifically, we study how different step sizes determined by mixed
distributions improve the quality affect the algorithm’s convergence speed and
the quality of evolved ANNs. We introduce two modifications of the recently
proposed network weight (NW)-based EA (NWEA) strategy [10], which com-
bine Gaussian, Cauchy and uniform distributions at the chromosome and gene
levels in the learning strategy (the original NWEA strategy is based on the
uniform distribution). In contrast to the CEP and FEP approaches, which are
independent search methods, the NWEA algorithm was developed specially for
ANNs’ learning. The main feature of NWEA consists in the special approach to
the adjustment of the random values. The strategy parameter in the classical
techniques is evolved during the evolution alongside with the object parameters.
In comparison to that, the adaptation strategy in NWEA consists of two com-
ponents, which bear the information about the position of an individual in the
search space and based of this knowledge, bias the improvement towards the per-
spective regions of the search space. The first modification of NWEA, referred
further to as combined NWEA (CNWEA) produces three offspring as a result of
mutation by using Gaussian, Cauchy and uniform random values, respectively
(i.e. provides mutation at the chromosome level). The second modification uses
three distributions to generate one offspring (i.e. carries out mutation at the gene
level). The utilization of particular type of distribution is defined by a certain
probability.

In order to evaluate the ANNs produced by CNWEA and MNWEA, the
preliminary experimental studies on the breast cancer and heart disease diagnosis
data sets were provided. The generalization results of ANNs, evolved by CNWEA
and MNWEA were compared with those, evolved by NWEA, which is shown to
be more efficient than classical searching techniques [11].

The rest of the paper is organized as follows: Section 2 discusses the advan-
tages of using Gaussian and Cauchy distributions in terms of step size. Section 3
described the features of the NWEA adaptation strategy and main steps of
the learning algorithm. Sections 4 and 5 introduce the combined NWEA (CN-
WEA) and the mixed NWEA (MNWEA), respectively. Following that, Section 6
presents the experiments and analyses the obtained results. Finally, Section 7
concludes this paper.

2 Length of Gaussian and Cauchy Jumps

Both CEP and FEP use the same mutation scheme to modify individuals and the
same self-adaptation strategy to correct mutation step size. The only difference
is the distribution used to generate random numbers. Therefore, it is reasonable
to claim that the features of algorithms’ performances are caused by a type of
used distribution. Let us discuss the advantages of using both distributions.
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The expected length of Gaussian (with μ = 0 and σ2 = 1) and Cauchy (with
γ = 1) jumps can be calculated by integrating their probability density functions:

EG(x) =
∫ +∞

0

x
1√
2π

e−
x2
2 dx =

1√
2π

= 0.399

EC(x) =
∫ +∞

0

x
1

π (1 + x2)
dx = +∞

Apparently, the Cauchy distribution enables longer jumps than the Gaussian
one. At first sight it seems that longer jumps in the search space induce quicker
convergence, and so the Cauchy distribution is preferable in the searching strat-
egy. However, this assumption is wrong. The analytical studies in [3] provided
to investigate when large jumps are beneficial, showed that long jumps are ad-
vantageous only when the global optimum is far away from the current search
point. In other words, long jumps are effective when the distance between the
global optimum and the current point is larger than mutation’s step size. On the
other hand, the Cauchy distribution will no longer be beneficial when the dis-
tance between the neighbourhood of the global optimum and the current point
is smaller than the step size of the mutation. This implies that the use of small
jumps is more effective near the neighbourhood of the global optimum. Hence,
the Gaussian distribution increases the probability of finding the optimum when
the distance between the current point and the neighbourhood of the global
optimum is small.

3 Network Weight-Based Evolutionary Algorithm
(NWEA)

The basic step of the self-adaptation mechanism in CEP and FEP consists of
a mutation of mutation parameters themselves, i.e. the evolution of strategy
parameters alongside with the object parameters. The modification of the control
parameters is realized by multiplication with a random variable.

In contrast to the classical evolutionary algorithms, the NWEA algorithm [10],
designed to evolve ANNs’ parameters, uses different self-adaptation approach to
find an optimum. The self-adaptation in NWEA comprises two control parame-
ters, which incorporate genotype and phenotype information about the position of
an individual in search space. The first component includes information about
worth of a chromosome according to its fitness. The second component adds
information about the current ANN topology, the genotype encodes, i.e. infor-
mation about position of an individual in the ANN architecture space. Alike ES
and EP, the NWEP approach relies on mutation and does not utilize crossover
at all.

The evolution with the NWEA algorithm is implemented as follows:

1. Create an initial population consisting of randomly generated chromosomes.
Each chromosome xi = (x(1)

i , x
(2)
i , ..., x

(k)
i ), ∀i ∈ {1, ..., μ}, represents one
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possible set of connection weights1, where is a population size, k is a total
number of connections between neurons and x

(j)
i ∈ [−1.0; 1.0], j ∈ {1, ..., k}

is a connection weight.
2. Evaluate the fitness of each individual from a population according to the

objective function.
3. In contrast to other EP approaches, which apply probabilistic selection meth-

ods for choosing parents for reproduction, NWEA ”allows” all parental chro-
mosomes to take part in the creation of new individuals. It is worth noting
that during mutation only one gene in the parental chromosome changes
its value. Offspring chromosomes are created by application of the following
equation to every chromosome in the population:

x
(j)′

i = x
(j)
i

(
1.0 + NW (l, n̄) · NE · ND

Rand

)
, (1)

where x
(j)
i is a gene randomly chosen out of a chromosome xi and mutated,

NW (l, n̄) is a value, called network weight, that implicitly describes an ANN’s
internal structure, NE represents an error, determined by the error function
(MSE or other) of xi, and ND

Rand is a uniformly distributed random value.
The components NE and NW (l, n̄) represent the adjustment components

in the mutation strategy. They add knowledge about position and worth of
a chromosome in search space in order to achieve the optimal improvement
of chromosomes at each stage of evolution. The component NE in Eq. (1)
represents the genotype information, i.e. error of the mutated chromosome,
which changes dynamically for every mutated chromosome. It enables the
control of a randomly generated value and the adjustment of the mutation
strength to an individual depending on its fitness, i.e. the higher the error
of a chromosome, the higher the step size.

The value NW (l, n̄) depends on the number of hidden layers l and the
average number of neurons in hidden layers n̄ in the given ANN and is defined
by Eq. (2). This value is distributed by the Fermi-Dirac-like function and is
calculated according to the following formula:

Nw(l, n̄) = A1 +
l

2
+

B1 − l
2

1 + exp
(

n̄−µ
T1

) (2)

The value μ is similar to the chemical potential in the original Fermi-Dirac
function (as cited in [10]) and depends on the number of hidden layers:

μ = A2 +
B2

1 + exp
(

l−B2
T2

) (3)

The coefficients A1 = 3.0, B1 = 2.0, T1 = 0.4, A2 = 1.2, B2 = 3.2, T2 =
0.6 were obtained by the approximation of the results in [10] so that the
NW values never become negative (the coefficients T1 and T2 correspond to

1 In case of the simultaneous evolution of ANN’s weights and architectures, each chro-
mosome consists of a set of vectors according to the ANN’s connectivity matrix.



Mixing Different Search Biases in Evolutionary Learning Algorithms 115

the temperature in the original Fermi-Dirac function). For each ANN the
quantity NW is calculated only once and does not change its value dur-
ing the evolution, if we consider the evolution of connection weights in the
environment determined by an ANN architecture; in case of simultaneous
evolution of architectures and connection weights it becomes a new value
every time when ANN’s architecture is changed.

The main advantage of incorporating phenotype information in mutation
is that it comprises detailed knowledge about the ANN’s topology2 and thus
enables to improve the values of connection weights in respect to a given
phenotype. It is known from the theory of evolution that individuals with
favorable traits, determined by the genotype, are more likely to survive and
reproduce (“survival of the fittest”) and the fitness of every individual is
defined by the individual’s ability to adapt to the environment. From such
point of view, the NWEA approach is an abstraction, which involves the
knowledge of an environment (phenotype) and adapts genotype of every
individual to it, and thus, increases the fitness of chromosomes of every next
generation.

4. Evaluate the fitness of a new individual based on the objective function.
5. Repeat the process from point (3) until λ (λ ≥ μ) new chromosomes are

created.
6. Create new population of m individuals: new population is created accord-

ing to the (μ + λ)-ES elitist method, which choosesμbest individuals from
both parental and offspring chromosomes based on their fitness. This is ac-
complished by applying 2-tournament selection method that selects a group
of individuals (usually four) from both parental and offspring populations,
and compares their fitness. The individual with the higher fitness reaches
the offspring population.

7. Repeat the process from point (2) until some halting criteria are satisfied.

Thus, by creating offspring population our greedy modification of the NWEA
strategy selects the current best individuals. On the other hand, the risk of
trapping is local optima is minimal, since the random values initially have long
and short step sizes.

4 Combined NWEA (CNWEA)

The main idea behind combined NWEA (CNWEA) is to mix different search
biases of mutations utilize Gaussian, Cauchy and uniform distributions, at the
chromosome level. The benefits of using Gaussian and Cauchy distributions were
described in section 3. The utilization of the uniformly distributed random values
does not have strong motivation; however it adds an additional randomness in
the evolution process.
2 Although mutation strategy in (1) incorporates the knowledge about ANN’s internal

structure, it gives detailed information about considering topology, since the number
of neurons in input and output layers is determined by a solving problem.
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The implementation of CNWEA is simple and differs from NWEA only in
point 3 of the algorithm described in section 4.2. Each parental chromosome
undergo mutation is modified three times and thus, produces three different
offspring by using different values of ND

Rand in Eq. (1): the first offspring is
created using normally distributed valuesNDG

Rand with mean μ = 0 and variance
σ2 = 1, i.e.

x
(j)′

i = x
(j)
i

(
1.0 + NW (l, n̄) · NF · NDG

Rand

)
, (4)

the second offspring – by using Cauchy random numbers NDC

Rand with a scale
parameter γ = 1, i.e.

x
(j)′

i = x
(j)
i

(
1.0 + NW (l, n̄) · NF · NDC

Rand

)
, (5)

and the third offspring – by utilizing uniformly distributed random values,
NDU

Rand∈ [-1.0, 1.0]:

x
(j)′

i = x
(j)
i

(
1.0 + NW (l, n̄) · NF · NDU

Rand

)
(6)

The best offspring is selected as a survivor. The rest of CNWEA is the same as
NWEA.

5 Mixed NWEA (MNWEA)

An alternative way to mixing different biases is to combine mutation operators,
based on Gaussian, Cauchy and uniform distributions at the gene rather than
chromosome level. In our second modification of NWEA, called mixed NWEA
(MNWEA) we define certain probabilities to apply Gaussian, Cauchy or uniform
random numbers in the mutation strategy. Thus, some genes in the chromosome
will be modified with the probability pG according to Eq. (4), others will be mu-
tated with the probability pC according to Eq. (5) and rest – with the probability
pU according to Eq. (6).

x
(j)′

i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
(j)
i

(
1.0 + NW (l, n̄) · NF · NDG

Rand

)
, with pG

x
(j)
i

(
1.0 + NW (l, n̄) · NF · NDC

Rand

)
, with pC

x
(j)
i

(
1.0 + NW (l, n̄) · NF · NDU

Rand

)
, with pU

where pG, pCand pUare the probabilities of applying mutations according to
the Eq.(4), Eq. (5) and Eq. (6), respectively, and pG + pC + pU = 1. In our
experiments we set the values pG, pCand pU to 0.4, 0.4 and 0.2, respectively, as
we aim at exploring the impact of small and large jumps provided by Gaussian
and Cauchy distributions (see Section 2).
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6 Experiments

The experimental studies of CNWEA and MNWEA were provided for breast
cancer and heart disease diagnosis for the purpose of studying generalization
ability of ANNs. In order to reduce the noise in the fitness evaluation, the ANNs’
weights and architectures have been optimized simultaneously during the evo-
lution. For each problem 50 runs of both algorithms were provided. Following
initial parameters were used for these experiments: the population size 30 for
MNWEA and 10 for CNWEA (since CNWEA produces three offspring from
each parent), the maximum number of generations 300, and the number of hid-
den nodes for each individual was chosen uniformly at random between 1 and 3.
The algorithms stopped when the maximal generation was reached.

6.1 Breast Cancer Diagnosis

The breast cancer data set was originally obtained from Dr. William H. Wol-
berg at the University of Wisconsin Hospitals, Madison. The data set consists
of 699 examples of which 458 (65.5%) are benign examples and 241 (34.5%) are
malignant examples. Each example contains nine attributes: clump thickness,
uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithe-
lial cell size, bare nuclei, bland chromatin, normal nucleoli, mitoses. The goal of
the data set is to classify a tumour as either benign or malignant based on these
attributes.

In our experiments, the whole data set was divided into three subsets, as
suggested by Prechelt (1994): a training set, a validation set, and a testing set.
The first set was used to train EANNs. The validation set was explored as a
pseudo-testing set in order to evaluate the fitness of networks during evolution.
This prevents overtraining of the network and improves its generalization ability.
During this process ANN’s learning is carried out until the minimal error on the
validation set (and not on the training set) is achieved. Finally, the testing data
were considered to evaluate the performance of the evolved ANNs. 349 examples
of the given breast cancer data set were used as training data, the following 175
examples as validation data, and the final 175 patterns as training data.

The error function (fitness) was calculated according to the equation, proposed
by Prechelt [12]:

E = 100 · omax − omin

N · P
P∑

p=1

N∑
i=1

(opi − tpi)2

where ominand omaxare the minimum and maximum values of output coefficients
in the problem representation. N is the number of output nodes, P is the number
of patterns, opi and tpi are the actual and desired outputs of node i for pattern
t correspondingly.

Table 1 shows the architecture of evolved ANNs as well as generation numbers
(min and mean) at which the optimal results were obtained. Table 2 presents the
classification results for breast cancer diagnosis. The value “rate” in the Table 2
shows the percentage of incorrect classified samples.
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Table 1. ANN architectures for breast cancer diagnosis

NWEA CNWEA MNWEA

Connections (min) 14 14 14

Connections (max) 78 82 86

Connections (mean) 36 29 36

Hidden nodes (min) 0 0 0

Hidden nodes (max) 4 4 4

Hidden nodes (mean) 1.3 1.3 1.4

Generation (min) 101 87 104

Generation (mean) 139.1 118 123.7

Table 2. Comparative results of the prediction accuracy for breast cancer diagnosis

NWEA CWEA MNWEA

min max mean min max mean min max mean

Error, training 1.418 3.650 2.722 1.183 2.659 2.329 1.377 3.247 2.798

Rate, training 0.01698 0.04672 0.03921 0.00744 0.02451 0.02246 0.00954 0.0313 0.03422

Error, validation 0.052 1.018 0.557 0.037 0.637 0.349 0.034 0.924 0.503

Rate, validation 0.00000 0.01072 0.00547 0.00000 0.00902 0.00562 0.00000 0.01091 0.00536

Error, testing 0.178 3.546 1.413 0.054 2.899 1.217 0.117 3.487 1.406

Rate, testing 0.00000 0.03397 0.01384 0.00000 0.02687 0.00467 0.00000 0.03455 0.01424

6.2 Heart Disease Diagnosis

The heart disease data set was obtained from Cleveland Clinic Foundation and
was supplied by Robert Detrano of the V.A. Medical Center, Long Beach, CA.
The data set consists of 270 examples. The heart disease original data set con-
sisted of 303 examples, but 6 of them contained missing class values and were
excluded from the database. Other 27 examples of the remained data were elim-
inated as they retained in case of dispute.

Each example in the database contains 13 attributes, which present results
of medical tests provided on patients: age, sex, chest pain type, resting blood
pressure, cholesterol, fasting blood sugar < 120 (true or false), resting electro-
cardiogram (norm, abnormal or hyper), max heart rate, exercise induced angina,
oldpeak, slope, number of vessels colored and thal (normal, fixed, rever). These
attributes have been extracted from a larger set of 75. The goal of diagnosis is to
recognize the presence or absence of heart disease given the attributes. Initially,
the data set considered four different degrees of the heart disease to classify
the predicted results. Later, modification in the problem definition suggested
reducing the number of predicted values on two and categorizing results into
two classes: presence or absence of illness.

For this set of experiments we applied the same equation to calculate fitness
values as for the breast cancer diagnosis problem. Table 3 presents the ANN ar-
chitectures for heart disease problem. Table 4 reports the generalization accuracy
of ANNs, evolved by NWEA, CNWEA and MNWEA.
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Table 3. ANN architectures for heart disease diagnosis

NWEA CNWEA MNWEA

Connections (min) 28 26 26

Connections (max) 202 192 200

Connections (mean) 88.4 78.3 82,6

Hidden nodes (min) 2 2 2

Hidden nodes (max) 8 8 8

Hidden nodes (mean) 4.3 3.7 4.1

Generation (min) 127 106 113

Generation (mean) 172.2 157.9 169.6

Table 4. Comparative results of the prediction accuracy for heart disease diagnosis

NWEA CNWEA MNWEA

min max mean min max mean min max mean

Error, training 7.489 12.166 11.007 5.763 12.005 8.963 5.893 12.137 7.774

Rate, training 0.07879 0.15184 0.12477 0.04831 0.12069 0.09446 0.05271 0.15040 0.10645

Error, validation 11.746 14.301 12.450 9.271 12.158 9.677 9.814 12.816 10.240

Rate, validation 0.12124 0.19706 0.15935 0.08113 0.13812 0.10543 0.09276 0.13762 0.12418

Error, testing 10.126 13.842 12.266 7.009 12.932 10.633 7.112 13.004 10.458

Rate, testing 0.13195 0.17997 0.15165 0.09385 0.14889 0.11676 0.11243 0.17002 0.12276

7 Conclusions

In this paper we have investigated mixing mutation strategies based on different
distributions and proposed two modifications of the NWEA learning strategy for
ANNs training. A combined NWEA (CNWEA) uses mutation strategies based
on Gaussian, Cauchy and uniform distributions at the chromosome level. The
mixed NWEA (MNWEA) uses the same mutation strategies as CNWEA, but
combines them at the gene level.

The evolution process has been observed under different step sizes determined
by mixed distributions. We have compared generalization accuracy of ANNs us-
ing the suggested mutation strategies on two simple benchmark data sets. Ac-
cording to our preliminary experiments, both CNWEA and MNWEA evolved
compact ANNs with high training and generalization accuracy. The difference
in evolved ANN architectures on both modifications was insignificant compared
to NWEA; however both of them demonstrated higher generalization accuracy,
especially CNWEA. Statistical analysis of data reported in Tables 2 and 4 with
t-test showed that the differences between the error accuracies on both training
and testing sets are not significant for breast cancer diagnosis (Table 2) and ex-
tremely significant for heart disease problem (Table 4). Both modifications have
demonstrated higher convergence speed compared to NWEA as measured by
the number of iterations before an optimal network is obtained. The preliminary
results obtained for CNEWA and MNWEA are promising and encourage further
studies on data sets with large number of attributes.
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