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Preface

This volume is part of the two-volume proceedings of the 19th International Confer-
ence on Artificial Neural Networks (ICANN 2009), which was held in Cyprus  
during September 14–17, 2009.  The ICANN conference is an annual meeting spon-
sored by the European Neural Network Society (ENNS), in cooperation with the In-
ternational Neural Network Society (INNS) and the Japanese Neural Network Society 
(JNNS). ICANN 2009 was technically sponsored by the IEEE Computational Intelli-
gence Society. This series of conferences has been held annually since 1991 in various 
European countries and covers the field of neurocomputing, learning systems and 
related areas.  

Artificial neural networks provide an information-processing structure inspired by 
biological nervous systems. They consist of a large number of highly interconnected 
processing elements, with the capability of learning by example. The field of artificial 
neural networks has evolved significantly in the last two decades, with active participa-
tion from diverse fields, such as engineering, computer science, mathematics, artificial 
intelligence, system theory, biology, operations research, and neuroscience. Artificial 
neural networks have been widely applied for pattern recognition, control, optimization, 
image processing, classification, signal processing, etc.  

In 2009, the ICANN conference was organized by the KIOS Research Center for 
Intelligent Systems and Networks and the Department of Electrical and Computer 
Engineering of the University of Cyprus. The conference was held at the seaside city 
of Limassol, which is the second largest city in Cyprus. The participants had the op-
portunity to enjoy the technical program, as well as the rich cultural heritage of Cy-
prus, whose 9,000-year cultural legacy has been at the crossroads of world history. 
Currently, Cyprus is a full member of the European Union that combines European 
culture with ancient enchantment. 

Out of approximately 300 paper submissions to ICANN 2009, the Program Committee 
selected about 200 papers, which are published in the two volumes of these proceedings. 
The selection of the accepted papers was made after a thorough peer-review process, where 
each submission was evaluated by at least three reviewers. The submitted papers were 
authored by peer scholars coming from 47 countries, which geographically cover the 
whole planet (Europe, Middle East, Africa 69%; Asia/Pacific 18%; Americas 13%). The 
large number of accepted papers, variety of topics and high quality of submitted papers 
reflect the vitality of the field of artificial neural networks. In addition to the regular 
papers, the technical program featured keynote plenary lectures by worldwide renowned 
scholars, two tutorials on exciting new topics, two competitions on immunology and 
environmental toxicology prediction, and two workshops. One of the workshops was 
supported by the EU-sponsored COST Action ìIntell igent Monitoring, Control and 
Security of Critical Infrastructure Systems” (IntelliCIS). 

The two-volume proceedings contain papers on the following topics: Learning Algo-
rithms; Computational Neuroscience; Hardware Implementations and Embedded Sys-
tems; Self Organization; Intelligent Control and Adaptive Systems; Neural and Hybrid 
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Architectures; Support Vector Machines; Recurrent Neural Networks; Neuro-informatics 
and Bioinformatics; Cognitive Machines; Data Analysis and Pattern Recognition; Signal 
and Time Series Processing; Applications; Neural Dynamics and Complex Systems; 
Vision and Image Processing; Neuro-evolution and Hybrid Techniques for Mobile 
Agents Control; Neural Control, Planning and Robotics Applications; Intelligent Tools 
and Methods for Multimedia Annotation; Critical Infrastructure Systems. 

It is our pleasure to express our gratitude to everybody that contributed to the  
success of ICANN 2009. In particular, we thank the members of the Board of the 
European Neural Networks Society for entrusting us with the organization of the con-
ference, as well as for their assistance during the preparation of ICANN 2009. Special 
thanks to the President of ENNS, Wlodzislaw Duch, who helped significantly toward 
the success of the conference. We would like to express our sincere gratitude to the 
members of the Program Committee and all the reviewers, who did a tremendous job 
under strict time limitations during the reviewing process. We thank the members of 
the Organizing Committee for the great effort in the organization of the conference 
and the members of the Local Organizing Committee for their assistance. We are 
grateful to the University of Cyprus (ECE Department) and the Cyprus Tourist Or-
ganization for their financial support. We thank the conference secretariat, Top Kinisis, 
and especially Christina Distra, for their excellent and timely support in the organiza-
tion of the conference. We are grateful to several researchers at the University of Cy-
prus and the Politecnico di Milano, who assisted in various ways in the organization of 
ICANN 2009, and especially Alexandros Kyriakides and Andreas Kartakoullis, who 
spent several days working on the formatting of the final proceedings, and Manuel 
Roveri, who addressed several software-related and procedural problems raised during 
the review process. We would also like to thank the publisher, Springer, for their co-
operation in publishing the proceedings in the prestigious series of Lecture Notes in 
Computer Science. Finally, we thank all the authors who contributed to this volume 
for sharing their new ideas and results with the community. We hope that these ideas 
will generate further new ideas and innovations for the benefit of society and the envi-
ronment.  

July 2009 Cesare Alippi 
Marios Polycarpou 

Christos Panayiotou 
Georgios Ellinas 
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Shengkun Xie, Pietro Lió, and Anna T. Lawniczak

Decomposition Methods for Detailed Analysis of Content in ERP
Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Vasiliki Iordanidou, Kostas Michalopoulos, Vangelis Sakkalis, and
Michalis Zervakis

Outlier Analysis in BP/RP Spectral Bands . . . . . . . . . . . . . . . . . . . . . . . . . . 378
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Dubravko Ćulibrk, Dragan Kukolj, Petar Vasiljević,
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Abstract. Pure feature selection, where variables are chosen or not to

be in the training data set, still remains as an unsolved problem, espe-

cially when the dimensionality is high. Recently, the Forward-Backward

Search algorithm using the Delta Test to evaluate a possible solution was

presented, showing a good performance. However, due to the locality of

the search procedure, the initial starting point of the search becomes cru-

cial in order to obtain good results. This paper presents new heuristics to

find a more adequate starting point that could lead to a better solution.

The heuristic is based on the sorting of the variables using the Mutual

Information criterion, and then performing parallel local searches. These

local searches provide an initial starting point for the actual parallel

Forward-Backward algorithm.

1 Intoduction

Input selection is a crucial part when building an approximator. Too many input
variables increase the calculation time and model complexity and even lead to
suboptimal results. On the other hand too few variables might not contain all
the relevant information for an accurate approximation.

In many cases, the approximator cannot be used to test all possible combi-
nations of variables in order to find the optimal one. That can be due to the
huge number of combinations, which increases exponentially with respect to the
number of variables, or due to the fact that not all approximators can distinguish
the relevant inputs from the bogus ones.

In this paper, a greedy selection methodology, calledForward-BackwardSearch,
is used to select the variables. It relies on the Delta Test estimation methodology
[1]. Even though Forward-Backward is not going through all possible solutions
and does not guarantee the optimality of the final selection, it always finds a local
optimal one.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 1–9, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 A. Guillén et al.

Because of the locality of the Forward-Backward, a good initialization is cru-
cial, and this paper presents several new heuristics for the initialization. The
Forward-Backward methodology is also deterministic with respect to the initial-
ization; the same initial selection of variables provides the same final solution.

The rest of the paper is organized as follows: Section 2 presents the Forward-
Backward Search algorithm and the theoretical background of the Delta Test.
Then, Section 3 introduces the new improvements incorporated to enhance the
variable selection. Afterwards, Section 4 shows an experimental result, where the
heuristics are briefly compared.

2 Forward-Backward Search

Forward-Backward Search (FBS) is an algorithm that results from the joining
of two methodologies: Forward and Backward selections [2]. Both the Forward
Selection and the Backward Elimination (or Pruning) methods suffer from an
incomplete search. The FBS offers the flexibility to reconsider input variables
previously discarded and vice versa, to discard input variables previously se-
lected. It can start from any initial input set, including empty, full or randomly
initialized input set.

Let us suppose a set of inputs X i, i = 1, 2, · · · , d and output Y , the procedure
of the Forward-Backward Search is summarized in Figure 1. In the procedure
example the k -Nearest Neighbors (kNN) criterion [3] is used as an example
criterion for evaluating the input set, but the criterion can be almost any criteria
or a suitable approximator.

1. (Initialization)

Let set S be the selected input set, which can contain any input variables, and

set F be the unselected input set containing the inputs, which are not in set S.

Compute kNN(S, Y ) error.

2. (Forward-Backward Search)

Find:

Xs
= arg max

Xi,Xj
{kNN({S, Xj}, Y )} ∪ {kNN(S\Xi, Y )}, Xi ∈ S, Xj ∈ F.

If the previously computed kNN error is smaller than the new kNN error , stop;

otherwise, update set S and save the new kNN error, repeat step 2 until S is equal

to any former selected S.

3. (Result)

The selection result is in set S.

Fig. 1. Forward-Backward Search Strategy

It is noted that the selection result depends on the initialization of the input
set. In this paper, several options are considered and the options are discussed
more deeply in Section 3.
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In the course of FBS procedure, the number of evaluated input sets varies and
is dependent on the initialization of the input set, the stopping criteria and the
nature of the problem. Still, it is not guaranteed that in all cases this selection
method finds the global optimal input set.

2.1 The Delta Test

The Delta Test (DT), introduced by Pi and Peterson for time series [4] and
proposed for variable selection in [1], is a technique to estimate the variance of the
noise, or the mean squared error (MSE), that can be achieved without overfitting.
Given N input-output pairs (xi, yi) ∈ R

d × R, the relationship between xi and
yi can be expressed as

yi = f(xi) + ri, i = 1, ..., N (1)

where f is an unknown function and r is the noise. The DT estimates the variance
of the noise r.

The DT is useful for evaluating the nonlinear correlation between two random
variables, namely, input and output pairs. The DT can also be applied to input
variable selection: the set of input variables that minimizes the DT is the one
that is selected. Indeed, according to the DT, the selected set of input variables is
the one that represents the relationship between input variables and the output
variable in the most deterministic way.

The DT is based on a hypothesis coming from the continuity of the regression
function. If two points x and x′ are close in the input space, the continuity of
the regression function implies that the outputs f(x) and f(x′) are also close
enough in the output space. Alternatively, if the corresponding output values
are not close in the output space, this is due to the influence of the noise.

The DT can be interpreted as a particularization of the Gamma Test [5] con-
sidering only the first nearest neighbor. Let us denote the first nearest neighbor
of a point xi in the Rd space as xNN(i). The nearest neighbor formulation of the
DT estimates Var[r] by

Var[r] ≈ δ =
1

2N

N∑
i=1

(yi − yNN(i))2,with Var[δ] → 0 for N → ∞ (2)

where yNN(i) is the output of xNN(i).

3 New Initialization Heuristics for the Forward-Backward
Search

The following subsections describe the different approaches proposed to define
an adequate starting point. The original FBS has been parallelized in order to
take advantage of the architectures available nowadays. The search for the best
solution is distributed to several computers in order to have more solutions in
less time.
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The parallel implementation is quite straightforward and consists of the di-
vision of the generated subsets of variables from the first iteration of the FBS.
This division is shown in Figure 2.

Fig. 2. Parallel scheme for the Forward-Backward Search

Once each process has a part of the subset, they proceed as the original FBS.
The algorithm stops when all the processes have converged to a solution. Then,
the best solution is found among the final solutions of the individual processes.

3.1 Simple Mutual Information Based Initialization

Let X l = {xlm} with l ∈ 1, ..., d (i.e. X l is the l-th input variable) and Y = {ym}
with {m = 1...M}. The Mutual Information (MI) between X l and Y can be
defined as the amount of information that X l provides about Y , and can be
expressed as:

I(X l, Y ) =
∑
y∈Y

∑
x∈X

μXl,Y (x, y) log
μXl,Y (x, y)
μlX(x)μY (y)

. (3)

μXl,Y is the joint probability distribution function of X l and Y , and μlX(x) and
μY (y) are the marginal probability distribution functions of X l and Y respec-
tively.

Therefore, in order to obtain the MI between X l and Y , only the estimate
of the joint probability density function is needed. This value can be computed
using several techniques based on histograms, kernels or the kNN. In this paper,
the one based on the kNN is used [6].

For each input variable, the MI between that variable and the output is com-
puted and, once finished, it is possible to rank all the input variables according
the values of MI. Then, the initial solution for the FBS is defined as a number
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of first variables in the ranking. The problem now is to determine the actual
number of variables, since the value obtained by the MI is not enough to perform
this selection. Unfortunately, the only chance is to set this value manually.

Another issue is to determine the value of k for the kNN algorithm that
computes the MI. Although there is a possibility of guessing an adequate value:
compute the MI values using several k and select the one that provides the
highest values.

3.2 RaVI: Ranked Variables Initialization

Being aware of the two significant drawbacks of the used MI heuristic (the de-
termination of the k and the final number of variables to be chosen), another
heuristic is considered. This new heuristic requires the definition of only one pa-
rameter. This value can again be set manually as in the MI, or as a function of
the available computational resources making the heuristic more flexible when
executed in different computer architectures or systems.

The heuristic works as follows: it performs a division of the original input
vector into subvectors of a smaller dimension. Then, the local search is applied
to each subvector.

When the search is focused on the subvector, there are several possibilities in
handling the rest of the inputs. In this paper, we are considering four starting
alternatives: 1) all zeros, 2) subvectors ones, the other inputs zeros, 3) all ones,
4) subvectors zeros, the other inputs ones.

The RaVI scheme is summarized in Figure 3.
In the Figure, the initial solutions are divided into slices of size 3 (depicted

as x) and the remaining values are not changed (depicted as -) during the first
FBS. This first FBS is done sequentially and separately in each process. Once all
the processes have converged to a local optima, the processes perform a collective
communication and share the results found by the other processes. Then, the
initial starting point for the parallel FBS (named as middle solution in Figure
3) is computed by concatenating all local solutions. Finally, the parallel FBS,
presented in Figure 2, is performed starting from the middle solution.

The new aspect of this method is the sorting of the variables before performing
the slice division and the following local searches. Since the variables are going
to be analyzed with their neighbors in a local manner, it might be convenient to
rank the variables with high MI values close to each other when performing the
local searches. With the MI, in this case, it is not so crucial to select the k for
the MI as the most optimal one, because each of the slices will contain similar
variables in terms of their MI values. When the local results are concatenated,
the middle solution includes inputs with a wide range of MI values, only the
optimality inside each slice is emphasized.

Here, we use two different sorting schemes based on the MI criterion. The first
one sorts the variables in a descending order, starting from the variable with the
largest MI value and ending up with the one with the lowest.

The second sorting scheme, called RaVI Mix, is aiming to bunch together
variables with high and low values of MI. This sorting gives more chances to the
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Fig. 3. Scheme of the algorithm using the slice division heuristic to initialize the start-

ing point for the FBS

sublocal searches to select good variables, whether they have large MI value or
not. The second sorting scheme is visualized in the following:[

XMI(1) XMI(d) XMI(2) XMI(d−1) · · ·XMI(m)
]
, (4)

where MI denotes the ranking of all d inputs in the dataset, MI(1) denotes the
input with the highest MI value and MI(d) the one with the lowest. m is the
middlemost input in the ranking.

After the sorting, the input space is divided into sublocal search spaces, or
slices, as demonstrated in Figure 3.

4 Experiments

In this paper, we use a dataset from the recently organized ESTSP 2007 con-
ference. The ESTSP dataset presents a weekly sea temperature for roughly 17
years and contains 874 values and it is shown in Figure 4.

The dataset is transformed into a regressor of 55 input variables, and one
output variable, and a total of 819 samples using a sliding window over the
whole dataset. We have a time series prediction problem of one step ahead and
we want to do the input variable selection in order to decrease the amount of
input variables. All the samples are used in the variable selection part.

We used 8 processes (or processors) with each method, which set the sizes of the
slices to 6 or 7 (7 slices with 7 variables and one with 6 variables). As already men-
tioned, the number of processes can be defined manually or with respect to the
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Fig. 4. The ESTSP 2007 Competition dataset

computational resources available. The parallel implementation was performed
using Matlab software and recently developed MPI implementation [7].

In the preliminary tests performed before the actual comparison of the meth-
ods, a well-known Housing dataset was used to verify the correctness of the
methods. Because Housing dataset includes only 13 inputs, it is possible to use
exhaustive search to compute the global optimum according to the Delta Test.
Using any of the presented heuristics with any presented initialization, the global
optimum was always found.

Table 1 summarizes the results of all methods using the ESTSP 2007 Com-
petition dataset.

Table 1. Results of all methods using the ESTSP 2007 Competition dataset

Heuristic Starting Point # Variables Delta Test Solutions Time

pFBS All 46 0.0284 3856 248

None 18 0.0299 4640 168

Simple MI 10 best MI 15 0.0272 8056 222

RaVI All 22 0.0269 4243 194

None 28 0.0277 6629 282

Ones and Zeros 19 0.0267 3541 145

Zeros and Ones 31 0.0283 5398 236

RaVI Mix All 21 0.0284 3755 156

None 32 0.0264 5445 289

Ones and Zeros 25 0.0269 4077 148

Zeros and Ones 28 0.0293 6358 273

From Table 1 we can see that the RaVI Mix methodology obtains the lowest
Delta Test value and, therefore, has selected the best set of inputs. However,
there are no big differences among the methods, even though the Delta Test
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value with all variables is 1.1765. It means that each of the presented heuristics
have done their job adequately.

The Exhaustive Search of all possible combinations in the 55 dimensional
space is clearly unfeasible task and one must use some sort of heuristics to ease
the search process. The Table 1 shows that the MI alone is not enough to guide
the FBS toward more optimal selection of input variables. Even though the
Simple MI heuristic searched through the largest amount of input combinations,
it was not able to find better solution than RaVI Mix heuristic.

Furthermore, we observed that although there is a possibility to end up in
the same solutions when using the parallel implementation of the FBS, only
few searches ended up with the same local minima. Roughly only one percent
of the solutions searched through were already evaluated by another parallel
computation thread.

Figure 5 shows the selected variables using the RaVI Mix selection scheme
and some inputs with high and low MI values for comparison.

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

Inputs

Fig. 5. Selected inputs using the RaVI Mix method starting from all zeros. The input

variables are on the horizontal axis, red circles at zero depict not selected variables and

blue circles at one depict selected variables. Blue dots at 0.9 denote the variables with

10 highest MI values and red crosses the ones with the 10 lowest values.

From Figure 5 we can see that the selection is not selecting all variables
with the highest MI values, but also the ones with very low value. For example,
variables 30 and 31 are among the variables with the highest MI values, but none
of them is selected. On the other hand, variables from 37 to 41 are among the
variables with the lowest MI values, but some of them are chosen by the RaVI
Mix.

This suggests that the MI value alone is not able to give a clear justification
to use the variable, and that also the variables with low MI value can be useful
in the approximation.
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5 Conclusions

The problem of finding a good subset of variables for any kind of regression
model is still remaining as an unsolved problem. Due to the high dimensionality
of the real-life problems, it is not possible to apply an exhaustive search that
would provide the global optimum.

Within this context, this paper presents several heuristics to improve the be-
havior of a previously published algorithm, the Forward-Backward Search. These
new heuristics rely on the theoretical basis provided by the Mutual Information.
The search starts from a point that could be closer to adequate local minimum.

Another relevant aspect of one of the heuristics is the possibility to analyze
the relationships between variables, defining neighbor relationships. This aspect
can be further studied using different metrics, since this last heuristic provided
the best results in a complex input selection problem.

For further work, other ranking criteria will be tested and the effect of using
different sizes of local searches will be quantified and compared. Also other means
of local estimation of a good selection of inputs will be tried.
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Abstract. For most kernel-based clustering algorithms, their performance will
heavily hinge on the choice of kernel. In this paper, we propose a novel kernel
learning algorithm within the framework of the Local Learning based Cluster-
ing (LLC) (Wu & Schölkopf 2006). Given multiple kernels, we associate a non-
negative weight with each Hilbert space for the corresponding kernel, and then
extend our previous work on feature selection (Zeng & Cheung 2009) to select
the suitable Hilbert spaces for LLC. We show that it naturally renders a linear
combination of kernels. Accordingly, the kernel weights are estimated iteratively
with the local learning based clustering. The experimental results demonstrate the
effectiveness of the proposed algorithm on the benchmark document datasets.

1 Introduction

In the past few decades, the kernel methods have been widely applied to various learn-
ing problems, where the data is implicitly mapped into a nonlinear high dimensional
space by kernel function [3]. Unfortunately, it is known that the performance heavily
hinges on the choice of kernel, and the most suitable kernel for a particular task is often
unknown in advance. Thereby, learning an appropriate kernel, is critical to obtain an
improved performance for the employed kernel-based inference method.

In this paper, we are particularly interested in the problem of kernel learning for
clustering. In the literature, the kernel learning has been extensively studied for the su-
pervised learning contexts. However, this issue remains less explored in unsupervised
problems, due to the absence of ground truth class labels that could guide the learn-
ing for “ideal” kernels. Until very recently, several algorithms have been proposed to
address this issue for clustering. Some approaches [4,5] directly learn the kernel pa-
rameters of some specific kernels. Though improvement is often achieved, extension
of the learning method to other kernel functions is often nontrivial. A more effective
framework, termed as the multiple kernel learning [6], learns a linear combination of
base kernels with different weights, which will be estimated iteratively with the infer-
ence process [7,8]. This strategy may bring potential advantages over those which try to
obtain a single best kernel, through exploiting the complementary information among
different kernels. In [7], the algorithm tries to find a maximum margin hyperplane to
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cluster data (restricted to binary-class case), accompanied with learning a mixture of
Laplacian matrices. In [8], clustering is phrased as a non-negative matrix factorization
problem of a fused kernel matrices. Nevertheless, both approaches in [7,8] are global
learning based. Their performance may be degraded when samples are less separable
from a global view.

Under the circumstances, we therefore propose a novel multiple kernel learning
method within the framework of the Local Learning based Clustering (LLC) [1], which
aims at optimizing the local purity requirement of clustering assignment. It is expected
that it will produce a more reliable intermediate clustering result when the samples are
globally less separable. We associate a non-negative weight with each Hilbert space (or
called the feature space interchangeably) for the corresponding kernel, and then extend
our previous work on feature selection [2] to select the suitable Hilbert spaces for LLC.
Such strategy naturally leads to learn a linear combination of all the available kernels at
hand. Accordingly, an algorithm is developed in which the combination coefficients of
kernels are estimated iteratively with the local learning based clustering.

The remainder of the paper is organized as follows: Section 2 gives an overview of
local learning based clustering algorithm. We present the proposed method in Section 3.
In Section 4, the experiments on several benchmark datasets are presented. We draw a
conclusion in Section 5.

2 Overview of the Local Learning Based Clustering Algorithm

Let us first introduce the indicator matrix that will be used later. Suppose n data points
X = {xi}ni=1(xi ∈ Rd) will be partitioned into C clusters. The clustering result can
be represented by a cluster assignment indicator matrix P = [pic] ∈ {0, 1}n×C, such
that pic = 1 if xi belongs to the cth cluster, and pic = 0 otherwise. The scaled cluster
assignment indicator matrix used in this paper is defined by: Y = P(PTP)−

1
2 =

[y1,y2, . . . ,yC ], where yc = [y1c, . . . , ync]T ∈ Rn(1 ≤ c ≤ C), is the c-th column
of Y ∈ Rn×C . yic = pic/

√
nc can be regarded as the confidence that xi is assigned to

the cth cluster, where nc is the size of the cth cluster. It is easy to verify that YTY = I,
where I ∈ Rn×n is the identity matrix.

The starting point of the LLC [1] is that the cluster assignments in the neighborhood
of each point should be as pure as possible. Suppose there exists an arbitrary Y at first,
for each xi, a regression model is built with the training data {(xj , yjc)}xj∈Ni(1 ≤ c ≤
C, 1 ≤ i, j ≤ n), where Ni denotes the set of neighboring1 points of xi (not including
xi itself). The output of the local model is of the following form: f ci (x) = xTθci , ∀x ∈
Rd, where θci ∈ Rd is the local regression coefficients vector. Here, the bias term is
ignored for simplicity, provided that one of the features is 1. In [1], θci is solved by:

min
θc

i

C∑
c=1

n∑
i=1

[ ∑
xj∈Ni

β(yjc − xTj θci )
2 + ‖θci‖2

]
, (1)

1 The k-mutual neighbors are adopted in order to well describe the local structure, i.e. xj is
considered as a neighbor of xi only if xi is also one of the k-nearest neighbors of xj .



12 H. Zeng and Y. Cheung

where β is a trade-off parameter. Denote the solution to the linear ridge regression
problem (1) as θc∗i , the predicted cluster assignment for the test data xi can then be
calculated by: ŷic = f ci (xi) = xTi θc∗i = αTi yci , where

αTi = βxTi (βXiXT
i + I)−1Xi, (2)

Xi = [xi1 ,xi2 , . . . ,xini
] with xik being the k-th neighbor of xi, ni is the size of Ni,

and yci = [yi1c, yi2c, . . . , yini
c]T .

After all the local predictors have been constructed, LLC aims to find an optimal
cluster indicator matrix Y via minimizing the overall prediction errors:

C∑
c=1

n∑
i=1

(yic − ŷic)2 =
C∑
c=1

‖yc − Ayc‖2 = trace(YTTY), (3)

where T = (I − A)T (I − A), A is an n × n sparse matrix with its (i, j)-th entry aij
being the corresponding element in αi by (2) if xj ∈ Ni and 0 otherwise.

As in the spectral clustering [9,10], Y is relaxed into the continuous domain while
keeping the property YTY = I for (3). LLC then solves:

min
Y∈Rn×C

trace(YTTY) s.t. YTY = I (4)

A solution to Y is given by the first C eigenvectors of the matrix T, corresponding to
the first C smallest eigenvalues. The final partition result is obtained by discretizing Y
via the method in [10] or by k-means as in [9].

3 Multiple Kernel Learning for Local Learning Based Clustering

The LLC algorithm can be easily kernelized as in [1], by replacing the linear ridge re-
gression with the kernel ridge regression. Under the circumstances, selecting a suitable
kernel function will be a crucial issue. We extend our previous work of feature selec-
tion for LLC [2] to learn a proper linear combination of several pre-computed kernel
matrices.

In the kernel methods, the symmetric positive semi-definite kernel function K :
X × X → R, implicitly maps the raw input features into a high-dimensional (pos-
sibly infinite) Reproducing Kernel Hilbert Space (RKHS) H, which is equipped with
the inner product < ·, · >H via a nonlinear mapping φ : X → H, i.e., K(x, z) =<
φ(x), φ(z) >H. Suppose there are L different available kernel functions {K(l)}Ll=1.
Accordingly, there are L different associated feature spaces {H(l)}Ll=1. Since it is un-
known which feature space should be used, an intuitive way is to use them all by con-
catenating all feature spaces into an augmented Hilbert space: H̃ =

⊕L
l=1 H(l), and

associate each feature space with a relevance weight τl (
∑L
l=1 τl = 1, τl ≥ 0, ∀l), or

equivalently the importance factor for kernel function K(l). Later, we will show that
performing LLC in such feature space is equivalent to employing a combined kernel
function: Kτ (x, z) =

∑L
l=1 τlK(l)(x, z) for LLC. A zero weight τl will correspond

to blend out the feature space associated with the corresponding kernel similar to the
feature selection in [2]. Our task is to learn the coefficients {τl}Ll=1 which can lead
to a more accurate and robust performance. Subsequently, an algorithm that iteratively
performs clustering and estimates the kernel weight is developed.
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3.1 Update Y for a Given τ

First of all, given a τ , the nearest neighbors Ni for LLC algorithm will be re-found by
the τ -weighted squared Euclidean distance in H̃, i.e.:

dτ (x1,x2) = ‖φ(x1) − φ(x2)‖2
τ = Kτ (x1,x1) + Kτ (x2,x2) − 2Kτ (x1,x2). (5)

Then the local discriminant function in the H̃ can be written as follows:

f ci (φ(x)) = φ(x)Twc
i + bci , (6)

where φ(x) = [φ1(x) φ2(x) · · · φL(x)]T ∈ RD, φl(x) ∈ RDl is the sample mapped
by the lth kernel function,

∑L
l=1 Dl = D, D and Dl are the dimensionalities of H̃

and H(l), respectively. Taking the relevance of each feature space for clustering into
account, the regression coefficient wc

i ∈ RD and the bias bci ∈ R now will be solved
via the following weighted l2 norm regularized least square problem:

min
wc

i ,b
c
i

C∑
c=1

n∑
i=1

[ ∑
xj∈Ni

β(yjc − φ(xj)Twc
i − bci )

2 + wcT
i Λ−1

τ wc
i

]
, (7)

where Λτ is a diagonal matrix with the vector τ̃ = (τ1, . . . , τ1︸ ︷︷ ︸
D1

, . . . , τL, . . . , τL︸ ︷︷ ︸
DL

)T in

the diagonal, and
∑L
l=1 τl = 1, τl ≥ 0 ∀l. Similar to [2], the weighted l2 norm (i.e.,

the second term in the square bracket of (7)) with τ defined on the standard simplex is
able to provide adaptive regularization: a large penalty will be imposed on the elements
of wc

i corresponding to the feature spaces associated with irrelevant kernels. Thus, an
improved clustering result can be expected because the vanishing elements in wc

i will
eliminate the feature spaces with irrelevant kernels from the prediction (c.f. (6)).

After removing the bias term by plugging its optimal solution

bci =
1
ni

eTi (yci − φ(Xi)Twc
i ), (8)

into (7), where ei = [1 1 · · · 1]T ∈ Rni , we can reformulate the primal problem (7) as
follows:

min
wc

i

C∑
c=1

n∑
i=1

[
β‖Πiyci − (φ(Xi)Πi)Twc

i ‖2 + wcT
i Λ−1

τ wc
i

]
, (9)

where Πi = Ini − 1
ni

eieTi and Ini ∈ Rni×ni is a unit matrix, ΠiΠi = Πi. Then we
consider the dual formulation of the (9) in terms of wc

i . Denote

ζci = (φ(Xi)Πi)Twc
i − Πiyci , (10)

then the Lagrangian for problem (9) is

L({ζci ,wc
i ,γ

c
i}) =

C∑
c=1

n∑
i=1

(
β‖ζci‖2 + wcT

i Λ−1
τ wc

i

)
(11)

−
C∑
c=1

n∑
i=1

γcTi

(
(φ(Xi)Πi)Twc

i − Πiyci − ζci

)
,
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where γci ’s with γci ∈ Rni are the vectors of Lagrangian dual variables. Taking the
derivatives of L w.r.t. the primal variables ζci and wc

i , and setting them equal to zero,
we obtain:

ζci = −γci
2β
, wc

i =
Λτφ(Xi)Πiγ

c
i

2
, (12)

and finally we obtain the dual problem:

max
γc

i

C∑
c=1

n∑
i=1

− 1
4β

γcTi γci −
1
4
γcTi Πiφ(Xi)TΛτφ(Xi)Πiγ

c
i + γcTi Πiyci =

max
γc

i

C∑
c=1

n∑
i=1

− 1
4β

γcTi γci −
1
4
γcTi ΠiKτ

iΠiγ
c
i + γcTi Πiyci . (13)

with φ(Xi)TΛτφ(Xi) =
∑L
l=1 τlφl(Xi)Tφl(Xi) =

∑L
l=1 τlK

(l)
i = Kτ

i , where

K(l)
i ,Kτ

i ∈ Rni×ni are the base and combined kernel matrices over xj ∈ Ni, respec-

tively, i.e., K(l)
i = [K(l)(xu,xv)] and Kτ

i = [Kτ (xu,xv)], for xu,xv ∈ Ni. For fixed τ
constrained on the simplex, the convex combination of the positive semi-definite kernel
matrices : Kτ

i =
∑L
l=1 τlK

(l)
i is still a positive semi-definite kernel matrix. There-

fore, the problem in (13) is an unconstrained concave quadratic program whose unique
optimal solution can be obtained analytically:

γc∗i = 2β(Ii + βΠiKτ
iΠi)−1Πiyci . (14)

Then altogether with (8), (12) and (14), the predicted indicator value at point xi for the
cth (c = 1, . . . , C) cluster can be calculated by (6): ŷic = f ci (φ(xi)) = φ(xi)Twc

i +
bci = αTi yci , with

αTi = β(kτi −
1
ni

eTi Kτ
i )Πi

[
Ii − (β−1I + ΠiKτ

iΠi)−1ΠiKτ
iΠi

]
+

1
ni

eTi , (15)

where kτi ∈ Rni denotes the vector [Kτ (xi,xj)]T for xj ∈ Ni.
To obtain Y, we will first build the matrix T by (3) with αi defined in (15), using

the combined kernel Kτ (xi,xj) =
∑L
l=1 τlK(l)(xi,xj). Then Y is given by the first

C eigenvectors of T corresponding to the C smallest eigenvalues.

3.2 Update τ for a Given Y

Subsequently, the L kernel combination coefficients {τl}Ll=1 will be recomputed based
on the current estimation for Y. We propose to estimate τ using the projected gradient
descent method as in [11,12].

With fixed Y and neighborhood determined at each point, an optimal τ is expected
to minimize:

P(τ ), s. t.
L∑
l=1

τl = 1, τl ≥ 0, ∀l, (16)
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where P(τ ) = minwc
i

∑C
c=1
∑n
i=1

[
β‖Πiyic − (φ(Xi)Πi)Twc

i‖2 + wcT
i Λ−1

τ wc
i

]
.

In general, it can be solved by the projected gradient descent method through the up-
date equation τ (new) = τ (old) − η∇P , as given Y and Ni such that P(τ (new)) ≤
P(τ (old)), where η is the step size, and ∇P is the projected gradient. It is expected that
the local regression model derived from τ (new) should be better than the one derived
from τ (old). Nevertheless, since both Y and Ni depend on τ as shown in Section 3.1,
they need to be recomputed as in Section 3.1 once τ is updated.

Then the key issue is to obtain the derivatives of P(τ ) in analytic forms. In order
to do so, we resort to the dual of P(τ ) which has been investigated in Sub-section 3.1,
and is rewritten below:

D(τ ) = max
γc

i

C∑
c=1

n∑
i=1

− 1
4β

γcTi γci −
1
4
γcTi ΠiKτ

iΠiγ
c
i + γcTi Πiyci . (17)

Note (9) is convex with respect to wc
i . By the principle of strong duality, we have

P(τ ) = D(τ ). Furthermore, as {γc∗i } in (14) maximizes D, according to [13], D(τ )
is differentiable if {γc∗i }’s are unique. Fortunately, this unicity is guaranteed by the
unconstrained concave quadratic program in (13). Moreover, as proved in Lemma 2 of
[14], D(τ ) can be differentiated with respect to τ as if {γc∗i } did not depend on τ .
Finally, we have:

∂P
∂τl

=
∂D
∂τl

= −1
4

C∑
c=1

n∑
i=1

γc∗Ti ΠiK
(l)
i Πiγ

c∗
i = −1

4

n∑
i=1

trace(γ∗T
i ΠiK

(l)
i Πiγ

∗
i ),

(18)

where γ∗
i = [γ1∗

i , . . . ,γ
C∗
i ] ∈ Rni×C .

Note the equality and non-negative constraints over the τ have to be kept inviolate
when updating τ along the descent gradient direction. We use the same strategy as in
[12] by first projecting the gradient to enforce the equality, and then ensuring that the
descent direction does not lead to negative τl. That is, each element of the reduced
gradient ∇P is designed as follows:

(∇P)l =

⎧⎪⎨⎪⎩
∂P
∂τl

− ∂P
∂τm

, if l �= m and τl > 0;∑
μ�=m,τμ>0

(
∂P
∂τm

− ∂P
∂τμ

)
, if l = m;

0, if τl = 0 and ∂P
∂τl

− ∂P
∂τm

> 0,

(19)

where m = argmaxl τl. When updating τ by τ (new) = τ (old) − η∇P , we first try η
with the maximal admissible step size ηmax which sets τν to zero, where

ν = arg min
{l|(∇P)l>0}

τ
(old)
l

(∇P)l
, ηmax =

τν
(∇P)ν

. (20)

If D(τ (trial)) ≤ D(τ (old)), where τ (trial) = τ (old) − ηmax∇P , τ gets updated;
otherwise, a one-dimensional line search for η ∈ [0, ηmax] is applied. Algorithm 1
describes the steps to update τ .
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Algorithm 1. Update kernel weight vector τ with the current Y and Ni
Compute the projected gradient ∇P by (19);
Compute the maximal admissible step size ηmax by (20);
τ (trial) = τ (old) − ηmax∇P ;

Compute D(τ (trial)) with {γ∗
i } calculated from Kτ(trial)

=
∑L

l=1 τ
(trial)
l K(l);

if D(τ (trial)) ≤ D(τ (old)) then
η = ηmax;

else
Perform line search for η ∈ [0, ηmax] along ∇P ;

end
τ (new) = τ (old) − η∇P ;

3.3 The Complete Algorithm

The complete local learning based clustering algorithm with multiple kernel learning
(denoted as LLC-mkl) is presented in Algorithm 2. The loop stops when the relative
variation of the trace value in (4) between two consecutive iterations is below a thresh-
old (we set it at 10−4 in this paper), indicating the partitioning has almost been stabi-
lized. After the convergence, Y is discretized to obtain the final clustering result with
the k-means as in [9].

Algorithm 2. Multiple kernel learning for local learning based clustering algo-
rithm

input : L base kernel matrices K(l)’s, size of the neighborhood k, trade-off parameter β
output: Y, τ

Initialize τl = 1
L

, for l = 1, . . . , L;1

while not converge do2

Find k-mutual neighborhoods, using the metric defined in (5);3

Construct the matrix T by (3) with αi given in (15), and then solve the problem (4)4

to obtain Y;
Update τ with the steps described in Algorithm 1;5

end6

4 Experimental Results

Experiments on document clustering were conducted with LLC-mkl. The characteris-
tics of the benchmark document datasets used in this experiment are summarized in
Table 1.

– CSTR: This is the dataset of the abstracts of technical reports published in the De-
partment of Computer Science at a university between 1991 and 2002. The dataset
contains 476 abstracts, which are divided into four research topics.

– WebACE: This dataset is from WebACE project, and it contains 2340 documents
consisting of news articles from Reuters news service with 20 different topics in
October 1997.
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Table 1. Characteristics of the document datasets

Dataset Number of Samples Number of Classes
(n) (C)

CSTR 476 4
WebACE 2340 20
tr11 414 9
tr31 927 7

– tr11 and tr31: Both of the two datasets are from the CLUTO toolkit [15], they
contain 414 and 927 articles categorized into 9 and 7 topics, respectively.

To pre-process the CSTR and WebACE datasets, we remove the stop words using a
standard stop list, all HTML tags are skipped and all header fields except subject and
organization of the posted articles are ignored. Then each document is represented by
the term-frequency vector (Bag-of-Words). The datasets associated with the CLUTO
toolkit have already been preprocessed. For all datasets, we used the top 1000 words
by mutual information with class labels. For comparison, the counterpart unsupervised
multiple kernel learning algorithm based on NMF [8] (denoted as NMF-mkl) was con-
ducted. We also compared with the self-tuning spectral clustering [4] (denoted as Self-
TunSpec), which tries to build a single best kernel for clustering. The algorithm in [7]
is not compared because the optimization software in [7] cannot deal with the datasets
that have too many samples and will cause memory overflow on the datasets used in
this paper. Furthermore, we simply set the number of clusters equal to the number of
classes in each dataset for all the algorithms without considering the selection of the
optimal number of clusters, which is beyond the scope of this paper . We evaluated the
performance with the clustering accuracy (ACC) index [1] for all algorithms. The sen-
sitivity of the proposed LLC-mkl algorithm with respect to k and β will be presented at
the end of this section.

We applied the LLC-mkl with altogether 10 pre-computed base kernels, i.e., 7 RBF
kernels K(xi,xj) = exp(−‖xi − xj‖2/2δ2), with δ = const ∗ D, where D is
the maximum distance between samples, and const varies in the pre-specified range
{0.01, 0.05, 0.1, 1, 10, 50, 100}, 2 polynomial kernels K(xi,xj) = (1 + xTi xj)d with
degree d = {2, 4}, and a cosine kernelK(xi,xj) = xTi xj/(‖xi‖·‖xj‖). All the kernels
have been normalized through: K(xi,xj)/

√
K(xi,xi)K(xj ,xj). Besides, we also im-

plemented the case where each time a single candidate kernel K(l)(l = 1, . . . , 10) was
adopted in the LLC algorithm in which the local prediction is performed with kernel
ridge regression. The best (denoted as LLC-bkernel) and the worst (denoted as LLC-
wkernel) performance out of the 10 kernels were reported. NMF-mkl was applied on
the same 10 base kernels. The adjacency matrix in SelfTunSpec [4] was built by its local
scaling method [4] on the dataset. For NMF-mkl and SelfTunSpec, we only reported the
best accuracy among extensive trials of their free parameters. For LLC-mkl, the mean
and standard deviation of ACC with k = 30, β = 10 over 10 runs were reported. The
results are summarized in Table 2.

From Table 2, we could first observe that there is a big gap between the best and the
worst performance of LLC with different choices of kernel. On the tr11 and tr31
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Table 2. Accuracies of various methods on the document datasets

Data Set LLC-wkernel LLC-bkernel LLC-mkl NMF-mkl SelfTunSpec
CSTR 0.3487 0.7374 0.8508±0.0012 0.6387 0.5210
WebACE 0.2436 0.4885 0.6316±0.0215 0.4960 0.4880
tr11 0.4251 0.5966 0.5609±0.0166 0.5145 0.4106
tr31 0.5297 0.6721 0.6512±0.0007 0.5372 0.4412
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Fig. 1. The parameter sensitivity studies of LLC-mkl algorithm. (a) varying the size of neighbor-
hood with β being fixed at 10; (b) varying β with the size of neighborhood fixed at 30. The values
on each line represent the average ACC over 10 independent runs.

datasets, the performance of LLC-mkl is close to that of the LLC with the best kernel,
but obviously LLC-mkl is more sensible for practical application where we often do not
know which kernel is the best a priori. On the CSTR and WebACE datasets, the LLC-
mkl even outperforms the LLC with the best kernel. Namely, by combining multiple
kernels and exploiting the complementary information contained in different kernels,
the LLC-mkl indeed improves the robustness and accuracy of LLC. Compared to NMF-
mkl which is derived globally, the LLC-mkl is consistently superior over it on these four
datasets. A plausible reason is that the document datasets are very sparse, therefore the
entries in the kernel matrix may resemble to each other from the global view or on
a large scale. Thereby, finding the similar points locally may produce more reliable
intermediate clustering result to guide the kernel learning. From Table 2, it can also be
seen that the LLC-mkl and NMF-mkl both outperform the selfTunSpec which tries to
construct a single “best” kernel in this experiment.

The effects of these two parameters, i.e., k and β, on the performance of LLC-mkl
are presented in Figure 1. From Figure 1, it can be seen that the proposed LLC-mkl
algorithm with k = 30 ∼ 50 and β ∈ [0.01, 10] could produce considerably accurate
results and the performance does not vary much.

5 Conclusion

In this paper, a novel kernel learning approach has been proposed for the local learning
based clustering, where a combination of kernels is jointly learned with the clustering.
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It is addressed under a regularization framework by taking the relevance of each kernel
into account. Experimental results have shown that the proposed kernel learning method
is able to improve the robustness and accuracy of the basic local learning clustering.
Furthermore, it generally outperforms the state-of-the-art counterparts, especially when
the samples are less separable from a global view.

References

1. Wu, M., Schölkopf, B.: A Local Learning Approach for Clustering. In: NIPS, pp. 1529–1536
(2006)

2. Zeng, H., Cheung, Y.M.: Feature Selection for Local Learning based Clustering. In: PAKDD,
pp. 414–425 (2009)
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Abstract. A new matrix factorization algorithm which combines two

recently proposed nonnegative learning techniques is presented. Our new

algorithm, α-PNMF, inherits the advantages of Projective Nonnegative

Matrix Factorization (PNMF) for learning a highly orthogonal factor

matrix. When the Kullback-Leibler (KL) divergence is generalized to α-

divergence, it gives our method more flexibility in approximation. We

provide multiplicative update rules for α-PNMF and present their con-

vergence proof. The resulting algorithm is empirically verified to give a

good solution by using a variety of real-world datasets. For feature ex-

traction, α-PNMF is able to learn highly sparse and localized part-based

representations of facial images. For clustering, the new method is also

advantageous over Nonnegative Matrix Factorization with α-divergence

and ordinary PNMF in terms of higher purity and smaller entropy.

1 Introduction

Nonnegative learning based on matrix factorization has received a lot of research
attention recently. The first application of Nonnegative Matrix Factorization
(NMF) [1] was in extracting sparse features of facial images, while recent research
also reveals its usefulness in clustering.

However, the original NMF approximation is restricted to least square errors
or the Kullback-Leibler divergence between the data matrix and its approxima-
tion. It has recently been pointed out that the divergence minimization can be
generalized by using the α-divergence [2], which leads to a family of new algo-
rithms [3]. The empirical study by Cichocki et al. shows that the generalized
NMF can achieve better performance for various applications by using proper α
values.

Projective Nonnegative Matrix Factorization (PNMF) [4] is another variant
of NMF. It identifies a nonnegative subspace by integrating the nonnegativity to
the PCA objective. PNMF has proven to outperform NMF in feature extraction,
where PNMF is able to generate sparser patterns which are more localized and

� Supported by the Academy of Finland in the project Finnish Centre of Excellence
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non-overlapping [4]. Clustering results of text data also demonstrate that PNMF
is advantageous as it provides better approximation to the binary-valued multi-
cluster indicators than NMF.

To achieve both merits of the above methods, we extend the PNMF by using
α-divergence instead of KL-divergence as the error measure. We derive the mul-
tiplicative update rules for the new learning objective. The convergence of the
iterative updates is proven using the Lagrangian approach. Experiments are con-
ducted, in which the new algorithm outperforms α-NMF for extracting sparse
and localized part-based representations of facial images. Our method can also
achieve better clustering results than α-NMF and ordinary PNMF for a variety
of datasets.

2 Related Work

2.1 Nonnegative Matrix Factorization

Given a nonnegative data matrix X ∈ R
m×N
+ , Nonnegative Matrix Factorization

(NMF) seeks a decomposition of X that is of the form:

X ≈ WH, (1)

where W ∈ R
m×r
+ and H ∈ R

r×N
+ with the rank r � min(m,N).

Denote by X̂ = WH the approximating matrix. The approximation can be
achieved by minimizing two widely used measures: (1) Least Square criterion

ε =
∑
i,j

(
Xij − X̂ij

)2
and (2) Kullback-Leibler divergence (KL-divergence)

DKL

(
X||X̂

)
=
∑
i,j

(
Xij log

Xij

X̂ij
−Xij + X̂ij

)
. (2)

In this paper we focus on the second approximation criterion, which leads to the
multiplicative updating rules of the form

Hnew
kj = Hkj

(
WTZ

)
kj∑

iWik
, W new

ik = Wik

(
ZHT

)
ik∑

jHkj
, (3)

where we use Zij = Xij/X̂ij for notational brevity.

2.2 Nonnegative Matrix Factorization with α-Divergence

The α-divergence [2] is a parametric family of divergence functionals, including
several well-known divergence measures as special cases. NMF equipped with
the following α-divergence as the approximation measure is called α-NMF [3].

Dα

(
X||X̂

)
=

1
α(1 − α)

m∑
i=1

N∑
j=1

(
αXij + (1 − α)X̂ij −Xα

ijX̂
1−α
ij

)
(4)
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The corresponding multiplicative update rules are given by the following, where
we define Z̃ij = Zαij :

Hnew
kj = Hkj

⎡⎢⎣
(
WT Z̃

)
kj∑

iWik

⎤⎥⎦
1
α

, W new
ik = Wik

⎡⎣
(
Z̃HT

)
ik∑

j Hkj

⎤⎦
1
α

. (5)

α-NMF reduces to the conventional NMF with KL-divergence when α → 1.
Another choice of α characterizes a different learning principle, in the sense that
the model distribution is more inclusive (α → ∞) or more exclusive (α → −∞).
Such flexibility enables α-NMF to outperform NMF with α properly selected.

2.3 Projective Nonnegative Matrix Factorization

Replacing H = WTX in (1), we get the Projective Nonnegative Matrix Factor-
ization (PNMF) approximation scheme [4]

X ≈ WWTX. (6)

Again, denote X̂ = WWTX the approximating matrix and Zij = Xij/X̂ij . The
PNMF multiplicative update rule for KL-divergence is given by [4]

W new
ik = Wik

(
ZXTW + XZTW

)
ik∑

j (WTX)kj +
(∑

j Xij

)
(
∑
bWbk)

. (7)

The name PNMF comes from another derivation of the approximation scheme
(6) where a projection matrix P in X ≈ PX is factorized into WWT . This
interpretation connects PNMF with the classical Principal Component Analysis
subspace method except for the nonnegativity constraint [4]. Compared with
NMF, PNMF is able to learn a much sparser matrix W. This property is espe-
cially desired for extracting part-based representations of data samples or finding
cluster indicators.

3 PNMF with α-Divergence

In this section we combine the flexibility of α-NMF and the sparsity of PNMF
into a single algorithm. We called the resulting method α-PNMF which stands
for Projective Nonnegative Matrix Factorization with α-divergence.

3.1 Multiplicative Update Rule

α-PNMF solves the following optimization problem:

minimize
W≥0

J (W) = Dα(X||WWTX). (8)



Projective Nonnegative Matrix Factorization with α-Divergence 23

The derivative of the objective with respect to W is

∂J (W)
∂Wik

=
1
α

[
−
(
Z̃XTW + XZ̃TW

)
ik

+
∑
j

(
WTX

)
kj

+

⎛⎝∑
j

Xij

⎞⎠(∑
b

Wbk

)⎤⎦ (9)

Denote Λik the Lagrangian multipliers associated with the constraint Wik ≥ 0.
The Karush-Kuhn-Tucker (KKT) conditions require

∂J (W)
∂Wik

= Λik (10)

and ΛikWik = 0 which indicates ΛikWα
ik = 0. Multiplying both sides of (10)

by Wα
ik leads to ∂J (W)

∂Wik
Wα
ik = 0. This suggests a multiplicative update rule by

writing Z̃ij = Zαij :

W ′
ik = Wik

⎡⎣
(
Z̃XTW + XZ̃TW

)
ik∑

j (WTX)kj +
(∑

j Xij

)
(
∑
aWak)

⎤⎦
1
α

. (11)

3.2 Convergence Proof

The convergence of NMF and most of its variants, including α-NMF, to a local
minimum of the cost function is analyzed by using an auxiliary function [3]. It
is however difficult to directly construct such a function for α-PNMF because
of the auto-association induced by W and its transpose. Here we overcome this
problem by applying the Lagrangian technique to decouple the auto-association.

With the constraint H = WTX, one can write the Lagrangian objective
function as

L(W,H) = Dα(X||WH) + Tr
(
ΨT
(
H− WTX

))
, (12)

by introducing multipliers Ψik. Following [3], we apply Jensen’s inequality using
the convex function f(z) = [α + (1 − α)z − z1−α]/(α(1 − α)) for α ≥ 0, which
leads to

f

(∑
k

WikHkj

)
≤
∑
k

ζijkf

(
WikHkj
Xijζijk

)
, (13)

with ζijk = WikHkj∑
l WilHlj

. After some manipulation, one can find that L(W,H) is
upper-bounded by the auxiliary function
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G(W′,W) =
1
α

∑
i,j,k

Xijζijk

[
α + (1 − α)

W ′
ikHkj

Xijζijk
−
(
W ′
ikHkj

Xijζijk

)1−α]

+ Tr
(
ΨT
(
H− WTX

))
+
∑
ik

(
XZ̃TW

)
ik

(
W ′
ik −Wik −Wik log

W ′
ik

Wik

)
. (14)

The last line of eq. (14) is a tight upper-bound of zero. To see this, one can insert
y = W ′

ik/Wik into the inequality y ≥ 1 + log y for y ≥ 0, where the equality
holds if and only if y = 1. This additional bounding aims to add the same term
(XZ̃TW)ik to both numerator and denominator of the resulting multiplicative
update rule and thus maintains the nonnegativity of W.

Setting ∂G/∂W′ = 0, we get

(
W ′
ik

Wik

)α
=

(
Z̃HT

)
ik

+
(
XZ̃TW

)
ik∑

j Hkj − α
(
XΨT

)
ik

+
(
XZ̃TW

)
ik

. (15)

Next we solve Ψ by using the KKT conditions. From

∂L(W,H)
∂Hkj

=
1
α

(∑
i

Wik −
(
WT Z̃

)
kj

)
+ Ψkj = 0 (16)

we get

α
(
XΨT

)
ik

=
(
XZ̃TW

)
ik
−

⎛⎝∑
j

Xij

⎞⎠(∑
b

Wbk

)
(17)

Inserting (17) and H = WTX into (15), one obtains the multiplicative update
rule (11). This concludes our proof of the following result:

Theorem 1. Dα(X||WWTX) is non-increasing under the multiplicative up-
dates using (11).

3.3 Stabilization

The multiplicative updates can start from any initial guess of W. However, we
find some initial values may lead to a very zigzag convergence path. The overall
scaling of W greatly fluctuates between odd and even iterations.

We propose to overcome this problem by introducing one more parameter
ρ. The modified objective becomes to minimize J̃ (ρ,W) = Dα(X||ρWWTX).
Fixing W, the global optimal ρ∗ can be solved by setting the derivative of
J̃ (ρ,W) with respect to ρ to zero, which results in

ρ∗ =

(∑
ij X̂ij Z̃ij∑
ij X̂ij

) 1
α

(18)
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Next, fixing ρ the optimal W given its current estimate can be found by in-
serting ρ∗ in the denominator of (11). Equivalently, one can apply the original
multiplicative update rule and then compute

W new
ik = W ′

ik

(∑
ij X̂ijZ̃ij∑
ij X̂ij

) 1
2α

(19)

with re-calculated X̂ and Z̃.
If WWTX approximates X well, all the Z̃ij approach one and so does ρ∗. The

modified objective is thus equivalent to the original one. Therefore ρ serves as
an intermediate variable that stabilizes and speeds up the algorithm especially
in early iterations.

4 Experiments

Suppose the nonnegative matrix X ∈ R
m×N
+ is composed of N data samples

xj ∈ Rm+ , j = 1, . . . , N . Basically, α-PNMF can be applied on this matrix in two
different ways. One employs the approximation scheme X ≈ WWTX and per-
forms feature extraction by projecting each sample into a nonnegative subspace.
The other approach approximates the transposed matrix XT by WWTXT where
W ∈ R

N×r
+ . The latter approach can be used for clustering where the elements

of W indicate the membership of each sample to the r clusters.

4.1 Feature Extraction

We have used the FERET database of facial images [5] as the training data
set. After face segmentation, 2,409 frontal images (poses “fa” and “fb”) of 867
subjects were stored in the database for the experiments. All face boxes were
normalized to the size of 32×32 and then reshaped to a 1024-dimensional vector
by column-wise concatenation. Thus we obtained a 1024 × 2409 nonnegative
data matrix, whose elements are re-scaled into the region [0,1] by dividing with
their maximum. For good visualization, we empirically set r = 25 in the feature
extraction experiments.

After training, the basis vectors are stored in the columns of W in α-NMF and
α-PNMF. The basis vectors have same dimensionality with the image samples
and thus can be visualized as basis images. In order to encode the features of
different facial parts, it is expected to find some localized and non-overlapping
patterns in the basis images. The resulting basis images using α = 0.5 (Hellinger
divergence), α = 1 (KL-divergence) and α = 2 (χ2-divergence) are shown in
Figure 1. Both methods can identify some facial parts such as eyebrows and
lips. In comparison, α-PNMF is able to generate much sparser basis images with
more part-based visual patterns.

Notice that two non-negative vectors are orthogonal if and only if they do not
have the same non-zero dimensions. Therefore we can quantify the sparsity of
the basis vectors by measuring their orthogonalities with the τ measurement:
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τ = 1 − ‖R − I‖F
(r(r − 1))

, (20)

where ‖ ·‖F is the Frobenius matrix norm and Rst the normalized inner product
between two basis vectors ws and wt:

Rst =
wT

s wt

‖ws‖‖wt‖
. (21)

Larger τ ’s indicate higher orthogonality and τ reaches 1 when the columns of W
are completely orthogonal. The orthogonalities using the two compared methods
are displayed under the respective basis image plots in Figure 1. All τ values in
the right are larger than their left counterparts, which confirms that α-PNMF is
able to extract a sparser transformation matrix W. It is worth to notice that α-
PNMF achieves the high sparseness without the explicit orthogonality constraint
compared with some other exiting methods such as [6].

4.2 Clustering

We have used a variety of datasets, most of which are frequently used in machine
learning and information retrieval research. Table 1 summarizes the character-
istics of the datasets. The descriptions of these datasets are as follows:

– Iris, Ecoli5, WDBC, and Pima, which are taken from the UCI data repository
with respective datasets Iris, Ecoli, Breast Cancer Wisconsin (Prognostic),
and Pima Indians Diabetes. The Ecoli5 dataset contains only samples of the
five largest classes in the original Ecoli database.

– AMLALL gene expression database [7]. This dataset contains acute
lymphoblastic leukemia (ALL) that has B and T cell subtypes, and acute
myelogenous leukemia (AML) that occurs more commonly in adults than in
children. The data matrix consists of 38 bone marrow samples (19 ALL-B,
8 ALL-T and 11 AML) with 5000 genes as their dimensions.

– ORL database of facial images [8]. There are ten different images of each of 40
distinct subjects. For some subjects, the images were taken at different times,
varying the lighting, facial expressions and facial details. In our experiments,
we down-sampled the images to size 46×56 and rescaled the gray-scale values
to [0, 1].

The number of clusters r is generally set to the number of classes. This work
focuses on cases where r > 2, as there exist closed form approximations for the
two-way clustering solution (see e.g. [9]). We thus set r equal to five times of the
number of classes for WDBC and Pima.

Suppose there is ground truth data that labels the samples by one of q classes.
We have used the purity and entropy measures to quantify the performance of
the compared clustering algorithms:

purity =
1
N

r∑
k=1

max
1≤l≤q

nlk, entropy = − 1
n log2 q

r∑
k=1

q∑
l=1

nlk log2
nlk
nk
,
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α = 0.5, τ=0.77 α = 0.5, τ=0.99

α = 1, τ=0.75 α = 1, τ=0.99

α = 2, τ=0.75 α = 2, τ=0.92

Fig. 1. The basis images of (left) α-NMF and (right) α-PNMF
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Table 1. Dataset descriptions

datasets #samples #dimensions #classes r

Iris 150 4 3 3

Ecoli5 327 7 5 5

WDBC 569 30 2 10

Pima 768 8 2 10

AMLALL 38 5000 3 3

ORL 400 2576 40 40

Table 2. Clustering (a) purities and (b) entropies using α-NMF, PNMF and α-PNMF.

The best result for each dataset is highlighted with boldface font.

(a)

α-NMF PNMF α-PNMF

datasets α = 0.5 α = 1 α = 2 - α = 0.5 α = 1 α = 2

Iris 0.83 0.85 0.84 0.95 0.95 0.95 0.97
Ecoli5 0.62 0.65 0.67 0.72 0.72 0.72 0.73
WDBC 0.70 0.70 0.72 0.87 0.86 0.87 0.88
Pima 0.65 0.65 0.65 0.65 0.67 0.65 0.67

AMLALL 0.95 0.92 0.92 0.95 0.97 0.95 0.92

ORL 0.47 0.47 0.47 0.75 0.76 0.75 0.80

(b)

α-NMF PNMF α-PNMF

datasets α = 0.5 α = 1 α = 2 - α = 0.5 α = 1 α = 2

Iris 0.34 0.33 0.33 0.15 0.15 0.15 0.12
Ecoli5 0.46 0.58 0.50 0.40 0.40 0.40 0.40
WDBC 0.39 0.38 0.37 0.16 0.17 0.16 0.14
Pima 0.92 0.90 0.90 0.91 0.90 0.91 0.89

AMLALL 0.16 0.21 0.21 0.16 0.08 0.16 0.21

ORL 0.35 0.34 0.35 0.14 0.14 0.14 0.12

where nlk is the number of samples in the cluster k that belong to original class
l and nk =

∑
l n
l
k. A larger purity value and a smaller entropy indicate better

clustering performance.
The resulting purities and entropies are shown in Table 2, respectively. α-

PNMF performs the best for all selected datasets. Recall that when α = 1 the
proposed method reduces to PNMF and thus returns results identical to the
latter. Nevertheless, α-PNMF can outperform PNMF by adjusting the α value.
When α = 0.5, the new method achieves the highest purity and lowest entropy
for the gene expression dataset AMLALL. For the other five datasets, one can
set α = 2 and obtain the best clustering result using α-PNMF. In addition,
one can see that Nonnegative Matrix Factorization with α-divergence works
poorly in our clustering experiments, much worse than the other methods. This
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is probably because α-NMF has to estimate many more parameters than those
using projective factorization. α-NMF is therefore prone to falling into bad local
optima.

5 Conclusions

We have presented a new variant of NMF by introducing the α-divergence into
the PNMF algorithm. Our α-PNMF algorithm theoretically converges to a local
minimum. The resulting factor matrix is of high sparsity or orthogonality, which
is desired for part-based feature extraction and multi-way clustering. Experi-
mental results with various datasets indicate that the proposed algorithm can
be considered as a promising replacement for α-NMF and PNMF for feature
extraction and clustering.
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Abstract. Meta-Learning predicts the performance of learning algo-

rithms based on features of the learning problems. Meta-Learning ac-

quires knowledge from a set of meta-examples, which store the experience

obtained from applying the algorithms to problems in the past. A lim-

itation of Meta-Learning is related to the generation of meta-examples.

In order to construct a meta-example, it is necessary to empirically eval-

uate the algorithms on a given problem. Hence, the generation of a set of

meta-examples may be costly depending on the context. In order to min-

imize this limitation, the use of Active Learning is proposed to reduce the

number of required meta-examples. In this paper, we evaluate this pro-

posal on a promising Meta-Learning approach, called Meta-Regression.

Experiments were performed in a case study to predict the performance

of learning algorithms for MLP networks. A significant performance gain

was observed in the case study when Active Learning was used to support

the generation of meta-examples.

1 Introduction

Meta-Learning is a framework developed in the field of supervised machine learn-
ing with the aim of relating features of the learning problems to the performance
of the learning algorithms [1]. The knowledge in Meta-Learning is acquired from
a set of meta-examples, in which each meta-example stores the experience ob-
tained from the application of a set of candidate algorithms in a particular
learning problem. Meta-Learning automatically captures the expertise gained
on different problems, which will be used to predict learning performance [2].

Different Meta-Learning approaches have been proposed [1]. An approach
that revealed promissing results in the literature is the Meta-Regression [3,4,5].
In this approach, each meta-example is related to a problem and stores: (1)
features of the problem (e.g., number of training examples and attributes); and
(2) the performance information (e.g., classification accuracy) estimated from the
empirical evaluation of a set of candidate algorithms on the problem. In Meta-
Regression, a regression algorithm is used to predict the performance information
based on the features of the problems.

Generating a set of training examples for Meta-Regression may be a costly
process, since in order to produce a single meta-example, it is necessary to per-
form an empirical evaluation of the candidate algorithms on a problem. Hence,

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 30–39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the cost of generating a whole set of meta-examples may be high, depending,
for instance, on the number and complexity of the candidate algorithms, the
methodology of empirical evaluation and the amount of available problems.

In order to minimize the above difficulty, the use of Active Learning [6] is
proposed to support the generation of meta-examples for Meta-Regression. Ac-
tive Learning is mainly focused on domains of application in which it is hard
to produce training examples, which is the case of Meta-Regression. In our con-
text, Active Learning techniques are used to select the most relevant problems
for generating meta-examples, consequently reducing the effort in performing
empirical evaluations on the candidate algorithms.

In our work, a prototype was implemented in order to evaluate the proposed
approach. In this prototype, the Linear Regression (LR) algorithm was used
as meta-regressor to predict the performance difference between two algorithms
for training Multi-Layer Perceptron (MLP) neural networks [7]. An active tech-
nique based on uncertainty of prediction was applied in the selection of problems
for meta-example generation. Experiments were performed on a set of 50 prob-
lems, comparing the active technique to a random (passive) strategy for selecting
problems. The performed experiments revealed a performance gain in the meta-
regressor when the active learning technique was considered.

Section 2 brings a brief presentation of Meta-Learning, followed by section 3
which describes the proposed solution and the implemented prototype. Section 4
presents the performed experiments and obtained results. Finally, section 5 con-
cludes the paper by presenting some final considerations and future work.

2 Meta-Learning

Meta-Learning is focused in our work as the automatic process of acquiring
knowledge that relates the performance of learning algorithms to the features
of the learning problems [1]. In this context, each meta-example is related to a
learning problem and stores: (1) the features describing the problem, called meta-
features; and (2) information about the performance of one or more algorithms
when applied to the problem. The meta-learner is a learning system that receives
as input a set of such meta-examples and then acquires knowledge used to predict
the algorithms performance for new problems being solved.

The meta-features are, in general, statistics describing the training dataset of
the problem, such as number of training examples, number of attributes, correla-
tion between attributes, class entropy, among others [8,9]. In a strict formulation
of Meta-Learning, each meta-example stores, as performance information, a class
label which indicates the best algorithm for the problem, among a set of can-
didates [10]. In this case, the class label for each meta-example is defined by
performing a cross-validation experiment using the available dataset. The meta-
learner is simply a classifier which predicts the best algorithm based on the
meta-features of the problem.

Although the strict Meta-Learning approach (as described above) has been
applied by different authors (such as [11,12,13]), certain information loss may
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be introduced in the definition of the class labels associated to meta-examples.
For instance, the performance of two algorithms may be very similar, and this
information will be lost by merely recording the best algorithm as class label [5].

In order to overcome the above difficulty, the Meta-Regression approach [3,5,4]
tries to directly predict a numerical performance measure (e.g., accuracy, error
difference, rank,...) of the candidate algorithms. In this case, the meta-examples
store as performance information the numerical performance obtained in previ-
ous problems. The meta-learner, in turn, is a regression model that may be used
either to select the best candidate algorithm based on the highest predicted per-
formance or to provide a ranking of algorithms based on the order of predicted
performances.

In [3], the authors evaluated different algorithms as meta-regressors, including
linear regression models, piecewise linear models, decision trees and instance-
based regression. In [4], the authors used linear regression models to predict
the accuracy of 8 classification algorithms, and the experiments revealed good
results. In [5], the authors performed comparative experiments with both the
strict Meta-Learning and Meta-Regression approaches, and observed that the
latter one performed better when used to support algorithm selection.

3 Active Generation of Meta-examples

As said in section 2, Meta-Learning accumulates the experience stored in meta-
examples which are derived from the empirical evaluation of the candidate algo-
rithms on problems solved in the past. The generation of a set of meta-examples
may be a costly process depending, for instance, on the complexity of the candi-
date algorithms, the cost of the methodology used for empirical evaluation, and
the number and size of the available problems.

In order to minimize the above difficulty, Active Learning [6] was proposed in
[14] in order to select the most relevant problems for meta-example generation,
aiming to reduce the effort in performing empirical evaluations with the candi-
date algorithms. Active Learning is a paradigm in which the learning algorithm
has some control over the inputs on which it trains [6]. Active Learning is ideal
for domains in which the acquisition of labeled examples is a costly process. The
use of Active Learning techniques in our context aims to reduce the number
of meta-examples, and consequently the number of empirical evaluations of the
algorithms, at same time maintaining the performance of the meta-learner.

Figure 1 represents the proposed approach. Initially, the meta-features are
computed for each available problem, in order to generate a set of unlabeled
meta-examples. Each unlabeled meta-example stores the description of a prob-
lem, but the performance information of the candidate algorithms is not known
yet. In order to generate labeled meta-examples, the Active Learning module se-
lects those unlabeled meta-examples considered the most relevant for the Meta-
Learning task. The selection of unlabeled meta-examples is performed based
on a pre-defined Active Learning method implemented in the module. Given
the selected unlabeled meta-example, the candidate algorithms are then em-
pirically evaluated on the related problem, in order to collect the performance



Active Generation of Training Examples in Meta-Regression 33

�

�

�

�
Meta-

Knowledge
�Meta-

Learner
�

�

�

�

�
Labeled

Meta-Examples

New Labeled
Meta-Example

Labeling

�

Selected Unlabeled
Meta-Example� Active

Learning

�

�

�

�

�
Unlabeled

Meta-Examples
�Extraction of

Meta-Features
�

�

�

�

�
DB of

Learning Problems

Fig. 1. Active generation of meta-examples

information. Each new labeled meta-example (composed of meta-features and
performance information) is then stored in the training set of the Meta-Learner
module. This module in turn will use this training set to acquire knowledge
relating meta-features to the performance of the candidate algorithms.

The viability of this proposal was verified in [14] through a number of exper-
iments in which an uncertainty sampling method improved the performance of
a strict meta-learner. In this paper, we extend our previous work, by evaluat-
ing the use of Active Learning for Meta-Regression. As said, Meta-Regression
is more flexible when compared to the strict Meta-Learning, and it has been
a topic of interest for different authors, which motivated the current work. We
highlight that the active techniques evaluated in our previous work [14] are not
suitable to Meta-Regression, and hence, new techniques were investigated in the
current research.

In order to evaluate the Active Meta-Regression, a prototype was implemented
and applied to a meta-learning task which corresponds to predict the differ-
ence in performance between the Backpropagation (BP) [7] and the Levenberg-
Marquardt (LM) [15] algorithms used to train MLP neural networks. The pre-
diction of this performance information supports the choice between BP and LM
to new problems at hand. In this task, each meta-example stored: (1) the value of
10 descriptive meta-features of a regression problem; and (2) the error difference
between BP and LM observed in the problem. In this prototype, the Linear Re-
gression (LR) algorithm was used as meta-regressor to predict the performance
information based on the meta-features. An active method based on uncertainty
of prediction was used to select meta-examples for the LR algorithm.

In the next subsections, we present details about the implemented prototype
such as the definition of the meta-examples (section 3.1), the description of the
meta-regressor (section 3.2) and the description of the Active Learning method
(section 3.3).
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3.1 Meta-examples

The set of meta-examples is generated from the application of the candidate
algorithms on a set of learning problems. Formally, let E = {e1, . . . , en} be the set
of n problems used to generate a set of n meta-examples ME = {me1, . . . ,men}.
Each meta-example is related to a single problem and stores the values of p
features X1, . . . , Xp for the problem and the value of a target attribute Y . In this
way, each meta-example mei ∈ ME is represented as the pair (xi, yi) storing: (1)
the description xi of the problem ei, where xi = (x1

i , . . . , x
p
i ) and xji = Xj(ei);

and (2) the performance information yi estimated for ei, where yi = Y (ei).

Meta-Features. The first step to generate a meta-example from a problem is
to extract its meta-features. In our work, a total number of p = 10 meta-features
adopted in [14] was used to describe the datasets of regression problems:

1. X1 - Log of the number of training examples;
2. X2 - Log of the ratio between number of training examples and attributes;
3. X3, X4, X5 and X6 - Minimum, maximum, mean and standard deviation

of the absolute values of correlation between predictor attributes and the
target attribute;

4. X7, X8, X9 and X10 - Minimum, maximum, mean and standard deviation
of the absolute values of correlation between pairs of predictor attributes.

The meta-feature X1 is an indicator of the amount of data available for training,
and X2, in turn, indicates the dimensionality of the dataset. The meta-features
X3, X4, X5 and X6 indicate the amount of relevant information available to
predict the target attribute. The meta-features X7, X8, X9 and X10, in turn,
indicate the amount of redundant information in the dataset.

Performance Information. The second step to generate a meta-example is
to estimate the performance of the candidate algorithms on the problem being
tackled. In our prototype, this step consists of evaluating the performance of BP
and LM when used to train one-hidden layer MLPs1. From this evaluation, we
produce the performance information (Y ) stored in the meta-examples which
will correspond to the difference between the estimated performance of BP and
LM. In order to measure the performance of each training algorithm in each
problem, the following methodology of evaluation was applied.

The dataset was divided in the training, validation and test sets, in the pro-
portion of 50%, 25% and 25%. As usual, the training set was used to adjust the
MLP’s weights, the validation set was used to estimate the MLP performance
during training, and the test set was used to evaluate the performance of the
trained MLP. The optimal number of hidden nodes was defined by testing the
values 1, 2, 4, 8, 16 and 32. For each number of nodes, the MLP was trained 10
times with random initial weights. In the training process, we adopted bench-
marking rules [16]: early stopping was used to avoid overfitting with the GL5

1 The BP and LM algorithms were implemented by using the NNET Matlab toolbox.

Learning rates were defined by default.
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stopping criterion and a maximum number of 1000 training epochs (see [16] for
details of these rules). The optimal number of nodes was chosen as the value in
which the MLP obtained the lowest average NMSE (Normalized Mean Squared
Error) on the validation set over the 10 runs. The NMSE is defined as:

NMSE =
∑nv

i=1(ti − oi)2∑nv

i=1(ti − t)2
(1)

In the equation, nv is the number of examples in the validation set, ti and
oi are respectively the true and the predicted value of the target attribute for
example i, and t is the average of the target attribute. The NMSE values have no
scale and are comparable across different datasets, which is adequate to Meta-
Learning [17]. Values of NMSE lower than 1 indicate that the MLP provided
better predictions than the mean value at least.

The above methodology was applied to each learning algorithm (BP and LM).
The performance information stored in the meta-example is the difference be-
tween the NMSE values obtained by the trained MLP (with optimal number of
nodes) on the test subset, respectively using the BP and the LM algorithm.

3.2 Meta-Learner

The set of meta-examples is used to build a meta-regressor which will predict
the performance measure Y for new problems. In our prototype, we deployed the
Linear Regression (LR) model, which has some advantages to Meta-Learning.
First, it produces in a short time a model which is easy to interpret [3]. Second,
as it will be seen, an Active Learning method can be straightforwardly derived
from the LR model using the confidence intervals estimated for its predictions.

The LR model is described in different textbooks (e.g., [18]). Here, we provide
a short description of the LR model, which is adequate for understanding our
work. Given an input problem e described by the vector x = (x1, . . . , xp), the
prediction ŷ = Ŷ (e) provided by the meta-regressor can be defined as:

ŷ = β̂0 +
p∑
j=1

β̂j ∗ xj (2)

The model may be more conveniently written in a matrix notation as:

ŷ = xβ̂ (3)

where
x =

[
1 x1 x2 . . . xp

]
and

β̂ =
[
β̂0 β̂1 . . . β̂p

]T
.

The parameters represented in β̂ are derived by the least-squares method which
minimizes the sum of squared error for the training data. The least square esti-
mator β̂ is computed from the n training meta-examples in ME as:

β̂ = (XTX)−1y (4)
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where

X =

⎡⎢⎢⎢⎣
1 x1

1 x
2
1 . . . x

p
1

1 x1
2 x

2
2 . . . x

p
2

...
...

...
...

1 x1
n x

2
n . . . x

p
n

⎤⎥⎥⎥⎦
and

y =
[
y1 y2 . . . yn

]T
.

3.3 Active Learning

As seen, the ML module generates a meta-regression model from a set of labeled
meta-examples, associated to the set of problems E in which the performance
information is known. The AL module receives a set of unlabeled problems Ẽ
in which the algorithms were not yet evaluated. The AL module incrementally
selects unlabeled problems in Ẽ to be used for generating new meta-examples.

In the prototype, the AL module deployed an uncertainty-based active learn-
ing method. In this approach, the Meta-Regressor initially generates its predic-
tions for each unlabeled example ẽ ∈ Ẽ by using the estimated model (see section
3.2). A degree of prediction uncertainty S(ẽ|E) is assigned to each unlabeled ex-
ample. Finally, the unlabeled example with the highest prediction uncertainty
is selected. The uncertainty-based approach can be directly applied to the LR
model, since confidence intervals for its responses can be reliably estimated (see
[18]). A 100(1 − α) percent confidence interval of ŷ is defined as:

ŷ − tα/2,n−p−1

√
V (ŷ) ≤ y ≤ ŷ + tα/2,n−p−1

√
V (ŷ) (5)

In the above equation, V (ŷ) is the variance of the prediction ŷ which is estimated
as:

V (ŷ) = σ̂2x′(X′X)−1x (6)

where σ̂2 is the residual mean square of the LR model, defined as:

σ̂2 =
yTy − β̂TXTy
n− p− 1

(7)

The size of the confidence interval defined in Eq. (5), which is 2∗tα/2,n−p
√
V (ŷ),

reflects the uncertainty of the prediction provided by the LR model. Since this
value for different unlabeled examples solely depends on V (ŷ), we defined the
degree of prediction uncertainty in the AL module as:

S(ẽ|E) = V (ŷ) (8)

where ŷ is the prediction provided by the meta-regressor for the problem ẽ.
The AL module then selects, for generating a new meta-example, the problem
ẽ∗ ∈ Ẽ with highest uncertainty. A new meta-example is then generated from
ẽ∗ as described in section 3.1.
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4 Experiments and Results

In our work, we performed experiments with a set of meta-examples generated
from 50 regression problems, available in the WEKA project2. On average, the
collected datasets presented 4,392 examples and 13.92 attributes. We observed in
these datasets a large variability in both the number of examples and attributes,
which is convenient to Meta-Learning studies.

A leave-one-out experiment was performed to evaluate the performance of the
meta-regressor, also varying the number of meta-examples provided by the AL
module. At each step of leave-one-out, one problem is left out for testing the ML
module, and the remaining 49 problems are considered as candidates to generate
meta-examples. The AL module progressively includes one meta-example in the
training set of the ML module, up to the total number of 49 training meta-
examples. At each included meta-example, the ML module is used to predict the
algorithm performance on the test problem left out, and the obtained squared
error is registered. Hence, a curve with 49 squared errors is produced for each
test problem. Finally, the curve of error rates obtained by ML is summarized by
computing the NMSE measure over the 50 steps of the leave-one-out experiment.
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Fig. 2. Average curves of error rates for active and random methods. For simplicity,

high rates (NMSE > 3) obtained in the early part of the curves were not displayed.

As a basis of comparison, the same above experiment was applied by using
a random method for selecting unlabeled problems. Despite its simplicity, the
random method has the advantage of performing a uniform exploration of the
2 These regression datasets are specifically the sets provided in the files numeric and

regression available in http://www.cs.waikato.ac.nz/ml/weka/



38 R.B.C. Prudêncio and T.B. Ludermir

example space, and hence, it has been very competitive when compared to other
active methods [19]. Finally, we highlight that the leave-one-out experiment was
performed in 30 different runs for both the AL method using uncertainty sam-
pling and the random procedure. The performance of the meta-regressor was
evaluated by averaging the curves of error rates over the 30 runs.

Figure 2 presents the average curve of error rates for the active and the random
methods. For both methods, the error rate obtained by the ML module decreased
as the number of meta-examples in the training set increased. However, the error
rates obtained by deploying the active method were, in general, lower than the
error rates obtained by deploying the random method. From 17 meta-examples
included in the training set, the NMSE values obtained by using the active
method were lower than 1 (a threshold which indicates the viability of using the
meta-regressor). By considering the random method, NMSE values lower than
1 were achieved only from 24 included meta-examples. In the experiments, we
also compared the active method to the random method in statistical terms, by
applying a t-test (95% of confidence) to the difference of error rates obtained by
the meta-regressor in each point of the curves of error rates. In this evaluation,
the active method obtained a statistical gain over the random method from 15
to 34 meta-examples included in the training set, which represent 40.82% of the
49 points considered in the curves.

5 Conclusion

In this paper, we presented the use of Active Learning to support the generation
of training examples for Meta-Regression. In our proposal, Active Learning meth-
ods are used to reduce the cost of generating a good set of meta-examples while
maintaining the performance of the meta-regressor. We highlight that our work
brings contributions in both fields the Meta-Learning and the Active Learning.

In order to verify the viability of our proposal, we implemented a prototype
to select meta-examples for a LR meta-regressor. The prototype was evaluated
in a task of predicting the performance of MLPs, achieving satisfactory experi-
mental results. Despite the advantages of LR as meta-learner, a large number of
regression algorithms could be deployed. For instance, we intend to evaluate the
use of Support Vector Machines (SVMs) as meta-regressors. Consequently, we
will adapt active techniques previously proposed for standard SVMs (e.g., [20]).
We also intend to propose active methods for other Meta-Learning approaches
which include, for instance, ranking approaches (e.g., [8,9]).

Acknowledgments. The authors would like to thank CNPq (Brazilian Agency)
for its support.
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A Maximum-Likelihood Connectionist Model for
Unsupervised Learning over Graphical Domains
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Abstract. Supervised relational learning over labeled graphs, e.g. via

recursive neural nets, received considerable attention from the connec-

tionist community. Surprisingly, with the exception of recursive self or-

ganizing maps, unsupervised paradigms have been far less investigated.

In particular, no algorithms for density estimation over graphs are found

in the literature. This paper introduces first a formal notion of proba-

bility density function (pdf) over graphical spaces. It then proposes a

maximum-likelihood pdf estimation technique, relying on the joint opti-

mization of a recursive encoding network and a constrained radial basis

functions-like net. Preliminary experiments on synthetically generated

samples of labeled graphs are analyzed and tested statistically.

Keywords: Density estimation, unsupervised relational learning, recur-

sive network.

1 Introduction

Two major instances of unsupervised learning have long been considered in sta-
tistical pattern recognition, namely the estimation of probability density func-
tions (pdf), and clustering algorithms [2]. An approximative borderline between
the two setups can be traced by saying that the former focuses on the probabilis-
tic properties of the data sample, whilst the latter is rather topology-oriented,
in the sense that it concentrates on certain topological properties (e.g., distance
measures among patterns and/or centroids). Several unsupervised training algo-
rithms for neural networks were also introduced (e.g., competitive neural nets
and self-organizing maps). Most of these neural networks are rooted in the topo-
logical framework (i.e., clustering, topologically consistent mappings, etc.), al-
though a few exceptions aimed at pdf estimation can be found [8].

It is rather surprising to realize that, despite the amount of work that has
been accomplished in the community on relational and graphical learners in the
last few decades, only limited attention has been paid to unsupervised relational
learning (a remarkable exception, in the topological framework, is [5]), and to
pdf estimation in the first place. This is even more surprising if we consider
the fact that the original motivations for undertaking the study of unsupervised
algorithms are often strong in the graphical domains (such as the World Wide
Web, or as biological and chemical data which have a natural representation in
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terms of variable-size labeled graphs), where amounts of unlabeled samples are
available. These motivations include: (i) the need for a compact description of
the overall distribution of a sample; (ii) the need for a measure of likelihood of
a certain model given a graphical structure to be assigned to a certain group
(“cluster”); (iii) the need for techniques that can deal with large amounts of
unlabeled data in order to ease the design of semi-supervised classifiers or to
facilitate the adaptation of previously trained machines to new data or new
environmental conditions.

This paper is a first attempt to introduce a model for the estimation of pdfs
over graphical domains. It exploits the encoding capabilities of recursive neural
nets (RNN) [7], combined with a constrained radial basis function (RBF)-like
network. A gradient ascent, maximum-likelihood (ML) training algorithm is pro-
posed, which jointly optimizes the encoding network [7] and the RBF in order
to obtain the pdf estimate from an unsupervised sample of graphs. Constraints
are introduced in both neural nets such that the resulting estimate can be in-
terpreted as a pdf (non-negative, unit integral over its definition domain), and
such that the encoding of the graphs does not lead to singular solutions.

In order to introduce the model, it is necessary to give a formal definition
of a pdf over graphs in the first place. via the notion of generalized random
graph (an extension of traditional random graphs [3]). Let V be a given dis-
crete or continuous-valued set (vertex universe), and let Ω be any given sample
space. We define a generalized random graph (GRG) over V and Ω as a function
G : Ω → {(V,E)|V ⊆ V , E ⊆ V ×V } (note that labels in the form of real-valued
vectors associated with vertices and/or edges is easily encapsulated within the
definition). Let then G = {(V,E) | V ⊆ V , E ⊆ V × V } be the space of GRG
outcomes. We define a probability density function (pdf) for GRGs over V as
a function p : G → � such that (1) p(g) ≥ 0, ∀g ∈ G, and (2)

∫
G p(g)dg = 1.

Note that the integral in (2) has a mathematical meaning since the (Lebesgue)
measurability of the space of graphs defined over measurable domains (and with
measurable labels) like countable sets or real vectors is shown in [4]. The exten-
sion of notions from traditional probability theory (conditional pdf, joint pdf,
statistical independence) to GRGs is a straightforward exercise. Now, suppose
that a sample T = {g1, . . . , gn|gi ∈ G, i = 1, . . . , n} of n graphs has been ob-
served. The pdf estimation problem faced in this paper can be stated as follows:
assuming that all the GRG outcomes in T have been independently drawn from a
certain pdf p(g), how can the dataset be used in order to estimate a “reasonable”
model of p(g)?

2 A Plausible Neural Answer to the Question

We assume that p(g) is a function having fixed and known parametric form,
being determined uniquely by the specific value of a set of parameters θ =
(θ1, . . . , θk). To render this dependency on θ in a more explicit manner, we will
modify our notation slightly by writing p(g) as p(g|θ). Given the assumption,
the formulation of the question posed at the end of previous Section can be
restated as: how can we use the sample T in order to obtain estimates for θ that
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are meaningful according to a certain “optimality” criterion? A sound answer
to the question may be found in the adoption of the ML criterion, along with a
suitable method for maximizing the likelihood p(T |θ) of the parameters given
the sample. Since g1, . . . , gn are assumed to be i.i.d., the likelihood p(T |θ) can
be written as p(T |θ) =

∏n
i=1 p(gi|θ). Before attempting the maximization of the

likelihood, it is necessary to specify a well-defined form for the pdf p(g|θ). Let
us assume the existence of an integer d and of two functions, φ : G → �d and
p̂ : �d → �, s.t. p(g|θ) can be decomposed as:

p(g|θ) = p̂(φ(g)). (1)

It is seen that there exist (infinite) choices for φ(.) and p̂(.) that satisfy Eq. (1),
the most trivial being φ(g) = p(g|θ), p̂(x) = x. We call φ(.) the encoding, while
p̂(.) is simply referred to as the “likelihood”. Again, we assume parametric forms
φ(g|θφ) and p̂(x|θp̂) for the encoding and for the likelihood, respectively, and we
set θ = (θφ,θp̂). The ML estimation of θ given T requires now to find parameter
vectors θφ and θp̂ that maximize the quantity

p(T |θφ, θp̂) =

n∏
i=1

p̂(φ(gi|θφ)|θp̂). (2)

We propose a two-block connectionist/statistical model for p(g|θ) as follows.
The function φ(g|θφ) is realized via an encoding network, suitable to map di-
rected acyclic graphs (DAG) g into real vectors x, as described in [7] for su-
pervised training of recursive neural networks (RNN) over structured domains.
The weights of the encoding network become the parameters θφ. A radial basis
functions (RBF)-like neural net is then used to model the likelihood function
p̂(x|θp̂), where θp̂ are the parameters of the RBF. In order to ensure that a
pdf is obtained, specific constraints have to be placed on the nature of the RBF
kernels, as well as on the hidden-to-output connection weights. It is crucial to
underline that we are not going to find out a rough encoding of graphs via
standard RNN followed by a separate, standard ML estimation of a mixture of
Normal densities defined over the encoded space. On the contrary, we propose
a joint optimization of all model parameters, θφ and θp̂, to increase the overall
likelihood. In other words, the encoding and the likelihood are jointly optimized
to maximize p(T |θφ,θp̂). Occasionaly, the ML principle for this general class of
mixtures may lead to singular solutions. This fact is well-known from classical
statistical theory; but, as pointed out in [2] (sec. 6.4.3., page 199), “it is an
empirical fact that meaningful solutions can still be obtained”.

A hill-climbing algorithm to carry out ML estimation of the parameters θ can
be obtained as an instance of the gradient-ascent method over p(T |θφ,θp̂) in two
steps: (i) initialization, i.e., start with some initial, e.g. “random”, assignment
of values to the model parameters θ; (ii) gradient-ascent, i.e., repeatedly apply
a learning rule in the form Δθ = η∇θ{

∏n
i=1 p̂(φ(gi|θφ)|θp̂)} with η ∈ �+.

This is a batch learning setup. In practice, neural network learning may be
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simplified, yet even improved, with the adoption of an on-line training scheme
that prescribes Δθ = η∇θ{p̂(φ(g|θφ)|θp̂)} upon presentation of each individual
training example g. Three distinct families of adaptive parameters θ have to be
considered:

(1) Mixing parameters c1, . . . , cn, i.e. the hidden-to-output weights of the RBF
network. Constraints have to be placed on these parameters during the ML
estimation process, in order to ensure that they are in [0, 1] and that they sum to
one. A simple way to satisfy the requirements is to introduce n hidden parameters
γ1, . . . , γn, which are unconstrained, and to set

ci =
ς(γi)∑n

j=1 ς(γj)
, i = 1, . . . , n (3)

where ς(x) = 1/(1 + e−x). Each γi is then treated as an unknown parameter θ
to be estimated via ML.

(2) d-dimensional mean vector μi and d × d covariance matrix Σi for each of
the Gaussian kernels Ki(x) = N(x;μi, Σi), i = 1, . . . , n of the RBF, where
N(x;μi, Σi) denotes a multivariate Normal pdf having mean vector μi, co-
variance matrix Σi, and evaluated over the random vector x. A common (yet
effective) simplification is to consider diagonal covariance matrices, i.e. indepen-
dence among the components of the input vector x. This assumption leads to
the following three major consequences: (i) modeling properties are not affected
significantly, according to [6]; (ii) generalization capabilities of the overall model
may turn out to be improved, since the number of free parameters is reduced;
(iii) i-th multivariate kernel Ki may be expressed in the form of a product of d
univariate Normal densities as:

Ki(x) =

d∏
j=1

1√
2πσij

exp

{
−1

2

(
xj − μij

σij

)2
}

(4)

i.e., the free parameters to be estimated are the means μij and the standard
deviations σij , for each kernel i = 1, . . . , n and for each component j = 1, . . . , d
of the input space.

(3) The weights U of the encoding network. The learning rule has to rely on
partial derivatives of the likelihood which are backpropagated down to the RBF
inputs and, in turn, through the encoding net. In order to discourage singular
solutions, e.g. the tendency to map all the input graphs onto a single point in
the encoded space by developing close-to-zero weights, the learning rule for U
shall include an additional regularization term which treats the network weights
as random variables distributed according to a pdf whose modes are far from
zero. The likelihood of the network weights is then taken into account in the
optimization procedure.

In the following, we will derive explicit formulations for ∂p̂(φ(g|θφ)|θp̂)
∂θ for

each of the three families of free parameters θ within the proposed model. As
regards a generic mixing parameter ci, i = 1, . . . , n, from Eq. (3), and since
p(g) =

∑n
k=1 ckKk(x), we have
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∂p̂(φ(g|θφ)|θp̂)

∂γi
=

n∑
j=1

∂p(g)

∂cj

∂cj

∂γi
(5)

=

n∑
j=1

Kj(x)
∂

∂γi

(
ς(γj)∑n

k=1 ς(γk)

)

= Ki(x)

{
ς ′(γi)

∑
k ς(γk) − ς(γi)ς

′(γi)

[
∑

k ς(γk)]2

}
+
∑
j �=i

Kj(x)

{
−ς(γj)ς

′(γi)

[
∑

k ς(γk)]2

}

= Ki(x)
ς ′(γi)∑
k ς(γk)

−
∑

j

Kj(x)
ς(γj)ς

′(γi)

[
∑

k ς(γk)]2

= Ki(x)
ς ′(γi)∑
k ς(γk)

−
{∑

j

cjKj(x)

}
ς ′(γi)∑
k ς(γk)

=
ς ′(γi)∑
k ς(γk)

{Ki(x) − p(g)} .

For the means μij and the standard deviations σij we proceed as follows. Let
θij denote the free parameter, i.e. μij or σij , to be estimated. It is seen that:

∂p̂(φ(g|θφ)|θp̂)

∂θij
= ci

∂Ki(x)

∂θij
(6)

where the calculation of ∂Ki(x)
∂θij

can be accomplished as follows. First of all, let us
observe that for any real-valued, differentiable function f(.) this property holds
true: ∂f(.)∂x = f(.)∂log[f(.)]∂x . As a consequence, from Eq. (4) we can write

∂Ki(x)

∂θij
= Ki(x)

∂logKi(x)

∂θij
(7)

= Ki(x)
∂

∂θij

d∑
k=1

{
−1

2

[
log(2πσ2

ik) +

(
xk − μik

σik

)2
]}

.

For the means, i.e. θij = μij , Eq. (7) yields

∂Ki(x)

∂μij
= Ki(x)

xj − μij

σ2
ij

. (8)

For the covariances, i.e. θij = σij , Eq. (7) takes the form:

∂Ki(x)

∂σij
= Ki(x)

∂

∂σij

{
−1

2
log(2πσ2

ij) −
1

2

(
xj − μij

σij

)2
}

(9)

=
Ki(x)

σij

{(
xj − μij

σij

)2

− 1

}
.

Finally, let us consider the connection weights U = {v1, . . . , vs} within the en-
coding network. For a generic v ∈ U , application of the chain rule yields:

∂p̂(φ(g|θφ)|θp̂)

∂v
=

∂p̂(φ(g|θφ)|θp̂)

∂y

∂y

∂v
(10)
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where y is the output from the unit (in the encoding net) which is fed from
connection v. The quantity ∂y

∂v can be easily computed by taking the partial
derivative of the activation function associated with the unit itself, as usual.
As regards the quantity ∂p̂(φ(g|θφ)|θp̂)

∂y , we proceed as follows. First of all, let us
assume that v feeds the output layer, i.e. it connects a certain hidden unit with
j-th output unit of the encoding net. In this case, we have y = xj . It is easy to
see that:

∂p̂(φ(g|θφ)|θp̂)

∂xj
=

∂
∑n

i=1 ciKi(x)

∂xj
(11)

=

n∑
i=1

ciKi(x)
∂logKi(x)

∂xj

=

n∑
i=1

ciKi(x)
∂

∂xj

d∑
k=1

{
−1

2

[
log(2πσ2

ik) +

(
xkwik − μik

σik

)2
]}

=

n∑
i=1

ciKi(x)

{
−1

2

∂

∂xj

(
xjwij − μij

σij

)2
}

= −
n∑

i=1

ci
Ki(x)

σ2
ij

(xjwij − μij)wij .

On the contrary, whenever v is a hidden weight the quantity ∂p̂(φ(g|θφ)|θp̂)
∂v can

be obtained applying the usual backpropagation through structures (BPTS) al-
gorithm [7], once the deltas to be backpropagated have been initialized at the
output layer via Eq. (11). Unconstrained ML training of the weights of the encod-
ing net may lead to singular solutions. To tackle the problem, we assume that the
weights are random variables, independently drawn from a certain probability
distribution p(U) =

∏s
i=1 p(vi). The pdf p(v) is defined in a way to encourage

non-degenerate solutions, and the new criterion function C to be maximized
during gradient-ascent training is in the form of a joint pdf, namely:

C = p̂(φ(g|θφ)|θp̂)p(U). (12)

Extremization of such a criterion results in weight values that yield high likeli-
hood of the sample, and that are highly likely themselves. If the weights U are
randomly initialized in a uniform manner over the interval (−ρ, ρ), an effective
choice for p(v) is a mixture of two Gaussian components in the form

p(v) =
1

2
N(v;−ρ

2
, σ2

) +
1

2
N(v;

ρ

2
, σ2

). (13)

Whenever σ2 is chosen to be sufficiently small, two benefits are expected as
training proceeds: (1) weights are encouraged to move toward non-degenerative
solutions in the weight space; (2) a form of regularization of the learning process
emerges, since complex solutions (i.e., weights too large in size) are discouraged.
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Given a generic weight v ∈ U , gradient ascent requires to compute partial deriva-
tives of the proposed criterion C w.r.t. v, i.e.,

∂C

∂v
= p(U)

∂p̂(φ(g|θφ)|θp̂)

∂v
+ p̂(φ(g|θφ)|θp̂)

∂p(U)

∂v
. (14)

The quantity ∂p̂(φ(g|θφ)|θp̂)
∂v is computed as above, while the term ∂p(U)

∂v in Eq.
(14) can be rewritten as follows:

∂p(U)

∂v
= p(U)

∂ log p(U)

∂v
(15)

= p(U)
∂

∂v

s∑
i=1

log p(vi)

=
p(U)

p(v)

∂p(v)

∂v

which is computed in a straightforward manner by taking the derivatives of Eq.
(13) w.r.t. v.

3 Demonstration

Since there are no other approaches to pdf estimation over graphical domains,
comparisons are impracticable. Consequently, we analyze the behavior of the
model and we evaluate it via statistical tests on a synthetic task. Two different
samples of GRGs were synthesized under controlled probabilistic conditions. A
first sample of 300 independent DAGs was randomly generated. These DAGs
had a random number of vertices (between 5 and 20), a uniform distribution
of edges connectivity (as in the classic Erdös and Rényi model [3]), and a real-
valued label for vertices drawn from the Laplacian pdf 1

2θ exp
(
− |x−μ|

θ

)
with

location μ = 5.0 and smoothness θ = 1
2 . Let us call Q this collection of GRGs.

Q was partitioned into three equally-sized subsamples, Q0 (training set), Q1
(validation set) and Q2 (test set).

Another sample P of 200 independent DAGs was likewise obtained, each DAG
having: a random number of vertices (between 5 and 20), a Power-law “prefer-
ential attachment” random connectivity (as in Barabási and Albert model [1])
according to the value of the node labels (the relevance, or “authority”), which
were independently drawn from an exponential distribution λe−λx, with inverse
scale λ = 1

3 . The collection P was split into equally-sized subsamples, P1 (refer-
ence set) and P2 (reference test set), as well.

The pdf underlying the distributions of GRGs in Q was then estimated, re-
lying on the training subsample Q0. An encoding net having 10 sigmoid hidden
units and 2 linear encoding neurons was used, while the RBF used 4 Gaussian
kernels. All the parameters were initialized at random. Different learning rates
(chosen, along with the neural architectures, by evaluating the variations of the
likelihood on training and validation sets) were applied for the different fami-
lies of parameters, namely ηγ = 1.0 · 10−4, ημ = 5.0 · 10−5, ησ = 5.0 · 10−6,
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Fig. 1. Learning, generalization and reference curves

ηv = 1.0 · 10−7 (the notation implicitly refers to the symbols used in Section
2). Fig. 1 shows the learning curve (log-likelihood on Q0), generalization curve
(log-likelihood on Q1), and reference curve (log-likelihood on P1). It is seen that
the criterion function is increased during training, as expected. All three curves
exhibit a steep growth during the early training, due to the fact that the RBF
kernels quickly move from their random initial position toward the region in �2

where all the graphs are initially randomly encoded. Learning and generalization
curves continue to grow smoothly, getting closer to each other. This fact, mag-
nified in Fig. 2 (left), indicates that the estimated pdf model explains (i.e., has
high likelihood) equally well independent samples of GRGs drawn from the same
distribution. On the contrary, the reference curve is constantly and significantly
lower than the others, and starts dropping early (i.e., the model does not cover
samples drawn from a different pdf). This is due to the constrained training of
the RBF (which is forced to have a unit integral over its definition domain, i.e.
it peaks around the GRGs in Q at he expense of those in P), and to the regular-
ized training of the encoding network (whose weights are discouraged to move
toward solutions that could map all the GRGs onto a compact cluster, regard-
less of their original distribution). Early stopping of training was accomplished
once the generalization curve began decreasing (after 1824 iterations), whilst
the learning curve continued to grow (overfitting the training data). This is seen
also in Fig. 2 (right), which plots the difference between the two curves, which
lowers down to a minimum at epoch 1824 before inverting its trend. The final
average log-likelihood over Q0, Q2 and P2, respectively, is shown in Fig. 3 as a
function of the number of GRGs in the training set (results are averaged w.r.t.
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Fig. 3. Final average log-Likelihoods as a function of the training set size

the cardinality of the training set; the experiment was repeated, accordingly, for
the different cardinalities).

Let us now call p̃(.) the pdf model estimated from Q0 (i.e., using 100 GRGs).
Its capability to describe the statistical properties of the corresponding distribu-
tion Q (but not those of the other, P) may be quantified by evaluating how likely
it explains the test samples Q2 and P2, according to some statistical criteria.
First of all, in the spirit of the likelihood-ratio test, the overall log-likelihoods
L(Q2) and L(P2) of the model given Q2 and P2, respectively, were computed. Let
us define �(g) = log p̃(g) for any given graph g, and let Λ = log(L(Q2)/L(P2))
be the (log)likelihood-ratio. Table 1 reports the statistics.
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Table 1. Log-Likelihoods and Likelihood-ratio (Λ) tests of the estimated pdf model

L(Q2) =
∑

g∈Q2
�(g) L(P2) =

∑
g∈P2

�(g) Λ

134.21 -1897.21 2031.41

Roughly speaking, the model is highly likely to express the probabilistic law
underlying Q (but not P), as sought. The value of Λ (i.e., the likelihood-ratio is
>> 1) confirms the high statistical significance of the test. These values express
global statistics. Let us now evaluate the distribution of individual log-likelihoods
yielded by p̃(.) over each graph in the test samples Q2 and P2 (100 values for
each subsample) from an analytical point of view. To this end, the Kolmogorov-
Smirnov (KS) test is a popular choice for the evaluation of pdf models. Two
(independent) null-hypotheses were formed, namely: (1) “the distribution of in-
dividual log-likelihoods yielded by p̃(.) when applied to Q2 coincides with the
analogous distribution yielded by the same model on P2”. (2) “the distributions
of individual log-likelihoods evaluated via p̃(.) on the samples Q0 and Q2 do not
coincide”. The KS test pointed out that both null-hypotheses are rejected at a
level α of at least 0.001 (confidence ≥ 99.9%). That is, the model explains well
the distribution of independent samples drawn from Q, but is highly unlikely to
explain GRGs having a different underlying distribution.

4 Conclusion and On-Going Work

This paper was a first attempt to introduce pdf estimation over graphical do-
mains. It gave a formal notion of GRG, and proposed a combined connectionist
model with joint, gradient-ascent constrained optimization of the parameters
over the ML criterion. The model was evaluated in terms of statistical tests
(likelihood-ratio, KS) on synthetic distributions of GRGs. On-going work fo-
cuses on applications to real-world tasks (e.g., classification and clustering of
relational data).
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Abstract. A Bayesian learning algorithm is presented that is based on

a sparse Bayesian linear model (the Relevance Vector Machine (RVM))

and learns the parameters of the kernels during model training. The

novel characteristic of the method is that it enables the introduction of

parameters called ‘scaling factors’ that measure the significance of each

feature. Using the Bayesian framework, a sparsity promoting prior is then

imposed on the scaling factors in order to eliminate irrelevant features.

Feature selection is local, because different values are estimated for the

scaling factors of each kernel, therefore different features are considered

significant at different regions of the input space. We present experi-

mental results on artificial data to demonstrate the advantages of the

proposed model and then we evaluate our method on several commonly

used regression and classification datasets.

1 Introduction

In supervised learning we are given a training set {xn, tn}Nn=1, so that tn is a
noisy measurement of the output of a function y when its input is xn. Then, we
wish to predict the output y(x) of the function at any arbitrary test point x. In
regression the outputs tn are continuous and they usually contain additive noise
εn:

tn = y(xn) + εn, (1)

while in classification the outputs tn are discrete and assuming K classes they
can be coded so that tnk = 1 if xn belongs to class k, otherwise tnk = 0.

In order to make predictions a specific parametric form may be assumed for
the unknown function y,such as a linear model:

y(x|w) =
M∑
i=1

wiφi(x), (2)

where w = (w1, . . . , wM )T are the weights of the linear model and {φi(x)}Mi=1
is the set of basis functions, which are assumed fixed and must be selected a
priori. The sparse Bayesian linear model [2] is a Bayesian treatment of the linear

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 50–59, 2009.
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model, which assumes a Gaussian prior with separate precision variable αi for
each weight wi

p(w|α) =
M∏
i=1

N(wi|0,α−1
i ), (3)

where α = (α1, . . . ,αM )T . Using this prior, many of the available basis functions
are pruned during learning. Because of this, we can design linear models that
initially assume a large number of basis functions and the final estimation will use
only a small number of the available basis functions. For example, the relevance
vector machine (RVM) is a specific instance of the sparse Bayesian linear model,
which assumes that the basis functions are kernels and one kernel is placed at
each training example.

An adaptive kernel learning methodology [1] has been recently proposed that
automatically learns parameters of the basis functions of a sparse linear model.
More specifically, it assumes that each basis function has different parameters,
and in principle it can even have different parametric form, therefore it is very
flexible. In order to avoid overfitting a sparsity enforcing prior has been used for
the weight precisions α that directly controls the number of effective parameters
of the model [3]. Learning is then achieved using an algorithm that is similar to
the incremental RVM algorithm[4]. It starts with an empty model and at each it-
eration it adds to the model an appropriate basis function, in order to maximize
the marginal likelihood of the model. In the typical incremental RVM [4] select-
ing a basis function is achieved using discrete optimization over the location of
the basis functions; all candidate basis functions are tested for addition to the
model. In contrast, the adaptive kernel learning methodology [1] uses continuous
optimization with respect to the parameters (such as location and scale) of the
basis functions. This methodology has been applied to learn the center (mean)
and width (variance) parameters of Gaussian kernel basis functions.

In supervised learning problems, feature selection is typically performed as a
preprocessing step, which is performed before building a classification or regres-
sion model. The general idea is to eliminate irrelevant features in the training
set, in order to improve the generalization performance of the model and simul-
taneously reduce the computational cost of its training. However, it is possible
to design supervised learning models that incorporate feature selection mech-
anisms, in order to perform feature selection simultaneously with estimation
of model parameters. These models need to consider all the available features
for training and, for this reason, they have relatively high computational cost.
However, they can achieve better peformance in feature selection, because they
can exploit information that the trained model provides. For example, in [5] the
JCFO classification method is suggested that jointly selects relevant features
and estimates parameters of the classifier. The classifier that they use is based
on a linear model and feature selection is achieved by estimating parameters
of the kernel function. More specifically, a scaling factor hi is estimated for
each feature xi, which measures the significance of that feature. For example, in
the case of anisotropic Gaussian kernels, the scaling factors correspond to the
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inverse variance of each feature. Then a Laplacian sparsity prior is enforced on
the scaling factors h = (h1, . . . , hd)T in order to eliminate irrelevant features.

In this work we propose a Bayesian method to incorporate a feature selection
mechanism in the adaptive kernel learning approach for the RVM (called aRVM)
proposed in [1]. This method is similar in spirit to JCFO in that they both
estimate parameters of kernels that are called scaling factors in order to measure
the significance of each feature. However, the proposed approach (that is based on
aRVM) learns separate scaling factors for each kernel, therefore feature selection
is local, since it is performed for each kernel separately. This might be useful for
example when different features are significant for discriminating examples of
each class, as demonstrated in the example of Fig. 1.

The rest of this paper is organized as follows. In Section 2 we present an
overview of sparse Bayesian linear models for regression and classification prob-
lems. In Section 3 we propose a method to incorporate local feature selection
to the sparse Bayesian linear model, by adapting the kernel learning algorithm
of [1]. In Section 4 we first present an artificial example to demonstrate the
advantages of the proposed method and then we evaluate its performance on
regression and classification datasets.

2 Sparse Bayesian Linear Models

2.1 Sparse Bayesian Regression

Since RVM is a Bayesian linear model, in this section we will review sparse
Bayesian learning of linear models given by (2) [2]. We assume Gaussian dis-
tributed noise with separate precision βn for each data point p(εn|βn) =
N(εn|0, β−1

n ), and a Gaussian prior with separate variance for the weights given
by (3).

Defining the fixed ‘design’ matrix Φ = (φ(x1), . . . ,φ(xM ))T , with φ(x) =
(φ1(x), . . . , φM (x))T , the likelihood can be written as:

p(t|w,β) = N(t|Φw,B−1), (4)

where β = (β1, . . . , βN )T and B = diag(β).
The posterior distribution of the weights can be computed using Bayes’s law:

p(w|t,α,β) =
p(t|w,β)p(w|α)

p(t|α,β)
, (5)

where p(w|a) is given by (3). It can be shown that the weight posterior distri-
bution is given by [2]:

p(w|t,α,β) = N(w|μ,Σ), (6)

where

μ = ΣΦTBt, (7)

Σ = (ΦTBΦ + A)−1, (8)

and A = diag(α).
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In order to control the amount of sparsity, we use a prior on α that directly
penalizes models with large number of effective parameters [3]. The output of
the model at the training points y = (y(x1), . . . , y(xN )))T can be evaluated as
y = St, where S = ΦΣΦTB is the so called smoothing matrix. The ‘degrees
of freedom’ of S , given by DF = trace(S), measure the effective number of
parameters of the model. This motivates the following sparsity prior [3]:

p(α|β) ∝ exp(−c trace(S)), (9)

where the parameter c provides a mechanism to control the amount of desired
sparsity. When using specific values of the sparsity parameter c, some known
model selection criteria are obtained [6]:

c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 None (typical RVM),
1 AIC (Akaike information criterion),
log(N)/2 BIC (Bayesian information criterion),
log(N) RIC (Risk inflation criterion).

(10)

Update formulas for the weight precisions α can be obtained by maximizing
the posterior distribution p(α|t,β) ∝ p(t|α,β)p(α) [1]:

αi =
γi

μ2
i − 2cγiΣii

, (11)

where γi = 1 − αiΣii.
Furthermore, since the noise is assumed i.i.d., then B = βI with β = β1 =

· · · = βN and we can also update the noise precision β. Assuming an uninfor-
mative prior p(β) we only need to maximize the marginal likelihood p(t|α,β).
Setting its derivative to zero, gives the equation

1
2

[
N

β
− ‖t − Φμ‖2 − trace(ΣΦTΦ)

]
− βc trace(ΣΦTΦ) = 0, (12)

which can be easily solved numerically, in order to update the noise precision β.

2.2 Sparse Bayesian Classification

For simplicity we only consider binary classification and assume that the outputs
are coded so that tn ∈ {0, 1}1. Then, the likelihood is given by:

p(t|w) =
N∏
n=1

ytn
n (1 − yn)1−tn , (13)

where yn = σ(y(xn|w)). Using the Laplacian approximation, the classification
problem can be mapped to a regression problem [2] with heteroscedastic noise
p(εn) = N(εn|0, βn). The noise precision is given by:

βn = yn(1 − yn), (14)
1 Multiclass problems can be solved using the one-vs-all approach, which builds only

two-class models.
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and the regression targets t̂ = (t̂1, . . . , t̂N )T are:

t̂ = Φw + B−1(t − y), (15)

where y = (y1, . . . , yN)T and B = diag(β1, . . . , βN ).

3 A Bayesian Model for Local Feature Selection

Consider now the more general form of the sparse Bayesian linear model proposed
in [1]:

y(x) =
M∑
n=1

wnφ(x; θn), (16)

which assumes that all the basis functions have the same parametric form
φ(x; θn), but assumes separate parameter vector θn for each basis function.
This model is called adaptive RVM (aRVM). For example, the basis functions
may be RBF kernels and the parameters θn may include their location (cen-
ter) and scale (width). Moreover, we assume a zero mean Gaussian prior for the
weights w, using a separate parameter αn for the precision of each weight wn,
given by (3). Because we estimate different values for the parameters of each
basis function, this model is very flexible and in order to avoid overfitting we
use the sparsity enforcing prior of (9).

Unlike the typical linear model, which assumes that the basis functions are
fixed and known in advance, we use the algorithm proposed in [1] to estimate
the parameters θn of the basis functions during model learning.

3.1 Adaptive Kernel Learning

The adaptive kernel learning algorithm [1] has been proposed to estimate the
parameters of aRVM, which is based on an incremental learning algorithm for the
typical RVM [4]. The incremental algorithm initially assumes an empty model,
by setting αi = ∞, for all i = 1, . . . ,M . Then, at each iteration one basis function
may be either added to the model or re-estimated or removed from the current
model.

Since we add only one basis function at each iteration, we maximize with
respect to a single parameter αi each time. Using the sparsity prior p(α) of (9)
and keeping only the terms of the objective function that depend on αi, the
following function should be maximized with respect to αi [1,4]

lsi =
1
2

(
log αi − log(αi + si) +

q2i + 2cαi
αi + si

)
, (17)

where

si = φTi C−1
−iφi, qi = φTi C−1

−i t̂, (18)
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φi = (φ(x1; θi), . . . , φ(xN ; θi))T and C−i = B +
∑
j �=i αjφjφ

T
j . In regression

we have t̂ = t and usually B = βI, while in classification B and t̂ are given by
(14) and (15) respectively. It has been shown in [1] that maximization of lsi with
respect to αi has a single maximum at:

αi =
s2i

q2i − (2c+ 1)si
if q2i > (2c+ 1)si,

αi = ∞ if q2i ≤ (2c+ 1)si. (19)

Appropriate values for the basis function parameters θik are determined using
the quasi-Newton BFGS optimization method to maximize (17). The required
derivatives can be analytically computed as:

∂lsi
∂θik

= −
(

1
αi + si

+
q2i + cαi

(αi + si)2

)
ri +

qi
αi + si

wi, (20)

where

ri ≡
1
2
∂si
∂θik

= φTi C−1
−i

∂φi
∂θik

, wi ≡
∂qi
∂θik

= tTC−1
−i

∂φi
∂θik

, (21)

and φi = (φ(x1; θi), . . . , φ(xN ; θi))T .
The adaptive kernel learning algorithm proceeds iteratively, selecting at each

iteration the most appropriate basis function to add to the model.

3.2 Local Feature Selection

In (16) we assume that all basis function have the same parametric form, but
different values θn for the parameters. In order to facilitate feature selection we
need to parameterize the kernel function so that it incorporates scaling factors
for each dimension. Here, we consider anisotropic Gaussian kernel functions,
which have a separate precision parameter hni for each feature i:

φ(x; mn,hn) = exp

[
−

d∑
i=1

(hni)2(xi −mni)2
]
, (22)

where hn = (hn1, . . . , hnd)T and mn = (mn1, . . . ,mnd)T . We call feature selec-
tion local, because we have assigned separate scaling factors for the features of
each kernel. This approach is much more flexible to the typical feature selection
approach, since different features are considered to be significant at different
regions of the input space.

Notice that if we assign a very small value to a scaling factor hni of the n-th
kernel, the corresponding feature xi does not contribute to that kernel. Under
the Bayesian framework, elimination of irrelevant features can be motivated
by imposing a prior distribution on the scaling factors h = (hT1 , . . . ,hTM )T that
enforces sparsity. In analogy to the prior on the weights wn, the prior distribution
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that we use on hn is the Student’s t distribution, which is known to give sparse
solutions for few degrees of freedom [7]. Since a Student’s t distributed random
variable is equivalent to a Gaussian distributed random variable whose precision
parameter is assumed Gamma distributed, we can write:

p(h|δ) = N(h|0,Δ−1), (23)

with δn = (δn1, . . . , δnd)T , Δ = diag{δ1, . . . , δM} and

p(δ) =
M∏
n=1

d∏
i=1

Gamma(δni|a, b), (24)

In the above definition we set a = b = 0 to define an uninformative Gamma
distribution.

Since we assume different parameter values hni for each kernel, the above
model selects different features to contribute at each kernel. Therefore, this model
is much more flexible to the typical feature selection approach that selects a
set of significant features that is common for all the kernels. An example that
demonstrates the advantages of the proposed model is presented in Section 4.

3.3 Parameter Learning

The learning method is similar to the adaptive kernel learning algorithm of [1].
It incrementally adds basis functions to an initially empty model and at the
same time it assigns appropriate values to their parameters. Estimation of the
parameters mn can be performed using the quasi-Newton BFGS method with
derivatives given from (20).

Estimation of the scaling factors h can also be performed using the adaptive
kernel learning algorithm. However, we must take into account the existence
of the prior distribution of (23) that we have assigned to the scaling factors.
Therefore, we now want to jointly maximize the posterior p(α,h|t) with respect
to the weight precisions α and the scaling factors h, which is given by

log p(α,h|t) = log p(t|α,h) + log p(h) + log p(α) = lsi −
1
2
hTΔh. (25)

This optimization is performed using (19) to update the weight precisions αi and
using a quasi-Newton optimization method to update the scaling factors hni. The
required derivatives are obtained from (20) by adding the term corresponding
to the derivative of the prior p(h):

∂ log p(h|t)
∂hni

=
∂ log p(t|θ)

∂hni
− δnihni. (26)

Furthermore, we also have to specify the update equations for the parameters
δ that define the precision of h. By setting a = b = 0 in (24), we assume an
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Algorithm 1. Feature Selection Using Adaptive Kernel Learning
1. Select an inactive basis function to add to the model (convert to active) as follows:

(a) Consider an initial set of inactive candidate basis functions by sampling their

parameters at random.

(b) Optimize separately the parameters of each candidate basis function to

maximize the marginal likelihood.

(c) Add to the model the candidate basis function that increases the marginal

likelihood the most.

2. Optimize the parameters θ of all currently active basis functions.

3. Update hyperparameters α and noise precision β, using (19) and (12).

4. Update hyperparameters δ using (27).

5. Remove from the model any unnecessary active basis functions.

6. Repeat steps 1 to 5 until convergence.

uninformative prior distribution for them. Then, maximization of the likelihood
with respect to δ gives

δni =
1
h2
ni

. (27)

In summary the proposed learning method, which is descibed in Algorithm 1, is
based on the incremental adaptive kernel learning algorithm of [1], but it also
takes into account the sparsity prior for the scaling factors h and updates the
parameters δ that have been introduced to facilitate feature selection.

4 Numerical Experiments

The purpose of the first experiment is to demonstrate the feature selection ca-
pabilities of the proposed method. For this reason, we have generated samples
from two two-dimensional zero-mean Gaussian distributions, each corresponding
to one of the classes. More specifically, we selected the variance of the Gaussian
distributions to be s1 = (1, 10)T and s2 = (10, 1)T , so that only one feature is
significant for discriminating each class. In Fig. 1 we show the estimated mod-
els using i) the RVM with adaptive kernel learning algorithm of [1] and ii) the
proposed modification to incorporate feature selection. Notice, that the model
obtained using the proposed approach contains only one basis function for each
class, with scaling factors θ1 = (0.6, 0.0)T and θ2 = (0.0, 0.4)T , therefore it
successfully identifies the relevant features for each basis function. For this rea-
son, it achieves better classification performance (measured by the percentage
of misclassified examples), which is also shown in Fig. 1.

Furthermore, in order to evaluate the method we have performed experi-
ments with several regression and classification datasets from the UCI Ma-
chine Learning Repository that were also used in [1]. More specifically, we es-
timate the generalization error of each method by performing ten-fold cross
validation on each dataset. In regression, the error is the mean square error,
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(a) aRVM, error=10.7%
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(b) aRVMd, error=7.7%

Fig. 1. Artificial classification example. Solution provided by aRVM classifiers: (a)

without feature selection (b) with feature selection. Solid lines show the estimated de-

cision boundary and dotted lines correspond to the points where the estimated proba-

bility of misclassification is 0.25.

MSE =
∑
n(tn− ŷn)2/N , where tn is the value given by the test set, ŷn the pre-

dicted value and N the number of test examples. In classification the error is the
percentage of misclassified examples in the test set. We evaluate three methods;
i) the typical RVM with Gaussian kernel (denoted as RVM), ii) adaptive RVM
with learning of Gaussian kernel parameters [1] (denoted as aRVM) and iii) the
proposed adaptive RVM with simultaneous feature selection by learning the pa-
rameters of anisotropic Gaussian kernels (denoted as aRVMd). The regression
and classification results are shown in Table 1 and Table 2 respectively, where
for each dataset the error and number of relevance vectors(RV) are presented. It
can be observed that in most cases the proposed approach, which incorporates
feature selection, provides improved performance compared to both the typical
RVM model and the aRVM method [1].

Table 1. Experimental results on regression datasets

RVM aRVM aRVMd

Dataset patterns (N) features (d) error RVs error RVs error RVs

computer 209 6 30004 140.5 22379 5.0 4089 13.6

Boston 506 13 12.48 69.5 11.53 13.27 13.66 17.5

concrete 1030 8 44.204 140.2 34.515 9.10 28.868 42.3
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Table 2. Experimental results on classification datasets

RVM aRVM aRVMd

Dataset patterns (N) features (d) error RVs error RVs error RVs

banana 5300 2 0.1092 12.1 0.1126 6.3 0.0994 4.4

titanic 2200 3 0.2292 31.0 0.2270 2.0 0.2254 4.0

image 2310 18 0.0390 34.6 0.0387 6.9 0.0342 21.3

breast-cancer 277 9 0.2818 9.6 0.2844 4.4 0.2629 3.0

pima 768 8 0.243 27.9 0.2303 5.6 0.2276 5.1

5 Conclusions

In this work we have presented an approach to incorporate feature selection
to the sparse Bayesian linear model by adapting the kernel learning approach
of [1]. In contrast to typical feature selection approaches, the significance of
each feature is assessed separately for each kernel. Therefore, for each kernel a
different set of significant features is selected. This approach might be useful,
for example in a classification problem when different features are significant
for discriminating the examples of each class. Experimental results on several
regression and classification datasets demonstrate the merits of the method. As
a future work, we aim to test the effectiveness of this approach to bioinformatics
problems (eg. gene microarray classification), where the number of features is
very high and feature selection is a very important issue.
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Abstract. This paper studies a risk minimization approach to estimate a trans-
formation model from noisy observations. It is argued that transformation mod-
els are a natural candidate to study ranking models and ordinal regression in a
context of machine learning. We do implement a structural risk minimization
strategy based on a Lipschitz smoothness condition of the transformation model.
Then, it is shown how the estimate can be obtained efficiently by solving a con-
vex quadratic program with O(n) linear constraints and unknowns, with n the
number of data points. A set of experiments do support these findings.

Keywords: Support vector machines, ranking models, ordinal regression.

1 Introduction

Non-linear methods based on ranking continue to challenge researchers in different sci-
entific areas, see e.g. [5,7]. Problems of learning ranking functions come in different
flavors, including ordinal regression, bipartite ranking and discounted ranking stud-
ied frequently in research on information retrieval. This problem will be considered
in the context of Support Vector Machines (SVM) [11,12,14] and convex optimization.
We study the general problem where the output domain can be arbitrary (with possi-
bly infinite members), but possess a natural ordering relation between the members.
This general problem was studied before in [1,7], and results can be specified to the
aforementioned specific settings by proper definition of the domain of the outputs (e.g.
restricting its cardinality to k <∞ or k = 2).

A main trend is the reduction of a ranking problem to a pairwise classification prob-
lem, bringing in all methodology from learning theory. It may however be argued that
such an approach deflects attention from the real nature of the ranking problem. It is for
example not clear that the complexity control (in a broad sense) which is successful for
classification problems is also natural and efficient in the ranking setting. More specifi-
cally, it is often taken for granted that the measure of margin - successful in the setting
of binary classification - has a natural counterpart in the ranking setting as the measure
of pairwise margin, although it remains somewhat arbitrary how this is to be imple-
mented exactly, see e.g. [4]. In order to approach such questions, we take an alternative
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approach: we will try to learn a single function u : Rd → R, such that the natural order
on R induces the desired ranking (approximatively). Such a function is often referred to
as a scoring, ranking, utility or health function depending on the context - we will use
utility function in this text.

In the realizable case, techniques as complexity control, regularization or Occam’s
razor (in a broad sense) give a guideline to learn a specific function in case there are
more functions exactly concordant with the observed data: a simpler function has a
better chance of capturing the underlying relation. In short, we will argue that a utility
function reproducing the observed order is less complex than another concordant func-
tion if the former is more smoothly related to the actual output values. That is, if there
is an exact order relation between two variables, one can obviously find (geometrically)
a monotonically increasing function between them. This argument relates ranking di-
rectly to what is well-studied in the statistical literature as transformation models, see
e.g. [6,9]. Here the monotonically increasing mapping between utility function and out-
put is referred to as the transformation function. Now, we define the complexity of a
prediction rule for transformation models as being the Lipschitz constant of this trans-
formation function. When implementing a risk minimization strategy based on these
insights, the resulting methods are similar to the binary, hard margin SVMs, but do dif-
fer conceptually and computationally with existing ranking approaches. Also similar
in spirit to the non-separable case in SVMs, it is indicated how slack variables can be
used to relax the realizable case: we assume that an exactly concordant function can be
found, were it not for incomplete observation of the patients’ covariates.

This paper is organized as follows. Section 2 discusses in some detail the use of
transformation models and its relation with ranking methods. Section 3 introduces an
efficient estimator of such a transformation function, relying on ideas as thoroughly
used in the machine learning literature. Section 4 gives insight how our estimator can
be modified in the context of ordinal regression. Section 5 reports experimental results
supporting the approach.

2 Transformation Models and Ranking Methods

In order to make the discussion more formal, we adopt the following notation. We work
in a stochastic context, so we denote random variables and vectors as capital letters,
e.g. X,Y, . . . , which follow an appropriate stochastic law PX , PY , . . . , abbreviated
(generically) as P . Deterministic quantities as constants and functions are represented
in lower case letters (e.g. d, h, u, . . . ). Matrices are denoted as boldface capital letters
(e.g. X,D, . . . ). Now we give a definition of a transformation model.

Definition 1 (Transformation Model). Let h : R → R be a strictly increasing func-
tion, and let u : Rd → R be a function of the covariates X ∈ Rd. A Transformation
Model (or TM) takes the following form

Y = h(u(X)). (1)

Let ε be a random variable (’noise’) independent of X , with cumulative distribution
function Fε(e) = P (ε ≤ e) for any e ∈ R. Then a Noisy Transformation Model (NTM)
takes the form
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Y = h(u(X) + ε). (2)

Now the question reads as how to estimate the utility function u : Rd → R and the
transformation model h from i.i.d. samples {(Xi, Yi)}ni=1 without imposing any distri-
butional (parametric) assumptions on the noise terms {εi}.

Transformation models are often considered in the context of failure time models
and survival analysis [8]. It should be noted that the approach which will be outlined
sets the stage for deriving predictive models in this context. Note that in this context
[3,6,9] one considers transformation models of the form h−(Y ) = u(X)+ ε, which are
equivalent in case h is invertible, or h−(h(z)) = h(h−(z)) = z for all z.

The relation with empirical risk minimization for ranking and ordinal regression
goes as follows. The risk of a ranking function with respect to observations is often
expressed in terms of Kendall’s τ , Area Under The Curve or a related measure. Here
we consider the (equivalent) measure of disconcordance (or one minus concordance)
for a fixed function u : Rd → R, where the probability concerns the two i.i.d. copies
(X,Y ) and (X ′, Y ′):

C(u) = P ((u(X) − u(X ′))(Y − Y ′) < 0). (3)

Given a set of n i.i.d. observations {(Xi, Yi)}ni=1,

Cn(u) =
2

n(n− 1)

∑
i<j

I((u(Xi) − u(Xj))(Yi − Yj) < 0), (4)

where the indicator function I(z) equals one if z holds, and equals zero otherwise.
Empirical Risk Minimization (ERM) is then performed by solving

û = argmin
u∈U

Cn(u), (5)

where U ⊂ {u : Rd → R} is an appropriate subset of ranking functions, see e.g. [5]
and citations. This approach however results in difficult and combinatorial optimization
problems, and the current solution is to majorize the discontinuous indicator function
with the Hinge loss, i.e. I(z) ≤ max(0, 1 − z) yielding rankSVM [7]. The intrinsic
problem with such an approach is that one has O(n2) number of constraints or un-
knowns in the final optimization problem, obstructing applicability (computationally)
to many real life cases.

Now, there is an intrinsic relation with transformation models which circumvent such
problems. The crucial observation here (again) is that if a function u : Rd → R exists
such that Cn(u) = 0, one describes implicitly a monotonically increasing transforma-
tion function (see Figure 1). In the case that Cn(u) = 0 is not satisfied, we will adopt the
noisy transformation model and use the error terms (slack variables) to model the de-
viance from this assumption. This reasoning is entirely similar as is used in formulating
the hard margin Support Vector Machine, and its soft-margin variation.
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Fig. 1. The main observation relating ranking and transformation models is that if two variables
u(x) and y are perfectly concordant, they describe (implicitly) a monotonically increasing func-
tion y = h(u(x)). This means that a perfect ranking function corresponds with a (noiseless)
transformation model. Moreover, if the samples are pairwise Lipschitz, there exists a Lipschitz
transformation function. The yellow zones indicate possible function values on test samples.

3 MINLIP: A Convex Approach to Learning a Transformation
Model

3.1 Lipschitz Smooth Functions and Transformation Models

In order to overcome the difficulties of implementing the estimator given in equation
(5), we need one final ingredient. This concept will play a similar role as the margin in
Support Vector Machines for classification. We will say that the univariate function h
has a Lipschitz constant of L ≥ 0 if |h(z) − h(z′)| ≤ L|z − z′| for all z, z′ ∈ R, or
equivalently

|h(u(x)) − h(u(x′))| ≤ L |u(x) − u(x′)| , ∀x, x′ ∈ R
d. (6)

Now, since h is monotonically increasing one has also h(z) − h(z′) ≤ z − z′ for all
z ≥ z′, and restricting attention to the samples {(xi, yi)}ni=1, one has the necessary and
sufficient conditions h(u(X(i))) − h(u(X(i−1))) ≤ L

(
u(X(i)) − u(X(i−1))

)
for all

i = 2, . . . , n. Here, we assume that the data obey a noiseless transformation model (as
in (1)), and the samples are reindexed as {(X(i), Y(i))}ni=1 where Y(i−1) ≤ Y(i) for all
i = 2, . . . , n. Wrapping up results thus far gives us the following proposition:

Proposition 1 (Existence of h). Given a set of samples {(X(i), Y(i))}ni=1 ⊂ Rd × R

and a function u : Rd → R, such that Y(i) ≥ Y(i−1) for all i = 2, . . . , n, and

Y(i) − Y(i−1) ≤ L
(
u(X(i)) − u(X(i−1))

)
, ∀i = 2, . . . , n, (7)

Then there exists a monotonically increasing function h : R → R such that the mapping
x to y obeys y = h(u(x)) and h has Lipschitz constant L following (6) (see Figure 1).

Before using non-linear utility functions, we will consider only linear utilities in the
next two sections.
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3.2 Kernel Based Model

Since the function u(x) = wTx can be arbitrarily rescaled such that the corresponding
transformation function has arbitrary Lipschitz constant (i.e. for any c > 0, one has
h(u(x)) = h′(u′(x)) where h′(z) = h(c−1z) and u′(x) = cu(x)), we fix the norm
wTw and try to find u(x) = vTx with vT v = 1. Hence learning a transformation
model with minimal Lipschitz constant of h can be written as

min
v,L

L2 s.t. ‖v‖2 = 1, Y(i) − Y(i−1) ≤ L
(
vTX(i) − vTX(i−1)

)
, ∀i = 2, . . . , n (8)

and equivalently substituting w = Lv as

min
w

1
2
wTw s.t. Y(i) − Y(i−1) ≤ wTX(i) − wTX(i−1), ∀i = 2, . . . , n (9)

which goes along similar lines as the hard margin SVM (see e.g.[11]). Remark that
there is no need for an intercept term here. Observe that this problem has n − 1 linear
constraints. We will refer to this estimator ofw as MINLIP. We can rewrite this problem
compactly as

min
w

1
2
wTw s.t. DXw ≥ DY, (10)

where X ∈ Rn×d is a matrix with each row containing a sample, i.e. Xi = X(i) ∈ Rd,
Yi = Y(i) ∈ R. The matrix D ∈ {−1, 0, 1}(n−1)×n gives the first order differences of a
vector, i.e. assuming no ties in the output, DjY = Y(j+1)−Y(j) for all j = 1, . . . , n−1,
with Dj the jth row of D. In the presence of ties Y(j+1) is replaced by Y(i), with i the
smallest output value with Y(i) > Y(j). Solving this problem as a convex QP can be
done efficiently with standard mathematical solvers as implemented in MOSEK1 or
R-quadprog2.

3.3 The Agnostic Case

The agnostic case deals with the case where one is not prepared to make the assumption
that a function exists which will exactly extract in all cases the most relevant element.
To model this, we impute a random variable ε with expected value zero, which acts
additive on the contribution of the covariates (hence nonadditive on the final output for
general function h). Hence our model becomes

Y = h(u(X) + ε) = h(wTX + ε), (11)

as in (2). Now we suggest how one can integrate the agnostic learning scheme with the
Lipschitz-based complexity control. We will further specify the loss function � : R → R

to the absolute value loss, or �(ε) = |ε|. The reason for doing so is threefold. At first,
this loss function is known to be more robust to model misspecification and outliers
(leverage points) than e.g. the squared loss �(ε) = ε2. Secondly, this loss will result

1 http://www.mosek.org
2 http://cran.r-project.org/web/packages/quadprog/index.html
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in sparse terms, i.e. many of the estimated error terms will be zero. This in turn can be
exploited in order to obtain a compact representation of the estimate through the dual (as
is the case for Support Vector Machines (SVMs) [14], and see the following subsection).
Thirdly, the one-norm loss is found to perform well in the binary classification case as
implemented in the SVMs. However, we stress that the choice of this loss is in some
sense arbitrary, and should be tailored to the case study at hand. One can formalize the
learning objective for a fixed value of γ > 0 with errors ε = (ε1, . . . , εn−1)T ∈ Rn−1:

min
w,ε

1
2
wTw + γ‖ε‖1 s.t. D(Xw + ε) ≥ DY, (12)

where ‖ε‖1 =
∑n
i=1 |εi|. This problem can again be solved as a convex quadratic

program.

3.4 A Nonlinear Extension Using Mercer Kernels

Consider the model
u(x) = wTϕ(x), (13)

where ϕ : Rd → Rdϕ is a mapping of the data to a high dimensional feature space
(of dimension dϕ, possibly infinite). Now w ∈ Rdϕ is a (possibly) infinite dimensional
vector of unknowns. Let Φ = [ϕ(X(1)), . . . , ϕ(X(n))]T ∈ Rn×dϕ . Then we can write
the learning problem concisely as

min
w

1
2
wTw s.t. DΦw ≥ DY, (14)

with the matrix D defined as before. This problem can be solved efficiently as a convex
Quadratic Programming (QP) problem. The Lagrange dual problem becomes

min
α

1
2
αTDKDTα − αTDY s.t. α ≥ 0n−1 (15)

where the kernel matrix K ∈ Rn×n contains the kernel evaluations such that Kij =
ϕ(Xi)Tϕ(Xj) for all i, j = 1, . . . , n. The estimated û can be evaluated at any point
x ∈ Rd as

û(x) = α̂TDKn(x), (16)

where α̂ solves (15), and Kn(x) = (K(X1, x), . . . ,K(Xn, x))T ∈ Rn. A similar
argument gives the dual of the agnostic learning machine of Subsection 3.3 (12), see
e.g. [11,12,14]:

min
α

1
2
αTDKDTα − αTDY s.t.

{
−γ1n ≤ DTα ≤ γ1n
α ≥ 0n−1 ,

(17)

with K as above and the resulting estimate can be evaluated as in (16) without comput-
ing explicitly ŵ. It is seen that the nonlinear model can be estimated using a pre-defined
kernel function, and without explicitly defining the mapping ϕ(·).
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4 Learning for Ordinal Regression

Consider now the situation where the output takes a finite number of values - say k ∈ N

- and where the k different classes possess a natural ordering relation. Instead of rank-
ing all samples with its closest sample, one has to enumerate the rankings of all samples
with certain output levels with all samples possessing the closest non-equal output level.
However, when only observing a constant number k different output levels, this proce-
dure can increase the number of constraints in the estimation problem to O(n2). To
cope with this issue, we introduce unknown thresholds {vj}k−1

j=1 on the utility function,
corresponding with known output levels zj = Y j + 1

2 (Y j+1 − Y j). This implies that
one has to compare each sample only twice, namely with thresholds zj and zj+1 for
each data point in class j. This problem can be formulated as

min
w,ε

1
2
wTw + γ‖ε‖1 s.t.

{
D(Φw + ε) ≥ DY,

vj ≥ vj−1, ∀j = 2, . . . , k − 1 ,
(18)

with

w =
[
w
v

]
Φ =

[
Φ 0
0 I

]
Y =

[
Y
z

]
, (19)

where D needs to be build in such a way that DΦw equals the difference between the
utility of each point and the utility of the nearest threshold.

5 Application Studies

5.1 Ordinal Regression

In a first example 6 regression datasets3 are used to compare the performance of the
minlip model with two methods described in [4] (see Table 1). Both of these methods
optimize multiple thresholds to define parallel discriminant hyperplanes for the ordi-
nal levels. The first method (EXC) explicitly imposes the ordering of the thresholds,
whereas this is done implicitly in the second method (IMC). Tuning of the Gaussian
kernel parameter and the regularization parameter was performed with 10-fold cross-
validation on an exponential grid. After an initial search, a finer search was performed in
the neighborhood of the initial optimum. The datasets are divided into 20 folds with 10
equal-frequency bins, as in [4]. The generalization performance of the minlip method is
clearly better than for the other methods. The IMC method performs best on the small
dataset, but the minlip performance is better on larger datasets. Remark that the results
on EXC and IMC obtained here are better than reported in [4].

In a second experiment, the performance and calculation time of the minlip model
and standard rankSVM are compared on the pyrimidines dataset. Figure 2 shows the
concordance, mean average error and calculation time when varying the number of
training data points from 5 to 50. The concordance and error of both methods are com-
parable but for an increasing number of training data points the calculation time is
considerably higher for the rankSVM method.

3 These regression datasets are available at
http://www.liacc.up.pu/˜ltorgo/Regression/DataSets.html

http://www.liacc.up.pu/~ltorgo/Regression/DataSets.html
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Table 1. Test results of minlip, EXC and IMC using a Gaussian kernel. The targets of the datasets
were discretized by 10 equal-frequency bins. The results are averaged over 20 trials.

dataset mean zero-one error mean absolute error
minlip EXC IMC minlip EXC IMC

pyrimidines 0.65±0.09 0.70±0.09 0.62 ± 0.07 1.01±0.16 1.22±0.22 1.00±0.12
triazines 0.66±0.06 0.72 ±0.00 0.71±0.02 1.19±0.12 1.34±0.00 1.27±0.07

wisconsin 0.91±0.03 0.89±0.03 0.88±0.03 2.33±0.11 2.30±0.17 2.25±0.13
machine CPU 0.36±0.04 0.55±0.06 0.42±0.09 0.54±0.09 0.77±0.07 0.69±0.11

auto MPG 0.49±0.04 0.55±0.02 0.55±0.03 0.62±0.14 0.76±0.05 0.75±0.06
Boston housing 0.44±0.04 0.50±0.03 0.48±0.03 0.54±0.08 0.71±0.06 0.63±0.05
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Fig. 2. Comparison between minlip (black) and the standard rankSVM (grey) on the pyrimidines
dataset. The performance (concordance and mean absolute error are illustrated) of both methods
is comparable, but for a reasonable number of training points, the calculation time is considerably
lower for the first method.

5.2 Movie Recommendations

Our last application is a movie-recommendation task4. The data consists of the scores
for 6040 viewers on 3952 movies. The goal is to predict the scoring of user i on movie
j. We use the scorings of 1000 viewers as covariates to predict the scoring of the other
viewers as follows

ŝi,k =
1000∑
j=1

wi,jsj,k ,

where ŝi,k indicates the predicted score of user i on movie k, wi,j is the weight or
”importance” of user j to predict the score given by user i. sj,k represents the score of
movie k given by user j. The 1000 viewers with the highest number of rated movies
were selected as reference viewers. Another 1000 (random) viewers were used as a
validation set to tune the regularization parameterand the imputation value for scores in
case a reference viewer did not score a certain movie. The values for the regularization
parameter were selected after 10-fold cross-validation on an exponential grid. We chose
two possible values for the imputation parameter: 3, which is the mean of all possible
scores, and 2, which is one score lower than the previous one, indicating that the reason
for not seeing a movie could be that one is not interested in the movie. For the 4040
remaining viewers, the first half of the rated movies were used for training, the second

4 Data available on http://www.grouplens.org/node/73

http://www.grouplens.org/node/73
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half for testing. The performance of the minlip method was compared with 3 other
methods:

– linear regression (LREG): The score of the new user is found as a linear combi-
nation of the scores of the 1000 reference users.

– nearest neighbor classification (NN): This method searches the reference viewer
for whom the scores are most similar to the scores of the new user. The score of the
most similar reference viewer is considered as predicted score for the new viewer.

– vector similarity (VSIM): This algorithm [2] is based on the notion of similarity
between two datapoints. The correlation between the new user and the reference
users are used as weights wk,i in the formula:ŝk,j = s̄k + a

∑
i=1 wk,i(si,j − s̄i),

where s̄i represents the mean score for viewer i and a is a normalization constant
such that

∑
i |wk,i| = 1.

Three different performance measure were used for comparison of the methods:

– mean zero-one error (MZOE)
– mean absolute error (MAE)
– concordance (CONC): measuring the concordance of the test set within the train-

ing set, defined as:

CONCn(u) =
∑nt

i=1
∑n

j=1 I[(u(Xj)−u(Xi))(Tj−Ti)>0]
ntn

, with n and nt the number of
datapoints in the training and test set respectively.

Figure 3 compares all 4 methods for the 3 considered performance measures. The mean
zero-one and mean absolute error should be as small as possible, while the concordance
should be close as large as possible. The LREG method performs the least on all mea-
sures. The VSIM method results in a good average precision and low error measures,
whereas the NN methods is better in obtaining a high concordance. The advantage of
the minlip method is that is performs good on all the measures.
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Fig. 3. Performance comparison of 4 methods: minlip (linear kernel), linear regression (LREG),
nearest neighbor (NN) and vector similarity (VSIM). Three different performance measure were
used. LREG performs the least on all measures. VSIM has low errors, whereas the NN method
has a high concordance. The advantage of the minlip method is that it performs well on all the
investigated performance measures.
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6 Conclusions

This paper proposed an efficient estimator of a transformation model from noisy obser-
vations. The motivation for considering this problem is given by describing its relation
to (i) the problem of learning ranking functions, and (ii) its relevance to estimating sta-
tistical models e.g. in a context of survival analysis. The latter topic will be the focus of
subsequent work. We conducted two experiments to illustrate the use of this estimator:
a first example on the prediction of the rankings of movies showed a good performance
on different measures where other methods performed worse regarding at least one
measure. In a second example on ordinal regression, we illustrate the reduction in cal-
culation time in comparison with the standard rankSVM method, without reduction in
performance.
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Abstract. In a typical reinforcement learning (RL) setting details of the

environment are not given explicitly but have to be estimated from obser-

vations. Most RL approaches only optimize the expected value. However,

if the number of observations is limited considering expected values only

can lead to false conclusions. Instead, it is crucial to also account for the

estimator’s uncertainties. In this paper, we present a method to incorpo-

rate those uncertainties and propagate them to the conclusions. By being

only approximate, the method is computationally feasible. Furthermore,

we describe a Bayesian approach to design the estimators. Our exper-

iments show that the method considerably increases the robustness of

the derived policies compared to the standard approach.

Keywords: Reinforcement learning, model-based, uncertainty, Bayesian

modeling.

1 Introduction

In reinforcement learning (RL) [12] one is concerned with finding a policy, i.e., a
mapping from states to actions, that moves an agent optimally in an environment
assumed to be a Markov decision process (MDP) M := (S,A, P,R) with a state
space S, a set of possible actions A, the system dynamics, defined as probability
distribution P : S×A×S → [0, 1], which gives the probability of reaching state
s′ by executing action a in state s, and a reward function R : S × A × S → R,
which determines the reward for a given transition. If the parameters of the MDP
are known a priori, an optimal policy can be determined, e.g., using dynamic
programming. Often, however, the MDP’s parameters are not known in advance.
A common way of handling this situation is model-based RL, where one first
estimates a model of the MDP from a number of observations and then finds an
optimal policy w.r.t. that model. In general, such a policy will not be optimal
w.r.t. the real MDP. Especially in case of a limited number of observations the
estimated MDP has a high probability to differ from the real one substantially.
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In this case, it is in particular possible to derive a policy that will perform badly
when applied to the real MDP.

By incorporating the model estimators’ uncertainties into the determination
of the policy it is possible to weaken this problem. In recent work by Schneegass
et al. [10] uncertainty propagation (UP) was applied to the Bellman iteration to
determine the Q-function’s [12] uncertainty and derive uncertainty incorporating
policies. While the algorithm described in [10] provides significant advantages
over methods not considering uncertainty, it adds a huge computational burden
for updating the covariance matrix in each iteration. In this paper, we propose an
algorithm called the diagonal approximation of uncertainty incorporating policy
iteration (DUIPI) for discrete MDPs that represents an efficient way of using UP
to incorporate the model’s uncertainty into the derived policy by only consider-
ing the diagonal of the covariance matrix. Only considering the diagonal neglects
the correlations between the state-action pairs, which in fact are small for many
RL problems, where on average different state-action pairs share only little prob-
abilities to reach the same successor states. DUIPI is easier to implement and,
most importantly, lies in the same complexity class as the standard Bellman
iteration and is therefore computationally much cheaper than the method con-
sidering the full covariance matrix. Although some of the results obtained with
DUIPI are not as good as those of the full-matrix method, the robustness of the
resulting policies is increased considerably, compared to the standard Bellman
iteration, which does not regard the uncertainty. In this context it furthermore
is advisable to use Bayesian statistics to model the a posteriori distributions of
the transition probabilities and rewards in order to access the estimators’ un-
certainties properly. Additionally, it allows the specification of prior knowledge
and the user’s belief.

There have already been a number of contributions that consider uncertain-
ties when estimating MDPs. E.g., the framework of robust MDPs has widely
been studied (e.g., [8,1]), in which one assumes that all uncertainties can only lie
within a bounded set. One tries to find policies optimizing the worst case within
that set, which often results in too conservative policies. Within the context of
Bayesian RL, incorporation of prior knowledge about confidence and uncertainty
directly into the approached policy is possible. E.g., Engel et al. applied Gaus-
sian processes for policy evaluation by updating a prior distribution over value
functions to posteriors by observing samples from the MDP [4,5]. Ghavamzadeh
and Engel presented additional Bayesian approaches to model-free RL [6,7]. Us-
ing Gaussian processes inherently introduces a measure of uncertainty based on
the number of samples. When dealing with model-based approaches, however,
one starts with a natural local measure of the uncertainty of the transition prob-
abilities and the rewards. In that context, related to the present paper is work
by Delage and Mannor [3], who used convex optimization to solve the percentile
problem and applied it to the exploration-exploitation trade-off. Model-based
interval estimation (MBIE) was also used for efficient exploration by using local
uncertainty to derive optimistic exploration policies, e.g., [11].
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The remainder of the paper is organized as follows. In sec. 2 we describe
how to incorporate knowledge of uncertainty into the Bellman iteration using
UP, sec. 3 presents ways of parameter estimation. Experiments and results are
presented in sec. 4. Sec. 5 finishes the paper with a short conclusion.

2 Incorporation of Uncertainty

Our notion of uncertainty is concerned with the uncertainty that stems from the
ignorance of the exact properties of the real MDP, as they are usually unknown
and must be estimated from observations. With an increasing number of observa-
tions the uncertainty decreases; in the limit of an infinite number of observations
of every possible transition the uncertainty vanishes as the true properties of the
MDP are revealed. For a given number of observations the uncertainty depends
on the inherent stochasticity of the MDP; if the MDP is known to be completely
deterministic, one observation of a transition is sufficient to determine all prop-
erties of that transition; the more the MDP is stochastic, the more uncertainty
will remain for a fixed number of observations. It is important to distinguish this
uncertainty from an MDP’s inherent stochasticity.

We want to use the knowledge of uncertainty to determine an optimal Q-
function Q∗ with its uncertainty σQ∗. In a second step it is then possible to
change the Bellman iteration to not only regard a Q-value but also its un-
certainty, resulting in a policy that generally prefers actions that have a low
probability of leading to an inferior long-term reward.

2.1 Determining the Q-Function’s Uncertainty

To obtain the Q-function’s uncertainty, we use the concept of uncertainty prop-
agation (UP), also known as Gaussian error propagation (e.g., [2]), to propagate
the uncertainties of the measurements, i.e., the transition probabilities and the
rewards, to the conclusions, i.e., the Q-function and policy. The uncertainty of

values f(x) with f : Rm → Rn is determined as (σf)2 =
∑
i

(
∂f
∂xi

)2
(σxi)2. The

update step of the Bellman iteration,

Qm(s, a) :=
∑
s′
P̂ (s′|s, a)

[
R̂(s, a, s′) + γV m−1(s′)

]
, (1)

can be regarded as a function of the estimated transition probabilities P̂ and
rewards R̂, and the Q-function of the previous iteration Qm−1 (V m−1 is a subset
of Qm−1), that yields the updated Q-function Qm. Applying UP to the Bellman
iteration, one obtains an update equation for the Q-function’s uncertainty:

(σQm(s, a))2 :=
∑
s′

(DQQ)2(σV m−1(s′))2 +
∑
s′

(DQP )2(σP̂ (s′|s, a))2 +∑
s′

(DQR)2(σR̂(s, a, s′))2, (2)
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DQQ = γP̂ (s′|s, a), DQP = R̂(s, a, s′) + γV m−1(s′), DQR = P̂ (s′|s, a).
V m and σV m have to be set depending on the desired type of the policy (stochas-
tic or deterministic) and whether policy evaluation or policy iteration is per-
formed. E.g., for policy evaluation of a stochastic policy π

V m(s) =
∑
a

π(a|s)Qm(s, a), (3)

(σV m(s))2 =
∑
a

π(a|s)2(σQm(s, a))2. (4)

For policy iteration, according to the Bellman optimality equation and result-
ing in the Q-function Q∗ of an optimal policy, V m(s) = maxaQm(s, a) and
(σV m(s))2 = (σQm(s, argmaxaQm(s, a)))2.

Using the estimators P̂ and R̂ with their uncertainties σP̂ and σR̂ and starting
with an initial Q-function Q0 and corresponding uncertainty σQ0, e.g., Q0 := 0
and σQ0 := 0, through the update equations (1) and (2) the Q-function and
corresponding uncertainty are updated in each iteration and converge to Qπ

and σQπ for policy evaluation and Q∗ and σQ∗ for policy iteration. Q∗ and σQ∗

can be used to obtain the function

Qu(s, a) = Q∗(s, a) − ξσQ∗(s, a), (5)

specifying a performance limit which, when the policy π∗ is applied to the real
MDP, will be exceeded with probability Pr(Z(s, a) > Qu(s, a)) = F (ξ), where
Z is the (unknown) Q-function of π∗ for the real MDP. F (ξ) depends on the
distribution class of Q. E.g., if Q is normally distributed, F is the distribution
function of the standard normal distribution. Note that a policy based on Qu,
i.e., πu(s) = arg maxaQu(s, a), does not in general improve the performance
limit, as Qu considers the uncertainty only for one step. In general, Qu does not
represent πu’s Q-function, posing an inconsistency. To use the knowledge of un-
certainty for maximizing the performance limit (as opposed to the expectation),
the uncertainty needs to be incorporated into the policy-improvement step.

2.2 Uncertainty-Aware Policy Iteration

The policy-improvement step is contained within the Bellman optimality equa-
tion as maxaQm(s, a). Alternatively, determining the optimal policy in each
iteration as

∀s : πm(s) := arg max
a

Qm(s, a) (6)

and then updating the Q-function using this policy, i.e.,

∀s, a : Qm(s, a) :=
∑
s′
P̂ (s′|s, a)

[
R̂(s, a, s′) + γQm−1(s′, πm−1(s))

]
, (7)

yields the same solution. To determine a so-called certain- or ξ-optimal policy
that maximizes the performance limit for a given ξ, the update of the policy
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must not choose the optimal action w.r.t. to the maximum over the Q-values
of a particular state but the maximum over the Q-values minus their weighted
uncertainty:

∀s : πm(s) := arg max
a

[Qm(s, a) − ξσQm(s, a)] . (8)

In each iteration, the uncertainty σQm has to be updated as described in sec.
2.1, setting V m and σV m as for deterministic policy evaluation.

The parameter ξ controls the influence of the uncertainty on the policy. Choos-
ing a positive ξ yields uncertainty avoiding policies, with increasing ξ a worst-
case optimal policy is approached. A negative ξ results in uncertainty seeking
behavior.

2.3 Non-convergence of DUIPI for Deterministic Policy Iteration

While it has been shown that conventional policy iteration in the framework
of MDPs is guaranteed to converge to a deterministic policy [9], for ξ-optimal
policies derived by the algorithm presented in sec. 2.2 this is not necessarily
the case. When considering a Q-value’s uncertainty for action selection, there
are two effects that contribute to an oscillation of the policy and consequently
non-convergence of the corresponding Q-function.

First, there is the effect mentioned in [10] of a bias on ξσQ(s, π(s)) being larger
than ξσQ(s, a), a �= π(s), if π is the evaluated policy and ξ > 0. DUIPI is not
affected by this problem due to the ignorance of covariances between Q and R.
Second, there is another effect (by which DUIPI is affected) causing an oscillation
when there is a certain constellation of Q-values and corresponding uncertainties
of concurring actions. Consider two actions a1 and a2 in a state s with similar
Q-values but different uncertainties, a1 having an only slightly higher Q-value
but a larger uncertainty. The uncertainty-aware policy improvement step would
alter πm to choose a2, the action with the smaller uncertainty. However, the
fact that this action is inferior might only become obvious in the next iteration
when the value function is updated for the altered πm (and now implying the
choice of a2 in s). In the following policy improvement step the policy will be
changed back to choose a1 in s, since now the Q-function reflects the inferiority
of a2. After the next update of the Q-function, the values for both actions will
be similar again, because now the value function implies the choice of a1 and
the bad effect of a2 affects Q(s, a2) only once.

2.4 Risk-Reduction by Diversification through Stochastic Policies

With stochastic policies it is possible to construct an update-scheme that is
guaranteed to converge, thus solving the problem of non-convergence. Moreover,
it is intuitively clear that for ξ > 0 ξ-optimal policies should be stochastic as
one tries to decrease the risk of obtaining a low long-term reward (because the
wrong MDP has been estimated) by diversification.
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The resulting algorithm initializes the policy with equiprobable actions. In
each iteration, the probability of the best action according to Qmu (equation (5))
is increased by 1/m, m being the current iteration, while the probabilities of all
other actions are decreased accordingly:

∀s, a : πm(a|s) :=

⎧⎨⎩min(πm−1(a|s) + 1/m, 1), if a = aQm−1
u

(s)
max(1−π(s,a

Q
m−1
u

(s))−1/m,0)

1−π(s,a
Q

m−1
u

(s)) πm−1(a|s), otherwise

(9)
aQm−1

u
(s) denotes the best action according to Qm−1

u , i.e, aQm−1
u

(s) =
argmaxaQm−1(s, a)−ξσQm−1(s, a). Due to the harmonically decreasing change
rate convergence as well as reachability of all possible policies are ensured.

3 Modeling of Estimators and Their Uncertainty

There are several ways of modeling the estimators for the transition probabilities
P and the reward R. In the following we will present the frequentist approach
using relative frequency as well as a Bayesian approach.

3.1 Frequentist Estimation

In the frequentist paradigm the relative frequency is used as the expected tran-
sition probability. The uncertainty of the according multinomial distribution is
assumed to be

(σP̂ (s′|s, a))2 =
P̂ (s′|s, a)(1 − P̂ (s′|s, a))

nsa − 1
, (10)

where nsa denotes the number of observed transitions from (s, a).
Using the same concept for the rewards and assuming a normal distribution,

the mean of all observed rewards of a transition (s, a, s′) is used as reward ex-
pectation, their uncertainties are

(σR̂(s, a, s′))2 =
var(R̂(s, a, s′))
nsas′ − 1

, (11)

with nsas′ being the number of observed transitions (s, a, s′).
Although the estimation of the transition probabilities using relative frequency

usually leads to good results in practice, the corresponding uncertainty estima-
tion is problematic if there are only a few observations, because in that case the
uncertainties are often underestimated. For instance, if a specific transition is
observed twice out of two tries (nsas′ = nsa = 2), its uncertainty σP̂ (s′|s, a) = 0.

3.2 Bayesian Estimation

Assuming all transitions from different state-action pairs to be independent of
each other and the rewards, the transitions can be modeled as multinomial dis-
tributions. In a Bayesian setting, where one assumes a prior distribution over the
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parameter space P (sk|si, aj) for given i and j, the Dirichlet distribution with
density

Pr(P (s1|si, aj), . . . , P (s|S||si, aj))αij1,...,αij|S| =

Γ(αij)∏|S|
k=1 Γ(αijk)

|S|∏
k=1

P (sk|si, aj)αijk−1, (12)

αij =
∑|S|
k=1 αijk, is a conjugate prior with posterior parameters αdijk = αijk +

nsiajsk
, αdij =

∑|S|
k=1 αdijk. Choosing the expectation of the posterior distribution

as the estimator, i.e., P̂ (sk|si, aj) = αdijk/α
d
ij , the uncertainty of P̂ is

(σP̂ (sk|si, sj))2 =
αdijk(α

d
i,j − αdijk)

(αdij)2(α
d
ij + 1)

. (13)

Note that αi = 0 results in a prior that leads to the same estimates and slightly
lower uncertainties compared to the frequentist modeling of sec. 3.1. On the
other hand, setting αi = 1 leads to a flat, maximum entropy prior that assumes
all transitions from a state to all other states equally probable.

Both settings, αi = 0 and αi = 1, represent extremes that we believe are
unreasonable for most applications. Instead, we model our prior belief by setting
αi = m

|S| , where m is the average number of expected successor states of all state-
action pairs and |S| is the total number of states. This choice of αi realizes an
approximation of a maximum entropy prior over a subset of the state space with
a size of m states. This way most of the probability is “distributed” among any
subset of m states that have actually been observed, the probability of all other
(not observed) successor states becomes very low. Compared to the maximum
entropy prior with αi = 1 one needs only a few observations for the actually
observed successor states to be much more probable than not observed ones.
At the same time, the estimation of the uncertainty is not as extreme as the
frequentist one, since having made the same observation twice does not cause
the uncertainty to become zero. Estimating m from the observations can easily
be added.

4 Experiments

We conducted experiments with DUIPI as presented here and the full-matrix
algorithm using the frequentist as well as the Bayesian estimators described in
the previous section.1

4.1 Benchmark: Wet-Chicken 2D

The benchmark problem used was Wet-Chicken 2D, a two-dimensional version
of the original Wet-Chicken benchmark [13]. In the original setting a canoeist
1 Source code for the benchmark problem as well as a DUIPI implementation is avail-

able at http://ahans.de/publications/icann2009/

http://ahans.de/publications/icann2009/
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Fig. 1. Performance of policies generated using standard policy iteration (‘•’ marks),

DUIPI (black lines), and the full-matrix method [10] (gray lines). ξ = 0.5 is indicated by

‘×’ marks, ξ = 1 by ‘+’ marks. Solid lines represent policies generated using frequentist

estimators, dashed lines represent policies generated using Bayesian estimation.

paddles on a one-dimensional river with length l and flow velocity v = 1. At
position x = l of the river there is a waterfall. Starting at position x = 0 the
canoeist has to try to get as near as possible to the waterfall without falling
down. If he falls down, he has to restart at position x = 0. The reward increases
linearly with the proximity to the waterfall and is given by r = x. The canoeist
has the possibility to drift (x−0+v = x+1), to hold the position (x−1+v = x),
or to paddle back (x − 2 + v = x − 1). River turbulence of size s = 2.5 causes
the state transitions to be stochastic. Thus, after having applied the canoeist’s
action to his position (also considering the flow of the river), the new position
is finally given by x′ = x + n, where n ∈ [−s, s] is a uniformly distributed
random value. For the two-dimensional version the river is extended by a width
w. Accordingly, there are two additional actions available to the canoeist, one
to move the canoe to the left and one to move it to the right by one unit. The
position of the canoeist is now denoted by (x, y), the (re-)starting position is
(0, 0). The velocity of the flow v and the amount of turbulence s depend on y:
v = 3y/w and s = 3.5 − v. In the discrete problem setting, which we use here,
x and y are always rounded to the next integer value. While on the left edge of
the river the flow velocity is zero, the amount of turbulence is maximal; on the
right edge there is no turbulence (in the discrete setting), but the velocity is too
high to paddle back.

4.2 Results

We performed experiments with a river size of 10x10 (100 states) and 20x20 (400
states). For both settings a fixed number of observations was generated using
random exploration. The observations were used as input to generate policies
using the different algorithms. The discount factor was chosen as γ = 0.95. Each
resulting policy was evaluated over 100 episodes with 1000 steps each. The re-
sults are summarized in fig. 1 (averaged over 100 trials). For clarity only the
results of stochastic policies are shown (except for ξ = 0, i.e., standard policy
iteration), they performed better than the deterministic ones in all experiments.
Usually a method like DUIPI aims at quantile optimization, i.e., reducing the
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Fig. 2. Left: histograms of average rewards of 104 policies with ξ = 0 (solid), ξ = 1

(dashed), and ξ = 2 (dotted). For the generation of each policy 4 × 104 observations

were used. Right: mean (solid) and 0.1-quantile (dashed) average rewards of policies

with ξ = 0 (‘•’ marks), ξ = 0.5 (‘×’ marks), and ξ = 1 (‘+’ marks).

probability of generating very poor policies at the expense of a lower expected
average reward. However, in some cases it is even possible to increase the ex-
pected performance, when the MDP exhibits states that are rarely visited but
potentially result in a high reward. For Wet-Chicken states near the waterfall
have those characteristics. An uncertainty unaware policy would try to reach
those states if there are observations leading to the conclusion that the prob-
ability of falling down is low, which in fact is high. In [10] this is reported as
“border-phenomenon”, which by our more general explanation is included. Due
to this effect it is possible to increase the average performance using uncertainty
aware methods for policy generation, which can be seen from the figure. For
small numbers of observations and high ξ-values DUIPI performs worse as in
those situations the action selection in the iteration is dominated by the uncer-
tainty of the Q-values and not the Q-values themselves. This leads to a preference
of actions with low uncertainty, the Q-values play only a minor role. This effect
is increased by the fact that due to random exploration most observations are
near the beginning of the river, where the immediate reward is low. Using a
more intelligent exploration scheme could help to overcome this problem. Due
to the large computational and memory requirements the full-matrix method
could not be applied to the problem with river size 20x20. Moreover, results of
the full-matrix version with Bayesian estimation are not shown as they would
not have been distinguishable in the figure.

Fig. 2 compares uncertainty aware and unaware methods. Considering the
uncertainty reduces the amount of poor policies and even increases the expected
performance (ξ = 0.5). Setting ξ = 1 results in an even lower probability for
poor policies at the expense of a lower expected average reward.

Table 1. Computation times to generate a policy using a single core of an Intel

Core 2 Quad Q9550 processor

method Wet-Chicken 5x5 Wet-Chicken 10x10 Wet-Chicken 20x20

full-matrix 5.61 s 1.1 × 103 s —

DUIPI 0.002 s 0.034 s 1.61 s
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5 Conclusion

In this paper, we presented DUIPI, a computationally very feasible algorithm
for incorporation of uncertainty into the Bellman iteration. It only considers the
diagonal of the covariance matrix encoding the covariance. While this causes
the algorithm to be only approximate, it also decreases its complexity, decreas-
ing the computational requirements by orders of magnitude. Moreover, we pro-
posed a Bayesian parameter estimation that incorporates prior knowledge about
the number of successor states. Our experiments show that DUIPI increases
the robustness and performance of policies generated for MDPs whose exact
parameters are unknown and estimated from only a fixed set of observations.
In industrial applications observations are often expensive and arbitrary explo-
ration not possible, we therefore believe that for those applications knowledge of
uncertainty is crucial. Future work will consider application of UP to RL algo-
rithms involving function approximation and utilizing knowledge of uncertainty
for efficient exploration.
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Abstract. The problem of determining an optimal training schedule for

a locally recurrent neural network is discussed. Specifically, the proper

choice of the most informative measurement data guaranteeing the reli-

able prediction of the neural network response is considered. Based on

a scalar measure of the performance defined on the Fisher information

matrix related to the network parameters, the problem was formulated

in terms of optimal experimental design. Then, its solution can be read-

ily achieved via the adaptation of effective numerical algorithms based

on the convex optimization theory. Finally, some illustrative experiments

are provided to verify the presented approach.

1 Introduction

A training of neural network, being the dynamic data-driven process requires a
proper selection of measurement data to provide satisfactory representation of
the modelled system behaviour [1,2]. In practice, this is equivalent to determina-
tion of a limited number of observational units obtained from the experimental
environment in such a way as to obtain the best quality of the system responses.

The importance of input data selection has already been recognized in many
application domains [3]. One of the most stimulating practical examples is Fault
Detection and Identification (FDI) of industrial systems [4]. A crucial issue
among the fundamental tasks of failure protection systems is to provide reliable
diagnosis of the expected system state. To produce such a forecast, however, an
accurate model is necessary and its calibration requires parameter estimation.
Preparation of experimental conditions in order to gather informative measure-
ments can be very expensive or even impossible (e.g. for the faulty system states).
On the other hand, the data form real-world system may be very noisy and us-
ing all the available data may lead to significant systematic modelling errors. In
result, we are faced with the problem of optimal choice of the available training
data in order to obtain the most accurate model.

Although it is well known that the training quality for neural networks heavily
depends on the choice of input sequences, surprisingly, there have been relatively
few contributions to experimental design for those systems [5,6] and, in addition,
they focus mainly on the multi-layer perceptron class of networks. The appli-
cability of such a static type of networks for the modelling of dynamic systems

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 80–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is rather limited. Recently, the problem of optimal selection of input sequences
in the context of dynamic neural networks has been discussed by the authors
in [7,4], where the problem is formulated in spirit of optimum experimental de-
sign theory for lumped systems [8]. However, the simulation results presented
therein concern the training of the single dynamic neuron only. The contribution
of this work is to extend this approach to the locally recurrent neural network
with one hidden layer which can be applied in real-world systems. Moreover, to
illustrate the delineated approach some experiments are performed using real
process data.

2 Dynamic Neural Networks

The topology of the neural network considered is analogous to that of the multi-
layered feedforward one and the dynamics are reproduced by the so-called dy-
namic neuron models [9,10,4]. The state-space representation of the neuron is
shown in Fig. 1. In this paper a discrete-time dynamic network with n time
varying inputs and m outputs is discussed. The description of such kind of a
dynamic network with v hidden dynamic neurons, each containing an r-th order
IIR filter, is given by the following nonlinear system:{

x(k + 1) = Ax(k) + Wu(k)
y(k) = Cσ(Bx(k) + Du(k) − g)T

, (1)

where N = v × r represents the number of model states, x ∈ RN is the state
vector, u ∈ R

n, y ∈ R
m are input and output vectors, respectively, A ∈ R

N×N

is the block diagonal state matrix (diag(A) = [A1, . . . ,Av]), W ∈ RN×n (W =
[w11T , . . . ,wv1T ]T , where wi is the input weight vector of the i-th hidden neu-
ron), and C ∈ Rm×v are the input and output matrices, respectively, B ∈
Rv×N is a block diagonal matrix of feedforward filter parameters (diag(B) =
[b1, . . . , bv]), D ∈ Rv×n is the transfer matrix (D = [b01w

T
1 , . . . b0vwT

v ]T ),
g = [g1 . . . gv]T denotes the vector of biases, and σ : Rv → Rv is the nonlin-
ear vector-valued function. The presented structure can be viewed as a network
with a single hidden layer containing v dynamic neurons as processing elements
and an output layer with linear static elements. For structural details of the
network considered, the interested reader is referred to [4,11].

Ai

bi
0

biz−1wi 1 σ(·)
yi(k)u(k)

xi(k)xi(k+1)

++

Fig. 1. State-space form of the i-th neuron with IIR filter
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3 Optimal Sequence Selection Problem

3.1 Statistical Model

Let yj = y(uj ; θ) = {y(k; θ)}Lj

k=0 denote the sequence of network responses for
the sequence of inputs uj = {u(k)}Lj

k=0 related to the consecutive time instants
k = 0, . . . ,Lj < ∞ and selected from among an a priori given set of input
sequences Ud = {u1, . . . ,uP }, where Ud ⊂ U . Here θ represents a p-dimensional
unknown network parameter vector which must be estimated using observations
of the system (i.e. filter parameters, weights, slope and bias coefficients).

From the statistical point of view, the sequences of observations related to P
input sequences may be considered as

zj(k) = yj(k; θ) + εj(k), k = 0, . . . ,Lj , j = 1, . . . , P, (2)

where zj(k) is the output and εj(k) denotes the measurement noise. It is cus-
tomary to assume that the measurement noise is zero-mean, Gaussian and white,
i.e.

E[εi(k)εj(k′)] = v2δijδkk′ , (3)

where v > 0 is the standard deviation of the measurement noise, δij and δkk′

standing for the Kronecker delta functions.
An additional substantial assumption is that the training of the neural net-

work, equivalent to the estimation of the unknown parameter vector θ, is per-
formed via the minimization of the least-squares criterion

θ̂ = arg min
θ∈Θad

P∑
j=1

Lj∑
k=0

‖zj(k) − yj(k; θ)‖2, (4)

whereΘad is the set of admissible parameters. It becomes clear that since yj(k; θ)
strongly depends on the input sequences uj it is possible to improve the training
process through appropriate selection of input sequences.

3.2 Sequence Quality Measure and Experimental Design

In order to properly choose the input sequences which will be most informative
for the training of the dynamic network, a quantitative measure of the goodness
of parameter identification is required. A reasonable approach is to choose a
performance measure defined on the Fisher Information Matrix (FIM), which is
commonly used in optimum experimental design theory [12,8,13].

Sequences which guarantee the best accuracy of the least-squares estimates
of θ are then found by choosing uj , j = 1, . . . , P so as to minimize some scalar
measure of performance Ψ defined on the average Fisher information matrix
given by [14]:

M =
1

PLj

P∑
j=1

Lj∑
k=0

H(uj , k)HT (uj , k), (5)
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where

H(u, k) =
(
∂y(u, k; θ)

∂θ

)
θ=θ0

(6)

stands for the so-called sensitivity matrix, θ0 being a prior estimate to the un-
known parameter vector θ which can be obtained from previous experiments or
alternatively some known nominal values can be used [15,16,14,17].

Such a formulation is generally accepted in optimum experimental design for
nonlinear dynamic systems, since the inverse of the FIM constitutes, up to a
constant multiplier, the Cramér-Rao lower bound on the covariance matrix of
any unbiased estimator of θ [13], i.e.

cov θ̂ � M−1. (7)

Under somewhat mild assumptions [16,17], it is legitimate to assume that our
estimator is efficient in the sense that the parameter covariance matrix achieves
the lower bound.

As for criterion Ψ , various choices are proposed in the literature [13,8], but
the most popular choice is so-called D-optimality (determinant) criterion:

Ψ(M ) = − log detM ; (8)

which minimizes the volume of the uncertainty ellipsoid for the parameter esti-
mates. The introduction of an optimality criterion renders it possible to formu-
late the sensor location problem as an optimization problem:

Ψ
[
M(u1, . . . ,uP )

]
−→ min (9)

with respect to uj , j = 1, . . . , P belonging to the admissible set U .
The direct consequence of the assumption (3) is that we admit replicated in-

put sequences, i.e. some ujs may appear several times in the optimal solution
(because independent observations guarantee that every replication provides ad-
ditional information). Consequently, it is sensible to reformulate the problem so
as to operate only on the distinct sequences u1, . . . ,uS instead of u1, . . . ,uP by
relabelling them suitably. To this end, we introduce r1, . . . , rS as the numbers
of replicated measurements corresponding to the sequences u1, . . . ,uS . In this
formulation, the uis are said to be the design or support points, and p1, . . . , pS
are called their weights. The collection of variables

ξP =
{

u1, u2, . . . , uS

p1, p2, . . . , pS

}
, (10)

where pi = ri/P , P =
∑S
i=1 ri, is called the exact design of the experiment.

The proportion pi of observations performed for ui can be considered as the
percentage of experimental effort spent at that sequence. Hence, we are able to
rewrite the FIM in the form

M(ξP ) =
S∑
i=1

pi
1
Li

Li∑
k=0

HT (ui, k)H(ui, k). (11)
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Here the pis are rational numbers, since both ris and P are integers. This leads
to a discrete numerical analysis problem whose solution is difficult for standard
optimization techniques, particularly when P is large. A potential remedy for
this problem is to extend the definition of the design. This is achieved through
the relaxation of constraints on weights, allowing the pis to be considered as
real numbers in the interval [0, 1]. This assumption will be also made in what
follows. Obviously, we must have

∑S
i=1 pi = 1, so we may think of the designs

as probability distributions on U . This leads to the so-called continuous designs,
which constitute the basis of the modern theory of optimal experiments [8,13].
It turns out that such an approach drastically simplifies the design, and the
existing rounding techniques [8] justify such an extension. Thus, we shall operate
on designs of the form

ξ =

{
u1, u2, . . . , uS

p1, p2, . . . , pS
;

S∑
i=1

pi = 1; ∀i pi � 0

}
, (12)

which concentrates Pp1 observational sequences for u1 (so we repeat approxi-
mately Pp1 times the presentation of this sequence during the training of the
network), Pp2 for u2, and so on. Then we may redefine optimal design as a
solution to the optimization problem

ξ� = arg min
ξ∈Ξ(U

Ψ [M (ξ)], (13)

where Ξ(U) denotes the set of all probability distributions on U .

3.3 Characterization of Optimal Solutions

In the remainder of this chapter we shall assume that H ∈ C(U ; Rp). The
following characterizations of the optimal design ξ� can be derived in a rather
straightforward manner from the general results given in [14] or [17].

Theorem 1. An optimal design exists comprising no more than p(p+1)/2 sup-
port sequences. Moreover, the set of optimal designs is convex.

The practical importance of this property cannot be underestimated since we
can restrict our attention to the designs with limited number of sequences what
significantly reduces the complexity of resulting optimization problem. But the
next theorem is essential for the approach considered and provides a tool for
checking the optimality of designs. It is usually called an equivalence theorem
[18].

Theorem 2 (Equivalence theorem). The following conditions are equiva-
lent:

(i) the design ξ� minimizes Ψ(M) = − ln detM(ξ),
(ii) the design ξ� minimizes maxui∈U φ(ui, ξ) , and
(iii) maxui∈U φ(ui, ξ) = p,
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and the so-called sensitivity function

φ(ui, ξ) = trace
(

1
Li

Li∑
k=0

HT (ui, k)M−1H(ui, k)
)

is of paramount importance here as it can be interpreted in terms of average
variance of the estimated system response being the natural measure for the
quality of the training process. From the result above it comes immediately
that suppressing the maximal level of the prediction variance is equivalent to
the optimization of the D-optimality criterion. This paves the way to almost
direct application of numerous efficient algorithms known from experimental
design theory to the discussed problem. Since analytical determination of optimal
designs is difficult or impossible even for very simple network structures, some
iterative design procedures will be required. A simple computational scheme for
that purpose is given in the next section.

4 Selection of Training Sequences

In the case considered in the paper, a computational algorithm can be derived
based on the mapping T : Ξ(U) → Ξ(U) defined by

T ξ =
{

u1, . . . , uS

p1φ(u1, ξ)/p, . . . , pSφ(uS , ξ)/p

}
. (14)

From Theorem 2 it follows that a design ξ� is D-optimal if it is a fixed point of
the mapping T , i.e.

T ξ� = ξ�. (15)

Therefore, the following algorithm can be used as a generalization of that pro-
posed in [19, p. 139] for the classical optimum experimental design problem
consisting in iterative computation of a D-optimum design on a finite set:

Step 1. Guess a discrete starting design ξ(0) such that p(0)
i > 0 for i = 1, . . . , S.

Choose some positive tolerance η � 1. Set � = 0.
Step 2. If the condition

φ(ui, ξ(�))
p

< 1 + η, i = 1, . . . , S

is satisfied, then STOP.
Step 3. Construct the next design ξ(k+1) by determining its weights according

to the rule

p
(�+1)
i = p

(�)
i

φ(ui, ξ(�))
m

, i = 1, . . . , S,

increment k by one and go to Step 2.

The convergence result of this scheme can be found in [17].
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5 Illustrative Example

Simulation setting. All experiments were carried out using the AMIRA DR300
laboratory system. This laboratory system is used to control the rotational speed
of a DC motor with a changing load [4]. A separately excited DC motor was
modelled by using the dynamic neural network presented briefly in Section 2. The
output signal was the rotational speed (T ) measured by an analog tachometer.
The input signal (U) was selected as a sum of sinusoids:

U(k) = 3 sin(2π1.7k) + 3 sin(2π1.1k − π/7) + 3 sin(2π0.3k + π/3) (16)

The structure of the neural network model (1) was selected arbitrarily and had
the following structure: one input, three IIR neurons with second order filters and
hyperbolic tangent activation functions, and one linear output neuron. Taking
into account that a neural network is a redundant system, some of its parameters
are not identifiable. In order to apply optimum experimental design to the neuron
training, certain assumptions should be made. So, without loss of generality, let
us assume that the feedforward filter parameter b0 for each hidden neuron is fixed
to the value of 1. This reduces the dimensionality of estimation and assures the
identifiability of the rest of the parameters (i.e. it assures that the related FIM
is non-singular).

At the beginning, the network was preliminarily trained in order to obtain
the initial parameters estimates. Feeding the laboratory system with signal (16),
a learning set containing 500 samples was formed, and then the training pro-
cess was carried out off-line for 2000 steps using the Extended Dynamic Back-
Propagation (EDBP) algorithm [7]. At the second stage of the training, the
learning data were split into 20 time sequences, containing 150 consecutive sam-
ples each. The design purpose was to choose from this set of all learning patterns
the most informative sequences (in the sense of D-optimality) and their presen-
tation frequency (i.e. how often they should be repeated during the training).
To determine the optimal design, a numerical routine from Section 4 was im-
plemented in the form of the Matlab program. All the admissible learning
sequences taken with equal weights formed the initial design. The accuracy of
the design algorithm was set to η = 10−2.

Results. The network was preliminarily trained and the initial network parame-
ters estimates are presented in the second column of Table 1. In this case the Sum
of Squared Errors (SSE) calculated using the training set was equal to 5.7001.
After that, the training of the network was continued in two ways. The first way
was to use the optimal training sets selected during the optimum experimental
design phase. The second way was to use random sequences as the training ones.
The purpose of these experiments is to check the quality of parameter estimation.
In the case considered here the optimal design consists of the sequences 5, 6, 8
and 16. For a selected design, each distinct sequence was replicated proportion-
ally to its weight in the design with total number of replications assumed to be
P = 10. For example, if the optimal design consists of the four aforementioned
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sequences with the weights 0.3, 0.1, 0.3 and 0.3, respectively, then during the
training the 5-th, 8-th and 16-th sequences were used three times each, and the
6-th sequence only once (in random order). The training procedure was repeated
10 times using different measurement noise affecting the output of the system.
The statistics are presented in Table 1. As we can see there, the application of
training sets selected according to the optimal design leads to the better accura-
cies of parameter estimates than in the case of randomly selected training sets.
It is observed that the standard deviation of each network parameter has lower
value in the case of the optimal design what means the more reliable estimate
of a given parameter.

The uncertainty of the network response prediction is examined based on
the parameter estimates determined using the optimal and random designs. The
testing phase of each of 10 realizations of locally recurrent network was performed
using 1000 samples different from the training ones, and for each realization the
quality measure in the form of the SSE was calculated. The results of testing are
presented in Table 2. Looking at these results one can state that using random
design it is possible to obtain a good generalization of the network, e.g. networks
9 and 10, but the results of training are not repetitive as in the case of optimal
design when 9 of 10 training run give the similar good results. This fact, in
connection with the plot of response prediction variance (Fig. 2) clearly shows

Table 1. Sample mean and the standard deviation of parameter estimates

para- initial sample mean standard deviation

meter value random design optimal design random design optimal design

w1 0.3232 0.2867 0.2894 0.0104 0.0028

w2 0.9000 0.9105 0.9082 0.0034 0.0009

w3 0.0758 0.0898 0.0789 0.0194 0.0027

b11 0.8328 0.8187 0.8195 0.0040 0.0011

b21 -0.6316 -0.6053 -0.6072 0.0078 0.0019

b31 0.8558 0.8616 0.8581 0.0079 0.0011

b12 0.7892 0.7742 0.7747 0.0042 0.0011

b22 0.0631 0.0910 0.0897 0.0082 0.0019

b32 0.5745 0.5808 0.5812 0.0076 0.0011

a11 0.1258 0.1302 0.1301 0.0012 0.0003

a21 0.0853 0.0807 0.0812 0.0015 0.0004

a31 -0.4171 -0.4196 -0.4170 0.0055 0.0015

a12 0.1656 0.1703 0.1703 0.0012 0.0003

a22 0.0266 0.0217 0.0221 0.0016 0.0004

a32 -0.5566 -0.5587 -0.5562 0.0052 0.0015

g1 -0.3794 -0.4057 -0.4024 0.0132 0.0055

g2 -0.3978 -0.3599 -0.3673 0.0206 0.0089

g3 0.3187 0.3040 0.3136 0.0189 0.0008

c1 -0.4908 -0.4905 -0.4893 0.0081 0.0032

c2 0.7773 0.7708 0.7716 0.0078 0.0035

c3 0.4540 0.4438 0.4408 0.0075 0.0006
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Table 2. Results of network testing –

SSE measure

Network Random Optimal

realization design design

1 29.7367 31.0998

2 27.4287 26.5564

3 42.4463 26.4758

4 85.8052 26.6182

5 99.5833 26.4214

6 82.9475 26.4577

7 35.3615 26.6521

8 29.6130 26.5550

9 26.8438 26.5030

10 26.2403 26.2885
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that training based on optimal learning sequences leads to greater reliability of
the network response as the maximal variance level can be significantly reduced.

Taking into account the computation burden, for the case considered here
the selection of the optimal plan lasted 9 seconds. For comparison, the 500
training steps carried out off-line with the sequence of the length 500 lasted
117.18 seconds. Summarizing, the process of the optimal design selection by
itself does not significantly prolongate the overall training procedure.

6 Conclusions

The results reported in this paper show that some well-known methods of opti-
mum experimental design for linear regression models can be easily extended to
the setting of the optimal training sequence selection problem for dynamic neu-
ral networks. The clear advantage of the proposed approach is that the quality
of the training process measured in terms of the uncertainty of network response
prediction can be significantly improved with the same effort spent on training
or, alternatively, training process complexity can be reduced without degrading
the network performance.

The proposed approach was also tested using other network structures. Exper-
iments were carried out for a locally recurrent network with two hidden neurons
as well as for a network with five hidden neurons. In each case considered, the
results are similar to these presented in the paper taking into account the relia-
bility of parameters estimates.

Future research will be focused on the application of other methods for deter-
mining optimal designs, namely methods which do not determine the presenta-
tion frequency, thus its practical application is easier.
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15. Uciński, D.: Optimal selection of measurement locations for parameter estimation

in distributed processes. International Journal of Applied Mathematics and Com-

puter Science 10(2), 357–379 (2000)

16. Rafaj�lowicz, E.: Optimum choice of moving sensor trajectories for distributed pa-

rameter system identification. International Journal of Control 43(5), 1441–1451

(1986)
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Abstract. Recent research has shown that the provisional count of votes

of an ensemble of classifiers can be used to estimate the probability

that the final ensemble prediction coincides with the current majority

class. For a given instance, querying can be stopped when this proba-

bility is above a specified threshold. This instance-based ensemble prun-

ing procedure can be efficiently implemented if these probabilities are

pre-computed and stored in a lookup table. However, the size of the ta-

ble and the cost of computing the probabilities grow very rapidly with

the number of classes of the problem. In this article we introduce a

number of computational optimizations that can be used to make the

construction of the lookup table feasible. As a result, the application of

instance-based ensemble pruning is extended to multi-class problems. Ex-

periments in several UCI multi-class problems show that instance-based

pruning speeds-up classification by a factor between 2 and 10 without

any significant variation in the prediction accuracy of the ensemble.

Keywords: Instance based pruning, ensemble learning, neural networks.

1 Introduction

Ensemble methods generate a collection of diverse classifiers by introducing vari-
ations in the algorithm used to train the base predictors or in the conditions
under which learning takes place [1,2,3,4,5]. The classification of an unlabeled
instance by the ensemble is obtained by combining the predictions of the indi-
vidual classifiers. In majority voting, each classifier in the ensemble is asked to
predict the class label of the instance considered. Once all the classifiers have
been queried, the class that receives the greatest number of votes is returned
as the final decision of the ensemble. The time needed to classify an instance
increases linearly with the size of the ensemble. However, in many cases, it is not
necessary to compute the predictions of every classifier to obtain a reliable esti-
mate of the prediction of the complete ensemble. Assuming that the classifiers
of the ensemble are generated independently when conditioned to the training
data1, the class labels predicted by the ensemble members can be seen as in-
dependent identically distributed random variables. With this assumption, it is
possible to compute the probability that the current majority class coincides with
1 Note that this is different from assuming that the classifiers are unconditionally

independent.
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the final ensemble prediction, on the basis of the known class votes. Therefore,
for a given instance, the querying process can be halted when this probability
is above a specified threshold. This dynamical instance-based ensemble pruning
can be used in practice to speed-up the classification process [6,7].

For statistical IB-pruning to be effective, the probability that the final deci-
sion of the ensemble will not change when taking into account the remaining
votes needs to be rapidly computed. A possible implementation is to store pre-
computed values of these probabilities in a lookup table. The difficulty is that
both the size of the table and the cost of evaluating the probability values grow
very quickly with the number of class labels. Hence, applying IB-pruning to
classification problems with more than two classes remains a challenging task.

In this work we introduce several techniques that can be applied to reduce the
size of the lookup table and to optimize the process of computing these probabil-
ity values. With the proposed optimizations, IB-pruning can be effectively used
to reduce the time of classification by ensembles also in multi-class problems.
Specifically, in this work problems with up to 11 different classes are considered.
In the problems investigated, the number of classifiers queried is reduced by a
factor between ≈ 2 and ≈ 10. The empirical rates of disagreement between the
class predicted by the dynamically pruned ensembles and the complete ones are
close to the confidence level specified and often below it. Furthermore, the actual
differences in classification error between these two ensembles are very small; in
fact, much smaller than the disagreement rates.

The article is structured as follows: Statistical instance-based ensemble prun-
ing is briefly reviewed in Section 2. Section 3 describes the optimizations that
make the application of IB-pruning to problems with more than two classes prac-
ticable. Section 4 illustrates the improvements in classification speed that can be
achieved when IB-pruning is used in a variety of multi-class problems. Finally,
the conclusions of this work are summarized in Section 5.

2 Statistical Instance-Based Ensemble Pruning

Consider an ensemble composed of T classifiers {h(x)i}Ti=1. The class assigned to
an unlabeled instance, x, when majority voting is used to combine the outputs
of the ensemble classifiers is

arg max
y

T∑
t=1

I(ht(x) = y), y ∈ Y , (1)

where ht(x) is the prediction of the t-th ensemble member, I is an indicator
function and Y = {y1, . . . , yl} is the set of possible class labels.

The predictions of the classifiers in the ensemble can be summarized in the
vector T ≡ {T1, T2, . . . , Tl;

∑l
i=1 Ti = T } where Ti is the number of members

in the ensemble that predict class yi for the instance to be classified. Similarly,
the vector that stores the prediction of the first t ≤ T classifiers in the ensemble
is t ≡ {t1, t2, . . . , tl;

∑l
i=1 ti = t; ti ≤ Ti, i = 1, 2, . . . , l}. Assuming the individ-

ual classifiers of the ensemble are built independently when conditioned to the
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training data, the probability that the class labels predicted by the subensemble
of size t < T and by the complete ensemble of size T coincide is

P̃(t, T ) =
∑
T

∗
[

(T − t)!
(t+ l)T−t

l∏
i=1

(ti + 1)Ti−ti

(Ti − ti)!

]
, (2)

where (a)n = a(a+1) · · · (a+n−1) is the Pocchammer symbol, or rising factorial,
with a and n nonnegative integers, and the asterisk indicates that the summation
runs over all values of T such that

∑l
i=1 Ti = T , {Ti ≥ ti, i = 1, 2, . . . , l}, and

Tk∗t > Tj for j �= k∗
t , where k∗

t is the majority class after querying the first t
classifiers. See [6] for further details.

If it is acceptable that the coincidence between these two predictions is not
necessarily certain, but occurs with a high confidence level π, (2) can be used
to stop the querying process after the predictions of t classifiers in the ensemble
are known, when the vector of class predictions of the current subensemble t is
such that P̃(t, T ) ≥ π. Since the fraction of examples that are assigned a differ-
ent class label by the pruned ensemble of size t and the complete subensemble
is at most 1 − π, the differences in error should be smaller than this disagree-
ment rate. In practice, the changes in class labels affect both correctly labeled
examples and misclassified examples in approximately equal numbers, and the
differences in error rates are much smaller than this upper bound. Therefore, for
a given instance the partial ensemble prediction can be used instead of the com-
plete ensemble to save time in the classification process at the expense of small
differences in the assignment of class labels, which generally do not translate
into large differences in generalization performance.

To determine whether the polling process can be stopped it is necessary to
know the values of P̃(t, T ), whose computation can be costly. Since for a given
number of classes l and ensemble size T , these probabilities only depend on t,
they can be pre-computed and stored in a lookup table. The difficulty is that
for l < T both the size of the lookup table that stores pre-computed probability
values and the cost of computing each entry in the table are nearly exponential
in the number of different class labels l. The number of different entries in this
table is

(
T+l
T

)
, namely the number of different ways in which T objects can be

assigned to l+1 classes. The extra class corresponds to the unknown predictions
of the classifiers that have not been queried.

The cost of evaluating (2) depends on the number of vectors T involved in the
summation. This number is different for each entry of the table and is given by
the number of values of T such that Tk∗t is the majority class. As a consequence
of the constraints Ti ≥ ti its value decreases as the value of the components
of t increase. Thus, the maximum number of different vectors T, Cmax(T, l), is
obtained for the entry corresponding to t = 0. This is the worst possible scenario
which sets an upper bound on the time-complexity of evaluating (2).

The value of Cmax(T, l) can be expressed in terms of N(n, r,m), the number
of different ways of decomposing a positive integer n into r non-negative integers
that are all smaller or equal than m,
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n1 + n2 + · · · + nr = n ni ≤ m i = 1, 2, . . . , r .

If m ≥ n the problem reduces to computing the different ways of assigning n
objects to r classes with repetitions allowed, namely

(
n+r−1
n

)
. Otherwise, it is

given by the formula

N(n, r,m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n/(m+1)�∑

i=0

(−1)i
(
r

i

)(
n− i(m+ 1) + r − 1

n− i(m+ 1)

)
if n ≤ mr

0 otherwise

. (3)

To calculate Cmax(T, l) we need to count the number of different vectors T
involved in the summation in which the minority votes can be distributed among
the l−1 minority classes. Assume that the majority class gets i votes. The number
of different ways of distributing the remaining votes among the remaining l − 1
classes, so that all of the minority classes receive less than i votes is N(T − i, l−
1, i− 1). Summing over all possible values of i, we obtain

Cmax(T, l) =
T∑

i=�T/l
N(T − i, l− 1, i− 1). (4)

Figure 1 (left) displays in log scale the size of the table and the maximum num-
ber of operations needed to calculate each element in the table (Cmax(T, l)) as
the number of class labels l increases for T = 101. These two numbers grow very
rapidly with the number of classes l. The increase from l− 1 classes to l classes
corresponds in both cases to a multiplicative factor of ≈ T/l. In consequence,
the problem quickly becomes intractable even for relatively small numbers of
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of the computation of the table entries (Cmax(T, l)) as a function of number of classes

of the lookup or T = 101. (Right) Lookup table for T = 101, π = 0.99 and l = 3.
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classes. For T = 101 and l = 2, . . . , 7, the maximum number of vectors T in-
volved in the summation (and table sizes) are: 51 (5253), 1734 (182104), 44867
(4780230), 937747(101340876),16489227(1807245622), 250881300(27883218168),
respectively. Thus, even for l = 3, building the lookup table is costly: The ta-
ble has 182, 104 entries and computing each entry demands as much as 1, 734
operations whose time-complexity is O(l).

3 Optimizations

In this section we describe several exact optimizations that can be applied to
build the lookup table in a more efficient way1. First, each of the terms in the
summation in (2) can be computed faster if the factors that are repeatedly used
in the calculation are stored in auxiliary tables. Second, the size of the lookup
table can also be reduced by storing the minimal amount of information that
is needed to reach a decision on when to stop querying classifiers. Finally, some
of the terms contribute with the same value to the sum in (2). Therefore, it is
sufficient to compute this value only once and then multiply the result by the
number of equivalent terms.

The calculation of each term inside the summation in (1) requires the com-
putation of the product of one factor of the form

(T − t)!/(t+ l)T−t . (5)

and of l factors of the form

(ti + 1)Ti−ti/(Ti − ti)! (6)

The number of different values that these factors can have is determined by Ti,
ti and t. The variables Ti and t take values in the range [0, T ] and ti ≤ Ti.
Therefore, for a given T there are only (T + 1)T/2 different outcomes for (6)
and T + 1 for (5). This is a fairly small number of values that can be easily pre-
computed and stored in an auxiliary table. Thus, each term in the summation
that appears in (2) can be readily computed as a product of l of these factors.
In addition, to avoid numerical difficulties with the computations that involve
factorials, (6) and (5) are calculated using the prime-factor decomposition of the
numbers involved.

Regarding the reduction of the size of the lookup table, the following optimiza-
tions can be made: Instead of storing probabilities, it is sufficient to generate a
table whose entries correspond to the distribution of votes in the minority classes
only. The value stored in the table for each entry is the minimum number of votes
for the majority class needed to estimate the complete ensemble prediction with
a confidence level π, given the observed minority classes. The size of the lookup
table can be further reduced if the votes in t are kept in memory sorted in de-
creasing order. The overhead associated to keeping the votes sorted when new

1 Source code available at http://www.eps.uam.es/~gonzalo/publications/
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predictions are known is very small, of O(l) per classifier queried. Thus, the first
element in t corresponds to the currently observed majority class. The remaining
observations correspond to the minority classes which are used as indexes for the
lookup table. Because ti ≥ ti+1 for all i, the value of ti is at most �T/i� − 1 for
i = 1, 2, . . . , l.

The dependence of the size of the table on the number of classes with and
without the optimizations described is shown in the left plot of Fig. 1 for an
ensemble of size T = 101. The right plot of Fig. 1 displays the lookup table for
l = 3, T = 101 and π = 99%. The value stored in the position of the table
labeled by the pair (t2, t3) corresponds to the minimum number of votes of the
majority class t∗1(t2, t3) that are needed to anticipate the ensemble prediction
with a confidence level π = 99% when the two minority classes have received
t2 and t3 votes, respectively. The triangular shape of the table is given by the
constrains t1 > t2 ≥ t3. The critical values of the majority class are plotted using
an inverted gray scale: a darker color indicates that higher values for the majority
class are needed to stop the voting process, according to the scale displayed on
the right-hand side of the figure.

The optimizations introduced thus far allow to compute lookup tables for
small and intermediate values of l, the total number of classes. In problems
with a larger number classes, the rapid growth in the number of terms that
need to be considered makes the calculation of (2) unfeasible. Nevertheless, this
computation is manageable for instances that during the classification process
have received votes in at most k classes. Instances that have votes in more than
k classes can be classified by querying all the classifiers in the ensemble, without
pruning. An instance that has received votes in only k classes when t classifiers
have been queried is characterized by a vector t whose l−k last components are
zero: tk+1 = tk+2 = . . . = tl = 0. For these instances, it is sufficient to compute
a lookup table with the same dimensions as a table designed for a problem with
k classes. Note that if ti = 0 then (6) is equal to one independently of the
value of Ti. This observation can be used to simplify the computation of (2) in
two ways: First, in each of the terms in the summation (2) it is not necessary
to multiply by the factors of the form (6) for classes i = k + 1, k + 2, . . . , l,
because they are all equal to one. Second, when t = {t1, t2, . . . , tk, 0, . . . , 0} all
terms T of the form {T1, . . . , Tk, ∗, . . . , ∗} contribute with the same value in
(2). For a particular value of T1, T2, . . . , Tk, the number of terms T of the form
{T1, . . . , Tk, ∗, . . . , ∗}, is N(T −

∑k
i=1 Ti, l − k, T1 − 1); that is, the number of

ways in which the remaining votes, T −
∑k
i=1 Ti, can be decomposed among the

remaining l − k classes so that none of these classes receives more votes than
T1. Thus, the terms of the form {T1, . . . , Tk, ∗, . . . , ∗} can be grouped and their
contribution in (2) calculated by computing the value of one of them and then
multiplying by their count N(T −

∑k
i=1 Ti, l−k, T1−1). Using this optimization

the actual number of different terms that need to be computed in (2) grows
slowly with l for fixed k. For example, for T = 101 and k = 3 the number of final
vectors T to be computed grow from 44867 with l = 4 to 59821 with l = 101.



96 G. Mart́ınez-Muñoz, D. Hernández-Lobato, and A. Suárez
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Fig. 2. Lookup table computation process for T = 15 and l = 3 (left) and for T = 15,

l = 6 and k = 3 (Right)

Fig. 2 illustrates the process of construction of the lookup table for T = 15,
l = 3 and k = 3 (left part of the figure) and for T = 15, l = 6 and k = 3
(right part). On the left-hand side the list of final vectors T that have to be
analyzed during the computation of the lookup table are shown. Note that not
all of them have to be taken into account to compute every entry of the table.
For instance, to calculate the entry (t2 = 0, t3 = 0) all combinations (T1, T2, T3)
are needed. For entry (t2 = 5, t3 = 1) only combinations such that T2 ≥ 5 and
T3 ≥ 1 are used. In the case of l = 6 classes and k = 3 (right part of the figure)
the procedure for computing the table is equivalent except that each term is
multiplied by the number of equivalent vectors T that contribute with the same
value (fourth column of the list of combinations, under the header #).

4 Experiments

The performance of the instance-based pruning procedure described is illustrated
in experiments on benchmark multi-class problems from [8]. For each problem,
we generate 100 random partitions of the data into two disjoint sets that contain
2/3 and 1/3 of the instances, respectively. The first set is used for constructing
the ensembles while the second one is used for evaluation. For each of these
partitions, we build a bagging ensemble composed of 101 neural networks [1].
In bagging, each network is trained on a different bootstrap sample of the data
available. The neural networks are single layer feed forward networks with 5
units in the hidden layer and soft-max outputs. They are trained using a maxi-
mum of 1, 000 epochs using the quasi-Newton method BFGS. These choices were
made so that a good overall accuracy is obtained in the classification problems
investigated. The nnet R package [9] is used to train the neural networks. The
performance of the ensembles is estimated on the test set. For each instance
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Table 1. Results for the analyzed datasets

classes Disagreement Classification Error # of NN (Q1 Q2 Q3)

Dataset (k) (in %) IB-Pruning No pruning

Dermatology 6 0.034±0.166 2.82±1.31 2.80±1.31 10.9 (8.0 8.0 10.0)

DNA 3 0.090±0.108 5.20±0.68 5.19±0.68 12.0 (7.0 7.0 9.0)

E-coli 8 0.196±0.485 23.84±11.22 23.80±11.27 34.7 (8.0 11.0 63.0)

(k = 5) 18.48% instances with votes for more than 5 classes

Glass 6 0.310±0.651 31.18±5.01 31.17±4.93 31.4 (10.0 18.0 45.0)

Iris 3 0.080±0.394 4.78±2.59 4.82±2.68 9.8 (7.0 7.0 7.0)

LED24 10 0.149±0.139 28.40±1.79 28.40±1.79 21.9 (8.0 8.0 14.0)

(k = 5) 9.24% instances with votes for more than 5 classes

New-Thyroid 3 0.056±0.274 3.94±2.13 3.94±2.11 9.7 (7.0 7.0 7.0)

Satellite 6 0.128±0.068 12.23±0.68 12.23±0.68 14.8 (8.0 8.0 10.0)

Segment 7 0.042±0.094 2.91±0.55 2.90±0.55 11.6 (8.0 8.0 8.0)

(k = 5) 0.74% instances with votes for more than 5 classes

Vehicle 4 0.408±0.395 17.82±2.04 17.79±2.01 24.1 (7.0 11.0 29.0)

Vowel 11 0.364±0.305 23.32±2.44 23.24±2.40 50.2 (14.0 31.0 101.0)

(k = 5) 29.99% instances with votes for more than 5 classes

Waveform 3 0.284±0.169 16.87±1.28 16.85±1.28 18.7 (7.0 9.0 17.0)

Wine 3 0.068±0.334 2.19±1.89 2.15±1.91 9.4 (7.0 7.0 7.0)

to be classified, the networks in the ensemble are queried at random without
repetition. The vector of votes t is updated so that its elements remain sorted.
The querying process is stopped when t1 is equal or greater than the entry of
the lookup table corresponding to the minority classes {t2, . . . , tl}. For problems
with l ≤ 6 the complete lookup table for all possible values of t is computed.
For problems with more than six classes, k = 5 is used to compute the lookup
table. In these problems, if an instance receives votes for more than five classes
after t queries, then the full ensemble is used to predict its class label. All the
lookup tables are computed using π = 99% and T = 101.

Table 1 summarizes the results for the datasets investigated. The values re-
ported correspond to averages over the 100 random partitions into training and
test data. The standard deviations are also reported after the ± symbols. The
second column of the table displays l, the number of classes of each problem and,
if different, the k value used to generate the table. If k �= l, the percentage of
instances that require querying all the networks in the ensemble is also indicated.
The third column displays the average disagreement rates between the predic-
tions of the full ensemble and the predictions of the ensemble when IB-pruning
is used. The generalization error and standard deviation of these predictions are
given in the fourth and fifth columns, respectively. Finally, the sixth column
displays the average number of neural networks used by IB-pruning to classify
each instance and the quartiles between parenthesis.

The disagreement rates between the pruned and the complete ensemble class
estimates are under 1−π in all the problems investigated. Furthermore, the dif-
ferences in classification error between the complete ensemble and the IB-pruned
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Table 2. Execution time

l k time (sec.) Cmax table size

3 3 0.76 1,734 884

4 4 13.9 44,867 8,037

5 5 758.4 937,747 46,262

6 6 24,757 16,489,227 189,509

6 5 10,126 16,489,227 46,262

7 5 15,037 18,798,419 46,262

8 5 18,579 19,398,244 46,262

9 5 19,279 19,605,911 46,262

10 5 20,143 19,692,158 46,262

11 5 20,270 19,732,838 46,262

12 5 20,417 19,754,960 46,262

ensemble are almost negligible, well below the disagreement rates. This means
that the changes in the class labels occur in approximately the same numbers
of correctly and incorrectly classified instances. A paired two-sided Wilcoxon
sign test at 5% indicates that these differences in classification error are not
statistically significant in any of the problems investigated. The average number
of neural networks used to classify the different instance varies significantly in
different problems. This value is below 10 on average for Iris, New-Thyroid and
Wine. For Vowel approximately half of the networks need to be queried on av-
erage. These figures indicate an increment of the classification speed in a factor
that varies between 2 for Vowel and 10.7 for Wine. The smaller improvement
for Vowel is due to the fact that 30.2% of instances have votes for more than
5 classes and, in consequence, they are classified using all the classifiers in the
ensemble, i.e. 101 neural networks.

Table 2 displays the costs of constructing the lookup table for different values
of l and k. The computations have been performed in a 2.4 Ghz Intel Xeon
processor. The times reported in the second column of the table are given in
seconds. The third column displays the values of Cmax, the number of terms
in the sum in (2) when t = 0. Finally, the last column gives the sizes of the
lookup tables constructed. The time needed to compute the lookup table grows
very quickly with l, when k = l (first four rows of the table). This is mainly due
to the fast increase in the number of terms in the sum in (2), and, to a lower
extent, to the larger table size. If the value k is kept fixed (last seven rows of
the table), the size of the table remains constant as l increases. In addition, the
growth of the maximum number of terms in the sum in (2) is much slower. The
combination of these factors leads to a fairly slow increment in the time needed
to build the table for increasing values of l and constant k.

5 Conclusions

Majority voting is often used to combine the decisions of the classifiers that make
up an ensemble. In most cases, it is not necessary to query all classifiers in the
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ensemble to estimate the final class prediction with a high level of confidence.
Assuming that, for a given instance, the predictions of the classifiers are indepen-
dent random variables, it is possible to calculate the probability that the majority
class obtained after querying t classifiers will not change after querying the re-
maining T −t classifiers of the ensemble. If some uncertainty in the estimation of
the class prediction of the complete ensemble is acceptable, the querying process
can be stopped when this probability exceeds a specified threshold π, typically
high, but smaller than 1. Because less classifiers are queried, this instance-based
pruning procedure can be used to increase the classification speed, provided that
the values of these probabilities are readily available. A possible solution is to
compute them and then store them in a lookup table. The difficulty is that the
size of the lookup table and the cost of computing the values to be stored in
it grow very fast as the number class labels of the problem increases. In this
article we propose several techniques that can be used to optimize this process,
and allow the application of IB-pruning in multi-class problems. Experiments
in problems with up to 11 classes show that the classification speed can be im-
proved by a factor between ≈ 2 and ≈ 10, depending on the problem considered,
without any significant variation in the classification error of the ensemble. The
optimized tables are smaller and can be stored in the working memory of a stan-
dard desktop computer. They can be computed off-line for a given ensemble size,
number of classes (l) and value of k and can then be used for any classification
task and ensemble type, provided that the classifiers are trained independently.
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Abstract. It has been shown that Kernel Based Regression (KBR) with

a least squares loss has some undesirable properties from robustness point

of view. KBR with more robust loss functions, e.g. Huber or logistic

losses, often give rise to more complicated computations. In this work

the practical consequences of this sensitivity are explained, including

the breakdown of Support Vector Machines (SVM) and weighted Least

Squares Support Vector Machines (LS-SVM) for regression. In classical

statistics, robustness is improved by reweighting the original estimate.

We study the influence of reweighting the LS-SVM estimate using four

different weight functions. Our results give practical guidelines in order

to choose the weights, providing robustness and fast convergence. It turns

out that Logistic and Myriad weights are suitable reweighting schemes

when outliers are present in the data. In fact, the Myriad shows better

performance over the others in the presence of extreme outliers (e.g.

Cauchy distributed errors). These findings are then illustrated on toy

example as well as on a real life data sets.

Keywords: Least Squares Support Vector Machines, Robustness, Ker-

nel methods, Reweighting.

1 Introduction

Regression analysis is an important statistical tool routinely applied in most
sciences. However, using least squares techniques there is an awareness of the
dangers posed by the occurrence of outliers present in the data. Not only the
response variable can be outlying, but also the explanatory part, leading to
leverage points. Both types of outliers may totally spoil an ordinary LS analysis.
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To cope with this problem, statistical techniques have been developed that are
not so easily affected by outliers. These methods are called robust or resistant.
A first attempt was done by Edgeworth [1]. He argued that outliers have a very
large influence on LS because the residuals are squared. Therefore, he proposed
the least absolute values regression estimator (L1 regression). The second great
step forward in this class of methods occurred in the 1960s and early 1970s with
fundamental work of Tukey [2], Huber [3] and Hampel [4]. From their work the
following methods were developed: M -estimators, Generalized M -estimators, R-
estimators, L-estimators, S-estimators, repeated median estimator, least median
of squares, . . . . Detailed information about these estimators as well as methods
for robustness measuring can be found in [5],[6], [7] and [8].

All of the above mentioned techniques were originally proposed for parametric
regression. In this paper we further investigate these ideas to the nonparametric
case, more specifically for Least Squares Support Vector Machines (LS-SVM).
Other recent work in this direction is [9], [10] and [11]. LS-SVMs were pro-
posed by Suykens et al. [12] as a reformulation of the Support Vector Machines
(SVM) [13], applicable to a wide range of problems in supervised and unsuper-
vised learning. In case of LS-SVMs one works with equality instead of inequality
constraints and a sum of squared error cost function is used. Due to this, the re-
gression solution is found by solving a linear system instead of a convex quadratic
programming problem. By using an L2 cost function robustness properties are
lost. A successful attempt to improve the robustness was given by Suykens et
al. [14]. The technique is based on a two stage approach: first, classical LS-SVM
is applied and secondly appropriate weighting values are computed taking the
residuals of the first step into account. For LS-SVM this weighting technique
can be employed cheaply and efficiently in order to robustify the solution. In
this way the weighting procedure serves as an alternative to other robust esti-
mation methods based on L1 and Huber’s loss function without giving rise to
complicated computations.

In this paper we show that the weighted LS-SVM breaks down under non Gaus-
sian noise distributions with heavy tails. In order to deal with these distributions
a reweighting scheme is proposed. Different weight functions are investigated in
order to compare their performance under these heavy tailed distributions. This
paper is organized as follows. In Section 2 we briefly review the basic notions of
weighted LS-SVM. Section 3 explains the practical difficulties associatedwith esti-
mating a regression function when the data is contaminated with outliers.
Section 4 describes some extensions of existing results in order to deal with out-
liers in nonparametric regression. The methods are illustrated on a toy example
as well as on real life data sets in Section 5.

2 Weighted LS-SVM for Nonlinear Function Estimation

In order to obtain a robust estimate, one can replace the L2 loss function in the
LS-SVM formulation by e.g. L1 or Huber’s loss function. This would lead to a
Quadratic Programming (QP) problem and hence increasing the computational
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load. Instead of using robust cost functions, one can obtain a robust estimate
based upon the previous LS-SVM solution. Given a training set defined as Dn =
{(Xk, Yk) : Xk ∈ Rd, Yk ∈ R; k = 1, . . . , n} of size n drawn i.i.d. from an unknown
distribution FXY according to Yk = g(Xk)+ek, k = 1, . . . , n, where ek ∈ R are
assumed to be i.i.d. random errors with E[ek|X = Xk] = 0, Var[ek] = σ2 < ∞,
g ∈ Cz(R) with z ≥ 2, is an unknown real-valued smooth function and E[Yk|X =
Xk] = g(Xk). The optimization problem of finding the vector w and b ∈ R for
regression can be formulated as follows [12]

min
w,b,e

J (w, e) = 1
2w

Tw + γ
2

n∑
k=1

vke
2
k

s.t. Yk = wTϕ(Xk) + b+ ek, k = 1, . . . , n,
(1)

where the error variables from the unweighted LS-SVM êk = α̂k/γ (case vk =
1, ∀k) are weighted by weighting factors vk [14] according to (3) and ϕ : Rd →
Rnh is the feature map to the high dimensional feature space as in the standard
(SVM) [13] case.

By using Lagrange multipliers, the solution of (1) can be obtained by taking
the Karush-Kuhn-Tucker (KKT) conditions for optimality. The result is given
by the following linear system [12] in the dual variables α(

0 1Tn
1n Ω + Dγ

)(
b
α

)
=
(

0
Y

)
, (2)

with Dγ = diag
{

1
γv1

, . . . , 1
γvn

}
. The weights vk are based upon êk = α̂k/γ from

the (unweighted) LS-SVM (Dγ = I). The weights vk are given by [6]

vk =

⎧⎨⎩
1, |êk/ŝ| ≤ c1;
c2−|êk/ŝ|
c2−c1 , c1 ≤ |êk/ŝ| ≤ c2;

10−8, otherwise,
(3)

where ŝ = 1.483 MAD(êk) is a robust estimate of the standard deviation, where
MAD is the Median Absolute Deviation. The constants are set to c1 = 2.5
and c2 = 3. Also Y = (Y1, . . . , Yn)T , 1n = (1, . . . , 1)T , α = (α1, . . . ,αn)T and
Ωkl = ϕ(Xk)Tϕ(Xl) = K(Xk, Xl) for k, l = 1, . . . , n, with K a positive definite
kernel. The resulting weighted LS-SVM model for function estimation becomes

ĝ(x) =
n∑
k=1

α̂kK(x,Xk) + b̂. (4)

3 Problems with Outliers in Nonparametric Regression

A number of problems, some quite fundamental, occur when nonparametric re-
gression is attempted in the presence of outliers. In nonparametric regression,
e.g. Nadaraya-Watson kernel estimates, local polynomial kernel estimates, spline
estimates and wavelets estimates, the L2 risk is often used. There are two reasons
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for considering the L2 risk: (i) this simplifies the mathematical treatment of the
whole problem and (ii) trying to minimize the L2 risk leads to estimates which
can be computed rapidly. However, the L2 risk can be very sensitive to regression
outliers. A linear kernel (in kernel-based regression) leads to non-robust meth-
ods. On the other hand using decreasing kernels, i.e. kernels such that K(u) → 0
as u → ∞, leads to quite robust methods with respect to outliers in the x-space
(leverage points). The influence for both x → ∞ and x → −∞ is bounded in
R when using decreasing kernels. Common choices for decreasing kernels are:
K(u) = max(1 − u2, 0), K(u) = exp(−u2) and K(u) = exp(−u).

This breakdown of kernel based nonparametric regression is illustrated by a
simple simulated example in Figure 1. Consider the following 200 observations
{(X1, Y1), . . . , (X200, Y200)} according to the relation f(X) = 1 − 6X + 36X2 −
53X3 + 22X5 and X ∼ U [0, 1]. Two different types of outlier sets are added
to the underlying function. The errors are normally distributed with variance
σ2 = 0.05 and σ2 = 0.1 in Figure 1d. In Figure 1b and Figure 1c three outliers
are added to the data. LS-SVM (unweighted case) cannot cope with the outliers
showing a bump between 0.8 and 0.95. Notice that the unweighted LS-SVM only
shows a local and not a global breakdown for the regression. SVM [13] on the
other hand, deals with these type of outliers since it uses an ε-insensitive loss
function. Figure 1c shows that the weighted LS-SVM method is able to handle
these outliers and has a similar result as SVM. In Figure 1d the distribution of
the errors was given by the gross error model or ε-contamination model [3] and
is defined as follows

U(F0, ε) = {F : F (e) = (1 − ε)F0(e) + εG(e), 0 ≤ ε ≤ 1} (5)

where F0 is some given distribution (the ideal nominal model), G is an arbi-
trary continuous distribution and ε is the first parameter of contamination. This
contamination model describes the case, where with large probability (1 − ε),
the data occurs with distribution F0 and with small probability ε outliers occur
according to distribution G. In this case the contamination distribution G was
taken to be a cubic standard Cauchy distribution and ε = 0.3. This distribution
is quite special since its moments are not defined. Both robust methods fail to
fit the underlying regression model.

4 Iteratively Reweighted Kernel Based Regression

In this Section we describe and compare four types of weight functions. Also
convergence properties for each of the weight functions are given.

4.1 Weight Functions

Many weight functions have been proposed in literature, especially for linear
regression [6]. Four of these weight functions V : R → [0, 1], with V (r) = ψ(r)

r
satisfying V (0) = 1, are shown in Table 1 with corresponding loss function
L(r) and score function ψ(r) = dL(r)

dr . The first three weight function are quite
common and are often used in regression [6,10]. The fourth function, Myriad with
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Fig. 1. Simulated data with two types of different outlier sets, fitted with LS-SVM

(dashed line) and SVM (dotted line). The full line represents the underlying polynomial

function. SVM and weighted LS-SVM (dashed line in (c) and (d)) can both handle the

first type of outliers, but fail when the contamination distribution is taken to be a cubic

standard Cauchy with ε = 0.3. For visual reasons, not all data is displayed in (d).

parameter δ ∈ R
+
0 , has been proposed in the area of statistical nonlinear signal

processing [15]. The Myriad is derived from the Maximum Likelihood (ML)
estimation of a Cauchy distribution [16] and is used as a robust location estimator
in stable noise environments. When using the Myriad as a location estimator it
can be shown that the Myriad offers a rich class of operation modes that can be
controlled by varying the parameter δ. When the noise is Gaussian, large values of
δ can provide the optimal performance associated with the sample mean, whereas
for highly impulsive noise statistics, the resistance of mode-type estimators can
be achieved by setting low values of δ. Arce [15] observed experimentally that
values on the order of the data range, δ ≈ X(n)−X(1), often make the Myriad an
acceptable approximation to the sample average. We denote X(m) as the m-th
order statistic for m = 1, . . . , n. Intermediate values of δ assume a sample set
with some outliers and some well behaved samples. On the other side, when δ is
small i.e. δ ≈ mini,j |Xi −Xj |, the Myriad is to be considered approximately a
mode estimator.
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Table 1. Definitions for the Huber, Hampel, Logistic and Myriad (with parameter

δ ∈ R
+
0 ) weight functions V (·). The corresponding loss L(·) and score function ψ(·) are

also given.

Huber Hampel Logistic Myriad

V (r)

{
1, if |r| < β;
β
|r| , if |r| ≥ β.

⎧⎨⎩
1, if |r| < b1;
b2−|r|
b2−b1

, if b1 ≤ |r| ≤ b2;

0, if |r| > b2.

tanh(r)

r

δ2

δ2 + r2

ψ(r)

L(r)

{
r2, if |r| < β;

β|r| − 1
2
c2, if |r| ≥ β.

⎧⎪⎨⎪⎩
r2, if |r| < b1;
b2r2−|r3|

b2−b1
, if b1 ≤ |r| ≤ b2;

0, if |r| > b2.

r tanh(r) log(δ2
+ r2

)

One can obtain a robust estimate based upon the previous LS-SVM solutions
using an iteratively reweighting approach. In the i-th iteration one can weight
the error variables ê(i)k = α̂

(i)
k /γ for k = 1, . . . , n by weighting factors v(i) =

(v(i)
1 , . . . , v

(i)
n )T ∈ Rn, determined by one of the four weighting functions in Table 1.

One obtains an iterative algorithm, see Algorithm 1, to solve the problem.

Algorithm 1. Iteratively Reweighted LS-SVM
1: Given optimal learning parameters (γ, σ), e.g. by cross-validation, and

compute the residuals êk = α̂k/γ from the unweighted LS-SVM (vk = 1, ∀k)
2: repeat
3: Compute ŝ = 1.483 MAD(e(i)k ) from the e(i)k distribution
4: Determine the weights v(i)

k based upon r(i) = e
(i)
k /ŝ and the chosen

weight function V in Table 1

5: Solve the weighted LS-SVM (2) with Dγ = diag
{

1
γv

(i)
1
, . . . , 1

γv
(i)
n

}
,

resulting the model m̂(i)(x) =
∑n
k=1 α̂

(i)
k K(x,Xk) + b̂(i)

6: Set i = i+ 1
7: until consecutive estimates α

(i−1)
k and α

(i)
k are sufficiently close to each

other ∀k = 1, . . . , n. In this paper we take maxk(|α(i−1)
k − α

(i)
k |) ≤ 10−4.

4.2 Speed of Convergence-Robustness Trade-Off

In a functional analysis setting it has been shown in [9] and [10] that the influence
function [4] of reweighted Least Squares Kernel Based Regression (LS-KBR) with
a bounded kernel converges to bounded influence function, even when the initial
LS-KBR is not robust, if

(c1) ψ : R → R is a measurable, real, odd function,
(c2) ψ is continuous and differentiable,
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(c3) ψ is bounded,
(c4) EPe ψ

′(e) > 0 where Pe denotes the distribution of the errors. This condi-
tion can be relaxed into ψ is increasing.

The influence function (IF) describes the (approximate and standardized) effect
of an additional observation in any point x on a statistic T , given a (large)
sample with distribution F . Thus an unbounded IF means that an infinitesimal
amount of outliers can have an arbitrary large effect.

Define

d = EPe

ψ(e)
e

and c = d− EPe ψ
′(e), (6)

then it can be shown [10] that c/d establishes an upper bound on the reduction
of the influence function at each step. The upper bound represents a trade-off
between the reduction of the influence function (speed of convergence) and the
degree of robustness. The higher the ratio c/d the higher the degree of robustness
but the slower the reduction of the influence function at each step and vice versa.

In Table 2 this upper bound is calculated at a Normal distribution, a standard
Cauchy and a cubic standard Cauchy for the four types of weighting schemes.
Note that the convergence of the influence function is quite fast, even at heavy
tailed distributions.

For Huber and Myriad weights, the convergence rate decreases rapidly as
β respectively δ increases. This behavior is to be expected, since the larger β
respectively δ, the less points are downweighted. Also note that the upper bound
on the convergence rate approaches 1 as β, δ → 0, indicating a high degree
of robustness but slow convergence rate. A good choice between convergence
and robustness is therefore Logistic weights. Also notice the small ratio for the
Hampel weights indicating a low degree of robustness. The inability of these
weights to handle extreme outliers is shown in the next Section. For further
elaboration on the topic we refer the reader to [11].

5 Simulations

5.1 Toy Example

Recall the low order polynomial function in Section 3 with 200 observations
according to f(X) = 1 − 6X + 36X2 − 53X3 + 22X5 and X ∼ U [0, 1]. The
distribution of the errors is given by the gross error model, see Section 3, with
ε = 0.3, F0 = N(0, 0.1) and G = C3(0, 1). The results for the four types of
weight functions are shown in Figure 2 and performances in the three norms are
given in Table 3. For this simulation we set β = 1.345, b1 = 2.5 and b2 = 3 and
δ = 1

2 [ê(i)( 3
4n) − ê

(i)
( 1
4n)] where ê(i)(m) denotes the m-th order statistic of the residual ê

in the i-th iteration. For all simulations, the learning parameters are tuned via 10-
fold robust cross-validation. This simulation shows that the four weight functions
are able to handle these extreme outliers. Although Hampel and Myriad weight
functions do not satisfy the relaxed condition of (c4), condition (c4) is valid for
common error distributions i.e. Normal, Cauchy, Student t, Laplace, . . . . This
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Table 2. Values of the constants c, d and c/d for the Huber (with different cutoff

values β), Logistic, Hampel and Myriad (for different parameters δ) weight function

at a standard Normal distribution, a standard Cauchy and a cubic standard Cauchy.

The bold values represent an upper bound for the reduction of the influence function

at each step.

Weight Parameter N(0, 1) C(0, 1) C3(0, 1)
function settings c d c/d c d c/d c d c/d

β = 0.5 0.32 0.71 0.46 0.26 0.55 0.47 0.0078 0.034 0.23

Huber β = 1 0.22 0.91 0.25 0.22 0.72 0.31 0.0022 0.037 0.059
β = 2 0.04 0.99 0.04 0.14 0.85 0.17 0.0002 0.038 0.0053

Logistic 0.22 0.82 0.26 0.21 0.66 0.32 0.004 0.035 0.12

Hampel
b1 = 2.5

0.006 0.99 0.006 0.02 0.78 0.025 0.00003 0.038 0.0007
b2 = 3

δ = 0.1 0.11 0.12 0.92 0.083 0.091 0.91 0.007 0.009 0.83
δ = 0.6475 0.31 0.53 0.60 0.24 0.40 0.60 0.01 0.028 0.36Myriad

δ = 1 0.31 0.66 0.47 0.25 0.50 0.50 0.008 0.032 0.25
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Fig. 2. Low order polynomial function with 200 observations according to f(X) =

1− 6X + 36X2 − 53X3 + 22X5 and X ∼ U [0, 1]. The distribution of the errors is given

by the gross error model with ε = 0.3, F0 = N(0, 0.1) and G = C3(0, 1). The dotted

line is the corresponding SVM fit. The iteratively reweighted LS-SVM with (a) Huber

weights (full line) and Hampel weights (dash dotted line); (b) Logistic weights (full

line) and Myriad weights (dash dotted line).

simulation shows the best performance for the Myriad weight function. This is
to be expected since it was designed for such types of outliers.

5.2 Real Life Data Sets

The octane data [17] consist of NIR absorbance spectra over 226 wavelengths
ranging from 1102 to 1552 nm. For each of the 39 production gasoline samples
the octane number Y was measured. It is well known that the octane data
set contains six outliers to which alcohol was added. Table 4 shows the result



108 K. De Brabanter et al.

Table 3. Performances in the three norms (difference between the estimated function

and the true underlying function) of the different weight functions used in iteratively

reweighted LS-SVM on the low order polynomial. The last column denotes the number

of iterations imax needed to satisfy the stopping criterion in Algorithm 1.

L1 L2 L∞ imax

Huber 0.06 0.005 0.12 7

Hampel 0.06 0.005 0.13 4

Logistic 0.06 0.005 0.11 11

Myriad 0.03 0.002 0.06 17

Table 4. Results on the Octane and Demographic data sets. For 200 simulations the

medians and mean absolute deviations (between brackets) of three norms are given

(on test data). imax denotes the number of iterations needed to satisfy the stopping

criterion in Algorithm 1. The best results are bold faced.

Octane Demographic

weights L1 L2 L∞ imax L1 L2 L∞ imax

Huber 0.19(0.03) 0.07(0.02) 0.51(0.10) 15 0.31(0.01) 0.14(0.02) 0.83(0.06) 8

IRLS Hampel 0.22(0.03) 0.07(0.03) 0.55(0.14) 2 0.33(0.01) 0.18(0.04) 0.97(0.02) 3

SVM Logistic 0.20(0.03) 0.06(0.02) 0.51(0.10) 18 0.30(0.02) 0.13(0.01) 0.80(0.07) 10

Myriad 0.20(0.03) 0.06(0.02) 0.50(0.09) 22 0.30(0.01) 0.13(0.01) 0.79(0.06) 12

WLS
0.22(0.03) 0.08(0.02) 0.60(0.15) 1 0.33(0.02) 0.15(0.01) 0.80(0.02) 1

SVM

SVM 0.28(0.03) 0.12(0.02) 0.56(0.13) - 0.37(0.02) 0.21(0.02) 0.90(0.06) -

(medians and mean absolute deviations) of a Monte Carlo simulation (200 times)
of the iteratively reweighted LS-SVM (IRLS-SVM), weighted LS-SVM (WLS-
SVM) and SVM in different norms on a randomly chosen test set of size 10. As
a next example consider the data about the demographical information on the
50 states of the USA in 1980. The data set provides information on 25 variables.
The goal is to determine the murder rate per 100,000 population. The result is
shown in Table 4 for randomly chosen test sets of size 15. The results of the
simulations show that by using reweighting schemes the performance can be
improved over weighted LS-SVM and SVM. To illustrate the trade-off between
the degree of robustness and speed of convergence, the number of iterations imax
are also given in Table 4. The stopping criterion was taken identically to the
one in Algorithm 1. The number of iterations, needed by each weight function,
confirms the results in Table 2.

6 Conclusion

In this paper we have compared four different type of weight functions and their
use in iterative reweighted LS-SVM. We have shown through simulations that
reweighting is useful when outliers are present in the data. By using an upper
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bound for the reduction of the influence function we have demonstrated the ex-
istence of a trade-off between speed of convergence and the degree of robustness.
The Myriad weight function is highly robust against (extreme) outliers but has
a slow speed of convergence. A good compromise between speed of convergence
and robustness can be achieved by using Logistic weights.
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Abstract. This work investigates the benefits of using different distri-

bution functions in the evolutionary learning algorithms with respect to

Artificial Neural Networks’ (ANNs) generalization ability. We examine

two modification of the recently proposed network weight-based evo-

lutionary algorithm (NWEA), by mixing mutation strategies based on

three distribution functions at the chromosome and the gene levels. The

utilization of combined search strategies in the ANNs training implies

that different step sizes determined by mixed distributions will direct

the evolution towards good generalized ANNs.

Keywords: Artificial Neural Networks, Learning, Evolutionary

Algorithms.

1 Introduction

Evolutionary Algorithms (EAs) have found wide application in optimization
of Artificial Neural Networks parameters, since they outperform the originally
proposed gradient-descent learning approaches in terms of computations speed,
simplicity and resistance to local minima trapping. However, mutation-based
EAs, i.e. Evolutionary Programming (EP) and Evolutionary Strategies (ES) have
proven to be more efficient in ANNs’ learning than Genetic Algorithms, which
due to their primary search operator (crossover) often face the permutation
problem [1], [2], [14].

The key aspects that EP and ES concentrate on are the self-adaptive meth-
ods for changing the strategy parameters and the distribution used in mutation.
The classical EP and ES algorithms utilize the standard normal distribution and
similar self-adaptive methods, introduced by Rechenberg [3] and Schwefel [4] for
ES and independently, by Fogel [5], [6] for meta-EP (widely known as classi-
cal EP). Later, Yao et al. [7] established that the distribution in the mutation
strategy is crucial in the determination of the mutation step size, and proposed
a novel EP technique, called the Fast Evolutionary Programming (FEP) [8],
[9], which adopts the self-adaptation strategy of the classical EP (CEP), but
uses the Cauchy distribution instead of the Gaussian one. Further, Yao inves-
tigated the impact of utilizing both Gaussian and Cauchy distributions at the
chromosome and gene level and introduced modifications of FEP, referred to

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 111–120, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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as the improved Fast Evolutionary Programming (IFEP) and the mixed Fast
Evolutionary Programming (MEP), respectively [13].

This work is concerned with the improvement of the evolutionary learning in
ANNs. The goal for this work is to investigate the impact of mixing search bi-
ases of mutations based on three different distributions, on the generalization in
ANNs. More specifically, we study how different step sizes determined by mixed
distributions improve the quality affect the algorithm’s convergence speed and
the quality of evolved ANNs. We introduce two modifications of the recently
proposed network weight (NW)-based EA (NWEA) strategy [10], which com-
bine Gaussian, Cauchy and uniform distributions at the chromosome and gene
levels in the learning strategy (the original NWEA strategy is based on the
uniform distribution). In contrast to the CEP and FEP approaches, which are
independent search methods, the NWEA algorithm was developed specially for
ANNs’ learning. The main feature of NWEA consists in the special approach to
the adjustment of the random values. The strategy parameter in the classical
techniques is evolved during the evolution alongside with the object parameters.
In comparison to that, the adaptation strategy in NWEA consists of two com-
ponents, which bear the information about the position of an individual in the
search space and based of this knowledge, bias the improvement towards the per-
spective regions of the search space. The first modification of NWEA, referred
further to as combined NWEA (CNWEA) produces three offspring as a result of
mutation by using Gaussian, Cauchy and uniform random values, respectively
(i.e. provides mutation at the chromosome level). The second modification uses
three distributions to generate one offspring (i.e. carries out mutation at the gene
level). The utilization of particular type of distribution is defined by a certain
probability.

In order to evaluate the ANNs produced by CNWEA and MNWEA, the
preliminary experimental studies on the breast cancer and heart disease diagnosis
data sets were provided. The generalization results of ANNs, evolved by CNWEA
and MNWEA were compared with those, evolved by NWEA, which is shown to
be more efficient than classical searching techniques [11].

The rest of the paper is organized as follows: Section 2 discusses the advan-
tages of using Gaussian and Cauchy distributions in terms of step size. Section 3
described the features of the NWEA adaptation strategy and main steps of
the learning algorithm. Sections 4 and 5 introduce the combined NWEA (CN-
WEA) and the mixed NWEA (MNWEA), respectively. Following that, Section 6
presents the experiments and analyses the obtained results. Finally, Section 7
concludes this paper.

2 Length of Gaussian and Cauchy Jumps

Both CEP and FEP use the same mutation scheme to modify individuals and the
same self-adaptation strategy to correct mutation step size. The only difference
is the distribution used to generate random numbers. Therefore, it is reasonable
to claim that the features of algorithms’ performances are caused by a type of
used distribution. Let us discuss the advantages of using both distributions.
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The expected length of Gaussian (with μ = 0 and σ2 = 1) and Cauchy (with
γ = 1) jumps can be calculated by integrating their probability density functions:

EG(x) =
∫ +∞

0
x

1√
2π
e−

x2
2 dx =

1√
2π

= 0.399

EC(x) =
∫ +∞

0
x

1
π (1 + x2)

dx = +∞

Apparently, the Cauchy distribution enables longer jumps than the Gaussian
one. At first sight it seems that longer jumps in the search space induce quicker
convergence, and so the Cauchy distribution is preferable in the searching strat-
egy. However, this assumption is wrong. The analytical studies in [3] provided
to investigate when large jumps are beneficial, showed that long jumps are ad-
vantageous only when the global optimum is far away from the current search
point. In other words, long jumps are effective when the distance between the
global optimum and the current point is larger than mutation’s step size. On the
other hand, the Cauchy distribution will no longer be beneficial when the dis-
tance between the neighbourhood of the global optimum and the current point
is smaller than the step size of the mutation. This implies that the use of small
jumps is more effective near the neighbourhood of the global optimum. Hence,
the Gaussian distribution increases the probability of finding the optimum when
the distance between the current point and the neighbourhood of the global
optimum is small.

3 Network Weight-Based Evolutionary Algorithm
(NWEA)

The basic step of the self-adaptation mechanism in CEP and FEP consists of
a mutation of mutation parameters themselves, i.e. the evolution of strategy
parameters alongside with the object parameters. The modification of the control
parameters is realized by multiplication with a random variable.

In contrast to the classical evolutionary algorithms, the NWEA algorithm [10],
designed to evolve ANNs’ parameters, uses different self-adaptation approach to
find an optimum. The self-adaptation in NWEA comprises two control parame-
ters, which incorporate genotype and phenotype information about the position of
an individual in search space. The first component includes information about
worth of a chromosome according to its fitness. The second component adds
information about the current ANN topology, the genotype encodes, i.e. infor-
mation about position of an individual in the ANN architecture space. Alike ES
and EP, the NWEP approach relies on mutation and does not utilize crossover
at all.

The evolution with the NWEA algorithm is implemented as follows:

1. Create an initial population consisting of randomly generated chromosomes.
Each chromosome xi = (x(1)

i , x
(2)
i , ..., x

(k)
i ), ∀i ∈ {1, ..., μ}, represents one
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possible set of connection weights1, where is a population size, k is a total
number of connections between neurons and x

(j)
i ∈ [−1.0; 1.0], j ∈ {1, ..., k}

is a connection weight.
2. Evaluate the fitness of each individual from a population according to the

objective function.
3. In contrast to other EP approaches, which apply probabilistic selection meth-

ods for choosing parents for reproduction, NWEA ”allows” all parental chro-
mosomes to take part in the creation of new individuals. It is worth noting
that during mutation only one gene in the parental chromosome changes
its value. Offspring chromosomes are created by application of the following
equation to every chromosome in the population:

x
(j)′

i = x
(j)
i

(
1.0 +NW (l, n̄) ·NE ·ND

Rand

)
, (1)

where x(j)
i is a gene randomly chosen out of a chromosome xi and mutated,

NW (l, n̄) is a value, called network weight, that implicitly describes an ANN’s
internal structure, NE represents an error, determined by the error function
(MSE or other) of xi, and ND

Rand is a uniformly distributed random value.
The components NE and NW (l, n̄) represent the adjustment components

in the mutation strategy. They add knowledge about position and worth of
a chromosome in search space in order to achieve the optimal improvement
of chromosomes at each stage of evolution. The component NE in Eq. (1)
represents the genotype information, i.e. error of the mutated chromosome,
which changes dynamically for every mutated chromosome. It enables the
control of a randomly generated value and the adjustment of the mutation
strength to an individual depending on its fitness, i.e. the higher the error
of a chromosome, the higher the step size.

The value NW (l, n̄) depends on the number of hidden layers l and the
average number of neurons in hidden layers n̄ in the given ANN and is defined
by Eq. (2). This value is distributed by the Fermi-Dirac-like function and is
calculated according to the following formula:

Nw(l, n̄) = A1 +
l

2
+

B1 − l
2

1 + exp
(
n̄−μ
T1

) (2)

The value μ is similar to the chemical potential in the original Fermi-Dirac
function (as cited in [10]) and depends on the number of hidden layers:

μ = A2 +
B2

1 + exp
(
l−B2
T2

) (3)

The coefficients A1 = 3.0, B1 = 2.0, T1 = 0.4, A2 = 1.2, B2 = 3.2, T2 =
0.6 were obtained by the approximation of the results in [10] so that the
NWvalues never become negative (the coefficients T1 and T2 correspond to

1 In case of the simultaneous evolution of ANN’s weights and architectures, each chro-

mosome consists of a set of vectors according to the ANN’s connectivity matrix.
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the temperature in the original Fermi-Dirac function). For each ANN the
quantity NW is calculated only once and does not change its value dur-
ing the evolution, if we consider the evolution of connection weights in the
environment determined by an ANN architecture; in case of simultaneous
evolution of architectures and connection weights it becomes a new value
every time when ANN’s architecture is changed.

The main advantage of incorporating phenotype information in mutation
is that it comprises detailed knowledge about the ANN’s topology2 and thus
enables to improve the values of connection weights in respect to a given
phenotype. It is known from the theory of evolution that individuals with
favorable traits, determined by the genotype, are more likely to survive and
reproduce (“survival of the fittest”) and the fitness of every individual is
defined by the individual’s ability to adapt to the environment. From such
point of view, the NWEA approach is an abstraction, which involves the
knowledge of an environment (phenotype) and adapts genotype of every
individual to it, and thus, increases the fitness of chromosomes of every next
generation.

4. Evaluate the fitness of a new individual based on the objective function.
5. Repeat the process from point (3) until λ (λ ≥ μ) new chromosomes are

created.
6. Create new population of m individuals: new population is created accord-

ing to the (μ + λ)-ES elitist method, which choosesμbest individuals from
both parental and offspring chromosomes based on their fitness. This is ac-
complished by applying 2-tournament selection method that selects a group
of individuals (usually four) from both parental and offspring populations,
and compares their fitness. The individual with the higher fitness reaches
the offspring population.

7. Repeat the process from point (2) until some halting criteria are satisfied.

Thus, by creating offspring population our greedy modification of the NWEA
strategy selects the current best individuals. On the other hand, the risk of
trapping is local optima is minimal, since the random values initially have long
and short step sizes.

4 Combined NWEA (CNWEA)

The main idea behind combined NWEA (CNWEA) is to mix different search
biases of mutations utilize Gaussian, Cauchy and uniform distributions, at the
chromosome level. The benefits of using Gaussian and Cauchy distributions were
described in section 3. The utilization of the uniformly distributed random values
does not have strong motivation; however it adds an additional randomness in
the evolution process.
2 Although mutation strategy in (1) incorporates the knowledge about ANN’s internal

structure, it gives detailed information about considering topology, since the number

of neurons in input and output layers is determined by a solving problem.
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The implementation of CNWEA is simple and differs from NWEA only in
point 3 of the algorithm described in section 4.2. Each parental chromosome
undergo mutation is modified three times and thus, produces three different
offspring by using different values of ND

Rand in Eq. (1): the first offspring is
created using normally distributed valuesNDG

Rand with mean μ = 0 and variance
σ2 = 1, i.e.

x
(j)′

i = x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDG

Rand

)
, (4)

the second offspring – by using Cauchy random numbers NDC

Rand with a scale
parameter γ = 1, i.e.

x
(j)′

i = x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDC

Rand

)
, (5)

and the third offspring – by utilizing uniformly distributed random values,
NDU

Rand∈ [-1.0, 1.0]:

x
(j)′

i = x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDU

Rand

)
(6)

The best offspring is selected as a survivor. The rest of CNWEA is the same as
NWEA.

5 Mixed NWEA (MNWEA)

An alternative way to mixing different biases is to combine mutation operators,
based on Gaussian, Cauchy and uniform distributions at the gene rather than
chromosome level. In our second modification of NWEA, called mixed NWEA
(MNWEA) we define certain probabilities to apply Gaussian, Cauchy or uniform
random numbers in the mutation strategy. Thus, some genes in the chromosome
will be modified with the probability pG according to Eq. (4), others will be mu-
tated with the probability pC according to Eq. (5) and rest – with the probability
pU according to Eq. (6).

x
(j)′

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x

(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDG

Rand

)
, with pG

x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDC

Rand

)
, with pC

x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDU

Rand

)
, with pU

where pG, pCand pUare the probabilities of applying mutations according to
the Eq.(4), Eq. (5) and Eq. (6), respectively, and pG + pC + pU = 1. In our
experiments we set the values pG, pCand pU to 0.4, 0.4 and 0.2, respectively, as
we aim at exploring the impact of small and large jumps provided by Gaussian
and Cauchy distributions (see Section 2).
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6 Experiments

The experimental studies of CNWEA and MNWEA were provided for breast
cancer and heart disease diagnosis for the purpose of studying generalization
ability of ANNs. In order to reduce the noise in the fitness evaluation, the ANNs’
weights and architectures have been optimized simultaneously during the evo-
lution. For each problem 50 runs of both algorithms were provided. Following
initial parameters were used for these experiments: the population size 30 for
MNWEA and 10 for CNWEA (since CNWEA produces three offspring from
each parent), the maximum number of generations 300, and the number of hid-
den nodes for each individual was chosen uniformly at random between 1 and 3.
The algorithms stopped when the maximal generation was reached.

6.1 Breast Cancer Diagnosis

The breast cancer data set was originally obtained from Dr. William H. Wol-
berg at the University of Wisconsin Hospitals, Madison. The data set consists
of 699 examples of which 458 (65.5%) are benign examples and 241 (34.5%) are
malignant examples. Each example contains nine attributes: clump thickness,
uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithe-
lial cell size, bare nuclei, bland chromatin, normal nucleoli, mitoses. The goal of
the data set is to classify a tumour as either benign or malignant based on these
attributes.

In our experiments, the whole data set was divided into three subsets, as
suggested by Prechelt (1994): a training set, a validation set, and a testing set.
The first set was used to train EANNs. The validation set was explored as a
pseudo-testing set in order to evaluate the fitness of networks during evolution.
This prevents overtraining of the network and improves its generalization ability.
During this process ANN’s learning is carried out until the minimal error on the
validation set (and not on the training set) is achieved. Finally, the testing data
were considered to evaluate the performance of the evolved ANNs. 349 examples
of the given breast cancer data set were used as training data, the following 175
examples as validation data, and the final 175 patterns as training data.

The error function (fitness) was calculated according to the equation, proposed
by Prechelt [12]:

E = 100 · omax − omin

N · P

P∑
p=1

N∑
i=1

(opi − tpi)2

where ominand omaxare the minimum and maximum values of output coefficients
in the problem representation. N is the number of output nodes, P is the number
of patterns, opi and tpi are the actual and desired outputs of node i for pattern
t correspondingly.

Table 1 shows the architecture of evolved ANNs as well as generation numbers
(min and mean) at which the optimal results were obtained. Table 2 presents the
classification results for breast cancer diagnosis. The value “rate” in the Table 2
shows the percentage of incorrect classified samples.
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Table 1. ANN architectures for breast cancer diagnosis

NWEA CNWEA MNWEA

Connections (min) 14 14 14

Connections (max) 78 82 86

Connections (mean) 36 29 36

Hidden nodes (min) 0 0 0

Hidden nodes (max) 4 4 4

Hidden nodes (mean) 1.3 1.3 1.4

Generation (min) 101 87 104

Generation (mean) 139.1 118 123.7

Table 2. Comparative results of the prediction accuracy for breast cancer diagnosis

NWEA CWEA MNWEA

min max mean min max mean min max mean

Error, training 1.418 3.650 2.722 1.183 2.659 2.329 1.377 3.247 2.798

Rate, training 0.01698 0.04672 0.03921 0.00744 0.02451 0.02246 0.00954 0.0313 0.03422

Error, validation 0.052 1.018 0.557 0.037 0.637 0.349 0.034 0.924 0.503

Rate, validation 0.00000 0.01072 0.00547 0.00000 0.00902 0.00562 0.00000 0.01091 0.00536

Error, testing 0.178 3.546 1.413 0.054 2.899 1.217 0.117 3.487 1.406

Rate, testing 0.00000 0.03397 0.01384 0.00000 0.02687 0.00467 0.00000 0.03455 0.01424

6.2 Heart Disease Diagnosis

The heart disease data set was obtained from Cleveland Clinic Foundation and
was supplied by Robert Detrano of the V.A. Medical Center, Long Beach, CA.
The data set consists of 270 examples. The heart disease original data set con-
sisted of 303 examples, but 6 of them contained missing class values and were
excluded from the database. Other 27 examples of the remained data were elim-
inated as they retained in case of dispute.

Each example in the database contains 13 attributes, which present results
of medical tests provided on patients: age, sex, chest pain type, resting blood
pressure, cholesterol, fasting blood sugar < 120 (true or false), resting electro-
cardiogram (norm, abnormal or hyper), max heart rate, exercise induced angina,
oldpeak, slope, number of vessels colored and thal (normal, fixed, rever). These
attributes have been extracted from a larger set of 75. The goal of diagnosis is to
recognize the presence or absence of heart disease given the attributes. Initially,
the data set considered four different degrees of the heart disease to classify
the predicted results. Later, modification in the problem definition suggested
reducing the number of predicted values on two and categorizing results into
two classes: presence or absence of illness.

For this set of experiments we applied the same equation to calculate fitness
values as for the breast cancer diagnosis problem. Table 3 presents the ANN ar-
chitectures for heart disease problem. Table 4 reports the generalization accuracy
of ANNs, evolved by NWEA, CNWEA and MNWEA.
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Table 3. ANN architectures for heart disease diagnosis

NWEA CNWEA MNWEA

Connections (min) 28 26 26

Connections (max) 202 192 200

Connections (mean) 88.4 78.3 82,6

Hidden nodes (min) 2 2 2

Hidden nodes (max) 8 8 8

Hidden nodes (mean) 4.3 3.7 4.1

Generation (min) 127 106 113

Generation (mean) 172.2 157.9 169.6

Table 4. Comparative results of the prediction accuracy for heart disease diagnosis

NWEA CNWEA MNWEA

min max mean min max mean min max mean

Error, training 7.489 12.166 11.007 5.763 12.005 8.963 5.893 12.137 7.774

Rate, training 0.07879 0.15184 0.12477 0.04831 0.12069 0.09446 0.05271 0.15040 0.10645

Error, validation 11.746 14.301 12.450 9.271 12.158 9.677 9.814 12.816 10.240

Rate, validation 0.12124 0.19706 0.15935 0.08113 0.13812 0.10543 0.09276 0.13762 0.12418

Error, testing 10.126 13.842 12.266 7.009 12.932 10.633 7.112 13.004 10.458

Rate, testing 0.13195 0.17997 0.15165 0.09385 0.14889 0.11676 0.11243 0.17002 0.12276

7 Conclusions

In this paper we have investigated mixing mutation strategies based on different
distributions and proposed two modifications of the NWEA learning strategy for
ANNs training. A combined NWEA (CNWEA) uses mutation strategies based
on Gaussian, Cauchy and uniform distributions at the chromosome level. The
mixed NWEA (MNWEA) uses the same mutation strategies as CNWEA, but
combines them at the gene level.

The evolution process has been observed under different step sizes determined
by mixed distributions. We have compared generalization accuracy of ANNs us-
ing the suggested mutation strategies on two simple benchmark data sets. Ac-
cording to our preliminary experiments, both CNWEA and MNWEA evolved
compact ANNs with high training and generalization accuracy. The difference
in evolved ANN architectures on both modifications was insignificant compared
to NWEA; however both of them demonstrated higher generalization accuracy,
especially CNWEA. Statistical analysis of data reported in Tables 2 and 4 with
t-test showed that the differences between the error accuracies on both training
and testing sets are not significant for breast cancer diagnosis (Table 2) and ex-
tremely significant for heart disease problem (Table 4). Both modifications have
demonstrated higher convergence speed compared to NWEA as measured by
the number of iterations before an optimal network is obtained. The preliminary
results obtained for CNEWA and MNWEA are promising and encourage further
studies on data sets with large number of attributes.
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Abstract. Semi-supervised learning is a paradigm that exploits the un-

labeled data in addition to the labeled data to improve the generalization

error of a supervised learning algorithm. Although in real-world appli-

cations regression is as important as classification, most of the research

in semi-supervised learning concentrates on classification. In particular,

although Co-Training is a popular semi-supervised learning algorithm,

there is not much work to develop new Co-Training style algorithms

for semi-supervised regression. In this paper, a semi-supervised regres-

sion framework, denoted by CoBCReg is proposed, in which an ensemble

of diverse regressors is used for semi-supervised learning that requires

neither redundant independent views nor different base learning algo-

rithms. Experimental results show that CoBCReg can effectively exploit

unlabeled data to improve the regression estimates.

1 Introduction

Many real-world data mining applications have a large amount of unlabeled data
but labeling data is often difficult, expensive, or time consuming, as it requires
the effort of human experts for annotation. Semi-supervised learning (SSL) refers
to methods that exploits the unlabeled data in addition to the labeled data to
improve the generalization error of a supervised learning algorithm. Readers
interested in recent advances of SSL are directed to [1].

Co-Training is a popular SSL paradigm introduced by Blum and Mitchell [2]
where two classifiers are trained iteratively on two sufficient and independent
views. That is, two sets of features that are conditionally independent given
the class and each of which is sufficient for learning. At the initial iteration,
two classifiers are trained using the available labeled training examples. Then at
each further iteration, each classifier labels and selects some unlabeled examples

� This paper is based on work done within the Transregional Collaborative Research

Centre SFB/TRR 62 Companion-Technology for Cognitive Technical Systems funded

by the German Research Foundation (DFG). The first author was supported by a
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to augment the training set of the other. The aim is that one classifier can
improve the accuracy of the other by providing it with informative examples.
Although, multi-view Co-Training is applicable on certain domains, its multi-
view requirement is impractical in many real-world applications. Goldman and
Zhou [3] presented a single-view SSL method, called Statistical Co-learning.
Two different supervised learning algorithms are used to partition the input
space into a set of equivalence classes and k-fold cross validation is applied:(1) to
select the most confident examples to label at each iteration and (2) to combine
the two hypotheses producing the final decision. Zhou and Li [4] present a new
Co-Training style SSL method called Tri-Training. An initial ensemble of three
classifiers is trained by data sets generated via bootstrap sampling from the
original labeled training set [5]. These classifiers are then refined during the
Tri-Training process, and the final hypothesis is produced via majority voting.

Although the success of the above SSL approaches for classification, there is
not much work on SSL for regression. Zhou et al. [6] proposed a Co-Training
style semi-supervised regression algorithm called CoReg. This algorithm employs
two diverse k-Nearest Neighbor (kNN) regressors that were instantiated using
two different values of the Minkowski distance order. The labeling confidence is
estimated such that the most confidently labeled example is the one which keeps
the regressor most consistent with the existing labeled training set.

Our main contributions are: (1) A new single-view committee-based semi-
supervised regression algorithm, called CoBCReg that extends the standard
Co-Training algorithm. It is based on an ensemble of RBF network regressors
constructed by Bagging [5]. (2) A new Gaussian basis function that is based
on Minkowski distance instead of Euclidean distance. For the effectiveness of
CoBCReg, there must be some diversity among the committee members and
CoBCReg should maintain this diversity during the SSL process. This is achieved
not only by training regressors using different training subsets but also through
using different distance measures and different random initialization of the re-
gressors parameters. The applicability of the proposed algorithm is broader than
standard Co-Training algorithm because it does not require multiple redundant
and independent views.

2 Co-training by Committee for Regression (CoBCReg)

There are two potential problems that can prevent any Co-Training style algo-
rithm from exploiting the unlabeled data to improve the performance and these
problems are the motivations for this study. Firstly the outputs of unlabeled
examples are incorrectly estimated by a regressor that leads to adding noisy ex-
amples to the training set of the other regressor. Secondly there is no guarantee
that the newly-predicted examples selected by a regressor as most confident ex-
amples will be informative examples for the other regressor. In order to mitigate
the former problem, a committee of predictors is used in CoBCReg to predict the
unlabeled examples instead of a single predictor. For the latter problem, each
regressor selects the most informative examples for itself.
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Algorithm 1. CoBC for Regression
Require: L - set of m labeled training examples

U - set of n unlabeled examples, T - maximum number of Co-Training iterations

N - number of committee members (ensemble size), u - pool size

gr - growth rate, k - number of RBF hidden nodes, α- RBF width parameter

pi - distance order of the ith regressor

Training Phase
1: for i = 1 to N do
2: {Li, Vi} ← BootstrapSample(L) {Li is bag and Vi is out-of-bag}
3: hi ← RBFNN(Li, k, α, pi)

4: end for
5: for t ∈ {1 . . . T} do
6: if U is empty then T ← t-1 and abort loop end if
7: for i ∈ {1 . . . N} do
8: Create a pool U ′ of u examples by random sampling from U
9: πi ← SelectRelevantExamples(i,U ′, Vi, gr)

10: U ′ ← U ′ \ πi and U ← U ∪ U ′

11: end for
12: for i ∈ {1 . . . N} do
13: if πi is not empty then
14: Li ← Li ∪ πi

15: hi ← RBFNN(Li, k, α, pi)

16: end if
17: end for
18: end for

Prediction Phase
19: return H(x) ←

∑N
i=1 wihi(x) for a given sample x

Algorithm 2. SelectRelevantExamples
Require: j - the index of the regressor excluded from the committee

U ′ - pool of u unlabeled examples Vj - validation set gr - growth rate

1: Calculate validation error of hj using Vj , εj

2: for each xu ∈ U ′ do
3: Hj(xu) ← 1

N−1

∑N
i=1,i�=j hi(xu)

4: h′
j ← RBFNN(Lj ∪ {(xu, Hj(xu))}, k, α, pj)

5: Calculate validation error ε′j of h′
j using Vj , then Δxu ← (εj − ε′j)/εj

6: end for
7: πj ← φ
8: for gr times do
9: if there exists xu ∈ U ′ \ πj with Δxu > 0 then

10: x̃j ← arg maxxu∈U′\πj
Δxu

11: πj ← πj ∪ {(x̃j , Hj(x̃j))}
12: end if
13: end for
14: return πj
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Let L = {(xi, yi)}mi=1 and U = {xi}ni=1 represent the labeled and unlabeled
training set respectively, which are drawn randomly from the same distribution
where yi is the target real-valued output for each instance xi in L while the real-
valued outputs of instances in U are unknown. The pseudo-code of CoBCReg is
shown in Algorithm 1. CoBCReg works as follow: initially an ensemble consists
of N regressors, which is denoted by H , is constructed from L using Bagging.
Then the following steps will be repeated until the maximum number of it-
erations T is reached or U becomes empty. For each iteration t and for each
ensemble member hi, a set U ′ of u examples is drawn randomly from U . The
SelectRelevantExamplesmethod is applied such that the companion committee
Hi (ensemble consists of all members except hi) estimates the output of each
unlabeled example in U ′. Then hi is refined using the gr most relevant examples
added to its training set Li. In the prediction phase, the regression estimate for
a given instance is the weighted average of the outputs of the regressors created
at the final CoBCReg iteration.

2.1 Diversity Creation

The combination of an ensemble of regressors is only effective if they are diverse.
Clearly, if they are identical, then for each regressor, the outputs estimated by
the other regressors will be the same as these estimated by the regressor for
itself. That is, there is no more information to be transfered among regressors.
Brown et al. presented in [7] an exhaustive survey of the various techniques used
for creating diverse ensembles. In regression, ensemble diversity (variance) on an
instance x can be quantified by

Ā(x) =
N∑
i=1

wi(hi(x) −H(x))2. (1)

Krogh and Vedelsby [8] introduced the error-ambiguity decomposition in which
the ensemble error (E) is decomposed into two terms, the weighted average error
of the ensemble members (Ē) and the diversity among their outputs for a given
instance (Ā). That is, E = Ē− Ā. The importance of this decomposition is that
it shows us that the average error of the ensemble members should be low while
the diversity among them should be high, in order to achieve high ensemble error
reduction.

In CoBCReg, there are three sources for diversity creation, the RBF network
regressors are trained using: (1) different bootstrap samples, (2) different random
initialization of RBF centers and (3) different distance measures. The Minkowski
distance between two D-dimensional feature vectors x1 and x2, as defined in (2),
is used with different distance order p to train different RBF network regressors.
In general, the smaller the order, the more robust the resulting distance metric
to data variations. Another benefit of this setting, is that, since it is difficult
to find in advance the best p value for a given task, then regressors based on
different p values might show complementary behavior.
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‖x1 − x2‖p =

(
D∑
i=1

|x1i − x2i|p
)1/p

(2)

CoBCReg does not hurt the diversity among regressors because the examples
selected by a regressor are removed from U . Thus, they can not be selected
further by other regressors which keeps the training sets of regressors not similar.
Even if the training sets become similar, the regressors could still be diverse
because they are instantiated with different distance measures, for some data
sets this acts like using different feature spaces.

2.2 Confidence Measure

One of the most important factors that affects the performance of any Co-
Training style algorithm is how to measure the confidence of a given unlabeled
example. The inaccurate confidence estimation can lead to selecting and adding
mislabeled examples to the labeled training set and therefore might negatively
affect the performance of the SSL algorithm. For classification, it is a straight-
forward task because many classifiers can estimate class posterior probabilities
such as Naive Bayes classifier or return real-valued outputs that can be trans-
formed to class probability estimates such as neural networks and decision trees.
Assuming that a classifier estimates the probability that an instance x1 belongs
to classes ω1 and ω2 is 0.9 and 0.1, respectively, while that for an instance x2
is 0.6 and 0.4, respectively, then the classifier is more confident that x1 belongs
to classes ω1 than x2. Therefore, a labeling confidence can be assigned to each
unlabeled example using its class probability distribution.

The main challenge for CoBCReg is the mechanism for estimating the con-
fidence because the number of possible predictions in regression is unknown.
For regression, in [8], variance is used as an effective selection criterion for active
learning because a high variance between the estimates of the ensemble members
leads to a high average error. Unfortunately, a low variance does not necessarily
imply a low average error. That is, it can not be used as a selection criterion
for SSL because agreement of committee members does not imply that the es-
timated output is close to the target output. In fact, we will not measure the
labeling confidence but we will provide another confidence measure called selec-
tion confidence (See Algorithm 2). The most relevantly selected example should
be the one which minimizes the regressor error on the validation set. Thus, for
each regressor hj , create a pool U ′ of u unlabeled examples. Then, the root mean
squared error (RMSE) of hj is evaluated first (εj). Then for each example xu in
U ′, hj is refined with (xu, Hj(xu)) creating new regressor h′j . So the RMSE of
h′j can be evaluated (ε′j), where Hj(xu) is the real-valued output estimated by
the companion committee of hj (Hj denotes all other ensemble members in H
except hj). Finally, the unlabeled example x̃j which maximizes the relative im-
provement of the RMSE (Δxu) is selected as the most relevant example labeled
by companion committee Hj .

It is worth mentioning that the RMSEs εj and ε′j should be estimated ac-
curately. If the training data of hj is used, this will under-estimate the RMSE.
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Fortunately, since the bootstrap sampling [5] is used to construct the committee,
the out-of-bootstrap examples are considered for a more accurate estimate of ε′j .

2.3 Two-Phase Learning for RBF Networks

Two-phase learning algorithm of RBF network [9] is used for training regressors
with multivariate Gaussian radial basis function (g) as activation function. At
the first phase, the RBF centers are determined by performing k-means cluster-
ing using the Minkowski distance. The set of Gaussian centers are initialized with
training examples randomly selected from L. The width of the jth RBF neuron
(σj) is set to the average Minkowski distance between the center cj and the two
nearest Gaussian centers multiplied by α to control the extent of overlap between
them. At the second phase, the output layer weights W which best approximate
the limited labeled examples are determined directly by a matrix pseudo-inverse
technique, W = H+T , where T is the target outputs of the training examples
and H is the activation matrix,

Hij = g(xi; cj , σj , p) = g(‖x− cj‖p /σj) = exp(−
‖x− cj‖2

p

2σ2
j

) (3)

The gradient-descent error backpropagation learning method is not used, other-
wise the computational load will be high. On the other hand, direct computation
of W is easier and provides instantaneous training of the network. Therefore, the
refinement of regressors with newly-labeled examples can be more efficient.

3 Experimental Evaluation

3.1 Methodology

An experimental study is conducted to evaluate CoBCReg framework on six
data sets described in Table 1. Friedman #1, #2, and #3 have been used by
Breiman [5] for evaluating the performance of Bagging. Gabor and Multi have
been used by Hansen [10] for comparing several ensemble methods. Plane has

Table 1. Description of the simulated data sets

Data set Size Function Features
Friedman#1 3,000 y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 x1, x2, x3, x4, x5 ∼ U [0, 1]

Friedman#2 5,000 y =
√
x2
1 + (x2x3 − ( 1

x2x4
))2

x1 ∼ U [0, 100]
x2 ∼ U [40π, 560π]
x3 ∼ U [0, 1]
x4 ∼ U [1, 11]

Friedman#3 3,000 y = tan−1
x2x3−( 1

x2x4
)

x1

x1 ∼ U [0, 100]
x2 ∼ U [40π, 560π]
x3 ∼ U [0, 1]
x4 ∼ U [1, 11]

Gabor 3,000 y = π
2 exp[−2(x2

1 + x2
2)]cos[2π(x1 + x2)] x1, x2 ∼ U [0, 1]

Multi 4,000 y = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5 x1, x2, x3, x4, x5 ∼ U [0, 1]
Plane 1,000 y = 0.6x1 + 0.3x2 x1, x2 ∼ U [0, 1]
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Table 2. Mean and standard deviation of the test RMSE using noise-free functions

RBFNNs CoBCReg
Data set initial final improv initial final improv
Friedman#1 0.0817 ± 0.0042 0.0670 ± 0.0032 17.99% 0.0687 ± 0.0035 0.0590 ± 0.0027 14.12%
Friedman#2 0.0417 ± 0.0033 0.0332 ± 0.0024 20.38% 0.0354 ± 0.0028 0.0294 ± 0.0028 16.95%
Friedman#3 0.1019 ± 0.0037 0.0939 ± 0.0038 7.85% 0.0921 ± 0.0049 0.0865 ± 0.0047 6.08%
Gabor 0.0575 ± 0.0108 0.0330 ± 0.0081 42.60% 0.0375 ± 0.0106 0.0202 ± 0.0062 46.13%
Multi 0.0449 ± 0.0037 0.0345 ± 0.0024 23.16 % 0.0373 ± 0.0038 0.0303 ± 0.0025 18.76%
Plane 0.0180 ± 0.0045 0.0093 ± 0.0032 48.33% 0.0136 ± 0.0045 0.0077 ± 0.0032 43.38%
ave. 0.0576 0.0452 26.72% 0.0474 0.0389 24.24%

been used by Ridgeway et al. [11] for investigating the performance of boosted
naive Bayesian regressors. All algorithms are implemented using WEKA library
[12]. The input features and the real-valued outputs are scaled to [0, 1]. For each
experiment, 5 runs of 4-fold cross-validation have been performed. That is, for
each data set, 25% are used as test set, while the remaining 75% are used as
training examples where 10% of the training examples are randomly selected as
the initial labeled data set L while the remaining 90% of the 75% of data are
used as unlabeled data set U . In the experiments, an initial ensemble of four
RBF network regressors, N = 4, is constructed by Bagging where the distance
order pi used by the ith regressor is set to i+1 (i = 1, 2, 3, 4). The weights of
regressors were uniform, wi = 1/N . we set the pool size u is 50, the growth rate
gr is one, the maximum number of iterations T is 30, and for each RBF network
the number of RBFs k is set to 20 and α is set to 2.0.

3.2 Results

Table 2 present the average of the RMSEs of the four RBF Network regressors
used in CoBCReg and the RMSE of CoBCReg on the test set at iteration 0
(initial) trained only on the 10% available labeled data L, after the 30th SSL
iteration of exploiting the unlabeled data set U (final) and the relative improve-
ment percentage on RMSE (improv = initial−final

initial ). Figure 1 shows the RMSE
of CoBCReg (CoBCReg), and the average of the RMSEs of the four regressors
used in CoBCReg (RBFNNs) at the different SSL iterations. The dash and solid
horizontal lines show the average of the RMSEs of the four regressors and the
RMSE of the ensemble trained using only the 10% labeled data, respectively, as
a basline for the comparison. The dash-dot horizontal line represents the RMSE
of the committee trained using all the training data 100% labeled as another
baseline. Paired t-test with 0.05 significance level indicates that the final regres-
sion estimates of CoBCReg are significantly better than its initial estimates on
all the data sets. In addition, for all data sets both the initial and final RMSE of
CoBCReg (E) (on average, 0.0474 and 0.0389) is less than that of the average of
RMSEs of its members (Ē). Therefore, CoBCReg can exploit the unlabeled ex-
amples to improve the generalization error of the committee and it does not hurt
the diversity among the committee members during the SSL process (Ā > 0).
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Fig. 1. The average of test RMSE at different iterations using noise-free functions

Table 3. Mean and standard deviation of the test RMSE using noisy functions

RBFNNs CoBCReg
Data set initial final improv initial final improv
Friedman#1 0.0860 ± 0.0037 0.0745 ± 0.0026 13.37% 0.0748 ± 0.0035 0.0677 ± 0.0025 9.49%
Friedman#2 0.0669 ± 0.0022 0.0635 ± 0.0013 5.08% 0.0624 ± 0.0016 0.0607 ± 0.0013 2.72%
Friedman#3 0.0962 ± 0.0031 0.0904 ± 0.0029 6.03% 0.0887 ± 0.0036 0.0852 ± 0.0036 3.95%
Gabor 0.0739 ± 0.0073 0.0615 ± 0.0041 16.78% 0.0602 ± 0.0059 0.0541 ± 0.0025 10.13%
Multi 0.0690 ± 0.0029 0.0646 ± 0.0024 6.37% 0.0632 ± 0.0030 0.0607 ± 0.0024 3.96%
Plane 0.0685 ± 0.0055 0.0621 ± 0.0051 9.34% 0.0599 ± 0.0040 0.0592 ± 0.0049 1.34%
ave. 0.0905 0.0770 14.92% 0.0682 0.0646 5.28%

3.3 Influence of Output Noise

In order to study the robustness of CoBCReg to noise, we added Gaussian noise
to the target functions of Friedman #1, #2, #3, Gabor, Multi and Plane that
is distributed as N(0, 1.02), N(0, 1252), N(0, 0.12), N(0, 0.152), N(0, 0.352), and
N(0, 0.052), respectively, where standard deviation is selected to give 3:1 signal-
to-noise ratio (i.e., the ratio of the standard deviations). Thus, the variance
of the function itself (without noise) accounts for 90% of the total variance.
Table 3 present the initial and final average of the RMSEs of the four regressors
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Fig. 2. The average of test RMSE at different iterations using noisy functions

used in CoBCReg (Ē) and the RMSE of CoBCReg (E) for the noisy functions.
Figure 2 shows the performance at the different SSL iterations. Again the final
regression estimates of CoBCReg significantly outperform its initial estimates
on all the data sets except on Plane where the improvement is not significant.
In addition, both the initial and final E (on average, 0.0682 and 0.0646) is less
than that Ē. Although we used highly noise problems, CoBCReg can still exploit
the unlabeled examples to improve the regression estimates on all data sets. It is
worth noting that CoReg, proposed in [6], was applied on the same data sets and
both the absolute RMSE and the relative improvement achieved by CoBCReg
are better than that of CoReg on all data sets.

4 Conclusions and Future Work

For regression tasks, labeling the examples for training is a time consuming,
tedious and expensive process. Such burden could be alleviated if the regression
learning algorithm can exploit the unlabeled data during learning. In this paper,
a Co-Training style framework called CoBCReg is proposed. It is based on an
ensemble of N diverse regressors. At each iteration and for each regressor, the
companion committee labels the unlabeled examples then the regressor select
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the most informative newly-labeled examples for itself, where the selection con-
fidence is based on estimating the validation error. The final prediction is the
average of the estimates of the N regressors. CoBCReg is more applicable than
the standard Co-Training because it does not require sufficient and independent
views to construct diverse regressors. However, it depends on three mechanisms
to create the diversity, initial regressors are trained using different bootstrap
samples with different random initialization of RBF centers and are using dif-
ferent Minkowski distance orders. Experimental results show that CoBCReg can
effectively exploit the unlabeled examples to improve the generalization error.

There are many interesting directions for future work. First, to apply CoBCReg
using other types of regressors such as linear regressor and support vector regres-
sor. Second, to investigate other diversity creation methods such as using Ad-
aBoost.RT [13] ensemble method, an AdaBoost version for regression, that will
extend the idea of CoBCReg. Third, to explore other confidence measures that are
more efficient and effective. Fourth, theoretical analysis of CoBCReg is necessary
because it will show when and why the algorithm works. Finally, to enhance the
performance of CoBCReg by interleaving it with Query by Committee [8]. Combin-
ing semi-supervised learning and active learning within the Co-Training setting
has been applied effectively for classification.
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Abstract. Meta-learning techniques can be very useful for supporting

non-expert users in the algorithm selection task. In this work, we inves-

tigate the use of different components in an unsupervised meta-learning

framework. In such scheme, the system aims to predict, for a new learn-

ing task, the ranking of the candidate clustering algorithms according to

the knowledge previously acquired.

In the context of unsupervised meta-learning techniques, we analyzed

two different sets of meta-features, nine different candidate clustering

algorithms and two learning methods as meta-learners.

Such analysis showed that the system, using MLP and SVR meta-

learners, was able to successfully associate the proposed sets of dataset

characteristics to the performance of the new candidate algorithms. In

fact, a hypothesis test showed that the correlation between the predicted

and ideal rankings were significantly higher than the default ranking

method. In this sense, we also could validate the use of the proposed sets

of meta-features for describing the artificial learning tasks.

Keywords: Meta-learning, Clustering.

1 Introduction

Selecting suitable algorithms for solving one given problem requires, generally,
a great deal of effort. In the context of Machine Learning, we can point out
some tasks that one may tackle using more than one technique, such as: clas-
sification, regression, clustering. In such domain, there are many alternatives
for solving particular problems. This fact raises one of the most difficult tasks
in Machine Learning: predicting the performance of candidate algorithms for a
given problem. Typically, the choice of which algorithm might be used relies on
trial-and-error procedures or on the expensive and rare users’ expertise.

Meta-learning approaches have been proposed in order to predict the perfor-
mance of candidate algorithms for a given problem, so they were able to select
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and rank these algorithms indicating to the user the best choices for solving the
problem. Such meta-learning techniques offer support to the non-expert user in
algorithm selection task, so that there is no need for expertise to deal with this
task.

The meta-learning techniques can be used in various domains. One of the
main applications of these techniques is in selection and ranking of supervised
algorithms. However, just a couple of investigations about the use of these tech-
niques in the unsupervised context were made [20,21]. Those works are the start-
ing points of further researches in that area, although they had a specific case
study.

In general, clustering data is a complex task. There are many issues about
how clustering can be performed. One single dataset can have more than one
cluster structure in different levels of refinement. In fact, there is no even a
single definition of what a cluster may looks like. The previous works validated
their framework in a particular set of clustering datasets. In this paper, we
intend to study and validate the application of meta-learning techniques in the
unsupervised context using a wide range of synthetic datasets, covering most of
the dataset clustering structures.

In this paper, our aim is to employ the framework proposed in [21,20] with
different datasets using a more general set of dataset characteristics, different
sets of meta-features in the meta-learning process and a different set of candidate
clustering algorithms.

The remainder of this paper is divided into four sections. Section 2 introduces
basic concepts about meta-learning and some of its techniques. In Section 3, we
present our meta-learning analysis in ranking and selecting clustering algorithms,
showing the employed framework, the proposed sets of meta-features and the
learning algorithms. Section 4 presents our experiments developed in order to
perform the analysis of the unsupervised meta-learning components. Finally, in
Section 5, we present some final remarks and further work.

2 Related Works and Basic Concepts

Each meta-example corresponds to a dataset and it is composed of the dataset
features (meta-features or meta-attributes) and the information about the per-
formance of one or more algorithms applied to the learning task. The set of meta-
examples composes the meta-dataset, which is the input of the meta-learner.

The meta-learner is a system responsible for acquiring knowledge from a set of
meta-examples and, then, predicting the performance of the algorithms for new
problems. Generally, the meta-features are statistics about the training datasets
or some information related to the nature of the data. Examples of these features
are: number of training examples, number of attributes, normality tests, number
of outliers, among others [13,5,3].

More specifically, each meta-example has, as performance information, a class
attribute that indicates the best algorithm for the problem, among a set of
candidates [2,14,17,18]. In such a case, the class label for each meta-example is
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defined by performing a cross-validation experiment using the available dataset.
The meta-learner is simply a classifier which predicts the best algorithm based
on the meta-features of the problem.

There is a variety of approaches using meta-learning techniques in literature.
For instance, in [12] and [11], different meta-learners are employed to predict a
class label associated to the performance of the algorithms, and to recommend
a ranking of the algorithms.

Moreover, in the context of unsupervised learning, a novel method was devel-
oped to use meta-learning techniques in clustering problems. In [21], the authors
presented a novel framework that applies a meta-learning approach to clustering
algorithms. Given a dataset, the proposed framework provides a ranking for the
candidate algorithms that could be used with that dataset.

Particularly, this paper employs the previous framework in the ranking task of
candidate clustering algorithms in a comprehensive range of artificial clustering
problems. Additionally, we use two different sets of meta-features in this analysis.

3 Proposed Analysis

In this section, we present the meta-learning process of acquiring knowledge from
various datasets and ranking the candidate clustering algorithms.

3.1 General Framework

Figure 1 presents the general architecture of systems used for selecting and
ranking clustering algorithms. In order to acquire knowledge and perform the
ranking process, the system has two phases: training and use.

In the training phase, the meta-learner (ML) acquires knowledge from the
set of examples stored in the database (DB). This knowledge associates dataset
features to the performance of the candidate clustering algorithms. The acquired
knowledge may be refined as more examples are available in the DB.

In the phase of use, given a new dataset to be clustered, the feature extractor
(FE) extracts the values of the dataset features. According to these values, the
ML module suggests a ranking of the available candidate algorithms. For that,
it uses the knowledge previously provided as a result of the training phase.

The FE module is responsible for extracting the features values of the input
datasets. We present these features in the next section.

The DB stores examples of clustering datasets used in the training phase.
Each example associates a dataset (represented by the chosen set of features)
to the performance of the candidate algorithms. This set of examples is semi-
automatically built: (1) the selection of datasets and algorithms to be considered
is a manual task; (2) the extraction of the series features is automatically per-
formed by the FE module; and (3) the performance of the candidate algorithms
in the clustering of a dataset is empirically obtained by directly applying each
algorithm to that dataset and evaluating the resulting clustering structures.
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Fig. 1. General architecture

The ML module implements the chosen meta-learning approach to acquir-
ing knowledge (training phase) to be used in the ranking of the candidate al-
gorithms (use phase). The meta-learning approaches implement one or more
machine learning algorithms to perform the mentioned task.

3.2 Meta-features

An important issue about implementing the framework is the set of meta-features
used by the FE module to describe each dataset. These meta-features depend
on the type of dataset under analysis. Some of them are directly related to the
nature of the data. In this paper, we use artificial data to evaluate the meta-
learning approach, because in this sense we know the clustering data structure.
Such fact facilitates the testing and validation of the system (in further work
we intend to use real data on the experiments). Then, there is no specific meta-
feature describing the data, that is, the set of meta-feature used in this work may
be applied in any dataset, since these meta-features are based only on statistics.

Generally, a subjective feature extraction is time consuming, requires exper-
tise, and has a low degree of reliability, such as visual inspection of plots [1]. The
presented meta-features are reliably identified, avoiding subjective analysis.

In order to avoid a time consuming selection process, we present a reasonable
number of meta-features: nine relevant dataset statistics were used. Some of
them were first proposed in [15] for supervised learning.

In this paper, we used two different set of meta-features. Both of them employs
the Hotelling’s T 2 vector statistics [10]. Given a dataset X = (x1,x2, . . . ,xn)
where xi = (xi1, xi2, . . . , xim), the T 2 vector can be calculated as following:

t2i = (xi − x̄)Σ−1(xi − x̄), (1)

where x̄ is the mean vector of the dataset examples and Σ stands for the covari-
ance matrix. With this equation, one can transform a multivariate dataset into a
unidimensional array, condensing the multivariate nature in a single vector [10].

Both sets of meta-features include the following statistics:

1. log10 of the number examples, indicating the amount of available training
data.

2. log10 of the number of attributes, indicating the data dimensionality.
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3. Multivariate normality test. That is the proportion of T 2 (examples trans-
formed via T 2) that are within 50% of a Chi-squared distribution (degree
of freedom equals to the number of attributes describing the example). A
rough indicator on the approximation of the data distribution to a normal
distribution.

4. Percentage of outliers. This feature is the ratio between the number of t2i
farther more than two standard deviations from the mean in the T 2 vector
and the total number of dataset examples.

Besides the statistics shown above, the first set of meta-features has five other
values.

5. Coefficient of variance (CV) of the first quartile of each attribute. First, for
each dataset attribute, we calculate its first quartile. Then, with this vector
of quartiles, we compute the standard deviation of such vector and divide it
by its mean.

6. CV of the second quartile. It is calculated similarly as the previous feature.
7. CV of the third quartile, computed likewise the previous values.
8. CV of the skewness of the dataset attributes. This value is computed as the

previous ones, but considering the skewness of each attribute.
9. CV of the kurtosis of the dataset attributes. This feature takes into account

the kurtosis of each attribute, summarizing these measures in a coefficient
of variance likewise the previous meta-features.

As shown before, the first set of meta-features, denoted as M1, has some meta-
features (more precisely, meta-features 5 to 9) that are calculated using univari-
ate statistics: quartiles, skewness and kurtosis. Then, when these measures are
calculated for each attribute of a dataset, a vector of the analyzed statistic is gen-
erated. Since we do not use modal meta-features to compose the meta-dataset,
we must use a single value to describe one given characteristic of a learning task
dataset. Thus, in this work, in order to summarize the multivariate nature of
the datasets, such meta-features rely on the simple coefficient of variance.

We also analyzed a second set of meta-features, denoted as M2. This set have
the same first four meta-features as presented before. The last five values are
based on the T 2 vector. They are calculated as the three quartiles, skewness
and kurtosis of the T 2 vector. Instead of using the coefficient of variance to
summarize these statistics, it is expected that such vector is able to retrieve
more properly the multivariate information of the data.

3.3 Algorithms

In the framework analyzed here, we must define the candidate clustering algo-
rithms that will be applied on each learning task. An appropriate set of clustering
techniques might have algorithms with different types of internal mechanisms,
so that this set can deliver a variety of performances in the clustering task.

The selected candidate algorithms are: single linkage (SL), complete linkage
(CL), average linkage (AL), k-means (KM), Shared Nearest Neighbors (SNN),
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mixture model clustering (M), farthest first (FF), DB-scan (DB) and x-means
algorithm (XM) [9,23,6,7,16].

The ranking of algorithms is a more informative way of selecting algorithm
[21]. Then, using the meta-learner, we intend to predict the rank of each cluster-
ing algorithm according to the quality of the partitions generated by the algo-
rithm under analysis. Each meta-example is labeled with nine values according
to the rank of each candidate algorithm. Given a dataset to be labeled, a label
is set to 1 if the corresponding algorithm had the best performance, 2 if it had
the second best performance and so on, until the value 9 is given to the worst
algorithm. The system uses a average ranking to deal with ties, for instance, if
the two best algorithms are tied, their rank is set to 1.5.

The global error rate was used as the performance criterion since it allows
a fair comparison between the clustering algorithms runs [22]. Such measure is
simply the proportion of examples that fall outside the cluster that corresponds
to its actual class. We considers that two algorithm are tied if the difference
between them, in terms of global error rate, is less than 0.01.

Once we have composed the meta-dataset with the meta-features and the
rankings, we now can define the meta-learner: the learning system that will
associate the dataset characteristics (meta-features) to the ranking of the algo-
rithms for predicting the rankings for new datasets. We analyzed two different
learning methods as the meta-learner.

The first meta-learner is the Multilayer Perceptron network (MLP) used as
a regressor of the rankings. The predictions are taken directly from the output
nodes of the network. Each output node is responsible for delivering the rank of
the corresponding algorithm, yielding the predicted ranking vector.

The Support Vector Regression (SVR) [19] were also employed as meta-
learner. In this case, one SVR is trained for predicting the rank of each clustering
algorithm, thus the system have nine independent regressors. The outcome of
the SVR-based meta-learner is a vector with the predictions of each candidate
algorithm.

4 Experiments

4.1 Description of the Datasets

In order to evaluate the proposedmethodology,we generated 160 artificial datasets
with the data generators available in [8]. We aim to obtain datasets in a wide rep-
resentative range of cluster structures, so that the system can properly learn the
performance of the algorithms.

The first generator is based on a standard cluster model using multivariate
normal distributions. The Table 1 shows the parameter setup of the gaussian
cluster generator. For each of the 8 combinations of cluster number and dimen-
sion, 10 different instances were generated, giving 80 data sets in all.

Due to the lack of generality of spherical clusters, we employed a second alter-
native cluster generator that delivers more elongated cluster shapes in arbitrarily
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Table 1. Parameter setup for the gaussian cluster generator

Parameter Range

Number of clusters 2,4,8,16

Dimension 2,20

Size of each cluster uniformly in [10, 100] for 2 and 4 cluster instances, and [5, 50]
for 8 and 16 cluster instances.

high dimensions. This second generator creates ellipsoidal clusters with the major
axis at an arbitrary orientation.

The ellipsoid cluster generator delivers sets of high dimension. The Table 2
presents the parameters of the ellipsoid cluster generator. For each of the 8 com-
binations of cluster number and dimension, 10 different instances were generated,
giving 80 data sets in all.

Table 2. Parameter setup for the ellipsoid cluster generator

Parameter Range

Number of clusters 2,4,8,16

Dimension 50,100

Size of each cluster uniformly in [10, 100] for 2 and 4 cluster instances, and [5, 50]
for 8 and 16 cluster instances.

4.2 Evaluating the System

We executed 30 runs of each non-deterministic candidate algorithms. The num-
ber k of clusters was set to the actual class number of each dataset. We evaluate
the performance of the meta-learners using the leave-one-out procedure.

The quality of a suggested ranking for a given dataset is evaluated by mea-
suring the similarity to the ideal ranking, which represents the correct ordering
of the models according to the global error rate. We employed the Spearman’s
rank correlation coefficient [3] to measure the similarity between a suggested and
the ideal rankings.

In order to calculate this coefficient, we compute, given a meta-example i, the
sum of squared differences between the predicted and ideal rankings for each
clustering algorithm j as shown in the Equation 2.

D2
i =

∑
j

D2
ij (2)

And then, the average of Spearman’s coefficient for the 160 meta-examples is
calculated using the Equation 3:

SRC =
1

160
∗

160∑
i=1

{1 − 6 ∗ D2
i

P 3 − P
} (3)
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where P is the number of candidate algorithms. The value of this coefficient
ranges from [−1, 1] . The larger is the value of SRCi, the greater is the similarity
between the suggested and the ideal rankings for the dataset i.

In our implementation, we used the WEKA software to execute the MLP
regressors [22] and the regression Support Vector Machine (SVR) algorithm,
implemented in LIBSVM: a library for support vector machines [4].

4.3 Results

As highlighted before, we used two sets of meta-features, giving two different
meta-datasets to analyze. These datasets were applied to both MLP and SVR
regressors used as meta-learners. The results of both meta-learners were com-
pared to the default ranking method. In such method, the average rank of each
algorithm is suggested for every test example.

For the first meta-dataset, M1, the Table 3 shows the means and standard
deviations of SRC for each meta-learner.

Table 3. Results of the meta-learners for the M1 meta-dataset

Meta-learner Mean Standard deviation

MLP 0.886 0.138

SVR 0.850 0.153

Default ranking 0.846 0.142

And for the second meta-dataset, formed by statistics of the T 2 vector, the
Table 4 presents the results obtained by the tested meta-learners.

Table 4. Results of the meta-learners for the M2 meta-dataset

Meta-learner Mean Standard deviation

MLP 0.891 0.137

SVR 0.883 0.152

Default ranking 0.846 0.142

For both datasets, M1 and M2, the rankings predicted by the MLP and SVR
methods were more correlated to the ideal rankings than the default ranking
method. A hypothesis test at a significance level of 5% showed that the mean
of the correlation values of both MLP and SVR meta-learners were statisti-
cally higher than that obtained with the default ranking. However, there was
no relevant difference between the correlation values of MLP and SVR methods
for both meta-datasets. Both meta-features sets were validated using the tested
meta-learners. However, further investigations about the choice of such features
can lead to an improvement of the overall performance of the system.
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5 Final Remarks

In this work, we employed different regression methods as meta-learners in a
meta-learning approach. We also proposed two sets of meta-features. One has
meta-features based on statistics extracted directly from the data and the other
has meta-features calculated from the T 2 vector.

In order to evaluate the meta-learning techniques in a more comprehensive
way, we used synthetic data with a wide range of cluster structures. Moreover,
we applied nine well-known clustering algorithms with different internal mecha-
nisms.

We were able to validate the use of both sets of meta-features in describing
the unsupervised artificial datasets, allowing the meta-learners to successfully
associate these characteristics to the performance of the clustering algorithms.

Since we could successfully instantiate the meta-learning framework described
before and validate its use in artificial data, an even more comprehensive work
can be done by applying other clustering algorithms, or other learning methods
as meta-learners. Additionally, one can apply this meta-learning approach to
datasets from other contexts.

An important issue that can have further analysis is the set of meta-features.
Such issue is a open investigation point, causing a great impact in the final result
of the system and it is not trivially obtained: these measure cannot rely on the
class attribute.
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Abstract. In the paper a new measure of distance between events/observations in
the pattern space is proposed and experimentally evaluated with the use of k-NN
classifier in the context of binary classification problems. The application of the
proposed approach visibly improves the results compared to the case of training
without postulated enhancements in terms of speed and accuracy.

Numerical results are very promising and outperform the reference literature
results of k-NN classifiers built with other distance measures.

1 Introduction

The problem of constructing and measuring a distance between observations is fre-
quently encountered in numerous application fields. The usual approach is based on
constructing distance functions in the directly observed space (usually Rn).

However, in many cases of real-life problems the dimensions of observations are
mappings of probability space (eg. biological data often expresses genome and history
of an individual). Exploration of the probability space features and their inclusion in
the distance measure, often based on correlation between dimensions (Mahalanobis
distance) and their individual influence on classification accuracy (weighted distances),
usually increases accuracy. Effectively, those improvements change the space of obser-
vations or the space of their difference using linear and quadratical transformations.

In this paper another direction is explored: measurement of distance in partially re-
constructed and standardized probability space. The model of distance is proposed in
section 2. The benchmark data sets and results of numerical evaluation of proposed
distance measure efficacy in the context of k-NN classifier are presented in sections 3
and 4, respectively. Conclusions and directions for future research are placed in the last
section.

Presented measure of distance is a direct continuation and generalization of authors’
previous work [1] introducing probability–related distance measure and works [2,3]
related to properties of metrical structure of pattern space.
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2 Distance in the Training Patterns Space

2.1 Introduction

Pattern space has naturally defined structure of metrical space which is obtained by its
immersion into Rn. This approach however does not preserve structure of probability
space, which can be used to improve accuracy of estimators.

Improved immersion can be obtained with the use of Cumulative Density Functions
(CDF) by transformation of pattern space, as described in [1]. Let CDF i denotes CDF
calculated on i-th dimension of pattern space. Transformation of pattern is defined as
follows:

(CDF (x))i := CDFi(xi)

Application of CDF transformation on pattern space creates standardized space (de-
noted CDF–Space). Projection of training patterns into CDF–Space results in uniform
distribution of patterns in each dimension (marginal distributions are U [0, 1]).

Estimation of CDF (denoted as ECDF) can be obtained either by parametric esti-
mation (fitting parameters of arbitrary chosen family of distributions) or by the use of
simple non-parametric estimator as following:

ECDFi(x) =
|{zi ∈ TrSet : zi ≤ xi}|

|TrSet| ,

where TrSet denotes the training set.

2.2 Model of Distance

Structure of the introduced distance measure consists of two components: univariate
distance measure (discussed in Sect 2.5) providing a measure of distance in a given
dimension and linking function (discussed in Sect 2.6) which combines those measures
and provides a univariate distance. Proposed distance measures are applicable to prob-
abilistic spaces of structure Se, introduced in Sect 2.3.

2.3 Event Manifestation Error

Let D be probability distribution of univariate continuous random variable V over prob-
ability space S. The idea of proposed probabilistic distance is based on modification
of standard sampling process: event E in space S does not map directly to value v of
function V (v = V (E)) – instead, the error of event manifestation, denoted e, is intro-
duced:E maps to the neighborhood of v according to the distribution of the error e and
distribution D:

v = V (E ⊕ e)

Presented approach can be opposed to one usually used:

v = V (E) ⊕ e

Proposed model creates new probability space Se.
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The process of sampling the space S can be expressed in terms of CDF of distri-
bution D by simple conversion of S by mapping its events to U [0, 1] distribution and
using inverse theorem. Random variable V can be sampled in the following way:

V = CDF−1(U [0, 1])

Let error of event manifestation be a random variable of distribution Err. The process
of sampling the space Se can be expressed as:

V = CDF−1 (min (max(U [0, 1] + Err, 0), 1))

2.4 Model of Probabilistic Distance

Let v be an observation of a random variable V and x be a fixed point, v, x ∈ R. As a
distribution Err of event manifestation error U [−1, 1] has been chosen for the sake of
simplicity.

The probabilistic distance from fixed point x to observation v is a probability mea-
sure of smallest neighborhood of x, generated by the manifestation error e and contain-
ing v. In terms of CDF it can be expressed as:

d(x; v) =
∫ CDF−1(xc+|xc−vc|)

CDF−1(xc−|xc−vc|)
dCDF (x) = min(1, xc+|xc−vc|)−max(0, xc−|xc−vc|),

where xc = CDF (x) and vc = CDF (v). As the postulated measure is a probability,
d(x; v) ≥ 0.

The contour plot of function d(x; v) is presented in Fig 1. The value of d(x; v) can
be regarded as the proportion of events for which the distance from x is not greater than
the distance between x and v. As the consequence, the value of an expression

pEq(x; v) = 1 − d(x; v)

can be regarded as the p–value of a hypothesis that x = v vs x �= v.

2.5 Univariate Distance Measures in CDF-Space

A distance measure on the CDF–Space is required to be symmetrical and to operate
on observations rather than fixed values. This goal can be achieved by combination of
d(x; v) values. The contour plots of all proposed variants of the distance are presented
in Fig 2.5. The following variants has been considered:

Distance Based on Expected Value. Let ExpVal be defined as follows:

ExpVal(u, v) = CDF−1
(CDF (u) + CDF (v)

2

)
The value of the function is the conditional expected value of the random variable X
distributed according to CDF :

E(X |X ∈ [u, v]) = ExpVal(u, v)
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The distance variant expressing the assumption that both observed events, u and v are
manifestations of theirs average value can be introduced as follows:

DExpVal(u, v) =
d(ExpVal(u, v); v) + d(ExpVal(u, v);u)

2

Expression could be simplified as:

DExpVal(u, v) ∝ d
(

ExpVal(u, v); v
)

+ d
(

ExpVal(u, v);u
)

∝ |CDF (u) − CDF (v)|

Function ExpVal provides as immersion of the classical distance in the model of the
probabilistic one. The obtained simplified form has been evaluated in details in [1].

Distance Based on min Function

DMin(u, v) = min(d(u; v), d(v;u))

This variant expresses the assumption that more distant observation is the manifestation
of less distant one.

Distance Based on max Function

DMax(u, v) = max(d(u; v), d(v;u))

This variant expresses the assumption that less distant observation is the manifestation
of more distant one. It has been introduced in order to provide the contrast for the
function DMin.

Distance Based on the Distance Average

DAvg(u, v) =
d(u; v) + d(v;u)

2
∝ d(u; v) + d(v;u) = DMax(u, v) + DMin(u, v)

Distance Based on the Independency Assumption

DInd(u, v) = 1 −
(
1 − d(u; v)

)(
1 − d(v;u)

)
= 1 − pEq(u, v)pEq(v, u) =

= d(v;u) + d(u; v) − d(v;u)d(u; v)

This variant joins the p–values of two nonsymmetric tests of equality into one, using
the assumption that tests are independent.

Distance Based on the Carthesian Sub-Linking

DCart(u, v) =
√
d(u; v)2 + d(v;u)2
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Fig. 1. Probabilistic distance from fixed point x to observation v

2.6 Linking Function

In order to provide a unified distance measure for pattern space in case of multidimen-
sional data, the distances calculated independently in each dimension have to be com-
bined. The combination, defined as linking function, can be parametrically dependent
on the training set (and, usually, more computationally requiring) or data-independent.
Let Di(xi, yi) denotes a distance measures in i-th dimension andC(x, y) the combined
distance measure.

Standard Linking. This data-independent variation is based on Carthesian distance
definition:

Cstd(x, y) =
n∑
i=1

Di(xi, yi)2

Mahalanobis Linking. This data-dependent variation is based on Mahalanobis dis-
tance definition, which includes an information of estimated observations’ covariances
between sub-dimensions. Let Σ denotes covariance matrix of CDFi(xi). A distance
between events x and y is defined as:

CMah(x, y) :=

√(
[Di(xi, yi)]ni=1

)T
Σ−1

(
[Di(xi, yi)]ni=1)

)
Average Linking

Cavg(x, y) =
1
n

n∑
i=1

Di(xi, yi)

Mahalanobis-Avg-SQRT Linking. Let Σ denotes covariance matrix of CDFi(xi). A
distance between events x and y is defined as:

CMahAvgSqrt(x, y) :=
1
n

n∑
i=1

(
Σ− 1

2 [Di(xi, yi)]ni=1

)
,
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Fig. 2. Contour plots of distances between (u, v) ∈ [0, 1]2 calculated with postulated probabilis-
tic distances
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3 Data Sets

In order to provide experimental support of presented method validity and generate re-
sults that can be compared to other sources, data sets available at UCI Machine Learn-
ing Repository [4] were chosen. The benchmark sets were selected according to the
following criteria and reasons:

– they represent a binary classification problem
– the number of observations is lower than 1 000 (due to the high computational cost

of leave–one–out method of estimating the accuracy)
– they represent integer, real or binary categorical type of attributes in order to avoid

discrete distance problem

A brief characteristics of selected data sets is presented in Table 1.

Table 1. A brief characteristics of selected data sets

data set instance number attributes number class proportion

BUPA Liver Disorders 345 7 200 : 145

Pima Indians Diabetes 768 9 500 : 268

Wisconsin Diagnostics Breast Cancer 569 31 357 : 212

Sonar 208 61 111 : 97

Ionosphere 351 34 225 : 126

The data sets used in the following experiments are obtained by the transformation
described in sect. 2.1 with the use of the simple, nonparametric estimation of ECDF
which resulted in normalization of data and uniformity of marginal distributions. In
order to provide the possibility to assess the significance of experimental results, the
raw, untransformed data sets has been used where indicated.

4 Results

All data sets has been evaluated with the use of a k-NN classifier for each combination
of the univariate distance measure and the link function defined in sections 2.5 and 2.6,
resp. Results of misclassification rate estimation (in per cent) have been obtained with
use of the leave–one–out estimator.

In order to extend the results described in [1] and to provide the context of the cur-
rent research data sets were evaluated with and without application of outlier removal
procedure proposed in [1]. Results of the performed evaluation provide the possibility
of assessing the sensivity of introduced distance measures to the presence of outliers.

Numerical results of the evaluation of the proposed distance components are pre-
sented in Tables 4 and 2, respectively. Presented results are misclassification rates of
the best (in terms of the highest accuracy of the k-NN classifier) distance function con-
structed with use of a given distance component and evaluated in the context of a given
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data set. The overall ranking column contains the rank of the given component in the
ranking of the average ranks of the components. The average ranks are calculated by
averaging ranking of the respective components in the context of a particular data set.

Table 3 provides the comparison with k-NN classifier based on standard, Euclidean
distance.

The results presented in the Tables fully confirm the efficacy of the proposed dis-
tance construction: for each evaluated data set the best obtained model, concerning a
misclassification rate estimation, is the model constructed using the model and compo-
nents proposed (Tables 2 and 3). High observed rank of DExpVal component, which can
be reduced to a simple difference of CDF , empirically shows the significance of other
univariate distance measures (Tables 2 and 4). The sums of rank results of all univariate
distance components except for DExpVal and DMax are similar. The observed noticeable
variance of the individual rank results for each component provides the direction for
future work.

Finally, the advantage of the application of the outlier removal procedure has been
clearly shown.

In summary, the preliminary works within the model of probability–based distance
measure (with and without the use of outliers removal algorithm) allowed, within the
k-NN models, to achieve comparable or better results than the best ones presented in

Table 2. k-NN 1–CV minimal misclassification rate estimation for the distance built with the
given distance element

distance
element

data set
overall
ranking

Pima Bupa WDBC Sonar Ionosphere
3–NN 5–NN 3–NN 5–NN 3–NN 5–NN 3–NN 5–NN 3–NN 5–NN

DAvg 26.95 25.78 32.46 30.43 2.81 3.34 12.98 11.54 9.12 9.69 4
DCart 27.21 25.39 32.46 30.14 2.81 3.51 12.5 12.02 8.83 9.69 3
DMin 27.47 25.52 31.3 29.57 2.64 2.99 11.54 12.98 9.4 9.69 1
DInd 25.52 26.04 32.46 29.57 2.99 2.99 13.46 13.46 8.26 8.26 2

DExpVal 27.34 26.43 33.33 29.57 2.28 2.81 12.98 11.06 9.69 11.11 5
DMax 26.69 25.13 33.33 31.01 3.16 3.69 14.42 15.38 9.12 10.26 6
CAvg 26.69 25.13 32.46 30.14 2.28 2.81 12.98 11.06 8.26 8.26 1

CMahAvgSqrt 27.99 26.43 32.46 29.57 2.28 2.81 12.98 11.06 8.55 8.26 2
Cstd 25.52 26.04 33.62 29.57 2.99 2.99 11.54 11.54 9.12 9.12 3
CMah 27.47 27.34 31.3 29.57 2.99 2.99 11.54 11.54 9.12 8.83 3

Table 3. k-NN 1–CV misclassification rate estimation for the Carthesian distance

space
data set

Pima Bupa WDBC Sonar Ionosphere
3–NN 5–NN 3–NN 5–NN 3–NN 5–NN 3–NN 5–NN 3–NN 5–NN

R
n–space

30.60 28.52 36.23 33.62 7.38 6.68 18.27 17.31 15.10 15.38

ECDF–space
27.73 26.56 35.07 31.59 2.99 3.69 12.98 13.94 19.09 22.22
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Table 4. k-NN 1–CV minimal misclassification rate estimation for the distance built with the
given distance element after the outlier extraction

distance
element

data set
overall
ranking

Pima Bupa WDBC Sonar Ionosphere
3–NN 5–NN 3–NN 5–NN 3–NN 5–NN 3–NN 5–NN 3–NN 5–NN

DAvg 21.88 22.27 27.83 28.12 2.64 3.51 12.98 11.54 8.55 9.12 1
DCart 22.27 22.01 28.41 28.12 2.64 3.69 12.5 11.54 8.26 8.83 1
DMin 22.92 22.92 26.67 27.54 2.64 3.16 11.54 12.02 8.83 9.12 3
DInd 22.53 22.92 27.25 28.12 2.99 3.16 13.46 12.5 7.98 7.98 4

DExpVal 23.31 22.92 29.28 28.41 2.28 2.99 12.98 11.06 9.69 10.83 5
DMax 22.66 22.92 29.28 28.41 2.99 3.51 14.42 15.38 8.83 9.97 6
CAvg 21.88 22.27 29.28 28.7 2.28 2.99 12.98 11.06 7.98 7.98 1

CMahAvgSqrt 23.05 22.92 29.86 28.12 2.28 2.99 12.98 11.06 7.98 7.98 2
Cstd 22.53 22.01 28.99 28.12 3.16 3.16 11.54 12.02 8.83 8.55 3
CMah 23.44 22.92 26.67 27.54 3.16 3.16 11.54 12.02 8.55 8.55 4

Table 5. k-NN misclassification rate comparison. The results in the first two rows are calculated
with probability-based distance measure, with and without outlier removal, respectively. Results
in the following rows are taken from the literature. Non. avail. denotes that the results could not
be found it the respective papers.

distance maeasure
estimation

BUPA Pima WDBC Sonar Ionosp.
method

probability–based leave-one-out
26.67 21.88 2.28 11.06 7.98

with outlier removal (Table 4) CV
probability–based leave-one-out

29.57 25.13 2.28 11.06 8.26
without outlier removal (Table 2) CV

adaptive distance measure [5]
leave-one-out

30.59 25.13 2.79 12.00 4.29
CV

cam weighted distance [6]
leave-one-out

35.3 24.7 3.5 Non. avail. 6.8
CV

weighted distances [7] 100 x 5–CV 36.22 27.33 Non. avail. Non. avail. Non. avail.
boosting distance estimation [8] 100 x 20/80 33.58 28.91 4.67 25.67 16.27

the literature. In particular the following comparisons with other definitions of the met-
ric functions within the considered data sets has been taken into account: weighted
distances [7], adaptive distance measure [5], boosting distance estimation [8] and cam
weighted distance [6]. Table 5 presents the summary of results accomplished by the
k-NN classifiers.

5 Conclusions

In the paper a new class of measures of distance between events/observations in the
pattern space is proposed and experimentally evaluated with the use of k-NN classifier
in the context of binary classification problems. It is shown that proposed measures
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produce in average better results than training without their use in all of the evaluated
cases. Crossvalidational estimate of resulting model quality has been compared with
numerical results provided by other researchers, concerning the k-NN classifiers built
with other distance measures. Other possible applications of presented distance measure
(especially in the context of training sequence construction proposed in [2]) as well as
separate selection of univariate distance for each dimension are considered as future
research plans.
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1. Dendek, C., Mańdziuk, J.: Improving performance of a binary classifier by training set selec-
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Abstract. Neural networks and other sophisticated machine learning algorithms
frequently miss simple solutions that can be discovered by a more constrained
learning methods. Transition from a single neuron solving linearly separable
problems, to multithreshold neuron solving k-separable problems, to neurons
implementing prototypes solving q-separable problems, is investigated. Using
Learning Vector Quantization (LVQ) approach this transition is presented as go-
ing from two prototypes defining a single hyperplane, to many co-linear proto-
types defining parallel hyperplanes, to unconstrained prototypes defining Voronoi
tessellation. For most datasets relaxing the co-linearity condition improves accu-
racy increasing complexity of the model, but for data with inherent logical struc-
ture LVQ algorithms with constraints significantly outperforms original LVQ and
many other algorithms.

1 Introduction

Problems with Complex logical structure are difficult to solve with feedforward neural
networks, such as the Multilayer Perceptrons (MLPs), the basis set expansion
(Radial Basis Function, RBF) networks, or Support Vector Machines (SVMs). The k-
separability index [1] breaks the class of non-separable classification problems into
subclasses that require at least k intervals for separation of data after a single linear
projection (equivalent to k parallel hyperplanes). Such problems are called k-separable,
with k = 2 for linear separability. High values of k characterize problems that are dif-
ficult to learn for feedforward neural networks and kernel classifiers [1], although in
principle they may be solved by a single multi-threshold neuron. For example, the d-bit
parity problem is very difficult because it is d + 1-separable [1], with vectors forming
compact clusters only after suitable projection, not before. Many problems in bioinfor-
matics, text analysis and other fields have inherent complex logic that makes learning
difficult. Changing the cost function from a typical error function evaluating separa-
bility [2] to function that rewards discovery of interesting patterns in the data helps to
create good internal representations. For k-separable problems reward for creation of
large clusters of pure vectors after projection to the hidden space creates features that
greatly simplify the learning process [3].

Direct use of linear projections is not always the best idea. For example, image seg-
mentation requires distinguishing complex shapes defined in two- or three-dimensional
space. This type of difficulty is solved by using localized kernels to project original
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data to the high-dimensional space [4], providing flexible decision borders in the orig-
inal space. However, for highly non-separable problems with non-compact distribution
of data clusters, as is the case of Boole’an functions, flexible decision borders are not
sufficient, and significant simplifications may be achieved if instead of linearly separa-
ble k-separable learning target is defined [1]. Such approach may discover simple and
comprehensible data models, but needs to be extended if simple solutions do not exist.

In this paper systematic increase of model complexity is investigated, from the sim-
plest, single neuron perceptron that solves separable problems, through k-separable
projections equivalent to constrained vector quantization methods, to unconstrained
prototype-based LVQ solutions. This is achieved by investigating relations between
projection-based and distance-based solutions. In the first case constructive neural net-
works with perceptron-type nodes may be used [5,6], while in the second case localized
function networks, or learning vector quantization methods, provide prototype-based
rules [7]. In the next section some drawbacks of existing systems are briefly pointed out
and relations between k-separable solutions and constrained Learning Vector Quanti-
zation (cLVQ) approaches are explored. Section three describes two such cLVQ algo-
rithms that are tested on some benchmark datasets in section four.

2 k-Separability and Prototypes

There is a growing evidence that existing algorithms easily miss simple solutions for
various datasets. Consider the Australian Credit dataset [8] that has been used in the
Statlog project [9]. 690 cases of credit card applications are characterized using 6 nu-
merical and 8 categorical attributes, with some missing values. All attribute names and
values have been changed to meaningless symbols to protect confidentiality of the data.
Almost the same number of approval (55.5%) as disapproval cases (44.5%) has been se-
lected. In the Statlog project [9] over 20 classifiers have been applied to this data, with
the best results reached in 10-fold crossvalidation by the Cal5 decision trees, around
87±4% accuracy with an average of about 6 nodes per tree. Other trees showed an
average of about 85.5% and lower, with as many as 70 nodes. Radial Basis Function
(RBF) networks gave also about 85.5%, and MLP about 1% lower, while linear SVM
gives 85.2±3.0%, with over 190 support vectors. Optimized Gaussian-kernel SVM is
slightly better, with 86.2±4.1%, for optimized C = 0.1, σ = 0.01, leaving over 460
support vectors1. LVQ gives here even worse results at the 80% accuracy level. Unfor-
tunately all these learning methods missed the simplest rule that has Acc=85.5±4.0%
accuracy, based on a single binary feature: if A8=True then Yes, if A8=False then No.
This solution is statistically not worse than the best results for this dataset, and much
more comprehensible than those provided by alternative methods. Regularization in
neural networks [2] does not provide bias towards this type of simple solutions, prefer-
ring many small weights instead of binarized weights.

All learning methods mentioned above also fail when sharp decision borders are
needed. On most data for which logical rules gave good results [10] neural networks,
LVQ, SVM and the nearest neighbor methods are much worse than decision trees. For
example, the Thyroid Disease data set [8], with 3772 examples for learning (primary

1 Calculations performed with the Ghostminer package, www.fqs.pl/ghostminer
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hypothyroid, compensated hypothyroid, normal, 2.47%, 5.06%, 92.47% respectively),
and 3428 for testing (similar class distribution) has 21 attributes (15 binary, 6 continu-
ous). Rules based on 4 continuous and 2 logical features give 99.36% accuracy on the
test set, while the best neural approaches are not better than 98.5% and SVM with op-
timized Gaussian kernel achieves only 96.1%. Results on complex Boolean problems
are even worse, but in this case also decision trees fail completely [5,6].

Thus in a number of relatively simple problems popular machine learning methods
are not able to find good models. One may of course develop a methodology that would
start from simple rules [10], for example highly pruned decision trees, and proceed
to more complex learning algorithms testing different methods. However, it would be
better to have a model that could deal with such problems directly. To this aim relations
between projection and distance-based methods are explored below.

A linearly separable data is divided by a hyperplane into two distinct classes. The
w vector is perpendicular to this hyperplane and defines a direction for the projec-
tion z(x) = w · x/||w|| of d-dimensional data points x, mapping all points from
one class on z < θ, and from the other class on z > θ. The conditional probabil-
ity densities p(z|C)p(C) after projection of the training data may be used to draw a
histogram and estimate probability distributions (Fig. 1). Identical solution is obtained
using two prototypes ti, i = 1, 2 placed on the w line symmetrically around the thresh-
old θ = |z(t1) − z(t2)|/2 = |z1 − z2|/2, each associated with its class Ci, and a rule:
choose C1 if |z(x) − z1| < |z(x) − z2|, else choose C2. However, the interpretation
of such prototypes may be problematic, as their placement is not unique and cannot in
general match both probability density peaks. To facilitate arbitrary placements each
prototype should have its own threshold θi, with z1 + θ1 = θ = z2 − θ2. Then the de-
cision rule becomes: C1 if z(x) < z1 + θ1, or C2 if z(x) < z2 − θ2. Using two instead
of one threshold allows also to define a confidence margin around θ where probability
densities may overlap decreasing reliability of predictions.

Some non-separable problems are k-separable; a projection exists that gives k pure
clusters of vectors that belong to different classes. It requires only d+k−1 parameters,
one direction w and k − 1 intervals. Most Boole’an problems for d-bit strings have
k ∼ n/2 with maximum k probably equal to d + 1 [1]. This is equivalent to k co-
linear LVQ prototypes ti, i = 1..k. For example, in d-bit parity problem projection on
the direction of the main diagonal w = [1, 1, ...1] creates clusters for alternating odd
and even-parity classes containing strings with 0, 1, 2 ... d bits equal to 1, separated
from each other by

√
n/(n + 1). The decision rule says: if z(x) ∈ [θi−1,i, θi,i+1]

than x belongs to the class associated with zi prototype, where θi−1,i is the Bayesian
threshold calculated from probability distributions for z(x) for vectors that fall into
adjacent clusters. Prototypes zi = z(ti; w) may fall at any point in this interval.

Even though a single projection may sometimes be sufficient for correct classifica-
tion a larger number of good projections may be useful for building a robust predictor.
This may be achieved by sequential constructive network algorithms using projection
pursuit based on the Quality of Projected Clusters (QPC) [5,6]. Note that solutions pro-
vided by MLP, RBF or SVM classifiers for k-separable problems are much more com-
plex and cannot generalize well. If not all data samples are separated by projections
extraction of information based on similarity should be tried. One of the simplest such
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transformations is done by finding prototypes in the original data space, for example
by the Learning Vector Quantization (LVQ) algorithm [11,12], and then use distances
to these prototypes as new dimensions. The number of dimensions is then equal to the
number of prototypes. LVQ algorithm may also be used to look for optimal projections,
but there are two problems with this solution. First, k unconstrained prototypes require
kd parameters, while for k-separable problems models d+ k − 1 parameters are suffi-
cient. Second, it is very difficult to find good unconstrained solution for problems that
are highly-nonseparable. Even in the Australian Credit problem LVQ has failed to find
binary feature that separates the data fairly well. Finding optimal scaling factors for fea-
tures used in the distance function is quite hard, therefore all distance-based methods,
including LVQ, easily miss it.

In the spirit of the structural risk minimization approach [13] data models of pro-
gressively increasing complexity will be created by adding prototypes and relaxing
constraints. The simplest model searches for separable solutions starting from testing
projections on each of the input features xi. A line wij = mi−vmj connecting means
mi of vectors for each class for Gaussian distributions gives optimal solution for pair-
wise class discrimination. This requires d parameters for w plus one parameter for the
threshold. In general optimal direction may be found using the QPC criterion [5]. Fix-
ing the reference point at m1 mean similar direction w ∼ m1 − t1 should be found by
the LVQ optimization of a single prototype t1. k-separable solutions are only slightly
more complex, defining along z(x) projection line k intervals and requiring d+ k − 1
parameters. This is equivalent to k co-linear prototypes ti, with one prototype per re-
sulting cluster. LVQ algorithm should find similar solution if a prototype t1 is adapted
without constraints, providing direction w ∼ m1− t1. The remaining k−1 prototypes
are placed on this line, adapting only their positions zi = w · ti.

Decision borders created by co-linear prototypes divide whole feature space with
parallel hyperplanes. If this solution is not sufficient constraints should be relaxed to
allow for LVQ adaptation of all prototypes. This creates Voronoi tessellation using kd
parameters. Allowing for adaptation of the scaling factors and the type of distance func-
tions creates even more complex decision regions [14,15], but we shall not investigate
it here. Starting from one prototype, adding more prototypes with constraints, and fi-
nally allowing for full LVQ adaptation, should systematically explore different biases
leading to progressively more complex models. Constraints of this type are a form of
regularization [2] that should help to find solutions that are not easy to discover.

3 Constrained Learning Vector Quantization (cLVQ)

The constructive cLVQ algorithm combines (non-local) projection pursuit scheme and
(local) LVQ learning. Learning starts from the simplest classification model (in terms
of k-separability), defined by a single projection and a single prototype per class. For
two-class linearly separable problems this is sufficient. If this is not the case the number
of parameters of the model is increased until results will show no significant improve-
ment. Complexity of the model may be increased in two ways: by adding consecutive
projections, or by increasing the number of prototypes.

The cLVQ model may take the form of a two layer feedforward neural network.
Let W = {wi}, i = 1, . . . , h denote weights of connections between the d input and
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the h hidden nodes, performing linear projections Wx, scaling and combining input
features. Let T = {tj}, j = 1, . . . , k denote connection between hidden to the k out-
put nodes with each weight tjl coding positions of prototypes tj after projection wl.
Classification is done using the winner takes all (WTA) rule, where for a given in-
put x the network returns class label associated with prototype tr most similar to x:
r = arg minj ||Wx− tj ||. Fully connected network has (d+ k)h parameters, where d
is the number of inputs, k the number of prototypes (output nodes) and h is the number
of projections (hidden nodes). Removing connections with small weight values may
further reduce model complexity.

This model is trained by two approaches: first, maximization of the QPC projection
pursuit index to find projection directions (QPC-LVQ), and second, based on the first
PCA eigenvector (PCA-LVQ). The cLVQ network learning starts with an empty hid-
den layer and k (the number of classes) output nodes. First optimization of projections
wi that separate data clusters is described. Centers of these clusters are determined
by positions of prototypes tj placed along the projected line wT

i x. Positions of these
prototypes are adjusted using LVQ1 algorithm [11], with additional term that attracts
prototypes to the line. Position of the winning prototype t (closest to the training vector
x) is adjusted using the following formula:

Δt = αδ(Cx, Ct)(x − t) + β
(
(t − μ) − wT (t − μ)w

)
(1)

The first term of Eq. 1, scaled by coefficient α, comes from standard LVQ1 procedure,
where Cx denotes class of the vector x and δ(Cx, Ct) = +1 if Cx = Ct and −1
otherwise. The second term, scaled by β, pushes prototypes in the direction that brings
them closer to the x = wz + μ line, where w defines a direction in space and μ is a
certain point on the line, for example a mean position of all prototypesμ = 1

N

∑
ti. For

β = 0 Eq. 1 reduces to the original LVQ1 algorithm. If β = 1 the second term of Eq.
1 will put the prototypes exactly along the line, i.e. this corresponds to the orthogonal
projection of prototypes on the direction w. The effective number of parameters is
reduced by adding these constraints.

The first PCA eigenvector calculated on co-linear prototypes (PCA-LVQ) is equiva-
lent to fitting points to a line defining projection direction w. Another approach is based
on the Quality of Projected Clusters (QPC) index, a supervised algorithm that finds in-
teresting linear projections for multiclass datasets [6]. Assuming that a set of prototypes
has been created by the LVQ procedure the QPC index is defined as:

QPC(w) =
n∑
i=1

⎛⎝Ai k∑
j=1

δ(Cxi
, Ctj

)G
(
wT (xi − tj)

)⎞⎠ (2)

where G(x) is a function with localized support and maximum in x = 0 (e.g. a
Gaussian function), Cxi

is the class of vector xi, Ctj
the class of prototype tj , and

δ(Cxi
, Ctj

) = ±1. This index achieves maximum value when linear projection on the
direction defined by w groups vectors xi from a single Cxi class into compact clusters
close to the prototype tj associated with this class. Parameters Ai control influence of
each term in Eq. (2). If Ai = A+ for all i that satisfies Cxi

= Ctj
and Ai = A− oth-

erwise, then large value of A− enforces strong separation between clusters, while A+
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has influence mostly on compactness and purity of clusters. Optimization of QPC index
is performed by a simple gradient-based method. Since it may require a large number
of iterations to converge, to speed up learning one can search for w only after some
specified number of learning epochs during LVQ optimization phase.

Procedure 1 describes steps performed to expand the network, creating a sequence
of hidden nodes, where weights wi of each successive node represent unique direction
in the input space according to the projection pursuit scheme.

Procedure 1. (Construction of the sequence of hidden nodes)

1. start with k output nodes and no hidden nodes;
2. add a new hidden node, optimize its weights wi and positions of prototypes tj (see

Procedure 2);
3. if the error does not decreases return the network which gives the lowest error;
4. else increase the number of prototypes splitting the node that makes the largest

number of errors;
5. orthogonalize training data to the i-th projection, and repeat, starting from step 2.

Each new projection wi is trained separately on dataset that is orthogonal to all direc-
tions w1, . . . ,wi−1 found earlier. Another way to gain unique projections is to per-
form learning only on a subset of training samples misclassified by the network. Only
weights of one hidden node wi are adjusted in step 2, all projections found earlier are
fixed. Each change of weights wi requires proper modification of weights betwen the i-
th hidden node and all outputs. Number of output nodes needs to be optimized as well,
because each new direction wi produces different input space projection image. The
region covered by the prototype tj that leads to the largest number of errors (defined
by the WTA rule) is divided by adding new prototype associated with the class that has
most errors (step 3).

Procedure 2 describes optimization of hidden nodes wi.

Procedure 2. (Searching for an optimal hidden node after adding a new hidden node.)

1. optimize weights wi and prototype positions tj to find the best projection that
minimizes classification error (using PCA-LVQ or QPC-LVQ algorithms);

2. remove redundant prototypes using condensed nearest neighbor (CNN) method;
3. adjust positions of the remaining prototypes (LVQ learning in the hidden space);
4. if the current projection does not lead to lower error than projections already found

return;
5. else increase the number of prototypes splitting the output node that makes the

largest number of errors, and go to step 2;

The final network after learning may contain prototypes which are useless (e.g. LVQ
learning can expel them far from the training data points). Redundant prototypes that
do not decrease accuracy are removed using Hart’s condensed nearest neighbor (CNN)
method [16,17], where prototypes are used as reference vectors. Positions of the remain-
ing prototypes are then adjusted with few steps of LVQ to improve cluster separation in
the hidden space (after w · x projection).

The cost of computations of Eq. 1 is O(knd) for QPC-LVQ network and O(knd2)
for PCA-LVQ, where d denotes dimensionality of the data, n is the number of instances
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and k the number of prototypes. For each LVQ learning step the winner prototype must
be chosen, which requires O(nkd) operations. Only one hidden node is adapted at a
time and the computation of QPC index is linear respect to number of instances, num-
ber of prototypes and dimensionality of data. Both LVQ and QPC may require trying a
few initializations and performing many iterations, thus evaluation of QPC (or PCA, re-
spectively) should be done only after some LVQ learning steps. Removal of redundant
prototypes using CNN method also requires O(knd) time. Thus the overall computa-
tional cost of searching for optimal solution by the methods described above should not
exceed O(knd) for QPC and O(knd2) for PCA, respectively.

4 Results

Results of constrained LVQ models – QPC-LVQ and PCA-LVQ – are compared to the
original LVQ, support vector machine (SVM), k-nearest-neighbors (kNN) and the mul-
tilayer perceptron network (MLP) classifiers. Accuracy of classification has been esti-
mated using 10 fold stratified cross-validation method for several datasets with different
types of features. Following datasets from the UCI repository [8] have been used: Ap-
pendicitis, Australian, Breast Cancer Wisconsin, Glass, Heart, Ionosphere, LED (with
500 generated samples), Ljubljana Breast Cancer, Voting and Wine, plus the melanoma
skin cancer data collected in the Outpatient Center of Dermatology in Rzeszów in
Poland [18]. In addition two Boolean artificial datasets have been used: 10-dimensional
parity problem, and a Mirror Symmetry dataset with 1000 strings of 20 bits, where
half of them are symmetric. This parity problem is 11-separable while the symmetry
problem is 3-separable, but requires a set of exponentially growing weights. Results are
collected in Table 4. For QPC-LVQ and PCA-LVQ average number of projections (#P)
and number of prototypes (#K) is reported, for LVQ number of prototypes(#K, the size
of codebook), for SVM average number of support vectors (#SV), and for MLP net-
works average number of hidden neurons (#N) are reported (where 0 means no hidden
neurons).

SVM with Gaussian kernel was used with γ and C parameters fully optimized using
an inner 5-fold crossvalidation procedure (the Ghostminer software was used2), MLP
networks were trained with error backpropagation several times changing the number
of hidden nodes from 0 to 20, and selecting the network that gave the best training
results. For k-class problems MLP networks with k outputs were used (1-of-k output
coding), except for two classes when a single output was used. For LVQ the number of
prototypes (codebook vectors) was increased from 1 to 20, and only the best solution is
reported. The optimal number of neighbors for kNN method was estimated each time
during 5-fold inner crossvalidation, and the best one model was chosen for training.
Euclidean measure was used to calculate distance to neighbors.

The SVM is quite accurate for almost all UCI datasets, but failed completely for the
parity problem. In most cases large number of support vectors are created even when
simple solutions exists. MLP was able to handle all problems with good accuracy and
a small number of neurons, but at a rather high cost, requiring many initializations with
increasing number of hidden nodes from 0 to 20. Setting the right number of hidden

2 http://www.fqs.pl/ghostminer/
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Table 1. Average classification accuracy for 10-fold crossvalidation test (see text for explanation);
bold numbers = accuracy within variance from the best result

Dataset QPC-LVQ PCA-LVQ LVQ SVM kNN MLP
acc. #P #K acc. #P #K acc. #K acc. #SV acc. #K acc. #N

Appendicitis 86.1± 8.5 1.0 2.5 82.2± 7.4 1.0 3.1 86.6± 6.8 2 86.7± 10.8 31.4 84.0± 6.1 4.8 87.8± 10.1 3
Australian 86.1± 4.1 1.0 2.0 86.1± 4.1 1.0 2.0 85.6± 4.6 2 84.9± 1.6 206.1 85.1± 2.9 8.2 86.8± 4.9 2
Mirror Symmetry 87.3± 4.2 1.2 3.5 78.1± 11.4 1.8 5.3 75.7± 4.3 12 98.0± 1.4 296.5 89.3± 2.6 5.8 92.1± 10.7 3
Breast C.W. 96.2± 1.8 1.0 2.0 96.2± 2.1 1.0 2.0 96.5± 2.5 2 96.6± 1.7 51.1 97.1± 1.4 5.6 96.9± 1.0 1
Melanoma 85.7± 6.2 1.0 4.0 70.8± 9.0 1.7 4.3 76.8± 7.2 4 85.2± 5.7 240.3 86.0± 7.4 1.0 94.4± 2.7 3
Glass 60.4± 10.3 1.1 4.5 58.9± 7.3 1.4 4.0 66.3± 10.5 7 64.9± 6.2 283.6 68.8± 9.2 1.4 69.2± 10.4 7
Heart 78.9± 8.5 1.0 2.0 80.7± 9.0 1.0 2.0 82.2± 8.6 2 81.5± 9.1 101.5 78.5± 7.6 8.5 79.6± 9.8 1
Ionosphere 78.4± 8.0 1.0 3.1 75.5± 8.5 1.1 3.5 81.9± 7.0 4 93.5± 4.7 61.0 84.0± 7.7 1.2 81.5± 5.5 5
Iris 96.0± 4.4 1.0 3.0 94.7± 4.0 1.0 3.0 97.3± 3.3 3 96.7± 4.7 39.6 94.5± 6.9 5.8 95.3± 5.2 2
L. Breast 72.6± 4.4 1.0 2.0 74.0± 6.9 1.0 2.1 74.7± 6.0 3 73.3± 9.6 143.6 73.7± 5.5 6.9 72.2± 6.7 1
LED500 58.5± 8.0 1.1 9.6 45.5± 8.6 1.5 8.2 72.0± 5.1 10 65.2± 5.5 664.1 71.2± 6.6 8.5 65.2± 7.0 0
Parity 10 96.1± 3.9 1.0 6.8 97.6± 0.8 1.0 7.5 51.3± 4.9 8 44.2± 5.7 921.2 80.7± 3.4 20.0 82.9± 17.2 14
Voting 95.2± 3.5 1.0 2.0 90.6± 5.5 1.3 2.5 93.8± 2.7 5 95.9± 2.4 57.0 93.3± 3.2 4.6 95.9± 2.4 1
Wine 96.0± 5.7 1.9 3.1 94.9± 4.7 2.0 3.0 97.7± 2.8 4 96.6± 2.9 63.7 95.0± 4.1 6.2 96.6± 2.7 2

nodes has been very important to reach high quality solutions but also reduces time
to convergence. The number of parameters adapted during training of MLPs with one
hidden layer is (d+ 1)h+ (h+ 1)k, where d denotes number of inputs, h - number of
hidden nodes and k the number of output nodes.

The QPC-LVQ algorithm was able to find in most cases, with very few hidden
nodes, solution of comparable accuracy to all other classifiers. Moreover, for some
datasets (mirror symmetry, melanoma and parity) it has significantly outperformed orig-
inal LVQ1. Only for the LED data the QPC-LVQ model has been too simple and gave
worse results. The PCA-LVQ performs worse in most cases, comparison of PCA-LVQ
and QPC-LVQ using Wilcoxon [19] test shows significant differences, at confidence
level of 95%, in terms of accuracy (p-value of 0.048) and number of parameters (p-
value of 0.003) both in favor of QPC-LVQ. QPC-LVQ compared with LVQ, SVM and
kNN shows no significant difference in accuracy, giving p-value equal to 0.62, 0.07 and
0.87, respectively. Only for the MLP Wilcoxon test find significant differences (p-value
of 0.044) against QPC-LVQ. On the other hand MLP and LVQ needed on average 3
times more parameters than QPC-LVQ.

5 Discussion

Drawbacks of existing learning methods that fail on relatively simple problems, as well
as on highly-non separable problems, may be remedied by structural risk minimization
approach, in which models of growing complexity are introduced by relaxing various
constraints. One such approach has been analyzed here, based on the constrained LVQ
model, allowing for systematic relaxation of constraints to create progressively more
complex solutions. Such models may learns optimal solutions to complex Boolean func-
tions as well as problems that are almost linearly separable using single feature, while
unconstrained LVQ converges to worse solutions. Two versions of such approaches
have been presented here, based on PCA and QPC algorithm to find good projection
lines. Straightforward LVQ modification allows for reduction of the number of effective
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Fig. 1. Visualization of hidden layer of the QPC-LVQ network for Wine, Australian, Parity 10
and the Mirror Symmetry dataset

parameters by forcing the LVQ prototypes to stay near those projection lines. In tests
one or two lines have usually been sufficient, with very small number of prototypes.
Great advantage of algorithms developed here is that the hidden layer contains only one
or two nodes, and therefore activations of those nodes may be used to visualize inherent
dataset relations. Fig. 1 illustrates this, with prototypes and decision boundaries set by
prototypes (the winner-takes-all rule leads to Voronoi tessellation) for Wine, Australian,
Parity 10 and the Mirror Symmetry datasets. Such visualizations allows to estimate con-
fidence of classification for each vector. The main point of this paper was to show that
the strategy of starting with constrained models and gradually relaxing constraints (in
Eq. 1 decreasing β to 0) should help to discover simple models that more complex ap-
proaches will miss, and also in some complex cases find better solutions. This is indeed
observed in Tab. 4: for some data LVQ-QPC has indeed advantages, while for other
data that require more complex decision borders unconstrained optimization is signif-
icantly more accurate. Thus it is recommended to always use methods that allow for
such control of model complexity.



160 M. Grochowski and W. Duch

References

1. Duch, W.: k-separability. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN
2006. LNCS, vol. 4131, pp. 188–197. Springer, Heidelberg (2006)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
3. Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Con-

structive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic,
D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)

4. Schölkopf, B., Smola, A.: Learning with Kernels. In: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge (2001)

5. Grochowski, M., Duch, W.: A Comparison of Methods for Learning of Highly Non-
Separable Problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 566–577. Springer, Heidelberg (2008)

6. Grochowski, M., Duch, W.: Projection Pursuit Constructive Neural Networks Based on Qual-
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Abstract. (N × N)-matrix is called additive when its elements are pair-wise
sums of N real numbers ai. For a quadratic binary functional with an additive
connection matrix we succeeded in finding the global minimum expressing it
through external parameters of the problem. Computer simulations show that en-
ergy surface of a quadratic binary functional with an additive matrix is complicate
enough.

1 Introduction

In the present paper we analyze the classic problem of discrete mathematics that is
minimization of a quadratic functional depending on the great number N of binary
variables si:

E(s) = − (Js, s)
2N

= − 1
2N

N∑
i,j=1

Jijsisj −→ min, si = ±1. (1)

This problem arises in a lot of scientific fields of knowledge beginning from physics of
magnetic materials and neural networks up to analysis of results of physical experiments
and logistics. Usually the connection matrix J = (Jij)N1 is supposed to be symmetric
one with zero diagonal elements: Jij = Jji, Jii = 0. The state of the system as a whole
is given by N -dimensional vector s = (s1, s2, ..., sN ). Such vectors will be called
configuration vectors or simply configurations. The characteristic E(s) that has to be
minimized will be called the energy of the state, and the configuration providing the
global minimum of the functional (1) will be called the ground state.

In general the number of local minima of the functional (1) is exponentially large.
Practically all minimization algorithms guarantee finding of a local minimum only. The
exceptions are very rare and, as a rule, they are relied on specific properties of the con-
nection matrix [1], [2]. The most widespread is the random minimization [1]. According
this algorithm the spin dynamics is started from a random configuration. In randomized
order the states of dissatisfied spins are changed. As a result the dynamic system step
by step falls into the nearest local minimum. We used just the random minimization in
our computer simulations (Section 3).

Very little is known about properties of the energy surface of the functional (1),
namely, about the number and the structure of the set of local minima, about the ground
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state and the probability to find it and so on. In fact there is only one nontrivial con-
nection matrix for which the ground state of the functional (1) can be indicated exactly.
This is the Hebb matrix in the case when the value of the loading parameter α = M/N
is small: α < 0.07 [3]. Then the global minimum of the functional (1) is achieved at
any of M random patterns.

Due to discrete character of the problem its theoretical analysis is very rare. From
recent results let us point out the papers [4], [5], where the authors succeeded in con-
necting the depth of the local minimum with the probability of its random finding, and
also described some characteristics of the energy surface.

In our work we introduce a class of additive matrices whose elements are pair-wise
sums of a set of predetermined numbers ai:

Jij = (1 − δij)(ai + aj), i, j = 1, ..., N, where {ai}N1 ∈ R1 (2)

and δij is the Kronecker delta symbol.
The additive matrices generalize a special class of Hebb’s matrices analyzed in [6].

For the functional (1) with the connection matrix (2) the ground state can be obtained
exactly. We succeeded in presentation additive matrices in the form when the depen-
dence of the ground state on external parameters of the problem can be described ana-
lytically. When the ground state is known, interesting results can be obtained with the
aid of computer simulation. In the next Section we present the theory relating to the
problem. In Section 3 we give the results of computer simulations.

2 The Ground State

1. It can be verified directly that for an additive matrix (2) the value of the functional
(1) is equal to

E(s) =
(e, a) − (s, e)(s, a)

N
. (3)

Here a = (a1, a2, .., aN ) is N -dimensional vector whose coordinates are ai, and e =
(1, 1, ..., 1) is the ”bisector” of the principal orthant of the space RN. From minimiza-
tion of the functional (3) one can pass to maximization of the functional

F (s) = (s, e)(s,a) −→ max . (4)

Let us denote by Σk the class of all configurations s for which exactly k coordinates
are equal ”-1”:

Σk = {s : (s, e) = N − 2k} , k = 0, 1, ..., N.

The class Σk consists of CNk configurations. For all these configurations the first mul-
tiplier in the expression (4) takes the same value N − 2k. Consequently, to maximize
(4) among configurations from the class Σk , it is sufficient to find a vector s ∈ Σk
maximizing the scalar product (s, a). This problem is not so difficult (see item 3).

2. Suppose, we can find the vector s maximizing the scalar product (s,a) in the class
Σk. Let us denote this vector as s(k), and let the value of the functional (4) for this
vector be Fk = F (s(k)):
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Fk = (N − 2k)(s(k),a) = max
s∈Σk

F (s), k = 0, 1, .., N.

When finding all these vectors s(k) (k = 0, 1, .., N ), it is easy to find the global maxi-
mum of the functional (4), since the functional reaches its maximal value on one of the
vectors s(k).

Note we do not need to compare between themselves all N + 1 numbers Fk, but
the first half of them only. The reason is that for any k the classes Σk and ΣN−k are
inversion of each other: ΣN−k = −Σk. Since for any configuration s the equality
F (s) = F (−s) is fulfilled, we obtain that Fk = FN−k for all values of k. Combining
the cases of even and odd N in one formula we obtain that to find the global maximum
of the functional (4) it is necessary to find the largest of the values Fk , when k ≤ n =
[N/2]:

F0, F1, .., Fn, n =
[
N

2

]
.

3. Without loss of generality the numbers {ai}N1 can be put in order according their
increase:

a1 < a2 < ... < aN . (5)

Let us take any k ≤ n. It is easy to see that the scalar product (s,a) reaches its maxi-
mum inside the class Σk when the configuration vector is

s(k) = (−1,−1, ...,−1,︸ ︷︷ ︸
k

1, 1, .. 1). (6)

Indeed,

(s(k), a) = −
k∑
i=1

ai +
N∑

i=k+1

ai = â− 2âk,

where

â =
N∑
i=1

ai, âk =
k∑
i=1

ai, and â0 = 0. (7)

Let s be another configuration vector from the class Σk for which numbers of negative
coordinates j1 < j2 < ... < jk dose not take the first places. The scalar product (s, a)

is equal to (s,a) = â − 2
k∑
i=1

aji , and inequality (s(k), a) > (s, a) is fulfilled since

k∑
i=1

ai <
k∑
i=1

aji for any set of indices {j1, j2, ..., jk} that differs from {1, 2, ..., k}.

Thus, under the condition of ordering (5), to find the global minimum of the func-
tional (3) it is necessary to find the largest among the numbers

Fk = (N − 2k) (â− 2âk) , k = 0, 1, .., n =
[
N

2

]
, (8)

where â and âk are given in Eq.(7).
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4. The initial problem (1)-(2) can be considered as solved: the expressions (6) restrict
the set of configurations among which the ground state of the functional (2) should be
found. To define which configuration is the ground state it is necessary to calculate n
numbers (8) and find the largest among them. It reminds unclear under which conditions
this or that configuration (6) would be the ground state. If any of them will be the ground
state or not? It turned out that these questions can be answered.

Without loss of generality let us suppose that the numbers ai have a special form:

ai = αi − t, αi ∈ [0, 1], t ≥ 0. (9)

In this presentation the values αi are positive numbers from the unit interval, and the
positive parameter t can take an arbitrary value. It is not difficult to see that from the
point of view of minimization of our functional an arbitrary set of numbers ai can be
reduced to the form (9). For example, let us suppose that a1 < ... < aN < 0 and
aN − a1 ≤ 1. Then we set αi = ai − a1 and t = |a1|. This means that the numbers
ai have the form (9). On the contrary, let the initial numbers ãi have different signs and
take on arbitrary values: ã1 < ...0 < ... < ãN , and ã = max (|ã1| , ãN) >> 1. Let
us normalize these numbers dividing them by 2ã: ai = ãi/2ã ∈ [−1/2,+1/2]. It is
clear that the solution of the problem (1) is the same when we use initial numbers ãi
or normalized numbers ai. The last numbers can be presented in the form (9), if we set
αi = ai + 1

2 and t = 1
2 . From our argumentation it follows that the numbers ai can

always be presented in the form (9). Then the following statement is right (the proof see
in the Appendix).

Theorem. When t increasing from the initial value t = 0, the ground state sequentially
coincides with the vectors s(k) (6) in the following order:

s(0) → s(1) → ...→ s(k − 1) → s(k) → ...→ s (n− 1) → s (n) . (10)

The jump of the ground state s(k − 1) → s(k) occurs when t transfers through the
critical value:

tk =
α̂ − 2α̂k + (N − 2k + 2)αk

2(N − 2k + 1)
, k = 1, 2.., n, (11)

where analogously of Eq.(7) α̂ =
N∑
i=1

αi and α̂k =
k∑
i=1

αi. When t belongs to the

interval [tk, tk+1], the ground state of the functional is the configuration s(k).
This theorem generalizes the previous results obtained in [6]. The theorem describes

exhaustively the behavior of the ground state for the problem (1)-(2). Depending on the
values of external parameters {ai} each of the configurations s(k), k = 0, 1, ..., n can
turn out to be the ground state of the functional. For t from the interval [tk, tk+1] the
energy of the ground state is the linear function of the parameter t. It can be easily seen
from the expressions (8) substituting the values ai in the form (9):

Ek(t) = Ak + t ·Bk, k = 0, 1, ..., n, (12)

where up to the factor 1/2N we have:

Ak = α̂ − (N − 2k)(α̂ − 2α̂k), Bk = (N − 2k)2 −N. (13)
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Fig. 1. The dependence of the ground state energy EGS on the parameter t for additive matrices
of the dimensionality N = 100: the upper one is the arithmetical additive matrix, and the lower
one is the random matrix (see the body of the text). The values EGS for the points tk are marked.

In Fig.1 for N = 100 it is shown how the energy of the ground state depends on the
parameter t. The upper panel corresponds to the case when the values αi constitute the
arithmetical progression: αi = i/N, i = 1, 2, .., N . On the lower panel the analogous
plot is shown for a random additive matrix, when αi are random numbers from the
interval [0, 1]. Along the abscissa axis the values of the parameter t are shown, along
the axis of ordinates we show the energy of the ground state calculated in the points
tk (11). The first value of the parameter t for which the energy of the ground state is
calculated is equal to zero: t0 = 0. Since both plots are very similar, we analyze only
one of them; for example the upper one.

We see that the energy of the ground state is nontrivially depended on the parameter
t. For small values, t ∼ 0, very deep minima correspond to the ground state. Then, when
t increases, the depth of the global minimum decreases very quickly and it reaches a
minimal value when t ≈ 2. For these values of t all matrix elements become negative.
During further increase of t the depth of the global minimum slowly but steadily in-
creases. It becomes deeper and deeper. Which properties of the energy surface reflect
non-monotone change of the depth of the global minimum? What properties are respon-
sible for its minimal depth? For the time being we cannot answer these questions. Using
formulae (10)-(13) everyone can be certain of universal character of the curves shown
in Fig.1.

Up till now we can neither extend these results onto local minima of the functional,
nor obtain analytical description of other interesting characteristics such as the num-
ber of different minima, distribution of local minima with respect to their depths and
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distances to the ground state and so on. However, if the ground state is known, these
characteristics can be studied with the aid of computer simulations. Now we turn to
presentation of these results.

3 Computer Simulation

For given N and {αi} for each value of t we generated an additive matrix. We did 105

random starts (see Introduction) and obtained the same number of local minima. For
each minimum we fixed its depth (the energyEl ), the relative Hamming distance Dl

between the minimum and the ground state and other characteristics. Thus as a result of
a great number of random trials for each value of t we could estimate: a) the probability
of random finding of the ground state pGS ; b) the deepest of the obtained minimum
and the distance from it to the ground state; c) the number of different minimaK , their
distribution over energies and distances from the ground state and so on. The parameter
t was varied from zero up to the maximal value tn . For two dimensionalities N = 100
and N = 1000 such experiments were done for both arithmetical and random additive
matrices.

In Fig.2 for the arithmetical additive matrix of dimensionality N = 100 the depen-
dence of some of the listed characteristics on the parameter t is shown. Let us explain
what the graphs shown on different panels of the figure mean.
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Fig. 2. For arithmetical additive matrix of dimensionality N = 100 the following graphs are
shown: on the upper panel is the probability to find the ground state; on the next panel is the ratio
of depth of the deepest found minimum to the depth of the global minimum; on the next panel is
the relative Hamming distance between the deepest minimum and the ground state; on the bottom
panel is the number of different energies of local minima
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On the Upper Panel. The probability to find the ground state pGS is shown. We see
that in the region of small values of t (t < 1.8), where the depth of the global minimum
is large, the probability to find the ground state is notably different from zero. On the
contrary, in the region of large values of t, where the global minimum becomes rather
shallow, the probability to find it is equal to zero (it is less than 10−5). At the same time
it is not important which configuration s(k) is the ground state.

Apparently, such behavior of the probability pGS is one more confirmation of the
law, which was theoretically predicted in [3], [4]: the deeper minimum, the greater
probability to find it under the random search.

For the matrix of dimensionality N = 1000 the behavior of the given characteristic
is an analogous one. The value of the parameter t for which the probability to find the
ground state becomes zero, increases up to the value t ≈ 4.

On the Second Panel from the Top. The ratio of the found deepest minimum Emin to
the global minimum EGS , Emin/EGS , is shown. This ratio takes on a value from the
interval [0, 1]. At first, while the ground state still can be found, this ratio is equal to 1.
Then in the region of the values t ≈ 2.3− 2.5 this characteristic has a sharp downward
excursion, which soon changes to a steady increasing and tends to 1 asymptotically.
The minimal value of this characteristic is Emin/EGS ≈ 0.85. It shows that in the
worst case the objective function is 15% less than the optimal value.

For matrices of dimensionality N = 1000 the behavior of the ratio Emin/EGS is
absolutely analogous. The deepest downward excursion of the graph takes place when
t ≈ 4 , and its depth increases noticeably: the minimal value of the ratio is equal
Emin/EGS ≈ 0.5. In other words, when the dimensionality of the problem increases
the found suboptimal solution will be worse comparing with the global minimum.

Note, that for the large values of t ∼ 7 − 8 , when the ratio Emin/EGS is close to
1, the probability to find the ground state as before is equal to 0. The same also takes
place in the case N = 1000.

On the Second Panel from the Bottom. It is shown how the distance D between
the deepest local minimum and the ground state depends on the parameter t. (By the
distance we understand the relative Hamming distance D = (N − abs(s, s′))/2N ∈
[0, 0.5].)

At first, while the ground state still can be found this distance is equal to 0 (see the
beginning of the graph). Then in the interval of the ”worst” values of t the distance
D increases sharply up to the value Dmax ≈ 0.3 . After that the distance between the
deepest local minimum and the ground state is stabilized near the value D = 0.2. Let
us add that for additive matrices of dimensionalityN = 1000 suboptimal solution is far
away from the ground state. This distance is D ≈ 0.4 .

The general conclusion is as follows: for rather large values of t , when as a result of
the random search it is possible to find suboptimal solution only, this solution is suffi-
ciently far from the ground state. However, the ratio of the minima depths Emin/EGS
can be of order of 1 (in Fig.2 this situation corresponds to the values of t > 4 ). This
combination of properties is possible only if the energy surface consists of a large num-
ber of local minima, which depths not strongly differ one from each other and from
the global minimum. We may conclude, that for large values of t , when elements of
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connection matrix are large negative numbers, the construction of the energy surface is
as aforesaid.

On the Bottom Panel. We show the dependence of the number of different energies of
local minima K on the value of the parameter t. As a rule each energy is many times
degenerated. To estimate the number of different local minima it is necessary to analyze
how many different configurations correspond to the same energy. Nevertheless, such
characteristic as the number of energy levels is also of interest.

For an arithmetical additive matrix of the dimensionality N = 100 the maximal
value of the characteristic K is reached in the region t ∼ 3. This maximum is compar-
atively small, ∼ 500. However, it turns out that each energy is many times degenerated,
and the number of different local minima is an orders of magnitude greater. For a ran-
dom additive matrix of the same dimensionality the maximal value of the characteristic
K is equal to tens of thousands (the graph is not presented).

For the additive matrices of the dimensionality N = 1000 the general form of the
graph of the characteristic K is analogous. In this case the maximal value, Kmax ∼
4 · 104, is reached in the region t ≈ 5. Since for each t only 105 random starts have
been done, this means that each second start leads the system into new local minimum.
In other words, for middle values of t the number of local minima is very big.

4 Discussion and Conclusions

For additive matrices the method of finding of the global minimum of the quadratic
binary functional is pointed out. We propose the t -parametrization of additive matrices
that allows one to get an exhaustive classification for all variants possible for the ground
state.

For not great values of t (let us say for t ∈ [0, 2] ) among matrix elements there
are positive as well as negative ones; or all elements are negative, but they are small in
modulus. In this case the depth of the global minimum is very big. Here the probability
to find the ground state in random search is rather high: pGS ∼ 0.5 − 1.0. It can be
supposed that in this case the energy surface has a small number of local minima whose
depths noticeably less then the depth of the global minimum.

On the contrary, for the great values of t all matrix elements are negative and they
are big in modulus. In this case it is practically impossible to find the ground state
with the aid of the random minimization, since the probability to get into the global
minimum is negligible small. Apparently in this case the energy surface contains very
large number of local minima that only slightly differ from each other in depths. Here
the global minimum is only insignificantly deeper than local minima. Varying the value
of the parameter t it is possible to get over from one type of the energy surface to the
other one. So, additive matrices are good models for examining the energy surfaces in
the general case.

By this time additive matrices for large values of t can be used for testing of new
algorithms of the quadratic binary minimization. Indeed, on the one hand, with the aid
of the formulae (10)-(13) the ground state always can be found. On the other hand, for
large values of the parameter t it is practically impossible to find the ground state with
the aid of the random minimization.
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Appendix

In the beginning of Section 2 it was shown that only one of configuration vectors s(k)
(6), k = 0, 1, ..., n = [N/2] can be the ground state. Using the representation (9) of ai
it is easy to obtain Eq. (12) for the energies of s(k)-configurations:Ek(t) = Ak + tBk,
where Ak and Bk are given by Eq.(13). As functions of the parameter t energies Ek(t)
are straight lines. We have to analyze the behavior of the set {Ek(t)}n0 . When a straight
line El(t) is lower all other straight lines, the configuration s(l) is the ground state.

For simplicity we restrict ourselves to the case of evenN = 2n. Let us write down
the expression (13) in more details:

A0 = −(N − 1)α̂ < A1 < ... < An = α̂,
B0 = (N − 1)N > B1 > ... > Bn = −N. (A1)

When k increasing, the free term Ak of the straight line Ek(t) increases monotonically.
In other words, the intersection of the straight line with ordinate axis rises higher and
higher. On the other hand, when k increasing the coefficient Bk decreases monoton-
ically, so that in the end it even becomes negative. For the case N = 6 the typical
behavior of the set of straight lines {Ek(t)}n0 is shown in Fig.3. We use this figure to
explain how the ground state depends on the parameter t.

When t = 0 all the matrix elements are positive and the configuration s(0) = (1, ...1)
is the ground state. Let us increase t little by little. At first the straight lineE0(t) is lower

http://www.informatik.uni-koeln.de/ls_juenger/research/sgs/sgs.html
http://www.informatik.uni-koeln.de/ls_juenger/research/sgs/sgs.html
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than all other straight lines. Consequently, s(0) remains the ground state. Than for some
value of the parameter t the straight line E0(t) is intersected by another straight line.
After that this straight line turns out to be lower than all other straight lines. Taking
into account the relations (A1) it is easy to see that the first straight line that intersects
E0(t) is E1(t) (see also Fig.3). After this intersection the configuration s(1) becomes
the ground state. It is the ground state until another straight line intersects the straight
line E1(t). After that this straight line turns out to be lower than all other straight lines.
From the aforesaid argumentation it is evident that it will be the straight line E2(t) (see
Fig.3). Then the configuration s(2) will be the ground state, and so on. It can be shown
that if the straight line Ek−1(t) is lower than all other straight lines, the first straight
line that intersects Ek−1(t) is Ek(t). The intersection takes place in the point tk (11)
that is the solution of equation Ak−1 + t · Bk−1 = Ak + t · Bk.
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Fig. 3. For random additive matrix of dimensionality N = 6 the straight lines Ek(t) = Ak+t·Bk

are shown for k = 0, 1, 2, 3 (see the body of the text)



Mutual Learning with Many Linear Perceptrons:
On-Line Learning Theory

Kazuyuki Hara1, Yoichi Nakayama2, Seiji Miyoshi3, and Masato Okada4,5

1 Tokyo Metropolitan College of Industrial Technology, 1-10-40, Higashi-oi,

Shinagawa Tokyo 140-0011, Japan

hara@s.metro-cit.ac.jp
2 Tokyo Metropolitan College of Technology, 1-10-40, Higashi-oi,

Shinagawa Tokyo 140-0011, Japan
3 Faculty of Engineering Science, Kansai University,

3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan

miyoshi@ipcku.kansai-u.ac.jp
4 Graduate School of Frontier Sciences, The University of Tokyo,

5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8561, Japan

okada@k.u-tokyo.ac.jp
5 Brain Science Institute, Riken, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan

Abstract. We propose a new mutual learning using many weak learner

(or student) which converges into the identical state of Bagging that is

kind of ensemble learning, within the framework of on-line learning, and

have analyzed its asymptotic property through the statistical mechanics

method. Mutual learning involving more than three students is essential

compares to two student case from a viewpoint of variety of selection of

a student acting as teacher. The proposed model consists of two learn-

ing steps: many students independently learn from a teacher, and then

the students learn from others through the mutual learning. In mutual

learning, students learn from other students and the generalization error

is improved even if the teacher has not taken part in the mutual learning.

We demonstrate that the learning style of selecting a student to act as

teacher randomly is superior to that of cyclic order by using principle

component analysis.

1 Introduction

As a model incorporating the interaction between students, Kinzel proposed
mutual learning within the framework of on-line learning[1,2]. Kinzel’s model
employs two students, and one student learns with the other student acting as a
teacher. The target of his model is to obtain the identical networks through such
learning. On the other hand, ensemble learning algorithms, such as bagging[3]
and Ada-boost[4], try to improve upon the performance of a weak learning ma-
chine by using many weak learning machines; such learning algorithms have
recently received considerable attention. We have noted, however, that the mech-
anism of integrating the outputs of many weak learners in ensemble learning is
similar to that of obtaining the identical networks through mutual learning.
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Fig. 1. Network structure of latent teacher and student networks, all having the same

network structure

With regard to the learning problem, how the student approaches the teacher
is important. However, Kinzel[1,2] does not deal with the teacher-student relation
since a teacher is not employed in his model. In contrast to Kinzel’s model, we
have proposed mutual learning between two students who learn from a teacher
in advance[5,6]. In our previous work[5,6], we showed that the generalization
error of the students becomes smaller through the mutual learning even if the
teacher does not take part in the mutual learning. Our previous work[5,6] treated
a special case where the number of students is two. This paper treats the general
case where the number of students is arbitrary. When the number of students
becomes general, additional degrees of freedom associated with the selection of
learning order are generated, and the problem settings become essentially differ-
ent from the two students case. We formulate a new mutual learning algorithm,
and then we analyze the asymptotic property of the proposed learning algorithm
through statistical mechanics.

2 Formulation of Mutual Learning with a Latent Teacher

In this section, we formulate the latent teacher and student networks, and the
mutual learning algorithms. We assume the latent teacher and student networks
receive N -dimensional input x(m) = (x1(m), . . . , xN (m)) at the m-th learning
iteration as shown in Fig. 1. Learning iteration m is ignored in the figure.

The latent teacher network is a linear perceptron, and the student networks
are K linear perceptrons. We also assume that the elements xi(m) of the inde-
pendently drawn input x(m) are uncorrelated random variables with zero mean
and 1/N variance; that is, the elements are drawn from a probability distribution
P (x). In this paper, the thermodynamic limit of N → ∞ is assumed. Thermo-
dynamic limit means that for the limit of system size N to be infinity, the law
of large numbers and the central limit theorem are effected. We can then depict
the system behavior by using a small number of parameters. At the limit, the
size of input vector ‖x‖ then becomes one.
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〈xi〉 = 0, 〈(xi)2〉 =
1
N
, ‖x‖ = 1, (1)

where 〈· · · 〉 denotes average, and ‖ · ‖ denotes the norm of a vector.
The latent teacher network is a linear perceptron, and is not subject to training.

Thus, the weight vector is fixed in the learning process. The output of the latent
teacher v(m) for N -dimensional input x(m) at the m-th learning iteration is

v(m) =
N∑
i=1

Bixi(m) = B · x(m), (2)

B = (B1, B2, . . . , BN ), (3)

where latent teacher weight vector B is an N -dimensional vector like the input
vector, and each element Bi of the latent teacher weight vector B is drawn
from a probability distribution of zero mean and unit variance. Assuming the
thermodynamic limit of N → ∞, the size of latent teacher weight vector ‖B‖
becomes

√
N .

〈Bi〉 = 0, 〈(Bi)2〉 = 1, ‖B‖ =
√
N. (4)

The output distribution of the latent teacher P (v) follows a Gaussian distribution
of zero mean and unit variance in the thermodynamic limit of N → ∞.

The K linear perceptrons are used as student networks that compose the
mutual learning machine. Each student network has the same architecture as the
latent teacher network. For the sake of analysis, we assume that each element of
Jk(0) which is the initial value of the k-th student weight vector Jk is drawn
from a probability distribution of zero mean and unit variance. The norm of
the initial student weight vector ‖Jk(0)‖ is

√
N in the thermodynamic limit of

N → ∞,

〈Jki (0)〉 = 0, 〈(Jki (0))2〉 = 1, ‖Jk(0)‖ =
√
N. (5)

The k-th student output uk(m) for the N -dimensional input x(m) at the m-th
learning iteration is

uk(m) =
N∑
i=1

Jki (m)xi(m) = Jk(m) · x(m), (6)

Jk(m) = (Jk1 (m), Jk2 (m), . . . , JkN (m)). (7)

Generally, the norm of student weight vector ‖Jk(m)‖ changes as the time step
proceeds. Therefore, the ratio lk of the norm to

√
N is considered and is called the

length of student weight vector Jk. The norm at the m-th iteration is lk(m)
√
N ,

and the size of lk(m) is O(1).

‖Jk(m)‖ = lk(m)
√
N. (8)

The distribution of the output of the k-th student P (uk) follows a Gaussian
distribution of zero mean and l2k variance in the thermodynamic limit of N → ∞.
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Next, we formulate the learning algorithm. After the students learn from a
latent teacher, mutual learning is carried out[5]. The learning equation of the
mutual learning is

Jk(m+ 1) = Jk(m) + ηk

(
uk′ − uk

)
x(m) (9)

Here, k is a student and k′ is a student to act as a teacher. m denotes the
iteration number. We use the gradient descent algorithm in this paper, while
another algorithm was used in Kinzel’s work [1]. Equation (9) shows that mutual
learning is carried out between two students. Therefore, the teacher used in the
initial learning is called a latent teacher.

In the mutual learning, selection of a student to act as a teacher is important.
In this paper, a student to act as a teacher is selected at random from all the
students, then only the statistical effects is learned by a student and therefore a
student tend to learn the average of all the students. Keeping this in mind, the
learning equation is rewritten by the next equation.

Jk(m+ 1) = Jk(m) + ηk

( 1
K

K∑
i=1

ui(m) − uk(m)
)
x(m)

= Jk(m) + ηk(u(m) − uk(m))x. (10)

Here, u is average of the student outputs and is to act as a teacher.
When the interaction between students is introduced, the performance of stu-

dents may be improved if they exchange knowledge that each student has ac-
quired from the latent teacher in the initial learning. In other words, two students
approach each other through mutual learning, and tend to move towards the
middle of the initial weight vectors. This tendency is similar to the integration
mechanism of Bagging, so mutual learning may mimic this mechanism.

3 Theory

In this section, we first derive the differential equations of two order parameters
which depict the behavior of mutual learning. After that, we derive an auxiliary
order parameter which depicts the relationship between the teacher and students.
We then rewrite the generalization error using these order parameters. We first
derive the differential equation of the length of the student weight vector lk. lk
is the first order parameter of the system. We modify the length of the student
weight vector in Eq. (8) as Jk ·Jk = Nl2k . To obtain a time dependent differential
equation of lk, we square both sides of Eq. (10). We then average the term of the
equation using the distribution of P (uk, uk′). Note that x and Jk are random
variables, so the equation becomes a random recurrence formula. We formulate
the size of the weight vectors to be O(N), and the size of input x is O(1), so
the length of the student weight vector has a self-averaging property. Here, we
rewrite m as m = Nt, and represent the learning process using continuous time
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t in the thermodynamic limit of N → ∞. We then obtain the deterministic
differential equation of lk,

dl2k
dt

=
2ηk
K

⎛⎝ K∑
i�=k

Qik − (K − 1)l2k

⎞⎠
+

η2
k

K2

⎧⎨⎩(K − 1)2l2k +
K∑
i�=k

K(l2i − 2KQik) + 2
K−1∑
i=1

K∑
j>i

Qij

⎫⎬⎭ . (11)

Here, k = 1 ∼ K. Qkk′ = qkk′ lklk′ , and qkk′ is the overlap between Jk and Jk
′
,

defined as

qkk′ =
Jk · Jk′
|Jk| |Jk′ | =

Jk · Jk′

Nlklk′
, (12)

qkk′ is the second order parameter of the system. The overlap qkk′ also has a
self-averaging property, so we can derive the differential equation in the thermo-
dynamic limit of N → ∞. The differential equation is derived by calculating the
product of the learning equation (eq. (9)) for Jk and Jk

′
, and we then average

the term of the equation using the distribution of P (uk, uk′). After that, we
obtain the deterministic differential equation as

dQkk′

dt
=

1
K

⎧⎨⎩
⎛⎝l2k +

K∑
i�=k

Qik

⎞⎠ (ηk − ηkηk′) +

⎛⎝l2k′ +
K∑
i�=k′

Qik′

⎞⎠ (ηk′ − ηkηk′)

⎫⎬⎭
+
ηkηk′

K2

⎛⎝ K∑
i=1

l2i + 2
K−1∑
i=1

K∑
i>j

Qij

⎞⎠−Qkk′ (ηk + ηk′ − ηkηk′). (13)

Equations (11) and (13) form closed differential equations.
To depict the behavior of mutual learning with a latent teacher, we have to

obtain the differential equation of overlapRk, which is a direction cosine between
latent teacher weight vector B and the k-th student weight vector Jk defined
by eq. (14). We introduce Rk as the third order parameter of the system.

Rk =
B · Jk
|B| |Jk| =

B · Jk
Nlk

(14)

For the sake of convenience, we write the overlap between the latent teacher
weight vector and the student weight vector as rk and rk = Rklk. The differential
equation of overlap rk is derived by calculating the product of B and eq. (9), and
we then average the term of the equation using the distribution of P (v, uk, uk′).
The overlap rk also has a self-averaging property, and in the thermodynamic
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limit, the deterministic differential equation of rk is then obtained through a
calculation similar to that used for lk.

drk
dt

=
ηk
K

⎛⎝ K∑
i�=k

ri − (K − 1)rk

⎞⎠ (15)

The squared error for the k-th student εk is then defined using the output of the
latent teacher and that of the student as given in eqs. (2) and (6), respectively.

εk =
1
2

(
B · x − Jk · x

)2
(16)

The generalization error for the k-th student εkg is given by the squared error εk in
eq. (16) averaged over the possible input x drawn from a Gaussian distribution
P (x) of zero mean and 1/N variance.

εkg =
∫
dxP (x) εk =

1
2

∫
dxP (x)

(
B · x − Jk · x

)2
. (17)

This calculation is the N -th Gaussian integral with x and it is hard to calculate.
To overcome this difficulty, we employ coordinate transformation from x to v
and uk in eqs. (2) and (6). Note that the distribution of the output of the stu-
dents P (uk) follows a Gaussian distribution of zero mean and l2k variance in the
thermodynamic limit of N → ∞. For the same reason, the output distribution
for the latent teacher P (v) follows a Gaussian distribution of zero mean and unit
variance in the thermodynamic limit. Thus, the distribution P (v, uk) of latent
teacher output v and the k-th student output uk is

P (v, uk) =
1

2π
√
|Σ|

exp
[
− (v, uk)TΣ−1 (v, uk)

2

]
, (18)

Σ =
(

1 rk
rk l

2
k

)
. (19)

Here, T denotes the transpose of a vector, rk denotes rk = Rklk, and Rk is
the overlap between the latent teacher weight vector B and the student weight
vector Jk defined by eq. (14). Hence, by using this coordinate transformation,
the generalization error in eq. (17) can be rewritten as

εkg =
1
2

∫
dvduk(v − uk)2 =

1
2
(1 − 2rk + l2k). (20)

Consequently, we calculate the dynamics of the generalization error by substi-
tuting the time step value of lk(t), Q(t), and rk(t) into eq. (20).

4 Results

In this section, we discuss the dynamics of the order parameters and their asymp-
totic properties, and then discuss the relationship between mutual learning and
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Bagging. For the sake of simplicity, the initial weight vectors of the students are
homogeneously correlated. From the symmetry of the evolution equation for up-
dating the weight vector, lk(t) = l(t), Qkk′ (t) = Q(t), rk(t) = r(t) are obtained.
We assume the learning step size ηk = η. By substitute above conditions into
Eqs. (11), (13), and (15), we get

dl2

dt
= −K − 1

K
(l2 −Q)(2η − η2), (21)

dQ

dt
=

1
K

(l2 −Q)(2η − η2), (22)

dr

dt
= 0. (23)

Here, Eqs. (21) and (22) form closed differential equations. These equations can
be solved analytically.

l2(t) =
K − 1
K

(l2(0) −Q(0)) exp(−(2η − η2)t) +
l2(0) + (K − 1)Q(0)

K
, (24)

Q(t) = − 1
K

(l2(0) −Q(0)) exp(−(2η − η2)t) +
l2(0) + (K − 1)Q(0)

K
, (25)

where l2(0) is the initial value of l2(t), and Q(0) is the initial value of Q(t). From
Eqs. (24) and (25), l2(t) and Q(t) are diverged when η ≥ 2, learning will not
converge in this condition.

Equation (23) depicts dynamics of overlap between the teacher and the stu-
dent. The analytical solution of Eq. (23) is easily given by

r(t) = r(0). (26)

Here, r(0) is the initial value of r(t). By substituting Eqs. (24) and (26) into
(20), we can rewrite the generalization error for K students.

εKg (t) =
1
2

(
1 − 2r(0) +

K − 1
K

(l2(0) −Q(0)) exp(−(2η − η2)t)

+
l2(0) + (K − 1)Q(0)

K

)
(27)

The asymptotic property of the order parameters l(∞), Q(∞) and r(∞) is given
by substituting t→ ∞ into Eqs. (24), (25) and (26),

l2(∞) = Q(∞) =
l2(0) + (K − 1)Q(0)

K
, (28)

r(∞) = r(0). (29)
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Consequently, we calculate the asymptotic property of the generalization error
by substituting lk(∞), Q(∞), and rk(∞) into eq. (20).

εg(∞)K =
1
2

(
1 − 2r(0) +

l2(0) + (K − 1)Q(0)
K

)
(30)

From Eq. (35), the generalization error of Bagging εBg using K weak learners is
given by

εBg =
1
2

{
1 − 2r +

l2 + (K − 1)Q
K

}
. (31)

By substituting l = l(0), Q = Q(0) and r = r(0) into Eq. (31), the generalization
error of mutual learning εKg was identical to the one of Bagging εBg , then mutual
learning asymptotically converged into Bagging.

Moreover, in the limit of number of students is K → ∞, the generalization
error is

εg(∞)∞ ∼ 1
2
(1 − 2r(0) +Q(0)). (32)

4.1 Learning Property through Computer Simulations

Mutual learning involving more than three students is the general case, com-
pared to the two students case, with regard to the variety of students who can
be selected to act as teacher. Figure 2 shows trajectories of the student weight
vectors obtained by principle component analysis (PCA) during mutual learn-
ing involving three students. (The three students are respectively referred to as
A, B and C, and A teaching B is indicated as A → B.) Figure 2(a) shows re-
sults obtained through learning where one student is randomly selected to act
as teacher, and for comparison (b) shows results obtained through learning in a
cyclic order of A→ B → C → A. The symbol ”o” at the center of each figure
shows the weight vector of the latent teacher B. In these figures, the horizontal
axis shows the first principle component, and the vertical axis shows the second
principle component. As shown, the trajectory of (a) converges with the mini-
mum distance to the latent teacher, while that of (b) converges after a longer
distance. This demonstrates that the learning style of (a) is superior to that of
(b), confirming the validity of the proposed learning algorithm.

Next, we show the time dependence of the generalization error in Fig. 3. The
number of students was 2, 3, 5, or 10, and the learning step size was η = 0.1. The
initial conditions were r(0) = 0.8, Q(0) = 0.6, and l(0) = 1. The results were
obtained through computer simulations with N = 1000 using random selection
learning. In the figure, the horizontal axis is normalized time t = m/N , where m
is the number of learning iterations. The vertical axis is the generalization error.
The solid lines show the results using analytical solutions, and symbols ”x”, ”+”,
”∗”, and ”�” show the results for K = 2, 3, 5, and 10, respectively. We assumed
a weight vector size of O(

√
N) and input size of O(1) in the theoretical analysis.

We kept these assumptions in the computer simulations, so if N is sufficiently
large, the order parameters would have a self-averaging property. As shown, the
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Fig. 2. Trajectory of student weight vector during learning. Three students’ case.
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Fig. 3. Dependence of the mutual learning generalization error on the number of stu-

dent networks K

analytical results agreed with those of the computer simulations, confirming the
validity of the theoretical assumptions. We found that the generalization error
decreased in proportion to O(1/K). Moreover, the variance of the generalization
error when using computer simulations tended to become smaller as the number
of students K increased.

5 Conclusion

We have proposed a mutual learning algorithm using many students within the
framework of on-line learning. From the results, analytical results are agreed
with that of computer simulations, and the validity of the theoretical results
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are shown. We showed that random selection of a student as a teacher is useful
for mutual learning, and we found that the generalization error decreased in
proportion to O(1/K). Our future work is analyzing a mutual learning using
many non-linear perceptrons.
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A Bagging

Bagging is a learning method using many weak learning machines to improve
upon the performance of a single weak learning machine[3]. Students learn from
the teacher individually, and then an ensemble output u is calculated.

u =
∑K
k=1 uk
K

=

∑K
k=1

(
Jk · x

)
K

= JB · x. (33)

The length of the weight vector lB and the overlap rB are given by ,

(lB)2 =
l2 + (K − 1)Q

K
, rB =

1
K

K∑
k=1

rk = r. (34)

Here, we assumed the conditions of lk = l, Qk = Q, and rk = r, respectively.
The generalization error of ensemble output εBg is given by substituting Eqs. (34)
into Eq. (20):

εBg =
1
2

{
1 − 2r +

l2 + (K − 1)Q
K

}
. (35)
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Abstract. In this study, the generation of temporal synchrony within

an artificial neural network is examined considering a stochastic synaptic

model. A network is introduced and driven by Poisson distributed trains

of spikes along with white-Gaussian noise that is added to the internal

synaptic activity representing the background activity (neuronal noise).

A Hebbian-based learning rule for the update of synaptic parameters is

introduced. Only arbitrarily selected synapses are allowed to learn, i.e.

change parameter values. The average of the cross-correlation coefficients

between a smoothed version of the responses of all the neurons is taken

as an indicator for synchrony. Results show that a network using such a

framework is able to achieve different states of synchrony via learning.

Thus, the plausibility of using stochastic-based models in modeling the

neural process is supported. It is also consistent with arguments claiming

that synchrony is a part of the memory-recall process and copes with the

accepted framework in biological neural systems.

Keywords: Neural network, temporal synchronization, stochastic

synapses, neuronal states.

1 Introduction

Temporal coherence in the firing activity of groups of neurons is widely observed
as a common feature throughout the neocortex [1]. The analysis of the responses
of stimulated neurons of cat’s visual cortex [2] confirmed that activated neurons
can reliably produce synchronous discharge with the precision of a few millisec-
onds. Investigating the key factors in exhibiting such synchronous activity [3]
related these observations to both the pure excitatory and the intrinsic time
course of synaptic interactions. This coherence is believed to play an important
role in neural coding and computational principles [4]. Synaptic background ac-
tivity (namely the noise) was reported through the theoretical and experimental
studies of synchronous activities as a key feature and it was emphasized that
such background activity can affect driving coherent spiking activity [5,6,7,8].

Although the real mechanism underlying neuronal synchrony (or temporal
correlation) is not completely investigated [1], the issue gained more importance
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in the research since it has been viewed as a plausible solution to the ”binding
problem” [9,10,11] discussed in [12]. These studies argued that such neuronal
temporal synchrony could allow the information about stimuli to be conveyed
as temporal relations between neural sites and provide the basis for integrating
different features representing the same object. Thus, binding can be defined as
the ability of the biological neural system, in terms of inherited flexibilities, to
construct higher level symbols by combining more elementary symbols [13].

States of synchrony are involved when any group of neurons realize a degree
of synchronous activity, consequently this group of neurons exhibits a state of
mental activity [12]. By entertaining such conceptual assumption and in order to
observe this state, this temporal synchrony (or temporal correlation)1 is defined
over a time period Tsync. With this period of time (or Psychological Moment)
a brain, mental or neurological state is defined. At times greater than Tsync one
sees only a sequence of states (state history). Below this time window a state
cannot be defined. The need to maintain this state of temporal correlation for
periods greater than few milliseconds was supported by the argumentation in [13]
in order to confine the behavioral conditions fitting the higher brain functions
and difficult tasks that require sustained level of activity. Von der Malsburg
stated that plausible values for this time window could be in the range of 50 - 200
millisecond and may be also extended to involve minutes if other mental aspects
are in concern [12]. Within this time window, the actual signal fluctuations are
not relevant (for a complete review please refer to [11,13,14]).

The generation of synchrony in artificial neural networks (ANN) is addressed
in many theoretical and numerical studies, e.g. [3,15,16,17,18,19]. These studies
confirmed the ability of an ANN to realize the temporal synchrony on the time
scales of few milliseconds even with sharp synchronization on the time scale of
single spikes. In general, these studies simulated a population of integrate-and-
fire (IAF) neurons with adequate interconnectivity. Their discussions highlighted
the major role of excitatory interconnections to achieve a certain degree of syn-
chronous activity. Tsodyks et al presented a notable study in [1]. They considered
the non-linear (frequency dependent) synapses for the generation of synchronous
firing. Their results showed that the incorporation of nonlinear synapses in re-
current networks provide the basis for the emergence of short-time synchronous
activity.

A stochastic pulsed-coupled neural network was presented in [20] showing syn-
chronous and asynchronous behavior. A reduced stochastic dynamic model of an
interconnected population of excitatory neurons with activity-dependent synap-
tic depression was proposed in [21], the discussion was focused on the bistability
of voltage activities as up and down states. This is believed to be also related
to the states of temporal synchrony within the neural ensemble. However, these
studies and other did not consider the potential effects of stochastic dynamic
synapses on synchronization of neural activity in ANN. It has been shown that
deterministic representation of the neural actions does not model the biological

1 In the referred study, the mathematically known cross-correlation was not meant

explicitly, instead the general sense of temporal correlation was meant.
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neural behavior realistically [22,23,24]. In addition, Kröger showed in [25] that
probabilistic option in neuroscience offers advantages over the deterministic one.

Hence, in this paper, we test the ability of a network comprising IAF neu-
rons and stochastic synapses to realize the concept of synchrony (the temporal
correlations) between the signals of grouped neurons as states of synchronous
activity. The goals are: a) to construct an ANN, that when driven by trains
of spikes should be able to transform input signals combined with background
synaptic activity (here introduced as synaptic noise) into correlated outputs and
b) to show the ability to sustain such a level of synchrony over a considerable
time course Tsync. The proposed ANN with Integrate-and-Fire (IAF) neurons is
interconnected via a modified version of the Stochastic synaptic model presented
in[22]. This architecture is arbitrarily chosen that both neuronal and synaptic
representations are realizing the dynamic behavior. Moreover, the stochastic na-
ture of the synaptic model is believed to be more plausible describing the nature
of living tissue, in contrast to the deterministic model used in [1]. It represents, in
an abstract way, an intrinsic source of noise within the system. A Hebbian-based
Reinforcement-like learning algorithm is introduced as well.

2 Modified Stochastic Synaptic Model (MSSM)

Neurons are modeled as leaky-IAF neurons usually used in such type of simu-
lations [1]. Each neuron is described by its voltage membrane potential V , that
followed the following dynamics:

τV
dV

dt
= −V + Epsp, (1)

where τV is the membrane time constant, and Epsp is the total observed exci-
tatory postsynaptic potential from all pre-synaptic terminals. Equations 1 and
5 are implemented as discrete forms introduced by [26] using Impulse Invariant
Transform in order to facilitate the computations (Please refer to the articles
[27,26] for the derivation).

Each synaptic connection is modeled as a stochastic activity-dependent con-
nections using the synaptic stochastic model (SSM) [23]. This model estimates
the transmission probability of an arriving action potential, i.e. spike, from a
presynaptic neuron via a synapse to a postsynaptic neuron. The probability-
of-release involved is governed by two counteracting mechanisms: facilitation
and depression. Facilitation reflects the Ca2+ concentration in the presynaptic
neuron, while depression represents the effect of the concentration of ready-to-
release vesicles in the pre-synaptic neuron. The probability that the ith spike in
the spike train triggers the release of a vesicle at time ti at a given synapse is
given by:

P (ti) = 1 − e(−CC(ti)·CV (ti)), (2)

where CC(ti) and CV (ti) represent the facilitation and depression mechanisms
respectively at ti. CC(t) and CV (t) are expressed mathematically as follow [24]:
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CC(t) = CCo +
∑
ti

αe−(t−ti/τCC
) (3)

CV (t) = max(0, CVo −
∑
ti

e−(t−ti/τVC
)) (4)

In eq. 3, τCC and α represent the decay constant and the magnitude of the
response respectively. CCo represents the initial concentration of Ca2+ in the
pre-synaptic terminal. In eq. 4, CV (t) is the expected number of vesicles of
neurotransmitter molecules (Nt) in the ready-for-release pool at time t. CVo is
the max. number of vesicles that can be stored in the pool. τVC is the time
constant for refilling the vesicles. A discrete-time version of those equations is
used in simulation [23].

Recalling that the binding process of Nt on the postsynaptic membrane induce
Epsp. Thus, Epsp can be expressed as follows [26]:

τepsp
dEpsp

dt
= −Epsp+ CNt, (5)

where τepsp is a decay time-constant. CNt is the concentration of the Nt in the
synaptic cleft. We assume that the latter can be estimated by tracing the amount
of vesicles of Nt that remains in the presynaptic neuron, CV (t), over time. We
introduce the following equation to estimate CNt(t) and consequently couple the
SSM with the IAF neuron model:

CNt(t) = max(0, CV (t−Δt) − CV (t)) + CNt(t−Δt)e
−Δt
τNt (6)

In eq. 6, CNt is the summation of: a) the estimated amount of Nt added with
each release at any time step t (or the decrease in CV (t) over the time period
Δt); where the max(. . .) avoids negatives and b) the amount of Nt that remains
in the cleft from previous releases, namely at t−Δt. The decay with τNt reflects
the biological cleaning action, or the removal of the Nt from the cleft. By adding
eq. 6 to SSM, we refer to it as the Modified SSM (MSSM). Using eq. 5 and 6,
the IAF neuron model can be coupled to the SSM.

3 Network and Simulation

Up to our knowledge, the biologically accepted network size, in which temporal
correlation can be observed and effectively utilized, is not precisely specified [1].
However, there are some hypothetical suggestions discussing the tenability of the
network size. Singer for example analyzed the major factors affecting the ability
of a group of neurons to exhibit synchronous activity [13]. He pointed out that
the network size could be as small as two mutually coupled neurons and may be
up to 100 neurons. Herzog and Gerstner argued that if synchrony is an essen-
tial feature for the brain activities, it should also be feasible in small networks
[28]. They called this “the small network argument”, or the new benchmark for
consciousness. Thus, they reported, there is a minimal model or a small network
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(a) (b)

Fig. 1. Network schematic. a) 3 neuron network. The dashed lines are those synapses

permitted to be trained. Double arrowed connections represent a mutual connection.

Horizontal-right oriented arrows: output signals from each neuron: Y1, Y2 and Y3.

Vertical-two-headed arrows: the corresponding cross-correlation coeff.: R1, R2 and R3.

The trained synapses are from N1 to N2 and N3. b) 8 neuron network. The dashed lines

are those synapses permitted to be trained. Double arrowed connections represent a mu-

tual connection. The details of the outputs and the calculation of cross correlation are

omitted for clarity. The trained synapses are the synapses from N1 to N2, N3 and N4.

that satisfies the criteria underlying consciousness, e.g. temporal synchrony, but
is not conscious itself. They stated that groups of up to seven neurons are suf-
ficient to realize memory, learning, or synchrony. Based on the analysis done in
[29], a network of two neurons should be able to achieve spike-to-spike synchrony
when enough mutual conductance is available.

Thus, two network structures are used in this study. A schematic of the first
introduced network is in Fig. 1(a) with the input being fed only to the first
neuron, N1. The network consists of 3 mutually interconnected neuron with only
excitatory synapses. Also a bigger network is used with 8 neuron as in Fig. 1(b).
In the latter one, the input is also fed to N1, and similar to the smaller network,
the feed back to the input neuron is only possible from the neighboring neurons;
in this case from N2, N3 and N4. All synaptic connections are MSSM synapses
as described in section 2 supported with white gaussian noise generators. The
input is a set of 200 trains of spikes, each with a Poisson distributed inter-spike
intervals for an epoch of 150 and 100 msec at 1 msec discretization for the 3
neuron and the 8 neurons networks respectively. This time epoch is arbitrarily
used as a median value for the proposed time scale of Tsync over which synchrony
is plausible. The spike generator is adjusted to generate spikes with a maximum
overall firing-rate of 300 Hz. Meanwhile, at each synapse a white Gaussian noise
is added locally to the induced postsynaptic potential from this synapse. The
level of the noise is modulated via simulated linear amplification.

For representing synchrony, the cross-correlation based measures are accepted
in the detection of similarities in responses and for synchrony [1,19]. A correlation-
based measure is introduced in [30] that calculates the cross-correlation coefficient
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between neural responses after applying a Gaussian filtration on the responses.
Here, the max. of cross-correlation coefficients between the filtered signals is used
to indicate the degree of synchrony. The width of the Gaussian filter is chosen to
be equal to the chosen neuronal refractory period of 2 msec.

4 Learning Rule

Generally, if no learning is implemented, the input signal and noise are fed to the
network. At the end of each epoch, the mean Rm of the max. cross-correlation
coefficients is calculated from all possible combinations between the responses
from the three neurons. For example in the case of the network with 3 neuron
Rm = mean(R1, R2, R3), where R1 is the max. cross correlation coefficient be-
tween the Gaussian filtered versions of Y1 and Y2. Similarly R2 and R3, as in
Fig. 1(a). An analog approach is used with the bigger network.

A Hebbian-based learning rule is introduced in [31,26] showing how both the
timing parameters and constants can be updated based on the spiking activity of
pre- and postsynaptic neurons. Here, this rule is extended to MSSM parameters.
Specifically, the dynamics of synaptic or neural activities are governed through
the contribution of electro-chemical mechanisms. Each of them is represented
via a value, m, i.e. α in eq. 3 represents the max. allowed incurrent of Ca+2

ions to the presynaptic terminal [22]. A mechanism m could be either excitatory
or inhibitory. According to the pre- and postsynaptic activity, the value of m is
either increased or decreased following the Hebbian approach [31]. The update
of the contribution values could be mathematically formed as follow: mnew =
(1 ± r)mcurrent, where r is the learning rate. In the proposed MSSM, such
parameters are for example τNt, τCC , τVC ,α, CCo and CVo .

We introduce a feedback parameter, K, that represents the advance in the
direction of getting both more and stable synchrony between the responses (i.e.
a higher cross-correlation coefficient). Thus, it is the difference in the observed
synchrony Rm from the current run and the previous one, mathematically ex-
pressed as follows:

K = Rmcurrent −Rmprevious (7)

K is used as a modulator to the learning rate. Thus, the learning rule can be
rewritten as follows:

minew = (1 ± r . K) micurrent (8)

K can reverse the direction of the updating process of the parameters since it is
a signed value, and can either accelerate or decelerate the learning process. This
learning rule has the implicit objective of correlating the outputs corresponding
to the same input properties. It emphasizes the sensitivity of the network to
temporal and statistical properties embedded in input signals [26]. In this study,
only forward MSSM synapses are allowed to update their parameters via this
rule as illustrated in Fig. 1(a) and 1(b).
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5 Results

Figures 2(a) and 2(b) illustrate the performance of the networks during the
simulation with and without learning. In each figure, the two different traces
can be taken as an indicator for two neuronal states of synchrony: Ground-State
(Learning Off) and Active-State (Learning On). The network needed about from
20 - 40 learning runs until it reached the Active-State. The introduced networks
are able, via the proposed modified stochastic synaptic model and the learning
algorithm, to show two states of synchrony over a time window of 150 and 100

(a) (b)

Fig. 2. Simulation result. a) The detected level of internal synchrony of the 3 neuron

network in two cases: when learning is allowed, and when not allowed. Tsync = 150

msec. b) The detected level of internal synchrony of the 8 neuron network in two cases:

when learning is allowed, and when not allowed. Tsync = 100 msec.

Fig. 3. Desynchronization. The networks reach a stable level of synchrony lower than

the starting level. Results from both networks, 3 and 8 neuron (Network I and network

II respectively), are illustrated.
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msec in 3 neuron and 8 neuron network respectively. This agrees with the concept
introduced in [12].

However, a network that achieves only synchrony is not so useful unless it can
desynchronize its activity [15]. Hence, the ability of the network to desynchronize
itself is also investigated. By setting the input to zero, the only remaining input
is the noise which is equal for all synapses. Thus, the neurons start with typical
firing patterns, this can be (obviously) seen in Fig. 3. The two traces of the
cross-correlation coefficient start almost with a value of 1. Since learning is on,
and while the network is trying to reach a general stable level of synchrony, the
networks desynchronized itself reaching a middle level near those upper ones
achieved as in Fig. 2(a)2(b).

6 Discussion and Conclusion

The simulations presented here demonstrate that networks of neurons intercon-
nected with stochastic synapses have a real tendency to realize special regimes of
activity with synchronous discharge over biologically tenable periods of time. The
simulation here is restricted to excitatory connections based on the mentioned
discussion in the introduction section, however, the role of synaptic depression or
specific inhibitory connections in case of using stochastic synapses needs further
investigation.

Considering the network size in this study, it can not represent a cortical
minicolumn [1] consisting of neurons, however, it could be viewed, in the context
of synchronous activity, to have similar receptive field properties [14]. Other
possibilities are issues of further study, e.g. it is expected that in larger simulated
networks, such as a cortical mini- and hyper-column, where interconnections
between neurons reflect their receptive field properties, other profiles of activity,
may be with multiple internal states or with shorter time course, could exist.

As for the learning algorithm, and up to our knowledge, there may be no
clear analytical evidence that biological neural systems can turn learning on and
off. However, the logical analysis as in [8] still accepts that the biological neural
circuitry can perform something similar to control, e.g. the control over the flow
of information, the task sharing and non-physical rewiring of neural ensembles.
This makes the idea of using the on/off learning rule acceptable.

In this paper, an ANN of IAF neurons coupled via MSSM synapses is in-
troduced. In case of the evoked simulations, the network is driven by Poisson
distributed trains of spikes and white-Gaussian noise. The latter is fed to synap-
tic activities. Considering that the Poisson distributed input represents a neural
activity that carries certain information, the change in the level of synchrony
could be seen as if the network, is likely to be, memorizing or internally recall-
ing this input by pushing all its activities to sync with it. On the other hand,
and in the case of spontaneous activity as the input is set to zero, the networks
are able to find a lower stable state of synchrony, since they desynchronize their
firing pattern. Both synchrony and desynchrony cope with the conceptual postu-
lations discussed in the context of synchrony [12] and the role of noise in neural
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information processing [5]. Hence, the proposed framework achieved successfully
the general sense of sustaining a defined state of synchronous activity within a
group of neurons over a considerable time course of 100 - 150 milliseconds.

It remains, however, that the expressive power of the proposed dynamics
in terms of the number of achievable states is to be tackled. Besides, both the
qualitative and quantitative sense of the difficulty to reach a certain generic state
is an open questions as well. Moreover, the comparison between the abilities of
the proposed dynamics versus the deterministic models to realize these states of
synchrony remains to be discussed.
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Abstract. We implement a model of leaky-integrate-and fire neurons

with conductance-based synapses. Neurons are structurally coupled in

terms of an ideal cell assembly. Synaptic changes occur through param-

eterized spike timing-dependent plasticity rules which allows us to in-

vestigate the question whether cell assemblies can survive or even be

strengthed by such common learning rules. It turns out that for different

delays there are parameter settings which support cell assembly struc-

tures and others which do not.

1 Introduction

One of the most fundamental features of the brain is its ability to change over
time depending on sensation and feedback, i.e. its ability to learn, and it is widely
accepted today that learning is a manifestation of the change of the brain’s
synaptic weights according to certain rules. In 1949, Donald Hebb postulated
that repeatedly correlated activity between two neurons enhances their connec-
tion ([1]), leading to what is today called Hebbian cell assemblies—a strongly
interconnected set of excitatory neurons. These cell assemblies (CA) can be used
to model working memory ([2]) in the form of neural auto-associative memory
and thus may provide insight into how the brain stores and processes infor-
mation ([3]). Cortex modeling based on cell assemblies has been investigated
theoretically as well as applied to robot control in e.g. [4].

That synaptic weights do indeed change with correlated pre- and post-syn-
aptic activity has been discovered in the seventies (e.g. [5]). Recent research
however indicates that the temporal order of pre- and post-synaptic spikes is
also important ([6]), i.e. that pre-synaptic before post-synaptic activity leads to
potentiation (an increase in synaptic efficacy), whereas the reverse case causes
depression of synaptic weights. This phenomenon has been termed spike timing-
dependent plasticity (STDP) ([7]) and has been investigated numerous times
physiologically as well as computationally (see for example [8,9,10]).

Here, we examine Hebbian cell assemblies and their stability with respect to
STDP. While the effect of the STDP rule on local feed forward structures, e.g.
Abelesian synfire chains ([11]) is relatively easy to understand, it is not imme-
diately obvious how highly recurrent structures like cell assemblies are affected.
In circuits with direct feedback, like CAs, a neuron’s spike falls into both the
positive and negative part of the STDP window and thus, even if the neuron
receives input directly from itself and therefore takes part in the production of
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its own spikes, it is not intuitively clear whether its synapses are strengthened
or weakened.

The primary question we strive to answer is: Under what computational cir-
cumstances, i.e. which parameter settings, can cell assemblies coexist with the
STDP learning rule?

In the following, we investigate how an “ideal” cell assembly, i.e. a set of
model neurons interconnected through a weight matrix C, cij = c ∀i, j with a
delay matrix D, dij = d ∀i, j is affected by STDP. We show that whether or not
cell assemblies can coexist with the STDP rule depends on the type of STDP
window used, the initial weight matrix as well as the delay matrix.

2 Model

We consider a network of N leaky-integrate-and-fire neurons. These are com-
pletely interconnected through conductance-based synapses. For j = 1, . . . , N
the subthreshold dynamics of neuron j is given by

τmv̇j = vrest − vj + gj · (E − vj) + N (0, 1) (1)

as proposed in [7]. vj describes the membrane potential of neuron j, vrest its
resting potential, gj the corresponding conductance of the neuron’s excitatory
inputs, and E names the reverse potential. N denotes Gaussian noise added to
the membrane dynamic. If a membrane potential reaches a certain threshold vth,
the point in time is stored and the potential is reset to a global potential vreset and
gj is set to 0. The network’s delay D is the same for all neurons according to the
definition of a cell assembly. We assume an existing cell assembly with synapses
which are strong enough to generate self-sustained activity. Synaptic plasticity
occurs through STDP, implemented through traces of pre- and post-synaptic
activity. Four parameters are necessary to define a proper STDP time window:
τ+, τ−, A+ and A−. These specify time constants and maximums of change
to synaptic strength. We use the additive STDP-update-rule as physiological
tradeoff ([12]). Traces are modeled by two simple ODEs of the form

τ+Ṗij = −Pij (2)

and
τ−Ṁj = −Mj (3)

where Pij characterizes the pre-synaptic trace from neuron i to j and Mj its
post-synaptic counterpart. Synaptic conductances also follow this pattern by

τg ġj = −gj . (4)

The N ×N matrix C stores synaptic strengths. If a pre-synaptic spike occurs,
Pij is increased by an amount A+ and Cij by Mj · gmax where gmax refers
to the maximum possible conductance. The delay D must be included in the
calculation. After updating the post-synaptic trace Mj by A− for every incoming
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t

v(t)

vrest

vth

Fig. 1. The membrane potential curve (“EPSP shape”) as given by Eq. 1

spike, Cij will be modified by adding Pij · gmax. So while no spike arrives, all
traces just decay exponentially, whereas otherwise the traces will be updated by
an amount and added on synaptic strengths which again influence the change of
the total conductance gj at neuron j. The model parameters and their respective
values are given in Table 1. The solution to Eq. 1, i.e. an EPSP at time t = 0 is
shown in Fig. 1.

Table 1. Constant parameters used for the network model

Parameter Value Description

N 300 Number of neurons

τm 0.02 Membrane time constant

τg 0.005 Conductance decay time constant

gmax 0.015 Maximum conductance per synapse

vrest −70 Resting potential

vreset −80 Reset potential

vth −54 Threshold potential

E 30 Reverse potential

A+, A−, τ+, τ− and D will be specified in Section 4 because they span the
parameter space. There are also two cases for initial synaptic strengths which
will be described later.

3 The Integration Interval

In order to determine the parameter ranges for stability of cell assemblies analyt-
ically, we have to determine the integration inverval, i.e. the time it takes from
the EPSP onset to the spike generation threshold. To this end we simplify the
model equation by setting vrest to 0 and the threshold to v′th = vth − vrest = 16.
Furthermore, we substitute the term g(E− v) with 100 · g. The membrane equa-
tion is then given by

τ−v̇(t) = −v(t) + 100 · g(t) , (5)

with g(t) of the form

g(t) = c · e
−t
τg (6)
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where c is the current synaptic strength (equal for all synapses in the network)
multiplied by 300 (the number of incoming synaptic connections per neuron).

We can now relate the (approximate) time the membrane needs to reach the
threshold to the synaptic connection strength c, given the synchronous arrival
of all EPSPs at time t = 0, as well as the initial condition v(0) = 0. This is a
function of t corresponding to the convolution of v with g

v(t) = 100 · c ·
∫ t

0
e

−τ
τm · e

−t+τ
τg dτ (7)

which shows that the EPSP amplitude is proportional to c. This means that the
larger c is, the shorter the interval between EPSP onset and spike generation
becomes.

Therefore, with a higher synaptic efficacy, the potentiation interval has a
higher chance of outweighing the depression interval D. We show in Section 4
that this is indeed the case for our model.

4 Simulations

Our model in Section 2 was implemented in MATLAB, using parameter settings
as given in Table 1. All ODEs where integrated by an explicit Euler method with
fixed step size h = 0.001. Simulation time was T = 10 for each parameter triple
(k, l,D). We assume the integral over a fixed STDP window to be negative in
order for long-term depression to outweigh LTP. So all parameter settings used
in our simulations satisfy this constraint by choosing 1

l < k, where k = A−
A+

and
l = τ−

τ+
. This can be directly derived from

−
∫ ∞

−∞
A−e

t
τ− dt+

∫ ∞

−∞
A+e

− t
τ+ dt < 0 (8)

where k and l name the parameters which are used to visualize our results. So,
k takes values in the range −1.05 to −0.25 with step size 0.4, l between 1.0 and
5.0 with step size 1.0. Hence, simulation starts with a configuration (−1.05, 1, ·)
corresponding to the STPD time-window used in [7] and ends with estimated
values (−0.25, 5, ·) obtained through physiological experiments ([13]). Because k
and l are defined in each case as ratios of time constants and amplitudes, one part
of the fraction has to be fixed. We used τ+ = 0.02 and A+ = 0.005 and varied
k and l respectively. Additionally this was done with varying delays D in the
range 1.0 to 30.0 with constant step size 5.0 which gives us a three-dimensional
parameter space.

Moreover, there are two initial synaptic strength settings. For a just new
formed CA, we used uniform strengths of size 0.005. On the other hand, strengths
were set to gmax = 0.015 for an already longer existing CA. On the start of an
simulation, all neurons were forced to emit one spike synchronously to activate
the CA. After that, membrane and synaptic dynamics determine the chronolog-
ical sequence by itself.
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Fig. 2. Simulation results for strong initial synaptic efficacy. Circles denote a setting for

which the CA activity dies, dots indicate parameters which lead to stabilization. The

larger the network delay, the higher the chance of potentiation to outweigh depression.
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Fig. 3. Same as Figure 2, but weak initial synaptic efficacy, i.e. the coupling is just

strong enough to evoke postsynaptic spikes
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To decide if a CA still exists after simulation time, some kind of stability
criterion is needed. This can be defined by looking at the time interval [T −D, T ]
and counting all spikes which therein occur. If this number of spikes matches N ,
the CA still exists.

Thus, we get a series of plots for different delays with initial strong synaptic
strengths in Figure 2 and one for weak ones in Figure 3. Dots correspond to a
stable CA whereas circles indicate a parameter setting where the activity dies.
As we can observe, there are parameter settings for each case where a CA does
exist or not.

5 Discussion and Conclusions

Due to the highly recurrent network topology, each neuron’s spikes contribute
to long-term potentiation and long-term depression. Whether LTP outweighs
LTD, or vice versa, depends on a number of model parameters. In a symmetrical
STDP window, i.e. when A+ = A− and τ+ = τ−, this depends essentially on
the time interval between spikes, which is the sum of the potentiation interval
and the network delay. The potentiation interval corresponds to the difference in
time between spike generation and EPSP onset, which we will henceforth refer
to as Δe. Depression is based on the reverse, i.e. the difference between EPSP
onset and spike generation (of the previous spike), which is exactly the network
delay D. Thus, if a spike evocation on EPSP arrival takes longer than the time
the same spike needs to arrive back at the neuron, the synapse is weakened and
the activity in the cell assembly would ultimately diminish.

Taking into account the possibility of asymmetry and a negative integral of
the STDP window leads to different behavior. With the window parameters used
in [7], for example, Δe has to be smaller than D for all D if CA structures are to
remain stable, since the STDP function will always be larger for −Δe than it is
for Δe. If the parameters are chosen similar to those presented in [13], i.e. such
that the peak amplitude for LTP is far greater than for LTD and the negative
integral constrained is adhered to by making the time constant τ− much larger
than τ+, then D can be shorter than Δe.

Although our experiments include just leaky integrate-and-fire neurons and
a simple model of synaptic dynamics, we can observe important factors which
influence the existence of Hebbian CA networks in the context of STDP. Our
implementation leads to what can be called a “population EPSP”, i.e. a single
EPSP scaled by the number of incoming synapses. More biologically plausible
modeling could be achieved by additional changes to parameters like C, D,
initial membrane potential values or noise added to the system. We obtained
well defined limits of parameter settings for existence as well as non-existence of
CAs.

It can be argued that the existence of CAs in the brain is very unlikely because
even small parameter changes to the STDP window may lead to disintegration of
the CA. Thus, there must not occur to much unspecific (i.e. uncorrelated with
the assembly activity) synaptic input during formation of CAs, as otherwise
destabilization would occur instantly.
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CAs are often assumed to be a very local structure consisting of strongly
interconnected excitatory neurons. The local circuit is spatially small, and thus
has small delays. However, our results suggest that CAs are more likely to form
with a longer delay, and are more likely to disappear with shorter delays.

On the other hand, the fact that longer delays are better for the stability
of cell assemblies under the STDP regime suggests that CAs are more likely
to be global, i.e. long-range cortico-cortical structures. Another possibility is
that, depending on factors like initialization of the membrane potentials or a
randomly generated delay matrix, not all neurons of a CA might fire at the
same time, which leads to a kind of synfire loop activation moving across the
assembly, thereby avoiding the phenomenon that the same spike falls into both
the potentiation and the depression window of STDP.
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Abstract. There are two modes of control recognised in the cognitive

psychological literature. Controlled processing is slow, requires serial at-

tention to sub-tasks, and requires effortful memory retrieval and deci-

sion making. In contrast automatic control is less effortful, less prone to

interference from simultaneous tasks, and is driven largely by the cur-

rent stimulus. Neurobiological analogues of these are goal-directed and

habit-based behaviour respectively. Here, we suggest how these control

modes might be deployed in an engineering solution to Automatic Vehicle

Control. We present pilot data on a first step towards instantiating au-

tomatised control in the architecture, and suggest a synergy between the

engineering and biological investigation of this dual-process approach.

Keywords: Executive control, habits, basal ganglia loops, Fuzzy Tun-

ing, Autonomous Vehicle Control, dual-process theory.

1 Introduction

What are the different control strategies used by humans to enact behaviour and
what might their implications be for control engineering? To get some idea of an
answer to the first question, consider the following scenarios. Imagine making tea
soon after getting out of bed in the morning in your own kitchen. You probably
know exactly what to do without having to consciously be aware of it – the
location of the tea, milk, sugar, kettle and water-tap are all well learned, as
is the motor actions required to interact with the objects in these locations.
Introspection after the event leads us to use terms such as; ‘I did it in my sleep’
or ‘I was on auto-pilot’. Now consider doing the same task if you are staying
at a friend’s house for the first time. A completely different strategy appears
to be used. Thus, we have to be alert, explore, and use high level cognitive
knowledge that we hope generalises well (for example, we hope the tea will
be in a cupboard near the sink, not in the living room). These two modes of
control are well recognised in the psychological literature [see, for example 1]
as automatic, and controlled or executive processing respectively. There is also
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growing neurobiological evidence for the existence of different control regimes,
supported by different neural substrates [2, 3].

In this paper, we first review the two modes of control from a biological per-
spective, looking at their characterisation, mechanistic and neural substrate, and
the rationale for there being a control duality in the first place. We then go on
to deploy these ideas in the context of an architecture for autonomous vehicle
control which uses multiple sub-controllers [4]. This builds on a general consider-
ation of the links between biology and the vehicle controller dealt with previously
[5]). Thus, we suggest how the architecture may incorporate ‘automatised’ pro-
cessing to complement its current ‘executive’ control of sub-controller selection.
The programme of work required to fully evaluate the resulting architecture is
ambitious, but we make a first step here by describing a pilot study dealing with
one aspect of learning automatic responses. We conclude by considering the com-
putational problems that arise in the new architecture and their similarity with
biological counterparts.

2 Dual Mode Control: Biological Perspectives

2.1 Characterisation

The concepts of automatic and controlled processing have a long history in
psychological research [6] but the development of a full dual-process theory of
cognition is often attributed to the work of Shiffren and Shneider [7, 8]. Con-
trolled processing is under the subjects direct and active control, is slow, and
requires serial attention to component stimuli or sub-tasks. It is sensitive to a
task’s difficulty (which limits the ability to perform additional tasks at the same
time) and requires effortful memory retrieval and decision making. In contrast
[9] automatic control is less effortful, less prone to interference from simulta-
neous tasks, is driven largely by the current stimulus and does not necessarily
give rise to conscious awareness. As well as defining two kinds of processing, the
dual-process theory supposes a dynamic of the transfer of control under learning.
Thus, controlled processing is the mode required in the early acquisition of new
skills which are, when well-practiced, carried out using automatic processing.
For a recent review of dual-process theory see [10].

The development of automatic processing has close similarities with the no-
tion of stimulus-response (S-R) learning, or habit learning in the behavioural
neuroscience literature (for a recent review see [11]). A habit is deemed to be
constituted when an animal responds to a stimulus without regard to the value
of reward obtained by that response [12]. This may occur, for example, if the
response elicits a food reward but the animal is sated. Thus, habits are context-
triggered, learned behaviors which are entirely contingent on stimulus and not
the goal. Similarly, controlled processing may be likened to goal directed be-
haviour in animals in which the animal makes a response eliciting something of
genuine, current reward value. Further, just as there is a gradual transfer from
controlled to automatic processing in cognitive dual-process theory, habits are
learned after an initial goal-directed period of the same behaviour.
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2.2 Mechanisms and Models: Psychological

In the domain of cognitive psychology, one of the most influential models of dual
process theory is that of Norman and Shallice [13, 14] - henceforth referred to
as the NS model. Central to the model (Figure 1 is the idea that behaviour is
decomposed into a set of primitive actions or schemas. Examples of schemas

Fig. 1. The model of Norman and Shallice (1980) with Supervisory Attentional System

(SAS)

are provided by the scenario described in the introduction: pouring milk into a
cup, opening a fridge door, putting a kettle on, etc. These schemas are activated
by sensory input (pre-processed through the perceptual system) via a set of
’triggers’. Thus, each schema delivers a particular behavioural output in response
to a narrow range of sensory input.

However, given a particular environmental situation, several possible schemas
may be activated. These can not all be expressed simultaneously because there
are limited motor resources (one can’t pour milk and spoon sugar with your
dominant hand simultaneously). This problem of schema selection is an example
of the more widely studied problem of action selection [15] - a universal problem
for all autonomous agents. It appears in many forms across various disciplines,
and the need for its resolution in all animals lies at the heart of our neuroscientific
account of automatic and controlled processing described in the next section.

In the current context, schema selection is mediated in the first instance by a
process called ‘contention scheduling’ which is supposed to occur via mutual inhi-
bition between schema activation levels. In this way, schemas which are triggered
strongly by sensory input are more likely to be enacted than those which are
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weakly activated. However, what happens if the system doesn’t have a schema
triggered by the current sensory context, or the initially chosen schema fails
to achieve the goal? Such non-automatic processing requires control by a more
sophisticated, general purpose planning and programming system. In the NS
model this is the so-called Supervisory Attention System (SAS). However, the
SAS does not take over the role of the contention scheduling mechanism, rather,
it works by biasing the results of that process on the schema pool.

The NS model has recently been reinvigorated in quantitative form by Gar-
forth et al [16]. Here, key components of the NS scheme have been incorporated
into a simulated autonomous robot model that ‘forages for food’. The model is
a connectionist one using clusters of neural networks to implement the various
functional components which include but also extend the NS model framework.

2.3 Mechanisms and Models: Neurobiological

The Norman and Shallice model highlights the importance of action selection as
a pivotal concept in understanding the functions of, and relationship between,
controlled and automatic processing. In the vertebrate brain, action selection
(cf contention scheduling) is, believed to be mediated by a set of sub-cortical
structures known as the basal ganglia (BG). In [17], we developed this idea and
argued that the BG act as a central switch, receiving requests for behavioural ex-
pression from subsystems throughout the brain, and then selectively permitting
these to take control of their target motor plant (or cognitive resources).

The strength of an action request is supposed to reside in its overall signal
level or ‘salience’ (cf schemata activity level in the NS model). Further, requests
are more or less ‘listened to’ by the BG according to how well activity profiles
on the afferents to BG input neurons match with the corresponding patterns of
synaptic ‘weights’ [18]. Thus, a template match between the two will result in a
BG action channel which is sensitive to the action request (this would correspond
to assigning sensitivities to elements in the trigger database of the NS model).
Further downstream, output from the BG is inhibitory, normally active, and
targets the requesting subsystem in a closed loop (via thalamus). Actions are
selected when competitive processes between action channels in the BG result
in withdrawal of inhibition from the target subsystem. An action request will
therefore be successful if its salience is is sufficiently high, and there is a receptive
action channel input in the BG. These processes are illustrated for two action
channels in Fig. 2. The scheme shown in Fig. 2 is well suited to perform action
selection for habitual or routine behaviours if the action requests are dominated
by signals from sensorimotor cortical areas, representing environmental state
and ongoing motor actions. Indeed, the role of the BG in the encoding of habits
under these circumstances is well documented [11, 19]. In particular, we propose
that habitual selection by pattern matching in BG works in a similar way to
schemata triggering in the NS model.

But, if the basal ganglia is the neural substrate of contention scheduling in
the NS model, what instantiates the SAS? Much evidence points to the pre-
frontal-cortex (PFC) as serving an ‘executive’ or supervisory role similar to that
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Fig. 2. The basal ganglia as the central action selection ‘switch’ in the brain, showing

pattern matching at the input and closed loop architecture (thalamus omitted for

simplicity). Channel 1 is selected because, i) its overall input salience is greater, and

ii) its pattern of activity is better matched with the synaptic weights on the pertinent

BG input neuron.

of the SAS [20]. Further, PFC also forms loops through BG (but with different
domains of BG than sensorimotor cortices), and there is the possibility of sub-
stantial crosstalk from the PFC loops to their sensorimotor counterparts [21, 22].
However, just as in the NS scheme, the ‘supervisory’ PFC does not simply usurp
the automatic processing system, but rather, works by modulating it via its
cross-connections. In this way, it is supposed that goal-directed (non-habitual)
behaviours governed by PFC can transfer into habits in sensorimotor loops by
learning therein under the influence of the PFC loops [11, 19].

2.4 Automatic and Controlled Processing – The Computational
Rationale

So far we have characterised the processes of controlled and automatic process-
ing, and offered possible mechanistic and neurobiological accounts. However, it
remains to answer the question: what computational advantages might ensue
from having two modes of action selection? This is especially pertinent if we are
to adopt a dual process model in a conventional engineering situation for, while
developing biologically grounded solutions is interesting for its own sake, this is
not reason enough to do so.

One obvious advantage to having routine, automatised control is that it offers
a speed advantage. Thus, while all decisions could, in principle, be made using
a high level supervisory system, if this were the case, every behavioural decision
would require extensive high-level cognitive processing, which would incur a time
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penalty by dint of the excessive computational load. In contrast, the automatised
version of the behaviour is running with little computational overhead (using,
say, pattern matching for example). Such decision time differences are observed
extensively in cognitive tasks which tap both processes [23].

A second, less obvious advantage has been recently demonstrated by Daw et al
[24]. They modelled learning a task using two training schemes. One made use of
internal cognitive models and the other was based on immediately available infor-
mation; these schemes are representative of controlled and automatic processing
respectively. The result was that each method showed different uncertainties in
the expected reward of each trial. Further, these uncertainties changed as learn-
ing progressed, and as a function of the time into the trial. Thus, an optimal
agent could make use of different strategies to dynamically reduce uncertainty
to a minimum.

3 Autonomous Vehicle Control

The field of autonomous vehicles is a rapidly growing one which promises im-
proved performance, fuel economy, emission levels, comfort and safety. An im-
portant component of autonomous vehicle control (AVC) aims to control the
throttle, wheel brake and steering systems so that the vehicle can follow a de-
sired path and target speed (possibly governed by a ‘lead vehicle’) and at the
same time keep a safe inter-vehicle spacing under the constraint of comfortable
driving [25]. This is the problem considered here, and one particularly promising
strategy for its control is to break the task space into a series of distinct oper-
ating regions and to switch between them when required [26]. In order to make
contact with the previous discussion, we then interpret this control scheme as
one in which the plant (an automobile) switches between distinct ‘behaviours’.
Recently, Abdulah et al [4] have formulated one instantiation of AVC using such
a multi-controller scheme. We have previously described similarities between this
AVC architecture and biological solutions to action selection [5], but here, we
focus on the issues of automatic and controlled behaviour.

As well as using multiple, sub-controllers, the AVC controller also uses a fuzzy
logic based switching and tuning supervisor which uses information about the
systems internal state, and the environment, to determine which controller to
choose. It is this part of the controller which is relevant to the present discussion
and it is shown in Figure 3a Here, n controllers are shown for generality, although
only 2 were used in the original scheme. Each controller is MIMO with three
outputs – one for each of ‘steer’, ‘throttle’ and ‘brake’ – and the outputs of the
ith controller form a vector y(i). In general, the selected signal for each control
function may be independently chosen from any of the controllers (so ‘steer’
and ‘brake’, for example, may originate from different controllers). The result
is a final control signal vector y∗. The selection of the control signals y∗(t) is
dependent on those at the previous time step y∗(t−1); nevertheless, the selection
function per se is performed entirely by the fuzzy controller which, because of
its powerful processing capacity, is a clear example of a supervisory executive
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Fig. 3. Partial view of AVC architecture showing controller selection. a) original

scheme, b) new scheme with automatised, or ‘habit-based’ control option.

system exercising controlled processing. There is, however, no counterpart in the
AVC architecture to automatic, ‘habit-based’ processing, which might incur the
benefits described in section 2.4).

In order to remedy this, we propose the architectural modification shown in
Figure 3b, which is based on the discussion of the basal ganglia and its use of
weight-input template matching to trigger action selection. That is, for each of
the three control signals, a neural network is assigned which has, as its input,
the signal vector y∗(t − 1). It is interesting to note that the use of loop with
delay is reminiscent of the loops through basal ganglia (Figure 2). Each network
has a number of output units zj , 1 ≤ j ≤ n, and has to learn to flag which
controller should be used to drive each of the three control signals using a 1-out-
of-n code (one unit on, the others off). In general, with many controllers, it will
be necessary to subject the network outputs to a ‘cleanup’ process to readout
a selection signal. This might be done using a winner-take-all net, or by simply
taking argmaxj(zj). The role of the fuzzy controller in this scheme is now to bias
or influences this selection process rather than govern it ‘single-handed’.

While the mechanism of the top-down bias remains to be elucidated, the
neural net pattern matching can be implemented in a straightforward way. We
therefore attempted to do this using simple feedforward networks for the driving
task shown in Figure 4a. The time series of the control signals (brake, steering,
and throttle), are shown in Figure 4b. With only two controllers (n = 2), rather
than use a 1-out-of-2 code, we used networks with a single output z with the
interpretation that z > 0.5 signalled one controller rather than the other. Train-
ing was done using the Levenberg-Marquardt algorithm as implemented in the
Matlab Neural Network toolbox.

In a first set of experiments, the three control signals formed the inputs, but
in subsequent set, these were augmented with the signal derivatives, giving 6
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Fig. 4. Pilot study for training network matching in ‘habit-based learning’

inputs to each network. Best results were then obtained with 3 hidden nodes
in a 6-3-1 network structure. A typical network output for the ‘brake’ network
is shown in Figure 4c. The training worked well, with residual errors too small
to see on the graph; this was also a feature of the networks for ‘steer’ and
‘throttle’. While it is encouraging to see highly accurate learning of the training
set, the existence of good generalisation – certainly desirable if this scheme is to
work robustly – requires the use of validation data. Gathering and deployment
of this data are scheduled for future work, but in the interim, we note that the
progressive reduction in layer size of the network is indicative that generalisation
will, indeed, occur.

4 Discussion

Both psychological and neuroscientific thinking endorses the view that there
are two quite different modes of behavioural control. Further, the psychologi-
cal notions of automatic and controlled processing, would appear to have strong
similarities with the neuroscientific counterparts of S-R (or habit-based) control,
and goal-driven behaviour, respectively. We have suggested that adaptive con-
trollers in an engineering context may benefit from deploying these two modes of
control and reap benefits in terms of speed, and reduced errors during learning.
We went on to show how at least part of this programme (automatised or S-R
control) may be implemented in a particular AVC architecture.
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However, many question remain that are common to both biological and engi-
neering domains. Studying a specific candidate for dual-process control (like the
AVC architecture) therefore promises to be useful, not only for the particular
application itself, but also in developing our understanding of automatic and
controlled processing in the brain. Issues for the AVC controller include:

– Exactly how does the executive fuzzy controller bias the selection process?
(One possible bridge between the two modes of control might make use of
neuro-fuzzy hybrid techniques.)

– How do the habits get learned while having some degree of control? That
is how can there be a seamless and sensible transition from controlled to
automatised behaviour without slipping too quickly into poor ‘habitual’ be-
haviour?

– In solving this problem can we make use of the more natural ‘soft-selection’
seen in basal ganglia control? (‘Mixtures of controllers’)

The extent to which unique engineered solutions emerge perforce to these ques-
tions, will strongly suggest their presence in the animal brain. We look forward to
developing the programme of work outlined here and answering these questions
in future work.
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2008, Part II. LNCS, vol. 5164, pp. 949–958. Springer, Heidelberg (2008)

[6] Hommel, B., Ridderinkhof, K.R., Theeuwes, J.: Cognitive control of attention and

action: issues and trends. Psychol. Res. 66(4), 215–219 (2002)

[7] Schneider, W., Shiffrin, R.: Controlled and automatic information procxessing i.

derection, search and attention. Psychological Review 84, 1–66 (1977)

[8] Shiffrin, R., Schneider, W.: Controlled and automatic information procxessing

ii. perception, learning, automatic attending and a general theory. Psychological

Review 84, 128–190 (1977)

[9] Neuman, O.: Automatic processing: A review of recent findings and a place for

an old theory. In: Printz, W., Sanders, A. (eds.) Cognition and Motor Processes.

Springer, Berlin (1984)

[10] Birnboim, S.: The automatic and controlled information-processing dissociation:

is it still relevant? Neuropsychol. Rev. 13(1), 19–31 (2003)



Controlled and Automatic Processing in Animals and Machines 207

[11] Graybiel, A.M.: Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31,

359–387 (2008)

[12] Adams, C., Dickinson, A.: Instrumental responding following reinforcer devalua-

tion. Quarterly Journal of Experimental Psychology 33, 109–122 (1981)

[13] Norman, D., Shallice, T.: Attention to action: Willed and automatic control of

behavior. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds.) Consciousness

and Self-Regulation. Plenum Press, New York (1980)

[14] Shallice, T.: Specific impairments of planning. Philos. Trans. R Soc. Lond. B. Biol.

Sci. 298, 199–209 (1982)

[15] Prescott, T.J., Bryson, J.J., Seth, A.K.: Introduction to the theme issue on mod-

elling natural action selection. Philos. Trans. R Soc. Lond. B. Biol. Sci. 362, 1521–

1529 (2007)

[16] Garforth, J., McHale, S.L., Meehan, A.: Executive attention, task selection and

attention-based learning in a neurally controlled simulated robot. Neurocomput-

ing 69(16-18), 1923–1945 (2006)

[17] Redgrave, P., Prescott, T.J., Gurney, K.N.: The basal ganglia: a vertebrate solu-

tion to the selection problem? Neuroscience 89, 1009–1023 (1999)

[18] Wilson, C.J.: Striatal circuitry: categorically selective, or selectively categorical?

In: Miller, R., Wickens, J. (eds.) Brain Dynamics and the Striatal Complex. Vol-

ume submitted MS, pp. 289–306. Harwood Academic (1999)

[19] Yin, H.H., Knowlton, B.J.: The role of the basal ganglia in habit formation. Nat.

Rev. Neurosci. 7(6), 464–476 (2006)

[20] Dalley, J.W., Cardinal, R.N., Robbins, T.W.: Prefrontal executive and cognitive

functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav.

Rev. 28(7), 771–784 (2004)

[21] Joel, D., Weiner, I.: The organization of the basal ganglia-thalamocortical cir-

cuits: open interconnected rather than closed segregated. Neuroscience 63, 363–379

(1994)

[22] Haber, S.N., Fudge, J.L., McFarland, N.R.: Striatonigrostriatal pathways in pri-

mates form an ascending spiral from the shell to the dorsolateral striatum. J.

Neurosci. 20(6), 2369–2382 (2000)

[23] MacLeod, C.M.: Half a century of research on the stroop effect: an integrative

review. Psychol. Bull. 109(2), 163–203 (1991)

[24] Daw, N.D., Niv, Y., Dayan, P.: Uncertainty-based competition between prefrontal

and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8(12),

1704–1711 (2005)

[25] Conatser, R., Wagner, J., Ganta, S., Walker, I.: Diagnosis of automotive electronic

throttle control systems. Control Engineering Practice 12, 23–30 (2004)

[26] Lee, C.Y.: Adaptive control of a class of nonlinear systems using multiple param-

eter models. Int. J. Contr. Autom. Sys. 4(4), 428–437 (2006)



Multiple Sound Source Localisation in
Reverberant Environments Inspired by the

Auditory Midbrain

Jindong Liu1,�, David Perez-Gonzalez2, Adrian Rees2,
Harry Erwin1, and Stefan Wermter1

1 Dept. of Computing and Technology,

University of Sunderland, Sunderland, SR6 0DD, United Kingdom
2 Institute of Neuroscience, The Medical School,

Newcastle University, NE2 4HH, United Kingdom

{jindong.liu,harry.erwin,stefan.wermter}@sunderland.ac.uk,

{david.perez-gonzalez,adrian.rees}@newcastle.ac.uk

http://www.his.sunderland.ac.uk

Abstract. This paper proposes a spiking neural network (SNN) of the

mammalian auditory midbrain to achieve binaural multiple sound source

localisation. The network is inspired by neurophysiological studies on the

organisation of binaural processing in the medial superior olive (MSO),

lateral superior olive (LSO) and the inferior colliculus (IC) to achieve

a sharp azimuthal localisation of sound sources over a wide frequency

range in a reverberant environment. Three groups of artificial neurons

are constructed to represent the neurons in the MSO, LSO and IC that

are sensitive to interaural time difference (ITD), interaural level differ-

ence (ILD) and azimuth angle respectively. The ITD and ILD cues are

combined in the IC to estimate the azimuth direction of a sound source.

To deal with echo, we propose an inter-inhibited onset network in the IC,

which can extract the azimuth information from the direct path sound

and avoid the effects of reverberation. Experiments show that the pro-

posed onset cell network can localise two sound sources efficiently taking

into account the room reverberation.

Keywords: Spiking neural network, sound localisation, inferior collicu-

lus, reverberation.

1 Introduction

Humans and other animals show a remarkable ability to localise multiple sound
sources using the disparities in the sound waves received by the ears. For ex-
ample, humans can localise as many as six concurrent sources [1] and cancel
out echoes using two ears [2]. This has inspired researchers to develop new com-
putational auditory models to help understand the biological mechanisms that
underlie sound localisation in the brain. Binaural sound localisation systems take
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advantage of two important cues [3] derived from the sound signals arriving at
the ears: (i) interaural time differences (ITD), and (ii) interaural level differ-
ences (ILD). Using these two cues sound source direction can be estimated in
the horizontal plane.

In humans the ITD cue is effective for localising low frequency sounds (20
Hz ∼1.5 kHz) [4], however, the information it provides becomes ambiguous for
frequencies above ∼1 kHz. In contrast, the ILD cue has limited utility for localis-
ing sounds below 1.5 kHz, but is more efficient than the ITD cue for frequencies
higher than this [4]. The ITD and ILD cues are extracted in the medial and
lateral nuclei of the superior olivary complex (MSO and LSO), which project to
the inferior colliculus (IC) in the midbrain. In the IC these cues are combined
to produce an estimation of the azimuth of the sound [5]. The cells in the IC are
classified into 6 main types among which onset and sustained-regular cells play
the main role for sound azimuth detection even in an echo environment.

Several hypotheses and models for ITD and ILD processing have been pro-
posed [3][6][7], with one of the most influential being a model advanced by Jef-
fress [3]. However, all above models only work in an anechoic environment. To
deal with reverberation, Litovsky [8] proposed a model of the precedence effect
which applies an onset detector to inhibit the localisation cues from the indirect
sound path. Palomäki [9] simplified Litovsky’s model by using envelope extrac-
tion. However, these models did not exploit the biological pathways from the
MSO/LSO to the IC, such as the inhibition from the ipsilateral LSO to the
IC. These pathways are believed the crucial key for a sharp localisation over
broadband frequency.

This paper presents a model designed to identify multiple sound source direc-
tions by means of a spiking neural network (SNN). It is the first to employ a SNN
that combines both ITD and ILD cues derived from the SOC in a model of the IC
to cover a wide frequency range and to target a reverberant environment. This
model incorporates biological evidence on the inputs from the MSO and LSO to
the IC, and is able to build a sharp spatial representation of sound source. To
cope with an reverberant environment, onset cells in the IC are modelled and
interconnected to each other by inhibition projection.

2 Biological Fundamentals and Assumptions

When sound waves arrive at ears, the temporal and amplitude information is
encoded and transmitted to the MSO and LSO in order to extract ITDs and
ILDs respectively [5]. According to Jeffress’s original model, the ITD-sensitive
cells in the MSO can be idealised as a coincidence cell array where each cell
receives a delay-line input, and the cells are assumed to be distributed along
two dimensions: CF and ITD (see Figure 1). A cell in the MSO fires when the
contralateral excitatory input leads the ipsilateral by a specific time difference.

For the LSO model, we represent the cells in the LSO distributed across two
dimensions, CF and ILD, in an analogous manner to the MSO (Figure 2), but
without any interaural delay. Each LSO cell compares the input levels from two
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ears and generates a spike if the level difference is equal to the characteristic
ILD of the cell.

All the outputs of the MSO and LSO are projected to the inferior colliculus
(IC). The IC is also tonotopically organised, and contains a series of iso-frequency
laminae, which span the whole range of frequencies perceived by the animal. In
this model, we assume for simplicity that there are only projections from cells
with the same CF. Consequently in our model the laminae of the IC with low
CF (200 Hz to 1 kHz) only receive projections from the MSO, while the laminae
with higher frequencies (up to 4 kHz) receive projections from both the MSO
and LSO. The laminae with a CF above 4 kHz would only receive inputs from
the LSO, but our model does not include this range of frequencies.

The cells in the IC can be classified into 6 physiological types [10]: sustained-
regular, rebound-regular, onset, rebound-adapting, pause/build and rebound-
transient. The sustained-regular cells generate regular spikes when their input is
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kept positive and is can detect ongoing sounds. We hypothesise that these cells
could encode sound source locations in the free field in the absence of echoes.
However, in a reverberant environment, an echo is added to the sound taking the
direct path and this causes a detection error in the output of sustained-regular
cells. In contrast, onset cells only generate one spike when the input current
changes from 0 to positive and then cease firing as long as the input is kept
positive. This property would useful when the IC model is locating a sound in
an echoic environment, because its output spike is only related to the sound
taking the direct path.

Taking into account this biological evidence, we propose an IC model for sound
source localisation as outlined in Figure 3. Analogous to the biology evidence, the
IC model consists of different components according to the frequency domain.
In addition, we suppose that onset cells with the same CF suppress one another,
i.e. an early spike from one onset cell will inhibit other onset cells which have
the same characteristic frequency. We will describe this inhibitory network in
detail in the next section.

3 System Model of Sound Localisation

Inspired by the neurophysiological findings and the proposed models presented
in Section 2, we designed our model to employ spiking neural networks (SNNs)
that explicitly take into account the timing of inputs and mimic real neurons.
The cues used for sound localisation, such as time and sound level, are encoded
into spike-firing patterns that propagate through the network to extract ITD
and ILD and calculate azimuth. Every neuron in the SNN is modelled using a
leaky integrate-and-fire (LIF) model. The response of a neuron to spike inputs
is modelled by:
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C du
dt =

∑
k

Ik(t)− C
τm
u

tf : u(tf ) = φ
(1)

where u(t)is the membrane potential of the neuron relative to the resting po-
tential which is initialised to 0, and τm is a time constant. C is the capacitance
which is charged by

∑
k

Ik(t) from multiple inputs, where Ik(t) is a current input

which is a constant square with amplitude ws and duration τs in response to
a spike input. k is the number of input connections to the neuron. The action
potential threshold ϕ controls the firing time tf . When u(t) = ϕ, the soma will
fire a spike; then u(t) is reset to 0. Afterwards, the soma will be refractory for a
period tr = 1 ms during which it will not respond to any synaptic inputs. After
the refractory period, the soma returns to the resting state.

The LIF model can be used to represent the cells in the MSO and the LSO
and the sustained-regular cell in the IC. However, the LIF model cannot directly
model the onset cell because it constantly responds to continuous inputs, rather
than just the initial onset input. Instead, for the onset cell, we propose a hybrid
model of LIF and a state machine. Each onset cell has two states: active and
inactive. When the cell is active, the cell is implemented as a LIF neuron until a
spike is fired, or the cell receives an inhibitory input, after which the cell’s state
becomes inactive. The cell goes back to active state only if there is no inhibition
and the input is 0 (no spike) for a period ts (see Figure 4a).

A schematic structure for the sound localisation procedure is shown in Figure
4b. The frequency separation occurring in the cochlea is simulated by a bandpass
filterbank consisting of 16 discrete second-order Gammatone filters [11], that
produce 16 frequency bands between 200Hz and 4kHz. After the Gammatone
filterbank, the temporal information in the waveform in each frequency channel
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is encoded into a spike train by the phase locking module in Figure 4b. Every
positive peak in the waveform triggers a phase-locked spike to feed into the MSO
model. The sound level is detected in the same module but directed to the LSO
model.

To calculate the ITD, the phase-locked spike trains are then fed into the MSO
model. A series of delays are added to the spike trains of the contralateral ear
to simulate the delay lines Δti (see Figure 1). The spike train of the ipsilateral
ear reaches the MSO with a single fixed delay time ΔT . The parameters of cells
in the MSO are set: ls = 2.1ms, τs=0.08ms, τm=1.6ms, ϕ=8e-4, ws=0.1A and
C = 10mF

The ILD pathway is not modelled using a LIF model; rather the sound lev-
els previously detected for each side are compared and the level difference is
calculated. The LSO model contains an array of cells distributed along the di-
mensions of frequency and ILD (Figure 2). When a specific ILD is detected at a
given frequency, the corresponding LSO cell fires a spike. The level difference is
calculated as Δpj = log(pjI/p

j
C), where pjI and pjC stand for the ipsilateral and

contralateral sound pressure level for the frequency channel j.
After the basic cues for sound localisation have been extracted by the MSO

and LSO models, the ITD and ILD spikes are fed into the IC model, as shown
in Figure 4b. The IC model merges the information to obtain a spatial represen-
tation of the azimuth of the sound source. According to the model proposed in
Section 2, we need to define the connection strength between the ITD-sensitive
cells (mi) in the MSO and the azimuth-sensitive cells (θj) in the IC, and the
connection between the ILD-sensitive cells (li) in the LSO and θj . In a SNN,
each of the inputs to a neuron (in this case in the IC) produces a post-synaptic
current I(t) in the modelled cell. The post-synaptic currents of all the inputs
are integrated to calculate the response of the neuron. To modify the weight of
each input we assign a different gain to the amplitude ws of the post-synaptic
current I(t) (in Equation 1) of each connection. Inspired by Willert’s work [6],
we used an approach based on conditional probability to calculate these gains,
as shown in the following functions:

emiθj =

{
p(θj |mi , f) ifp > 0.5 max

j
(p(θj |mi , f))

0 otherwise
(2)

eliθj =

{
p(θj |li , f) ifp > 0.8 max

j
(p(θj |li , f)), f >= fb

0 otherwise
(3)

cliθj =

{
1− p(θj |li , f) ifp < 0.6 max

j
(p(θj |li , f)), f >= fb

0 otherwise
, (4)

where emiθj and eliθj represent the gain of the excitatory synapse between the
MSO and LSO respectively and the IC. If emiθj is 0, it is equivalent to no con-
nection between mi and θj . Similarly, eliθj = 0 indicates no connection between
li and θj . The term fb is the frequency limit between the low and middle fre-
quency regions and is governed by the separation of the ears and the dimensions
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of the head of the “listener”. Based on the dimensions of the robot head used in
this study, fb should be around 850Hz.
cliθj represents the gain of the inhibitory synapse between the LSO and the

IC. f stands for the centre frequency of each frequency band. p(∗) stands for
a conditional probability, which can be calculated by Bayesian probability and
p(θj |mi , f) can be calculated by:

p(θj |mi , f) =
p(mi |θj , f)p(θj |f )

p(mi |f )
(5)

In a physical model, the conditional probability p(mi |θj , f) is obtained from the
statistics of sounds with known azimuths. To obtain such data, we recorded a
1s-sample of white noise sounds coming from 37 discrete azimuth angles (from -
90 to 90 degrees in 5 degree steps) using a robot head. The head had dimensions
similar to an adult human head and included a pair of cardioid microphones
(Core Sound) placed at the position of the ears, 15 cm apart from one another.1

These recordings were processed through our MSO model to obtain an ITD
distribution for each azimuth, which was then used to calculate p(mi |θj , f).
Finally, we applied Equation 5 to Equation 2 to calculate the gain, emiθj , of
the connection between the MSO cells and the IC cells. These gains are further
adjusted to leave only components consistent with the known anatomy of the
pathway, i.e. there is no significant projection from the contralateral MSO to the
IC. A similar procedure is used to calculate the gains of the LSO projection to
the IC.

Equations 2 and 3 map the excitatory connections of each MSO and LSO cell
to the IC cells representing the most likely azimuths, while Equation 4 maps
the inhibitory LSO projection to cells representing azimuths in the hemifield
opposite to the sound source. This inhibition counteracts the effects of false ITD
detection at high frequencies.

4 Experimental Results

In this section, we first verify our model by locating a pure tone in a reverberant
environment. We then implement our model to locate three groups of two con-
current sound sources in the same environment, and compare the results using
sustained regular cells with these using onset cells.

Figure 5a compares the localisation results obtained using onset and sustained-
regular cells. The sound sample was a 700Hz pure tone played at 10 degrees in a
reverberant environment (echo delay 6 ms). The possibility of sound source az-
imuth is calculated as the division of the number of spikes of the IC cells in one

1 Sounds were recorded in a low noise environment with 5 dB SPL background noise.

The distance of the sound source to the center of the robot head was 128 cm and the

speakers adjusted to produce 90±5 dB SPL at 1 kHz. Recordings were digitalised

at a sample rate of 44100 Hz. Sound duration was 1.5s, with 10 ms of silence at the

beginning.
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Fig. 5. (a) Azimuth distribution of single sound localisation in a reverberant environ-

ment. (b) The effect of room reverberation to the recording. The sound sample is a

700Hz pure tone played at 10 degree from the midline.

azimuth angle of all frequency channels by the total number of spikes. Two meth-
ods were tried for the same sound: (i) only using sustained-regular cells in the
IC with no inhibitory connection between the cells, and (ii) use the onset cells in
the IC and the inhibitory network proposed earlier in this paper. Note that the
first method is equivalent to the most conventional methods of sound localisation
which are based on ongoing sound detection. Figure shows that the result from
onset cells has a peak around 12 degrees which is very close to the real sound az-
imuth, while the peak of the results from the sustained-regular cells is around 70
degrees which is far from the true location. The main reason is that the reverber-
ation interfered with the sound wave reaching the microphone and changed the
ITD and ILD cues.

Figure 5b shows the effect of room reverberation on the recordings of a 700Hz
pure tone presented at the front. It shows that the sound reaches the microphone
at 0.013s and the signals from both microphones match each other peak by peak.
However, from about 0.02s, the reverberant sound arrived and started to interfere
with the recorded sound. As a result, the signals shifted by about 0.007ms. This
peak shifting caused the localisation error that occurred when using the modelled
sustained-regular cells.

To test our model for a mixture of two concurrent sound sources, we designed
three test groups and used a 500Hz pure tone from -90 degree as the first sound
source for all three groups. The second source sources in three groups were
designed as speech “hello”, “coffee” or white noise. The second sound source is
presented from 7 positions from -90 to 90 degree for every 30 degrees. All the
sound sources are 1.28m far from the robot head. During recording, two sound
sources are played at the same time. Each test point includes 10 sound sets and
the final results are the average value. Figure 6a shows the localisation results
using sustained-regular cells. In the figure, the second sound source azimuths
were calculated accurately, however the results for the first sound source show a
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Fig. 6. Sound localisation results for three groups of concurrent sound sources. Refer-

ence1 stands for the ideal azimuth of first sound source 500Hz and reference2 for the

second sound source’s ideal azimuth.

big offset from the ideal detection. In contrast, Figure 6b shows more accurate
localisation results in both sound sources.

5 Conclusion and Future Work

This paper describes the design and implementation of a sound localisation
model that uses a SNN inspired by the mammalian auditory system for a rever-
berant environment. In this system, both ITD and ILD pathways were modelled
and computed in the MSO and LSO models, and the ITD spike and ILD spikes
were projected to the IC in a way similar to the biological system where they
were merged together to achieve broadband sound localisation. Onset IC cells are
modelled and an inhibitory onset network is proposed to eliminate the echo. The
experimental results showed that our system can localise two concurrent sound
sources in a reverberant environment especially for pure tones with azimuths
between -90 and 90 degrees. Our model’s success casts light on the mobile robot
application in real world application where reverberation is unavoidable. In the
future, other IC cell types will be tested in the model For the application of
our system to a mobile robot, we plan to implement a sound separation system
based on sound source direction in order to improve speech recognition in a noisy
environment.
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Abstract. We study a model of neuronal specialization using a policy gradient
reinforcement approach. (1) The neurons stochastically fire according to their
synaptic input plus a noise term; (2) The environment is a closed-loop system
composed of a rotating eye and a visual punctual target; (3) The network is com-
posed of a foveated retina, a primary layer and a motoneuron layer; (4) The re-
ward depends on the distance between the subjective target position and the fovea
and (5) the weight update depends on a Hebbian trace defined according to a pol-
icy gradient principle. In order to take into account the mismatch between neu-
ronal and environmental integration times, we distort the firing probability with
a “pink noise” term whose autocorrelation is of the order of 100 ms, so that the
firing probability is overestimated (or underestimated) for about 100 ms periods.
The rewards occuring meanwhile assess the “value” of those elementary shifts,
and modify the firing probability accordingly. Every motoneuron being associ-
ated to a particular angular direction, we test at the end of the learning process
the preferred output of the visual cells. We find that accordingly with the observed
final behavior, the visual cells preferentially excite the motoneurons heading in
the opposite angular direction.

1 Introduction

The issue of plasticity and neuronal specialization is important in computational neuro-
science, in order to explain more realistically the adaptation processes taking place in
the brain. When looking at the first steps of sensory processing, for instance, the topol-
ogy of the captors appears prominent in the shaping of the cortical maps (“somatotopic”
layers, “retinotopic” layers, “tonotopic” layers, etc...). This topography is expected to
be the result of a progressive plasticity process which shapes the input/output response
curve of a population of neurons according to their location, making them more reactive
to a particular class of signals. Similar adaptation processes are expected to take place
at all the stages of the brain processing, continuously modifying the way the brain will
take its decisions and control its movements.

Taking now this problem under a reinforcement learning (RL) framework, a brain is
seen as a neural controller facing a complex decision problem, receiving non-stationary
perceptions and continuously sending motor commands which immediately take effect
in the sensory scene. The relevance of the motor commands is not known, and some

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 218–228, 2009.
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signals from the environment (or from the body) indicate to which point the choices
made are “good” or “bad”. The controller being composed of a huge population of
neurons, the global decision is the combination of many local infinitesimal decisions
(i.e. emitting a spike or not at time t). A local process that would appropriately shape
the neuronal decision according to the reward is expected to favour better collective
responses, thus improving the performances of the controller.

2 Principles

Classical RL approaches consider value functions which map some (state, action) cou-
ples to a value estimating the expectation of future rewards [1]. In the case of a para-
metrized stochastic policy implemented by binary units, a policy gradient approach [2]
avoids such explicit value function and directly shapes the parameters according a local
estimation of the gradient of the reward expectation. It ends up as an expression where
the weights update depends on the Hebb-like product [S(t) − f(I(t))] × εj(t) where
S is the actual neuron output, f is the firing probability according to the input and εj is
the pre-synaptic activity. The global process is a gradient ascent algorithm. Bartlett and
Baxter [3] show that it can be extended to any network of stochastic neurons where the
reward signal is spread to every neuron. In that case, the policy improvements realized
locally participate to the improvement of the global response.

Some extensions to more realistic spiking neurons have been proposed : Seung [4]
treated the case of stochastic synapses with poisson firing. Baras [5] considers a Spike
Response Model (SRM) [6] with a stochastic spike emission mechanism (proportional
to the weighted sum of pre-synaptic activities). Florian [7] considers the more classical
case of stochastic SRM neurons with escape noise, applied to a closed-loop reinforce-
ment task. In all of those models the characteristics of the noise is mixed with the model
of spike emission.

The purpose of our model is to prove that such neuro-realistic implementations of
very general gradient ascent principles can reproduce the emergence of global regulari-
ties, as observed in biological neural networks. We use in the following a model which
shares some similarities with [7], but we put a stronger emphasis on the characteristics
of the noise, in order to improve the learning process.

Several temporal scales are indeed to be considered when modeling such neu-
romimetic controllers. First, the typical integration time of the neurons is of the or-
der of few milliseconds. Second, the motor commands have a duration of the order of
100 ms. In the design of an adaptive controller, this temporal mismatch must be taken
into account, so that the process will be guided by signals containing some random
“events” whose typical duration will be of the same order than the events taking place
in the environment to be controlled. For that, we consider that the firing probability is
driven by a “pink noise” term whose autocorrelation is of the order of 100 ms, so that
the firing probability is overestimated (or underestimated) for periods of about 100 ms.
The rewards occuring meanwhile will assess the “value” of those elementary shifts, and
modify the firing probability accordingly.
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3 Model

3.1 Neuron Model

We consider a simple model of spiking neurons. A neuron is defined by a set of N
synaptic weights W = {w1, ..., wN}. The neuron synaptic input is

Isyn(t) =
∑

j

wjεj(t − dj)

where εj(t) is the post-synaptic potential (PSP) of the j-th neuron and dj is the axonal
delay. We use a discretized Spike Response Model approach [6] for modelling the PSP
arrivals and membrane refractoriness. We take here a classical exponential PSP kernel,
i.e.

εj(t) =
∑

s<t,Sj(s)=1

exp

(
− t − s

τm

)
where τm is the membrane time constant.

According to the “escape noise” principle [6], the noise source is decoupled from
the spike emission process, i.e. is modelled as an independent input Inoise(t). It may
be considered as an additional signal coming from an external source (a supplemen-
tary layer of neurons for instance). The total neuronal input is then I(t) = Isyn(t) +
Inoise(t). The membrane potential is V (t) = I(t)− η(t) with refactoriness

η(t) =
∑

s<t,S(s)=1

V (s) exp

(
− t − s

τm

)

There is no stochasticity in the spike emission mechanism: a spike is emitted at t if
V (t) ≥ θ and if the previous spike was emitted before t− τr, where τr is the refractory
period. The output of the neuron S(t) is 0 (no spike) or 1 (spike).

3.2 Firing Probability

The firing probability is f = P (S(t) = 1|Isyn(t)), and is expected to depend on the
noise and δt. This hypothesis holds if we estimate the firing rate on large time interval
T >> τm, and ignore some fluctuations of the probability related to the refractoriness
that follows the spike emission. The neuron firing rate is ν = 1/〈ISI〉 where 〈ISI〉 is
the mean inter-spike interval. Then, we define the firing probability in a small temporal
interval [t, t + δt[ as f = νδt (where δt < τr = 1

νmax
). We suppose in the following

that a relationship can be established between the total synaptic input Isyn and the
firing probability. The firing probability f can be given explicitely on the basis of an
estimation of mean inter-spike interval, i.e. f(Isyn) = δt

〈ISI(Isyn)〉 (see for instance

[6,8]). The explicit calculation being rather intricate, we provisonally use an estimation
of f on the basis of a set of empirical measures of (Isyn(t), S(t)) couples.

3.3 Gradient Ascent Principles

A reward r can occur at time t, depending on the neuron input/output (E(t), S(t)) where
E is the pre-synaptic activity. The expectation of the reward is thus supposed to rely on
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the parameters of the input/output mapping, i.e. on the neuron’s weights W . We note
J(W) = E(r(t)). A local estimator of the gradient of J(W) can be given on the basis
of the neuron input Isyn(t), using a likelihood ratio approach [3], namely

∇WJ = E

[
r(t)×

(
S(t)

∇Wf(Isyn(t))
f(Isyn(t))

+ (1− S(t))
∇W (1− f(Isyn(t)))

1− f(Isyn(t))

)]
(1)

This estimator can be used to modify the weights at each time step in order to increase
the expectation of the reward. In the case of a temporal credit assignment problem
with a delayed reward occuring at time T , a local estimate of this gradient is ∇WJ 	
r(T )Z(T ) [2] with

Z(t) = λZ(t−δt)+(1−λ)

(
S(t)

∇Wf(Isyn(t))

f(Isyn(t))
+ (1 − S(t))

∇W(1 − f(Isyn(t)))

1 − f(Isyn(t))

)
(2)

with λ ∈ [0, 1]. By analogy with classical reinforcement learning techniques [9], Z(t)
is called the eligibility trace.

3.4 Weights Update

Two cases can be considered.

Dense Rewards. When the reward signal is present at each time step of the process, the
weight update is

wj(t) = wj(t− δt) + αr(t)Φ(t) × (S(t)− f(Isyn(t))) × εj(t) (3)

which is deduced from (1), using the learning parameter α, with factor

Φ(t) =
f ′(Isyn(t))

f(Isyn(t))(1 − f(Isyn(t)))

This update rule only relies on local quantities available at the vicinity of the synapse,
which makes it applicable for the modelling of biologically inspired learning processes.
Its main advantage is its applicability to large networks of neurons where the same
reward is sent to every neuron.

So the weight change is based on an estimate of the difference between the actual
firing S(t) and the firing probability according to the synaptic input f(Isyn(t)). When
no noise modifies the actual firing, the response may not be improved in time since the
two quantities are expected to cancel each other. The noise introduces a distortion in
the firing firing rate, so that the expectation of the difference can be positive (resp. neg-
ative) if the random signal locally increases (resp. decreases) the actual firing rate. The
reward taking place meanwhile will validate (or invalidate) this distortion and modifiy
the weights accordingly, favouring higher (resp. lower) firing rates in case of positive
reward.

This rule shares common characteristics with the classical Hebbian rule [10], and
the first term of the product is typically Hebbian. The substracted term corresponds to
a slow decay occuring when no spike happen. When the noise is centered, the rule is
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"balanced" i.e. the expectation of weight change is zero and no weight drift is expected
to happen, either for positive or negative rewards. This point is important since it sim-
plifies the design of the reward, as no particular balance between positive and negative
rewards needs to be considered.

Sparse Rewards. In the case of occasional rewards, the weights update rule expression
is:

wj(t) = wj(t− δt) + αr(t)zj(t)
zj(t) =

(
1− δt

τz

)
zj(t− δt) + δt

τz
Zj(t)

Zj(t) = Φ(t)× (S(t)− f(Isyn(t)))× εj(t)
(4)

where τz is the trace time constant. The larger τz , the larger the time interval taken into
account for the gradient estimate. If τz = δt, we go back to equation (3). When the
rewards are rare events, the trace constants needs to be large for taking into account the
full sequence of actions that have led to them. Occasional reward correspond to a situ-
ation frequently encountered in real control problems. The existence of a physiological
equivalent of this trace is plausible since it only relies on quantities which are locally
available at the synapse.

3.5 Self-correlated Noise

The capacity to avoid local minima crucially depends on the quality of the exploration
process and thus on the characteristics of the noise injected in the system.

In order to help the learning process to catch the effect of a particular shift from the
expected firing rate, we use a self-correlated Gaussian noise whose leak is τnoise:

Inoise(t) ∼
(

1− δt

τnoise

)
Inoise(t− δt) +

√
2

δt

τnoise
−
(

δt

τnoise

)2

×N (0, σ2
noise)

This noise model is centered, gaussian with standard deviation σnoise for long dura-
tions, but remains correlated on a ±τnoise ms window. In that case, on the contrary
to simple escape noise or diffusive noise models [6], the deviations from the expected
firing rate lasts far longer than the membrane time constant.

3.6 Neuronal Controller

A neuronal adaptive controller is a set of interconnected neurons where a subpopulation
of neurons is driven by the sensory signal, and the activity of another subpopulation is
used to define the motor command(s). The neurons which receive the sensory signal are
primary sensory neurons and the ones that drive the motor command velocity are pre-
motor neurons. If we consider a system composed of P populations, every population
owns N (p) neurons, and the input of one particular neuron is now:

I
(p)
i (t) = I

(p)
i,syn(t) + I

(p)
i,noise(t)
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with

I
(p)
i,syn(t) = I

(p)
i,ext(t) +

P∑
q=1

N(q)∑
j=1

w
(pq)
ij ε

(q)
j (t− d

(q)
ij )

A reward r is sent (densely or occasionally) to every neuron. The neurons locally mod-
ify their synaptic weights in order to maximize the expectation of reward. Bartlett and
Baxter have shown [3] that a combination of local optimizations drives the system to-
ward a global improvement of the actions.

4 Application

We consider a neural network controller embedded in a virtual environment. The ex-
ample taken here is a model of a visual tracking system. It has no direct biological
counterpart, but owns some characteristics (foveated retina, continuous moves, simple
reward) that makes him suitable in a perpective of biological modelling. The achieve-
ment of the task (target tracking) is not a challenge in itself. Our aim is to study how
the system learns some regularities from the environment on the basis of simple global
constraints.

(A) (B)

Fig. 1. (A) Environment: A rotating eyeball is tracking a punctual target (cross): θ is the actual
eye direction, φ is the subjective target direction (relative to the pupil’s direction). (B) Controller:
The visual layer is composed of 256 neurons sending excitatory axons toward a motor layer
composed of 32 neurons. The premotor neurons inhibit each other. A slow noise b(t) is added
to every premotor neuron. I(t) is the visual signal, and u(t) is the command (see text for more
details).
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4.1 Environment

Consider a fixed eyeball with 2 degrees of freedom in rotation. The current direction

of the the pupil is given by
−−→
θ(t) = (θx(t), θy(t)). A target is moving in the visual field

and the controller must track the target by making it as close as possible to the fovea.

Its direction is
−−→
ψ(t) = (ψx(t), ψy(t)). Its subjective direction (i.e. direction relative to

the pupil) is
−−→
φ(t) =

−−→
ψ(t) −

−−→
θ(t) ∈] − π, π]2. The movement of the eye is controlled

by
−−→
u(t) = (θ̇x(t), θ̇y(t)). In the examples that follow, the target is moving circularly in

front of the eyeball. Its objective direction is
−−→
ψ(t) = (cos(2πt

320 ), sin(2πt
320 )) whose period

is 320 ms.

4.2 Controller

The controller is composed of a retina and 2 layers of neurons. We use a 2D foveated
retina composed of N (1) = 16 × 16 = 256 pixels. The spatial resolution is stronger
at the center of the retina than at the periphery (like in vertebrate eyes). The perceived
direction is proportional to the log of the real distance to the center:

−−→
d(t) = sign(

−−→
φ(t))× log10(1 + 9

∣∣∣−−→φ(t)
∣∣∣

π
) ∈]− 1, 1]2

The first layer consists of 256 neurons which are directly stimulated by the external
signal. Consider that each cell i ∈ {1, ..., N (1)} of the first layer responds to a preferred

input direction
−→
di . Taking M =

√
N (1), k =  i−1

M � + 1, � = i − (k − 1)M , so that

(k, �) ∈ {1, ...,M}2, we fix
−→
di = (2k−(M+1)

M , 2�−(M+1)
M ). Then

I
(1)
i,ext(t) = 2

〈
cos((

−−→
d(t) −−→di )× π)

⏐⏐⏐H (cos((
−−→
d(t) −−→di )× π)

)〉
where 〈.|.〉 is the inner product and H is the Heaviside function.

The second layer consists ofN (2) = 32 neurons. It sends a velocity command
−−→
u(t) =

(θ̇x, θ̇y) to the eye effectors. Every neuron of the second layer is associated with a
particular angular direction, i.e. θi = i × π

N(2) rad. The output of the controller is
defined according to the spiking activity of the population, i.e.

−−→
ui(t) = ε

(2)
i (t)× (sin(θi), cos(θi))

and
−−→
u(t) =

1√
N (2)

N(2)∑
i=1

−−→
ui(t)

which is normalized in
√
N (2) in order to maintain the variance of the command inde-

pendent of N (2).
The neurons of the first layer send excitatory links to the second layer. The neurons

of the second layer send lateral inhibitory links so that the global input of the premo-
tor neurons is balanced. The connectivity is initially random. Considering the synaptic
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sums W (pq)
i =

∑N(q)

j=1 w
(pq)
ij , the weights are randomly set so that E(W (pq)

i ) = μ(pq)

and var(W (pq)
i ) = σ(pq)2. Here we fix μ(21) = 2.5, σ(21) = 0.1, μ(22) = −2.5,

σ(22) = 0.25.
A slow noise is added to the input of the premotor neurons. If not precised, we use

in the following τnoise = 100 ms and σnoise = 0.35.

4.3 Reward

We expect the system to learn to compensate the visual error by making a movement in
the observed direction of the target, i.e. to learn the appropriate feedback homeostatic
controller. The reward being dimensionless, the system is only informed how good or
bad its current command is at following the target, but is not informed of the precise
direction to choose to improve it. Its improvement will rely on “trials and errors”.

Considering the simpler the better, the reward is based on the subjective direction
from the fovea d(t):

r(t) =
1
2
−
∥∥∥−−→d(t)∥∥∥

The rewards are expected to be negative most of the time at the beginning of the learning
process, since the probability to have the target near the center of the fovea is initially
low.

4.4 Learning

The learning process is applied for 250 s on both excitatory and inhibitory synapses,
a reward is sent every τz ms (in figure 2, τz = 100 ms). The learning parameter is
α = 0.03/N (1). The neural controller initially sends erratic commands to the effectors,
which contributes to an approximately uniform exploration of various eye positions,
while the target rapidly moves on the retina. The rewards being sent every 100 ms, a
progressive improvement of the command is observable after 20-40 s where the target
appears more frequently near the center of the retina (as the expectation of the reward
increases). Then the behavior of the controller progressively stabilizes around 50-100 s
and the mean distance remains stable (0.5-0.7 rad) for the rest of the simulation. The eye
is now tracking the target, approximately reproducing the circular movement observed.

If we look at the premotor neurons responses individually at the end of the learning
process, no specialization is clearly visible. Individual premotor neurons do not system-
atically respond to targets appearing on the opposite direction (not shown). If we now
look at the output command (i.e. the mean of the 32 premotor neurons response), then
a clear specialization is visible at the end of learning. In figure 2-C-, we give the mean
motor response according to 256 typical target directions, at the beginning and at the
end of the learning process. The initial movement field displays no particular organiza-
tion, as it only relies on the randomness of the initial connections. On the contrary, the
movements produced at the end of learning are systematically oriented toward the cen-
ter of the retina, the command being weaker when the target is near the center, almost
proportionally to the observed “error”.
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(A) (B) (C)

Fig. 2. (A) Evolution of the mean distance (‖ψ − θ‖) on a 1 s interval, during the 250 s of the
learning process. (B) Samples from the controller and target dynamics, on 200 ms intervals, with
10 ms resolution. The red dots give the target direction (the diamond gives the final direction in
the interval). The blue dots give the eye direction. (C) (top) Initial average motor output for a
target appearing at the considered subjective direction, (bottom) final average motor output (see
text for more details).

We consider now the two parameters : τz and τnoise. The value of τz controls both
the length of the trace and the frequency of the rewards, the rewards appearing every
τz ms and the trace taking into account the most recent firings in the same interval. We
consider different values of τz from continuous rewards (τz = δt) to sparse rewards
(τz = 100 ms). We observe in figure 3-A- that changing τz has no particular effect
on the learning performance. The frequency of rewards is not found to significantly
influence the learning process: the performance is about the same for rewards frequency
within a [0.5...100] ms range.

The value of τnoise controls the “slowness” of the noise (its autocorrelation) with-
out modifying its variance. The case of τnoise = τm = 10 ms roughly corresponds
to a diffusive noise filtered by the neuron membrane, while the value τnoise = δt cor-
responds to the simple gaussian escape noise model [6]. Changing the characteristics
of the noise appears on the contrary to strongly impair the learning performance. With
a simple uncorrelated gaussian noise (τnoise = δt), the controller is simply unable to
learn the task. The “slowness” of the noise thus appears to be an essential feature for
the achievement of learning. This effect can be explained by the closer correspondence
between the noise and environment time constants. In particular, for the environment

we consider, the autocorrelation window of the current error signal ‖
−−→
ψ(t)−

−−→
θ(t)‖ is of
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(A) (B)

Fig. 3. (A) Mean distance during the first 50 s of the learning process, for τz = 100 ms (bold
line), τz = 10 ms (thin line) and τz = δt (dotted line), with τnoise = 100 ms. (B) Idem, for
τnoise = 100 ms (bold line), τnoise = 10 ms (thin line) and τnoise = δt, with τz = 100 ms.

the order of 100 ms (not shown), which corresponds to the value of τnoise giving the
best learning performance.

5 Conclusions

We have presented a new learning setup that illustrates the relevance of a policy-gradient
based RL approach for modelling realistic and convergent synaptic plasticity rules. We
show here in particular that the shape of the noise is of crucial importance for the algo-
rithm convergence. The time constants shared by the noise and the environment help the
controller to capture the relevant shifts from the expected firing rates, and modify the
weights accordingly, even when the reward information is sparse. During the learning
process, the premotor neurons modify their response in order to favour better rewards,
without getting finely specialized. It is only by looking at the population that a coherent
response pattern appears, as a combination of individual outputs.

The realism of our approach in modelling natural learning depends on the existence
of internal random signals having comparable self-correlation characteristics. Our mod-
elling hypothesis should be considered regarding the known characteristics of spiking
activity [11]. This study more generally points out the interest of temporally (and spa-
tially) structured noises for orienting the “exploration” of the environment in artificial
control systems.
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Abstract. It has been known for some time that the synapses of the

CA1 pyramidal cells are surprisingly unreliable at signalling the arrival

of single spikes to the postsynaptic neuron [2]. On the other hand, bursts

of spikes are reliably signalled, because transmitter release is facilitated.

In the hippocampus, a single burst can produce long-term synaptic mod-

ifications. Bursts of spikes in addition to increasing reliability of synaptic

transmission [3], they have been shown to provide effective mechanisms

for selective communication between neurons in a network [4]. We investi-

gate via computer simulations how the profile of spike-timing-dependent

plasticity (STDP) in the CA1 pyramidal cell synapses is affected when

an excitatory burst of spikes applied to dendrites is paired with an ex-

citatory single spike applied to the soma in the absence and presence of

a 100Hz GABAergic inhibitory spike train applied to the dendrites. We

report that the shape of the STDP curve strongly depends on the burst

interspike interval in the presence/absence of GABAA when a presynap-

tic burst and a postsynaptic spike are paired together.

Keywords: Hippocampus, CA1 pyramidal neuron, computer model,

STDP, GABA, LTP, LTD, calcium.

1 Introduction

Hebb’s law states a synapse is strengthened only if the pre- and postsynaptic
neurons are activated simultaneously [1]. STDP is a refinement of Hebb’s law,
which states that the precise timing of presynaptic and postsynaptic action po-
tentials is actually the one that determines the sign and magnitude of synaptic
modifications [7]. Bi and Poo showed that the profile of the STDP curve in
the in-vitro hippocampal network has an asymmetrical shape with the largest
LTP/LTD value at +/-10ms, respectively [7].

A recent study reported that the shape of the STDP profile depends on the
location on the stratum radiatum (SR) dendrite [5]. A symmetric STDP profile
is observed in the proximal SR dendrite, whereas an asymmetric one is observed
� Corresponding author.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 229–238, 2009.
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W

Fig. 1. Model calcium detection system [8], [11]. P detector: potentiation detector; D

detector: depression detector; V detector: veto detector; W: synaptic weight.

in the distal one [6]. A symmetric STDP profile with short temporal window
may serve as a coincidence detector between the incoming input and the output
of the CA1 pyramidal cell, whereas an asymmetric profile with a broad temporal
window may play a role in chunking of items in sequence learning. Recent compu-
tational works from our group predicted that the switching between operational
modes (asymmetry-to-symmetry) is strongly dependent on the frequency band
(theta vs. gamma) of the GABAA inhibition, the conductance value of GABAA
inhibition and the relative timing between the GABAergic spike train and the
pre- and post-synaptic excitation [8], [10]. A long-term potentiation (LTP) peak
and two distinct long-term depression (LTD) tails of the symmetrical STDP
curve were shown to be centered at +10 ms, +40 ms and -10 ms, respectively
[8], [10]. The largest LTP value and the two distinct LTD tails were inversely
proportional to the increase of GABAA conductance [8], [10].

In this study we continue to investigate the asymmetry-to-symmetry transi-
tion in the CA1-SR synapses in the presence of complex inputs, such as bursts.
We examine how the STDP profile in the CA1-SR pyramidal cell synapse is
affected when a burst of excitatory spikes applied to the SR synapses is paired
with a single excitatory spike applied to the soma in the absence and presence
of a 100Hz GABAergic inhibitory spike train applied to the SR dendrites as a
function of GABAA conductance and burst interspike interval.

2 The Model

We used a Ca2+ dynamics model for the CA1 pyramidal cell [8], [11]. The model
neuron had two compartments: a soma and a dendrite. The generation of action
potentials was due to the interplay of a wealth of Na+, K+, Ca2+-activated K+

and Ca2+ currents as well as synaptic currents (AMPA and NMDA) [8],[9],[10].
Two excitatory transient inputs to the soma and SR dendrite were used to
simulate the experimental STDP protocol. The mechanism for plasticity had a
modular structure consisting of three biochemical detectors, which responded to
the instantaneous calcium level in the SR dendrite. The detection system (see
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Pre-Burst

Post-Spike

300 ms

300 ms

300 ms

1.6 ms

300 ms

5 ms
C

300 ms

10 ms
D

300 ms

20 msE

A

B

Fig. 2. (A) Our model CA1 neuron with its three transient inputs to the soma and

SR dendrite. In all experimental paradigms, pairing takes place between an excitatory

burst of spikes with T ms burst interspike interval, where T is a free parameter and an

excitatory single spike (not shown) in the absence and presence of a 100Hz GABAergic

spike train applied between the excitatory pair interval (not shown). (B) Experimental

paradigm 1: burst interspike interval, T, is 1.6 ms (C) Experimental paradigm 2: burst

interspike interval, T, is 5 ms (D) Experimental paradigm 3: burst interspike interval,

T, is 10 ms (E) Experimental paradigm 4: burst interspike interval, T, is 20 ms.

fig. 1) consisted of: (1) a potentiation detector which detected calcium levels
above a high-threshold (e.g. 4 M) and triggered LTP, (2) a depression detector
which detected calcium levels exceeding a low threshold level (e.g. 0.6 M) and
remained above it for a minimum time period and triggered LTD, and (3) a
veto detector which detected levels exceeding a mid-level threshold (e.g. 2 M)
and triggered a veto of the model’s depression components. More details on the
Ca2+ detectors system can be found in [8] and [10].

In this study we investigate how the pairing of a repeating excitatory burst
applied to the SR dendrite and a repeating excitatory single spike applied to the
soma affect the STDP curve in the presence and/or absence of a 100 Hz GABAA
inhibitory transient input to the SR dendrite.

3 Experiments

To investigate how the STDP curve is affected by the pairing of excitatory bursts
and excitatory single spikes in the presence/absence of GABAergic inhibition,
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we designed the following experimental protocol: Excitatory burst of spikes with
T ms burst interspike interval and single spikes, which were repeatedly applied
to the SR dendrite and soma, respectively, for 2 s (7 times at about 3 Hz) were
paired in the absence and presence of a 100 Hz GABAergic inhibitory spike
train applied between the excitatory pair interval Δτ . Based on this protocol,
we designed the following four physiological experiments (see figure 2), where
the burst interspike interval, T, was allowed to vary:

– T = 1.6 ms
– T = 5 ms
– T = 10 ms
– T = 20 ms

During all experimental paradigms, we varied the conductance of GABAA and
observed its effects on the amplitude of the proximal SR Ca2+ spike and the
STDP curve. These results are reported in the next section.

4 Results

4.1 Pairing of an SR Burst and a Somatic Spike in the Absence of
GABAA as a Function of Burst Interspike Interval

Figure 3 depicts the saturated synaptic weight values (W∞) as a function of the
interstimulus interval, Δτ = tpost - tpre. Δτ is the interstimulus interval between
the first presynaptic spike of the burst (a presynaptic burst is composed of three
spikes with varying interspike interval) and the postsynaptic spike. Simulations
were performed with Δτ ranging from -100 to 100 in increments of 10 ms. When
the burst interspike interval is 1.6 ms, a symmetric STDP profile is evident. The
largest LTP value is at 10 ms. The duration of the temporal window for learning
is 30 ms, where beyond that only forgetting (i.e LTD) is taking place. When
the burst interspike interval is increased to 5 ms, an asymmetric STDP profile
appears. The largest LTP and LTD values are at 20 ms and -10 ms, respectively.
At 10 ms burst interspike interval the asymmetric STDP profile is maintained
and all W∞ values are positive and larger than 0.1. This means that only LTP
(i.e. learning) is possible when a CA3 Schaffer collateral burst and a CA1 output
spike are paired in the absence of GABA, but how strong learning is depends on
Δτ . As 20 ms burst interspike interval, another symmetric curve appeards with
the largest LTP value at 60 ms.

4.2 Pairing of an SR Burst and a Somatic Spike in the Presence of
a 100Hz GABA Spike Train in the Δτ Interval

Figure 4 is a composite figure of four graphs of W∞ vs Δτ as a function of
burst interspike interval and GABA conductance. It is clear from all four graphs
that at GABA presence and as the conductance of GABA increases a symmetric
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STDP profile appears. Particularly interesting is the case of 20 ms burst inter-
spike interval, where when GABA is present, even at low conductance values,
”catastrophic forgettting” (i.e. LTD for all Δτ values) is present.
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Fig. 3. (Top) Simulated asymmetric STDP profile as a function of burst interspike in-

tervals in the absence of GABAA. Δτ (tpost - tpre) is the interstimulus interval between

the first presynaptic spike of the burst and the postsynaptic spike. Δτ ranges from -100

to 100 in increments of 10 ms. Solid lines with arrows point to the bottom two figures,

which depict the relative timing between the presynaptic burst and the postsynaptic

spike. (Bottom-left) PostSpike - PreBurst scenario, where postsynaptic single spike pre-

ceeds the presynaptic burst, comprised of three spikes, by Δτ . Δτ takes values from -10

ms to -100 ms. The pairing repeats every 300 ms. (Bottom-right) PreBurst - PostSpike

scenario, where a presynaptic burst preceeds the postsynaptic spike by Δτ . Δτ takes

values from +10 ms to +100 ms. The pairing repeats every 300 ms.
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Fig. 4. STDP profiles from the pairing of a burst of spikes with T ms burst interspike

interval, where T is a free parameter, applied to SR synapses and a single spike applied

to the soma in the absence and presence of a 100 Hz GABA spike train as a function

of GABAA conductance. Δτ (tpost - tpre) ranges from -100 to 100 in increments of

10ms. (Top-left) Burst interspike interval, T, is 1.6 ms. (Bottom-left) Burst interspike

interval, T, is 5 ms. (Top-right) Burst interspike interval, T, is 10 ms. (Bottom-right)

Burst interspike interval, T, is 20 ms.

Figure 5 is a composite figure of the W∞ vs Δτ graph as a function of a
5 ms burst interspike interval and increasing GABAA conductance (gGABAA =
0.0 mS/cm2 and gGABAA = 0.1 mS/cm2) and the [Ca2+], P (i.e. potentiation)
and LTD agents (V, A, B, and D) vs time graphs for B, C, D, E, F, G, H, and
I W∞ values of the W∞ vs Δτ graph. In the paired protocol of a presynaptic
burst stimulation followed by a postsynaptic single spike stimulation of 10 ms
later (preBurst-10-postSpike) in the absence of GABAA, we see a large influx of
calcium through the NMDA channel due to removal of the magnesium block by
the back propagating action potential (BPAP) (top figure 5B). In the preBurst-
50-postSpike scenario, the influx of calcium is reduced because the arrival of
the BPAP at the dendrite comes later. While the slow closing of the NMDA
channels still allow calcium influx to be enhanced by this unblocking, the peak
calcium level is lower in the preBurst-40-postSpike scenario than in the preBurst-
10-postSpike (top figure 5C) because NMDA channels are more inactivated by
the time the magnesium is removed. This leads to a large potentiation (i.e. P)
spike (medium figure 5B) and small LTD agents’ profiles (bottom figure 5B)
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Fig. 5. (A) STDP profile from the pairing of a burst of spikes with 5 ms burst interspike

interval applied to SR synapses and a single spike applied to the soma in the absence

and presence of a 100 Hz GABAA spike train as a function of GABAA conductance. Δτ
(tpost - tpre) ranges from -100 to 100 in increments of 10 ms. (B-I) Composite figures

corresponding to points B through I in figure 5A of [Ca2+ ], P (potentiation) and LTD

agents (V, A, B, and D) with respect to time.
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Fig. 5. (continued)

when compared with preBurst-50-postSpike case (medium and bottom figure
5C). The peak calcium level will continue to decrease as the preBurst-postSpike
interstimulus interval is lengthened.

When GABAA inhibition is present the peak calcium level in the preBurst-
10-postSpike (top figure 5F) is lower than in preBurst-10-postSpike case in the
absence of GABAA (top figure 5B). In the preBurst-50-postSpike in the pres-
ence of GABAA scenario (top figure 5G), the effect of GABAA on W∞ is more
pronounced than in preBurst-10-postSpike without GABAA case. This is due
to the increased number of GABAA spikes in the pre-post intersimulus interval
(6 spikes in the 50 ms pre-post interstimulus interval vs 2 spikes in the 10 ms
pre-post interstimulus interval).

In the postSpike-before-preBurst synaptic pairing with a 10 ms interval
(postSpike-10-preBurst), a much smaller calcium enters the dendrite through
the L-type voltage gated calcium channels (VGCCs) (top figure 5D). The effect
of GABAA on calcium influx through the VGCCs is negligible and hence the
LTD value of the W∞ in the presence of GABAA (top figure 5H) is the same
as in the absence of it (top figure 5D). The potentiation curves (medium figures
5D and 5H) are tonically decreasing. From the LTD agents (bottom figures 5D
and 5H), the veto signal is low and hence its effect on the B curve is small. The
tall B curve leads to a depression spike (i.e. D variable) and hence to LTD.

In the postSpike-40-preBurst without GABAA scenario, the calcium influx
(top figure 5E) is greater than in the postSpike-10-preBurst (top figure 5D).
Hence, a small but pronounced P spike is evident (medium figure 5E). A larger
veto spike prevents the depression curve (D variable) from affecting the W∞
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value. In the postSpike-40-preBurst with GABAA scenario, the calcium influx
(top figure 5I) is slightly greater than in the postSpike-10-preBurst (top figure
5H). Hence, a very small P spike is evident (medium figure 5I). A veto spike
is present but not sufficient strong to prevent the depression curve (D variable)
from affecting the W∞, hence resulting to LTD.

5 Conclusion

A Ca2+ dynamics model of the CA1 pyramidal neuron with three calcium am-
plitude detectors was used to study the effects of GABAergic interneurons to
the symmetry-to-asymmetry transition of the STDP profile in the proximal
SR dendrite. In support of previous computational work from our group [8],
[10], which predicted that the symmetry-to-asymmetry transition is strongly
dependent on the frequency band (theta vs. gamma), the conductance value
of GABAA inhibition and the relative timing between the GABAergic spike
train and the pre-post interstimulus interval, the symmetry-to-asymmetry-back-
to-symmetry transition is also depedent on the burst interspike interval in the
presence/absence of GABAA when a presynaptic burst and a postsynaptic single
spike are paired. In the future, we intend to investigate this transition even fur-
ther for other pre-post burst and single spike pairings in the presence of different
GABAA gamma frequency sub-bands and conductance values.
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Abstract. How can we characterize if a given neural circuit is optimal

for the class of computational operations that it has to perform on a cer-

tain input distribution? We show that modifying the efficacies of recur-

rent synapses in a generic neural microcircuit via spike timing dependent

plasticity (STDP) can optimize the circuit in an unsupervised fashion for

a particular input distribution if STDP is modulated by a global reward

signal. More precisely, optimizing microcircuits through reward modu-

lated STDP leads to a lower eigen-value spread of the cross-correlation

matrix, higher entropy, highly decorrelated neural activity, and tunes the

circuit dynamics to a regime that requires a large number of principal

components for representing the information contained in the liquid state

as compared to randomly drawn microcircuits. Another set of results

show that such optimization brings the mean firing rate into a realistic

regime, while increasing the sparseness and the information content of

the network. We also show that the performance of optimized circuits

improves for several linear and non-linear tasks.

Keywords: Reward modulated STDP, generic neural microcircuits,

optimization.

1 Introduction

Reservoir computing paradigms, such as the Liquid State Machine (LSM) and
the Echo State Network (ESN) have been proposed as a plausible mechanism
through which neural readouts can perform diverse computational tasks in paral-
lel [1,2,3]. Although computationally similar, LSMs have been typically discussed
in context of computations carried out by generic cortical microcircuits composed
of spiking neurons, while ESNs have been conventionally used to provide high
performance on a number of engineering tasks.
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A key feature of existing reservoir computing models is that learning is con-
strained to only the synapses projecting from the generic neural microcircuit
to the linear readout, leaving the recurrent circuitry intact. While this kind of
learning is sufficient for a large repertoire of computational tasks, an obvious
next step is to optimize the neural circuit for the class of computational oper-
ations that the circuit has to perform on a particular input distribution [4,5,6].
Determining whether a particular neural circuit is optimal for the computational
tasks that it has to perform is not an easy question as the relationship between
dynamical properties of the input and output streams and the properties of
circuit dynamics induced through inputs is not well understood [4].

It has been proposed that a neural circuit that has been optimized for a certain
input distribution will demonstrate the following four properties: a low eigen-
value spread1 of the cross-correlation matrix of the liquid state x(t)2, a higher
value of liquid-state entropy3, highly decorrelated neural activity, and a large
number of principal components needed to represent the information contained
in the liquid state as compared to a random microcircuit [4]. Loosely speaking,
all these four measures aim at making the individual reservoir units as mutually
different as possible.

This article demonstrates that a neural circuit can be optimized in the above
sense for a particular input distribution via STDP, if the STDP is being mod-
ulated by a global reward signal. This optimization is done in an unsupervised
fashion. Results indicate that the approach presented here is quite robust and
brings the circuit dynamics into a more biologically realistic regime of lower firing
rate, high degree of sparseness and increases the information content per spike.
Further results indicate that such an optimized circuit increases the performance
of linear readouts on a set of benchmark computational tasks.

2 Methods

The experiments described in this article were performed on generic cortical mi-
crocircuit models composed of leaky integrate-and-fire neurons4. These circuits
1 Eigen-value spread is defined as the ratio |λmax/λmin|, where λmax and λmin are

the maximum and minimum eigen values of the cross-correlation matrix of liquid

state.
2 The liquid state x(t), is obtained by applying a low-pass filter to the spike trains

emitted by the neurons in the generic neural microcircuit model. More precisely,

each component of x(t) models the impact that a particular neuron v may have on

the membrane potential of a generic readout neuron. Thus each spike of neuron v is

replaced by a pulse whose amplitude decays exponentially with a time constant of

30 ms.
3 Is defined as −

∑n
i=1 xi(t) · ln(xi(t)), where xi(t) is the ith component of the liquid

state x(t), and n is the number of neurons in the generic neural microcircuit.
4 Neuron Parameters: Membrane time constant 30 ms, absolute refractory period 3

ms (excitatory neurons), 2 ms (inhibitory neurons), threshold 15 mV (for a resting

membrane potential assumed to be 0), reset potential drawn uniformly from the

interval [13.8 mV, 14.5 mV].
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were not created for any specific computational task. Sparse synaptic connec-
tivity between neurons was generated with a biologically realistic bias towards
short-range connections by a probabilistic rule, and synaptic parameters were
chosen randomly from distributions that depended on the type of pre- and post-
synaptic neurons in accordance with empirical data from [7,8]. The neurons in
the generic neural microcircuit models were placed on the integer-points of a
3-D grid, and 20% of these neurons were randomly chosen to be inhibitory.
The probability of a synaptic connection from neuron a to neuron b (as well
as that of a synaptic connection from neuron b to neuron a) was defined as
C · exp(−D2(a, b)/λ2), where D(a, b) is the Euclidean distance between neurons
a and b, and λ (set to 2) is a parameter which controls both the average number
of connections and the average distance between neurons that are synaptically
connected. Depending on whether the pre- and postsynaptic neurons were exci-
tatory (E) or inhibitory (I), the value of C was set according to [7] to 0.3 (EE),
0.2 (EI), 0.4 (IE), 0.1 (II).

The generic microcircuit models that were optimized and used for various
computational tasks described in this article were similar in structure to those
that were earlier used for various computational tasks in open loop [9,10,11]
and closed-loop [12,13,14] setups. Results described in this article were obtained
using a generic neural microcircuit consisting of 135 neurons arranged on the
grid points of a 3 × 3 × 15 cube in 3D. Inputs to the circuit were 16 Poisson
spike trains drawn independently at 40 Hz, with each input spike train being
projected to approximately 63% of randomly chosen neurons in the circuit.

Initially, the circuit was simulated once for 200 ms to measure the baseline
values of the eigen-value spread (ε), entropy (H), pair-wise correlation (ρ), and
number of principal components (N) needed to represent 95% of the informa-
tion contained in the liquid state. Each subsequent trial lasted for 200 ms and
consisted of simulating the circuit with inputs drawn from the distribution and
measuring the global reward signal at the end of the trial. The reward for the
kth trial was computed as:

r = α · (−Δε+ΔH −Δρ+ΔN) (1)

where Δ(.) denotes the percentage difference in the value of a parameter between
kth and (k − 1)th trial and α is a scaling factor that was set to 2.5.

The recurrent synapses were modified using STDP which was modulated us-
ing the reward signal mentioned above. More precisely, for a presynaptic spike
occurring at time tpre, and a postsynaptic spike occurring at time tpost, the
weight change Δw, of the synapse was given by:

Δw =

⎧⎨⎩ r ·A+ · e
− tpost−tpre

τ+ , if tpost − tpre > 0

r ·A− · e
tpost−tpre

τ− , if tpost − tpre < 0
(2)

where A+(A−) define the peaks and τ+(τ−) reflect the time constants of the
exponential STDP kernel5 for potentiation (depression). It should be noted that
5 STDP kernel parameters: A+ = 3e−10, A− = −3e−10, τ+ = 40 ms, and τ− = 50 ms.
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the reward modulated STDP as described by equation 2 does not change the
inherent nature of the synapse, i.e. the paradigm does not convert an excitatory
synapse into an inhibitory one, or vice-versa.

3 Results

Can the learning rule (see eqns. 1 and 2) optimize a neural circuit and what
impact does such optimization has on various aspects of circuit dynamics? This
was studied through an experiment which consisted of simulating the network
for 20 runs, each consisting of 10 trials while reward modulated STDP was used
to change the recurrent synaptic weights.

Figure 1-3 present the results from a single run of 10 trials. Fig. 1 demon-
strates the impact of optimizing circuit dynamics through reward modulated
STDP. Panel A shows the input to the circuit (16 Poisson spike trains drawn
independently at 40 Hz). Panels B and C show respectively, the response of the
circuit to this stimulus before and after optimization, while the corresponding
change in mean firing rate (population average) of the network can be seen in
Panel D. It is interesting to note that the optimization process results in bringing
the firing activity of neurons to a more realistic, sparse regime.
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Fig. 1. (A) The external Poisson input spike trains to the neural microcircuit. Each of

the input spike trains was projected to approximately 63% of neurons in the circuit.

Response of the circuit (B) before and (C) after optimization using reward modulated

STDP for 10 trials. (D) The change in mean firing rate. The optimization process

results in bringing the firing activity of neurons to a more realistic regime.
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Fig. 2. Change in weights through reward modulated STDP after 10 trials. (A) His-

tograms showing the distribution of weights before and after optimization. (B) The

change in excitatory synapses (ΔWE), inhibitory synapses (ΔWI), and the change in

the ratio of excitation to inhibition (ΔWE/ΔWI) before (red) and after (blue) optimiza-

tion. The error measures are standard error (SE), and the values of ΔWE and ΔWI

have been scaled by 108.
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Figure 2 shows the change in recurrent synaptic weights occuring as a result
of using reward modulated STDP for 10 trials. Panel A shows the histogram of
weight values before and after optimization. It can be observed that the circuit
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response becomes more sparse after optimization (see Fig. 1) as the learning rule
increases the global inhibition as seen by larger values for inhibitory weights.
Panel B shows the change in weights of excitatory synapses (ΔWE), inhibitory
synapses (ΔWI), and the ratio of excitation to inhibition (ΔWE/ΔWI). Note that
the optimization process brings the circuit into a regime of balanced excitation
and inhibition.

Figure 3 shows the evolution of 4 parameters and the corresponding reward
signal for this experiment. Note that the eigen-value spread and pair-wise cor-
relation6 decrease while the entropy and the number of principal components
increase over the course of experiment as desired.
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mation content per spike in the generic neural circuit. Results shown in the figure are

means with SE measures computed over 20 runs, each run consisting of 10 trials. In

panel B, the bar indicating the neurons in the circuit before optimization that had 0%

sparseness has been truncated (slanted red line).

Figure 4 presents the result that demonstrate the effect of reward modulated
STDP on the mean firing rate, the sparseness of firing, and the average informa-
tion content of the network. As seen in panel A of the figure, the mean firing rate
of the network went down as a result of applying the learning rule. At the same
time, applying the learning rule increased the sparseness of neural activity. We
used the same measure of sparseness as in [15,16]. More precisely, the sparseness
S, of a neuron was defined as:

S =
1− [(

∑
ri/K)2/

∑
(r2i /K)]

1− (1/K)
(3)

where K = 20 is the total number of runs and ri is the response of the neuron
to the ith stimulus (averaged across runs). Each stimulus was a set of 16 inde-
pendent Poisson spike trains drawn at 40 Hz. Values of S near 0% indicate a
dense code, and values close to 100% indicate a sparse code. Panel B shows the
6 A decrease in pair-wise correlation implies that action potentials of individual neu-

rons in the circuit get more decorrelated.
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histogram of sparseness of neurons in the circuit before and after optimization.
There is a significant increase in neuronal sparseness as a result of optimization.

The average information content of the network also increased progressively
with the optimization process as see in panel C of Fig. 4. More precisely, the
amount of information about the inputs to the circuit contained per single spike
in the circuit activity increased with trials. In other words, application of the
learning rule brings the circuit dynamics to a regime with low redundancy, where
each single spike in the network carries more meaning and information.

Optimization from the Perspective of Linear Readouts
A key hypothesis of optimizing generic neural microcircuits for a particular input
distribution is that it will improve the performance of linear readouts attached to
the circuit which are assigned different computational tasks. This was demon-
strated through another experiment whose results are shown in FIg. 3. Four
readouts were trained using simple linear regression, to perform different linear
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Fig. 5. (A) 8 external Poisson spike trains corresponding to each of the rates r1(t) and

r2(t) (B) The target (black), and the observed performance of readouts connected to

optimized (blue) and unoptimized (red) neural circuits, which were computing the value

of r1(t). Similar plots for readouts computing (C) r1(t) + r2(t), and (D) r1(t) × r2(t).
(E) The readouts show significant increase in performance on each of the tasks, when the

circuits have been optimized (blue bars) compared to unoptimized circuits (red bars).
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and non-linear computational tasks on the incoming Poisson spike trains. The
performance of these readouts was compared for the case when an unoptimized
generic neural microcircuit was being used to the case when the circuit had been
optimized for 10 trials. Inputs to the circuit were 16 Poisson spike trains drawn
independently at 40 Hz (like other experiments). The task of the first readout
was to compute the instantaneous firing rate r1(t) of the first 8 input channels.
The second readout was computing r2(t), the rate for the next 8 input chan-
nels. The third readout was computing the sum of rates r1(t) + r2(t), while the
fourth readout was performing the non-linear computation of product of rates,
r1(t) × r2(t). After 100 training trials, the performance of readouts was subse-
quently validated for another 50 validation trials, using inputs that weren’t seen
during training. Panel A shows the 8 external Poisson spike trains correspond-
ing to each of the rates r1(t) and r2(t). Panel B shows the target (black), and
the observed performance of readouts connected to optimized (blue) and unopti-
mized (red) circuits. Panel C and D show similar results for readouts computing
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r1(t)+ r2(t) and r1(t)× r2(t). Each of the 4 readouts showed an increase in per-
formance7 when they were seeing dynamics of a circuit that had been optimized
through reward modulated STDP as can be seen in panel D. The errorbars are
standard error measure.

Other Possible Reward Functions
Can the global reward be computed by other reward functions besides the one
described by eqn. 1? This question was investigated through another experiment
that recorded how the 4 measures, i.e. ε, H , ρ and N evolved over 20 runs, each
composed of 10 trials, when we used 5 different reward functions. Besides the
reward function described earlier (eqn. 1), each of the other 4 reward functions
were computed as:

r = ±α̂ ·Δ(.) (4)

where α̂ is a scaling factor set to 10, and Δ(.) is the percentage change in one
of the four parameters, ε, H , ρ and N . The sign of reward depended on which
of the 4 parameters was chosen to construct the reward function. It can be seen
from Fig. 6 that the original reward function gives the best performance, reward
functions based on ε and ρ work slightly better than the control case, i.e. when
the synapses were modified using STDP only, and reward functions based on H
and N did not work at all.

4 Discussion

This article presents an unsupervised learning rule to modify the recurrent
synaptic efficacies of a generic neural microcircuit via reward modulated STDP,
such that the circuit is optimized for a set of computational tasks that it has
to perform on a certain input distribution. Optimizing neural circuits with the
learning rule described here leads to a lower eigen-value spread of the cross cor-
relation matrix of the liquid state, a higher value of liquid state entropy, highly
decorrelated neural activity, and brings the circuit dynamics to a regime where a
large number of principal components are required to represent the information
contained in liquid state.

Results indicate that optimizing the neural circuits in the manner described
here leads to a regime of balanced excitation and inhibition, realistic firing rates,
higher sparseness and increases the information content per spike in the network.
It should be noted that such sparse code is computationally efficient and at
the same time biologically realistic. For example, it has been observed that V1
neurons of macaques encode information using a sparse code [15].

Linear readouts connected to circuits that have been optimized for a particular
input distribution perform significantly better on the same computational tasks
as compared to readouts that see dynamics from a randomly drawn generic
neural circuit. Thus, from the perspective of a linear readout, the learning rule
7 Performance was measured as the correlation between the target and observed

signals.
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described here brings the circuit dynamics to a regime where it becomes easier
for the readouts to do several different linear and non-linear computational tasks.

Another interesting result was the possibility to compute the global reward
based on how either of the four measures evolved. It was shown that the original
reward function (eqn. 1) performed better than other possible functions. The
functions based on ε and ρ performed slightly better than the control case (using
STDP without reward), and functions based on H and N did not work.
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11. Maass, W., Natschläger, T., Markram, H.: Computational models for generic cor-

tical microcircuits. Chapman & Hall/CRC, Boca Raton (2004)

12. Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural

circuits. PLOS Computational Biology 3(1), e165, 1–20 (2007)

13. Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neural

Computation 17(8), 1715–1738 (2005)

14. Joshi, P.: From memory based decisions to decision based movements: A model of

interval discrimination followed by action selection. Neural Networks 20, 298–311

(2007)

15. Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex

during natural vision. Science 287, 1273–1276 (2000)

16. Billimoria, C.P., Kraus, B.J., Narayan, R., Maddox, R.K., Sen, K.: Invariance and

sensitivity to intensity in neural discrimination of natural sounds. Jour. of Neu-

rosc. 28(25), 6304–6308 (2008)



Calcium Responses Model in Striatum
Dependent on Timed Input Sources

Takashi Nakano1,2, Junichiro Yoshimoto1,2, Jeff Wickens2, and Kenji Doya1,2

1 Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
2 Initial Research Project, Okinawa Institute of Science and Technology

12-22 Suzaki, Uruma, Okinawa 904-2234, Japan

{nakano,jun-y,wickens,doya}@oist.jp

Abstract. The striatum is the input nucleus of the basal ganglia and

is thought to be involved in reinforcement learning. The striatum re-

ceives glutamate input from the cortex, which carries sensory informa-

tion, and dopamine input from the substantia nigra, which carries reward

information. Dopamine-dependent plasticity of cortico-striatal synapses

is supposed to play a critical role in reinforcement learning. Recently, a

number of labs reported contradictory results of its dependence on the

timing of cortical inputs and spike output. To clarify the mechanisms

behind spike timing-dependent plasticity of striatal synapses, we inves-

tigated spike timing-dependence of intracellular calcium concentration

by constructing a striatal neuron model with realistic morphology. Our

simulation predicted that the calcium transient will be maximal when

cortical spike input and dopamine input precede the postsynaptic spike.

The gain of the calcium transient is enhanced during the “up-state” of

striatal cells and depends critically on NMDA receptor currents.

1 Introduction

The striatum is the input site of the basal ganglia and receives glutamate inputs
from the cerebral cortex and thalamus and dopamine inputs from the substan-
tia nigra. Both the glutamatergic and dopaminergic afferents terminate on the
dendritic spines of medium spiny neurons, the output neurons of the striatum.
Plasticity of the cortico-striatal synapses depends on both dopamine input and
increase in the intracellular calcium concentration, a form of dopamine-dependent
and calcium-dependent plasticity [1,2].

Recently, two groups studied spike timing-dependent plasticity (STDP) of
cortico-striatal synapses and reported contradictory results: One reported that
cortical input repeatedly preceding the postsynaptic spike induced LTP whereas
cortical input following the postsynaptic spike induced LTD [3] ; but the other
reported the opposite coupling, this is, which cortical input following the post-
synaptic spike induced LTD and cortical input preceding the postsynaptic spike
induced LTP [4]. Although the literature [3] suggested that the activation of D1
receptors was necessary to induce both LTD and LTP, the effect of timing of
dopamine input on STDP was still open.
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It has been shown in cortical and hippocampal neurons that there is a thresh-
old level of influx of calcium ions to the postsynaptic spines which determines
whether a synapse is potentiated or depressed [5,6,7,8]. Synaptic efficacy is un-
affected with no calcium influx, depressed by an intermediate level of calcium
elevations, and potentiated with a large increase in calcium levels. We previously
constructed a molecular cascade model in the striatal medium spiny neuron and
predicted that the calcium influx as well as dopamine receptor activation would
strongly affect bidirectional plasticity of cortico-striatal synapses [2]. Integrating
these findings, the dynamics of the calcium influx is likely to be an important
factor to uncover the mechanisms behind STDP in cortico-striatal synapses.

In this study, we constructed a multi-compartmental model of the striatal
neuron with realistic morphology and examined how the timing of cortical input,
dopamine input, and postsynaptic spiking affect calcium influx.

2 Methods

2.1 Electrophysiological Experiment

Acute corticostriatal slices (300 μm thickness) were prepared from p21-25 DRD1a
EGFP Swiss Webster mice [9]. Whole cell recordings were made in current clamp
mode from identified GFP-positive cells, which express D1 dopamine receptors.
Cell identification was achieved using an Olympus BX51WI microscope and data
were acquired using an Axon Multiclamp 700B amplifier and pClamp 10 software.

To obtain morphological images, a neuron was filled with biocytin through
the patch pipette and was tagged with Alexa 488 after the whole cell recording.

MorphologicalModeling. Our model originated from Wolf’s study [10]. Based
on our measurements of actual medium spiny neurons, we extended Wolf’s model
to include dendrites. This allowed us to precisely evaluate the effect of backprop-
agating action potentials, which could not be accurately modelled in Wold’s

Fig. 1. The morphology of a D1-type dopamine receptor-expressing medium spiny

neuron. Left: a medium spiny neuron was filled with the fluorescent dye Alexa 488 and

observed using a DSU confocal microscope. Right: morphological data imported into

the NEURON simulator. The arrows point indicate the proximal and distal dendrites

described in Section 3, respectively.
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deduced model. The 3D morphological image (Fig. 1) was obtained using Neu-
rolucida neuronal tracing system with a DSU confocal microscope. Cell morphol-
ogy was manually traced using Neurolucida. The traced data include information
about the lengths and diameters of the dendrites [11].

Spatial discretization of model neurons was done automatically according to
the d lambda rule [11]. We adjusted the values of membrane resistance Rm and
the membrane capacitance Cm using the standard methods [12,13]. We added
two spines with diameter of 1 μm and length of 1.2 μm at proximal and distal
dendrites 25μm and 50μm away from the soma, respectively, in order to measure
the calcium transient in the different spines (see arrows in Fig. 1).

2.2 Ionic Currents

Our model had the same ionic channels as Wolf’s [10]. There were two types of
sodium channels, fast (NaF) and persistent (NaP), and six different potassium
channels, inwardly rectifying (KIR), slow A-type (KAs), fast A-type (KAf), 4-
AP resistant persistent (KRP), small conductance calcium dependent (SK), and
large-conductance calcium dependent (BK), and six calcium currents: N-, Q-,
R-, T-, Cav1.2 [high-voltage activated (HVA)] L- and Cav1.3 [low-voltage acti-
vated (LVA)] types [14]. The model also had ionic currents through AMPA- and
NMDA-type glutamate receptors and GABA receptors.

We adjusted the conductance parameters to fit our experimental data using
Neurofitter [15].

Calcium Dynamics. The original model [10] included four processes contribut-
ing to calcium dynamics, namely calcium influx from AMPA and NMDA-type
synaptic receptors, voltage-gated calcium channels, calcium buffer, and calcium
pumps. In addition, we added calcium release from the intracellular calcium
store (endoplasmic reticulum, ER), through ryanodine and IP3 (inositol-1,4,5-
triphosphate) channels [16].

The transient change in the intracellular calcium [Ca]i was modeled as

d[Ca]i
dt

= k(JCICR + JIP3 − JUptake + JLeak + JChannel + JSynaptic − JPump)

+([Ca]0 − [Ca]i)/τr. (1)

Here, JCICR is the flux caused by calcium-induced calcium release from intracel-
lular stores. This process is mediated by a ryanodine receptor; thus, we modeled
it as

JCICR = VCICR
[Ca]i

[Ca]i +KCICR
([Ca]ER − [Ca]i]).

JIP3 is the flux caused by IP3-induced calcium release from intracellular stores.
[Ca]ER is the calcium concentration in ER. It is known that the process has
a bell-shaped steady state curve dependent on [Ca]i with a sharp peak around
0.2 uM; thus, we modeled it as



252 T. Nakano et al.

JIP3 = VIP3m
3h3([Ca]ER − [Ca]i),

where an activation gate m and an inactivation gate h,

m =
[IP3]i

[IP3]i + dIP3

[Ca]i
[Ca]i + dact

,

h =
dinh([IP3]i + dIP3])

dinh([IP3]i + dIP3]) + [Ca]i([IP3]i + ddis)
.

IP3 (inositol-1,4,5-triphosphate) was generated via G-proteins when glutamate
binds to mGluRs. The transient change in the level of intracellular IP3, [IP3]
was modeled by

d[IP3]i
dt

= γt exp(−t/tpeak)− β([IP3]i − [IP3]min).

JUptake is the calcium update to the endoplasmic reticulum (ER), which was
modeled as

JUptake = VUptake
[Ca]2i

K2
Uptake + [Ca]2i

.

Jleak is the calcium leak from the ER, which was modeled as

JLeak = VLeak([Ca]ER − [Ca]i).

JChannel and JSynaptic are calcium influx through calcium channels and calcium
permeable glutamate receptors respectively. JPump is pumping activity to outside
the cell and last term in equation 1 is simple diffusive or buffering process.

Dopamine Modulation. To reflect a finding that dopamine D1 agonists in-
crease inward K currents and L-type calcium currents [17], we introduced a
dopamine modulation factor μ, which scaled Kir and L-type calcium currents. μ
gradually increased from μ = 1 (corresponding to the basal dopamine level) and
reached a peak (μ 	 2 ) at 50 milliseconds after the dopamine signal arrived [18].

3 Results

We calibrated the model parameters to fit the electrophysiological properties
of medium spiny neurons expressing D1-type dopamine receptors, which were
examined by whole cell patch clamp experiments in vitro. Fig. 2 compares the
current pulse responses of the model and those of a real neuron. The model
replicated the characteristic properties of the medium spiny neurons: resting
membrane potential around -85mV, small voltage responses to hyperpolarizing
current, and shallow after-hyperpolarization (AHP) after spike firing.
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Fig. 2. Model and experimental responses of medium spiny neurons to current steps

from -0.3 nA to 0.24 nA at intervals of 0.04 nA

Using this model, we investigated the following: 1) the voltage and calcium
responses of the dendrites to glutamate input and back-propagation action po-
tentials; 2) the timing dependence of calcium response to presynaptic inputs
and postsynaptic spike; 3) the triplet interactions of glutamate input, dopamine
input, and postsynaptic spike. We compared these properties at proximal and
distal dendrites under different membrane potential levels, known as up-state
and down-state [19].

3.1 Voltage and Calcium Responses

We investigated voltage and calcium responses in dendritic spines on proximal
and distal dendrites. The membrane potential of medium spiny neurons with
intact cortical input fluctuates between the “down-state” at about -85 mV and
the “up-state” at about -50 mV [19]. We simulated the up-state by a steady
current input of 0.2 nA to the soma and the down-state by no current input.

Fig. 3 (a-d) shows the responses of the spine in a proximal dendrite to gluta-
matergic synaptic inputs at proximal spine. The EPSPs and calcium responses
were facilitated in the up-state (Figs. 3(a) and (b)). The increased calcium in-
flux in the up-state was mediated by voltage-gated calcium channels and NMDA
receptors as well as calcium-dependent calcium release from the ER (compare
Figs. 3 (c) and (d)).

Fig. 3 (e-h) shows the responses of the proximal spine to a postsynaptic spike
caused by a transient current pulse (2.5 nA, 2 msec). Again, the EPSPs and
calcium responses were enhanced in the up-state (Figs. 3(e) and (f)), but the
calcium influx caused by the bAP was mainly from L-type calcium channels both
in the down-state and the up-state (Figs. 3(g) and (h)). These properties held
for the responses of the distal spine except that the magnitude of the bAP and
the calcium flux were reduced compared to the case of the proximal spine (data
not shown).
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Fig. 3. Voltage and calcium responses of the proximal dendritic spine to glutamate in-

put (corresponding to panels (a-d)) and somatic spike (corresponding to panels (e-f)).

Panels (a,e) and (b,f) show time courses of voltage and intracellular calcium concentra-

tion, respectively, where the black lines indicate down-state and the gray lines indicate

up-state simulated by a steady current input. Panels (c,g) and (d,h) shows the distri-

bution of sources of calcium influx to the spine in the down-state and the up-state,

respectively. In the legends, AMPAR, NMDAR, ER, CCs, CaL, Cal13 and CaT in

the legends denotes calcium influx from AMPA receptors, NMDP receptors, ER, all

calcium channels, L-type calcium channels (v1.2), L-type calcium channel (v1.3) and

T-type calcium channel respectively.

3.2 Timing of Presynaptic Input and Postsynaptic Spike

Next, we studied how the neuronal responses depended on the relative time of
paired inputs: 1) glutamate input and post-synaptic spike; and 2) dopamine in-
put and post-synaptic spike. Fig. 4 (a) shows the calcium responses to glutamate
input (upper panel) and dopamine input (lower panel) preceding (gray) or suc-
ceeding (black) a postsynaptic action potential by 20 ms in down-state. For both
glutamate and dopamine inputs, pre-post timing caused more calcium response
than post-pre timing. Fig. 4 (b) shows the pre-post timing dependence of peak
calcium responses.

Fig. 4 (c) shows the sources of calcium influx. For the glutamate input (upper
panels), the increased calcium response in the pre-post protocol was due to en-
hanced calcium influx through NMDA receptors following bAP (upper panel).
This is consistent with previous findings [20,21]. For dopamine input, the in-
creased calcium response for pre-post protocol was due to enhanced calcium
influx through L-type calcium channels (lower panel).

3.3 Triplet Interaction

We then investigated the dependence of calcium responses to the timing of both
glutamate and dopamine inputs relative to the postsynaptic spike. Fig. 5 shows
the peak calcium concentration in the proximal spine (a-c) and the distal spine
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Fig. 4. The dependence of the calcium response on the timing of presynaptic input (glu-

tamate or dopamine) relative to postsynaptic action potential in the down-state. (a) Cal-

cium transients in case of presynaptic glutamate (corresponding to upper panel) and

dopamine (corresponding to lower panel) inputs. The gray lines indicate presynaptic in-

put leading the postsynaptic spike by 20 ms, and the black lines indicate the presynaptic

input following the postsynaptic spike by 20 ms. (b) Peak of the calcium transient for each

timed input. ΔtGlu (or ΔtDA) means the time difference from presynaptic glutamate (or

dopamine) input to postsynaptic action potential. Positive time means the presynaptic

input precedes the postsynaptic action potential. (c) Distribution of sources of calcium

current in the proximal dendrite. The conditions are ΔtGlu = −20 (in the upper-left),

ΔtGlu = +20 (in the upper-right), ΔtDA = −20 (in the lower-left), ΔtDA = +20 (in

the lower-right). The insertion in the upper-right of each panel is the magnification. The

abbreviations in the legend are same as those in Fig. 3.
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(d-f). In the proximal spine in the down-state (a), the effect of dopamine in-
put was most pronounced when the dopamine input preceded the postsynaptic
spike by about 50 ms. On the other hand, at the distal spine (d), the modu-
lation by DA input timing was not very significant. In the distal dendrite, the
peak of calcium was lower than that in the proximal dendrite because the bAP
was attenuated at the distal dendrite and such a small bAP was not enough
to activate L-type calcium channels. Timing dependence of the glutamate and
postsynaptic spike was weakened by blocking NMDA receptors. Timing depen-
dence of the dopamine and postsynaptic spike disappeared when L-type calcium
channel was blocked out in down-state though the result is left out here for lack
of space. Therefore, the triplet condition can be regarded as generalization of
two timed-input conditions shown in Section 3.2. However, it is noteworthy that
the modulation by dopamine input was not just a linear summation. Calcium
levels were elevated drastically only when the glutamate and dopamine inputs
arrived at an adequate timing preceding post-synaptic input.

Fig. 5 (b) and (e) show that the calcium responses were enhanced in the
up-state. Their peaks were shifted to ΔtGlu = +50ms from ΔtGlu = +15ms in
the down-state. Interestingly, these timing-dependence almost disappeared when
all NMDA receptors were blocked, as shown in Fig. 5 (c) and (f). This suggests
that NMDA receptors are the major component regulating the timing-dependent
calcium response.
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Fig. 5. Peak calcium in the proximal spine (a-c) and distal spine (d-f) in response to

different timings of glutamate and dopamine inputs relative to a postsynaptic spike.

The spine of panels (a,d) and (b,e) was in the down-state and the up-state, respectively.

The spine of panels (c,f) was in the up-state but the NDMA receptors were blocked.
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4 Conclusion and Discussion

We constructed a multi-compartment model of a medium spiny neuron of the
striatum based on real morphological data. The major findings by simulation
of the model were: 1) Glutamate input preceding postsynaptic spike increased
calcium levels, mostly caused by NMDA receptors. 2) Dopamine input preceding
the postsynaptic spike also increased calcium levels, due to modulation of the L-
type calcium channels. 3) The dopamine timing effect was observed in proximal
spines when both glutamate and dopamine inputs preceded the postsynaptic
spike. 4) In the up-state, dopamine input preceding post-synaptic input elevated
calcium levels, even in distal spines.

Assuming that moderate and intense calcium responses induce LTD and LTP,
respectively, our simulation results support the report by [3] rather than that
by [4]; thus, glutamate preceding postsynaptic spike would induce LTP and the
opposite timed input would induce LTD.

However, we cannot absolutely deny the report in [4]. According to our sup-
plementary simulations (not shown here), different durations of a post-synaptic
pulse lead to different calcium transients; e.g. when the post-synaptic pulse has
a longer duration (30 ms), peak calcium transients in the up-state were lower
than those in the down-state for many combinations of timings of three input
sources. Combined with the fact that [4] tested post-synaptic pulses with longer
duration to generate a spike than [3], the results implied a possibility that the
conflict between [3] and [4] might be caused by the details of the post-synaptic
stimuli in the different protocols.

References

1. Reynolds, J., Wickens, J.: Dopamine-dependent plasticity of corticostriatal

synapses. Neural Netw. 15(4-6), 507–521 (2002)

2. Nakano, T., Doi, T., Yoshimoto, J., Doya, K.: A kinetic model of dopamine and

calcium dependent striatal synaptic plasticity (submitted, 2009)

3. Pawlak, V., Kerr, J.N.D.: Dopamine receptor activation is required for corticostri-

atal spike-timing-dependent plasticity. J. Neurosci. 28(10), 2435–2446 (2008)

4. Fino, E., Glowinski, J., Venance, L.: Bidirectional activity-dependent plasticity at

corticostriatal synapses. J. Neurosci. 25(49), 11279–11287 (2005)

5. Lisman, J.: A mechanism for the hebb and the anti-hebb processes underlying

learning and memory. Proc. Natl. Acad. Sci. USA 86(23), 9574–9578 (1989)

6. Artola, A., Singer, W.: Long-term depression of excitatory synaptic transmission

and its relationship to long-term potentiation. Trends in Neurosciences 16(11),

480–487 (1993)

7. Hansel, C., Artola, A., Singer, W.: Relation between dendritic ca2+ levels and the

polarity of synaptic long-term modifications in rat visual cortex neurons. Eur. J.

Neurosci. 9(11), 2309–2322 (1997)

8. Zucker, R.S.: Calcium- and activity-dependent synaptic plasticity. Current Opinion

in Neurobiology 9(3), 305–313 (1999)



258 T. Nakano et al.

9. Gong, S., Zheng, C., Doughty, M.L., Losos, K., Didkovsky, N., Schambra, U.B.,

Nowak, N.J., Joyner, A., Leblanc, G., Hatten, M.E., Heintz, N.: A gene expres-

sion atlas of the central nervous system based on bacterial artificial chromosomes.

Nature 425(6961), 917–925 (2003)

10. Wolf, J.A., Moyer, J.T., Lazarewicz, M.T., Contreras, D., Benoit-Marand, M.,

O’Donnell, P., Finkel, L.H.: NMDA/AMPA ratio impacts state transitions and

entrainment to oscillations in a computational model of the nucleus accumbens

medium spiny projection neuron. Journal of Neuroscience 25(40), 9080–9095 (2005)

11. Hines, M.L., Carnevale, N.T.: Neuron: a tool for neuroscientists. The Neuroscien-

tist: a review journal bringing neurobiology, neurology and psychiatry 7(2), 123–135

(2001)

12. Segev, I.: Single neurone models: oversimple, complex and reduced. Trends in Neu-

rosciences 15(11), 414–421 (1992)

13. Koch, C.: Biophysics of computation (January 2004)

14. Catterall, W.A.: Structure and regulation of voltage-gated ca2+ channels. Annu.

Rev. Cell. Dev. Biol. 16, 521–555 (2000)

15. Geit, W.V., Achard, P., Schutter, E.D.: Neurofitter: A parameter tuning package

for a wide range of electrophysiological neuron models. Frontiers in Neuroinfor-

matics (January 2007)

16. Koch, C., Segev, I.: Methods in neuronal modeling: From ions to networks, p. 671

(January 1998)

17. Surmeier, D.J., Bargas, J., Hemmings, H.C., Nairn, A.C., Greengard, P.: Modula-

tion of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade

in rat neostriatal neurons. Neuron 14(2), 385–397 (1995)

18. Gruber, A.J., Solla, S.A., Surmeier, D.J., Houk, J.C.: Modulation of striatal sin-

gle units by expected reward: a spiny neuron model displaying dopamine-induced

bistability. J. Neurophysiol. 90(2), 1095–1114 (2003)

19. Wilson, C.J., Kawaguchi, Y.: The origins of two-state spontaneous membrane po-

tential fluctuations of neostriatal spiny neurons. J. Neurosci. 16(7), 2397–2410

(1996)

20. Carter, A.G., Sabatini, B.L.: State-dependent calcium signaling in dendritic spines

of striatal medium spiny neurons. Neuron 44(3), 483–493 (2004)

21. Kerr, J.N.D., Plenz, D.: Action potential timing determines dendritic calcium dur-

ing striatal up-states. J. Neurosci. 24(4), 877–885 (2004)



Independent Component Analysis Aided
Diagnosis of Cuban Spino Cerebellar Ataxia 2
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Abstract. Precedent studies have found abnormalities in the oculomo-

tor system in patients with severe SCA2 form of autosomal dominant

cerebellar ataxias (ADCA), including the latency, peak velocity, and de-

viation in saccadic movements, and causing changes in the morphol-

ogy of the patient response waveform. This different response suggests a

higher degree of statistic independence in sick patients when compared to

healthy individuals regarding the patient response to the visual saccadic

stimulus. We processed electro-oculogram records of six patient diag-

nosed with severe ataxia SCA2 and six healthy subjects used as control,

employing independent component analysis (ICA), significant differences

have been found in the statistical independence of the person response

with the stimulus for 60◦ saccadic tests.

Keywords: Biomedical engineering, computer aided diagnosis, indepen-

dent component analysis, ataxia, SCA2, electro-oculography.

1 Introduction

The autosomal dominant cerebellar ataxias (ADCAs) are a heterogeneous group
of dominantly inherited neurological disorders characterized by progressive ataxia
that results from degeneration of the cerebellum and its afferent and efferent con-
nections. In most families there is clinical and neuropathological evidence of ad-
ditional involvement of brainstem, basal ganglia, spinal cord, and the peripheral
nervous system [1].

In Cuba, there are almost 800 patients and 8000 presymptomatic relatives
at risk of developing some ADCA in the next few years. The most frequent
molecular form is SCA2 (spino cerebellar ataxia type 2), with a prevalence of
43 cases per 100,000 inhabitants in Holgúın province, which is the highest one
reported worldwide, reaching 142 cases per 100,000 inhabitants in Baguanos
municipality [2,3,4]. This form occurs commonly in persons of Spanish ancestry
in northeastern Cuba, a figure much higher than that found in western Cuba
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or in other parts of the world. The high prevalence is probably the result of a
founder effect, but might be due to an interaction between a mutant gene and
an unidentified environmental neurotoxin [2,4].

Several studies have reported oculomotor abnormalities in ADCA [1,4,5,6,7,8],
slowness of saccades has been suggested as a relatively characteristic finding in
SCA2[4,8], in particular in the Cuban ataxia SCA2 have been found remarkable
slowness of the peak saccadic velocity at 60◦, saccadic hypermetric deviation for
stimulation angles of 10◦, 20◦ and 30◦, otherwise hypometric deviation is present
at 60◦, and injuries in the saccade onset, with abnormal latency increment, at all
stimulation angles [4,9]. The above findings suggest significant differences in sac-
cade morphology between healthy individuals and patients with SCA2, mainly for
60◦ of stimulus amplitude. The electro-oculographical records are quite different
in healthy individuals and patients with a severe ataxia (Fig. 1).

The ocular movement records have been widely used in processing and clas-
sification of biological signals and pathological conditions: clinical sleep scoring
[10,11], cerebellar dysfunctions [12,13,14], diagnosis of the visual system [15,16],
amongst others, also in human computer interface and visual guided devices
[17,18,19].

Fig. 1. Original records of horizontal saccade movements at 60◦, in a patient of severe

ataxia (left) and a healthy subject (right)

2 ICA Based Diagnosis of SCA-2

2.1 Why Use ICA?

Concisely, independent component analysis is aimed to find a linear transfor-
mation given by a matrix W, so that the random variables yi, (i = 1, . . . , n) of
y = [y1, . . . , yn] are as independent as possible in:

y(t) = W · x(t) (1)

This linear blind source separation approach is suitable for the signals obtained
by the EOG, as well as in other medical analysis such as electroencephalogra-
phy (EEG), electrocardiography (ECG), magneto-encephalography (MEG), and
functional magnetic resonance imaging (fMRI) [20,21,22,23,24,25,26].
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Roughly speaking, in the analysis of EOG oriented to the detection of SCA2
(See Section 1), experts anticipate two possible behaviors of the individuals: sick
and healthy conduct. During an experiment over a healthy subject, the hori-
zontal movement of the eye is expected to follow the stimulus signal. Therefore,
the horizontal eye movement and the stimulus will hold a direct dependence
between them, i.e. the signals are not independent. In contrast, a sick individual
may present a more chaotic response, depending on the severity of the disease.
Consequently, the subject response will not depend in such a high degree on the
stimulus signal, and the signals are independent (or at least,“not so dependent”).

To sum up, our approach uses independent component analysis as a classifi-
cation algorithm criterion: if the independence measure (normally mutual infor-
mation) reveals independence between the individual response and the stimulus
signal, then it is rather possible that the individual presents some degree of
ataxia or related disease.

2.2 Description of the Diagnosis Algorithm

The proposed algorithm for SCA-2 diagnosis will go along the following steps:

1. Set both horizontal response and stimulus signal in the same phase, i.e.
correct the delay between the stimulus change and the saccade.

2. Normalize signals (x).
3. Apply ICA algorithm. Any well known ICA algorithm may be applied at

this point (FastICA [27], Jade [28], GaBSS [29,30], etc.).
4. Normalize estimations (y)
5. Calculate error measure between estimations (y) and mixtures (x), according

to the following expression:

RMSE(xi,yi) =

√√√√√ N∑
t=0

[x(t)− y(t)]2

N
(2)

6. Depending on the obtained error measure, a simple categorization algorithm
(such as C-means) may be applied in order to classify individuals. Other-
wise, an human expert may help in subject categorization based on the ICA
results.

3 Experimental Results

3.1 Experiment Setup

The electro-oculogram recordings of six patients with severe ataxia and six
healthy subjects diagnosed and classified in the “Centro de Investigación y Re-
habilitación de las Ataxias Hereditarias de Holgúın” (Centre for the Research
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and Rehabilitation of Hereditary Ataxias, CIRAH) were used in order to per-
form the analysis of repeated ocular saccadic movement tests for 10◦, 20◦, 30◦

and 60◦ divergence stimuli.
All the records were carried out by the medical staff of CIRAH. Each individ-

ual was placed in a chair, with a head fixation device to avoid head movements,
the variables were collected by a two channel electronystagmograph (Otoscreen,
Jaeger-Toennies, D-97204 Hchberg, Germany). Recording conditions were set as
follows: electrodes of silver chloride placed in the external borders of right eye

Fig. 2. Stimulus (1), response (2) and ICA components (3 and 4) obtained at 60◦ of

stimulation for patients (left) and control subjects (right)

Fig. 3. Error average and standard deviation for patients and control subjects with

stimulation angles of 10◦ (1), 20◦ (2), 30◦ (3) and 60◦(4)
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(active electrode) and left eye (reference electrode), high pass filtering 0.002 Hz,
low pass filtering 20 Hz, sensitivity 200 μV / division, and sampling frequency
200 Hz. For stimulus generation a black screen CRT display showing a white
circular target with an angular size of 0.7◦ was used. The stimulus and patient
response data are automatically stored in ASCII files by Otoscreen electronys-
tagmograph.

3.2 Results

The patient response was filtered using a median filter, to obtain a clean wave-
form of the patient response, then it was phased with the stimulus. Finally
FastICA was applied to get the independent components.

A visual inspection at the relationship between mixtures (stimulus and re-
sponse) and ICA estimations obtained for every subject for stimulation angles
of 10◦, 20◦ and 30◦ shows a chaotic behavior for patients and control subjects. If
the stimulation is done at 60◦, our approach applied over sick patients produces
components very similar to the original mixtures. This is due to the fact that the
patient response and the visual stimulus are already statistically independent.
In contrast, for control subjects a mixture of stimulus and response is obtained

Table 1. Consolidated mean and standard deviation of error for every angle (after 15

executions of each record)

RMS Error
10◦ 20◦ 30◦ 60◦

Control Patients Control Patients Control Patients Control Patients

Mean 0,18 0,23 0,86 0,38 0,82 0,32 1,04 0,4

Standard Dev. 0,43 0,25 0,38 0,35 0,42 0,33 0,26 0,26

Fig. 4. Consolidated mean and standard deviation of error for every angle in control

and patients subjects
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for each component. As it is shown in Fig. 2, more uniform results are obtained
for the most similar component to the stimulus.

The errors calculated for this component for every individual illustrate an
overlapping between patients and control subjects, as it is shown in Fig. 3, except
for the stimulation angle of 60◦, where a remarkable difference is obtained, in
correspondence with the visual inspection described above.

This behavior is consolidated in Table 1, the errors were averaged for patients
and control subjects, the mean for 60◦ shows the highest value, and considering
the standard deviation there is no overlapping between both groups for this
stimulation angle (See Fig. 4).

4 Conclusions

This article discusses a satisfactory approach for SCA2 classification using inde-
pendent component analysis. The proposed method starts from the assumption
that the response to a visual stimulus is different in a healthy individual when
compared to the response of an individual afflicted by SCA-2. In the later situ-
ation, the response from the individual is not dependent on the visual stimulus,
so that the ICA algorithm estimations will be similar to the obtained observa-
tions. This criterion has shown to be suitable in order to distinguish between
sick (patients) and healthy (control) individuals.

Future research will focus on automatic classification and diagnosis from the
observed EOG signals, starting from the results achieved by this approach. Also,
a more specific diagnosis based on the stage of the disease will centre forthcoming
investigation.
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los J. Finlay”, Holgúın, (Cuba) for their support and collaboration. This work
has been partially supported by the Spanish MAEC-AECID fellowship program
(2008).

References

1. Burk, K., Fetter, M., Abele, M., Laccone, F., Brice, A., Dichgans, J., Klockgether,

T.: Autosomal dominant cerebellar ataxia type i: oculomotor abnormalities in fam-

ilies with sca1, sca2, and sca3. Journal of Neurology 246(9), 789–797 (1999)

2. Orozco, G., Estrada, R., Perry, T.L., Araa, J., Fernandez, R., Gonzalez-Quevedo,

A., Galarraga, J., Hansen, S.: Dominantly inherited olivopontocerebellar atrophy

from eastern cuba: Clinical, neuropathological, and biochemical findings. Journal

of the Neurological Sciences 93(1), 37–50 (1989)
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Abstract. In this paper we present a novel robot navigation system

aimed at testing hypotheses about the roles of key brain areas in forag-

ing behavior of rats. The key components of the control network are: 1. a

Hippocampus inspired module for spatial localization based on associa-

tions between sensory inputs and places; 2. an Amygdala inspired module

for the association of values with places and sensory stimuli; 3. a Basal

Ganglia inspired module for the selection of actions based on the eval-

uated sensory inputs. By implementing this Hippocampus-Amygdala-

Basal Ganglia based control network with a simulated rat embodiment

we intend to test not only our understanding of the individual brain

areas but especially the interaction between them. Understanding the

neural circuits that allows rats to efficiently forage for food will also help

to improve the ability of robots to autonomously evaluate and select

navigation targets.

Keywords:Action selection, navigation, biologically inspired,Hippocam-

pus, Amygdala, Basal Ganglia, place value association.

1 Introduction

Efficient foraging behavior relies on a combination of spatial cognition, motiva-
tion, and goal-directed navigation in order to maximize the chances of quickly
finding sufficient food. Choosing an optimal foraging route requires an evalua-
tion of the relative worth of potential food locations as well as the ability to
successfully navigate to the chosen locations.

In this study we combined neurophysiological data and computational neu-
roscience methodologies to develop a better understanding of the brain systems
underlying spatial representation and decision-making in foraging rats and con-
struct a novel robot navigation system based on this understanding. Specifically
we focused on the hippocampus-amygdala-basal ganglia complex of rats.

Electrophysiological experiments with rats led to the discovery that in a subset
of neurons in the hippocampal region the firing rate was correlated with the
location of the animal in a test environment [2,3] and that hippocampal damage
causes spatial learning deficits [4]. The representation encoded by these place

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 267–276, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.abrg.group.shef.ac.uk/


268 A. Koene and T.J. Prescott

cells integrates the relationships among visual cues with kinesthetic self-motion
information in order to recognize previously visited places and distinguish among
perceptually similar places [5].

The amygdala system evaluates the innate or conditioned value of environ-
mental cues. Context dependent conditioning is impaired by both hippocampus
and amygdala lesions, but simple stimulus conditioning is impaired only by le-
sions of the amygdala [6]. Evidence suggesting a central role for the amygdala
in discriminating the magnitude of reward comes from studies [7] in which rats
with lesions of the central nucleus of the amygdala failed to discriminate between
arms of a radial-maze that contained one or seven pieces of food. Lesions of the
lateral amygdala made after the formation of cue-reward associations eliminated
the conditioned preference [8] indicating that the lateral amygdala is also critical
for the expression of value associations after they have been acquired.

The basal ganglia are a group of highly interconnected central brain structures
that acts as action selection mechanism resolving conflicts between functional
units that are in competition for behavioral expression [11,12]. Basal ganglia
input occurs via a series of topographically organized, parallel processing streams
[1] that encode the salience of potential actions. The action selection is done by
maintaining or increasing inhibition on undesired actions and releasing inhibition
from desired actions [9,10].

Computational models of each of these brain areas were integrated with sen-
sory processing and motor execution modules to produce a navigation control
system for a simulated robot rat. In order to facilitate flexible interaction between
each module the BRAHMS framework [22] was used to handle the communica-
tion between the brain system models as well as the sensors and effectors of the
simulated animal.

The performance of our hippocampus-amygdala-basal ganglia based naviga-
tion control system was tested by replicating a reinforcement based plus-maze
learning task that has been used in a series of neurophysiological studies with rats
[19,20,21]. Importantly, this plus maze task involves: 1. distinguishing between
rewarded and non-rewarded locations based on visual cues; 2. place recognition
based on the configuration of visual cues outside the plus-maze; 3. learning of spe-
cific place-value associations based on place specific reinforcement magnitudes; 4.
selection of approach behaviors toward simultaneously available rewards whose
relative, place-specific, magnitudes were learnt on previous trials.

2 System Architecture

The overall architecture of the navigation control system is shown in figure 1.
There are two parallel processing streams. The stream going through the dorsal
Basal Ganglia module processes inputs from touch (whiskers) and taste (battery
recharge) sensors that elicit fixed stereotypical responses, i.e. collision avoidance
reflexes and food ingestion. The stream going through the ventral Basal Ganglia
module processes inputs from the visual and kinesthetic self-motion senses that
guide goal-directed navigation.
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Fig. 1. Architecture of the navigation control system. The path through the dorsal
Basal Ganglia controls fixed action patterns such as collision avoidance. The path

through the ventral Basal Ganglia controls stimulus value dependent orienting re-

sponses.

2.1 Modules

Robot Sensors/Effectors. The simulated robot in our experiment is a wheeled
rat-like robot (see figure 2 A). The robot effectors are its two independently
driven wheels that allow it to move in the simulated environment. The sensory
capabilities of the robot are:

vision provided by 2x160◦ color cameras place on the left and right side of the
rat head giving a 320◦ visual field with a 40◦ blind area in the back (similar
to a real rat [13]).

touch left and right whisker-like sensors for detecting left, right and frontal
contact with the maze walls.

kinesthetic self motion sense provided by wheel motion sensors producing
proprioception-like feedback of self motion.

Fig. 2. Simulated wheeled rat-like robot (A) and plus-maze environment (B) used in

our experiment
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kinesthetic orientation sense implemented using a gyroscope based rotation
sensor for measuring orientation changes, similar to the vestibular system in
animals.

reward detection a voltmeter indicating the current charge in the robot bat-
tery. Since the ”food” reward is simulated by a battery recharge this allows
the robot to detect when and how much reward it receives.

Sensory Processing. The only biological constraint imposed on this module
is that the outputs contain no information that would be impossible for a rat
to have. One of the main tasks of the sensory processing module is to translate
the modality specific sensory input signals into salience signals with a common
normalized range of values across all modalities. The sensory processing produces
the following outputs:

vision: In order to avoid complex issues of scene segmentation and object recog-
nition all spatial landmarks and target locations were designated with unique
colors (see figure 2 B). The visual processing simply detects the mean loca-
tion and number of pixels of each color in the visual field. In the real rat
experiments the stimuli at the goal locations all looked identical such that
they were distinguishable only by the relative locations of external land-
marks. The output from the visual processing therefore discarded all color
information producing an unlabeled vector of egocentrically perceived ob-
ject directions and a corresponding vector of visual object sizes. Only the
perceived directions and sizes of the external landmarks and the maze cen-
ter were labeled since these had clearly distinguishable shapes in the rat
experiments.

touch: Input signals from the tactile sensors are converted into a three element
vector signaling the salience of touch (degree of whisker deformation) at the
left, right and front.

kinesthetic senses: The kinesthetic inputs concerning position and orienta-
tion changes are used to produce an estimate of current position relative
to a starting reference by means of path integration. At the start of each
simulated experiment the robot was placed at the center of the plus-maze
with a random orientation. From there it visually located the two external
landmarks and designated the direction between the landmarks as the 0◦

direction. Path integration is subsequently achieved by simply summing the
orientation and position changes over time.

reward detection: The magnitude of reward that is received at any one time
point (simulation iteration) is derived from the change in battery charge
with respect to the previous time point.

Parahippocampus. The parahippocampus transforms egocentrically perceived
object directions into self-orientation independent signals that can be used to
recognize spatial locations based on the perceived spatial configuration of visible
objects [14]. The output from parahippocampus is a vector specifying the visual
angles between the external landmarks and each visual object in the maze.
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Hippocampus. For spatial navigation tasks the primary function of the hip-
pocampus is to map the environment and estimate current self-location. Spa-
tial mapping relies on the inputs from the parahippocampus module concerning
perceived spatial stimulus configurations and the current place estimate from
path integration. The parahippocampal inputs are first compared against the
previously mapped stimulus configurations. If no good match is found, a new
place cell is created associating the inputs from parahippocampus with the path
integration based place estimate. If however good match(es) are found, the hip-
pocampal and path integration based place estimate are compared. If these place
estimates are very different it is assumed that path integration has drifted due
to accumulation of small errors and the place estimate is adjusted accordingly.

For goal directed navigation we hypothesize a second functional role for the
hippocampus. Using the same place-stimulus associations that are generated
during spatial mapping the hippocampus may be involved in distal place recog-
nition. A possible neural substrate for this might be the spatial view cells that
have been reported in primate hippocampus [15]. Even though the exact vi-
sual angles between the external landmarks and the objects inside the maze is
specific to each maze location the gross distribution of the landmark positions
with respect to the stimuli remains mostly invariant. For one stimulus light both
landmarks are on the left, for another they are both on the right etc. We propose
that it is these secondary place-stimulus association matches for distal locations
that produce the inputs from the hippocampus to the amygdala.

Amygdala. The amygdala module provides association of values, i.e. salience of
attraction or repulsion, with basics sensory stimuli or hippocampal place inputs.
Stimulus/place-value associations are established whenever an innately reward-
ing/punishment related input is received. Any sensory input that is present at the
time of the reward becomes associated with the rewarding input. For instance,
when food is found near light, light becomes associated with food. At the same
time an association is made between the current self-position estimate, from the
hippocampus, and the food stimulus. The magnitude of the stimulus/place-value
is determined by the strength of the association with the reward signal, which
in turn is determined by the size of the reward that was received. The value as-
sociated with sensory stimuli/places is then assigned to the egocentric direction
in which the stimuli/places are perceived.

Dorsal/Ventral Basal Ganglia. The dorsal and ventral basal ganglia modules
are essentially the same. The only difference is the information that is processed
in the modules and the type of behaviors they control.

In the dorsal module the basal ganglia channels represent fixed action patterns
(FAPs). FAPs are species-specific, instinctive responses to specific patterns of
stimulation [23]. A distinctive feature is that, once elicited, the overall form
of the pattern is uninfluenced by further external cues [24]. The four FAPs in
our navigating robot are: moving away from a wall on the right (1) on the left
(2) or in front (3) and staying at the current location to consume food (4).
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In the ventral module the basal ganglia channels represent orienting responses.
In order to limit the number of necessary channels in the ventral module, the
spatial directions are limited to eight equally spaced directions (forward, forward-
right, right, backward-right, backward, backward-left, left and forward-left). All
saliences assigned by the amygdala to directions within one of these eight sectors
are pooled using the max operator.

The basal ganglia model used in these modules is an implementation of the
model published in [16] which was previously applied in a robotic controller in
[17,18]. The outputs of the basal ganglia are inhibitory in nature and function
to suppress undesired actions [9]. Action selection therefore takes the form of
selective dis-inhibition of the action that is coded by the channel with the most
salient input, akin to an inverse winner-takes-all where the winner is the only
channel that is not active.

In order to insure that the dorsal and ventral basal ganglia do not simultane-
ously disinhibit competing actions a high gain copy of the most salient signal to
the dorsal pathway is used as an additional input to the ventral path. Thus, if
there is a significant input for triggering a collision avoidance or reward collection
behavior the navigation behavior is overridden.

Motor Processing. The motor processing module translates actions (as se-
lected by the basal ganglia modules) into motor commands (left & right wheel
velocities).

Since the dorsal path controls fixed action patterns a look-up table is used to
execute these actions. If, for instance, the action to move away from a wall on
the left is selected, the corresponding FAP is disinhibited in the look-up table
causing a weak backward motion in the left wheel and a strong backward motion
in the right wheel.

For orienting behaviors, selected by the ventral basal ganglia, each direction
where an object is perceived (as signaled by the sensory processing module) pro-
duces a potential movement command. The ventral basal ganglia output inhibits
all potential movement commands that are not in the selected direction sec-
tor. The visual salience weighted sum of the non-inhibited potential movement
commands is used to determine the speeds of the left and right wheel motion.

Finally, if the basal ganglia modules produce no clear action selection (none
or more than one action is disinhibited) right and left wheel velocities are set
to zero and a restlessness level starts to build up. When restlessness reaches a
pre-determined threshold, the robot performs a random left or right turn with
some forward motion.

3 Simulator and Environment

The rat robot and plus maze environment were simulated using the Webots1

robot simulation toolkit. The robot and environment are shown in figure 2. The

1 Cyberbotics Ltd, www.cyberbotics.com
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Fig. 3. The experimental task. First the robot performed a series of training trials

where the correct choice was guided by the lit stimulus object light at the end of

the appropriate maze arm. Each trial comprised a sequence of visits to the ends of

the four maze arms providing battery ”food” rewards with magnitude 7, 5, 3 and 1.

During recall trials all object lights were lit, then were turned off one by one as the

robot visited the reward locations at the end of the maze arms in the same order of

descending reward value. (Adapted from Tabuchi et al., 2000).

colored panels at the end of the maze arm represent the stimulus object lights.
When the robot touches the maze end walls the colored panel in that maze arm
turns gray (i.e. the light is deactivated). A touch sensor in the floor of the maze
center detects when the robot has returned to the center area and triggers the
next phase of the task.

4 An Evaluation Task from Experimental Neurobiology

To test our rat brain inspired robot navigation system we used the differentially
rewarded plus-maze task that was previously used by [19,20,21] in real rat ex-
periments on the roles of amygdala, hippocampus and basal ganglia in spatial
navigation. The basic task is illustrated in figure 3. The association between
stimulus lights and reward was assumed to be pre-conditioned thus the Amyg-
dala module was pre-coded with a strong value for lit objects. After reaching the
end of a maze arm, and thus extinguishing the corresponding object light, the
robot was motivated to return to the center of the maze since this was then the
only lit object visible inside the maze. Upon reaching the maze center the light
on the next arm was lit/no-longer occluded by the maze walls.

5 Results: Task Performance

A video of the simulated robot successfully performing the plus-maze task is
available at http://www.abrg.group.shef.ac.uk/people/ansgar/. The sim-
ulation consisted of three stages corresponding to the pre-training, training and
post-training sessions in the rat experiments:

http://www.abrg.group.shef.ac.uk/people/ansgar/
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Fig. 4. Hippocampal place map of plus-maze learnt by the robot. Places encoded by

the place cells are indicated with asterisks symbols. Places associated with values in

the Amygdala are indicated with circles.

1. a pre-training test phase (3000 time steps) in which the stimuli are identical
to the recall trial (figure 3, lower panel) but where the robot has had no prior
exposure to the plus-maze and the only value association in amygdala is the
pre-conditioned value for light cues. During this time the order in which the
maze is explored is based simply on the orientation the robot happens to be
facing at the start of the simulation. During this maze exposure the robot
maps the plus-maze with its hippocampal place-cells.

2. a training phase (3500 time steps) during which the robot is guided down
each maze arm in turn and given location specific amounts of reward when
the end of an arm is reached. During this time the robot acquires the location
specific object-value associations in the amygdala.

3. a post-training test phase (3750 time steps), or recall trial, during which
the robot uses the learnt value associations to visit each plus maze arm in
descending order of reward value.

The total duration of the simulation was 10250 time steps. The basal ganglia
achieved clean action selection on 96.2% of occasions (390 time steps). During
the pre-training test phase clear selection occured 94.5% of the time (164 time
steps) while after training this was increased to 98.3% of the test phase duration
(62 time steps).

During 37% of the pre-training period the action selections were closely fought
(1111 time steps), i.e. the level of inhibition on the second most salience action
was less than half the resting level inhibition. In the post-training period closely
fought decisions occured only 22% of the time (818 time steps).

There were 1841 time steps during the total experiment where at least one of
the external landmarks was occluded making visual place recognition impossible
since visual place information is encoded as perceived angles between the exter-
nal landmarks and the visual objects in the maze. During these time steps the
amygdala is unable to associate the sensory stimuli with place specific values.
In 78 instances this was correlated with indecision. In 498 instances the visual
information was not relevant at that time since the robot was responding to a
collision or feeding impulse with action selection being processed by the dorsal
basal ganglia. For the other time steps during which a landmarks was occluded
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action selection did not require the amygdala module since only one target object
was visible to the robot a that time.

Figure 4 shows the hippocampal place map, illustrating the distribution of
places coded by the place cells (asterisks symbols). Circles indicate the place
cells that are associated with values in the amygdala.

6 Discussion

We have described a robot navigation control system based on the Hippocampus-
Amygdala-Basal Ganglia circuit that plays a critical role in navigation and for-
aging behavior of rats. This controller selects between navigation goals based on
spatial context defined values and guides the robot towards the selected goal.

As expected from previous implementations of Basal Ganglia models for robot
control [18] our Basal Ganglia modules switch effectively between competing
actions/targets depending on their relative salience.

The Hippocampus modules successfully integrated sensory information from
visual and self-motion senses to establish a sense of self-location with respect
to the surroundings and provide this place information as contextual cue for
disambiguating visually identical stimuli.

The Amygdala module in turn used this contextual information to modulate
the salience of sensory inputs thereby guiding the action selection in the Basal
Ganglia toward the most highly rewarded stimulus. In addition to solving the
plus-maze task this had the added benefit of reducing the number of instances
of indecision by more than half.

In future we plan to use this model to test our understanding of these naviga-
tion related brain areas. In order to do this we will update the implementations
of the Hippocampus and Amygdala modules to increase their neurophysiological
accuracy in order to enable simulated electrophysiology and lesion studies.
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Abstract. We present a framework for modelling and analyzing emerg-

ing neural activity from multiple interconnected modules, where each

module is formed by a neural network. The neural network simulator

operates a 2D lattice tissue of leaky integrate-and-fire neurons with ge-

netic, ontogenetic and epigenetic features. The Java Agent DEvelopment

(JADE) environment allows the implementation of an efficient automata-

like virtually unbound and platform-independent system of agents ex-

changing hierarchically organized messages. This framework allowed us

to develop linker agents capable to handle dynamic configurations char-

acterized by the entrance and exit of additional modules at any time

following simple rewiring rules. The development of a virtual electrode

allows the recording of a “neural” generated signal, called electrochi-

pogram (EChG), characterized by dynamics close to biological local field

potentials and electroencephalograms (EEG). These signals can be used

to compute Evoked Potentials by complex sensory inputs and compar-

isons with neurophysiological signals of similar kind.

Keywords: Spiking neural networks, hierarchical neural networks, dis-

tributed computing, computational neuroscience, bio-informatics.

1 Introduction

The brain represents by far the most complex organ of the human body and its
simulation will certainly remain out of reach for a long time. However the princi-
ple that govern its development and processing represent a source of inspiration
for the design of artifacts [1]. In principle the design would consist to create pro-
grams that reproduce cognitive processes directly at higher representational level
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or to create in silico artificial neural network systems. The project perplexus is
aimed at developing an ubiquitous, scalable and distributed platform dedicated
to the simulation of large-scale self-organising networks and to the observation
of potentially emerging behaviours [2,3]. This platform is composed of custom
reconfigurable devices endowed with computing, behaving and communicating
modules called Ubidules. They are based on a custom designed processor called
Ubichip and are characterized by custom designed bio-inspired features such as
growth, learning, and evolution.

This paper advocates that a network of Ubidules may offer an interesting plat-
form to implement a network of dynamically interacting modules characterized by
integrate-and-fire neuromimes. In particular we present the JUbiNet simulator of
distributed neural networks developed in the frame of the perplexus project and
some examples of its output in the form of brain-like recorded signals.

2 General Concepts

JUbiNet is a highly expandable and flexible framework aimed at simulating hier-
archical neural systems. The framework is based upon three major levels, which
are: phylogenetic, ontogenetic, and epigenetic. All components are organized in
a modular way such to enable inter-operability, compatibility, and expandability
of the system and its parts on all levels [4].

At the Phylogenetic level several simulated neural system features (neural
network parameters, topology rules of distributed network, etc.) are encoded
and stored in a genome, distributed to lower levels of the application. Selection
of alternate values of the parameters (i.e., the alleles) is performed at this level
associated to a computational neurogenetic modeling [5].

The Ontogenetic level describes the origin and the development of the system
during its early stages of development. Genome decoding, neural network initial-
ization, and inter-network connection establishment rules are performed within
this conceptual level. The Epigenetic level refers to learning features, which are
limited to an individual lifetime. The neural network simulator itself naturally
fits in this layer.

The current version of JUbiNet carries a full implementation of the epi- and
ontogenetic levels and partially the phylogenetic level. JUbiNet is provided with
flexible configuration facilities, a collection of data processing objects and net-
work handling that allows the simulation of customized spiking neural networks
organized in topologies of interest.

The Bio-Inspired Neural Network Simulator. The simulator is designed to
efficiently emulate neural network models with emphasis on facilities for model
reconfiguration and adjustment and on functionally rich possibilities for detailed
network state acquisition. The neural simulation consists in a set of processes
run over a set of neurons.

The processes in the neural network fully determine the functional model that
includes processes such as synaptogenesis, activity transmission, state recorder,
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learning, etc. The simulator defines a set of interfaces to general neural concepts
and property access routines, like: neuron, synapse, network, signal-processing
routines, input/output routines. With predefined implementations of standard
objects it is possible to assemble common neural network models. The interfaces
provided by the simulator are designed to extend or replace all default objects
by user defined ones.

The Distributed Hierarchical Framework. The simulation begins when a
network is composed with agents (of software or hardware nature) running dis-
tributed networking modules. Those agents are waiting for genomic information,
which is prepared and transmitted by simulation of planning or phylogenetic
modules. Genome decoding triggers network initialization and the simulation
starts when all systems are initialized.

The distributed network simulator is divided into four main parts: the network
discovery system, the link manager system, the input/output mapping and con-
version processes, and the neural network simulator itself. The network discovery
system maintains and updates the list of available agents and their network role,
which identifies the inter-modules connectivity pattern. The link management
system is instantiated as soon as minimal information about the actual state of
the network is gathered by the network discovery system. The link manager es-
tablishes the characteristics of data-processing connections between agents. The
number, type, size, and direction of data-flows could differ in accordance to the
information in the agent’s genome.

The simulation starts as soon as mandatory data-processing links are estab-
lished. Input/output mapping and conversion routines are executed in order to
handle data translation from the internal simulator format to the format suited
for data transmission on physical supports (i.e., Bluetooth, WiFi, etc.). It is
possible to emulate distributed neural networks with dynamic or static topolo-
gies, with different triggering events associated with topological changes, with
different synchronisation routines or different behavior patterns within given
interfaces and protocols.

The Neural State Recording Facilities. The electroencephalogram is the
most commonly used signal to detect and analyze brain activity. The biophys-
ical model of EEG generation relies on the assumption that the current flows
generated by clusters of simultaneously active synapses produce an elementary
signal [6]. By means of virtual electrodes we aim at implementing the record-
ings of local field potentials of densely interconnected mesh-work of simulated
neurons. The virtual electrode recorder is implemented by the simulator process
and easily integrated in the neural network simulator.

3 Model Implementation

The main goal of our simulation is to emulate the biologically plausible behavior
of hierarchically organized inter-connected brain areas receiving external inputs
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from sensory modules and ultimately projecting to actuator modules. In addition
to single unit spike trains an EEG-like signal can be recorded from each brain
area. Each area is implemented by means of a neural simulator agent. Each agent
is aimed to include 10,000 spiking neurons, with each neuron receiving an average
of 300 synaptic-inputs. Neurons and synapses may exhibit complex dynamics
characterized by first order kinetics and may use combinations of arithmetic and
logic functions. The design of the model is initially planned at implementing up
to 64 agents in the global network of agents.

3.1 The Neural Network Simulator

The model is described elsewhere in more details [7,8]. Briefly, the neural network
of each module is laid on a 2D lattice of neurons. At early developmental stages
neural cells are differentiated into two types, excitatory (exc) and inhibitory
(inh) neurons. Further differentiation mechanisms lead to the identification of
input and output projecting neurons in each module. For the sake of simplicity
we can consider input and output neurons forming an efferent and the affer-
ent layers. Each such layer consists of approximately 10% of the total number
of excitatory neurons. Initial connections between the populations of cells are
driven by synaptogenesis process and are randomly generated according to a 2D
Gaussian density function. In order to match the current Ubichip design [3] the
actual modules are based on a 20× 20 network which corresponds, at a mature

Fig. 1. Early developmental phases in the life of a neural network module. Time flows

from left to right and from upper to lower panels. Grey dots represent neural stem

cells, white dots excitatory neurons, black dots inhibitory neurons, crossed dots dead

cells, and squares correspond to the excitatory cells that differentiated into output

projecting neurons of the efferent layer.
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stage of development, to 4299± 37 exc-exc (average±SEM), 1070± 15 exc-inh,
3918± 52 inh-exc and 961± 33 inh-inh connections.

Both types of neurons in the network are simulated by leaky integrate-and-fire
neuromimes, with different tuning parameters. At each time step, the value of
the membrane potential of the i-th cell V (t) is calculated such that V (t+ 1) =
Vrest +

∑
j wj(t) + Bi(t) + (1 − Si(t))((V i(t) − Vrest)kmem), where wj(t) is the

synaptic weight from j-th to i-th neuron, Vrest corresponds to the value of the
resting potential for the neuron, B(t) is the background activity arriving to
the i-th neuron, S(t) is a binary state function of the i-th neuron, and kmem
is a membrane kinetic constant. The post-synaptic potential is implemented as
a function of the relative timing of pre- and post-synaptic spikes [9,10], that is
usually referred as spike-timing dependent plasticity (STDP). In case of synaptic
depression we consider the possibility of decaying synaptic strength to zero, thus
triggering synaptic pruning and ultimately cell pruning processes [11]. Fig. 1
illustrates the characteristic stages of early phases of each module history.

The simulator is written using the Java programming language. In addition to
the proper description of the neural network it includes special routines aimed to
transmit data from/to other spiking neural networks. The simulator is configured
through the “genome”, which is read from the genome distributor agent in the
network or from the configuration file in case of a stand-alone simulation.

3.2 Modules Distribution

We used an IP-adressing scheme to broaden the range of supported hardware
platforms, reduce development time and increase overall package performance.
We use the Java Agent DEvelopment [13] framework in order to work with an
high-level abstract environment while developing the distributed multi-module
system. The JADE platform simplifies implementation of multi-agent systems
through a middle-ware that complies with the FIPA specifications [12] and
through a set of tools that support debugging and deployment phases. Thanks to
its design the agent platform can be distributed across machines, which not even
need to share the same OS. Like the simulator, the JADE library is fully imple-
mented in Java, providing cross-platforms integration and allows us to focus on
model development rather than on low-level system programming.

All package modules, including the neural network simulator, is packaged in
JADE network agents. Then, the JADE framework is used by the hierarchical
neural network stimulator routines to build up the topology of simulator agents.
All inter-modules communication and data-processing are considered as mes-
sage exchanges ruled by several protocols. JUbiNet reads all incoming messages
from JADE message queue in a sequential manner and processes them by ap-
propriate handlers. The processing handler sends back a new status message to
the input queue as a result of the change. We use separated execution flows, in
terms of processing threads, for the neural network simulator itself and for the
hierarchically network logic. This allows to process network communications and
simulation in parallel.



282 V. Shaposhnyk et al.

Fig. 2. Sample network topology with 1 sensory module (sensor), 3 processing modules

(n1proc, n2proc, n3proc) and 1 actuator module (motor). Data-flows between agents

and their directions are depicted by arrows. The dotted arrow (sync) refers to the

synchronization link of the sensory module.

Inside the packages the execution flow is implemented as a sequential au-
tomata. Thread switching operations are reduced in order to increase computa-
tionally efficiency. Software testing and development is simplified by sequential
data-processing routines that provide higher system stability and predictability.
In accordance to this concept the network monitoring, the link manager and
the input/output mapping routines are implemented as subset automates. This
implementation gives us the possibility to consider a dynamic network of neural
modules where some modules may enter or leave the simulation at any time. The
dynamic rearrangement of the topology is handled without need of restarting all
modules thanks to the the network monitoring system. This system sends notifi-
cation messages to the link monitor handler about agents joined or left network
and about their respective role (i.e., either sensory, actuator or processing).

Inter-Agent Data-Processing. Sensory modules are implemented by input
agents characterized by afferences originating from sources other than other
neural network simulator agents. External stimuli could be either predefined
artificial stimuli or input data generated by external sensors like camera, radar,
microphones, etc. In the current study we used input agents with predefined
artificial spatio-temporal stimuli in order to simplify the test cycle of neural
modeling and software development. Input agents have no restrictions concerning
their target agents. Agents that project their activity to recipients other than
the neural network simulator agents (e.g., external actuators) are called output
agents. Output agents have no explicit limitations to their input agents. The
modules that can be connected to any other neural network simulator agent are
implemented by processing agents. An all-to-all link manager is used to establish
as many inter-modules connections as allowed by each module’s role. An other
link manager was implemented to deal with pre-defined inter-modules topologies
of special interest.
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Inter-Modules Synchronization. The input/output data-processing routines
used in the simulator are synchronized on a same clock cycle. The simulation
actually begins only after all links are established. The execution of each next
time step of the simulation is performed only after data reception is acknowl-
edged from all known links. This method ensures simulation to run always in
synchronization, but each topology modification provokes a pause in the sim-
ulation. In a static topology or in an environment with a slow rate of changes
(as it happens most of the time) this implementation provides efficiency and
consistency, but in a highly dynamic environment it slows the overall execution
due to the large time spent in waiting status.

Input/Output Activity Mapping. The projecting pattern of an efferent neu-
ron towards the other agents is a copy of its intra-module projecting pattern. Let
us consider the example illustrated by Fig. 3. Four efferent neurons of network
A, labelled Ae1, Ae2, Ae3 and Ae4, project to 1, 5, 0 and 3 cells within network
A itself. This means neuron Ae1 will also project to 1 neuron among all possible
afferent neurons of the target modules, Ae2 to 5 neurons among all possible af-
ferent neurons of the target modules, and so on for all the other afferent neurons.
A connectivity pattern is established based on a probabilistic basis defined by
the number of potential target neurons. In this example the count of potential
target neurons (i.e., the neurons belonging to the afferent layers of the target
modules) is equal to 8.

This means that in case of neuronAe1, each target neuron has an equiprobable
chance to be connected equal to 1

8 . In this example the target of Ae1 is actually
neuron Ca1. And so on for all other neurons. In case of a discharge pattern
corresponding to cells Ae1 and Ae4 simultaneously activated the afferent neurons
Ba1, Ba4, Ca1 and Ca3 would receive a postsynaptic potential. Notice that the
connectivity pattern is reshuffled when topology is changed and probabilities of
connection are modified.

Fig. 3. Activity mapping scheme for network A connected to networks B and C. The

crosses indicate the checkerboard of the active connections between network A and

networks B and C. In case cells Ae1 and Ae4 are spiking, the resulting output pattern

of activity is determined by the combination of the appropriate connectivity maps and

provokes the excitation of cells Ba1, Ba4, Ca1 and Ca3.
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3.3 Recording of Module Activity

Besides the available routines to extract spike train activity into multivariate
time series, we have developed a new package designed to record the activity of a
set of neurons as a function of their membrane potentials and the distance to the
electrode tip. by means of virtual macro electrodes. The two main parameters of
the electrode are its coordinate position C = (x, y) specified by the coordinates
on the neural network lattice and its sensibility function.

The model assumes that the electrode could be placed exactly over one neuron
or exactly in-between four neighbour neurons. The sensibility function calculates
the magnitude of the “electric field” generated by the neural cells at a certain
distance from the electrode tip. This function is meant to combine the elec-
trical characteristics of the electrode (mainly its impedence) and the volume
conduction properties of the underlying tissue. In the simplest case it is a linear
decay function, but other user-defined functions can be selected. We assume an
isotropic neuropile such that for any sensibility function all neurons which are
located at the same distance from the electrode tip form an equipotential layer L,
thus contributing equally to the recorded signal (Fig. 4a). The electrode radius
R is the total number of equipotential layers generating a recordable signal.

The equation Er(k) =
∑τ×(k+1)−1

t=τ×k
∑R
r=1 ϕ(r)

∑
∀i∈L(r) Ψi(t), calculates the

electrode signal Er(k) where τ is a down-sampling parameter depending on
the sampling frequency of the recording, ϕ(r) is the sensibility function of the
electrode, L(r) is the set of all contributing neurons lying at distance r from
the electrode tip located at C and forming the equipotential layer L, Ψi(t) is
an electric field function (e.g., Ψi(t) = |Bi(t)| +

∑
j |wji(t)| or Ψi(t) = Vi(t) )

depending on the model to be selected, Bi(t) is the background activity afferent
to the ith neuron, and wji(t) are the post-synaptic potentials of the jth neurons
projecting to the ith neuron. Notice that the raw signal recorded by such virtual
macro-electrode is called electro-chipogram (EChG) and is monopolar. Fig. 4b
shows an example of such recordings, during a stimulus-driven task, with an

Fig. 4. a) Schematic electrode’s sensitivity area on the square neural network lattice

in wrapped and unwrapped representation. Each circle represents a neuron. Intensity

of black color corresponds to the intensity of the electric field recorded by the electrode.

b) Local field potentials (arbitrary scale) evoked by a stimulus lasting 250 ms starting

on time zero, recorded from a processing ubidule. The top trace shows the averaged

signal over 8 consecutive trials. The lower traces show the individual trials.
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Evoked Potential obtained by averaging a few consecutive trials. The current
paper is not aimed to discuss the results of such recordings, which are now
analyzed and will be extensively reported in future papers. A common reference
signal generated by the spiking activity of all neurons of all modules is also
recorded such to allow the generation of bipolar signals, akin of biologically
recorded signals, for further analysis in a standard data format used for EEG
recordings [14].

4 Discussion

We have presented a novel framework that allows the study of the activity of dis-
tributed neural networks organized in distributed interacting modules by means
of virtual electrodes that record electrochipograms in each module. This frame-
work offers a tools to study neural network interactions, complex signal process-
ing and to compare EChG with real local field potentials and EEG recorded
in experimental conditions. The current implementation of an evolving spiking
neuronal model is certainly an utmost oversimplification of the reality, but the
current framework opens the way to models that will embed increasingly higher
biologically inspired parameters. In a separate paper we will report the first anal-
yses of evoked EChG in a network of ubidules undergoing classical paradigms
such as the odd-ball or stimulus-compatibilty tasks.

A particular feature of our approach is the possibility to enable a highly
dynamic environment characterized by evolvable topologies with modules that
can enter or exit the simulation at any time. The overall design is based on a
highly organized system of agents messaging operated by automata, thus allow-
ing dynamic topology “rewiring” following simple rules. The drawback is that
fast changing topologies might introduce delays of information processing. This
problem could be managed by implementing a separate signal recorder agent,
which would receive EChG data from all simulation agents via the network.
Then, the recordings could be synchronized. This solution would in turn re-
quire an increased network communication bandwidth and the appearance of a
kind of centralized authority, but offer reduced agent’s file-system loads and an
improvement of agent’s performance.

This new framework fits well the requirements of sophisticated control circuits
for robotic implementations in collective behavioral studies where each robot
is driven by one or more neural networks (e.g. [15]). Mobile version of JADE
compatible framework [13] could be used in order to obtain a platform with
reduced footprint and compatibility with mobile Java environments.
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Abstract. Continuous attractor neural network (CANN) models have

been studied in conjunction with many diverse brain functions including

local cortical processing, working memory, and spatial representation.

There is good evidence for continuous stimuli, such as orientation, mov-

ing direction, and the spatial location of objects could be encoded as con-

tinuous attractors in neural networks. Although their wide applications

for the information processing in the brain, representation and stability

analysis of continuous attractors in non-linear recurrent neural networks

(RNNs) have been reported very little so far. This paper studies the

continuous attractors of Lotka-Volterra (LV) recurrent neural networks.

Conditions are given to insure the network has continuous attractors.

Representation of continuous attractor is obtained under the conditions.

Simulations are employed to illustrate the theory.

Keywords: Continuous attractors, Recurrent neural networks,

Convergence.

1 Introduction

Continuous attractor neural networks (CANNs) have received wide attention by
it’s good property in caving the landscape of the cognitive functions, such as
movement control, spatial navigation, population decoding and object catego-
rization, see for examples, [1], [2], [17], [6], [10], [14], [12]. There are strong indica-
tions that continuous attractors and dynamical mechanisms are used frequently
for information processing in the brain. In some neurobiological models, contin-
uous attractors have been used to represent continuous quantities like working
memory in prefrontal cortex, orientation of a visual stimulus, eye position, head
direction, and so on, see for examples, [5] [17], [6], [11], [13].

Continuous attractors neural network models have been studied by many
authors, see for examples, [7], [8], [9], [3], [2], [15], [16]. These studies have illus-
trated clearly that CANNs can track moving continuous stimulus . Despite these
success, however, detailed rigorous analysis of the presentation of continuous at-
tractors in a CANN are still lacking. These include, such as, the condition under

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 287–295, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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that a CANN can have continuous attractors; the presentation of a continuous
attractor to demonstrate what a continuous attractor is.

The theory of line attractors of linear recurrent neural networks (RNNs) has
been used successfully to explain how the brain can keep the eyes still in [6].
More general cases of continuous attractors has been studied for linear RNNs
in [4], it gives the explicit representation of the continuous attractors in linear
RNNs.

The continuous attractors of a class of recurrent neural networks with nonlin-
ear transform function called linear-threshold(LT) is also studied in [4]. However,
general results for continuous attractors in nonlinear RNNs have been reported
very little so far. This paper studies the continuous attractors of a class of nonlin-
ear RNNs, Lotka-Volterra (LV) recurrent neural networks. Conditions are given
to insure the network has continuous attractors. The representation of contin-
uous attractor is also given to show what a continuous attractor of this kind
of network is. The continuous attractors can be completely described by the
representations.

The paper is organized as follows. Preliminaries are given in Section 2. Contin-
uous attractors of Lotka-Volterra recurrent neural networks are given in Section
3. Simulations are given in Section 4 to illustrate the theories. Finally, conclusion
is given in Section 5.

2 Preliminaries

The model of Lotka-Volterra recurrent neural networks is described by

ẋi(t) = xi(t) ·

⎡⎣−xi(t) +
n∑
j=1

wijxj(t) + bi

⎤⎦ (1)

for t ≥ 0, where xi denotes the activity of neuron i and x = (x1, x2, ..., xn)T ≥ 0
denotes the state of the network, W = (wij)n×n is real symmetric n×n matrix,
each of their elements represents the synaptic connection weight of neuron j to
neuron i, b = (b1, b2, ..., bn)T ∈ Rn denotes the external inputs. The network can
also be written as vector form

ẋ(t) = diag[x(t)] · [−x(t) +Wx(t) + b] (2)

where diag[x(t)] is a n×n matrix with the main diagonal elements are xi(t)(i =
1, 2, ...n), the other elements are all zero.

The concept of Lyapunov stability is associated with some equilibrium points.
An equilibrium point can be stable or unstable. However, in practice, only the
outputs of stable equilibrium points can be observed. Next, the definition of
equilibrium point and Lyapunov stability for an equilibrium point are given.
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Definition 1. A point of x∗ is called an equilibrium point of the network (1), if
it holds that

x∗i

⎡⎣−x∗i +
n∑
j=1

wijx
∗
j + bi

⎤⎦ = 0, (i = 1, · · · , n). (3)

Definition 2. An equilibrium point x∗ is called stable, if given any constant
ε > 0, there exists a constant δ > 0 such that

‖ x(0)− x∗ ‖≤ δ

implies that
‖ x(t)− x∗ ‖≤ ε

for all t ≥ 0.

Next, the definition of continuous attractors will be given.

Definition 3. A set of equilibrium points C is called a continuous attractor if
it is connected set and each point x∗ ∈ C is stable.

Definition 4. Let M be an n× n matrix, and Let P ⊆ {1, 2, ..., n} be an index
set. The matrix MP is said to be a submatrix of M if the matrix MP can be con-
structed from M simply by removing from M all rows and columns not indexed
by P .

Given two index sets P,Z ⊆ {1, 2, ..., n} and P ∪ Z = {1, 2, ..., n}. The network
(2) can be rewritten as{

ẋP (t) = diag[xP (t)] · [−xP (t) +WP · xP (t) +WPZ · xZ(t) + bP ]
ẋZ(t) = diag[xZ(t)] · [−xZ(t) +WZP · xP (t) +WZ · xZ(t) + bZ ] (4)

for t ≥ 0, where WP and WZ are submatrix of W . WPZ is a matrix constructed
from W by removing all rows not indexed by P and all columns not indexed by
Z, and matrix WZP are constructed by the same way.

Next, some useful lemmas will be given.

Lemma 1. Given any xi(0) � 0, it holds that

xi(t)
{
> 0, if xi(0) > 0
= 0, if xi(0) = 0

for all t ≥ 0 and i = 1, · · · , n.

Proof: Denote

ri(t) = −xi +
n∑
j=1

wijxj + bi

for t ≥ 0 and i = 1, 2, ...n. Then, it follows that

xi(t) = xi(0) · e
∫ t
0 ri(s)ds (5)

for t ≥ 0.
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From (5), it follows that xi(t) > 0 if the initial condition xi(0) > 0, and
xi(t) = 0 if xi(0) = 0, (i = 1, 2, ...n) for all t ≥ 0. This completes the proof.

Lemma 2. Let x∗ be an equilibrium point. Then, the linearization of the net-
work (1) at x∗ is given by:

d[xi(t)− x∗i ]
dt

= [xi(t)− x∗i ][−x∗i +
n∑
j=1

wijx
∗
j + bi]

x∗i [−(xi(t)− x∗i ) +
n∑
j=1

wij(xj(t)− x∗j )] (6)

for t ≥ 0 and 1 ≤ i ≤ n.

Proof: From (1), it follows that

d[xi(t)− x∗i ]
dt

= [xi(t)− x∗i ][−x∗i +
n∑
j=1

wijx
∗
j + bi]

x∗i [−1 + wii][xi(t)− x∗i ] + x∗i [
∑
j �=i

wij(xj(t)− x∗j )] + o(xi(t)− x∗i )

= [xi(t)− x∗i ][−x∗i +
n∑
j=1

wijx
∗
j + bi]

x∗i [−(xi(t)− x∗i ) +
n∑
j=1

wij(xj(t)− x∗j )] + o(xi(t)− x∗i )

for t ≥ 0. The result follows by removing the higher order term. This completes
the proof.

3 Continuous Attractors of LV Neural Networks

Since matrix W is symmetric and WP is a submatrix of W , it is easy to check
that WP is also symmetric. Let λPi (i = 1, 2, ..., p) be all the eigenvalues of WP

ordered by λ1 ≥ λ2 ≥ ... ≥ λp. Si(i = 1, 2, ..., p) is the eigenvector of WP

corresponding to the eigenvalue λpi . Suppose the multiplicity of λp1 is m, denote
V Pλp

1
=
∑m
i=1 ciSi, (ci ∈ R) be the eigen-subspace associated with the eigenvalue

λp1. Suppose that

bP =
p∑
i=1

b̃Pi · SPi .

Theorem 1. Suppose that λP1 = 1 and bP⊥V PλP
1
. If it holds that
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m∑
i=1

ciS
P
i +

p∑
j=m+1

b̃Pj
1− λPj

SPj > 0,

WZP ·

⎡⎣ m∑
i=1

ci · SPi +
p∑

j=m+1

b̃Pj
1− λPj

SPj

⎤⎦+ bZ < 0

(7)

for any constants ci ∈ R(i = 1, · · · ,m), Then,

C =

⎧⎪⎨⎪⎩
⎡⎢⎣

m∑
i=1

ciS
P
i +

p∑
j=m+1

b̃Pj
1− λPj

SPj

0

⎤⎥⎦
∣∣∣∣∣∣∣ ci ∈ R(i = 1, · · · ,m)

⎫⎪⎬⎪⎭ (8)

is a continuous attractor of the network (1).

Proof: Clearly, C is a connected set. Since bP⊥V PλP
1
, then b̃P1 = · · · = b̃Pm = 0.

Given any x∗ ∈ C, there exist constant ci ∈ R(i = 1, · · · ,m) such that⎧⎪⎨⎪⎩x∗P =
m∑
i=1

ciS
P
i +

p∑
j=m+1

b̃Pj
1− λPj

SPj > 0,

x∗Z = 0.

It is easy to check that x∗ is an equilibrium point of the network (1).
Next, we will show that x∗ is stable.
Denote

α � max
i∈P

{x∗i }, β � min
i∈P
{x∗i },

and

γ � min
i∈Z

⎧⎨⎩−
⎛⎝ p∑
j=1

wijx
∗
j + bi

⎞⎠⎫⎬⎭ .

Given a constant ε > 0 such that

0 < ε ≤ min {x∗i , i = 1, 2, ..., p.} ,

denote

M = min

{√
β/α

2
,

γ

2α ‖WPZ ‖

}
,

and δ = Mε, define a neighborhood Bδ of x(0) by

Bδ = {| xi(0)− x∗i |≤ δ, i = 1, 2, ..., n.} .

Given i ∈ Z, from lemma 2 and Eq.(4), it follows that

dxi(t)
dt

=

⎡⎣ p∑
j=1

wijx
∗
j + bi

⎤⎦xi(t) (9)
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for t ≥ 0. That is

xi(t) = xi(0) · exp

⎛⎝⎡⎣ p∑
j=1

wijx
∗
j + bi

⎤⎦ t
⎞⎠

for t ≥ 0. By (7), clearly, γ > 0. Then,

‖ xZ(t) ‖≤‖ xZ(0) ‖ ·e−γt ≤ δ < ε (10)

for t ≥ 0.
Given i ∈ P , it follows that

d [xi(t)− x∗i ]
dt

= diag(x∗i )

⎡⎣−(xi(t)− x∗i ) +
n∑
j=1

wij(xj(t)− x∗j )

⎤⎦ (11)

for t ≥ 0.
Define the following function

V (t) =
1
2

∑
i∈P

[xi(t)− x∗i ]
2

x∗i

for t ≥ 0. Clearly,

1
2α
‖ xP (t)− x∗P ‖2≤ V (t) ≤ 1

2β
‖ xP (t)− x∗P ‖2

for t ≥ 0.
From Eq.(11), it gives that

V̇ (t) =
1
2

∑
i∈P

2 [xi(t)− x∗i ]
x∗i

· d [xi(t)− x∗i ]
dt

= (xP (t)− x∗P )T · [(WP − IP )(xP (t)− x∗P ) +WPZxZ(t)]
= (xP (t)− x∗P )T (WP − IP )(xP (t)− x∗P ) + (xP (t)− x∗P )TWPZxZ(t)
≤ ‖ (xP (t)− x∗P ) ‖ · ‖WPZ ‖ · ‖ xZ(t) ‖
≤
√

2α· ‖WPZ ‖‖ xZ(0) ‖ ·e−γt
√
V (t)

for t ≥ 0. Then,√
V (t) ≤

√
V (0) +

√
α· ‖WPZ ‖ · ‖ xZ(0) ‖√

2γ
·
(
1− e−γt

)
for t ≥ 0. Thus,

‖ xP (t)− x∗P ‖ ≤
√

2α ·
(√

V (0) +
√
α· ‖WPZ ‖ · ‖ xZ(0) ‖√

2γ

)
≤
√
α

β
· ‖ xP (0)− x∗P ‖ +

α ‖WPZ ‖
γ

· ‖ xZ(0) ‖

≤ ε (12)

for t ≥ 0.
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From Eq.(10) and (12), it follows that

‖ x(t)− x∗ ‖≤ ε

for t ≥ 0. By definition 2, x∗ is a stable equilibrium point of the network (1).
Thus, Eq.(8) is a continuous attractor of the network. This completes the proof.

4 Simulations

In this section, we will give some simulations to illustrate the continuous attrac-
tors theory established in above section.

Example 1: Let us first consider a two dimensional Lotka-volterra recurrent
neural networks.

ẋ(t) = diag[x(t)] ·
[
−x(t) +

[
0 1
1 0

]
x(t)
]

(13)

for t ≥ 0. We denote

W =
[
0 1
1 0

]
, b =

[
0
0

]
.

It can be checked that the largest eigenvalue of W is 1 with multiplicity 1. By
Theorem 1, the network exists a line continuous attractor. Figure 1 shows the
continuous attractors of the network. The figure shows that forty trajectories
starting from randomly selected initial points converge to the line attractor.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2
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0.9

1

x1

x2

Fig. 1. Continuous attractors of Lotka-Volterra recurrent neural network in Example 1.

The thick straight line is the continuous attractors. It is a connected set composed of

stable equilibrium points of the network (13).
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Fig. 2. Continuous attractors of Lotka-Volterra recurrent neural network in Example 2.

The thick straight line is the continuous attractors. It is lies in the plane of x3 = 0.

Example 2: Let us consider a three dimensional Lotka-Volterra recurrent neural
networks.

ẋ(t) = diag[x(t)] ·

⎡⎣−x(t) +

⎡⎣ 0 1 −2
1 0 −2
−2 −2 0

⎤⎦ x(t)
⎤⎦ (14)

for t ≥ 0. Denote

W =

⎡⎣ 0 1 −2
1 0 −2
−2 −2 0

⎤⎦ , b =

⎡⎣0
0
0

⎤⎦ .
Let P = {1, 2}, then

WP =
[

0 1
1 0

]
,WZP = [−2,−2].

It can be easily checked that the eigenvalues of WP are 1 and −1. SP1 = [1, 1] is
the eigenvector corresponding to eigenvalue 1, denote V P1 is the eigen-subspace
developed by SP1 . Clearly, bP⊥V P1 . By Theorem 1, the network has a continuous
attractor with the state value of the third neuron is zero. Figure 2 shows that
forty trajectories starting from randomly selected initial points converge to the
line attractor, and this line attractor lies in the plane of x3 = 0.

5 Conclusion

In this paper, continuous attractors of Lotka-Volterra recurrent neural networks
are studied. Conditions to insure the network has continuous attractors are suc-
cessfully obtained. Explicit representation of continuous attractor is also ob-
tained under the given conditions. Simulations well verify the theory.
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Abstract. In humans and primates, the sequential structure of complex

actions is apparently learned at an abstract “cognitive” level in several

regions of the frontal cortex, independent of the control of the immedi-

ate effectors by the motor system. At this level, actions are represented

in terms of kinematic parameters – especially direction of end effector

movement – and encoded using population codes. Muscle force signals

are generated from this representation by downstream systems in the

motor cortex and the spinal cord.

In this paper, we consider the problem of learning population-coded

kinematic sequences in an abstract neural network model of the me-

dial frontal cortex. For concreteness, the sequences are represented as

line drawings in a two-dimensional workspace. Learning such sequences

presents several challenges because of the internal complexity of the in-

dividual sequences and extensive overlap between sequences. We show

that, by using a simple module-selection mechanism, our model is capa-

ble of learning multiple sequences with complex structure and very high

cross-sequence similarity.

Keywords: Sequence learning, population coding, motor system.

1 Introduction

The ability to act in complex and purposive ways is a central attribute of higher
animals, and is essential to the understanding of intelligence and cognition. Over
the last several decades, neuroscientists and cognitive scientists have elucidated
many of the mechanisms underlying motor control. Experiments with primates
have shown that complex voluntary movements are encoded at multiple levels
in the cortex, brainstem and the spinal cord [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].
However, the overall process by which such movements are generated remains a
subject of significant debate [16,17,18,19,20].

Research with simple animals such as lampreys and salamanders [21,22] has
suggested the existence of motor programs – pre-configured patterns of move-
ments that can be triggered as a whole by selection through the basal ganglia

� Corresponding author.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 296–305, 2009.
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and the brainstem. This view has often been applied to the higher vertebrates
as well, and offers a plausible explanation for simple movements such as walk-
ing, swallowing, reaching, etc. However, much more complex movements – such
as writing, speaking, playing on a keyboard, pitching a baseball – can become
integrated into a precisely repeatable, yet flexible motor program, and recalled
as a single entity when needed. This “chunking” [23] is thought to arise through
a combination of pattern recognition and sequence learning, and is the focus of
this paper.

2 Background and Motivation

All complex movements can be considered sequences of simpler movements, and
there is considerable experimental evidence showing that neural activity explic-
itly encodes the sequential structure of movement at several levels [1,2,4,19].
However, in many cases – e.g., writing, speaking, playing on a keyboard, etc. –
what might be learned initially as a sequence of simple movements eventually
becomes a single complex movement. For example, a child may learn to write
letters by connecting dots, or as sequences of pencil strokes, but eventually, each
of these sequences becomes stored as a single object – still sequential in struc-
ture, but triggered by a single cognitive command, e.g., “write A”. Something
similar must happen as the child learns to write whole words without spelling
them out, or speaking them as continuous phoneme sequences. Sequential tasks
are also used extensively as an experimental paradigm by researchers studying
the motor system [3,4,9,10,11,12,14,19]. Based on these considerations, sequence
learning has been considered a fundamental issue in motor control, and sev-
eral models have been developed for it [24,25,26,27,28,29,30,31]. However, such
sequence learning still presents several challenges.

Though partially challenged by some recent data [14,19], the standard view
of motor control [6] postulates two distinct system levels. The higher level sys-
tem, comprising the prefrontal cortex (PFC), the premotor cortex (PM), the
supplementary motor area (SMA) and the pre-SMA, encodes kinematic infor-
mation such as direction and velocity as well as information about task context
[3,4,9,8,10,11,12,19]. In particular, the direction of end effector movement is rep-
resented using population codes [1,2] defined over neurons tuned to particular
preferred directions (see next section for details). In contrast, downstream sys-
tems including the motor cortex (M1), the brainstem and the spinal cord (SC)
increasingly encode posture-dependent muscle force signals needed to execute
the actions [16,17,20]. Thus, with reference to sequential actions, the overall sys-
tem implements a convenient division of labor, where motor sequences such as
writing letters or words, drawing shapes, playing key sequences, etc., are learned
as action programs at an abstract, posture- and effector-independent kinematic
level in the PFC/PM/SMA system, and are then “translated” into sequences of
motor commands by M1 and SC [3], possibly guided by the basal ganglia and
cerebellum [23,32,29,33]. Of course, this does not preclude the possibility that
sequence recognition and learning also occurs in M1 [5,14,19], and the model we
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study here could well apply to population-coded representations in M1 as well.
However, we consider purely kinematic action programs, encoded as sequences
of direction population codes.

Several difficulties are inherent in computational models for learning popu-
lation-coded action sequences, including the following: 1) Successive elements of
an individual sequence may be very similar or even identical (e.g., represent-
ing several moves in the same direction); 2) Within an individual sequence, the
same element may be followed by different successors at different points, requir-
ing disambiguation [34]; 3) Different sequences may overlap strongly, e.g., the
sequences for writing an O and a C may share most of their structure; 4) The
directional information encoded in the population code may be noisy over differ-
ent learning trials. These features mean that a simple heteroassociative scheme
linking successive elements is not feasible. Approaches have been suggested to
address some of these problems for non-population coded [35,36,34,27,28,37],
and population-coded [24,25,26] data.

In this paper, we present an abstract but biologically motivated model of how
population-coded action sequences may be learned in the brain. This model is
informed by experimental studies on many areas of the frontal cortex during
sequence encoding and learning tasks. Some neurons in the prefrontal cortex fire
preferentially at the beginning of action sequences [38], while others remain ac-
tive for the duration of the sequence [39]. These signals go to both the SMA/PM
region, and to the basal ganglia and cerebellum, where they are hypothesized to
select [23,29,38,33] and pace [31,33] action sequences, respectively. Neurons with
sequence-specific activity, i.e., sequence identifiers, have been shown in pre-SMA,
while neurons encoding element order in action sequences have been found in
both PFC and SMA [3,40,9,7,10,38]. Our model incorporates these observations
to build upon an earlier sequence learning model [27]. In particular, the system
can learn highly similar sequences by sequence-specific selection of neural groups
within the network. This is an example of switched modularity, which we have
proposed as a general mechanism for information processing in complex biolog-
ical networks [41,42,43,44]. Computational models of such switching mediated
by the basal ganglia have been proposed [29,33]. The system is studied using a
drawing/writing task in a 2-D workspace.

3 Model Description

A complex drawing, e.g., a letter or shape, is modeled as a sequence of elementary
actions starting from a canonical initial point. Each elementary action results
in the drawing of a short segment of fixed length in a specific direction on the
workspace. This is similar to tasks used in behavioral experiments with primates
[3,4,9,10,11,12,14,19]. Thus, for example, an L-shape starting at the top is a
sequence of downward segments followed by a sequence of leftward ones.

The system learns action sequences from noisy exemplars, where each elemen-
tary action – henceforth called action – is represented as a population code over
a set of directionally tuned neurons. We assume that this representation arises
in cortical regions receiving sensory input, and is available during learning.
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Fig. 1. The sequence learning module

The structure of the sequence learning system is shown in Figure 1. For learn-
ing, the system receives three inputs: 1) A start input, marking the beginning of
a new sequence (corresponding to the PFC signal found in [38]); 2) An action
input, which is the population code of the current elementary action (correspond-
ing to representations found in PFC [10] and SMA [3,40,9,7]); and 3) A sequence
ID input, which represents the identity of the action sequence (corresponding to
sequence-specific activity in the pre-SMA [40,9,7]).

The system operates in two modes: 1) A learning mode, in which it receives
sequences of action inputs and learns them in association with the given sequence
ID; and 2) A recall mode, in which it receives no action input and recalls the
sequence associated with the given sequence ID. The recalled sequence is decoded
into the original population code by the population coding system. This and
other parts of the system are described below in greater detail.

3.1 Population Coding

Each action in the system is encoded by its direction using a population code
[1]. This is done by a layer of NP directionally-tuned neurons. The response of a
neuron, k, in this layer is given by a cosine function [2,4]: zk = cos(θd−θ∗k), where
θd is the currently coded direction (represented as an angle in a fixed reference
frame), and θ∗k is the preferred direction of neuron k (note that zk can be rectified
by adding an offset, but we do not use that here for simplicity.) The preferred
directions for the neurons in the layer are chosen to cover 0◦ to 360◦ uniformly, so
the vector, zP = [z1 ... zNP ] is a population coded representation of the direction
θd — and thus of the corresponding action. The direction can be recovered from
it by using a simple decoding function [4]: θ̂ = phase

[
1
NP

∑NP

k=1 zkexp(iθ
∗
k)
]
.
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The direction input to the population coder comes from the sensory areas
(not simulated) during learning and from the sequence learning system during
recall.

3.2 Sequence Learning System

The sequence learning system learns abstract representations of action sequences
from noisy exemplars. As shown in Figure 1, the core of the system comprises
three layers, each implemented as a set of winner-take-all (WTA) clusters. These
clusters may be considered an abstraction of cortical hypercolumns [45]. Activity
in this core region – corresponding roughly to parts of the PFC and SMA – is
selectively biased in a sequence-specific way by the selector system, which plays
the role hypothesized for the basal ganglia [23,39,32,29,30,38,33].

The coding layer, C, has NC neurons organized into MC clusters of nC =
NC/MC neurons each. Activity within each cluster is WTA, so only the most
strongly activated neuron in the cluster can fire. Non-selected clusters have no
activity. The memory layer, R, is a recurrently connected layer of NR neurons,
organized into MR clusters of mr neurons each. Only mR ≤ MR clusters are
selectively activated at a time by the signal from the selector system, and ac-
tivity in each selected cluster is WTA. The integration layer, I, has NI neurons
clustered into MI WTA clusters of nI neurons each. Of these, mI ≤MI clusters
are selectively activated at a time by the selector system. The selector system,
B, is a heteroassociative network that maps each input into a particular sparse
pattern of NB = MR +MI binary outputs, each of which gates a cluster in the
memory or integration layers. This architecture is a simplified version of that
found in the BG, whose neurons target very specific patches of the cortex [23,32].

During learning, the coding layer receives a very strong action input, X(t),
from the population coder, generating a sparse representation, ZC(t), of the
current observed action. This is projected to the memory layer via fixed random
weights. The memory layer also receives input from itself through fixed random
weights, so that its current state, ZR(t), comes to represent a compressed code
for the activity of the coding layer over the last several steps. The integration
layer receives the current sequence ID input as well as ZR(t) through fixed
random weights, and integrates them into a sequence-specific representation,
ZI(t), of the sequence up to that point. This representation is then associated
with the next coding layer state, ZC(t + 1), through modifiable weights from
Layer I to Layer C using a delta learning rule [46]. In both the R and I layers,
the selector system selects sequence-specific groups of clusters, thus ensuring
that representations for differently identified sequences remain distinct even if
the sequences are similar. The start signal is input to the memory layer, where
it triggers a heteroassociatively stored initial representation, thus ensuring that
the integration layer always receives the same input at the start of a sequence.
The start signal also resets the selector system.

During recall, the flow between the population coder and the coding layer is
reversed, and the system is given only the sequence ID and start inputs. This then
triggers the recall of the previously learned sequence as the coding and memory
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Fig. 2. Recall of eight learned figures. The dashed (blue) lines show the ideal figures,

the solid (red) lines the actual figures generated after learning. Ideal and actual figures

coincide in some plots. The input has a small amount of angular noise.

layers recover their states during learning. The activity of Layer C is decoded
by the population coding system into the population code for the corresponding
actions. This decoding is based on training of the weights from Layer C to the
population coder using a delta rule [46]. This learning can occur concurrently
with the sequence learning or separately via ideomotor babbling.

4 Simulations and Results

An implementation of the system with MC = 30, MR = 60, MI = 60 and
nC = nR = nI = n was simulated using a canonical repertoire of 8 shapes,
chosen so that several of them have strong similarities, while others have runs
of repeated actions. Each action code generated a line segment of fixed length
in the direction specified by the code. Only connected shapes were used, though
disconnected shapes can be included easily by giving the simulated pen a degree
of freedom perpendicular to the workspace. The model currently does not include
any inertial terms so the direction changes instantaneously with each population
code. The ID input was encoded by 50-bit binary vectors, with 5 randomly chosen
bits set to 1 for each figure.

Figure 2 demonstrates the shapes that the system with n = 10 (i.e., NC = 300,
NR = 600 and NI = 600) draws for each of the training sequences after learning.
Each figure was presented 20 times during learning, with random angular noise of
±0.5◦ for each line segment. Figure 3 shows performance when an angular error
uniformly distributed in a range around 0◦ is added to each action segment
during training. It demonstrates that the system is quite robust to such noise,
mainly because of the use of WTA clusters in the sequence learner.

An important issue addressed in this paper is the system’s ability to learn
highly similar sequences, and the role of the selector system in doing so. This was
studied by training the system on shapes with 20 segments each, such that the
first 19 segments in each shape were almost identical (in a circular arrangement)
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Fig. 4. Graph (a): Effect of varying cluster sizes on the capacity for learning near-

identical shapes. Graph (b): Comparison of the system without cluster selection and

those with cluster selection in Layer I and both layers I and R, while learning near-

identical shapes.
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Fig. 5. Learning long and complex sequences in a network with n = 20. Graph (a, c):

Training text; Graph (b, d): Recalled text.

and the only significant difference arose in the 20th segment. The shapes had
distinct IDs. To learn these shapes, the system had to distinguish the internal
representations of the sequences sufficiently. Figure 4(a) shows the results for
storing up to 50 near-identical shapes in networks with n = 5, 10 and 20. The
results demonstrate that increasing the size of clusters increases the capacity
for such learning, but even a small network can store several nearly identical
sequences. Using the same training set (near-identical shapes), Figure 4(b) shows
the comparative performance of a network without cluster selection, one with
cluster selection only in layer I, and one with selection in both layers I and R. It
is clear that ID-specific cluster selection provides significant increase in capacity
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for learning similar sequences. Interestingly, the best performance is obtained
when selection is applied only to layer I, presumably because disambiguation is
important mainly for training the I-to-C connections.

Finally, Figure 5 shows the results when the same network is trained to
store two very long and complex sequences representing two different words.
Each sequence comprises several hundred steps (373 for “neuron” and 287 for
“synapse”), and are stored simultaneously in the same network with n = 20. As
shown in the figure, the sequences are recalled nearly perfectly after training.

5 Conclusion

In this paper, we have presented a model for learning population-coded kinematic
sequences in a simple but biologically motivated neural system. In particular,
our results show that, with the inclusion of a basal ganglia-like selector, the
system is able to learn a large number of almost identical sequences, and many
different types of shapes, including very complex ones. More detailed studies of
the system, including the role of velocity coding, inertial factors, internal noise
and downstream motor control with be presented in future papers.
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Abstract. Synaptic plasticity is one of essential and central functions

for the memory, the learning, and the development of the brains. Trig-

gered by recent physiological experiments, the basic mechanisms of the

spike-timing-dependent plasticity (STDP) have been widely analyzed in

model studies. In this paper, we analyze complex structures in neural net-

works evolved by the STDP. In particular, we introduce the complex net-

work theory to analyze spatiotemporal network structures constructed

through the STDP. As a result, we show that nonrandom structures

emerge in the neural network through the STDP.

1 Introduction

Billions of neurons exist in the brain and these neurons interconnect with each
other. Using such complicated structures, many neurons act as an ensemble
and realize effective information processing mechanisms in the neural networks.
In such neural networks, it is generally believed that synaptic plasticity plays
central roles for the memory, the learning, and the development of the brain.
Then, the synaptic plasticity has been widely analyzed from both experimental
and theoretical aspects.

During the last decade, the existence of the STDP has been clarified in several
areas of the brains [1, 2, 3, 4, 5, 6]. Stimulated by these experimental results,
the basic mechanisms of the STDP have been widely analyzed in model studies
[7, 8, 9, 10, 11]. In particular, the synaptic distribution is experimentally and the-
oretically analyzed in detail. Results obtained from these analyses are important
to understand the mechanisms of the STDP. However, it is also important to an-
alyze spatiotemporal neural network structures. In this sense, we should analyze
how the spatiotemporal structure would evolve in the STDP neural network.

From the viewpoint of the graph theory, until 1998, were mainly analyzed
regular and random networks. The regular networks have a specific structure

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 306–314, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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or clusters. Then, distances between any two nodes are long or their radius
becomes large. On the other hand, the random networks have small network
radii and few clusters. However, it has been observed that real networks often
have not only small network radii but also many clusters, which is called the
small-world property [12]. Such a property ubiquitously exists in the real world,
for example, the co-acting relationship in movie films, the power grid networks,
and the anatomical structure of C. elegans [12]. On the other hand, the real
networks often have scale-free structure whose degree distribution obeys the
power law [13]. It is known that a scale-free property also universally exist in
the real world. For example, the actor collaboration, the world wide web, and
the power grid [13]. These network structures might be useful for the network
activity or the information processing in the neural networks.

Then, in this paper, we analyze the spatiotemporal structure in the self-
organized neural network through the STDP introducing the complex network
theory.

2 Methods and Results

A neural network is constructed from the neuron model proposed by Izhikevich
[14]. The model is given by 2-dimensional ordinary differential equations:

v̇ = 0.04v2 + 5v + 140− u+ I, (1)
u̇ = a(bv − u), (2)

with the auxiliary after-spike resetting:

if v ≥ 30 [mV], then

{
v ← c

u← u+ d
(3)

where v represents the membrane potential of the neuron, u represents a mem-
brane recovery variable, and ˙ = d/dt where t represents time. The variable I
represents the sum of random external inputs and synaptic currents. The neu-
ral network is heterogeneous, namely, it has excitatory and inhibitory neurons
which have different dynamics in the neural network. In this paper, we use the
regular spiking type neuron as 800 excitatory neurons while the fast spiking type
neuron as 200 inihibitory ones. The parameters a, b, c, and d are set according to
Ref. [14]. Each neuron connects to 100 postsynaptic neurons, however, no con-
nections exist between any pairs of the inhibitory neurons. Excitatory synaptic
connections have 1 ∼ 10 [ms] conduction delays which distribute uniformly in
the neural network while all inhibitory synaptic connections have 1 [ms] con-
duction delay. Excitatory and inhibitory synaptic efficacy is set to 6 and −5,
respectively. In the neural network, the excitatory synaptic efficacy is modified
through the STDP. We use a simple STDP function proposed by Song et al. [8]
(Fig. 1(a)) and it is defined by

Δw =

{
Ap · e−|Δt|/τp (if Δt > 0)

−Ad · e−|Δt|/τd (otherwise)
(4)
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Fig. 1. (a) Functional form of spike-timing-dependent plasticity (STDP) with the pa-

rameters Ap = 0.1, Ad = 0.12, and τp = τd = 20 [ms]. (b) If a postsynaptic spike

follows a presynaptic one (solid arrow), the synapse is potentiated (LTP). The reverse

order (dashed arrow) results in depression (LTD).

where Ap and Ad are the learning rates of the long-term potentiation (LTP)
and depression (LTD), and τp and τd are the time constants determining the
exponential decays of the LTP and the LTD in the window function. In this
equation, the variable Δt represents a relative spike timing between a pre- and a
postsynaptic neurons. In the neural network, the nearest-neighbor implementa-
tion [15] is used, so that the nearest-neighbor spike pairs contribute for synaptic
modifications (Fig. 1(b)). The STDP arises at every firing events and the synap-
tic efficacy is updated as w ← w+Δw at every second. The synaptic efficacy is
limited between 0 and 10: if, for the LTP, the efficacy becomes larger than 10,
it is reset to 10. On the other hand, the efficacy is reset to 0 when the efficacy
becomes smaller than 0 in the case of the LTD. This STDP neural network is
driven by the Poissonian random inputs whose frequency is 10 [Hz]. In our sim-
ulation, the mean firing rate becomes about 17 [Hz] under the initial condition,
however, the firing rate decreases from the initial condition and takes about 10
[Hz] at 100 [sec] (Fig. 2(a)). After that, the firing rate maintains about 10 [Hz].
Histograms of synaptic efficacy in both the initial condition and the equilibrium
state are shown in Figs. 2(b) and (c), respectively.

Although all the synaptic efficacy takes the same value in the initial condition,
synapses are competitive and their efficacy forms a bimodal distribution in the
equilibrium state. The synaptic distribution is important for understanding the
structure of the STDP neural network. However, it is not enough to reveal a hidden
spatiotemporal structure. Then, to investigate the spatiotemporal structure of the
STDP neural network in more detail, we introduce the complex network theory.

At first, we binarize the connectivity in the STDP neural network. Next, we
generate an adjacency matrix A = {aij} with a threshold value wθ because
we consider that strengthened synapses are important for the network activity.
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Fig. 2. (a) Temporal transition of the mean firing rate. The firing rates are plotted

at every 100 seconds with the error-bars of the standard deviation for 20 simulations.

Histograms of synaptic efficacy in (b) the initial condition and (c) the equilibrium state.

The horizontal axis is divided into 40 bins.

Then, aij = 1 if the efficacy of synaptic connection from the ith and the jth
neurons is no less than wθ while aij = 0 if it is less than wθ. In this paper, we
set wθ as 6, namely, it corresponds to the value of the initial excitatory synaptic
efficacy. In addition, we attend the synapses only between excitatory neurons to
simplify our analysis. For such a binarized neural network, we apply the complex
network theory to analyze spatiotemporal structure of the STDP neural network.

Degree distribution
The degree distribution is one of the important statistics in the complex network
theory. There are tree types of the degree: the indegree, the outdegree, and the
mutual degree. The indegree and the outdegree of each neuron are defined as
the number of afferent or efferent connections, respectively. The mutual degree
is the sum of the indegree and the outdegree. If we describe the indegree and
the outdegree of the ith neuron as kin

i and kout
i , its mutual degree is written as
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Fig. 4. Temporal transition of the assortativity coefficient in the STDP neural network.

The figure is plotted at every 100 seconds.

ki = kin
i + kout

i . Their distribution in the entire network may be inspected for
the scale-free attributes such as power laws [13].

We can find that there exist two groups in the indegree distribution under
or over kin = 10 (Fig. 3(a)). The distribution of the high indegree obeys the
Poissonian, which results from the network structure in the initial condition. In
contrast, the distribution of the low indegree obeys the power law. These result
indicate that the neural network organizes an incomplete scale-free structure
because a complete scale-free structure is fragile if hub neurons are attacked. The
STDP constructs such a structure to prevent the congestion of the information.

On the other hand, the outdegree distribution in the STDP neural network is
similar to the Poissonian random. Although the indegrees of neurons distribute
between 0 and 30 (Fig. 3(a)), the outdegree distribution is between 0 and 10
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(Fig. 3(b)). This results mean that the neurons influence ten or so neurons in
the neural network.

The mutual degrees in the STDP neural network also form a Poissonian ran-
dom distribution. The range of their distribution is between 1 and 30 (Fig. 3(c)).
From this result, the range of the mutual degree distribution is almost the same
as that of the indegree one. Namely, this result indicates that neurons have
low outdegrees but high indegrees. Thus, these neurons have small effect to the
neurons. Then, the neural network controls its firing rate using these biased
connections (Fig. 2(a)).

Assortative mixing
To evaluate the assortative mixing in the STDP neural network, we use the
assortativity coefficient r [16] which is defined by

r =
M−1∑

i jiki − [M−1∑
i

1
2 (ji + ki)]2

M−1
∑
i

1
2 (j2i + k2

i )− [M−1
∑
i

1
2 (ji + ki)]2

(5)

where M is the number of connections in the network and ji and ki are the
degrees of the neurons at the ends of the ith connection. This measure can take
−1 ≤ r ≤ 1. It means that networks tend to be assortative if r is close to 1 while
networks tend to be disassortative when r is close to −1.

In the initial condition, the coefficient r takes about 0 because the network
structure is almost random (Fig. 4). After that, the coefficient r gradually de-
creases and finally takes about −0.4 (Fig. 4). This result shows that the STDP
leads disassortativity to the neural network. In addition, this tendency is the
same as the neural network in Ref. [16]. However, comparing with disassortative
networks in Ref. [16], the coefficient r of the STDP neural network is much lower.
Then, the STDP induces much stronger disassortativity in the neural network.

Characteristic path length
The characteristic path length L is one of the important statistics as well as
the degree in the complex network theory because this measure evaluates the
small-world property: L is described as

L =
1

N(N − 1)

∑
i,j

dij (6)

where N is the number of neurons and dij is the shortest distance from the ith
to jth neurons. In this case, the shortest distance corresponds to the minimum
number of connections through which spikes pass from the ith neuron to the jth
neuron.

To evaluate the small-world property, we should compare the characteristic
path length of the STDP neural network with those of surrogate networks. In
this paper, we use random networks as the surrogate networks. The surrogate
networks are generated from the STDP neural network by randomly rewiring
connections where both the indegree and the outdegree of the STDP neural
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Fig. 5. Temporal transition of small-world property in the STDP neural network. Both

the characteristic path length and the clustering coefficient of the STDP neural network

are normalized by those of the surrogate network. We generate fifty surrogate networks.

Ls and Cs are the mean values for the surrogate networks. Each figure is plotted at

every 100 seconds.

network are preserved in the surrogate networks. In this paper, we generate fifty
surrogate networks and use their mean value of the characteristic path length to
evaluate that of the STDP neural network.

In the initial condition, L(t)/Ls(t) takes about 1 (Fig. 5(a)). This result in-
dicates that the neural network structure in the initial condition is random and
it is similar to the result of the assortative mixing (Fig. 4). From the initial
condition, L(t)/Ls(t) decreases until 1, 200 seconds and after that, L(t)/Ls(t)
converges to about 0.9. This result implies that the STDP neural network pro-
cesses the information more effectively than the surrogate networks which have
the same indegree and outdegree distributions.

Clustering coefficient
The clustering coefficient is also an important statistic to evaluate the small-
world property in the complex network theory. The clustering coefficient is de-
scribed by
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C =
1
N

∑
i

Ci (7)

where N is the number of neurons and Ci is the clustering coefficient of the ith
neuron. The coefficient of the ith neuron is written as

Ci =
mi

ni(ni − 1)
. (8)

In Eq. (8), ni is the number of adjacent neurons of the ith neuron and mi is the
number of connections between all the pairs of the adjacent neurons of the ith
neuron. We calculate the clustering coefficient of the STDP neural network with
normalization by the mean value of the clustering coefficient for the surrogate
networks.

In the initial state, C(t)/Cs(t) takes about 1 (Fig. 5(b)). This reason is
the same as the results of both the assortative mixing and the characteristic
path length (Figs. 4 and 5(a)). After that, C(t)/Cs(t) gradually increases un-
til 1, 200 seconds and finally takes about 1.25. This result indicates that the
STDP strengthens or weakens synapses to remain the clusters. Then, the STDP
constructs neural network to be easy to share the information. Considering the
result of the characteristic path length (Fig. 5(a)), it is clear that the STDP
neural network has small-world property.

3 Conclusions

In this paper, we analyzed the spatiotemporal evolution of the structure in
the self-organized neural network through the spike-timing-dependent plastic-
ity (STDP) with the complex network theory. As a result, the STDP does not
induce the scale-free property in the neural network. From the results of all the
types of the degree, the outdegrees of high indegree neurons tend to become low.
The outdegree of each neuron is no more than 20, which results in controlling the
firing rate in the neural network. In other words, the neurons have low outde-
grees if their indegrees become high, so that influence of their spikes is hardly to
propagate for whole the neural network. These results corresponds to the result
of the assortative mixing in the STDP neural network. In addition, it is also
clarified that the STDP conducts the small-world structure in the neural net-
work. This result indicates that the neural network shares the information and is
possible to quickly process the information for whole the network. These results
indicate that the neural network realizes not only the effective information pro-
cessing but also robustness for attacking neurons. We believe that these unique
structures are effective for the network activity and the information processing.

As a future work, we will analyze the relationship between these structures and
the network dynamics in the STDP neural network to clarify how the spatiotem-
poral structures affects to the network activity and the information processing.

The research of T.I. is partially supported by Grant-in-Aid for Scientific Re-
search (C) (No.20560352) from JSPS.
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Abstract. Many neocortical synapses adapt their postsynaptic response

to the input rate of the presynaptic neuron through different mechanisms

of short term plasticity: Steady state postsynaptic firing rates become

invariant to the presynaptic frequency. Still, timing may convey infor-

mation about presynaptic rate: The postsynaptic current is shown here

analytically to peak earlier when presynaptic input frequency increases.

An approximate 1ms/10Hz coding sensitivity for AMPA, and 1ms/1Hz

for NMDA receptors in post synaptic potentials was found by a multi-

compartmental synapse simulation using detailed kinetic channel models.

The slower the ion channels, the more expressed the time lag signal, but

the same time the less the available headroom when compared at identi-

cal frequencies. Such timing code of input strength is transmitted most

efficiently when postsynaptic amplitude is normalized by the input rate.

Short term plasticity is a mechanism local to the synapse that provides

such normalizing framework.

Keywords: Short term plasticity, frequency adaptation, timing, time

code, time shift, time lag, neural code, synapse.

1 Introduction

Dynamical neural code, viewed as an intricate interplay of time and space pat-
terns, far exceeds the information capacity of rate coding. Neurons extract in-
formation of and regulate each other by rate and time code patterns at different
time and spatial scales, from ms responses to long term potentiation in time,
and from synapses, through dendrite branches, to microcircuits and large in-
terareal networks in space. For individual units of computation, e.g. synapses,
dendrite branches and cell somata, integrative lowpass filters and coincident de-
tector highpass filters correspond to utilize more the rate vs. the timing of their
input pattern. Various adaptive normalization mechanisms are exhibited in or-
der to tune the neurons’ responses along the line between frequency and time
domain, as in sensory gain control, information filtering, optimal cooperation,
or maintainance of physiological operational range [1–3]. One form of adaptive
normalization, short term synaptic plasticity, excercises its effect at the synapse
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by presynaptic and postsynaptic mechanisms in the seconds time scale; that is
between dynamic activity patterns and traditional long term plasticity [4–6].

For depressive synapses steady state postsynaptic firing rates become more
or less invariant to the presynaptic frequency. It has recently been found that in
the hippocampal CA3, cell subpopulations of pyramidal cells distributed in the
same region are specialized for a given level of adaptation [7]. Certain cells have
a frequency limit around 5-10Hz, below which they function as an integrating
neuron, while above they fire independently of the input frequency [8, 9, 5].
However, even in this adaptive operational range, change in presynaptic firing
rate seems to be detected by differential signaling of transients [5, 10].

In the present work only the steady states of rate-adapting short term de-
pression are considered. They correspond to behaviour depending on average
firing rate, not transients due to abrupt changes in firing rate. Such neurons in
steady state will be shown in this paper to still possess rate information in their
timings of post synaptic responses. A recent work examined rate information
transfer through short term plasticity [10], though the model concentrated on
filtering features. The present study examines a mechanism of rate information
transfer that is intrinsic to synapses. It will be shown here that the timing of the
peak of the excitatory post synaptic potential (EPSP) depends on the average
frequency of the stimulus.

The conductance of ion channel receptors is determined both by the time-
course of the neurotransmitter concentration in the synaptic cleft [11] and the
probabilistic channel kinetics [12–15]. Macroscopic synaptic conductance can be
approximated by fitting models to reproduce the ensemble average of the time
course of single channel kinetics. At a phenomenological level of description,
approximating conductance with two exponentials, the time lag found in this
work primarily depends on the rise time of the receptor ion channel current; it
will be shown here analytically. With more detailed modeling it turns out, that
dendritic integration does accentuate a significant rate-dependent shift of the
EPSP waveform. A conductance based multicompartmental model of a synapse
with Markov kinetic channels was simulated to show time lag coding in real-
istic conditions. According to the channel kinetics, when leftover intrasynaptic
glutamate, slower dissociation from receptor, and desensitization are taken into
account, glutamate concentration change at different frequencies induces differ-
ent timecourses of synaptic conductance.

2 Methods

2.1 Two-Exponential Approximation of Channel Current

For an analytical study of the time lag coding behaviour, the macroscopic con-
ductance timecourse was approximated by a sum of two exponentials; usual with
network simulations [16]:

P ∗(t) = e
− t

τd − e−
t

τr , (1)
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where τr is the faster rising part of the waveform and τd decay time determines
longterm behaviour. Macroscopic synaptic conductance is linearly related to the
electrophysiological quantity of ensemble channel current, the excitatory post
synaptic current (EPSC), when the membrane voltage is held constant, i.e. it is
voltage-clamped to the resting potential.

For our purposes P ∗ is normalized to 1 not by the area under the curve, but by
the peak value, P ∗

max. Peak time at t = tp is found by determining the maximum
of the P ∗(t) curve by simple differentiation:

tp =
τdτr
τd − τr

log
τd
τr

, (2)

P ∗
max = P ∗(tp) =

(
τr
τd

) τr
τd−τr

−
(
τr
τd

) τd
τd−τr

. (3)

Note here, that any physiologically detailed mechanism of normalization by short
term plasticity is represented in this normalization. The amplitude and waveform
changes are separated and in the present framework only waveform changes
considered determinants of timing code.

Previous inputs are represented by a periodic term, nT , with T = 1/f input
spike interval:

P ∗
T (t) =

∞∑
n=0

(
e
− t+nT

τd − e−
t+nT

τr

)
. (4)

The input frequency dependence of the periodic peak time, tT,p, will be demon-
strated analytically in Section 3.1.

2.2 Multicompartmental Synapse Model with Detailed Channel
Kinetics

In order to incorporate realistic synaptic transmission effects, such as complex
ion currents, membrane dynamics and receptor desensitization, a typical exci-
tatory synaptic area with presynaptic bouton and postsynaptic dendritic spine
was modeled. To drive the synaptic receptor ion channels, an injected current
pulse (width 3ms) into a one-compartmental presynaptic axon terminal gener-
ated action potentials (APs) by Hodgkin-Huxley equations. Passive membrane
resistance was 5kΩcm2, membrane capacitance was 1μF/cm2, resting potential
was −70mV. The axon terminal was equipped with a voltage dependent two-
state P/Q Ca2+ channel, a three state Ca2+ ATPase pump, and a four Ca2+

molecule-binding vesicle fusion factor. Subsequent glutamate concentration time-
course in the synaptic cleft was modeled by a first order process. Model details
and parameters as in [17].

A complex 21-state Markov kinetic AMPA receptor ion channel model was
used to comply to recent measurements of AMPA EPSCs. Since the theoretical
time lag effect was found to be very small for AMPARs (Section 3.1), minute
details of physiological processes needed to be available. In this model the channel
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is open in three states of 2, 3 and 4 molecules of bound glutamate. Bound
states can desensitize both from open and closed channel states: five desensitized
states for each four states of 1-4 bound glutamates. The average single channel
conductance of 2, 3, and 4 molecule bound open states were 5, 7, and 12pS
respectively. Model details and kinetic parameters as in [14].

A 5-state kinetic gating NMDA receptor model allowed to simulate NMDA
EPSC time courses, with the free, 1 and 2 glutamate molecule binding states;
2-molecule glutamate bound state can change either to open or desensitized
state. Mg2+ block was excluded from the simulations, represented as 0mM Mg2+

concentration, since the interest was focused on general EPSP waveforms. Model
details by [18, 17] and parameters as in [19]

To study the effects of the AMPA and NMDA channel current, a pyramidal
spine head was modeled based on measurements of [20–23], and the voltage was
recorded. The diameter of the spine head was 0.5μm, membrane resistance was
12kΩcm2, other passive parameters as for the presynaptic bouton. Voltage wave-
forms were approximately linear to currents; single synapse EPSP amplitudes
were less than 10mV, with 0mV reversal potentials for channels.

The model was simulated in the NEURON environment with time resolution
dt = 0.005ms. All kinetic models were implemented in equilibrium averages of
probabilistic single-receptor states. Figures in this paper show one-periods of
timecourses, taken when the simulation relaxed to a steady state with continu-
ous periodic stimulation. For interfrequency comparison, waveforms were peak
normalized, similar to (2) and (3).

3 Results

3.1 Analytical Solution for Input Frequency Transcoded to Time
Lag

Since ∀x > 0, e−x is less than unity, the infinite sums of the geometrical series
for both terms in (4) are finite. With bases: e−t/τd,r , and multipliers at the nth
iteration:

(
e−T/τd,r

)n
, the sum in (4) equals

P ∗
T (t) =

e
− t

τd

1− e
− T

τd

− e−
t

τr

1− e−
T
τr

. (5)

The peak time at the periodic case, tT,p, is found at the extremum of (5):

tT,p =
τdτr
τd − τr

(
log

τd
τr

+ log
1− e

− T
τd

1− e−
T
τr

)
. (6)

The rightmost logarithmic term approaches zero (term inside log → 1) in the
zero frequency (T →∞) limit, leading to (2). In the infinite frequency limit, i.e.
for T � τr < τd, it approximates log τr

τd
:

lim
T→0

1− e
− T

τd

1− e−
T
τr

=
1− 1 + T

τd

1− 1 + T
τr

=
τr
τd

,
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thus

tT,p(T = 0) =
τdτr
τd − τr

(
log

τd
τr

+ log
τr
τd

)
= 0 ; (7)

the stimuli obviously become a constant current as the peak and the lowest
point, PT (t = 0) join (Fig. 1a). To normalize the lowest point value, the peak
value for the periodic case, P ∗

T,max, is needed. With t = tT,p from (6) substituted
into (5):

P ∗
T,max = P ∗

T (tT,p) =
e
− tT,p

τd

1− e
− T

τd

− e−
tT,p
τr

1− e−
T
τr

, (8)

so the frequency dependence of the lowest conductance at the period boundaries,
t = 0 or t = T , is

PT (0) =
1

P ∗
T,max

(
1

1− e
− T

τd

− 1

1− e−
T
τr

)
. (9)

In the zero frequency (T →∞) limit (9) reduces to 0 (with (8)→ const). Thus,
at low frequencies, any incoming spike would meet low baseline activity: the
headroom is large, allowing for optimal signal to noise ratio. In the infinite
frequency limit PT (0) → 1 as T → 0. It means that at higher frequencies when
the headroom shrinks to the range of noise, the possibility to propagate timing
information saturates (Fig. 1b).
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Fig. 1. Timings of peak conductance, tT,p (a), and the lowest values of conductance

(b) depend on stimulus frequency. Analytical solutions for conductance approximated

with two exponentials. NMDA (solid, τr=5ms, τd=150ms), slow AMPA (dash-dot,

τr=3ms, τd=5ms), fast AMPA (dashed, τr=0.5ms, τd=5ms). Thin lines in (a) show

the corresponding zero frequency limit peak time. Conductance saturation points in

(b) depend on rise and decay time.
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3.2 Simulation

The conjecture that rates appear in timing, suggested by the analytical solution,
was confirmed by simulating the detailed models. Typical waveform shifts to
frequency change are depicted in Fig. 2a-d; the long synaptic delays are visible,
as the reference frames were set by the onsets of periodic presynaptic stimuli.
Both EPSCs and EPSPs were subsequently shifted to earlier onsets from above
5-10Hz, while below, both positive and negative correlation, i.e. hysteresis, was
found (Fig. 3a-b). Compared to the theoretical solutions of (6) the simulations
show significantly larger time shifts to frequency change; even for the fast AMPA
receptors, a range of 2.5ms can be observed within 25Hz, or five fold, input rate
change between 3-27Hz. By linear approximation the sensitivity is ≈1ms/10Hz
for AMPA, and ≈1ms/1Hz for NMDA receptor induced EPSPs. The saturation
of available headroom, (9) and Fig. 1b, was also expressed by the simulation
(Fig. 2b,d).

4 Discussion

In this paper it has been shown that the presynaptic rate could and might
be transferred to postsynaptic time lag. Though direct experiments would help
evidencing the hypothesis, biological indications do abound. The time scale of
sensitivity to differences in timings and phases is supposedly very small: Precision
requirements for auditory path processing [24], timing of synaptic multiquantal
release [25], phases of a multi unit activity formation [26] are all within the range
of a few milliseconds. These data might raise the relevance of the less expressed
AMPA time lag as well. Considering jitter, noise in timings of spikes, a small
increase in precision could nonlinearly amplify signal to noise ratios [25].

The details of dendritic computation and collective neuronal behaviour can
alter the efficiency of time lag coding. When dendrites require inputs with more
synchrony and exhibit dendritic spikes [27], the propagation of timing infor-
mation to more proximal dendrite branch regions is enhanced. Synchronization
also raises the possibility to more effectively exploit the smaller AMPA time lag
changes. Neural code emerges when the receiver neuron can utilize the infor-
mation transmitted. Time lag code may emerge if timing of input spikes onto
a dendrite branch is effectively used for coincidence summation. However, not
all modes of neuronal operations allow for coding in this time lag. Noisy, high
average current and dendritic equalization [28], or induced bursts [29] make such
timing information lost to more proximal dendrite regions. Rate sensitivity for
low frequencies and timing sensitivity for higher frequencies might be alternative
modes of neuronal information processing.

When the inputs are more periodic, timing has a fixed framework; phase
code emerges. Phase coding is supposedly found more often when synchrony is
stabilized by local inhibitory (i.e. basket cells, multi unit activity) or interareal
oscillator-seed (i.e. septal nuclei, entorhinal cortex) connections, corresponding
to functioning in the context of gamma and theta cycles [30]. In such context,
input rate is transcoded to the phase within a theta or gamma cycle, by the
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Fig. 2. Waveforms of AMPA (a,b) and NMDA (c,d) receptor channel EPSCs (a,c)

and spine head EPSPs (b,d) at 1, 10, 14, 20 and 27 Hz stimuli. Multicompartmental

simulations of kinetic channel models. The timeframe is fixed to presynaptic stimulation

onsets at t = 0 and t = T ; shorter curves: one period shown.

rhythmic rise and fall of baseline activity [31, 26]. The importance of the results
in the present paper, though, comes from the observation, that, without any
external cyclic change in baseline level, the time lag code is located in one-
synapse mechanisms.

Furthermore, the intrinsic timing code of input strength works in consort with
short term plasticity. Normalization would prevent the functioning of phase cod-
ing of input strength in a theta or gamma background, while normalization would
enhance it in the presented intrinsic time lag-shift code. The same mechanism
is also the limitation of the time lag code: When normalization is not sufficient,
current driven action potential generations hide timing information. Neverthe-
less, short term depression is suspected to become inversely proportional to higher
stimulus frequency [5, 9], intrinsically leading to correct normalization.
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Fig. 3. Stimulus frequency dependence of peak timing shifts, referenced to the peak

time at 1Hz. Negative values mean earlier peaking. Simulations of the multicompart-

mental, kinetic channel models, relative EPSCs (a) and EPSPs (b). EPSCs are com-

pared to analytical solutions (thin lines) from (6) as shown in Fig. 1b. Simulations

exhibit hysteresis in the lower, <5-10Hz, frequency range.

So far only dynamic neuronal patterns have been considered. Time-lag coded
rate can also be of importance in learning and long term plasticity. It seems that
coding and plasticity are inherently interrelated. Evidence is gathering, that
short term plasticity may retain recent information about presynaptic spikes in
Ca2+ accumulation [32]. Since the normalizing effect of short term plasticity is
a requirement of effective post synaptic time lag code, postsynaptic timing may
contain information about presynaptic Ca2+ levels as well. In addition, spike
time dependent plasticity [33] is directly enhanced via these findings. At higher
frequencies the shortened postsynaptic onset of dendritic and somatic APs may
consequently result in quicker arrivals of backpropagating APs. Note that the
time lag code effect is much more salient with the slower NMDA receptors that
are activated mainly when backpropagating APs are present.

To conclude, the postsynaptic peak time consists of the sum of two time delays.
One is a relatively fixed synaptic delay from the timing of the presynaptic spike,
depending on synapse and membrane conductance properties. Second, as in this
paper, it might code the average frequency of the presynaptic spiketrain in the
scale of milliseconds changes in this delay. It may seem that individual neurons
are tuned to specific information coding strategy between frequency domain –
time domain preference by the extent of short term plasticity.

Acknowledgements. The author has been supported by the PhD program at
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Abstract. Researches of neural mechanism of time perception is one

of the fastest growing areas of neuroscience. The visual system presents

several examples of timing mechanisms. Its activity is characterized by

a complex network of synchronized elements which cooperate together.

Some authors recently proposed that neural circuits should be inherently

capable of temporal processing as a result of the natural complexity of

cortical networks coupled with the presence of time-dependent network

properties. We present an adaptive feedback model which, through a

temporal-to-spatial transformation is able to explain recent experiments

on the relationships between vision and time/space perception.

1 Introduction

A fundamental question about the perception of time is whether the neural
mechanisms underlying temporal judgments are universal and centralized in the
brain or modality specific and distributed. Some authors have recently hypoth-
esized that the temporal scaling of visual experience and the temporal tuning
properties of certain visual neurons may be linked [3]. The apparent duration
of a dynamic stimulus can be manipulated in a local region of visual space by
adapting to oscillatory motion or flicker [10]. Perceived time is compressed when
stimuli are flashed shortly before or after the onset of a saccadic eye movement
[5]. Neurons in visual areas of primate parietal cortex have reduced latencies to
visual stimulation at the time of a saccade [9]. Recently one class of models,
called state-dependent networks, has been developed in order to demonstrate
that a neural circuits can be inherently capable of temporal processing as a re-
sult of the natural complexity of cortical networks coupled with the presence
of time-dependent network properties [11]. We present an adaptive feedback
model which we show to provide a possible explanation of recent experiments
and insightful clues in order to elucidate the relationships between stimulus neu-
ral encoding and time/space perception [13]. Our model can be defined as an
adaptive feedback model because it changes the strength of network connections
during its activity in order to adapt to the changing contexts during the process;
modifyng retroactively its sensitivity to the subsequent stimuli.
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Brain timing and time Perception
From a neuropsychological point of view, interval timing in the range of mil-
liseconds to minutes is affected in a variety of neurological populations involving
disruption of the frontal cortex, hippocampus, basal ganglia and cerebellum. The
conclusion is that representation of time depends on the integration of multiple
neural systems [14]. Models of time perception all agree that temporal informa-
tion is processed in many ways: it is remembered, compared to other temporal
information, and used in the production of motor outputs. Researchers have had
great difficulty in pinning timing-related activity in the brain to any specific type
of function. This is largely because most of the time measurement tasks draw
upon more than one process, making it difficult to tease the various components
apart [12]. Johnston et al. has shown that apparent duration of a dynamic stimu-
lus can be manipulated in a local region of visual space by adapting to oscillatory
motion or flicker [10]. This implies spatially localized temporal mechanisms in
duration perception. The authors have not found concomitant changes in time
of onset or offset of the test pattern, demonstrating a direct local effect on the
time duration perception rather than an indirect effect on the time course of
neural processing. Moreover many perceptive tasks do not require explicit en-
coding of time: perception of visual motion, for example, relies on the output of
spatio-temporally tuned neurons rather than on independent estimates of space
and time. While there is good evidence about different clocks for different in-
terval lengths, some recent evidences point clearly to the existence of visually
based timing mechanism [6]. Finally one of the most up to date experimental
result concerns the existence of a large contrast effects in the discrimination
of short temporal intervals. Della Rocca et al. examined the effect of temporal
distractors on interval discrimination. Subjects compared the duration of the
second interval in a three-flash sequence with the interval between a two-flash
sequence. For short durations, the presence of the irrelevant distractor interval
affected the apparent duration of the test duration in a contrasting manner:
short distractors caused it to appear longer, and vice versa. For very short probe
durations (< 100ms) the effect was large, changing the perceived duration by up
to a factor of two. For longer probe durations the effect of distractors reduced
steadily, to no effect for durations greater than 500 ms. The results for visual
flashes, auditory tones, and brief vibrations were similar, implying the existence
of two mechanisms for timing brief events, one for short intervals (less than 500
ms), and another for longer intervals, and that the transition between the two
is gradual [15]. One hypothesis drawn from the previous evidences is that cere-
bral circuits are inherently able to rescale durations in a proportional manner
and compensate for the error differences generated by the cerebellum. With the
motivation of modeling some of these experimental findings, we organize the
paper as follows. In the next section we provide a description of the reasoning
and mathematical formulation of the model. In section results we discuss the
extensive simulations we have performed. Then the following section reports on
conclusions. The software used for the model is available upon request from the
first author.
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2 The Model

We have modeled a key mechanism for the encoding of the temporal charac-
teristics of the neural visual stimuli. Our inspiration originates from works on
neural and visual timing. Several hypothesis of time measuring systems, pecu-
liar to neural circuits, demonstrates integration (synchronization) enables both
the evaluation of different time scales and the binding between different sen-
sorial/cognitive modalities. There is a general belief on the hypothesis of the
existence of a representation of temporal information relative to visual stimuli.
The fundamental elements of the representation of visual information should be
able to encode temporal information similarly to the other characteristics of the
percept (color, frequency, brightness). In a recent paper, Buonomano proposed
that short-term plasticity and dynamic changes in the balance of excitatory-
inhibitory interactions may underlie the decoding of temporal information, that
is, the generation of temporally selective neurons [3]. He first showed that it is
possible to tune cells to respond selectively to different intervals by changing
the synaptic weights of different synapses in parallel. Short-term plasticity is a
usage-dependent change in synaptic strength on the time scale of millisecond
to seconds and is observed in almost every synapse types of the central ner-
vous system. Each type of synapse has its own specificity with respect to this
property. When stimulated a few times within a second, some synapses show
facilitation, others depression or else complex sequences of facilitatory and de-
pressing changes [7].

Behavior of a chain of neurons: the neural delay chain

A neuron that responds to a vertical bar or a 1 kHz tone must receive functional
inputs from the appropriate sensory neurons in the retina or cochlea, while tem-
poral information refers to stimuli defined by the temporal structure of active
sensory neurons. If a bar of light is present for 50 or 100 msec, in both cases
the same groups of retinal ganglion cells are active. Similarly, if two brief 1 kHz
tones are separated by 50 or 100 msec, the same population of hair cells will be
active. Thus, for neurons to respond selectively to a 50 or 100 msec stimulus,
an additional process such as a temporal to spatial transformation must occur.
Several experimental evidences suggest that the neural signal encode ”time re-
lated properties” by changing the state of the network’s connections. Thus the
key mechanism could rely with the propagation of the signal in the earlier states
of the neural encoding process (� 1 sec). This networks could be regarded as
”neural delay chain”, and be represented by a neural network where the signals
propagates from the primary perceptive circuits. It is possible to identify a sys-
tem characterized by computationally well-definable elements which represent
the neural delay chain. In such system the microscopic elements may be charac-
terized following the formalism of the neural networks typified by synapses with
long -term plasticity, which tend to synchronize their activity. Consequently the
activity may be treated at numerical level as continuous value instead of con-
sidering the discharge frequency of the single nodes. Therefore each node may



328 A. Guazzini et al.

be characterized by an activation value between 0 and 1 which represents the
synchronization level of the node’s neurons. Each node is connected through ori-
ented synapses to the following node. Due to the short term plasticity property
of synapses it is possible to represent their level of strengthening and their status
after the passage of the neural spike. Figure 1 shows the effects of a propagation
of a neural signal along a neural delay chain. In the upper part of the figure
the ordinate represents the activity of the node, while in lower part the ordinate
indicates each synaptic weight along the chain. The abscissa represents the neu-
ral chain which carry out the role of a temporal buffer where the propagation
of the neural signal encodes time information about the stimulus. The elements
(xi), defined simply ”nodes”, represent thus populations of neurons, and the ac-
tivation value associated to each node (∈ [0 , 1]) represents the synchronization
status of the node’s neurons network. This approach allows to study a neural
delay chain using a continuous representation of the neural signal. The status
of the connections of the node is explicitly taken into account the status of the
connections of the nodes (ai). The neural spike generated by the visual stim-
ulus propagates along the chain, encoding the temporal information about the
stimulus. The activation state of this network could be read by output neurons
in order to assess the duration of a stimulus or of an interval, as it happens for
distances between objects and their size. In this way we obtain in our model a
temporal to spatial transformation.

Fig. 1. The neural spike of the visual stimulus propagates along the neural delay chain

(from left to the right) and encodes implicitly the time information about the stimulus.

The activation state of this neural network is read out by specific neurons which assess

the duration of a stimulus or of an interval, the same as it happens for distances among

objects and their size.

We model a neural network where each node (x) is characterized by an ac-
tivity value (i.e. the state of synchronization) between 0 and 1. Each node has
excitatory synapses (a) toward the following one. Synapses evolve their weight
dynamically according to the connected nodes’ activity. The coupled dynamical
equations which describe the system evolution are characterized by three control
parameters: A synaptic weight decay factor (α), a learning factor (γ) which rules
the synapses weight increment due to its activity, and a parameter which links
the wave propagation velocity with the synaptic weight (θ). Each node within
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the delay chain must possess an activation function temporally correlated to the
one of the preceding node. In this sense its activation must be proportional to
the activation of the previous node properly weighted by the connection (aij).
Furthermore this equation determines the speed of the neural impulse as a func-
tion of θ, as shown by the Figure 2(b) where the normalized wave velocity is
indicated in the ordinate as a function of a fixed synaptic weights characterizing
the neural delay chain. Specifically the value of activation of the node at the
position i+1 at the time t+1 can be written as follows:

xt+1
i+1 = xt

i + (at
i)
θ(xt

i −Kx). (1)

The synapse must enforce itself very rapidly depending on the signal coming from
the preceding node and directed to the following one. The learning function of
these oriented synapses must therefore be very sensitive to the activation changes
of the following node and must be able as well to strengthen itself fast enough so
as to facilitate the propagation of the activation wave. In order to approximate
the non-linear features of the synaptic dinamics we use an hyperbolic tangent
([1]), whose weight grows as a function of the learning factor (γ) and the signal
intensity. Finally the parameter ε is here introduced to seed the dynamics and
so driving its initial regime. The value of synapse i at the time t+1 can be
computed as follows:

at+1
i = at

i + tanh(
(at
i −Ka)

(1−Ka)
+ ε) · γ · (xt

i −Kx). (2)

In Figure 2(a) is reported the value of a synaptic weight after the passage of
neural signals with respect to the same value before the signal, for different
stimulus duration. The return of the synapse to the rest condition (i.e. when no
signals are exciting the synapse) should be sufficiently fast on its sensitiveness
and in order to increase the precision of the system in the resolution of different
signals. This dynamics can be modeled as follows:

at+1
i = at

i + α · (at
i −Ka). (3)

Since we are dealing with a symbolic representation of a biological system it
is appropriate to define minimum activity thresholds for the elements of the
system. So we will have a basic threshold of activity for the nodes (Kx) and a
rest value for the synapses (Ka).

Our model relies on the growing and decay dynamics of the synaptic weights,
and the interplay between these aspects and the propagation/diffusion of the
neural signals. Consequently for simplicity we have explicitly separate the decay
dynamics from the growing one.{

if (xt
i −Kx) > 0 → equation 2 holds,

if (xt
i −Kx) = 0 → equation 3 holds,

The first equation determines the synapses behaviour when no signal is arriving,
in this case the decay rate is proportional both to the decay factor α and to the
value of the synaptic weight itself. The second equation model the dynamics of
synapses where a signal is arriving.
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(a)

(b)

Fig. 2. (a)-Synaptic weight increase for different stimulus lengths; (b)-Normalized wave

velocity for different values of the parameter which links the wave propagation velocity

with the synaptic weight (θ)

Numerical simulation
From the experimental data about the effects of a distractor on the perception
of the time intervals, the existence of three distinct regimes is pointed out [15].
One where the distractor is too far to interfere with the couple of stimuli; a
second where the distractor is very close to the first stimulus of the couple, thus
causing an apparent dilatation of the perceived interval between the subsequent
stimuli. Finally, a third regime where the distance of the distractor from the first
stimulus is intermediate between the other two cases, and where a contraction
of the perceived interval is observed. Our interpretation is that this phenomenon
is generated by the nonlinearities which characterize the functions of the wave
propagation, and of strengthening and relaxation of the network’s connections.
This interaction appears appropriate in certain regimes because it manages very
well to solve different stimuli through the amplification of the differences be-
tween distant stimuli. Yet in certain regimes the same mechanism shows some
constraints, among which there is the target of our model.

Following the experimental schema of Figure 3, we carried on numerical sim-
ulations. The experimental setting is simple enough to generate large amount of
data which can be used to estimate model parameters with high accuracy. The
model was composed by 20000 nodes and by the same number of synapses; we
considered α = 0.001, γ = 0.01, θ = 0.1, ε = 0.01, ka = 0.1, kx = 0.1, moreover
the length of stimulus has been fixed to 400 time steps. When the stimulus is
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Fig. 3. In the experiment [15] simple visual stimuli were administered separated by

interval of several lengths. In the standard condition (left) only a target and reference

couples of stimuli were presented, while in the experimental condition (right) a distrac-

tor was administered before the first target stimulus. Interval between distractor and

first stimulus has been manipulated in order to elucidate its effects. Finally the esteem

of interval between target stimuli, obtained comparing it with the interval between

reference stimuli, for both conditions has been compared.

administered the chain is initialized setting the activation value of the first node
of the chain to 1. The first node remains at 1 for all the stimulus duration and
it is set to the rest value (kx) when no stimulus is arriving. Control parameters
have been varied between 1000 and 9000 time steps. The read-out process of
the intervals from the neural chain is composed by two phases.In the first step
those neuron which show the greater value of activation with respect to their
neighbours are detected and labelled ”local maxima”. Afterwards the ”distance”
(e.g. the number of nodes) between those maxima of activations is assumed as
the estimate of the target interval. The difference between the target interval
estimate in the standard condition and in the experimental condition has been
assumed as order parameter of the model.

3 Results

Numerical results are reported in Figure 4(a) and 4(b), on the vertical axis we put
the difference between the evaluation of the interval between the target stimuli in
presence of distractor, and the one in the control test. Moreover the abscissa and
the ordinate of Figure 4(a) show the temporal intervals between the target stim-
uli (real gap) and between the distractor and the first target stimulus (distractor
gap).The distortion caused by the distractor on the target interval estimate is
qualitatively similar to [15]. When the distractor is near the first target stimu-
lus a dilatation of the target interval is detectable with respect to the standard
condition. The dilatation of perceived time is here caused by the different veloc-
ity of propagation of the signals which encode target stimuli. The first target
signal propagates more quickly than the second one because it finds still excited
synapses by the passage of the distractor stimulus. On the contrary for greater
values of the target interval, when the distractor is enough distant from the first
stimulus, a compression of the target interval emerges Figure 4(a). Consequently
the compression is detectable when the second target signal encouters a medium
(i.e. the state of the synapses) more excited than the first one. Noteworthy, see
Figure 4(b), there are some appropriate values of the parameters of the model
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(a)

(b)

Fig. 4. Difference of target interval estimation (TIE) between reference and experi-

mental conditions, indicated in the ordinate as ”Two conditions gap”, for different

values of real and distractor gap. (a)- Surface in figure shows the effects of real and

distractor gap on the TIE. (b)- Plot shows sections of the surface for different values

of the variable real gap.

depending on which the model reproduces the experimental findings of Rocca
et al [15]. In the model we observe that for extreme values of the distractor gap
there is no detectable difference in the evaluation of the temporal interval. It
is also interesting to note that for very low values of the distractor gap, i.e.,
when the distractor is presented immediately before the first target stimulus in
temporal terms, the distortion in the precision of the evaluation of the interval
between the two condition considerably diverges independently from the interval
to evaluate (real gap). Finally it is possible to notice an interesting phenomenon
which seems to provide confirmation of the qualitative phenomenology observed.
In fact, for appropriate values of control parameters (real and distractor gaps) we
achieve both the phenomenon of temporal compression and temporal dilatation.

4 Extension to Neuron Columns

In our model the spikes travel along a chain of neurons. If one neuron in the
chain becomes damaged or dies, the entire chain becomes ineffective. Given that
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neurons are dying during human aging, the natural selection has evolved mecha-
nisms to avoid significant loss in information processing ability. It is now known
the actual processors of the vision and other processes are cortical columns of
neurons. Abeles and followers have proposed that cortical activities are based on
two-dimensional neural networks whose connections are organised in a feedfor-
ward manner [2]. Localized waves of synchronous spiking activity travel along
a sequence neurons organised in layers or pools [18]. If the number of excited
neurons in a pool is above a threshold determined by the connectivity between
layers, the wave activity initiated at the first pool propagates from one pool to
the next, forming a synfire wave. The basic mechanism of trasmission relies on a
trade-off of excitatory and inhibitory connections between neurons in consecutive
pools; each neuron is receiving inputs by many neurons in the previous pool. The
firing activity along a chain may propagate in either an asynchronous (i.e. a sig-
nal that reaches a threshold firing rate in one pool will cause an elevation in the
firing rate in the next pool) or in a synchronous mode (i.e. a synchronous volley
in one pool will elicit a synchronous volley in the other after one synaptic delay).
Hertz showed that the only viable mode of transmission is the synchronous mode
[8]. With these properties in mind, we considered an extension of the model to
a single column of neuron and then to multiple columns. In the single column
we generated and interconnected randomly sets of neurons, considering both
inhibitory ad excitatory synapsis. The multiple column model considers the an-
gle differences between neurons belonging to different pools. Considering single
column neurons, we found results qualitatively similar to the single chain case.
Work in progress focuses on multiple column case.

5 Conclusion

We present the model that reproduces the qualitative phenomena which charac-
terized the experiment on using a distractor when measuring the visual timing
ability. The real effect under scrutiny is here explained by a non linear be-
haviour of the neuron delay chain activation on the waves propagation velocity.
The model could account also for the latency reduction found by Ibbotson et. al
[9], explaining it as a consequence of changes occurred in the network activation
state. Our model relies on local effects, because of the association of a neuron
delay chain with each receptive field of the visual areas. Work in progress focuses
on reproduce the real magnitude and time course of the considered phenomena.
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Abstract. Powerful information processing functions are performed in

the mammalian retina in which basic units are different types of neu-

rons. This paper presents the types of neurons and their roles in the

visual processing system. The aim is to review the principles of how an

artificial visual system could be constructed based on a comprehensive

understanding of biological systems.

Keywords: Retina, cell types, neuroengineering, computational neuro-

science, artificial visual systems.

1 Introduction

A challenging goal for engineers and computer scientists is to apply knowledge
from biological research to create human-like intelligent artificial visual systems
(AVS) [1, 2]. In order to achieve this goal, it is necessary to dissect the key
principles that underpin biological vision [3,4,5,6]. The focus of this paper is to
review the different types of neurons in the retina and their circuitry to process
information. A summary of anatomy and physiology is presented along with
some implications for modelling.

2 A Review of the Biological Retina Cell Types

Histologically, the retina is divided in 5 layers: (i) outer nuclear layer which con-
tains the nucleus of the photoreceptors, (ii) the outer plexiform or interplexiform
layer (IPL) where the synapses between photoreceptors, horizontals and bipolars
take place, (iii) the inner nuclear IPL layer which contains the cells bodies of
horizontal, bipolar and amacrine cells, collectively called interneurons, (iv) the
inner IPL where the synapses between amacrine, bipolar and retinal ganglion
cells (RGCs) take place and finally (v) the ganglion cell layer which contains the
soma of the RGCs. The retina can be compared to a neural network (NN) of
three layers (Fig. 1a) [7, 8] where the second and fourth histological layers are
just connections. The outer nuclear layer where the photoreceptors are located
corresponds to the NN input layer. The hidden layer of a NN is analogous to the

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 335–344, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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inner nuclear IPL that contains the nucleus of the interneurons. The ganglion
cell layer is analogous to the NN output layer.

Photoreceptors are cells that respond to light by graded changes in the mem-
brane potential. Photoreceptors have an hexagonal shape and an ON and OFF
receptive field (RF) organisation [3]. There are two kinds of photoreceptors in
the human retina: cones and rods. Rods are responsible for night vision, they
detect dim light present at dusk or at night (moonlight). The rod system is
highly sensitive to light, but is achromatic. Cones are responsible for day vision,
they provide better spatial and temporal resolution, and mediate colour vision.
Cones are densely packed in the centre of the retina, the fovea, thus providing
the retina with a high resolution area in the centre; the surround of the retina
has equilibrium but the periphery is vastly dominated by rods [1]. On Figure 1,
for visual simplification, cones are shown contacting a single bipolar cell; in real-
ity they contact several bipolars of the same type and viceversa. The (L)ong or
red cone and the (M)iddle wavelength-sensitive or green cone (Fig. 1a) transmit
“red-green colour opponency” signals to the midget ganglion cell (P-RGC) [9].
The short wavelength cone termed S or ‘blue cone’ has its own circuitry system
(Fig. 1c). Chromatic information in a single channel tells the brain where along
the spectrum from blue to red-green the stimulus lies (i.e. “blue-yellow colour
opponency” signal).

Horizontal cell response is a function of the average intensity of stimula-
tion within its RF. Horizontals enhance the concentric sensitivity of bipolar and
RGCs, exciting or inhibiting surrounding photoreceptors. In mammals [9, 10]
there are two types of horizontals: H1 and H2. L- and M-cones relay and receive
feedback (inhibition) from H1 horizontals (Fig. 1d). H1 cells sum the L- and M-
cone inputs to produce a “L-M-cone-contrast-gain” [9]. H2-rods are far from the
horizontal soma, making H2 cells electronically isolated from the cone’s feedback
system. Thus, rods have an independent feedback system driven by and fed by
rods [10].

Bipolar cells participate in the straight forward flux of visual information or
direct pathway as well as on the indirect or lateral pathway. If the direct pathway
is excitatory, the indirect pathway is inhibitory and vice versa [4]. Both pathways
are integrated by the bipolar to generate a centre/surround or ‘Mexican hat’ RF.
There are two size types of bipolars; the larger type innervates the rods (‘rod-
bipolars’) while the smaller type is connected to the cones (‘cone-bipolars’) [5].
The mammalian retina contains 9-11 types of cone-driven bipolars [5, 11] which
subdivide into transient and sustained (Fig. 1b). Transient bipolar cells (b1)
respond ON- and OFF- to high frequency light present anywhere in their RF.
Sustained bipolars (b2/b3) which respond to low frequency light are also split
on ON-sustained and OFF-sustained. This subdivision filters the signal into its
temporal components, thus adding temporal filter behaviour to the retina [12].
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Fig. 1. This diagram shows the basic information processing channels in the
primate retina and much detail is omitted. (a) The retina can be compared to a

NN. Comparative chromatic information along the red to green spectrum is gathered

in the (L-M)-channel. (b) ON version of the magnocellular and parvocellular channels.

(c) Koniocellular pathway. (d) Rod circuitry. See text for details.

Amacrine cells: There are 20 morphologically different types of amacrines that
use at least 8 different neurotransmitters. Some amacrines have similar func-
tions to horizontals: they mediate antagonist inputs to RGCs from bipolars in
the RGC’s surround. Others have been implicated in shaping the complex RF
properties of specific classes of RGCs. Amacrines also have two different types of
response: transient and sustained. Rods and cones connect in parallel to separate
bipolars, forming a separate cone and a rod circuitry. Rods’ circuitry are simpler
than cones (Fig. 1d) [5]. At least two different pathways convey rod signals to
RGCs in the moderately and extremely dark-adapted eye [4]. Hundreds of rods
convey information to a single rod-driven bipolar synapsing on AII amacrine
cell which give their output (a) directly to OFF-centre-RGCs and (b) indirectly
to ON-centre-RGCs via cone-bipolars. Thus, the rod pathway attains access to
the highly structured circuitry of the cone pathway, i.e. a directionally selective
RGC maintains its function in dim light [4, 5].

Ganglion cells receive their input from bipolar and amacrine cells. They trans-
form this information into APs that are the output of the retina. This is the
first class of neurons in the visual pathways which actually uses APs to trans-
mit information. Visual information includes light intensity (driven by rods) and
colour information (driven by cones) [4]. Their soma is located in the retina but
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their long axons form the optic nerve that ends at different nuclei in the thala-
mus, like the LGN. The neurons whose soma is at the LGN and axon travel to
V1 in the visual cortex and are also called ganglion cells. A long-held principle is
that each ganglion cell type projects information to the brain in distinct parallel
pathways; however, not all ganglion types leads to a diferent pathway [5, 13].
Three pathways are well known:

Magnocellular pathway: Some L-M-cones respond more vigorously to high
frequency light. H1-horizontals biased those transient L-M cones. They both
gather information to b1-bipolars and transient amacrines, which in turn pass
it to M-RGC. M-RGCs are also called parasol cells, Y-ganglion cells in mon-
keys and α-cells in cats [4, 13, 14]. M-RGCs are large neurons that have large
concentric RFs which respond in a non-linear way with a transient response to
temporal frequency modulation. M-RGCs mainly get input from the periphery
of the retina and have a high degree of convergence. A single M-RGC receives
input from approximately 100 rod-bipolars which in turn receive input from as
many as 1500 rods and 8-10 cones-bipolars type b1 which in turn receive input
from 312 cones [4, 5]. This high convergence enhances sensitivity of the magno-
cellular channel. The high sensitivity (to light) of the rods, added to the high
convergence provides a night vision channel highly responsive to movement. M-
RGCs project to the first and second layers of the LGN. There are two types of
neurons on this channel: ON and OFF.

Parvocellular pathway: Some other L-M-cones are more sensitive to low fre-
quency light. They feed b2/b3-bipolars and sustained amacrines, which in turn
biases P-RGC. P-RGCs are also called β-ganglion cells in cats, midget ganglion
cells or X-ganglion cells in monkeys [4,13,14]. P-RGCs are small, having a small
linearly summing RF with a sustained response. P-RGCs are found nearer the
fovea and are concerned with high resolution vision. In the fovea, P-RGCs con-
stitute about 90% of all the RGCs whereas in the periphery they constitute only
40-45% [15]. P-RGCs end at the Parvocelular (3rd - 6th) layers of the LGN.
P-RGC also comes in ON and OFF versions.

Koniocellular pathway: S-cones provide their ON-signal to their own spe-
cialised ([S-ON/(L+M)-OFF]) bipolar cells. The (L+M)-OFF signal is provided
with a delay by surrounding cones that had been contacted by H2-horizontals
[9, 16]. Specialised bipolars relay to a dedicated class of RGCs, the blue-ON/
yellow-OFF or [S-ON/(L+M)-OFF]-RGC or small bistratified cell (SBC) [13,
15, 17]. Nonetheless, there is no agreement in the literature whether the OFF-
(L+M) signal circuitry is cones-H2-bipolars-SBC [9, 13, 17] or cones-bipolars-
amacrine-SBC [18] or a mixture [19] (Fig. 1c). Yet, another alternative is that
H1-horizontals contact M-bipolars providing the (L+M)-OFF signal directly to
SBC [9].
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Extracellular recordings of APs from the optic nerve allow fairly easy visu-
alisation of RGC’s activity. Thanks to systematic anatomical studies (visually
guided microinjection) and electrophysiology research in monkeys and humans
17-22 different types of RGC have been identified, as summarised in Table 1.

3 Implications for Modelling

From the above review it is clear that visual information is processed in the
retina by different types of neurons. Understanding the neurons circuitry and
computations leads to understanding the information processing in the retina.
The state-of the art of computational neuroscience of vision is that only a few
types of neurons of the visual system are modelled. Therefore, we present a
set of issues for simulation of an early stage of an AVS as follows: (1) What
difficulties will we encounter when a visual computational model is used with
multiple neuron types? Several issues can arise here, (a) Photoreceptors in bi-
ological systems are hexagonal, therefore a biologically inspired computational
model should be arranged in a hexagonal grid [8]. However, there are no commer-
cially available cameras that takes“himages” using hexagonal pixels or “hixels”
rather than conventional square pixels. See [28] for a review on hexagonal image
processing. (b) Also, the computational power required to do this processing in
a biologically inspired way is huge and was not possible a decade ago. (c) In
spite of great scientifical advances, our knowledge of the visual system neuron
types, their connections and computations remain unclear. (2) Based on what
is found on biology it is useful to assume that AVS would be more powerful if
more types of neurons were considered in the models. For example, this review
shows that the retina contains two forms of photosensitive neurons, i.e. rods and
cones. Three types of cones have primary sensitivity of red, green, or blue light.
By using three types of cones and rods for modelling of the visual system the
colour processing mechanism of the retina in a wide variety of light conditions
may be implemented in AVS. This mechanism is able to combine the gray-scale
and RGB signals instead of only gray scale in current AVS models. (3) How can
we use multiple neuron types in one visual system model? This can be achieved
by oversampling the image and using a highly organised sampling architecture
based on RFs and by implementing different channels each with particular neu-
ron types that extract a specific feature from the image.

4 Architectural Model

Based on biological findings [6] it is possible to create early stage modelling of
an AVS (Fig. 2). The initial stage of development of this model is the retina
(encircled yellow) which is the focus of this paper. As shown in the diagram, the
magnocellular pathway contributes to both the ‘where’ and the ‘what’ pathways
where as the parvocellular mainly contributes to the ‘what’ pathway. On an
early stage of modelling blue-cone signal can be transmited by the magnocellular
and parvocellular pathways. Thus, leaving us with four channels: ON and OFF
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Fig. 2. Hierarchical organization of the overall proposed artificial visual sys-
tem model. The Where pathway that performs motion detection and the What path-

way that performs object recognition. Modified from [6].

magnocellular and ON and OFF parvocellular. Each of those channels relay red
(L), green (M), blue (S) and grey (rod) type of information. As an example
the L-(ON and OFF)-magnocellular channels are described next. The L-ON-
Magnocellular-RGC processes an ON version of high frequency red light within
its RF (Fig. 1b and Fig. 3a), and a L-OFF-Magnocellular-RGC processes the
OFF version of the same signal (Fig. 1d and Fig. 3c). Neighbouring RGC of the
same type convey to a low hierarchy complex cell in the brain with a complex
RF (Fig. 3b,d,e). Sequentially this cell conveys information to a higher level
cell that compiles information regarding high frequency red light in the entire
image (Fig. 3f). Each RGC type processes specific information coming from a
particular area (i.e. RF) in the visual field (i.e. image).

Now, how to combine those theoretical channels with a practical architec-
tural model? An easy way to achieve this is to apply the following architectural
model of the retina to each colour type of information. In this hypothetical
architectural model the centre of each simple-RF is formed by 7 hexagonal ‘hix-
els’ and the surround is formed by two hexagonal rings of ‘hixels’ (Fig. 3a).
ON-complex-RFs are composed of 7 hexagonal ON-simple-RFs (Fig. 3c). For
the ON-Magnocellular channel when arranged to constitute the complex-RF,
each simple-RF has six overlaping ‘hixels’; thus, overlaping a single (strategi-
cally located) ‘hixel’ with each neighbour. Also note that there are ‘hixels’ that
are not-included on the ON-Magnocellular-complex-RF arrangement (Fig. 3c).
The non-including ‘hixels’ of the ON-Magnocellular complex-RFs are the cen-
tre of the OFF-Magnocellular complex-RFs (Fig. 3d-f). As this ‘hixel’ was not
included on the ON representation this means that it is not the same RF with
inverted sign but rather another different channel. For the surrounding of the
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Fig. 3. Hypothetical model of Magnocellular simple- and complex-RFs. (a)

ON-Simple and (b) ON-Complex Magnocellular-RF. The centre of this complex-RF

is a simple-RF and the surround is drawn by six simple neighbouring RFs. (c) OFF-

Simple (for option 1) and (d-e) OFF-Complex Magnocellular-RF, see text. (f) Only

the centres of ON-(blue) and OFF-(black) Complex-Magnocellular-RFs organisation

are shown.

Fig. 4. Early stage model of simple and complex-Parvocellular-RFs. (a)ON-

simple and (b) ON-Complex-Parvocellular-RF. (c) OFF- Simple-Parvocellular-RF.

(d) The magnocellular’s non-included-hixel is the centre of the OFF-Complex-

Parvocellular channel. (e) The magnocellular’s overlapping-pixel is the centre of the

OFF-Complex-Parvocellular channel. (f) Centre of ON-(purple) and OFF-(black)

Complex-Parvocellular-RFs’ organisation.
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OFF-Magnocellular complex-RF, there are two options whether an overlap is
beneficial (option 1) or not (option 2). The first option is a big surrounding area
formed by two rings of ‘hixels’ so that there is a continuity of the surround-
ing area (Fig. 3d). If this continuity that implies overlaping was undesirable an
smaller surrounding area formed by just one ‘hixel’ ring would be more appropri-
ated (Fig. 3e). In both cases, the centre of the ON-Magnocellular complex-RFs
is respected (Fig. 3b). Thus, despite the overlapping in the surround on the
selection of pixels (photoreceptors) there is no overlapping in the organisation
of complex-RF. The centre of both ON- and OFF- Magnocellular channels are
shown in Figure 3f. Moreover, in this hypothetical model as in biology, the Par-
vocellular simple-RFs are smaller than their Magnocellular counterpart. For that
reason the centre is just a ‘hixel’ and the surround is just a ring of six ‘hixels’
(Fig. 4a,c). The centre of the ON-Parvocellular complex RF, and the surround is
shaped by six neighbouring simple-RFs (Fig. 4b). As for the OFF system, there
are also two options. The first option is that the OFF-centre is outlined by the
“Magnocellular’s non-included” hixel (Fig. 4d). The second option is that the
OFF-centre is delineated by the “Magnocellular’s overlaping” hixel (Fig. 4e).
Both ON and OFF centres of the Parvocellular channel are displayed on Figure
4f. As presented here, the Parvocellular system has not overlapping at all.

5 Conclusions

The mammalian retina contains different neuron types and subtypes, each with a
different function. Almost each RGC type has its own circuitry or pathway that
processes a specific visual response property along the visual field. In each of
those individual channels information gathered at photoreceptor level is relayed
in purpose-specific cells that leads to specific feature extraction of the visual
information. Consequencely, the retina output is composed of multiple parallel
specific feature representations of the same image. Each of those individual spe-
cific pathways travels to a specific area in the visual cortex for higher processing.
Thus, a promising way to model the retina is to model the individual channels
in which each channel processes a specific feature. Therefore, a potential com-
putational model of vision that solves those issues leads to future AVSs.
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Abstract. Associations between picture and sound form the basis of

reading. Learning the correspondences between them is a crucial step in

reading acquisition. This study was designed to investigate whether task-

related processing of audio and visual features was independent or task-

related processing in one modality might influence the processing of the

other. The present study employed simultaneous audio-visual stimulus

in the oddball paradigm to re-examine the effects of attention on audio,

visual and audio-visual perception in the non-musician brain. Electroen-

cephalographic (EEG) was recorded from 28 normal participants. None

of them had more than three years of formal musical training and none

had any musical training within the past five years. Chinese and Korean

subjects were presented with tones (auditory: A), pictures (visual: V),

and simultaneous tones and pictures (audio-visual: AV). The neural ba-

sis of this interaction was investigated by subtracting the event-related

potentials (ERPs) to the A and the V stimuli alone from the ERP to

the combined AV stimuli (i.e. interaction = AV - (A+V)). The Korean

group showed larger mean interaction amplitude and longer in time than

the Chinese group. This reveals that experience influences the early cor-

tical automatic processing of linguistically relevant suprasegmental pitch

contour. These results suggest that efficient processing of associations be-

tween pictures and sounds relies on neural mechanisms similar to those

naturally evolved for integrating audiovisual perception.

Keywords: Brain, Audiovisual perception, Cognition, Event-related

potential (ERP), Microstate.

1 Introduction

Theoretically, the human central auditory system has a remarkable ability to es-
tablish memory traces for invariant features in the acoustic environment such as
music and speech sounds in order to correct the interpretation of natural acoustic
sound heard. Even when no conscious attention is paid to the surrounding sound,
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changes in their regularity can cause the listener to redirect his or her attention
toward the sounds [1]. Event-related potential (ERP) recordings have bought
new insight to the neuronal events behind auditory change detection in audi-
tion. ERPs components reflect the conscious detection of a physical, semantic,
or syntactic deviation from the expected sounds [1]. The ERP recordings thus
allow one to probe the neural processes preceding the involvement of the atten-
tional mechanisms. For instances, ERPs have been recorded that reflect memory
traces representing sounds composed of several simultaneous or successive tonal
elements [2-4].

Mismatch negativity (MMN) component of ERP is elicited in the auditory
cortex when incoming sounds are automatic detected as deviating from a neural
representation of acoustic regularities. It is mainly generated in the auditory
cortex [5] occurring between 100 to 250 ms and thus long been regarded as spe-
cific to the auditory modality [6-7]. The automatic change-detection system in
the human brain as reflected by the MMN requires the storage of the previous
state of the acoustic environment for detecting an incoming deviating sound
[6,8]. MMN implies the existence of an auditory sensory memory that stores a
neural representation of a standard against which any incoming auditory input
is compared [9]. In the auditory modality, MMN is an automatic process which
occurs even when the subject’s attention is focused away from the evoking stim-
uli [6]. Its onset normally begins before the N2b-P3 complex which occurs when
attention is directed to the stimuli. The duration of MMN varies with the na-
ture of the stimulus deviance but it invariably overlaps N2b when the latter
is present [10]. Previous study [11] has stated that the automatic detection of
stimulus change plays a part in directing attention to events of biological im-
portance. If this is the case, one would expect a similar mechanism to operate
in the visual modality. Even though MMN had not mentioned to be appeared
in the visual modality [11], several studies have shown that visual stimuli de-
viating from repetitive visual standards can also elicit a visual analogue of the
MMN in the same latency range. This visual MMN seems to be mainly gener-
ated in occipital areas [12-13] with possibly a more anterior positive component
[14-15]. In addition, Cammann’s study [16] showed a widely distributed MMN
change between 150 and 350 ms, with a parietal maximum suggesting that this
MMN may occur in the visual modality. Recently, Pazo-Alvarez et al. [17] re-
viewed several previous reports to provide convincing evidence for the existence
of this visual MMN. Moreover, cross-modal attention studies clearly showed that
deviant visual stimuli elicited MMN, largest over the inferior temporal cortex.
This visual MMN increased in amplitude with attention, but it was also evident
during inattention [18-19].

It is well-known that auditory signals can be differentiated by a variety of fac-
tors, including spectral and temporal information. It is important to recognize
that music and speech sounds differ in the way they exploit spectral and tem-
poral cues. The present work focuses on three related issues: How is the brain’s
music and speech sounds processing represented in brain electric potential fields,
how are the music and speech sounds with different pitch contours distinction
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embedded in this processing and which implications do these finding have for
theories of the human brain processing. The aim of the present study thus was
to study the human brain’s audiovisual integration mechanisms for pictures, i.e.,
for stimuli that have been previously associated through learning. The subjects
received auditory, visual, and audiovisual and were required to identify them,
regardless of stimulus modality. Audiovisual stimuli included matching pictures,
in which the auditory and visual stimuli corresponded to each other based on
previous experience, and nonmatching (randomly paired) pictures. Meaningless
auditory, visual, and audiovisual control stimuli were presented as well. The
brain activations were detected with electroencephalogram (EEG), which is well
suited for noninvasive identification of cortical activity and its accurate temporal
dynamics. This research project will elucidate neural mechanisms involved in in-
voluntary or preattentive discrimination of Chinese phonological units: tones and
pitch. By using native and non-native speakers of Chinese, we will be able to de-
termine the extent to which these phonetic processes are sensitive to experience.
This study also explored the effects of the relatedness of pictures and speech
sounds. Additionally, the goal of the present study was designed to re-examine
the effects of attention on MMN in audio, visual and audio-visual dimensions by
employing an oddball paradigm. Attentional ERP components were analyzed in
a situation where target stimuli were combinations of both audio and visual fea-
tures. Interactive processing of stimulus features would then be indicated by the
absence, reduction or early termination of the attention-related components [20]
as a function of processing of the other feature. If visual-specific components are
evoked by visual deviances, then the present audio-visual paradigm will help to
separate them from the effect of visual information on the audio-specific MMN
process by facilitating the focus of attention on audio and visual MMNs elicited
with bimodal features.

2 Material and Methods

2.1 Subjects

In this study, fourteen right-handed native speakers of Mandarin Chinese, and
fourteen right-handed native speakers of Korean, participated in the ERP exper-
iment. Native speakers of Mandarin Chinese had no Korean instruction before
the age of 11, and vice versa. Both groups had normal hearing sensitivity and cor-
rected to normal vision (self reported). None of the participants had more than
three years of formal musical training and none had any musical training within
the past five years. All participants had no history of neurological or psychiatric
history. After a complete description of the intended study, written informed
consent was obtained. The participants were paid for their participation.

2.2 Stimuli and Procedure

Stimuli consisted of a set of three synthesized Mandarin Chinese tones that were
distinguished minimally by pitch contour: [T1]; [T2]; [T3] and presented in an
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oddball paradigm. The duration of the stimuli was 300 ms. The audio-visual
experiment included four stimuli: congruent [T1] (acoustic [T1] + visual [T1]),
congruent [T2] (acoustic [T2] + visual [T2]), incongruent [T1] (acoustic [T1]
+ visual [T2]) and congruent [T4] (acoustic [T4] + visual [T4]). The auditory
and visual experiments included only the acoustic and the visual parts of these
stimuli, respectively. The stimulus onset asynchrony was 1300 ms. Stimulus se-
quences consisted of frequent (P = 0.60) congruent [T1] stimuli and congruent
(P = 0.15) and incongruent (P = 0.15) [T2] stimuli. Congruent [T4] stimuli were
presented as target (P = 0.10) to be able to check that subjects were attending
the stimuli (see Fig. 1). The stimulus sequences presentation was controlled by
the stimulus system (STIM2, Neurosoft, Inc. Sterling, USA). While visual stim-
uli were presented on the computer screen, acoustic/audio stimuli were delivered
binaurally to the participants through plastic tubes and earpieces. Sound density
was adjusted to be 85 dB above the participant’s hearing threshold. Subjects sat
in an electrically shielded and soundproofed room with the response buttons un-
der their hands. The subject had to press the button on the response pad when
the target was presented and ignore any other types of stimuli.

Fig. 1. Illustration of the experimental conditions

2.3 Electroencephalographic Data Processing

EEG data were collected in an electrically and acoustically shield room at the
Laboratory of the Clinical Research Institute, Clinical Cognitive Neurosciences
Center, Seoul National University Hospital, Korea. EEG was recorded with a
Quick-Cap equipped with 64 channels according to the international 10-20 sys-
tem using Scan system (Scan 4.3, Neurosoft, Inc. Sterling, USA). Reference
electrode was at mastoids. The signals were bandpass filtered at 0.05-100 Hz
and digitized at 1000 Hz. The impedance of the electrode was below 5 kΩ. Eye
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movements were monitored with two EOG electrodes. Four electrodes monitored
horizontal and vertical eye movements for off-line artifact rejection. Vertical and
horizontal electro-oculogram (EOG) was recorded by electrodes situated above
and below the left eye, and on the outer canthi of both eyes, respectively. Epochs
with EEG or EOG with a large (> 100 μV ) amplitude were automatically re-
jected. The artifact-free epochs were filtered at 0.1-15 Hz, baseline corrected and
averaged.

2.4 Data Analysis

EEG was segmented into 1,000 ms epochs, including the 100 ms pre-stimulus
period. The average waveforms obtained from the standard, deviant and target
stimuli were digitally filtered by a 0.1 - 15 Hz band-pass filter and finally baseline-
corrected. The N1 that was elicited at approximately 100 ms after the onset of
auditory stimulus, was visually inspected from waveform of standard and deviant
stimulus. Cross-modal interaction was investigated by subtracting the ERPs to
the auditory (A) and the visual (V) stimuli alone from the ERP to the combined
audio-visual (AV) stimuli (i.e. interaction = AV - (A+V) and was identified
as the peak voltage between 100-250 ms after stimulus onset in the subtracted
waveform. By using a peak-detection algorithm, the negative peak was identified
in the AV - (A+V) difference waveform between 100 - 250 ms.

2.5 Data Pre-processing and Feature Extraction

For each subject, mean ERP map series for the summed of auditory and visual,
AV interaction and audio-visual stimuli were computed over the 6 blocks where
each block was weighted by the number of averaged sweeps that it consisted of.
The grand mean map series over subjects and conditions was then computed.
For all mean ERP map series, the locations of the centroid of each map were
computed [21]. Centroids are the points of gravity of the positive and the negative
areas of an average reference-referred map.

2.6 Assessment of Changes of Spatial Map Configuration and Map
Landscape

For the analysis of changes of spatial map configuration, the curves of the cen-
troid locations over time were averaged over subjects. As the goal was to in-
vestigate whether there are periods of stable spatial map configuration in the
data, methods for space based segmentation of the ERP map series [22] were
used. The landscape of each map, i.e., the spatial configuration of its potential
distribution, was assessed numerically by the locations of the centroids of the
positive and negative map areas [21].

2.7 Statistical Analysis

Statistical analysis was performed on the GFP area of 21 electrodes sites within
the time range of difference waveform of cross-modal interaction (100-250 ms).
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Two groups consisted of Chinese and Korean separately and two conditions were
meaningful and meaningless. Five sites were prefrontal line, frontal line, central
line, parietal line, and occipital line, respectively. ERP was analyzed with three-
way ANOVAs with a repeated measure (group x condition x electrode site). Four
electrodes sites such as prefrontal line (FP1, FPz, Fp2), frontal line (F7, F3, Fz,
F4, F8), central line (T7, C3, Cz, C4, T8), parietal midline (P7, P3, Pz, P4, P8),
and occipital line (O1, Oz, O2) sites were used.

3 Results

3.1 Electrophysiological Data

A three-way repeated measures ANOVA conducted on the mean amplitude
yielded main effects of group (F1,26 = 7.31, p = 0.01) and condition (F1,26 =
9.63, p < 0.01), and an interaction effect between group and condition (F1,26 =
5.40, p = 0.04). No main effect of electrode location was found (F1,26 = 1.44, p =
0.282). Korean subjects showed a larger mean amplitude relative to Chinese
subjects for the both condition (F1,26 = 9.73, p < 0.01) (Fig. 2).

Fig. 2. Mean peak latency (left) and amplitude (right) values are displayed for the two

subjects groups in the meaningful (A) and meaningless (B) stimuli perception

The mean amplitude response for the Korean group was significantly less in
meaningful stimuli condition than in the meaningless stimuli condition (F1,26 =
11.41, p < 0.01). There was no significant difference between the two conditions
(F1,26 = 0.74, p = 0.58) in Chinese group. Irrespective of group, the peak later
for the meaningful stimuli (Chinese = 106 ms; Korean = 116 ms) relative to the
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meaningless stimuli (Chinese = 89 ms; Korean = 89 ms). A repeated measures
three-way ANOVA [group x condition x electrode location] conducted on the
peak latency measure yielded a significant main effect of condition (F1,26 =
16.40, p < 0.01), indicating that the peak of the integration occurred later in
time for the meaningful stimuli relative to the meaningless stimuli. No other
main effects or interaction effects reached significance.

3.2 Event-Related Potential (ERP) Map Sequences

Global Map Dissimilarity was computed between all maps of the mean map
sequence of the Korean (k) and Chinese (c) (Fig. 3A and 3B, right), and between
all maps of the mean map sequence of the Chinese with themselves (Fig. 3A and
3B, left), resulting in what is called now “landscape correlation matrices”.

Fig. 3. Matrices of correlations between map landscapes of meaningful (A) and mean-

ingless (B) stimuli. Original is the left lower corner (dot); time runs up and to the right;

thus, maps of equal latency are compared along the diagonal from the lower left corner

to the upper right corner. Left graph: mean ERP maps of the Chinese vs themselves;

Right graph: mean ERP maps of the Chinese (horizontal) vs. those of the Korean (ver-

tical). The color scale ranges from light red (high positive correlation) to dark red (low

positive correlation) to dark blue (low negative correlation) to light blue (high negative

correlation). Note the strong asymmetry of the correlations of Chinese vs. Korean data

in the meaningful stimuli, where the Chinese’s (horizontal) AV integration microstate

starts much earlier than that of the Korean (vertical).

3.3 N1 Map Landscapes

The mean locations of the landscape centroids of the N1 maps at group centre
latency for meaningful and meaningless stimuli in Chinese and Korean is shown
in Fig. 4. None of the landscape differences as represented by the centroids
reached significant double-ended p-values in meaningful stimuli. In meaningless
stimuli, there were statistical differences of interest along the anterior-posterior
axis: the positive (posterior) centroid was more anterior (P < 0.03) and the
negative (anterior) centroid was more posterior (P < 0.07) in Korean than in
Chinese. Thus, the anterior-posterior distance between centroids was smaller in
Korean than in Chinese.
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Fig. 4. The locations of the mean (across subjects) map centroids at the peak latencies

for the meaningful (left) and the meaningless (right) stimuli per experimental condi-

tions. Anterior centroids are negative (-), posterior centroids are positive (+). The

negative centroid of the AV integration was more posterior in Chinese relative to Ko-

rean in meaningful stimuli perception whereas the posterior centroid more anterior in

the Chinese than in the Korean in meaningless stimuli.

4 Discussion

The present study was able to find evidence of both non-phonetic and phonetic
audio-visual interactions in the ERPs to the same AV stimuli. The differences in
the sum of the ERPs to the unimodal A and V stimuli and in ERPs to AV stimuli
indicated interactions presumably based on temporal of the A and V components
of the AV stimuli. These interactions appeared to be similar for both Chinese and
Korean groups. In addition, the differences in the ERPs to the meaningful and
meaningless of AV stimuli probably reflect multisensory interactions in phonetic
processing. When acoustic and visual phonemes were meaningful, they formed
a natural multisensory interaction stimulus. The results of the reaction-time ex-
periment are clearly shown. When subjects categorized acoustic pitch contours,
incongruent visual pitch prolonged reaction times (P < 0.01) and congruent vi-
sual pitch (P < 0.05) shortened the reaction times. When subjects categorized
visual pitch, incongruent acoustic pitch prolonged reaction times (P < 0.01), but
the congruent ones did not affect reaction times. These results demonstrate that
phonetic-level interactions between acoustic and visual affect identification speed
of acoustic/visual perception. The phonetically incongruent audio-visual pitches
are recognized more slowly than the congruent ones. The comparison of ERPs
to the Chinese and Korean in audio-visual pitch contours perception revealed
significant differences at latencies of 106 and 116 ms after the sound onset. Both
interactions could be explained by modulated activity in parieto-occipital and
temporal regions. Importantly, the non-phonetic interactions, which were proba-
bly generated in the sensory-specific regions, were earlier than the first phonetic
interaction. All phonetic interactions were probably generated in the high-level
multisensory regions. The results suggest that sensory-specific and multisensory
cortices are involved in audio-visual processing at separate latencies and that
they are sensitive to different features of audio-visual stimuli. The present re-
sults corroborate previous findings showing that visual stimuli have access to the
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early levels of auditory processing hierarchy [23-28] and support the auditory in-
tegration models. Integration of auditory and visual non-speech information is
primarily based on temporal and spatial coincidence of the stimuli. These mecha-
nisms are important in audio-visual integration of speech as well. However, seeing
and hearing speech provide also phonetic information. Therefore, both general
and speech-specific multisensory mechanisms might be important in audio-visual
perception of speech [23,27]. Some comments on the rationale for analyzing the
sources of the AV - (A+V) difference wave may be discussed. This difference
wave may have a non-zero value whenever the bimodal AV stimulus elicits a
different amount or a different configuration of neural activity from the linear
sum of the activities elicited by the unimodal A and V stimuli. This differential
neural activity could result from an enhancement (or suppression) of activity
within one (or both) of the unimodal source configuration, or it could arise from
a different source not activated by either unimodal stimulus alone. In any case,
this differential neural activity due to cross-modal interaction is, in principle,
localizable to a particular brain region or regions. Previous studies have made
inferences about the localization of such interactive neural events on the basis of
their associated scalp fields manifest in the AV - (A+V) difference wave [29,30].
In the present study, scalp topographical evidence was supplemented by map
landscape in order to estimate the locations of the contributing sources.

5 Conclusions

The current study demonstrates that the audiovisual interaction is an indica-
tor for investigating the automatic processing of suprasegmental information in
tonal language. The use of multiple language groups is important for showing
language-related differences in the relative importance of perceptual dimensions
that may influence the magnitude of the response to pitch contours. The conver-
gence of ERP and earlier behavioral evidence further supports the notion that
the relative saliency of perceptual dimensions underlying lexical tones may in-
fluence the automatically processing of pitch contours at early stages or speech
perception. This finding gives support for the view that both sensory-specific
and heteromodal cortices are involved in the AV integration process at separate
latencies and are sensitive to different features of AV stimuli.
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detection in auditory patterns as governed by time and intensity information. Brain

Res. Cogn. Brain Res. 4, 145–148 (1996)

3. Alain, C., Woods, D.L., Ogawa, K.H.: Brain indices of automatic pattern process-

ing. NeuroReport 6, 140–144 (1994)

4. Alho, K., Tervaniemi, M., Huotilainen, M., Lavikainen, J., Tiitinen, H., Ilmoniemi,
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Abstract. Image coding by the mammalian visual cortex has been mod-

eled through linear combinations of receptive-field-like functions. The

spatial receptive field of a visual neuron is typically assumed to be signal-

independent, a view that has been challenged by recent neurophysiolog-

ical findings. Motivated by these, we here propose a model for conjoint

space-frequency image coding based on stimulus-dependent receptive-

field-like functions. For any given frequency, the parameters of the coding

functions are obtained from the Fourier transform of the stimulus. The

representation is initially presented in terms of Gabor functions, but can

be extended to more general forms, and we find that the resulting coding

functions show properties that are consistent with those of the receptive

fields of simple cortical cells of the macaque.

1 Introduction

The receptive field is a fundamental concept for the description of neuronal
activity. In the classical picture, the receptive field of a visual neuron becomes
defined by the region of space where light stimuli evoke neuronal responses, and
by the nature of such responses [1]. For instance, in the so-called ON regions
of the receptive field, an increment in luminance evokes an increased neuronal
response, the inverse being true of an OFF region. In this classical description,
the spatial organization of the receptive field is assumed fixed, and the neuronal
response to a time-invariant stimulus is obtained as the result of filtering the
stimulus by the fixed receptive field. On the other hand, linear combinations of
receptive-field-like functions (whose most common theoretical model is Gabor’s
elementary signals: gaussian modulated complex exponentials [2]) have been used
for describing conjoint space-frequency signal coding by the mammalian visual
cortex [3].

Lately, the classical view of a signal-independent receptive field has been
challengedbyneurophysiologicalfindingswhich indicate that the spatial receptive-
field structure changes with the neuronal input [4,5,6]. Motivated by such find-
ings, we here propose a conjoint space-frequency representational model in terms
of signal-dependent coding functions. More specifically, we show that any given
signal can be accurately represented by a set of receptive-field-like functions - well
localized both in space and in frequency - whose defining parameters are obtained
from the signal’s Fourier transform.
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2 Deriving the Representation

For simplicity, we first derive the proposed representation for one-dimensional
signals, and later extend our results to the two-dimensional case. We also start
by considering Gabor functions as the receptive-field model, but later show how
this can be generalized.

Let I(x) be a square-integrable signal defined over an unbounded domain,
such that its Fourier transform exists. The following identity holds:

I(x) =
∫ ∞

−∞
dωeiωx ∗ eiω(x−a)e−

(x−a)2

2σ2 (1)

where the asterisk denotes a convolution, and where a and σ are functions of
the frequency ω, given by

σ(ω) =
1

(2π)3/2
|Ĩ(ω)| (2)

and

a(ω) = −ϕĨ(ω)
ω

, ω �= 0 (3)

with |Ĩ | and ϕĨ denoting, respectively, the amplitude and the phase of the signal’s
Fourier transform, Ĩ(ω). When ω = 0, a is defined as zero.

Eq. (1), with a and σ as above, can be easily proven equivalent to the inverse
Fourier transform, as shown in the Appendix. It still expresses the signal through
an expansion in a complex-exponential basis set, but the ‘coefficients’ of such
expansion are functions both of position and of frequency, given by

eiω(x−a)e−
(x−a)2

2σ2 (4)

with σ and a as in equations (2) and (3). Thus, we have obtained a conjoint
space-frequency representation in terms of Gabor functions whose parameters
are related to the signal’s Fourier transform. Making the convolution operation
explicit in Eq. (1), it can be formally rewritten as (see Appendix)

I(x) =
∫ ∞

−∞
dωφω(x)[ψω(x) · φω(x)] (5)

where φω(x) denotes the complex exponential basis function, ψω(x) is the Gabor
coding function, and the term under the square brackets is their inner product.
Comparing Eq. (5) to the standard form for a signal expansion on a basis set,

I(x) =
∫ ∞

−∞
dωφω(x)[I(x) · φω(x)] (6)

we see that, in so far as the frequency ω is concerned, the coding function ψω(x)
is equivalent to the signal I(x). Thus, the set {ψω(x)} of stimulus-dependent
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receptive-field-like functions provides a complete space-frequency representation
of I(x).

The proposed representation can be easily extended to two-dimensional sig-
nals, in which case we find

I(x, y) =
∫ ∞

−∞

∫ ∞

−∞
dωxdωye

i(ωxx+ωyy)∗ei[ωx(x−a)+ωy(y−a)]e
−
[

(x−a)2+(y−a)2

2σ2

]
(7)

where
σ(ωx, ωy) =

1
(2π)3/2

√
|Ĩ(ωx, ωy)| (8)

and

a(ωx, ωy) = −ϕĨ(ωx, ωy)
ωx + ωy

, (ωx, ωy) �= (0, 0) (9)

with a being defined as zero, when (ωx, ωy) = (0, 0). The coding functions now
take the form

ei[ωx(x−a)+ωy(y−a)]e
−
[

(x−a)2+(y−a)2

2σ2

]
(10)

Fig. 1. Examples of the coding functions of Eq. (10), obtained from a 16×16 fragment

of the original image in Fig. 3. From top down and left to right, the represented

frequencies, (ωx, ωy), are (0,0), (0,1), (1,0), (0,2), (1,1) and (1,2).

It should be remarked that, although based on Gabor functions, the represen-
tation in Eq. (7) is quite distinct from a Gabor-transform expansion [7]. The
latter is a linear expansion on a set of Gabor functions whose parameters must
be chosen a priori, the coefficients of such expansion being obtained from a Ga-
bor transform, which corresponds to a gaussian-windowed Fourier transform. In
our case, the expansion ‘coefficients’ are Gabor functions whose parameters are
obtained from a standard Fourier transform.

Examples of such functions (computed from a 16×16 fragment of the original
image in Fig. 3), appear in Fig. 1. Since the Fourier spectrum of typical images is
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Fig. 2. Top: original images. Bottom: Conjoint space-frequency representation com-

puted using 3× 3 windows, for the frequencies (0,0), (0,1), (1,0), (0,2), (1,1) and (1,2).

concentrated at the lower frequencies, these functions tend to become narrower -
and thus their bandwidth tend to increase - with increasing frequency. This kind
of behavior has been observed for the bandwidth of simple cortical cells of the
macaque [8], and, in a more recent work [9], receptive fields which are low-pass
and broadly tuned in orientation, similarly as the DC coding function of Fig. 1,
have also been found in the macaque’s visual cortex. Such receptive fields are
not predicted by the usual models of cortical coding [3,9].

Eq. (7) is an exact mathematical result which holds for any square-integrable
signal defined over an infinite domain, but it remains approximately valid over
finite windows, with different σ- and a-values computed at each window. Fig. 2
shows the representation obtained for a set of natural images [10], considering only
six low frequency components computed over 3 × 3 windows. The average repre-
sentation error, over the set, is 3.9%. In Fig. 3, we present an image representation
computed only from the DC component of Eq. (7). Although the error is higher
(6.6%), the representation is visually quite faithful to the original input.

3 Generalizing the Representation

The proposed conjoint space-frequency representation can be generalized in sev-
eral ways. For instance, we can use rotated complex exponentials as basis func-
tions (the integrals are form −∞ to ∞):

I(x, y) =
∫ ∫

dωxdωye
i(ωxxθ+ωyyθ) ∗ ei[ωx(x−a)θ+ωy(y−a)θ ]e

−
[

(x−a)2+(y−a)2

2σ2

]

(11)
where {

xθ = x cos θ + y sin θ
yθ = −x sin θ + y cos θ (12)

in which case a and σ will be given, respectively, in terms of the Fourier trans-
forms of the rotated and the inversely rotated signals, θ being the rotation angle.
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Fig. 3. Left: Original image. Right: Approximation obtained through the DC compo-

nent of Eq. (7), computed over 3 × 3 windows. Representation error of 6.6%.

We can also generalize Eq. (7) to Gabor basis functions, as

I(x, y) =
1

2πσxσy

∫ ∫
dωxdωy

∫ ∫
dαdβei(ωxx+ωyy)e

−
[

(x−α)2

2σ2
x

+ (y−β)2

2σ2
y

]

∗ei[ωx(x−a)+ωy(y−a)]e
−
[

(x−a)2+(y−a)2

2σ2

]
(13)

where σx and σy are constants, while σ and a remain as in the original model.
Similarly to the original representation, the variants of Eqs. (11) and (13) can

be easily proven equivalent to the inverse Fourier transform, Eq. (7) being the
particular case of (11) for θ = 0, and the limiting case of (13) when both σx
and σy tend to zero. Eq. (13) can also be easily extended to the case of rotated
Gabor basis functions, and, in this more general guise, it will be comparable to
the conjoint space-frequency models of cortical image representation [3,9], which
express a given image in terms of spatially localized, oriented and bandpass basis
functions.

The proposed conjoint space-frequency representation is not restricted to Ga-
bor functions, the adequacy of which, as a model for receptive fields, has been
questioned by some [11]. Being F (x, y;S) a generic, unnormalized 2D function,
depending on the spatial parameter S, we can generalize Eq. (7) as

I(x, y) =
∫ ∫

dωxdωye
i(ωxx+ωyy) ∗ ei[ωx(x−a)+ωy(y−a)]F (x− a, y − a;S) (14)

where a remains defined by Eq. (9), and where S(ωx, ωy) is to be found from
the relation

|F̃ (0, 0;S(ωx, ωy))| =
1

(2π)2
|Ĩ(ωx, ωy)| (15)

Eq. (14), which can be easily proven following the steps in the Appendix, still
employs a complex-exponential basis, but along with a more general coding func-
tion. The extension to the case where the basis and the coding functions share
this more general form is straightforward; so is the derivation of the variant
with rotated versions of these functions. We have tested the case where F is the
physical point-spread function of an imaging system [12], and obtained repre-
sentations only slight inferior to those yielded by the Gabor functions. Further
experimentation with alternative coding functions is still needed.
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4 Conclusion

We have presented a new conjoint space-frequency representational model, based
on receptive-field-like coding functions whose parameters are obtained from the
Fourier transform of the input signal. For a typical image, the coding functions
show properties that are consistent with those of the receptive fields of cortical
cells, what indicates that they could prove useful for neurophysiological model-
ing (the fact that the coding functions depend on the Fourier transform of the
signal does not hinder the model’s neurophysiological plausibility, since the rep-
resentation is not substantially affected if a transform under a broad gaussian
window is considered). Our representation might also be advantageous in other
domains, such as compressive coding. For instance, sharp edges usually present a
problem for efficient compression, since these are localized spatial features, and
thus spread out in frequency. In terms of the proposed model, an edge would lead
to a number of coding functions that are broad in space, and thus localized in
frequency. Compressive coding of these functions, instead of the original signal,
might yield better compaction.
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Appendix

Here we prove the identity in Eq. (1), by taking the Fourier transform of both
sides of the equation. Changing the integration variable to ω′, we have

Ĩ(ω) ≡ F{I(x)} =
∫ ∞

−∞
dω′F{eiω′x ∗ eiω′(x−a)e−

(x−a)2

2σ2 } (16)

and using the convolution property of the transform,

Ĩ(ω) =
∫ ∞

−∞
dω′F{eiω

′x} × F{eiω
′(x−a)e−

(x−a)2

2σ2 } (17)

The two transforms under the integral are well-known, and we obtain

Ĩ(ω) = (2π)3/2
∫ ∞

−∞
dω′δ(ω − ω′)σ(ω′)e−iωae−

σ2(ω′)
2 (ω−ω′)2 (18)

where δ is Dirac’s delta function. Using the sifting property of the delta, we
finally arrive at

Ĩ(ω) = (2π)3/2σ(ω)e−iωa (19)

from which the relations in Eqs. (2) and (3) follow.
Also note that, making the convolution in the integrand of Eq. (1) explicit, it

can be rewritten as

I(x) =
∫ ∞

−∞
dωeiωx

∫ ∞

−∞
dξe−iωξeiω(ξ−a)e−

(ξ−a)2

2σ2 (20)

where the second integral is the inner product of the exponential basis function
and the Gabor coding function, what proves Eq. (5).
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Abstract. The implementation for the digital neural networks on a chip

requires a lot of chip area consumption. Our contribution paper deals

therefore with the design of a novel type of digital CNN architecture

focused on pattern recognition application. The novel designed network

we compare with another two CNN implementation of digital network

on a chip used for pattern recognition by the selected parameters as the

speed and chip area consumption. From the comparison we can recognize

that our proposed digital CNN network is the best from the other ones.

Keywords: CNN, pattern recognition, digital implementation of CNN

networks.

1 Introduction

Between the quickest ways of pattern recognition belong neural networks im-
plementation. Their advantage is gigantic computing power due to parallel data
processing and disadvantage is circuit’s trickiness due to a lot of computational
elements which provide parallel processing. Advantage of some neural networks
is their ability to learn, gratitude to which we needn’t to develop composite soft-
ware for data processing that are occupying a lot of place in memory. System
for data processing is creating simple learning with special training aggregate.

For image and pattern processing most frequently we use so-called cellular
neural networks marked as CNN. This type of networks contains a lot of cells
(computing elements), which are interconnected analogically as the neurons in
humane brain. An analogue architecture of this network is proposed and pre-
sented in 1988 L. O. Chua aL. Yang [1,2]. Basic principle of the CNN contains
literatures [3,4,5,6].

2 Implementation of CNN on a Chip

The CNN network is possible to design as an analog or digital circuits. Various
hardware implementations are present in the literatures [7,8,9,10,11,12]. The ad-
vantage of analog implementation is smaller chip area and advantage of digital
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implementation is easy modification for weight coefficients by the process of
learning. We are in our work focused to digital neural network, which advan-
tage is relatively easy implementation in the FPGA circuits. Basic property of
this type of the neural network are chip area consumption, high speed and low
consumption.

In the present time VLSI circuits and present technology achieve the man-
ufacture of the chip with very high density of integration, what make possible
hardware implementation with high number of neurons (neural cells) on the chip.
Even though henceforward stays the biggest problem for hardware realization
of neural networks from the point of view on chip area consumption and from
depended price. So than they could contain the cells occupying minimal area on
chip. In that digital design the most area is occupied by multiplier and adder,
hence we need the proposed alternative way of multiplication and added this in
consideration of consumption chip area.

The principle of the CNN networks is based on very simple principle similar
to those of biological neuron. Network is consisting of quantity basic comput-
ing elements so-called cells. Incoming inputs of cell are multiplying correspon-
dent weight coefficient, adding and then making conversion through the transfer
function. Because all cells realize information’s processing in parallel, calcula-
tion power CNN network is direct proportional to the number of cells. The more
cells containes the network, the more information achieve synchronized process-
ing. Therefore in design of the CNN network effort is focused to minimize cell
size and thereby provide for maximum number of cells on chip. Size of the chip
is one of biggest problems at designing CNN network. The most area of chip
takes hardware multiplier unit, therefore we are searching other alternative mul-
tiplication.

2.1 The Multiplication of the Signal Using the AND Gate

How to alternate the possibility of multiplication is to design circuit, which
multiplication input values and weight coefficient are by means of AND gate. The
method of multiplication is based on the fact, that by multiplication the input
value must be converted to the time interval from begin of time-window and the
weight value has to be special picked, so by the timing starts multiplication. We
proposed a special coding for the weights. The value of weight signal must by
distributed symetric in time-window.

We used a special system of 15 parts, e.g. one cycle is divided into 15 parts.
In such a time period is possible to code 16 various values weight or inputs.
Decomposition signal for corresponding weight values are displayed in Fig. 1.

As the example we can input value x = 8/15 multiply with the weight w =
5/15, according the Fig. 2 and input values must be transformed to the time
interval from begin time axis corresponding with input size. We can get the
output signal y = 3/15 from the time interval. The real value from the x.w = 0.18
and the result after Fig. 2 is 3/15 = 0.2.

Natural property of this proposed method of multiplication is rounding. For
verification effect of the rounding on the result CNN network we are create
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Fig. 1. Weights in the proposed 15s system of the timing

Fig. 2. An example of the evaluation for weight wgt=5/15 and the input x=8/15

simulator as macro at Visual Basic for Application in MicrosoftExcel. We used
the simulator to recognize, that we can this rounding neglect. For example ex-
istence of multiple rounding the intermediate result caused that the final re-
sult network will be delayed about one iteration later, than in example without
rounding.

The value of the error of computing depends from factors of conjunction. A
decomposition error is in the Fig. 3. On this picture a) is decomposition absolute
error. They maximum value is 0, 031. On the picture b) is displayed absolute
error in percentage. On the figure we can see effect of the rounding, where for
numbers, that were rounding to zero is absolute error 100%, but those number

(a) (b)

Fig. 3. Decomposition errors depended from factor conjunction
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are so small, that we can ignore them. Proper by selection weight coefficients is
possible shift calculation in the areas with minimum errors.

2.2 The Cell of the Proposed CNN

The proposed circuit is a digital synchronous circuit. Designed circuit has been
realized by means of descriptive language VHDL in development environment
Xilinx. The cell contains several sub-circuits. The block diagram of cell is in the
Fig. 4. On the inputs of cell are 9 weight and 9 input signals and their corre-
sponding signs. Eight input signals are attached on the output of neighboring
cells and one input, fifth in sequence is attached on own output of cell, because
in the CNN theory is the cell neighbor to itself. Then the inputs are multiplied
with weights in logical AND gate and sign inputs are compared with the logical
XOR gate. Size of the weight must be specially decomposed in time according
to Fig. 1. This will ensure multiplication of the signals at the AND gate. If the
result of multiplication is positive (output of XOR gate is log 0), then the result
is added to counter and if it is negative (output of XOR gate is log 1), then
the result is subtracted from counter. Output signal of counter is transformed
in block transferfunction, which realized threshold logic function.

Converted signal is coming through multiplexer mx to the block converter.
Multiplexer mx allows enter input values to the network. Block converter has
two functions: it contains register, where is saved the result, from it is possible
to read (data out) and circuit converting results on time interval corresponding
size of results (statex o, sign o), which feed into surrounding cells.

Fig. 4. Block diagram cell of the CNN

2.3 A Novel Architecture of the CNN Network

CNN network consists from a field of cells, in that every cell is coupled with
everyone of the nearest neighbor i.e. output one’s cell is the input to all sur-
rounding cells. We can see, that every cell is on the fifth input coupled with
its own output, because in the CNN theory is every cell neighbor to itself too.
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Fig. 5. Block diagram of CNN network

General design CNN network is in the Fig. 5. Complete network contain network
of coupled cells, weight and sign register where from weights are feed individual
cell and circuit for synchronization and control network.

3 The Comparison of Our Network with Others

The new architectures CNN network we compared with other digital CNN net-
work. For comparison we selected following networks:

– Our previous CNN network [13].
– Standard digital CNN network with parallel signed multipliers.

All network for comparison were designed for processing 5-bit data, where 4 bits
represented values and highest bit represented sign of values.

3.1 Our Previous CNN Network

This network is previous to our new CNN architecture. Network was proposed
as the synchronous digital circuit, which also is based on utilization of multipli-
cation signals distribution in the time by means of logical AND gate. The main
difference in opposite of the new architecture is low speed and circuit complex-
ity [13]. The block diagram of one cell of this network we can see on the Fig. 6(a).
Every cell contains weight register which consists from wegreg, where is storing
value of weight and signreg, where is information about sign of weight.

The main difference opposite to new design is, that multiplication of inputs
with weights is realized sequentially. In the first step every cells inputs are mul-
tiplied with first weight and result is saved in counter. In the next step inputs
are multiplied with second weight and result is saved in counter, etc... Then cal-
culation of one’s iteration of network is durable 9x15, what is 135 clock cycles.
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3.2 Standard Digital CNN Network with Parallel Signed
Multipliers

This network has been proposed by means of standard parallel signed multipliers.
The block diagram of one cell of this network is in Fig. 6(b). Block parallel
signed multiplier contains 9 signed multipliers, which simultaneously multiply
all weights with appropriate inputs. This block contains 9 outputs corresponding
with 9 results of multiplication. This results are summarized in block adder and
followed by convertion in block transfer function, which realized threshold logic
or hard limiter function.

(a) The block diagram of one CNN net-

work cell presented at [13]

(b) The block diagram of one cell of stan-

dard CNN, which contains parallel signed

multipliers.

Fig. 6. The compared CNN networks

4 Results

For verification of properties and behavior for the proposed neural network we
need sufficient number of cells. Proposed network is fully cascade, i.e. we are
possible created network with optional number of cells. We use in our experi-
ments applications for 400 cells. Then input of neural network is input matrix
size of 20x20 and weight matrix is size of 3x3. During testing the networks we are
focused mainly on network facilities as the edge detection, fill up missing edges
and noise removing. During these simulations we applied as a transfer function
hard-limiter. For better interpretation we displayed input to output matrix both
in graphical form. Each cell is able to obtain 31 different values, which are on
pictures represented by 31 shade of gray. As the first we verified network facilities
by detection of horizontally edges. Input has been two words ”HELP”, which
contained 14 horizontal edges. In Fig. 7 we can see, that required output arrive
already after second iteration. Further we verify network facilities for filling up
missing edges (Fig. 8). For the input to the network we are using corners. For
connecting these corners the network needed 7 iterations. As last we were testing
network facilities as the noise removing from picture (Fig. 9). Input has been
rustle number ”43” with noise cca 30%. On this figure Output 1 we can see result
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(a) Input (b) Output

Fig. 7. Detection of horizontal edges

(a) Input (b) Output

Fig. 8. Completion of missing edges

of incorrect choosing weight matrix and Output 2 result after properly choosing
weight matrix. It has been 100% filtered out after first iterations.

From presented examples it is possible to conclude, that network fulfill setting
requirements. Speed and correctness output is depended on properly choosing
transfer function and weight matrix. Weight matrix we have defined intuitively
- by the method experiment - mistake. In the future we would like to set weight
matrix by learning the network.

The main aim of our work was to propose new architecture of the neural CNN
network with alternative way of multiplication, that us allow to reduce chip area
by implementation of this CNN network. Our main comparison parameters were
the speed and size (number of gates) of network. In the Table 1 is comparison
one’s cell of the three different neural networks. Our new designed network we
compared with network, which are presented in [13] and with standard network
containing 5-bits parallel signed multipliers. All circuits were clocked by identical
clock signal. Highest speed occurred by standard network with parallel signed
multipliers, where calculation of one’s iteration needs 4 clock cycles. The slowest
network is our previous network, which calculation of one’s iteration needs 135



370 E. Raschman and D. Ďuračková

(a) Input (b) Output 1 (c) Output 2

Fig. 9. Noise removing

clock cycles. Required big number of cycles is followed by sequential multiplica-
tion inputs with weights. Our new designed network realize multiplication of all
weights with corresponding inputs at once in one’s time window, what allow 9 -
times speed up in comparison with initially designed network. For the calculation
of each iteration 15 clock cycles are needed. Speed of proposed network is then
concerning standard CNN network approx. 4 - times slower. The main request
of our design has been to propose CNN, which could occupy the minimum of
the chip area. Parameters represented size of one’s cell are in the table divided
in the three columns Bels (Lut, mux, xor, inv,...), Flip Flops (flip flops) and
Total (total number of gates). The one cell in standard network with parallel
multiplier is created by 1415 number of gates. Our previous design contain 461
number of gates, what is 3 - times less than standard network. Cells of our new
design network takes only 187 number of gates, which is 7.5 - times less as the
standard network.

Due to parallel calculations of all cells is speed of the network with optional
number of cells given as the speed of one cell calculation. The duration of one’s
iteration for proposed network with optional number of cells is 15 clock cycles.
This speed of network is sufficient.

Design of new architecture brought saving 86.8% gates in opposite with stan-
dard CNN with parallel signed multipliers. In the Fig. 10 is dependence the
consumption of gates versus number of cells.

Table 1. Comparison of parameters for CNN cell

Parameters

Cell of the CNN Speed

(one iteration)
Bels

Flip

Flops
Total

CNN with 5-bit signed

parallel multipliers
4 CLK cycles 1207 208 1415

Our previous CNN 135 CLK cycles 272 189 461

New design of the CNN 15 CLK cycles 155 32 187
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Fig. 10. Comparison of the CNN

5 Conclusion

We designed a new architecture of the digital neural network, with multiplication
signals decomposed in the time by means of AND gate. Natural property of our
multiplication is rounding. Values input and output from cell can be obtaining by
values from -1 to 1 with step 1/15, which presented 31 shade of gray. We verified
some basic properties of the proposed CNN network as are edge detection, filling
of the edges and noise removing.

Our designed network is in comparison with standard CNN network with
parallel signed multipliers 4 - times slower, but its relative simpler circuit which
allows to spare till 86% gates and thereby allows to create network with identical
parameters with fundamentally large number of cells. From the Fig. 10 we can
recognize, that our new CNN needs less number of gates by the constant amount
of cells, than other compared networks.

In the future we would like to create the network implementation in to FPGA
chip and connected it with PC, what require create communication and user
interface and define input weight matrix on base learning networks by means of
incoming learning set of data.

Acknowledgments. This contribution was supported by the Ministry of Edu-
cation Slovak Republic under grant VEGA No 1/0693/08 and conducted in the
Centre of Excellence CENAMOST (Slovak Research and Development Agency
Contract No. VVCE-0049-07).
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Abstract. With emergence of graphics processing units (GPU) of the

latest generation, it became possible to undertake neural network based

computations using GPU on serially produced video display adapters.

In this study, NVIDIA CUDA technology has been used to implement

standard back-propagation algorithm for training multiple perceptrons

simultaneously on GPU. For the problem considered, GPU-based im-

plementation (on NVIDIA GTX 260 GPU) has lead to a 50x speed in-

crease compared to a highly optimized CPU-based computer program,

and more than 150x compared to a commercially available CPU-based

software (NeuroShell 2) (AMD Athlon 64 Dual core 6000+ processor).

Keywords: GPGPU, neural networks, perceptron, NVIDIA CUDA,

parallel computations.

1 Introduction

Hardware implementation of neural network algorithms is rather efficient, mostly
due to highly parallel internal structure of algorithms. Usually, hardware imple-
mentation implies computations using a special neuroprocessor that supports
multiple neural networks processing simultaneously and single neuron computa-
tion acceleration as well, when compared to CPU. However, using a neuropro-
cessor is an expensive solution; also, modern CPUs computational power obeys
the well-known empirical Moore’s law, according to which the productivity of
CPUs doubles every year and a half. So, neuroprocessors quickly become obso-
lete. That is why “pure” hardware solutions for neural network computations are
mostly limited with areas, where high computational speed is critical (e.g. neural
network based controllers for technology, robotics and military applications).

2 GPU and GPGPU

Graphics Processing Unit (or GPU) is a kind of microprocessors used in comput-
ers for 3D graphics rendering. Initially, GPUs were used to accelerate texture
based operations, such as mapping or interpolation, to implement geometric

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 373–380, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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computations in hardware. As common 3D model consists of a large number of
polygons that can be processed independently in some sense, GPU architecture
evolved in the direction of parallel computing.

In our days, GPUs have highly parallel architecture that allows processing
numerous polygons independently. Modern GPUs belong to stream processors
and imply SIMD (Single Instruction, Multiple Data) paradigm. Thus, using a
modern GPU with a large number of cores can provide much greater computing
speed, compared to modern CPUs.

Last generation GPUs allow running general purpose computing programs (so
called GPGPU - General Purpose computation on Graphic Processing Units),
not only those related to computer graphics. Developer should write program
code in a special way (e.g. using compiler directives), then compile a program
and load it into GPU. Usually, modern compilers use C-like language. Compilers
can be easily integrated into modern program development environment, such
as Microsoft Visual Studio. A number or standard libraries, such as BLAS or
FFT, has been ported to be used for GPGPU-based programs. Therefore, one
can say that writing a GPGPU-compliant program seems to be a “not-so-hard”
task.

However, there is no unified language or technology at this moment, which
could handle GPGPU-based programs regardless of GPU manufacturer (at least
as far as the authors of this paper know). That’s why rewriting programs “from
one GPGPU brand to another” can lead to serious difficulties. Therefore, it may
happen that some complicated algorithm would have to be solely developed for
a certain GPU brand.

In 2007, NVIDIA, a world-wide manufacturer of GPUs, has presented a tech-
nology named CUDA [1], which made possible creating general purpose compu-
tations oriented programs for NVIDIA GPU families.

3 Neural Networks and GPGPU

Neural networks represent a good example of how GPGPU can lead to a signif-
icant speed increase. The reason is that many of neural network architectures
imply independency of neurons of each other. Thus, one can implement parallel
versions of corresponding neural networks algorithms.

Historically, first MLP implementations used shader-based programs (e.g.,
[2,3]). Authors are sure that at present this approach is obsolete. The reason is
that shaders are designed for computer graphics tasks, not for general purpose
tasks as CUDA is. Shader-based programs had been used due to lack of available
programming technologies for GPU at that time.

The authors are aware of several publications, dedicated to using neural net-
works with GPGPU-based programs (e.g., [4]).

In this study, we present results of program realization of multilayer percep-
tron (MLP) oriented CUDA-based algorithms.

How one can speed up MLP computation? The most evident way is to pro-
cess a number of MLPs simultaneously. More complicated methods are strongly
connected to GPU specifics, such as multiple cores or SIMD.
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We shall list several general limitations we used for MLP processing, without
going deeply into technological and programming details. First, we used MLPs
with single hidden layer (sometimes also referred to as “three-layer MLPs”).
Second, we used the so-called half-batch training mode, when several forward-
propagation passes are followed by a single back-propagation pass. Third, we
used simultaneous processing of multiple MLPs with the same input data, but
each MLP had its own weights and its own output data.

4 Scientific Problem

CUDA-based program for processing MLPs has been designed for solving cer-
tain inverse problem related to geophysics studies. The inverse problem was to
restore electrical conductivity distribution underground by the measured values
of electromagnetic fields at the surface. We shall not discuss detailed physical de-
scription of the inverse problem here, as it is not significant for our technological
CUDA-based solution at all. The detailed problem statement and the obtained
results are discussed elsewhere [5].

The input data was represented by a matrix of floating point values (30,000
patterns by 6,552 features), and the output data was also represented by a matrix
of floating point values (30,000 patterns by 336 features). This single macro
inverse problem has been simplified (using several assumptions insignificant for
our solution), analyzed and split into four sets each consisting of a large number
of small inverse problems. We have decided to use MLPs to solve each small
inverse problem.

Finally we have got 4 sets each consisting of 336 three-layer MLPs with the
following properties:

• 1,648 input features
• 8 neurons in the single hidden layer with sigmoid transfer function
• 1 neuron in the output layer with sigmoid transfer function
• Learning rate has been set to 0.01 for all layers
• Momentum has been set to 0.5 for all layers
• Initial weights range has been set to ±0.3 for all layers
• The input data for all MLPs within each set was the same
• The output data for all MLPs within each set was unique for each MLP
• Total 30,000 patterns

We have committed 5 training runs for each MLP with different initial weights
randomly set each time. Thus, one can consider that we had to deal with 336 ×
5 × 4 = 6,720 MLPs of the specified configuration.

The input data array has been divided into training set (21,000 patterns),
test set (6,000 patterns) and validation set (3,000 patterns). As usually, the
training set was used for MLP training, the test set was used to prevent MLP
overtraining, and the validation (out-of-sample) set was used for final MLP error
estimation.

The standard back-propagation training algorithm with momentum has been
implemented.
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As itwasmentioned, the so-calledhalf-batch trainingmodewas used. TheMLPs
were trained by groups of 10 patterns, when 10 forward-propagation passes were
followedby a single back-propagationpass. Tominimize thenegative effect of batch
training, the group was chosen randomly each time before the next batch.

The criterion of training stop was 100 epochs after minimum of error on test
set.

We trained 75 MLPs simultaneously. This means that the total number of
MLPs in the queue could be unlimited, but only 75 of them could be being
trained at the same moment. When one of the 75 MLPs finished its training,
another MLP from the queue would start its training.

We used NVIDIA CUDA technology. We will not discuss technological details,
features or “special tricks”, applicable to CUDA, here (for these, please refer to
CUDA documentation at NVIDIA site [1]). However, many of those tricks have
been successfully used in our computer program, allowing us to gain significant
speed improvements.

We should emphasize that the achieved speed improvement benefits are valid
only for the provided MLP training general limitations and for the existing com-
puter program, but they do not depend on the specific values in data. Thus, imple-
mented program is acceptable for any case, when one should train multiple 3-layer
MLPs with the same input data for all MLPs and unique output data for each
MLP. Also, the results partly depend on the input and output data dimensions.
Training parameters different from the used ones may lead to different results.

4.1 Pseudo-code for an MLP-Processing Program

//Procedure returns each net’s weights in the
// minimal error for the test set state.

Procedure Train(N, M, DATA)
//assuming ’N’ is a total number of nets to be trained
//assuming ’M’ is a number of nets to be trained concurrently
//assuming ’DATA’ is a container for data

Var MNow : Integer
List : Array of NN

Begin
MNow = 0
List is empty
While (not all N nets trained) Do
Begin
While MNow < M Do
Begin
Add non-trained-yet net to the List
MNow = MNow + 1

End
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While (not all examples shown) Do
Begin
Select 10 random examples from DATA
Make 10 forward propagation steps for all nets
Make a backward propagation step for all nets

End
For Each net in the List
If net training is complete

Remove net from the List
MNow = MNow - 1

End If
If net error for the test set is the least one
during training process for this net

Save net’s weights as ’final’ weights
End If

Next For
End

End

5 Hardware for Tests

We used two different hardware configurations for testing our computer program.

System A (notebook)

• CPU: Intel Core 2 Duo T7500 2.2 GHz
• RAM: DDR2 5300 (333 MHz), 333 MHz mode
• GPU: NVIDIA GeForce 8600M GT, PCI-E x16 videocard (working in PCI-E

1.0 mode), drivers version – forceware 178.08 (computation speed does depend
on the version of driver)

• OS: Windows Vista 32-bit

System B (desktop)

• CPU: AMD Athlon 64 x2 Dual 6000+ 3.0 GHz
• RAM: DDR2 6400 (400 MHz), 375 MHz mode
• GPU: NVIDIA GeForce GTX 260, PCI-E x16 videocard (working in PCI-E

1.0 mode), drivers version – forceware 178.08
• OS: Windows XP 32-bit

For additional information about GPU hardware, please refer to NVIDIA site
[6].

6 Results

We have developed a computer program for CPU, targeted to reach maximal pos-
sible computational speed of a standard back-propagation algorithm, for compar-
ison with GPU implementation. To test its efficiency, we have compared this CPU
program with several commercially available neural network software packages.
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The input data for tests consisted of 20 randomly generated features. The
output data was generated as a rather simple polynomial dependence based on
the values of the input variables (features). This full data set (input+output)
was the same for all the programs we have tested. We have assumed that initial
weights values had no significant impact on training speed performance. There
were 6,000 patterns in the full data set. 60% of data were assigned to training
subset; test and validation sets had their 20% and 20%.

We tried to create the same ’environment’ for all the programs we have tested.
So, all net training parameters, such as momentum or learning rate coefficients,
were set to the same values. All data sets were also the same for all programs.

Hardware system B was used for these tests.
Results are presented in Table 1.

Table 1. Comparison of several CPU-based programs

Program, hardware Nets
Number of patterns

for a batch
Full time, sec.

Time per net

training

epoch, sec.

NN lib 1 10 34.7 1.7
NN lib 1 1 62 3.1

Neuroshell 2 1 1 111 5.5

NeuroSolutions 5 1 1 122 6.1

MATLAB 2008a 1 1 330 16.5

Each row in Tables 1, 2 represents a separate computational experiment. The
columns in Tables 1, 2 have the following sense.

“Nets” - the number of concurrently trained NNs. This value is always equal
to 1 for CPU-based programs, but may vary for GPU-based programs.

“Full time, sec.” - total time required for all used NNs to be trained for 20
epochs.

“Time per net training epoch, sec” - average time for 1 epoch per NN. One
can compare different NN implementations time efficiency using this value.

Our program with our neural networks library (NN lib) showed very good
results (compared to other programs) due to optimizations within the library
development stage. Also, using half-batch mode instead of no-batch mode de-
creases required time approximately twice, with almost no model error increase
(due to large number of patterns). Such an option does not have as large impact
on CPU implementation of algorithm, as it does on GPU implementation.

Thus, one can see that GPU-based computation (Table 2, experiment 1) pro-
vided about 50 fold speed increase compared to the fastest version of CPU-based
computation (experiment 5).

From practical point of view, it required about 2 months of computations using
11 CPU cores (system B, no batch training) to train 6,720 MLPs with training
parameters listed above, while GPU computations on a single GTX 260 required
about 17.5 hours (half-batch training). Note that this total time includes wastes
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Table 2. Comparison of several GPU-based programs

Program, hardware Nets
Number of patterns

for a batch
Full time, sec.

Time per net

training

epoch, sec.

CUDA, B 256 10 167.5 0.033
CUDA, B 75 10 55.8 0.037

CUDA, B 64 10 51.2 0.04

CUDA, A 64 10 531.6 0.42

NN lib, B 1 10 34.7 1.73
NN lib, A 1 10 37 1.85

NN lib, B 1 1 62 3.10

NN lib, A 1 1 62.8 3.14

Neuroshell 2, B 1 1 111 5.55

due to computers shutdown for weekends, time for data loading and preparing
and so on. Results seemed to be almost identical; the small difference can be
explained by differences in batch training parameters.

7 Conclusion

Standard Back Propagation algorithm with momentum for training MLPs has
been implemented to run on modern NVIDIA graphic processing units’ family
with the help of NVIDIA CUDA technology. On a serially produced video display
adapter based on NVIDIA GTX 260, up to 50x speed increase compared to a
highly optimized CPU program, has been obtained when training 6,720 MLPs,
each having 1 hidden layer, 1,648 inputs, 8 neurons in the hidden layer and one
neuron in the output layer, for a specific problem statement.

The plans of future studies include implementation of different neural ar-
chitectures for GPUs, and also implementation of some specific techniques, in
particular, those connected with time-series analysis.
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Abstract. Recurrent neural networks are popular tools used for modeling time
series. Common gradient-based algorithms are frequently used for training recur-
rent neural networks. On the other side approaches based on the Kalman filtration
are considered to be the most appropriate general-purpose training algorithms
with respect to the modeling accuracy. Their main drawbacks are high compu-
tational requirements and difficult implementation. In this work we first provide
clear description of the training algorithm using simple pseudo-language. Prob-
lem with high computational requirements is addresses by performing calculation
on Multicore Processor and CUDA-enabled graphic processor unit. We show that
important execution time reduction can be achieved by performing computation
on manycore graphic processor unit.

1 Introduction

To process data with spatio-temporal structure recurrent neural networks (RNNs) were
suggested. RNNs were successfully applied in many real-life applications where pro-
cessing time-dependent information was necessary. Unlike feedforward neural networks,
units in RNNs are fed by activities from previous time steps through recurrent connec-
tions. In this way contextual information can be kept in units’ activities, enabling RNNs
to process time series. Common algorithms usually used for RNN training are based on
gradient minimization of the output error. Backpropagation through time (BPTT) [1]
consists of unfolding a recurrent network in time and applying the well-known back-
propagation algorithm directly. Another gradient descent approach, where estimates of
derivatives needed for evaluating error gradient are calculated in every time step in for-
ward manner, is the real-time recurrent learning (RTRL) [2].

Probably the most successful training algorithms are based on the Kalman filtration
(KF) [3,4,5]. The standard KF can be applied to a linear system with Gaussian noise.
A nonlinear system such as RNNs with sigmoidal units can be handled by extended
KF (EKF). In EKF, linearization around current working point is performed and then
standard KF is applied. In case of RNNs, algorithms similar to BPTT or RTRL can be
used for linearization. Methods based on the Kalman filtration often outperform com-
mon gradient-based algorithms. Multistream EKF training proved to be very successful
approach for training relatively large recurrent neural networks to the complex real-
life tasks from industry [6,7]. Multiple instances of the same network are trained on
different data streams in the same time and coordinate weight changes are performed.
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Here we address the problem of high computational requirements by using high per-
formance of many-core processor of graphic unit. We use Compute Unified Device Ar-
chitecture (CUDA) which is general purpose parallel computing architecture enabling
developers to use NVIDIA’s graphic processor units (GPUs) for solving complex com-
putational problems [8]. GPUs are now highly parallel multithreaded many-core pro-
cessors with high memory bandwidth capable to perform more than 1012 floating point
operations per second. GPUs are well suited to address problems that can be expressed
as data parallel computations - the same program is executed on many data elements
in parallel. CUDA has been already applied in many applications such as video pro-
cessing, pattern recognition or physics simulations. In [9] authors used CUDA CBLAS
library for linear algebra operations of RNN EKF training.

In this work we provide experiments with RNNs trained by multistream extended
Kalman filter (MSEKF). This algorithm was successfully used in several real world ap-
plications and is considered to be the state-of-the-art technique for training recurrent
networks. We first describe simple and elegant way of encoding recurrent neural net-
work into data structures inspired by [1,10]. Then we present MSEKF in the form of
simple algorithm in pseudo-language similar to Pascal. Both forward propagation of the
signal and MSEKF training algorithms are given in almost copy and paste form. We dis-
cuss details of two implementations: the first using standard CPU and the second using
CUDA enabled GPU. Finally we compare executions times of both implementations
for different number of hidden units and different number of streams.

2 Encoding Recurrent Neural Network into Data Structures

Elman’s simple recurrent network (SRN) proposed in [11] is probably the most widely
used RNN architecture. Context layer keeps activities of hidden (recurrent) layer from
previous time step. Input layer together with context layer form extended input to the
hidden layer. Elman’s SRN composed of 5 input, 4 hidden a 3 output units is shown in
Fig. 1a. Context units C6 to C9 hold activities of hidden units H6 to H9 from previous
time step and together with input layer activities I1 to I5 they serve as extended input
to the hidden units H6 to H9. All hidden and output (O10 to O12) units are connected
to the special input unit T0 through threshold connections. Threshold unit T0 is set to
constant value of 1.

In general, units of a neural network need not to be organized in layers. They can
be randomly interconnected as soon as the directed graph representation of the network
having vertices as units and edges as connections does not includes any cycle. In other
words, activity of a unit can be calculated knowing activity of each unit from which a
weight connection exist to the given unit. Since no cyclic dependencies exist, activities
of all units can be calculated. This notion also holds for RNNs, although recurrent
connections form a kind of cycle in the network. But recurrent connections are sourced
by activities already calculated in previous time steps and hence pose no problem in
calculating actual activities. Only non-recurrent forward connections must not form a
cycle in the graph representation of an RNN. Although this condition may seem to
be restrictive, it is met in all commonly used feed-forward and recurrent multilayer
perceptron architectures.
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Weight Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Source Unit wSource 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Destination U. wDest 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8

Time Delay wDelay 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1

Value wValue

Weight Index 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Source Unit wSource 0 1 2 3 4 5 6 7 8 9 0 6 7 8 9 0 6 7 8 9 0 6 7 8 9

Destination U. wDest 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12

Time Delay wDelay 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value wValue

Unit Index 0 1 2 3 4 5 6 7 8 9 10 11 12

First Weight uFirstWeight 0 10 20 30 40 45 50

Last Weight uLastWeight 9 19 29 39 44 49 54

Type uType T I I I I I H H H H O O O

Act. Function uActFunc SGM SGM SGM SGM LIN LIN LIN
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Fig. 1. a) Layered structure of Elman’s SRN. b) Werbos representation of the Elman’s SRN. c)
Table gathering information on weight connections. d) Table gathering information on units.

Werbos representation of the Emnan’s SRN is shown in Fig. 1b. All units of the net-
work can be indexed from 0 to NU − 1, where NU is the number of all units. The first
unit - special input unit corresponding to the bias weight, is followed by input units,
than by hidden and output units. Arranging hidden and output units is not necessary,
every non-input unit can be output unit and desired activities can be specified during
training phase for that unit. Unit with index i can have forward connections starting only
from units with smaller indices (from index 0 to i − 1). Hence edges corresponding to
forward weights in Fig. 1b are oriented from left to right. For every weight, indices
of the source and destination unit are kept (arrays wSource and wDest), together
with the time delay (wDelay) related to the weight connection. Weights can be also
sorted, first by corresponding destination unit index then by connection time delay and
finally by source unit index in ascending order (Fig. 1c). Forward weights have time
delay of 0, what means that the actual step t activity of the source unit is fed through
this connection to the destination unit. Recurrent connection have time delay td greater
than 0 and activity from previous time step t − td is fed through this connections. For
every non-input unit the first and the last weight indices are stored (uFirstWeight,
uLastWeight) together with other useful information such as unit’s type (uType)
and unit’s activation function (uActFunc) (Fig. 1d). Usufulness of this network en-
coding can be seen in algorithmic description for forward propagation of the signal in
custom RNN for multistream EKF (Fig. 2).
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3 Multistream Extended Kalman Filter

Training of Elman’s SRN, and generally any other multilayer perceptron network (re-
current or not), can be regarded as an optimal filtering [10]. The set of EKF equations
for the network training can be formulated as follows:

K(t) = P(t− 1)HT (t)[H(t)P(t − 1)HT (t) + R(t)]−1, (1)

P(t) = P(t− 1)−K(t)H(t)P(t − 1) + Q(t), (2)

W(t) = W(t− 1) + K(t)[D(t) −O(t)]. (3)

Let nw and no denote the number of all network weights and number of output units,
respectively. W is a vector of all weights of the length nw. H is the Jacobian ma-
trix, no × nw, calculated in every time step and containing in rows the derivatives of
corresponding output activity with respect to all weights. These derivatives can be cal-
culated similarly to the RTRL or BPTT algorithms. P is the nw × nw error covariance
matrix, it holds error covariances corresponding to each pair of network weights. The
nw×no matrix K called the Kalman gain is used in updating the weights W according
to the difference between the desired output vector D and actual network output O. The
no × no matrix R stands for the measurement noise covariance matrix and similarly to
the learning rate in RTRL or BPTT can control the training speed of EKF. Note, that
small process noise is still considered: the nw × nw matrix Q stands for the process
noise covariance matrix. Nonzero process noise improves convergence of the filter.

For multistream EKF training the training dataset should be split into several parts
[10]. Training dataset in practical application is frequently already naturally partitioned,
since it often consists of multiple subsets of different nature corresponding to different
working conditions. For a chosen number of streams ns the training sequences of the
same length for each stream are selected from the different parts of the training set.
For each stream the different instance of the same network is presented with the ac-
tual input-output pattern from the corresponding stream. Propagation for each stream
is performed as in the case of several single networks trained on different patterns.
Also derivatives of network outputs with respect to network weight are calculated in
the same way as for independent networks. The procedure could follow by perform-
ing ns independent EKF steps and by calculating overall weight changes by averaging
partially calculated weight changes from each stream. But this is not the case of mul-
tistream EKF. Instead calculated derivatives of each network instance are concatenated
into the single measurement update matrix H(t). If Hi(t) would be matrix of partial
derivatives of output units with respect to weight for single-stream EKF training corre-
sponding to the stream i in time step t, the matrix H(t) can be expressed as H(t) =
(H1(t)H2(t) . . .Hns(t)). In the similar way vector of desired value D(t) and vector of
calculated output activities O(t) are formed by concatenating corresponding elements,
D(t) = (D1(t)TD2(t)T . . .DT

ns
(t))T and O(t) = (O1(t)TO2(t)T . . .OT

ns
(t))T . Ex-

cept for these changes the EKF equations remain the same (Eq. 1 to Eq. 3). Multistream
EKF approach with BPTT routine for the derivative calculation is provided to make this
approach clearer. First, the forward propagation of multiple streams is given in Fig. 2
and then multistream EKF training step is decribed in Fig. 3.
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NS - number of streams
NW - number of weight connections
NU - number of units (threshold unit and input units also count)

wSource[0..NW-1] - source node indices
wDest[0..NW-1] - destination node indices
wDelay[0..NW-1] - connection time delays
wValue[0..NW-1] - weight connection strengths

uFirstWeight[0..NU-1] - indices of the first weight connection associated with the unit
uLastWeight[0..NU-1] - indices of the last weight connection associated with the unit
uType[0..NU-1] - unit types (THRESHOLD, INPUT, HIDDEN and OUTPUT)
uActFunc[0..NU-1] - unit activation-function types (SGM, LIN, . . . )

ACT[0..NU-1,0..NSTEPS-1,0..NS-1] - all unit activities in all time steps for all streams
ACTD[0..NU-1,0..NSTEPS-1,0..NS-1] - act. func. derivatives in all time steps for all streams

ActFunc(iact,actf) - activation function calculation based on the act. func. type
ActFuncDer(iact,actf) - derivative of the activation function

ts - actual time step

Input(ui,ts,si) - returns value for the input unit ui in time step ts for stream si
Output(ui,act,ts,si) - set network output to the value act for stream si
Target(ui,ts,si) - returns desired output unit ui activity in time step ts for stream si

1 for si=0 to NS-1 do
2 for ui=0 to NU-1 do
3 begin
4 if uType[ui] = THRESHOLD then ACT[ui,ts,si] := 1.0;
5 else if uType[ui] = INPUT then ACT[ui,ts,si] := Input(ui,ts,si);
6 else
7 begin
8 iact := 0.0;
9 for wi := uFirstWeight[ui] to uLastWeight[ui] do

10 iact +:= wValue[wi]*ACT[wSource[wi],ts-wDelay[wi],si];
11 ACT[ui,ts,si] := Sgm(iact);
12 ACTD[ui,ts,si] := SgmDer(iact);
13 end;
14 if uType = OUTPUT then Output(ui,ACT[ui],ts,si);
15 end;

Fig. 2. Forward propagation for multistream EKF

Multistream forward propagation consists of NS consecutive single-stream propaga-
tions (cycle on lines 1 to 15). The first unit with index 0 correspond to the bias weight,
its activity is always set to the value of 1 (line 4). Activities of input units are set to the
actual input to the network (line 5). Internal activities of hidden and output units are
calculated by multiplying unit’s weights with source activities from corresponding time
step (lines 8 to 10), operator ”+:=” stand for addition of the right-hand side expression
to the variable on the left-hand side. For forward weights having time delay of 0 already
calculated activity from actual time step are used, for recurrent weights activities calcu-
lated in past time steps are used. Unit’s activity is calculated by passing internal activity
to the activation function (line 11). The derivative (line 12) calculation is only needed
when gradient-based adaptation step such as backpropagation follows the forward prop-
agation. Activities calculated for the output units are sent as the network output to the
exterior (line 14).
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NS - number of streams
NO - number of network output units

oIndex[0..NO] - indices of output units
winSize - unfolding window size

DO_DW[0..NO-1,0..NW-1,0..NS-1] - derivatives of net. outputs with respect to all weights
DO_DNA[0..NU-1,0..winSize-1] - backpropagated signal

H[0..NO*NS-1,0..NW-1] - augmented Jacobian matrix
P[0..NW-1,0..NW-1] - error covariance matrix
Q[0..NW-1,0..NW-1] - process noise covariance matrix
R[0..NO-1,0..NO-1] - measurement noise covariance matrix
W[0..NW,0..0] - estimated vector of network weights (EKF state vector)
K[0..NW-1,0..NO*NS-1] - augmented Kalman gain
D[0..NO*NS-1,0..0] - augmented vector of desired output values
O[0..NO*NS-1,0..0] - augmented of calculated output values

Tr(X) - transpose of the matrix X
Inv(X) - inverse of the matrix X

1 for oui:=0 to NO-1 do for wi:=0 to NW-1 do for si:=0 to NS-1 do
2 DO_DW[oui,wi,si] := 0.0;
3

4 for si:=0 to NS-1 do
5 for oui:=0 to NO-1 do
6 begin
7 for hi:=0 to winSize-1 do for ui:=0 to NU-1 do DO_DNA[ui,hi] := 0.0;
8 DO_DNA[oIndex[oui],0] := 1.0;
9

10 for hi:=0 to winSize-1 do
11 for ui:=NU-1 downto 0 do
12 begin
13 if uType[ui] = INPUT then break;
14 DO_DNA[ui,hi] := DO_DNA[ui,hi]*ACTD[ui,ts-hi,si];
15 for wi := uLastWeight[ui] downto uFirstWeight[ui] do
16 begin
17 if (uType[wSource[wi]] <> INPUT) AND
18 (uType[wSource[wi]] <> THRESHOLD) AND
19 (wDelay[wi]+hi < winSize)) then
20 DO_DNA[wSource[wi],wDelay[wi]+hi] +:=
21 wValue[wi]*DO_DNA[ui,hi];
22 DO_DW[oui,wi,si] +:=
23 DO_DNA[ui,hi]*ACT[wSource[wi],ts-hi-wDelay[wi],si];
24 end;
25 end;
26 end;
27

28 for wi:=0 to NW-1 do W[wi,0] := wValue[wi];
29

30 for si:=0 to NS-1 do
31 for oui:=0 to NO-1 do
32 begin
33 D[oui+si*NS,0] := Target(ui,ts,si);
34 O[oui+si*NS,0] := ACT[oIndex[oui],tsm,si];
35 for wi:=0 to NW-1 do H[oui+si*NS,wi] := DO_DW[oui,wi,si];
36 end;
37

38 K := P * Tr(H) * Inv(H * P * Tr(H) + R);
39 P := P - K * H * P + Q;
40 W := W + K * (D - O);
41

42 for wi:=0 to NW-1 do wValue[wi] := W[wi,0];

Fig. 3. Multistream EKF with derivatives calculated by BPTT



Training Recurrent Neural Network 387

The quantities DO_DW (derivatives of output activities with respect to weights) are
initialized to 0 on lines 1 and 2. Then for every stream and every output unit the back-
propagation through time is performed (cycle on lines 4 to 26). For one output unit the
“error” signal of corresponding to this output unit is set to 1 (line 8), remaining ele-
ments of the array DO_DNA (derivatives of output activity with respect to the internal
units’ activities) were set to 0 (line 7) and are to be calculated in the following cycle
of truncated backpropagation throught time (lines 10 to 25). Computation of truncated
BPTT consists of backpropagating the “error” signal winSize time steps back (lines
10 to 25). For each unit ui (cycle on lines 11 to 25) and all its connections (cycle
on lines 15 to 24) derivatives DO_DNA[ui,hi] are backpropagated through corre-
sponding connections to the derivatives in corresponding time (lines 20 and 21). Signal
is not backpropagated to the input or threshold units (condition on lines 17 and 18).
The test (line 19) is also performed to ensure, that the array DO_DNA on lines 20 and
21 is accessed properly. Quantities DO_DW are built on lines 22 and 23.

Augmented arrays for desired and calculated output activities (D and O) are filled on
lines 33 and 34 and the Jacobian matrix H on line 35. EKF update is then performed
and weights are updated (line 42). In this section (lines 38 to 40) operators *,+ and
- denote matrix multiplication, addition and subtraction respectively. Since network
weights are changed only by EKF part of the algorithm they do not need to be filled
up in every time step and line 28 can be removed. We keep it there as a reminder than
array wValueW and vector W are the same quantities.

4 Implementation Details

Time complexity of the algorithm can be easily determined from the pseudo-language
description of one cycle provided in Fig. 3. The training step can be divided into two
parts: first truncated BPTT is done for every stream and every output and than KF step
is performed. Hence time complexity can be estimated as:

TMSEKF = TBPTT + TKF = O(ns × no × nw × h) +O(no × n2
w). (4)

Since for huge networks number of streams ns, number of output units no and the
truncated BPTT window size h are smaller than the number of weights nw, the time
complexity of MSEKF can be expressed as:

OMSEKF ≈ O(n2
w). (5)

Alhough in practice multiplicative constants (not revealed in big-O notation) do matter
we can already see that the computation is dominated by the time complexity of the KF
part.

Standard way how implement operations with matrices is the usage of some linear
algebra package. All major processor vendors offer high-speed parallel multithreaded
versions of BLAS (Basic Linear Algebra Subprograms). Intels solution is MKL (Math
Kernel Library) offering BLAS and LAPACK (Linear Algebra PACKage) interfaces.
Other choices are ACML (AMD Core Math Library) tailored for AMD processors and
GotoBLAS library which is probably the fastest BLAS library available. Since the target
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platform is a computer equipped with Intel Core i7 quad core processor and GotoBLAS
has not yet been optimized for Core i7 architecture we have chosen MKL as a linear
algebra package for CPU implementation of MSEKF.

CUDA platform contains CUBLAS (CUDA BLAS) library benefiting from paral-
lelism of many-core GPU architecture but providing standard BLAS application inter-
face. Whole KF part was implemented to be performed on the GPU including imple-
mentation of cholesky solver used for finding Kalman gainK . Only vector E = D−O
and matrix H are transfered into the GPU device and weight vector W is transfered
back from the CUDA device.

Other source of parallelism is the truncated BPTT step since iterations are indepen-
dent. no × ns iterations are performed in the truncated BPTT part of the MSEKF step.
The only modification is that NO_DNA array cannot be shared between iterations ex-
ecuted in paralel. There are several programming models that can be used to improve
performance of this part of the algorithm by splitting computation into multiple threads.
We have chosen Intel’s Threading Building Blocks (TBBs) and “parallel for” construct
was used in straightforward way. Implementation of BPTT step using CUDA is the task
for near future.

5 Results

Tests for both CPU and GPU implementations of MSEKF were conducted on the same
machine running Microsoft Windows XP SP 3 equipped with Intel Core i7 Nehalem
processor operating at 2.67GHz, 3GB of RAM and Nvidia GeForce N280 graphic card.
Intels hyperthreading technology was turned off in BIOS as recommended in MKL
manual.

We performed tests with Elman’s simple recurrent network trained for the next value
prediction of Santa Fe laser sequence. Since RNNs are also frequently used by cognitive
science community for modeling symbolic sequences the second dataset was generated
by Elman’s grammar [12]. In this case the networks were trained on the next symbol
prediction task. The length of both sequences was 10000 values, while training on Laser
sequence RNNs has single input and output unit, for Elman datasets RNN’s input and
output layer consist of 24 units.

We present simulation results for various number of streams and number of hidden
units. MSEKF training run times in seconds are summarized in the Tab. 1 and corre-
spond to one epoch - one presentation of the training sequence. For a given number of
streams ns the training sequence is divided into ns parts of the same length and the
network perform 10000/ns MSEKF training cycles per epoch. Hence higher number
of streams does not mean that more operations were performed during training.

We provide results for computation performed in single precision only for two rea-
sons. First using double precision did not brink any difference considering resulting
performance (similarly to [9]). We also encountered no problems with numerical sta-
bility. The second reason is that GPUs performance in double precision is lower since
graphic hardware is optimized for single precision computation. For applications where
numerical precision is crucial performing computation on standard multicore processor
may be a better choice.
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Table 1. Simulations times in seconds for BPTT and EKF parts of CPU and CUDA implemeta-
tions of MSEKF

LASER BPTT - no TBB BPTT - TBB EKF - CPU EKF - CUDA
MSEKF-16HU-1S 0.001 0.001 1.01 5.02
MSEKF-16HU-4S 0.25 0.004 0.51 1.51
MSEKF-16HU-16S 0.18 0.065 0.52 0.76
MSEKF-16HU-64S 0.17 0.045 0.89 0.76
MSEKF-64HU-1S 2.00 2.02 210.51 124.87
MSEKF-64HU-4S 2.25 0.51 60.16 33.63
MSEKF-64HU-16S 2.18 0.56 20.67 11.29
MSEKF-64HU-64S 2.25 0.55 21.00 8.84

ELMAN BPTT - no TBB BPTT - TBB EKF - CPU EKF - CUDA
MSEKF-16HU-1S 11.00 3.01 46.51 35.59
MSEKF-16HU-2S 10.99 3.06 67.18 37.63
MSEKF-16HU-4S 11.49 3.02 111.74 69.21
MSEKF-16HU-8S 11.72 2.92 205.48 120.62
MSEKF-32HU-1S 27.99 7.15 184.08 95.12
MSEKF-32HU-2S 27.99 7.67 217.80 104.51
MSEKF-32HU-4S 29.00 7.42 322.48 177.40
MSEKF-32HU-8S 29.32 7.32 548.07 319.98

We provide results for both unparallelized (no TBB) and parallelized (TBB) BPTT
part. Please note that the time requirements of BPTT part are the same for fixed number
of streams, since the same number of backward propagations through time is performed
for one epoch. Unsuprisingly parallelized version of the BPTT takes much less time
than its unparallelized counterpart. Almost 4 times better performance was achieved,
hence the performance of this part scales well with the number of cores.

As can be seen from Tab. 1 significant run time reduction for larger networks can
be obtained by performing MSEKF training on CUDA-enabled GPU. On the other side
standard CPU performs well for smaller networks since massive parallelism of many-
core GPUs is not used. In general smaller networks benefit neither from multi-core nor
many core processors because of small level of parallelism when doing calculations
with small matrices.

6 Conclusion

Multistream extended Kalman filter is probably the most successful algorithm for train-
ing recurrent neural networks. The main drawback of MSEKF is sever computational
requirements in comparing with common approaches such as BPTT or RTRL. This
usually prevents thorough search for better parameters or other experimentation when
performing model selection. In this paper we first provide detailed description of the al-
gorithm using simple pseudo-language. Algorithm is almost in a copy and paste form.
Then we provide results of implementations targeting CPU and CUDA-enabled GPU
platforms. We show that significant reduction of execution time can be achieved by
performing calculations on graphical processing units when training large networks.
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Abstract. The self-similitude architecture developed in our previous

work for multiple-resolution image perception [1] has been transformed

into a non-subtraction configuration. In contrast to the previous work,

the subtraction operations are entirely eliminated from the computation

repertory of processing elements. As a result, the hardware organiza-

tion of multiple-resolution edge-filtering image sensor has been greatly

simplified. In addition, a fully pixel-parallel self-similitude processing has

been established without any complexity in the interconnects. A proof-of-

concept chip capable of performing four directional edge filtering at full,

half and quarter resolutions was designed in a 0.18μm 5-metal CMOS

technology and was sent to fabrication. The performance was verified

by circuit simulation (Synosyps NanoSim), showing that the four direc-

tional edge filtering at multiple resolutions is carried out at more than

1000 frames/sec. with a clock rate of 500kHz.

Keywords: Edge Detection, Hardware Implementation, Image Percep-

tion, Multiple-Resolution, Self-Similitude.

1 Introduction

Edge detection is one of the most fundamental image pre-processing for human-
like visual perception systems. It is grounded on the fact that human image
recognition relies on edge information in various orientations extracted from
input images [2]. In fact, many algorithms have been established using directional
edge detection in the fields of feature extraction from images and image feature
vector representation [3]-[4].

The multiple-resolution image processing scheme is exploited to handle vari-
ous sizes of images. When the edge-based image representation [4] is combined
with multiple-resolution processing, image recognition robust against scaling has
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been demonstrated [5]. However, because directional edge filtering in multiple-
resolutions is computationally very expensive, hardware implementation is
necessary for real-time recognition system. In this regard, the self-similitude ar-
chitecture was proposed for the first time and implemented in an analog CMOS
image sensor in our previous work [1].

The concept of the multiple-resolution image perception is illustrated in Fig. 1
[5], taking face detection as an example. There are three different-size facial im-
ages in the full size picture, in which only the smallest size face is enclosed in the
detection window. However, by scaling the picture with 1/2, 1/4... resolutions,
different size faces are all detected. It was shown in [5], where any size facial im-
ages can be correctly recognized by the combination of (1/2)n-scaling of input
images and the use of three different sizes for template images, viz. 100%, 80%,
and 60%.

1/4

1/2

1

Fig. 1. Concept of multi-resolution image perception. Any size facial images can be

detected by combination of (1/2)n-scaling of input images and use of three template

image sizes of 100%, 80%, and 60%.

Multiple-resolution image processing functions were utilized in various objec-
tives and already implemented in several chips. A multiresolution image sensor
[6] has the simple function of multiple-resolution image readout. There were
also image sensors for programmable kernel filtering, where the kernel size is
variable and any sort of convolution is practicable [7]-[9]. An edge detection
image sensor was reported employing the multi-scale veto algorithm [10]. In a
spatial-temporal multiresolution image sensor [11], the resolution is intentionally
changed to realize low-power object tracking. Such a spatial-temporal multiple-
resolution function was first implemented in [12].

In our previous work [1], a multiple-resolution edge-filtering CMOS image
sensor was developed based on the self-similitude architecture. The proof-of-
concept chip was designed using the voltage mode analog circuitry and fabricated
to verify the concept. However, the subtraction operation included in the basic
repertory of processing elements (PEs) made the PE control very complicated
and reduced the fill factor of each pixel. In order to solve the problem, one
row (and one column) of subtraction circuitries are placed at the peripheries of
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the photodiode and PE array, and the subtraction operation was removed from
the PE array. However, this has reduced the advantage of the self-similitude
architecture which offers a fully pixel-parallel processing capability of a CMOS
image sensor for multiple-resolution filtering.

In this work, a non-subtraction configuration of the self-similitude architec-
ture was proposed in contrast to the subtraction-separated configuration in our
previous work [1]. By assigning a plus or minus sign to the pixel value readout
from each pixel, all computations have been archieved using only additions. As
a result, the hardware organization and the PE control have been simplified
in a great deal and the merit of the fully pixel-parallel computation has been
enabled in this configuration. This allows us to develop the application of self-
similitude architecture not only to edge-filtering, but also to different types of
multiple-resolution image processing on CMOS image sensors.

2 Non-subtraction Configuration of Self-similitude
Algorithm

The basic idea of the self-similitude algorithm for multiple-resolution edge fil-
tering was already presented in our previous paper [1]. However, because the
algorithm has been modified to remove subtraction operations, a brief explana-
tion is given in the following. Fig. 2 (a) shows the MIMD (multiple instruction
multiple data) organization of the multiple-resolution edge filter. Photodiodes
(PDs) are located at four corners of each PE, allowing each PE to receive four
pixel luminance data using only intra-PE interconnects [13]. Fig. 2 (b) shows
the output signal from a PD cell which bears a plus or minus sign with respect
to the bias value.

Photodiode (PD)

PE : Processing Element

PE PE PE PE

PEPE PE PE

PE PE PE PE

PE

PE

PE PE

PE

PE

Input light intensity

O
u
tp

u
t 

si
g
n
al

Bias

(plus)

(minus)

(a) (b)

Fig. 2. MIMD organization of multi-resolution edge-filtering image sensor (a) and out-

put signal from a PD cell (b)

Fig. 3 compares the fundamental operation repertory in the modified algo-
rithm with that of the previous one. In the modified algorithm, only two types
of operations, addition of the inputs from PDs at four corners and addition of
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the inputs from four neighboring PEs, are defined. Because the number of opera-
tions is reduced from ten to two, the control signal management of PEs has been
greatly simplified. Furthermore, because the operation necessary for edge filter-
ing is only addition, the PEs for subtraction which were placed at the periphery
of the PD and PE array in the previous work have been entirely eliminated.
The sign patterns of convolution kernels are generated by assigning a proper
plus/minus sign to each PD readout.

(a) (b)

Fig. 3. Fundamental operation repertory in previous work (a) and in this modified

algorithm (b)

The procedure of multiple-resolution directional edge filtering is explained in
Fig. 4 using two typical examples. Full-resolution horizontal edge filtering pro-
ceeds in two steps. Before the processing, plus signs are assigned to upper PD
cells, while minus signs are assigned to lower PD cells as shown in the left of
Fig. 4 (a). In the first step, four PEs carry out the diagonal-input addition. In
the second step, the center PE carries out orthogonal-input addition using the
first step results (R). This results in a horizontal edge filtering of the 4x4 kernel.
During the processing, the same operations are being carried out in other equiv-
alent locations simultaneously. Then the roles (first step operations and second
step operations) of respective PEs are interchanged and the same procedure is
repeated to accomplish the filtering for the entire image.

The half-resolution +45-degree edge filtering requires three steps as illustrated
in Fig. 4 (b). Before the processing, PD cells in the upper left triangle region
are assigned with plus signs, PD cells in the lower right triangle region with
minus signs, and PD cells on the central diagonal line with zero values. 16 PEs
(+ marked) carry out the diagonal addition in the first step and four PEs (+
marked) carry out the orthogonal addition in the second step using the first-step
operation results (R). In the third step, the center PE (also + marked) conducts
the addition using the second-step operation results (R’). The resultant kernel
is for an 8x8, +45-degree edge filtering. In order to expand the kernel region to
one step a larger area, the orthogonal addition need be repeated one more time.

In the previous work, a filtering kernel pattern having plus and minus coef-
ficients was produced by addition and subtraction operations of PEs. This in-
creased the number of operations of a PE as shown in Fig. 3 (a). In the present
work, however, plus and minus signs are assigned to output signals from PDs to



Non-subtraction Self-similitude Multiple-Resolution Edge-Filter 395

R

R

R

R

1 1

1 2 2

-2

1

-1 -1

-1-2-1

Photo

PE

diode

1st step 2nd step Resultant kernel

PD output with plus sign

(with minus sign)

(a)

1 1

1 1

2

2

-2

-2

2 2

-12 02

-1-2 -20

-1-2 -2

-1

1

1 2 2

-1 -2 -2

1 2 2 0

1 0 -2 -2

-1

-1 -1

R

R R

RR

R R

R

R

R R

RR

R R

R

R'

R' R'

R'

1st step 2nd step Resultant kernel3rd step

(with plus sign)

(with minus sign)

0 output

(b)

Fig. 4. Full-resolution horizontal (a) and half-resolution +45-degree (b) edge filtering

operations

produce kernel patterns. Then, only addition operations are required for PEs.
This has resulted in a great simplification of the hardware organization and
a fully pixel-parallel implementation of the self-similitude architecture in the
CMOS image sensor has been enabled for various kinds of filtering processing in
the multiple-resolution regime.

3 Hardware Organization of Edge Filtering Image Sensor

The hardware organization in this work is shown in Fig. 5 in comparison with
that of the previous work. The hardware consists of a 56x56-PD array and a
55x55-PE array. Interconnects are provided among all nearest neighbor PEs for
full resolution processing, among every two and four rows/columns for half and
quarter resolution processing, respectively. As compared to the previous work,
the PEs for subtraction are removed in this work, which has greatly simplified
the control signal management for PEs and also has reduced the chip area.

Each PD cell has the function of linearly transforming the light intensity into
the analog electrical signal. The output of each PD is controlled by the external
digital signals. That is, the output value (Out) is plus/minus signed value of
input signal (In) with bias value (Bias), or just bias value itself.

Out = ±In+Bias (Plus/Minus), Bias (Zero). (1)
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Fig. 5. Hardware organization of multi-resolution directional edge filtering image sen-

sor in previous work (a) and in present work (b)

Fig. 6 represents the block diagram of PE cell. One of the four input data (from
PD, nearest/second/fourth neighbor PEs) is selected by the selector at each side
of the PE. Then, the addition of these selected inputs is carried out and the
result is sent to neighbor PEs in all directions.
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PDPD
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electo
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From 2nd PE
From 4th PE

(W
es

t)
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t)

From nearest PE

(North)

(South)

Output at the bottom

Output on the right

Fig. 6. Block diagram of PE cell

Examples of single row/column parallel processing are illustrated in Fig. 7. An
example of full-resolution horizontal edge filtering is shown in Fig. 7 (a), where
the second step of the processing is carried out in every two PEs (depicted in
gray) in the same row. An example of full-resolution +45-degree edge filtering
is represented in Fig. 7 (b), and the second step is operated in the PEs on the
diagonal line. Fig. 8 shows the pixel-parallel processing using the same examples
of the processing in Fig. 7. Control signals for assigning plus and minus signs
are inputted from the outside of the PD array. If the control signals are made
to propagate in four directions in the PD array, simple wiring scheme would be
achieved even for pixel-parallel processing.
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Fig. 7. Examples of row/column parallel processing: full-resolution horizontal edge

filtering (a) and +45-degree edge filtering (b)
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(a) and +45-degree edge filtering (b)

4 Hardware Implementation and Discussions

The concept of the non-subtraction configuration of the self-similitude archi-
tecture was implemented in the hardware using current-mode analog computa-
tion. The layout and the specification of the proof-of-concept chip are shown
in Fig. 9. In this chip, only the line parallel processing as illustrated in Fig. 7
was implemented for the purpose of verifying the concept. However, extension
to the pixel-parallel processing shown in Fig. 8 can be easily accomplished by
just changing the control circuitries outside the PD array so that they produce
the signals necessary for pixel-parallel processing.

Simulation results are demonstrated in Fig. 10. The illumination data for
the PDs were virtually given as external analog signals. A circular picture was
used as an input. Circular silhouettes corresponding to respective edge directions
are seen in the edge filtering results. In this simulation, the execution time for
each row/column edge filtering was within 2μs, which implies every directional
edge filtering at multiple-resolution for entire image is accomplished in less than
220μs. This result means the presented multiple-resolution edge filtering pro-
cessor has the capability of performing more than 1000 frames/sec (limited by
the PD integration and readout time). Since the power consumption is easily
reduced by introducing the enable function, the chip is also embeddable in low
power systems.
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Fig. 9. Layout and specification of proof-of-concept chip

Full
resolution

Half
resolution

Quarter
resolution

Input

Fig. 10. Simulation results of multi-resolution directional edge filtering
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Fig. 11. Verification of self-similitude computation algorithm
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Because the edge filtering kernels of lower resolutions are not the exact ex-
pansions of the full-resolution kernels, the self-similitude algorithm is verified by
software simulation. Fig. 11 shows the simulation results of quarter-resolution
directional edge filtering using self-similitude algorithm and full-resolution direc-
tional edge filtering after lowering the resolution from full to quarter. The sim-
ulation results indicate that these two different procedures of quarter-resolution
edge filtering generate almost the same images. That is, the tiny kernel differ-
ences between different resolutions have no great influence upon the final edge
pictures.

5 Conclusion

A multiple-resolution directional edge filtering processor has been developed
based on the self-similitude architecture without using subtraction function. As
a result, the hardware structure and the controlling method is greatly simplified.
The proof-of-concept chip was designed and the concept has been verified by
simulations.
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Abstract. This paper presents the VLSI implementation of a scalable and pro-
grammable Continuous Restricted Boltzmann Machine (CRBM), a probabilistic
model proved useful for recognising biomedical data. Each single-chip system
contains 10 stochastic neurons and 25 adaptable connections. The scalability al-
lows the network size to be expanded by interconnecting multiple chips, and the
programmability allows all parameters to be set and refreshed to optimum values.
In addition, current-mode computation is employed to increase dynamic ranges of
signals, and a noise generator is included to induce continous-valued stochasticity
on chip. The circuit design and corresponding measurement results are described
and discussed.

Keywords: Probabilistic VLSI, noise, scalable and programmable systems.

1 Introduction

Probabilistic models use stochasticity to generalise the natural variability of data, and
have been shown promising for reasoning biomedical data or for solving weakly-
constrained problems such as pattern recognition. Realising probabilistic models in the
Very-Large-Scale-Integration (VLSI) is thus attractive for the application like intelli-
gent sensor fusion in implantable devices [1] [2]. However, only a few probabilistic
models are amenable to VLSI implementation [3] [4], and most of which relies greatly
on precise computation of Bayesian rules or vector products, which becomes infeasible
as transistor noise and hardware non-ideality grow.

The CRBM is a probabilistic model which has been shown capable of classify-
ing biomedical data reliably [5] and has been realised as a probabilistic VLSI sys-
tem [6], potential for being an intelligent embedded system in implantable devices.
With a fixed number (six) of neurons, however, the prototype system is limited to model
two-dimensional data, while biomedical signals in real-world applications are normally
high-dimensional and complex. Therefore, modular design is employed in the VLSI im-
plementation presented here, allowing the network size to be expanded by connecting
multiple chips. All parameters of the system are stored in dynamic analogue memory
which can be not only refreshed at optimum values reliably but also trained by chip-in-
a-loop configuration. The full system has been designed and fabricated with the TSMC

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 401–409, 2009.
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h1 h2 h3 h4

v1 v2v0

h0

W(1)

Fig. 1. The architecture of a CRBM model with two visible and four hidden neurons. v0 and h0
represent biasing units with invariant outputs v0 = h0 = 1.

0.35μm CMOS technology. Following a brief introduction of the CRBM model, the
architecture of the VLSI system, the circuit design, and the measurement results will be
presented.

2 The CRBM Model

The CRBM consists of one visible and one hidden layers of stochastic neurons with
inter-layer connections only, as shown in Fig.1. The number of visible neurons corre-
sponds to the dimension of data, while that of hidden neurons is chosen according to
data complexity [5]. Let wi j represents the bi-directional connection between vi and h j.
The stochastic behaviour of a neuron si is described by [5]

si = ϕi (ai · (Σ jwi j · s j + Ni (0,σ))) (1)

where Ni (0,σ) represents a zero-mean Gaussian noise with variance σ2, and ϕi (·) a
sigmoid function with asymptotes at ±1 (e.g. tanh(·)). Parameter ai controls the slope
of the sigmoid function and thus the variance of si.

As a generative model, the CRBM learns to ”regenerate” the probabilistic distribu-
tion of training data at its visible neurons. Testing data can be subsequently classified
according to the responses of hidden neurons [5]. Both {ai} and {wi j} can be trained
by the simplified minimising-contrastive-divergence (MCD) algorithm, requiring only
addition and multiplication of neurons’ states to determine updating direction [7]. The
simplicity and the locality make the training algorithm hardware-friendly.

3 System Architecture

Fig.2 shows the architecture of the scalable and programmable CRBM system [8], con-
taining neuron modules (vi and h j), synapse modules (wij), a noise generator, and dig-
ital control circuits. The refreshing unit is designed to be realised by a microcontroller
off-chip. Each synapse module contains two multipliers to calculate wi jh j and wi jvi as
current inputs for neurons vi and h j, respectively. Each neuron vi(h j) then sums up the
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Fig. 2. The architecture of a scalable and programmable CRBM system and its functional units

currents on the same row (column) at the terminal I (Fig.2(c)), and passes the total cur-
rent through sigmoid function to generate an output voltage at terminal O. In addition,
each neuron includes a noise input to makes its output probabilistic.

The modular design enables the CRBM system to expand its network size easily by
interconnecting multiple chips. For example, an MxN chip array forms a CRBM system
with 5M visible and 5N hidden neurons. Synapse modules in the same row (column)
transmit output currents to the left- (bottom-) most neurons in the row (column). Each
neuron module vi(h j) then transmits voltage output back to synapse modules in the same
row (column). The control signal N in each neuron (Fig.2(c)) determines whether the
neuron is enabled. When N=1, current inputs at terminal I are passed through sigmoid
circuit to generate the neuron’s output at terminal O. When N=0, the current inputs at
terminal I are simply directed to terminal X, and the neuron output is buffered from
terminal S into terminal O. A current normaliser is included to avoid the saturation of
sigmoid circuit.

The parameters {wi j} and {ai} are stored locally as voltages across capacitors in the
synapse and neuron module, respectively. The updating circuit employed in [9] is used
to tune the capacitor voltages with infinitely small steps according to the digital input P
or T. In training mode (M=1), the digital signal T is selected and calculated according to
the simplified MCD algorithm. As soon as optimum levels are obtained, the analogue-
to-digital converter (ADC) in the refreshing unit stores wi j and ai into digital memory
(Fig.2(d)). Note that one ADC can be shared by all parameters. In refreshing mode
(M=0), parameter values on capacitors are sampled periodically by the ADC, compared
with optimum levels stored in the memory, and updated according to the output P of
digital comparator.
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Fig. 3. The layout of the scalable and programmable CRBM system in VLSI

Table 1. The mapping of parameter values between software simulation and hardware implemen-
tation

Matlab VLSI(V)

si [-1.0, 1.0] [1.0, 2.0]

wi j [-3.0, 3.0] [0.0, 3.0]

ai [0.5, 5.0] [1.0, 2.5]

-3uA ~ +3 uA

(0V~3V)

Rfloat

wij

w
ij

(1V~2V)

1.5 V

Si
Normaliser

(N:1)

Vai

Multiplier

Sigmoid

OP Amp.

Noise
Generator

-0.2uA ~ +0.2 uA

(1V~2.5V)

(2.5MOhm)

¡I
IN

/NI
IN

Fig. 4. The block diagram of the neuron with corresponding signal flows and the dynamic ranges
of parameters in each stage
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4 Circuit Design

The full system has been designed and fabricated with TSMC 0.35μm technology. Fig.3
shows the layout of the full system. the layout of the full system. The circuit area ex-
cluding the pads is 3100μm× 2800μm, and the power consumption is 6.8mA. With a
supply voltage of 3V, the parameter mapping is defined as Table 1. The synapse mod-
ule simply employs the ”modified Chible multiplier” proposed in [7] as four-quadrant
multipliers to calculate wi j · s j. On the other hand, the noise generator proposed in [12]
is implemented to generate 10 channels of uncorrelated noise on-chip. The following
subsections describe the circuits of the neuron module and the programmable parameter
array. In addition, Fig.4 shows the block diagram of the neuron indicating how hard-
ware is implemented according to the mapping table (Table 1), and the details of the
circuit design are described below.

4.1 The Neuron

Fig.5 shows the sub-circuits in the neuron module. The current conveyer with N:1 nor-
malisation (Fig.5(a)) uses an operational amplifier (OPamp) with negative feedback to
provide a low-impedance input point for all synapses connected to the neuron [10]. The
noise voltage from the noise generator is also transformed into a noise current by a dif-
ferential pair and then connected to the same node. By controlling the tail current of the
differential pair, the noise current can be scaled as σ in Eq.(1) [7]. The current IIN pro-
portional to (Σ jwi j · s j + Ni (0,1)) in Eq.(1) is then normalised by N times through cur-
rent mirrors, and subsequently transformed into a differential outputs, I+

OUT and I−OUT .
With I1 = I+

OUT and I2 = I−OUT , the sigmoid circuit in Fig.5(c) employs three translinear
loops (TL1-TL3) to generate a differential output (I3− I4) whose value is approximately
the sigmoidal function of (I1− I2) [13]. Moreover, the voltage representing ai is con-
verted into the current Iai via the voltage-to-current converter (V-I converter) proposed
in [9], controlling the slope of the sigmoid function. Finally, the current (I3− I4) is
converted into a voltage representing si by an Op-amp with a negatively feedback resis-
tor. The feedback resistor is implemented by the circuit shown in Fig.5(b) to achieve a
resistance of more than several MΩ . with a compact area [11].

4.2 Programmable Parameter Array

The full microsystem contains 35 parameters (25 wi j 10 ai), which are arranged into a
5x7 array and multiplexed by the architecture shown in Fig.6(a). Fig.6(b) shows the cor-
responding digital-control signals. With C0-C4 decoded from CK[0:2], five parameter
values in the same column (w0 j −w4 j) are selected sequentially by MUXj and con-
nected to the off-chip ADC. In refreshing mode, and connected to the off-chip ADC. In
refreshing mode, w0 j is first selected and compared with its target value as C0=1. The
signal (INC/DEC[:0]) representing update direction is then determined and stored in a
register next to the updating circuit. With the same procedure, sequential activation of
C1-C4 determines and stores the update direction for the other four parameters. Once
the update directions of all parameters are obtained, CKup=1 triggers updating circuit
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to tune all parameter once. The updating step is controlled by the pulse-width of the sig-
nal VPLS. In training mode, update directions are multiplexed and registered into the
parameter array in a similar manner, except for that the update directions are calculated
from the MCD algorithm.

5 Measurement Results

Fig.7(a) shows the measured output current of one multiplier in the synapse w40. With
the output O of the neuron V4 sweeping from 1V to 2V, the output currents at IH, in
response to different levels of w40, were measured. Obviously, the multiplier allowed
the parameter w40 to have a rail-to-rail dynamic range and exhibited satisfactory lin-
earity. Furthermore, the arithmetical zeros located at 1.5V precisely, agreeing with the
mapping in Table 1.

(a) (b)

Fig. 7. The measured DC characteristics of (a) a four-quadrant multiplier and (b) a sigmoid circuit
with its slope controlled by the voltage AH0

Fig.7(b) shows the measured characteristics of the sigmoid circuit in the neuron H0.
With the current at the input I (called IH0) sweeping from−3μA to 3μA, the voltage at
the output O (called H0) was measured. Different curves correspond to different levels
of the voltage AH0, which controls the slope of the sigmoid function. As ϕ(1) = 0.462
and the unit values of IH0 and H0 are 1 A and 0.5V, respectively, the adaptable range
of AH0 corresponds to an adaptable range of [0.5, 2.5] for the parameter ai, covering
the required range ([0.5, 5]) set in Table 1.

Fig.8(a) shows the noise voltage (the top trace) measured at one channel of the noise
generator. The signal fell in [1, 2](V), corresponding to a numerical range of [-1, 1]
in software simulation. As the noise signal was sent into the neuron H0 with w40=3V
and AH0=1.9V, the measured neuron output, in response to all connected synapses
having their VO sweeping between 1V and 2V, are shown in Fig.8(b). The neuron output
(the upper trace) swept the sigmoidal curve periodically with VO (the lower trace),
and the noise input perturbed the curve significantly. The continuous-valued stochastic
behaviour of the neuron in accordance with Eq.(1) was clearly demonstrated.
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(a) (b)

Fig. 8. The measured output of (a) one channel of noise voltage and (b) a stochastic neuron (upper
trace) when its synapses had VO sweeping between 1.0 and 2.0 V (lower trace)

(a) (b)

Fig. 9. (a) The measured updating stepsize of 12mV with VP=2.46V, VN=0.57V, and a pulse
width of 320ns. (b) The measured programming process of a parameter which was adapted from
2.25V towards 1.5V.

Fig.9(a) further shows the measured characteristic of the updating circuit in refresh-
ing mode. With VP=2.46V, VN=0.57V, and a pulse width of 320ns for VPLS, an up-
dating step of only 12mV was easily achieved for both incremental (INC/DEC=0) and
decremental (INC/DEC=1) updates. The updating step could be further decreased by
simply reducing the pulse width of VPLS, while the background noise of the oscillo-
scope and the switching noise made the updating step hardly visible. The programma-
bility of parameter arrays was further tested by initialising a parameter to 2.25V and
then adapting it towards 1.5V. Fig.9(b) shows the measured parameter voltage (the
second trace from top) and corresponding digital control signals. The parameter value
adapted from 2.25V to 1.5V within 336 sec. As soon as the target value was achieved,
the directional signal (INC/DEC) started to alternate between 1 and 0, refreshing the
parameter at 1.5 reliably.

6 Conclusion

The VLSI circuits realising a scalable and programmable CRBM system have been
designed, fabricated and tested. The preliminary measurement results demonstrate
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satisfactory functionality of the synapse module, the neuron module, and their pro-
grammable parameters. By interconnecting multiple chips, the capability of the system
to model high-dimensional biomedical data, as well as the feasibility of using noise-
induced stochastic behaviour to enhance the robustness of analogue computation will
be further examined and discussed.
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Abstract. Implementing probabilistic models in Very-Large-Scale-Integration
(VLSI) has been attractive to implantable biomedical devices for improving sen-
sor fusion. However, hardware non-idealities can introduce training errors, hin-
dering optimal modelling through on-chip adaptation. This paper investigates the
feasibility of using the dynamic current mirrors to implement a simple and pre-
cise training circuit. The precision required for training the Continuous Restricted
Boltzmann Machine (CRBM) is first identified. A training circuit based on accu-
mulators formed by dynamic current mirrors is then proposed. By measuring the
accumulators in VLSI, the feasibility of training the CRBM on chip according to
its minimizing-contrastive-divergence rule is concluded.

Keywords: Minimising Contrastive Divergence, Dynamic Current Mirrors,
Probabilistic Model, Boltzmann Machine, On-chip training.

1 Introduction

As probabilistic models are able to generalise the natural variability in data, the VLSI
implementation of probabilistic models has been attractive to implantable biomedical
devices [1] [2]. However, seldom probabilistic models are amenable to the VLSI im-
plementation. Among the proposed probabilistic models in VLSI [3] [4] [5], the Con-
tinuous Restricted Boltzmann Machine (CRBM) has been shown capable of modelling
biomedical data with a hardware-friendly training algorithm, which minimises the con-
trastive divergence (MCD) between training and modelled distributions [6] [7]. How-
ever, experiments in [7] revealed that offsets in training circuits limited the minimum
achievable divergence, preventing the CRBM microsystem from modelling data opti-
mally. To make useful the VLSI implementation of the CRBM and many other models,
it is important to develop a simple circuit capable of realising contrastive training rules
with satisfactory precision.

This paper examines the feasibility of using dynamic current mirrors to realise
contrastive-divergence training algorithms on-chip with satisfactory precision. As
continuous-valued models are inherently more sensitive to the existence of training er-
rors, the satisfactory precision refers to the capability of training the CRBM microsys-
tem to model both artificial and real biomedical (ECG) data satisfactorily.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 410–420, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 The CRBM Model

The CRBM consists of one visible and one hidden layers of stochastic neurons with
inter-layer connections only [7]. The number of visible neurons corresponds to the di-
mension of data, while that of hidden neurons is chosen according to data complex-
ity [7]. Let wi j represent the bi-directional connection between neurons si and s j. The
stochastic state of a neuron si is defined by [7]

si = ϕi (ai · (Σ jwi j · s j + Ni (0,σ))) (1)

where Ni (0,σ) represents a Gaussian noise with zero mean and variance σ2, and ϕi (·)
a sigmoid function (e.g. tanh(·)) with asymptotes at±1. Parameter ai controls the slope
of the sigmoid function and thus the variance of si, such that the neuron is either near-
deterministic ( small ai ), or continuous-stochastic ( moderate ai ), or binary-stochastic
( large ai ). Let λ represent the parameter {wi j} or {ai}. Parameters in a CRBM mi-
crosystem are trained by the simplified MCD algorithm [3]

�λ = ηλ · (
〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4) (2)

where ŝi and ŝ j denotes the one-step Gibbs-sampled states [7], ηλ the updating rate,
and 〈·〉4 taking the expectation over four training data. The difference between

〈
si · s j

〉
4

and
〈
ŝi · ŝ j

〉
4 corresponds to the contrastive divergence between training and modelled

distributions [6] and has to be minimised. For training {ai}, s j and ŝ j in Eq.(2) are
replaced by si and ŝi, respectively.

3 Maximum Offsets Tolerable by the CRBM

The CRBM has been realised as a VLSI microsystem containing six neurons with on-
chip training circuits [3]. However, hardware nonidealities in training circuits prevents
the CRBM system from modelling data optimally, and it was shown that the overall
effect of hardware nonidealities can be modelled as the ”biased” training algorithm

�λ = ηλ · (
〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4 +�T ) (3)

where�T represents the offset that limits the minimum contrastive divergence achiev-
able by on-chip training circuits. Although the offset varies from one circuit to an-
other, it is assumed to be identical in simulation for simplicity. Based on the software-
hardware mapping derived in [3], the following subsections simulate the behaviour of
a CRBM microsystem with Eq.(3), and identify the maximum offsets (�T ) the system
can tolerate. The value of tolerable offsets will be given in terms of percentage, normal-
ized with respect to the maximum value of |

〈
si · s j

〉
4 | = 1. ( i.e. �T = 1 % refers to

�T = 0.01 in Eq.(3) ).

3.1 Quantitative Index for Offset Tolerance

As a generative model, the CRBM learns to ”regenerate” training data distribution.To
identify an index for measuring quantitatively how well the CRBM models a dataset, the
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Fig. 1. (a) Artificial training data with two clusters of Gaussian-distributed data points. (b) The
statistical density of the training data. (c)(d): The statistical density of 20-step reconstructions
generated by the CRBM after (c)20000 (d)30000 training epochs.
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Fig. 2. (a) The projection of 500 ECG training data to its first two principle components. The
projection of the five abnormal ECGs are denoted by black crosses. (b)(c)(d): Results of training
the CRBM to model ECG data with �T = 0.2% for all parameters. (b) (b) The normal and
(c)the abnormal ECGs in training dataset (grey) and the reconstruction by the trained CRBM
(dashed). (d) Responses of hidden neuron h3 to 1700 testing data. maxV, minV, maxQ, and minQ
correspond to the maximum and minimum responses to abnormal heartbeats, and maximum and
minimum responses to normal heartbeats, respectively.
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Table 1. Tolerable offsets with four-data, sign-valued training algorithm, four-data, real-valued
training algorithm, and single-datumn training algorithm

METHOD\MODELLED DATA TWO-CLUSTER ECG

Four-data, sign-valued 1% 0.2%

Four-data, real-valued 1% 0.3%

Single-data, real-valued 0.2% 0.05%

CRBM with two visible and four hidden neurons, as shown in Fig.1, was first trained
with the ideal algorithm (Eq.(2)) to model the artificial data in Fig.1(a). The dataset
contains one elliptic and one circular clusters of 200 Gaussian-distributed data points
whose statistical density is shown in Fig.1(b). Let PT (v) and PM(v) represent the dis-
tribution of training data and the distribution modeled by the CRBM, respectively. The
Kulback-Leibler (KL) Divergence defined as Eq.(4) [8] measures the difference between
PT (v) and PM(v).

G = ΣvPT (v)log
PT (v)
PM(v)

(4)

where v denotes the subset of visible states, and G equals zero when PT (v) = PM(v).
As not all distributions can be described by explicit equations, PT (v) and PM(v) were
statistically-estimated by dividing the two-dimensional space into 10x10 square grids,
counting the number of data points in each grid, and normalising the counts with respect
to the total number of data points. Fig.1(c)(d) shows the statistical density of 20-step
reconstructions generated by the CRBM after 20000 and 30000 training epochs, respec-
tively. The G values calculated according to Eq.(4) are shown at the bottom-left corner
of each subfigure, indicating that the KL-divergence is a reliable index for measuring
quantitatively the similarity between training and modelled distributions. Similar results
are obtained for other data like doughnut-shaped distribution. As the training updates of
most parameters become negligible after G< 0.8, it is chosen as the criterion for identi-
fying the tolerable offsets for the CRBM. When all parameters ({wi j}, {avi}, and {ahi})
experience offsets, the maximum offsets the CRBM can tolerate to model artificial data
was identified to be 1% (Table 1).

3.2 Modelling Real Heartbeat Data with Offsets

The tolerable offset for modelling high-dimensional, real-world data was examined
in the context of recognising electrocardiograms (ECG), extracted from the MIT-BIH
database as in [9] [10]. The training dataset contains 500 heartbeats with only 5 abnor-
mal heartbeats. The testing dataset contains 1700 heartbeats with 27 abnormal heart-
beats. Each ECG trace was sampled as a 65-dimensional datum, and Fig.2(a) shows the
projection of the training dataset onto its first two principle components. Although the
dimension reduction made the quantitative index G remain applicable, pilot simulation
showed that modelling training data satisfactorily did not guarantee the detection of ab-
normal heartbeats with 100% accuracy. This was because the projected distributions of
normal and abnormal heartbeats at low dimension overlap with each other, as obviated
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by Fig.2(a). (the data remain separable in high dimensions). Therefore, detection with
100% accuracy was used as a stricter criterion for identifying the tolerable offsets for
modelling ECG data. Extensive simulations further showed that the CRBM tolerated
an offset of only 0.2% to model ECG data (Table 1). With �T = 0.2%, the trained
CRBM was able to reconstruct both normal and abnormal ECG signal satisfactorily, as
shown in Fig.2(b)(c). In addition, Fig.2(d) shows the responses of hidden neuron h3 to
1700 testing data {d}, calculated according to Eq.(5). The abnormal heartbeats can be
detected with 100% accuracy by setting any threshold between minV and maxQ.

h3 = ϕ(a3 · (w(3) ·d)) (5)

3.3 Tolerable Offsets for Different Training Strategies

As implementing training circuits with an offset less than 0.2% is quite a challenge, we
further investigated the possibility of releasing the strict requirement with two modi-
fied training strategies, (a)updating parameters with real-valued contrastive divergence
(
〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4) instead of taking only its sign and (b)updating parameters with

real-valued contrastive divergence datum by datum [11]. The last two rows of Table 1
summarise the maximum offsets the CRBM can tolerate to model artificial and ECG
data with the different training strategies. Comparison with the first row indicates that
four-data, real-valued adaptation does enhance the tolerance against offsets slightly,
while single-datum adaptation degrades the tolerance significantly. The latter demon-
strates that calculating the expectation value, i.e. accumulating opinions from multiple
data, is important for estimating the ”contrastive divergence” between distributions.

4 The Contrastive-Divergence Training Circuit Based on Dynamic
Current Mirrors

Although an offset smaller than 0.3% remains challenging, the dynamic current mirrors
(DCMs) were reported to have errors smaller than 500ppm [12] [13]. Therefore, we
propose the training circuit in Fig.3 that uses DCMs to calculate

〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4 or

(si · s j − ŝi · ŝ j) in contrastive-divergence training rules. Each DCM works as a regis-
ter, using the same transistor (M1 or M2 in Fig.3(a)) to sample and transfer currents.
The mismatching errors in conventional current mirrors, i.e. the main cause of train-
ing offsets in [10], are thus avoided. Fig.3(a) shows the accumulator consisting of one
NMOS (M1-M1c) and one PMOS (M2-M2c) DCMs. The DCM training circuit realises
the single-datum training algorithm by simply three steps. Iin in Iin in Fig.3(a) repre-
sents si · s j or ŝi · ŝ j calculated by the multiplier. At the first step with switches SIN , SD1,
and SG1 cloased, the current representing si · s j is sampled into the NMOS DCM, and
then stored as the voltage across the capacitor C1 after SIN and SG1 become opened.
At the second step, switches SD2 and SG2 are closed to copy the same current into the
PMOS DCM. The sampled current is stored as a voltage across the capacitor C2 after
SD2 and SG2 are opened. At the third step, Iin representing ŝi · ŝ j is sampled and stored
in the NMOS DCM by repeating the first step. Finally, closing SD1, SD2, and SOUT

gives an output current proportional to (si · s j− ŝi · ŝ j). To implement the four-data
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training algorithm, the circuit in Fig.3(a) functions as an accumulator that calculates〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4. The first and the second steps described above are carried out once

to store si · s j of the first datum into the PMOS DCM. At the third step, let Iin corre-
spond to si · s j of the second datum. Closing SIN , SD1, SG1, and SD2 stores the sum of
si · s j of both data into the NMOS DCM. Repeating the second and the third steps al-
ternatively then sums up si · s j of multiple data and stores it into the NMOS DCM. To
calculate the contrastive divergence,

〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4 two identical accumulators are

employed as in Fig.4(b). The top accumulator calculates
〈
si · s j

〉
4 and stores the value

into its PMOS DCM, while the bottom one simply stores
〈
ŝi · ŝ j

〉
4 into NMOS DCM.

As soon as switch SOUT is closed, an output current proportional to
〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4

is produced. Finally, IOUT is directed into the charge amplifier in Fig.3(c) which func-
tions as the low-impedance reference voltage (VREF) in Fig.3(b). IOUT hen modifies the
voltage stored across CF , which represents a parameter value of the CRBM.

The DCM training circuit in Fig.3 is capable of realising the three contrastive-
divergence training algorithms in Table 1, as well as other contrastive training rules
in [8] [14] [15] [16]. The learning rate ηλ in Eq.(2) can be defined by the period of clos-
ing SOUT . Unlike the DCMs in [12] [13], the DCMs in Fig.3 have not only to transport
currents of various values but also to function as both accumulators and subtractors,
coping with a wide range of currents. Cascode transistors M1a and M2a in Fig.3(a)
are therefore employed to reduce the effect of channel-length modulation by fixing the
drain voltage of M1 and M2, respectively.

The DCM training circuit also suffers from offsets introduced by the nonlinearity
of multipliers and the charge-injection errors. The former can be easily avoided by us-
ing a multiplier with symmetric outputs, for example, the modified Chible multiplier
proposed in [3]. As for the latter, complementary transistors can be used as switches
to compensate for charge-injection errors. However, the simulation normally underesti-
mates the charge-injection errors. The DCM accumulators in Fig.3(a) and (b), exclud-
ing the multiplier, were thus fabricated with the TSMC 0.35um 2P4M CMOS process
to investigate the precision achievable by the proposed training circuits.

For the single-datum training algorithm, Iin was designed to range from 1μA to 3μA
corresponding to si · s j = −1 and ŝi · ŝ j = 1, respectively. To minimise the dependence
of charge injection on Iin, the charge-injection error is minimised at Iin = 2μA. For four-
data training algorithm, Iin was designed to range from 0.25μA to 0.75μA, such that the
accumulation of four data still ranges from 1μA to 3μA, allowing the minimisation of
charge-injection error to remain at Iin = 2μA.

5 Measurement Results

With Iin generated from a Source Meter (Keithley 2602), the output of the DCM accu-
mulators were connected to a current-voltage(I-V) converter, which emulated VREF in
Fig.3 and converted Iout into a voltage of Vo = VREF −Hf · Iout with Hf = 1650(V/A).
The voltage change �Vo = Vo−VREF = −Hf · Iout at the instant of closing SOUT was
then measured. With digital-control clocks generated by a Field-Programmable-Gate-
Array (FPGA) chip, the DCM accumulators were set easily to calculate (si · s j− ŝi · ŝ j)
or
〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4.
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Fig. 3. The proposed DCM training circuit consisting of (a) a multiplier and the DCM accumu-
lator calculating (si · s j− ŝi · ŝ j), or (b) the DCM accumulator calculating (

〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4),

and, (c) the charge amplifier

(a) (b)

Fig. 4. Measured V0 =VREF−Iout ·Hf for single-datum training with Iin = 1μA. (a) without offset
(b) with offset. The digital signals from top to bottom correspond to SIN , SD1, SG1, SD2, SG2, and
SOUT in Fig.3.

(a) (b)

Fig. 5. Measured V0 =VREF − Iout ·Hf for four-data training with Iin = 0.25μA. (a) without offset
(b) with offset. The digital signals from top to bottom correspond to SIN , SD1, SG1, SD2, SG2, and
SOUT for accumulator A and those of accumulator B in Fig.3.
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Fig. 6. Statistical histogram of the offset errors measured from a DCM training circuit set to carry
out single-data training algorithm

Table 2. TMeasured offsets in the calculation of (si · s j− ŝi · ŝ j)

si · s j ŝi · ŝ j MEAN ERROR STD. DEV.

1μA 1μA 0.38% 0.56%

2μA 2μA 0.19% 0.39%

3μA 3μA 0.45% 0.63%

Table 3. Measured offsets in the calculation of
〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4

si · s j(μA) ŝi · ŝ j(μA) MEAN ERROR STD. DEV.

0.25+0.25+0.25+0.25 0.25+0.25+0.25+0.25 1.31% 0.38%

0.5+0.5+0.5+0.5 0.5+0.5+0.5+0.5 2.21% 0.55%

0.75+0.75+0.75+0.75 0.75+0.75+0.75+0.75 3.61% 0.63%

For calculating (si · s j− ŝi · ŝ j), the measured Vo in response to a constant Iin of 1μA,
i.e. si · s j = ŝi · s j = −1, is shown in Fig.4. Although �V0 ideally equaled zero, �V0

measured from the same circuit either approximated zero or varied from one trial to
another. Similar results were observed when calculating

〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4, as shown

in Fig.5. Normalising�V0 with respect to 1.65V (the�V0 for Iout = 1μA representing
|Si · s j| = 1) gives the offset errors in terms of percentage. Fig.6 shows the statistical
distribution of the offsets measured from 1000 trials of calculating (si · s j− ŝi · ŝ j). In-
terestingly, the offsets exhibit a uniform distribution instead of staying constant, and the
variance is greater than the mean value.

The offsets in the DCM accumulators were caused by charge-injection errors, leak-
age currents of C1 and C2, and clock jitters generated by the FPGA chip. To investigate
the contribution of leakage currents, two types of digital clocks were used to buffer Iin

to Iout by storing Iin in the NMOS DCM, transferring it to the PMOS DCM, and sub-
sequently outputing the current. One clock differs from the other mainly by shortening
the period of opening SG1 and SG2. Shortening the period improved the mean errors
from -8.09% to -6.38%, while the standard deviations of the two cases are comparable
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( 3.45%). Therefore, leakage currents mainly affect the mean errors, while clock jitters
have dominant effects on the variance. Accumulating four Iin caused mean errors to in-
crease by more than four times, while the standard deviations remained about the same.
Charge injection thus also affected mainly the mean errors.

Table 2 summarises the performance of the DCM accumulator in calculating (si ·
s j− ŝi · ŝ j) with different Iin. The mean errors became significantly smaller than 6.38%,
indicating that charge-injection and leakage-current errors in the NMOS and PMOS
DCMs cancelled with each other largely through the subtraction operation. Complete
cancellation was difficult because the current representing (si · s j in the PMOS DCM
unavoidably suffered from extra switching events than the current representing ŝi · ŝ j) in
the NMOS DCM. Moreover, Table 2 reveals that the randomness in offsets was also re-
duced by the subtraction operation. Table 3 summarises the performance in calculating〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4. Compared to Table 2, the mean errors all became higher because

charge-injection and leakage-current errors were accumulated. Nevertheless, the stan-
dard deviations in both tables are comparable, confirming that clock jitters dominate to
introduce the randomness in offsets.

6 Modelling Data with Uniformly-Distributed Offsets

To simulate the performance of a CRBM microsystem with the proposed DCM train-
ing circuits, �T in the training rule was replaced by a uniform random variable with
nonzero mean (μT ) and a standard deviation (σ) of 0.7%, the measured maximum
deviation. Under the existence of �T for all parameters, the maximum mean offsets
(μT ) that the CRBM can tolerate to model both artificial and ECG data are identified
and summarised in Table 4. Compared to Table 1, the tolerance is slightly improved.
This feature agrees with the finding that randomness releases the precision required for
training a multi-layer-perceptron [17] [18]. The CRBM is able to correct training errors
whenever the random offset is small, and thus to discourage the saturation of parameter
values. Therefore, it is important to know when to stop training once the data distri-
bution is modelled, so as to prevent �T from dominating to causes all parameters to
saturate. Fortunately, the G value could be used as a reliable indicator for when to stop.

Table 4. Tolerable mean offsets by the CRBM with different training strategies

METHOD\MODELLED DATA TWO-CLUSTER ECG

Four-data, sign-valued 2% 0.3%

Four-data, real-valued 2% 0.5%

Single-data, real-valued 0.5% 0.1%

7 Conclusion

The feasibility of minimising contrastive divergence on-chip with DCMs has been care-
fully investigated by both behavioural simulation of the CRBM microsystem and the
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VLSI implementation of DCM accumulators. The simulation indicates that the CRBM
can tolerate a maximum offset of only 0.3% to model real biomedical (ECG) data satis-
factorily, and that the tolerance can be slightly-improved by real-valued adaptation. On
the other hand, measurement results of DCM accumulators indicate that the accumu-
lation errors in DCMs can be largely cancelled by the subtraction operation essential
for the contrastive-divergence training. As the mean offsets in Table II are all smaller
than 0.5%, i.e. the tolerable offset for four-data, real-valued trainning in Table 4, us-
ing four DCM accumulators (Fig.3(a)) to calculate

〈
si · s j

〉
4−
〈
ŝi · ŝ j

〉
4 would allow us

to avoid the accumulation error in Table 3 while achieving satisfactory precision. This
suggestion will be further confirmed with the VLSI implementation of the full training
circuit.
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Abstract. In this work we provide design guidelines for the hardware

implementation of Spiking Neural Networks. The proposed methodology

is applied to temporal pattern recognition analysis. For this purpose the

networks are trained using a simplified Genetic Algorithm. The proposed

solution is applied to estimate the processing efficiency of Spiking Neural

Networks.
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1 Introduction

The development of efficient solutions for the hardware implementation of neural
systems is currently one of the major challenges for science and technology. Due
to their parallel-processing nature, among other applications, neural systems can
be used for real-time pattern recognition tasks and to provide quick solutions for
complex problems that are intractable using traditional digital processors [1,2].
The distributed information processing of Neural Networks also enhances fault
tolerance and noise immunity with respect to traditional sequential processing
machines. Despite of all these processing advantages, one of the main problems
of dealing with neural systems is the achievement of optimum network configura-
tions since network complexity increases exponentially with the total number of
neural connections. Therefore, the development of learning strategies to quickly
obtain optimum solutions when dealing with huge network configuration spaces
is of high interest for the research community.

Recently, a lot of research has been focused on the development of Spiking
Neural Networks (SNN) [3] as they are closely related to real biological systems.
In SNN information is codified in the form of voltage pulses called Action Po-
tentials (APs). At each neuron cell the AP inputs are weighted and integrated
in a single variable defined as the Post-Synaptic-Potential (PSP). The PSP is
time dependent and decays when no APs are received. When input spikes excite
the PSP of a neuron sufficiently so that it is over a certain threshold, an Action
Potential is emitted by the neuron and transmitted to the rest of the network.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 421–428, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this work we present a practical implementation of SNN. We also develop a
simple architecture that can be used for training SNN. The proposed self-learning
solution has been applied for temporal pattern recognition. Based on this study,
we also provide a new metric to estimate the processing capacity of NN. The
rest of this paper is organized as follows: in section 2 we show the proposed
SNN self-learning architecture, while in section 3 we apply the proposed system
to temporal pattern recognition analysis. Finally in section 4 we present the
conclusions.

2 Digital SNN Architecture

2.1 Digital Spiking Neuron Model

As mentioned in the previous section, in SNN the information is codified in the
form of voltage pulses. We used a simplified digital implementation of the real
behavior of biological neurons. In the proposed system, the PSP decay after each
input spike is selected to be linear instead of the real non-linear variation while
the refractory period present after each spike emission has been neglected. The
main objective of this work is not to provide an exact copy of the real behavior
of biological systems but to develop a useful Neural Network configuration tech-
nique. In Fig. 1 it is shown an example of the dynamic behavior of the digital
model implemented.

In the digital version implemented the PSP is codified as a digital number.
At each spike integration the PSP is increased a fixed value that depends on the
type and the strength of the connection. Therefore, positive (negative) incre-
ment values are associated to excitatory (inhibitory) connections. Each neuron
is implemented using a VHDL code in which the connection strength is selected

Fig. 1. Dynamic behavior of the digital implementation of spiking neurons. Action

potentials are represented as digital pulses while post-psynaptic potential variation is

assumed to be linear with time. The typical refractory period after each output spike

has been neglected in this model.
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to be a fraction of the neuron threshold (in particular, we selected a fraction of
±2/5 for both excitatory and inhibitory connections).

2.2 Self-learning Architecture

The proposed self-learning architecture is shown in Fig. 2. It consists in two basic
blocks, a Genetic Algorithm Circuitry (GAC) and a Fitness Circuitry (FC). The
GAC generates new configurations based on the better configuration obtained,
that is stored in the configuration register. Using a Random Number Generator
(RNG) a random mutation vector is generated. The mutation vector is operated
using XOR gates with the better configuration found until the moment (placed
in the configuration register). The result is a new configuration (binary output
of XOR block) that is equal to the previous except in those cases where the RNG
provides a HIGH state. The new configuration is directly applied to the SNN
when the controlling signal of the GAC multiplexer (SL) is HIGH (self-learning
selection). When signal SL is LOW (operation mode) the better configuration
obtained until that moment is applied to the SNN.

The FC block evaluates the aptness of each new configuration for a selected
network task. During the training mode an evaluation circuitry (EC) compares
the SNN behavior with respect to the expected behavior, thus evaluating a
cost function (the configuration fitness). The value obtained in this process is
then compared to the one associated to the better configuration at the moment
(stored at the fitness register). When a better fitness is found at the end of
the evaluation time, the digital comparator output is set to a HIGH state and
both the fitness and the configuration registers are updated with the new values.
When the system is in operation mode, the SNN configuration is fixed to the
better solution obtained at the moment. A global reset is used to start with
pre-selected initial conditions.

Fig. 2. Block structure for the dynamic configuration of SNN. The GAC block is used

for the network configuration while the FC block evaluates the network efficiency.



424 J.L. Rosselló et al.

2.3 Random Vector Generation

The mutation vector is used to generate a new configuration that is equal to the
previous one, except in those cases where the RNG provides a HIGH state. The
election of the RNG is important since all the possible mutation vectors must
have the same probability of being generated. Therefore, the percentage of mu-
tation ranges between the 0% (mutation vector 00...0) and the 100% (mutation
vector 11...1). Using this strategy we ensure the possibility of moving from a
local minima to a deeper (and therefore better) minima. Make note that, since
the system is directly implemented in hardware it can sweep millions of different
configuration vectors per second, thus obtaining a good solution in a reasonable
time (although, of course, the absolute minimum is not guaranteed).

For the generation of the mutation vector we can choose either a pseudo-
random or a random number generator. In FPGA applications we can use the
first one since it is easily implemented using LFSR registers. For VLSI implemen-
tations we can choose a lower-cost solution as a true random number generator
[4]. The solution proposed in [4] represent a lower cost in terms of hardware
resources if compared to LFSR counters.

3 Application to Temporal Pattern Recognition

We applied the proposed SNN architecture to evaluate the processing behavior
of various networks. The selected SNN task is the temporal pattern recognition
(that is directly related to the “memory” capacity of the system). During the
training mode, a finite sequence of vectors is repeatedly applied at the SNN input
(the training bit sequence) and the task of the network consists in recognizing
the sequence: at each time step the SNN has to provide the next bit of the
sequence (see the illustration of Fig. 3). The network efficiency is evaluated
estimating the probability of the SNN prediction success. At each evaluation

Fig. 3. A complete SNN implements all the possible inter-neuron connections. Such

networks are trained to recognize temporal patterns.
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Fig. 4. Success probability of a spiking neural network of 3, 5 and 8 neurons assembled

in a complete topology. As can be appreciated, the total “memory” of the system is

proportional to the number of neurons of the network.

step a mutated configuration provided by the GAC is used to configure the
SNN. The FC bloc evaluates the probability of success of SNN predictions and
the mutated configuration is therefore stored or discarded (see Fig. 2).

We configured different networks containing three, five and eight neurons, each
one connected to the rest of the network thus assembling a complete topology.
In Fig. 3 we show the case with three neurons (defined as a 3-SNN).

The training bit sequence must be as complex as possible to maximize the
pattern recognition difficulty. Therefore, we selected the generation of pseudo-
random strings provided by LFSR digital blocks. Pseudo-random bit strings are
characterized to have the same statistical properties as random sequences with
the only characteristic that pseudo-random sequences have a periodicity. In our
experiment we used training sequences of N=7, 15, 31, 63, 127, 255, 511 and
1023 bits (using LFSR of 3 until 10 bits length). With the selection of this type
of pseudo-random sequences, the memorization task difficulty is maximized.

We applied each pseudo-random training sequence to three different SNN
with complete topology (using 3, 5 and 8 neurons). Each SNN is configured
by the proposed genetic-based self-learning architecture. At each time step, the
network has to guess the next bit that will be provided by the LFSR. Once
the configuring circuitry has been stabilized to an optimum configuration we
evaluate the probability of success associated to this final configuration. In Fig. 4
we provide the different prediction success for each network as a function of
the number of bits of the LFSR. It is observed that, as the number of bits
of the sequence increases and as the number of neurons decreases the network
presents a lower prediction success. We defined a new performance metric of
Neural Networks that we refer to as the M-index that measures the ability of
the system to recognize a pseudo-random bit sequence. The SNN M-index is
defined as the maximum pseudo-random sequence length that the network is able
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to recognize with a 90% of success probability. This index is a good indicator of
the network processing capability, independently on the type and topology of
the selected neural system. The M-index of the three networks were 5, 12 and
22 for the 3-SNN, 5-SNN and the 8-SNN respectively.

4 Conclusions

In this work we proposed a simple architecture for SNN self-configuration. The
proposed system implements in hardware a simplified genetic algorithm. We ap-
plied the proposed architecture to temporal pattern recognition analysis. Differ-
ent pseudo-random sequences were applied to different networks and the success
probability was evaluated. A new performance metric has been developed that
may be applied to measure the processing capacity of networks.
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Appendix: VHDL Code of the Digital Spiking Neuron

Each neuron is implemented using a VHDL code in which the connection strength
is selected to be a fraction of the neuron threshold. Subsequently we show the
VHDL code for a digital neuron with four inputs and the previously described
characteristics. Weight is selected to be equal to ±2/5 (threshold value of 20 for
the post-synaptical potential and weight of ±8).

-- VHDL model for a digital Spiking Neuron********
LIBRARY ieee;
USE ieee.std_logic_1164.all;
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ENTITY neurona IS

PORT -- each input is codified with two bits
(

clk : IN STD_LOGIC;
in1 : IN STD_LOGIC;
in1x : IN STD_LOGIC_VECTOR(0 to 1);

in2 : IN STD_LOGIC;
in2x : IN STD_LOGIC_VECTOR(0 to 1);

in3 : IN STD_LOGIC;
in3x : IN STD_LOGIC_VECTOR(0 to 1);

in4 : IN STD_LOGIC;
in4x : IN STD_LOGIC_VECTOR(0 to 1);

outx : out STD_LOGIC

);

END neurona;

ARCHITECTURE neuron OF neurona IS

BEGIN
canviestat:
PROCESS (clk)

VARIABLE state: INTEGER RANGE 0 TO 31;
BEGIN

IF (clk’EVENT) and (clk=’1’) THEN
outx<=’0’;
IF (in1=’1’ and in1x="01") THEN

state:=state+8;
END IF;
IF (in1=’1’ and in1x="10") THEN

state:=state-8;
END IF;
IF (in2=’1’ and in2x="01") THEN

state:=state+8;
END IF;
IF (in2=’1’ and in2x="10") THEN

state:=state-8;
END IF;
IF (in3=’1’ and in3x="01") THEN
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state:=state+8;
END IF;
IF (in3=’1’ and in3x="10") THEN

state:=state-8;
END IF;
IF (in4=’1’ and in4x="01") THEN

state:=state+8;
END IF;
IF (in4=’1’ and in4x="10") THEN

state:=state-8;
END IF;
state:=state-1;
IF (state>20) THEN

outx<=’1’;
state:=1;

END IF;
IF (STATE=0) then

outx<=’0’;
END IF;

END IF;
END PROCESS canviestat;
END neuron;
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Abstract. We present an analog-VLSI neural network for image recog-
nition which features a dimensionality reduction network and a classifi-
cation stage. We implement local learning rules to train the network on
chip or program the coefficients from a computer, while compensating
for the negative effects of device mismatch and circuit nonlinearity. Our
experimental results show that the circuits perform closely to equivalent
software implementations, reaching 87% accuracy for face classification
and 89% for handwritten digit classification. The circuit dissipates 20mW
and occupies 2.5mm2 of die area in a 0.35μm CMOS process.

1 Introduction

Image recognition is the process of assigning classes to instances of a set of
acquired images, and constitutes one of the most challenging tasks in image
processing and analysis. Many applications of image recognition, such as face
and handwriting recognition, are of key importance in portable and embedded
systems for the implementation of intuitive user interfaces and secure user au-
thentication. Unfortunately, real-time software implementations of image clas-
sification algorithms on embedded processors are incapable of simultaneously
meeting the computational requirements of the algorithm and the low power and
space constraints of a portable system. Custom analog VLSI circuits can imple-
ment moderate-resolution computation using orders of magnitude less power and
die area than digital hardware, and are also a good match for the structural reg-
ularity of image recognition neural networks. However, the performance of these
circuits is limited by signal offsets, device mismatch, charge leakage and nonlin-
ear transistor behavior. Conventional design techniques can reduce these effects,
but they increase power and area, rendering analog solutions less attractive.

In this paper, we present alternatives for analog implementation of neural
networks for image recognition. Unlike traditional chip-in-the-loop solutions, we
use local adaptation and learning to train the network on chip after fabrication
with a minimum impact on power and area. We present two hardware dimen-
sionality reduction networks based on Principal Components Analysis (PCA)
and one based on Linear Discriminant Analysis (LDA), and two alternatives for
classification based on Manhattan-distance metrics in the feature space: nearest
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neighbor and Radial Basis Function networks. We show that, combined with
circuit calibration techniques, on-chip learning is able to compensate for most of
the effects of device mismatch, allowing our circuit to reach 87% accuracy for face
classification and 89% for handwritten digit classification, which is comparable
to traditional software implementation of the algorithms.

The rest of the paper is organized as follows: Section 2 introduces the algo-
rithms used in our implementation. Sections 3 and 4 describe the hardware used
for dimensionality reduction and classification, respectively. Finally, Section 5
shows our experimental results classifying faces and handwritten digits.

2 Subspace-Based Methods for Image Recognition

Using traditional classification algorithms on high-dimensional data results in pro-
hibitively high computational requirements. However, the redundancy present in
most images makes it possible to obtain a reduced representation which retains
most of the original information in the data. Using this approach, image recogni-
tion is composed of two tasks: dimensionality reduction and classification.

Consider an image vector xn×1, and the matrix Xn×N = {x1,x2, . . . ,xN} cor-
responding to a labeled database of N images. Linear subspace methods compute
the transformation Y = W*TX, where Ym×N , with m < n, is the reduced rep-
resentation of the database set obtained by projecting the input set X onto a
feature space using the transformation W∗

n×m, which is computed to optimize a
specific criterion in the feature space.

Two classic linear methods for dimensionality reduction are Principal Compo-
nents Analysis (PCA) and Linear Discriminant Analysis (LDA) [1]. The former
constructs W∗ such that its columns are the m largest eigenvectors of the covari-
ance matrix of X, which maximizes the variance (information) of the projected
components of X in the feature space. LDA takes advantage of labeled data to
maximize the distance between classes in the feature space. It defines two matri-
ces SW and SB representing the scatter (variance) within classes and the scatter
between different classes, respectively. In LDA, the columns of W∗ are the m
largest eigenvectors of S−1

W SB. As result, LDA tends to create clusters for each
class in the reduced space to improve classification. Unlike PCA, the number of
LDA projections m in the feature space is limited to m < P , where P is the
number of classes in the labeled training set.

The simplest classification method is nearest-neighbor, which uses a distance
metric to select the closest element of the labeled database to the input image
in the feature space. Because of its hardware simplicity, in this work we use
the Manhattan distance. We also implement and test a more advanced classi-
fication method based on Radial Basis Function (RBF) networks, which use a
hidden layer of neurons with Gaussian activation functions to detect clusters in
the feature space, and are thus particularly well suited to LDA dimensionality
reduction.

The next two sections describe the analog hardware implementation of the
dimensionality reduction and classification networks.
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Fig. 1. Adaptive linear combiner in analog VLSI

3 Dimensionality Reduction

The dimensionality reduction network has an identical structure for PCA and
LDA, as both compute the product of the input vector by the coefficient matrix,
and can be implemented in analog hardware using an array of m n-input linear
combiners, with each synapse composed by a multiplier and a memory cell to
store a synaptic weight. Fig. 1(a) depicts the architecture of the linear combiner.
Because of offsets in the analog multipliers, the output of the linear combiner
also exhibits an accumulated offset which depends on the weight values and the
properties of the hardware. In order to adaptively compensate for this offset, each
combiner features a constant input c connected to a bias synapse trained with
an anti-Hebbian learning rule [2]. The dashed line going back from the output
to the synapses represents a learning rule which adapts the synaptic weights
according to the algorithm used to train the network.

Fig. 1(b) shows a block diagram of each individual synapse. A standard ana-
log Gilbert multiplier computes the product of each pixel of the input image,
represented as a differential voltage, and the local synaptic weight stored in an
analog memory cell. An accurate transformation requires a linear response to
the pixel value, and consequently we designed the multipliers to maximize the
linearity of that input [3]. The differential output current of each multiplier is
summed across the linear combiner by simply connecting their outputs to com-
mon wires. An analog memory cell stores the synaptic weight. We implement the
memory cell using floating-gate pFET transistors which provide nonvolatile stor-
age, avoiding the charge leakage problems associated with VLSI capacitors, and
thus enabling open-loop operation after training. The memory cell, described in
detail in [7], uses negative feedback around a small operational amplifier and an
on-chip voltage shifter to provide accurate, linear, and bidirectional weight up-
dates with a resolution of up to 12 bits. The updates are performed by applying
digital pulses of fixed width to the inputs inc and dec, and the magnitude of the
updates depends linearly on the density (frequency) of the pulses. We implement
Pulse-Density Modulation (PDM) learning rules using conventional digital AND
and OR gates. Device mismatch in the memory cells results in asymmetric and
mismatched learning rates. We compensate for this effect using local calibration
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circuits, also based on floating gates, to achieve symmetric and uniform learning
rates across the chip with a resolution exceeding 12 bits in a 0.35μm CMOS
process.

The learning rule implements the method used to compute the coefficient
values. A previous paper [3] describes a LMS-based chip-in-the-loop approach,
where the coefficients are computed off line and used to generate an external
reference to calibrate and write the weights onto the chip. In this paper, we
focus on on-chip learning methods, which are suited to cases where the refer-
ence image database must be learned during autonomous system operation. The
rest of this section describes the implementation of learning rules for two PCA
learning rules: Generalized Hebbian Algorithm (GHA) and Adaptive Principal
Component Extraction (APEX). The coefficients of LDA must be computed off
line and thus cannot be learned directly on chip, however Section 5 includes
results for a LDA network where we used the above mentioned on-chip LMS
training to compensate for device mismatch when writing the coefficients.

Throughout the analysis presented in the rest of this section, we assume that
the inputs have zero mean and have been normalized. Also, for simplicity we
assume a linear model for the multipliers given by

o = (axx+ γx)(aww + γw) (1)

where o is the multiplier output, x and w are the inputs, γx and γw are input
offsets, and ax and aw are gains associated with each input. These parameters
vary across different multipliers due to device mismatch. In Section 5 we present
experimental results from real nonlinear multipliers, and include comparisons
with chip-in-the-loop methods for PCA and LDA.

Adaptive algorithms for PCA iteratively compute a set of orthogonal weights
that maximize the output variance of each individual combiner. In the GHA
algorithm [5], output maximization and orthogonalization are performed by a
single learning rule:

Δwj,k = μyj,k

[
xk −

j∑
i=1

yi,kwi,k

]
(2)

where yj,k = wT
j,kxk is the j-th principal component of the input x at time

k. The bracketed term represents the reconstruction error of x from the first j
components. The GHA rule for the j-th component seeks to minimize the local
reconstruction error for the fraction of x that has not been yet approximated by
the previous components.

The APEX algorithm [5] combines an output maximization network with
inhibitory synapses for weight orthogonalization. Now, the output of the j-th
combiner is yj,k = wT

j,kxk −
∑j−1
i=1 lij,kyi and the weights adapt with the rules:

Δwj,k = μyj,k(xk − yj,kwj,k) (3)
Δlij,k = μyj,kyi,k with i < j (4)
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where lij is the inhibitory weight connecting the output of the i-th combiner to
the j-th combiner. The learning rule for the first component is identical for both
algorithms:

Δwk = μyk(xk − ykwk) = μyk(xk − x′
k) (5)

where μ is the learning rate and x′
k is the instantaneous reconstruction of x. We

now derive an implementation of the learning rule that minimizes the effects of
device mismatch.

Let us consider an analog linear combiner such as the one depicted in Fig. 1(a)
computing the first principal component y of x. Using the multiplier model of
Eqn. (1), the distorted output will be computed as:

yk = xT
k (AxAwwk + Axγw) + [γT

x (Awwk + γw) + c(abbk + γb)] (6)

where Ax = diag([ax1 . . . axn ]), Aw = diag([aw1 . . . awn ]), γx = [γx1 . . . γxn ]T,
γw = [γw1 . . . γwn ]T, ab, and γb represent the gain and offset of each multiplier,
which are unknown at design time. Upon convergence, the bracketed term in
Eqn. (6) will be a constant offset, which can be cancelled by a bias synapse
trained with the anti-Hebbian rule bk+1 = bk − μcyk. Thus, Eqn. (6) reduces to:

yk = xT
k (AxAwwk + Axγw) = xT

kwk (7)

From Eqn. (1) and (5), x′
k is computed as:

x′
k = yk(AyA′

wwk + Ayγ′
w) + γy(A′

wwk + γ′
w) (8)

where Ay, A′
w, γy, and γ′

w are the gains and offsets of the associated multipliers.
Replacing Eqns. (7) and (8) into Eqn. (2), we determine the effective learning
rule modified by device mismatch:

Δwk = μyk(x− yk(AyA′
wwk + Ayγ′

w)) = μyk(x− ykw
′
k) (9)

where the last (constant) term of Eqn. (8) is omitted because yk has zero mean.
The key to compensating for the effects of mismatch expressed above is to

use the same analog multipliers to compute yk and x′
k. In this case Ax = Ay,

Aw = A′
w, and γw = γ′

w, and the learning rule becomes:

Δwk = μyk(x− ykwk) (10)

where yk and wk are the modified weight and output defined in Eqn. (7).
Eqn. (10) is equivalent to the original rule in Eqn. (5), but with a new weight
vector modified by device mismatch. A convergence analysis similar to LMS [2]
demonstrates that this weight converges to a value that compensates for the
effects of mismatch in the computation of the output of Eqn. (6). Note that this
will only be the case if the same multipliers are used to compute yk and x′

k.
Fig. 2(a) shows a block diagram for one individual synapse used in both algo-
rithms. The multiplexer shares the analog multipliers between the computation
of yk and x′

k, and is controlled by a digital signal that alternates its value during
the computation and adaptation phases of the algorithm.
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Fig. 2. Synapse for on-chip PCA learning and measured output error

We use a natural extension of the design in Fig. 2(a) for the higher-order
outputs of GHA and the Hebbian synapses of APEX. The inhibitory lateral
connections of APEX use an anti-Hebbian learning rule which naturally com-
pensates for offset and gain mismatch [2].

Fig. 2(b) depicts experimental results from our implementations of GHA and
APEX in a 0.35μm CMOS process. The figure plots the normalized Root-Mean-
Square error of both networks for the first 5 principal components using the ORL
face database. Even though both algorithms successfully compensate for most
of the effects of device mismatch (without compensation, the algorithms simply
fail to converge), they still exhibit a measurable distortion in the computation
of the principal components. Due to its higher structural complexity, APEX is
more sensitive to these effects, especially in the higher-order components. How-
ever, the experiments presented in Section 5 show that this distortion does not
significantly affect the classification performance of the network on real images.

4 Classification

As discussed in Section 2, we evaluate two classification methods: nearest neigh-
bor and Radial Basis Function (RBF) networks. Because of its implementation
simplicity, both methods use the Manhattan distance, defined for two vectors
x = [x1 . . . xn] and y = [y1 . . . yn] as d =

∑n
i=1 |xi − yi|. Fig. 3(a) illustrates

the distance computation circuit for the nearest-neighbor method. Each projec-
tion of the training set onto the feature space is stored as a current in an analog
memory cell, simpler and smaller than the cell used in the dimensionality reduc-
tion network, and written using a self-limiting write process to compensate for
device mismatch. The difference between each projection of the pattern and the
test input is computed by inverting the polarity of one of the signals and adding
the currents. A current comparator based on a simple transconductance ampli-
fier determines the sign of the result and uses a 2 × 2 crossbar switch to invert
the polarity of the outputs and thus computes the absolute value. A current-
based Winner-Take-All (WTA) circuit [6] selects the database element with the
smallest distance to the test input, and assigns its class to the test image.
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Fig. 3. Architecture and circuits for classification. di is the computed distance in the
feature space between the feature vector y and a stored database element ri, and zj

are the outputs of the RBF network.

A classification structure based on RBF networks, proposed in [8], provides
a representation for the clusters assigned to each image class. This method has
a compact implementation because it only stores and compares the parameters
of each class in the training set, while nearest-neighbor considers each separate
element. Moreover, because the LDA algorithm specifically creates clusters in
the feature space, it is well suited to this classification approach. Because we
know in advance the number of clusters and can compute their centers and
widths, the design of the network is considerably simplified. Fig. 3(b) shows
the architecture of the two-layer RBF network. A circuit similar to Fig. 3(a)
computes the Manhattan distance between the test image in the feature space
and the centers of each cluster, also stored in small analog memory cells. An array
of bump circuits [4], shown in Fig. 3(c), compute Gaussian-like functions on each
distance. The outputs of the Gaussian functions feed the output layer, composed
of linear combiners. Using an on-chip implementation of the LMS algorithm [3],
we train each combiner to identify one specific image class in the database. Our
LMS learning rule is both compact and highly robust to the effects of device
mismatch, allowing for open-loop operation with about 10 bits of resolution. A
current-based WTA circuit selects the largest output zt and assigns a class label
t to the test image.

5 Experimental Results

We designed and fabricated analog multipliers, memory cells, and weight-update
rules to implement the building blocks described in the previous section using a
0.35μm CMOS process. We tested the fabricated chips in the lab and developed
a software emulator that allows us to test the static performance of an arbitrary
network with less than 0.5% error compared to the fabricated hardware. We used
this emulator to test the performance of different network configurations on a face
recognition task using the Olivetti Research Labs (ORL) database, composed
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Fig. 4. Performance in classification of faces and handwritten digits

of 10 photos of 40 different subjects. We randomly picked 5 photos of each
subject to build the training set, and used the other 5 to test the performance
of the networks. Due to the high computational cost of the emulation, we had
to reduce the size of the images to 14x14 pixels. We trained the networks with
5000 presentations of the 200 training set.

Fig. 4(a) plots the mean classification performance for 40 subjects with the
GHA and APEX circuits using the nearest-neighbor algorithm, as a function of
the number of principal components used in the classification. As a reference, we
also plot the performance of a software implementation of PCA using eigenvalue
analysis to compute the coefficients. The error bars show one standard devia-
tion above and below the mean. The classification performance of the software
implementation peaks at 86%, while the hardware networks with trained on-
chip with GHA and APEX peak at 81% and 79%, respectively. These numbers
show that the distortions introduced to the principal components by the analog
network mostly preserves the separability of the classes. The large error bars
are due to the small number of samples in the test set. The estimated power
consumption of the circuit with 196 (14x14) inputs and 39 projections is 20mW
(600nJ per classification with 30μs settling time), and the layout area is 2.5mm2.
These numbers represent a 5x reduction in area and more than 100x reduction
in power compared to standard cell-based digital implementations [10, 9].

We then tested the performance of a hardware LDA network with nearest-
neighbor classification on the ORL face database. Because it is not possible to
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compute the LDA coefficients adaptively, we used a chip-in-the-loop approach
where we computed the coefficients in software and downloaded their values onto
the chip. To compensate for offsets and mismatch in the multipliers and memory
cells, instead of writing the coefficients directly we trained the dimensionality re-
duction network using supervised learning with an on-chip implementation of the
LMS algorithm [3]. The graph in Fig. 4(b) shows the classification performance
of the calibrated LDA network as a function of the number of components used
in the feature space. We also include a software version of LDA as a reference.
The hardware LDA network follows closely the performance of the software,
with both peaking at 87% for 39 components with a smaller standard deviation
than PCA. Because the implementation of LMS is more compact than GHA and
APEX, this circuit occupies a die area of only 1.8mm2. The power dissipation
and classification times are the same as in the PCA networks. Using 45x45-pixel
images, the PCA and LDA hardware networks (with coefficients computed off-
chip and trained with the LMS algorithm) reach a classification performance of
90% and 95%, respectively, which matches closely that of equivalent software
implementations.

We also tested the performance of our network on a United States Postal
Service database of 11,000 16x16-pixel images of digits from handwritten ZIP
codes. We used one half of the database for training and one half for training.
Fig. 4(c) shows the performance of hardware PCA and LDA networks as a
function of the number of projections used in the feature space. In both cases,
we computed the coefficients off-chip and trained the dimensionality reduction
network on-chip with the LMS algorithm. The performance peaks at 80.5% for
PCA with 39 projections and at 89% for LDA with 9 projections (LDA is limited
to 9 projections for 10 classes).

Finally, we evaluated the sensitivity of our networks to mismatch in the clas-
sification stage. Using Spice simulations, we varied transistor parameters in the
classification circuits using a Gaussian process, and measured the performance
of the network. Fig. 4(d) shows the classification performance of handwritten
digits for the PCA and LDA networks with nearest-neighbor selection, and the
LDA network with an RBF classifier (PCA does not naturally form clusters in
the feature space and is thus not adequate for RBF). The figure shows that PCA
is clearly more sensitive to mismatch, reducing its performance from 80.5% to
74.4% as the standard deviation of the mismatch parameters varies from 0 to
0.5. On the other hand, LDA clusters the data so that it is not significantly
affected by mismatch: classification performance with nearest neighbor degrades
from 89% to 87.1%, while RBF classification varies from 89.5% to 86.2%.

6 Conclusions

We presented the design of an analog-VLSI system for image recognition using
a dimensionality reduction network and a classification stage. We use PCA and
LDA to train the dimensionality reduction network off-chip and program the
coefficients onto the chip using supervised learning with LMS to compensate for
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the effects of device mismatch and circuit nonlinearities. We also implemented
local adaptation rules to learn the PCA coefficients on chip using the GHA
and APEX algorithms. The classification stage uses Manhattan distances and
nearest-neighbor selection or RBF networks to assign classes to test images. Our
experimental results on face and handwritten digit recognition show that chip-
in-the-loop learning with LMS achieves the same classification performance as
a software implementation of the algorithms. On-chip learning with GHA and
APEX are outperformed by the software by 5%-7%, but have the advantage of
being trained autonomously after being deployed in the field. Because it maxi-
mizes separation within clases, LDA is more robust to device mismatch in the
classification stage than PCA, but it requires off-chip training. We are currently
working on the design of a reconfigurable block to implement multiple learn-
ing rules, support for inputs of higher dimensionality, and integration with an
embedded microprocessor.
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Abstract. Modeling of human and animal behavior is of interest for

a number of diagnostic purposes. Convolutional neural networks offer

a constructive approach allowing learning on a limited number of ex-

amples. Chaotic tendencies make that learning is not always successful.

The paper looks into a number of applications to find the reason for

this anomaly and identifies the need for behavioral references to provide

determinism in the diagnostic model.

Keywords: Behavioral modeling, convolutional neural network, colli-

sion avoidance, 3-tier architecture, Sinai billiard system.

1 Introduction

Neural networks have received much interest for image understanding and in-
telligent control. Some work has been done in categorizing social behavior of
humans and animals, largely from a biological point of view to understand and
model how nature works. Of late, homeland security issues kindle renewed inter-
est. Many public places have been equipped with cameras, but the mere amount
makes on-line monitoring by humans impossible. This has created the interest
to automatically detect and diagnose suspicious behavior.

Smart vision sensors for automated surveillance of public places can be based
on Commercially-Off-The-Shelf (COTS) processors, but specialized image pro-
cessors are required for massively crunching pixels into features while achieving
real-time performance at a low power budget. This poses additional restrictions
on the implementation of the neural networks. Fully connected, monolithic neu-
ral networks have a limited capacity when implemented as a single digital ASIC,
while they tend to give cache problems on COTS processors and usually do
not agree with the fixed-point number representation popular for the cheaper
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embedded platforms. This pleads for the use of heterogeneous platforms such
as WiCA [1], where a conventional 8051 is combined with the IC3D ASIC, a
320-core pixel cruncher. As monolithic neural networks are ill-famed for their
learning problems, hierarchical structures seem advisable, leaving the question:
how to build and distribute this hierarchy on the platform.

This sets the case for the convolutional neural network, a layered hierarchy
of mostly-neural modules. The paper is therefore composed as follows. First we
introduce the modular hierarchy of neural networks with an illustrative applica-
tion. In section 3 we discuss automotive collision avoidance and in section 4 we
treat the Sinai billiard system. Finally we discuss our findings and draw some
conclusions.

2 The Modular Hierarchy

The core problem in developing neural networks is collecting, validating and
presenting the examples. Often it is quoted that more than 90% of the project
time has been devoted to getting and preparing the data set to learn from [2].
This is the more surprising, as usually a large amount of ground knowledge exists
such as basic physical laws that can be incorporated in several ways.

Firstly the networks may be initialized to approximate “ideal” behaviour.
The clean network has weight values that are randomly selected small values
around zero. This is meant to create no built-in preferences, so that anything
can be learnt. Larger and non-random weight values will introduce preferences,
as desired, but it is not always transparent how they can be calculated.

Secondly, the problem can be described by more abstract examples. To facil-
itate this, the abstract notion must be founded on reality by known principles,
the so-called ground truth. Although the relation is well-defined, the use of fixed
knowledge can aggravate the learning problem [3]. Often it is cast into a neural
network so its parameters can be slightly adapted to the circumstances under
which the measurements are made.

For large networks, a monolithic solution tends to be hard (if not impossible)
to train [4]. This is caused by conflicting data in the training set or by data
that becomes conflicting due to the training itinerary. A solution is to compose
the network from modules in the form of sub-networks that can be individually
initialized or trained. A fortunate side effect is the structuring and reduction of
the example set. Sometimes the composition can be derived from the problem
at hand [5], but the convolutional network provides a generic framework as a
hierarchy of layers with parallel operating sub-networks.

The layered hierarchy is based on the combined operation of many small
fully-connected feed-forward neural networks. The underlying idea is a 3-tier
architecture, as popularized in many fields of telecommunication (Figure 1) with
the following meaning:

– The lower (foundation) tier expresses the basic technological ingredients. This
may introduce facts of common knowledge to the neural system, abstract fun-
damental physical parameters to the digital realm, or unify different graphic
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packages into a single programming interface. In image understanding, we find
here the low-level pixel operations for pre-processing, built from initialized
sub-networks.

– The middle (processing) tier contains the operational functions. It provides
the transformations and operations to support a domain of applications in
some related technological fields. This may offer a set of classes for the mod-
elling in the envisaged domain and/or a set of algorithms to perform numeri-
cal support. In image understanding, we find here sub-networks individually
trained for a choice of medium-level blob operations.

– The final (application) tier provides the interface to the application at hand.
It personalizes the domain to provide a direct support to the user. The func-
tionality is expressed in terms of the processing functions. As a consequence,
any changes in the application will not induce a major effort as long as they
can still be expressed in the available functions. In image understanding, we
find here the high-level feature operations trained for the overall problem.

Fig. 1. The 3-tier concept

The introduction of 3 layers aims to decouple platform restrictions and hard-
ware dependencies from the user application. In the software arena, the 3-tier
architecture is directly related to concepts of re-use and maintenance; for hard-
ware, the tiers image the integration stages between components and product.
For the benefits harvested in applying the multi-tier architecture in neural sys-
tems, see [6].

This method has been first applied at full length for the detection of surface
defects on steel from a rolling mill [7]. Here, the defects appear as peaks in a
flat area. By their reliance on domain rather than application properties, the
lower tier can be built from one single network type. Basic physical laws on light
reflection are turned into a set of artificial data. Samples of light reflections in all
possible gradients are used, varying around the target value characteristic for the
specific sub-network. The outputs are the characteristic values corresponding to
the applied physical laws but in a manner that makes the sub-networks act as
weak classifiers. As the upper networks combine these characteristic values to
make the final decisions, it is required that the data to train the lower tier cover
the entire problem space (Figure 2).
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Fig. 2. Plot of target values for the lower networks. The training data represent the

whole problem space.

The middle tier serves to provide parameter invariance. Rotation and size-
invariance is achieved by arranging the outputs from the lower tier into so-called
peeling-layers [7]. Width invariance occurs as a large peak and will fill all the
three peeling-layers but a small peak will fill only the inner layer. We use the
directions of the vectors that result from the lower layer and calculate three
properties that reflect continuity in assembling these vectors into potential peaks.
Additionally a threshold is applied on the results to suppress any peak detection
of a structure that does not adequately reflect a peak. The three output values
from the middle networks are used as input for the upper network. The 3rd tier
network makes the final decision of whether the larger image is centred over a
peak.

In this application, the neural system applies only to single images. It sup-
ports the detection of and measurements on defects by intelligently matching the
expectations of light reflections to the actual observations. We call this ‘struc-
tural stitching’ in contrast to the ‘situational stitching’ to enforce continuity on
the assembly that we discuss in the next sections.

3 Collision Avoidance

In the early 90’s the European automotive industry started their first collabo-
rative research program, called Prometheus. The next example comes from the
PRO-CHIP project within that program. In the original set-up a large collection
of data on a driving car was made. This collection is by itself not usable as it
describes mostly just driving along the road without changes in speed and/or
direction. Data editing seems necessary to eliminate catastrophic forgetting in
adaptive networks, or prevent implicitly giving disproportionally high weight
to simple behaviours in non-adaptive networks. For example, driving straight-
ahead for a long time tends to destroy all the knowledge about taking a curve.
This editing on the set can be a long and cumbersome process, as a lot of tests
are necessary to check on the sensitivity of the results to the partial removal of
training data.
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A better approach is to define a closed set of typical driving situations, from
which during learning a random selection with small random variations is made
(Figure 3). Different driver characteristics can be obtained by judiciously balanc-
ing the number of specific examples in the training set. Such behaviour has been
tested in a simulated environment with a variety of uncontrollable disturbances,
such as side-wind while turning on a slippery road [8].

Fig. 3. Basic driving situations (not shown is the 13th situation, where no blockade is

near)

A neural network is a non-linear system. Such a system may show chaotic
behaviour because of sensitivity for initial conditions. In the driver model this
will lead to different behaviour for every different starting position of the car. It
is interesting to observe that this is true on the detailed level but on the more
abstract level of reasoning as introduced by the driving examples in Figure 3,
it has only occurred when the driver had not to take a curve or carefully avoid
obstacles, such as the side of the road. Why is that? The answer is that the
curves and blockades put the driver a straitjacket on. There are far fewer ways
to leave the curve unharmed than to enter it. In other words, the curves serve
as points of reference for path convergence such that with every curve accuracy
gets largely restored. This becomes visible in car behaviour when comparing a
route with an occasional curve with a route with many curves. For instance,
after a U-turn all cars are almost at the same trajectory. The same reasoning
applies to obstacle avoidance. This has two important consequences. First of all,
it seems that trajectories are a meaningful signature of behaviour. The same
reasoning applies to obstacle avoidance. This has two important consequences.
First of all, it seems that trajectories are a meaningful signature of behaviour.
Secondly, it seems that behaviour funnels acting as points of reference can restrict
chaotic systems. In the experiments, both the simulation as the limited precision
implementation has shown the same repeatable and deterministic trajectories.
Figure 4 shows a typical testing ground; further demonstration of continuous
correct driving was delivered to the 1991 PRO-CHIP meeting in Darmstadt.
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Fig. 4. (a) Screen showing a driving environment with wind (arrows) and ice (shaded

roads) and (b) screen showing the actual position, direction und range of the thirteen

distance sensors on the car

4 A Billiard System

Based on the aforementioned experience we now simulate a so-called “Sinai bil-
liard table” on an embedded computer vision system with limited dynamic range
in its number formats. The Sinai billiard system was introduced by Yakov G.
Sinai and shows long-term unpredictability in a non-linear dynamic system with
unbounded accuracy [9].

In this system a (simulated) billiard ball is rolling on a square table in straight
lines and changes its direction when it hits the walls, corners or the circle in the
middle of the table according to the usual laws (angle of incidence equals angle
of reflection).

Having the position of the ball, its speed and direction and the knowledge of
its environment (the distance to the closest obstacle), the motion pattern can
be learnt in different situations separately as the ball faces different obstacles.
The input flow vector to the selected neural network (NN) consists of the ball

Fig. 5. Sinai billiard ball simulator
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Fig. 6. Different motion patterns of the ball

coordinates in two subsequent frames f={x(t-2), x(t-1), y(t-2), y(t-1)}. In addi-
tion, coordinates of the ball in the next frame T={x(t), y(t)} are given to the
networks as target outputs.

In the first case, a multilayer feed-forward neural network (FFNN) learns the
linear movement of the ball (Figure 6a), which can be expressed by the formulas:

x[t] = 2× x[t− 1]− x[t− 2]andy[t] = 2× y[t− 1]− y[t− 2].

A FFNN with a 4-2-2 topology is selected and trained offline using supervised
learning with the training data set prepared using a MatLab model of the Sinai
billiard ball simulator. It is typical for a convolutional network that the local
problem admits a simple construction (here two linear neurons would suffice),
but a more generic set-up achieves an easier integration within the overall system.
After training in NEUREKA [10], the network has a good generalization results
and acceptable error rate (Table 1).

Table 1. Training and testing results for linear movement pattern

Train dataset size Training error Test dataset size Nr. epoch Test error Activation function

200 0.08% 200 3000 iterations 0.09% Sigmoid Function

For the next condition, a FFNN with similar topology is trained to learn the
ball motion pattern after collision with the wall and corners (Figure 6b and c).

m[t] = 2×m [t− 1]−m [t− 2] . (1)

n[t] = n[t− 2] (2)

Here m = y and n = x when the ball collides with vertical walls and m = x and
n = y when ball collide with horizontal walls. Error rate in both training phase
and test phase is small and the networks learn the motion pattern successfully
(Table 2).

Finally, the motion pattern of the ball after collision with the circle in the
middle of the table is modelled by another FFNN, with 4-6-4-2 topology. Here
the ball follows the following nonlinear pattern:

Dist =
√

(Xc− x[t− 1])2 + (Y c− y[t− 1])2 (3)

nx = (x[t− 1]−Xc)/Dist; ny = (Y c− y[t− 1])/Dist (4)
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Table 2. Training and testing results for border collisions

Train dataset size Training error Test dataset size Nr. epoch Test error Activation function

200 0.1% 200 4000 iterations 0.09% Sigmoid Function

dp = −nx× dx[t− 1] + ny × dy[t− 1] (5)

dx[t] = 2× dp× nx+ dx[t − 1]; dy[t] = −2× dp× ny + dy[t− 1] (6)

x[t] = x[t− 1] + dx[t]; y[t] = y[t− 1] + dy[t] (7)

All the above networks are trained and tested successfully with an error rate of
around 1% (Table 3). This larger error is caused by training this network as a
single structure instead of as an assembly of 2 networks, which it actually is.
Therefore further improvement is easily attainable.

Table 3. Training and testing results for circle wall collisions

Train dataset size Training error Test dataset size Nr. epoch Test error Activation function

50 0.16% 50 11000 iterations 1.4% Sigmoid Function

5 Discussion

In the next step the networks created above are transferred and implemented
on the WiCA platform. Putting everything on a single resource, i.e. the 8051 on
the WiCA platform has two drawbacks [11]. Firstly, the execution of the neural
networks is now based on fixed-point values and therefore precision will become
an issue. Secondly, the 8051 is slow and the results only become available once
per 2 frames while running the system at 30 fps with VGA resolution. However,
the accelerated pixel crunching through the IC3D helps to reduce complexity by
representing a blob (like a billiard ball) by only its Centre-of-Gravity coordinates.

During the testing phase the input values of the networks are calculated by
parallel pixel processing on the IC3D and coordinate transfer to the 8051. As the
position of the ball is known relative to the obstacles defined in the simulator,
one of the above NNs is selected in each frame for predicting the next position
of the ball, and input values are forwarded to that NN. The results are then sent
back to the IC3D for further analysis and live monitoring.

In Figure 7 the results of applying different NNs are shown. White dots on
the screen illustrate the mismatch between actual ball position and predicted po-
sition by NN (abnormal motion behaviour). Figure 7a represents the situation
where only one NN is used to predict linear motion of the ball. In Figure 7b also
the second NN is applied which predicts the position of the ball after collision
with the border walls. In Figure 7c the third NN is added, predicting position of
the ball after collision with the circle in the middle of the screen. In some places
faulty mismatches occur due to modelling errors and also because of random
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Fig. 7. Results of applying different FFNN to simulator

errors, which are enforced occasionally in the simulator to overcome numerical
problems caused by the use of fixed-point values with limited dynamic range.

Observation of the performance and results of the above system lets us iden-
tify the problems and challenges facing NN implementations in an embedded
platform [1].

– Offline learning and model generation outside the embedded platform as im-
plied by the convolutional network architecture allows optimized modelling
for the platform.

– Depending on the word length of the input values and the size of the selected
neural network, the outputs may become available with different delays due
to different processing times, making it more difficult to have uniform results
for monitoring and further analysis.

– The collisions with the wall do not provide a convergence reference for the
subsequent behaviour and therefore chaotic movement (drift) sets in. This
becomes even more apparent for situations where the round ball collides with
a round object that amplifies small differences in angles of incidence.

Fig. 8. A set of observed walking trajectories
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All by all, we have a movement that is easy to predict locally, but hard over
longer periods, and that will remain so even when more computational preci-
sion is available. Even though a normal surveillance system monitoring human
movement will have less chaotic moving elements, a convergence reference will
be needed. We find this also in modelling larger-scale walking patterns. Figure 8
demonstrates that over some distance the walking patterns can be adequately
modelled by carefully stitching the micro-level motion details together while rais-
ing the accuracy of the collisions. After some time, remaining chaotic effects of
the collisions in the movement have died out and the pattern can be used again
for prediction over larger distances.
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Abstract. We solve the manufacturing problem of identifying the model statis-
tical parameters ensuring a satisfactory quality of analog circuits produced in
a photolithographic process. We formalize it in a statistical framework as the
problem of inverting the mapping from the population of the circuit production
variables to the performances’ population. Both variables and performances are
random. From a sample of the joint population we want to identify the statisti-
cal features of the former producing a performance distribution that satisfies the
design constraints with a good preassigned probability. The key idea of the so-
lution method we propose consists of describing the above mapping in terms of
a mixture of granular functions, where each is responsible for a fuzzy set within
the input-output space, hence for a cluster therein. The way of synthesizing the
whole space as a mixture of these clusters is learnt directly from the examples. As
a result we have an analytical form both of the mapping approximating complex
Spice models in terms of polynomials in the production variables, and of the dis-
tribution law of the induced performances that allows a relatively quick and easy
management of the production variables’ statistical parameters as a function of
the probability with which we plan to satisfy the design constraint. We apply the
method to case studies and real production data where our method outperforms
current methods’ running times and accuracies.

1 Introduction

A major challenge posed by new deep-submicron technologies is to design and verify
integrated circuits to obtain a high fabrication yield, i.e. a high proportion of produced
circuits that function properly. By contrast, with a further shrinking of process technol-
ogy, the on-chip variation is getting worse for each technology node. Indeed, random
and systematic defects as well as parametric process variations have a big influence on
the yield of the manufactured circuits, with the consequence of frequent respinning of
the whole development and manufacturing chain. This leads to high costs of multiple
manufacturing runs and entails extremely high risks of missing a given market window.
One way to overcome these drawbacks is to implement the DFM/DFY paradigm [1]
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where Design for Manufacturability mates Design for Yield to form a synergistic man-
ufacturing chain to be dealt with in terms of relationships between the statistical circuit
parameters matching the production constraints and performance indicators ensuring
correctly functioning dies. In line with previous works in the literature [2,3], we frame
this problem in terms of random variable transforms, from the production variable space
to the performance space, having the goal of identifying the best distribution law of the
former inducing a satisfactory fulfillment of the performance requisites. The mapping
from former to latter space is ruled by Spice models [4]. Our strategy is to manage it
in terms of a granular construct based on a fuzzy partition of the production variable
space. This allows a manageable interpolation of the Spice functions through polyno-
mials and of the performances’ joint distribution law as a mixture of the distribution
laws affecting the single fuzzy sets. So we get a quick and accurate interpolation of the
Spice functions and a satisfactory identification of the production statistical parameters
via a method of moments that proves faster and more accurate than other procedures in
the literature [5,3].

Our paper is organized as follows. In Section 2 we explain our procedure to identify
the approximation of the Spice model and its adaptation to the experimental data. Since
we base our inference on a method of moments, in Section 3 we toss the benefits and
limits of this procedure on specific benchmarks in comparison with other methods.
In the concluding section we outline a way of improving these results on the basis
of the interpolated performances distribution that is not constrained to be a Gaussian
distribution [6].

2 A Quick Model Identification

We formalize the modeling problem in terms of a mapping g from a random vec-
tor X = (X1, . . . , Xn)1, describing what is commonly denoted as production vari-
ables, to a random vector Y = (Y1, . . . , Yt), describing what is commonly denoted
as performances. The statistical features of X , such as mean, variance, correlation,
etc., constitute its parameter vector θX . Idem for the parameter vector θY . Hence
Y = g(X) = (g1(X), . . . , gt(X)), and we look for a vector θX such that the corre-
sponding θY characterizes a population where P(Y ∈ DY ) = α, having denoted with
DY the domain the designers expect the circuit perfomances to belong to and with α a
satisfactory probability value. We fulfill this task through an inference method based on
the moments of the available sample. Actually, its implementation is a bit complex since
the parameters concern X whereas the moments are measured on Y . Hence we need a
comfortable function relating the Y information to θX . Namely, first we interpolate g
in terms of a polynomial in x, then we proceed with the inference.

2.1 Interpolating a Spice Model

The most common tool for modeling an analog circuit is represented by the Spice sim-
ulator [7]. It consists of a program which in input a textual description of the circuit

1 By default, capital letters (such as X, Y ) will denote random variables and small letters (x, y)
their corresponding realizations; bold versions (X , x) of the above symbols apply to vectors
of the objects represented by the symbols.
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elements (transistors, resistors, capacitors, etc.) and their connections, translates this
description into nonlinear differential equations to be solved using implicit integra-
tion methods, Newton’s method and sparse matrix techniques. A general drawback of
Spice – and circuit simulators in general – is the complexity of the transfer function
it implements to relate physical parameters to performances which hampers intensive
exploration of the performance landscape in search of optimal parameters. In our pa-
per we bypass this handicap through a principled philosophy of considering the region
Dx where we expect to set the production variables as an aggregate of fuzzy sets in
various respects [8]. First of all we locally interpolate the Spice function g through a
polynomial, hence a mixture of monomials that we associate to the single fuzzy sets.
Many studies show this interpolation to be feasible, even in the restricted form of using
posynomials, i.e. linear combination of monomials through only positive coefficients
[9]. While this constraint is crucial for solving efficiently convex optimization problems
such as geometric programming [10], for our purposes it is superfluous. The granular
construct we formalize is the following.

Given a Spice function g mapping from x to y (the generic component of
the performance vector y), we assume the domain Dx ⊆ Rn into which x
ranges to be the support of c fuzzy sets {A1, . . . , Ac}, each pivoting around a
monomial mk. We consider this monomial to be a local interpolator that fits
g well in a surrounding of the Ak centroid. In synthesis, we have g(x) 	∑c
k=1 μk(x)mk(x), where μk(x) is the membership degree of x toAk, whose

value is in turn computed as a function of the quadratic shift (g(x)−mk(x))2.

On the one hand we have one fuzzy partition of Dx for each component of y. On the
other hand we implement the construct with many simplifications, in order to match
specific goals. Namely:

– since we look for a polynomial interpolation of g, we move from point member-
ship functions to sets, to a monomial membership function to g, so that g(x) 	∑c
k=1 μkmk(x). In turn, μk is a sui generis membership degree, since it may as-

sume also negative values (see next section);
– since for interpolation purposes we do not need μk(x), we identify the centroids

directly with a hard clustering method based on the same quadratic shift.

The clustering perspective. We exploit two nice bonuses of our clustering instance.
On the one hand the training set is constructed by us; thus it may be as large as we want,
being constrained only by the computational time required to run a Spice model on a
huge set of instances. Namely, we focus on a superset of Dx, so large as to be confident
of really including the latter, and uniformly draw m points xr which we pair with the
yr = g(xr)s computed by Spice. On the other hand, denoting mk(x) = βk

∏n
j=1 x

αkj

j ,
if we work with logarithmic scales, the shifts we consider for the single (say the i-th)
component of y are the distances between zr = (log xr, log yr) and the hyperplane
hk(z) = wk · z + bk = 0, with wk = {αk1, . . . , αkn} and bk = log βk, constituting
the centroid of Ak in an adaptive metric. Indeed, both wk and bk are learnt by the
clustering algorithm aimed at minimizing the sum of the distances of the zrs from the
hyperplanes associated to the clusters they are assigned to. The procedure we implement
is the following.
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Algorithm 1. Adaptive c-means for Mosfet

For given Spice function g from Dx ∈ R
n to Dy ∈ R

t

1. Initialization.
1.1. Draw uniformly m points xr ∈ Dx and form the training set T = {(x1, g(x1)), . . . ,

(xm, g(xm)).
2. Then, for each component yi of g(x)

2.1. Set the number c of clusters.
2.2. Randomly draw a set of c hyperplanes hk(z) = wk · z + bk each lying in R

n+1, with
z = (log x, log yi).

2.3. For each zr:

2.3.1. compute d(zr, hk(zr)) =
(

wk·zr+bk
||wk||

)2

for each hk;

2.3.2. assign zr to the cluster Ak affected by the minimum over k̃ of d(zr, hk̃(zr));
2.3.3. update wk and bk along the gradient of d(zr, hk(zr)).

In this way we obtain for instance the clustering of a training set drawn in the domains
Dx = {Vth0,Tox} and Dy = {Vth,Ron}, where Vth0 denotes the threshold voltage
for large range devices when substrate-source voltage VBS = 0, and Tox the gate oxide
thickness of a totally dielectric isolated Bicmos whose performance is measured in
terms of threshold voltage (Vth) and on-resistance (Ron). We consider separately 3
clusters in the spaces {Vth0,Tox,Vth} and {Vth0,Tox,Ron} in logarithmic scales.
So the points are grouped around 3 planes in each space as shown in the first row of
Fig. 1.

With the clustering procedure we essentially learn the exponents αkj with which the
x components intervene in the various monomials, whereas the βks remain ancillary
parameters. Indeed, to get the polynomial approximation of g(x) we compute the men-
tioned sui generis memberships through a simple quadratic fitting, i.e. by solving w.r.t.
the vector μ = {μ1, . . . , μc} the quadratic optimization problem:

μ = argminμ̃

m∑
r=1

⎛⎝g(xr)− c∑
k=1

μ̃k

n∏
j=1

x
αkj

rj

⎞⎠2

(1)

where xrj denotes the j-th x component of the r-th element of the training set T , and
μks override βks.

We deal with two approximation problems with this fitting: i) the adequacy of the
polynomial form; and ii) the data granulation. The former is a monotonically increasing
function of the number c of discovered clusters, with the trivial optimal solution of one
cluster for each training set element and the obvious search for a breakeven point. The
latter is a function of the sampled points. We may appreciate the adequacy of the sample
size by evaluating the confidence regions around each monomial at a given confidence
level. Since they read as hyperplanes in logarithmic scales, we may draw numerous
methods in the literature for this task [11,12].

To continue our previous example, in the second row of Fig. 1 we compare the
accuracy of the polynomial approximation for increasing values of the number c of
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Fig. 1. The granular construct. First row: fuzzy clusters associated to output: (a) Vth, and (b)
Ron, in logarithmic scales. Bullet color and radius are a function of cluster membership. Second
row: polynomial approximation for m = 300 training points and c = 3, 5 and 10, respectively.
Black points: training set; gray points: its approximation.

monomials used for each y component, reckoning a percentage relative error of respec-
tively 1.48%, 0.56% and 0.018%.

The statistical perspective. With the previous section we are left with a consolidated
model for approximating g, namely

yi =
c∑
k=1

mik(x) =
c∑
k=1

μik

n∏
j=1

x
αikj

j for i = 1, . . . , t (2)

Now we use it to solve the inverse problem: Which statistical features of X ensure
a good (say 95%) coverage of the Y domain where the designer assumes the circuit
performances to fall in order to have a properly functioning circuit?

As an early solution of the problem we rely on the first and second moments of the
target distribution, which are estimated on the basis of a sample S of sole Y collected
from the production lines as representatives of properly functioning circuits. Our goal
is to identify the statistical parameters θ̃X of X that produce through (2) a Y popula-
tion best approximating the above first and second order moments. The lead strategy is
incremental, so that we numerically compute the involved moments of the monomials
on the basis of the current instantiation of the candidate solution. This saves us from
being hampered by the statistical complication deriving from an analytical computation
of expected values of products of correlated variables.

In greater detail, X is assumed to be a multidimensional Gaussian variable, so that
we identify it completely through the mean vector νX and the covariance matrix ΣX .
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The analogous νY and ΣY are a function of the former through (2) (but do not iden-
tify completely the Y distribution). We use an alternating maximization strategy [13]
that consists of identifying a ν̃X approximation for fixed ΣX and vice versa, until con-
vergence. Namely, denoting with νXj , σXj , σXj,k

and ρXj,k
, respectively the mean and

standard deviation of Xj and the covariance/correlation between Xj and Xk, using the
Taylor series expansion limited to second order, we obtain an approximate expression
of the sensitivity of νY w.r.t. νX through

∂νYi

∂νXj

	
c∑
k=1

αikj

(
1
νXj

+
σ2
Xj

ν3
Xj

)
νMik

(3)

where Mik on the right is a short notation of mik(X), and its mean νMik
is approxi-

mated with its sample estimate computed on samples generated with the current values
of the parameters. Analogously, thanks to the approximations

νΞ 	 log νX , σΞ 	 σX/νX , ρΞi,j 	 ρXi,j (4)

with Ξ = logX , coming from the Taylor expansion of respectively Ξ, (Ξ − νΞ)2 and
(Ξi − νΞi)(Ξj − νΞj ) around (νXi , νXj ) disregarding others than the second terms,
and from the consequent rewriting of ΣY in terms of

σ2
Yi

=
c∑
k=1

σ2
Mik

+ 2
c∑

k,r=1
k<r

σMik,ir
; σYi,j =

c∑
k,r=1

σMik,jr
(5)

with σ2
Mik

	 ν2
Mik

⎛⎜⎜⎝ n∑
j=1

a2
ikj

σ2
Xj

ν2
Xj

+ 2
n∑

j,r=1
j<r

ρXj,raikjaikr
σXj

νXj

σXr

μXr

⎞⎟⎟⎠ (6)

σMik,ir
	 νMik

νMir

n∑
j,w=1

aikjairwρXj,w

σXj

νXj

σXw

νXw

(7)

and analogous notation for σs in respect to their indexing byM and the double indexing
of the latter, in turn, we numerically solve (5) in ΣX when the left members coincide
with the target value of ΣY .

3 Numerical Results

We test our method on the Spice model DIB12 of a bipolar NPN circuit. DIB technology
achieves the full dielectric isolation of devices using SOI substrates by the integration
of the dielectric trench that comes into contact with the buried oxide layer. Therefore,
the variables commonly assumed to be both fluctuating as a function of the produc-
tion technology and sensibly affecting the circuit performances are the following: ideal
maximum forward beta (Bf), emitter resistance (Re), transport saturation current (Is),
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and forward Early voltage (Vaf), which we rename as x1, x2, x3 and x4, respectively.
Whereas the remaining variables are set to standard values. In view of the typical val-
ues supplied by Spice, we assume the former to constitute a 4-dimensional Gaussian
random vector X with:

– mean νX = {135, 0.8, 5.12× 10−18, 138},
– covariance matrix ΣX with diagonal components σX equal to 0.05νX , and corre-

lations ρXi,j uniformly drawn in [0.1, 1] for each i, j.

These features probabilistically define the circuit operational range Dx. From X we
draw three kinds of samples, respectively for: i) identifying the interpolating polyno-
mial, ii) reconstructing parameters, and iii) computing run-time statistics. While for the
first task a sample of 300 vectors xr is enough to get a good generalization (around
same error with training and test set), we need a larger sample size (around 50 times the
former) to support the numerical part of the estimation procedure. Actually, the quality
of its results also depends on the size of the training set (the second of the above sam-
ple kinds), that must be large as well if we want to avoid some biases induced by the
statistics.

With the former task, we build the Y sample S made up of the corresponding
gi(xr)s, with i indexing the output variables: current gain (Hfe), Early voltage (Early),
and collector current (Ic). Of these variables we compute the following first and second
order moment estimates:

ν̂Y = {110.57, 6.35× 10−5, 111.803}
σ̂Y = {5.72, 3.21× 10−6, 5.91}, ρ̂Y1,2 = 0.71, ρ̂Y1,3 = 0.46, ρ̂Y2,3 = 0.53

with the goal of inferring from them the original νX and ΣX . We implement an in-
cremental procedure where at each run we update νX along the gradient descent on
the quadratic error computed on ν̂Y using (3), and ΣX as a solution of (5). The ex-
pected values νMik

of the monomials are computed numerically on the basis of a large
X sample (third kind sample) generated with the current parameterization. In order to
assess the robustness of the method, we start with notably perturbed values of νX and
ΣX , respectively by a factor 1.5 and a random value between 0.5 and 1.5. Note that,
since we have only 6 statistics available on Y to identify 10 moments of X , we decide
to set 4 of them, namely σ̃X2 , ρ̃X1,4 , ρ̃X2,4 , ρ̃X3,4 to the original values. The remaining
parameters are inferred with a relative error of 0.13% and 1.4% respectively on first and
second order statistics. The very good recovery of the Y distribution law is shown in
Fig. 2(a), denoting a percentage relative error between original and reconstructed points
less than 0.23% over all coordinates, and a prediction error on the output parameters of
0.074% and 4.7% respectively on first and second order moments. However the method
produces a positive bias on the variance estimates that may be visually perceived in the
figure and requires a larger training set to be removed. On this regard, Fig. 2(b) refers to
an experiment replica based on a training set of 10, 000 elements. In this case we gain
unbiased estimates with analogous prediction errors of 0.006% and 0.14%.

Coming to a true inference problem on the same circuit, we focus on manufacturing
data made available by STMicroelectronics. They concern the same performances that
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Fig. 2. Representing reconstruction and identification problems. (a-b) Comparison between out-
put data and reconstruction provided by our procedure for training set size = 300 and 10, 000,
respectively. (c) Identification of a confidence region containing 95% of the experimental points
(projected on the correlated components). Black bullets: original points; gray bullets: recon-
structed points.

are collected through 322 (Y1, Y3) pairs and 161 Y2 single values. From these data we
compute the following statistics:

ν̂Y = {113.197, 6.53× 10−5, 110.594}
σ̂Y = {6.89, 4.82× 10−6, 11.24}, ρ̂Y1,3 = −0.57.

With these moments we again infer νX and ΣX . Now we do not have original values
for the parameters. So, to tackle the greater number of unknown parameters w.r.t. the
available moments, we specialize the second part of the above procedure by alternating
the inference of variances for fixed correlation (initially set equal to 0) and vice versa,
until convergence. With this procedure we still are able to obtain a small relative error,
less than 0.55% and 0.89% for first and second order output moments. However, we
may expect a non perfect overlapping of empirical cumulative distribution functions
(ECDFs) referred to the original performances and the reconstructed ones denoting
some details of the distributions are missed by the new data because we rely just on
first and second moments for their generation. In the concluding section we will sketch
a way of recovering them with a more sophisticated modeling.

The operational goal of the questioned procedure is to ensure that a good percentage
of the produced circuits satisfies the requests on performances issued by the designer.
We may translate this goal in probabilistic terms by requiring that a good percentage,
say 95%, of the produced population satisfies these constraints. In turn, we may identify
the domain of such successful performances through a contour line of the Y distribu-
tion, namely a contour which includes the mentioned percentage, looking for a domain
where 95% is also the percentage of sampled points falling inside it. Since we know the
X parameters (because we inferred them) and also achieved a very good approximation
of the Spice function through a polynomial, we generate a huge Y population with a
cheap computation. Then we identify the desired contour line with a standard peeling
method [14,15]. However, due to the well known limits of moment methods, we found
a region that is too large, since it contains a percentage of sampled points equal to 97%
rather than the set confidence. A first intervention we operate is a reduction of the vari-
ances (uniformly of a factor 0.90, in the absence of specific operational requirements)
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so as to shrink the contour line. In this way we obtain the curve in Fig. 2(c) which
contains exactly 95% of the experimental points.

In summary, with our approach we implement a procedure that compares with others
in the literature w.r.t. the following standard indices: i) model building time: few sec-
onds rather than the few minutes of most procedures considered in [5] and even hours
with genetic algorithms [16]; ii) reconstruction error around four times less than other
methods’, which attests at around 1% [5]; and iii) prediction error less than around ten
times than other methods (both on first and second order statistics) whose reference
values are 1% and 10% respectively [3].

4 Conclusions

We solve a complex electronic manufacturing control problem using a granular con-
struct. In spite of the methodology broadness the attribute granular may evoke, we
obtain a very accurate solution benefitting from strict exploitation of state-of-the-art
theoretical results, implemented through a fast algorithm as well. We also expect im-
provements with the full exploitation of the training set information content by elab-
orating our fuzzy set mixture directly in terms of a fuzzy mixture of the distributions
affecting the single clusters. Since we are not drawn now by the need of a polynomial
interpolating function, we may reintroduce the membership functions μk(x) of points
to clusters and maintain the membership degrees of the monomial distributions to the Y
distribution as an extension of the a priori probabilities of the related clusters. We may
compute the latter as a solution of the problem of minimizing the quadratic difference
between the CDF deriving from a mixture of corrected density functions and the ECDF
computed on the Y sample S.

In Fig. 3(a) we sketch a way of succeeding in this regression with the same training
set used to draw pictures in Fig. 1. Thanks to the analytical expression of the Y CDF,
we obtain a further refinement of the X parameters based on the contour levels of the
density function fY . Namely, on the one hand we have the shape of the contour line
containing, say, the 90% of the population, as shown in Fig. 3(b). We refine it both by
centering it better w.r.t. the samples points – so that those falling outside the curve are
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Fig. 3. Interpolating Y distribution. (a) Comparison between CDFs. Black bullets: ECDF in the
sample points; gray bullets CDF estimate in the same points; vertical lines: differences between
the two values (in the zoomed portion). (b) Initial centering of the interpolated distribution. Bul-
lets: simulated population; line: 90% contour line. (c) Final calibration. Same notation as in (b).
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homogeneously distributed around it – and by tuning the X parameters on the basis of
the Y CDF gradient, so that the new curve in Fig. 3(c) again represents a contour line
with 0.90 coverage.
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Abstract. A new Euclidean distance circuit focused on high-speed op-

eration will be presented in this paper. The computing accuracy will

be improved compensating the error introduced by the second-order ef-

fects, which affect MOS transistor operation (short channel effect and

mobility degradation) by a proper common-mode input voltage excita-

tion of the squarer circuit. Because the elementary approach of designing

an Euclidean distance circuit (exclusively based on classical MOS tran-

sistors in saturation) requires an additional threshold voltage extractor

circuit, the new proposed idea is to use a FGMOST (Floating Gate MOS

Transistor), having the advantage of a very large reducing of the circuit

complexity.

Keywords: Computational circuits, FGMOST, VLSI design.

1 Introduction

Because of the square-law model of MOS transistor working in saturation, many
analog signal-processing functions can be achieved using this square character-
istic. Based on this principle, several basic building blocks, such as multipliers,
active resistors and transconductors have been developed [1],[2],[3],[4],[5]. The
Euclidean distance between Va = (Va1, Va2, · · ·, Van) and Vb = (Vb1, Vb2, · · ·, Vbn)
(two n-dimensional vectors), defined as:

‖Va − Vb‖ =

√√√√ n∑
k=1

(vak − vbk)2. (1)

represents a direct measure of similarity between vectors Va and Vb. The area of
utilization of the Euclidean distance circuits includes instrumentation systems,
communication circuits, neural networks, display systems [6] or several classifica-
tion algorithms such as vector quantization or nearest neighbour classification.
Several constraints (circuit area, power dissipation and modularity) limit the
possibilities of implementing a high-speed Euclidian distance circuit. Choosing
an analog VLSI implementation fulfills all the previous requirements, resulting
the necessity of finding a simple and accurate circuit capable to compute the
desired function, Euclidean distance.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 459–466, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Principle of Operation

The n-th order Euclidian distance circuit consists in n voltage squarer circuits
and a square-root circuit.

2.1 The CMOS Square Circuit

First-order analysis. The proposed CMOS squarer using algebraic mean of the
input potentials is presented in Fig. 1. Because ID1+ID2 = ID2+ID3 = ID3+ID4,
it results that ID1 = ID3 and ID2 = ID4 . Considering that all transistors
from Fig. 1 are working in saturation and are characterized (in a first-order
analysis) by a square characteristic, it is possible to write that VGS1 = VGS3

and VGS2 = VGS4 , resulting a V potential equal with the algebraic mean of the
input potentials:

V =
Va + Vb

2
. (2)

In this case, the output current of the circuit from Fig. 1 will have the following
expression:

IO = I1 + I2 − I =
K

2
(Va − VT )2 +

K

2
(Vb − VT )2 −K(

Va + Vb
2

− VT )2. (3)

equivalent with:

IO =
K

4
(Va − Vb)2 (4)

So, the circuit computes the square of the differential input voltage.

   

  

    T1              T2                                       T3          T4 

VCC

Va 

I1                  I2 

IO 

Vb 

2K 

K           K 

I 

IREF 

V 

Fig. 1. CMOS squarer using algebraic mean of the input potentials
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Second-order effects. Considering the second-order effects, which affect the
MOS transistor operation, that is short-channel effect (5) and mobility degra-
dation (6):

ID =
K

2
(VGS − VT )2(1 + λVDS) (5)

K =
K0

[1 + θG(VGS − VT )](1 + θDVDS)
(6)

and supposing that the design condition λ = θD is fulfilled, it results that the
gate-source voltage of a transistor working in saturation will have the following
expression:

VGS ∼= VT +

√
2I
k

+ θG
I

k
(7)

In this case, because ID1 = ID3 and ID2 = ID4, the relations VGS1 = VGS3

and VGS2 = VGS4 still remain valuable, so, even in a second-order analysis, the
potential V will have the same expression (2). It results:

IO =
K

4
(Va − Vb)2 − θG[(Va − VT )3 + (Va − VT )3 − 2(

Va + Vb
2

− VT )3]. (8)

After algebraic calculations, the output current will have the following expres-
sion:

IO =
K

4
(Va − Vb)2 −

3
4
θG(Va − Vb)2(Va + Vb − 2VT ) (9)

The last term of (9) represents the error introduced by the mobility degradation.
It is obvious that if the common mode input voltage is a little bit smaller than
the MOS threshold voltage, that is if Va = va + VT and Vb = vb + VT , with
va, vb � VT , this error could be strongly reduced, resulting:

εr = 3θG(va + vb) � 6θGVT (10)

2.2 The CMOS Square-Root Circuit

Because of the square characteristic of MOS transistor working in saturation, a
square-root circuit is relatively easy to implement in CMOS technology. The sim-
plest approach is referring to a gate-source connected NMOS transistor (Fig. 2).

The circuit output voltage is:

VO = VT +

√
2IO
k

(11)

The main disadvantage of the proposed square-root circuit is the necessity of
using a threshold voltage extractor circuit to compute VT , in order to remove
the first undesired term from relation (11). As a result, the extreme simplicity of
the proposed circuit will be considerable increased by this block. Three possible
implementations of threshold voltage extractor circuits, preferred for theirs rel-
atively small silicon area consumption due to the removing of any resistor from
theirs design are presented in Fig. 3, 4 and 5, respectively.
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Fig. 2. The CMOS square-root circuit using a gate-source connected NMOS transistor
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Fig. 4. Threshold voltage extractor - version II
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Fig. 5. Threshold voltage extractor - version III

The output voltage of the first two voltage extractor circuit could be written
as:

VO = VGS1 + VGS2 − VGS3 (12)

Considering that all the MOS transistors are working in saturation at the same
drain current and supposing that the aspect ratio of T1 and T2 transistors are
four time greater that the aspect ratio of T3, the output voltage will be equal
with the threshold voltage of the NMOS devices:

VO = VTn (13)

For the same reason, the differential voltage VM −VN (for the third VT extractor
circuit) will be equal with the threshold voltage. A difference circuit T3 − T4
(working in saturation) is used in order to refer the output voltage of the circuit
to the ground. The output voltage of the difference circuit (which is the same
with the output voltage of the threshold voltage extractor circuit) will have the
following expression:

VO = VM − VN = VTn (14)

2.3 The CMOS Square-Root Circuit Using a FGMOS (Floating
Gate MOS Transistor)

The multiple-input floating-gate transistor is an ordinary MOS transistor whose
gate is floating. The basic structure of a n-channel floating-gate MOS transistor
is shown in Fig. 6a. The floating-gate is formed by the first silicon layer over the
channel while the multiple input gates are formed by the second polysilicon layer,
which is located over the floating-gate. This floating-gate is capacitive coupled to
the multiple input gates. The symbolical representation of such devices is shown
in Fig. 6b.
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Fig. 6. (a) N-channel FGMOS transistor; (b) symbolic representation

The drain current of a FGMOS transistor with n-input gates in the saturation
region is given by the following equation:

ID =
K

2
[
n∑
i=1

ki(Vi − VS)2 − VT ]. (15)

where K = μnCox(W/L) is the transconductance parameter of the transistor, μn
is the electron mobility, Cox is the gate oxide capacitance, W/L is the transistor
aspect ratio, ki, i = 1, · · ·, n are the capacitive coupling ratios, Vi is the i-th
input voltage, VS is the source voltage and VT is the threshold voltage of the
transistor. The capacitive coupling ratio is defined as:

ki =
Ci∑n

i=1 Ci + CGS
. (16)

where Ci are the input capacitances between the floating-gate and each of the
i-th input and Cox is the gate-source capacitance which is equal to (2/3)Cox for
operation in the saturation region. All the overlap capacitances are assumed to
be considerably smaller than capacitances summation

∑n
i=1 Ci + CGS . Equation

(15) shows that the FGMOS transistor drain current in saturation is proportional
to the square of the weighted sum of the input signals, where the weight of
each input signal is determined by the capacitive coupling ratio of the input.
The proposed idea is to replace the classical NMOS transistor from Fig. 2 with
a FGMOST for implementing the square-root circuit. The main goal of this
replacement is the possibility of removing the first term from relation (11) by a
proper polarization of the second gate of the FGMOST, that is without using any
additional threshold extractor circuit and, in consequence, with an important
reducing of the silicon area occupied by the Euclidean distance circuit. The
FGMOS implementation of the square-root circuit is presented in Fig. 7.
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Fig. 7. The FGMOS square-root circuit

Applying relation (15) for the circuit presented in Fig. 7, it results that:

IO =
KO

2
(kVO − kVB − VT )2 (17)

Considering a polarization voltage VB that satisfies the condition VB = VT /k,
the output voltage of the circuit from Fig. 7 will have the following expression:

VO =
1
k

√
2IO
KO

(18)

3 Euclidean Distance Circuit Using a FGMOST

The block diagram of the FGMOST Euclidean distance circuit is presented in
Fig. 8. Considering n square circuits from Fig. 1 and the FGMOS square-root

          

IO1                                                                       IO2                                             IOn 

Voltage 
Squarer II 

Va1                Vb1                      Va2                Vb2                       Van                Vbn 

Voltage 
Squarer III 

Voltage Squarer 
I 

IO 

Square-root 
Circuit VO 

Fig. 8. The block diagram of the FGMOST Euclidean distance circuit
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circuit from Fig. 7 and imposing that K/2Ko = k2, the output voltage of the
Euclidean distance circuit will have the following expression:

VO =

√√√√ n∑
k=1

(vak − vbk)2. (19)

4 Conclusions

The proposed circuit implements three important functions in the area of com-
putational circuits: the squaring and square-root functions and the Euclidian
distance. In order to reduce the circuit complexity by removing the necessity
of using a threshold voltage extractor block, a FGMOS transistor is used. An
original technique for reducing the squarer errors introduced by the second-order
effects that affect the MOS transistor operation have been presented.
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Abstract. In this paper we present a hardware architecture for a Sup-

port Vector Machine intended for vision applications to be implemented

in a FPGA device. The architecture computes the contribution of each

support vector in parallel without performing multiplications by using a

CORDIC algorithm and a hardware-friendly kernel function. Addition-

ally input images are not preprocessed for feature extraction as each

image is treated as a point in a high dimensional space.

Keywords: Support Vector Machines, embedded systems, image pro-

cessing.

1 Introduction

There has been an impressive development of cameras and distributed sensors
that allows the positioning of many of them to monitor the environment. Ap-
plication examples are ambient intelligence, intelligent transportation systems,
security, and surveillance. However, to manage such an amount of information
from a central computing system is very difficult, so there is a lot of interest in
conceiving sensors that solely provide the pertinent information. A key issue is
the development of adaptive embedded vision systems, because a great deal of
information can be extracted from a single image or a video sequence, and vision
tasks are very computer resource consuming.

Neural networks [1] and other learning machines algorithms, as Support Vec-
tor Machines (SVM) [2], have been successfully used in vision systems as they
can deal with many image classification and pattern recognition tasks. How-
ever the implementation of these algorithms on limited resource hardware, such
microprocessor or Field Programmable Gate Arrays (FPGAs) is still a very chal-
lenging task [3].

In this paper we propose the implementation of an adaptive vision system in
FPGA devices. Neural processors for vision [4] and more general applications
[5] have been implemented on FPGAs. These devices provide many advantages
such solid development tools, easy reprogrammability and fast development time
without losing performance with respect full-custom systems design. Addition-
ally a high degree of parallel processing can be achieved compared with other
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embedded platforms as microcontrollers and DSPs. The algorithm to be im-
plemented in the FPGA device is the feedforward phase of a Support Vector
Machine trained to identify different objects from the COIL data set [6] inde-
pendently of their pose, as described in the software implementation of a SVM
for 3D object recognition [2]. SVM have been also implemented on embedded
hardware as FPGA [7] and microcontroller [8] with successfully results on classi-
fication error for reduced dimension input data. In reference [2], a SVM algorithm
is proposed to perform recognition on images regarded as points in a high di-
mensional space, that is, the system does not require feature extraction so input
images are treated as vectors. Our aim is also to process high dimension input
vectors for object identification but in a dedicated hardware platform based on
FPGA devices.

The structure of the paper is as follows. In the next section we describe the
basic of SVMs. In section 3 we present the proposed hardware architecture of
the feed forward phase of the SVM classifier. In section 4 we present its imple-
mentation for a reduced complexity problem using the Iris data base. Section
5 describes preliminary results using the COIL images data base. We present
conclusions and further research in section 6.

2 Theoretical Overview of SVMs

Support Vector Machines, as opposed to Neural Networks, evolve from the the-
ory to the implementation and experiments. Their theoretical foundations are
statistical learning theory and structural risk minimization [9]. The non-linear
two-class classification task of a training data set of l elements:

{(x1, y1), (x2, y2), . . . (xl, yl)} where xi ∈ Rn and y = ±1

consists on resolving the following quadratic programming problem (CQP) with
a series of associated restrictions:

maximize − 1
2
αTQα+ rTα (1)

subject to 0 ≤ αi ≤ C, i = 1, . . . l

yTα = 0 .

where ri = 1 ∀i, and Q is a l × l positive semi-definite symmetric matrix and
each element determined by:

qij = yiyjK(xi,xj) . (2)

where K(xi,xj) is a kernel function.
The feed-forward estimation or classification of a new, no learned, vector x is:

y(x) = sgn

⎛⎝ l∑
i=0

yiαiK(xi,x) + b

⎞⎠ . (3)
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where parameters αi and b are given in the learning phase by resolving equation
(1). The fact that the summation in equation (3) goes over all training data
patterns is not relevant because most αi parameters result equal to 0. Those
training patterns whose corresponding αi parameter is not equal to 0 are called
support vectors (SV). The scarcity of the model results from a sophisticated
learning that matches the model capacity to the data complexity ensuring a
good performance on the future, previously unseen, data.

Typical Kernels are polynomial functions and Gaussian function. In addition
other kernel function have been proposed in the literature; it is highlighted the
function named hardware-friendly kernel function [10], which greatly simplifies
the SVM feed-forward phase computation in resource constrained hardware while
maintains good classification performance respect to the conventional Gaussian
kernel [10]. Table 1 shows the examples of kernel functions.

Table 1. Kernel Functions

Kernel Funcions[
(xT xi) + 1

]d
Polinomial of degree d

e

(
−
∥∥∥xi−x

∥∥∥2/σ2
)

Gaussian

2
−γ
∥∥∥xi−x

∥∥∥
1 Hardware-friendly

3 Proposed System Architecture

The goal is to map the classification algorithm of a Support Vector Machine
represented by equation (3) into an FPGA. The basic architecture is represented
in Fig. 1.

We compute the sign of the addition of (nSV +1) terms, being nSV the number
of support vectors, obtained from the training algorithm (equation (1)). Support
vectors are those whose αi parameter is not 0, so the summation in equation

Fig. 1. Architecture for the calculation of the feed forward phase on an SVM classifier
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Fig. 2. Architecture for performing a single step of the hardware friendly kernel com-

putation based on a CORDIC algorithm

(3) apply to the support vectors plus parameter b. The calculation of the terms
for each support vector are performed in parallel by the blocks named SV block.
The additional block (Controller) is a state machine that controls the signal flow
and the operation stages to compute the kernel function as described below.

The function of each SV block is the computation of the hardware-friendly
kernel represented in Table 1 as described in reference [10]. It is possible to com-
pute the kernel function without resorting to any multiplication or function eval-
uation procedure by using a COrdinate Rotation DIgital Computer (CORDIC)
algorithm. CORDIC algorithms are a class of hardware-efficient algorithms that
provide iterative solutions based on shifts and adds for the calculation of trigono-
metric and transcendental functions [11].

As described in [10] the first step is to rescale the SVM learning parameters
to guarantee their correct coding in the hardware. Their new values are between
0 and 1−2−k , being k the number of bits assigned to represent the parameters.
The scaling procedure does not affect the classification function (equation (3)) as
the sign remains unchanged. The evaluation of the kernel function is performed
by the iterative algorithm described by equations (4) and (5):

Bj+1 = Bj(1 + dj2
−j) . (4)

Ej+1 = Ej − log2(1 + dj2
−j) . (5)

where dj = {−1, 0} is chosen such that
∣∣∣Ej+1

∣∣∣ ≤ ∣∣∣Ej
∣∣∣. Starting values are B1 = αi

and for support vector xi and input vector x. After k iterations (being k the
number of bits assigned to represent the parameters) we obtain the solution:
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Bk+1 = B12E1 = αi2
−γ
∥∥∥xi−x

∥∥∥
1 = αiK(xi,x) . (6)

The architecture for computing equations (4) and (5) of the CORDIC algorithm
is represented in Fig.2. It is based on the architectures proposed in references
[10] and [11].

The additional elements that compound each SV block are a memory which
store k precomputed values of log2(1 + dj2

−j), a memory to store the αi (B1)
parameter and the support vector xi obtained from the training step, all repre-
sented with k bits. Finally an additional subblock (E1 block) has been included
to perform the calculation of E1 (see Fig.2) from input vector x and support
vector xi. The architecture of SV block is represented in Fig.3. Here, E1 block
is very important because it is designed in order to guarantee the convergence
of the CORDIC algorithm. E1 is restricted in the range (-1,0] thus its real value
is divided into an integer part I and a decimal part F, so that the integral part
is included at the end by shifting I times the output of the CORDIC algorithm.

Fig. 3. Architecture for the calculation of the contribution of one support vector

(SV block)

4 Iris Data Set Implementation

We have implemented a two-class classifier for the simplified Iris dataset. The
target device is a low cost Altera EP2C20 Cyclone II. This dataset is composed
of 120 samples of two components vector that are non-linearly separable. The
training step has been performed with Matlab software using the bioinformatics
toolbox where the hardware-friendly kernel (Table 1) has been included. Fig.4
shows the training data set, the classification boundary and the resulting support
vectors.

The classification hardware has been implemented with Altera Quartus II
design software using schematic design and VHDL. The architecture is that
represented in Fig.1 just including as many SV blocks as support vectors are
provided in the training. The resolution chosen to represent vector components
and SVM parameters is 8 bits, so the classification output is obtained after 10
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Fig. 4. SVM training and software testing

clock cycles, 8 consumed by the CORDIC algorithm. The maximum clock rate
achieved, limited by E1 block, is 33 MHz, so each classification is performed in
0.3μs. The performance of the SVM algorithm depends on the value of parameter
γ in the hardware-friendly kernel function, the value of C in equation (1) and the
number of elements randomly chosen in the training step. We used C = 10 and
γ = 2. Good classifications results are obtained when about 10 support vector are
selected in the training. In this case the classification error in the hardware SVM
is below 10%, quite higher than the classification error performed by software
simulation with the same number of support vectors (5%). This is due to low
precision representation of the data in the hardware classifier, but it can be
compensated by choosing a classifier with a higher number of support vectors.
Increasing the number of support vector does not compromise classification speed
as all support vectors are evaluated in parallel. Each SV block occupies about
180 logic elements. The classifier with 10 support vectors takes 11% of logic cells
of the target device and no additional hardware resources.

5 First Image Classification Results

The proposed hardware architecture is to be tested on the COIL database con-
sisting of 7,200 images of 100 objects, there are 72 different angular views of each
object. They are color images of 128× 128 pixels. Reference [2] proposes a SVM
for a multiclass classification of the COIL database using the images directly as
inputs to the classifier. First, the images are converted to 8 bits levels gray-scale
images and their resolution is reduced to 32× 32 pixels, so they are represented
as a vector with 1024 components. They obtain excellent recognition rates even
with noise corrupted images, shifted images and partial occlusions. We will also
follow the same strategy to deal with images as high dimensional input vector.
Fig.5 shows four examples of images to be classified.

In this case we also performed the training step with Matlab software using
the bioinformatics toolbox where the hardware-friendly kernel has been included.
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Fig. 5. Examples of modified images of the COIL dataset: (a) Obj72 “cream cheese”

rotated 0◦, (b) Obj74 “duck toy” rotated 45◦, (c) Obj68 “stapler” rotated 0◦ and (d)

Obj68 “stapler” rotated 100◦

The classification stage is performed in software that simulates the hardware con-
strained architecture proposed in section 2. The classification results are com-
pared with those provided by the Matlab toolbox programs.

First goal consists on adapting E1 block and the shift block (Fig.3) to deal
with high dimensional input data (1024 vector elements). The first experiment
consists on the classification of two object of the COIL database: for example the
“duck toy” (obj74) and the “cheese cream” (obj72) (see Fig.5). Twelve images
of each class corresponding to twelve different angles of view (0◦, 30◦, 60◦, . . .)
have been used in the training. Learning parameters are C = 10 and γ = 2.
After the training all the sample images are selected as support vectors, so the
number of support vectors is 12. The other 60 images of each object have been
used as test patterns. We achieved 0% classification error both in software SVM
and FPGA hardware implementation. We have performed the same experiment
with other image pairs from the COIL dataset. We observe that pair to pair
comparison of images can be classified without errors when using a number of
support vectors between 20 and 40. If we reduce the number of support vectors
to 12, the classification error is kept below 5% in the hardware classifier. Worst
cases correspond to images whose scale is changed depending on the angle of
view as the “stapler” (see Fig.5 c and d). For example, the classification error of
the hardware classifier between the “duck toy” and the “stapler” is 3.7%.

6 Conclusions

In this paper we have presented a FPGA implementation of a SVM based on a
parallel computation of the support vectors kernel function. The starting point
is the method proposed in [10], which provides a hardware-friendly kernel func-
tion that can be evaluated using an iterative CORDIC algorithm. Based on this
method we have implemented the classification stage of a SVM on a low cost,
constrained resources, FPGA device (Altera EP2C20 Cyclone II). The system
shows to be very efficient in terms of hardware demanding resources and in
terms of classification speed (each classification is performed in 10 clock cycles)
compared with related implementations on other hardware platform as a micro-
controller [8]. The system performance has been tested with the Iris database and
a more sophisticated high dimensional image classification problem. Appealing
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results have been obtained for low resolution (32×32) image classification with-
out needing a preprocessing stage for feature extraction. Each image is treated
as a point in a high dimensional space.

Next step will be to expand the architecture to a multiclass classification prob-
lem, being able to identify each object from all the others in the COIL dataset.
For multiclass classification (q classes) we need to evaluate the procedure. As
a first approach we will follow the same strategy as in reference [2] where it is
necessary the training of q(q − 1)/2 between two classes and the evaluation of
q − 1 classifiers in the hardware. We have estimated that in the target FPGA
device up to 8 classifiers (with 12 support vectors each) can be evaluated in
parallel. In this case of the image classification problem an external memory is
needed to store the support vectors.
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Abstract. In this paper, we devise a hardware architecture for ANNs

that takes advantage of the dedicated adder blocks, commonly called

MACs, to compute both the weighted sum and the activation function.

The proposed architecture requires a reduced silicon area considering

the fact that the MACs come for free as these are FPGA’s built-in cores.

The implementation uses integer fixed point arithmetic and operates

with fractions to represent real numbers. The hardware is fast because it

is massively parallel. Besides, the proposed architecture can adjust itself

on-the-fly to the user-defined configuration of the neural network, i.e.,

the number of layers and neurons per layer of the ANN can be settled

with no extra hardware changes.

1 Introduction

Artificial Neural Networks (ANNs) are useful for learning, generalization, classi-
fication and forecasting problems [2]. They consist of a pool of relatively simple
processing units, usually called artificial neurons, which communicates with one
another through a large set of weighted connections. There are two main network
topologies, which are feed-forward topology [2], [3], where the data flows from
input to output units strictly forward, and recurrent topology, where feedback
connections are allowed. Artificial neural networks offer an attractive model that
allows one to solve hard problems from examples or patterns. However, the com-
putational process behind this model is complex. It consists of massively parallel
non-linear calculations. The software implementations of ANNs are useful but
hardware implementations take advantage of the inherent parallelism of ANNs
and so should answer faster.

Field Programmable Gate Arrays (FPGAs) provide a re-programmable hard-
ware that allows one to implement ANNs rapidly and at low-cost. However,
FPGAs lack the necessary circuit density as each artificial neuron of the net-
work needs to perform a large number of multiplications and additions, which
requires a lot of silicon area if implemented using standard digital techniques.
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The proposed hardware architecture described throughout this paper is de-
signed to process any fully connected feed-forward Multilayer Perceptrons (MLP)
neural network. However, training is not included. It is now a common knowledge
that the computation performed by the net is complex and consequently has a
huge impact on the implementation efficiency and practicality. Existing hard-
ware implementations of ANNs have attempted to speed up the computational
process. However these designs require a considerable silicon area that makes
them almost impossible to fit within the resources available on a state-of-the-art
FPGAs [1], [4], [6]. In this paper, we devise an original hardware architecture
for ANNs that takes advantage of the dedicated adder blocks, commonly called
MACs (Multiply, Add and Accumulate blocks) to compute both the weighted
sum and activation function.

The proposed implementation uses a specific number representation: Frac-
tional Fixed Point [6]. It means that a real number is treated (approximated)
by a fraction. Fractional addition, subtraction and multiplication are inherently
integer (fixed point) operations, which may be an attractive choice in decreasing
silicon area, because integer mathematics can be done by combinational circuitry.

The weighted sum of a neuron is now a sum of fractional products. In this
project, the activation function (for all neurons of the ANN) is the sigmoidal lo-
gistic function, whose mathematics is also reduced (approximated) to additions,
subtractions and multiplications of fractions. The exponential term exp() of the
logsig function is approximated to 3 quadratic polynomials, using least-squares
parabola method. The proposed architecture requires a reduced silicon area con-
sidering the fact that the MACs come for free as these are FPGAs built-in cores.
The hardware is fast because it is massively parallel. Besides, the proposed hard-
ware can adjust itself on-the-fly to the user-defined configuration of the neural
network, with no extra hardware changes, which is a very nice characteristic
in robot-like systems considering the possibility of the same hardware may be
exploited in different tasks.

The remaining of this paper is organized as follows: In Section 2, we give a
brief introduction to the computational model behind artificial neural networks;
In Section 3, we show how we approximate the sigmoid output function, so we
can implement the inherent computation using digital hardware; In Section 4, we
provide some hardware implementation issues about the proposed design, that
makes it original, efficient and compact; In Section 5, we present the detailed
design of the proposed ANN Hardware; Last but no least important, In Section 6,
we draw some useful conclusions and announce some orientations for future work.

2 ANNs Computational Model

We now give a brief introduction to the computational model used in neural
networks. Generally, the net is constituted of few layers, each of which includes
several neurons. The number of neurons in distinct layers may be different and
consequently the number of inputs and that of outputs may be different [2].

The model of one artificial neuron requires m inputs, say x1, x2, . . . , xm
and the synaptic weights associated with these inputs, say w1, w2, . . . , wm.



Reconfigurable MAC-Based Architecture 477

The weighted sum v, also called activation of the neuron, is defined in (1). The
model usually includes an output (activation) function ϕ() that is applied to the
neuron activation before it is fed forwardly as input to the next layer neurons.

v =
m∑
i=0

xj × wj (1)

wherein x0 = 1 and w0 = b (a noise in v) The non-linearity of the neuron is often
achieved by the output function, which may be the hyperbolic tangent (tansig)
or logistic sigmoid (logsig) [2]. In some cases, ϕ(v) may be linear.

TA typical ANN operates in two necessary stages: learning and feed-forward
computing. The learning stage consists of supplying known patterns to the neural
network so that the network can adjust the involved weights. Once the network
has learned to recognize the provided patterns, the network is ready to operate,
performing the feed-forward computing. In this stage, the network is supplied
with an input data or pattern, which may be one of those used during the
learning phase, and the corresponding output is then checked for correcteness.
This allows one to know whether the neural network could recognize the input
data. The precision of the net in recognizing the new input patterns depends on
the quality of its learning stage and on its generalization. As we have previously
mentioned, here we are only concerned with the implementation of the feed-
forward computing stage of the MLP Neural Network.

It is now suitable to study the numeric representation used in this project.
we based our implementation on the Fractional Fixed Point (FFP) notation as
described in [6]. The idea of this technique is to represent a real number as a
fraction of integers. The main objective is to escape from representation and
mathematic operations (addition, subtraction and multiplication) of the IEEE
floating Point, which require considerable silicon area, in hardware terms. When
a real number is treated as a fraction, only basic-integer operations (performed
by combinational circuitry) are used, so that a more simple hardware is required.

Given a floating-point number a, e.g., somehow it is converted to a fraction
using such an algorithm. This conversion is not a responsibility of the ANN
hardware. The latter gets directly a fraction in a binary representation of 33
bits: numerator (16 bits) and denominator (17 bits). Numerator is a non-negative
integer, i.e., natural. The arithmetic signal of the fraction is chosen arbitrarily to
be placed in the bit length of denominator. So, this one has 16 bits to allocate a
non-zero-natural number and more 1 bit to express the signal of the fraction (Fig.
1). Thus, we can also guarantee that the denominator is a not zero, wherein a is a
floating-point number, Na is the numerator (natural) and Da is the denominator
(non-zero integer).

conversion: a �−→ Na
Da

or a �−→ frac(a)

Any addition, subtraction or multiplication using fractions results in another
fraction which may be considered as a natural numerator and a non-zero-integer
denominator. Considering b another real number, below we see basic operations
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with fractions. ANN hardware operates with a fraction in the binary represen-
tation of Fig. 1.

addition: a+ b �−→ Na

Da
+ Nb

Db
= Na×Db+Da×Nb

Da×Db

subtraction: a− b �−→ Na

Da
− Nb

Db
= Na×Db−Da×Nb

Da×Db

multiplication: a+ b �−→ Na

Da
× Nb

Db
= Na×Nb

Da×Db

Fig. 1. Binary representation of a fraction

When a real number is converted into a fraction (considering a limited bit length
for both numerator and denominator), there is a loss of accuracy involved. There-
fore, it is quite important (in a conversion process) to search for a fraction that
presents the minimum error regarding the given real number.

3 Approximation of the Output Function

Unlike the weighted sum, v, which includes operations that can easily and effi-
ciently implemented in hardware, the activation or output function of a neuron
requires a special care before the computation involved can be modeled in hard-
ware. Without loss of generality, we chose to use the logistic sigmoid, defined
in (2), as the output function for all neurons in the ANN hardware. To allow
an efficient implementation of (2), in hardware, we proceeded with least-squares
parabola method, using 3 quadratic polynomials in order to approximate the ex-
ponential decay: exp(−v). Initially we consider v ≥ 0, as depicted in see Fig. 2.
The same method could be applied to the tangent hyperbolic function too.

ϕ(v) = sigmoid(v) =
1

1 + e−v
(2)

In Fig. 2–(b), for example, the approximation method generates the following
quadratic polynomial, for v ∈ [0, 2]:

exp(−v) ≈ f[0,2](v) = 0.1987234× v2 − 0.8072780× v + 0.9748092 (3)

We know the ANN hardware operates with fractions, whose representation is
depicted in Fig. 1. So, it will be better to express the polynomial of (3) in the
hardware parlance.

f[0,2](v) ≈
12858
64703

×
(
Nv
Dv

)2

+
11691
−14482

× Nv
Dv

+
56072
57521

(4)
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(a) exp(−v) for 0 ≥ v ≤ 8 (b) Second-degree curve fitting:

21 points of exp(−v) for 0 ≥
v ≤ 2

(c) Second-degree curve fitting:

21 points of exp(−v) for 2 ≥
v ≤ 4

(d) Second-degree curve fitting:

41 points of exp(−v) for 4 ≥
v ≤ 8

Fig. 2. Approximation of the exponential decay: exp(−v)

In (4), there are 3 multiplications and 2 additions with fractions to be performed.
As we are also concerned in time computation, it is possible to save one operation
(multiplication) using the identity a× v2 + b × v = v(a × v + b). Computation
of the fraction polynomial in (4) leads to the fraction in (5), wherein F[0,2](v) is
a fractional function in v ∈ [0, 2].

f[0,2](v) ≈ F[0,2](v) =
NF[0,2](v)

DF[0,2](v)
(5)

In general, for v = 0, we can say that exp(−v) is approximated by a fraction
F (v), so that exp(v) ≈ F (v), wherein F (v) can be F[0,2](v), F[2,4](v), F[4,8](v)
or frac(0). Therewith, the ANN hardware computes an approximate-quadratic
polynomial in a fractional form, when v ∈ [0, 8[; and for v ≥ 0, the hardware
approximate exp(−v) to zero, i.e., to frac(0). Thus, the fractional form of the
logistic sigmoid, ϕ(v), defined in (2), is obtained using the considerations in (6)
and (7).
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exp(v) ≈ F (v) =
NF (v)

DF (v)
⇒ ϕ(v) =

1
1 + e−v

≈ 1
1 + F (v)

(6)

ϕ(v) =
1

1 + NF (v)

DF (v)

⇒ ϕ(v) ≈
DF (v)

DF (v) +NF (v)
, wherein v ≥ 0 (7)

The fractional form of ϕ(v), for v ≥ 0, is computed as follows:

For
Nv
Dv

< 0, frac(ϕ(v)) =
Nϕ(v)

Dϕ(v)
is easily obtained from

DF (v)

DF (v) +NF (v)
(8)

When v is negative (v < 0), we can take advantage of a logistic-sigmoid property:
ϕ(v) = 1ϕ(v). Since v > 0, there is no problem if we use (6) and (7) to determine
ϕ(v), by replacing v by v.

ϕ(−v) =
1

1 + NF (−v)

DF (−v)

⇒ ϕ(−v) ≈
DF (−v)

DF (−v) +NF (−v)
, wherein − v ≥ 0 (9)

So,

ϕ(v) ≈ 1−
DF (−v)

DF (−v) +NF (−v)
⇒ ϕ(v) ≈

NF (−v)
DF (−v) +NF (−v)

, wherein v ≤ 0 (10)

Finally, for v < 0, the fractional form of ϕ(v) is computed as follows:

For
Nv
Dv

< 0, frac(ϕ(v)) =
Nϕ(v)

Dϕ(v)
is easily obtained from

DF (−v)
DF (−v) +NF (−v)

(11)
The intervals [0,2], [2,4] and [4,8] were not chosen arbitrarily: the extremes 2,
4 and 8 are attractive when we evaluate if a fraction belongs to one of those
intervals. For example, if v ≥ 0, and so frac(v) ≥ 0, the comparison in (12) is
easily performed, in hardware, by left shifting and comparing (logical test). If,
instead of 2 in (12), it were 4, hardware would shift twice, and so if it were 8,
three times.

Nv
Dv

< 2⇐⇒ Nv
2

< Dv (12)

Fig. 3. Absolute Error: |ϕ(v)ϕq(v)|
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In Fig. 3, we see the absolute error between ϕ(v), calculated with no approxima-
tion, and ϕq(v), which is obtained as an approximation of exp(v) by one of the
approximate-quadratic polynomials (Fig. 2), for v ∈ [0, 8[; and if v ≥ 8, exp(v) is
approximated to 0 (zero). The maximum error obtained is ≈ 0.0081757, in the
interval v ∈ [0, 2]. We can see that the least-square-parabola approximation is
better as curve-fitting in v ∈ [2, 8].

4 Implementation Issues

An Artificial Neural Network is a set of several interconnected neurons arranged
in layers. Let L be the number of layers. Each layer has its own number of
neurons. Let mi be the number of neurons in layer i. The neurons are connected
by the synaptic connections. Some neurons get the input data of the network, so
they are called input neurons and thus compose the input layer (i = 1). Other
neurons export their outputs to the outside world, so these are called output
neurons (i = L) and thus compose the output layer. Neurons placed on the layer
i = 2 up to layer i = L − 1 are called the hidden neurons because they belong
to the hidden layers.

The computation corresponding to a given layer starts only when that of the
corresponding previous layer has finished. Our ANN hardware has just one real
layer of neurons, which constitutes of n neurons, wherein n is maximum number
of neurons per layer, considering all layers of the Neural Network to be com-
puted. Besides reducing the number of neurons that are actually implemented
in hardware, our design takes advantage of some built-in cores that come for free
in nowadays FPGAs. This blocks are called MACs (Multiply, add and Accumu-
late), which are usually used in DSPs (Digital Signal Processing).

5 ANN Hardware Architecture

The ANN Hardware interface is illustrated in Fig. 4, wherein three other com-
ponents are included: NNALU (Neural Network Arithmetic and Logic Unit),
Control Unit of NNALU and Clock Generator. An external software is neces-
sary to control ANN hardware computation. This software feeds the hardware
(via Data Bus for Hardware/Software communication – DBHS) with the inputs,
weights and biases required by the net. The software still defines (via Control
Bus for Hardware/Software communication – CBHS) how many neurons per
layer hardware is going to work and all necessary steps for accomplishing the
whole feed-forward computing of the network.

Focusing on the ANN Hardware, Control Unit of NNALU encompasses all
control components for computing all neural network specific operations: sums,
products and comparisons with fractions. The blocks that perform these op-
erations are within NNALU, which is the Arithmetic Logic Unit of the ANN
Hardware. Clock Generator defines the time basis of the ANN Hardware and
synchronizes all operations in NNALU (which are commanded by the Control
Unit).
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Fig. 4. Interface of the ANN hardware

Fig. 5–(a) shows details of NNALU. It is possible to see the physical layer with
n Neurons. During the ANN Hardware operation, the Neurons work in parallel,
even though not necessarily all physical neurons are needed in the layer. Recall
that some layers in the Neural Network may have fewer neurons than n. As
we can see, the output of each hardware neuron (Yi) goes out of the NNALU,
to furnish the output of the Network, when the whole computation is finished.
Signal Yi also returns to the Neurons by a tri-state buffer, a multiplexer MuxX
and a register RegX. This Feedback action allows the reuse of one physical layer
for computing all layers of the Neural Network (virtual layers). MuxX is also an
interface of communication between the software and NNALU, wherein the latter
receives Inputs and Biases from the software. MuxWi, on the other hand, allows
the weights (that comes from the software) get into Neurons of the NNALU.

All Neurons in Fig. 5–(a) have the same hardware architecture, which is de-
picted in Fig. 5–(b). The latter shows Multiplier and Adder, which are used for
the operations between numerators and denominators of fractions (Section 2).
Still in Fig. 5–(b), the buses X , W , F and Y carry fractions in the model of
Fig. 1. Registers are useful to make data stable during multiplications, additions
or any other operation. Mux1 allows to select an operand for the Multiplier: a
numerator or a denominator of X . Mux2 do the similar task, regarding W . This
way, it becomes feasible to perform X × Y , which are fractions.

The arithmetic signals of X and W (Fig. 5–(b)) go to ASPU (Fig. 6), where
is given the signal of the fraction obtained by multiplying and adding two other
fractions. ASPU also decides if an Adder operand will experiment the two’s
complement (Twocomple1 or Twocomple2, Fig. 5–(b)). The Adder component
is responsible to additions of the neuron’s weighted sum. LShfReg3 and Reg4 are
assigned to accumulate the weighted sum as a fraction: numerator in LShfReg3
and denominator in Reg4.

In Fig. 5–(b), Comparator performs the logical test in (10). Numerator is
left-shifted by LShfReg1 and compared with the denominator, which comes
from LShfReg2. Once Hardware computes the output function (logsig) using an
approximate-quadratic polynomial, the same components used in the weighted
sum are also taken advantage, because a polynomial involves sums and products.



Reconfigurable MAC-Based Architecture 483

Fig. 5. Arithmetic Logic Unit and Neuron Architecture

Fig. 6. Arithmetic Signal Processing Unit (fraction signal processing)

All Left Shifters (LShfReg1, . . .) are responsible to keep numerator or denomi-
nator with 16 bits, each one, not considering the bit for arithmetic signal. For
instance, if a multiplication is performed with two fractions, the result is a nu-
merator and a denominator with 32 bits each one; then, left shifters are used to
put them back with 16 bits, each one.

In Fig. 6, component CNTR releases the negative transition of Clk1 to the
Flip-Flop D, if sp = 1. ASPU works in parallel with multiplications and additions
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of fractions during weighted sum and output function computation. Each Neu-
ron, in Fig. 5–(a), works in parallel with another one. If one layer is in computa-
tion, the next one is being prepared to initialize. When all layers is completely
ended, ANN Hardware returns a signal to its Control Unit, informing that the
output of the Neural Network is available. So, Control Unit returns to the soft-
ware that the whole computation is done.

6 Conclusions

In this paper, we presented novel hardware architecture for processing an artifi-
cial neural network, whose configuration (number of neurons per layer and etc)
can be changed on-the-fly without any extra effort. The design takes advantage
of the built-in MACs block that come for free in modern FPGAs. The model was
specified in VHDL, simulated to validate its functionality. We are now working
on the synthesis process to evaluate time and area requirements. The compari-
son of the performance result of our design will be then compared to both the
binary-radix straight forward design and the stochastic computing based design.
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Abstract. This paper proposes a clustering method SOMAK, which is

composed by Self-Organizing Maps (SOM) followed by the Ant K-means

(AK) algorithm. SOM is an Artificial Neural Network (ANN), which has

one of its characteristics, the nonlinear projection from a high dimension-

ality of the sensorial space. AK is based in the Ant Colony Optimization

(ACO), which is a recently proposed meta-heuristic approach for solving

hard combinatorial optimization problems. The AK algorithm modifies

the K-means on locating the objects and these are then clustered accord-

ing to the probabilities which in turn are updated by the pheromone. The

SOMAK has a good performance when compared with some clustering

techniques and reduces the computational time.

Keywords: Self-Organizing Maps, Ant Colony Optimization and Un-

supervised Learning.

1 Introduction

With the substantial reduction of data storage cost, a great improvement in
the performance of computers and the popularization of computer nets, a great
amount of data information is being produced every day everywhere. So, a great
quantity scale of databases has created the necessity of developing some tech-
niques of data processing useful for the clustering of data or data mining [4].

The K-means algorithm is the most commonly used partitive clustering algo-
rithm because it can be easily implemented and it is very efficient in terms of
the execution time. The major problem with K-means it is the definition of k
to the clustering problem. SOM [6] is an ANN which allows the visualization of
high dimensionality data and also implements an ordered mapping of a distri-
bution of high dimension within a regular grid of low dimension. This ordered
grid can be used as a convenient visualization to show different characteristics
of the SOM. The algorithm SOMK, that is SOM followed by K-means, does not
need to define the ideal number of k-clusters [12]. The algorithm AK is based
on the Ant Colony Optimization (ACO) [3], recently proposed for solving hard
combinatorial optimization problems. We used AK to find the optimized k [7].
The advantage of the proposed algorithm SOMAK is that it needs less time with
small number of clusters to solve a problem. We have to point out that the aim of

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 485–494, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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this paper is not to find an optimal clustering for the data, but to obtain a view
about the structure of data clusters using SOMAK, besides trying to reduce the
number of clusters and the computational time.

In the case of the experiments, a comparison between the results of direct
data (SOM and K-means) and the clusters of prototypes vectors of SOMK and
SOMAK is carried out. This paper contains eight sections. Section 1 describes
our research motivation. Section 2 contains the related work. Section 3 contains
the methods of clustering. In section 4, a two-stage method combining SOM
and Ant K-means is described. Section 5 shows the material and methods. Sec-
tion 6 describes the experimental results and discussion. Section 7 contains the
conclusion and future work. Finally, the acknowledgement are presented.

2 Related Works

Kuo et al. used AK in the analysis of clusters [7]. The algorithm AK modifies
the k-means locating the objects and these are then clustered according to the
probabilities which in turn are updated by the pheromone according to the total
within cluster variance (TWCV). The experimental results showed that AK is
better than the other two methods, SOMK and SOM followed by the genetic
k-means algorithm [7]. The only problem for AK is that the number of clusters
is required, that is, it is necessary to give the number of clusters to algorithm
AK for it to be started.

Vesanto and Alhoniemi combined SOM and K-means [12] to solve the cluster-
ing problem. Particularly, the use of hierarchical agglomerative clustering and
the partitive clustering using K-means are investigated. The procedure consists
of two stages, firstly using a SOM to produce the prototypes, which are then clus-
tered in the second stage by the K-means. The results of the clustering using a
SOM as an intermediary phase was computationally effective, besides comparing
the results directly obtained from the data, considering the original difficulties
from the properties of the K-means algorithm. Trying to solve the needs of the
algorithms which were seen and described above, we need to develop some useful
techniques of data processing to improve the solution of the data clustering or
data mining. So, this paper proposes a method of clustering based on two stages
combining SOM and Ant K-means for the analysis of clusters.

3 Methods of Clustering

3.1 K-Means

The K-means method of clustering is one of the simplest algorithms of unsuper-
vised learning to solve the clustering problem. The aim is to divide the data set
within k clusters fixed a priori. The algorithm consists of two stages: an initial
stage and an iterative stage. The initial stage involves the definition of the k cen-
troids, one for each cluster. The second iterative stage repeats the signature of
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each point of data for the closest centroid and k new centroids are calculated ac-
cording to the new signature [10]. This interaction stops when a certain criterion
is found; for example, number of interactions. Given a set nPat, suppose we want
to classify the data within k groups, the algorithm tends to minimize a function
of error, such as a mean squared error defined as: E =

∑C
k=1
∑nPat
i=1 ||xı − ck||2.

Where C represents the number of clusters, nPat the number of samples, x the
entry of each sample and ck is the center of cluster k.

3.2 Ant Colony Optimization

The ACO was proposed by Dorigo [3]. When we refer to the colonies of ants,
we observe the ants communicate to each other just in an indirect form in their
environment by the substance called pheromone. Paths with higher levels of
pheromone will be likely to be chosen and consequently reinforced while the
intensity of pheromone along the paths that are not chosen is reduced by evap-
oration. Additionally, evaporation causes the pheromone level of all trails to di-
minish gradually. Hence, trails that are not reinforced gradually lose pheromone
and will in turn have a lower probability of being chosen by subsequent ants.
Evaporation is accomplished by diminishing the pheromone level of each trail
by a factor ρ. Typical values for this evaporation factor ρ lie in the range [0.8,
0.99][3]. This is an important mechanism to update the pheromone on the trails
according to τij ← (1 − ρ) ∗ τij + Q

TWCV , whose parameters are explained in
more details in the next section. This form of indirect communication is known
and gives the colony of ants the capacity for finding the shortest path [8]. There
are some works related to the algorithms of clusters based on ACO. Yuqing et
al. Proposes algorithm of K-means clusters based on density and on the Colony
of Ants [13]. This algorithm is a new K-means algorithm based on the density
and theory of ants, which solved the problem of the local minimum by the ran-
dom ants, besides manipulating the initial parameters of K-means. Handl et al.
proposes clustering based on ants [5].

3.3 Ant K-Means

The choice of this algorithm is because it produced satisfactory results regarding
the clustering problem. In this method, It is necessary to provide the number
of clusterings like in the conventional K-means algorithm for AK algorithm.
Suppose E = O1, O2, ..., On the set of n data or objects, where O represents the
objects collected from the database, in that each object has k attributes, where
k > 0. Bellow some important parameters such as: α: The relative importance
of the trail: α ≥ 0; β: The relative importance of the visibility: β ≥ 0; ρ: The
pheromone decay parameter: 0 < ρ < 1; Q : A constant; n: Number of objects;
m: Number of ants; nc: Number of clusters; T : is the set includes used objects.
The maximal number recorded by T array will be n, i.e., T = Oa, Ob, ..., Ot

where a, b, ..., t are the points that ant has been. Tk: The set T is performed
by ant k. Ocenter(T ): The object which is the center of all objects in T, i.e.,
Ocenter(T ) = 1

nT

∑n
i=1Oi, where nT is the number of objects in T. TWCV :

total within cluster variance, i.e.,
∑nc
k=1
∑n
i=1(Oi −Ocenter(Tk))2.
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The Algorithm 1 shows the procedure Ant K-means in details above.

Algorithm 1. The procedure of Ant K-means [7]
Procedure Perturbation: Each Ant starts at random object and chooses the1

centroid randomly of cluster to move for all Ant k. Calculating Ocenter(Tk)

where k = 1, 2, ..., nc and TWCV.

Procedure Ant K-means: Input the number of clusters and the2

corresponding centroids, and set the parameter α, β, ρ, number of iterations

and ants. Lay equal pheromone on each path.

while the number of iterations is not reached do3

while TWCV is not changed do4

Updating pheromone by τij ← (1 − ρ) ∗ τij + Q
TWCV

.5

Each Ant k chooses the centroid to move with P, i.e.,6

P =
τα

kc∗η
β
kc∑

nc
i=1(τα

ki
∗η

β
ki

)7

Calculate Ocenter(Tk) where k = 1, 2, ..., nc8

Calculate TWCV (Total Within Cluster Variance).9

if TWCV is smaller than the smallest TWCV then10

replace it.11

else12

Pertubation13

3.4 SOM-Based Two-Stage Methods

A proposed method of clustering based on two stages is useful to improve the
main disadvantages of a partitive method of clustering; for example, K-means
due to its sensitivity to the initial prototypes and the difficulty in determining a
proper number of k clusters. Generally, a SOM-based two-stage method has two
possible forms of working. In the first one SOM is initially used to determine the
number of groups and the center of the initial groups for the Ant K-means. The
initial center of a group can be obtained from the weight vector corresponding
to the center of the groups on the topology of SOM net. In the second form, the
initial maps of SOM net present a large set of scale data on its topology and
generates the topological coordinates of the prototypes for future clusters in the
second stage. The method used in the second phase is the Ant K-means proce-
dure. The main advantage of a SOM-based two-stage method is the reduction
of the computational time by the hierarchical clustering method or partitive for
the large and complex sets of data [12].

To show this characteristic, it was necessary to train a SOM net by using the
algorithm of sequential training for the data set 1. The maps were trained in two
phases: a rough training with width of initial neighborhood σ1(0) and big learn-
ing rate and another phase called fine-tuning with width of initial neighborhood
1 Training of SOM net freely available in the package Matlab SOM Toolbox which

was used in the implementation of the proposed method. For further information,

see URL http://www.cis.hut.fi/projects/somtoolbox/
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σ2(0) and small learning rate, which the width of the neighborhood decreases
linearly to 1.

4 SOMAK

The method proposed in this paper, SOMAK, can be seen in Fig. 1. SOMAK
uses SOM net as a classifier of characteristics about the entry data instead of
clustering the data directly. First, a large set of prototypes is formed by using
SOM. The prototypes can be interpreted as “proto-clusters”, which are in the
next step combined to form the true clusters. Each data vector of the origi-
nal data set belongs to the same cluster like its closest prototype. In the present
study, the number of clusters and the centroid of each cluster are generated from
SOM net. In order to validate the solution of clustering analysis, the framework
Monte Carlo [9] was used in this paper. SOMAK uses SOM to determine the
initial points and then uses the Ant K-means procedure to find out the final
solution, i.e., AK to determine the number of clusters. The benefit of this ap-
proach is the reduction of the computational cost. The second advantage is the
reduction of the clusters size. The reduction of the noise is another benefit. The
prototypes are the local mean of the data and so, less sensitive to the random
variations than the original data.

For this reason, it is convenient to cluster a set of prototypes, instead of the
data directly [12]. Consider N samples of the data using Ant K-means algorithm
which is described in section 3.3. This involves to make attempts of clustering
with different values for the number of prototypes which were obtained by SOM
net. The computational time is proportional to the

∑Cmax

k=2 Nk, where Cmax is
the pre-established maximum number of clusters and k represents the number of
initial clusters. When a set of prototypes is used in an intermediary step (Fig. 1
- 1st level of abstraction), the total time is proportional to NM +

∑Mk
k=1, where

M is the number of prototypes obtained. With Cmax =
√
N and M = 5

√
N ,

the reduction of the computational time is based on
√
N

15 or about six-fold for

Fig. 1. The first level of abstraction is obtained through the creation of a set of proto-

type vectors by using SOM. Algorithm SOMAK creates the second level of abstraction

carrying out the cluster of M prototypes [12].
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N = 10000 [12]. In our case, we used ten-folds and N = 1000 for the carrying
out of the experiments. Evidently this is a very rough estimate, since it is an
estimate over the other; and many practical and experimental considerations are
ignored.

5 Material and Methods

The carried out experiments were: synthetic data, real data, the method Monte
Carlo, to check the efficiency of the four clustering methods. To carry out the ex-
periments it was used a machine Intel(R) Core (TM) 2 Quad, processor 2.40GHz,
memory RAM 3.00GB, operational system Microsoft Windows XP Professional
version 2002 Service Pack 3.

5.1 Data Sets

In this paper, five data sets were used: Lines, Banana, Highleyman being these
classified as synthetic data and Contraceptive Method Choice and Glass as real
data.

The Lines basis consists of 1000 data points clustered in 10 segments. The
other two bases of synthetic data 2 are arranged in the following way: A repre-
sents a data set of two classes in two dimensions; and N represents the num-
ber of samples of the vector generated with the number of samples by class.
N = [500, 500] having a total of 1000 data points. The Banana data basis
shows too that the data points are distributed in a normal distribution in the
form of a banana with standard deviation S=1 in all directions. Now the High-
leyman third set of data, besides the arrangements mentioned before, is divided
into two classes: the 1st class contains 500 data points for each one of the Gaus-
sians with mean 1 and 0 and variances 0 and 0.25, the 2nd class contains 500
data points for each one of the two Gaussians with mean of 0.01 and 0 and
variances 0 and 4. The real data used the repository UCI [1]. The Contra-
ceptive Method Choice or CMC represents the problem of predicting the
choice of a woman’s current contraceptive method based on her economic and
socio-demographic characteristics. The number of instances is 1473, divided into
three classes. The number of attributes is 10, including the class. The second
real basis is the Glass, this database has as an objective to determine if some
glass belongs to a kind “float” or not. The study of classification of this kind of
glass was motivated by a criminological investigation in which several tests were
made about the glass. The number of instances is 214, divided into six classes.
The number of attributes is 11, including the class. All the synthetic data and
the partitions of the real data were obtained through random numbers (Monte
Carlo). After that, it was used the stratified cross validations with ten-folds on
the databases providing the training and test sets for all the clustering methods.
2 Data sets, freely available in the package Matlab PRTools: Toolbox for Pattern

Recognition was used. For further information, see URL

http://prtools.org/academic.html
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So, it is reasonable to accept the reliability of the generator of random numbers.
Finally, 30 executions about the project were carried out.

5.2 Parameters Setup

The parameters considered in this paper are those which affect direct or indi-
rectly the clustering techniques, which were already described in the previously
sections to solve the clustering problem. According to [3], there are several com-
binations to determine the parameters as applied to ant colony system. Normally,
the parameters are α = 0, 0.5, 1, 2, 5 , β = 0, 1, 2, 5 , ρ = 0.3, 0.5, 0.7, 0.99, 0.999
and Q = 1, 100, 10000. There are 300 combinations of parameters; the results
showed in [2] that α = 0.5 , β = 1 , ρ = 0.9 and Q = 1 in this method has the
smallest variance, where m = 2 obtained the best results compared with m = 4
suggested by Marco Dorigo [3]. Table 1 shows the parameters of the clustering
techniques.

Table 1. Main Parameters of Clustering Techniques

Clustering Techniques Parameters

SOM Attributes number = pattern quantity input, Lines size grid =

19, Columns = 17, Initial radius = 10, Final = 2, σ1(0) = 10,

σ2(0) = 2, Initial learning rates were 0.5 and 0.05 respectively,

Final = 0.99, Neighborhood function = Gaussian, Neighborhood

format = hexa, Train type = epochs, Training size for rough

phase = 3, fine-tuning phase = 10.

K-means k = Number (no ) initial clusters, Initialize centers = k.

SOMK k = SOM prototypes no ,Initialize centers = SOM centroids no .

SOMAK α = 0.5, β = 1, ρ = 0.9, Q = 1, n = 500,

m = 2,nc = SOMprototypesnumber.

6 Experimental Results and Discussion

Then, to find the number of “proto-clusters” which obtains as a result 110
through SOM net; AK is used to cluster 500 data samples under the test set.
Table 2 shows a comparison between SOMAK and SOMK to obtain a smaller
number of clusters. The number of clusters and its centroids are obtained by
SOM net and then uses AK to find the definite solutions. SOMAK has the best
efficiency in comparison with SOMK, which is also the method composed of the
two stages.

It is important to mention in Table 2 that the fact of the SOMAK method
increases the number of clusters (compared to SOMK) does not mean to say
that is bad, perhaps this increase may be necessary to have an improvement of
entropy. SOMAK is applied as a technique of clustering for the case study be-
cause it obtained a smaller value of clusters. It will be presented the measure of
Entropy, which showed a smaller value for SOMAK when compared to SOMK,
the parameters Min, Max, Mea and Std represent respectively Minimum, Maxi-
mum, Mean and Standard Deviation in Table 3. The degree to which each cluster



492 J.R. Souza, T.B. Ludermir, and L.M. Almeida

Table 2. Results of the size of clusters obtained by the test set

Data sets Initial Cluster SOMK SOMAK

Lines(I) 10 6 3

Banana(II) 2 7 4

Highleyman(III) 2 3 4

CMC(IV) 3 9 4

Glass(V) 6 5 3

Table 3. Results of the methods with 30 executions each to obtain the Entropy and

the Computational Time (seconds)

Data sets Methods Results Entropy Computational Time

Min—Max—Mea Std Min—Max—Mea Std

I SOM 0.043—0.154—0.103 0.028 1.764—1.811—1.791 0.012

Kmeans 0.003—0.026—0.006 0.005 0.332—0.340—0.336 0.002

SOMK 0.325—0.398—0.366 0.018 2.346—2.397—2.376 0.014

SOMAK 0.229—0.341—0.273 0.026 1.931—1.999—1.970 0.016

II SOM 0.036—0.122—0.074 0.021 1.764—1.847—1.818 0.014

Kmeans 0.426—0.477—0.460 0.012 0.263—0.291—0.269 0.005

SOMK 0.375—0.457—0.415 0.019 2.396—2.488—2.456 0.016

SOMAK 0.267—0.421—0.340 0.041 1.939—2.035—1.995 0.019

III SOM 0.212—0.326—0.268 0.029 1.795—1.837—1.819 0.010

Kmeans 0.453—0.514—0.482 0.013 0.269—0.302—0.277 0.005

SOMK 0.410—0.491—0.450 0.018 2.436—2.485—2.463 0.014

SOMAK 0.250—0.448—0.365 0.057 1.955—2.019—1.990 0.015

IV SOM 0.478—0.509—0.493 0.007 4.494—4.552—4.531 0.016

Kmeans 0.397—0.450—0.413 0.012 0.292—0.308—0.300 0.005

SOMK 0.407—0.467—0.442 0.013 5.267—5.333—5.304 0.019

SOMAK 0.175—0.314—0.245 0.035 4.748—4.827—4.793 0.017

V SOM 0.306—0.397—0.365 0.020 3.427—3.577—3.554 0.030

Kmeans 0.286—0.368—0.331 0.023 0.333—0.351—0.341 0.004

SOMK 0.295—0.370—0.337 0.020 3.945—4.107—4.080 0.032

SOMAK 0.238—0.372—0.317 0.036 3.478—3.630—3.602 0.030

consists of objects of a single class. For each cluster, the class distribution of the
data is calculated first, i.e., for cluster j we compute pij , the probability that a
member of cluster i belongs to class j as pij = mij

mi
, where mi is the number

of objects in cluster i and mij is the number of objects of class j in cluster i.
Using this class distribution, the entropy of each cluster i is calculated using the
standard formula [14], ei = −

∑L
j=1pij log2pij , where L is the number of classes.

The total entropy for a set of clusters is calculated as the sum of the entropies
of each cluster weighted by the size of each cluster, i.e., e =

∑K
i=1

mi
m ei, where

K is the number of clusters and m is the total number of data points.
The Std parameter reported in Table 3 presented a smaller value for most

of the methods of clusterings except for SOMAK. So, Table 3 showed also a
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great variability pointed out in the standard deviation parameter, resulting in a
disadvantage for the proposed SOMAK method. In the majority of the experi-
ments, the SOMAK method showed a smaller entropy in the parameters of Min,
Max and Mea, when compared with the methods of clustering SOM, K-means
and SOMK for IV and V data sets. For the I, II and III data sets the SOMAK
method presented a smaller entropy when compared with SOMK. Table 3 also
shows computation time for all the techniques of clusterings used in the exper-
iments. K-means has always been the quickest one computationally, because it
is a simple algorithm or of only one stage. However, this same algorithm pre-
sented a high entropy seen in Table 3, when compared with the SOM, SOMK
and SOMAK methods. SOMAK had a longer time than K-means and obtained
more satisfactory results when compared with SOMK as well in reference to the
entropy as to the computational time.

It was concluded that the experimental results are statistically independent
according to the application of Test t (hypothesis test). It was applied as well
for the entropy as for the computational time respectively seen in Table 3 and
with 5% of significance degree it showed that SOMAK is better than SOMK.

7 Conclusion and Future Work

The aim of this paper was to propose a method of clustering, SOMAK, composed
of two stages by combining SOM and Ant k-means. The SOMAK method is
capable of reducing the size of clusters, by finding a good performance when
compared with other techniques of clustering (SOM, K-means and SOMK) and
also capable of reducing the computational time of the experiments.

The algorithms of clusters described before were tested as well for the data
directly as for the data trained by SOM net. It was used a SOM net as an inter-
mediary step besides carrying out a comparison of the results obtained directly
from the data. The results for the data generated by the Monte Carlo method
showed that SOMAK is better than SOMK, because there was a reduction of
the size of the clusters for the test set (Table 2), for it to have formed a better
performance when compared with SOMK seen (Table 3) and finally, Table 3 also
shows that SOMAK reduced the computational time in comparison with SOMK
to solve the problem of data clusterings. So, the proposed method is a robust
method of clustering. It can be applied to a lot of different kinds of clustering
problems or combined with some other techniques of data mining to obtain more
promising results.

For future works, the idea is readjusting the SOMAK algorithm with the
purpose of reducing its computational time when compared with the methods
described in this paper. The first method that will be observed is the ABSOM
[11]. This one has better performance than SOM and also works very well in
the analysis of clustering in two stages when it is used as a technique of pre-
processing. So, this method is composed of two stages for the analysis of data,
where it has demonstrated to be useful and effective.
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Abstract. In this paper an application of the TS-SOM variant of the

self-organising map algorithm on the problem of copyright theft detec-

tion for bitmap images is shown. The algorithm facilitates the location

of originals of copied, damaged or modified images within a database of

hundreds of thousands of stock images. The method is shown to outper-

form binary decision tree indexing with invariant frame detection.

Keywords: Image theft detection, image retrieval, self-organising maps,

TS-SOM, PicSOM.

1 Introduction

Companies that publish large on-line databases of stock images are often faced
with the problem of copyright infringement due to image theft. This occurs when
people copy images and reuse them for commercial purposes without paying.
Locating such images on the web and proving that they are stolen from the
company’s database may be difficult if the database is very large or if the images
have been modified.

One of the few published attempts at solving this problem is presented in [1,2],
where Horacek et al describe a method of copyright theft detection that uses
stochastic decision trees, which is used as a comparison method in this paper.

Other attempts include content-based image detection [3] and alternative
means of dealing with image theft such as watermarking (e.g. [4]).

In the past, self-organising maps [5] have been used on a number of image pro-
cessing and retrieval tasks such as content-based image retrieval [8,9,10,11,12],
automatic image annotation [14], colour-based image browsing [15] and others.
The use of tree-structured variants, which allow fast logarithmic search [6,7],
therefore presents itself for copyright theft detection.

2 Methodology

2.1 Self-Organising Maps

Simply put, a self-organising map (SOM) is a structure resulting from an it-
erative algorithm that reduces a high-dimensional input-space (set of vectors

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 495–504, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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from RN ) to a two-dimensional ordered grid of codebook vectors (neurons)
{nij |i = 1..N1, j = 1..N2; typicallyN1 = N2} that quantify it. Each input vector
is quantised by the codebook vector with the smallest Euclidean distance.

In a successfully adapted map, adjacent grid nodes will quantise similar data,
i.e. data points that have a small Euclidean distance. The principle may be seen
in Fig. 1, which shows a typical SOM in a 2D input space.

a) b) c)

Fig. 1. a) 2-dimensional input vectors in 3 clusters. b) A SOM, topologically ordered

in a grid of 10 × 10 neurons c) The SOM adapts itself to match the input space, each

neuron’s codebook vector quantifying a set of inputs, denoted by differing shades of

grey.

Algorithm. The self-organisation process is achieved as follows:

1. Initialise the codebook vectors nab(0) at random (usually by setting them to
randomly chosen input vectors).

2. Select a random input i(t) and find the best matching neuron (BMN) nbest(t)
(i.e. the neuron with the closest codebook vector). Every input sample has
the same probability of being selected.

3. Move the BMN and its topological neighbours within a certain neighbour-
hood distance towards the selected input vector. Units located topologically
further from BMN are moved less.

nab(t+ 1) = nab(t) + η(t) · φ(a, b, t) · [i(t)− nab(t)], (1)

where
η(t) : N0 → [0; 1] monotonously decreasing, (2)

φ(a, b, t) : N0 ×N0 ×N0 → [0; 1],

φ decreases monotonously with the topological distance of nab from nbest

and with t. The topological distance is usually calculated as the length of
the shortest path from one neuron to the other in the graph (grid) that
represents the network’s topology.

4. Proceed to iteration t+1. Repeat 2 and 3 iteratively, reducing the proportion
of the distance moved η and the neighbourhood distance φ each iteration,
until they reach a certain predetermined threshold.
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It should be noted that problems may occur if the map does not adapt properly
and the topology of the map is not be preserved. In such cases similar data may
be classified by topologically distant neurons causing classification errors. For
more on self-organising maps, see [5].

2.2 Tree-Structured Self-Organising Maps

With larger maps, search for the BMN slows quadratically with the growing
width/height of the topology. The complexity of the search is O(N), where N is
the number of neurons in the map (each neuron must be compared to determine
the BMN). One solution to this problem is to use tree-structured self-organising
maps (TS-SOM), [6,7]. A TS-SOM is a hierarchical structure of SOMs of ex-
ponentially increasing size. Each level of the TS-SOM adapts separately, but
in the lower levels, the search for the best-matching neuron is limited to those
hierarchically connected to the BMN of the previous layer and their neighbours.
See Fig. 2.

Hierarchical connection

Topological connection

Neuron

Neurons searched in layer 2

Neurons searched in layer 3

Best matching neuron of those searched

Layer 1

Layer 2

Layer 3

Fig. 2. A 3-layer TS-SOM with 4 neurons at top layer and 64 at the bottom

Algorithm

1. Iterate the SOM algorithm on the top layer until the threshold has been
met.

2. Iterate the SOM algorithm on the next layer until the threshold has been
met, but limit the search for the BMN to the neurons located under the
winning neuron of the previous layer.

3. Repeat 2 until all layers have been updated.
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The advantages of such a structure are obvious. Instead of performing a full-
search for the BMN at the lower layers, we restrict ourselves to a constant
number of neurons per a given layer, thus greatly increasing the adaptation
speed. The complexity of the algorithm is O(logN), where N is the number of
neurons on the bottom layer [7]. Also, due to the hierarchical structuring, all the
SOMs will be orientated similarly in input space.

2.3 PicSOM

PicSOM [10] works by taking a number of TS-SOMs, each one mapping a dif-
ferent feature calculated on the given image set. A query image is taken and its
BMN is located in each map. (In classification tasks, multiple queries are used, so
multiple BMN are located; however, for copyright theft detection, only a single
query is used.) For the lowest-level layers of the TS-SOM, matrices of values are
calculated, one value for every neuron. The BMN is awarded a value of 1 while
the others are given a value of 0. Then a convolution filter with a triangular
kernel (not to be confused with the kernel used in the SOM algorithm) is passed
over it, increasing the value of those neurons within the vicinity of the BMN.
Due to the topology preserving property of the SOM these nearby units can be
expected to be similar to the BMN. Finally, the result is normalised. See Fig. 3.

Fig. 3. PicSOM: Three 3-layer TS-SOM with 16 neurons at the top layers and 4096 at

the bottom. Value maps are calculated for the bottom layer, low values being coloured

blue and high values red. BMN of queries are marked in green.

PicSOM retrieves a desired number of closest matching images from the
database according to the sum of their value scores on each map. Therefore,
images that score highly on multiple maps (and are therefore similar to the
query in multiple features) will be chosen with higher priority than those on
fewer maps with lower scores.
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3 Experiments

3.1 Data

Image Database. The experiments were run on feature vectors calculated
from a data set of 322283 stock images. Each image consisted of a jpeg-encoded
true-colour bitmap, scaled to fit in a 640× 480 pixel window.

Stolen Images. Stolen images were simulated by taking the first 1000 images
in the database and modifying them using 7 different combinations of randomly
varying degrees of the following distortions:

– Radiometric distortion (contrast, brightness)
– Scaling
– Cropping
– Frame added
– Logo added

The 7 combinations were as follows:

1. RndLogo1 – random logo
2. RndScale1 – random scaling
3. RndRadiom1 – random radiometric distortion
4. RndCrop1 – random cropping
5. RndLogSca1 – random logo + scaling
6. RndFraLogSca1 – random frame + logo + scaling
7. RndLogCroRad1 – random logo + cropping + radiometric distortion

The 7000 resulting stolen images were then used as queries for testing the
method’s precision.

3.2 Feature Selection

Two experiments were performed. In the first the standard selection of features
used by PicSOM [13] was used.

1. rgb = Average rgb colour: average values of Red, Green and Blue channels,
calculated in five zones.

2. qgreyrgb = Average grey-scale intensity: as above, but calculated for average
grey-scale intensity of zones rather than separate rgb channels.

3. texture = Texture neighbourhood: texture feature based on brightness of
neighbouring pixels, calculated in five zones.

4. z1texture = Single zone texture neighbourhood: as above, but counting the
entire image as a single zone.

5. colm = Colour moments: values of three first central moments of colour
distribution.

6. edgehist = Edge histogram: histogram of four Sobel edge directions, calcu-
lated in five zones.
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7. edgecoocc = Edge co-occurrence matrix: co-occurrence matrix of four Sobel
edge directions, calculated in five zones.

8. colourlayout = Colour layout: DCT coefficients of average colour in 20× 20
grid.

9. scalablecolour = Scalable colour: Haar transform of quantised HSV colour
histogram.

10. dominantcolour = Dominant colour: CIE Lab coordinates of three dominant
colour clusters.

11. edgehistogram = Edge histogram: histogram of five edge types in 4 × 4
subimages.

Of these, rgb, qgreyrgb, texture, colm, edgehist and edgecoocc are calculated
for five separate, equally-sized zones of the given image – a circular zone at
the centre, taking up one fifth of the area, plus the top, bottom, left and right
portions of the remainder. See Fig. 4

Fig. 4. For the calculation of the rgb, texture, colm, edgehist and edgecoocc features

in PicSOM, images are divided up into five separate, equally-sized zones

In the second experiment, only the centre zones of these features were calcu-
lated in an attempt to improve the results for images with added frames (with
the exception of qgreyrgb, which would have been reduced to a scalar value).

3.3 Precision Measure

Precision was calculated for each of the 7 combinations of image distortions
separately as the percentage of originals located by the method. An image was
considered to be located by the method if it appeared within the first 20 images
returned by PicSOM. It is assumed that such a small number of images could
be easily visualised at once as thumbnails and identified by a human operator or
safely verified using a computationally heavier method such as phase-correlation,
as in [1].
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3.4 TS-SOM Parameters

The TS-SOMs used for mapping the feature spaces describing the data were
made of 4 levels of 4 × 4, 16× 16, 64× 64 and 256× 256 neurons, respectively.
Each neuron on the top three layers was hierarchically connected with the 4× 4
neurons located directly beneath it on the next layer with the search for the
BMN being conducted on an area of 10 × 10 neurons beneath it – i.e. a frame
3 neurons wide surrounding the 16 hierarchically connected ones (the area was
7× 10 for edge neurons and 7× 7 for corner ones, as the map topology did not
loop).

Each map was trained by performing 100000 iterations on each level in suc-
cession. To prevent overlearning, the training parameters were not fine-tuned
to match the data, but simply taken from previous unpublished optimisation
performed on other data.

3.5 Training Time

Feature Vectors. The average calculation time of the individual features
ranged from 0.17s (e.g. 11 – Edge histogram) to 0.67s (e.g. 10 – Dominant colour)
per image, depending on the complexity of the features used. The average total
calculation time for all features per a single image was 3.51s. Therefore, with
parallelization, feature vectors for the entire database of 323 thousand images
could be calculated in approximately 60 hours. If calculated in series, it would
take about 2 weeks.

TS-SOM Training. TS-SOM training time varied from a couple of hours to
several days, depending on the dimensionality of the feature vectors.

Search Time. Due to the fast logarithmic search for the BMN used by the TS-
SOM, the search time for a single stolen image is insignificant when compared
with the feature vector calculation time (3.51s), which precedes it.

3.6 Comparison

The results were compared with those of the binary decision tree (BDT) method
used in [1], which were calculated on the same 7000 “stolen images” with originals
in an unspecified subset of 100000 of the 322283 images in the database. Their
precision scores are equal to the percentage of located images. An image was
considered located if it was one of the top twenty returned by the BDT indexing
system and had been successfully verified with phase correlation.

As there were only features calculated from the original images available (i.e.
the actual images were not available), it was not possible to incorporate verifi-
cation process into PicSOM. However, cases of incorrect phase correlation veri-
fication and subsequent loss of precision were sufficiently rare as to render them
insignificant.
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3.7 Results

Table 1 shows the average precision scores calculated on the 1000 images of
a given combination of transformations for both experiments (PicSOM with
standard features and PicSOM with centre-zone only features) as well as the
comparison scores of the Binary Decision Tree Indexing system published in
[1]. As can be seen, PicSOM achieved better results than BDT for almost all
combinations of image distortion, with the exception of framed images where
BDT scored marginally higher. The most significant difference was for cropped
images, where PicSOM greatly outperformed BDT.

Furthermore, limiting the calculation of the features to the centre zones of the
images greatly improved the results for framed images (outperforming BDT by
17.6%), while achieving similar albeit slightly reduced precision scores for the
other distortion types.

Table 1. PicSOM – PicSOM retrieval with standard feature set; PicSOM-C – PicSOM

retrieval using centre-zones of 5-zone features; BDT – Binary Decision Tree with invari-

ant frame detection (comparison). Highest average precision for given transformation

combination marked in bold, lowest in italics.

Average Precision

Stolen image set Method Transformations used on stolen images

No. Name PicSOM PicSOM-C BDT Radiom. Scale Crop Frame Logo

1 RndLogo1 0.998 0.999 0.982 Y

2 RndScale1 0.998 0.998 0.946 Y

3 RndRadiom1 0.792 0.770 0.712 Y

4 RndCrop1 0.762 0.721 0.450 Y

5 RndLogSca1 0.997 0.993 0.934 Y Y

6 RndFraLogSca1 0.300 0.534 0.358 Y Y Y

7 RndLogCroRad1 0.365 0.327 0.182 Y Y Y

4 Conclusions and Discussion

It should be noted that despite the results being skewed in favour of the BDT
comparison method (due to the different database sizes), PicSOM still managed
to outperform it in all cases without recourse to any specialised feature selec-
tion (the centre-zone features were simply a subset of the data provided by the
standard feature set). No high-level features (i.e. object detection, etc.) or more
sophisticated calculations such as invariant frame detection were used.

As both methods use logarithmic search (binary tree vs. TS-SOM) and the
constant time for the preprocessing of a single query image (feature calculation
vs. invariant frame detection) is around 3s in both cases, neither method may
be concluded to be objectively faster.

It is interesting to note how the reduction of the feature set to centre zones dra-
matically improves the precision for framed images without significantly damag-
ing the other results. Otherwise, framed images were the only case where – thanks
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to the invariant frame detection – the BDT indexing method would have outper-
formed PicSOM.

In summary, in this paper we have described the problem of image copy-
right theft detection and proposed a solution using tree-structured self-organising
maps (TS-SOM). We have shown that TS-SOM using low-level features can out-
perform binary decision trees using invariant frame detection. Further research
may include experimentation with more specialised features on larger databases
and/or real world data.
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Abstract. In this paper, we propose an improved Kohonen feature map

associative memory with area representation for sequential analog pat-

terns. This model is based on the conventional Kohonen feature map

associative memory with area representation for sequential analog pat-

terns. The proposed model has enough robustness for noisy input and

damaged neurons. Moreover, the learning speed of the proposed model

is faster than that of the conventional model. We carried out a series of

computer experiments and confirmed the effectiveness of the proposed

model.

Keywords: Kohonen Feature Map (Self-Organizing Map), Associative

Memory, Successive Learning, Sequential Analog Pattern.

1 Introduction

Recently, neural networks are drawing much attention as a method to realize
flexible information processing. In the field of neural networks, although a lot of
models have been proposed, their learning and recall processes are divided, and
therefore they need all information to learn in advance[1]–[4].

However, in the real world, it is very difficult to get all information to learn
in advance, so we need the model whose learning process and recall process are
not divided. As such model, some models have been proposed[5]–[11]. However,
their storage capacities are small because their learning algorithm is based on
the Hebbian learning.

On the other hand, the Kohonen Feature Map (KFM) associative memory
[12] has been proposed. Although the KFM associative memory is based on the
local representation, it can learn new patterns successively[13], and its storage
capacity is larger than that of models in refs.[5]–[11]. It can deal with auto and
hetero associations and the associations for plural sequential patterns including
common terms[14]. Moreover, as the model which has robustness for damaged
neurons, the KFM associative memory with area representation[15] has been
proposed. The area representation[16] is an intermediate representation of the
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local representation and the distributed representation. In the area representa-
tion, one concept is expressed by the winner neurons and some neurons located
adjacent to the winner neuron.

As the model which can deal with sequential patterns, the KFM associative
memory for temporal sequences[14] and the KFM associative memory with area
representation for sequential patterns[17] have been proposed. In these mod-
els, an association for sequential patterns which have common terms is realized
by using recurrent difference vectors. However, they can deal with only binary
(bipolar) patterns. As the model which can deal with sequential analog pat-
terns, we have proposed the KFM associative memory with area representation
for sequential analog pattern[18].

In this paper, we modify the winner neuron selection method and the connec-
tion weights update method of the conventional KFM associative memory with
area representation for sequential analog patterns, and propose an improved
KFM associative memory with area representation for sequential analog pat-
terns. This model has enough robustness for noisy input and damaged neurons.
Moreover, the learning speed of the proposed model is faster than that of the
conventional model.

2 KFM Associative Memory with Area Representation
for Sequential Analog Patterns

Here, we explain the conventional KFM associative memory with area represen-
tation for sequential analog patterns[18].

2.1 Structure

Figure 1 shows the structure of the conventional KFM associative memory with
area representation for sequential analog patterns. As seen in Fig.1, it has two
layers; (1) Input/Output Layer and (2) Map Layer, and the Input/Output Layer
is divided into two parts; (1) Input Part and (2) Output Part.

2.2 Learning Process

The learning process of the conventional model is based on the conventional
learning algorithm for the KFM associative memory with area representation
for sequential patterns.

Let Y (k,1) → Y (k,2) → · · · → Y (k,tk) be the kth temporal sequence to be
stored, where tk shows the length of the kth sequence. Then, the learning vectors
{X(k,t)}k=1,···,K are defined by

X(k,t) =
(

Y (k,t)

0

)
+
(

0
Y (k,t+1)

)
(t = 1, · · · , tk − 1). (1)

In the sequential learning algorithm for the conventional KFM associative mem-
ory with area representation for sequential analog patterns, the connection
weights are learned as follows:
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(1) The initial values of weights are chosen randomly and the recurrent difference
vector is set to yi = 0.

(2) The recurrent difference vector of the neuron i in the Map Layer yi(n, t) is
calculate by

yij(n, t) =
{

(1 − β)yij(n, t− 1) + β(Xj (k,t) −Wij(n, t)) (1 ≤ j ≤ N/2)
Xj

(k,t) −Wij(n, t) (N/2 < j ≤ N)
(2)

where β (0.5 < β < 1) is the weighting factor determining the effect of the
earlier difference vectors and the new input vector in the computation of
yi(n, t), and n is the number of learning iterations.

(3) The winner neuron r whose recurrent difference vector ‖ yi (n, t) ‖ is mini-
mum is found.

(4) The connection weights between the neurons in the Input/Output Layer and
the neuron i in the Map Layer except those of fixed neurons are updated by

Wi(n, t+ 1) = Wi(n, t) +H(di)α(n)hriyi(n, t) (3)

where H(di) is given by

H(di) =
1

1 + exp(−(di −D)/ε)
(4)

In this equation, di is the Euclid distance between the neuron i and the
nearest weights fixed neuron in the Map Layer, D is the constant for area
size and ε is the steepness parameter of the function H(di).

�
�����

�
�������

Map Layer

Input / Output Layer

�
��

�
�

���

�

Input Part Output Part

Fig. 1. Structure of KFM Associative Memory with Area Representation for Sequential

Analog Patterns
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(5) (2)∼(4) are iterated until t = tk − 1. This accomplishes the learning of the
kth temporal sequence on time. Then, for the next iteration, the recurrent
difference vector is reseted as yi = 0. The obtained weights are inherited in
the next iteration.

Wi(n+ 1, 1) = Wi(n, tk) (5)

(6) (2)∼(5) are iterated until n = nmax. Then, the weights of tk − 1 winner
neurons selected in the final iteration.

(7) (2)∼(6) are repeated for all k.

Since the conventional KFM associative memory with area representation for
sequential analog patterns is learned by using weights fixed and semi-fixed neu-
rons, it can store a new temporal sequence without retraining previously learned
temporal sequences.

2.3 Recall Process

When the pattern X is given, the output of the neuron i in the Map Layer at
the time t, xmapi (t) is given by

xmapi (t) =
{

1, (‖ yi(t) ‖< θmap)
0, (otherwise) (6)

yij(n, t) =
{

(1 − β)yij(n, t− 1) + β(Xj(k,t) −Wij(n, t)) (1 ≤ j ≤ N/2)
0 (N/2 < j ≤ N)

(7)

where θmap is the threshold of the neuron in the Map Layer.
The output of the neuron j in the Input/Output Layer at the time t, xinj (t)

is given by

xinj (t) =
1∑

i

xmapi

∑
i:xi=1

Wij . (8)

3 Improved KFM Associative Memory with Area
Representation for Sequential Analog Patterns

Here, we explain the proposed improved KFM associative memory with area
representation for sequential analog patterns. This model is based on the conven-
tional KFM associative memory with area representation for sequential analog
patterns[18] described in 2.

3.1 Structure

Figure 2 shows the structure of the proposed improved KFM associative memory
with area representation for sequential analog patterns. As seen in Fig.2, it has
two layers; (1) Input/Output Layer and (2) Map Layer, and the Input/Output
Layer is divided into two parts; (1) Input Part and (2) Output Part as similar
as the conventional model. In the proposed model, as shown in Fig.2, the Map
Layer is treated as torus.
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Fig. 2. Structure of Proposed Model

3.2 Learning Process

Let Y (k,1) → Y (k,2) → · · · → Y (k,tk) be the kth temporal sequence to be stored,
where tk shows the length of the kth sequence.

In the sequential learning algorithm for the proposed improved KFM associa-
tive memory with area representation for sequential analog patterns, the con-
nection weights are learned as follows:

(1) The initial values of weights are chosen randomly and the recurrent difference
vector is set to yi = 0.

(2) The recurrent difference vector of the neuron i in the Map Layer yi(n, t) is
calculate by

yij(n, t) =

{
(1− β)yij(n, t− 1) + β(X(k,t)

j −Wij(n, t)), (j ≤M/2)

X
(k,t)
j −Wij(n, t), (otherwise)

(9)

where β (0.5 < β < 1) is the weighting factor determining the effect of the
earlier difference vectors and the new input vector in the computation of
yi(n, t), and n is the number of learning iterations.

(3) The winner neuron r is determined as follows:

r = argmin
i

(‖yi(n, t)‖ (1 − sH learn(dii∗))) (10)

where s (0 < s < 1) is the coefficient. dii∗ is the distance between the neuron
i and the nearest weights fixed neuron i∗. In the proposed model, the map
layer is treated as torus, so the distance between the neurons i and j, dij is
given by

dij =
√

(dxij)2 + (dyij)2 (11)
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dxij =
{
|xi − xj |, (|xi − xj | ≤ xmax/2)
xmax − |xi − xj |, (otherwise) (12)

dyij =
{
|yi − yj|, (|yi − yj| ≤ ymax/2)
ymax − |yi − yj|, (otherwise) (13)

where xi and yi are the coordinates of the neuron i in the Map Layer, xj
and yj are the coordinates of the neuron j in the Map Layer, and xmax and
ymax are width and height of the Map Layer.
In Eq.(10), H learn(dii∗) is given by

H learn(dii∗) =
1

1 + exp
(
−dii

∗ −Dt

εt

) (14)

where Dt is the constant which decides area size and εt is the steepness
parameter.

(4) The connection weight between the neurons in the Input/Output Layer and
the neuron i in the Map Layer except those of fixed neurons are updated by

Wi(n, t+ 1) = Wi(n, t) +H(dii∗)hriyi(n, t) (15)

where hri is the neighbor function, and is given by

hri = exp

(
−‖r − i‖2

2σ(n)2

)
(16)

where σ(n) is given by

σ(n) = σi

(
σf
σi

)n/nmax

(17)

where σ(n) is set to σi at n = 0, and σ(n) is set to σf at n = T (σi > σf ).
(5) (2)∼(4) are iterated until t = tk − 1. This accomplishes the learning of the

kth temporal sequence on time. Then, for the next iteration, the recurrent
difference vector is reseted as yi = 0. The obtained weights are inherited in
the next iteration.

Wi(n+ 1, 1) = Wi(n, tk) (18)

(6) (2)∼(5) are iterated until n = nmax. Then, the weights of tk − 1 winner
neurons selected in the final iteration.

(7) (2)∼(6) are repeated for all k.

Since the proposed improved KFM associative memory with area representation
for sequential analog patterns is learned by using weights fixed and semi-fixed
neurons, it can store a new temporal sequence without retraining previously
learned temporal sequences.
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3.3 Recall Process

The recall process of the proposed model is same as the conventional KFM
associative memory with area representation for sequential analog patterns.

4 Computer Experiment Results

Here, we show the computer experiment results to demonstrate the effectiveness
of the proposed model.

4.1 Association Result

In this experiment, two sequential analog patterns shown in Fig.3 were memo-
rized successively. Figure 4 shows the association result of the proposed model.
As shown in Fig.4, when “fox” was given to the network as an initial input,
“ball”, “squid” and “heart” were recalled correctly. In the same way, “musical
note” was given, “squid”, “rabbit” and “sunflower” were recalled. In these se-
quential patterns, “squid” is the common term. As shown in Fig.4, the proposed
model could recall sequential analog patterns including a common term correctly.

4.2 Storage Capacity

Here, we examined the storage capacity of the proposed model. Figure 5 shows
the storage capacities of the proposed model and the conventional Kohonen

Fig. 3. Stored Sequential Analog Patterns

(a) When “fox” was given. (b) When “musical note” was given.

Fig. 4. Association Result
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Fig. 5. Storage Capacity

Feature Map Associative Memory with Area Representation for Sequential Ana-
log Patterns (KFMAM-AR-SAP). As shown in Fig.5, the storage capacity of
these two models are almost even. Strictly speaking, the storage capacity of the
proposed model is slightly smaller than that of the conventional model. This
is because the area sizes for the training patterns in the Map Layer are almost
same in the proposed model. In contrast, some areas in the Map Layer are some-
times very small in the conventional model, and as a result the number of stored
patterns becomes large.

4.3 Robustness for Damaged Neurons/Noisy Input

Here, we examined the robustness for damaged neurons and noisy input of
the proposed model, and the conventional KFMAM-AR-SAP. In these exper-
iments, five random pattern sequences composed of four patterns were memo-
rized. Figure 6 shows the robustness of the proposed model and the conventional
KFMAM-AR-SAP. As shown in this figure, the proposed model has enough ro-
bustness for damaged neurons and noisy input as similar as the conventional
model.
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Fig. 6. Robustness for Damaged Neuron/Noisy Input
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Table 1. Learning Time

Learning Speed (sec)

Conventional Model 6.622

Proposed Model 0.321

4.4 Learning Speed

Here, we examined the learning speed of the proposed model. In this experiment,
one random pattern sequence composed of four patterns was memorized. Table
1 shows the learning time of the proposed model and the conventional KFMAM-
AR-SAP. These results are average of 100 trials on the Personal Computer (AMD
Phenom X4 9750 (2.40GHz), Microsoft Windows Vista Home Premium 64-bit
Edition, Microsoft Visual C++ 2005). As shown in Table 1, the learning time of
the proposed model is shorter than that of the conventional model.

5 Conclusions

In this paper, we have proposed the improved Kohonen feature map associative
memory with area representation for sequential analog patterns. We carried out
a series of computer experiments and confirmed that the proposed model has
following features.

(1) It can learn sequential patterns successively.
(2) It can deal with sequential analog patterns including common terms.
(3) Its learning speed is higher than that of the conventional KFM associative

memory with area representation for sequential analog patterns.
(4) It has large storage capacity.
(5) It has robustness for noisy input.
(6) It has robustness for damaged neurons.
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Abstract. This work introduces a method that produces triangular

mesh representation of a target object surface. The new surface recon-

struction method is based on Growing Self-organizing Maps, which learns

both the geometry and the topology of the input data set. Each map

grows incrementally producing meshes of different resolutions, accord-

ing to different application needs. Experimental results show that the

proposed method can produce triangular meshes having approximately

equilateral faces, that approximate very well the shape of an object, in-

cluding its concave regions and holes, if any.

Keywords: Surface reconstruction, self-organizing maps.

1 Introduction

Surface reconstruction has been an important research topic due to (a) the large
variety of application areas, such as medicine, cultural artifacts and robotics;
(b) the recent advances in scanning technology to capture massive amounts
of geometric data; (c) the innovations on hardware technology of computers
allowing the visualization and manipulation of large three-dimensional data.

Surface reconstruction aims at producing a digital representation of the shape
of a real world object given a set of points from its surface. A surface recon-
struction method can be classified as static methods [1,2], based on geometric
techniques, and dynamic methods [3,4], based on the evaluation of energy or
force functions. The limitation of the static methods is that they process the
points directly, and thus, can not deal with large point sets. The limitation of
the dynamic methods concerns those target shapes not reachable through the
modification of the initial mesh. For example, when the target shape is a torus
and the initial mesh is a sphere, i.e., objects non-topologically equivalent. Sur-
face reconstruction can also use learning-based methods which can process very
large and/or noisy data, such as point clouds obtained from 3D scanners. Fol-
lowing this approach, some researches [5,6,7,8] employed methods based on a
self-organizing map for surface reconstruction.

In this paper we propose a learning-based surface reconstruction method that
is an improved version of a previous work [8]. The main limitation of [8] that

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 515–524, 2009.
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is addressed in this work concerns edges with more than two incident faces,
yielding non-manifold meshes. The method proposed in this paper produces
two manifold meshes. Another improvement of the method proposed here in
comparison with our previous work is the addition of a condition to avoid long
edges, and thus, skinny triangles. Some positive aspects of our previous work
present in the method proposed here are the ability to learn different topologies
from unstructured point clouds and to produce meshes with different resolutions
so that a posterior step for simplifying the mesh is not necessary.

The rest of this paper is organized as follows: Section 2 presents related works
using self-organizing maps for surface reconstruction. The proposed method is
presented in Section 3. The experiments and results are presented in Section 4
and Section 5 concludes this paper.

2 Surface Reconstruction Methods Based on
Self-Organizing Maps

Self-organizing maps are in general able to drag an initial grid of nodes towards
a set of input points. For this reason, some researchers use SOM and some of
its variants as the basis of surface reconstruction methods adapting an initial
polygonal mesh to a given point cloud. In these works, the SOM nodes represent
the vertices of the polygonal mesh; the connections between the nodes represent
the edges of the mesh; and the faces of the mesh, however, do not have a direct
representant in the map structure. Hereafter, the terms nodes and vertices, edges
and connections, will be used interchangeably.

Some reconstruction algorithms [6,7] are based on the original SOM [9]. These
methods are suitable to represent the faces of a polygonal mesh since the SOM
structure does not change during the learning process and thus, the faces can be
established in advance. The main restrictions of SOM for surface reconstruction,
addressed in [6,7], are their fixed topology and pre-defined number of vertices.

Some SOM variants [10] are also used as the starting point for surface recon-
struction methods. The method proposed in [11], based on the Topology Repre-
senting Networks (TRN) [12], can learn the topology of the input data. As the
TRN topological structure changes during the learning process, the faces of the
desired polygonal mesh representation cannot be determined in advance as in the
original SOM based methods. For this reason the surface reconstruction method
proposed in [11] extends TRN to define faces. TRN has a pre-defined number of
nodes, hence the meshes produced by TRN have a resolution dependent on the
pre-defined number of vertices. Furthermore, the topology learning strategy of
TRN does not produce a two-manifold mesh. To solve this limitation, Barhak
[11] included a post-processing step responsible for creating manifold meshes.

The Neural Meshes [13], another learning based surface reconstruction method,
employs the Growing Cell Structures (GCS) [14]. The structure of GCS map
consists of k-dimensional simplices [14], for k = 2 triangles represent the faces of
a triangle mesh. GCS maps grow incrementally producing meshes with different
resolutions, avoiding mesh simplification. A relevant restriction of the standard
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GCS for reconstructing surfaces is when the target shape is not topologically
equivalent to the initial mesh.

The Growing Neural Gas (GNG) can learn the geometry and topology of an
input point cloud, and it grows incrementally. Thus, we propose a method having
GNG as its starting point.

3 Self-Organizing Solution Proposed for the Surface
Reconstruction Problem

The proposed method receives as input the 3D coordinates of a set of points
randomly sampled from the surface of a target object, learns its geometry and
topology, and outputs triangular meshes representation of the target object sur-
face with different resolutions. The neural solution proposed here addresses some
challenges of the surface reconstruction task:

– Production of 2-manifold triangular mesh approximation of the target sur-
face.

– Reconstruction of meshes according to different resolutions.
– Learning of the geometry (vertex coordinates) and topology of the mesh.
– Learning of the topology (vertex connectivity) of the mesh without any struc-

tural information.
– Reconstruction of surfaces with different topologies.

The proposed reconstruction method, called Growing Self-reconstruction Maps
(GSRM), is a modified version of GNG aiming to support the representation
of triangular meshes, to generate 2-manifold meshes, and to avoid long edges
to produce only triangles which are approximately equilateral. The differences
between GSRM and the standard GNG concern the Competitive Hebbian Learn-
ing algorithm (Section 3.2), the procedure for edge removal (Section 3.3), and
the vertex insertion operator (Section 3.4). The step-by-step runthrough of the
GSRM learning algorithm is presented in Section 3.1.

3.1 GSRM Learning Algorithm

The GSRM learning algorithm relies on six parameters: εb and εn - learning
rate of the winner node and its neighbours, respectively (εb > εn); λ - frequency
at which a new node is inserted; α - error reduction rate of the nodes that are
neighbours of a node that has just been inserted; β - error reduction rate that
aims at stressing the impact of recently accumulated errors (β < α); agemax -
maximum age for an edge to be removed.

The input for the GSRM learning algorithm is a point cloud P. The GSRM
learning algorithm is described bellow:

1. Initialize the map (A) with three nodes. The weight vector of these nodes
are randomly chosen from P.

2. Present a sample ξ, randomly chosen from P.
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3. Find the two nodes (s1, s2) of the map that are nearest to ξ according to
the Euclidian distance.

4. If a connection between s1 and s2 does not exists:
– Then, create such a connection (e), and create faces incident to e, accord-
ing to ECHL (Section 3.2).
– Else, reinforce the edge e connecting s1 and s2 (agee = 0) and check the
other edges of the mesh against a condition for edge removal based on the
Thales Sphere concept (Section 3.3).

5. Update the error counter of node s1:

ΔE = ||ws1 − ξ||2 (1)

where ws1 is the weight vector of node s1.
6. Adapt the weight vector of node s1 and its neighbors.

Δws1 = εb ∗ (ξ −ws1) (2)

Δwsn = εn ∗ (ξ −wsn) ∀sn ∈ Ni (3)

where Ni is the neighborhood of node s1.
7. Update the age of all edges e emanating from s1.

agee = agee + 1 (4)

8. Remove the faces coincident to an old edge e (agee > agemax) and remove
this edge.

9. If the number of samples presented so far is greater then λ , insert a new
node in the map according to the procedure presented in Section 3.4.

10. Decrease the error variables of all nodes:

ΔEs = −βEs ∀s ∈ A (5)

11. If the map achieved the desired resolution, complete the topological learning
and perform the post processing step according to the procedure presented
in Section 3.5.

3.2 Extended Competitive Hebbian Learning (ECHL)

An extended version of the Competitive Hebbian Learning rule (CHL) [15] is
proposed for the creation of edges and faces. The two main modifications are:
(a) before connecting two nodes (s1 and s2), the extended CHL checks if s1 and
s2 have two connected common neighbors (n1 and n2), and if this is true, the
edge connecting n1 and n2 is removed before creating the new edge connecting s1
and s2, to avoid overlapping edges; and (b) beyond edges, faces are also created
which are formed by the nodes s1 and s2, and their common neighbors, if any.
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Before creating a new face, the following conditions must be satisfied to avoid
more than two faces sharing the same edge, and thus non 2-manifold meshes:
(a) s1 and s2 must have at most two common neighbors, otherwise no face is
created; (b) an edge e connecting s1 or s2 to a common neighbor must have at
most one coincident face before creating a new face inciding on e, otherwise such
a new face is not created.

The CHL extension just presented is based on the ideas of [11], however, we
have introduced conditions to avoid overlapping edges and to produce 2-manifold
meshes.

3.3 Edges and Incident Faces Removal

Some of the edges generated in the network may become invalid, then, they
have to be removed. In this work, two mechanisms are used to identify such
edges. The first one, employed by the standard GNG, consists of an edge ageing
scheme. The second mechanism removes long edges to create triangular faces
that are approximately equilateral. It is based on the Thales Sphere concept
and has been presented in a related work [16]. The following procedure is used
to identify long edges: If the angle σ between the vectors v = ws1 − ws2 and
u = wsk

−ws2 (wsi is the weight vector of node si; s1 is the winner node, s2 is
the second winner, and sk is a neighbor of the winner node), is greater than π

2 ,
then the edge connecting s1 and sk is removed.

This condition is verified whenever the connection to be created by a sample
presentation already exists (step 4 of the algorithm presented in Section 3.1).

GNG simply removes an invalid edge and the vertices without any incident
edges. The edge removal operation in GSRM takes face definition into account
and removes the faces having an invalid edge before removing this edge. If the
edge removal yields vertices without incident edges, these vertices are also re-
moved.

3.4 Vertex Insertion

In standard GNG, a new vertex (sr ) is inserted between two existing vertices
(sq and sf , where sq is the vertex with highest accumulated error, and sf is the
neighbor of sq with highest accumulated error). The original edge connecting
sq and sf is removed and two new edges, connecting sq and sf to sr , are then
created. GSRM considers face definition and, before removing the original edge,
it removes each face inciding on this edge.

3.5 Topological Learning and Post-processing Step

At the end of the learning process the algorithm has learned the vertex coordi-
nates and some of the edges and faces of the mesh. However some edges needed
for the representation may not have been created and some long edges may not
have been removed due to the non-deterministic behavior of the learning process.
To overcome these consequences we complete the topological learning after the
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mesh resolution desired is reached. The topological learning consists on remov-
ing long edges, according to the rules discussed in Subsection 3.3 and presenting
all of the samples, to create all the necessary edges, according to the extended
CHL presented in Subsection 3.2.

After the topological learning, some approximately regular polygons remain
untriangulated after the learning process is finished. This occurs because any
sample internal to those polygons has two connected nodes as winners, as illus-
trated in Figure 1(a), then CHL is unable to complete the triangulation internal
to the polygon [16]. In order to complete the triangulation a new vertex is in-
serted in the geometric center of each polygon and the triangulation is possible
by connecting this new vertex to each of the polygons vertices, see Figure 1(b) for
an example. When the polygon is a quadrilateral, the triangulation is performed
by creating its diagonal edge and replacing it by two triangles.

Fig. 1. Triangulating a polygon with five vertices

4 Experiments and Results

This section presents the experimental results carried out by the proposed surface
reconstruction method. We first present visual results of surface reconstruction
of synthetic objects. Then, we present numeric metrics to evaluate the recon-
structed meshes and to compare our results with those of some related works.

The input point cloud has been acquired by randomly sampling points from
the target synthetic object surface. The values of the parameters used in the
experiments presented in this paper are: εb = 0.05, εn = 0.0006, λ = 200, α =
0.5, β = 0.0005, agemax = 30. These values have been chosen by trial and error.
Initial values were those presented in [10]. Then, these initial values have been
gradually adjusted to better fit the proposed learning method.

The synthetic objects reconstructed are the hand and the Max-Planck, do-
nated by Ioannis Ivrissmitzis [13], and the bunny, available at the Stanford repos-
itory (http://www-graphics.stanford.edu/data/3Dscanrep/). Figure 2 presents
the reconstructions outputted by the proposed surface reconstruction method.
All the reconstructions presented have about 20,000 vertices.

An important remark is the topology learning ability of the proposed surface
reconstruction method. Note, for example, the hole boundaries reproduced in
the bottom of the hand and the bunny (Figure 2). Note also that concave and
detailed regions can be reproduced, such as the space between the fingers of the
hand, and the ears of the bunny and the relief on its body.
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Fig. 2. Screenshots of GSRM Reconstructions

4.1 Evaluation Metrics of Reconstructed Meshes

The metrics used for evaluating the reconstructed meshes are: the distance be-
tween the target and the reconstructed surfaces, polygon conformity, and valence
distribution. To get a more reliable estimate on the performance of the proposed
algorithm, the values of the metrics presented here represents the average of the
values observed in three runs, since the proposed algorithm is a stochastic one.

The distance between the target surface and the reconstructions are given in
terms of Hausdorff distance, defined as follows: Given a point p and a surface S,
the distance e(p, S) is defined as:

e(p, S) = min d(p, p′) ∀ p′ ∈ S (6)

where d() is the Euclidean distance between two points.
The one-sided distance between two surfaces S1, S2 is then defined as:

E(S1, S2) = max e(p, S2) ∀ p ∈ S1. (7)

The above definition of distance is not symmetric. There exist surfaces such
that E(S1, S2) is different from E(S2, S1). Thus, a two-sided distance (Hausdorff
distance) may be obtained by taking the maximum of E(S1, S2) and E(S2, S1).
Note that, the smaller the Hausdorff distance, the better the reconstruction
approximates the target shape.

Polygon conformity R(P) is measured as the ratio between the smallest and
the largest distance of the vertices of the polygon (s) to the polygon baricenter
(bp), see Equation (8). If the polygon tends to be elongated, R(P) approximates
to zero, but if the polygon tends to be regular, R(P) is close to 1. Note that a
triangle tends to be equilateral when its R(P) value tends to 1.
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R(P ) =
min||s− bp||
max||s− bp||

, (8)

Valence distribution refers to the number of neighbors of the mesh vertices.
Valences must be distributed as evenly as possible [13], this means that the
vertices of the mesh must have approximately the same number of neighbors.

It is important to compare the reconstructions of the proposed method with
the reconstructions of other surface reconstruction methods: two versions of the
Neural Meshes [17], the SOM based surface reconstruction [6], and the Power
Crust [18], a traditional method. The values of the metrics related to the other
methods, have been taken from their original papers. However, the original pa-
pers do not present values for all the metrics used here. For example, [13] presents
the valence distribution of the meshes, but it does not present polygon conformity
and Hausdorff distances. Thus, the comparisons presented here are according to
the data available in the related papers.

Table 1 presents the Hausdorff distance from the original synthetic object
to the reconstructions produced by GSRM and by two versions of the Neural
Meshes algorithm [17]. Both the Neural Meshes and GSRM reconstructions have
about 20,000 vertices. Neural Meshes performances were taken from [17]. GSRM
reconstructions reproduce the shape of the original objects better then the Neural
Meshes reconstructions. The GSRM reconstructions smaller distances from the
original objects is due to the boundaries of the original objects (see the bottom
of the bunny and the hand in Figure 2) that are reproduced in the GSRM
reconstructions but not in the Neural Meshes reconstructions.

Table 2 compares the polygon conformity of the GSRM bunny (three options)
with the Power Crust [18] and the SOM-based [6] reconstructions. The values
for the reconstructions of the two last methods were extracted from [6]. From
the values presented, GSRM reconstructions has better polygon conformity even
with less elements (vertices and faces).

The valence distributions of GSRM and Neural Meshes reconstructions are
shown in Table 3. The values for the Neural Meshes reconstructions were ex-
tracted from [13]. The first column of Table 3 refers to the name of the model
and the approximate number of vertices. According to Table 3, most of the ver-
tices have about five to seven neighbors both in the reconstructions produced
by GSRM and Neural Meshes. Thus, both methods distribute valences almost
evenly. The valence distribution of the meshes produced by the Neural Meshes,
however, is slightly better.

Table 1. Hausdorff distances between original meshes and the reconstructions pro-

duced by two versions of Neural Meshes GSRM

Max-Planck Hand Bunny

Neural Mesh I 5.23 6.60 0.006

Neural Mesh II 3.86 8.30 0.007

GSRM 0.002602 0.0013207 0.001513
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Table 2. Polygon conformity comparison

Method No. of vertices No. of faces R(P)

Power Crust 277,242 191,981 0.519424

SOM 31,004 62,004 0.5676

GSRM 20,108 39,995 0.6886

GSRM 5,006 9,906 0.6893

GSRM 1,010 1,978 0.6855

Table 3. Valence distribution comparison

Model Valence Distribution(%)

GSRM Neural Meshes

4 5 6 7 8 others 4 5 6 7 8 others

Sphere 1k 4.13 24.90 43.81 22.67 3.96 0.53 0.20 29.60 47.00 18.40 4.40 0.50

Bunny 1k 5.89 26.48 39.60 21.20 5.17 2.09 0.70 27.40 49.00 18.60 4.20 0.20

Sphere 5k 4.12 26.15 41.61 22.68 4.87 0.56 0.20 29.02 46.60 19.98 3.54 0.68

Bunny 5k 5.00 26.28 40.87 22.24 4.60 1.00 0.44 28.32 47.28 19.74 3.54 0.70

5 Conclusions

The neural method put forward in this article succeeded in reconstructing surface
models of 3D objects from point clouds representing their shape. The highlights
of the proposed method are (i) topology learning, which is a challenging feature
for reconstruction methods, (ii) models generated at different resolutions, (iii)
meshes with consistent polygon conformity and valence distribution.

At the moment, an important limitation of the proposed method concerns
reconstruction time, which strongly depends on the number of nodes in the map.
The main reason for this dependency is the linear search for winner nodes used
in step 3, and the linear search for the node with highest accumulated error used
in the step 9 of the proposed algorithm. To solve this limitation we propose, as
a future work, implementing a more efficient search scheme in both situations.
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Abstract. The protection of personal privacy is paramount, and con-

sequently many efforts have been devoted to the study of data protec-

tion techniques. Governments, statistical agencies and corporations must

protect the privacy of the individuals while guaranteeing the right of the

society to knowledge. Microaggregation is one of the most promising

solutions to deal with this praiseworthy task. However, its high compu-

tational cost prevents its use with large amounts of data. In this article

we propose a new microaggregation algorithm that uses self-organizing

maps to scale down the computational costs while maintaining a reason-

able loss of information.

Keywords: Self-Organizing Maps, Privacy, k-Anonymity, Microaggre-

gation.

1 Introduction

The Information and Communications Technologies (ICT) pave the way for the
storage and analysis of huge amounts of data. It is paramount that the collection
and, specifically, the analysis of all these data take into account the privacy of
individuals. Hence, there must be a balance between the right of the society to
information and the right of individuals to privacy. Some common examples of in-
formation gathering and analysis using ICT are the following: (i) E-commerce:
Commercial information that is collected from fidelity cards, e-commerce logs,
sales software, etc. From this information, customer’s habits can be inferred,
so these data analysis can feed marketing strategies; (ii) Statistical Data:
Statistical agencies collect data from individuals to analyze them and publish
statistical reports. These data, which are kept in large databases, might be re-
leased to third parties such as marketing companies and, as a result, statistical
agencies lose control on the data once they are released; (iii) Location Infor-
mation: Location-based services use the location of the users to provide them
with personalized services. These locations could be used to infer the habits of

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 525–535, 2009.
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the users, thus, these data must be managed carefully; and (iv) Internet search
engines: Internet advertising companies use browsing information of Internet
users to provide them with personalized advertisements. This practice could be
seen as a privacy invasion if users are not properly informed.

These examples above are just the tip of the iceberg. ICT users have to face
these situations daily and, although privacy invasion is becoming a general prac-
tice, privacy is a fundamental right1 that must be protected; Governments, public
institutions and corporations must provide the means to do so.

Due to the importance of individual privacy protection, several techniques
have been proposed to cope with this problem, namely noise addition [1], rank
swapping [2], statistical obfuscation [3], microaggregation [4], etc. A more general
and comprehensive survey on security-control techniques for statistical databases
can be found in [5]. To the best of our knowledge, microaggregation is one of
the most promising techniques for microdata protection because it achieves a
good balance between information loss and disclosure risk. Unfortunately, mi-
croaggregation has a high computational cost (i.e. O(n2)) that prevents its use
on large data sets.

In this article, we propose a new linear-cost microaggregation algorithm (i.e.
O(n)) based on self-organizing maps (SOM). Although microaggregation and
SOM are well-known techniques in the fields of statistical disclosure control
(SDC) and artificial intelligence respectively, this is the first time in which they
are considered together to protect individual privacy.

The rest of the article is organized as follows: In Section 2 we provide the
reader with some background on microaggregation and self-organizing maps.
Our linear-time microaggregation algorithm is described in Section 3 and, the
experimental results are shown in Section 4. Finally, in Section 5 we conclude
the article with some final comments and future research lines.

2 Background

In this section we provide the reader with some basic concepts on microaggre-
gation and k-anonymity (Section 2.1), and self-organizing maps (Section 2.2).

2.1 Microaggregation and k-Anonymity

k-Anonymity is an interesting approach to face the conflict between information
loss and disclosure risk, suggested by Samarati and Sweeney [6,7].

Definition. A protected data set is said to satisfy k-anonymity for k > 1 if, for
each combination of attributes, at least k records exist in the data set sharing
that combination.

1 “No one shall be subjected to arbitrary interference with his privacy, family, home

or correspondence, nor to attacks upon his honor or reputation . . .” Universal
Declaration of Human Rights.
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The original computational approach to achieve k-anonymity relied on suppres-
sions and generalizations, so that minimizing information loss translates to re-
ducing the number and/or the magnitude of suppressions and generalizations.
Unfortunately, the original k-anonymity approach has several drawbacks when
applied to numerical data, being the most relevant one the categorization of
the numerical non-categorical data. It has been shown that k-anonymity can be
achieved without categorization on numerical data by means of microaggrega-
tion [4].

Microaggregation is a statistical disclosure control (SDC) sub-discipline de-
voted to the protection of individual numerical data, also called microdata. It
can be understood as a clustering problem. However, instead of considering the
number of clusters as the main constraint, microaggregation is constrained by
the size of the clusters. The microaggregation problem can be stated as follow:

Given a data set D with n records in a characteristic space Rd, the
problem consists in obtaining a k-partition2 P of D, so that the sum of
squared errors in each part of P is minimized. Once P is obtained, each
record of every part of P is replaced by the average record of the part.

In order to determine the information loss produced by microaggregation the
sum of squared errors (SSE) is used (cf. Expression 1).

SSE =
g∑
i=1

ni∑
j=1

(xij − x̄i)′(xij − x̄i) (1)

where g is the number of groups/parts, ni is the number of records in the i-th
group/part, xij is the j-th record in the i-th group/part and x̄i is the average
record of the i-th group/part.

The SSE is generally compared with the total error (SST) defined in Equa-
tion 2 to obtain a measure of the information loss.

SST =
n∑
i=1

(xi − x̄)′(xi − x̄) (2)

where n is the number of records in the data set, xi is a record of the data set
and x̄ is the average record of the data set.

The microaggregation problem is known to be NP-hard [8] for multivariate
data sets, therefore heuristic methods should be used to solve it. There is a
plethora of methods to address the multivariate microaggregation problem. Some
of them are based on building tree structures connecting the records in the data
set and partition the tree to generate a k-partition [4][9]. Their main limitation
is the high computational cost due to the computation of the distances between
all pairs of records in the data set.

Instead of structuring the data in trees or graphs, an alternative way to tackle
the problem is to build groups of similar records greedily. Examples of this ap-
proach are the Maximum Distance to Average Vector (MDAV) method [10], and
2 A k-partition of D is a partition where its parts have, at least, k records of D.
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the Variable Maximum Distance to Average Vector (V-MDAV) method [11]. The
main advantage of these approaches is their simplicity but their computational
cost (i.e. O(n2)) prevents their use with very large data sets.

Recent articles have tackled the problem of improving the k-partition obtained
by previous microaggregation methods with the aim to reduce the information
loss (but not the computational cost) [12][13]. On the other hand, microaggre-
gation methods with low computational costs have been barely studied. A very
recent example on this line can be found in [14], where the authors propose a
linear-time microaggregation algorithm that works on the assumption that the
input data are uniformly distributed.

The reduction of the computational cost of microaggregation algorithms in
which the distribution of the input data is unknown is a key problem that we
address in this article.

2.2 Self-Organizing Maps

The Self-Organizing Map (SOM) algorithm is based on an unsupervised com-
petitive learning approach. The training process is entirely data-driven and map
units compete to become specific detectors of certain data features. Each map
unit is represented by an n-dimensional weight vector, where n is equal to the
dimension of the input space. As in vector quantization, every weight vector
describing a class is called a codebook. Each unit i has a topological neighbor-
hood Ni determined by the shape of the SOM grid lattice which can be either
rectangular or hexagonal. The number of units as well as their topological rela-
tions are defined during the initial map formation phase. The granularity (i.e.
the size) of the map determines its accuracy and generalization capabilities. The
number of units should usually be selected to accommodate all training data,
with the neighborhood size controlling the smoothness and generalization of the
mapping. The use of a hexagonal lattice is usually recommended, because all six
neighbors of a unit are at the same distance, as opposed to the eight neighbors
in a rectangular lattice configuration. The shape of the map grid should corre-
spond to the shape of the data manifold whenever possible. To avoid the border
effects in the mapping process, i.e., units with a reduced neighborhood, a peri-
odic shape such as a torus is used. Additional details about the algorithm and
its implementation can be found in [15]. The quality of a SOM can be evaluated
from the resolution of the map and from the preservation of the topology of the
native data set. The most important issue regarding the accuracy of the SOM
projection is the “true” dimension of data. If it is larger than the dimension of
the map grid the SOM may not follow the distribution of the data set. In this
case topology preservation and map resolution become contradictory goals and
cannot be simultaneously attained. When this occurs, a map with high resolution
folds into itself and topology is broken. SOM resolution is measured by means of
the average quantization error over the complete data set. SOM quality can also
be estimated with a combined strategy that mixes both topology and resolution
[16]. Once the training completes, the SOM approaches the clustering structure
of the data. Clusters are formed by groups of codebook vectors which are close to
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each other compared with their distance to other vectors. The clustering struc-
ture of the input space can be visualized over the SOM grid by displaying the
distances between these reference vectors. Several methods have been proposed
to display the clustering structure; the most common is the unified distance ma-
trix (U-matrix ), i.e., the matrix of distances between each codebook vector and
its neighbors. The visualization of these clusters could be enhanced by labeling
the map with auxiliary data.

Since it is difficult to detect clusters by visual inspection of the U-matrix,
SOM’s reference vectors can in turn be clustered to detect coherent sets of units
with similar structural characteristics. Simpler clustering algorithms such as the
K-means procedure are used to cluster SOM vectors. The clustering parameters
are optimized using some clustering quality criteria such as the minimization
of the Davies-Bouldin index. This index is a function of the ratio between the
sum of cluster compactness and inter-cluster separations [17] and permits the
selection of the optimal number of clusters to obtain a good partitioning.

There exist many other variants and applications of the basic SOM reported
in the literature. For applications see e.g. [18]. Possible variations include the
use of neuron specific learning rates and neighborhood sizes, and growing map
structures. The goal of all these variations is to enable the SOM to follow the
topology of the underlying data set better and to achieve good quantization
results [19]. The Tree Structured SOM [20] is a fast version of the SOM that
consists in a set of layers that perform a complete quantization of the data
space. Data from upper layers is used to train lower layers reducing the amount
of distance calculations needed to find the winner unit. The Minimum Spanning
Tree SOM [21] uses a tree structure as neighborhood function which defines the
minimal set of connections needed to link together a related set of codebook
vectors.

3 Our Proposal: Micro-SOM

Given an input data set D with n records, we want to obtain a partition P
of D so that each part of P has, at least, k records (i.e. a k-partition). After
determining P we replace each record ri ∈ D by the centroid of the part to
which it belongs, thus obtaining a k-anonymous microaggregated data set D̄.

Our algorithm, called Micro-SOM, can be divided in the following three steps:

– STEP 1 – Obtain a partition of D: Previous methods compute the dis-
tance between all pairs of records (i.e. n2 distances) so that they can heuris-
tically determine subsets of D built of relatively close records (cf. Section 2.1
for further details and references). Instead of computing the n2 distances, we
use a self-organized map to group records in rough subsets (by doing so, we
reduce the computational cost from O(n2) to O(n)). Note that the number
of units/neurons is clearly smaller than the number of records. In this step,
the algorithm proceeds as follows:
• STEP 1.1 – Standardize D: In order to avert the influence of the

difference between the scale of the attributes in the data set, it must be
standardized before training the SOM (See Figure 1-a).
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(a) Input data set (b) Partition P′ obtained by

SOM

(c) Parts of P′ with less

than k elements (assume k =

3)

(d) Find the closest part to

each small part

(e) Fuse small parts with

their closest part

(f) Recompute centroids

and microaggregate

Fig. 1. Graphical representation of different steps of the proposed algorithm

• STEP 1.2 – Initialize and train the SOM: The size of the map is
heuristically determined by using the algorithm defined in [22]. By doing
so, it can be guaranteed that the number of neurons in the map is some
orders of magnitude smaller than the number of records (n). Also the
dimensionality of the data is some orders of magnitude smaller than the
number of records. Note that thanks to these differences in the orders of
magnitude the computational cost of the algorithm is linear (i.e. O(n))
instead of quadratic (i.e. O(n2)) [23,24]. Once the SOM is initialized, it
is trained by using the standardized data.

• STEP 1.3 – Assign each record to a map unit: After training the
SOM, we can assign each record in D to a map unit. Thus, the set of
non-empty units represents a partition P ′ of D (See Figure 1-b).

– STEP 2 – Obtain a k-partition: In the previous step we get a partition,
but some of the parts may have less than k elements. If that happens, low-
cardinality parts must be fused with other parts so as to obtain a k-partition.
To do so, the algorithm proceeds as follows:
• STEP 2.1 – Find low-cardinality parts: All parts with less than k

records are labelled as “low-cardinality parts” (See Figure 1-c). If there
are low-cardinality parts then go to step 2.2, otherwise go to step 3.

• STEP 2.2 – Compute centroids and find the closest part to each
low-cardinality part: For each part, its centroid is computed. If there
are low-cardinality parts, the closest part to each low-cardinality part is
found by comparing the distances to its neighbors. Finding the closest
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part is easy and computationally cheap due to the topological properties
of SOM. (See Figure 1-d)

• STEP 2.3 – Fuse each low-cardinality part with its closest part:
Using the information obtained in the previous step, low-cardinality
parts are fused with their closest parts (See Figure 1-e). Before mov-
ing to the step 3, the algorithms goes back to step 2.1 to check whether
low-cardinality parts still exist.

– STEP 3 – Generate a microaggregated data set: When we reach
this step each record in the data set belongs to a part having at least k
records. Also, the centroid of each part has been computed so that it can be
used to replace the records belonging to that part. By replacing all records
in D by the centroid of the parts to which they belong, a k-anonymous
microaggregated data set D̄ is obtained and the algorithm terminates (See
Figure 1-f).

4 Results

In order to test our solution, we have used the SOM Toolbox [22] under Matlab
to implement the first step of the algorithm (i.e. Obtain a partition of D). The
second and third steps (i.e. Obtain a k-partition and generate a microaggregated
data set) have been implemented using Java. All experiments have been carried
out on an Intel Core2 Duo at 1.4Ghz with 2 GB of RAM running Windows XP.

With the aim to emphasize the low computational cost of the proposed algo-
rithm, we have compared it with the μ-Approx algorithm [4] that is one of the
most recent microaggregation algorithms proposed in the literature. We have
used three real-life data sets that were used in the European CASC project [25]
and two synthetic data sets with a larger number of records:

– The “Tarragona” data set contains 834 records with 13 numerical attributes.
– The “Census” data set contains 1080 records with 13 numerical attributes.
– The “EIA” data set contains 4092 records with 11 numerical attributes.
– The “Synthetic 1 × 104” data set contains 10.000 records with 3 numerical

attributes uniformly distributed.
– The “Synthetic 1× 105” data set contains 100.000 records with 3 numerical

attributes uniformly distributed.

4.1 Information loss

The information loss (IL) is a widely used measure to determine how good a
microaggregation algorithm is. The lower the IL the better the algorithm. Typi-
cally, the IL is defined as the ratio between SSE and SST in % (see Equation 3).

IL = 100× SSE

SST
(3)

We have studied the IL for the Tarragona, Census, EIA and Synthetic1 × 104

data sets varying the minimum cardinality parameter k from 2 to 10, which
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Fig. 2. Information loss for Micro-SOM and μ-Approx

are common values for k. The results are shown in Figure 2. From this figure,
it is apparent that the behavior of both algorithms is pretty similar. Although
μ-Approx achieves better results than Micro-SOM in general, the differences
between them are very little specially when k grows. It is also clear that Micro-
SOM is more resilient to the increase of the minimum cardinality parameter k,
this is, it is more stable.

4.2 Time

The time required to microaggregate a data set is very relevant, specially when
large data sets have to be managed. We have studied the time required to mi-
croaggregate the Tarragona, Census, EIA and Synthetic1×104 data sets varying
the parameter k from 2 to 10, which are common values for k. The results are
shown in Figure 3. From this figure we can conclude the following:

– When the number of records is small enough, μ-Approx performs very similar
to Micro-SOM. See, for example, the results for the Tarragona data set (843
records) and the Census data set (1080 records).

– When the number of records in the data set grows, the performance of the
μ-Approx algorithm degrades significantly while Micro-SOM properly copes
with the microaggregation. See, for example, the results for the EIA data
set (4092 records) and the Synthetic1× 104 data set (1× 104 records).
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Fig. 3. Computation time for Micro-SOM and μ-Approx

As it is shown in the next section, if the number of records grows enough, the
μ-Approx algorithm is unable to microaggregate them due to its quadratic (i.e.
O(n2)) computational cost.

4.3 Results with Large Data Sets

In the previous sections we have compared the μ-Approx algorithm with our
proposal. Unfortunately, the μ-Approx algorithm cannot manage a data set con-
sisting of 1 × 105 records because it cannot cope with a matrix of 1 × 1010

distances (i.e. the computer runs out of memory). Consequently, we only sum-
marize in Table 1 the results that Micro-SOM has obtained.

Table 1. Synthetic 1 × 105

k 2 3 4 5 6 7 8 9 10

SSE 7632.0 7632.3 7632.7 7633.0 7633.5 7632.7 7631.8 7631.5 7631.9

SST 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105

IL 2.544 2.544 2.544 2.544 2.544 2.544 2.544 2.544 2.544

Time (s) 96.406 101.812 110.953 119.328 131.468 149.844 163.235 180.906 203.438
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5 Conclusions and Further Work

We have presented Micro-SOM, a new microaggregation algorithm that uses
self-organized maps to scale down the computational costs related to the com-
putation of distances between all pairs of records in a data set. To the best of
our knowledge, this is the first time in which a microaggregation method is fused
with an artificial neural network.

The obtained results show that the information loss of Micro-SOM is sim-
ilar to the information loss of μ-Approx that is one of the best microaggre-
gation methods in the literature. The main contribution of Micro-SOM is its
low-computational cost. From the results given in the previous section, it is ap-
parent that Micro-SOM scales linearly with the number of elements in the data
set and clearly outperforms the μ-Approx algorithm. We can conclude that glob-
ally (i.e. IL + Time) Micro-SOM is better than μ-Approx especially for large
data sets.

In the near future we plan to explore the following lines:

– Use a hierarchical SOM to refine the partition obtained in STEP 1.
– Study the influence of different map topologies on the quality of the microag-

gregated data file.
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4. Domingo-Ferrer, J., Sebé, F., Solanas, A.: A polynomial-time approximation to op-

timal multivariate microaggregation. Comput. Math. Appl. 55(4), 714–732 (2008)

5. Adam, N.R., Worthmann, J.C.: Security-control methods for statistical databases:

a comparative study. ACM Comput. Surv. 21(4), 515–556 (1989)

6. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans-

actions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

7. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal

of Uncertainty, Fuzziness and Knowledge Based Systems 10(5), 557–570 (2002)

8. Oganian, A., Domingo-Ferrer, J.: On the complexity of optimal microaggregation

for statistical disclosure control. Statistical Journal of the United Nations Economic

Comission for Europe 18(4), 345–354 (2001)

9. Laszlo, M., Mukherjee, S.: Minimum spanning tree partitioning algorithm for mi-

croaggregation. IEEE Transactions on Knowledge and Data Engineering 17(7),

902–911 (2005)

10. Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogenerous k-

anonymity through microaggregation. Data Mining and Knowledge Discov-

ery 11(2), 195–212 (2005)



Micro-SOM 535
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Abstract. Growing Neural Gas is a self organizing network capable to

build a lattice of neural unit that grows in the input pattern manifold.

The structure of the obtained network often is not a planar graph and

can be not suitable for visualization; cluster identification is possible

only if a set of not connected subgraphs are produced. In this work

we propose a method to select the neural units in order to extract the

information on the pattern clusters, even if the obtained network graph is

connected. The proposed method creates a new structure called Labeling

Network (LNet) that repeats the topology of the GNG network and a

set of weights to the links of the neuron graph. These weights are trained

using an anti-Hebbian algorithm obtaining a new structure capable to

label input patterns according to their cluster.

Keywords: Growing Neural Gas, Self organization, Cluster Identifica-

tion.

1 Introduction

What we call self organization is a mechanism that changes a complex inter-
connected structure of simple units in something completely different through
the emergence of a global order out of local simple interactions. Often self or-
ganization is related to a different scale of observation: at the lower level the
only observable thing is the connection of simple units, but if the point of view
changes a completely new behavior can be observed.

An example is the Self Organizing Map (SOM) [1] where, at the lower level
the units try to approximate the input patterns, and, on the upper level, we see
the patterns organized in a topographic map.

Many other neural networks with similar mechanisms were developed after
the SOM: Neural Gas (NG) [2] and Growing Neural Gas (GNG) [3] are among
them. Growing Neural Gas is an interesting algorithm that is able to ”produces”
new neurons when it is necessary to represent new input patterns. Another
characteristic of this algorithm is that neurons are connected using links that
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are created during training, when the neurons are excited together. The training
stage of the GNG network produce a network of units that completely fills the
input pattern manifold. This can be clearly observed in the original paper [3] and
will be clear in the following section. A complex and not planar neural graph, as
the one produced by GNG, is difficult to use in clustering applications because
there is not visualization (the network of the neural units has a complex structure
even for simple datasets) nor cluster identification (see Fig. 2 for example).

In the past few approaches to cluster analysis using GNG were proposed.
One method obtains a not connected graph using an edge removal procedure
based on an utility factor and a suitable threshold [8]. Another method was
focused on the GNG algorithm robustness and outliers filtering. The Minimum
Description Length principle was then used to obtain the number of clusters on
several attempts with different number of neural units [9].

In this work we propose a neural structure, called Labeling Network (LNet),
that has the same topology of a trained GNG but uses an algorithm inspired
by the EXIN mechanism (Excitatory-INhibitory) [6] in order to have one or few
”active” neurons for each pattern cluster.

The paper is organized as follows: in the next section the details of the problem
are explained with reference to a particular dataset and the GNG algorithm is
introduced, then the proposed method is explained and in section 4 the algorithm
is presented. The last two sections present some results and conclusions.

2 Self Organizing Networks and Cluster Identification

The goal of algorithms like SOM, NG and GNG is to approximate the input
patterns at the best, in order to minimize the approximation error (this error is
in [2] for NG and can be found as energy function in [7] for a modified SOM net-
work). In all these algorithms communication among neurons is a fundamental
part of learning algorithm: in SOM this exchange is supported by the neigh-
borhood function defined over the lattice, in GNG networks the neural units
exchange information about weight update using links, in NG the weight mod-
ification is propagated (with attenuation) from the best matching unit (bmu)
to the neighborhood neurons. This communication among neurons is the basic
mechanism of self organization.

From now on we focus on GNG network. The GNG network starts from a set
of two neural units U = {ua, ub} each of them with a set of weights wi ∈ �n and
a cumulative error variable ei ∈ �. These neurons are connected using a link ca,b
that has an age aa,b ∈ � but not a weight. The training algorithm starts picking
a random initial patten x ∈ X ⊂ �n and finding the best matching unit (bmu)
ubmu and the second bmu, ubmu2, from the neuron set:

bmu = arg min
ui∈U

d(x,wi), bmu2 = arg min
ui∈U , ui �=ubmu

d(x,wi). (1)

The edge cbmu,bmu2, that connects ubmu and ubmu2, is set to zero or is created,
then the error of bmu is updated as Δebmu = ‖wbmu − x‖2 together with its
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weight Δwbmu = εb(x−wbmu), where εb is the learning parameter. The weight
correction is propagated to the units connected asΔwn = εn(x−wn). At the end
of the procedure all the connections emanating from bmu are updated adding
a constant value, and all the error variables are decreased by multiplying for a
constant d < 1. The edges that has an age larger than ageMAX are removed
together with the units that have no emanating links.

Each λ learning steps a new unit ur is added between the unit with the max-
imum accumulated error uq and its neighborhood with the larger error variable
uf ; the weights wr of the new unit are mediated between wq and wf and the
error of units uq and uf are decreased multiplying for a constant δ < 1; finally
er = eq.

When the learning stage ends each neural unit approximate a subset of the
input pattern; the number of patterns associated to a single neuron depends on
the number of available neurons and it is roughly the same for each neuron.
The neural units in some way represent the input patterns that are inside the
corresponding Voronoi regions. Now we want to reduce the number of neurons
that activate when the input patterns are presented, in order to identify the
clusters inside the patterns set and o produce few clear signals that allows to
recognize the input patterns. This problem can be easily visualized using a real
dataset.

The “Iris” dataset [10] is maybe the simplest and most common real dataset
available. It is made of three clusters of objects in four dimensions: an idea of the
spread of the pattern in their space is given in Fig. 1. This dataset was chosen
because the two clusters “Iris Versicolor” and “Iris Virginica” are somewhat
difficult to separate.

Training GNG on this dataset (for example with the following parameters
εb = 0.5, εn = 0.2, ageMAX = 50, λ = 50, d = 0.8,δ = 0.5 and 30000 learning
steps; the meaning of the parameters can be found in [3]) produce the typical
result in Fig. 2: a set of connected neurons (50 in the present trial). The two
clusters “Iris Virginica” and “Iris Versicolor” are connected even if a separation
among them can be easily spotted. This situation is no more than a simplified
snapshot of the dataset (see Fig. 2).

3 Overview of the LNet Structure

In [4] the hidden units of a backpropagation network are considered as candidate
hypothesis and trained using backpropagation algorithm, then the training is
refined in order to better represent the target concept. The same consideration
can be made for a trained GNG network: all the neurons are candidates to be the
cluster centers for the clusters in input pattern set, what we need is a mechanism
to select these neurons. To have emerging cluster centers from a set of neurons
it is necessary that the activation of one neuron rise, and inhibits the activation
of the other neurons.

The proposed Labeling Network has the same topology of the GNG, as de-
picted in right side of Fig.3; neurons of the LNet receive an input Ei (given by
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Fig. 1. The iris dataset plotted using all the combination of the four dimensions. It

is possible to see that it is difficult to separate “Iris Versicolor” from “Iris Virginica”,

while “Iris Setosa” forms a well separated cluster.

              

              

              

              

                

              

              

                

                

       

                

                

                

                

                

                

                

                

                

                

                

              

                            

              

              

              

              

              

              

                

                

              

              

              

              

                            

              

              

              

              

              

              

              

              

              

                            

              

Fig. 2. The result of the learning of the GNG using the iris dataset. The units repre-

sented as boxes classify the “Iris Setosa”, the ”circle” units classify the “Iris Versicolor”

and the ”ellipse” units the “Iris Virginica”; the gray unit is the ”dead unit”, the one

that does not classify any pattern.

eq. 2), from the trained GNG in the lower layer; these neurons have an activation
ai and excites and inhibits each other using the available links that are modu-
lated by a new set of weights pij , see left side of Fig.3. These weights are trained
using an anti-Hebbian rule, and the activation is calculated using an iterative
procedure that is explained in the next section.
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Fig. 3. A representation of the GNG and the Labeling Network on the right and a

magnification of the interaction between two neurons, i and j, in the LNet network on

the left

In order to build a cluster identification system it is necessary to use a two
stage procedure that will produce the two layers on the right of Fig.3:

1. train a GNG network using the available pattern set;
2. add the new LNet structure with the same topology of the GNG.

In the following we will refer only to this second structure, assuming that we
have the trained GNG.

At the end of the training procedure we should submit an input to the network
and obtain the activation of a single unit that will label the input pattern. In
iris dataset, that is made of 3 clusters, 50 pattern each (150 pattern), we should
ideally have 3 neural units that have the maximum activation, and ”label” the
input patterns. This is the kind of result we show in section 5.

4 The Proposed LNet Algorithm

In our network the activation ai of the single neuron i is not related only to the
similarity between the input pattern and the weight vector of the neuron, but
it is calculated using a shunting equation that takes into account the excitation
due to the input stimulus Ei and the excitation that came from the activation
of the other connected neurons Ii using the weights pij as indicated in the left
side of Fig.3 .

The excitation from the external input Ei in LNet neurons is calculated using
the distance of the input pattern x from the weight vector of the neuron in GNG
network wi, according to:

Ei = α
dMAX − d(wi,x)
dMAX − dmin

. (2)
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where α < 1 is a coefficient necessary in order to do not saturate the neuron
input, d(wi,x) is the Euclidean distance between the pattern x and the weight
vector wi of the neuron i, and dMAX and dmin are the maximum and minimum
distances d(wj ,x) among the neurons j of the GNG network. This is necessary
because we want the maximum excitation for the nearest neuron, usually called
bmu (best matching unit).

The excitation due to other neurons is obtained from:

Ii =
n∑
j=1

h(aj(t)) ∗ pij . (3)

where h(ai) = max(ai, 0) and pij is the weight of the connections.
As said before the input components Ei and Ii are used to calculate the

activation of the single neuron using a shunt equation:

dai
dt

= −Aai(t) + β(1 + ai(t))Ei − γ(C + ai(t))Ii. (4)

where A is the decay factor, β is the parameter that regulates the activation due
to the external inputs, i.e. the term (1 + ai(t))Ei that also fixes the maximum
value of ai(t) to 1, and γ is the parameter that regulate the inhibition from
other neurons to the neuron activation, −C is the minimum value of ai(t). The
weights pj are modified using an anti-Hebbian rule:

dpij
dt

= ηh(aj(t)) ∗ [h(ai(t))− pij ]. (5)

where η is the learning rate.
The equations 4 and 5 are discretized in order to carry on the simulations [5],

and the time quantum Δt is added as a parameter of the simulation:

Δai(t+ 1) = −A ∗ ai(t) ∗Δt+ β(1 + ai(t))Ei ∗Δt− γ(C + ai(t))Ii ∗Δt. (6)

Δpij(t+ 1) = ηh(aj(t)) ∗ [h(ai(t))− pij ]. (7)

the new values ai(t+1) and pij(t+1) are calculated as: ai(t+1) = ai(t)+Δai(t+1)
and pij(t + 1) = pij(t) +Δpij(t + 1). The learning algorithm of LNet is below.
Note that the activation of the units is calculated using an interactive procedure
that stops when the update of the solution is below the threshold ε.

The learning algorithm

1. t = 0
2. Select the input pattern x
3. Calculate the excitation Ei of the neurons
4. do

– Calculate the excitation Ii of the neurons
– Calculate Δai(t) using eq.6 and the new ai(t+ 1) value

while(
∑
iΔai(t+ 1) > ε)
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5. update the weights pij using eq.7
6. t+ +
7. if (t < tmax) goto 2 else exit

After the training the network is ready to classify the input patterns, for each
pattern in input the activation of the neurons is calculated using the steps 3 and
4 of the learning algorithm.

5 Results

We show a typical result obtained with “Iris dataset”. As is possible to see from
the foreground black bars in the graphs in Fig.4 all the units of the GNG network
are bmu for a numbers of patterns that varies from 0 to 10 (there is only one dead
unit). In LNet the activation of the neurons is calculated using eq. 4 (step 3 and
4 of the algorithm) and this completely changes the landscape: as it is possible
to see from the gray bars in the graphs, for all the patterns very few neurons
are always activated, these neurons can clearly identify the input clusters. The
results are repeated in the table down right of Fig.4.

Fig. 4. Units of the GNG network representing the candidates to be cluster centers

(before units activation) and emerging exemplars for the Iris pattern set
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Fig. 5. The neural units that are activated with the input patterns. The gray units are

the active one reported in the table down right of Fig.4. The circle units (6 and 15) are

the ones that label the “Iris Versicolor” cluster; the diamond unit 31 is the one that

label one pattern “Iris Versicolor” and one pattern “Iris Virginica”; the oval units (25

and 2) are the one that label “Iris Virginica” patterns; the square unit 35 is the one

that label the “Iris Setosa” cluster.

It is possible to notice that for the cluster Iris-Setosa there is only one exemplar
that emerges, the unit number 35. For “Iris Versicolor” and Iris Virginica there
is a small number of emerging exemplars, some of them are mixed (unit 25 and
31), although for “Iris Versicolor” most of the elements are classified by unit 6
and for Iris Virginica most of elements are classified by unit 25. If we assume that
the unit 25 label “Iris Virginica” then we will have 9 patterns of “Iris Versicolor”
that will be misclassified (the one in the bottom graph in Fig. 4).

In our experiments, to avoid the initial saturation of the neuron input, we
carried out various trials varying values of the α coefficient defined in eq. 2;
the best results were obtained for α = 0.3. The other parameters were setup as
follows: A = 10.0, C = 10, γ = 1.0, β = 1.0, the threshold ε = 0.00005, η = 0.6
and Δt = 0.00014.

Some final remarks can be made looking at the topological position of the
activated units that is reported in fig. 5: for cluster of “Iris-Setosa” the activated
unit is in a “center” position: if we remove the units and the connected edges the
subgraph is split in two parts; “Iris Virginica” are classified by the ellipse shaped
units and the number 25 (that makes the highest bar in the histogram) seems to
be at the crossing with the “Iris Versicolor” cluster; the round units are the ones
that cluster “Iris Versicolor”. One of them (number 6) is again at the crossing
with the cluster of “Iris Versicolor” while the other (number 15) is at the border
of the cluster. The proposed algorithm seems to privilege the units that have a
small number of active neighborhoods, This needs further investigations.

Another observation come from trials on other datasets that are not compact
as the “Iris” dataset. For example in the “2 Rings” artificial dataset in Fig. 6(a)
GNG is capable to grow a graph with two connected parts as the one in Fig.6(b)
but the LNet is unable to isolate two neurons that can label the patterns in the
two clusters, the neurons that are activated are the same of the GNG network.
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Fig. 6. 6(a) The “2 Rings” dataset and the GNG structure obtained 6(b)

6 Conclusions and Future Works

In this paper a new neural network capable to identify clusters from trained GNG
is proposed. The new network have the same topology of the GNG but works in
a very different way because has weight on the connections between neurons and
take the input from excitation of the neurons in GNG. The network is capable
to identify the clusters by selecting and activating few neurons that “label” the
input patterns and allows to clearly identify clusters. The network was tested on
the “Iris dataset” with good results, but more investigations are needed in order
to understand if there is some meaning in the position of the active neural units.
Moreover while the algorithm is able to isolate an active neuron for a globular
cluster it is still difficult to identify clusters in some artificial datasets.
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Abstract. We propose a hierarchical architecture composed of a modu-

lar network SOM (mnSOM) layer and a modular reinforcement learning

(mRL) layer. The mnSOM layer models characteristics of a target sys-

tem, and the mRL layer provides control signals to the target system.

Given a set of inputs and outputs from the target system, a winner mod-

ule which minimizes the mean square output error is determined in the

mnSOM layer. The corresponding module in the mRL layer is trained

by reinforcement learning to maximize accumulated future rewards. An

essential point, here, is that neighborhood learning is adopted at both

layers, which guarantees a topology preserving map based on similarity

between modules. Its application to a pursuit-evasion game demonstrates

usefulness of interpolated modules in providing appropriate control sig-

nals. A modular approach to both modeling and control proposed in the

paper provides a promising framework for wide-ranging tasks.

Keywords: Modular network SOM, modular reinforcement learning,

hierarchical architecture, pursuit-evasion game.

1 Introduction

Self organizing maps (SOM) are popular for their effectiveness in data visual-
ization and topology preservation. A modular network SOM (mnSOM) is its
extension in that it uses a function module as its element instead of a vector
unit in SOM to increase its learning and representation capability [1][2]. Owing
to topographic mapping of function modules on an mnSOM layer, neighboring
function modules tend to have similar characteristics like SOM.

A contrasting approach is the conventional competitive learning; only a winner
unit (or module) is highlighted, and similarity between units (or modules) is not
taken into account. The present paper focuses on modules, not units.

There are two types of “interpolation.” The one is interpolation of outputs
calculated from outputs of relevant modules, and the other is creation of an
interpolated module from similar modules. Let the former be called “output
interpolation,” and the latter be called “module interpolation” [3].
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In the standard SOM and mnSOM, output interpolation is not used, and usu-
ally a winner module represents a prototype feature. Taking advantage of this
characteristic, it was applied to segmentation in robotics [3][4]. In the standard
SOM, module interpolation (actually unit interpolation) is rarely used, because
the number of samples is usually much larger than that of units. In contrast
to this, module interpolation is frequently used in the standard mnSOM, tak-
ing advantage of similarity between neighboring modules. Owing to a similarity
measure between modules, SOM and mnSOM can naturally be extended to use
output interpolation, when more precise representation is required.

On the other hand, in the standard competitive learning, neither output in-
terpolation nor module interpolation is used. The modular selection and identi-
fication for control (MOSAIC) model uses the soft-max function, which realizes
the output interpolation based on the responsibility signals [5]. Similarity be-
tween modules, however, is not explicitly represented. Furthermore, the number
of modules in MOSAIC need to be the same with that of a target system for
computational stability [6]. Therefore, it cannot use module interpolation.

Doya et al. proposed a modular reinforcement learning (RL) architecture
composed of multiple modules for state prediction models and those for RL
controllers [7]. Responsibility signals are used for output interpolation, and for
learning of prediction models and RL controllers. Because similarity between
modules is not explicitly defined, module interpolation is not used.

We propose a hierarchical architecture composed of an mnSOM layer and a
modular reinforcement learning (mRL) layer. The mnSOM layer models charac-
teristics of a target system, and the mRL layer provides control signals to the
target system. Given a set of inputs and outputs of a target system, a winner
module which minimizes the mean square output error (MSE) is determined in
the mnSOM layer. The corresponding module in the mRL layer is trained by
reinforcement learning to maximize accumulated future rewards.

An essential point, here, is that neighborhood learning is adopted at both
layers, which guarantees a topology preserving map based on similarity between
modules. An additional advantage, crucial from a practical viewpoint, is compu-
tational stability in the mnSOM layer in contrast to the conventional competitive
learning due mainly to careful assignment of a learning rate to modules and data.
These advantages are expected to provide superior performance in modeling and
control of a dynamically changing target system by switching of modules at both
layers.

A pursuit-evasion game is selected as a testbed to evaluate the effectiveness
of the proposed architecture. Section 2 presents a hierarchical architecture com-
posed of two layers: an mnSOM layer and an mRL layer. Section 3 describes
simulation experiments. Section 4 concludes the paper.

2 Hierarchical Architecture

2.1 Modular Network SOM

We briefly present the following four processes of an mnSOM algorithm [1][2].
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1. Evaluative process: The following pairs of inputs and target outputs are
provided to mnSOM, and the corresponding output errors are evaluated.

{xi(t), yi(t); i = 1, ...,M ; t = 1, ..., Ti} . (1)

where xi(t) is the input at time t in class i, yi(t) is the target output at t in
class i, M is the number of classes, and Ti is the number of samples in class
i.

2. Competitive process: A module with the minimum mean square output error
is determined as the winner.

3. Cooperative process: The learning rate, Ψ (k)
i (t), for module k and class i is

defined by the following normalized neighborhood function, φ(r, t), centered
at the winner module.

Ψ
(k)
i (t) =

φ(r(k, v∗i ), t)
M∑
i′=1

φ(r(k, v∗i′ ), t)
. (2)

φ(r, t) = exp
[
− r2

2σ2(t)

]
. (3)

σ(t) = σmin + (σmax − σmin)e−
t
τ . (4)

where r(k, v∗i ) is the Euclidean distance between module k and the winner
module v∗i on an mnSOM plane, σmin is the minimum radius of neighbor-
hood, σmax is the maximum radius of neighborhood, and τ is a time constant
for neighborhood decay.

4. Adaptive process: Connection weights of module k, w(k), are modified by
the following backpropagation algorithm,

Δw(k) = −η
M∑
i=1

Ψ
(k)
i (t)

∂E
(k)
i

∂w(k) . (5)

where E(k)
i is the output error of module k in class i.

The above four processes are repeated until the connection weights and mnSOM
converge. An important issue in designing mnSOM architecture is the selection
of appropriate function modules and a similarity measure between modules.
Feedforward neural networks are used for mapping from input to output, and
recurrent neural networks are used for dynamical systems as function modules.
The similarity between modules is measured by the mean square output error,
i.e., the mean square of the difference between outputs in one module and that
in another module given the same inputs.

2.2 Modular Reinforcement Learning

Q-learning is used here, because it skillfully formulates states and actions, which
are essential in a pursuit-evasion game. It maximizes accumulated future rewards
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by trial and error under delayed and intermittent external rewards from the
environment. An episode terminates when a predator captures its prey or when
the maximum number of steps is reached.

Q-learning is used for learning by both a predator and prey. Action-value
function, Q(s,a), represents accumulated future rewards starting from the state,
s, and taking the action, a, and is updated as,

Q(st, at) ← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (6)

where α is a learning rate, rt+1 is a reward from the environment at time t+ 1,
and γ is a discount rate. A constant penalty is given to each action. The ε-greedy
algorithm is adopted to promote exploration.

Neighborhood learning is applied not only at the mnSOM layer but also at
the mRL layer. Both layers have the same arrangement of modules, and modules
at the mnSOM layer have one to one correspondence with those at the mRL
layer: the winner module at the mnSOM layer has the same location with the
corresponding one at the mRL layer. A learning rate, α, in neighborhood learning
is given by,

α(r) = α0 exp
(
− r2

2σ(t)2

)
. (7)

where α0 is a learning rate for the winner module, σ(t) is the radius of the
neighborhood in Eq.(3), and r is the Eucledian distance between the winner
module and the current module on an mRL plane.

3 Simulation Experiments

3.1 Pursuit-Evasion Game Task

To evaluate the effectiveness of the proposed architecture, a pursuit-evasion game
in Fig. 1 is used as a testbed. In the task, the predator learns to capture the
prey for its survival, and the prey learns to escape from the predator for its
survival. The desire for existence is represented by an intrinsic effort to keep a
battery of an agent from exhaustion. They also learn a map of the environment
to make pursuit or evasion more efficient. The following is a prospective scenario
of behaviors of agents.

When the level of its battery is sufficiently high, an agent efficiently learns
the environment motivated by curiosity [8] and novelty [9]. Under this condition,
curiosity, either specific or diversive, motivates the agent to learn the environ-
ment. When a novel object is observed, novelty motivates the agent to approach
and closely observe it, which in turn motivates specific curiosity.

On the other hand, when the level of its battery becomes lower, the predator
starts to pursue its prey for its survival by taking advantage of the knowledge
on the environment acquired through curiosity and novelty [10].

The present paper focuses on pursuit and evasion, particularly on the selec-
tion of the best matching module in the mnSOM layer, and on learning of the
corresponding module in the mRL layer for the best pursuit/evasion.
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Fig. 1. The field for a pursuit-evasion game with 750×750 pixels surrounded by walls.

The initial position of the prey is chosen randomly. The size of each agent is 10×10

pixels.

3.2 Learning at mnSOM Layer

Fig. 2 illustrates characteristic curves of the maximum speed of predators and
prey. As time goes by, the speed of an agent gradually slows down and finally
levels off at zero. Fig. 3 depicts characteristic curves of the distance between
pairs of predators and prey. The zero distance indicates capture, and pursuit-
evasion terminates. It is to be noted that characteristic curves are displaced
vertically depending on the initial distance. In other words, the distance in Fig. 3
becomes larger or smaller depending on the initial distance. Fig. 4 portrays
four characteristic curves used for mnSOM training, each corresponding to a
combination of one predator and one prey. Vertical displacement also applies to
these curves.

Table 1 gives values of parameters in mnSOM learning. The first five param-
eters are determined in a similar way with the standard SOM learning. The
following parameter, i.e., the number of classes, is determined by the task in
Fig. 4. Each characteristic curve in Fig. 4 is trained by backpropagation learn-
ing using a simple 3-layer neural network with five hidden units, given 30 samples
from the corresponding curve.

Fig. 5 illustrates the resulting mnSOM after 5000 epochs. Four modules
around four corners correspond to winner modules for four training data in Fig. 4.
It well indicates that many interpolated modules are generated by the neighbor-
hood learning, and that their characteristics change gradually from module to
module. The color of each module indicates the average distance between adja-
cent modules, i.e., the darker the color, the longer the distance between adjacent
modules. It is to be noted that there exists a large gap between the right part
and the left part of the mnSOM plane; the right corresponds to slow prey (#1),
and the left corresponds to fast prey (#4).
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Fig. 2. Characteristic curves of the maximum speed of predators and prey over time.

The predators run faster than the prey in the beginning, but slow down more quickly.

Fig. 3. Characteristic curves of the distance between the predator (#1 on the left, #2

on the right) and the prey (#1-#4)

Fig. 4. Four characteristic curves obtained from two predators and two prey for mn-

SOM training. Curves for classes 3, 2, 1, and 0 from the top to the bottom.
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Table 1. Values of parameters in mnSOM learning and modular reinforcement learning

parameters mnSOM mRL

map size 10×10 10×10

learning rate 0.001 0.1

maximum epochs/episodes 5000 1000

initial radius of neighborhood 8 8

final radius of neighborhood 1.5 1

the number of classes 4 –

the number of states – 30

the number of actions – 2

Fig. 5. The resulting mnSOM trained by classes 0, 1, 2, and 3 in Fig. 4. Each module

contains illustration of its characteristic curve. The winner modules for training data

are shown in yellow with the corresponding class number. The winner module for novel

data, i.e., combination of predator #1 and prey #3, is located at the 5th module from

the left in the top row.

3.3 Learning at Modular RL Layer

In Q-learning, how to define states and actions is important. Since there are two
agents, i.e., a predator and prey, the number of states is at least the square of
the number of grids in a robotic field, provided naive definition of states is used.
This is computationally prohibitive, hence approximation aiming at decreasing
the number of states is needed. In the present paper, state is defined by the
quantized distance between the predator and the prey. Action of the predator is
defined by either run at the maximum speed or slow move, and that of the prey
is defined by either run at the maximum speed or standing still.

The reward for the predator is 5 at capture and -0.1 for each maximum speed
run. The reward for the prey is 5 at escape and -0.1 for each maximum speed
run. The ε-greedy policy with ε below is adopted to promote exploration.
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ε =
1

exp(an+ b)− 1
(8)

where n is an episode number, a = 0.005, and b = 2.4. Values of a and b are
adjusted so as to reduce ε down to 10% of its initial value at around 450 episodes.
An episode terminates when the predator captures the prey or the number of
the maximum speed steps exceeds 30. Table 1 also gives values of parameters in
modular reinforcement learning.

Fig. 6. The resulting optimal actions for 4 classes of training data. “pred” stands for

“predator.” The red segment (on the left) stands for run at the maximum speed, and

the blue segment (on the right) stands for slow move (predator) or standing still (prey).

Fig. 7. The resulting optimal actions for interpolated modules trained by the neigh-

borhood learning, i.e., without direct training data. #0 and #9 are trained modules,

but are shown here for comparison. The red segment (on the left) stands for run at the

maximum speed, and the blue segment (on the right) stands for slow move (predator)

or standing still (prey).
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Fig. 6 illustrates the resulting optimal actions for training data. Optimal ac-
tion is determined by Q-values, i.e., action with larger Q-value is selected as
optimal. Fig. 7 depicts the resulting optimal actions for interpolated modules
trained by the neighborhood learning, i.e., without direct training data. Mod-
ules #0, #2, #4 and #7, #9 represent the 1st, 3rd, 5th, 8th, and 10th modules
from the left, respectively, in the top row of Fig. 5. Module #0 and module
#9 in Fig. 7 correspond to class 2 and class 0 in Fig. 5, respectively. Although
only optimal actions are shown, Fig. 7 suggests that Q-values are topologically
ordered on distance axis.

The winner module for novel data, i.e., combination of predator #1 and prey
#3, is located at the 5th module from the left in the top row in Fig. 5. By using
the interpolated module obtained by the neighborhood learning, 528 episodes
out of 1000 are successful in capturing the prey. If this module is trained by
directly giving data of predator #1 and prey #3, the number of successful catches
increases up to 600 episodes. The fact that the success ratio is not so high is
attributed to concurrent learning by both the predator and the prey. If only the
predator learns, success of all episodes is confirmed.

In the standard technique, when novel data are given, the trained mnSOM
module with the minimum MSE and the corresponding RL module are used as
substitutes. Because the number of trained modules is much smaller than the
total number of modules, control based on a substitute module is worse than
that based on an interpolated module.

4 Conclusions and Discussions

We proposed a hierarchical architecture composed of a modular network SOM
(mnSOM) layer and a modular reinforcement learning (mRL) layer. This hi-
erarchical architecture provided precise prediction and effective control owing
to modular structure and neighborhood learning at both layers. Its application
to a pursuit-evasion game demonstrated usefulness of interpolated modules in
providing appropriate control signals for novel data. This suggests that the pro-
posed hierarchical architecture is able to provide appropriate control signals to
a nonstationary target system by switching of modules.

Both mnSOM and mRL are computationally heavy, which is approximately
proportional to the number of modules. However, the proposed hierarchical ar-
chitecture is well worth the computational cost. When a task necessitates larger
number of modules, multi-layer modules through abstraction for both mnSOM
and mRL would become necessary.

Much remains to be done. More detailed and precise evaluation of interpolated
modules is necessary such as the degree of linearity of interpolation in terms of
Q-values and optimal actions. When information on the distance between a
predator and prey is corrupted by noise, there can be two types of performance
degradation. The former is misselection of the winner module at an mnSOM
layer. Temporal filtering of observed distance reduces the noise, hence reduces the
probability of misselection at the mnSOM layer. This also has direct bearing on
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misselection of the corresponding module at an mRL layer. The latter is error in
recognized state, i.e., quantized distance calculated from observed distance. This
happens when distance error is larger than quantization error. Misrecognition of
state degrades the performance of reinforcement learning.

Although a prospective scenario is “the predator starts to pursue its prey for
its survival by taking advantage of the knowledge on the environment acquired
through curiosity and novelty” as in 3.1, it has not yet been confirmed. Another
issue is that although the proposed architecture can provide modeling and control
of a given target system, sudden change of characteristics of the target system
during an epoch has not been tried yet. The study on the detection of the change
and the corresponding switching of modules is also left for future study.

In performance comparison in 3.3, only the comparison with the standard
technique is given. However, [7] can use output interpolation, hence is expected
to have superior performance to the standard technique. The performance com-
parison with [7] is left for future study. It is to be noted that the proposed
architecture could also use output interpolation based on MSE.

Because two agents are involved in the current study, multi-agent reinforce-
ment learning should be used instead of the conventional reinforcement learning.
This inevitably increases computational cost, hence an efficient algorithm for ap-
proximate solution would be desired.
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Abstract. This article presents an approach of data partitioning using

specialist knowledge incorporated to intelligent solutions for river flow

prediction. The main idea is to train the processes through a hybrid sys-

tems, neural networks and fuzzy, characterizing its physical process. As a

case study, the results obtained with this models from three basins, Três
Marias, Tucurúı and Foz do Areia, all situated in Brazil, are investigated.

Keywords: Modular Models, Hybrid Systems, Self-Organizing Map,

Multi-Layer Perceptron, Fuzzy Systems, River Flood Forecasting.

1 Introduction

Artificial Neural Networks (ANNs) are increasingly used in the water resources
field and environmental sciences, especially for river flow prediction, a classic case
of temporal series. The use of ANNs presents a satisfactory performance in many
fields, such as: classification, associative memory, temporal series processing,
etc. However, in general, these networks are being used as tools to make flow
predictions without considering their physical particularities over time.

Forecasting hydrological variables, like river flow, water levels and rainfall
is necessary in planning, design, maintenance and operation of water resources
systems and consists of a complex process since it is a highly non-linear phe-
nomenon. Companies that generate electricity execute a Monthly Operational
Program that defines the generation of each unity of the company and the com-
mercialization of energy interchange between them. An important factor for an
optimized service for energy demand is the presence of an efficient inflow predic-
tion system, since the future system capacity is influenced by future inflows that
has an intrinsic stochastic (random) nature. So, the development of a method-
ology that improves such predictions is very important.

Real time inflow forecasting has applications in operational flood as well as
drought management. It can forewarn extreme flood as well as drought condi-
tions, and can help in optimum operation of reservoirs and power plants. The pro-
cess of modeling the hydric behavior of a reservoir has fundamental importance
for the planning and operation of a flow prediction system of hydric resources.
Traditionally, the flow predictions have been made through deterministic models
that attempt to describe the water movement behavior by the laws of physics,
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resulting in a numeric system of differential equations. Alternatively, conceptual
models have been used once they include equations that guide the drainage in a
simplified way, but plausible enough to represent the desired behavior. However,
these models in general require a big quantity of data, sophisticated optimization
techniques for calibration and a detailed knowledge of the physical process. In
the last years, many studies showed that neural networks presented themselves
as efficient tools for flow prediction modeling [18,13,17,5,4,19,2,12,20,21]. The
greatest advantage of using a neural network for flow prediction is its ability
to learn the non-linear behavior of the transformation process of rainfall-runoff
in a hydrographical basin by relating a set of entry variables (rain and/or past
flows) and the output variables (generally, the flow itself) without the necessity
of providing a mathematical equation or any consideration about the physical
behavior of the hydrographical basin.

In a general way, the applications found in the literature try to represent the
flow prediction process using a single neural network [5,12,15]. However, the flow
presented in a hydrograph (flow as a function of time), exemplified in Fig. 1,
is a product of different physical processes [7]. The hydrograph, in short, can
be understood as a composition of an ascending branch that begins at point 1
(this point represents the end of the base flow, before the rain season). Between
points 1 and 2, there are water infiltration and sub superficial flow, and at point
2, the superficial flow begins quickly increasing its value until moment 3 where
it reaches its peak and then the descending branch of the hydrograph begins.
The recession period of the hydrograph, between points 3 and 5, represents the
gradual emptying of the rail river, but at points 3 and 4, there is a strong
influence of the superficial flow still. Finally, from point 5, the flow returns to a
general base flow from a superior point given the elevation of the water level.

Fig. 1. Hydrograph (Discharge x Weeks)

Therefore, the use of a simple neural network may not be sufficient to represent
this complex process of mapping between the inputs and outputs of a hidrogram.
For that reason, the aim of this study is: implement two Modular Models that
will be able to represent the physical process of ascent and descent of hidrogram
for different events (high and low flows), then apply these methods to three
basins located in the North, Northeast and South of Brazil, and finally, compare
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the two proposed methodologies with the traditional methodology, i.e., a single
neural network to represent the overall process.

2 Problem Formulation

The process of developing a composed model, that has local ones, where each
one of them represents an answer for the system behavior, results in a series of
operations [6] that are listed below:

– Selection of the events: must correspond to different aspects of the system
behavior, for example, high and low flows, up and downs.

– Selection of models: the selected events can represent models of the same
nature or different nature.

– Objective function definition: expresses the simulation quality.
– Model calibration: the model parameters must be trained to optimize the

selected objective functions.
– Model combination: the local models are finally integrated in a composed

model.

In this article, we go through the whole process to develop two composite models.
The steps will be emphasized throughout the text.

3 Methodology

The methodology used in this work consists of a modular modeling scheme where
the hydrograph is decomposed in four parts that represents the ups (ascension)
and downs (recession), the high and low flows of the process (Fig. 2). This work
proposes to use two modular models: SOM and MLP, and MLP with Fuzzy
objective function. However, in literature, other ANNs are heavily studied and
used to forecast time series [16], as the network TDNN (Time Delay Neural
Networks), which is an ANN with time delay, and the Recurrent Networks [8].

Fig. 2. Events of Hydrograph. A - Ascension low flow, B - Recession low flow, C -

Ascension high flow, and D - Recession high flow.
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For Modular Model: SOM and MLP (MMSM) we used two networks, self-
organization map (SOM) and Multi-Layer Perceptron (MLP). The objective
is to use the SOM network to characterize the various phenomena of the process
and then use a MLP network for each of the groups defined by the SOM network.

For Modular Model: MLP and Fuzzy objective function (MMMF ) we used Multi-
Layer Perceptron network and Fuzzy logic in order to achieve the composition
of the outputs of MLPs.

3.1 Self-Organizing Map (SOM)

The neural network self-organizing map (SOM) is classified as non-supervised
and is characterized by the use of the input vector of each unit group as the
prototype patterns associated with that unit [3]. During the process of self-
organization, the unit vector whose weights most closely approximates to the
input signal is chosen as winner. The winning unit and the units in their neigh-
bourhood (according to the topology) have their weights updated.

The configuration of the SOM network is presented as follows: 14 inputs,
where each entry corresponds to a daily flow and 4 neurons on the map, which
determine the 4 groups of possible groups. Each entry is linked to all neurons.

3.2 Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP) networks are composed of interconnected
computable nodes arranged in layers that, in theory, can approximate any math-
ematical function, linear or nonlinear [3]. The basic architecture of an MLP used
in this project is described by: an input layer, hidden layer and output layer.

3.3 Modular Model: SOM and MLP (MMSM)

As previously mentioned, the focus is on modularization based on hydrograph,
instead of building a global model that is responsible for representing the flow
of water in all schemes. Thus, the MMSM proposed, would consist of 5 neural
networks, which are: SOM, MLP1, MLP2, MLP3 e MLP4, where each of these
networks has settings that are described in the topic concerning the experiments.
First, the input data are inserted in the SOM, to be separated into 4 groups,
where each of these groups will be included in an MLP, and finally, the output
of MMSM is the output of these MLPs (Fig. 3).

3.4 Modular Model: MLP and Fuzzy Objective Function (MMMF )

In this model, the input data are divided into high and low flows. Each set is
trained by a specific MLP, MLPA will be called for high flows and MLPB for
low flows, where each of them has different configuration that will be shown in
the experiment topic. After obtaining the results of the MLPA and MLPB, a
concatenation is performed to obtain a single output using Fuzzy logic (Fig. 4),
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Fig. 3. Modular Model: SOM and MLP (MMSM )

Fig. 4. Modular Model: MLP and Fuzzy (MMMF )

giving the impression of being an output of a global MLP. We use Fuzzy logic
[1] in this model to admit intermediate values between high and low flows.

The hidrogram for high or low flows may be in a process of ascension or
recession. So, to take into account this fact we used in this work a fuzzification
error for training each neural network (MLPA and MLPB). Then, for process
of ascension the objective function was considered:

OFAscension =

√√√√ 1
n

n∑
i=1

(Qc,i −Qo,i)2(
Qo,i +ΔQ

Qo,max
)2 (1)

Where: n = total number of examples; Qo,i = inflow observed in instant i; Qc,i
= calculated inflow in instant i; Qo,max = maximum observed inflow; ΔQ =
derivative of the hidrogram (Qo,i −Qo,i−1)

The hidrogram was considered in a position to rise (ascension) when the
Rate of increase is greater than a given value α pre-set depending on the basin
analyzed. For recession the objective function considered was:

OFRecession =

√√√√ 1
n

n∑
i=1

(Qc,i −Qo,i)2(
Qo,i −ΔQ

Qo,max
)2 (2)

In every moment of the training is calculated the Rate, as follow:

Rate =
(Qt −Qt−1)

Qt−1
100 (3)

Where: Qt = current inflow; Qt−1 = previous inflow.
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During the training an ascension is considered when the value of the Rate is
more than α, which this article was considered 20%. On the other side a recession
is considered when the Rate is less than 20%.

Thus, during the training of the neural network the error considered was one
Fuzzy function, that uses OFAscension and OFRecession , according to the Rate.
Therefore, when the Rate corresponds to a value x between the values α (20%)
and −α (−20%) the error is fuzzificated according to Fig. 5.

Fig. 5. Fuzzy Objective Function

In this case the composite objective function is:

OFComposite =
OFascensionCoefascension +OFrecessionCoefrecession

Coefascension + Coefrecession
(4)

Where:
Coefascension =

x+ α

2α
=
x+ 20

40
(5)

Coefrecession =
x− α

−2α
=
x− 20
−40

(6)

4 Case Studies and Results

For the case study we used data (discharge) from three power plants: Tucurúı
(North), Três Marias (Northeast), and Foz do Areia (South), located in Brazil.
Some information about the barrages can be viewed in Fig. 6. The horizon
weekly was used because it is used for planning the national energy sector. The
series of daily flow data were divided into three data sets: first is to adjust the
weights (50%), second set is for cross-validation (25%) and third set (25%) to
assess the performance of the proposed methodologies. The historic of average
daily flow used here corresponds to the period 1968 to 2004. The MLPs networks
(MLP1, MLP2, MLP3, MLP4, MLPA and MLPB) for Tucurúı, Foz do Areia
and Três Marias had 14 input neurons (14 days previous), 5 neurons in hidden
layer and 7 in the output layer, i.e., the forecasting horizon used was a week
ahead. The learning-rate parameter (η) and momentum constant (α) were: η =
0.30 and α = 0.50 for Tucurúı, η = 0.30 and α = 0.40 for Três Marias and η =
0.40 and α = 0.60 for Foz do Areia.
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Fig. 6. Hydrological Characteristics: Três Marias, Tucurúı and Foz do Areia

To find out how good are the results of the proposed models, we made a com-
parison between the results of a simple MLP (MLPS), the proposed methodolo-
gies (MMSM and MMMF ) of Modular Model and the results of the statistical
methodology used by the electricity sector. To compare these methods we cal-
culated the Mean Absolute Percentage Error (MAPE), given by:

MAPE =
1
n

n∑
i=1

(Qo,i −Qc,i)
Qo,i

100 (7)

Fig. 7. Errors obtained in the reservoirs: Três Marias, Tucurúı and Foz do Areia

Looking at the table of errors found in Fig. 7, its possible to affirm that the
results obtained with the proposed models are better than the other models.
The graphs below (Fig. 8, 9, 10) that corroborates this assertion, show the
comparasion results of the Modular Models (MMSM and MMMF ) forecast,
MLPS forecast and of the actual outcome (observed).

In order to compare statistically the average results found by different models
the test of hypothesis of difference between means was held. Thus, we conclude
with 95% confidence (or a chance of error of 5%) that there is a difference between
the average results of the statistical with MLPS, and between MMSM and
MMMF with MLPS . Furthermore, we found no statistical differences between
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Fig. 8. Hydrograph of Três Marias: comparison of inflows

Fig. 9. Hydrograph of Tucurúı: comparison of inflows

Fig. 10. Hydrograph of Foz do Areia: comparison of inflows

the Modular Models (MMSM and MMMF ). This analysis was carried out for
the three reservoirs studied and all leads to this conclusion. The time taken for
the implementation of MMSM was higher than the MMMF , however, to obtain
the results, both models showed similar performance.

5 Final Considerations

In this article, two approaches composed of neural networks and Fuzzy logic
were presented: the Modular Models SOM and MLP, as well as the MLP and
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Fuzzy, are used to represent the complex phenomenon of inflow forecast through
the decomposition of its hydrograph. The genesis of the study presented here is
based on the concept about which different segments of the complete hydrograph
are a result of different physic processes that take place at the hydrographical
basin and, therefore, need different modeling. The main conclusions of this study
are:

1. The approach of decomposing the hydrograph in different segments can be
a good alternative than trying to use a single neural network.

2. The results obtained through the use of different metrics shows that the
proposed methodology has satisfactory results and that minimize problems
of tendency (forecasts that are higher or lower than expected) in a particular
portion of the flow mentioned by the authors [9,15,19].

3. Considering a fuzzy objective function allows a better representation of the
physical phenomenon of ascension and recession of the hydrograph for high
and low flows alike.

4. The obtained results for the three studied basins, Três Marias, Tucurúı and
Foz do Areia, are satisfactory when compared with the use of a simple neural
networks and very superior to statistical models used by the electric sector.

According to the achieved results, the following future works are proposed: con-
sider a non-linear fuzzification; adopt four levels of fuzzification - soft up, abrupt
up, soft down, abrupt down; and implement a Modular Model with a dynamic
Neural Network, i.e., with memory.

Acknowledgments. The authors are thankful to Brazilian research councils
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area of water resources.
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Abstract. We present a probabilistic generative approach for construct-

ing topographic maps of light curves from eclipsing binary stars. The

model defines a low-dimensional manifold of local noise models induced

by a smooth non-linear mapping from a low-dimensional latent space into

the space of probabilistic models of the observed light curves. The local

noise models are physical models that describe how such light curves

are generated. Due to the principled probabilistic nature of the model,

a cost function arises naturally and the model parameters are fitted via

MAP estimation using the Expectation-Maximisation algorithm. Once

the model has been trained, each light curve may be projected to the

latent space as the the mean posterior probability over the local noise

models. We demonstrate our approach on a dataset of artificially gener-

ated light curves and on a dataset comprised of light curves from real

observations.

Keywords: Topographic mapping, eclipsing binary stars.

1 Introduction

The Generative Topographic Map algorithm (GTM) [1] has been introduced as
a probabilistic analog to SOM [2], seeking to address certain of its limitations
such as the absence of a cost function. The GTM formulates a mixture of spher-
ical Gaussians densities constrained on a smooth image of a low-dimensional
latent space. Each point in the latent space is mapped via a smooth non-linear
mapping to its image in the high-dimensional data space. This image plays the
role of the mean of a local spherical Gaussian noise model that is responsible
for modelling the density of data points in its vicinity. The GTM can be readily
extended to structured data by adopting alternative formulations of noise mod-
els in the place of Gaussian densities. Such extensions have been proposed in
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[3] for the visualisation of symbolic sequences and in [4] for the visualisation of
tree-structured data.

Here we present a further extension of the GTM to a novel data type, namely
light curves that originate from eclipsing binary systems. Binary stars are gravi-
tationally bound pairs of stars that orbit a common centre of mass. Astronomical
observations suggest that almost half of the stars are binary ones. Thus, study-
ing such systems procures knowledge for a significant proportion of stars. Binary
stars are important to astrophysics because they allow calculation of fundamen-
tal quantities such as masses and radii, and are important for the verification
of theoretical models for stellar formation and evolution. A particular subclass
of binary stars are eclipsing binary stars. The luminosity of such stars varies
over time and forms a graph called light curve. Light curves are important be-
cause they provide information on the characteristics of stars and help in the
identification of their type.

2 Physical Model for Eclipsing Binaries

The physical model that generates light curves from eclipsing binary systems
is described by the following set of parameters: mass M1 ∈ [0.5, 100] (in solar
masses) of the primary star (star with highest mass of the pair), mass ratio
q ∈ [0, 1] (hence mass of secondary star is M2 = qM1), eccentricity e ∈ [0, 1]
of the orbit and period ρ ∈ [0.5, 100] measured in days, all of which specify the
shape of the orbit. Furthermore, two angles describing the orientation of the
system are necessary [5] which are known as the inclination ı ∈ [0, π2 ] and the
argument of periastron ω ∈ [0, 2π] (see Fig. 1). Inclination describes the angle
between the plane of the sky and the orbital plane and periastron is the angle
ω ∈ [0, 2π] that orients the major axis of the elliptic orbit within its plane,
that is ω is measured within the orbital plane. Finally, a third angle known
as the longitude of ascending node (Ω ∈ [0, 2π]) is necessary for the complete
description of a binary system. However, since it has no effect on the observed
light curves, we omit it from the model. We collectively denote these parameters
by vector θ.

The mass M of each star relates to the luminosity L radiated by a surface
element [6] of the star according to L = M3.5 . Moreover, masses relate to the
radii R of the stars via:

R =
{

100.053+0.977 log10(M), if M < 1.728;
100.153+0.556 log10(M), otherwise.

(1)

These relations show that the primary star is the most luminous one and the one
with the greatest area of the pair (a star appears as a disc to an observer). Thus,
the observed area of a star is A = πR2 and the observed luminosity is LπR2.
Henceforth, we index quantities related to the primary star by 1 (e.g. primary
mass is M1) and 2 for the secondary star.

It is shown from Newton’s laws that the orbits of an object in the gravitational
field of another object is a conic section of eccentricity e. Here we are interested
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in the case where 0 ≤ e < 1 that corresponds to closed orbits. We formulate
two-body systems as systems where one body is fixed and the other is in orbital
motion1.

The position of the orbiting body is calculated by Kepler’s equation as the
distance r from the fixed companion star on the elliptical orbit [5],

r(t) =
a(1− e2)

1 + e cos θ(t)
, (2)

where t is time and a is the semi-major axis of the ellipse calculated by Kepler’s
third law. Point Π in Fig. 1 is the periastron, the point where the distance
between the orbiting and fixed body is minimal. Angle θ is the angle between
the radius and the periastron. Knowledge of θ would allow us to determine the
position of the orbiting body. Angle θ is indirectly inferred via an auxiliary
circle centered at the center of the ellipse O and radius equal to semi-major
axis. Point Q is the vertical projection of the orbiting body’s position P to the
auxiliary circle. Angle E is called the eccentric anomaly and is given by Kepler’s
equation [5]:

E(t) = e sinE(t) +
2π
ρ

(t− τ), (3)

where τ is the instance of time that the body was at the periastron. Kepler’s
equation does not admit an analytical solution but can be approximated through
the Newton-Raphson method. By geometrical arguments it is shown that the
relation between the true and eccentric anomaly reads:

tan
θ(t)
2

= [(1 + e)/(1− e)]
1
2 tan(

E(t)
2

) (4)

By knowledge of θ we can determine the position of the second star on the orbit
using (2) and (4). These positions correspond to the orbital plane and must be
projected to the plane of the observer in the form of Cartesian coordinates [5]:

X(t) = r(t)(cos(Ω) cos(ω + θ(t))− sin(Ω) sin(ω + θ(t)) cos(ı)), (5)
Y (t) = r(t)(cos(Ω) cos(ω + θ(t)) + cos(Ω) sin(ω + θ(t)) cos(ı)), (6)
Z(t) = r(t) sin(ω + θ(t)) sin(ı), (7)

which concludes the determination2 of positions of the stars with respect to the
observer.

An observer of the binary system receives a variable luminosity from the
eclipsing binary system that plotted against time forms a light curve. This vari-
ability is due to the eclipses that occur when one body passes in front (in the

1 It is shown in [6] that in the relative motion system, the eccentricity, period and semi-

major of the moving body’s orbit are equal to their counterparts in the two-body

system, and only the masses transform.
2 The angle Ω does influence the position of the orbiting body. However, it does not

have an influence on the light curve and thus we treat it as a constant Ω = 0.



570 N. Gianniotis et al.

i

plane of sky

orbital plane

observer

Ω

Π

θ

line of sight

auxiliary
circle

O

P
Q

Ε

ω

elliptical
orbit

Fig. 1. Angles orientating the orbital plane with respect to the plane of sky, and angles

associated with the orbits. Adapted from [5].
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Fig. 2. Positions of stars (relative to observer’s line of sight) and corresponding light

curve phases

line of sight of the observer) of the other. This is illustrated in Fig. 2. When no
eclipse occurs (positions a, g) the luminosity is equal to the sum of the luminosi-
ties radiated from the two bodies. The curved parts of the light curve occur due
to partial occlusions. Two eclipses take place at each period, one primary eclipse
(position d), when the most luminous body of the pair is obscured the most,
and a secondary eclipse (position j), when the most luminous body obscures its
companion the most.
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Obscured parts of the disks of the stars can be calculated via geometrical
arguments.3 The obscured area of each star at time t is denoted by ΔA1(t) and
ΔA2(t). The luminosity fθ(t) received by the observer at time t depends on the
luminosities Li, areas Ai and obscured areas4 ΔAi via

fθ(t) = L1(A1 −ΔA1(t)) + L2(A2 −ΔA2(t)). (8)

3 Noise Model for Light Curves

Based on the physical model a probabilistic generative noise model arises natu-
rally. Observed light curves, denoted by O, are noisy signals:

O(t) = fθ(t) + ε(t), (9)

where ε is i.i.d. Gaussian noise with variance σ2. Thus, we regard a light curve
O of period ρ(O) sampled at times t ∈ T = {t1 = 0, t2, ..., tT = ρ(O)} as a
realisation drawn from a multivariate spherical normal distribution. We denote
the noise model associated with parameters θ by p(O|f(.; θ), σ2) or simply by
p(O|θ).

4 Model for Topographic Organisation

The starting point of our model formulation is the form of a mixture model
composed of C noise models as described in section 3:

p(O|Θ) =
C∑
c=1

P (c) p(O|θc), (10)

where P (c) are the mixing coefficients, Θ encapsulates all parameter vectors
{θc}c=1:C and p(O|θc) corresponds to the c−th model component with param-
eter vector θc. We simplify notation p(O|θc) to p(O|c). Assuming that dataset
D contains N independently generated fluxes O(n), the posterior of the Θ is
expressed as:

p(Θ|D) ∝ p(Θ)
N∏
n=1

p(O(n)|Θ) = p(Θ)
N∏
n=1

C∑
c=1

P (c)p(O(n)|c) (11)

where the mixing coefficients can be ignored as P (c) = 1
C .

Topographic organisation is introduced in the spirit of the GTM [1] by re-
quiring that the component parameter vectors θc correspond to a regular grid
of points xc, c = 1, . . . , C, in the two dimensional latent space V = [−1, 1]2.
A smooth nonlinear function Γ maps each point x ∈ V to a point Γ (x) that

3 See http://www.physics.sfasu.edu/astro/ebstar/ebstar.html. Last access on 12-0-07.
4 Recall that i = 1 and i = 2 index the primary and secondary stars, respectively.
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addresses a model p(·|x). Points Γ (x) are constrained on a two-dimensional
manifold M that is embedded in space H, the space of parametrisations of our
noise models. Since the neighbourhood of Γ -images of x is preserved due to con-
tinuity of Γ , a topographic organisation emerges for the models p(·|x). Function
Γ is realised as a RBF network [1]:

Γ (x) = Wφ(x), (12)

where matrix W ∈ R6×K contains the free parameters of the model (6 is the
number of parameters in {M1, q, e, ı, ω, ρ}), and φ(.) = (φ1(.), ..., φK (.))T , φk(.) :
R2 → R is an ordered set of K nonlinear smooth basis functions. However, this
mapping may produce invalid parameter vectors, since the output of the RBF
network is unbounded. We therefore redefine mapping Γ as:

Γ (x) = Ag(Wφ(x)) + v, (13)

where:

– g a vector-valued version of the sigmoid function that “squashes” each ele-
ment in [0, 1]:

g(y) =
[

1
1 + exp(−y1)

,
1

1 + exp(−y2)
, . . . ,

1
1 + exp(−yY )

]T
, (14)

– A is a diagonal matrix that scales parameters to the appropriate range. A has
as diagonal elements the length of range (θmaxi − θmini ) for each parameter,
so that A = diag((100−0.5), (1−0), (1−0), (2π−0), (π2 −0), (100−0.5)).

– vector v shifts the parameters to the appropriate interval. v contains the
minimum value θmini for each parameter θi: v = [0.5, 0, 0, 0, 0, 0.5]T .

The redefined mapping Γ now takes a point x in space V to a valid parameter
vector Γ (x) that addresses a noise model in M. Thus, Θ has become a function
of the weight matrix W of the RBF network, Θ(W ). Hence. the logarithm of
the posterior from (11) now reads:

log p(Θ(W )|D) ∝ log p(Θ(W )) +
N∑
n=1

log
C∑
c=1

p(O(n)|xc). (15)

Figure 3 summarises the model formulation. Each point x of the visualisation
space V is non-linearly and smoothly mapped via Γ to model parameters that
identify the corresponding noise model p(·|x). These parameters are constrained
on a two-dimensional manifold M embedded in H, the space of all possible
parametrisations of our noise model. In the spirit of [1], the model can be used
to visualise observed fluxes O by calculating the posterior probability of each
grid point xc ∈ V , given O:

p(xc|O) =
P (xc)p(O|xc)

p(O)
=

P (xc)p(O|xc)∑C
c′=1 P (xc′)p(O|xc′)

=
p(O|xc)∑C
c′=1 p(O|xc′)

. (16)
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Each observed flux O is then represented in the visualisation space V by a point
proj(O) ∈ V given by the expectation of the posterior distribution over the grid
points:

proj(O) =
C∑
c=1

p(xc|O)xc. (17)
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Fig. 3. Formulation of the topographic mapping model

We train our model in the MAP estimation framework with a physically moti-
vated prior p(Θ) obtained from relevant literature [7,8,9,10]. To that purpose we
employ the EM algorithm. Note that, due to the nature of the physical model
formulation in sections 2 and 3, the M-step cannot be carried out analytically,
nor can the derivatives of expected complete-data log-posterior with respect to
the RBF network parameters W be analytically obtained. However, the EM al-
gorithm does not necessarily require that an optimum is achieved in the M-step;
it is sufficient that the likelihood is merely improved [11]. For our purposes we
resort to numerical optimisation by employing a (1+1) evolutionary strategy de-
scribed in [12]. The fitness function for the evolutionary strategy is the expected
complete-data log-posterior.

5 Experiments

5.1 Datasets

We performed experiments on two datasets. Dataset 1 is a synthetic dataset
that consists of 200 light curves (fluxes). A common set of model parameters,
{M1 = 5, q = 0.8, e = 0.3, ı = π

2 } was defined. However, two distinct values
ρ1 = 2, ρ2 = 5 of period and ω1 = 0, ω2 = 5

6π of argument of periastron were
used, to create 4 classes of light curves (50 in each class) by the combinations
of these values, {ρ1, ρ2} × {ω1, ω2}. The discerning characteristic of each class
is the position of each secondary eclipse and the widths of the eclipses. Each
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light curve was then generated from these four “prototypical” parameter settings
corrupted by a Gaussian noise. Gaussian noise was also subsequently added to
the generated light curves to simulate observational errors.

Dataset 2 consists of light curves from real observations obtained from two
resources available5 on the WWW: the Catalogue and Archive of Eclipsing Bina-
ries at http://ebola.eastern.edu/ and the All Sky Automated Survey. Dataset 2
was preprocessed before training using local linear interpolations. Preprocessing
is necessary as one needs to account for gaps in the monitoring process and for
overlapping observations. Light curves must also be phase-shifted so that their
first point is the primary eclipse and resampled to equal length as described in
section 3. Finally, the light curves were resampled at T = 100 regular intervals
which was judged an adequate sample rate.

5.2 Training

The lattice was a 10 × 10 regular grid (i.e. C = 100) and the RBF network
consisted of M = 17 basis functions; 16 of them were Gaussian radial basis
functions of variance σ2 = 1 centred on a 4 × 4 regular grid in V = [0, 1]2, and
one was a bias term. The variance of the observation noise in the local models
p(O|x) was set to σ2 = 0.075.

5.3 Results

Fig. 4 presents the topographic map constructed for the synthetic dataset. Each
point stands for a light curve projected to latent visualisation space V and is
coloured according to class membership. The class memberships of synthetic
fluxes were not used during the training process. Also, next to each cluster,
a typical light curve has been plotted. The classes have been identified and
organised appropriately, each occupying one of the four corners of the plot.

Fig. 5 presents the topographic map constructed for the dataset of real ob-
served light curves. The red curves are the data projected against the underlying
local noise models displayed in black. Several interesting observations can be
made about the topographic formation of the light curves on the resulting map.
In the lower right-hand corner binary systems of large periods are found. The
median period of the systems in our sample is 2.7 days, and binaries like V459
Cas, with a period of 8.45 days lie in this corner. Systems with short period
have the appearance of a wide V-shaped eclipse in the shape of their light curve,
and inhabit the top and left edges of the map, e.g. WY Hya (Period: 0.7 days)
and RT And (Period: 0.6 days). At the lower left of the map, we find systems
with high eccentricity, e.g. V1647 Sgr. High eccentricity causes the light curve
to appear assymetric, so that the period of the eclipse occurs further and fur-
ther away from the center. On the other hand, very symmetric curves indicate
orbits of low eccentricity (more circular) and low mass-ratio (stars of similar
mass), and indeed we find systems like DM Vir (e = 0.03, mass ratio=1) and

5 Last accessed on the 12th September 2007.
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Fig. 4. Visualisation of synthetic dataset. A representative light curve is plotted next

to each cluster.

Fig. 5. Visualisation of dataset 2 of real data. Light curves in red are the projected

real data and light curves in black are the light curves of the underlying local noise

models.

CD Tau (e = 0.0, mass ratio=1.05) in the cluster in the lower-right hand corner
of the map. Finally, low-inclination systems, occupy the top left-hand corner of
the map, and these orbits will have very shallow eclipses as the companion star
barely eclipses the primary star.
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6 Conclusions

We have presented a model-based probabilistic approach for the visualisation of
eclipsing binary systems. The model is formulated as a constrained-mixture of
physically motivated noise models. As a consequence, a clear cost function nat-
urally arises which drives the optimisation of the model. In our experiments we
have demonstrated that the resulting maps can be interpreted in a transparent
way by inspecting the underlying local noise models. Furthermore, modification
and refinement of the local noise models is possible, to account for greater phys-
ical fidelity by incorporating physical aspects for non-spherical stars and even
more sophisticated phenomena such as gravity darkening.
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4. Gianniotis, N., Tiňo, P.: Visualisation of tree-structured data through generative

probabilistic modelling. In: Verleysen, M. (ed.) European Symposium on Artificial

Neural Networks, D-Facto, pp. 97–102 (2007)

5. Hilditch, R.W.: An introduction to close binary stars. Cambridge University Press,

Cambridge (2001)

6. Karttunen, H., Krger, P., Oja, H., Poutanen, M., Donner, K.J. (eds.): Fundamental

astronomy. Springer, Heidelberg (1996)

7. Devor, J.: Solutions for 10,000 eclipsing binaries in the bulge fields of ogle ii using

debil. The Astrophysical Journal 628(1), 411–425 (2005)

8. Halbwachs, J.L., Mayor, M., Udry, S., Arenou, F.: Multiplicity among solar-type

stars. iii. statistical properties of the f7-k binaries with periods up to 10 years.

Astronomy and Astrophysics 397, 159–175 (2003)

9. Miller, G.E., Scalo, J.M.: The initial mass function and stellar birthrate in the

solar neighborhood. Astrophysical Journal Supplement Series 41, 513–547 (1979)
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Abstract. The mixture autoregressive (MAR) model regards a time

series as a mixture of linear regressive processes. A self-organizing algo-

rithm has been used together with the LMS algorithm for learning the

parameters of the MAR model. The self-organizing map has been used to

simplify the mixture as a winner-takes-all selection of local models, com-

bined with an autocorrelation coefficient based measure as the similarity

measure for identifying correct local models and has been shown pre-

viously being able to uncover underlying autoregressive processes from

a mixture. In this paper the self-organizing network is further gener-

alized so that it fully considers the mixing mechanism and individual

model variances in modeling and prediction of time series. Experiments

on both benchmark time series and several financial time series are pre-

sented. The results demonstrate the superiority of the proposed method

over other time-series modeling techniques on a range of performance

measures including mean-square-error, prediction rate and accumulated

profits.

Keywords: Time series, mixture autoregressive model, self-organizing

map.

1 Introduction

Financial analysis relies greatly on time series models. Linear regression and au-
toregressive models are among the widely used methods in time series modeling.
Most existing linear models developed in statistics and signal processing assume
that the time series being dealt with is stationary and uni-modal [3, 8]. Such
conditions are not often met in practical applications. For instance, autoregres-
sive (AR), moving average (MA) and autoregressive moving average (ARMA)
models assume a structured linear relationship between the current value of the
time series and its previous values and the error terms. The relationship is de-
scribed by a set of constant coefficients. This assumption is a pitfall of regressive
models when the time series is non-stationary. Developing methods for model-
ing non-stationary, nonlinear and multimodal time series has become an active

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 577–586, 2009.
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area of research in statistics, signal processing, control systems and neural net-
works. The autoregressive integrated moving average (ARIMA) [3], a more gen-
eralized ARMA model, can better deal with slow changing non-stationary time
series by modeling the difference of the consecutive time series values instead
of the value itself. The generalized autoregressive conditional heteroscedastic
(GARCH) model [2] describes the variance of current residual as a linear func-
tion of the variances of previous residuals, in addition to autoregressive model of
the time series. It has been widely applied to modeling financial time series, which
exhibit different volatilities from time to time. The recent mixture autoregressive
(MAR) model [17] represents another valid approach. It considers the process as
a mixture of regressive models and is a generalized Gaussian mixture transition
distribution. The MAR model can handle non-stationary cycles and conditional
heteroscedasticity and is often solved using the expectation-maximization (EM)
method.

Many adaptive neural network models have been adopted or used to extend
linear regressive models, such as multilayer perceptron (MLP), radial basis func-
tion (RBF) networks, support vector machines (SVM) and recurrent networks
(see [9]). For instance, RBFs have been used to construct the NARMAX (non-
linear autoregressive moving average with exogenous inputs) model in systems
identification [5]. The self-organizing map (SOM) has also been applied to model
time series in a variety of ways. In an indirect way, the SOM can be used to di-
vide or cluster a time series into segments. A number of regressive models can
be created by locally fitting to the corresponding parts of the time series. For in-
stance, Dablemont et al. [6] applied SOM-based local models with RBF networks
as regressors to predict the returns of stocks. Cao [4] proposed a SVM expert
system, which is also based on SOM-clustered local models, to predict the future
movement of a time series. However, these models are two-stage models. Both
clustering and local modeling may not be jointly optimized.

There are two early approaches to analyzing temporal or sequence signals
with the SOM. One is to train a SOM on static states (i.e. time series values),
and then temporal patterns or sequences of states can be identified by marking
sequential locations of the states on the trained map. Such approaches can be
used to monitor dynamic processes or trajectories of a temporal process such
as an industrial plant, e.g. [1]. Another approach, which is often found in the
literature, is to group consecutive time points into segments (using a sliding
window). Then these segments are used as the input vectors to train the SOM.
We term this method as vector SOM (VSOM). Although consecutive time points
can be grouped into vectors to form temporal context by means of a sliding
window, the vectors formed may not capture temporal relationship of the time
series. Several variants have since been proposed to extend SOM’s ability for
temporal modeling such as, the recurrent SOM (RSOM) [10] and the recursive
SOM (RecSOM) [16] or merge SOM (MSOM) [15]. These SOM variants integrate
the information of a sequence via recursive operations. As they differ in the
notion of context, their efficiency in terms of representing temporal context are
different. Neural gas [12] is another popular variant of SOM. Instead of having
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a fixed network topology throughout, neural gas can dynamically deploy its
resources to suit varying topology of the data, and has been applied to many
tasks including vector quantization and temporal modeling [12].

Earlier, Lampinen and Oja proposed a self-organizing map of spatial and
temporal AR models (SOAR) [11], where each unit represents an AR model
with its reference vector as the model parameters. The experiments have shown
that the model can learn to distinguish textures in images. The method in fact
is a multiple AR model with the component models forming a spatial topol-
ogy. However, the model has difficulties to converge to the underlying regressive
processes due to the simple error-based similarity measure. We have extended
the SOAR model to a mixture regressive model, termed self-organizing mixture
autoregressive (SOMAR) model [13], with a different partition mechanism and
similarity measure to reflect the characteristics of homogeneous time series. Both
the mixture and local models are jointly trained, and thus it offers better mod-
eling performance. Good results have been reported [13, 14]. In this paper the
SOMAR model is further generalized to a full mixture model, with parameters
learnt by a self-organizing algorithm. Section 2 briefly describes existing regres-
sive time series models. Section 3 presents SOM-based autoregressive models and
the proposed generalized SOMAR (GSOMAR) model, followed by experimental
results on both benchmark data and real-world financial data and comparisons
with existing methods in Section 4. Finally, conclusions are given in Section 5.

2 Regressive Time Series Models

The widely used time series models include AR, MA and ARMA and nonlinear or
non-stationary ARIMA, GARCH and MAR models. The MAR is the theoretical
basis of the proposed model. The solutions of the AR, MA, ARMA, GARCH and
ARIMA models can be found in many time series and signal processing books.

2.1 Autoregressive Models: AR, ARMA, GARCH and ARIMA

Linear regressive models have been the primary tool in modeling time series. An
autoregressive model of order p, denoted as AR(p), can be described as,

xt = c+
p∑
i=1

φixt−i + εt = c+ ΦTx(p)
t−1 + εt (1)

where Φ = [φ1, . . . , φp]T are the model parameters, x(p)
t−1 = [xt−1, . . . , xt−p]T is

the concatenated input vector, c is a constant and ε is white noise with zero
mean and variance σ2.

An ARMA model with p-order AR terms and q-order MA terms is called
ARMA(p, q) model and can be written as,

xt = c+
p∑
i=1

φixt−i +
q∑
i=0

μiεt−1 (2)
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where {μ0, . . . , μq} are the parameters of the moving average. The error terms
are assumed to be independent identically-distributed (i.i.d.) random variables
sampled from a normal distribution with zero mean and constant variance σ2,
which is often associated with the volatility of the time series. When this con-
dition does not hold as it is often the case in financial data, the GARCH model
provides a generalized alternative, in which the variance of the error terms is
modeled by another autoregressive model.

A standard GARCH(θ, ρ) model is characterized by Eq. (1) and the following
variance model,

σ2
t = α0 +

θ∑
i=1

αiε
2
t−i +

ρ∑
i=0

βiσ
2
t−i (3)

where εt is the error term with the assumption εt = σtvt and vt is i.i.d. with zero
mean and unit variance. {α} and {β} are the model parameters of the variance.

ARIMA model uses lags or differencing of the time series in the ARMA model.
ARIMA(p, d, q) model is characterized by the following equation,

(1−
p∑
i=1

φiL
i)(1 − L)dxt = (1 +

q∑
i=1

μiL
i)εt (4)

where L is lag operator, i.e. Lxt = xt−1 and p, d and q are the orders of the
autoregressive, integrated, and moving average parts of the model respectively,
Note that ARMA(p, q), i.e. Eq.(1), can be expressed as (1 −

∑p
i=1 φiL

i)xt =
(1 +

∑q
i=1 μiL

i)εt.
As can be seen, the ARIMA model operates on the difference of the lagged

time series. Such simple transformation can be effective in dealing with slow (sea-
sonal) changes in non-stationary series. That is, the difference operator trans-
forms a slow drift non-stationary process into a stationary process.

2.2 Mixture Autoregressive (MAR) Model

A nonlinear or non-stationary time series can be regarded as a mixture of sta-
tionary processes characterized by the standard autoregressive models. The K-
component MAR model is defined by [17],

F (xt|Γt−1) =
K∑
k=1

πkϕ(
xt − φk0 − φk1xt−1 − . . .− φkpk

xt−pk

σk
) (5)

where F (xt|Γt−1) is the conditional distribution of xt given the past information
up to t− 1, Γt−1; ϕ(.) is the standard normal distribution; {π1, . . . , πK} are the
mixing parameters and π1+ . . .+πK = 1, πk > 0, k = 1, . . . ,K; pk is the order of
the k-th AR model; and σ2

k is the variance of the k-th distribution. This model is
denoted as MAR(K; p1, . . . , pK) model. It has been reported to have the ability
to handle cycles and conditional heteroscedasticity in time series. Its parameters
are estimated via the EM algorithm and model selection and validity can be
done by a Bayesian information criterion (BIC) [17].
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3 Self-Organizing Mixture Autoregressive Models

The proposed model is an extension of an earlier model by Lampinen and Oja
and further enhanced in the framework of the MAR model.

3.1 Self-Organizing AR (SOAR) Model

In 1989, Lampinen and Oja proposed a self-organizing AR (SOAR) network [11].
It is a map of “neural” units where each unit i represents an AR model with
its parameters as the reference vector wi. The experiment shows that the SOAR
model can learn to distinguish texture images by unsupervised learning [11]. The
method in fact is a multiple AR model. However, the model has difficulties in
converging to the correct AR models. The procedure of the SOAR model is:

1). At each time step t, find the best matching unit by measuring the estima-
tion error of each node, ei,t = xt −wT

i x(p)
t−1 . In order to reduce the effect of the

fluctuation or noise in the errors, an exponential average over recent estimation
errors is used,

ui,t = λei,t + (1− λ)ui,t−1 (6)

where λ is a smoothing factor, ei(t) is the current error of node i and ui(t− 1)
is the past averaged error.

2).Update the best matching unit as well as the units in its map neighborhood,
by the recursive LMS or Widrow-Hoff rule,

wi,t = wi,t−1 + ηh(v, i)ei,tx
(p)
t (7)

where η is learning rate and h(i, v) is the neighborhood function of indexes of
node i and winner v.

However, the performance of the SOAR model in finding the underlying AR
processes in the mixture is poor [13, 14]. Due to the stochastic nature of AR
processes, although the overall MSE decreases, at each input one can always
expect large oscillation even when the true model parameters are used or fur-
ther manipulations, e.g. exponential smoothing, are applied. In other words, this
method has difficulties to converge to the true model parameters of the under-
lying AR processes. Nevertheless, the SOAR model localizes the time series by
local models.

3.2 Self-Organizing MAR (SOMAR) Model

Based on the similar self-organizing principle and the MAR model, the self-
organizing MAR (SOMAR) was proposed by using the SOM and LMS algorithm
to learn a simplified MAR model [13]. The SOMAR constitutes a simplified MAR
model with the winner-takes-all principle for local AR models. To ensure a robust
learning, a new winner selection or similarity measure was proposed. A stochastic
process is characterized by white noise residuals. As a sufficient condition, the
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modeling errors or residuals should be or close to white noise if the modeling is
following the correct path. Therefore, in the SOMAR model, the autocorrelation
of the error instead of the error itself is used to evaluate the similarity between
the input vector and the neurons’ weights representing the model parameters. In
order to have a reliable estimate of autocorrelation, a small batch of the errors
is used,

Ri,t(k) =
1

mσ2
e

m−p−1∑
l=0

(ei,t−l − μe)(ei,t+k−l − μe) (8)

where m is the length of the batch, μe and σ2
e are the mean and the variance of

the errors in the batch respectively.
The winner is selected according to the sum of (absolute value of) autocorre-

lation coefficients (SAC),

v = argmin
i

(
m∑

k=−m
|Ri,t(k)|

)
(9)

The use of correlation measure for identifying local models is justified by the
fact that a correct model produces white noise residuals. That is, if the model
is correct or adequate, the residual is unpredictable or structure-less. Such effec-
tive correlation-based tests are often used in statistics and neural networks for
checking the fitness of a model, e.g. [5], although there are other whiteness tests
in the literature.

3.3 Generalized SOMAR Model

Both SOMAR and SOAR models represent a simplified, homescedastic and
winner-takes-all version of the MAR model. At any particular time, usually
only one local AR model (the winner) is selected to represent the time series,
all AR models are assumed of equal variance and the mixing factors are either
unit for the winner or zero otherwise (winner-takes-all). Although some empir-
ical use of local neighboring nodes have been proposed for forecasting [13, 14],
these models are not a full mixture model. To fully employ the mixture model,
all components will be required to contribute to the mixture coherently, both in
training and testing. The mixing factors and model variances have to be learnt as
well. The SOM has been extended before to represent a mixture model. The self-
organizing mixture network (SOMN) [18] is such an example, in which each node
represents a conditional distribution. The SOMN has been shown to converge
faster and be more robust than the EM algorithm for heteroscedastic mixture
distributions. Therefore, to make the SOMAR a fully mixture of AR models, the
learning algorithm of the SOMN can be used for learning the mixing factors and
model variances. We term this enhanced SOMAR a generalized self-organizing
mixture autoregressive (GSOMAR) model. In addition to the weights (or param-
eters of component AR models), the mixing factors and model variances are up-
dated. Further assume that the component models are uncorrelated, so that their
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covariances are zeros. The variances of local models are scalar. Then based on the
SOMN algorithm [18], the updating rules for the mixing weights and variances
have the following simple forms,

πi,t = πi,t−1 + η(P̂i − πi,t−1) (10)

σ2
i,t = σ2

i,t−1 + η(σ2
i,e − σ2

i,t−1) (11)

where P̂i is the winning frequency and σ2
i,e is the error variance of node i.

The trained mixture model, representing the MAR model, Eq. (5), can be fully
used for forecasting the time series as well as model’s volatility. In forecasting,
the learnt mixing factors are further weighted by the neighborhood function of
the SOM acting as the posterior probability of a component class given an input
sample [18].

4 Experimental Results and Comparisons

Experiments on bench mark Mackey-Glass time series and several financial
data sets were conducted, together with comparisons with related methods and
models.

4.1 Mackey-Glass Data

The Mackey-Glass series has been widely used as a benchmark data for testing
nonlinear models. The data set was generated by a dynamic system defined by
the following differential equation,

dx

dt
= βxt +

αxt−δ
1 + x10

t−δ
(12)

with the parameter values set as δ = 17, α = 0.2, and β = −0.1. In total 2000
points were generated. The Mackey-Glass data is regarded as consisting of a
number of unknown AR processes. The order of the AR processes was chosen by
the BIC. In the experiment, the series was grouped into 12 consecutive values as
the input vectors. The prediction result is shown in Table 1. Both the SOMAR
and GSOMAR models have outperformed other models; while GSOMAR also
improves on the SOMAR markedly.

Table 1. Forecasting performance on Mackey-Glass data by various adaptive models

VSOM RSOM RecSOM MSOM NeuralGas SOM SOAR SOMAR GSOM-

+SVM AR

MSE(−2) 4.52 4.34 4.19 4.31 4.39 4.52 4.30 3.62 3.25
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4.2 Foreign Exchange Rates

The data set was obtained from the PACIFIC Exchange Rate Service provided
by W. Antwiler at UBCs Sauder School of Business. It consists of 15 years’ daily
exchange rates (of three pairs: British pound vs. US dollar, Euro and HK dollar,
respectively) excluding weekends and bank holidays when currency markets were
closed. In total 3200 consecutive points were used, in which the first 3000 points
were used as the training set, the next 100 points as the validation set, and
the remaining 100 points as the test set. The training, validation and testing
sets were windowed with the length of 15 points to form input vectors. The
split of the data set was chosen in favor of short range forecasting. Other splits
have also been tested and results vary slightly. To compare with other regressive
models in financial data modeling and forecasting, the following commonly used
performance measures have been evaluated:

Predicted return(%): The correct prediction percentage of the return
(ln xt+1

xt
), which is also used as a criterion to check whether the prediction is

made in the right direction. In other words, it shows how many percentages
of the predicted returns have the same signs as their corresponding actual
returns.

MSE of predicted rate (−2): The MSE between the actual exchange rates
and the predicted ones in the test set.

Accumulated profit(P%): The accumulated profit is the percentage gain of
the accumulated profits over the testing period, say 100 trading days.

Table 2. Performance on FX rate prediction by various regressive models. The best

performances are marked in bold.

GBP VSOM RSOM RecSOM MSOM Neural SOM+ SOAR SOMAR GSOMAR

vs Gas SVM

USD % 52.63 52.26 52.58 52.54 54.09 53.43 52.84 59.72 59.70

USD −2 4.20 4.24 4.70 4.52 4.24 4.12 4.28 3.80 3.88

USD P% 4.80 4.98 5.12 4.92 5.32 4.82 4.78 5.16 5.54

EU % 52.12 53.05 53.17 53.21 54.24 54.09 52.62 56.42 57.43
EU −2 4.32 4.64 4.95 4.52 4.50 4.62 4.73 4.10 3.93
EU P% 4.73 4.63 4.60 4.72 4.74 4.70 4.62 5.13 5.42

JPY % 54.29 52.48 52.33 52.40 53.45 52.10 53.22 57.31 57.96
JPY −2 5.00 4.89 5.08 5.00 4.75 5.18 5.24 4.31 4.24
JPY P% 4.89 4.91 4.87 4.87 4.72 4.65 4.69 5.01 5.36

As reported before [13,14], the SOMAR model generally outperforms other
methods as also shown in Table 2. The GSOMAR further improves on the SO-
MAR model in all these performance measures. As can be seen, both GSOMAR
and SOMAR consistently outperform other methods by clear margins in the cor-
rect prediction percentages and modeling errors. The benefit of using the fuller
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Table 3. Performance on stock index modeling by various regressive models. The best

performances are marked in bold.

VSOM RSOM RecSOM MSOM Neural SOM+ SOAR SOMAR GSOMAR

Gas SVM

DJ % 53.08 53.36 53.24 54.21 54.67 53.67 52.64 55.99 56.69
DJ −2 8.02 7.89 7.86 7.79 7.72 8.10 8.23 7.52 7.23

FT % 53.20 53.87 53.79 54.01 54.29 53.76 53.38 56.10 56.81
FT −2 7.90 7.77 7.78 7.65 7.54 7.80 7.89 7.24 6.98

SP % 54.71 55.24 55.34 55.87 56.03 54.90 54.78 56.77 57.12
SP −2 6.34 6.37 6.32 6.38 6.21 6.40 6.31 5.98 5.56

HS % 53.98 53.78 54.10 54.21 54.57 53.29 54.28 56.01 56.35
HS −2 7.01 6.82 6.79 6.83 6.61 7.35 6.89 6.39 5.87

GSOMAR model is that model variance parameters are readily available to in-
dicate the volatility of the component regressive models and the mixture. The
length of the input or local model order was validated as 15 and patch size was
chosen as 8 in this experiment. Further tests on a range of stock indices such
as Dow-Jones (DJ), FTSE(FT), S&P (SP) and Hang Seng (HS) are also shown
in Table 3. The data (daily closing values during 1986-2009) was obtained from
Yahoo Finance, and was adjusted by including the effects of dividends and splits.
The most recent 3200 data points were used in the experiments. These results
further demonstrate the improved performance by the GSOMAR model and the
benefit of generalizing to a fuller mixture autoregressive model in financial time
series modeling. Both SOMAR and GSOMAR models have produced markedly
better performance in terms of prediction percentages and mean-square errors.
Note that no accumulated profit is available in this case as the stock indices are
not directly tradable.

5 Conclusions

A mixture model approach to tackling nonlinear and non-stationary time series
has been proposed by using a generalized self-organizing mixture autoregressive
(GSOMAR) model. It consists of a number of autoregressive models that are or-
ganized and learned in a self-organized manner by the adaptive LMS algorithm.
A correlation-based similarity measure is used for identifying the correct AR
models, making the model more effective and robust compared to the error-based
measures. The GSOMAR further generalizes the winner-takes-all SOMAR model
by learning the mixing weights as well as the model variances. These parameters
enhance the simplified SOMAR model and improve the modeling accuracy. The
experiments have been conducted on various nonlinear, non-stationary processes
including financial time series. The results show that the proposed method out-
performs other SOM-based methods in terms of modeling errors and prediction
performances on several modeling and forecasting performance measures.
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Abstract. The goal of this paper is to extend the ecological theory of

perception to the larger scale spatial organization of cortical maps. This

leads to the hypothesis that cortical organization of responses to visual

features reflects the environmental organization of these same features.

In our previous work we have shown that the spatial statistics of natural

images can be characterized by a slowly decaying, or low frequency cor-

relational structure for color, and a rapidly decaying, or high-frequency

structure for orientation features. A similar contrasting behavior of spa-

tial statistics for color and orientation was measured in parallel in the

cortical response of macaque visual cortex.

In order to explore whether this parallel is meaningful, we performed a

cortical simulation using an adaptation of Kohonen’s self-organizing map

algorithm. The simulated cortex responds to both low-frequency and high-

frequency input visual features, and learns to represent these features

through weight modification. We demonstrate that the learnt cortical

weights show the same spatial correlation structure that is observed both

in natural image statistics and the measured cortical responses.

1 Introduction

According to evolutionary theory, all organisms adapt to their environment,
reaching a state where an organism functions optimally in its environment. This
theory can also be applied to organs, where their form and function can be con-
sidered to optimize the survival of the organism in its environment. There is
evidence that the brain has evolved similarly, such that “the better the ‘match-
ing’ between brain, body and environment, the better the adaptation of the
organism to its respective environment.” [16][p. 344].

This motivates an ecological approach to perception, which explores environ-
mental influences on the structure of the sensory apparatus. This approach was
used to derive retinal ganglion spectral responses based on spectral properties of
natural scenes [1]. However, the cortical representations of natural images and
their features such as color, orientation and spatial frequency have proved harder
to measure and characterize. Recent evidence shows that horizontal and vertical

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 587–597, 2009.
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orientations are more likely to occur in natural scenes, and that there are more
cortical neurons that are tuned for these orientations than others [13]. Hence,
an open question is: what is the relation between statistics of natural image
features, and the statistics of their cortical representations? Our interpretation
of the ecological theory is that these statistics should be similar. Indeed, early
research in this direction suggests that this is the case [7].

In order to explore this hypothesis further, we can also apply modeling tech-
niques to determine how different statistical distributions of input features are
manifested in the cortical representations of those features. Are they compara-
ble, or dissimilar? The approach taken in this paper is illustrated in Figure 1.
The observations drawn from such a model could independently verify biological
observations, and serve to explain cortical functioning and processing. This is
especially valuable when obtaining the necessary biological observations is diffi-
cult, say due to obtaining measurements from multiple subjects due to cost, or
due to the complexity of the experimental protocol.

Natural Image statistics

Correlation structure of
High frequency &

Low frequency
image features

Measured cortical
representation statistics

Correlation structure of
High frequency &

Low frequency
cortical representations

Observed
similarity

Simulated visual inputs with
similar correlation structure of

High frequency &
Low frequency
image features

Simulated cortical
representation statistics

Correlation structure of
High frequency &

Low frequency
simulated cortical
representations

Computed
similarity

? compare

Fig. 1. The modeling approach used in this paper. We wish to compare the cortical

representation statistics in measured samples with simulated samples.

We use an adapted Kohonen self-organizing map based on our previous work
[18] to model cortical functioning. The Kohonen algorithm [12] uses a local
neighborhood to smooth weights, resulting in similarity in cortical responses
over local neighborhoods in general. However, an open question is whether it
preserves higher order structures such as longer range correlations that may be
present in the inputs. We argue that preservation of longer range correlations
in the cortical representation is essential so that higher cortical levels (say V2
and higher) can efficiently read out information from lower level cortical maps.
For instance, contour completion tasks [14] can be carried out more easily if
longer range input correlations are preserved at the level of cortical area V1.
Thus is it advantageous for the spatial structure of the cortex to capture both
local correlations and higher order correlations of inputs.

Our simulation results indicate that the spatial correlation structure of cor-
tical responses to high and low frequency input features mirrors the correlation
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structure of these features in the input space. In other words, there is a corre-
spondence between the input space and the cortical representation.

The implications of our result are that the hypothesis of ecological percep-
tion is valid, and can be extended to sensory areas of the brain. Furthermore,
our findings can inspire neuroscientists to make measurements that would pro-
vide additional evidence. Since the number of possible neuroscience experiments
is vast, our research suggests specific measurements that need to be made to
advance the ecological theory of perception. This could prove to be a useful
instance of computer modeling driving neuroscientific observation. Mathemati-
cal and computational models can play a vital role here, by providing testable
predictions that can guide effective experimentation.

2 Background

Atick and Redlich [1] derived the spatial receptive field properties of retinal gan-
glion cells as an optimal filter for the two-point correlations of contrast in natural
images. Since nearby pixels are highly correlated, this implies that nearby retinal
receptors are highly redundant [21,20], and need not transmit their information
in full. This is a demonstration of the application of the ecological theory of
perception to the functioning of the sensory apparatus.

However, the interpretation of cortical functioning and organization according
to this theory has proved more difficult. A striking property of visual cortical
areas is the topographic organization of features such as orientation, color, and
spatial frequency, whereby nearby units tend to display similar feature prefer-
ences [10]. Sejnowski and Bell show that oriented edge detectors are the maximal
information filters for natural images [3], but these filters cannot be spatially or-
ganized on the basis of the similarity of their responses. Indeed, cortical map
clustering seems to preserve redundancies rather than reduce them, at least when
the average firing rate is considered as the coding response.

Self-organized feature maps, on the other hand, have proved to be a more
amenable model of the visual cortex. Kohonen’s self-organized algorithm has
been used to model map formation, under the principle that the topology of
the input space should be preserved in the topology of neural space [17]. Maps
trained with oriented stimuli recreate to a large extent the spatial organization
of primary visual cortex [17], including selectivity and linear zones punctuated
by point and line discontinuities in the case of orientation, and a biologically
consistent spatial layout of color selectivity [19]. Self-organized maps also have
the advantage of a relatively simple physiological interpretation [15]. Moreover,
in a seemingly significant departure from the ecological theory, these maps al-
locate more neural space to more frequent inputs [17], as opposed to equalizing
them with the more infrequent ones.

Therefore the following questions are pertinent: what is the relationship be-
tween the statistics of natural images and the spatial structure of cortical maps?
Is it possible to identify a functional dependence of cortical response maps of
orientation and color with the ensemble properties of the corresponding inputs?
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2.1 Statistics of Natural Images

Scaling measurements involve studying how the probability of finding a cooc-
curring pair changes as a function of the relative distance. A classic result in the
analysis of natural scenes is that the luminance of pairs of pixels is correlated
and that this correlation is scale-invariant [9,21,1]. This indicates that statisti-
cal dependencies between pairs of pixels do not depend on whether the observer
zooms in on a small window or zooms out to a broad vista.

Few studies have focused on the structure of long-range correlations of other
visual attributes. A report by Sigman et al. [22], analyzed the spatial distribu-
tion of orientation information in natural scenes. They showed that information
about the presence of iso-oriented lines in natural images is correlated over rel-
atively short distances, following specific power-law statistics for co-linearity;
other pairwise arrangements display shorter correlations. Cecchi et al. [7] pre-
sented a preliminary study showing that the correlation structure in natural im-
ages shows a slowly varying, low frequency characteristic for color, and a faster
varying, high frequency characteristic for orientation. This relationship was pre-
served in the correlation structure of cortical responses to color and orientation
features in the input space.

Betsch et al [5] showed that the environment is dominated by the cardinal
horizontal and vertically oriented segments. Li et al [13] measured the orienta-
tion tuning characteristics of a population of several thousand cat striate cortical
neurons and found that more neurons prefer the cardinal rather than oblique an-
gles. Betsch et al [5] suggest that the increased cortical representation of cardinal
orientations may be a natural consequence of image statistics. This shows that
the the cortical representation of visual attributes is strongly related to natural
image statistics and is a research direction worth exploring.

2.2 Self-Organizing Maps

Kohonen’s self-organizing map (SOM) has been widely used in a number of
domains [12]. It has had considerable impact in computational neuroscience
through the modeling of cortical map formation [8, 2]. In our earlier work [18]
modified Kohonen’s self-organizing map (SOM) algorithm to employ only local
competition, and developed a technique to eliminate the traditional parameter-
izations required [4].

The role of inputs is critical in the process of self-organization. Hubel et al [11]
showed that rather than being genetically predetermined, the structure of cor-
tical visual area V1 undergoes changes depending on the animal’s visual experi-
ence, especially during the critical period of development.

Certain classes of inputs are sufficient to model V1. For instance, Bednar [2]
used input stimuli consisting of elongated Gaussian blobs. In this paper, we
use sine-wave gratings of random orientation for the sake of simplicity, and to
demonstrate the essential characteristics of our solution.
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3 Experimental Methods

We model the visual pathway from the retina to the cortex as shown in
Figure 2. The retina projects to the lateral geniculate nucleus (LGN), which
in turn projects to the cortex. There are two channels in the LGN, which per-
form on-center and off-center processing of the visual input. The cortical units
are interconnected through a lateral network which is responsible for spreading
the weights of the winner.

Topographic
mapping from 
input layer to 
cortex

Input Layer (Retina)

Cortex
Lateral neighborhood used
for computation of  local  winners

“On”center
channel

“ Off”center channel

(LGN)

(A) (B)

Fig. 2. Illustrating the network connectivity. (A) The input units are arranged in a two-

dimensional grid, and can be thought of as image intensity values. The cortical units

also form a 2D grid. Each input unit projects via the LGN in a feedforward topographic

manner to the cortical grid. (B) shows the lateral connectivity in the cortex.

3.1 Algorithm for Weight Updates

We have extended Kohonen’s algorithm to allow local competition in a larger
cortex, such that multiple winners are possible [18]. Learning is driven by winners
in local neighborhoods, determined by the extent of lateral connectivity. A simple
Hebbian rule is used to update synaptic weights.

The basic operation of the network is as follows. Let X1 denote the input
vector from the on-center LGN channel and X2 the input vector from the off-
center LGN channel to a cortical unit. Each cortical unit receives projections
from only a restricted portion of the LGN.

We extend our earlier work [18] by using a mixture of two types of statistics
for the input, X , such that

X = U + V (1)

where U and V denote low frequency and high frequency channels respectively.
Let w1Uij denote a synaptic weight, which represents the strength of the

connection between the ith on-center LGN unit for the low frequency input
channel U , and the jth unit in the cortex. The subscript numeral “1” represents
the on-center LGN unit. Similarly, w1V ij denotes the weight between the ith

on-center LGN unit for the high frequency input channel V , and the jth unit in
the cortex. Let the subscript numeral “2” denote the off-center LGN units. In a
similar fashion, w2Uij is the weight between the ith off-center LGN unit for the
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low frequency input channel U , and the jth unit in the cortex, and w2V ij is the
weight for the high frequency input channel V .

The output yj of the jth cortical unit is given by

yj =
∑
i∈Lj

w1UijX1Ui +
∑
i∈Lj

w1V ijX1V i +
∑
i∈Lj

w2UijX2Ui +
∑
i∈Lj

w2V ijX2V i (2)

Here the cortical unit combines the responses from the two input frequency
channels processed via two LGN channels, and Lj is the neighborhood of LGN
units that project to this jth cortical unit.

The next step is for each cortical unit to determine whether it is a winner
within its local neighborhood. Let Nj denote the local cortical neighborhood of
the jth cortical unit (which excludes the jth unit). Let m index the cortical units
within Nj. Thus, unit j is a local winner if

∀m ∈ Nj, yj > ym (3)

This is a local computation for a given cortical unit. Once the local winners are
determined, their weights are updated to move them closer to the input vector.
If cortical unit j is the winner, the update rule is

w1Uij ← w1Uij + μ(X1Ui − w1Uij) (4)
w1V ij ← w1V ij + μ(X1V i − w1V ij)

where i indexes those input units that are connected to the cortical unit j, and
μ is the learning rate. μ is typically set to a small value, so that the weights are
incrementally updated over a large set of input presentations. A similar rule is
used to learn w2Uij and w2V ij .

In addition, the weights of the cortical units within the neighborhood Nj,
denoted by the index m, are also updated to move closer to their inputs, but
with a weighting function f(d(j,m)), where d(j,m) is the distance from the unit
m to the local winner j. This is given by

w1Uim ← w1Uim + f(d(j,m))μ [X1Ui − w1Uim] (5)
w1V im ← w1V im + f(d(j,m))μ [X1V i − w1V im]

and similarly for w2Uim and w2V im.
Finally, the incident weights at each cortical unit are normalized. The cortical

dynamics and learning are thus based on a modified Kohonen algorithm.
Typically, the size of the neighborhood Nj and the learning rate μ are grad-

ually decreased according to a schedule such that the resulting solution is sta-
ble. We use a parameterless-SOM technique to automatically implement such a
schedule, and further details are presented in [18].

3.2 Network Configuration

We used an input layer consisting of 30x30 retinal units. The size of the cortex
was 60x60 units. Images incident on this simulated retina consisted of sinu-
soidal gratings of random orientation and phase. The high frequency channel
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V , consisted of gratings of spatial frequency four times as high as that in the
low frequency channel, U . The orientation and phases of each channel were ran-
domized independently of each other. We emphasize that our model uses real
input images, as opposed to other work that uses abstract variables that encode
orientation, such as in [6].

The LGN was the same size as the retina. A radius of r = 9 was used to
generate a topographic mapping from the LGN into the cortex. The intra-cortical
connectivity was initialized with a radius of rCC = 15.

For the weight updates, the function f was chosen to be a Gaussian that
tapers to approximately zero at the boundary of the local neighborhood, ie at
rCC . The learning rules in section 3.1 were applied to learn the afferent weights.

4 Experimental Results

We wish to measure the correlational structure of the cortical weights. The
general form of the equations is as follows, where Ψ(x) represents the field of
weight vectors.

c(d) = σ−1
〈
�
[
(Ψ(x)− Ψ)(Ψ∗(x + x′)− Ψ

∗
)
]〉

|x|=d
(6)

where the brackets signify average over x and over the ensemble of cortical
weights over each cortical location, Ψ is the average field, ∗ is the complex con-
jugate operator, � the real part operator, and σ the variance, defined as:

σ =
〈
�
[
(Ψ(x)− Ψ)(Ψ∗(x)− Ψ

∗
)
]〉

(7)
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Fig. 3. (a) Spatial auto-correlation of the orientation and color fields in natural images.

(b) Spatial auto-correlation of the orientation and color fields in the macaque visual

cortex. The fields were obtained by applying a classification approach to the response

to color and orientation stimuli [23]. The distance is measured in microns over the

cortical surface.
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Fig. 4. (a) Spatial correlation of high and low frequency image inputs used for the

simulation. (b) Spatial correlation of high and low frequency channels of cortical rep-

resentations, cU (d) and cV (d).
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Fig. 5. (a) The cortical weight matrices w1U for the low frequency channel. There

are several multi-colored blobs, with each blob representing a cortical unit. Each blob

visualizes the rasterized weight matrix that connects the LGN to the corresponding

cortical unit. The colormap is indicated by the legend. In order to display the weight

matrices clearly in the available space, we show only the central 10x10 portion of the

60x60 cortex. (b) Similarly, we show the cortical weight matrices w1V for the high

frequency channel.

where, as in Eq. (6) the average is over x and the ensemble of cortical weights.
The function c(d) is computed for the low frequency cortical channel U and de-
noted as cU (d). Similarly, cV (d) is the correlation for the high frequency cortical
channel V .

For the sake of comparison, we first present our previous results from [7] in
Figures 3(a) and (b).

For the sake of comparison with Figure 3(a), we show in Figure 4(a) the
corresponding spatial correlation of the input image statistics that were used in
the simulation.
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Figure 4(b) shows the result of applying the computation in Eq. 6 to the
two sets of cortical weights, wU and wV . This result shows that the cortical
representation of low frequency inputs is also low frequency, and similarly for
high frequency inputs.

Figure 5 shows the receptive fields of the cortical units. Typically, only the
preferred input for a given cortical location is shown. However, we display the
entire weight matrix at multiple contiguous cortical locations to help understand
the correlational structure displayed by the cortical weights.

5 Discussion

We can compare the statistical properties of a macaque visual cortex in Fig. 3(b)
with the simulated cortex in Figure 4(b). This comparison is intended to be qual-
itative, and captures an important aspect of the ecological theory of perception,
which is that the cortical representation of the lower frequency stimulus should
be spatially more highly correlated than that of the higher frequency stimulus.
The color field exhibits lower spatial frequency in the input images as well as in
the cortical representation. Similarly, the orientation field exhibits higher spatial
frequency.

Kohonen’s algorithm does not predict what the correlational structure of cor-
tical organization will be, especially with respect to inputs of different spatial
frequencies. In this sense, the question we are addressing, which is the investiga-
tion of the similarity of correlation structure in inputs and cortical representa-
tion, is non-trivial. Its investigation most likely requires detailed computational
simulations, which is a contribution of this paper.

The neural coding implication of our results is that the cortical weights for fast
spatially varying inputs, such as orientation should also vary quickly. Whereas,
for slower varying input features, such as color, it is sufficient for the cortical
representation to also vary slowly.

Our simulations can be made more realistic by using natural images as inputs,
which is a direction we are working towards.

The close similarity between the plots shown in Figures 3(a) and Fig. 4(a),
and Fig. 3(b) and 4(b) provide confirmatory evidence for the ecological theory
of perception as manifested in the representation of visual features in cortical
area V1.

6 Conclusions

We presented a novel simulation of cortical organization with respect to inputs
of different spatial frequencies. We show that the correlational structure of a
simulated visual cortex is similar to that of a real macaque cortex in that the
cortical representation of low frequency inputs is also of low frequency, and the
representation of high-frequency inputs is of high frequency. Furthermore, the
correlation structure of cortical representations matches that found in natural
images.
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Our results confirm the ecological theory of perception, and show that cortical
representations match the statistics of the environment. This finding should spur
further neuroscientific experimentation to validate our results. We are in the
process of embarking on such a study.
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Abstract. The mathematical framework for studying of a fuzzy approx-

imate reasoning is presented in this paper. One of the defuzzification

methods besides the center of gravity method which is the best well
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1 Introduction

Mamdani has applied the fuzzy theory to the field of control theory as intelligent
control [1]. Fuzzy logic control is one of the ways to represent numerically the
control given by human language and sensitivity, and it has been applied in
various practical control plants. Since 1990’s, like the theory of classical control
and modern control, many systematized mathematical considerations have been
discussed [4]–[5]. In practical use, fuzzy membership functions (fuzzy sets), which
represent input and output states in optimal control system, are decided on the
basis of the experience of experts in each peculiar plant before. Therefore some
acquisition methods of fuzzy inference rules by a neural network and a genetic
algorithm have been proposed [7] [8].

The authors have been studying to establish the automatic and computa-
tional determination of fuzzy membership functions, which give optimal con-
trols in fuzzy control system [9] [10]. The authors also have been studying to
find algorithms that compute optimal solutions. The authors consider fuzzy op-
timal control problems as problems of finding the minimum (maximum) value of
the cost (benefit) function with feedback law constructed by Mamdani method,
product-sum-gravity method, and Nakamori method [11]–[13]. These approxi-
mate reasoning methods adopt the center of gravity method, and calculate de-
fuzzified value of inference result represented by fuzzy set. This defuzzification
method is most widely used. The resulting behavior of fuzzy approximate reason-
ing using any of these defuzzification methods will be discussed in the following
section. The author’s study covers the height defuzzification method [14] [15].
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Since this method does not synthesize the fuzzy set (membership function), this
is better than the center of gravity method in respect of high-speed computing.

In this study, two kinds of continuity of defuzzification are discussed. One is
Lipschitz continuity on the space of premise valuable. The other is continuity as
functional on the set of membership functions. By the continuity as functional
and the compactness of the set of membership functions, the existence of an
optimal feedback control law in a nonlinear fuzzy feedback control system, in
which the feedback laws are determined by IF-THEN type fuzzy rules, are shown.
Then it is crucial to investigate the convergence of feedback laws constructed by
fuzzy approximate reasoning method and the convergence of solutions of the
nonlinear state equation in the fuzzy control system.

2 Fuzzy Feedback Control

R
n denotes the n-dimensional Euclidean space with the usual norm ‖ · ‖. Let

f(y, v) : Rn×R → Rn be a (nonlinear) vector valued function which is Lipschitz
continuous. In addition, assume that there exists a constant Mf > 0 such that

‖f(y, v)‖ ≤Mf (‖y‖+ |v|+ 1) (1)

for all (y, v) ∈ Rn × R.
Consider a system given by the following state equation:

ẋ(t) = f(x(t), u(t)), (2)

where x(t) is the state and the control input u(t) of the system is given by the
state feedback

u(t) = ρ(x(t)).

Assume that the controllability is guaranteed in this system. For a sufficiently
large r > 0,

Br = {x ∈ R
n : ‖x‖ ≤ r}

denotes a bounded set containing all possible initial states x0 of the system. Let
T be a sufficiently large final time. Then, we have

Proposition 1. [11] Let ρ : Rn → R be a Lipschitz continuous function and
x0 ∈ Br. Then, the state equation

ẋ(t) = f(x(t), ρ(x(t))) (3)

has a unique solution x(t, x0, ρ) on [0, T ] with the initial condition x(0) = x0
such that the mapping (t, x0) ∈ [0, T ]×Br �→ x(t, x0, ρ) is continuous.

For any r2 > 0, put

Φ = {ρ : R
n → R : Lipschitz continuous, sup

u∈Rn

|ρ(u)| ≤ r2}. (4)
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Then, the following (a) and (b) hold.
(a) For any t ∈ [0, T ], x0 ∈ Br and ρ ∈ Φ,

‖x(t, x0, ρ)‖ ≤ r1, (5)

where
r1 = eMfT r + (eMfT − 1)(r2 + 1). (6)

(b) Let ρ1, ρ2 ∈ Φ. Then, for any t ∈ [0, T ] and x0 ∈ Br,

‖x(t, x0, ρ1)− x(t, x0, ρ2)‖ ≤
eLf (1+Lρ1)t − 1

1 + Lρ1
sup

u∈[−r1,r1]n
|ρ1(u)− ρ2(u)|, (7)

where Lf and Lρ1 are the Lipschitz constants of f and ρ1.

3 Fuzzy Rules and Fuzzy Sets

Assume the feedback law ρ consists of the following m IF-THEN type fuzzy
control rules.

RULE 1: IF x1 is A11 and . . . and xn is A1n

THEN y is B1...
RULE i: IF x1 is Ai1 and . . . and xn is Ain

THEN y is Bi...
RULE m: IF x1 is Am1 and . . . and xn is Amn

THEN y is Bm (8)

Here, m is the number of fuzzy production rules, and n is the number of premise
variables xj ∈ [−r1, r1]. y ∈ [−r2, r2] is consequence variable. The constants r1
and r2 are decided by (4) and (6) in the previous section. Let μAij and μBi be
membership functions of the fuzzy set Aij and Bi, respectively.

Let C[−r1, r1] be the Banach space of all continuous real functions on [−r1, r1]
with the norm ‖μ‖ = max

x∈[−r1,r1]
|μ(x)|. Denote by L1[−r2, r2] the Banach space of

all Lebesgue measurable real functions μ on [−r2, r2] such that
∫ r2

−r2
|μ(x)|dx <

∞.
We also denote by L∞[−r2, r2] the Banach space of all Lebesgue measurable,

essentially bounded real functions on [−r2, r2]. Let Δij > 0 (1 ≤ i ≤ m; 1 ≤ j ≤
n). We consider the following two sets of fuzzy membership functions.

FΔij = {μ ∈ C[−r1, r1] : 0 ≤ μ(x) ≤ 1 for ∀x ∈ [−r1, r1],

|μ(x) − μ(x′)| ≤ Δij |x− x′| for ∀x, x′ ∈ [−r1, r1]} (9)
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and
G = {μ ∈ L∞[−r2, r2] : 0 ≤ μ(x) ≤ 1 a.e. x ∈ [−r2, r2]}. (10)

The set FΔij , which is more restrictive than G, contains triangular, trapezoidal
and bell-shaped fuzzy membership functions with gradients less than positive
value Δij . Consequently, if Δij > 0 is taken large enough, FΔij contains al-
most all fuzzy membership functions which are used in practical applications.
In section 8, we shall assume that the fuzzy membership functions μAij in “IF”
parts of the rules (8) belong to the set FΔij . On the other hand, we shall also
assume that the fuzzy membership functions μBi in “THEN” parts of the rules
(8) belong to the set of discontinuous functions G [6].

In the following, we endow the space FΔij with the norm topology onC[−r1, r1]
and endow the space G with the weak topology σ(L∞, L1) on L∞[−r2, r2].

Put

F =
m∏
i=1

⎧⎨⎩
n∏
j=1

FΔij

⎫⎬⎭×Gm, (11)

whereGm denotes them times Cartesianproduct ofG. Then, every element (A,B)
of F is a fuzzy controller given by the IF-THEN type fuzzy control rules (8).

For simplicity, we write “IF” and “THEN” parts in the rules by the following
notation: Ai = (μAi1 , μAi2 , . . . , μAin) (i = 1, 2, . . . ,m), A = (A1,A2, . . . ,Am)
and B = (μB1 , μB2 , . . . , μBm).

The membership function usually used in the fuzzy control and defined on the
real number space is triangular, trapezoidal (π-type), bell-shaped, Z-type, and
S-type, etc. If closed interval [−r1, r1] and [−r2, r2] are taken sufficiently large in
a practical use, almost all membership functions are included in the set defined
by (9) and (10).

Then, the IF-THEN type fuzzy control rules above is called a fuzzy con-
troller, and is denoted by (A,B). In the rules, the tuple of premise variable
x = x1, x2, . . . , xn is called an input information given to the fuzzy controller
(A,B), and y is called an control variable.

4 Approximate Reasoning

Let (A,B) be a fuzzy controller given by the IF-THEN type fuzzy control rules
above. We say that the system (3) is a fuzzy feedback system if the control func-
tion u(t) is given by the state feedback u(t) = ρAB(x(t)), where ρAB(x(t)) is the
amount of operation from the fuzzy controller (A,B) for the input information
x(t). Mamdani method is widely used in fuzzy controls because of its simplic-
ity and comprehensibility. Since min-max gravity method uses minimum and
maximum operations, because of their nonlinearity, the value of the agreement
degree and the gravity might not change smoothly. In addition, it is pointed out
that this method is not necessarily appropriate to express the human intuition.
Then, Mizumoto proposed the product-sum-gravity method by replacing min-
imum with product and maximum with summation [16]. In the following, the
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approximate reasoning method with height defuzzification method is introduced.
If given the input information x∗ = (x1

∗, x2
∗, . . . , xn∗) to the fuzzy controller

(A,B), the procedure for inference is summarized as follows:

Procedure 1. The strength of each rule is calculated by

αmAi(x
∗) =

n∧
j=1

μAij (xj
∗),

αpAi(x
∗) =

n∏
j=1

μAij (xj
∗) (i = 1, 2, . . . ,m).

Procedure 2. The defuzzified value y∗i of the fuzzy set in consequent part of i-th
rule is given by

y∗i =

∫ r2
−r2 yμBi(y)dy∫ r2
−r2 μBi(y)dy

(i = 1, 2, . . . ,m).

Procedure 3. Defuzzification stage.

ρAB(x∗) =
∑m
i=1 y

∗
i αAi(x∗)∑m

i=1 αAi(x∗)

where αAi is αmAi or αpAi .
Since these calculations are depend on the membership functions, the sub-

scripts Aij ,Ai,A, Bi, and B are put on αm, αp, and ρ.

5 Admissible Fuzzy Controller

The reasoning calculation and defuzzification are denoted as composite function
through the inference procedure from 1 to 3 on the set of premise valuable
[−r1, r1]n, and depend on the set of membership function. To avoid making the
denominator of the expression in the procedure 2 and defuzzification stage equal
to 0, for any δ > 0, and ε > 0, we consider the subset

Fδ,ε =
{

(A,B) ∈ F : ∀x ∈ [−r1, r1]n,
m∑
i=1

αAi(x) ≥ ε,

∀i = 1, 2, . . . ,m,
∫ r2

−r2
μBi(y)dy ≥ δ

}
, (12)

where αAi is αmAi or αpAi . This is a slight modification of F by (11). If δ
and ε are taken small enough, it is possible to consider F = Fδ,ε for practical
applications.
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6 Continuity of Defuzzification as Functional

In this section, the continuity of approximate reasoning as functional on the set of
membership functions Fδ,ε is shown. It is already shown that the calculations in
the procedure 1 are continuous even if minimum operation or product operation
[11] [12]. That is, if for each i = 1, 2, . . . ,m,

μAk
ij
→ μAij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n)

for k →∞ implies

‖αmAk
i
− αmAi‖∞ = sup

x∈[−r1,r1]n
|αmAk

i
(x)− αmAi(x)| → 0

and
‖αpAk

i
− αpAi‖∞ = sup

x∈[−r1,r1]n
|αpAk

i
(x) − αpAi(x)| → 0.

Assume that a sequence (Ak,Bk) ⊂ Fδ,ε converges to (A,B) for the product
topology if and only if, for each i = 1, 2, . . . ,m,

‖αAk
i
− αAi‖∞ → 0

and
μBk

i
→ μBi for the weak topology σ(L∞, L1), (13)

where αAi is αmAi or αpAi .

Noting that for all i = 1, 2, . . . ,m,
∫ r2

−r2
μBi(y)dy ≥ δ by (12) and the defini-

tion of membership function, we have

|y∗i
k − y∗i | =

∣∣∣∣∣
∫ r2
−r2 yμBk

i
(y)dy∫ r2

−r2 μBk
i
(y)dy

−
∫ r2
−r2 yμBi(y)dy∫ r2
−r2 μBi(y)dy

∣∣∣∣∣
≤ r2
δ2

(
2
∣∣∣∣ ∫ r2

−r2
yμBk

i
(y)dy−

∫ r2

−r2
yμBi(y)dy

∣∣∣∣+r2∣∣∣∣ ∫ r2

−r2
μBk

i
(y)dy−

∫ r2

−r2
μBi(y)dy

∣∣∣∣).
(14)

Then the defuzzified value y∗i is continuous on Fδ,ε by (13). The following in-
equality is obtained:

|ρAkBk(x) − ρAB(x)| =
∣∣∣∣∣
∑m
i=1 αAk

i
(x)y∗i

k∑m
i=1 αAk

i
(x)

−
∑m
i=1 αAi(x)y∗i∑m
i=1 αAi(x)

∣∣∣∣∣
≤ m

ε2

m∑
i=1

|y∗i
k − y∗i |+

2mr2
ε2

m∑
i=1

|αAk
i
(x) − αAi(x)|.

It is easy to lead that the functional ρ is continuous on Fδ,ε from above inequality
(14).
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7 Lipschitz Continuity of Defuzzification

In this section, Lipschitz continuity of the defuzzification as the composite func-
tion on the premise variable [−r1, r1] is shown. Lipschitz condition is applied to
the existence of unique solution of the state equation (2).

7.1 Lipschitz Continuity of Height Method

For all i = 1, 2, . . . ,m, the following mappings αmAi and αpAi are Lipschitz
continuous on the space of premise variables [−r1, r1]n [11] [12]. That is, for
x, x′ ∈ [−r1, r1]n

|αAi(x)− αAi(x
′)| ≤ Δαi‖x− x′‖,

where Δαi is Lipschitz constant of αAi (i = 1, 2, . . . ,m). Since |αAi(x)| ≤ 1 for
∀x ∈ [−r1, r1]n,

ε ≤
m∑
i=1

αAi(x) ≤ m.

Then we have, similarly

|ρAB(x) − ρAB(x′)| ≤ 2mr2
ε2

m∑
i=1

Δαi‖x− x′‖.

This inequality shows Lipschitz continuity of height method.

7.2 Existence of Unique Solution of the State Equation

It is easily seen that every bounded Lipschitz function ρ : [−r1, r1]n → R can
be extended to a bounded Lipschitz function ρ̃ on Rn without increasing its
Lipschitz constant and bound. In fact, define ρ̃ : Rn → R by

ρ̃(x) = ρ̃(x1, . . . , xn) =
{

ρ(x1, . . . , xn), if x ∈ [−r1, r1]n
ρ(η(x1)r1, . . . , η(xn)r1), if x �∈ [−r1, r1]n,

where

η(u) =
{

1, if u > r1
−1, if u < −r1.

Let (A,B) ∈ Fδ,ε. Then it follows from Lipschitz continuity in the previous
section and the fact above that the extension ρ̃AB of ρAB is Lipschitz continuous
on Rn with the same Lipschitz constant of ρAB and satisfies sup

u∈Rn

|ρ̃AB(u)| ≤ r2.

Therefore, by proposition the state equation (3) for the feedback law ρ̃AB has a
unique solution x(t, x0, ρ̃AB) with the initial condition x(0) = x0 [18]. Though
the extension ρ̃AB of ρAB is not unique in general, the solution x(t, x0, ρ̃AB)
is uniquely determined by ρAB using the inequality (7) of (b) of proposition.
Consequently, in the following the extension ρ̃AB is written as ρAB without
confusion.
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8 Application for Optimization

In this section, using an idea and framework mentioned in the previous section,
the existence of optimal control based on fuzzy rules in the admissible fuzzy
controller will be established.

The performance index of this control system for the feedback law ρ in the
previous section is evaluated with the following integral performance function:

J =
∫
Br

∫ T

0
w(x(t, ζ, ρ), ρ(x(t, ζ, ρ)))dtdζ. (16)

where w : Rn ×R → R is a positive continuous function. The following theorem
guarantee the existence of a rule set which minimizes the previous function (16).

Theorem 1. The mapping

Fδ,ε " (A,B) �→
∫
Br

∫ T

0
w(x(t, ζ, ρAB), ρAB(x(t, ζ, ρAB)))dtdζ

has a minimum value on the compact metric space Fδ,ε defined by (12).

Proof. It is sufficient to prove that compactness of Fδ,ε and the continuity of
performance function J on Fδ,ε are obtained.

For each i = 1, 2, . . . ,m, FΔij is a subset of C[−r1, r1] which is the subspace
of continuous function on [−r1, r1]. Then it is compact respect for uniform norm
‖·‖∞ by the Ascoli Arzela’s theorem [19]. On the other,G is closed for σ(L∞, L1).
Then it is a compact set respect for the weak topology [11]. Therefor, by the
Tychonoff’s theorem, F is compact respect for the product topology. Assume
that {(Ak,Bk)} ⊂ Fδ,ε → (A,B) ∈ F for k → ∞. Fix x ∈ [−r1, r1]n. It is easy
to show that for i = 1, 2, . . . ,m∫ r2

−r2
μBi(y)dy = lim

k→∞

∫ r2

−r2
μBk

i
(y)dy ≥ δ

and
m∑
i=1

αAi(x) = lim
k→∞

m∑
i=1

αAk
i
(x) ≥ ε,

and these inequality imply (A,B) ∈ Fδ,ε. Therefore Fδ,ε is a closed subset of
F and hence it is compact. Assume that (Ak,Bk) → (A,B) in Fδ,ε and fix
(t, ζ) ∈ [0, T ]×Br. Then it follows from the section 6 that

lim
k→∞

sup
x∈[−r1,r1]n

|ρAkBk(x) − ρAB(x)| = 0. (17)

Hence, by (b) of proposition, we have

lim
k→∞

‖x(t, ζ, ρAkBk)− x(t, ζ, ρAB)‖ = 0. (18)
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Further, it follows from (17), (18) and (a) of proposition that

lim
k→∞

ρAkBk(x(t, ζ, ρAkBk)) = ρAB(x(t, ζ, ρAB)). (19)

Noting that w : Rn × R → R is positive and continuous, it follows from (18),
(19) and the Lebesgue’s dominated convergence theorem [20] that the mapping

(A,B) ∈ Fδ,ε �→
∫
Br

∫ T

0
w(x(t, ζ, ρAB), ρAB(x(t, ζ, ρAB)))dtdζ

is continuous on the compact metric space Fδ,ε. Thus it has a minimum (maxi-
mum) value on Fδ,ε, and the proof is complete.

9 Conclusion

In this paper, we analyzed the continuity of the defuzzification and proved that
there exists an optimal feedback control law in a nonlinear fuzzy feedback control
system, in which the feedback laws are determined by IF-THEN type fuzzy rules.
Actually the height method is particular case of the area method. To select the
proper defuzzification method, it is necessary to analyze the property of fuzzy
approximate reasoning and the simulation of fuzzy control.

It is recognized that in various applications it could be a useful tool in ana-
lyzing the convergence of fuzzy control rules modified recursively.

References

1. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic

plant. Proc. IEE 121(12), 1585–1588 (1974)

2. Tanaka, K., Sugeno, M.: Stability Analysis of Fuzzy Systems and Construction Pro-

cedure for Lyapunov Functions. Transactions of the Japan Society of Mechanical

Engineers (C) 58(550), 1766–1772 (1992)

3. Hojo, T., Terano, T., Masui, S.: Fuzzy Feedback Control Rules Based on Opti-

mality. Journal of Japan Society for Fuzzy Theory and Systems 5(5), 1200–1211

(1993)

4. Diamond, P.: Stability and periodicity in fuzzy differential equations. IEEE Trans.

Fuzzy Syst. 8(5), 583–590 (2000)

5. Furuhashi, T.: Stability Analysis of Fuzzy Control Systems Based on Symbolic

Expression. Journal of Japan Society for Fuzzy Theory and Systems 14(4), 357–

365 (2002)

6. Gonda, E., Miyata, H., Ohkita, M.: Self-Tuning of Fuzzy Rules with Different

Types of MSFs. Journal of Japan Society for Fuzzy Theory and Intelligent Infor-

matics 16(6), 540–550 (2004)

7. Ishibuchi, H., Nii, M.: Generating Fuzzy Classification Rules from Trained Neural

Networks. Journal of Japan Society for Fuzzy Theory and Systems 9(4), 512–524

(1997)

8. Nomura, H., Wakami, N.: A Method to Determine Fuzzy Inference Rules by a

Genetic Algorithm. The Transactions of the Institute of Electronics, Information

and Communication Engineers (A) J77-A(9), 1241–1249 (1994)



Height Defuzzification Method on L∞ Space 607

9. Shidama, Y., Yang, Y., Eguchi, M., Yamaura, H.: The compactness of a set of

membership functions and its application to fuzzy optimal control. The Japan

Society for Industrial and Applied Mathematics 6(1), 1–13 (1996)

10. Yang, Y., Wasaki, K., Eguchi, M., Shidama, Y., Kimura, M.: The Compactness of

a Set of Fuzzy Membership Function in NBV and Its Application. IEICE TRANS-

ACTIONS on Fundamentals of Electronics, Communications and Computer Sci-

ences J82-A(4), 523–529 (1999)

11. Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feed-

back Control Determined by Product-Sum-Gravity Method. Journal of Nonlinear

and Convex Analysis 1(2), 201–211 (2000)

12. Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feed-

back Control in L∞ Space. In: Proc. International Conference on Fuzzy Systems

(FUZZ-IEEE 2001), vol. 2, pp. 896–899 (2001)

13. Mitsuishi, T., Endou, N., Shidama, Y.: Continuity of Nakamori Fuzzy Model and

Its Application to Optimal Feedback Control. In: Proc. IEEE International Con-

ference on Systems, Man and Cybernetics, pp. 577–581 (2005)

14. Mizumoto, M.: Improvement of fuzzy control (II). In: Proc. 4th Fuzzy System

Symposium, pp. 91–96 (1988)

15. Terano, T.: Practical Fuzzy Control Technology. IEICE, Tokyo (1991)

16. Mizumoto, M.: Improvement of fuzzy control (IV) - Case by product-sum-gravity

method. In: Proc. 6th Fuzzy System Symposium, pp. 9–13 (1990)

17. Nakamori, Y., Ryoke, M.: Identification of fuzzy prediction models through hy-

perellipsoidal clustering. IEEE Transactions on Systems, Man and Cybernetics

SMC 24(8), 1153–1173 (1994)

18. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New

York (1982)

19. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover Publications, New York (1990)

20. Dunford, N., Schwartz, J.T.: Linear Operators Part I: General Theory. John Wiley

& Sons, New York (1988)



An Additive Reinforcement Learning

Takeshi Mori and Shin Ishii

Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan

{tak-mori,ishii}@i.kyoto-u.ac.jp

Abstract. In reinforcement learning, preparing basis functions requires

a certain amount of prior knowledge and is in general a difficult task.

To overcome this difficulty, an adaptive basis function construction tech-

nique has been proposed by Keller et al. recently, but it requires excessive

computational cost. We propose an efficient approach to this context, in

which the problem of approximating the value function is naturally de-

composed into a number of sub-problems, each of which can be solved

at small computational cost. Computer experiments show that the cpu-

time needed by our method is much smaller than that of the existing

method.

Keywords: Reinforcement learning, approximation of value function.

1 Introduction

In usual reinforcement learning (RL) schemes, it is important to estimate the
action value function that predicts the expected return starting from each state
and action [6]. In many realistic RL problems, however, large state and action
spaces make the value function estimation in its original function space impracti-
cal, and hence the value function approximation using parametric linear models
becomes important; the value function is represented as a linear combination of
basis functions whose linear coefficients constitute a certain parameter. The pa-
rameter is determined by the conventional RL methods based on sample data,
but on the other hand the basis functions must be prepared by a designer in
advance. However, the preparation is difficult due to the lack of available prior
knowledge. A poor setting of basis functions may increase the potential error
of approximating the value function, and a large approximation error will cause
failures in the policy’s learning [2].

One possible idea to deal with this problem is to construct basis functions
adaptively based on available data, e.g., by sequentially generating appropriate
basis functions based on temporal difference (TD) error or Bellman residual [4].
However, this study employed an inefficient computational procedure; the basis
functions were generated based on the TD error in each step, and all the basis
functions were used to approximate the value function, hence for calculating the
next TD error, by means of the least-squares optimization in each step. This
may result in unnecessarily excessive computational cost, especially when the
number of basis functions increases as the learning proceeds.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 608–617, 2009.
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To overcome this difficulty in dealing with an increasing number of basis func-
tions, we propose a novel approach that requires significantly less computational
cost than the existing method. We reformulated the problem of estimating the
value function into that of estimating the error in the value function, thereby
reducing the required number of basis functions. This is because the error, i.e.,
the decomposed value function, can be more easily approximated than the value
function itself. Thus, our method as a whole decomposes the approximation
problem in Markov decision processes (MDPs) into a number of approximation
sub-problems that are easily solved with a small number of basis functions, so
that the parameters are optimized individually within each sub-problem. Com-
puter experiments show that our method is able to significantly reduce not only
the number of basis functions but also the computation time in comparison to
the previous method [4].

2 MDPs and Value Function Approximation

We consider finite MDPs, each of which is composed of a discrete time t, a set
of states S, a set of actions A, a set of transition probabilities P, and a scalar
reward r ∈ R. At time t, the agent selects an action at ∈ A according to a
stationary policy π at a state st ∈ S, and then it moves to a next state st+1 ∈ S

and simultaneously receives a reward rt+1. The objective is to find the policy
that maximizes the action value function:

Qπ(s, a) = Eπ

[ ∞∑
i=t

γi−tri+1|st = s, at = a

]
, (1)

where γ ∈ [0, 1) is a discount factor.
One of the approaches to seeking an optimal policy is policy iteration [2]. This

is composed of two steps, i.e., a policy evaluation step and a policy improvement
step. In the former, the value function Qπ for the current policy π is calculated
or approximated. In the latter, the policy π is improved based on the learned
value function Q (≈ Qπ). In this article, we focus on the former. The Bellman
equation under π is defined as

Qπ(s, a) = Eπ [rt+1 + γQπ(st+1, at+1)|st = s, at = a]. (2)

For the sake of later convenience, we introduce matrix notations: the value func-
tion vector qπ ∈ R|S||A| whose i-th element is the value at the i-th combination
of s and a in S×A, the state transition matrix P ∈ [0, 1]|S||A|×|S||A| whose i, j-th
element is the transition probability under policy π from the i-th pair of state
and action to the j-th pair, and the reward vector r ∈ R|S||A| whose i-th element
is the expected reward with respect to the next state conditioned on the i-th
pair of state and action under π. The Bellman equation (2) can then be simply
represented as qπ = r + γPqπ.

In the context of dynamic programming (DP), the policy evaluation obtains a
series of approximations of the value function q by iterative applications of the
Bellman operator F (·):
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qk+1 = F (qk) ≡ r + γPqk, (3)

where k denotes the iteration step; qk converges to qπ at the limit of k →
∞ [2]. In usual RL settings, however, the vector r and the matrix P are un-
known, so the value function is estimated by using a sample trajectory, <
s0, a0, s1, r1, a1, . . . , sT−1, rT−1, aT−1, sT , rT >.

In realistic RL problems, on the other hand, the state and action spaces are
large, hence the value function estimation is difficult. Thus the value function is
often approximated by using a parametric linear model, i.e., it is represented as
a linear combination of basis functions whose linear coefficients constitute the
parameter:

Qπ(s, a) ≈
M∑
m=1

φm(s, a)θm ≡ φ(s, a)′θ, (4)

where (’) is the transpose and the basis function vector φ(s, a) and the parameter
θ are both M -dimensional vectors. Note that the designer of the learning system
must prepare the basis functions prior to learning. The parameter θ is adjusted
in the policy evaluation step by using the sample trajectory. One of the learning
methods is least-squares TD learning (LSTD) [3], which obtains a closed-form
solution for the linearly-approximated value function.

3 Previous Method for Basis Function Construction

Keller et al. [4] proposed an adaptive basis function construction technique,
in which appropriate basis functions were generated based on the aggregation
method proposed formerly by Bertsekas and Castañon [1]. In that method,
adaptively-produced aggregated states were used to speed up the value itera-
tion in DP, even though applications of the original Bellman operator (Eq.(3))
can be very slow. According to the aggregation method, the Bellman operator
(Eq.(3)) is replaced by its aggregate form:

qk+1 = qk + Ψy, (5)

where Ψ ∈ {0, 1}|S||A|×M is an ‘aggregation matrix’ such that Ψij = 1 if the i-th
state and action pair is assigned to group j or = 0 otherwise. y is the parameter
vector for Ψ, which is analytically obtained [1]. Ψy becomes the orthogonally
projected vector of the difference qπ − qk onto the subspace spanned by the
sparse aggregation matrix Ψ. By applying the Bellman operator F to Eq.(5),

F (qk+1) = F (qk) + γPΨy (6)

is obtained, so that the following holds1:

F (qk+1)− F (qk) = g1 + g2, (7)

1 This is derived from [1] with some modifications for our purpose.
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where

g1 = (I−Π)(F (qk)− qk) and g2 = γ(I−Π)PΨy.

Here, Π ≡ Ψ(Ψ′DΨ)−1Ψ′D is an orthogonal projection and D is a diago-
nal matrix whose elements denote the steady-state or visiting probabilities of
the corresponding state-action pairs. Because it is known experimentally that
g2 often decreases as g1 decreases [1], one can focus only on the minimization
of g1. An effective method to minimize g1 was proposed in [1] such that all
the state-action pairs {i|i = 0, . . . , |S||A|} were assigned to M -disjoint aggre-
gate groups {E1, . . . ,EM}, according to the ranking of the Bellman residuals
{(F (qk) − qk)i|i = 0, . . . , |S||A|}, where the solution achieves the ‘minimax op-
timal’ against the worst possible choices of P and qk [1].

In Keller et al.’s method, by applying the aggregation method to an RL con-
text, the value function is updated as

qk+1 = Φkθk + Ψθnew = (Φk Ψ)
(

θk
θnew

)
≡ Φk+1θk+1,

where Φk ∈ {0, 1}|S||A|×kM is the basis function matrix having the form: Φk =
(φk(1, 1) φk(1, 2) · · · φk(|S|, |A|))′ where φk(s, a) ∈ {0, 1}kM is a kM -
dimensional binary vector for the pair of state s and action a, and M is the
number of basis functions produced in each step. In this method, the basis func-
tions are constructed iteratively based on the TD error (note that the Bellman
residual is the expectation of the TD error), and the parameters are obtained
by LSTD [3] [4]. For an observed sample trajectory, the parameter vector θk+1
is optimized so as to minimize the cost function:

JLSTD(θk+1) =
1

2T

T−1∑
t=0

(Qπ(st, at)− φk+1(st, at)′θk+1)2, (8)

where T is the trajectory length. At each iteration step k, a kM -dimensional
vector θk is obtained by the least-squares optimization technique; more con-
cretely [3],

θk = A−1b, (9)

where kM × kM matrix Ak and kM -dimensional vector bk are given by

Ak =
T−1∑
t=0

φk(st)(φk(st, at)− φk(st+1, at+1))′ and (10)

bk =
T−1∑
t=0

φk(st, at)rt+1, (11)

respectively.
Because the number of parameters increases by M after each iteration, com-

putation of the inverse (Eq. (9), O((kM)3)) and the sum of the outer products
(Eq.(10), O(T (kM)2)) becomes difficult as k increases.
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4 Proposed Method

To overcome the above-mentioned computational difficulty, we propose a novel
approach to adaptively constructing basis functions, in which the computational
cost is greatly reduced in comparison to the Keller et al.’s method. While in the
previous method the value function was at each step approximated by all the
parameters, we let newly-added parameters θnew approximate the error in
the approximate value function instead of the value function, and already-learned
parameters θk be fixed and embedded in qk. In this method, the approximation
error is approximated at step k + 1 by Ψθnew based on least-squares optimiza-
tion, and the value function is updated as

qk+1 = qk + Ψθnew . (12)

Note that only the M -dimensional parameter vector θnew is learned, whereas
the remaining θk is fixed. Thus, the value function is additively updated as
qk,qk+1,qk+2, . . . , until the approximation error becomes sufficiently small.

Next, we explain the least-squares optimization performed to reduce the error
in each step. At step k + 1, the cost function of the least-squares optimization
is given by

J(θnew) =
1

2T

T−1∑
t=0

(Qπ(st, at)−Qk(st, at)−ψ(st, at)′θnew)2, (13)

where ψ(st, at) ∈ {0, 1}M is an M -dimensional binary vector for the pair of state
s and action a such that Ψ = (ψ(1, 1) ψ(1, 2) · · · ψ(|S|, |A|))′. The derivative
of the cost function with respect to θnew is given by

∇θJ(θnew) =
1
2

T−1∑
t=0

ψ(st, at)(Qπ(st, at)−Qk(st, at)−ψ(st, at)′θnew)

≡ 1
2

T−1∑
t=0

ψ(st, at)(Uπk (st, at)−ψ(st, at)′θnew). (14)

The target of the regression problem above, Uπk (st, at) ≡ Qπ(st, at)−Qk(st, at),
is replaced by the expectation of the discounted cumulative TD error:

Uπk (s, a) = Eπ

[ ∞∑
i=0

γiδt+i+1

∣∣∣∣∣st = s, at = a

]
, (15)

where δt+1 is the TD error:

δt+1 ≡ rt+1 + γQk(st+1, at+1)−Qk(st, at). (16)

From its definition, Eq. (15), Uπk (s, a) satisfies

Uπk (s, a) = Eπ[δt+1 + γUπk (st+1, at+1)|st = s, at = a], (17)

which corresponds to the Bellman equation for Uπk (s, a).
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If Uπk (s, a) is known, θnew is obtained as the least-squares (LS) solution of the
objective function (13) by setting ∇J(θnew) as 0. Because Qπ(s, a) is unknown
and hence Uπk (s, a) is unknown, however, we introduce a bootstrapping tech-
nique [6] to approximate Uπk (s, a) in Eq.(14) such that the target Uπk (st, at) is
replaced by some other target variable ut, and then the gradient (14) is replaced
by

∇̃θJ(θnew) ≡ 1
2

T−1∑
t=0

ψ(st, at)(ut −ψ(st, at)′θnew). (18)

If ut is an unbiased estimator, that is, if E[ut] = Uπk (st, at) for each t, then
θnew, the solution of ∇̃J(θnew) = 0, is guaranteed to converge to the LS so-
lution of the objective function (13) as the number of samples (T ) increases.
For example, if ut is set as ut =

∑∞
i=0 γ

iδt+i+1 and the sample trajectory is
generated under the policy π starting from the state-action pair st = s and
at = a, the target ut is an unbiased estimator (Monte Carlo estimate) of Uπk ,
so that θnew converges to the LS solution. Unfortunately, this Monte Carlo
method often introduces large variance into the estimation due to the calcu-
lation based on the infinitely long trajectory. To deal with this difficulty, the
trajectory is truncated by using the Bellman equation (Eq.(17)) such that ut is
set as ut = δt+1 + γδt+2 + · · ·+ γm−1δt+m + γm−1Uπk (st+m, at+m), which is still
an unbiased estimator of Uπk (st, at). Because Uπk (st+m, at+m) is unknown in this
equation, it must be replaced by ψ(st+m, at+m)′θnew, but ψ(st+m, at+m)′θnew
is not an unbiased estimator of Uπk (st+m, at+m), and thus this method does
not converge to the LS solution. Such biased replacement is sometimes called
“bootstrapping” [6]. Nevertheless, such a bootstrapping method can be quite ef-
fective, and other favorable characteristics are available in some special cases [2].
In the extreme case, Uπk is approximated by one-step trajectory, i.e., ut is set
as δt+1 + γψ(st+1, at+1)′θnew , which is an approximation of the right hand
side of the Bellman equation (Eq.(17)). In this article, we only explain this ex-
treme for the sake of simplicity. We therefore re-define an approximate derivative
∇̃θJ(θnew) so that the new parameter θnew is obtained as its zero point:

∇̃θJ(θnew) ≡ 1
2

T−1∑
t=0

ψ(st, at)(δt+1 + γψ(st+1, at+1)′θnew −ψ(st, at)′θnew) = 0.

The solution is given as a closed form:

θnew = B−1c, (19)

where

B =
1
T

T−1∑
t=0

ψ(st, at)(ψ(st, at)−γψ(st+1, at+1))′ and (20)

c =
1
T

T−1∑
t=0

ψ(st, at)δt+1. (21)
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Note that the newly-produced basis functions are only used for reducing the
approximation error of the value function in the previous step. This allows the
computational cost of the inverse (Eq. (19)) to be of O(M3), which is much
smaller than O((kM)3) of the previous method. Also, the computational cost of
Eq. (20) is of O(TM2), which is much smaller than O(T (kM)2) of the previous
method. Moreover, our method can be seen as a straightforward application
of Bertsekas and Castañon’s aggregation method shown in Eqs.(5)-(7) to the
context of RL, since the error in the value function is projected onto the space
Ψ in both our method and that of Bertsekas and Castañon. We call this new
method “differential LSTD” (dLSTD).

Pseudo-code of dLSTD
(Sampling phase): Generate a sample trajectory: (s0, a0, s1, r1, a1, s2, r2, . . . ,

aT−1, sT , rT )
(Learning phase): Repeat until the value function converges

1. Calculate the TD error (or Bellman residual): δ0, . . . , δT−1
2. Generate the new basis function matrix Ψ based on δ0, . . . , δT−1
3. Calculate B and c in Eqs. (20) and (21)
4. θ := B−1c
5. Update the value function: q := q + Ψθ

(Policy update phase): Update policy so that π(s) := arg maxaQ(s, a) for
each state s, and go back to (sampling phase) in the case of on-policy, or
(learning phase) in the case of off-policy

5 Computer Experiments

We compared our method with the Keller et al.’s method [4] by using two bench-
mark problems: the 50-state chain problem [5] and the blackjack problem [6].

5.1 Experimental Settings

50-Chain. In this problem, an agent moves through a single chain consisting
of 50 states to maximize the expected return defined as accumulated discount
rewards. For more details, see [5].

First, as a sampling phase, we generated a single trajectory whose length was
T = 10, 000 by using a random policy. Next, we performed a learning phase
through which we evaluated our method. In each step in the learning phase, all
pairs of state s and action a were aligned according to the TD error averaged
over all the appearances in the trajectory, and grouped into two aggregate basis
functions (i.e., the number of the basis function M was set as 2). The policy was
updated when the maximum absolute value of the averaged TD errors became
smaller than 10−10. The entire RL algorithm was shown in the previous section.
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Blackjack. Here, we explain the blackjack problem. The rule of the game and
the reward settings are the same as those in [6]. In our experiment, a single state
is represented as three variables: the player’s card value total, the card value
total the dealer shows, and the player’s option of counting an ace as a value of
1. A state-action pair is represented as a four-dimensional vector x, with three
entries of x being the state variables and the fourth being the player’s action
(i.e., to hit or to stand). Thus, we consider the value function on x, i.e., Q(x).

First as a sampling phase, by using a random policy for the player, we per-
formed 10, 000 games whose average length (i.e., the number of hits) was about
1.44, then the total number of samples (T ) was about 14, 400 (= 10, 000× 1.44).

We then conducted a learning phase consisting of several iteration steps
enough to make the TD errors small. In each iteration step, to aggregate in
the four-dimensional state-action space, we first perform a random projection
onto a one-dimensional space, and then aggregate in that space; each sample
vector xt was linearly projected onto a scalar yt, yt = e′xt (t = 0, . . . , T − 1),
where t is the sample index and e is a four-dimensional vector randomly selected
from [−1, 1]4. Then, all the samples {xt|t = 0, . . . , T − 1} were separated into
N -disjoint subsets {C1, . . . ,CN}, according to the discretization of the projected
samples {yt|t = 0, . . . , T − 1}, and all the subsets, C1, . . . ,CN , were assigned to
aggregate groups, E1, . . . ,EM , according to the TD error averaged over the sam-
ples belonging to each subset. The corresponding basis function of the sample
xt ∈ Ci ∈ Ej is ψ(xt) whose j-th element is 1 and the other elements are all 0.
In our experiment, we set N as 100 and M as 2; then, we consider two aggregate
groups E1 and E2, and the corresponding basis functions are ψ(xt) = [1, 0]′ and
ψ(xt) = [0, 1]′.

At the end of each iteration step, we checked whether to update the policy, so
that the policy was updated when the maximum absolute value of the averaged
TD errors became smaller than 10−10. Remaining of the algorithm follows the
one presented in Section 4.

5.2 Experimental Results

We compared the computation time of our method (dLSTD), that of the Keller
et al.’s method (LSTD) [4], and that of the Keller et al.’s method with the
random basis function (LSTD-random) in which ψ(x) = [1, 0]′ or [0, 1]′ was
randomly chosen regardless of the value of x. We implemented them using matlab
7.7.0(R2008b) on 3.00 GHz Intel(R) Xeon(R). Figure 1 shows the learning curves
averaged over 100 learning runs for the chain walk problem, where Fig.1(a) shows
the comparison in the policy evaluation and Fig.1(b) in the policy improvement.
The vertical axes in Fig.1(a) denote the logarithmic maximum norm2 of the TD
error averaged over all pairs of state and action. The vertical axes in Fig.1(b)
denote the logarithmic weighted L2 norm between qπ and qπ

∗
, where qπ

∗
is

the value function vector under the optimal policy π∗. Dπ∗
is a diagonal matrix

2 For an L-dimensional vector x = [x1, x2, . . . , xL]′, the maximum norm is defined as

||x||∞ ≡ max{|x1|, |x2|, . . . , |xL|}.
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Fig. 1. Chain walk
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Fig. 2. Blackjack

whose i-th element is the probability of visiting and selecting the i-th pair of
s and a under π∗. The horizontal axes in the upper panels of Fig.1 denote the
iteration steps, and those in the lower panels denote the CPU time (sec.).

In Fig.1, we can see that dLSTD is much faster than LSTD in terms of the
CPU time, both for policy evaluation and policy improvement. This is because
dLSTD tried to approximate the error in the value function by using a small
number (two in this experiment’s (M = 2)) basis functions. On the other hand,
LSTD tried to approximate the value function itself by using a large number of
basis functions (i.e., kM where k is the number of iteration steps), hence the
computation came to be difficult as the number of iteration steps k increased.

Figure 2 shows the learning curves averaged over 100 learning runs for the
blackjack problem. The vertical axes of Fig.2(b) denote the average return. Sim-
ilar to Fig.1, dLSTD was faster than LSTD both in the policy evaluation and
the policy improvement. Especially in Fig.2(b), dLSTD achieved its best policy
by 50 sec., which was much smaller (i.e., about 900 sec. lower) than the value at
which LSTD showed comparable performance.
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In terms of iteration steps, the Keller et al.’s method was better than ours
(upper panels of Figs.1 and 2), because it approximates the value function within
the full space consisting of all available basis functions, at the sacrifice of com-
putational cost for optimization over the full space.

Throughout our experiments, the performance of LSTD with randomly gen-
erated basis functions (LSTD-random) was always worst, showing that there is
a high demand for effectiveness in the basis function construction.

6 Conclusion

In this study, we proposed a novel scheme for automatic construction of basis
functions, with the absence of large computational cost. In this method, the value
function was estimated by sequentially approximating its approximation error
by using newly-added basis functions. Our experiments showed that our method
is much faster than the existing method [4], while maintaining its approximation
performance.
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1. Bertsekas, D., Castañon, D.: Adaptive aggregation methods for infinite horizon dy-

namic programming. IEEE Transactions on Automatic Control 34, 589–598 (1989)

2. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific,

Belmont (1996)

3. Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for temporal difference

learning. Machine Learning 22(2), 33–57 (1996)

4. Keller, P.W., Mannor, S., Precup, D.: Automatic basis function construction for

approximate dynamic programming and reinforcement learning. In: Proceedings of

the Twenty-third International Conference on Machine Learning (2006)

5. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine

Learning Research 4, 1107–1149 (2003)

6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,

Cambridge (1998)



Neural Spike Suppression by Adaptive Control
of an Unknown Steady State
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Saulėtekio 11, LT-10223 Vilnius, Lithuania

gytis@pfi.lt

http://www.fm.vgtu.lt/en/
4 Department of Electronic Systems, Faculty of Electronics,

Vilnius Gediminas Technical University,

Naugarduko 41, LT-03227 Vilnius, Lithuania

raimundas.kirvaitis@adm.vgtu.lt

http://www.el.vgtu.lt/en/
5 Institute of Neuroinformatics, University of Zürich (UNIZH) and
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Abstract. A FitzHugh–Nagumo type spiking neuron model equipped

with an asymmetric activation function is investigated. An analogue non-

linear electrical circuit imitating the dynamics of the model is proposed.

It is demonstrated that a simple first order linear filter coupled to the

system can inhibit spiking and stabilize the system on an unstable steady

state, the position of which is not required to be known, since the filter

operates as an adaptive controller. Analytical, numerical and experimen-

tal results are presented.

Keywords: Adaptive control, Nonlinear dynamics, Neuron models.

1 Introduction

The problem of stabilizing unstable steady states (USS) is of great importance
in nonlinear dynamics. Classical control methods require as a reference point the
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coordinates of the USS. In many practical cases the location of the USS is either
unknown or it may slowly vary with time. Therefore adaptive, reference-free
methods, automatically locating the USS are preferable.

The simplest adaptive technique for stabilizing USS is based on derivative
controller. A perturbation in the form of a derivative dx/dt derived from an
observable x(t) does not change the original system, since it vanishes when the
variable approaches the steady state. This technique has been applied to stabilize
a laser [1], an electrical circuit [2] and an electrochemical reaction [3]. Since
the method requires differentiation it is rather sensitive to high frequency noise
present in the signal x(t).

Another adaptive method for stabilizing USS employs first order RC filters
in the feedback loop [4,5,6,7,8,9,10]. Provided the cut-off frequency of the RC
filter is low enough, the voltage accross the capacitor of the filter asymptoti-
cally approaches the USS and therefore can be used as a reference point for the
proportional feedback. The method has been successfully applied to several ex-
perimental systems, including electrical circuits [4,5,6] and lasers [7,8]. Recently
its modifications have been used to control unstable spirals in mathematical
models, such as the Lorenz system [9,10], the van der Pol oscillator [10], and the
parametrically excited mechanical pendulum [10].

Neuron models are dynamical systems exhibiting a rich variety of nonlinear
phenomena, ranging from excitability, spiking, bursting, chaotic response to exter-
nal periodic forcing, high-frequency inhibitory effects, to various spatio-temporal
patterns in networks of coupled neurons. The FitzHugh–Nagumo (FHN) model
[11] is one of the most popular models, due to its simplicity. Besides analytical and
numerical studies of the different models, efforts have also concentrated on design-
ing and building analogue electronic neurons. Replacement of biological neurons
with electronic devices governed by simple equations, can contribute to a better
understanding of the biological effects. A number of nonlinear electrical circuits
imitating dynamical behaviour of neurons have been described in the literature.
Among them are various modifications of the FHN electronic cells [12,13,14,15],
the Hodgkin–Huxley (HH) neuron type [16], and the Liao’s time delayed [17] elec-
tronic neurons. Some earlier electronic implementations, e.g. of the Lewis and the
Harman models, are collected in Ref. [18].

In the present paper, we describe an extremely simple modification of the FHN
model by an asymmetric activation function, to which, for the sake of brevity, we
will refer to as the asymmetric FHN (AFHN) model. We derive its experimental
electronic analog and demonstrate analytically, numerically and experimentally
that the USS can be robustly controlled by a simple first order filter.

2 Mathematical Model

We consider the folowing set of equations:

ẋ = ax− fd(x) − y − ξ, (1)
ẏ = x− by, (2)
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fd(x) =

⎧⎨⎩d1(x+ 1), x < −1
0, −1 ≤ x ≤ 1

d2(x− 1), x > 1 .
(3)

All coefficients in Eqs. (1–3) are positive and constant, except the parameter ξ,
which, in general, will be unknown and/or may slowly vary with time. Though
the coefficients d1 and d2 are somewhat arbitrary (the only requirement is d1,2 >
a), we consider the case of strong asymmetry d2 << d1. Eqs. (1–3) can be
treated as asymmetric FHN (AFHN) equations, where the common activation
term x−x3 is replaced with an asymmetric activation function F (x) = ax−fd(x).
The function F (x) has essentially different slopes d1 at negative (x < −1) and
d2 at positive (x > 1) values of x. For

ab < 1, |ξ| < 1/b− a , (4)

Eqs.(1–3) lead a single unstable steady state of coordinates

x0 = − bξ

1− ab
, y0 = − ξ

1− ab
, (5)

while there are no stable solutions. Thus, conditions (4) yield oscillatory solutions
of Eqs. (1–2). Evidently, |x0| < 1 and for ξ > 0 the steady state is negative
x0 < 0, y0 < 0. When linearized around the steady state (x0, y0), system (1–2)
leads to the characteristic equation

λ2 − (a− b)λ+ 1− ab = 0, (6)

which has two solutions that are independent on ξ:

λ1,2 =
a− b

2
±
√

(a+ b)2

4
− 1. (7)

For a > b, the real parts of λ1,2 are positive, confirming that the steady state
given by (5) is unstable (either an unstable spiral or an unstable node). When
a > b and a+ b > 2 both solutions are positive and real (no imaginary part). In
this case, the steady state is an unstable node.

Now we add to Eqs. (1–2) the third equation describing a stable RC filter and
couple it to the AFHN equations:

ẋ = ax− fd(x)− y − ξ − k(x− z), (8)
ẏ = x− by, (9)
ż = ωf(x − z), (10)

where k is the coupling coefficient and ωf is the normalized threshold frequency
of the filter. This system has the same steady state solution as the free-running
system:

x0 = z0 = − bξ

1− ab
, y0 = − ξ

1− ab
, (11)
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which implies that the filter does not influence the position of the steady state
(x0, y0) of the AFHN system, but can change its stability properties.

The corresponding characteristic equation of the linearized system is

λ3 + h3λ
2 + h2λ+ h1 = 0, (12)

with

h3 = −a+ b+ k + ωf , h2 = 1− ab+ bk − (a− b)ωf , h1 = (1− ab)ωf . (13)

The system is stable if the real parts of all three eigenvalues Reλ1,2,3 are negative.
The results of the numerical solution of the characteristic equation (12) are shown
in Fig. 1, in dependence of the coupling coefficient, for chosen system parameters
a = 6, b = 0.1, ωf = 0.1. The largest eigenvalues Reλ cross zero and become
negative at k = 5.9. The optimal values of the coupling coefficient kopt, providing
the highest rate (λ = −0.1) of convergence to the stabilized steady state, are
from k ≈ 6.5 to k = 10.

The necessary and sufficient conditions for stabilization can be found using
the Hurwitz matrix

H =

⎛⎝h3 h1 0
1 h2 0
0 h3 h1

⎞⎠ . (14)

According to the Routh-Hurwitz stability criterion the eigenvalues Reλ1,2,3 are
all negative if the diagonal minors of the H matrix are all positive

Δ1 = h3 > 0, Δ2 = h3h2 − h1 > 0, Δ3 = h1Δ2 > 0. (15)

Since Δ2 should be positive according to the second inequality, the third inequal-
ity for Δ3 can be replaced simply with h1 > 0. This can be further simplified
to (1 − ab) > 0 since ωf > 0 by definition. We note that, due to inequality (4),
the last inequality will always be satisfied. Consequently, we are left with the

Fig. 1. Dependence of the Reλ on the coupling coefficient k from Eq. (12). a = 6, b =

0.1, ωf = 0.1. The insert is a zoomed view of the Reλ in the k range from 5 to 12.
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Fig. 2. Spikes x(t) from Eq. (1–3). a = 6, b = 0.1, ξ = 1.7, d1 = 60, d2 = 7.

Fig. 3. Main variable x(t) (top trace) and control signal x − z (bottom trace) in the

case the control is switched on between two spikes.The control signal display is lowered

for the sake of clarity. a = 6, b = 0.1, ξ = 1.7, d1 = 60, d2 = 7, ωf = 0.1, k = 9.

Fig. 4. Main variable x(t) (top trace) and control signal x − z (bottom trace) in the

case the control is switched on during a spike. Parameters the same as in Fig. 3.

first and the second inequality of (15). We make an estimation of the threshold
coupling coefficient kth by requiring that for k > kth, the two minors Δ1,2 should
be positive. The result kth = 5.9 obtained for the system parameters is in good
agreement with the corresponding value found from Reλ(k) in Fig. 1. Results of
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the numerical integration of Eqs. (1–3) as well as of Eqs. (8–10) are shown in
Fig. 2, in Fig. 3, and in Fig. 4.

The waveform in Fig. 2 generated by the AFHN model more closely resembles
the behavior of the spiking neurons in the HH model than that of the classical
FHN model with symmetric activation function. When the control (k > kth)
is turned on, the spikes are totally suppressed and the system is stabilized on
non-zero steady state x0, where the control signal x− z vanishes. The transient
process is extremely short: after control is on, only one short spike emerges.

3 Analogue Circuit and Experimental Results

The electrical circuit imitating the dynamics of the AFHN system along with the
RC adaptive controller is sketched Fig. 5. The element values of the electronic
neuron cell were chosen as R1 = R2 = 1 kΩ, R3 = R6 = 200 Ω, R4 = 30 Ω,
R5 = 240 Ω, R7 = 620 Ω, C = 330 nF, L = 1 H. The diodes D1 and D2 are the
D1N5820 or similar type Schottky devices (the forward voltage drop V ∗ ≈ 0.2
V at 1 mA). The operational amplifier OA is the LM741 type IC. The inductor
L was implemented as an active gyrator subcircuit [19]. The element values of
the controller were R∗ = 200 Ω, C∗ = 22 μF. Using the Kirchhoff’s laws the
following equations for the circuit in Fig. 5 can be written:

C
dVC
dt

=
VC
R3

− VC
R7

− Id(VC)− IL −
V0

R3
− VC − VC∗

R∗ , (16)

L
dIL
dt

= VC −R6IL, (17)

C∗ dVC∗

dt
=
VC − VC∗

R∗ , (18)

where

Id(VC) =

⎧⎨⎩
(VC + V ∗)/R4, VC < −V ∗

0, −V ∗ ≤ VC ≤ V ∗

(VC − V ∗)/R5, VC > V ∗ .
(19)

V
C

I
L

V
C*

Fig. 5. Circuit diagram of the electronic neuron cell with an adaptive controller. +V0 is

a DC bias. The switch S, the resistor R* and the capacitor C* compose the controller.
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By introducing the following set of dimensionless variables and parameters

x =
VC
V ∗ , y =

ρIL
V ∗ , t =

t√
LC

, ρ =

√
L

C
, a =

ρ(R7 −R3)
R3R7

,

b =
R6

ρ
, ξ =

ρV0

R3V ∗ , d1 =
ρ

R4
, d2 =

ρ

R5
, k =

ρ

R∗ , ωf =
ρC

R∗C∗ .

Here R∗ is chosen to provide appropriate value of k, while C∗ is chosen to
ensure low enough value of the ωf . Eqs. (16–18) can be presented in the form
exactly coinciding with Eqs. (8–10), while Eq. (19) transforms into Eq. (3).
Corresponding experimental results are presented in the Figs. 6–9. The spike
train (Fig. 7) and the controlled dynamics (Figs. 8,9) are in a good agreement
with the numerical results, presented in the prvious section.

V, V

10.50-0.5-1

I, mA

1

-1

-2

Fig. 6. DC Current-voltage characteristic of the electronic neuron cell. The elements

C, L and R6 are removed from the circuit, the switch S is in the open position.

5 ms

1 V

0

Fig. 7. Typical train of spikes VC(t) from the circuit without control
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1 V

5 ms

0.1 V

0

Fig. 8. Output voltage VC(t) (top trace) and control signal VR∗ (bottom trace) if the

control is switched on during the interspike-interval. The control signal display is low-

ered for the sake of clarity.

1 V

5 ms

1 V

0

Fig. 9. Output voltage VC(t) (top trace) and control signal VR∗ (bottom trace) if the

control is switched on during a spike. The control signal display is lowered for the sake

of clarity.

4 Conclusions

In this work, a modification of the classical FitzHugh–Nagumo (FHN) model is
proposed. The common symmetric activation function x− x3 is replaced with a
three-segment piecewise linear asymmetric function. In contrast to the common
symmetric model at standard parameter values, the asymmetric version of the
FHN model (AFHN) exhibits narrow triangular shaped spikes, similarly to more
complicated biologically inspired Hodgkin–Huxley model. Besides, a nonlinear
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electronic analog has been designed, built and investigated experimentally. Be-
sides, we have applied the control method, based on the linear first order RC
filter, to stabilize the unstable steady state of a spiking neuron. The method is
fully adaptive; it automatically locates the steady state the coordinates of which
can be left unevaluated.

Acknowledgments. The work was supported in part by the Lithuanian State
Science and Studies Foundation.
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Abstract. In daily life, humans must compensate for loads arising from

interaction with the physical environment. Recent studies in human mo-

tor control have shown that when compensating for these loads, hu-

mans combine two feedforward control strategies, internal model control

and impedance control. However, the combined mechanisms of the two

control strategies have not been clarified. We propose a computational

model of human arm movements and discuss how humans combine the

two control strategies. We use an optimal regulator and simulate human

arm movements under dynamic environments.

Keywords: Human motor control, internal model, impedance control,

optimal control, arm movement.

1 Introduction

To manipulate objects or to use tools, humans must compensate for loads arising
from interaction with the physical environment. Many psychophysical experi-
ments for investigating motor adaptation of arm movements to external loads
have been conducted [1]. These experiments have shown that humans use two
types of feedforward control strategies when compensating loads [2]. One is “in-
ternal model control”, which humans use to compensate for the load by gen-
erating an opposing force to the external load [3]. To generate the opposing
force, humans must learn the dynamics of the external load, which is called the
“internal model” [4]. On the other hand, “impedance control”, is the alternate
strategy in which humans regulate arm impedance (inertia, viscosity, and elas-
ticity) depending on the task and compensate for the load by its impedance [5].
For skillful movements, humans must combine these two strategies depending
on the task [6]. However, the mechanism in which humans combine two control
strategies has not been clarified.

Many computational studies of arm movements have been performed [1]. In
these studies, an optimal control scheme has often been used. An optimal con-
troller calculates the motor command u, which minimize the cost function J for

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 628–637, 2009.
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nonlinear arm dynamics ẋ = f(x, u). When choosing certain parameters (ex.
joint torque [7], hand force [8], variance of hand position [9] or reward [10]) as
the cost function, optimized arm movements closely coincide with actual human
movements. However, these computational models lack the modeling of the com-
bined mechanism of two feedforward control strategies (which are the internal
model control and impedance control) against external loads described above.

Therefore, the purpose of our study is to construct a computational model of
arm movements, which enables discussion on the combined mechanism of internal
model control and impedance control against external loads. For this purpose, we
use an optimal regulator as the model and compare simulated arm movements
with actual human movements. In section II, we formulate a computational
model of arm movements using the optimal regulator. In sections III and IV, we
discuss the point-to-point reaching experiments with the model and discuss the
results.

2 Model

2.1 Outline of Model

Figure 1 shows a block diagram of a feedforward control scheme of human arm
movements. In the musculoskeletal system, both the external force Fext from the
environment and the feedback force Fimp of the muscle impedance act upon the
arm. The amplitude of the muscle impedance changes depending on the motor
command u. ‘J ’ and ‘G’ are Jacobian matrices, which coordinate transformation
between the muscle, joint, and hand spaces.

We propose a computational model of a feedforward control scheme of human
arm movements. In our model, the controller is composed of two units, the
optimal controller and forward model, as shown in Fig. 1. The forward model
works as a predictor of arm movements. The efferent copy of motor command u is
inputted to the forward model, which calculates the predicted state q̂ of the arm.
The optimal controller calculates the optimal motor command u, which drives
the arm movement toward the desired state qd. Both qd and q̂ are inputted to
the optimal controller. We can formulate the optimal control problem of this
system as follows.

ẋ = f(x, u) (1)

J = P (x) +
∫ tf

0
L(x, u) dt (2)

Equation (1) represents the state equation of the arm, and the sate variable
x represents the joint angle q and joint angle velocity q̇. The control input u
represents the motor command to the muscle. Equation (2) represents the cost
function, which is the function of x and u. The constant tf represents the ter-
mination time of the movement. The optimal controller calculates the optimal
motor command u, which minimizes the cost function J under the boundary
condition. In this formulation, there are several algorithms for optimization. We
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Fig. 1. Feeforward control scheme of human arm movements

model the controller as the optimal regulator, which is one of the simplest algo-
rithms for optimization. The optimal regulator controls the system as q̂ coincides
with qd. In the following section, we derive the state equation ẋ = f(x, u) of the
musculoskeletal system. Then, we locally linearize the nonlinear state equation
near the equilibrium point. Finally, we determine the motor command u of the
optimal regulator using the linearized model.

2.2 Musculoskeletal System

Figure 2 shows the musculoskeletal system of the arm used in our study. We
model the arm as two links and use two joints and six muscles in which six mus-
cles are attached to the shoulder and elbow joints. The muscle tension generated
by each muscle is modeled as follows.

f ′ = u+Bl̇ +K(l− le), (3)
T ḟ + f = f ′, (4)

where f = [f1, f2, ...f6]T , l = [l1, l2, ...l6]T , and u = [u1, u2, ...u6]T represent the
muscle tension, muscle length and motor command of each muscle, respectively,
le represents the equilibrium point of each muscle, B = diag(b1, b2, ...b6) and
K = diag(k1, k2, ...k6) represent the viscoelastic parameters of each muscle, and
T represents the time constant. The muscle tension f is smoothed by using a
low-pass filter (shown in Eq. (4)). The joint torques τ = [τ1, τ2]T of the shoulder
and elbow are represented as a function of f as follows.

τ = −GT f, (5)

where

G =
[
−d1 d1 0 0 −d3 d3
0 0 −d2 d2 −d4 d4

]T
(6)
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Fig. 2. Arm model (two joints - six muscles)

represents the Jacobian, and d1, d2, d3, and d4 are the moments of the arm
muscles.

The dynamic equation of the arm is represented as the following differential
equation.

M(q)q̈ + C(q, q̇) = τ + JTFext, (7)

where q = [q1, q2]T is the joint angle, M is the inertia of the arm, C is the
coriolis/centripetal force, J is the Jacobian, and Fext is the external load from
the environment. The above equation transforms into the state equation with
the muscles dynamics as follows.⎡⎣ q̇q̈

ḟ

⎤⎦ =

⎡⎣ q̇
M−1(q)(−C(q, q̇) + τ + JTFext)

T−1(−f + f ′)

⎤⎦ (8)

When we set the state variable as x = [q1, q2, q̇1, q̇2, f1, f2, ...f6]T , Eq. (8) becomes
the nonlinear differential equation ẋ = f(x, u).

2.3 Local Linearization of Nonlinear Dynamics

The muscle tension f ′ in Eq. (3) and the external force Fext from the environment
are represented as the function of q and q̇ as follows.

f ′ = u+Bl̇ +K(l − le)
= u+BGq̇ +KG(q − qe) (9)

Fext = Bextṗ+Kextp

= BextJq̇ +Kextg(q) (10)
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In Eq. (9), qe is the equilibrium point of q, p is the hand position in the work
space, and Bext and Kext represent the viscoelastic prameters of the environ-
ments. (In this transformation, we used the kinematic transformations l̇ = Gq̇,
l = Gq + l′, ṗ = Jq̇, and p = g(q). The constant l′ represents the muscle length
when q = 0.) By using Eqs. (5), (8), (9), (10), and the following equation,

Δẋ =
∂f

∂x
(xo, uo)Δx+

∂f

∂u
(xo, uo)Δu, (11)

we can locally linearize the nonlinear dynamics of the arm near the equilibrium
point. The constants xo and uo represent the equilibrium point.

2.4 Formulation of Optimal Regulator

The motor command u using the optimal regulator is calculated by using the
locally linearized model and solving the finite-time optimal control problem as
follows.

ẋ = Ax+Bu (12)

J = xTQfx+
∫ tf

0
(xTQx+ uTRu) dt (13)

Equation (12) represents the state equation locally linearized (A = ∂f
∂x(xo, uo)

and B = ∂f
∂u (xo, uo)). Equation (13) represents the cost function, where Qf , Q,

and R are the weights and tf is the termination time of the movement. The
optimal feedback gain is represented as follows.

Kgain = −R−1BTP (t), (14)

where P (t) is the solution of the Ricatti equation as follows.

− Ṗ = ATP + PA− PBR−1BTP +Q (15)
P (tf ) = Qf (16)

In our model, the controller calculates the optimal feedback gain Kgain as the
predicted sate x̂ from the forward model coincides with the desired state xd.
Thus, the motor command u is represented as follows.

u = −R−1BTP (t)(x̂− xd) (17)

3 Simulation

3.1 Experimental Setup

In this section, we compare the arm movements using the optimal regulator
with actual human arm movements. As a task, we tested a point-to-point arm
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Start 

(0,0.45)

Target 

(0,0.575)

x [m]

y [m]

Arm

(a) Reaching movement (b) Manipulandum

Fig. 3. Simulation task

Table 1. Link parameters

Link1 Link2

Mass [kg] 1.59 1.44
Link length [m] 0.3 0.35

Moment of inertia [kgm2] 0.18 0.21

Center of mass [m] 6.78×10−2 7.99×10−2

movement in the horizontal plane [3], as shown in Fig. 3(a). The point-to-point
arm movement is a task in which humans move their right hands from the
starting point (0,0.45) toward the target point (0,0.575) is shown in Fig. 3(a).
The movement time tf was 300 ms and we measured these movements using
robotic manipulandum [6], as shown in Fig. 3(b).

The simulation parameters of mass, link length, moment of inertia, and center
of mass were set up, as shown in Table 1. The moments of the arm muscles were
(d1, d2, d3)=(0.04,0.025,0.035) m. The viscoelastic parameters of the muscles
were B=diag(2.5,2.5,2.5,2.5,2.5,2.5)×103 Ns/m and K=diag(2,2,1,1,1,1)×103

N/m. We locally linearized the arm dynamics near the starting point of the
movement (0,0.45) and calculated the output of the optimal regulator using the
linear model obtained from the linearization. The parameters of the cost func-
tion were Qf=diag(2×106, 5×105, 5×104, 5×104,10,10,10,10,10,10), and Q = 0
and R=diag(1,1,1,1,1,1).

The purpose of this experiment was to test the simulated movements by the
optimal regulator and compare them with the actual human movements. For
simplicity, we assumed that the forward model can be used to perfectly predict
arm dynamics.

3.2 Point-to-Point Movements under Null Field

Figure 4 shows the simulation results of point-to-point arm movements under
Null field (Eq. (10): Bext = 0, Kext = 0). Each figure (Figs. 4(a)-(d)) represents
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Fig. 4. Reaching movements under null field

(a) hand trajectories in the x-y plane, (b) time-series data of hand position, (c)
time-series data of hand velocity and (d) time-series data of hand acceleration.
The thick lines represent the simulation results of the model and the thin lines
represent human movement data (N=1). It is clear that the simulation results co-
incide with actual human movements. In the model prediction, the hand reaches
the target position in 300 ms and the bell-shape hand velocity and sine-wave
hand acceleration patterns are generated.

3.3 Point-to-Point Movements under Force Field

Figure 5 shows the simulation results of point-to-point arm movements under
force fields. The force fields apply loads to the hand during movement, and
the loads are proportional to the hand position and hand velocity. We set up
a velocity-dependent force field (Eq. (10): Bext =[0 -25;25 0], Kext = 0) [6].
In this force field, the load was applied in the left direction toward the target
position, as shown in Fig. 5. Figure 5(a) shows human hand trajectories (N=5).
At first, the subjects were not able to perform straight movements because of
the load (Before learning). However, as the subjects repeated the movements,
they learned to compensate for the load and finally they were able to perform
straight movements (After learning). In addition, when the subjects performed
movements in Null field after learning, hand trajectories curved in the opposite
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Fig. 5. Reaching movements under velocity-dependent force field

direction of the load (after effect). Figure 5(b) shows the simulation results of
the model. The solid lines almost coincide with actual human movements. (In
this simulation, we used the motor commands calculated in Null field before
learning and the motor commands calculated in the force field in the after-
effect trial.) The dashed lines represent the simulation results when the muscle
impedance parameters B and K were set up doubled. In a high impedance
condition, the hand trajectories curved after learning and the curvature in the
after-effect trial decreased. This indicates that when muscle impedance increases,
humans combine impedance control with internal model control to compensate
for the load.

4 Discussion

Recently, optimal regulators have been used for computational modeling of arm
movements for investigating motor control mechanisms under noisy and uncer-
tain environments [11, 12, 13, 14]. In these studies, the arm dynamics are rep-
resented as a stochastic differential equation. On the other hand, in our study,
we used the local linearized model of the arm and simulated arm movements
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under dynamic environments. As a result, we confirmed that (1) it is possible
to generate humanlike arm movements in the Null and force fields by using a
local linearized optimal regulator for a nonlinear system and (2) the optimized
movements are changed by the muscle impedance parameters.

As shown in Fig. 5(b), when the muscle impedance increases, the optimal
controller generates curved hand trajectories after learning and the curvature in
the after-effect trial decreases. This indicates that humans combine impedance
control with internal model control to compensate the load. Thus, it is assumed
that internal model control and impedance control work together depending on
the task and are optimally combined. Some psychophysical experiments of arm
movements support this result [5, 6, 15, 16, 17]. These experiments show that
humans learn optimal arm impedance under dynamic environments.

In future studies, we need to construct more sophisticated muscle models. In
this paper, the muscle impedance was set as a constant. However, the amplitude
of the muscle impedance changes depending on the motor command. Thus, in
future work, we plan to model the arm as a “bilinear model” to follow this
characteristic and calculate the output of the optimal regulator using a bilinear
model [18]. In addition, we need to add a feedback control system to our model.
To add this feedback control system, it is important to take into account the
time delay of sensory feedback signals [19].

5 Conclusion

We proposed a computational model of human arm movements and discussed
how humans combine internal model control and impedance control. We used an
optimal regulator and simulated human arm movements under dynamic environ-
ments. As a result, we confirmed that the optimal regulator is able to generate
humanlike arm movements and the optimized movements are changed by the
muscle impedance parameters. In future work, we plan to simulate arm move-
ments using a bilinear optimal control.

Acknowledgments. Part of this research was supported by the Japanese
Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid
for Scientific Research on Priority Areas (No.454) and Scientific Research (B)
(No.21360201).
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Abstract. In this paper we provide a neural-based semi-global stabiliza-

tion design for unknown nonlinear state-feedback stabilizable systems.

The proposed design is shown to guarantee arbitrary good transient per-

formance outside the regions where the system is uncontrollable. This

is made possible through an appropriate combination of recent results

developed by the author in the areas of adaptive control and adaptive

optimization and a new result on the convex construction of Control

Lyapunov Functions (CLF) for nonlinear systems.
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1 Introduction

Recently, we introduced a new adaptive/learning methodology applicable to
adaptive optimization of unknown functions and adaptive fine-tuning of large-
scale nonlinear control systems [6,7]. The key idea behind this methodology is
the use of concurrent exploitation-exploration: each time a control action should
be taken, a set of randomly-generated candidate-control actions is generated and
the best one – as estimated by appropriate neural estimators – is chosen. Us-
ing the above simple logic, the control actions are guaranteed to provide both
with exploitation (in the sense that they are “moving” in the right directions)
and exploration (i.e. they provide with PE). Moreover, as it was seen in [6,7], if
the random generation of candidate control actions is appropriately done, then
the concurrent exploitation-exploration methodology guarantees efficient perfor-
mance and convergence.

The concurrent exploitation-exploration methodology of [6,7] has also been
successfully extended to the case of stabilization of a class of unknown nonlinear
systems [8]. However, contrary to the case of adaptive optimization and adaptive
fine-tuning where the problem is to optimize an available for measurement, but
otherwise unknown, objective function this is not the case in stabilization of
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c© Springer-Verlag Berlin Heidelberg 2009



Neural Network Control of Unknown Nonlinear Systems 639

unknown nonlinear systems. In the latest case, the “objective” function to be
optimized corresponds to the so-called Control Lyapunov Function (CLF), see
[14,15], which, in general, is not available for measurement in the case of unknown
nonlinear systems. For this reason, the approach of [8] is limited to unknown
systems for which a known CLF function (that may depend on the unknown
system parameters) is available.

In this paper, we show that the concurrent exploitation-exploration method-
ologies of [6,7,8] appropriately combined with a new result on the construction
of CLFs for known nonlinear systems can lead to an efficient, globally conver-
gent, control methodology for general unknown nonlinear systems. According to
this aforementioned new result, which is presented in section IV of this paper,
the problem of constructing an approximate CLF for a general nonlinear system
can be casted as a convex optimization problem. By combining this result with
the concurrent exploitation-exploration methodologies of [6,7,8] we develop an
adaptive/learning controller consisting of

• an adaptive HONN identifier for estimating the unknown system dynamics
(see section III);
• a convex optimizer that on-line constructs the system CLF based on the esti-
mation of the system dynamics generated by the HONN identifier;
• a concurrent exploitation-exploration control logic that chooses among many
randomly generated control actions the one that leads to the maximum decrease
of the system CLF as constructed in the previous step.

Using rigorous arguments we establish that the proposed methodology can guar-
antee closed-loop stability and arbitrarily good performance outside the regions
where the system becomes uncontrollable, for any nonlinear system that is state-
feedback stabilizable and satisfies an additional mild controllability assumption.
Finally, simulation experiments performed on a challenging nonlinear control
problem verify our theoretical results.

1.1 Notations and Preliminaries

In denotes the ndimensional identity matrix. For a vector x ∈ �n, |x| denotes
the Euclidean norm of x (i.e., |x| =

√
xτx), while for a matrix A ∈ �n2

, |A|
denotes the Frobenius norm of A. A function f is said to be Cm, where m
is a positive integer, if it is uniformly continuous and its first m derivatives
are uniformly continuous. The notation vec (A,B,C, . . . , ), where A,B,C, . . .
are scalars, vectors or matrices, is used to denote a vector whose elements are
the entries of A,B,C, . . . (taken column-wise). For a symmetric matrix A, the
notation A # 0 (A $ 0) is used to denote that A is a positive definite (resp.
positive semidefinite) matrix. We say that a function χ : �+ �→ �+ is of class K
(symbolically, χ ∈ K) when χ is continuous, strictly increasing, and χ(0) = 0; we
say that a function χ : �+ �→ �+ is of class K∞ (symbolically, χ ∈ K∞) if it is
of class K and, moreover, limr �→∞ χ(r) = ∞. In order to avoid the usage of too
many variables and constants, we will also make use of the following notation:



640 E.B. Kosmatopoulos, D. Manolis, and M. Papageorgiou

consider a subset X ⊆ �n and let fc : �n �→ �m be a function parameterized by
a positive constant c; the notation fc(x) = OX (c) will be used throughout this
paper – sometimes with a slight abuse of notation – if there exists a function
χ ∈ K such that |fc(x)| ≤ χ(c), ∀x ∈ X . We close this section by providing some
definitions and a lemma that will be proved useful in the analysis of the main
results of this paper.

Definition 1. Consider a subset A ⊂ �n of non-zero Lebesgue measure (which
is not necessarily connected) and suppose that the random vector x ∈ �n is gen-
erated according to a probability density function f . We say that f is a strictly-
positive probability distribution over the subset A if

∫
A f(x)dx = 1, f(x) > 0

for all x ∈ A.

Definition 2. The matrix function f : �n �→ �L×m is said to be a mono-
mial of size L ×m (symbolically, f ∈ ML×m

n ) if the entries of f take the form
fij(x) = x

a1,ij

1 x
a2,ij

2 · · ·xan,ij
n , i ∈ {1, . . . , L}, j ∈ {1, . . . ,m} for some nonnega-

tive integers a1,ij , a2,ij , . . . , an,ij such that any i, ι ∈ {1, . . . , L}, i �= ι, we have
that [a1,ij , a2,ij , . . . , an,ij ] �= [a1,ιj , a2,ιj, . . . , an,ιj].

Definition 3. A matrix function p : �n �→ �k×m is said to be a polynomial
function if there exists a positive integer L such that p(x) = θf(x) for some
f ∈ ML×m

n and a constant matrix θ ∈ �k×L. Let also X be a subset of �n; a
polynomial matrix function p ∈ P1

n is said to be an SoS polynomial over X if
there exist p1, p2, . . . , pκ ∈ P1

n such that p(x) =
∑κ
i=1 p

2
i (x), ∀x ∈ X . Finally,

a polynomial matrix function p ∈ P1
n is said to be a Positive Definite (PD)

polynomial over X (symbolically p ∈ PDn(X )) if p(x) ≥ 0, ∀x ∈ X and p(x) =
0⇐⇒ x = 0.

Lemma 1. [1,10] SoS polynomials are dense in the space of positive definite
polynomials.

2 Problem Formulation

Let us consider the problem of constructing semi-global state-feedback stabilizers
for a general unknown nonlinear system of the form

ẋ = F (x) + g(x)u, x(0) ∈ X (1)

where x ∈ �n, u ∈ �m denote the vectors of systems states and control inputs,
respectively, F, g are continuous unknown nonlinear vector-fields of appropriate
dimensions, with F (x) satisfying F (0) = 0 and X is a compact subset of �n
containing the origin. The subset X refers to the subset of all admissible initial
conditions. It is worth noticing that, contrary to the problem of global stabiliza-
tion in which case X ≡ �n, in the case of semi-global stabilization the subset of
initial states is assumed to be a bounded set which is a priori known.

In order to have a well-posed problem we will assume that the system (1) is
state feedback stabilizable, i.e. we will assume that
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(A1): There exists a continuous function k : �n �→ �m such that the solu-
tions x(t) of the closed-loop system ẋ = F (x) + g(x)k(x) converge to zero
asymptotically, for all x0 ∈ �n.

According to standard results from the theory of nonlinear control, see e.g.
[14,15], assumption (A1) implies the existence of a C1, positive definite, radially
unbounded function CLF V : �n �→ �+ which satisfies

inf
u

{
∂V

∂x

τ

(F (x) + g(x)u)
}
< 0, ∀x �= 0 (2)

Associated to the subset X of admissible initial conditions we will define a “suffi-
ciently large” compact subset X̄ which contains X . Without loss of generality we
will assume that the subset X̄ takes the following form X̄ = {x : �n : |x| ≤ Ω},
where Ω is a sufficiently large positive constant so that X lies in the interior of
X̄ and, moreover, the distance between the boundaries of X and X̄ is sufficiently
large.

In the development and analysis of the proposed scheme we will need the
following lemma that relates the CLF to the uncontrollable region of system (1):

Lemma 2. Assumption (A1) implies that there exist positive constants εi, i =
1, 2, 3 such that, for all x ∈ X̄ ,

∣∣∣∂V∂x τ (x)g(x)∣∣∣ < ε1 and |x| > ε3 imply that
∂V
∂x

τ
(x)F (x) < −ε2.

Proof. The proof is a directly corollary of Lemma 1 of [5].

Let us define the uncontrollable region of (1) to be the subset U defined according
to

U =
{
x ∈ �n : |x| > ε3 and

∣∣∣∣∂V∂x τ (x)g(x)
∣∣∣∣ < ε1

}
Note that Lemma 2 implies that as long as x(t) ∈ U , the choice u(t) = 0
guarantees that V (t) is decreasing.

We close this subsection by introducing a second assumption on system (1):

(A2): Pick any i ∈ {1, . . . , n} and let L be any subset of �+ × � which has
zero Lebesgue measure. If u(t) is a random vector generated according to a
strictly-positive probability distribution over a subset of �m that has non-
zero Lebesgue measure, then

Pr {xi(t) ∈ L} = 0, ∀t ∈ �+

Assumption (A2) although it may appears too technical it can be seen that it is
satisfied in a large number of control applications; see [8] for more details.
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3 Adaptive HONNs for Learning the Unknown System
Dynamics

As already mentioned in the Introduction, the proposed control scheme employs
an adaptive neural structure for learning the unknown system (1) dynamics.
It has to be emphasized that the problem of learning the unknown system (1)
dynamics using neural networks is well-established, see e.g. [4,13]. In this paper
we adopt the adaptive HONN structure of [4] appropriately modified to meet the
requirements of the particular application. The details of the adaptive HONN
structure used within the proposed control scheme are presented next.

Let L denote a user-defined positive integer which is assumed to be sufficiently
large. Let us also fix two monomials z1, z2 ∈ML

n with z1 satisfying1

z1(x) = 0 iff x = 0 (3)

Standard approximation results, see e.g. [4,11], can be used to establish the
following lemma.

Lemma 3. Fix the compact subset X̄ ⊂ �n. Then, there exist constant matrices
θ0, θ1, . . . , θm ∈ �n×L so that the following hold:

F (x) = θ0z1(x) +OX̄

(
1
L

)
, gi(x) = θiz2(x) +OX̄

(
1
L

)
(4)

where gi(x) denotes the ith column of g(x).

Lemma 3 states that, given the monomials z1, z2, there exists a set of HONN
weight vectors θ0, θ1, . . . , θm such that the unknown system vector fields F, g can
be approximated with arbitrary accuracy over the compact subset X̄ . Based on
lemma 3 and working similar to [4], we employ a learning scheme that combines
a filtered regressor HONN and an integral adaptive learning law with projection
for estimating the HONN weight vectors θ0, θ1, . . . , θm. This learning scheme is
described as follows: Let θ̄ = [a, θ0, θ1, . . . , θm] with a = [a, a, . . . , a]τ ∈ �n and
a being a user-defined positive constant and ˆ̄θi(t) denote the estimate of the ith
row of θ̄ as produced by the HONN estimator at time t. Then, the estimates
ˆ̄θi(t) are produced according to the following set of equations:

ϕ̇i = −aϕi + [xi, zτ1 (x), zτ2 (x)u1, . . . , z
τ
2 (x)um]τ ,

˙̄̂
θi = −Pi

(
γRiθ̂i +Qi

)
(5)

Ṙi = −βRi + ϕiϕ
τ
i , Ri(0) = 0, Q̇i = −βQi − (xi − x̂i)ϕi, Qi(0) = 0 (6)

x̂i = ˆ̄θ
τ

i ϕi

where Pi denotes the standard projection operator, see e.g. [2], used to keep ˆ̄θi(t)
bounded and within a convex set and β, γ are positive user-defined constants.
The estimate θ̂(t) ∈ �n×(m+1)L of θ = [θ0, θ1, . . . , θm] is then generated accord-
ing to θ̂(t) = [θ̂0(t), θ̂1(t), . . . , θ̂m(t)], where θ̂0(t), θ̂1(t), . . . , θ̂m(t) are extracted
from the estimate ˆ̄θ(t) according to ˆ̄θ(t) = [â(t), θ̂0(t), θ̂1(t), . . . , θ̂m(t)].
1 For simplicity, we assume that both monomials z1, z2 have the same size L; all the

results of this paper hold in case where the monomials z1, z2 have different size.
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4 CLF Convex Design in the Case of Known System
Dynamics

As already mentioned in the Introduction, the proposed control methodology
makes use of a new result that shows that an approximate CLF for a general
nonlinear system can be casted as a convex optimization problem. This result is
formally presented in the next Theorem.

Theorem 1. Let assumption (A1) hold and L be sufficiently large. Let alsoM(x)
denote the L × n polynomial matrix whose (i, j)th entry is given by Mij(x) =
∂z1i

∂xj
(x) where zi1(x) denotes the ith element of z1(x) and consider a collection of

points xi, i = 1, . . . , N which are chosen randomly according to a uniform distri-
bution in X and let ˆ̄P , ˆ̄Q, K̂ denote the matrix triplet that minimizes the following
convex optimization problem

min
ˆ̄P , ˆ̄Q,K̂

N∑
i=1

∣∣∣∣J ( ˆ̄P , ˆ̄Q, K̂, xi
)∣∣∣∣2 subject to ˆ̄P # ε1IL,

ˆ̄Q # ε2IL (7)

where ε1, ε2 are two positive user-defined constants and J(·) is defined according
to

J
(
P̄ , Q̄, K, x

)
= zτ

1 (x)

(
P̄ θτ

0Mτ
(x) + (ḡ(θ, x)K̄)

τMτ
(x)

)
z1(x)

+zτ
1 (x)

(
M(x)θ0P̄ + M(x)ḡ(θ, x)K̄ + Q̄

)
z1(x)

where ḡ(θ, x) = [θ1z2(x), . . . , θmz2(x)]. Then, there exist two positive constants
ε∗1, ε

∗
2 such that, if N ≥ L(L+m+ 1), for any ε1 ∈ (0, ε∗1], ε2 ∈ (0, ε∗2] the system

(1) CLF satisfies

V (x) = zτ1 (x) ˆ̄P
−1
z1(x) +OX̄

(
1
L

)
, with probability 1 (8)

Proof. Due to space limitations the proof is not included.

In the sequel we will denote with

ˆ̄P = V(θ) (9)

the solution ˆ̄P of (7) as a function of θ.

5 The Proposed Scheme

Based on the information received by the learning mechanism (5), the proposed
control scheme updates the control input u everyΔt time-units; in other words, if
tk = tk−1 +Δt, t0 = 0, k ∈ Z denote the time-instances at which the controller
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vector is updated, then we have that u(t) remains constant in the intervals
t ∈ [t+k−1, tk). The proposed controller update scheme is as follows:

u(t+k ) = arg min
±u(j)

k ,j∈{1,...,m}
˙̂
V

(±j)
k (10)

V(θ̂k, xk) = zτ1 (xk)V−1(θ̂k)z1(xk)

˙̂
V

(±j)
k =

∂V
∂x

τ

(θ̂k, xk)θ̂kφ(xk ,±u(j)
k )

where φ(x, u) = [z1(x), z2(x)u1, . . . , z2(x)um], xk = x(tk), θ̂k = θ̂(tk) and u
(j)
k

are m zero-mean random vectors in [−2αk,−αk]m ∪ [αk, 2αk]m satisfying∣∣∣[u(1)
k , . . . , u

(m)
k

]∣∣∣−1
<

Ξ

αk
(11)

where αk is user-defined positive sequence and Ξ is a finite positive number
independent of αk. We are ready to establish the main result of this paper.

Theorem 2. Let (A1), (A2) hold. Let also Δt be sufficiently small and L be
sufficiently large. Then, for arbitrary ᾱ > 0, there exist finite positive constants
β1, β2, γl and a finite positive integer � = OX̄

(
1
γ

)
such that, if αk satisfies

αk ≤ β2 if
∣∣∣∂V∂x τ (θ̂k, xk)ḡ(θ̂k, xk)∣∣∣ < ε̂1 or k ≤ �

αk ≥ β1 otherwise
(12)

where ε̂1 is a positive design constant satisfying 1
4ε1 < ε̂1 ≤ 1

2ε1 and the adaptive
gain γ of the estimator (5) satisfies , then, the proposed adaptive control scheme
(5), (10), (11) guarantees that the closed-loop solutions are bounded and, more-
over,

lim sup
t→∞

|x(t)| ≤ ε3, w.p.1 (13)

and
V̇ (t+k ) < −ᾱ, if xk �∈ U or (xk, θ̂k) �∈ Sk, w.p.1 (14)

where Sk is a subset of �n ×�n×2L that satisfies Sk = ∅, ∀k > �.

Proof. Due to space limitations the proof is not included.

Theorem 2 states that the proposed scheme guarantees arbitrarily good transient
performance outside (a) the regions of the state space where the system becomes
uncontrollable (i.e. for xk �∈ U) and (b) the subset Sk which shrinks exponentially
fast (with rate of convergence proportional to OX̄

(
1
γ

)
): according to Theorem 2

the larger are the design terms αk for tk :
∣∣∣∂V∂x τ (θ̂k, xk)ḡ(θ̂k, xk)∣∣∣ ≥ ε̂1 and k > �,

the larger is the constant ᾱ in (14), and thus the “more negative” is the time-
derivative V̇ (t+k ) for xk �∈ U or (xk, θ̂k) �∈ Sk.
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It has to be emphasized, though, that the arbitrary good transient perfor-
mance mentioned above is made possible under the assumption that Δt can be
made arbitrarily small. However, since in most applications there are practical
limitations that forbid the choice of Δt beyond a lower bound, there will be
practically an upper bound on αk (or, equivalently, on ᾱ in (14)) such that if we
increase αk beyond this upper bound we may end up with poor or even unstable
performance. See [8] for more details on this issue.

6 Simulation Experiments

In order to test the efficiency of the proposed control scheme, we tested it by
means of simulation experiments to the problem of image based visual servo con-
trol of an aerial robot vehicle. The dynamics of the overall system are described
as follows [3]:

δ̇ = −sk(Ω)δ1 −QV − sk(Ω)q∗

MV̇ = −Msk(Ω)V + Te3 +MgRτe3

Ṙ = Rsk(Ω) (15)
IΩ̇ = −sk(Ω)IΩ + [u1, u2, u3]τ

Ṫ = u4

where δ, V,Ω ∈ �3 denote the image based error, translation velocity and angular
velocity, respectively, T,M, g, I, q∗ denote the external force, mass, gravity coef-
ficient, diagonal inertia matrix, and target vector (expressed in the camera-fixed
frame), respectively, R is the rotational matrix, Q ∈ �3×3 is a positive definite
constant matrix, e3 = [0, 0, 1]τ , u = [u1, u2, u3, u4]τ denotes the control input
vector and sk(Ω) denotes the skew-symmetric matrix such that sk(Ω)v = Ω× v
for the vector product × and any vector v ∈ �3. The interested reader is referred
to [3] for more details on the above system. The system parameters and initial
conditions assumed in the simulations were the same as the ones assumed in the
simulations of [3], i.e. M = 1kg, I = diag(0.42, 0.42, 0.22)kg m, g = 9.8ms−1,
V (0) = Ω(0) = 0, T (0) = g, and R(0) = I3. It has to be emphasized that the
problem of constructing a controller for the system (15) is a quite challenging
and difficult task even in the case where the system (15) dynamics are assumed
known, see [3]. Note also that the system (15) contains n = 19 states and m = 4
control inputs.

The design for the proposed controller was as follows: the compact subset X̄
was set according to X̄ = {x : �n : |x| ≤ 50} which can be seen that it includes
the subset of all practically feasible states for the state vector x. For the con-
struction of the monomial z1 we choose, randomly, L = 100 monomial terms up
to order three, resulting in a third order monomial with size L equal to 100. For
the selection of the monomial z2, by observing that the input vector-field g(x)
for the particular system (15) corresponds to a constant matrix, we choose all
of its L terms to be constant and equal to 1; it can be seen that such a choice
does not cause any problem (especially with respect to the satisfaction of the
PE conditions).
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Fig. 1. Time history of δ(t) for the 1st (left subplot) and 2nd (right subplot) simu-

lation experiments: the dash-dotted curve corresponds to β1 = 1, the dashed curve

corresponds to β1 = 20 and the solid curve corresponds to β1 = 50

We have used the above choices for z1(x) and z2(x) in the optimization prob-
lem (7) in order to on-line construct the CLF matrix V(θ̂k). The number N of
random points xi was set equal to N = L(L + m + 1) = 10500; the algorithm
of [9], appropriately adapted to be applicable to the optimization problem (7),
was used for numerically solving the optimization problem (7). The user-defined
constants ε1, ε2 were chosen according to ε1 = ε2 = 0.5. It has to be emphasized
that different choices for the above constants had little effect on the efficiency
of the overall control scheme. The rest of the controller design parameters and
functions were chosen as follows: the constants a, β in (5) were set equal to 1
while the adaptive gain γ was chosen equal to 1 (for different choices of γ see
remarks at the end of this section); the constants ε̂1, � were chosen according to
ε̂1 = 0.01, � = 100/γ and αk = β2 if

∣∣∣∂V∂x τ (θ̂k, xk)ḡ(θ̂k, xk)∣∣∣ < ε̂1 or k ≤ � and
αk = β1 otherwise, with β2 = 1 and β1 ∈ {1, 10, 50}. The sampling time Δt was
chosen to be equal to 10−3 and the initial parameters estimates θ̂(0) were set
equal to 0 for all i. Such an initialization – although it is not likely to be adopted
in practical situations since it corresponds to a non-stabilizable estimate for the
stabilizable system (15) – was made in order to evaluate the performance of the
proposed control scheme in cases where the estimated system dynamics corre-
spond to a non-stabilizable system; we will comment on the importance of such
an evaluation later in this section.

Two different sets of simulation experiments were created where, in each of
these experiments, the entries of the vectors δ(0), q∗ were randomly chosen in
the interval [−3, 3]3 and the matrix Q was a randomly-chosen positive definite
matrix satisfying λ(Q) ∈ (0, 2] where λ(Q) denotes any of the eigenvalues of
Q; we have to emphasize that the subset of δ(0), q∗, Q generated as above is a
superset of the corresponding set of δ(0), q∗, Q for which the control methodology
of [3] guarantees closed-loop stability. Figure 1 exhibits the closed-loop system
performance – in terms of the time-history of δ(t) – for the two aforementioned
simulations experiments.
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Abstract. In this paper, a high-order neuro-fuzzy network (HONFN)

with improved approximation capability w.r.t. the standard high-order

neural network (HONN) is proposed. In order to reduce the overall

approximation error, a decomposition of the neural network (NN) ap-

proximation space into overlapping sub-regions is created and different

NN approximations for each sub-region are considered. To this end, the
HONFN implements a fuzzy switching among different HONNs as its in-

put vector switches along the different sub-regions of the approximation

space. The HONFN is then used to design an adaptive controller for a

class of uncertain single-input single-output nonlinear systems. The pro-

posed scheme ensures the semiglobal uniform ultimate boundedness of

the tracking error within a neighborhood of the origin and the bounded-

ness of the NN weights and control law. Furthermore, a minimal HONFN,

with two properly selected fuzzy rules, guarantees that the resulting ul-

timate bound does not depend on the unknown optimal approximation

error (as is the case for classical adaptive NN control schemes) but solely

from constants chosen by the designer. A simulation study is carried out

to compare the proposed scheme with a classical HONN controller.

1 Introduction

Neuro-fuzzy networks (NFNs) have been under intensive research over the last
years [1]-[12] since they utilize the advantages of both fuzzy logic and neural
networks (NNs) i.e. the ability for human-like reasoning of fuzzy systems (in
the form of IF-THEN rules) and the low-level learning capability of NNs. The
NARA and FLNFN models introduced in [1] and [11] employ the NN in the
consequent part of the fuzzy rules and can be used efficiently for control design
yielding improved performance w.r.t. classical adaptive NN designs [13]-[18].

In classical adaptive NN control [13]-[18], NNs are employed for function
approximation within some compact region (approximation region). Standard
analysis proves that the tracking error depends (among others) on the optimal
approximation error within that region. It is well known (see [13]-[18]), that the
magnitude of that error depends on the number of neurons (fuzzy rules) that are
used and the size of the approximation region. To improve tracking performance,

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 648–657, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a suitable novel NFN is introduced in this paper and applied to the nonlinear
control design problem. The motivating idea behind the proposed network is to
create a decomposition of the classical NN approximation region into smaller
sub-regions and consider different NN approximations for each sub-region in or-
der to reduce the overall optimal approximation error. In this way, the optimal
approximation error is reduced since the same number of neurons is used for
a function approximation within some significantly smaller compact set. Obvi-
ously, in each of these regions, the ideal NN weight vectors that correspond to
the optimal approximation (within the sub-region), are different in general. To
take into account these different NN approximations in each of the sub-regions,
the proposed NFN implements a fuzzy switching between NN weights that are
estimates of the individual optimal NN weights of the currently active sub-region
of the approximation space. If, then, this NFN (fuzzy switching NN) is used to
control some nonlinear system, a reduced output tracking error will be obtained
w.r.t. standard adaptive NN controllers as the overall optimal approximation
error is reduced.

In the proposed scheme, high order neural networks (HONNs) [19], [15] are
considered in order to keep the mathematical analysis as simple as possible
(HONNs are linear-in-the-parameters networks) and to make possible the use of
the same basis vector when switching from one sub-region to the other (to this
end, a globally supported basis vector is needed). We note that other types of
NNs with the above properties can also be used such as functional link networks
resulting then to a functional link neuro-fuzzy network (FLNFN) [11].

Overlapping sub-regions are considered for the switching process to avoid
discontinuous control action while suitable membership functions are introduced
to account for the degree of residence of the NFN input vector within each sub-
region. The result is a function approximation in the whole approximation space
by a fuzzy-switching HONN (the HONFN) in the spirit of NARA networks [1].

An adaptive HONFN control design is then proposed for tracking control
of SISO uncertain nonlinear systems in normal form. Practical stability (i.e.
semiglobal uniform ultimate boundedness) of the tracking error and boundedness
of the NN weights and control input is proved. Furthermore, a particular selection
of only two fuzzy rules and suitable update laws results in an ultimate bound
that does not depend on the unknown optimal approximation error (as is the
case for standard adaptive NN control) but only on the design constants.

The following notation will be used throughout the paper: Ω′ is the comple-
ment of the set Ω while ∂Ω defines the boundary of the set Ω. Also || · || denotes
the standard Euclidean norm and L∞ is the space of all bounded continuous
functions.

2 Fuzzy Switching HONN

2.1 Standard HONNs

HONNs are well known for their simple structure and their ability to approxi-
mate unknown smooth nonlinear functions. A HONN WTS(z) with input vector
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z ∈ Rm , weight vector W ∈ Rl, node number l and basis function vector S(z) ∈
Rl can be used to approximate an unknown nonlinear function F (z) within some
compact set [19]. The vector of basis functions is S(z) = [ s1(z) s2(z) · · · sl(z) ]T

where si(z) =
∏
j∈Ii

[tanh(zj)]dj(i) , i = 1, 2, . . . , l , z = [ z1 z2 · · · zm ]T ;
{I1, I2, . . . , Il} is a collection of l not ordered subsets of {1, 2, . . . ,m} and dj(i)
are nonnegative integers. According to the universal approximation property of
HONNs, if l is chosen sufficiently large, then WTS(z) can approximate any con-
tinuous function F (z) to any desired accuracy over a compact set Ωz [19]. Thus,
for the smooth function F (z) the following approximation holds true

F (z) = W ∗TS(z) + εa(z) , ∀z ∈ Ωz (1)

with bounded function approximation error |εa(z)| ≤ εm , ∀z ∈ Ωz and ideal
weight W ∗ defined as

W ∗ := arg min
W∈Ωw

{ sup
z∈Ωz

|F (z)−WTS(z)|} (2)

where Ωw := {W ∈ Rl : ‖W‖ ≤ wm} with wm > 0 chosen by the designer.
The magnitude of the optimal approximation error εm depends on the choices of
node number l and constrained set Ωw. To reduce εm a larger number of nodes
l and a larger value for the constrained set bound wm should be considered.

2.2 Fuzzy Switching HONNs

Let us now decompose the approximation region Ωz into different overlapping
approximation sub-regions Ωzi (i = 1, 2, . . . , q) such that Ωz =

⋃q
i=1Ωzi and

consider different standard HONN approximations [19] for each sub-region Ωzi
(i = 1, 2, . . . , q) i.e.

F (z) = W ∗T
i S(z) + εai(z) , ∀z ∈ Ωzi (i = 1, 2, . . . , q) (3)

with bounded function approximation error |εai| ≤ εmi , ∀z ∈ Ωzi and ideal
weights W ∗

i defined as

W ∗
i := arg min

W∈Ωw

{ sup
z∈Ωzi

|F (z)−WTS(z)|} (i = 1, 2, . . . , q). (4)

Then, the optimal approximation error εmi in each sub-region is less or equal
than the optimal approximation error εm in the entire region, i.e. εmi ≤ εm
,(i = 1, 2, . . . , q) , since the property Ωzi ⊂ Ωz yields

sup
z∈Ωzi

|F (z)−WTS(z)| ≤ sup
z∈Ωz

|F (z)−WTS(z)|, ∀W ∈ Ωw, (i = 1, 2, . . . , q).

As εmi ≤ εm holds true ∀i = 1, . . . , q we respectively have that max1≤i≤q{εmi} ≤
εm. Thus, a decomposition of the approximation region into overlapping sub-
regions wherein different NN approximations are considered can actually reduce
the overall optimal approximation error. The function approximation described
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above that employs different optimal NN weights in different (overlapping) sub-
regions of the approximation region allows for a fuzzy switching-NN approxima-
tion in the following sense:

Define the membership functions mi : Ωz → [0, 1] ,(i = 1, 2, . . . , q) given by

mi(z) :=

⎧⎨⎩
1 z ∈ Ωzi \

⋃q
j=1,j �=i Ωzj := Ωi1

hi(z) z ∈ Ωzi ∩
⋃q
j=1,j �=i Ωzj := Ωi2

0 z ∈ Ωz \Ωzi := Ωi3

(5)

where hi : Ωi2 → [0, 1] are arbitrary continuous functions with limz→z0 hi(z) = 1
∀z0 ∈ ∂Ωi1 ∩ ∂Ωi2, limz→z1 hi(z) = 0 ∀z1 ∈ ∂Ωi2 ∩ ∂Ωi3 and

∑m
i=1 hji(z) = 1,

∀z ∈ (
⋂m
i=1 Ωzji)∩(

⋂q
k=m+1 Ω

′
zjk

) where the index set J = {j1, j2, . . . , jm, jm+1,

. . . , jq} is just a rearrangement of {1, 2, . . . , q} (i.e.
∑m
i=1 hji(z) = 1 when-

ever z belongs to the area wherein the regions Ωzj1 , . . . , Ωzjm overlap while
Ωzjm+1 , . . . , Ωzjq do not). In this way mi represents a well-defined continuous
indicator of the membership of z in Ωzi and

∑q
i=1mi(z) = 1, ∀z ∈ Ωz .

Introducing therefore the membership functions mi of (5), then, the following
neuro-fuzzy approximation property holds true for the smooth function F (z)

F (z) =
q∑
k=1

mk(z)[W ∗T
k S(z) + ε̄ak(z)] , ∀z ∈ Ωz (6)

where W ∗
i is defined from (4) and ε̄ai(z) is an extension of εai(z) of (3) to Ωz

defined as

ε̄ai(z) :=
{
εai(z) z ∈ Ωzi
0 z ∈ Ωz \Ωzi

(7)

To prove (6) we must consider the following two cases: i) z ∈ Ωi1 ⊂ Ωzi . Then
mi(z) = 1 and mj(z) = 0 , ∀j �= i and (3) yields the desired result. ii) z ∈ Ωi2
i.e. there exists more than one regions Ωzj1 , Ωzj2 , . . . , Ωzjm (including Ωzi ) with
jk ∈ {1, 2, . . . , q} such that z ∈ (

⋂m
i=1Ωzji ) ∩ (

⋂q
k=m+1Ω

′
zjk

) . Then

F (z) =
q∑
i=1

mi(z)F (z) =
m∑
i=1

hji(z)F (z)

=
m∑
i=1

hji(z)[W
∗T
ji S(z) + εaji(z)] =

q∑
i=1

mi(z)[W ∗T
i S(z) + ε̄ai(z)] (8)

as mi(z) = 0 for all i /∈ {j1, j2, . . . , jm} that completes the proof of (6). From
the approximation (6) we obtain

∣∣∣F (z) −
q∑
i=1

mi(z)W ∗T
i S(z)

∣∣∣ ≤
q∑
i=1

mi(z)|ε̄ai(z)| ≤ max
1≤i≤q

{εmi} (9)

that yields the desired property i.e. the optimal approximation error within some
compact region using the HONFN

∑q
i=1mi(z)WT

i S(z) is less or equal than the
maximum of the optimal approximation error of an individual HONN within
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the different subregions. The particular selection of fuzzy rules and the resulting
NFN can be considered as an implementation of the following fuzzy switching
logic scheme

IF z ∈ Ωz1 THEN use the HONN WT
1 S(z)

...

IF z ∈ Ωzq THEN use the HONN WT
q S(z)

i.e. the network fuzzy switches between HONNs with different weights. To em-
phasize this property we name this NFN the fuzzy switching HONN.

Remark 1. The fuzzy switched HONN is similar to the NARA model [1] and
the FLNFN introduced in [11] wherein multilayer and functional link NNs have
been employed for the consequent part of the network. Furthermore, the previous
neuro-fuzzy approximation property and the accompanying analysis can be used
to explain their improved approximation capability [1], [11] over standard NNs.

In the next, our main focus is the application of the fuzzy switched HONNs to
the tracking control problem.

3 Plant Description and Control Problem Formulation

Consider the following class of SISO systems in normal form

ẋi = xi+1 , i = 1, 2, . . . , n− 1
ẋn = a(x) + b(x)u , y = x1 (10)

where x := [x1, x2, · · · , xn]T is the state vector and u ∈ R , y ∈ R the control
input and the system output, respectively. The functions a : Rn → R , b : Rn →
R represent the system’s unknown smooth nonlinearities. The control objective
is the output y(t) to follow closely (track) some desired reference signal yd(t) .

Assumption 1. The sign of b(x) is known and there exist constants b0 > 0
(unknown), δ1 > 0 (known) and a known class K function (i.e. zero at zero and
strictly increasing) γ̂1(·) such that b0 ≤ |b(x)| ≤ γ̂1(‖x‖)+ δ1 := b1(x), ∀x ∈ Rn.

Remark 2. Assumption 1 poses a controllability condition on system (10) ([17],
[18]) since it implies that the smooth function b(x) is either strictly positive
or strictly negative. Without loss of generality, we assume from now on that
b(x) > 0 , ∀x ∈ Rn .

Define now the vectors xd :=
[
yd, ẏd, . . . , y

(n−1)
d

]T , e := x−xd = [e1, e2, · · · , en]T
and the filtered tracking error s := (d/dt + λ)n−1e1 = [ΛT 1]e with λ > 0 and

Λ :=
[
λn−1, (n − 1)λn−2, · · · , (n − 1)λ

]T
. Then, the time derivative of s can

be written as
ṡ = a(x) + b(x)u − v (11)

with v := y
(n)
d −

[
0 ΛT

]
e a known time-varying signal.
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Assumption 2. The reference signal yd and its derivatives ẏd, ÿd, . . . , y
(n)
d are all

known, smooth and bounded i.e. there exist known ri ≥ 0 such that |y(i)
d | ≤ ri ,

i = 0, 1, . . . , n .

4 Control Design

4.1 Adaptive NFN Controller

For system (10) the following adaptive HONFN controller is considered in this
paper

u(t) =
1

b1(x)
[
− k(t)s−

q∑
i=1

mi(z)ŴT
i S(z)

]
(12)

with k(t) := k0+k1[γ̂1(‖x̄n−1‖+|s|+|v1|)+δ1], k0,k1>0 , x̄n−1 :=[x1, . . . , xn−1]T ,
v1 := y

(n−1)
d − [ΛT 0]e and z := [xT , s, |v|]T the input to the NFN given by∑q

i=1mi(z)ŴT
i S(z) that evolves within some compact approximation region

Ωz := {z : |s| ≤ C0, |y(i)
d | ≤ ri, i = 0, 1, 2, . . . , n} ⊂ Rn+2 (C0 is some constant

that depends on the initial conditions). The NFN implements a decomposition
of this compact set Ωz into arbitrary, chosen by the designer, overlapping sub-
regions Ωzi (i = 1, 2, . . . , q) with membership functions mi(z) (defined as in (5)),
i = 1, 2, . . . , q that fuzzy switch between the q HONNs ŴT

i S(z) (i = 1, 2, . . . , q );
Ŵi is the estimate of W ∗

i that gives the optimal approximation of some nonlinear
function F (z) within Ωzi.

The following NN weight adaptation laws with projection and deadzone are
selected

˙̂
Wi = χ{|s|>η}(t)Proj

{
γimi(z)S(z)s

}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ{|s|>η}(t)γimi(z)S(z)s if ‖Ŵi‖ < wm or‖Ŵi‖ = wm

and mi(z)ŴT
i S(z)s ≤ 0

γimi(z)χ{|s|>η}(t)s
[
S(z)− ŴT

i S(z)
‖Ŵi‖2 Ŵi

]
if ‖Ŵi‖ = wm

and mi(z)ŴT
i S(z)s > 0

(13)

where the positive constants γi > 0 are the adaptation gains and χ{|s|>η}(t) is
the characteristic function of the set {s : |s| > η} defined as χ{|s|>η}(t) = 1
whenever |s(t)| > η and χ{|s|>η}(t) = 0 when |s(t)| ≤ η where η > 0 is some
small design constant. This learning algorithm guarantees that ‖Ŵi(t)‖ ≤ wm,
∀t ≥ 0 if initially ‖Ŵi(0)‖ ≤ wm (see [15],[18]). For the proposed controller a
Lyapunov stability analysis using the continuous nonnegative integral function

Vs :=
{∫ s

ηsgn(s) β0(x̄n−1, σ + v1)σ dσ if |s| > η

0 if |s| ≤ η
(14)

with β0(x) := b1(x)/b(x) can be used to prove the following Theorem (the proof
is omitted due to space limitations).
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Theorem 1. Let the nonlinear system (10) and the reference trajectory yd sat-
isfying Assumptions 1-2. Then, for the adaptive HONFN control law (12) with
update laws (13) and membership functions (5) defined on some overlapping sub-
regions of a sufficiently large approximation space Ωz := {z : |s| ≤ C0, |y(i)

d | ≤
ri, i = 0, 1, 2, . . . , n} ⊂ Rn+2 (where C0 ≥

√
2[Vs(0) + λ0]1/2 + η with λ0 :=

(1/8b0k0k1)(max1≤i≤q{εmi} + 2wmsm)2, ‖S(z)‖ ≤ sm) it holds true that i) all
the closed-loop signals remain bounded and the tracking error enters in finite
time within the region Ω1ε := {e1 : |e1| ≤ (1/λn−1)(

√
2λ0 + η + ε)} for any

(arbitrarily small) ε > 0 wherein it remains thereafter and ii) the mean square
filtered tracking error is bounded from

lim
t→∞

1
t

∫ t

0
s2(τ) dτ ≤ max

{
max1≤i≤q ε2mi
(k0 + k1δ1)2

, η2
}

(15)

for a sufficiently large chosen projection barrier (wm ≥ max1≤i≤q ‖W ∗
i ‖ ).

Remark 3. As can be seen from (15) the smaller the deadzone is selected, the
smaller the mean square filtered tracking error is. Thus, it is reasonable for
someone to consider completely removing the deadzone (η = 0). However, the
deadzone’s utility will be proven in the next Section, where it is shown that
(for the proposed scheme) a proper selection of two fuzzy rules only ensures
asymptotic convergence of the filtered tracking error s to {s : |s| ≤ η} despite
the number of nodes used in the HONNs (i.e. excellent tracking can be achieved
with relatively few nodes).

4.2 Minimal Implementation for Desired Tracking Performance

Let us define a special form of the NFN in the control law (12), with two fuzzy
rules based on the filtered tracking error s. Particularly, the selection of the two
membership functions

m1(z) = min{1,max{0, (1/2η)(s+ η)}} , m2(z) = 1−m1(z) , ∀z ∈ Ωz (16)

ensures asymptotic convergence of s to the interval [−η, η] which in turn implies
asymptotic convergence of the tracking error y − yd to [−η/λn−1, η/λn−1] (due
to space limitations the proof is also omitted).

Theorem 2. Let the SISO uncertain nonlinear system (10) satisfying Assump-
tion 1 and the desired reference trajectory yd for which Assumption 2 holds true.
Then, the selection of the adaptive HONFN control law (12) with two fuzzy
rules only (q = 2) defined by the membership functions (16) and the NN weight
adaptation laws with projection and deadzone (13) (for which a sufficiently large
projection barrier has been chosen), ensures boundedness of all the closed-loop
variables and asymptotic convergence of the tracking error y− yd to the interval
[−η/λn−1, η/λn−1].

Remark 4. Theorem 2 gives the ultimate bound η/λn−1 on the tracking error
magnitude that depends solely on constants chosen by the designer and can
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be reduced at will. This improves the result of Section 4.1 and other standard
results on classical NN adaptive control that yield bounds on the tracking error
which depend on the NN optimal approximation error [13]-[18].

5 Simulation Study

To illustrate the effectiveness of the proposed approach, let now a Van der Pol
oscillator driven by a nonlinear control input with dynamics described from
(10) with n = 2, a(x) = −x1 + (1 − x2

1)x2, b(x) = 1 + x2
2, initial conditions

x(0) = [1 0]T and reference signal yd(t) = sin t. The adaptive HONFN control
law of Theorem 2 is implemented with γ̂1(s) = s2, δ1 = 1 , k0 = k1 = 0.1,
λ = 1, η = 2 × 10−3 and 2 second order NNs with 4 inputs and 15 nodes each.
For the update laws (13) the gains γ1 = γ2 = 1/2 and the weight norm bound
wm = 10 are chosen. The controller’s performance is compared to a HONN
adaptive controller without fuzzy switching of the form

u(t) =
1

b1(x)
[
− k(t)s− ŴTS(z)

]
(17)

with k(t) defined as before and the projection-based adaptation law

˙̂
W = Proj{γS(z)s}. (18)

The effectiveness of the controller (17) with the NN weight update law (18) to
the tracking control problem can be proved using standard arguments. In the
simulation study, two cases are considered for controller (17): i) a second order
NN with 15 nodes and ii) a third order NN with 31 nodes (more nodes than the
total number of nodes in the fuzzy-switching HONN). The design parameters of
the HONFN are also used for this scheme. Simulation results (Fig. 1-2) indicate
that both controllers provide effective tracking of the desired reference signal
with bounded NN weights and control signals. However, the adaptive HONFN
controller yields improved tracking performance w.r.t. the classical HONN con-
trol law even for the case ii) where more NN nodes are considered in the classical
scheme. The convergence of s to the region {s : |s| ≤ η} is clearly illustrated in
Fig. 3.
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6 Conclusion

Fuzzy switching HONNs are introduced in this paper and effectively applied to
the tracking control problem of uncertain nonlinear systems in normal form. A
particular selection of fuzzy rules is proposed that yields an ultimate bound for
the tracking error independent from the optimal NN approximation error.
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Abstract. This study proposes and validates a construction concept

for the realization of a real-valued single-hidden layer feed-forward neu-

ral network (SLFN) with continuous-valued hidden nodes for arbitrary

mapping problems. The proposed construction concept says that for a

specific application problem, the upper bound on the number of used

hidden nodes depends on the characteristic of adopted SLFN and the

observed properties of collected data samples. A positive validation re-

sult is obtained from the experiment of applying the construction concept

to the m-bit parity problem learned by constructing two types of SLFN

network solutions.

Keywords: Bound, hidden nodes, single-hidden layer feed-forward neu-

ral network, preimage, parity problem.

1 Bound on the Number of Hidden Nodes

With regard to the realization of a real-valued single-hidden layer feed-forward
neural network (SLFN) with continuous-valued hidden nodes for arbitrary map-
ping problems, this study proposes and validates the construction concept. The
proposed construction concept says that for any learning problem with specific
data relationship observed among input vectors and target values, knowledge of
the characteristic of adopted SLFN and the observed data properties helps find
a better upper bound on the number of used hidden nodes of network solution
than the one obtained from the conventional construction method that misses
the characteristic and ignores the relationship.

The question of the necessary number of hidden nodes for a feed-forward
neural network has been addressed in [1][3][5][6]. [3] argued that fewer hidden
nodes is generally regarded as desirable for preventing over-learning, but the
necessary number of hidden nodes is not known in general. Both of [1] and [6]

� Corresponding author.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 658–667, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Upper Bound on the Number of Hidden Nodes 659

obtained a bound of N -1 for N distinct samples, but both assumed that the
hidden layer of nodes produced a binary-valued output. To obtain the training
advantages of back propagation of errors, most models use continuous-valued
hidden node outputs, as we do here. The methods of [1] and [6] do not seem to
generalize to our situation.

[5] adopted standard SLFNs with any nonlinear, continuous-valued activation
function that has a limit at each infinity and claimed that N distinct samples
can be fit perfectly through a SLFN with N hidden nodes. However, the number
N is a loose upper bound on the number of hidden nodes of a SLFN solution
for N distinct samples; for instance, [12] and [13] stated that the m-bit parity
problem is solvable by a SLFN with merely '(m+ 1)/2( hidden nodes and with
the sigmoid activation functions at hidden nodes, in which, and hereafter, 'x(
denotes the smallest integer which is larger than or equal to x. In fact, instead of a
loose and universal upper bound applied to the number of hidden nodes of SLFN
solutions for all learning problems, most researchers and practitioners desire a
concept to help find a better upper bound on the number of used hidden nodes
of SLFN solution for a specific learning problem, as we do here. The discussion
of [5][12][13] does not seem to provide such a concept. To address such challenge,
we propose the construction concept.

In Section 2, this study shows that the conventional construction method of
[5] misses the characteristic of the adopted SLFN and ignores the data relation-
ship among input vectors and target values. This study then explores character-
istics of SLFN through the preimage analysis, in which the preimage of a given
output is the collection of inputs for the output. In Section 4, we set up the exper-
iment of parity problem to validate the construction concept. The parity prob-
lem is a challenging benchmark for testing neural network learning algorithm.
Some, but not exhaustive, recent studies of the parity problem can be found in
[2][4][7][8][9][12][15]. Conclusions and future work are presented at the end.

2 A Conventional Construction Method

List of notations used in mathematical representations: Characters in bold rep-
resent column vectors, matrices or sets; (·)T denotes the transpose of (·).

N ≡ the amount of training samples;
I ≡ the amount of input nodes;
J ≡ the amount of hidden nodes;
x ≡ (x1, x2, · · · , xI)T: the input vector, in which xi is the ith input

component, with i from 1 to I;
a ≡ (a1, a2, · · · , aJ)T: the hidden activation vector, in which aj is the

activation value of the jth hidden node, with j from 1 to J ;
y ≡ the activation value of the output node and y = f(x) with f being

the map function of x and y;
wHji ≡ the weight between the ith input variable and the jth hidden node,

in which the superscript H throughout the paper refers to quantities
related to the hidden layer;
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wH
j ≡ (wHj1, w

H
j2, . . . , w

H
jI)

T, the vector of weights between the input
variables and the jth hidden node;

WH ≡ (wH
1 ,w

H
2 , . . . ,w

H
J )T , the J × I matrix of weights between the input

variables and the hidden nodes;
wHj0 ≡ the bias value of the jth hidden node;
wOj ≡ the weight between the jth hidden node and the output node

in which the superscript O throughout the paper refers to
quantities related to the output layer;

wO ≡ (wO1 , w
O
2 , . . . , w

O
J )T; and

wO0 ≡ the bias value of the output node.

The construction method of [5] works for any activation function g as long as
g(x01) �= limx→+∞ g(x). Let xc and tc be the cth input pattern and the corre-
sponding target value, respectively, c = 1, . . . , N . Without the loss of generality,
assume that xc �= xd for 1 ≤ c �= d ≤ N . Let T ≡ (t1, t2, . . . , tN)T be the
N -dimensional vector of target values for the N input samples; x01 > x02 be
two arbitrary pre-specified constants. The construction method first arbitrarily
chooses an I-dimensional vector w such that

wTx1 < wTx2 < . . . < wTxN . (1)

For this w, the construction method then calculates wH
j and wHj0 from eqt. (3),

in which the values of wH
j and wHj0 are independent of the target outputs {tc}:

wH
j = { 0, if j = 1;

x02−x01
wTxj−wTxj−1 w, if 2 ≤ j ≤ N ; (2)

wHj0 = {
x02, if j = 1;

x01wTxj−x02wTxj−1

wTxj−wTxj−1 , if 2 ≤ j ≤ N ;
(3)

Let acj be the jth activation value for the cth input, i.e., the output of the jth

hidden node for input xc. Then ac1 ≡ g(x02) and acj ≡ g( x02−x01
wTxj−wTxj−1 wTxc +

x01wTxj−x02wTxj−1

wTxj−wTxj−1 ) ∀ 2 ≤ j ≤ N . Let ac ≡ (g(x02), ac2, . . . , acN )T and M ≡
(a1,a2, . . . ,aN )T. [5] showed that the N samples in {x} space are mapped to
N distinctive points in the activation space such that the N × N matrix M is
invertible. With wO0 set to zero, wO = M−1T can always be found to match
wO0 +

∑N
j=1 w

O
j a

c
j to tc without any error.

[5] ends up at the construction method with neither discussion on the charac-
teristic of the adopted SLFN nor on the data relationship among input vectors
and target values. For instance, the output value y of the constructed SLFN
for an arbitrary input x can be represented as wO1 g(x02) +

∑N
j=2 w

O
j g(w

H
j0 +∑I

i=1 w
H
j0xi), since a1 always equals g(x02). Thus wO1 g(x02) can serve as the

bias of the output node such that there are only N − 1 effective hidden nodes.
Furthermore, from eqt. (3), vectors wH

j for 2 ≤ j ≤ N are linearly dependent.
Therefore, the constructed SLFN has the weight vectors (from the input layer)
of all its (effective) hidden nodes linearly dependent on each other.
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3 Characteristics of SLFN

We apply the following preimage analysis to explore characteristics of the SLFN.
Without any loss of generality, assume the tanh activation function is adopted
in all hidden nodes.

Denote a particular collection of wHj0, wH
j , wO, and wO0 by Θ. Given Θ, the

mapping f of SLFN is the composite of the following mappings: the activation
mapping ΦA : �I → (−1, 1)J that maps an input x to an activation value a (i.e.,
a = ΦA(x)); and the output mapping ΦO : (−1, 1)J → (wO0 −

∑J
j=1 |wOj |, wO0 +∑J

j=1 |wOj |) that maps an activation value a to an output y (i.e., y = ΦO(a)).
Note that, since the range of ΦA and the domain of ΦO are set as (−1, 1)J , the
range in the output space ) ≡ (wO0 −

∑J
j=1 |wOj |, wO0 + |

∑J
j=1 w

O
j |) contains all

achievable output values. For ease of reference in later discussion, we also call
�I the input space and (−1, 1)J the activation space.

Thus, f−1(y) ≡ Φ−1
A ◦ Φ−1

O (y), with

Φ−1
O (y) ≡ {a ∈ (−1, 1)J |

J∑
j=1

wOj aj = y − wO0 }, (4)

Φ−1
A (a) ≡ ∩Jj=1{x ∈ �I |

I∑
i=1

wHjixi = tanh−1(aj)− wHj0}, (5)

where tanh−1(x) = 0.5 ln(1+x
1−x). Formally, the followings are defined for every

given Θ:

(a) A value y ∈ � is void if y �= f({�I}), i.e., for all x∈ �I , f(x) �= y. Otherwise,
y is non-void.

(b) A point a ∈ (−1, 1)J is void if a /∈ ΦA(�I), i.e., for all x ∈ �I , ΦA(x) �= a.
Otherwise, a is non-void. The set of all non-void a’s in the activation space
is named as the non-void set.

(c) The image of an input x ∈ �I is y ≡ f(x) for y ∈ ).
(d) The preimage of a non-void output value y is f−1(y) ≡ {x ∈ �I |f(x) = y}.

The preimage of a void value y is the empty set.
(e) The internal-preimage of a non-void output value y is the collection {a ∈

(−1, 1)J |ΦO(a) = y} on the activation space.

From eqt. (4), with the given Θ, Φ−1
O (y) is the linear equation

∑J
j=1 w

O
j aj =

y − wO0 , which is a hyperplane in the activation space. As y changes, Φ−1
O (y)

forms parallel hyperplanes in the activation space; for any change of the same
magnitude in y, the corresponding hyperplanes are spaced by the same distance.
The activation space is entirely covered by these parallel Φ−1

O (y) hyperplanes,
orderly in terms of the values of y. These parallel hyperplanes form a (linear)
scalar field [14], that is, for each point a of the activation space, there is only
one output value y whose Φ−1

O (y) hyperplane passes point a; all points on the
same (internal preimage) hyperplane yield the same y value.
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From eqt. (5), Φ−1
A (a) is a separable function such that each of its compo-

nents lies along a dimension of the activation space. Moreover, Φ−1
Aj (aj) ≡ {x ∈

�I |
∑I
i=1 w

H
jixi = tanh−1(aj)−wHj0} is a monotone bijection that defines a one-

to-one mapping between the activation value aj and the input x. For each aj
value, Φ−1

Aj (aj) defines an activation hyperplane in the input space. Activation
hyperplanes associated with all possible aj values are parallel and form a (linear)
scalar activation field in the input space. That is, for each point x of the input
space, there is only one activation value aj whose Φ−1

Aj (aj) hyperplane passes
point x; all points on the Φ−1

Aj (aj) hyperplane are associated with the activation
value aj . Each hidden node gives rise to an activation field, and J hidden nodes
set up J independent activation fields in the input space. Thus, with a given
Θ, the preimage of an activation value a by Φ−1

A is the intersection of J specific
hyperplanes.

The intersection ∩Jj=1{x ∈ �I |
∑I
i=1 w

H
jixi = tanh−1(aj)−wHj0} can be repre-

sented as {x|WHx = ω(a)}, where ωj(aj) ≡ tanh−1(aj)−wHj0 for all 1 ≤ j ≤ J ,
and ω(a) ≡ (ω1(a1), ω2(a2), . . . , ωJ(aJ ))T. Given Θ and an arbitrary point a,
ω(a) is simply a J-dimensional vector of known component values; the condi-
tions that relates a with x can be represented as

WHx = ω(a), (6)
which is a system of J simultaneous linear equations with I unknowns.

Let rank(D) be the rank of matrix D and (D1
...D2) be the augmented matrix

of two matrices D1 and D2 (with the same number of rows). WHx = ω(a) is a

set of inconsistent simultaneous equations if rank(WH
...ω(a)) = rank(WH) + 1

(c.f. [11]). In this case, the corresponding point a is void. Otherwise, a is non-
void. Note that, for a non-void a, the solution of eqt. (6) defines an affine space of
dimension I − rank(WH) in the input space. The discussion establishes Lemma
1 below.

Lemma 1. (a) An activation point a in the activation space is non-void if its

corresponding rank(WH
...ω(a)) equals rank(WH). (b) The set of input values

x mapped onto a non-void a forms an affine space of dimension I − rank(WH)
in the input space.

By definition, the non-void set equals {a ∈ (−1, 1)J |aj = tanh(
∑I
i=1 w

H
jixi+w

H
j0)

for 1 ≤ j ≤ J,x ∈ �I}. Check that WH is a J × I matrix. If rank(WH) = J ,
Lemma 1 says that no activation point a can be void and leads to Lemma 2 below.
For rank(WH) < J , Lemma 3 characterizes the non-void set, which requires the
concept of manifold. A p-manifold is a Hausdorff space X with a countable basis
such that each point x of X has a neighborhood that is homomorphic with an
open subset of �p [10]. A 1-manifold is often called a curve, and a 2-manifold
is called a surface. For our purpose, it suffices to consider Euclidean spaces, the
most common members of the family of Hausdorff spaces.

Lemma 2. If rank(WH) equals J , then the non-void set covers the entire acti-
vation space.
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Lemma 3. If rank(WH) is less than J , then the non-void set in the activation
space is a rank(WH)-manifold.

A(y), the intersection of Φ−1
O (y) and the non-void set in the activation space,

is the internal-preimage of y. Mathematically, for each non-void y, A(y) ≡

{a|rank(WH
...ω(a)) = rank(WH), a ∈ Φ−1

O (y)}. Consider first rank(WH) = J .
In this case, Lemma 2 says that the non-void set is the entire activation space.
Thus, A(y) equals Φ−1

O (y). If rank(WH) < J , then A(y) is a subset of Φ−1
O (y).

Thus, we have the following Lemma 4. Furthermore, A(y)’s are aligned orderly
according to Φ−1

O (y) and all non-empty A(y)’s form an internal-preimage field
in the activation space. That is, there is one and only one y such that a non-void
a ∈ A(y); and for any a on A(y), its output value is equal to y.

Lemma 4. For each non-void output value y, all points in the set A(y) are at
the same hyperplane.

Now the preimage of any non-void output value y, f−1(y), equals {x ∈ �I |WHx
= ω(a) with all a ∈ A(y)}. If rank(WH) = J , then, from Lemma 2 and
Lemma 1(b), the preimage f−1(y) is a (I − 1)-manifold in the input space. For
rank(WH) < J , from Lemma 3 and Lemma 1(b),

1. if rank(WH) = 1 and A(y) is a single point, then f−1(y) is a single hyper-
plane;

2. if rank(WH) = 1 and A(y) consists of several points, then f−1(y) may consist
of several disjoint hyperplanes;

3. if 1 < rank(WH) < J and A(y) is a single (rank (WH)-1)-manifold, then
f−1(y) is a single (I − 1)-manifold; and

4. if 1 < rank(WH) < J and A(y) consists of several disjoint (rank(WH)-1)-
manifolds, then f−1(y) consists of several disjoint (I − 1)-manifolds.

Table 1 summarizes that the preimage f−1(y) is dictated by the property of its
associated internal-preimage A(y).

Table 1. The relationship between the internal-preimage A(y) and the preimage

f−1(y) of a non-void output value y

The nature of A(y) The nature of f−1(y)

A single intersection-segment A single (I − 1)-manifold

Multiple disjoint intersection-segments Multiple disjoint (I − 1)-manifolds

The input space is entirely covered by a grouping of preimage manifolds that
forms a preimage field. That is, there is one and only one preimage manifold pass-
ing through each x; and the corresponding output value is the y value associated
with this preimage manifold. Note that the preimage manifolds are aligned or-
derly because A(y)’s are aligned orderly according to Φ−1

O (y)’s and the mapping
of Φ−1

A is a monotone bijection that defines a one-to-one mapping between an
activation vector and an affine space.
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Notice that rank(WH) determines the characteristic of the non-void set and
thus the characteristic of internal-preimage. Hereafter, SLFN-p denotes a SLFN
whose rank(WH) equals p. For instance, if we adopt a SLFN-1 network, then we
can assume wH

j equals αjw with αj �= 0 for all j and αj1 �= αj2 for all j1 �= j2.
Since α1 is non-zero, aj can be represented as tanh(δjtanh−1(a1) + δj0), where
δj = αj/α1 and δj0 = (α1w

H
j0−αjwH10)/α1. If we adopt a SLFN-2 network, then

we can assume that wH
1 equals w1, wH

2 equals w2,wH
j = γj1w1 + γj2w2 with

either γj1 or γj2 nonzero for all j ≥ 3, and w1 and w2 are linearly independent.
For SLFN-1, the above preimage analysis states that the non-void set is an 1-

manifold; A(y) equals {a ∈ (−1, 1)J |wO1 a1+
∑J
j=2 w

O
j tanh(δjtanh−1(a1)+δj0) =

y−wO0 , aj = tanh(δjtanh−1(a1)+δj0) ∀ j ≥ 2, a1 ∈ (−1, 1)}; and f−1(y) equals
{x ∈ �I |

∑I
i=1 w

H
1ixi = tanh−1(a1)−wH10, wO1 a1 +

∑J
j=2 w

o
j tanh(δjtanh−1(a1)+

δj0) = y − wO0 , aj = tanh(δjtanh−1(a1) + δj0) ∀ j ≥ 2, a1 ∈ (−1, 1)}. These
establish the following Lemma 5. Furthermore, w is the normal vector of the
preimage hyperplane of SLFN-1 and wH

j ≡ αjw determines the orientation of
the activation hyperplane in the input space corresponding to the jth hidden
node. Thus, we have Lemma 6.

Lemma 5. For SLFN-1, the preimage field is formed from a collection of preim-
age hyperplanes.

Lemma 6. For SLFN-1, the activation hyperplanes in the input space corre-
sponding to all hidden nodes are parallel, and the preimage hyperplane is parallel
with the activation hyperplane.

The above preimage analysis results in the following two hyperplane character-
istics (i) and (ii) regarding all SLFN networks and one hyperplane characteristic
(iii) for SLFN-1: (i) training samples with the same target value are allowed to
be on the same activation hyperplane; (ii) activation points with the same target
value are allowed to be on the same Φ−1

O hyperplane; (iii) training samples with
the same target value are allowed to be on the same preimage hyperplane.

4 The Experiment of m-Bit Parity Learning Problem

Through the application to the m-bit parity problem learned by constructing
SLFN-2 and SLFN-1 network solutions, we show that the construction concept
can help find network solutions perfectly fitting 2m distinct samples with fewer
used hidden nodes than the one obtained from the conventional construction
method of [5].

For the m-bit parity problem, I is equal to m and we observe that the 2m

input samples are on the vertices of an m-dimensional hypercube with any two
adjacent vertices having different target values. Without any loss of generality,
take xci ∈ {−1, 1} for all c and i, and set the target value to t for odd number of
+1’s in input, and to −t otherwise.

In the case of constructing a SLFN-2 network solution, assume that wH
1 equals

w1,wH
2 equals w2, wH

j ≡ γj1w1 + γj2w2 with either γj1 or γj2 nonzero for
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Table 2. The mapping from the total eight input patterns to the following six activa-

tion vectors

xc wT
1 xc wT

2 xc wT
j xc tc

(1, 1, 1) 3 1 3γj1 + γj2 −t

(-1, 1, 1) 1 3 γj1 + 3γj2 t

(1, -1, 1) 1 -1 γj1 − γj2 t

(1, 1, -1) 1 -1 γj1 − γj2 t

(-1, -1, 1) -1 1 −γj1 + γj2 −t

(-1, 1, -1) -1 1 −γj1 + γj2 −t

(1, -1, -1) -1 -3 −γj1 − 3γj2 −t

(-1, -1, -1) -3 -1 −3γj1 − γj2 t

all j ≥ 3, and w1 and w2 are linearly independent. Following the guide of the
observed property of parity problem and the hyperplane characteristic (i), let w1
and w2 be assigned as in eqt. (6) and thus the total 2m input patterns are mapped
onto 2m activation vectors {ã0, . . . , ã2m−1}, in which ãk ≡ (ãk1 , . . . , ã

k
J)

T. Table 2
illustrates the mapping regarding the 3-bit parity problem. Let ã0

1 = tanh(m+
wH10), ã

0
2 = tanh(m− 2 +wH20), ã

0
j = tanh(mγj1 + (m− 2)γj2 +wHj0), j = 3, . . . , J,

and t̃0 ≡ −t; for each k = 1, . . . ,m − 1, ã2k−1
1 = tanh(m − 2k + wH10), ã

2k−1
2 =

tanh(m− 2k+ 2+wH20), ã
2k−1
j = tanh((m− 2k)γj1 +(m− 2k+ 2)γj2 +wHj0), j =

3, . . . , J, and t̃2k−1 ≡ (−1)k+1t; ã2k
1 = tanh(m− 2k+wH10), ã

2k
2 = tanh(m− 2k−

2 + wH20), ã
2k
j = tanh((m − 2k)γj1 + (m − 2k − 2)γj2 + wHj0), j = 3, . . . , J, and

t̃2k ≡ (−1)k+1t; ã2m−1
1 = tanh(−m+wH10), ã

2m−1
2 = tanh(−m+2+wH20), ã

2m−1
j =

tanh(−mγj1 + (−m+ 2)γj2 + wHj0), j = 3, . . . , J, and t̃2m−1 ≡ (−1)m+1t.

w1j = 1, i = 1, . . . ,m; w21 = −1, w2i = 1, i = 2, . . . ,m. (7)

Thus let J = 2m,wHj0 = 0 ∀ j, wO0 = 0, and wO = M̃
−1

T̃, in which M̃ ≡
(ã0, . . . , ã2m−1)T and T̃ ≡ (t̃0, t̃1, . . . , t̃2m−1)T. Referring to [5], it is trivial to
show that there exist non-zero values of γj1 and γj2 such that the square ma-

trix M̃ is invertible and thus the corresponding inverse matrix M̃
−1

exists. By
checking all 2m samples, it is trivial to show that the above SLFN-2 network is
a solution of the m-bit parity problem.

In the case of constructing a SLFN-1 network solution, assume that wH
j equals

αjw with αj �= 0 for all j, αj1 �= αj2 for all j1 �= j2, and aj can be represented as
tanh(δjtanh−1(a1)+δj0), where δj = αj/α1 and δj0 = (α1w

H
j0−αjwH10)/α1. Fol-

lowing the guide of the observed property of parity problem and the hyperplane
characteristics (ii) and (iii), we pick w as w1 in eqt. (6) and assign a total of
'(m+1)/2( adopted hidden nodes. Thus the total 2m input patterns are mapped
onto m+ 1 activation vectors, {â0, . . . , âm}, in which âkj = tanh((m− 2k)αj +
wHj0), j = 1, . . . , '(m+ 1)/2( and âk ≡ (âk1 , . . . , â

k
�(m+1)/2)

T, k = 0, . . . ,m. Then
we make the following assignments:
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(I) when m is an odd number: let wHj0 = 0 ∀ j, wO0 = 0 and wO = M̂
−1

T̂,
where M̂ ≡ (â0, â1, . . . , â�(m+1)/2−1)T, âkj = tanh((m − 2k)αj) ∀ j, k =
0, . . . ,m, T̂ ≡ (t̂0, t̂1, . . . , t̂�(m+1)/2−1)T, and t̂k ≡ (−1)k+1t for all k.

(II) when m is an even number: let wHj0 = αj ∀ j, wO0 = 0 and wO = M̂
−1

T̂,
where M̂ ≡ (â0, â1, . . . , â�(m+1)/2−1)T, âkj = tanh((m− 2k + 1)αj) ∀ j, k =
0, . . . ,m, T̂ ≡ (t̂0, t̂1, . . . , t̂�(m+1)/2−1)T, and t̂k ≡ (−1)k+1t for all k.

Referring to [5], it is trivial to show that there exist non-zero values of αj such
that the set {â0, . . . , âm} are linearly independent and thus the square matrix
M̂ is invertible. By checking all 2m samples, it is trivial to show that the above
SLFN-1 network is a solution of the m-bit parity problem.

5 Conclusions and Future Work

This study derives three hyperplane characteristics and several properties of
the SLFN through the preimage analysis. Regarding the m-bit parity learning
problem, we observe that the 2m input samples are on the vertices of an m-
dimensional hypercube with any two adjacent vertices having different target
values. Accordingly, the construction concept helps set up SLFN-1 and SLFN-
2 solutions, each of which uses fewer hidden nodes than the ones used by the
conventional construction method of [5].

Note that most learning algorithms (or construction methods) lead to a
SLFN-p solution with p ≥ 2 and complex preimages. Extending from this study,
one may further argue that the construction concept can help identify the true
upper bound on the number of used hidden nodes of such SLFN solutions for
a specific learning problem. This argument is one of future researches. Most
training is a trade-off of learning performance and generalization performance,
and the hidden layer plays a key role in this issue. Therefore, another future
research is to develop and validate a construction concept that involves with the
generalization.
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Abstract. This paper presents a unified control Liapunov function (CLF) ap-
proach to the design of heavy ball with friction (HBF) and conjugate gradient
(CG) neural networks that aim to minimize scalar nonconvex functions that have
continuous first- and second-order derivatives and a unique global minimum.
This approach leads naturally to the design of second-order differential equations
which are the mathematical models of the corresponding implementations as neu-
ral networks. Preliminary numerical simulations indicate that, on a small suite of
benchmark test problems, a continuous version of the well known conjugate gra-
dient algorithm, designed by the proposed CLF method, has better performance
than its HBF competitor.

Keywords: Control Liapunov Functions, Nonconvex Functions, Global Mini-
mization, Second Order ODEs.

1 Introduction

Neural networks for optimization are typically implementations of dynamical systems
represented by ordinary differential equations (ODE) and this paper will use the terms
ODE and neural network synonymously. There has been a revival of interest in analog or
ordinary differential equation based methods for optimization, dating from the seminal
paper of Karmarkar and the subsequent boom in interior point and trajectory-following
methods (see, for example, [1,2,3] and the references therein).

Methods to solve different optimization problems arise in a unified and natural man-
ner by taking a control viewpoint. This control perspective was presented in [3,4,5]. In
the case of minimizing a scalar function, it consists of formulating the problem as that
of designing a closed-loop control system, with a plant defined by the scalar function
and a feedback controller: the overall system is modeled by an ODE whose trajectories
converge to the desired minimum of the function. The choice of the feedback controller
is based on the control Liapunov function (CLF) method (detailed in the present context
in the book [3]), well known in control theory. This control perspective offers powerful
tools for the design and analysis of systems to solve optimization problems.

The main motivation to use second-order ODEs (where second-order refers to the
fact that the overall or closed-loop dynamics is described by a second-order ODE),
instead of first-order ones, comes from the fact that, for nonconvex functions φ(x) :

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 668–677, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Rn → R, trajectories x(t) starting at an initial point x(0) = x0 ∈ dom(φ) and gene-
rated by first-order gradient-based ODEs will converge to any point where the gradient
of the function is zero, even though this point may be a local minimum of the function;
using second-order ODEs, with an adequate choice of parameters (gains), trajectories
are able to converge to the global minimum of the function x∗. These ODEs are suitable
for implementation as neural networks.

In [6] several second order ODE’s were interpreted and designed as closed-loop
control system using CLFs. The ODE’s studied in [6] were the heavy ball with fric-
tion (HBF) method, proposed by Polyak [7] and later studied in detail in [8,9,10], the
dynamical inertial Newton-like system (DIN), proposed by Alvarez et. al. [11], and a
continuous-time version of the conjugate gradient (CG) method. In addition, other se-
cond order systems to minimize nonconvex scalar functions were also designed using
the CLF method, by choosing of different candidate Liapunov functions and with ade-
quate choices of the plant and the controller of the systems.

In [6], it was noted that the continuous time CG algorithm was superior to most
of the others with the chosen test functions. In this respect, the contribution of this
paper is to go beyond, showing that the much studied HBF method and some of its
variants [8,9,10], as well as generalizations proposed in this paper are outperformed on
a suite of standard nonconvex problems used in the literature on global optimization by
a continuous version of the CG algorithm that was first proposed for quadratic functions
in [12], and generalized in [6].

In order to proceed, consider a scalar function φ(x) : Rn → R, continuous and
with continuous partial derivatives, and radially unbounded (that is, φ(x) → ∞ when
‖x‖ → ∞), such that for all x ∈ dom(φ), φ(x) ≥ φ(x∗) = φmin, i.e. the global
minimum x∗ is assumed to exist and be unique. It is desired to find x∗, by following an
ODE trajectory that starts from some given initial point x0.

2 Preliminaries: Motivation and CLF-Based Design

In order to arrive at a natural motivation for the approach proposed in this paper, first
consider a continuous version of the steepest descent (SD) algorithm, written as:

ẋ(t) = u (1)

u = −∇φ(x(t)) , (2)

where u ∈ Rn and the gradient of φ is written ∇φ : Rn → Rn : x �→ ∇φ(x). The
reason that (1) and (2) are written in this fashion is twofold: first, it is clear that its trajec-
tories will converge to local minima satisfying the necessary condition ∇φ(x(t)) = 0
and second, in order to escape from confinement to a local minimum, a more sophisti-
cated choice of u (which is being thought of as the control) is needed in order to drive
x to the global minimum x∗ (φ(·) is being thought of as defining the output of the
controlled object or plant).

Assume that u has first-order dynamics, i.e., (2) is replaced by:

u̇ = ψ(x) . (3)
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Then, a natural CLF arises from the attempt to solve the so called regulation problem,
in which the reference signal is the global minimum value of the function φmin, and
the output of the plant, φ(x), is to be driven to this value. This is to be done by choice
of the RHS ψ(x) of the u-dynamics (3), also ensuring that u goes to zero, so that the
x-dynamics (1) converges to the desired global equilibrium. In other words, a candidate
CLF can be written as follows.

V (x,u) = φ(x) − φmin +
uTu

2
≥ 0 , (4)

which is greater than zero for all x �= x∗ and u �= 0.
The time derivative of (4) is:

V̇ (x,u) = ∇φ(x)T ẋ + uT u̇ . (5)

Equations (1), (3), (4) and (5) are the starting point for the CLF design of new second-
order ODEs by choosing ẋ and u̇ in (5) (respectively, the plant dynamics and the con-
troller dynamics in control jargon) so that V̇ (x,u) ≤ 0, ensuring stability. The name
CLF is justified by the fact that V̇ is made negative by choice of the control or u-
dynamics, given some choice of the plant or x-dynamics.

An important observation is that, although the global minimum value of the function
(φmin) occurs in the definition of the candidate CLF (4), it disappears in its derivative
(5), which is the crucial equation for the design. In other words, knowledge of φmin is
not required for the CLF design.

3 CLF Design of the CG and HBF ODEs

3.1 The HBF ODE

The best known existing algorithm of the class of so called second-order algorithms
is the “heavy ball with friction” (HBF), represented by the following second-order
differential equation:

ẍ + γẋ +∇φ(x) = 0 , (6)

where γ is positive scalar coefficient. In a mechanical analogy of (6), the HBF ODE
represents a dissipative system, the scalar γ being interpreted as viscous friction. A
natural generalization of (6) consists of introduction of scalar coefficients that depend
on x and ẋ, and this nonlinear system will be denoted as gHBF:

ẍ + γ(x, ẋ)ẋ + μ(x, ẋ)∇φ(x) = 0 , (7)

where γ(x, ẋ), μ(x, ẋ) : Rn × Rn → R are scalar valued functions of the state vector
[xT ẋT ]T .

Equation (7) has the following standard realization as a first order vector ODE:

ẋ = u
u̇ = −γ(x,u)u− μ(x,u)∇φ(x) . (8)
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Note that the equilibrium point of (8) is [∇Tφ(x) uT ]T = 0, which implies that trajec-
tories generated by this system can stop at any zero gradient point; however, the hope is
that, with an adequate choice of the parameters, trajectories be able to pass local minima
to converge to the global minimum.

Substituting (8) in (5) yields:

V̇ = (1− μ(x,u))∇Tφ(x)u − γ(x,u)uTu , (9)

and it remains to choose μ(x,u), γ(x,u) in such a way that V̇ in (9) becomes negative,
at least semidefinite. If V̇ is uniformly continuous, but only semidefinite, other tools like
La Salle’s theorem or Barbalat’s lemma can be used to prove convergence; otherwise,
if V̇ is discontinuous but negative definite, analysis of convergence can be carried out
using the tools of nonsmooth analysis [13]. The details are omitted here for lack of
space and will be published elsewhere.

Two of the possible choices that make V̇ negative are presented below.
For example, suppose that γ is chosen as a fixed constant. Then, in order to make V̇

in (9) negative, μ(x,u) can be switched as follows:

μ(x,u) =

⎧⎪⎨⎪⎩
1− γ uT u

∇T φ(x)u + a if∇Tφ(x)u > 0

1− γ uT u
∇T φ(x)u − b if∇Tφ(x)u < 0

1 if∇Tφ(x)u = 0 ,

(10)

where a and b are positive scalar values (not necessarily constants). For example, the
choice a = −b = γ uT u

∇Tφ(x)u leads to μ = 1, which makes gHBF (7) equal to the net
HBF (6).

If a and b are chosen as constants, the result of substituting (10) in (9) is

if ∇Tφ(x)u > 0 V̇ = −a∇Tφ(x)u < 0
if ∇Tφ(x)u < 0 V̇ = b∇Tφ(x)u < 0
if ∇Tφ(x)u = 0 V̇ ∈ co{−a∇Tφ(x)u , b∇Tφ(x)u} = 0 ,

where co denotes the convex hull between scalar values. This implies that the equili-
brium may be any point where ∇Tφ(x)u = 0, but from (8) and (4) it follows that the
unique equilibrium point is [∇Tφ(x) uT ]T = 0.
The system (8) with γ constant and μ chosen as in (10) will be denoted as HBF1(γ, a, b).

Another possibility is to choose μ as a fixed constant, and in this case the choice

γ(x,u) > (1− μ)∇
T φ(x)u
uT u makes V̇ negative in (9).

To validate this inequality, it is enough to choose:

γ(x,u) = (1 − μ)
∇Tφ(x)u

uTu
+ a , (11)

where a is a positive scalar. For example, the choice μ = 1 also leads to the net HBF
(6), with a parameter γ = a. This second choice (11), with the parameter μ constant,
will be denoted as HBF2(μ, a).
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3.2 The CG ODE

The conjugate gradient (CG) method is a well known discrete algorithm applied to
unconstrained optimization. It is commonly used to minimize scalar convex quadratic
functions. In [12], the authors show that the back propagation with momentum (BPM)
method, much analyzed in the neural network literature, is a version of the conjugate
gradient method for quadratic functions.

A natural approach to continuous time version of the CG method was first presented
for quadratic functions in [12, p. 69], generalized in [6], and is restated below for con-
venience:

ẋ = α(x,u)u
u̇ = −∇φ(x) − β(x,u)u .

(12)

Equation (12) defines the CG ODE, so named to recall its origins as a continuous ver-
sion of the conjugate gradient algorithm. It should be emphasized that, in the continuous
time case (12), the letters CG are just a convenient mnemonic to recall the origin of the
equation and not intended to draw attention to any conjugacy concepts.

Substituting (12) in (5) yields

V̇ = (α(x,u) − 1)uT∇φ(x) − β(x,u)uTu . (13)

Here too, there are many ways to make V̇ negative, and we mention just two.
In the first case we consider β as a fixed constant. To make V̇ negative in (13), the

function α(x,u) is chosen as:

α(x,u) =

⎧⎪⎨⎪⎩
1 + β uT u

∇Tφ(x)u − a if ∇Tφ(x)u > 0

1 + β uT u
∇Tφ(x)u + b if ∇Tφ(x)u < 0

1 if ∇Tφ(x)u = 0 ,

(14)

where a and b are positive scalars. Again, the choice a = −b = β uT u
∇Tφ(x)u yieldsα = 1,

which makes the CG ODE (12) equal to the HBF ODE (6). A convergence analysis
similar to that made in the former section proves convergence to the equilibrium point
[∇Tφ(x) uT ]T = 0.

The ODE (12) with β constant and α(x,u) chosen as (14) will be denoted as
CG1(β, a, b).

There exists another possibility which consists of choosing of the parameter α as
a constant different from zero. In this case, to make V̇ negative in (13), β(x,u) >

(α− 1)∇
Tφ(x)u
uT u . However, note that, in this case, (12) can be written as a second order

ODE in the form ẍ + β(x, ẋ)ẋ + α∇φ(x) = 0, which becomes the net HBF2(μ, a),
under the change of variables r = αu.

Remark 1. Observe that, if α(x,u) is assumed differentiable in x,u, then (12) can be
rewritten (in terms of ẍ, ẋ,x) as follows:

ẍ + β(x,u)ẋ + α(x,u)∇φ(x) −
[
∂α

∂x
ẋ +

∂α

∂u
u̇
]
u = 0 .
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If it is assumed that α depends only on x (and not on u), then (12) can be reduced to
second order form, yielding (assuming α(x) �= 0, for all x):

ẍ +
[
β(x) − ∇α(x)T ẋ

α(x)

]
ẋ + α(x)∇φ(x) = 0 , (15)

so that the state-dependent term α(x) is seen to give rise to a nonlinear damping term
(the term within square brackets in (15)). Of course, the switching law (14) proposed
above, for the CG ODE, is discontinuous, so reduction to the second order form above is
not possible, but it does serve as an indication that the CG dynamics are quite different
and more complex than the HBF dynamics.

4 Computational Experiments

In this section, the algorithms formulated in the former section will be tested with diffe-
rent test functions commonly used in the literature. The algorithms will be implemented
with SIMULINK of MATLAB 6, discretizing them by the forward Euler method with
a fixed step size of 0.01s during 10s.

4.1 Simulations with the Inverted Camelback Function

The inverted camelback function, popular in the literature on global optimization, was
chosen as objective function:

φ(x1, x2) = ax2
1 + bx4

1 + cx6
1 − x1x2 + dx2

2 + ex4
2 , (16)

with the following constants a = −2, b = 1.05, c = − 1
6 , d = −1 and e = 0. With

these constants, the inverted camelback function has a global minimum at x = [0 0]T ,
two local minima at x = [−1.7475 0.8737]T and x = [1.7475 − 0.8737]T , and two
saddle points at x = [−1.0705 0.5352]T and x = [1.0705 − 0.5352]T .

Figure 1 shows the trajectories and the error norms generated by the different ODEs
from the initial point x0 = [2 1]T . The initial value of the control variable was chosen
as u0 = [0 0]T . The parameters γ for the HBF and HBF1 ODEs and β for the CG1
ODE were chosen as γ = β = 1.7. This is the maximum value for the trajectory
generated by the HBF ODE to converge to the global minimum from this initial point
and with this initial value of the control variable. The other parameters were chosen
by hand tuning in such a way as to try to achieve the fastest convergence to the global
minimum. These parameters are shown in Table 1. The trajectory generated by the CG1
ODE converges faster than the trajectories generated by its competitors.

Figure 2 shows the trajectories and the error norms generated by the different ODEs
from the initial point x0 = [−1.5 −1.5]T . The initial value of the control variable was
chosen as u0 = [1 1]T and the parameters used were γ = β = 3. Once again, the other
parameters were chosen to generate the fastest convergence to the global minimum and
are presented in Table 1.

Figure 2 shows that the trajectory generated by CG1 converges almost an order of
magnitude faster than those generated by its competitors.
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Fig. 1. Trajectories generated with the different algorithms and error norms with the camelback
function from the initial point x0 = [2 1]T . The initial value of the control variable was chosen
as u0 = [0 0]T and the parameters chosen as γ = β = 1.7.
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chosen as u0 = [1 1]T and the parameters were chosen as γ = β = 3.

4.2 Simulations with the Rastrigin Function

The Rastrigin function was chosen as objective function:

φ(x) =
N∑
i=1

x2
i − cos(2πxi) : R

N → R , (17)

This function has several local minima and a unique global minimum at x∗ = 0. The
value of the function at the minimum is φ(x∗) = −N , where N is the number of
variables, and was chosen as 10 for the numerical experiments reported here. The initial
point was chosen as x0i = −1 and the initial value of the control variable as u0i = 6
for all i ∈ {1, · · · , N}.
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Fig. 3. Value of the function and error norms vs. time with the Rastrigin function for the trajec-
tories generated by the different algorithms. The values of the parameters γ for HBF and HBF1,
and β for CG1 were chosen as γ = β = 10 (solid curves) and γ = β = 5 (dashed curves). With
γ = 5, the best value of μ for the HBF1 net was μ = 1, which coincides with HBF; thus, dashed
green and dashed brown curves coincide.

The ODEs were tested with different parameter values, but Fig. 3 shows only γ =
β = 10 and γ = β = 5. The other parameters were chosen in such a way to generate
the fastest convergence to the global minimum and are presented in Table 1.

Figure 3 shows that, with both of the selected parameters, the trajectory generated by
the CG1 net converges an order of magnitude faster than those generated by the other
ODEs.

4.3 Simulations with the Schwefel Function

The Schwefel function was chosen as objective function:

φ(x) = −
N∑
i=1

xi sin(
√
|xi|) : R

N → R , (18)

whereN is the number of variables, chosen as 10 for all numerical experiments reported
here.

This function has several local minima and, inside the interval xi ∈ [−500 , 500] it
has an unique global minimum at x∗i = 420.9687, for all i ∈ {1, · · · , N}. The value of
the function at the minimum is φ(x∗) = −4189.8. The initial point was chosen as x0i =
100 and the initial value of the control variable as u0i = 200 for all i ∈ {1, · · · , N}.

The ODEs were tested with different values of γ and β, but Fig. 4 shows only γ =
β = 0.7 and γ = β = 0.6. The other parameters were chosen by hand tuning to
generate the fastest convergence to the global minimum and are presented in Table 1.

Figure 4 shows that, with both of the selected parameters, the trajectory generated
by the CG1 net converges faster than those generated by the other ODEs.
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Fig. 4. Value of the function and error norms vs. time with the Schwefel function for the trajecto-
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Table 1. Parameters used to achieve the fastest convergence to the global minimum

Camelback Rastrigin Schwefel

x0 = [2 1]T

u0 = [0 0]T
x0 = [−1.5 − 1.5]T

u0 = [1 1]T
x0i

= −1 u0i
= 6 x0i

= 100 u0i
= 200

HBF γ = 1.7 γ = 3 γ = 10 γ = 5 γ = 0.7 γ = 0.6

HBF1
γ = 1.7

μ ∈ {0.99; 5}

γ = 3
μ ∈ {4;

0.9 − γ uT u
∇T φu

} γ = 10
μ ∈

{0.5; 1.5}
γ = 5
μ = 1

γ = 0.7
μ ∈{

31 − γ uT u
∇T φu

;

0.8 − γ uT u
∇T φu

}
γ = 0.6

μ ∈{
31 − γ uT u

∇T φu
;

0.8 − γ uT u
∇T φu

}

HBF2

μ = 0.2
γ =

(1 − μ) ∇T φu

uT u
+ 2

μ = 0.2
γ =

(1 − μ) ∇T φu

uT u
+ 2

μ = 10
γ =

(1 − μ) ∇T φu

uT u
+ 7

μ = 1
γ = 0.7

CG1

β = 1.7
α ∈

{ β uT u
∇T φu

− 11;

21}

β = 3
α ∈

{ β uT u
∇T φu

− 9;

β uT u
∇T φu

+ 11}

β = 10
α ∈

{−10; 10}

β = 5
α ∈

{−10; 10}

β = 0.7
α ∈

{ β uT u
∇T φu

− 9;

β uT u
∇T φu

+ 1.1}

β = 0.6
α ∈ {0.5; 13}

5 Conclusions

Of the different ODEs tested (HBF1,2, and CG1), the CG1(β, a, b) ODE (12) presented
the best behavior on the suite of benchmark examples on which all algorithms were
tested, showing fast convergence and good transients and accuracy. The CG1(β, a, b)
method, with the x-dynamics being directly affected by the switching law in α(x,u)
does better than the best HBF methods, because, in the former class of methods, the
CLF designed switching law directly affects the u-dynamics, and, as a consequence,
the x-dynamics.

In the light of the results obtained in this paper, it can be affirmed that the CG net
proposed here performs better than the well known HBF net and its variants, which
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have received much attention in the literature. Further research on initialization of the
CG net so as to converge to the global minimum with a high probability needs to be
carried out.

Finally, we emphasize that all the ODEs presented here can be easily implemented
as neural networks.

References

1. Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. John
Wiley, Chichester (1993)

2. Chu, M.T.: Linear algebra algorithms as dynamical systems. Acta Numerica, 1–86 (2008)
3. Bhaya, A., Kaszkurewicz, E.: Control perspectives on numerical algorithms and matrix prob-

lems. In: Advances in Control. SIAM, Philadelphia (2006)
4. Bhaya, A., Kaszkurewicz, E.: Iterative methods as dynamical systems with feedback control.

In: Proc. 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, December
2003, pp. 2374–2380 (2003)

5. Bhaya, A., Kaszkurewicz, E.: A control-theoretic approach to the design of zero finding
numerical methods. IEEE Transactions on Automatic Control 52(6), 1014–1026 (2007)

6. Pazos, F., Bhaya, A., Kaszkurewicz, E.: Unified control Liapunov function based design of
neural networks that aim at global minimization of nonconvex functions. In: Proc. of the
International Joint Conference on Neural Networks, Atlanta, U.S.A. (2009)

7. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. USSR
Computational Mathematics and Mathematical Physics 4(5), 1–17 (1964); Zh. Vychisl.
Mat. Mat. Fiz., pp. 791-803 (Russian edn.)

8. Polyak, B.T.: Introduction to optimization. Optimization software, New York (1987)
9. Attouch, H., Goudou, X., Redont, P.: The heavy ball with friction method. The continuous

dynamical system. Communications in contemporary math. 2, 1–34 (2000)
10. Cabot, A.: Inertial gradient-like dynamical system controlled by a stabilizing term. Journal

of Optimization Theory and Applications 120(2), 275–303 (2004)
11. Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dyna-

mical system with Hessian-driven damping. Application to optimization and mechanics. J.
Math. Pures Appl. 81, 747–779 (2002)

12. Bhaya, A., Kaszkurewicz, E.: Steepest descent with momentum for quadratic functions is a
version of the conjugate gradient method. Neural Networks 17(1), 65–71 (2004)

13. Cortés, J.: Discontinuous dynamical systems. A tutorial on notions of solutions, nonsmooth
analysis, and stability. IEEE Control systems magazine, 36–73 (June 2008)



On the Knowledge Organization in Concept Formation:
An Exploratory Cognitive Modeling Study

Toshihiko Matsuka1, Hidehito Honda1, Arieta Chouchourelou2,
and Sachiko Kiyokawa3

1 Department of Cognitive and Information Science, Chiba University, Japan
2 European University Cyprus, Nicocia, Cyprus

3 Department of Psychology, Chubu University, Japan

Abstract. Recent cognitive modeling studies suggest the effectiveness of meta-
heuristic optimization in describing human cognitive behaviors. Such models are
built on the basis of population-based algorithm (e.g., genetic algorithm) and thus
hold multiple solutions or notions. There are, however, important yet unaddressed
issues in cognitive mechanisms associated with possession of multiple notions.
The issues we address in the present research is about how multiple notions are
organized in our mind. In particular, we paid close attention to how each notion
interact with other notions while learning a new concept. In so doing, we incor-
porated Particle Swarm Optimization in a cognitive model of concept learning.
Three PSO-based concept learning models were developed and compared in the
present exploratory cognitive modeling study.

1 Introduction

Human cognitive behaviors are generally considered as rational (e.g. [1]). There is a
school of thought which claims that rational probabilistic reasoning generates such be-
haviors [1], while a different school claims that humans’ rationality is bounded and
those behaviors are driven by rather simple heuristics [4]. Computational models of hu-
man cognition based on the former principle employ, for example, bayesian statistics
and derivative-based optimization methods (e.g. [1]). A majority of cognitive models is
built on the basis of this principle, and we refer to this type of cognitive models as ra-
tionality models (RM hereafter). A smaller number of cognitive models are built on the
basis of the latter principle and those models often employ some form of metaheuristic
optimization methods [9]. We refer to this type as bounded rationality models [4] or
simply BRM.

There are several differences between those two types of models. One important and
significant difference is that while the vast majority of RMs searches for and holds
a single optimal solution (i.e., optimizing a single set of coefficients), BRMs would
obtain multiple, often diverse, “optimal” solutions (i.e., optimizing multiple sets of
coefficients). This difference is critical as that the results of human laboratory exper-
iments (e.g. [2]) suggest that humans indeed hold multiple solutions or notions (Note
that we refer to a single complete set of model coefficients as a self-sufficient notion
in this paper). In addition, human learning is believed to involve combining ideas and
hypotheses. In order for a cognitive model to integrate this “learning-by-combination”
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mechanism, it needs to possess more than one notion. Moreover, the capability of main-
taining multiple notions permits a model to exhibit very adaptive behaviors by selecting
a situationally appropriate notion to manifest from a pool of notions [9]. This uni-vs-
multiple notion issue is not inherent to the difference in the level of rationality (i.e.,
the multi-notion mechanism can be integrated into RM, and BRM can be modeled with
a single notion). Rather, the difference is largely determined by the typical optimiza-
tion method applied to RM (gradient descent) and BRM (evolutionary computation).
Nonetheless, BRMs with meta-heuristic optimization methods demonstrate a greater
level of descriptive validity with regards to the multi-notion mechanism.

There are, however, important yet unaddressed issues in cognitive mechanisms asso-
ciated with possession of multiple notions. The issues we address in the present research
is about how multiple notions are organized in our mind. In particular, we paid close
attention to how each notion interacts with other notions while learning a new concept.
In so doing, we incorporated Particle Swarm Optimization (PSO) in a cognitive model
of concept learning. PSO is a type of meta-heuristic optimization methods built on the
basis of the principle of collective behaviors exhibited by simple organisms [3] [6].
Its fundamental principle follows simplified psycho-social behaviors; each quasi-freely
acting organism within a society interacts and exchanges information with other organ-
isms in order for the society as a whole to arrive or realize “optimal” solutions. More
specifically, in PSO each organism moves within a multidimensional coefficient space,
where the movement (i.e., direction and distance) is determined by both personal expe-
rience (i.e., the best solution that each organism has found) and social knowledge (i.e.,
the best solution shared by a group of organisms).

One effective feature of PSO in modeling human concept learning is that PSO allows
us to manipulate its social structures that controls flow of information and thus behav-
iors of optimization processes. This in turn, allows us to examine and compare various
types of knowledge organizations in cognitive models in order to identify descriptively
“realistic” knowledge organizations. This aspect is important as that most, if not all,
existing multi-notion BRMs incorporate a simple knowledge organization (e.g. there is
only one knowledge cluster and all notions are connected with each other). Thus, the
influence of knowledge organization in concept formation has not been systematically
examined in the past. In the present paper, we explore three types of knowledge orga-
nization in concept formation in order to examine influence of knowledge organization
in learning a new concept.

2 Particle Swarm Optimization (PSO)

2.1 Standard PSO

The fundamental computational operation in PSO is simple. In PSO, each potential
solution (i.e., single particle or notion) is quasi-freely moving with some velocity in a
hyper-dimension coefficient space. The position of a notion at time t+ 1 is determined
by adding its velocity to the current (i.e, t) position. Thus,

θ
(j)
i (t+ 1) = θ

(j)
i (t) + v

(j)
i (t+ 1) (1)
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Fig. 1. Social structures of standard PSO. Left panel: Uni-cluster PSO where all notions are con-
nected and exchange information with each other. Right panel: Multi-cluster PSO. All notions
within a given cluster Ck are connected, but there is no connection between different clusters.
Each cluster is independent of each other in Mulit-cluster PSO. Note that these figures only show
social structures and are not plotted on the real axes.

where θs are model coefficients, i indicates coefficients and j indicates particles or no-
tions. The velocity of a particle is determined by both its personal experience in its
memory trace and the socially exchanged information. The personal experience simply
refers to the position that resulted in the optimal solution for each particle (i.e, notion).
The socially exchanged information refers to the position that resulted in the optimal
solution among a group of particles. Specifically, the velocity for notion j at time t+ 1
is given as:

v
(j)
i (t+ 1) = v

(j)
i (t) + ω1Ui1

(
Pb

(j)
i − θ

(j)
i

)
+ ω2Ui2

(
Gb

(Ck)
i − θ

(j)
i

)
(2)

where Ui is a random number drawn from the Uniform distribution, Pb(j)i indicates
the best position (i.e., the best solution) for notion j for coefficient i, and the Gb(Ck)

indicates the best position shared among a group of notions that belongs to knowledge
cluster k. ωs are scalers weighting relative importance of personal experience (i.e. per-
sonal best solution) and social information (i.e., global best solution). The positions of
notions are iteratively updated until some stopping criterion is met.

Model Interpretation. In PSO, each notion has its own tendency in knowledge modi-
fication (i.e., v(j)

i & Pb
(j)
i ). In addition, PSO capitalizes opportunity of possessing mul-

tiple notions by combining notions (i.e., Gb(Ck)
i ) in learning. When ωi2 is sufficiently

large relative to ωi1, then initially diverse notions in a cluster k gradually converge
to the group’s best solution, Gb(Ck)

i . This can be interpreted as that humans initially
create sets of random hypotheses and those hypotheses become crystalized as learning
progresses. Conversely, when ωi2 is sufficiently small, then initially diverse notions in
knowledge cluster k would remain diverse after learning. If we assume a single notion
cluster (Fig. 1, left panel) as in the majority of existing BRMs, then the effect of the
global best solution need to be reduced in order to obtain diverse notions, which is em-
pirically observed in some behavioral studies. [2] [7]. However, we find reducing the
global effect normatively and descriptively questionable. It is normatively inefficient,
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because it simply becomes a series of independent stochastic optimizations when in-
formation is not shared among the notions. It sounds descriptively invalid, because that
(1) it is simply unrealistic to assume that humans do not emphasize the best available
notion in learning a concept, and that (2) a series of independent stochastic optimization
requires an excessive amount of cognitive effort.

Alternatively, if we assume multiple hypothesis clusters (Fig. 1, right panel), then
it can obtain multiple diverse notions without reducing the effect of the global best
solutions in learning. In the present paper, in order to evaluate this supposition, we
compare learning characteristics of Uni-cluster PSO (UP) and Multi-cluster PSO (MP)
using a hypothetical concept learning task.

2.2 Shotgun PSO

In addition to UP and MP, we also examined Shotgun PSO (SP). In Shotgun PSO,
there is a small number of focal notions (as few as the number of clusters) and those
focal notions are aided by auxiliary notions (or hypotheses) that float around the focal
notions. A focal notion is analogous to a target (or bull’s eye) in a shotgun shooting,
and auxiliary notions are analogous to bullets (Fig. 2). Operationally, auxiliary notions
are generated by adding random noise to the focal notions [5]. Specifically, an auxiliary
notion, ξ at time t+ 1 is given as:

ξ
(j∈Ck)
i (t+ 1) = θ

(Ck)
i (t) +Ni(0, σ

(j∈Ck)
i (t+ 1)) (3)

where θ is a focal notion, Ni is a function that returns a random number drawn from
the Normal distribution with the corresponding parameters. The standard deviations, σi
are given as:

σ
(j∈Ck)
i (t+ 1) = ησ

(j∈Ck)
i (t) · exp (NG(0, γg) +Ni(0, γi)) (4)

where 0 < η < 1 is a scalar that controls the rate of decay in σs, Ns are as in Eq. 3,
and γs define thoroughness or search widths. Assuming that learning is a minimization
problem, Shotgun PSO then tires to identify the best auxiliary notion (i.e., Gg).

Gb
(Ck)
i = ξ

(j)
i : Y (ξ(j)i ) ≤ Y (ξ(m)

i ), ∀{j �= m} ∈ Ck (5)

where Y is a function that evaluate utility of notions (Note that learning is assumed
as a minimization problem). Once the best auxiliary notion is identified, then the focal
notion for cluster k, θ(Ck)

i is updated as follows:

θ
(Ck)
i (t+ 1) = θ

(Ck)
i (t) + v

(Ck)
i (t+ 1) (6)

v
(Ck)
i (t+ 1) = v

(Ck)
i (t) + ω1Ui1

(
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(Ck)
i − θ

(Ck)
i

)
+ ω2Ui2

(
Gb

(Ck)
i − θ

(j)
i

)
(7)
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Fig. 2. Knowledge structures of Shotgun PSO. Left panel shows the social structure of Shotgun
PSO and are not plotted on the real axes. All auxiliary notions within a cluster are connected with
the focal notion, but there is no connection among auxiliary notions. Right panel shows social
structure of Shotgun PSO plotted on a hypothetical 2-dimensional coefficient space.

Remarks on Shotgun PSO. In both Uni-notion PSO (UP) and Multi-notion PSO
(MP), each notion within a cluster was connected to and exchanges information with all
other notions within the same cluster. This can be interpreted as that all notions in our
mind have equal contributions and weights in learning. However this implicit assump-
tion becomes unrealistic when the number of notions becomes large for a give task. In
this regards, Shotgun PSO offers better model interpretation. In Shotgun PSO, humans
possess small numbers of independent focal notions (as small as the number of knowl-
edge clusters) and they generate sets of hypotheses on the basis of those focal notions.
Most of those hypotheses are short-lived or are forgotten unless they are found to be
“useful.” If a hypothesis is determined as useful, then it would be incorporated into the
existing notions.

As in other population-based metaheuristic optimization methods, many notions gen-
erally become very similar to each other in latter stages of learning in both UP and MP.
It is, however, unrealistic that humans maintain and hold very similar notions sepa-
rately. In Shotgun PSO, the number of meaningful notions (i.e., focal notion) is kept
small throughout learning, and it is less likely than UP and MP to result in acquiring
useless closely-packed notions that just take up memory resources without providing
any additional insights.

3 Simulation

When we think, reason, and communicate, we have a tendency to use knowledge at a
high level of abstraction. Although we may lose some information through abstraction,
the use of categorical knowledge is essential. By compressing the vast amount of avail-
able information, a cognitive process called categorization allows us to process, un-
derstand, and communicate complex thoughts and ideas by efficiently utilizing salient
and relevant information while ignoring other types of information. Learning new cat-
egories is thus equivalent to learning concepts. In the present research, we simulate a
hypothetical category learning tasks in order to compare 3 types of PSO.
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3.1 Modeling Concept Formation – Category Learning

3.2 Categorization Model

We used SUPERSET [8] framework, which is essentially RBF with Mahalanobis dis-
tance, for modeling categorization (i.e., forward) processes. The knowledge architecture
of SUPERSET is built on the basis of a superset of three main theories of categorization,
exemplar, prototype, and rule theories. SUPERSET assumes that humans utilize simi-
larities between the input stimulus and internal (memorized) reference points (i.e., rules,
prototypes, or exemplars) as evidence to probabilistically assign the input stimulus to an
appropriate category. The psychological similarity (i.e., sj) between the jth reference
point, rj , and an input stimulus, x, is determined by the Mahalanobias distance between
them1. Note that stimuli are defined by I-dimensional space. The following exponential
function is used to estimate the psychological similarity:

s
(n)
j (x) = exp

(
−β
[(

r(n)
j − x

)T
A(n)
j

(
r(n)
j − x

)])
(8)

where β is a scaling parameter defining the overall similarity gradient, superscript n
indicate different strategies (i.e., individual notions), and Aj is I × I selective atten-
tion matrix for reference point j that transform physical distances into psychological
ones. Elements of Aj have the following properties: 0 ≤ aii ≤ 1; aim = ami;−1 ≤
aim ≤ 1, ∀i �= m; |aim| ≤

√
aiiamm. The diagonal entries are attention weights that

scale individual feature dimensions and the off diagonal entries are attention weights
for covariations between feature dimensions.

The similarity-based activations are then fed forward to the k-th output node (e.g.,
output for category k), Ok, weighted by wkj , which determines the strength of associ-
ation between each reference point j and each output node k:

O
(n)
k (x) =

∑
j
w

(n)
kj s

(n)
j (9)

The probability of categorizing input instance x to category C is based on the activation
of output node C relative to the activations of all output nodes:

P (C|x) =
exp
(
φ ·O(ν)

c (x)
)

∑
k exp

(
φ ·O(ν)

k (x)
) . (10)

where φ controls decisiveness of the classification response, and the superscript ν in-
dicates the notion adopted to make a categorization response (i.e., an particle that is
located at the best position).

3.3 Knowledge Utility Estimation

We assume what constitutes the “best” or “optimal” solution is situational specific. Real-
world human learning is more likely to be explained as a process of multi-objective

1 Subscripts and superscript used in describing SUPERSET and those for PSO do not correspond
with each other.
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optimization of utility of knowledge, where objectives are not only defined by catego-
rization errors, but also by each learner’s internal and external factors. Accordingly, our
PSO embedded SUPERSET assumes that learning is driven by an optimization of the
subjectively and contextually defined utility of knowledge being acquired, rather than
by a simple classification error minimization routine. For the sake of simplicity, we
assume that learning involves only error and complexity minimizations in the present
simulation. Thus,

Y
(
w(n),a(n)

)
= E

(
w(n),a(n)

)
+ λw

∑
k

∑
j

(
w

(n)
kj

)2

+ λa1
∑
i

[
1 +
(
a
(n)
ii

)−2
·
I∑
l

(
a
(n)
ll

)2
]−1

+ λa2
∑
j

I−1∑
i

I∑
m=i+1

(
a
(n)
jm

)2
(11)

The first term corresponds to categorization error. The second, third, and forth terms
correspond to notion complexity, where the second term defines notion complexity
based on association weights, third for dimensional attention weights, and forth for
correlational attention weights [8].

The predicted (in)accuracy of a notion during categorization is estimated based on a
retrospective verification function [9], which assumes that humans estimate the accura-
cies of the notions by applying the current notions to previously encountered instances
with a memory decay mechanism. The retrospective verification function operates like
locally weighted regression, paying more attention to “applicabilities” or fitness in re-
cent training instances than older ones.

E(θn) =
T∑

t=1

[
π(t)

K∑
k

[
d
(t)
k −O

(n)
k

(
x(t)
)]2]

(12)

where t indicates time, and the last term is the sum of squared error with dk being the
desired output for category k. π(t) is the (training) exemplar retention weight that de-
fines the strength of the retaining training exemplar x(t) (and the corresponding desired
output).

3.4 Methods

There were three types of PSO embedded SUPERSET learners involved in the present
simulation study, namely UP(Uni-cluster PSO) who maintains a single cluster of no-
tions, MP (Multi-cluster PSO) who maintains multiple clusters of notions, SP (Shotgun
PSO) who maintains a small number of focal notions. All models had the identical
forward algorithm (i.e., Eqs. 8-10), and utility estimation function (i.e., Eqs. 11 & 12).

All models were run in a simulated training procedure to learn the correct classi-
fication responses for the stimuli with corrective feedback. There were a total of 100
training blocks, each of which was organized as a random presentation of 9 unique ex-
emplars in Table 1. The model parameters were selected arbitrarily; c = 3, φ = 5, λw
= 0.01, λa1 = 1, λa2 = 1, ω1 = 0.3. The parameter that controls the level of influence
of social information, ω2 were randomly drawn from the Uniform distribution. The to-
tal numbers of notions for UP and MP were 30, and the numbers of clusters were 1
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Table 1. Schematic representation of stimulus set used in Simulation Study

Stimulus Set
Category Dim1 Dim2 Dim3 Dim4

A 1 1 1 1
A 1 1 2 2
A 1 1 3 3
B 2 2 4 1
B 2 2 5 2
B 2 2 6 3
C 3 3 7 1
C 3 3 8 2
C 3 3 9 3

and 3 for UP and MP, respectively. The number of focal notions for SP was fixed at 3,
and each focal notion had 10 auxiliary notions. There were a total of 1000 simulated
participants per each model.

Stimuli. Table 1 shows schematic representation of stimulus set used in simulation.
Note that Dimensions 1 and 2 are redundant and are also perfectly correlated with the
category membership, each being a necessary and sufficient diagnostic dimension.
All feature values in Dimension 3 were treated as nominal values differentiating each
element within the dimension, and thus their numeric differences do not have any mean-
ing. Dimension 4 is an irrelevant dimension containing useless information for catego-
rization. Dimensions 1 and 2 provide information on a common component shared by
members within categories while Dimension 3 serves as an idiosyncratic component that
differs from instance to instance within and also across categories. Thus, information
at either or both the category (i.e., Dim1 & Dim2) and exemplar (Dim3) levels would
allow categorization of the stimuli. Note that this stimulus set is very simple to catego-
rize and that there are several valid categorization strategies. An empirical study [7] that
used stimulus set similar to ours showed that humans chose to pay attention primarily
if not exclusively to either one of the solely diagnostic dimensions. Another interesting
phenomenon reported in that study [7] is that some participants who learned to pay at-
tention to either dimension reported that they realized that there was another diagnostic
dimension, indicating the possibility of possessing multiple notions or solutions.

In the present study, we paid attention to the numbers of “distinctive” useful notions
acquired by the three PSO embedded SUPERSET. In so doing, we counted the numbers
of notions that met all of the following conditions: (1) categorization accuracies were
greater than 0.85, (2) more than three forth of the total amounts of attention were paid
to a single dimension. We did not counted notions if there were similar notions that
were already counted as distinctive useful notions.

3.5 Results and Discussion

Table 2 shows the results of the simulation study. All models successfully learned to cat-
egorize the stimuli (accuracies being 0.91, 0.95, 0.95 for UP, MP, and SP respectively).
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Table 2. Results of Simulation

Uni-cluster. Multi-Cluster Shotgun
Accuracy 0.91 0.95 0.95

No. distinctive notions 1.19 2.33 2.25

There were some cases of unsuccessful learning in all models. Those cases were largely
caused by extreme ω2 values (i.e., effect of social information), which were randomly
drawn in the simulation. Thus learning was less likely to diverge with extreme ω2 val-
ues in MP and SP than UP. This turn indicates that learning is more robust in MP and
SP than UP.

In addition, there was a clear difference between UP and the remaining two models
in the numbers of distinctive notions acquired during learning. On average UP acquired
only one notion, while MP and SP acquired two notions. Although these two models
did not explicitly search for diverse notions, it successfully acquired, on average, more
than two distinctive accurate notions. Given that several empirical studies (e.g. [2], [7])
showed that humans often hold multiple notions or strategies for a given task, MP and
SP’s predictions were more consistent with real human cognitive behavior than that
of UP (UP probably could acquire multiple notions if its learning objective function
contained some form of “diversity”) There was, however, no clear difference between
MP and SP. The categorization accuracies for and the number of distinctive notions
acquired by MP and SP were almost identical.

Although MP and SP exhibited similar cognitive behaviors, we found model inter-
pretation of SP more descriptively valid as noted above. In addition, given that SP re-
quires to hold much smaller numbers of notions (3 vs. 30 in simulation), cognitive
effort required or modeled by SP is much more feasible than MP. The results can be in-
terpreted as that SP had acquired as many distinctive notions as MP with much smaller
cognitive efforts. In other words, MP had acquired multiple effective notions, but there
was a great degree of redundancies and duplications.

4 Conclusion

Recent cognitive modeling studies suggest the effectiveness of meta-heuristic optimiza-
tion in describing human cognitive behaviors. Such models are built on the basis of
population-based algorithm (e.g., genetic algorithm) and thus hold multiple solutions
or notions. There are, however, important yet unaddressed issues in cognitive mech-
anisms associated with possession of multiple notions. The issues we address in the
present research was about how multiple notions are organized in our mind. In particu-
lar, we paid close attention to how each notion interact with other notions while learning
a new concept. In so doing, we incorporated Particle Swarm Optimization (PSO) in a
cognitive model of concept learning, because PSO allows us to manipulate its social
structures that controls flow of information, which in turn, allows us to examine and
compare various types of knowledge organizations. Three PSO-based concept learning
models were developed and compared in the present exploratory cognitive modeling
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study. The results of our simulation indicated that humans are more likely to have mul-
tiple independent clusters of notions in their minds, and that the clusters are driven by
a small number of leading notions.
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Abstract. In this paper, we report the dynamics of VSF-Network.

VSF-Network is a neural network for the incremental learning and it

is a hybrid neural network combining the chaos neural network with a

hierarchical network. VSF-Network can find the unknown elements from

input with clusters generated by the chaos neuron. We introduce new

incremental learning model to explain the dynamics of VSF-Network

in this paper. We show the result of analysis of the dynamics of VSF-

Network. In the analysis, we focused on the connection weights between

layers and neuron cluster generated by the chaotic behavior.

Keywords: Complex system, Chaos neural network, Knowledge acqui-

sition, Nonlinear dynamics.

1 Introduction

Symbol is fundamental for our cognitive abilities. We come to realize and com-
prehend language through a series of semantic interpretations of symbols and
meanings within our world[1]. For the symbol acquisition, the various models
have been proposed. The core of those is the abstraction of external stimuli
and the grounding of symbol. The abstraction of stimuli is an instance of the
incremental learning[2] and it has the special properties. If we implement the ab-
straction process by neural networks, the patterns generated by the abstraction
should have the following properties.

– A neural network saves its connection weights learned in the prior learning
and it learns only the new elements in the patterns given at the successive
learning.

– The elements in patterns are learned by a neural network independently,
if they are independent. If we can divide the elements in patterns into in-
dependent parts, a pattern which consists of each part can be recognized.
If elements in the pattern are composed from others, every element can be
recognized only by the learned pattern that composes the whole pattern.

We call this incremental learning the additive learning[3]. For the additive leaning,
we have proposed VSF-Network, Vibration Synchronizing Function Network[3].

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 688–697, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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VSF-Network is a hybrid neural network with the combination of hierarchical neu-
ral network(HNN) and chaotic Neural Network(CNN)[4]. The CNN has the
ability to determine whether an input patter is known one or unknown one[5]. Us-
ing the CNN to the classifier for know or unknown pattern, we can develop an
autonomously-controlled incremental learning.

2 Additive Learning by Neural Network

2.1 Incremental Learning

The incremental learning on HNN with the back-propagation suffers from forget-
ting. One way to implement the incremental learning is to store the independent
elements in patterns into sub-networks of a neural network. In many cases, a
neural network has redundant neurons after learning. We can use these neurons
to learn new elements in a pattern. If a neural network can find the new elements
and can learn them by an independent sub-network, we can implement the first
step of the incremental learning.

2.2 Chaotic Neural Network and Pattern Selection

We employ the CNN to find unknown or known elements in a pattern. The
dynamics of the ith Chaotic Neuron(CN) in a neural network composed of M
CN can be modeled as,

xi (t+ 1) = f [ξi (t+ 1) + ηi (t+ 1) + ζi (t+ 1)] , (1)

In (1), xi (t+ 1) is the state of the ith CN at the discrete time t + 1, f is the
output function and each term is defined as follows.

ξi (t+ 1) = ksξi (t) +
M∑
j=1

vjkAj (t) (2)

ηi (t+ 1) = knηi (t) +
N∑
j=1

wijxj (t) (3)

ζi (t+ 1) = krζi (t+ 1)− αxi (t)− θ (1− kr) . (4)

In (2), A(t) is input at time t and vjk is the connection weight between the
kth element of input pattern and the CN j. In (3), wij is the connection weight
between CN i and CN j. ks, k n and kr is a parameter for the each term. In (4),
α is the parameter and θ is the threshold.

The CNN has an ability to find an unknown pattern for the network[5]. If
an input pattern is known for the network, the state of the CNN will be stable.
If an input pattern is unknown for the network, the state of the CNN can not
reach a stable state because of the chaotic itinerancy.



690 Y. Kakemoto and S. Nakasuka

2.3 Detection of Neuron Group

By using the CNN, we can detect an unknown pattern, but we can not identify
which element of a pattern is unknown. We want to find unknown elements and
known element in a pattern.

To bring out the relation between the behavior of each element and the prop-
erty of the pattern, we analyze the CNN based on the GCM model (Globally
Coupled Map [6]). GCM is a model of a system that nonlinear elements are
connected to each other, and all elements are influenced through total amount
brought from each element. The CNN is an instance of GCM[7].

We define a synchronized state that an output from the element i is coincident
with the output from the other element j. The element group of synchronized
elements is called a cluster. The factor of clustering is the structure of the man-
ifold spanned by the GCM[8]. The manifold consists of three different manifold,
the stable manifold Es, the unstable manifold Eu and the center manifold Ec.
If chaotic strength of each element is weak, several elements are trapped in an
attractor on Eu, other elements are not trapped in any attractor and they show
itinerancy attracting among these manifold. After the retrieving, the CNN re-
turns the clustering information for the neurons. We use the information to find
the known elements in a pattern. The elements in a cluster corresponding to a
known part in a pattern and other elements which are not clustered correspond
to an unknown part in a pattern.

We apply the output from the hidden layer neuron of HNN to the input of
the CNN. After a learning phase, HNN composes a solution space. If this so-
lution space corresponds to the manifolds on GCM, this solution space has a
stable subspace and an unstable subspace. We assume that there are basins cor-
responding to the learning result in the stable subspace and the learned elements
in the pattern are easily trapped in the basins. By the trapping, the state of the
element falls in a stable state. In contrast, the unknown elements in a pattern
are not trapped in any basin.

3 VSF-Network

We have proposed VSF-Network[3]. We reconsidered its dynamics and configu-
ration to improve its ability for the incremental learning. In Fig 1, an overview of
VSF-Network is shown. VSF-Network is composed of BP-module that is a hier-
archical network trained with the selective back-propagation and CNN-module
that finds known or unknown parts of a pattern.

The learning of VSF-Network is assumed that the connection weights between
each layer have been acquired before the learning. The learning of VSF-Network
is performed as follows.

1. Patterns are input into the input layer of BP-module.
2. The outputs from the hidden layer in BP-module sent to CNN-module and

they are used for the initial state of each neuron of CNN-module.
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Fig. 1. An Overview of VSF-Network

3. From the initial state, CNN-module performs the retrieving based on the
dynamics of CNN-module (1) for times t = 1, · · · , T . The consistent rates
(5) between neurons in CNN-module are calculated.

4. The rest process of the forward path is performed. The error between the
output from BP-module and the correct output for the pattern is calculated.

5. The connection weights between each layer are updated based on the weight
update rule (7).

3.1 Pattern Detection at CNN-Module

After the retrieving, the consistent rate between all neurons of CNN-module is
calculated. This consistent rate is the basis for the determining whether a neuron
i belongs to a cluster or not. If the consistent rate for a neuron is high, the neurons
in a cluster and they are assumed to be stable. A neuron whose consistent rate
stays low is not in any cluster and it is assumed to be unstable. The consistent
rate λij(t) between a CN i and other CN j at time t is defined as,

λij (t) =
1
T

t+T∑
n=t

Cn
(
εspl, xi, xj

)
. (5)

In (5), Cn(εspl, xi, xj) is the function for the consistent between the state xi of
the CN i and the state xj of the CN j. εspl is a constant to define a separation
between the state xi and the state xj and H is the Heaviside function.

Cn
(
εspl, xi, xj

)
= H

(
εspl − |xi − xj |

)
(6)

3.2 Weight Update Rule

The connection weights between each layer of BP-module are updated based on
the result on CNN-module. In (7), λi is the mean of the consistent rate calculated
for the CN i to other CNs. If the λi of the CN i is less than a constant P , all
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connection weights for the CN i are updated. If the λi of the CN i is not less
than a constant P , all connection weights for the CN i are not updated.

In addition to the clustering information, we introduce a geometrical relation
between each subspace into the weight update rule. The subspace is a part of the
manifold spanned by the connection weights of VSF-Network. If a input pattern
is an unknown pattern, the network learns it using an unstable subspace, but
there is many candidate subspaces for the learning. Therefore, we introduce
an additional rule for selecting subspace. We assume that an unstable subspace
having a less correlation to other subspace is redundant and we use this subspace
to learning new input pattern. Based on this idea, we introduce the correlation
of every connection weight between the input layer and the hidden layer. The
weight update rule on VSF-network is defined as follows.

ΔWjk =

{
η
(
∂Ejk

∂Wjk

)
(λi ≤ P )

0 (λi > P )
, ΔWij =

{
η
(
∂Eij

∂Wij

)
(λi ≤ P )

0 (λi > P )
(7)

∂Ejk
∂Wjk

=
m∏
i=1

(1.0− |corij |)
n∑
j=1

Eμ f ′ (Oμk ) (8)

∂Eij
∂Wij

= (1.0− |corij |)
n∑
j=1

∂Ejk
∂Wjk

f ′ (Hμ
i ) (9)

In (7), η is a rate of update and Eμ is a MSE between the output from BP-
module and the correct output for a pattern μ. Hμ

j is the output from neuron j
in the hidden layer for the pattern μ. corij is the correlation of connection weights
between the hidden layer and the input layer for the hidden layer neuron i and
j. f is the output function and it is the sigmoid function. Oμk is the output from
the neuron k in the output layer for pattern μ.

4 Experiment

4.1 Experiment Condition

The experiments in this paper consist of the following three steps.

1. Pre-learning step: The step which the initial connection weights for VSF-
Network is acquired.

2. Incremental learning step: At this step, we provide the patters differ from
the patterns that are provided at the previous step.

3. Confirmation step: In this step, we provide all kinds of the patterns to ex-
amine the result of the learning at the previous steps.
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4.2 Data for the Experiments

Input data used for experiments is distance data from a rover to obstacles or
the outer circumference of the testing environment. The output to each input
is whether the rover can avoid the obstacles if the rover turns to the left at
the current position. The distance sensor is put on the center of the rover. The
number of sensor beams is 26, and they are projected to the front of the rover but
only 13 sensors on left side are used for the experiments because of simplifying
calculation.

To generate total data set, we changed the size and the position of each
obstacle. The position of the rover was also changed to generate the data set.
All data are generated by a software simulator. The step of the experiments
consisted of the number of trials. The input data for are randomly selected from
the data set at every trial.

Three condition, simple obstacle, T-junction and composite obstacle are used
for the experiment. Each obstacle condition is defined as follows.

1. T-junction: There is one obstacle at the left side of the rover.
2. Simple obstacle: There is one obstacle at the front of rover.
3. Composite obstacle: Both one simple obstacle and one T-junction appear on

the experiment environment.

We assume that both the T-junction and the simple obstacle are independent
obstacle condition each other. To verify this assumption, we calculate the cor-
relation between data of the T-Junction and data of the simple obstacle. The
coefficient of correlation is less than 0.2, so we assume that each condition is
independent.

4.3 Parameter Settings

A parameter a in the output function for BP-module and CNN-module are 0.85.
In the transfer function, a is 0.65. The defaults of parameters of VSF-network
for the experiments are assigned as shown in Table 1. In particular, the values
of parameters for CNN are assigned the CNN falls in a weak chaotic state. The
number of neurons of VSF-network is assigned as shown in Table 1.

5 Dynamics on VSF-Network

5.1 Progress of Learning

We provide the T-junction obstacles in the pre-learning step and provided the
simple obstacles task in the incremental learning step. At the confirmation step,
we provide the T-junction obstacles, the simple obstacles and the composite ob-
stacles to examine the results at the incremental learning step. The number of
trials at the pre-learning step is 20, 000 and the number of trials at the incre-
mental learning step is 6000. The Mean Squired Error(MSE) of every learning
improves with progress of the single obstacle learning as shown in Fig 2.
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Table 1. Parameters and settings

Description Value

d Temporal attenuation coefficient 5

ks Parameter for the input term 0.562

kn Parameter for the diffusion term 0.4774

kr Parameter for the inhibitory term 0.2025

α Parameter for the inhibitory 2.6368

θ Threshold for inhibitory value 0.2437

εspl Parameter to determine a separation 0.001

η Parameter for weight update 0.1

T Length of measuring λij 10

P Parameter to determine synchronous 0.48

Number of the input layer neuron in BP-module 13

Number of the hidden layer neuron in BP-module 26

Number of the output layer neuron in BP-module 1

Number of the input layer neuron in CNN-module 13

Fig. 2. Learning Progress by VSF-Network

By VSF-Network, the new input patterns are learned without forgetting the
patterns learned in the previous learning step. VSF-Network outputs correct
outputs for the single obstacles and for the composite obstacles. As for the
compound obstacles, though any information about them is not provided during
the both steps, the MSE for them improves. We can explain the improvement
by the ensemble learning[9] [10], if we consider the sub-network corresponding
to each obstacle that makes up the compound obstacle as weal learner. The
compound obstacle can be recognized by their aggregation.

5.2 Know/Unknown Pattern Detection

In this section, we discuss about the internal dynamics of VSF-Network. At the
first, we discuss a difference between behaviors on CNN-module for known and
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unknown pattern. In Fig 3, we plot the state x(t) of neurons in CNN-module on
x(t)–x(t+ 1) plane. The figure (1) and (2) in Fig 3 show x(t) of the 7th neuron
in CNN-module for an unknown pattern. The figure (3) and (4) in Fig3 show
x(t) of the 11th neuron in CNN-module for a known pattern. The 7th hidden
layer neuron weights the largest value to the 10th neuron in the input layer. The
11th hidden layer neuron weights the largest value to the 5th neuron in the input
layer. The 5th input layer neuron catches the obstacle at the left side of the rover.
The 11th input layer neuron catches the obstacle at the front of the rover. The
figure (1) and (2) show x(t) before the initial trail on the incremental learning
step and the figure (3) and (4) show x(t) after the final trial on the incremental
learning step.

We calculate the Maximum Lyapunov Exponent(MLE) for each neuron in
CNN-module. The 11th neuron shows the MLE less than 1.0 and the 7th neuron
shows the MLE greater than 1.0 at the initial trial on the incremental learning
step. The 7th neuron shows the MLE less than 1.0 at the final trial on the
incremental learning.

These results suggest that unknown elements in a pattern do not fall in any
basin on the stable subspaces. The neuron shows chaotic behavior on the retriev-
ing at CNN-module. As a result, the connection weights are updated because
the consistent rate of the neuron is low. By the weight update, new basin is
created on an unstable subspace. Then, the neuron shows a stable behavior and
the connection weights of the neuron are not updated any more.

The subspace for the 11th neuron on CNN-module and BP-module is stable
and the subspace of the 7th neuron is unstable at the initial of the incremental
learning, but it reaches an stable state at the end of the incremental learning

Fig. 3. State of neuron in CNN-module
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step. The behavior of the 7th neuron shows a resistance for the noise. Its MLE
do not change even if we add 20% of noise to the input data. The neurons in
the hidden layer weight the neuron in the input layer which catches the left side
obstacle show the same tendency.

5.3 Relation between Subspace and Pattern

Finally, we show the relation between the neuron in the hidden layer and the
input layer. In Fig 4, the amounts of weight update for every neuron in the input
layer in 300 trials are shown. The x axis of the figure is the number of learning
and y axis of Fig4 is the number assigned to every neuron in the input layer.

Fig. 4. Sum of update value for every neuron in the input layer

In the early stage of learning, each connection weight is updated with a small
amount. After the 600 trials, update amounts for the 10th–12th neurons are
increased, although the amounts for other neurons remain receiving a small
amount. In the incremental learning phase, the 10th–12th neuron receive values
form sensors which detect an obstacle in the front of the rover. An obstacle which
is caught with the 10th–12th sensors is a unknown pattern for VSF-Network at
the initial step of the incremental learning. Therefore, the connection weights
corresponding to the sensors receive a large amount. Considering these result,
the weight update rule works well in the incremental learning.

6 Conclusion

In this paper, we have shown an overview of VSF-Network and the discussion
about the nonlinear dynamics on VSF-Network through experiments. For the
incremental learning, VSF-Network shows good performance.
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The ability of VSF-Network for the incremental learning is due to ability of
the CNN. We can find the known and unknown elements in patterns by the
CNN. In addition, we can identify a suitable subspace to learn new element in
a pattern.

The next step of our research is the following two points. The first point is
the examination about the relation between chaos strength of the CNN and
dynamics of VSF-Network. The second point is consideration for generality of
VSF-Network. It remains a possibility that the results of this paper are limited
to the task in this paper.
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Abstract. Cerebellar Model Articulation Controller (CMAC) has some

attractive features: fast learning capability and the possibility of efficient

digital hardware implementation. Besides these attractive features it has

a serious drawback: its memory complexity may be very large. In multi-

dimensional case this may be so large that practically it cannot be imple-

mented. To reduce memory complexity several different approaches were

suggested so far. Although these approaches may greatly reduce memory

complexity we have to pay a price for this complexity reduction. Either

both modelling and generalization capabilities are deteriorated, or the

training process will be much more complicated. This paper proposes a

new approach of complexity reduction, where properly constructed hash-

coding is combined with regularized kernel representation. The proposed

version exploits the benefits of kernel representation and the complexity

reduction effect of hash-coding, while smoothing regularization helps to

reduce the performance degradation.

Keywords: CMAC, kernel machines, smoothing regularization, hash-

coding, memory complexity reduction.

1 Introduction

CMAC, a special neural architecture [1] has some attractive features. The most
important ones are its extremely fast learning capability [2], and the special ar-
chitecture that lets effective digital hardware implementation possible [3], [4].
The price of the advantageous properties is that its modelling capability is in-
ferior to that of an MLP. This especially true for multidimensional case, as a
multidimensional CMAC can approximate well only a function belonging to the
additive function set [5]. A further deficiency of CMAC is that its generalization
capability is also inferior to that of an MLP even for one-dimensional cases. This
drawback was discussed in [6], where the real reason of this property was discov-
ered and a modified training algorithm using smoothing regularization was pro-
posed for improving the generalization capability. However, these modifications
do not rectify the perhaps most serious drawback of CMACs: their extremely
large memory complexity. Memory complexity, the size of weight memory of a
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CMAC - especially in multidimensional cases - may be prohibitively large. Mem-
ory complexity problem had already been discussed in many papers. In the orig-
inal Albus paper [1] hash-coding was proposed. Further studies [7], [8], however,
showed that although hash-coding can reduce greatly the memory complexity
of the network, it also deteriorates the performance: the genaralization capabil-
ity of a CMAC with hash-coding may be significantly reduced. Several works
were dealing with further possibilities of complexity reduction. Among them one
can find modular architectures, when a multidimensional CMAC is formed from
many one- or two-dimensional CMAC modules. In these cases the results of these
modules are aggregated to get the final result. The most important modular so-
lutions are the sum of product (SOP) architecture [9], the hierarchical CMAC
[10] or the MS-CMAC [11]. Although memory complexity of all these modular
CMAC-variants is significantly reduced, the complexity of the resulted networks
is still rather high. A further common drawback of all these solutions is that their
training will be more complex. In [12] a kernel representation version was sug-
gested, which when combined with a smoothing regularization reduces memory
complexity, and at the same time it also improves modeling and generalization
capability. This paper goes further on this road: now the combined application of
regularized kernel representation and hash-coding is proposed, where regularized
kernel representation may compensate the unfavorable effects of hash-coding.

2 A Short Overview of the CMAC

CMAC is an associative memory type neural network, which performs two sub-
sequent mappings. The first one - which is a nonlinear mapping - projects an
input space point x ∈ RN into anM -bit sparse binary association vector a which
has only C << M active elements: C bits of the association vector are ones and
the others are zeros. The second mapping calculates the output y ∈ R of the
network as a scalar product of the association vector a and the weight vector w:

y (x) = a (x)T w (1)

CMAC uses quantized inputs and there is a one-to-one mapping between the
discrete input data and the association vectors, i.e. each possible input point
has a unique association vector representation.

Another interpretation can also be given to the CMAC. In this interpretation
for an N -variate CMAC every bit in the association vector corresponds to a
binary basis function with a compact N -dimensional hypercube support. The
size of the hypercube is C quantization intervals. This means that a bit of the
association vector will be active if and only if the input vector is within the
support of the corresponding basis function. This support is often called receptive
field of the basis function [1].

The two mappings are implemented in a two-layer network architecture. The
first layer, the association layer, implements a special encoding of the quantized
input data. This layer is fixed. The second layer is a linear combiner with the
trainable weight vector w.
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2.1 The Training of the CMAC

The weights of a CMAC are determined using a training data set {x (k) , yd (k)}Pk=1
where x (k) ∈ ZN is the discrete input and yd (k) ∈ R is the corresponding desired
output of the k-th training sample. The weights can be determined analytically
using matrix inversion, or can be trained using an iterative training algorithm.

Every element of the training data set defines a linear equation for the weight
vector

yd (k) = a (k)T w + e (k) , k = 1, ..., P (2)

where a(k) is the association vector for the k-th training sample and e(k) is the
error at the output of the network for the same training sample. If all training
samples are considered, a linear equation set is obtained, which can be written
in the form yd = Aw + e. Here A is the association matrix formed from the
association vectors as row vectors, yd = [yd (1) yd (2) . . . yd (P )] T is the
output vector of the desired values of all training data, and e is the error vector
formed from the error values e (k) = yd (k) − y (k) = yd (k) − wTa (k) , k =
1, ..., P .

The goal of training is to find a weight vector w∗ that minimizes the mean
squared error for all training data:

w∗ = arg min
w

1
2
(
eTe
)

= arg min
w

1
2

(yd −Aw)T (yd −Aw) (3)

The analytical solution gives the optimal weight vector in the sense of least
squares error as:

w∗ = A†yd (4)

where A† =
(
ATA

)−1
AT = AT

(
AAT

)−1
is the pseudo inverse of the associ-

ation matrix A.
Although the optimal (in the mean squared error sense) weight vector of a

CMAC can be determined analytically usually iterative training is used to find
the optimal weight values. This iterative learning rule is usually a version of the
LMS algorithm.

An advantage of the CMAC networks is that in one training step only a small
fraction of all weights - the C weights selected by the active bits of the association
vector - are modified. Moreover these weights are modified in the same way, as
for all selected weights Δwi for all i : ai = 1 are equal. As only a few of all
weights are adjusted in one training step, the training of the CMAC is local and
incremental. Incremental training means that training of new samples does not
decay the ”knowledge” gained from previously trained samples, if the new and
the previously trained samples are in sufficiently large distance from each other.
Using the simple LMS rule with proper learning rate rather high speed training
can be achieved.

As it can be shown using the standard least squared error criterion and a ver-
sion of the iterative training algorithm the generalization error, may be rather
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large [13]. This error can be reduced if a modified training rule is used( Eq. (6)),
which can be achieved by using the cost function below:

C(k) =
1
2

(yd(k)− y(k))2 +
λ

2

(
yd(k)
C

− wi(k)
)2

(5)

wi (k + 1) = wi (k) + μe (k) + λ

(
yd(k)
C

− wi (k)
)

(6)

for all weight values with index i : ai(k) = 1. Here the first part is the standard
LMS rule, and the second part comes from the special smoothing regularization
term (the second term of (5)). Here λ is a regularization parameter, and the
values of the learning rate μ and the regularization coefficient λ are responsible
for finding a good compromise between the two terms.

2.2 The Complexity of the Network

The way of encoding - the positions of the basis functions in the first layer -
and the value of C determine the complexity, and the modeling and generaliza-
tion properties of the network. Network complexity can be characterized by the
number of basis functions what is the same as the size of the weight memory. In
one-dimensional case with r discrete input values a CMAC needs M = r+C−1
weight values [12]. However, if we follow this rule in multivariate cases, the num-
ber of basis functions and the size of the weight memory will grow exponentially
with the input dimension. If there are ri discrete values for the i-th input di-

mension an N -dimensional CMAC needs M =
N

Π
i=1

(ri + C − 1) weight values.

In multivariate cases the weight memory can be so huge that practically it can-
not be implemented. As an example consider a ten-dimensional binary CMAC
where all input components are quantized into 10 bits. In this case the size of
the weight memory would be enormous, approximately 2100.

To avoid this high complexity the number of basis functions must be reduced.
In a classical multivariate CMAC this reduction is achieved by using basis func-
tions positioned only at the diagonals of the quantized input space as it is shown
in Fig. 1.

The shaded regions in the figure are the receptive fields of the different basis
functions. As it is shown these receptive fields are grouped into overlays. One
overlay contains basis functions with non-overlapping supports, but the union of
the supports covers the whole input space, that is each overlay covers the whole
input N -dimensional lattice. The different overlays have the same structure; they
consist of similar basis functions in shifted positions. Every input data will select
C basis functions, each of them on a different overlay, so in an overlay one and
only one basis function will be active for every input point. The positions of the
overlays and the basis functions of one overlay are represented by definite points.
In the original Albus scheme the overlay-representing points are in the main
diagonal of the input space, whereas the basis-function-positions are represented
by the sub-diagonal points, as it is shown in Fig. 1 (black dots).
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Fig. 1. The receptive fields of a two-variable Albus CMAC

In the original Albus architecture [1] the number of overlays does not depend
on the dimension of the input vectors; it is always C. This is in contrast to
the so-called full overlay version when CN overlays are used. In a multivariate
Albus CMAC the number of basis function will not grow exponentially with the

input dimension, it will be M =
C−1∑
i=0

N∏
j=1

⌈
(i+Rj)
C

⌉
≈
⌈

1
CN−1

N∏
j=1

(Rj + C − 1)

⌉
,

where 'x( denotes the function that rounds x toward plus infinity. Using this
architecture there will be ”only” ≈ 255 weight values in the previous example.
Although this is a great reduction, the size of the memory is still prohibitively
large so further complexity reduction is required. As such large memories cannot
be implemented in practice, it is called conceptual memory. For getting an im-
plementable network complexity reduction is required that will result in a much
smaller physical memory. In the Albus binary CMAC hash-coding is applied for
this purpose. It significantly reduces the size of the (physical) weight memory
however it can result in collisions of the mapped weights and some unfavorable
effects on the convergence of CMAC learning [8], [9]. Collision means that dif-
ferent addresses of the conceptual memory are mapped into the same physical
memory address. The effect is that distant inputs will address partly common
weights, perturbing the local generalization capability and causing some inter-
ference between distant data - this is caused by the first type of collision -, or
that certain outputs are formed as a sum of less than C weights - this is caused
by the second type of collision.

3 Kernel CMAC

An entirely different approach to reduce memory complexity is if the kernel rep-
resentation of the network is applied. Kernel machines [14] have been developed
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in the last decade and proved to be efficient new approaches for solving the
learning problem from samples.

Kernel machines solve the dimensionality-problem by applying a trick. They
also use nonlinear mapping from the input space into the feature space, however,
they do not look for the solution in the feature space, instead, the solution
is obtained in a new space called kernel space. Kernel space representation is
defined easily from the feature space representation using scalar products. The
significance of using the kernel trick is that the complexity of the solution is
greatly reduced: the dimension of the kernel space and so the size of the weight
memory is upper bounded by the number of training samples independently of
the dimension of the feature space.

The input-output mapping of a basis function network based on the feature-
space representation is:

y (x) =
M∑
j=1

wjϕj (x) = wTϕ (x) (7)

where ϕ (x) = [ϕ1 (x) , ϕ2 (x) , ..., ϕM (x)]T is a projection of the input vector x
into the feature space and w is the weight vector. The same mapping can be
described in the kernel space as:

y (x) =
P∑
k=1

αkK (x,x (k)) (8)

It is also a weighted sum of nonlinear functions where theK (x,x (k)) = ϕT (x) ϕ
(x (k)) , k = 1, ..., P functions are called kernel functions defined by scalar prod-
ucts, and the αk coefficients serve as the weight values.

Being a basis function network, CMAC can also be represented as a kernel
machine [12]. Here the kernel functions are defined as

K (x,x (k)) = aT (x) a (x (k)) (9)

where a(x) is the association vector for the discrete input x and the response of
a CMAC for a given x in kernel representation can be written as:

y (x) = aT (x)w∗ = aT (x)AT
(
AAT

)−1
yd

= aT (x)ATα = kT (x)α
(10)

where
α = (AAT )−1yd (11)

In kernel representation the components of α are considered as the weight values,
so instead of using M weights, here only P weights will be used. As in multidi-
mensional cases P << M this is a great reduction of memory complexity.

In kernel representation for every training point a kernel function is used
positioned in the input space at the given training input point. The support of
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a kernel function will be exactly the same as the local generalization area of the
corresponding training data. It should be noted that the kernel representation
is nothing more than an alternative form of the original CMAC. Its modeling
capability is equivalent to the capability of the standard CMAC. The kernel
representation has a further advantage. Its complexity does not depend on the
dimension of the feature space, the number of kernel functions equals to the
number of training points. Kernel representation may help to reduce memory
complexity not only for standard CMACs, but for the full overlay version too,
where extremely large number of basis functions should be used. Full overlay
version is used to increase the modelling capability of a CMAC. In this case the
number of overlays is increased up to CN . The direct implementation of this
CMAC version is almost impossible except for very low-dimensional inputs. The
kernel representation, however, can be implemented for high-dimensional inputs
too. The multivariate kernel functions for a full-overlay binary CMAC can be
obtained as tensor product of univariate second order B-spline functions.

3.1 Kernel CMAC with Weight-Smoothing Regularization

To improve generalization capability weight smoothing regularization should also
be applied for the kernel version [12]. In this case Eq. (10) will be modified

y(x) = aT (x) (I + λD)−1 AT

[
α +

λ

C
yd

]
. (12)

Here

α =
(
KD +

1
γ
I
)−1(

I− λ

C
KD

)
yd (13)

where KD = A (I + λD)−1 AT and D =
P∑
k=1

diag (a (k)).

In kernel representation both analytic and iterative solutions can be obtained
[12]. To get analytic solution matrix inversion is required where the matrix to be
inverted is of dimension P ×P . This is the consequence of the kernel representa-
tion. In the regularized version (I + λD) should also be inverted. Although it is
a diagonal matrix where inversion is nothing more then reciprocate the diagonal
elements, its size is M ×M , and M is equal to the length of the association
vector and as it was shown before M >> P , that is M may be extremely large.
More efficient solution can be obtained if the size of this matrix is reduced.

3.2 Regularized Kernel CMAC with Hash-Coding

The primary goal of hash-coding was to reduce the length of the association
vector a, mapping it into a compressed one ac [1]. The drawback of hash-coding
is that - because of collisions in the compressed association vector - it deteriorates
the performance of the problem. To mitigate or eliminate of this effect two
possibilities could be used. Either a properly constructed hash-coding should
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be used where the probability of collisions is forced to be small, or smoothing
regularization should be applied.

The new proposal applies both of them. A property of the proposed hash-
coding is to reach, that the memory addresses close in the conceptual memory
should be close in the physical memory. This is good because we assume that the
addresses close to each other in the conceptual memory represent basis functions
close to each other in the input space. So if we can guarantee that close memory
cells remain close after hash-coding, the local generalization capability of the
CMAC network remains. This keeps off the first type of collisions of the hash-
functions, assuring that distinct inputs will not interfere. The used hash-coding
is as follows:

H (k) =
⌈
k

M
mc

⌉
(14)

Here M means the number of basis functions required for the classical CMAC,
mc means the size of the physical memory, and k is the index of the cell in
the conceptual memory. So the hash-function just scales down the indexes to
the size of the physical memory, but it does not changes the order of the cells
and it does not make any randomization to the indexes of the cells. However, if
we use this type of coding, the second type of collision will occur quite often.
So to reach good performance we should allow the network to activate a cell
in the physical memory more than once. By doing this we make an implicit
regularization, because by selecting the same cell more than once, we achieve
a similar effect as with weight smoothing regularization. The result is that the
hash-coded association vector will be no longer binary. This is a similar effect
as if we had used higher-order CMAC where instead of a binary basis function
higher-order B-spline basis functions are used [15]. This rather simple hash-
coding works in all such cases well if the number of active bits - which is C in
the Albus CMAC and CN in the full overlay version - is significantly larger than
M/mc.

Using the newly proposed version the basic equations of the regularized kernel
CMAC (Eqs (12) and (13)) will be modified as it follows:

y(x) = aTc (x) (I + λDc)
−1 AT

c

[
αc +

λ

C
yd

]
(15)

Here

αc =
(
KDc +

1
γ
I
)−1(

I− λ

C
KDc

)
yd (16)

where KDc = Ac (I + λDc)
−1 AT

c and Dc =
P∑
k=1

diag (ac (k)). In these expres-

sions c subscript means that all vectors and matrices are formed after hash-
coding. In this version although the length of αc equals with the length of α, as
it is determined by the number of training samples, the Dc will be a matrix of
dimension mc ×mc only.
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4 Illustrative Experimental Results

The proposed versions of the CMAC network were extensively validated exper-
imentally. Here only the results for the simple sinc function approximation will
be presented. Fig. 2. shows the responses with C = 36 and with the distance
between the neighbouring sampling points 20 measured in input quantization
units. In Fig. 2a) the result of a classical Albus CMAC can be seen. Fig. 2b)
shows when hash-coding is applied without regularization and where the hash-
coding defined in [9] is applied. In Fig. 2c) the result of the proposed version
is presented. The length of the association vector (Fig. 2a)) is 395, while after
hash-coding the compressed association vector is 107 (in case Fig. 2b) and 25 in
cases Fig. 2c) and 2d). The difference between Fig. 2c) and 2d) shows the effect
of regularization. It can also be seen that even the compressed association vector
is much smaller than in case of Fig. 2b) the result is better.

A 2D sinc function is approximated by a kernel CMAC (Fig. 3a), and by
a regularized kernel CMAC. The proposed new hash-coding is applied in both
cases. The length of the original association vector is 12769, while after hash-
coding only 800-bit long compressed association vectors are used.

a) b)

c) d)

Fig. 2. The response of the CMAC. a.) Albus CMAC, b.) Albus CMAC with hash-

coding [9], c.) kernel CMAC with the proposed hash-coding without regularization d.)

regularized kernel CMAC with the proposed hash-coding (λ=100, γ=100).

a) b)

Fig. 3. Response of the hash-coded kernel CMAC a.) without regularization, b.) with

regularization (lambda=100, gamma=100)
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5 Conclusions

In this paper a new approach is proposed to reduce memory complexity of the
CMAC networks without deteriorating its performance. To achieve this goal
a rather simple new hash-coding is proposed which is combined with weight
smooting regularization. The proposed approach is especially suitable for full
overlay kernel representation, where the complexity may be reduced by many
order of magnitude, however it can be applied for the original C-overlay version
too. In kernel representation memory complexity can further be reduced finding
a sparse solution using e.g. kernel pruning [13] or LS2-SVM approach [14].
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Abstract. Model complexity of neural networks is investigated using

tools from nonlinear approximation and integration theory. Estimates

of network complexity are obtained from inspection of upper bounds on

decrease of approximation errors in approximation of multivariable func-

tions by networks with increasing numbers of units. The upper bounds

are derived using integral transforms with kernels corresponding to var-

ious types of computational units. The results are applied to perceptron

networks.

1 Introduction

Integral transformations (such as Fourier, Gabor or Radon) play an important
role in applied science. Also functions computable by neural-network units can be
used as kernels of integral transformations. First applications of integral trans-
forms in mathematical theory of neurocomputing occurred in proofs of the uni-
versal approximation property. Carroll and Dickinson [1] and Ito [2] used Radon
transform to show that all smooth continuous functions can be represented as
integrals in the form of networks with infinitely many perceptrons. They derived
universal approximation property of perceptron networks from discretization of
such representations. Park and Sandberg [3,4] employed representations of Lp-
functions as limits of convolutions with properly scaled kernel or radial functions
to prove the universal approximation property of radial-basis function networks.

Integral transforms in the form of networks with infinitely many units were
also used to obtain estimates of network complexity. Such estimates can be
derived from inspection of upper bounds on speed of decrease of errors in ap-
proximation of multivariable functions by networks with an increasing number of
units. Jones [5, p.612] proved such an upper bound and suggested applying this
bound to functions with representations as infinite networks with trigonometric
perceptrons. Barron [6] refined Jones’ result and proved an estimate of model
complexity for sigmoidal perceptron networks using weighted Fourier transform.
Girosi and Anzelotti [7] applied the estimate by Jones and Barron, known as
Maurey-Jones-Barron’s theorem, to convolutions with suitable kernels. Kůrková
et al. [8] and Kainen et al. [9] applied this estimate to representations in the
form of networks with infinitely many Heaviside perceptrons.
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c© Springer-Verlag Berlin Heidelberg 2009



Model Complexity of Neural Networks and Integral Transforms 709

In this paper, we present a unifying framework for estimation of model complex-
ity for networks with general types of computational units based on integral trans-
forms induced by such units. We use a reformulation of Maurey-Jones-Barron’s
theorem and its extensions in terms of certain variational norms tailored to net-
work units. We derive an estimate of these norms for functions representable as
integrals in the form of infinite neural networks. Various special cases of this esti-
mate were proven earlier using a variety of proof techniques (such as probabilis-
tic argument [6], approximation of integrals by Riemann sums [8], and Bochner
integral [7,10]). However, our results hold under minimal assumptions on a type
of hidden units and an ambient function space and their proofs are quite simple
thanks to a geometric characterization of the variational norm. Moreover, our es-
timates allow applications to classes of networks to which previous results have
not been applicable.

The paper is organized as follows. In section 2, we introduce notation and
describe integral operators defined by computational units. In section 3, we state
estimates of rates of approximation over neural networks in terms of variational
norms. In section 4, we present our main results on geometric characterization
of variational norm, from which in section 5 we derive estimates of variation of
functions obtained by integral transforms with kernels corresponding to general
computational units. In section 6, we illustrate our results by an example of
perceptron networks.

2 Integral Transforms Induced by Computational Units

Neural-network units compute functions depending on parameters (such as
weights, biases, centroids). So formally they can be described as mappings

φ : Ω ×A→ R,

where Ω is a set of variables and A is a set of parameters. Usually, Ω ⊆ Rd and
A ⊆ Rs. We denote by

Gφ = Gφ(A) = {φ(., a) | a ∈ A}

the parameterized set of functions determined by φ.
For example, perceptrons with an activation function σ : R → R can be de-

scribed by a mapping φσ on Rd+1 defined for (v, b) ∈ Rd × R = Rd+1 as

φσ(x, v, b) = σ(v · x+ b). (1)

Similarly, kernel units with a kernel function β : Rd → R can be described by a
mapping φβ on Rd+1 defined for (v, b) ∈ Rd × R = Rd+1 as

φβ(x, v, b) = β(b(x− v)). (2)

A special case are radial units with β(x) = α(‖x‖), where α : R+ → R.
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The set of input-output functions of a network with one-hidden-layer of n
units computing φ is of the form

spannGφ(A) = {
n∑
i=1

wiφ(., ai) |wi ∈ R, ai ∈ A}.

A network unit computing a function φ : Ω × A → R induces an integral
operator. Such an operator depends on a measure μ on A and is defined for a
function w in a suitable function space as

Lφ(w)(x) =
∫
A

w(a)φ(x, a)dμ(a). (3)

Metaphorically, the integral on the right-hand side of the equation (3) can be
interpreted as a one-hidden-layer neural network with infinitely many units com-
puting functions φ(., a) with a ∈ A. So Lφ is an operator transforming output-
weight functions w of infinite networks to their input-output functions Lφ(w).

The classes of functions which can be represented as integrals in the form
of infinite neural networks with various types of units are quite large. For ex-
ample, all continuous compactly supported functions and all Lp-functions with
p ∈ [1,∞) can be expressed as limits of sequences of input-output functions of
infinite networks with quite general radial or kernel functions [3,4]. Also all func-
tions from Sobolev spaces (i.e., functions satisfying certain conditions on their
derivatives) can be represented as infinite networks with Gaussian radial func-
tions [11,12] and sufficiently smooth functions decreasing rapidly at infinity (in
particular, the Gaussian function) can be expressed as networks with infinitely
many sigmoidal perceptrons [2,8,13].

3 Rates of Approximation by Neural Networks

An importance of the role of integral transforms induced by computational units
in investigation of model complexity of neural networks follows from the role
of such transforms in estimation of certain norms tailored to computational
units. Values of these norms are critical factors in upper bounds on rates of
approximation by neural networks in functions spaces of various types.

Such norms are defined quite generally. For G a bounded nonempty subset of
a normed linear space (X , ‖.‖X ), the norm G-variation, denoted ‖.‖G, is defined
for all f ∈ X as

‖f‖G = ‖f‖G,X = inf
{
c > 0 | c−1f ∈ cl conv (G ∪−G)

}
,

where the closure cl is taken with respect to the topology generated by the norm
‖.‖X and conv denotes the convex hull. So G-variation depends on the ambient
space norm, but when it is clear from the context, we write merely ‖f‖G instead
of ‖f‖G,X . It is easy to check that G-variation is a norm on the subspace of
X formed by those f for which ‖f‖G is finite (G-variation is the Minkowski
functional of the closed convex symmetric hull of G).
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The following theorem gives upper bounds on rates of approximation by sets
of the form spannG. It is a reformulation of results by Maurey [14], Jones [5],
Barron [6], and Darken et. al. [15] in terms of G-variation (see [16,17]).

Theorem 1. Let (X , ‖.‖X ) be a normed linear space, G its bounded nonempty
subset, sG = supg∈G ‖g‖X , f ∈ X and n be a positive integer. Then
(i) for (X , ‖.‖X ) a Hilbert space,

‖f − spannG‖2X ≤
s2G‖f‖2G − ‖f‖2X

n
;

(ii) for (X , ‖.‖X ) = (Lp(Ω, ρ), ‖.‖Lp), p ∈ (1,∞), and ρ a measure on Ω ⊆ Rd,

‖f − spannG‖Lp ≤ 21+1/r sG‖f‖G
n1/s ,

where 1/q + 1/p = 1, r = min(p, q), s = max(p, q).

Theorem 1 implies estimates of model complexity needed to guarantee a given
accuracy of approximation for all functions from balls of a given radii in varia-
tional norms. By (i), any number n of units satisfying

n ≥ s2Gr
2

ε2

is sufficient to guarantee approximation within ε for all functions from the ball
of radius r in G-variation.

4 Properties of Variational Norms

To apply Theorem 1 to neural networks, one needs to estimate Gφ(A)-variation
for various types of hidden-unit functions φ. In this section, we derive properties
of variational norms which enable us to estimate Gφ(A)-variation for functions
representable as integrals in the form of infinite networks. We first prove a char-
acterization of variational norm in terms of bounded linear functionals. Although
it is rather abstract, this characterization leads to a simple proof of an upper
bound on G-variation in terms of the L1-norm of the output-weight function.

By X ∗ is denoted the dual of X (the space of all bounded linear functionals
on X ) and by G⊥ the orthogonal complement of a subset G of X , i.e., the set of
all elements l of X ∗ such that for some g ∈ G, l(g) �= 0.

Theorem 2. Let (X , ‖.‖X ) be a normed linear space, G be its nonempty bounded
subset and f ∈ X be such that ‖f‖G <∞. Then

‖f‖G = sup
l∈X ∗�G⊥

|l(f)|
supg∈G |l(g)|

.
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Proof. First, we show that for all c > 0 and f ∈ X

f/c ∈ cl conv(G ∪−G) ⇐⇒ ∀ l ∈ X ∗ |l(f)| ≤ c sup
g∈G

|l(g)|. (4)

Assume that f/c ∈ cl conv (G ∪ −G). Then there exists a sequence {fk}
such that limk→∞ ‖f/c − fk‖X = 0 and all fk can be represented as fk =∑mk

i=1 wk,igk,i, where
∑mk

i=1 |wk,i| ≤ 1 and all gk,i ∈ G. Then for all l ∈ X ∗,
l(fk) =

∑mk

i=1 wk,il(gk,i) and so |l(fk)| ≤ supg∈G |l(g)|. Since l is continuous, also
|l(f/c)| ≤ supg∈G |l(g)| and thus |l(f)| ≤ c supg∈G |l(g)|.

If f/c /∈ cl conv(G ∪ −G), then by Mazur’s theorem [18, p.108] there exists
l ∈ X ∗ such that l(f/c) > 1 and for all h ∈ cl conv (G ∪ −G), |l(h)| ≤ 1. Thus
in particular for all g ∈ G, |l(g)| ≤ 1. Hence |l(f)| = l(f) > c ≥ c supg∈G |l(g)|
and so (4) holds.

By (4), for all c for which f/c ∈ cl conv(G∪−G), supl∈X ∗�G⊥
|l(f)|

supg∈G |l(g)| ≤ c.

Thus ‖f‖G = inf{c > 0 | f/c ∈ cl conv(G ∪ −G)} ≥ supl∈X ∗�G⊥
|l(f)|

supg∈G |l(g)| .

To prove the opposite inequality ‖f‖G ≤ supl∈X ∗�G⊥
|l(f)|

supg∈G |l(g)| by contra-

diction, assume that ‖f‖G > b = supl∈X ∗�G⊥
|l(f)|

supg∈G |l(g)| . Then by (4), there
exists lb ∈ X ∗ such that |lb(f)| > b supg∈G |lb(g)|. By the definition of b, this can
only hold when lb ∈ G⊥. But as we assume that ‖f‖G is finite, there exists some
c > 0 for which f/c ∈ cl conv(G ∪ −G). By (4), |lb(f)| ≤ c supg∈G |lb(g)|. This
implies that lb(f) = 0 because lb ∈ G⊥. Thus we get a contradiction with the
inequality |lb(f)| > b supg∈G |lb(g)|. �

Theorem 2 is an extension of a geometric characterization of variational norm
in Hilbert spaces proven in [19]. As all bounded linear functionals on a Hilbert
space are inner products [20, p. 206], in the case of X a Hilbert space, Theorem 2
states

‖f‖G = sup
h∈X�G⊥

|f · h|
supg∈G |g · h|

.

This implies,

‖f‖G ≥
‖f‖2

supg∈G |f · g|
,

which means that G-variation is large for functions which are almost orthogonal
to the set G.

5 Estimates of Variation of Functions Representable as
Integral Transforms

In this section, we prove our main result giving an upper bound on variation of
functions representable as integrals in the form of networks with infinitely many
units.
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First, consider the case when the set A of parameters is finite. Each order-
ing A = {a1, . . . , am} determines a linear operator Lφ : Rm → X defined as
Lφ(w)(x) =

∑m
i=1 wiφ(x, ai), where w = (w1, . . . , wm). It follows easily from the

definition of variation that for each f which can be represented as f = Lφ(w),

‖f‖Gφ(A) ≤ ‖w‖1 =
m∑
i=1

|wi|. (5)

Note that although f can be represented as an input-output function of a finite
neural network, this network might be quite large. In such a case, estimates
of rates of approximation of f by input-output functions of smaller networks
obtained from Theorem 1 might be useful.

When the set A of parameters is infinite, analogy with (5) suggests that for
f representable as f(x) =

∫
A
w(a)φ(x, a)dμ(a), the estimate

‖f‖Gφ(A) ≤ ‖w‖L1(A,μ) (6)

might hold. The inequality (6) can only be considered when quantities on both
its sides are well defined, i.e., when

(i) Gφ(A) is a bounded subset of (X , ‖.‖X ) and
(ii) w ∈ L1(A, μ).

Our main result (Theorem 3) shows that in a wide class of function spaces, the
assumptions (i) and (ii) are sufficient to guarantee the relationship (6) between
Gφ(A)-variation and L1-norm.

To prove the theorem, we first describe classes of function spaces with a cer-
tain commutativity property of bounded linear functionals. In spaces with this
property, the inequality (6) can be easily derived using Theorem 2. We denote
by (Cc(Ω), ‖.‖sup) the space of all continuous compactly supported functions on
Ω ⊆ Rd with the supremum norm and by (C0(Rd), ‖.‖sup) the space of all con-
tinuous functions on Rd that vanish at infinity.

Proposition 1. Let (X , ‖.‖X ) be one of the following spaces:

(i) (Lp(Ω, ρ), ‖.‖Lp) with p ∈ [1,∞), Ω ⊆ Rd, and ρ a σ-finite measure,
(ii) (Cc(Ω), ‖.‖sup) with Ω a locally compact subset of Rd,
(iii) (C0(Ω), ‖.‖sup) with Ω = Rd.

Let φ : Ω×A→ R be such that Gφ(A) = {φ(., a) | a ∈ A} is a bounded subset of
(X , ‖.‖X ), w ∈ L1(A, μ), where μ is a σ-finite measure and f ∈ X be such that
for all x ∈ Ω, f(x) =

∫
A
w(a)φ(x, a)dμ(a). Then for all l ∈ X ∗,

l(f) =
∫
A

w(a)l(φ(., a))dμ(a).

Proof. First, we prove the statement for the case (i). By the properties of the
duals of Lp-spaces with p ∈ [1,∞) [20, pp. 176, 180], for every l ∈ X ∗ there exists
h ∈ Lq(Ω, ρ), where for p > 1, 1/q+1/p = 1 and for p = 1, q =∞, such that for
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all f ∈ Lp(Ω, ρ), l(f) =
∫
Ω
f(x)h(x)dρ(x). By Hölder’s inequality [20, p. 96] for

all a ∈ A, φ(., a)h ∈ L1(Ω, ρ) and ‖φ(., a)h‖L1 ≤ ‖φ(., a)‖Lp‖h‖Lq . Thus for all
a ∈ A,

∫
Ω |φ(x, a)h(x)|dρ(x) ≤ ‖φ(., a)‖Lp‖h‖Lq . As supa∈A ‖φ(., a)‖Lp = sφ is

finite,
∫
Ω

∫
A
|w(y)φ(x, y)h(x)|dμ(y)dρ(x) ≤ sφ‖w‖L1 is finite. Thus we can use

Fubini’s theorem [20, p. 86] to obtain

l(f) =
∫
Ω

(∫
A

w(a)φ(x, a)dμ(a)
)
h(x)dρ(x) =

∫
A

w(a)
(∫

Ω

φ(x, a)h(x)dρ(x)
)
dμ(a) =

∫
A

w(a)l(φ(., a))dμ(a).

The proof for the cases (ii) and (iii) is analogous to the case (i). The only
difference is that the characterization of bounded linear functionals on Lp is re-
placed with the Riesz Representation Theorem [21]. By this theorem for every
l ∈ X ∗, there exists a signed measure ν on Ω such that for all f ∈ Cc(Ω) or
f ∈ C0(Ω), l(f) =

∫
Ω
f(x)dν(x) and |ν|(Ω) = ‖l‖, where |ν| denotes the to-

tal variation of ν. Thus for all a ∈ A,
∫
Ω |φ(x, a)|dν(x) ≤ ‖φ(., a)‖sup |ν|(Ω).

As supa∈A ‖φ(., a)‖sup = sφ is finite, also
∫
A
|w(a)|

∫
Ω
|φ(x, a)|dν(x)dμ(a) ≤

sφ‖l‖
∫
A |w(a)|dμ(a) ≤ sφ‖l‖ ‖w‖L1 is finite. Thus we can use Fubini’s theorem

to obtain

l(f) =
∫
Ω

(∫
A

w(a)φ(x, a)dμ(a)
)
dν(x) =

∫
A

w(a)
(∫

Ω

φ(x, a)dν(x)
)
dμ(a) =

∫
A

w(a)l(φ(., a))dμ(a). �

Theorem 2 combined with Proposition 1 gives a simple proof of the upper bound
(6) on Gφ-variation of functions representable as integral transforms with the
kernel φ.

Theorem 3. Let (X , ‖.‖X ) be one of the following spaces:

(i) (Lp(Ω, ρ), ‖.‖Lp) with q ∈ [1,∞), Ω ⊆ Rd, and ρ a σ-finite measure,
(ii) (Cc(Ω), ‖.‖sup) with Ω a locally compact subset of Rd,
(iii) (C0(Ω), ‖.‖sup) with Ω = Rd.

Let φ : Ω × A → R be such that Gφ(A) = {φ(., a) | a ∈ A} is a bounded subset
of (X , ‖.‖X ), w ∈ L1(A), where μ is a σ-finite measure, and f ∈ X be such that
for all x ∈ Ω, f(x) =

∫
A w(a)φ(x, a)dμ(a). Then

‖f‖Gφ(A) ≤ ‖w‖L1(A,μ).

Proof. By Proposition 1, for all l ∈ X ∗, l(f) =
∫
A
w(a)l(φ(., a))dμ(a). Thus

|l(f)| ≤ supa∈A |l(φ(., a))|
∫
A |w(a)|dμ(a) = supa∈A |l(φ(., a))| ‖w‖L1(A,μ). So by

Theorem 2

‖f‖Gφ(A) = sup
l∈X ∗−Gφ(A)⊥

|l(f)|
supa∈A |l(φ(., a))| ≤ ‖w‖L1(A,μ). �
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Various special cases of this theorem have been derived by a variety of proof
techniques, but they all required some restrictions on the space X (e.g., bound-
edness of evaluation functionals [10]), on Ω and A (e.g., compactness [8]), and
on φ and w (e.g., continuity [10]). Theorem 3 only assumes that the output-
weight function w is in L1(A, μ) (so that the upper bound exists) and that the
set Gφ(A) is bounded (which is necessary for the definition of Gφ(A)-variation).

Combining Theorem 3 with estimates from Theorem 1 we get an upper bound
on decrease of errors in approximation by neural networks with increasing num-
bers of units.

Corollary 1. Let (X , ‖.‖X ) be a space of functions on Ω ⊆ Rd, A ⊆ Rs,
μ be a Borel measure on A. Let φ : Ω × A → R be a mapping such
that Gφ(A) = {φ(., a) | a ∈ A} is a bounded subset of (X , ‖.‖X ), and sφ =
supa∈A ‖φ(., a)‖X . Let f ∈ (X , ‖.‖X ) be such that for some w ∈ L1(A, μ),
f(x) =

∫
A
w(a)φ(x, a)dμ(a). Then for all n

(i) for (X , ‖.‖X ) a Hilbert space,

‖f − spannGφ(A)‖2X ≤
s2φ‖w‖2L1(A,μ) − ‖f‖2X

n
;

(ii) for (X , ‖.‖X ) = (Lp(Ω, ρ), ‖.‖Lp), p ∈ (1,∞), and ρ a σ-finite measure on
Ω,

‖f − spannGφ(A)‖Lp ≤ 21+1/r sφ‖w‖L1

n1/s ,

where 1/q + 1/p = 1, r = min(p, q), and s = max(p, q).

6 Rates of Approximation by Perceptron Networks

In this section, we apply our results to perceptron networks. Let ϑ : R → R

denote the Heaviside activation function (ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for
t ≥ 0). For a subset Ω of Rd, let Gφϑ

(Ω) = {ϑ(e ·.+b) : Ω → R | e ∈ Sd−1, b ∈ R}
(where Sd−1 is the unit sphere in Rd) denote the set of functions onΩ computable
by Heaviside perceptrons.

For the Lebesgue measure λ, we write shortly L2(Ω) instead of L2(Ω, λ). By
C∞c (Rd), Cdc (Rd), resp., is denoted the space of all compactly supported functions
on Rd with continuous derivatives of all orders and all orders up to d, resp. By
D

(d)
e is denoted the directional derivative of the order d in the direction of the

unit d-dimensional vector e and by He,b the hyperplane {x ∈ Rd |ϑ(e·x+b) = 0}.
The next theorem gives an upper bound on rates of approximation by Heaviside
perceptrons in the space L2(Ω).

Theorem 4. Let Ω ⊂ Rd be compact with d odd. Then for every f ∈ Cdc (Rd)
and for all n,

‖f|Ω − spannGφϑ
(Ω)‖L2(Ω) ≤

λ(Ω)‖wf‖L1(Sd−1×R)√
n

,

where wf (e, b) = a(d)
∫
He,b

(D(d)
e (f))(y)dy with a(d) = (−1)(d−1)/2(1/2)(2π)1−d.
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Proof. An integral representation in the form

f(x) =
∫
Sd−1×R

wf (e, b)ϑ(e · x+ b)dedb

was derived for all functions from C∞c (Rd) by Ito [2] using the Radon transform
and for all functions from Cdc (Rd) by Kůrková et al. [8] using properties of the
Dirac delta function. As Gφϑ

(Ω) is a bounded subset of L2(Ω) with sφϑ
≤ λ(Ω),

wf is in L1(Sd−1 × R), and also we have f|Ω ∈ L2(Ω). Thus we can apply
Corollary 1(i) to obtain the statement. �

This estimate gives some insight into the impact of dimensionality on the speed
of decrease of approximation errors: the parameter a(d) decreases to zero expo-
nentially fast with d increasing and the L1-norm of the output weight function
‖wf‖L1(Sd−1×R) = a(d)‖

∫
He,b

(D(d)
e (f))(y)dy‖L1(Sd−1×R) is bounded from above

by the product of a(d) and the maximum of the L1-norms of all iterated partial
derivatives of the order d of f (see [9]).

Note that λ(Ω) depends on the shape of the d-dimensional domain Ω ⊂ Rd.
When Ω is the Euclidean d-dimensional ball, then λ(Ω) goes to zero exponen-
tially fast with d increasing, while when Ω is a cube with the side larger than
one, λ(Ω) increases exponentially fast.

Here, we have stated the estimate only for d odd, as for d even the output-
weight function wf in the representation of a compactly supported smooth func-
tion f as an integral in the form of infinite perceptron network is more compli-
cated (see [2]).
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Abstract. Novel neural network architecture is proposed to solve the

nonlinear function decomposition problem. Top-down approach is applied

that does not require prior knowledge about the functions properties. Abil-

ities of our method are demonstrated using synthetic test functions and

confirmed by a real-world problem solution. Possible directions for further

development of the presented approach are discussed.

Keywords: Neural networks, nonlinear function decomposition.

1 Introduction

It is a quite widespread situation in practice, when a variable under investigation
y is influenced by many different factors x1, x2, . . . , xn in a complex unknown
manner. Understanding the nature of the influence of each factor can aid in
many analysis, design and decision making problems and therefore it is often
very important for engineers, designers, decision makers, etc. In simple cases,
when the process is well-studied, linear or systems first principles are known, the
influence of particular factors may be expressed analytically or readily identified
from observations by linear modeling, or derived from first principles. However,
in more complex systems these approaches become less helpful, since influences
become nonlinear and interdependent. In a general case the dependence between
x1, x2, . . . , xn and y becomes an arbitrary nonlinear function

y = g (x1, x2, . . . , xn) + ξ, (1)

where ξ is a noise term with zero mean and bounded variance.
If enough simultaneous observations of x1, x2, . . . , xn and y are available, the

problem of estimation of g (�) can be solved by nonlinear identification methods
[1], among which artificial neural networks [2], [3] and neuro-fuzzy systems [4],
[5], [6] are especially suitable due to their universal approximation capabilities
[7]. However, if the systems first principles are not known, i.e. the structure of
the model cannot be chosen accordingly, the resulting model is a ”black box” and
its parameters have no physical sense. Moreover, in a nonlinear case it is hard to
perform independent sensitivity analysis for inputs xi (i = 1, . . . , n) because of
possible interdependencies between them: the form of influence of a particular
xi may strongly depend on the values of other inputs.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 718–727, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Consider, for example, dependence of the form

y = tan−1 (10x1 + sin (5x2)) + ξ. (2)

The influence of x2 on y when x1 = 0 is almost purely sinusiodal. But when, for
example, x1 = 1, x2 has almost no influence on y. A scatter plot of y versus x2
(Fig. 1, 1000 random points sampled from two-dimensional uniform distribution
with bounds [−1,+1] were used) also does not help to recognize the form of
influence.

Fig. 1. Scatter plot of function (2)

In a general case, assume that function (1) can be presented as a composition
of arbitrary continuous nonlinear functions defined on a compact domain

y = f (f1 (x1) , f2 (x2) , . . . , fn (xn)) + ξ. (3)

It is easy to show that such representation exists for any continuous g (�) because
always there exists a special case of (3) where f (�) ≡ g (�), f1 (x1) ≡ x1, . . . ,
fn (xn) ≡ xn. Decomposition of function (1) in the form (3) would provide a
means of separation of independent influences of input variables described by
functions fi (xi) from their interdependent influence described by function f (�).

The problem of nonlinear function decomposition has already received atten-
tion of researchers, however quite a few solutions with limited capabilities were
discovered. A comprehensive review of related literature is given in [8]. Vast ma-
jority of the proposed methods concerned only nominally-valued (particularly
binary) functions. An attempt to extend these methods to real-valued functions
was made in [9], but many limitations (predefined set of basic functions of two
variables only, necessity of data discretization, high sensitivity to noise, often
dependence on manual interaction in the decomposition process, low parame-
ter estimation accuracy due to discrete nature of the method, ets.) make this
method of low practical value.
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To overcome these limitations, we employ a different approach based on com-
putational intelligence techniques. Several methods based on neural networks
were proposed, which decompose complex functions into a set of simpler func-
tions that are easier to implement [10], [11], [12], but they employ bottom-up
approach: subnetworks for smaller functions are built and trained separately,
and then aggregated to implement the initial complex function. This approach
requires substantial prior knowledge and availability of training data for subnet-
works, which often are not available in practice.

In this paper we propose a specialized architecture of artificial neural network
called Function Decomposition Network (FDN) that decomposes a real-valued
function described by its realization into a set of functions (3) using top-down
approach, which requires only training data generated by real g (�) and no prior
knowledge. FDN architecture and operation are presented in Section 2, Section 3
contains experimental results, and general discussion is given in Section 4.

2 Function Decomposition Network Architecture

The proposed Function Decomposition Network has a feedforward architecture
(Fig. 2). Shapes in circles, which represent neurons, schematically show graphs
of their activation functions.

FDN has three hidden layers: the first and the third hidden layers consist of
neurons with nonlinear activation functions ψ[1] and ψ[3] respectively (we use
hyperbolic tangent for both layers). The second hidden layer and the output
layer have neurons with linear activation functions. The first two hidden layers
form a set of n subnetworks, which process only their respective inputs. Then
their outputs are fed to the third hidden layer, which along with the output layer
approximates f (�). Thus the subnetworks act as independent universal approx-
imators, which are trained inside a larger network to approximate independent
functions fi (xi). The second hidden layer is also called the observation layer. Its
function is to extract estimations f̂i of true signals fi.

The mapping implemented by FDN can be expressed by

ŷ = w
[4]
0 +

n[3]∑
j=1

(
w

[4]
j ψ[3]

(
w

[3]
j0 +

n∑
i=1

w
[3]
ji f̂i (xi)

))
, (4)

where n[3] is the number of neurons in the third hidden layer, w[4]
j -- weights of

the output neuron and w
[4]
0 – its bias, w[3]

ji – weights of the j-th neuron of the

third hidden layer, w[3]
j0 – the corresponding bias.

Functions fi (xi) are approximated by corresponding subnetworks implement-
ing the following relations

f̂i (xi) = w
[2,i]
0 +

n[1,i]∑
l=1

(
w

[2,i]
l ψ[1]

(
w

[1,i]
l0 + w

[1,i]
l1 xi

))
, (5)
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where n[1,i] is the number of neurons in the first hidden layer of the i-th subnet-
work, w[2,i]

l – weights of the output neuron of the i-th subnetwork and w
[2,i]
0 –

its bias, w[1,i]
l1 – a single weight of the l-th neuron of the first hidden layer of the

i-th subnetwork, w[1,i]
l0 – the corresponding bias.

Fig. 2. FDN architecture

At first sight, relation (4) may resemble the formulation of the famous Kol-
mogorov’s superposition theorem [13], whose relevance to feedforward neural
networks was first stressed in [14] and then studied by many authors [15]–[23],
however our approach is substantially different. Our approximations f̂ (�) and
f̂i (xi) both depend on g (�), moreover f̂i (xi) are not limited to be monotonic
but are intended to catch true dependencies between xi and y, and may have
any shape.

The network is utilized in the following manner. First, available data pairs
{(x1 (k) , x2 (k) , . . . , xn (k)) , y (k)} , k = 1, . . . , N (here N is the data set size)
are used to train the network. The main requirement for the training set is to
be representative, i.e. to cover the whole range of possible values of xi.
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FDN is trained with respect to the standard quadratic criterion applied to
the error signal e (k) = y (k)− ŷ (k):

E =
N∑
k=1

e2 (k) =
N∑
k=1

(y (k)− ŷ (k))2. (6)

As far as the network has feedforward architecture, standard backpropagation
procedure can be applied to compute local gradients. Then Levenberg-Marquardt
algorithm with cross-validation in batch mode is applied to tune network weights.
This topic is well covered in the literature [24], so we will not focus on it.

Observation outputs f̂i are not utilized during training phase, since there
are no reference signals for them. For the same reason, the estimated functions
f̂i (xi) are subject to arbitrary linear transformations (sign reversal, scaling, and
shifting). It is therefore convenient for further analysis to change the sign of the
observed signals f̂i as necessary and scale to the range [0, 1] by applying the
following transformation

f̃i =
f̂i − f̂i,min

f̂i,max − f̂i,min
, (7)

where f̂i,min and f̂i,max are the minimal and maximal values of f̂i respectively.
Then the trained subnetworks are extracted from FDN and used indepen-

dently as approximators of the corresponding fi (xi). There exist a number of
ways to utilize these approximators. The simplest one is to use them for visual
analysis of plots f̂i (xi), which are obtained by feeding linearly growing signal
xi (k) , xi,min ≤ xi (k) ≤ xi,max (xi,min and xi,max are the minimal and maximal
values of xi respectively) to the input of the corresponding subnetwork and ob-
serving the output f̂i (xi (k)). It is also possible to study the first and the second
differences of f̂i (xi (k)) to find singular points (extrema and inflection points).
Other types of analysis are also applicable.

3 Experimental Results

Abilities of our approach are illustrated by the following simulations based on
artificially constructed functions, which allow decomposition error for all f̂i to
be calculated. For convenience of analysis, all test functions are defined on a
hypercube xi ∈ [−1,+1]. Data sets are generated by randomly sampling 10000
points from n-dimensional uniform distribution bounded by the abovementioned
hypercube and computing the test functions at those points. 90% of data is used
for network training, and 10% for out-of-sample testing. The noise term ξ in
all experiments is a normally distributed random variable with zero mean and
standard deviation 0.01. The number of neurons in the hidden layers of FDN
is n[1,i] = 10 and n[3] = 25. After training, function approximations f̂i (xi)
are extracted by applying linearly growing signal to the corresponding network
inputs and observing the output signals f̂i. True test functions fi (xi) and their
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approximations f̂i (xi) are both scaled to the interval [0, 1] so that it is possible
to compare them and calculate approximation errors.

We start with a simple function

y = cos (x1 + x2 + x3) + ξ. (8)

The normalized root mean square error (NRMSE) on the training set is 0.022954,
on the test set 0.024684. Graphs of true functions fi (xi) and their FDN approx-
imations f̂i (xi) are plotted in Fig. 3 (in all graphs solid line represents true
function and dashed line – approximation). Approximation errors are: NRMSE1
= 0.006565, NRMSE2 = 0.007777, NRMSE3 = 0.008176. We can see that the
network easily solved this decomposition problem.

Fig. 3. Graphs of true functions and their FDN approximations for function (8)

Then we return to our introductory example (2). NRMSE on the training set
is 0.007474, on the test set 0.010682. Graphs of true functions and their FDN
approximations are plotted in Fig. 4. Approximation errors are: NRMSE1 =
0.110080, NRMSE2 = 0.009599. As we can see, the task that seemed to be hard
after looking at Fig. 1 now is solved by FDN with a reasonable accuracy.

Fig. 4. Graphs of true functions and their FDN approximations for function (2)

Now consider a more complex function, which involves multiplication,

y = sin (5x1)x2
2 + 5x3 + ξ. (9)



724 Y. Bodyanskiy, S. Popov, and M. Titov

NRMSE on the training set is 0.003518, on the test set 0.003558. Graphs of true
functions and their FDN approximations are plotted in Fig. 5. Approximation
errors are: NRMSE1 = 0.015760, NRMSE2 = 0.362474, NRMSE3 = 0.029165.
Here the network had some problems with the parabolic function, however the
shape is still very close to the original and can be easily recognized by visual
examination.

Fig. 5. Graphs of true functions and their FDN approximations for function (9)

In the next example the network has to distinguish between dependent (x1x3)
and independent (tan (1.5x1), x3) influences of x1 and x3:

y = sin
(
tan (1.5x1) + x2

2 + x3 + x1x3
)

+ ξ. (10)

NRMSE on the training set is 0.112799, on the test set 0.202078. Graphs of true
functions and their FDN approximations are plotted in Fig. 6. Approximation
errors are: NRMSE1 = 0.396391, NRMSE2 = 0.035662, NRMSE3 = 0.056657.
Here tangent function is approximated not very accurately, but the overall shape
is correct and, what’s more important, the x1x3 term did not deteriorate the
independent terms. As we can see, the solution of test problems proved good
decomposition capabilities of the proposed network. This result is also supported
by a real-world problem solution.

In [25] we reported on the method for extracting the temperature-load rela-
tionship from historic electric load and weather data sets using a modification of
the FDN architecture. The method was successfully applied for analysis of two

Fig. 6. Graphs of true functions and their FDN approximations for function (10)
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Fig. 7. FDN architecture corresponding to decomposition (11)

power systems located in different parts of the world (USA and Ukraine) with
substantially different climatic conditions. The revealed relationships conformed
to the theoretically justified temperature-load curve. Analysis of the first and
the second differences provided exact values of extreme and inflection points of
the revealed temperature-load dependencies. We also showed that several studies
reported in literature used incorrect approximations of temperature-load rela-
tionships, which could lead to higher errors in electric load forecasting problems.
Further analysis of the revealed relationships provides electric companies with
valuable information for more accurate electric load and power loss forecasting,
prospective power systems planning, and facilitates more efficient utilization of
power grids and systems.

4 Discussion

FDN architecture can be seen as a modular one with n modules formed by the
first two hidden layers and another module formed by the last two layers. But
in contrast to usual applications of modular networks, where each module is
constructed and trained independently for its specific task and afterwards they
are combined together, in our approach, the network is treated as monolithic,
and only after training parts of it may be used independently as modules. These
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trained subnetworks can be used not only for input influence analysis, but also
for the signal preprocessing, forecasting, extrapolation and other tasks.

In this paper we described the most general case without any prior knowledge
about the structure of function g (�). However in many practical applications
such information may be available to some extent, or may be inferred from the
training data [26]. It can be easily incorporated in the FDN architecture by
choosing appropriate structure for subnetworks and connections between them.
For example, if prior knowledge suggests the following form of decomposition

y = f (f1 (x1, x2, x4) , f3 (f2 (x4) , x5) , x6, . . . , fm (xn)) + ξ, (11)

then it is appropriate to utilize FDN with architecture shown in Fig. 7. Notice,
that multilevel (hierarchical) decomposition is possible, and in any case approach
remains top-down: train the whole FDN using available realizations of g (�), then
extract subnetworks for further independent utilization.

Despite all the positive results, we have to note that decomposition (3) may
not be unique for any given function (1), however when learning error of FDN in
our experiments with presented and other test functions was low (NRMSE is in
the order of 10−2 or below), the subnetworks were always able to approximate
true independent functions. Still this question needs further investigation and
will be a topic of our future research.
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Abstract. In this paper we introduce an improved binary correlation

matrix memory (CMM) with better storage capacity when storing sparse

fixed weight codes generated with the algorithm of Baum et al. [3]. We

outline associative memory, and describe the binary correlation matrix

memory— a specific example of a distributed associative memory. The

importance of the representation used in a CMM for input and output

codes is discussed, with specific regard to sparse fixed weight codes. We

present an algorithm for generating of fixed weight codes, originally given

by Baum et al. [3]. The properties of this algorithm are briefly discussed,

including possible thresholding functions which could be used when stor-

ing these codes in a CMM; L-max and L-wta. Finally, results generated

from a series of simulations are used to demonstrate that the use of L-

wta as a thresholding function provides an increase in storage capacity

over L-max.

Keywords: Associative memory, correlation matrix memory, storage

capacity, fixed weight codes, pattern recognition.

1 Introduction

The fixed weight code generation algorithm of Baum et al. [3] has the benefit
of generating unique codes which are well separated in the pattern space, which
makes them suited for storage in a CMM. We will subsequently term the codes
generated from this algorithm Baum codes, for ease of reference. Recall of such
codes from a CMM requires the use of a thresholding function, and it is with the
nature of this function that this paper is concerned. L-max thresholding [1] has
been shown to be an effective thresholding function for fixed weight codes, and
has been applied to CMMs storing Baum codes [2]. However, L-max thresholding
fails to make use of all the constraints on Baum codes. A thresholding mechanism
which takes advantage of these constraints is able to provide an improved storage
capacity for a CMM which stores Baum codes.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 728–736, 2009.
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2 Associative Memory

Traditional computer memories store data in a compartmentalised fashion, with
each stored item having a unique address. While this leads to perfect recall in
all cases where the correct address is known, any amount of error in the address
will result in a recall which bears no relation to the stored item. A contrasting
model of memory is distributed associative memory. In such a model, data items
are stored as pairs, with the presentation of the first member of the pair to the
memory resulting in the recall of the second. Rather than these associations
being stored in a single location in the memory, they are distributed across the
memory. This provides robustness in the presence of noise on the input, and
enables generalisation.

Such a memory serves a different purpose to a traditional memory. While
a standard computer memory is well suited to tasks such as storing a list of
tasks or events, it is less capable of “answering questions” [6]. Such a task would
require the question to be looked up in a list, which might contain the location of
the answer. In a distributed associative memory, the answer is retrieved simply
by presenting the question to the input. The recall operation does not require a
look-up algorithm, and so is a much more efficient operation.

3 Binary Correlation Matrix Memories

A Binary Correlation Matrix Memory (CMM) [8] is one example of a distributed
associative memory. It stores the correlations between input and output codes.
The memory is a one layer fully connected neural network. This means that the
weights can be viewed as an m× n matrix W , where m is the size of the input
vectors and n is the size of the output vectors. An example of such a memory is
shown in Fig. 1. Although it is possible to use a CMM with non-binary weights
[5], only the binary case will be considered in this paper.

Learning is achieved using an outer product of the input and output. These
matrices are combined using an OR function over all input output pairs to create
the weight matrix W .

W =
N∨
i=1

xiy
T
i (1)

Recall is achieved as shown in Equation. 2.

y = f [Wx] (2)

Here f is a thresholding function, which takes the activity output Wx and
converts it to a binary vector. For example, in their original paper Willshaw
et al. [8] suggested that the thresholding function could set all output nodes
with activity greater than the number of 1s in the input pattern x to 1. The
choice of this threshold function has a profound effect on the storage capability
of the network, as we shall see later.

When recalling a pattern from the memory, the resulting vector (before thresh-
olding) can be viewed as a signal (the original stored pattern) and some noise
(extra activity from overlaps with other learned codes).
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Fig. 1. An example of a CMM with 8 input neurons, 8 output neurons and binary

weights

4 Sparse Fixed Weight Coding

In a neural memory such as a CMM there is an intrinsic link between the data
representation used and the storage capability of the memory. Using different
encodings on the input and output of the memory will have different effects on
the storage capacity. In addition, the choice of threshold function will also relate
directly to the representation used.

Perhaps the simplest representation of all would be the use of unary output
codes (a single bit set to 1 in n bits). This provides a storage capacity of exactly n
code pairs. Each input code will be stored in exactly one column of the matrix,
and given a correct input code there will be no error on recall. However, the
fault tolerance capability of the network is lost, since the storage is no longer
distributed. It is necessary to use input and output codes with more than one
bit set to 1 to distribute storage over the network.

Furthermore, in order to maximise the storage capability of the network, these
codes should be sparsely coded. More specifically, the number of 1s in an n bit
code should be in the order of logn [7]. The number of 1s in an n bit code is
termed the weight of the code. An important property of the use of sparse codes
in a CMM is that the memory is capable of storing k > n codes (where k is the
number of pairs stored, and n is the number of input neurons), providing a small
amount of recall error is tolerated [7].

If codes with fixed weight are used, an alternative threshold function is avail-
able; L-max thresholding [1]. This sets the l neurons with the highest output
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1 0 0 0 0 1 0 0 1 0

0 1 0 0 0 0 1 0 0 1

0 0 1 0 0 0 0 1 1 0

0 0 0 1 0 1 0 0 0 1

0 0 0 0 1 0 1 0 1 0

1 0 0 0 0 0 0 1 0 1

0 1 0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 0 0 1

0 0 0 1 0 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1

...
...

...
...

...
...

...
...

...
...

Fig. 2. An example of the generation of Baum codes. Here, l = 3 and p1 = 5, p2 =

3, p3 = 2, giving a code of length 10.

activity to 1 and the rest to 0, where l is the weight of the output code. Casasent
and Telfer [4] experimented with various output encodings, including Binary
codes, Hamming codes and fixed weight codes, albeit with analog input codes.
They found that in the presence of noise, fixed weight codes with L-max thresh-
olding gave the greatest storage capacity for a given code length.

It is important to have the ability to generate fixed weight codes in such a
fashion that the codes generated are guaranteed to be well separated in pattern
space. Baum et al. proposed an algorithm which generates fixed weight codes
which have a small amount of overlap [3]. The code is divided into l sections which
are relatively prime1 (coprime) in length, with each section i having length pi.
For example, a code of length 32 where l = 3 could be divided into sections of
length 16, 9 and 7. The size of l defines the weight of the code. To generate code
number c, we set the bit in position j as follows (where x is the code to output):

xcj = 1 if j −
i−1∑
k=1

pk ≡ c (mod pi)

= 0 otherwise

(3)

Essentially what is happening is that a single bit will be set to 1 in each section
of the code. As subsequent codes are generated, the next bit in each section will
be set to 1 instead, wrapping around to the beginning of the section when the
end is reached. For example, Fig. 2 shows a code with n = 10 and l = 3, taking
p1 = 5, p2 = 3, p3 = 2.

Using this mechanism p1×p2× . . .×ps unique codes can be generated, which
is substantially fewer than it is possible to represent with a general fixed weight
coding scheme ( n!

(n−l)!l! ). However, the overlap between the codes is guaranteed

1 Two integers are relatively prime if they have no common factor other than 1. It

should be noted that the problem of generating a set of relatively prime numbers

which sum to a total is not trivial. However, a discussion of methods is beyond the

scope of this paper.
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to be small, which improves recall accuracy if they are used in a CMM. Since the
method is deterministic, we can be certain about the amount of overlap between
generated codes. With no loss of generality we can consider a Baum code with
section lengths p1 < p2 < . . . < p3. The first p1 codes generated will have no
overlap at all. The first p1p2 overlap by at most 1 bit (a Hamming distance of at
least 2l−22). In their analysis Baum et al. [3] state that if

∏t
i=1 pi codes are used,

the minimum Hamming distance between any two codes will be d = 2(l− t+1).
For this reason, it is beneficial for pi ≈ n/l, since this maximises the product
between the section lengths pi, and hence the number of codes which can be
generated with minimal overlap.

5 Improving the Storage Capacity

In the past the algorithm of Baum et al. [3] has been used to generate fixed
weight codes, with L-max used as the thresholding function [2]. This represents
an oversight, since L-max thresholding may produce output codes which are not
possible under the Baum algorithm. By constraining the threshold so that only
the codes generated by the algorithm are output, an increased storage capacity
can be achieved.

It has already been mentioned that the algorithm divides the code into a series
of sections. Baum et al. point out in the appendix to their paper that a useful
property of the algorithm is that there is exactly one 1 in each section of the
code. This means that a winner-takes-all (WTA) threshold can be applied to
each section of the code, rather than taking the l highest values from the whole
code, as we would with L-max [3]. This thresholding technique incorporates
more information about the output encoding into the thresholding function, and
therefore provides a more robust thresholding. We shall call this thresholding
technique L-wta.

6 Results

To demonstrate the improved storage capacity of a CMM when using L-wta
compared to L-max a series of simulations were conducted. The storage of a
CMM is affected by the size of the input and output codes, and also by the
weight of the coding system used. For this reason L-wta technique was compared
to L-max for a variety of coding systems. In each experiment an empty CMM was
created for the appropriate code sizes. The following steps were then undertaken.

1. Generate an input code according to the algorithm of Baum et al. [3] This
code will be unique.

2. Generate a random output code. This code is a random code from the entire
space of possible Baum codes for the given set of coprimes, and so may not
be unique.

2 The Hamming distance between two codes is the number of bits which differ between

them.
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Table 1. Experimental results when varying the size of the input code. All tables

show the number of codes learnt before errors at given levels. Codes are given in the

format length/weight. Note that in some cases code lengths are approximate. This is

due to the complexity of generating large sets of coprime numbers which sum to a

given target. Bold numbers show the percentage increase in storage capacity when

using L-wta rather than L-max.

InputOutput 0.1% error 1% error 5% error 10% error

code code L-maxL-wta % L-maxL-wta % L-maxL-wta % L-maxL-wta %

64/4 256/4 70 78 11.4 115 129 12.2 153 171 11.8 179 207 15.6

128/4 256/4 139 141 1.4 197 234 18.8 289 334 15.6 345 406 17.7

256/4 256/4 259 286 10.4 424 473 11.6 600 696 16.0 719 831 15.6

512/4 256/4 496 589 18.8 814 927 13.9 1182 1369 15.8 1416 1630 15.1

Table 2. Experimental results when varying the weight of the input code

Input Output 0.1% error 1% error 5% error 10% error

code code L-maxL-wta % L-maxL-wta % L-maxL-wta % L-maxL-wta %

512/2 256/4 260 260 0.0 282 304 7.8 482 555 15.1 577 707 22.5

512/4 256/4 496 589 18.8 814 927 13.9 1182 1369 15.8 1416 1630 15.1

512/8 256/4 1023 1036 1.3 1453 1603 10.3 1811 1989 9.8 2028 2229 9.9

512/16 256/4 1186 1267 6.8 1408 1512 7.4 1673 1824 9.0 1829 1989 8.7

Table 3. Experimental results when varying the size of the output code

InputOutput 0.1% error 1% error 5% error 10% error

code code L-maxL-wta % L-maxL-wta % L-maxL-wta % L-maxL-wta %

256/4 64/4 91 120 31.9 178 203 14.0 245 286 16.7 287 337 17.4

256/4 128/4 148 179 20.9 265 289 9.1 362 429 18.5 436 508 16.5

256/4 256/4 259 286 10.4 424 473 11.6 600 696 16.0 719 831 15.6

256/4 512/4 373 415 11.3 608 712 17.1 950 1099 15.7 1137 1327 16.7

Table 4. Experimental results when varying the weight of the output code

InputOutput 0.1% error 1% error 5% error 10% error

code code L-maxL-wta % L-maxL-wta % L-maxL-wta % L-maxL-wta %

256/4 512/2 564 709 25.7 1259 1435 14.0 1932 2138 10.7 2310 2599 12.5

256/4 512/4 373 415 11.3 608 712 17.1 950 1099 15.7 1137 1327 16.7

256/4 512/8 257 267 3.9 353 400 13.3 495 569 14.9 580 677 16.7

256/4 512/16 71 89 25.4 138 157 13.8 197 222 12.7 219 266 21.5

3. Train the CMM using the generated input/output pair.
4. Present every input which the CMM has learnt and compare the correct

output to the actual output using L-max and L-wta.
5. If average error (defined below) exceeds 10% for all thresholding techniques

then exit, otherwise return to 1.
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Fig. 3. Two comparisons of the storage capabilities of a CMM when using L-max and

L-wta. Dotted lines show the standard deviation of average recall error between runs

of the experiment. (top) Input codes had size 256 and weight 4. Output codes had size

512 and weight 4. (bottom) Input codes had size 512 and weight 16. Output codes had

size 256 and weight 4.



Improved Storage Capacity in Correlation Matrix Memories 735

For each experiment these steps were run with twenty CMMs. A different inte-
ger was used to seed the random generator for each CMM, resulting in differing
output patterns being trained. After each iteration the average error was cal-
culated for all twenty CMMs. The recall error was defined as the percentage of
recalled patterns which contained an error in any bit. In order to measure the
performance of the thresholding techniques at a variety of error tolerances we
examine the number of codes learnt in each memory before recall error exceeded
0.1%, 1%, 5% and 10%.

Table 1 shows the results when the size of the input was varied, whilst size
and weight of the output code remained constant. Similarly, Table 2 shows the
results when the weight of the input code was varied. In both cases it can be
seen that the use of L-wta results in an increase of approximately 15% in storage
capacity. L-wta appears to provide the largest increase in storage over L-max
when the input code is sparse; that is, when the code size is increased or the
weight is decreased. This advantage appears less pronounced as the amount of
output error increases.

The case is similar when examining Tables 3 and 4. The effect of output
sparsity on the effectiveness of the technique is less clear. However, the storage
capacity when using L-wta is consistently a considerable improvement over that
achieved using L-max.

Fig. 3 shows two examples of the performance of the two thresholding tech-
niques as codes are trained into the memories. It can clearly be seen that as the
memory becomes increasingly saturated, the use of L-wta provides an increasing
benefit over L-max thresholding.

7 Summary

In summary, it has been demonstrated in this paper that when using codes
generated by the algorithm of Baum et al. [3] L-wta provides an increase in
storage capacity over thresholding using L-max, provided some error is tolerated.
This increase in storage capacity is generally in the order of 15%, but has been
observed to be as high as 30%.

While this paper has demonstrated the benefit of this thresholding technique
across a variety of conditions, a mathematical treatment of the technique is now
required.
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Abstract. This paper investigates Multiagent Reinforcement Learning

(MARL) in a general-sum game where the payoffs’ structure is such

that the agents are required to exploit each other in a way that benefits

all agents. The contradictory nature of these games makes their study

in multiagent systems quite challenging. In particular, we investigate

MARL with spiking and non-spiking agents in the Iterated Prisoner’s

Dilemma by exploring the conditions required to enhance its cooperative

outcome. According to the results, this is enhanced by: (i) a mixture of

positive and negative payoff values and a high discount factor in the case

of non-spiking agents and (ii) having longer eligibility trace time constant

in the case of spiking agents. Moreover, it is shown that spiking and non-

spiking agents have similar behaviour and therefore they can equally well

be used in any multiagent interaction setting. For training the spiking

agents, a novel and necessary modification enhances competition to an

existing learning rule based on stochastic synaptic transmission.

1 Introduction

Multiagent Reinforcement Learning (MARL) is a problem that has been stud-
ied extensively during the last few years. The problem lies in the dynamic en-
vironment created by the presence of another learner. In MARL there could be
different kinds of situations: fully competitive (which could be modelled with
zero-sum games), fully cooperative (which could be modelled with team games)
or a mixture of both (which could be modelled with general-sum games). Each
situation has different problems, so an active community has been designing al-
gorithms to address all of them. Some examples include minimax-Q [1], Nash-Q
[2], Joint Action Learners [3], FoF-Q (Friend-or-Foe Q) [4], WoLF-IGA (Win or
Lose Fast - Infinitesimal Gradient Ascent) [5], CE-Q (Correlated Equilibria Q)
[6], FMQ (Frequency Maximum Q) [7], GIGA-WoLF (Generalised IGA - WoLF)
[8] and AWESOME (Adapt When Everybody is Stationary Otherwise Move to
Equilibrium) [9]1. A lot of work is focused in deriving theoretical guarantees,
based on different sorts of criteria such as rationality and convergence [11] or
1 For a comprehensive coverage of MARL algorithms see [10] and references therein.
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targeted-optimality, safety and auto-compatibility [12]. Since the problem is not
very well-defined, Shoham et al. [13] attempted to classify the existing work by
identifying five distinct research agendas. They argued that when researchers
design algorithms they need to place their work under one of these categories.
Subsequently some work did focus on specific agendas (e.g., [14]), but more agen-
das were proposed [15]. In addition, the original agendas [13] have been criticised
that they may not be distinct, since they may complement each other ([16], [17]).
Stone [18] extended the criticism by arguing that the game theoretic approach
is not appropriate in complex multiagent problems. Despite these criticisms, our
study lies in the original prescriptive non-cooperative agenda [13], which asks
how the agents should act to obtain high rewards for a given environment.

Reinforcement learning (RL) has successfully been applied to spiking neural
networks (NNs) in recent years. These techniques try to incorporate reward dis-
tribution according to the biological processes of neurons. Although their degree
of experimental justification varies and they need to be further assessed, all these
methods are biologically plausible and provide the basis for applying RL on bio-
logically realistic neural models as well as the inspiration for further and better
integration of RL into the spiking models. Imaginative approaches to the subject
include: (i) the reinforcement of irregular spiking [19], where the learning rule
performs stochastic gradient ascent on the expected reward by correlating the
fluctuations in irregular spiking with a reward signal and (ii) the employment
of a spike-timing-dependent synaptic plasticity rule [20], in order to achieve RL
by modulating this plasticity through reinforcement signals ([21],[22]). In our
study, we use a variation of Seung’s RL on spiking NNs [23], which reinforces
the stochasticity present in the process of synaptic transmission. To the best of
our knowledge, this is the first time that a spiking neural model with biologically
plausible learning simulates a game theoretical situation.

The current study investigates cooperation between self-seeking reward agents
in a non-cooperative setting. This situation can be modelled with the Iterated
Prisoner’s Dilemma (IPD) which is a general-sum game. Although the coopera-
tive outcome is a valid equilibrium of the IPD, our study does not aim to assess
the strength of the learning algorithms to attain equilibria of the game or best
responses to any given strategy. Instead, we focus on mutual cooperation and
see whether it can be achieved by spiking and simple non-spiking agents trained
with RL and attempt to compare them. It is very interesting and beneficial to
understand how and when cooperation is achieved in the IPD’s competitive and
contradictive environment, as it could then become possible to prescribe opti-
mality in real life interactions through cooperation, analogous to the IPD. In its
standard one-shot version, the Prisoner’s Dilemma [24] is a game summarized
by the payoff matrix of Table 1. There are 2 players, Row and Column. Each
player has the choice of either to “Cooperate”(C) or “Defect” (D). For each pair
of choices, the payoffs are displayed in the respective cell of the payoff matrix of
Table 1. In game theoretical terms, where rational players are assumed, DD is
the only Nash equilibrium outcome [25], whereas only the cooperative (CC) out-
come satisfies Pareto optimality [26]. The “dilemma” faced by the players in any
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Table 1. Payoff matrix of the Prisoner’s Dilemma game with the values used in our

experiments. Payoff for the Row player is shown first. R is the “reward” for mutual

cooperation. P is the “punishment” for mutual defection. T is the “temptation” for

unilateral defection and S is the “sucker’s” payoff for unilateral cooperation. The only

condition imposed to the payoffs is that they should be ordered such that T>R>P>S.

Cooperate (C) Defect (D)

Cooperate (C) R(=4),R(=4) S(=-3),T(=5)

Defect (D) T(=5),S(=-3) P(=-2),P(=-2)

valid payoff structure is that, whatever the other does, each one of them is better
off by defecting than cooperating. The outcome obtained when both defect how-
ever is worse for each one of them than the outcome they would have obtained if
both had cooperated. In the IPD, an extra rule (2R>T+S) guarantees that the
players are not collectively better off by having each player alternate between C
and D, thus keeping the CC outcome Pareto optimal. Moreover, contrary to the
one shot game, CC can be a Nash equilibrium in the infinite version of the IPD.

As pointed out in [27] “perfectly predicting the environment is not enough to
guarantee good performance”, because the level of performance depends partly
on properties of the environment. In our case, we believe that the property of
the environment which plays a significant role in the CC outcome is the reward
function, since it specifies the type and strength of the reinforcement the agents
receive. By experimenting with the payoff matrix we observed that for the non-
spiking agents it is beneficial to mix positive and negative values. The payoff
values used in both spiking and non-spiking simulations are shown in Table 1.

The remainder of the paper is organised as follows. Section 2 describes our
methodology for both spiking and non-spiking simulations. The results are pre-
sented and analysed in Section 3, while the last section gives the conclusions.

2 Methodology

2.1 Agents as Lookup Tables and Non-Spiking Neural Networks

We mainly focus on Q-learning [28], a simple reinforcement learning algorithm.
There are two ways of storing the Q values (i.e., the estimates of how good the
state-action pairs are), either in a lookup table (LT) or inside a function approxi-
mator, such as a NN. When the search space is small, LTs are preferred, because
they are much faster. However, for large search spaces, function approximators
are the only choice, because it is impossible to store every possible state-action
pairs, due to memory constraints. According to Sandholm and Crites [29], LTs
yield better results and are faster than simple recurrent NNs in the IPD. The
multiagent system can be either homogeneous or heterogeneous. A homogeneous
system exists when both agents employ the same strategy or learning algorithm,
with the same or similar parameters, which in our case are the discount factor
(γ) and the memory type which could either be an LT or a feedforward NN.
In contrast, a heterogeneous system exists when either both agents employ the
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same algorithm with dissimilar parameters, or different algorithms. The opposing
agents could be TD (Temporal Difference) [30], SARSA (State-Action-Reward-
State-Action) [31] or Q-learning. The agents are provided only with incomplete
information: they receive only the state of the environment, i.e., the actions of
both the agent and the opponent in the previous round, but not the payoffs asso-
ciated with each action. A Boltzmann exploration schedule is utilised, as it gives
a good balance between exploration and exploitation. Specifically, an action ai
is selected from state s with probability p(ai) given by equation (1):

p(ai) =
eQ(s,a)/t∑

a∈{C,D}
eQ(s,a)/t

(1)

where the temperature t is given by t = 1 + 10 × 0.995n, with n being the
number of games played so far. The constants 1, 10 and 0.995 are chosen empir-
ically. Each NN input is represented by 4 bits (thus 4 nodes), because according
to the experiments in [29], this “unary encoding resulted in faster learning than
a two-bit binary” one. Each bit is active depending on whether the previous
action of the agent and the opponent was C or D. The network has 2 linear
outputs corresponding to the estimates of the actions available in the game. One
hidden layer with 3 sigmoidal activation function units is used and the network
is trained by backpropagation as in [32], but with a single network.

2.2 Agents as Spiking Neural Networks

The game simulation is repeated with the two players implemented by two spik-
ing NNs. The networks’ architecture is depicted in Fig. 1. Each network has
two layers of leaky integrate-and-fire (LIF) neurons. The equation and values
of the parameters used for modelling the LIF neurons are the same as in [23],
apart from the value of the mean weight of the conductance used for the exci-
tatory synapses which is set to 14nS. Both networks receive a common input of
60 Poisson spike trains grouped in four neural populations. The networks learn
simultaneously but separately where each network seeks to maximise its own ac-
cumulated reward. Learning is implemented through reinforcement of stochastic
synaptic transmission as in [23], where the model is developed along the hypoth-
esis that microscopic randomness is harnessed by the brain for the purposes of
learning. Briefly, within the model’s framework, each synapse acts as an agent
pursuing reward maximisation through the actions of releasing or not a neuro-
transmitter upon arrival of a presynaptic spike. Each synapse records its recent
actions through a dynamical variable, the eligibility trace [33], the time constant
of which essentially reflects the way each synapse integrates time-related events.
The input to the system is presented for 500ms and encodes the decisions the two
networks had at the previous round. One can identify here a cyclic procedure
which starts when the networks decide, continues by feeding this information
to the networks during which learning takes place and ends by a new decision.
Each network’s decision is encoded in the input, by the firing rate of two groups
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Network I Network IIInput

Output 1

Output 2

Output 3

Output 4

Fig. 1. Two spiking Neural Networks of Hedonistic Synapses and multilayer-type ar-

chitecture compete in the IPD. Each network has two layers of hedonistic synapses

that make full feedforward connections between three layers of neurons: the 60 shared

input neurons, 60 leaky integrate-and-fire (LIF) hidden neurons and two LIF output

neurons, randomly chosen to be either excitatory or inhibitory.

of Poisson spike trains. The first group will fire at 40Hz if the network cooper-
ated and at 0Hz otherwise. The second group will fire at 40Hz if the network
defected and at 0Hz otherwise. Consequently, four groups of Poisson spike trains
provide the system’s input with two groups always being active, preserving thus
a balance at the output neurons’ firing rates at the beginning of learning. Any
significant difference in the output neurons’ firing rate at any time should only
be induced by learning and not by the differences of the driving input firing
rates. At the end of each learning round the networks decide whether to coop-
erate or defect for the game’s next round, according to the value each network
assigns to the two actions. These values are reflected by the output neurons’
firing rates at the end of each learning round. The cooperation value for network
I and II is taken to be proportional to the firing rate of output neurons 1 and
3 respectively. Similarly, the defection value for network I and II is taken to be
proportional to the firing rate of output neurons 2 and 4 respectively. When the
two networks decide their play for the next round of the IPD, they each receive a
distinct payoff given their actions and according to the game’s payoff matrix (see
Table 1). This same payoff is also the global reinforcement signal (scaled down)
that will train each network during the next learning round and thus guide the
networks to their next decisions. Since the learning algorithm works with pos-
itive and negative reinforcements that are directly applied to the synapses and
are extracted from the payoff matrix, it is then necessary that the payoff ma-
trix contains both positive and negative values. Each network is reinforced for
every spike of their output neuron that was “responsible” for the decision at the
last round and hence for the payoff received. The networks thus learn through
global reinforcement signals which strengthen the value of an action that elicited
a reward and weaken the value of an action that resulted to a penalty.

In order to enhance competition between output neurons during a learning
round, Seung’s algorithm [23] is extended with additional global reinforcement
signals administered to the networks for every output neuron spike not “respon-
sible” for the decision. In the CD case for example, an additional reward of +1.15
is provided to network I for every spike of output neuron 2 and an additional
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penalty of -1.15 is provided to network II for every spike of output neuron 3.
The value of the action that was not chosen by each network is therefore also
updated, by an opposite in sign reinforcement signal. The value of 1.15 applies
to all outcomes and is chosen to be small enough such that: (i) any changes
to the values of the players’ actions are primarily induced by the reinforcement
signals provided by the payoff matrix and (ii) not to cause IPD rules’ violation.

Overall during a learning round, each network receives global, opposite in sign
reinforcements for spikes of both of its output neurons. One of the two signals is
due to the game’s payoff matrix and its aim is to “encourage” or “discourage”
the action that elicited reward or penalty and the other signal is complementary
and its aim is to “encourage” or “discourage” the action that could have elicited
reward or penalty if it had been chosen in the previous round of the game.

3 Results and Discussion

3.1 Lookup Table and Non-Spiking Neural Network Agents

The step-size parameter α, the backpropagation learning rate η and the discount
factor γ were empirically set to 0.9 for all agents, as this showed good behaviour
with fast convergence, especially when using LTs. Low α and η values, such as
0.1, prevented in some cases the algorithms from converging to the CC outcome.
This may be due to the exploration schedule and more specifically to t (see eqn.
1) dropping at a level where no further exploration takes place. The games were
run for 50 trials with 2000 rounds per trial.

As mentioned in Section 2.1, a multiagent learning system may either have
homogeneous or heterogeneous settings. In homogeneous settings we test 3 Q-
agents in self-play: 1) Q(LT, γ=0.9); 2) Q(LT, γ=0.1) and 3) Q(NN, γ=0.9).
In heterogeneous settings we test 6 cases: 1) Q(LT, γ=0.9) vs TD(LT, γ=0.9) -
different algorithm; 2) Q(LT, γ=0.9) vs SARSA(LT, γ=0.9) - different algorithm;
3) Q(LT, γ=0.9) vs Q(LT, γ=0.1) - different γ; 4) Q(NN, γ=0.9) vs Q(LT,
γ=0.9) - different memory type; 5) Q(NN, γ=0.9) vs TD(LT, γ=0.9) - different
algorithm and memory type and 6) Q(NN, γ=0.9) vs SARSA(LT, γ=0.9) -
different algorithm and memory type 2. Fig. 2 depicts the results taken when
ranking all these cases based on the percentage of CC. As it can be seen, LTs
with high γ obtain better results (93%) than (i) NNs with high γ (67%) and
(ii) LTs with low γ (49%). This may be because (i) LTs are simpler and more
suitable than NNs in our simple environment and (ii) a higher γ makes the agents
take future rewards into account more strongly, which leads to an enhanced
mutual cooperation. A successful heterogeneous case is the one where a Q agent
competes with a SARSA, both with LTs and γ=0.9; in this case CC gets 86%.
However, when the Q agent uses a NN, CC drops dramatically to 24% and DD
2 It is worth noting that we could not evaluate SARSA and TD agents with NNs,

nor Q with NN and a low γ (=0.1) or in some cases with many hidden nodes such

as 10, because the algorithm diverges, since the NN weights are driven to infinity.

Divergence problems are known to exist in RL with function approximators and some

solutions were proposed to deal with them (see [34]; [35] and references therein).
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Fig. 2. Performance of Q vs Learning agents in homogeneous and heterogeneous en-

vironments ranked based on the CC percentage. Highest CC is achieved when an LT

farsighted Q-agent (i.e., with a high discount factor γ) competes in self-play.
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Fig. 3. Accumulated Payoff with: (a) non-spiking Q-agents (LTs) with the two players

having a discount factor of 0.9 (solid line) and 0.1 (dotted line); (b) with spiking NNs

with the two players having eligibility trace time constants 20ms (solid line) and 2ms

(dotted line)

rises from 6% to 31%. The “strongest” algorithm in our case (i.e., Q-learning)
accumulates more reward, since DC occurs in 31% of the rounds, whereas CD
only in 14%. TD can be considered very weak when evaluated against Q-learning,
as the latter manages to learn a better policy that exploits the weakness of its
opponent. This is illustrated by the high DC percentages, in contrast with the
low CD percentages. The interesting case of Q agents with LTs, with the row
player being more farsighted than the column player, shows that being myopic
does not mean that more unilateral defection would be played, as indicated by
the percentages of DC (36%) and CD (4%). However, one may suggest that in
this case a myopic agent in effect finds a worse policy, as it accumulates less
payoff than the farsighted one. This is in line with the fact that in general,
farsighted agents should accumulate more reward in the long-term than myopic
ones. Finally, when an NN is compared with an LT, CC gets 54%. The reason
for this could be in the difference in policy learning by the agents given that the
LT learns faster than the NN agent and accumulates more reward (CD>DC).
Fig. 3a illustrates the accumulated net payoffs over time for two homogeneous
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cases, one with a farsighted and one with a myopic Q agent, both with LTs
evaluated in self-play. It is clearly evident that in the case of the farsighted agent
the accumulated payoff of the system is higher than the case of the myopic agent,
which together with the results as presented in Fig. 2, support that CC is higher
for farsighted agents.

3.2 Spiking Neural Network Agents

For the system configuration described in Section 2.2 a single game of the IPD
consists of 200 rounds during which the two networks seek to maximise their
individual accumulated payoff by cooperating or defecting at every round of the
game. This simulation aims to investigate the capability of the spiking NNs to
cooperate in the IPD. Two simulations were performed with the synapses of
the two networks having different eligibility trace time constants which reflect
how the networks integrate time related events and thus associated with the
“memory” each network has. The values for both networks were set to 20ms and
2ms for the two simulations respectively. Therefore, during the first simulation
the networks have a “good memory” whereas in the second one a “weak mem-
ory”. The results of both simulations are shown in Fig. 3b. The difference in the
system’s performance is evident. When the system was configured with 20ms eli-
gibility trace time constants, the accumulated payoff is much higher than the one
with 2ms; this results from the difference in the cooperative outcome. With the
eligibility trace time constants set at 20ms the two networks learned quickly to
cooperate in order to maximise their long-term reward and achieved the CC out-
come 182 out of the 200 times. On the contrary, when the system was configured
with “weak memory”, learning took effect much later during the game (after the
100th round) and thus the system resulted in exhibiting much less cooperation
(120 out of 200). However, the system with both configurations eventually man-
aged to learn to cooperate. It is noted that the CC outcome not only persisted
during the final rounds of the simulations, but it also did not change after a
point (much earlier in the first case) due to the system’s dynamics that were
evolved by that point in time in such a way to produce CC consistently. Results
show that agents’ memory influences the cooperative outcome of the game in
the sense that it delays it to a great extent. However, a weak memory does not
destroy learning as the networks eventually learned to cooperate.

4 Conclusions

Our results indicate that the system accumulates higher cooperative reward
when both agents have: (i) higher discount factor, in the case of non-spiking
agents, or (ii) “stronger” memory, as in the case of the spiking agents with
longer eligibility trace time constant. One may suggest that the effect of the dis-
count factor in the non-spiking agents is equivalent to the effect of the “synaptic
memory” of the spiking agents resulting from the use of eligibility traces, despite
the fact that the former refers to future predictions, whereas the latter to past
events. Based on this assumption, one could explain the more frequent emerging
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of the cooperative outcome with high values of eligibility trace time constant and
discount factor, in the spiking and non-spiking systems respectively. However, in
order to make a direct comparison between the spiking and non-spiking systems
we could either use eligibility traces in the Q-learning algorithms [28], or employ
TD learning in our spiking NNs as in [36].

According to the results, apart from being desirable for the non-spiking agents
to be farsighted in order to achieve the pareto-optimal outcome of the game (as
mentioned above), they should also use LTs where possible (since LTs enable the
system to converge faster and more accurately) and have learning algorithms of
the same or of similar “strength” (such as both Q, or one Q and one SARSA). In
the case of spiking agents, it has to be noted that our extension of the reinforce-
ment of stochastic synaptic transmission of Seung [23], by enhancing competition
between output neurons (see Section 2.2) through concurrently applying a pos-
itive global reinforcement to one output and a negative global reinforcement to
the other output is both novel and necessary. More specifically it is essential,
so as to avoid a positive feedback effect which would have increased the synap-
tic strength without bounds, leading to saturation of the synaptic connection
and thus preventing further learning from taking place (like the limitation of
classical Hebbian learning). Therefore one could conclude that in cases where
more than one neuron competes for reinforcement in a spiking NN, the global
evaluation signal of Seung’s reinforcement of stochastic synaptic transmission
[23], should consist of global reward and penalty accordingly, for avoidance of
possible synaptic saturation. In addition, it is also desirable for the payoff ma-
trix for the non-spiking agents to mix positive and negative values (as in [37]),
which if viewed as another technique of introducing competition into the system
(as above), it could explain the enhancement of the cooperative outcome. As
mentioned in Section 2.2, this mixture is necessary for the spiking agents.

In general, as it can be seen from the results, the behaviour of spiking and non-
spiking agents is in effect similar (Fig. 3). We could therefore argue, that spik-
ing agents could equally well be used in multiagent interactions as non-spiking
agents. Certainly, a spiking agent system is more computationally expensive and
should only be used when the task in question demands more biologically realis-
tic models. For example, we have used a spiking multiagent system in modelling
the high level behaviour of self-control [38].
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Abstract. Biological systems (e.g., rats) have efficient and robust local-

ization abilities provided by the so called, place cells, which are found in

the hippocampus of rodents and primates (these cells encode locations

of the animal’s environment). This work seeks to model these place cells

by employing three (biologically plausible) techniques: Reservoir Com-

puting (RC), Slow Feature Analysis (SFA), and Independent Component

Analysis (ICA). The proposed architecture is composed of three layers,

where the bottom layer is a dynamic reservoir of recurrent nodes with

fixed weights. The upper layers (SFA and ICA) provides a self-organized

formation of place cells, learned in an unsupervised way. Experiments

show that a simulated mobile robot with 17 noisy short-range distance

sensors is able to self-localize in its environment with the proposed ar-

chitecture, forming a spatial representation which is dependent on the

robot direction.

Keywords: Reservoir computing, slow feature analysis, place cells.

1 Introduction

Animals or robots should be able to efficiently self-localize in their environments
for learning and accomplishing cognitive intelligent behaviors. They must be able
to seek targets (energy resources) and accomplish important tasks in a efficient
way. In this context, the ability to self-localize is clearly needed.

Standard robot localization systems are designed mostly by probabilistic
methods which can perform SLAM (Simultaneous Localization And Mapping)
under suitable assumptions [1] and are usually built for robots having high-
resolution expensive laser scanners. Biologically inspired systems for robot lo-
calization can be considered a competitive alternative that works also for small
mobile robots. Robustness, learning and low computation time are some charac-
teristics of these biological inspired systems. Most systems are based on visual
input from camera [2,3,4] and models hippocampal place cells from rats [2,3,4,5].
These place cells are the main components of the spatial navigation system in
� This work was partially supported by FWO Flanders project G.0317.05.
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rodents. Each place cell codes for a particular location of the rat’s environment,
presenting a peak response in the proximities of that location (the place field
of that cell). Other components of the brain’s spatial representation system in-
cludes head-direction cells, which encode the orientation of the animal in its
environment, and grid cells, which are non-localized representations of space
(having a grid-like structure of activations in space) [6]. Grid cells are found in
the entorhinal cortex of rats and probably have an important role in the forma-
tion of place cells in the hippocampus [6]. Two classes of stimuli are available to
place and grid cells: idiothetic and allothetic. Idiothetic input is originated from
the physical body, such as proprioceptive sensors, which can be used for dead
reckoning (path integration). Allothetic information is obtained from the exter-
nal environment via sensors like distance sensors and camera. Dead reckoning
can usually be corrected using allothetic information. The current work models
place cells and to some extent, grid cells, endowing a simulated mobile robot with
the capacity to self-localize in its environment through an unsupervised learn-
ing process. Reservoir Computing (RC) [7,8], Slow Feature Analysis (SFA) [9],
and Independent Component Analysis (ICA) [10] are three (biologically plau-
sible) techniques used in this work for modeling place cells. RC is a recently
introduced paradigm in Recurrent Neural Networks (RNN) where the recurrent
connections are not trained at all. Only output units are trained (usually in a
supervised way) while the reservoir (the RNN itself) is a randomly generated
dynamic system with fixed weights [8]. RC has biological foundations as it is
shown, for example, that Liquid State Machines (a type of RC) are based on the
micro-column structure in the cortex [11]. Furthermore, works such as in [12]
establish a strong association between real brains and reservoirs. SFA is another
recently proposed method to extract invariant or slowing varying features from
input data [9]. Similarly to [3], we use SFA to model grid cells. While they use
several SFA layers and high-dimensional input from a camera, we use only few
noisy distance sensors and a RC-SFA based architecture.

This work proposes a general architecture based on reservoir computing and
slow feature analysis (RC-SFA). While SFA provides an unsupervised learning
mechanism for reservoirs, the latter provides short-term memory to SFA-based
systems. This powerful combination can also be used in more general applica-
tions (such as speech recognition and robot behavior modeling). The proposed
architecture is used here for autonomous map learning by modeling hippocampal
place cells. A mobile robot with 17 short-range distance sensors is sufficient for
generating a rather accurate spatial representation of maze-like environments
without using proprioceptive information (odometry). The robot, in this way,
autonomously learns to self-localize in its environment.

2 Methods
2.1 Reservoir Computing

The first layer of the RC-SFA architecture consists of a randomly created recur-
rent neural network, that is, the reservoir. This network is composed of sigmoidal
neurons and is modeled by the following state update equation [8]:
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x(t+ 1) = f((1 − α)x(t) + α(Winu(t) + Wresx(t))), (1)

where: u(t) denotes the input at time t; x(t) represents the reservoir state; α is
the leak rate [13]; and f() = tanh() is the hyperbolic tangent activation function
(the most common type of activation function used for reservoirs). The con-
nections between the nodes of the network are represented by weight matrices:
Win is the connection matrix from input to reservoir and Wres represents the
recurrent connections between internal nodes. The initial state of the dynamical
system is x(0) = 0. A standard reservoir equation (without the leak rate) is
found when α = 1.

The matrices Win and Wres are fixed and randomly created at the beginning.
Each element of the connection matrix Wres is drawn from a normal distribution
with mean 0 and variance 1. The randomly created Wres matrix is rescaled such
that the system is stable and the reservoir has the echo state property (i.e., it
has a fading memory [8]). This can be accomplished by rescaling the matrix so
that the spectral radius |λmax| (the largest absolute eigenvalue) of the linearized
system is smaller than one [8]. Standard settings of |λmax| lie in a range between
0.7 and 0.98 [8]. In this work we scale all reservoirs (Wres) to a spectral radius
of |λmax| = 0.9 which is an arbitrarily chosen value (shown to produce good
results). The initialization of Win is given in Section 3.1.

The leak rate α should be in the interval (0, 1] and can be used to tune
the dynamics of the reservoir [13]. In this way, lower leak rates slow down the
reservoir, increasing its memory but decreasing its capacity for agile processing
of the input signal. Higher leak rates yield fast processing of the input but low
memory to hold past stimuli. Similar results can be achieved when resampling
the input signal for matching the timescale of the reservoir. For instance, it might
be necessary to downsample an input signal if it varies too slowly. In this work,
dt represents the downsampling rate of the original input signal.

In this paper, the RC-SFA architecture is composed of a hierarchical network
of nodes where the lower layer is the reservoir and the upper layers are composed
of SFA and ICA units, respectively (Fig. 1). This hierarchical network learns in
a unsupervised way (except for the reservoir whose weights (Win and Wres) are
kept fixed). The function of the reservoir is to map the inputs to a high-dimensional
dynamic space. Because of its recurrent connections, the reservoir states contain
echoes of the past inputs, providing a short-term memory to our model. The SFA
layer receives signals from the input nodes u(t) and from the reservoir nodes x(t).
This layer generates invariant or slowly varying signals [9] which are instantaneous
functions of input from previous layers (see Section 2.2). The upper-most layer is
composed of ICA units which generate a sparse and local representation of the
slowing varying SFA features. The following sections focus on these upper layers.
Next, consider nu as the number of inputs; nres as the number of neurons in the
reservoir; nsfa as the number of SFA units; and nica as the number of ICA units.

2.2 Slow Feature Analysis

Slow Feature Analysis (SFA) is a recently introduced algorithm that finds func-
tions which are independent and slowly varying representations of the input [9].
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SFA has also been shown to reproduce qualitative and quantitative properties
of complex cells found in the primary visual cortex (V1) [14] and grid-cells from
the entorhinal cortex of rats [3].

The learning task can be defined as follows. Given a high-dimensional input
signal x(t), find a set of scalar functions gi(x(t)) so that the SFA output yi =
gi(x(t)) varies as slowly as possible and still carries significant information. In
mathematical terms [9], find output signals yi = gi(x(t)) such that:

Δ(yi) := 〈ẏ2
i 〉t is minimal (2)

under the constraints

〈yi〉t = 0 (zero mean) (3)
〈y2
i 〉t = 1 (unit variance) (4)

∀j < i, 〈yiyj〉t = 0 (decorrelation and order) (5)

where 〈.〉t and ẏ denote temporal averaging and the derivative of y, respectively.

Learning: Before applying the algorithm, the input signal x(t) is normalized to
have zero mean and unit variance. In this work, we only consider the linear case
gi(x) = wTx, because the reservoir is already non-linear. The SFA algorithm is
as follows:

Solve the generalized eigenvalue problem:

AW = BWΛ, (6)

where A := 〈ẋẋT 〉t and B := 〈xxT 〉t.
The eigenvectors w1,w2, ...,wnsfa

corresponding to the ordered generalized
eigenvalues λ1 ≤ λ2 ≤ ... ≤ λnsfa

solve the learning task, satisfying (3-5) and
minimizing (2) (see [9] for more details). This algorithm is guaranteed to find
the global optimum.

Architecture: The SFA layer in our architecture (Fig. 1) is denoted by ysfa(t):

ysfa(t) = Wsfaxsfa(t), (7)

where: xsfa(t) is the input vector at time t consisting of a concatenation of
input u(t) and reservoir states x(t). Note that the states x(t) are generated
by stimulating the reservoir with the input signal u(t) for t = 1, 2, ...ns by
using (1), where ns is the number of samples. The connection matrix Wsfa is a
nsfa× (nu +nres) matrix corresponding to the eigenvectors found by solving (6).
In this work, the output signal ysfa(t) generates non-localized representations of
the environment, similarly to grid cells of the entorhinal cortex of rats [6].

2.3 Independent Component Analysis

Independent Component Analysis (ICA) is a method used for sparse coding
of input data as well as for blind source separation [10]. The ICA model as-
sumes that a linear mixture of signals x1, x2...xn can be used for finding the
n independent components or latent variables s1, s2...sn. The observed values
x(t) = [x1(t), x2(t)...xn(t)] can be written as:
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x(t) = As(t) (8)
where A is the mixing matrix; and s(t) = [s1(t), s2(t)...sn(t)] is the vector of
independent components (both A and s(t) are assumed to be unknown). The
vector s(t) can be generated after estimating matrix A:

s(t) = Wx(t) (9)
where W is the inverse matrix of A. The basic assumption for ICA is that
the components si are statistically independent. It is also assumed that the
independent components have nongaussian distributions [10].

Learning: In this work the matrix W is found with the FastICA algorithm [10].
Before using ICA, the observed vector x(t) is preprocessed by centering (zero-
mean) and whitening (decorrelation and unit variance) [10]. FastICA uses a
fixed-point iteration scheme for finding the maximum of the nongaussianity of
wx(t) (where w is a weight vector of one neuron). The basic form of the FastICA
algorithm (for one unit) is described next:

1. Initialize w randomly
2. Let w+ = E{xg(wTx)} − E{g′(wTx)w}
3. Let w = w+/‖w+‖
4. Do steps 2 and 3 until convergence,

where g is the derivative of a nonquadratic function G (in this work, G(u) = u3)
(see [10] for a detailed description).

Architecture: The equation for the ICA layer is (by redefining variables):
yica(t) = Wicaysfa(t), (10)

where: ysfa(t) is the input vector at time t (the observed values); Wsfa is the
mixing matrix (nica×nsfa); and yica(t) is the output of the ICA layer (the inde-
pendent components), which, in this work, learns to generate localized outputs
which model hippocampal place cells of rats [6].

2.4 Robot Model

The robot model used in this work (Fig. 1) is part of the 2D SINAR simulator
[15] and is described next. The robot interacts with the environment by distance
and color sensors; and by one actuator which controls the movement direction
(turning). Seventeen (17) sensor positions are distributed uniformly over the
front of the robot (from -90◦ to +90◦). Each position holds two virtual sensors
(for distance and color perception) [15]. The distance sensors are limited in
range (i.e., they saturate for distances greater than 300 distance units (d.u.))
and are noisy (they exhibit Gaussian noise on their readings, generated from
N(0, 0.01)). A value of 0 means near some object and a value of 1 means far
or nothing detected. At each iteration the robot is able to execute a direction
adjustment to the left or to the right in the range [0, 15] degrees and the speed
is constant (0.28 distance units (d.u.)/s). The SINAR controller (based on [15])
is an intelligent navigation system made of hierarchical neural networks which
learn by interaction with the environment. After learning, the robot is able to
efficiently navigate and explore environments, during which the signal u(t) is
built by recording the 17 distance sensors of the robot.
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(a)

(b)

(c)

Fig. 1. (a) RC-SFA architecture. (b) Robot model. (c) Environment E1. The environ-

ment is tagged with 64 labels displayed by small triangles.

3 Experiments

3.1 Introduction

In the following, we describe the architecture (Fig. 1) and the initialization of
parameters for the experiments. The first layer of the architecture corresponds
to a dynamic reservoir of 400 neurons, which provides short-term memory to
our model. The second layer consists of 70 SFA units, which extracts the slow
features from the reservoir states and distance sensors. The output of the SFA
layer models the grid cells found in the entorhinal cortex of primates [6], similarly
to the simulated rat’s grid cells formed from visual input in [3]. The last layer
is composed of 70 ICA units, which model place cells usually found in the CA
areas of the hippocampus [6]. Grid cells are non-localized in the sense that they
fire for more than a single location while place cells encode a specific position of
the animal’s environment.

As the robot has a very low speed, the input signal (17 distance sensors)
is downsampled by a factor of dt = 50 (using the matlab function resample).
Additionally, the leak rate in the reservoir is set to α = 0.6. These settings,
optimized for the supervised scheme in [16], worked well for the current work
(optimization and performance analysis of these parameters is left as future
work). The matrix connecting the input to the reservoir (Win) is initialized to
-0.2, 0.2 and 0 with probabilities 0.15, 0.15 and 0.7, respectively.

The experiments are conducted using environment E1 (Fig. 1). It is a big maze
with 64 predefined locations spread evenly around the environment (represented
by small labeled triangles). First, for generating the input signal, the simulated
robot navigates in the environment for 350.000 timesteps while its distance sensor
measurements are recorded (the robot takes approximately 13.000 timesteps to
visit most of the locations). The controller basically makes the robot explore
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the whole environment. After dowsampling the recorded input signal u(t), the
number of samples becomes ns = 7.000. Next, the downsampled input signal is
used to generate the reservoir states x(t), t = 1, 2, ..., ns using (1).

The learning of the RC-SFA architecture takes place in 2 steps and uses 5/6
of the input signal as the training dataset (1/6 for testing). First, the SFA
layer learns by solving (6) where the inputs are the reservoir states and distance
sensors (like in (7)). After Wsfa is found, the output of SFA units ysfa(t), t =
1, 2, ..., ns is generated using (7). The second step corresponds to the learning of
the upper ICA layer by applying the FastICA algorithm from Section 2.3 where
the inputs for this layer are the output of the SFA units. The output signals
ysfa(t) and yica(t) are upsampled to the original sampling rate of u(t).

3.2 Results

The RC-SFA architecture is trained sequentially from the middle SFA layer to
the top ICA layer. This section shows the results after training the layers with
the input signal u(t) and reservoir states x(t) generated with the previously
presented setup. Fig. 2(a) shows the output of 3 SFA units for a test input
signal. The left plots show the outputs over time whereas the right plots show the
response of the neurons as a function of the robot position in the environment.
In the left plot, the horizontal axis represents the time, the left vertical axis
denotes the real robot location (as given by the labeled triangles in Fig. 1),
and the right vertical axis denotes the SFA output of the neuron. The colored
dots represent the output of the SFA unit (where red denotes a peak response,
green an intermediate response, and blue a low response). The SFA output is
also shown as a black line in the same plot and as a colored trajectory in the
right plot. As SFA units are ordered by slowness, the first SFA unit has the
slowest response. It is high only for two areas of the environment: locations 10
to 17, and locations 27 to 35. Units 12 and 24 vary much faster, encoding several
locations of the environment. In the same figure, it is possible to observe that
SFA units learn a representation which is dependent on the robot heading. For
instance, unit 12 responds differently for trajectories which go towards location
64 and trajectories that start from this position. As slow feature analysis is a
method which is highly dependent on the input statistics, the movement patterns
generated by the robot controller decisively influence the learning of the SFA
units. In this context, most SFA units learn to be robot direction dependent in
the current experiment. However, if the robot would change its direction more
often (or faster compared to its speed), the SFA unit could learn to be direction
invariant (by learning the slow features, that is, the robot position).

The upper ICA layer builds on the SFA layer. During learning, ICA units seek
to maximize nongaussianity so that their responses become sparse and clustered
and also as independent as possible. This form of sparse coding lead to the
unsupervised formation of place cells. Fig. 2(b) shows a number of ICA units
which code for specific locations in the environment. These units were chosen
such that they code for adjacent locations as if the robot was navigating in
the environment. The peak response is represented by white dots while lower
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(a) SFA output (b) ICA output

Fig. 2. Results for simulations in Environment E1. (a) Responses of SFA units 1, 12,

and 24. Left: the SFA output over time. For each location (in time) given by the labeled

triangles in Fig. 1, there is a colored dot where red denotes a peak response, green an

intermediate response, and blue a low response. The output is also plot as a black line.

Right: the same SFA output as a function of the robot position. (b) Response of ICA

units as a function of the robot position. White dots denote high activity while darker

dots represent lower responses. The results show the localized aspect of place cells or

ICA units (the peak response is characteristic of one specific location).

responses are given gradually in darker colors. In order to view the localized
aspect of place cells more clearly, the output of ICA units are ordered such that
they have a spatial relationship. The reference locations (from 1 to 64), shown
in environment E1 (Fig. 1), are used to automatically order the ICA layer.
ICA units which do not respond strongly enough (that is, less than 4.5) in any
situation are set to the end of the vector. Fig. 3(a) shows the real occupancy grid
for the robot while it drives in environment E1 and the respective ICA activation
map showing the spatially-ordered ICA responses (where u(t) is a test signal not
used during learning). The peak responses are shown in black while white dots
represent lower responses. Eleven ICA units (from 59 to 70) did not fire strongly
enough and, so, did not code for any location. This activation map is very similar
to the real robot occupancy grid showing that the place cells efficiently mapped
most of the environment. Fig. 3(b) shows a magnification of the ICA activation
map for locations under 20. It is possible to note that for almost the whole time
period there is only a single ICA unit active (i.e., the ICA layer is detecting
locations most of the time). This figure also clearly shows that most ICA units
are dependent on the robot direction (as SFA units are). We have repeated
the experiments shown here with the same datasets more than 15 times (where
for each time a different random reservoir is created) with no visible changes
in the learned place cells. Furthermore, preliminary results show that the RC-
SFA architecture also works for other kinds of environment configurations and
environments with dynamic objects.

The importance of the reservoir can become more evident as it provides a
short-term memory of previous inputs. In order to compare results, the proposed
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Fig. 3. Emergence of place cells in environment E1. (a) The real robot occupancy grid

(left) and the respective spatially-ordered ICA activation map (black dots denote peak

responses and white represent lower responses). (b) Close view of the ICA activation

map where green denotes low response and blue high response.

Fig. 4. Results for modified architecture without the reservoir layer in environment

E1: the slowest SFA unit output over time, as in Fig. 2

architecture in Fig. 1 is modified so that the inputs connect directly to the SFA
layer and no reservoir is used at all. The following changes are also accomplished:
the downsampling rate is increased to dt = 200 for slowing down the input signal;
nsfa = 100 and nica = 100. The SFA algorithm for this experiment includes
a quadratic expansion process on the inputs [9], making the SFA effectively
a non-linear process. The slowest SFA unit is shown in Fig. 4. The response
pattern from this unit seems more noisy than the case when using the RC-SFA
architecture which shows a smooth signal (Fig. 2(a)). The ICA activation map
for this architecture (not shown) was very fuzzy and far from the one obtained
in Fig. 3 (also did not solve the perceptual aliasing problem once one ICA unit
coded for multiple similar but distinct locations). In this way, this modified setup
without the reservoir was not able to model place cells in the current experiment.

4 Conclusion and Future Work

This work proposes a new biologically inspired architecture (RC-SFA) based on
a mixture of recently developed techniques (Reservoir computing, Slow Feature
Analysis and Independent Component Analysis). The RC-SFA is a general ar-
chitecture which can be easily applied to wide range of applications (e.g., extract
slowly-varying components of an input signal such as: behaviors or movements
of a humanoid robot or phonemes and words from speech data). In this work, a
simulated mobile robot (with few proximity sensors) autonomously learns, using
our proposed RC-SFA architecture, a rather accurate spatial representation of its
environment and, in this way, to self-localize in it. We do not use proprioceptive
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information as a form of spatial memory, but rather the short-term memory of
the reservoir has shown to eliminate the perceptual aliasing from sensors, pro-
ducing a system which autonomously learns the relevant information from the
input stream. Further interesting directions for research include the validation
of the proposed architecture with a real robot (such as the e-puck robot) and ac-
complish further experiments such as kidnapping the robot and navigation in a
dynamic environment. Other important questions include: how distinct settings
of reservoir parameters influence the learning of the spatial representation; what
kind of environments can be used; and what range of noise and sensor failures
the model can cope with.
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Abstract. Building on the current understanding of neural architec-

ture of the visual cortex, we present a graphical model for learning and

classification of motion patterns in videos. The model is composed of

an arbitrary amount of Hidden Markov Models (HMMs) with shared

Gaussian mixture models. The novel extension of our model is the use

of additional Markov chain, serving as a switch for indicating the cur-

rently active HMM. We therefore call the model a Switching Hidden

Markov Model (SHMM). SHMM learns from input optical flow in an un-

supervised fashion. Functionality of the model is tested with artificially

simulated time sequences. Tests with real videos show that the model

is capable of learning and recognition of motion activities of single in-

dividuals, and for classification of motion patterns exhibited by groups

of people. Classification rates of about 75 percent for real videos are

satisfactory taking into account a relative simplicity of the model.

1 Introduction

As the amount of acquired, stored, and transmitted video data increases every
day, the need for automatic comprehension and sorting of this data becomes ever
more crucial. Having a machine performing pre-selection of video data upon a
given criterion, would diminish the amount of data to be stored for human vi-
sual analysis. This is particularly important for all kinds of video surveillance, in
which human operators are routinely stressed by a huge inflow of video data. An
automatic system could either issue a warning signal for operator if a given crite-
rion is met in the visual input, or the whole video record could be automatically
annotated to simplify its visual screening later on.

One promising approach to solve the above problem is to design a system
capable of learning object appearances and motion patterns of events from the
video input. A number of efforts have been undertaken to model appearance
based action recognition either as competitive analysis tools ([1],[2],[3]), or by
modelling available psychophysical data [4].
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758 M. Höffken, D. Oberhoff, and M. Kolesnik

The motivation in this work is to utilise knowledge from neurophysiological
and psychophysical research in order to build computer systems for automatic
motion analysis. We do this by transforming major findings from such research
into mathematically sound statistical models. The systems we design consist of
a set of relatively small components, which may be seen as abstractions of brain
areas or parts thereof, and mechanisms linking these components into larger and
much more powerful systems for visual analysis. Since humans and animals are
capable of learning autonomously, these components and the combined systems
replicate this capability. We thus formulate our systems in terms of generative
Bayesian statistical models in contrast to purely discriminative approaches.

While recognising the extensive work done in this area, we nevertheless see
a strong need for autonomously learning systems, as the largest part of those
approaches includes either strong supervision or only weak learning strategies.
One promising example devised in the group of Poggio et. al. [3], features a
neurophysiologically inspired system that, like its predecessor HMAX, does not
contain any learning algorithm beyond random learning. Even though this sys-
tem only uses supervised feature selection, it shows how much a system can gain
by just roughly following important neurophysiological principles. The work by
Giese et. al. [4] demonstrates how a system that is in many ways similar to ours,
can explain the existing psychophysical data. The group of Dean et. al. [5] have
done a groundwork on hierarchical graphical models for computer vision. Their
work provides great inspiration and technical background, but, to our knowl-
edge, it neither been applied to real video data, nor it has been tried to perform
sequence learning.

The most advanced model comparable to the one presented here, has been
constructed in the group of Hinton et. al. [6]. The drawback of their approach
is the use of gradient descent learning, which typically requires thousands of
iterations over the data to converge. The latter seems prohibitive for large video
sequences. Several other groups (c.f. [7], [8]) have experimented with switching
sequence models comparable to ours, but none of them seems to have considered
a hierarchical approach, nor do any of them tried an unsupervised learning.

2 Model

Input to our model is the optical flow computed by a neurally inspired algorithm
for recurrent motion estimation suggested in [9] and further extended in [10], [11].
Locally estimated motion hypothesis are then used for evaluation of an expected
motion vector at each pixel location.

Our model consists of four consecutive feed-forward steps. Each step per-
forms one of the following processing operations (Fig. 1a). First, receptive fields
are pooled within a local spatial (and/or temporal) neighbourhood. The pool-
ing decreases spatial resolution of resulting feature vectors while preserving a
spatio-temporal mapping of their receptive fields. A pooling region is selected
manually depending on the scale of the scenario (see Sect. 3) and is performed
via averaging. Second step performs Hotelling transform of the feature vectors
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in order to decrease the number of variables to be learnt. Third, vector quanti-
sation (clustering) [12] using Gaussian generative mixture model is carried out.
Finally, the fourth step uses the obtained mixture components as an emission
model for the learning of sequences of motion patterns as follows.

Time dependencies between motion patterns are modelled by SHMM (Fig. 1b)
consisting of R+1 Markov chains. R sub-chains are emitting; they have an equal
number of internal states and share the same emission model. At any given
time moment, only one chain out of these R emitting sub-chains is active and
emits a data vector, while the others are proceeding without emissions. Hidden
states of the inactive sub-chains are propagated independently according to their
transition matrices. In fact, this corresponds to a mixture of R Hidden Markov
Models (HMM).

The R+1 chain, referred as switch-chain, has R possible hidden states. These
hidden states indicate the active emitting sub-chain at each given moment. This
chain actually models the time dependency between the different subsequences
of motion patterns, which are modelled by the sub-chains. Specifically, each
diagonal element of the switch chain transition matrix determines how long the
corresponding sub-chain is expected to be active.

The full joint probability, P ({Y,X, S}), of the model is given by:

P ({Y,X, S}) =P
(
S(1)
) T∏

t=2

P
(
S(t) | S(t−1), ΘS

)
· P (ΘS | α, α0)

·
R∏
r=1

[
P
(
X(1)
r

) T∏
t=2

P
(
X(t)
r | X(t−1)

r , ΘXr

)]

·
T∏

t=1

P
(
Y (t) | X(t)

1 , . . . , X
(t)
R , S(t)

)
(1)

where Y (t) is the emission of the model at the moment, t, resulted from the
Hotelling transform, X(t)

r indicates the hidden state of the r-th sub-chain, S(t)

represents the hidden state of the switch-chain, T is the observation time, and
ΘS , ΘXr are the parameters (transition matrices) of the respective Markov
chains. P (ΘS | α, α0) is a Dirichlet-Prior that allows to regularise the learn-
ing of the switch-chain parameters during the EM-Algorithm. We use α ∈ [0, 1]
as the expectation value for the diagonal of the switch transition matrix. The
expectation value for the non-diagonal elements is then β = (1− α)/(R− 1).
α0 indicates the impact of the prior during the M-Step and should be adapted
to the number of data and classes. Hence the parameters for applied Dirichlet
distribution are then α0 · α for the diagonal and α0 · β for non diagonal values.
The regularisation can be deactivated by setting α = 1/R and α0 = R.

2.1 Learning and Classification

Except for the first pooling step, whose parameters are kept fixed, parameters
in steps 2 through 4 are learnt in a batch procedure.
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(a) (b)

Fig. 1. (a) Model’s four consecutive feed-forward steps. (b) Temporal dependencies

between two consecutive time steps in SHMM. Xm denote hidden states of sub-chains,

S is the switch state selecting the currently active sub-chain.

We use the Expectation Maximisation (EM) algorithm for the learning of the
mixture model at step 3 and the sequence model at step 4.

The Expectation step for the learning of all R+1 Markov chains is similar
to the forward-backward algorithm applied for the learning of HMM’s [13], but
differs in two important points. First, performing the forward as well as the back-
ward step requires storing all hypothesis of all intermediate hidden variables. In
the context of video processing and applications requiring on-line learning, this
is prohibitively expensive and therefore only the forward step is performed. Sec-
ond, the probability of a sub-chain to emit a feature vector depends on the state
of the last time step and the probability of it being active. The latter probability
is received from the switch-chain. The switch-chain takes a decision on the ac-
tive sub-chain based on its own previous internal state and the different emission
probabilities of all sub-chains. These dependencies can be solved as follows. The
expectation value of the hidden switch state, S(t)

r , is given by:

〈S(t)
r 〉 =

1
C1
·
[∑

∀m
P
(
Y (t) | X(t)

rm

)∑
∀m′

〈X(t−1)
rm′ 〉P

(
X(t)
rm | X

(t−1)
rm′

)]

·
[∑

∀r′
〈S(t−1)
r′ 〉P

(
S(t)
r | S(t−1)

r′

)]
(2)

and the expectation value of the hidden sub-chain states, X(t)
rm, is given by:

(3)〈X(t)
rm〉 =

1
C2
·
[
〈S(t)
r 〉P

(
Y (t) | X(t)

rm

)
+
(
1− 〈S(t)

r 〉
)]

·
∑
∀m′

〈X(t−1)
rm 〉P

(
X(t)
rm | X

(t−1)
rm′

)
(4)

here C1 and C2 are normalising factors, indexes r, r′ reffer to sub-chains, and
m, m′ denote emission states.

Given the hypothesis about all hidden model states, the parameter estimates
that maximise the lower bound of the model likelihood in Eq. 1 can be obtained
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by differentiating the log-likelihood subject to the constraint on the initial and
transition probabilities summing to one. The derivation of the corresponding
parameter estimates is slightly more complex than in case of ordinary HMMs.

Time complexity of E- and M-Steps for both switch-chain and sub-chains is
equal to the time complexity of a single HMM. Hence, M emission states would
require O(T (RM2 +R2)) operations.

For classification we either directly employ the S(t)-distribution, obtained from
the E-Step or feed it in a näıve Bayesian classifier. While in the first case one sub-
chain is trained for each class, second case allows using multiple sub-chains.

3 Experiments

Being a generative model, the SHMM is capable of unsupervised learning, which
makes it suitable for construction of large hierarchical systems. This enables
a wide range of possible applications. To evaluate the model performance, we
connect its output with a näıve Bayesian classifier.

We test the performance of the SHMM learning in three different sequences of
experiments.These experiments,however,donot aimatoutperforming established
and task-tuned supervised classifications methods, rather they should be seen as a
proof of concept of our generic approach to unsupervised hierarchical learning.

3.1 Bootstrap

The functionality of the SHMM implementation was first verified in several boot-
strap tests. For these tests we sample an artificial data set, consisting of the active
states, S(t), and the corresponding hidden sub-chain states, X(t)

r , as generated
by a simple SHMM with known parameters. The sampled data set is used for the
training of SHMM and for the validation of its classification rates as described
in Sect. 2.1. This SHMM (Fig. 2a) consists of two sub-chains with five states
and a switch-chain with a high probability of 0.95 to remain in the same active
state. The hidden sub-chain states 1 and 2 are preferred by the first sub-chain
whereas second sub-chain prefers the states 4 and 5. State 3 is shared by both
sub-chains. We test both supervised (S(t) is part of the training data set) and
unsupervised (only X(t) is known) learning. Furthermore, we vary the training
procedure by, first, learning the sub-chains together with the switch-chain, and,
second, by learning only the sub-chains.

SHMM classification performance reaches about 85% correct classifications
for unsupervised learning (Fig. 2b) and 97% for supervised learning. Our ex-
periments further show that the learning of the sub-chain transition matrices
together with the switch-chain transition matrix may become unstable in some
cases. This behaviour is mainly influenced by the initialisation of the switch-
chain transition matrix before applying the EM-algorithm. In case of an initial
transition matrix with high values on its diagonal, only one sub-chain is trained
and the switch transition matrix becomes a unity matrix after a few iterations.
In the opposite case of an initial transition matrix with small diagonal values,
the active state often switches between the sub-chains thus hindering the sub-
chains from learning different sequence patterns. This can be overcome by either
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(a) (b)

Fig. 2. (a) SHMM employed in the bootstrap tests. Two different sub-chains are shown

in checked and dotted patterns with arrows indicating transitions with probabilities

higher than 0.1. Both training and test data have been sampled by this SHMM. (b)

Classification results over a sequence of 100 time steps sampled by SHMM depicted

in (a). Circles denote the correct switch-states S
(t)
0 . Crosses indicate their expectation

values 〈S(t)
0 〉 as estimated during the classification. Y-axis on the left side plots the

expectation values. Gray diamonds show the sampled sub-chain states X(t), plotted on

Y-axis to the right. Training in (b) was done in unsupervised way.

excluding the switch-chain from the learning procedure or by regularizing the
switch transition matrix towards more reasonable values by using the Dirichlet
prior P (ΘS | α, α0) during the EM-training. For the latter solution we reach
best results for priors promoting diagonal switch chain transition values of 0.7.

3.2 Single Human Action

For this experiment we use the public Weizmann human action dataset1 of 90
video sequences and compare the results with those presented in [14]. The video
sequences show nine different people, each one performing 10 natural actions such
as “run,” “walk”, “skip”, “jumping-jack” (or shortly “jack”), “jump-forward-
on-two-legs” (or “jump”), “jump-in-place-on-two-legs” (or “pjump”), “gallop-
sideways” (or “side”), “wave-two-hands” (or “wave2”), “wave-one-hand” (or
“wave1”), or “bend” (Fig. 3). The video sequences are also complemented by
the corresponding silhouettes of acting people segmented from background in
each video frame using background subtraction. Except for “wave1”, “wave2”
and “bend” all classes contain videos where persons perform actions in both di-
rections, left to right and right to left. Since our model is not direction-invariant
we synchronize the moving directions by vertically mirroring the videos showing
action from right to left.
1 Downloaded at

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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In the experiment we generate a bounding box with fixed size of 96x64 pixels
covering the largest silhouette segment in all 90 video sequences and centring
them at the centre of gravity for a given frame. Optical flow values assigned to
pixels within these bounding boxes are used for the learning and classification
of motion patterns.

During the first processing step applied to each frame, velocity vectors from
patches of size 16x16 pixels within bounding boxes are pooled using a weighted
average, with weights equal to the norm of the corresponding velocity vectors.
Next, feature vectors are computed by collecting weighted averages over patches
of 6x4 pixels and concatenating them into long vectors.

The Gaussian mixture model comprises 30 mixture components for the clus-
tering step and the SHMM with 20 sub-chains learns sequence patterns in a
frame-wise way. For the prior parameters we used α = 0.7 and α0 = 200, cor-
responding to approximately 50% of the expected number of data assigned to
each sub-chain. For classification we use the 〈S(t)

r 〉 estimates obtained from step
4 (Sect. 2.1) to train a näıve Bayesian Classifier with 10 different action classes.

Similarly to [14] we use 9 video sequences for training leaving the last one
for classification. We permute videos in the leave-one-out procedure obtaining
10 independent experiments. The overall classification rate in this experiment
averages to 76.3% and the confusion Table 1 illustrates the classification results.

Clearly, we do not reach the high classification rates reported in [14] where
a supervised learning/classification method makes use of 3-dimensional shapes,
which are obtained from stacks of video silhouettes. One reason for this is that in
contrast to [14], the SHMM uses unsupervised learning. Next, SHMM uses first-
order Markov models in time, whereas [14] exploits a much higher order temporal
information collected over eight frames by constructing space-time cubes from
pre-segmented silhouettes. Besides, our model only uses bounding box segmen-
tation of each frame.

Another reason is the option of switching between states of different HMMs
during the learning. For instance in ambiguous case with frames showing motion
patterns that occur in several (or all) action classes, the model has the un-
favourable possibility of switching to a wrong sub-chain. Such ambiguous frames
typically appear in the ”bend”, ”wave1” and ”wave2” classes, when acting per-
son stands still for a short while. On the other hand this switching capability
would allow learning different subsequent actions in a single video sequence.

3.3 Group Action

In this experiment, we test the SHMM model on a manually annotated video
showing a spectator tribune during a soccer game. The video exhibits four differ-
ent types of spectator’s behaviour labelled as (Fig. 4a) : FLAG (showing waiving
flag), JUMP (jumping group of soccer fans), GROUP (group of people with few
motion activities) and BGROUND (remaining class with no predominant activ-
ity) (depicted in Fig.4a).

The feature vectors in the labelled regions are constructed from the opti-
cal flow by pooling 8x8 pixel patches using a weighted average followed by the
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Fig. 3. Examples of video sequences and corresponding silhouettes from the Weizmann

human action dataset [14]

Table 1. Confusion matrix in the classification experiment with 10 different actions.

Classification of the SHMM states is done by the näıve Bayesian Classifier. Empty en-

tries are zero. a1-“walk”, a2-“run”, a3=“skip”, a4=“jack”, a5=“jump”, a6=“pjump”,

a7=“side”, a8=“wave1”, a9=“wave2”, a10=“bend”.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 69.2 3.2 6.8 17.4 3.5

a2 2.5 68.6 22.2 3.9 1.5 1.2

a3 4.3 9.6 75.3 8.1 2.8

a4 92.4 4.9 0.3 2.5

a5 4.7 7.2 7.2 74.9 6.0

a6 18.6 76.0 3.6 1.8

a7 3.5 6.8 9.4 8.1 72.2
a8 2.1 3.9 64.6 13.2 16.2

a9 5.8 2.9 6.9 80.1 4.2

a10 4 0.3 2.8 3.3 89.6

combination of 2x2 patches into feature vectors. Next, second and third process-
ing steps are implemented as described in Sect. 2. For clustering with a Gaussian
mixture model we use 15 mixture components with diagonal covariance matrices.
Based on the class labels obtained by this EM-Clustering we train the model in
supervised and unsupervised fashion. In both cases we compare the results with
the näıve Bayesian classifier that learns directly on the hidden variables of the
Gaussian mixture model.

For the supervised set up one sub-chain per class is trained using the additional
information about the origin of each feature vector. In the unsupervised set up
a SHMM with 16 sub-chains is trained and automatically mapping is performed
using a näıve Bayesian classifier.

We train on 50% of all labelled data. The remaining 50% of the labelled data
are then used to test the classification performances. As listed in Table 4b) the
näıve Bayesian Classifier reaches a correct classification rate of 75.9% in total,
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the supervised SHMM learning arrives at 79.8% and the unsupervised SHMM
learning reaches 82.5%. It follows that, except for the FLAG class, the SHMM
model reaches a better performance than the näıve Bayesian approach. The worse
than Bayesian classifier rate is obtained for the FLAG-class in the supervised
approach. It seems that the size of the receptive field used in this experiment was
not enough to capture the full complexity of the FLAG motion pattern. To the
contrary, other events such as jumping or staying, which occupy a much ”smaller
volume” in the spatial and temporal domain, have been correctly captured by a
receptive field size of 16x16 pixels.

Furthermore, it is in the nature of the Bayesian classifier to exclusively asso-
ciate emission states with class labels while the SHMM associate class labels with
state transitions. Evidently, for the JUMP, GROUP, and BGROUND classes the
state transitions contain more information relevant for classification. In case of
the FLAG class, the Bayesian classifier associates the class label with emission
states that code for a faster motion pattern and therefore induces the slightly bet-
ter classification rate. The difference in performance becomes even more evident
when computing the mutual information. For the Bayesian classifier this amounts
to 0.67 bits and for the SHMM classifier to 1.06 bits (supervised) and 1.03 bits (un-
supervised) on average. This indicates: While the Bayesian classifier mostly shows
uncertain decisions, the SHMM learning seems to generate reliable class labels.

(a)

Class (Event) Bayesian

Classifier

supervised

SHMM

unsupervised

SHMM

JUMP 93.9 98.3 99.6
GROUP 66.0 74.1 75.6
FLAG 64.2 57.5 70.9
BGROUND 70.6 74.5 72.2

(b)

Fig. 4. (a) Annotated event maps with different motion patterns. FLAG (vertical wave

pattern), JUMP (horizontal stripes), GROUP (vertical stripes) and BGROUND (dot-

ted pattern). (b) Classification results for the supervised and unsupervised training of

SHMM and for the Bayesian Classifier.

4 Conclusion
We have presented a novel approach for the unsupervised learning of motion
patterns in image sequences. This approach is based on a mixture of HMMs
whose hidden variables are also modelled by a Markov chain.

In our experiments we could show that SHMM model is able to learn motion
sequence patterns from videos showing actions of single individuals and from
surveillance videos featuring collective behaviour of large groups of people. In
both cases we reached satisfactory recognition rates given the relative simplicity
of SHMM model and the small amount model parameters needed for learning.

Since learning is done by computing only the forward step, our approach can
deal with arbitrary long video sequences and provides the possibility to develop
an on-line learning method.
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Some experiments show that SHMM model might become unstable during the
learning of the switching Markov chain. In order to sustainably eliminate these
instabilities we can regularise our model using a Dirichlet prior for the switch
transition matrix. This should yield an improved control over the diagonal values
of this matrix.

Further efforts will be made to integrate SHMM model as a module in larger
hierarchical systems.
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Abstract. Methods to integrate multimodal beliefs by Bayesian Net-

works (BNs) comprising Hidden Markov Models (HMMs) and Support

Vector Machines (SVMs) are presented. The integrated system is ap-

plied to the operation of ambulating PCs (biped humanoids) across the

network. New features in this paper are twofold. First, the HMM/SVM-

embedded BN for the multimodal belief integration is newly presented.

Its subsystem also has a new structure such as a committee SVM array.

Another new fearure is with the applications. Body and brain signals

are applied to the ambulating PC operation by using the recognition of

multimodal signal patterns. The body signals here are human gestures.

Brain signals are either HbO2 of NIRS or neural spike trains. As for such

ambulating PC operation, the total system shows better performance

than HMM and BN systems alone.

Keywords: Multimodal beliefs, Bayesian network, HMM, committee

SVM array, ambulating PC.

1 Introduction

As for the realization of computational intelligence, many effective algorithms
with versatile granularity have been presented [1], [2]. They enable us to han-
dle signals with patterns for a wide variety of applications in transdisciplinary
science and engineering. Various biological signals measured by sensors and cam-
eras belong to a class of popular research targets. In order to reflect such a trend,
this paper sets two targets:
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(1) Presentation of a new class of algorithms which provides better recognition
performance.

(2) Applications of those algorithms to new problems which comprise of Human-
Machine Interfaces (HMIs). Here, “machine” stands for an ambulating PC
or a biped humanoid1.

As for item (1), the total learning and recognition system uses a Bayesian
network (BN) [3]. Even though this is the case, it is known that a BN often
becomes computationally intractable for practical applications. In addition, un-
necessary links remain unless manual pruning is applied. Therefore, we present
a BN which comprises of Hidden Markov Models (HMMs) and Support Vector
Machines (SVMs) as its subsystems. This is a new structure called HMM/SVM-
embedded Bayesian network. There is a new property in the subsystem, i.e., a
committee Support Vector Machine array (committee SVM array). Its structure
is similar to a layered neural network. This system enriches recognition classes
and performance better than the BN systems, HMM systems, and SVM systems
alone.

For item (2), the operation of an ambulating PC is addressed. In this problem,
a human operator issues bio-signals to operate the ambulating PC across the
network. The bio-signals include human motions (gestures). Others come from
the brain; Near Infra-Red Spectroscopy (NIRS) or spike trains. These signals are
recognized by the HMM/SVM-embedded BN as soft commands of likelihoods.
This recognition step enhances machine-independence. After the hardening, solid
commands are issued to the ambulating PC.

In the rest of this paper, items (1) and (2) are explained in more detail. Before
delving into these sections readers are recommended to preview Fig. 3 to grasp
the concept of the HMM/SVM-embedded BN, Fig. 5 for the bidirectional inter-
action system of the human and the ambulating PC, and Fig. 7 for experiments
so that the relationships among the sections are clear.

2 HMM/SVM-Embedded Bayesian Network

2.1 Bayesian Network

The Bayesian network (BN) is an acyclic directed graph whose edges have ac-
quired conditional probabilities [1], [3]. Fig. 1 illustrates an example which will
be used in the visual recognition of objects. The top parent probability is decided
by measurements of occurrence frequencies. The Conditional Probability Table
(CPT) of discrete states is also estimated from conditional frequencies.

Bayesian networks can accept inputs called “evidences.” In Fig. 1, eindex repre-
sents evidence. If an input fixes a node probability of one, it is called hard evidence.
Otherwise, inputs are called soft evidence. In the experiments in this paper, both
evidence types are used. The most important property of the Bayesian network
1 Hereafter, “ambulating PC” and “biped humanoid” will be used interchangeably.

These terminologies will also be expressed simply as “humanoid” since the property

of “ambulating” or “walking” is an essential ability for the machine in this paper.
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Fig. 1. A Bayesian network for object recognition

is that other node probabilities are changed by evidence injection. This computa-
tion follows the Bayes theorem. In Fig. 1, OBJECT is the state to be decided after
accepting evidences. A drawback of the Bayesian network is that the number of
nodes and edges are limited from the computational complexity if real-time oper-
ations are required. Instead of making a large monolithic Bayesian network, this
paper devises a medium size Bayesian network which is comprised of novel and
established learning gadgets as subsystems. This structure becomes equivalent to
a large Bayesian network.

2.2 Committee SVM Array

A Support Vector Machine (SVM) [5] classifies input vectors. As for the SVM,
there are two problems which need to be modified and improved.

(a) Instead of a dichotomy, a multi-class decision is required in most practical
applications. Unfortunately, a multi-class SVM suffers from computational
overload even on a medium scale.

(b) Given the same class of inputs, there can be many kernel types and feature
extraction methods for the SVM. The top performance machine may still be
unsatisfactory in performance.

To cope with (a) and (b), we devised the machine illustrated in Fig. 2. In the first
layer, an array of SVMs with different possible kernels are arranged. Each SVM
has a margin put into the upper layer. The upper layer renders decisions. We call

Fig. 2. Committee SVM array
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this structure the committee SVM array. The committee SVM array, which is
similar to a neural network, enables multi-feature, multi-kernel and multi-class
decisions which are computationally heavy due to their large monolithic SVM.

2.3 Hidden Markov Models

Every Hidden Markov Model (HMM) has a representation of a BN, and vice versa
[1]. But, HMM has a concise learning method. Therefore, HMM is preferred if
its compact structure matches an assigned problem. As for the structure of the
HMM, we adopt a simple left-to-right model. But, for multiple ones, they are
placed parallel. This is because different types of signals with different patterns
need to be recognized within a delay as close to real-time as possible.

2.4 Total System Configuration

In this section, the aforementioned BN, HMM and SVM systems are integrated
into a total system called the HMM/SVM-embedded Bayesian network. A higher-
level Bayesian network is used to glue the subsystems of BN, HMM and SVM into
one machine. Such a system becomes necessary for the following reasons:

(a) A large monolithic BN becomes too heavy to learn computationally.
(b) A class of signals may fit to a specific learning machine. For instance, the

HMM is good at the recognition of stochastic periodicities. The SVM is
superior to other machines in vector classifications.

(c) By adopting such signal-oriented subsystems, the total BN is free from learn-
ing unnecessary links.

(d) The total BN can include nodes for unknown states to be decided after
accepting evidence. This enhances the total recognition performance.

Fig. 3. HMM/SVM-embedded Bayesian network. Solid line figures receive evidence.
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Fig. 3 illustrates a structure which will appear in later experiments. Note that
each arrow’s direction correspondes to the conditioning of the probability, and
not to an output direction.

3 Human-Machine Interface

3.1 Motion Capturing

In this section, two different types of motion capturing are presented. Capturing
by a Web camera is inexpensive and is regarded as a baseline method for human
motion recognition. Capturing by sensors is a more advanced method which
supplies richer data.

Capturing by a Web Camera: Motion capturing by a Web camera is ad-
dressed to understand how much granularity of human motions or gestures can
be recognized from video images. Fig. 4 shows an illustration of a human ex-
tracted by the procedure below:

Step 1: Compute a difference in the background.
Step 2: Classify each pixel into binary values. Remove noise pixels by a median

filter. Then, expansion and shrinking are performed. This gives an estimated
cluster of pixels which is the object.

Step 3: Region-of-Interest (ROI) is determined and redrawn.

Motion Capturing by Sensors: Motion capturing by sensors is dedicated
to extract human motion. In this paper, a person performing gestures wears
11 magnetic sensors [6]. Each sensor generates a set of numerical time series of
positions, angles and speeds. These raw data are then converted into the BVH
format (BioVision Hierarchical format).

Fig. 4. Extracted human shape and belief values
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In later sections, human motion will be applied to the operation of the hu-
manoid. Since humans and humanoids are quite different in size, centroids of
parts and speed, sending raw data causes malfunctioning and the collapse of
humanoids. Therefore, we have to prepare a sophisticated motion recognition
system comprising of the HMM/SVM-embedded Bayesian network in Fig. 3

3.2 Image Processing

The humanoid has two eyes (CCD cameras) [7] which can be utilized for shape
recognition and to measure the distance from an object. This process uses color
extraction and stereo matching. Then, the computed results are fed to the BN
of Fig. 1 as evidence to the nodes. In later experiments, the number of object
types is eight. This corresponds to the maximum ability of the cameras without
auto-focusing.

3.3 Brain Signals

NIRS Measurement: For non-invading measurements of brain states, cur-
rent tools are still limited because of the constraint. For real time application,
possible systems are further limited. Taking this into consideration, we use an
NIRS system (Near InfraRed Spectroscopy) which measures the difference of
the hemoglobin level (ΔHbO2) by probes [8]. Brain signals are generated and
classified as follows:

Step 1: A human operator tries a specific task, e.g. moving his/her eyebrows
closer together.

Step 2: Corresponding brain signal is transformed by FFT. Trends and specific
noise frequencies are filtered out.

Step 3: SVM is learned by using a set of teacher signals reflecting the assigned
task.

Spike Trains: Neural spike trains provide much faster brain response than
NIRS. The method used here is invading by probes. Therefore, measuring such
signals in vivo from a human for the purpose of BMI (Brain-Machine Interface)
for the humanoid is somewhat premature because of the lack of a safety measure
for the subject. Despite such difficulty, help still exists. There are open databases
on monkey spike trains [9]. We make use of such data for the humanoid control
as follows.

Step 1: Multiple spike trains generated by different tasks performed by the sub-
ject are provided.

Step 2: Each spike train is used to generate an EPSP signal (Excitatory Post-
Synaptic Potential).

Step 3: EPSPs are FFT’ed. Trends and noise frequencies are filtered out.
Step 4: HMMs are learned by using a set of teacher signals reflecting the assigned

task.
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It is important to note that teacher signals’ tasks and humanoid tasks can be
set different. We would rather push this conversion than to mimic the original
ones. This is made possible by the existence of the recognition mechanism.

4 Operation of Ambulating PC

4.1 System Configuration

The ambulating PC, or the biped humanoid, is operated by a human operator.
The HMM/SVM-embedded Bayesian network issues a series of operation com-
mands which are the results of the bio-signal recognition. Fig. 5 illustrates the
entire system which has the following configuration.

Fig. 5. Total HCI/BMI system over the network

Human Operator Side: The upper half of Fig. 5 is the site for the generation
and recognition of operation signals.
(a) Human motions are captured by systems in Section 3.1. The motion

recognizer is the HMM/SVM-embedded BN in Fig. 3.
(b) The NIRS brain signal is also measured and fed to this recognizer. Neural

spike trains are preprocessed and classified as was explained in Section
3.3. This path is not drawn in Fig. 5 because in vivo measurement on a
human brain is not yet appropriate.
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(c) The video images in the monitor which the human operator watches
are sent from the humanoid’s eyes across the network. These images are
utilized for the machine recognition of objects and the distance measure-
ment by the stereo matching.

(d) Recognized results are integrated by the HMM/SVM-embedded BN.
Network: In the middle, there is a network. This is not a mere all-pass communi-

cation channel. Humans and humanoids are regarded as intelligent nodes in
the network. Messages (acknowledge signals) are written and read out from
a blackboard.

Ambulating PC: The ambulating PC, or the humanoid HOPA-2 [7], can be lo-
cated in a different environment from the human operator, e.g. on Mars while
the human operator is on Earth. Two eyes (CCD cameras) send images to
the human operator so that he/she can see the same thing. It is important to
note that the motion generator receives commands generated by the motion
recognition. This enhances the robustness of the ambulation by absorbing
the difference of human and humanoid capabilities. This method also estab-
lishes the machine independence.

4.2 Recognition Methods

Motion Recognition from Video Images: The preprocessing illustrated in
Fig. 4 for the ROI extraction is applied first. As for the recognition of walking,
each of the images in the 16 frames are FFT’ed. The FFT results are fed to
an SVM to identify walking/non-walking. As for the recognition of non-walking
patterns, the ROI was quantized to 4×8 binary meshes. Then, the mesh feature
[10] is computed and fed to an HMM recognizer. Then, the following 11 motions
are classified additionally; standing still, both hands-up, both hands-down, right
hand-up, left hand-up, right hand-down, left hand-down, right leg-up, left leg-up,
and right leg-down, and left leg-down.

Motion Recognition by Magnetic Sensors: The human operator wears
11 magnetic sensors each of which detects {three dimensional position, direction
angle, rotation matrix} at the speed of 120 fps. Data are in binary streams which
are converted to the BVH format before the motion recognition. The motion
capture sensors increase the number of recognizable gesture patterns besides the
13 (2+11) patterns stated above. They are stretching upward, half squatting
with both hands swinging, torso twisting, R/L-shoulder rotating forward and
R/L-shoulder rotating backward.

One might think that such dedicated motion capturing could generate signals
without noise or error so that direct transmission to the humanoid is sufficient.
But, this is still not the case.

(a) Sensors are subject to environmental noises and wobble errors.
(b) Even if noise and wobbles were completely filtered out, a direct transmis-

sion of resulting data would cause the humanoid to fall down. This is be-
cause {weight, size, centroids of parts, speed, movable angles} are quite
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different between the human and the humanoid. Therefore, the HMM/SVM-
embedded BN recognizer becomes significant for the sensor system.

Brain Signal Recognition
NIRS Signals: When a human moves his/her eyebrows closer thogeter, a specific

brain pattern appears. This state can be identified by using ΔHbO2 signal
of NIRS. Noise and pulsation periodicity in such a signal are filtered out.
Then, the resulting signals are applied to the SVM.

Spike Trains: On-line applications of spike trains have yet to be realized [11],
[12]. In this paper, we use the spike trains form V5/MT of a monkey while it
watches moving dots with different patterns [9]. The spike trains are used to
generate EPSPs by leaky integrators [13], [14]. These EPSPs are smoothed
by FFT, pruning, and IFFT. Then, resulting signal classes are recognized
by parallel HMMs. It is important to note that the origin of the spike trains
is a visual area, and not a motor area. This transducing is made possible by
the recognition of patterns.

4.3 State Design

Since the humanoid is biped, falling-down is the most adverse action. The human
operator and the humanoid are very different in terms of size, weight, freedom
of movement, and speed. Therefore, commands by recognition might cause the
humanoid to fall down if there is no matching interpretation. In other words, it
is necessary to provide safety so that falling-down can be avoided. Fig. 6 illus-
trates such a mechanism. In this state transition diagram, intermediate states
are inserted. For instance, the command of “squat” while “walk” is executed
by “walk→stop→upright→squat”. Such an artifice makes it possible to avoid
impossible requests to the humanoid.

Fig. 6. Designed state transition diagram for the lower half of he body
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5 Ambulating PC’s Operation Using
HMM/SVM-Embedded Bayesian Network

5.1 Supervised Mode Experiments: Operation by Recognized
Commands

Video Recognition Method: As was explained in Section 3, a class of rec-
ognizable gestures from videos is a subset of the magnetic sensor system. This
is natural since it is not possible to recognize occluded limbs. Therefore, we
regard this method of video recognition system as the baseline. The variable
motion segment recognition method by the HMM/SVM-embedded BN showed
a recognition performance of 63% for the main gestures of the ambulating PC
operations. For the upper-body-only and lower-body-only, the scores were better,
87% and 72%, respectively.

Magnetic Sensor Method: The magnetic sensor recognition system, which
gives a super set of recognizable gesture patterns, showed performance of 89%
for the main gestures of the ambulating PC operations. This score should be
considered all right since the rest, 10%, is mainly due to the misrecognition of
“right/left-leg-up and pose” from “start to walk” which is difficult to recognize
even for a human. Note that a BN-only system showed performance of 76%,
which proves the superiority of the HMM-embedded BN over the monolithic
BN. The systems of HMM and SVM alone cannot perform this recognition.

Brain Signal Commands: The brain signal of NIRS recognized by the SVM
was used to overwrite the gesture commands. Spike trains classified by the HMM
are used in the same way. In the total HMM/SVM-embedded BN, nodes for NIRS
and spike trains were prepared so that two different classes of brain signals could
be accepted.

(a) (b) (c)

Fig. 7. Supervised mode, autonomous mode, and brain signal operation
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5.2 Autonomous Mode and Total Experiment

In the total experiment, an autonomous mode was also introduced. If the hu-
manoid finds a cue in its environment, it temporary becomes free from the
perator’s commands. Instead, the humanoid tries to perform a specified task
corresponding to the cue. The HMM/SVM-embedded BN provides judgement,
whether the ambulating PC goes into the autonomous mode or not.

Fig. 7(a) is a scene where the human operator controls the humanoid by his
gestures in the supervised mode. The operator watches images sent from the
humanoid’s eyes. When the humanoid finds a cue, it goes into the autonomous
mode. Fig. 7(b) shows a snapshot of the humanoid trying to push a button, which
is a cue, freely from the operator’s commands. Fig. 7(c) is a scene where the op-
erator sends his brain signal generated by moving his eyebrows closer together.
Although the operator is walking, the brain signal overwrites all commands so
that the humanoid stops. Spike trains can serve the same role in a faster re-
sponse time. The important thing here is that the spike trains are from V5/MT
[9]. Therefore, the spike trains that correspond to the perception of visual mo-
tions are changed to humanoid motions by the HMM/SVM-embedded Bayesian
network. This is the first piece of evidence that shows mental formations can be
transduced.

6 Conclusion

In this paper, the HMM/SVM-embedded Bayesian network was presented. This
learning and recognition system is new and worthy of mention.

(a) Large Bayesian networks which are computationally intractable can be
avoided.

(b) The recognition performance outperforms the BN systems, HMM sysyetms,
and SVM systems alone.

(c) The total system comprises of a novel subsystem, the committee SVM array.

In order to verify the significance of the HMM/SVM-embedded Bayesian net-
work, we experimented on the ambulating PC control by human generated sig-
nals. The signals were gestures and NIRS brain signals as well as neural spike
trains. These were successfully recognized and used as commands to the ambu-
lating PC. Inclusion of the recognition mechanism enabled enhanced robustness
and machine independence. In addition, this mechanism made it possible to
transduce signals across all the senses.
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A Neural Network Model of Metaphor
Generation with Dynamic Interaction�
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Abstract. The purpose of this study is to construct a computational

model that generates understandable metaphors of the form “A (target)

like B (vehicle)” from the features of the target based on a language

statistical analysis. The model outputs candidate nouns for the vehicle

from inputs for the target and its features that are represented by ad-

jectives and verbs. First, latent classes among nouns and adjectives (or

verbs) are estimated from statistical language analysis. Secondly, a com-

putational model of metaphor generation, including dynamic interaction

among features, is constructed based on the statistical analysis results.

Finally, a psychological experiment is conducted to examine the validity

of the model.

1 Introduction

This study regards metaphor generation as a process where an expression con-
sisting of a target (A) is modified by certain features to become a metaphorical
expression of the form “target (A) like vehicle (B)” and constructs a compu-
tational model that generates understandable metaphorical expressions, repre-
sented in the form of “A (target) like B (vehicle)”. There are numerous studies
that attempt to account for the process of metaphor comprehension. In such
studies, a metaphor of the form “A is like B” is regarded as making good sense
metaphorically if the high-salient features of the vehicle (B) match the low-salient
features of the target (A)[1]. For example, there is a metaphorical expression
“cheeks like apples” in Japan. In this case, “red” is a high-salient feature of
“apples” and a low-salient feature of “cheeks”, so that “cheeks like apples” can
be interpreted as meaning “red cheeks”. Another earlier study has pointed out
that greater emotional and sensory similarity between the target and the vehicle
makes metaphors more understandable[2]. In the case of “cheeks like apples”,
there are other similar features between “apples” and “cheeks” in addition to
“red”, such as “round” and “sweet”. And these similarities also facilitate the
understandability of this metaphorical expression. If you make the expression of
“cheeks like chili peppers” for “red cheeks”, because “red” is the only common
feature between the target and the vehicle, the metaphor is more difficult to
� This research is supported by MEXT’s program “Promotion of Environmental Im-

provement for Independence of Young Researchers” and Grant-in-Aid for Scientific

Research (B) (19330156).
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understand. Thus, when a vehicle has other shared features of a target, rather
than just the feature that is being emphasized in the metaphorical expression,
the metaphor tends to be understandable. Likewise, in generating the metaphor-
ical expression which represents “red cheeks”, it is necessary to select a vehicle
that not only has the high-salient feature of “red” but also has other emotion-
ally and sensory similar features with the target of “cheeks”, if the sense of “red
cheeks” is to be understandable from the metaphorical expression.

It is worth noting that some studies have focused on the low-salient features
of a target and a vehicle that are emphasized in the process of metaphor un-
derstanding; a phenomenon referred to as feature emergence[3][4]. Feature emer-
gence has also been described in terms of an interaction among features[5][6][7].
Thus, in the process of metaphor generation, we may assume some influences
due to interactions among features. In the case of “red cheeks”, the expression
evokes the image of “healthy” and “plump”. In contrast, “pale cheeks” evokes an
unhealthy image. If a vehicle which is similar to the target in the point of “red”
and “unhealthy” (e.g. “bloodstain”), is selected because not only “healthy” and
“plump” but also “unhealthy” can be regarded as features of the target “cheeks”
for the metaphorical expression of “red cheeks”, the metaphorical expression
would not be understandable. Accordingly, it is necessary to consider influences
from the interactions among features where there are emotional and sensory
similarities between the target and the vehicle.

There are a few theories of metaphor generation within the field of psychol-
ogy. However, some computational models of metaphor generation have also
been developed [8][9][10]. Sako, Nakamura and Yoshida (1993)[8] constructed a
computational model of metaphor generation based on a psychological experi-
ment. However, it is not practically feasible to collect sufficient data to construct
a model that sufficiently covers metaphorical expressions by their method alone,
because participants cannot respond to numerous indices within a limited time.
On the other hand, Kitada and Hagiwara’s (2000) model[9] is based on an elec-
tronic dictionary[11] while Abe, Sakamoto and Nakagawa’s (2006)[10] model is
based on the results of statistical language analysis. These models have the ad-
vantage that they can cover many metaphorical expressions. In addition, the
statistical language analysis, which does not require any manpower, is a more
objective method than using an electronic dictionary, because the dictionary it-
self is the product of many professionals. However, both of these models fail to
fully consider the interactions among features.

In order to overcome problems with previous models, the current model is
constructed using a recurrent neural network based on a statistical language
analysis. First, knowledge structures are estimated as the latent classes of nouns
and adjectives (or verbs) using a statistical language analysis [12] for four kinds
of modification patterns (frequency data for adjective-noun modifications and
three kinds of verb-noun modifications). Second, the model of metaphor gen-
eration is constructed using a recurrent neural network based on the results of
the statistical language analysis. Inputting a set of expressions (e.g. “transient
hope” and “hope disappear”) to the model, it outputs an adequate noun for the
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vehicle (e.g. “glim” (a faint light) in “hope like a glim”). Finally, a psychological
experiment is conducted in order to verify the validity of the constructed model.

2 Estimation of a Knowledge Structure Using the
Statistical Language Analysis

In this study, the model is constructed based on a statistical language analysis
[12], which was also used in a previous study [10]. The statistical language analy-
sis [12] with the structure similar to probabilistic latent semantic indexing (pLSI)
[13] estimates latent classes among nouns and adjectives (or verbs) as a knowl-
edge structure using four kinds of frequency data extracted for adjective-noun
modifications (Adj) and three kinds of verb-noun modifications: noun(subject)-
verb (S-V), verb-noun(modification) (V-M) and verb-noun(object) (V-O). These
frequency data are extracted from the Japanese newspaper “MAINICHI SHIN-
BUN” for the period 1993-2002 using the Japanese dependency parser CaboCha
[14]. The extracted data consists of 21,671 noun types and 3,403 adjective types
for adjective-noun modifications, 29,745 noun types and 22,832 verb types for
verb-noun(object), 26,113 noun types and 21,487 verb types for noun(subject)-
verb, and 28,451 noun types 24,231 verb types for verb-noun(modification). The
extracted nouns are represented using nri and the extracted adjectives or verbs
are represented using arj where (r refers to the kind of data set (adjective-
noun modification, noun(subject)-verb (S-V), verb-noun(modification) (V-M)
and verb-noun(object) (V-O) data).

The statistical method assumes that the noun nri and the adjective (or verb)
arj co-occur through latent classes and that the co-occurrence probabilities of
these terms, P (nri |arj), can be computed using the following formula(1):

P (nri , a
r
j) =

∑
k

P (nri |crk)P (arj |crk)P (crk), (1)

where crk indicates the kth latent class assumed within this method for the r
type of modification data. The parameters (P (nri |crk), P (arj |crk), and P (crk)) are
estimated as the value that maximizes the log likelihood of the co-occurrence
frequency data between ni and arj using the EM algorithm. The statistical lan-
guage analysis is applied to each set of co-occurrence data fixing the number of
latent classes at 200.

The conditional probability of the latent class ck given the term nri (noun)
or arj (adjective or verb) (P (ck|nri ) and P (ck|arj)) are computed using Bayes’
theory, as follows:

P (crk|nri ) =
P (crk)P (nri |crk)∑
k′ P (crk′)P (ni|crk′ )

, (2)

P (crk|arj) =
P (crk)P (arj |ck)r∑
k′ P (crk′ )P (arj |crk′)

. (3)

The meanings of the latent classes are identified from the conditional probability
of the latent class crk given the adjective arj and the conditional probability of
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Table 1. Examples of estimated latent classes for the noun(subject)-verb (S-V) mod-

ification data which can be interpreted as a light class

P (cS−V
light |ar

j ) P (cS−V
light |nr

i )

1 blink on 0.993 red light 0.810

2 transfer 0.952 lamp 0.647

3 be burnt 0.930 glim 0.585

4 light up 0.925 illuminations 0.577

5 be lighted up 0.891 neon 0.572

6 blink 0.858 candle 0.531

7 disappear 0.761 Olympic flame 0.480

8 twinkle 0.742 electric bulb 0.455

9 flicker 0.725 torch 0.444

10 spread 0.722 chandelier 0.427

the latent class crk given the noun nri . For example, a latent class that can be
labeled “light” is shown in Table 1.

The 18,142 noun types (n∗
h) that are common to all four types modifica-

tion data are represented as vectors using four kinds of conditional probabili-
ties for latent classes given the nouns (P (cAdjk |n∗

h), P (cS−Vk |n∗
h), P (cV−M

k |n∗
h),

P (cV−O
k |n∗

h)), which are computed using the four data sets, as follows:

Vp(n∗
h) = P (crk|n∗

h), (4)

where Vp(n∗
h) indicates the pth component of the vector that corresponds to the

noun n∗
h. p refers to the successive number of latent classes extracted from the

four data sets. When 1 ≤p≤ 200, r indicates the “Adj” modification and k = p,
when 201 ≤p≤ 400, r indicates the “S-V” modification and k = p − 200, when
401 ≤p≤ 600, r indicates the “V-M” modification and k = p−400, and when 601
≤p≤ 800, r indicates the “V-O” modification and k = p− 600. The dimensions
of the vectors represent the latent classes. The similarity between two concepts
is represented by the cosine of angles existing between concept vectors.

The meaning of the nouns (concepts) are estimated, as follows formula(5):

P (arj |n∗
h) =

∑
k

P (arj |crk)P (crk|n∗
h). (5)

The conditional probability of a adjective or verb (feature) given a noun (con-
cept) (P (arj |n∗

h)) indicates the strength of the relationships between the feature
and the concept.

3 The Model of Metaphor Generation

3.1 Architecture of the Model

The model deals with the 18,142 noun types (n∗
h) that are common to all four

types of modification data. The model consists of three layers: an input layer, a
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hidden layer and an output layer. Sets of expressions, such as “ar0j0 - n∗
h0

”,“ar1j1
- n∗

h0
”, are input into the model. The model outputs each concept’s (noun’s)

adequacy for the vehicle, which represents a set of expressions as “n∗
h0

(target)
like B (vehicle)”.

The input layer consists of feature nodes. Each feature node indicates either
an adjective or a verb. Every feature node has mutual and symmetric connections
with the other feature nodes. The weight of a connection between two features
for one target may differ from the weight of the connection between the same
two features for another target. For example, in the case of “cheeks” (target), the
connection between “red” and “healthy” will be heavily weighted. On the other
hand, in the case of “eyes”, the connection between them will be less heavily
weighted. The weights are estimated as follows. First, the features related to the
target are selected. The meaning of the target is estimated using the conditional
probability of feature given a target (P (arj |target)) and features are selected if
P (arj |terget) exceeds the threshold ζr. These selected features and the input
features (ar0j0 , ar1j1 ,...) are related to the process of metaphor generation and the
set of these features is indicated using F (n∗

h0
, ar0j0 , a

r1
j1
, ..). The weight for each

connection between any two features, (w11
ar

ja
r′
j′

), that are relating to the input

target is estimated as the correlation coefficient among these features, (corar
ja

r′
j′

),

related to sibling concepts of the target (n∗
h0

) that are in the sibling neighborhood
for a target of size s computed on the basis of similarity to the target vector.
The weight for each connection between two nodes, as follows:

w11
ar

ja
r′
j′

=

{
corar

ja
r′
j′

if arj ∈ F (n∗
h0
, ar0j0 , a

r1
j1
, ..) and ar

′
j′ ∈ F (n∗

h0
, ar0j0 , a

r1
j1
, ..)

0 else,
(6)

where w11
ar

ja
r′
j′

indicates the weight for the connection between two nodes corre-

sponding to features arj and ar
′
j′ , in the input layer.

The hidden layer consists of latent class nodes. Each node corresponds to
the estimated latent class based on the statistical language analysis. There are
connections from the feature nodes to the latent class nodes. The weights of
these connections, (w21

cr′
k a

r
j

), are estimated from the conditional probabilities of

the latent classes given the features (adjectives or verbs), as follows:

w21
cr′

k a
r
j

=

{
P (cr

′
k |arj) if r = r′

0 if r �= r′,
(7)

where w21
cr′

k
ar

j

indicates the weight for the connection from the node indicating

a feature arj in the input layer to the node indicating a latent class cr
′
k in the

hidden layer.
The output layer consists of concepts nodes. There are connections from the

latent class nodes to the concept nodes. The weights are estimated based on the
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Fig. 1. Architecture of the model into which the set of “transient hope” and “hope

disappear” is input. Connections whose weights are not 0 are indicated.

conditional probabilities of the latent classes given the concepts (nouns)(w32
n∗

hc
r
k
),

as follows:
w32
n∗

hc
r
k

= P (crk|n∗
h), (8)

where w32
n∗

hc
r
k

indicates the weight for the connection from the node meaning a
latent class crk in the hidden layer to the node meaning a concept n∗

h in the
output layer.

For example, the model into which the set of “transient hope” and “hope
disappear” is input is shown in Fig.1. Only the connections whose weights are
not 0 are represented. In the model, “transient (Adj) (ar0j0 , r0 = Adj)” and
“disappear (S-V) (ar1j1 , r1 = S−V )” are input features. “Bright (Adj)”, “increase
(S-V)”, “accomplish (V-O)” and “go against (V-M)” are features selected as
being features relating to “hope” (target n∗

h0
). Thus, there are connections among

these features. On the other hand, “boiled (Adj)”, “walk (S-V)”, “eat (V-O)”
and “go around (V-M) are not related to “hope”, and so these features have no
interaction with other features.

3.2 Simulation of the Network

Simulation of the network consists of two steps. One is to simulate the dynamic
interaction among features and the other is to simulate each the adequacy of
each concept (noun) for the vehicle. For example, the set of “transient hope”
and “hope disappear” is input into the model. In this case, the input features
are “transient (Adj)” and “disappear (S-V)”.
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First, the features nodes that correspond to “transient (Adj)” and “dis-
appear (S-V)” have distributed input values of 1 (Itransient(Adj) = 1 and
Idisappear(S−V ) = 1) while all other nodes = 0. The dynamics of the network
are based on the following set of simultaneous differential equations(9):

dxar
j

dt
= exp(−αt)(−xar

j
(t) + f(β

∑
ar′

j′

w11
ar

ja
r′
j′
xar′

j′
(t) + γIar

j
)), (9)

where xar
j
(t) represents the activation strength of the feature node corresponding

to arj at time t and where the function f is a sigmoid function exp(−αt) is the
term for convergence which decreases according to time t. When dxar

j
/dt = 0, the

feature node outputs oar
j

= xar
j
(t). β indicates the influences of the interaction

among features and γ represents the influences of input features (ar0j0 , ar1j1 ...).
If the feature arj is not the input feature and the feature slightly relates to the
target (namely P (arj |terget) does not exceed the threshold ζr), the connection
weights between the node corresponding to arj and the others in the input layer
are 0 and the output oar

j
does not activate. Even if the feature arj strongly relates

to the target, the output oar
j

has small value on the condition that the feature
slightly relates to the input features. When the feature arj strongly relates to
the input features and the target, the output oar

j
has large value. Therefore, the

output oar
j

represents the input features and influences from the interactions
among features where there are emotional and sensory similarities between the
target and the vehicle.

Second, the output values of the concept nodes are computed using the feature
node outputs, as follows:

On∗
h

=
∑
cr′

k

w32
n∗

hc
r′
k

(
∑
ar

j

w21
cr′

k a
r
j

oar
j
), (10)

where On∗
h

represents the output value of the concept node corresponding to the
concept n∗

h. The value represents the adequacy of the vehicle, which represents
the input expression as a metaphor. The output values are computed from the
input features and the interactions among features where there are emotional and
sensory similarities between the target and the vehicle (oar

j
) through the latent

classes as a knowledge structure. Thus, when the output value of a concept is
high, the concept includes not only the input features (“transient (Adj)” and
“disappear (S-V)”) but also emotional and sensory similarities with the target
that are influenced by the interactions among features.

3.3 Model Simulation Results

In this study, the model is simulated using the parameters s = 50, α = ln(10),
β = 0.3, γ = 10, ζAdj = 0.00294 (= 10/the number of adjectives), ζS−V =
0.00047 (= 10/the number of verbs(S − V )), ζV−M = 0.00041 (= 10/the
number of verbs(V − M)), and ζV−O = 0.00044 (= 10/the number of
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Table 2. Simulation results of the model with interaction (On∗
h
) and a model without

interaction (O′
n∗

h
) (“transient hope”, “hope disappear”). The output values are shown

in parentheses.

“transient hope”, “hope disappear”

the model with an interaction (On∗
h

the model without an interaction (O′
n∗

h
)

1 desire (0.6169) request (0.6530)

2 fire source (0.4354) desire (0.6525)

3 light (0.4292) interest (0.6195)

4 glim (0.4093) conviction (0.6029)

5 dark clouds (0.3689) motivation (0.5991)

6 neon (0.3680) imperative (0.5668)

7 lamp (0.3603) inclination (0.5644)

8 delight (0.3532) will(0.5537)

9 illuminations (0.3526) confident (0.5503)

10 red light (0.3493) discomfort (0.5390)

verbs(V − O)). The simulation results for “transient hope” and “hope disap-
pear” are shown in Table 2. For comparison, simulation results for a model of
metaphor generation without interaction among the features are also shown in
Table2. The model without interaction has the algorithm similar to Abe et al.’s
model[10]. The adequacies for the vehicle are computed as follows:

O′
n∗

h
=
∑
cr′

k

wcl
n∗

hc
r′
k

(
∑
ar

j

wlf
cr′

k a
r
j

Iar
j

+ P (cr
′
k |target)). (11)

In the model without interaction, emotional and sensory similarities to the target
are represented by inputting the image of the target P (cr

′
k |target) into the model.

The results for both models (models with and without interaction) seem to
be appropriate. However, the following psychological experiment is necessary in
order to examine the validity of the model with interaction.

4 Psychological Experiment

In order to examine the validity of the model, a psychological experiment was
conducted.

– Participants: 14 graduate students.
– Expressions: Two sets of expressions (“transient hope” and “hope disap-

pear”: “heavy discussion” and “be involved in discussion”)
– Scale: 7-point scale, from 1 “Strongly disagree” to 7 “Strongly agree”.

The participants were presented with each set of expressions and the simulation
results (top 10 candidates for the vehicle) for the models with and without in-
teraction. The participants were asked to evaluate the validity of each candidate
set. The results relating to the validities of the models are shown in Table 3. In
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Table 3. The results of the psychological experiment. Mean rating scores are shown.

Standard deviations are also indicated in parentheses.

the input set of the model with the model without

expressions an interaction an interaction

“transient hope”, “hope disappear” 4.29 (1.38) 2.21 (1.12)

“heavy discussion”, “be involved in discussion” 4.50 (1.70) 4.57 (1.40)

the case of the model with interaction, the mean validity ratings for both sets
of expressions (“transient hope” + “hope disappear” and “heavy discussion” +
“be involved in discussion”) are more than 4, which equates to “neutral”. On the
other hand, for the model without interaction, the mean validity rating for the
set of “transient hope” and “hope disappear” is less than 3, which corresponds
to “slightly disagree that the set of candidate is appropriate”.

1

2

3

4

5

1 2Model
with 

interaction

Model 
without 

interaction

4. Neutral               

3. Slightly disagree

2. Disagree            

1. Strongly disagree

5. Slightly agree    
*

Fig. 2. The rating difference between the

models with and without interaction

Furthermore, the rating difference
between the two models was tested us-
ing a t-test. The results indicates that
the mean validity ratings for the model
with interaction (4.39) is significantly
higher than the mean for the model
without interaction (3.39) at 5% level
(t(27)=2.58,p<.05) (shown in Fig.2).
This finding indicates that the model
with interaction among the features is

more appropriate than the model without interaction, and so this experiment
result supports the validity of the model with interaction.

5 Discussion

In this study, a computational model of metaphor generation with dynamic in-
teraction was constructed based on data obtained through a statistical language
analysis[12]. Inputting sets of expressions that consist of a feature and a tar-
get to the model, the model outputs an adequacy for the vehicle noun, which
represents the input expression in the form of “A (target) like B (vehicle)”. In
order to reflect the influences of interactions among features as an approach to
estimating the emotional and sensory similarities between a target and a vehi-
cle in metaphor generation, the model is constructed using a recurrent neural
network with connections between the nodes that correspond to features. Com-
pared with a model without interaction among features, which has the algorithm
similar to that employed in the previous model[10], the conducted psychological
experiment supports the validity of the model with interaction among features.

However, there is still some room for improvement with the psychological ex-
periment in terms of further experiment with a wider range of expression sets.
In this paper, the experiment was conducted with only two sets of expressions.
In order to examine the more general validity of the model, it is necessary to



788 A. Terai and M. Nakagawa

conduct further experiments using simulation results relating to many kinds of
input sets. Furthermore, the results of the psychological experiment indicate that
the standard deviation for each rating was more than 1-point. That implies that
there are individual differences in terms of metaphor generation. It should be
possible to represent such individual differences by changing the values of some
of the model’s parameters (e.g. the β parameter that represents the influences
of the interactions among the feature and the γ parameter that represents the
influences of input features). In order to clarify the relationship between indi-
vidual difference in terms of metaphor generation and the parameters, we have
to conduct psychological experiments in which participants evaluate multiple
model simulation results obtained with various parameter settings.
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Abstract. Backpropagation of errors is not only hard to justify from biological
perspective but also it fails to solve problems requiring complex logic. A sim-
pler algorithm based on generation and filtering of useful random projections has
better biological justification, is faster, easier to train and may in practice solve
non-separable problems of higher complexity than typical feedforward neural
networks. Estimation of confidence in network decisions is done by visualiza-
tion of the number of nodes that agree with the final decision.

Keywords: Neural networks, learning, random projections.

1 Introduction

The discovery of backpropagation of errors (BP) algorithm [1] for training of the mul-
tilayer perceptrons (MLPs) broke the deadlock of training non-linear systems to solve
non-separable problems. However, the degree of non-separability that can be handled,
measured by the k-separability index [2], is rather low. Although various version of
backpropagation algorithm can deal with the XOR problem finding optimal solution
for higher than the 4-bit parity problems without assuming special architecture and ini-
tialization of the network is quite hard. The original BP article was entitled “Learning
internal representations by error propagation”, however these internal representations
have rarely been analyzed, because they are not too informative. Neural networks that
have clear neurobiological motivation create sparse, simple representation in their hid-
den layers [3]. Popular MLP neural networks are much simpler, they do not use internal
inhibition and their only bias towards simple solutions is based on regularization [4],
smoothing the mapping implemented by the network. This is not an appropriate bias
for problems with complex logical structure, therefore poor generalization should be
expected. Analysis of other useful biases and realistic learning targets is quite fruit-
ful [5].

Biological neural networks solve complex learning problems inherent in optimiza-
tion of behavior, creation of internal models, understanding of linguistic patterns. Cre-
ating algorithms capable of solving problems of similar complexity is an important
challenge and is needed to open the doors for a new generation of ambitious machine
learning applications. Backpropagation of errors is hard to justify from the neurobi-
ological perspective. Algorithms that are biologically plausible and should be able to
learn complex functions are therefore of great interest. Deep belief networks are one

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 789–798, 2009.
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interesting candidate [6]. Maass et al. [7] have stressed that high-dimensional dynamics
allows for real-time computing without stable states. Instead of attractor neural net-
works that require extensive training his Liquid State Machines can use much simpler
high-dimensional dynamics that corresponds to very complex microcircuit resonances.
Perceptrons may work then as readout neurons, extracting in real-time stable informa-
tion from transient internal states formed by such high dimensional system. Kernel ma-
chines [8] work on similar principle, implicitly projecting data into high-dimensional
spaces, where decision borders become flat and separation by linear hyperplanes is rel-
atively easy.

The almost Random Projection Machine (aRPM) algorithm presented here is based
on the following inspirations. Learning to read, learning multiplication table or similar
tasks takes weeks, although brain plasticity of children is higher than adults. Synaptic
learning is usually rather slow and it takes a long time before new connections will de-
velop. Yet even old people may quickly learn and remember many things after a single
exposure. The amount of synaptic learning must thus be rather limited. Neurons in as-
sociation cortex form strongly connected microcircuits found in cortical minicolumns,
resonating with different frequencies when an incoming signalX(t) appears. A percep-
tron neuron “observing” the activity of thousands of microcircuits in these minicolumns
learns to react to specific signals around particular frequency. However, resonators do
not get excited when overall activity (weighted combination of inputs W ·X) is high,
but rather react when specific levels of activity are reached, selecting only signals from
some soft interval G(W ·X). If these signals are correlated with important activity its
contribution is taken into account, otherwise the signal is not used.

The feature space created in this way is based on those combinations of inputs that
have been found interesting for some task, and thus have some meaning and interpre-
tation. These features are not learned but selected from random projections, with new
features added if they show interesting correlations with some aspect of the problem
being solved. In classification this would mean a subset of vectors from a single class,
some of which have not yet been captured by too many other features and thus carry
interesting information. In fact this model is not too far from the original Selfridge Pan-
demonium architecture [9], where demons, representing interesting observations, shout
to influence decisions of demons that are higher in the hierarchy.

In the next section aRPM algorithm is formally introduced, including relations to the
research on random projections. Section three presents empirical tests and comparisons
with standard machine learning methods, and the last section some conclusions.

2 Almost Random Projections

Presentation of new input activates large number of microcircuits in the cortex, but
competition and local inhibition will finally leave only a small number of the most active
circuits that provide relevant information. They provide several views on the same data,
in each case discovering a particular angle and projecting a group of similar (from this
particular angle) cases, while cutting off the remaining cases from the projection. A
simple threshold neuron may then read out the level of activation of specific circuits,
estimating familiarity of the presented item by activation proportional to the number
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of clusters from each category that this item excites. Similar idea has been used in the
liquid state machines [7] designed to analyze spatio-temporal patterns. Many random
oscillators are postulated, projecting the signal into highly dimensional space, and a
threshold neuron is used to read out the activity of the column and discriminate between
different categories. In this paper random filters are used and those that find something
interesting are selected to contribute to the output.

Multi-layer perceptron (MLP), the most successful neural network model, is based
on a perceptron model, or a neuron that performs soft threshold logic operation using
weighted sum of input signals [10]. This is a rough but useful abstraction of activity of a
single biological neuron. Logical threshold neurons, for various noisy input signal dis-
tributions concentrated around some average values, estimate conditional probabilities
that change in a sigmoidal way, depending on the strength of the signal [11]. Perceptrons
may thus be seen as logical devices operating on noisy data. Many random perceptrons
form a hidden layer that projects the data into high-dimensional space.

Two important ideas come from such neurocognitive inspirations. First, many views
of the same item should be considered, generating interesting transformations Ti(X)
that involve non-local projections Wi ·X. Such projections are filtered through local-
ized functions Ti(X) = Gi(Wi · X) discovering useful features specific to a given
category. The number of features should not be fixed, as they are dynamically gener-
ated until there is sufficient information to make decision. The interplay between local
and global analysis has been missing in neural networks and other types of machine
learning algorithms. Transformations Ti(X) map input cases to one-dimensional clus-
ters that should be either relatively pure or at least partially discriminative, excluding
some categories [12]. A single large projected cluster is sufficient for categorization if
there is no strong competition, but some redundancy should be preferred. The winner-
takes-most mechanism of biological networks should be approximated to make final
decision based on memberships in projected clusters [3]. It is surprising that so far
neural networks took only the simplest inspirations from biology.

Fig. 1. Network structure of the aRPM algorithm
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Algorithm 1. aRPM
Require: Flag all vectors X as “new”.
1: for i = 0 to Nrep do
2: Randomly assign weights w

¯ i, wi ∈ [−1, 1].
3: Generate new projection zi = w

¯ iX.
4: Analyze p(zi|C) distributions to determine “interesting” clusters.
5: Add them as new features G(zi; C), or class-labeled hidden network nodes.
6: Sum the activity of hidden node subsets for each class to calculate network outputs

y(C|X) =
∑

i G(zi; C).
7: Remove flag “new” from all vectors that reach y(C|X) ≥ β.
8: end for

Validate the network.
9: if Accuracy does not increase then

10: return network.
11: else
12: goto 1

13: end if

The aRPM algorithm inspired by the ideas mentioned above has only a few param-
eters (see Algorithm 1). First, a relevance index [13] is applied to determine if the
projected cluster is interesting, taking into account only “new” vectors, that is those
that have not been already covered more than β times by other clusters (if β = 1 new
nodes should cover training vectors only once). Boosting-like variants may be consid-
ered [14], but here only the simplest version is tested. Any filter based on information
indices, purity or other criterion is suitable. Second, to justify adding new features (at-
taching hidden node to the output) new clusters that give rise to features should not be
too small, covering at least α fraction of all vectors, and at least one new vector. Inter-
vals G(zi;C) that extract clusters from projections may for example be modeled by a
difference of two logistic functions, providing a soft trapezoidal function [15], but be-
low only a simple [min,max] intervals have been used. The number of repetitions Nrep
has been set here to 10.

The weights in this algorithm are randomly selected, and their values do not change
– no additional learning of weights is needed, in contrast to all other methods for neural
network training. In some feedforward network models learning is restricted only to
the linear output layer [16], but here it is replaced by a simple addition of appropriate
inputs. The aRPM simply generates sufficient number of random weights and selects
new useful features G(zi;C). Each node corresponds then to a perceptron capturing
clusters that may be surrounded by samples from other classes. To make final decision
aRPM uses winner-takes-most mechanism.

Many variants of basic aRPM algorithm are possible and will be presented in a longer
paper. New features may be used in a Naive Bayes type of estimation, but then one
should avoid redundant nodes, while in the additive model the more nodes are excited
by a given vector the better. There is no reason why all clusters should be pure, although
projections that overlap with existing ones may be discouraged to generate more in-
teresting views on the data. Additional parameter γ may determine the threshold for
relevance of the new feature, for example the purity level of each new cluster. Another
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possibility is to introduce weights proportional to the size of the cluster (number of vec-
tors that pass through a particular filter), or use linear discrimination on the activity of
the hidden nodes (this is more costly).G(zi;C) may reflect class-dependent probability
density.

3 Illustrative Examples

The usefulness of aRPM algorithm has been evaluated on two artificial and four real
datasets downloaded from the UCI Machine Learning Repository [17] and from [18]
(Leukemia). A summary of these datasets is presented in Table 1. Artificial 8 and 10-bit
parity datasets have been selected because they are very difficult to analyze correctly
by standard MLPs, Support Vector Machines or other machine learning algorithms. The
four other datasets are standard examples of benchmark type and are used here to enable
typical comparison of different learning methods. Leukemia has 7129 dimensions and
it would be quite easy to get perfect results with such a large space, therefore 100 best
features from a simple Fischer Discriminant Analysis (FDA) ranking index have been
used [13]. Vectors with missing values have been removed (6 vectors from Heart disease
dataset, and 16 from Wisconsin cancer), although it is quite easy to use projections
based only on features that have been defined (formally undefined features should turn
off nodes that use it, but it is enough to give it sufficiently low value).

Table 1. Summary of datasets used for comparison of aRPM algorithm with other methods

Title #Features #Samples #Samples per class Source
Parity8 8 256 128 even 128 odd artificial
Parity10 10 1024 512 even 512 odd artificial

Leukemia 100 72 47 ALL 25 AML [18]
Heart 13 297 160 absence 137 presence [17]

Wisconsin 10 683 444 benign 239 malignant [19]
Liver 6 345 145 C1 200 C2 [17]

To compare aRPM with 4 popular classification methods 10-fold crossvalidation
tests have been repeated 10 times and average results collected in Table 2, with accura-
cies and standard deviations for each dataset. Additionally in each column the complex-
ity of the generated models have also been noted: for C4.5 size of the tree, for kNN the
number of nearest neighbours, for SVM the number of support vectors, and for MLP
and aRPM the number of hidden nodes. Only linear SVM has been used as for these
dataset results obtained with Gaussian kernel are not better. Parameters of all classifiers
have been optimized. In case of aRPM pure clusters were enforced, with the minimum
number of vectors in each cluster set as 1% of all vectors for the Heart and Wisconsin
datasets, for the Leukemia at least 10 vectors have been required, and for the parity very
large clusters were enforced, for the 10-bit parity over 200 elements.

High-dimensional parity problem is very difficult for most classification methods.
Many papers have been published on special neural models for parity functions, and
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Table 2. Accuracy results

Dataset Method
C4.5 kNN MLP SVM aRPM

Parity8 31.6 ± 1.3 (1) 100 ± 0 (17) 94.1 ± 2.1 (17) 32.4 ± 4.4 (230) 99.2 ± 1.6 (12)
Parity10 40.4 ± 1.6 (1) 100 ± 0 (21) 89.2 ± 12.3 (21) 39.1 ± 6.5 (920) 99.5 ± 0.9 (12)

Leukemia 82.6 ± 8.3 (5) 97.2 ± 1.6 (2) 95.8 ± 3.6 (52) 98.7 ± 3.9 (15) 96.1 ± 8.6 (19)
Heart 77.8 ± 2.1 (33) 81.8 ± 6.6 (45) 79.5 ± 1.3 (8) 81.5 ± 1.3 (94) 78.3 ± 4.2 (43)

Wisconsin 94.7 ± 2.0 (21) 97.0 ± 1.7 (5) 94.2 ± 0.2 (6) 96.3 ± 2.1 (49) 97.9 ± 1.6 (30)
Liver 65.8 ± 2.2 (51) 62.0 ± 1.1 (44) 67.5 ± 3.1 (5) 69.2 ± 10.3 (236) 61.1 ± 5.1 (47)
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Fig. 2. Typical convergence curve, showing errors as a function of the number of nodes (Heart
dataset); dashed line - training errors, solid line - test errors

the reason is quite obvious. Linear separation cannot be easily achieved because this is
a k-separable problem that should be separated into n+1 intervals for n bits [2,20]. This
is a very interesting example showing that aRPM solves quite easily difficult problems
in almost perfect way even when most standard classifiers fails. Although kNN may
also work perfectly well it requires k > 2n for n-bit parity to overcome the influence
of the nearest neighbors.

Reduced Leukemia dataset is classified by aRPM at 96%, significantly better than
C4.5 result and at the similar level as all other systems. For Cleveland Heart data the
new algorithm gives about 78±4% accuracy, with the base rate of 54%. This is not sig-
nificantly different from other classifiers because variance is rather high, although SVM
has some advantage here, with over 100 support vectors creating rather complicated
model. Wisconsin breast cancer dataset is classified by aRPM with higher accuracy
then other classifiers, and relatively small variance 98± 2%. For Liver dataset variance
of most methods is quite high, but SVM may have some advantage, other classifiers do
not give significantly different results.

These results are by no means the limits of aRPM algorithm as α and β parameters
have not been optimized and γ = 0 was taken. How many hidden nodes should be cre-
ated? If α is small more nodes are created, giving higher training accuracy, but clusters
covered by these nodes have to be smaller, or less pure, so some learning of optimal
values is needed. The simplest version used here is very fast as it does not perform any



Almost Random Projection Machine 795

learning, except for setting the interval in one-dimensional projections. Typical conver-
gence with respect to the number of nodes (Fig. 2) is quite fast and monotonic, quickly
saturating. For example for the Heart data accuracy saturates at 78% for about ≈43
nodes.

aRPM classifier allows for easy estimation of confidence in the results. This is seen
in Fig. 3 scatterplots. The network has two linear outputs and their value, for binary
activations of hidden nodes, is simply an integer number between 0 and the number of
nodes for each class. Each plot presents output of aRPM model trained inside cross-
validation and then applied to all dataset, thus showing test and training errors. Most
vectors activate only nodes from the correct class, some of them as many as 8. Large
pure clusters show high-confidence predictions. Some vectors are rejected and fall into
(0,0) cluster; they may be assigned to a default majority class. In case of Heart one
test vector excites as many as 5 nodes from the wrong class, showing that it may be an
outlier. For each cluster confidence factor is equal to the purity of this node estimated
in crossvalidation.
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Fig. 3. Output of aRPM algorithm for training and test data, top row: Parity8 and Parity10, middle
row: Leukemia and Heart, bottom row: Wisconsin and Liver
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4 Discussion and New Directions

Neurocognitive informatics draws inspirations from neurobiological processes respon-
sible for learning. So far only a few general inspirations have been used in computational
intelligence: threshold neurons that perform parallel distributed processing, organized in
networks. Even with our limited understanding of the brain many more inspirations may
be drawn and used in practical learning and object recognition algorithms. Arguments
for biological plausibility of random projections rather than slow learning mechanisms
have been presented and simplest version of almost Random Projection Machine tested.
Surprisingly, results of a model that does not perform any optimization are on bench-
mark problems at least as good as MLPs, and on parity problem which is quite difficult
to learn for MLPs and SVMs are almost perfect.

Many variants of aRPM will be discussed in a longer paper: they improve results by
optimizing minimal number of vector per cluster, adding impure clusters and enforcing
minimal number of new vectors that have not been correctly classified, changing hard-
limit intervals into more soft-window filters, and setting the threshold for similarity of
new projections before new nodes are created. The brain does not use fixed number of
features, as most pattern recognition algorithms do, but starting from a small number
of features actively searches for new, most discriminative features that neural filters
may provide. Objects are recognized using different features that characterize them.
Thus feature selection and construction is not separable from the actual process of cate-
gorization and learning. This is easily incorporated into our algorithms by using subsets
of all available original features to create new hidden nodes. If a very large (or small)
number is inserted for the unknown value nodes that use this feature will be inactive
while nodes that do not use it will provide normal activations. Visualization of outputs
and the ability to estimate confidence in predictions made by such classifiers is a very
useful feature of all variants of these algorithms.

The final goal of learning is to categorize, but the intermediate representations are
also important. Finding interesting views on the data, or constructing interesting infor-
mation filters, is the most important thing. Each filter does its own feature selection or
feature weighting. Instead of using networks with fixed number of inputs systems that
actively sample data, trying to “see it” through their filters, are needed. Once they have
sufficient information to categorize data structures they have done their job. This opens
the way to new algorithms that may learn from objects that have diverse structures,
including many missing values. It is much easier to achieve non-linear separability in
the hidden layers of neural networks than linear separability [5]. If the structure of
non-linear mapping that creates image of data is known it may be then analyzed and
understood. The most important part for good generalization in learning systems is to
create large clusters, as small clusters are not reliable and will be washed out by neural
noise. The learning process is greatly simplified by changing the goal of learning to
easier target and handling the remaining nonlinearities with well defined structure.

Random projections facilitate rapid learning, but in biology rapid learning is fol-
lowed by slow learning that perfects the function. Learning to increase usefulness of in-
dividual nodes to increase purity/separation of hidden nodes may follow initial creation
of a functional network. Projection pursuit with Quality of Projected Clusters index
[21] may be used for discovery of interesting views, and it should be very interesting
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to use it as an algorithm for deep belief networks [6] that are trained using Restricted
Boltzmann Machines. All these approaches create interesting hidden representation of
the data.
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Abstract. This paper presents a classifier based on Optimized Learning Vector
Quantization (optimized version of the basic LVQ1) and an adaptive Euclidean
distance. The classifier furnishes discriminative class regions of the input data set
that are represented by prototypes. In order to compare prototypes and patterns,
the classifier uses an adaptive Euclidean distance that changes at each iteration
but is the same for all the class regions. Experiments with real and synthetic data
sets demonstrate the usefulness of this classifier.

1 Introduction

Learning Vector Quantization (LVQ) is a prototype-based algorithm family proposed
by Kohonen [6] that has been widely studied and applied in various areas, due to its
simplicity and efficiency. The basic LVQ aims to find discriminant regions in the in-
put data space represented by prototypes or codebook vectors. The learning algorithm
starts by assigning a subset of prototypes for each pattern class in an ad-hoc way, and
interactively it searches for prototypes that are neighbors to patterns. The prototypes are
updated according to the classification result performed such that the nearest neighbor
rule minimizes the average expected misclassification probability. When the iterations
settle down, the updated prototypes should be close to the training patterns in their
classes. The class of a new pattern is the same as the class of the closest prototype.

The LVQ algorithm family consists of several modifications of the basic LVQ pro-
cedure aiming to achieve best approximation of Bayes optimal decision boundaires,
faster or more robust convergence, or incorporation of more flexible metrics ([1], [4] -
[6], [8]). The distance between data points, determined by the chosen metric, plays a
key role in LVQ and clustering algorithms. In addition, the partitional clustering [7] as
well as LVQ provide a partition of the input data into classes or regions which aim to
optimize a criterion (for example, the sum of intra-class inertias in k-means algorithm
and average expected misclassification probability in LVQ). However, if these methods
assume a static model of distance, this can make them ineffective to adequately capture
characteristics of the classes or class regions in situations when the data set contains
classes of different shapes and sizes or equal shape but different volumes.

In [2] were introduced partitional clustering algorithms in which the distance used
to compare clusters and their prototypes changes at each iteration but is the same for all
prototypes and in [3] are presented partitional fuzzy clustering methods based on this
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type of distance, called adaptive distance. The importance of this distance is in the fact
that it takes into account the intra-structure of the clusters and in this way the clustering
algorithm is able to recognize classes of different shapes and sizes.

The main contribution of this paper is to introduce a LVQ classifier with adaptive
distance. Here, the learning rule is based on the Optimized Learning Vector Quantiza-
tion (OLVQ1 - an optimized version of the LVQ1 introduced by Kohonen [6]) and the
search of the nearest prototype is performed assuming an adaptive Euclidean distance.
The goal is to use a distance that takes into account characteristics of the regions repre-
sented by prototypes and to achieve better performance in comparison with the original
OLVQ1 that uses the (non-adaptive) standard Euclidean distance.

The paper is organized as follows: Section 2 presents the optimized learning vector
quantization classifier based on an adaptive Euclidean distance. Section 3 describes a
performance analysis considering a synthetic data set with overlapping classes. The
performance is based on the prediction accuracy that is assessed in the framework of
a Monte Carlo simulation with 100 replications of this data set. Section 4 shows a
performance analysis considering three real data sets. In this analysis, the prediction
accuracy is assessed by the ten-fold cross validation method. Finally, Section 5 gives
the concluding and final remarks.

2 OLVQ-AD Classifier

This section presents the optimized learning vector quantization classifier with adaptive
distance (here called OLVQ-AD). The basic idea is to integrate an adaptive distance
with an incremental learning vector quantization. Thus, the learning process has two
optimization stages. In first stage, prototypes are modified according to the matching
between patterns and their nearest prototypes. The matching is determined based on
an adaptive Euclidean distance that takes into account the dispersion of the regions
with respect to their prototypes. In the second one, the adaptive Euclidean distance is
updated according to a criterion function measuring the fitting between the regions and
their prototypes.

2.1 The Optimized Learning Vector Quantization Algorithm (OLVQ1)

Suppose there are K classes labelled 1, . . . ,K . Let Ω = {(xi, yi)} (i = 1, . . . , n)
be a training data set. Each pattern i is described by a vector of p quantitative values
xi = (x1

i , . . . , x
p
i ) and a discrete quantitative valued yi that takes values in discrete set

{1, . . . ,K}.
The OLVQ is an iterative algorithm that aims to look for a prototype subset (a set of

points in the quantitative feature space) for each class, such that training points attract
prototypes of the correct class and repel other prototypes. An initial set of prototypes is
chosen from the training set. Prototypes are moved to try to achieve better classification
of the training data set by the 1-nearest neighbour rule based on a distance between
prototypes and training patterns.

Let {(wm, ym)} (m = 1, . . . ,M) be a set of prototypes, each one represented by
a vector p quantitative values wm = (w1

m, . . . , w
p
m) and a discrete quantitative value
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ym that takes values in discrete set {1, . . . ,K}. Assume that a subset of prototypes is
assigned to each class k (k = 1, . . . ,K) such that the total number of prototypes is M .

Given a pattern xi to be processed and let

c = arg min{d(xi,wm) =
p∑
j=1

(xji − wjm)2}

be the index of the prototype that lies closest to xi according to the distance d.
The process of learning in the OLVQ1 consists of updating the position of wc ac-

cording to the following equations:

wc(t+ 1) = wc(t) + αc(t)[xi − wc(t)] if class(xi) = class(wc) (1)

wc(t+ 1) = wc(t)− αc(t)[xi − wc(t)] if class(xi) �= class(wc)

where 0 < αc(t) < 1 is the corresponding learning rate to the prototype wc. It can be
constant or decrease monotonically with time and is determined as:

αc(t) =
αc(t− 1)

1 + s(t)αc(t− 1)
(2)

where s(t) = +1 if xi and wc belongs to the same class, and s(t)=-1 if xi andwc belong
to different classes.

2.2 Adaptive Distance

The OLVQ-AD classifier proposed in this paper involves the construction of a fixed
number of prototypes for each class based on the nearest-neighbor rule and an adap-
tive distance that takes into account the dispersion of the class regions. In this way, the
algorithm is able to find discriminant class regions of different shapes and sizes. By pro-
cessing the training pattern data set, a criterion function based on the nearest-neighbor
rule can be defined as:

J =
n∑
i=1

dA(xi(t),wc(t))δci (3)

where dA is an adaptive distance between a pattern xi(t) and a prototype wc(t) at it-
eration t such that c is the index of the nearest prototype to xi (m = 1, . . . ,M) and
δci = 1 if xi(t) has the same class of wc(t) otherwise δci = 0.

The criterion above represents the sum of the distances between patterns and proto-
types that have the same class label. When the Euclidean distance is used, an adaptive
version of this distance is as follows:

dA(xi(t),wc(t)) =
p∑
j=1

λj(xji (t)− wjc(t))
2 (4)

The adaptivity of dA is expressed by the vector of weights λ = (λ1, . . . , λp) that rep-
resents the information of the region dispersion.
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From the Lagrange Multiplier method, the weight vector λ= (λ1, . . . , λp), which
minimizes the criterion in equation (3) under λj > 0 and

∏p
j=1 λ

j = 1, is updated
according to the following expression

λj =
{Πp

h=1(
∑n
i=1(x

h
i (t)− whc (t))2δci)}

1
p∑n

i=1(x
j
i (t)− wjc(t))2δci

(5)

2.3 The Algorithm

The OLVQ-AD classifer has two optimization steps. The first step aims to find a subset
of prototypes (codebook vectors) into each class, minimizing the average expected mis-
classification probability. The second step aims to find an weighted Euclidean distance
minimizing a criterion function that measures the dissimilarity between prototypes and
patterns.

The schema of the OLVQ-AD algorithm is given as follow:

1. Initialization
1.1 Choose distinct M patterns of the training data set Ω randomly, producing the

initial subset of prototypes {w1(t), . . . ,wM (t)} at step t=0.
1.2 For m = 1 to M do αm(t) = 0.1.
1.3 For j = 1 to p do λj = 1.

2. Prototype update step: For i = 1 to n choose a pattern of Ω randomly without
reposition
2.1 Define the winning prototype wc such that

c = arg minm=1,...,MdA(xi,wm)

2.2 If class(xi) = class(wc) do wc(t+ 1) = wc(t) + αc(t)[xi − wc(t)]

2.3 If class(xi) �= class(wc) do wc(t+ 1) = wc(t)− α(t)[xi − wc(t)]

2.4 Update

αc(t+ 1) =
αc(t)

1 + s(t)αc(t)

where s(t) = +1 if xi and wc belong to the same class, and s(t)=-1 if xi and
wc belong to different classes

3. Distance update step: For j = 1, . . . , p, compute λj with equation (5).
4. Stopping criterion: If for all αm(t) ≤ 0.00005 (m = 1, . . . ,M) then STOP,

otherwise go to 2.

A drawback in developing incremental prototype set building method is how to generate
an initial prototype set. In order to solve this problem, a Monte Carlo simulation with
a fixed number of different initializations for the prototype set is applied. For each
repetition, a set of updated prototypes is obtained after the convergence of the algorithm
and the average of the updated prototypes among these repetitions is calculated. The
goal is to obtain best values for the update prototypes and to improve the performance
of the classifier.
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2.4 Classification Rule for New Patterns

Let ω be a new pattern, which is candidate to be assigned to one of theK classes, and its
corresponding description given by the continuous feature vector xω = (x1

ω , . . . , x
p
ω).

Remember that from the learning step the prototypes w1, . . . ,wM are computed.
The classification rule is defined as follow:

1. Find m such that

dA(xω,wm) ≤ dA(xω,wg), ∀g ∈ {1, . . . ,M} (6)

2. Assign ω to class(wm)

3 Experiments on Synthetic Data Sets

Experiments with an artificial quantitative data set in �2 showing class overlapping
and a corresponding performance analysis of the proposed classifier are considered in
this section. The idea is to achieve an evaluation of the OLVQ-AD algorithm that uses
an adaptive Euclidean distance in comparison with the OLVQ algorithm that uses the
standard Euclidean distance. The evaluation is carried out based on the classification
accuracy that was measured through the error rate of classification.

In this experiment, 100 replications of the the data set with identical statistical prop-
erties are obtained and for each one training (75% of the original data set) and test (25%
of the original data set) sets are randomly generated. The estimated error rate of classi-
fication corresponds to the average of the error rates found among the 100 replicates of
test set.

The data set has 800 points scattered among four clusters of equal sizes (200 points)
and ellipsis shapes of different volumes. Each class in this quantitative data set was
drawn according to two independent normal distributions according to the following
parameters:

a) Class 1: μ1 = 45, μ2 = 30, σ2
1 = 100, σ2

2 = 9;
b) Class 2: μ1 = 70, μ2 = 38, σ2

1 = 81, σ2
2 = 16;

c) Class 3: μ1 = 45, μ2 = 42, σ2
1 = 100, σ2

2 = 16;
d) Class 4: μ1 = 42, μ2 = 20, σ2

1 = 81, σ2
2 = 9;

Figure 1 displays the data set showing class overlapping.
As mentioned initially, 100 replications of this data set are performed in the frame-

work of a Monte Carlo simulation in order to estimate the error rate of classification.
Within this framework, 10 repetitions to choose the initial prototype set were also car-
ried out in the framework of another Monte Carlo simulation. The values of the average
(in %) ± standard deviation of the error rate of classification for the OLVQ-AD and
OLVQ algorithms were, respectively: 11.18 ± 2.142; and 13.71 ± 2.583. As expected
for this data set, the average error rate of the OLVQ classifier is greater than that of the
OLVQ-AD classifier.

The comparison between the OLVQ and OLVQ-AD classifiers is achieved by the
Student’s t-test for independent samples at a significance level of 5%. Let μ1 and μ2 be
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Fig. 1. Data set with four classes

the average of the error rate for the OLVQ and OLVQ-AD classifers, respectively, the
(null and alternative) hypothesis are:

H0 : μ1 = μ2

Ha : μ1 > μ2

By applying this test, the observed value of the test statistic following a Student’s t
distribution with 198 degrees of freedom was 7.55. This value shows that the OLVQ-
AD classifier outperformed the OLVQ one.

4 Application with Real Data Sets

The OLVQ and OLVQ-AD classifiers were applied to the iris, wine and pima data sets.
These data sets can be found in the UCI machine learning repository http://www.ics.uci.
edu/mlearn/MLRepository.html. The comparison criterion used was the classification
error rate obtained by the stratified cross-validation partitioning method on 10-folds.
10 repetitions of this procedure were carried out in order to estimate the classification
error rate in the framework of a Monte Carlo simulation. Thus, the estimated error
rate of classification corresponded to the average of the error rates found among the
100 replicates test set. For each iteration of this Monte Carlo procedure, 10 repetitions
to choose the initial prototype set were also carried out in the framework of another
Monte Carlo simulation.

4.1 Iris Data Set

This data set consists of three types (classes) of iris plants: Iris setosa, Iris versicolor and
Iris virginica. These classes have 50 instances each. One class is linearly separable from
the other 2; the latter are not linearly separable from each other. Each class is described
by 4 real valued attributes. These attributes are: sepal length, sepal width, petal length
and petal width.
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The OLVQ and OLVQ-AD classifiers were applied to this data set adopting five
prototypes for each class. The values of the average (in %) ± standard deviation of the
error rate of classification for the OLVQ-AD and OLVQ classifiers were, respectively:
3.93 ± 4.454; and 4.87 ± 5.513. From these values, we have that the average error rate
of the OLVQ algorithm is greater than that of the OLVQ-AD algorithm.

Student’s t-test for independent samples at a significance level of 5% were applied
and the observed value of the statistic tests following a Student’s t distribution with 198
degrees of freedom was 0.13. This result pointed out that the null hypothesis can not be
rejected and we can conclude that for this data set the OLVQ classifier was as good as
the OLVQ-AD classifier.

4.2 Wine Data Set

This data set consists of three types (classes) of wines produced in the same region
in Italy but derived from three different cultivars. The classes (1, 2 and 3) have, re-
spectively, 59, 71 and 48 instances. Each wine is described by 13 real valued attributes
representing the quantities of 13 constituents found in each of the three types of wines.
These attributes are: 1) Alcohol, 2) Malic acid, 3) Ash, 4) Alkalinity of ash, 5) Magne-
sium, 6) Total phenols, 7) Flavonoids, 8) Non-flavonoid phenols, 9) Proanthocyanins,
10) Colour intensity, 11) Hue, 12) OD280/OD315 of diluted wines and 13) Proline.

The OLVQ-AD and OLVQ classifiers were applied to this data set considering three
prototypes for each class. The values of the average (in %) ± standard deviation of the
error rate of classification for the OLVQ-AD and OLVQ classifiers were, respectively:
4.87± 4.679; and 28.22± 9.652. These values showed that for this data set the OLVQ-
AD classifier was considerably superior to the OLVQ classifier.

4.3 Pima Data Set

The National Institute of Diabetes and Digestive and Kidney Diseases of the NIH origi-
nally owned the PIMA Indian Diabetes Database (PIDD). The database has 768 patients
each with 8 valued attributes. There are 500 non-diabetic patients for class 0 and 268
diabetic ones for class = 1. The quantitative variables are: number of times pregnant, 2-
hour OGTT plasma glucose, diastolic blood pressure, triceps skin fold thickness, 2-hour
serum insulin, BMI, diabetes pedigree function and age.

The OLVQ-AD and OLVQ classifiers were applied to this data set considering five
prototypes for each class. The values of the average (in %) ± standard deviation of the
error rate of classification for the OLVQ-AD and OLVQ classifiers were, respectively:
25.87 ± 5.025; and 30.58 ± 5.584. As in the Iris and Wine data sets, the average error
rate of the OLVQ was greater than that of the OLVQ-AD.

Student’s t-test for independent samples at a significance level of 5% was also ap-
plied and the observed value of the statistic test following a Student’s t distribution with
198 degrees of freedom was 6.27. This result shows that for this data set the OLVQ-AD
classifier performed better than the OLVQ classifier.
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5 Conclusions

In this paper, a classifier based on Optimized Learning Vector Quantization and an
adaptive distance was presented. The classifier furnishes class regions represented by
prototypes and uses an adaptive Euclidean distance that changes at each iteration of
the learning algorithm. The advantage of this distances is that the algorithm is able to
recognize class regions of different shapes and sizes and to have better performance in
comparison with the original OLVQ that uses the standard Euclidean distance.

In order to compare the proposed OLVQ-AD classifier with the standard OLVQ clas-
sifier, experiments with synthetic and real data sets were carried out. The accuracy of
the results furnished by these classifier methods was assessed by the error rate of clas-
sification. Concerning the results of the error rate, the OLVQ-AD classifier with an
adaptive Euclidean distance proposed in this paper was superior to OLVQ classifier that
uses the standard Euclidean distance.
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Abstract. This paper presents a new methodology for the adjustment

of fuzzy inference systems, which uses technique based on error back-

propagation method. The free parameters of the fuzzy inference sys-

tem, such as its intrinsic parameters of the membership function and the

weights of the inference rules, are automatically adjusted. This methodol-

ogy is interesting, not only for the results presented and obtained through

computer simulations, but also for its generality concerning to the kind of

fuzzy inference system used. Therefore, this methodology is expandable

either to the Mandani architecture or also to that suggested by Takagi-

Sugeno. The validation of the presented methodology is accomplished

through estimation of time series and by a mathematical modeling prob-

lem. More specifically, the Mackey-Glass chaotic time series is used for

the validation of the proposed methodology.

Keywords: Fuzzy systems, tuning algorithm, error backpropagation.

1 Introduction

The design of fuzzy inference systems comes along with several decisions taken
by the designers since is necessary to determine, in a coherent way, the number of
membership functions for the inputs and outputs, and also the specification of the
fuzzy rules set of the system, besides defining the strategies of rules aggregation
and defuzzification of output sets. The need to develop systematic procedures
to assist the designers has been wide because the trial and error technique is
the unique often available in many cases [1]. At present time, there are several
researchers engaged in studies related to the design techniques involving fuzzy
inference systems [2,3,4,5].

This paper presents an approach for tuning fuzzy inference systems based on
unconstrained optimization techniques using the error backpropagation method.
The objective is to minimize an energy function associated with the fuzzy in-
ference system, which can be explicited as the mean squared error between the
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output of the fuzzy system and the desired results, similar to the artificial neural
networks with supervised training. Therefore, it is observed that the proper spec-
ification of the energy function is fundamental to apply the adjustment method
correctly.

In general terms, for applications involving system identification and fuzzy
modeling, it is convenient to use energy functions that express the error between
the desired results and those provided by the fuzzy system. An example is the use
of the mean squared error or normalized mean squared error as energy functions.

In the absence of a tuning set, such as happens in parameters adjustment of a
process controller, the energy function can be defined by functions that consider
the desired requirements of a particular design [6], i.e., maximum overshoot
signal, setting time, rise time, undamped natural frequency, etc.

Using this new approach from the definition point of view, the fuzzy system
can be designed as a three layers model. Each one of these layers represents the
tasks performed by the fuzzy inference system such as fuzzification, fuzzy rules
inference and defuzzification. The adjustment procedure proposed in this paper
is performed through the adaptation of its free parameters, from each one of
these layers, in order to minimize the energy function previously specified.

In principle, the adjustment can be made layer by layer separately. Thus,
the routine of fuzzy inference system tuning acquires a larger flexibility when
compared to the training process used in artificial neural networks. Simulation
results are presented to validate the approach proposed.

2 Aspects of Fuzzy Inference Systems

In the last years it has been observed a wide and growing interest in applica-
tions involving fuzzy logic. These applications include since consumer products,
such as cameras, video camcorders, washing machines and microwave ovens, even
industrial applications as control of processes, medical instrumentation and de-
cision support systems [10].

The fuzzy inference systems can be treated as methods that use the concepts
and operations defined by the fuzzy set theory and by fuzzy reasoning meth-
ods [11]. Basically, these operational functions include fuzzification of inputs,
application of inference rules, aggregation of rules and defuzzification, which
represents the crisp outputs of the fuzzy system [12]. At present time, there are
several researchers engaged in studies related to the design techniques involving
fuzzy inference systems.

The first type of design technique of fuzzy inference system has its focus
addressed to enable the modeling of process from their expert knowledge bases,
where both antecedent and consequent terms of the rules are always fuzzy sets,
offering then a high semantic level and a good interpretability capacity [13].
However, the applicability of this technique in the mapping of complex systems
composed by several input and output variables has been an arduous task, which
can produce as inaccurate results as poor performance [1,14].
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The second type of design technique of fuzzy inference system can be identified
as being those that incorporate learning, in an automatic way, from data that
are representing the behavior of the input and output variables of the process.
Therefore, this design strategy uses a collection of input and output values ob-
tained from the process to be modeled, which differs of the first design strategy,
where the fuzzy system was defined using only the expert knowledge acquired
from observation on the respective system. In a generic way, the methods derived
from this second strategy can be interpreted as being composed by automatic
generation techniques of fuzzy rules, which use the available data for their ad-
justment procedures (or training).

Among the main approaches belonging to this second design strategy, it has
been highlighted the ANFIS (Adaptive-Network-based Fuzzy Inference Systems)
algorithm proposed by [12], which is applicable to the fuzzy architectures consti-
tuted by real polynomial functions as consequent terms of the fuzzy rules, such
as those presented by [15] and [16]. The more recent approaches, such as those
proposed by [17,18,19], are also belonging to this design strategy.

However, the representation of a process through these automatic architec-
tures can implicate in interpretability reduction in relation to the created base of
rules, whose consequent terms are expressed in most of the cases by polynomial
functions, instead of linguistic variables [20].

Thus, the development of adjustment algorithms of fuzzy inference systems,
which the consequent terms of the fuzzy rules are also represented by fuzzy sets,
has been widely motivated.

3 Formulation of the Proposed Adjustment Method

Considering the operational functions performed by the fuzzy inference systems,
it is convenient to represent them by a three-layers model. Thus, a fuzzy inference
system can be represented by the sequential composition of three layers, i.e.,
input layer, inference layer and output layer.

The input layer has functionalities of connecting the input variables (com-
ing from outside) with the fuzzy inference system, performing their respective
fuzzyfications through proper membership functions. In the inference layer of the
fuzzy rules, the input fuzzified variables are combined among them, according
to defined rules, using as support the operations defined by the fuzzy theory.
The resulting set of this aggregation process is then defuzzified to produce the
fuzzy inference system output. The aggregation and defuzzification process of the
fuzzy system output are both made by the output layer. It is important to ob-
serve, concerning to the output layer, that although it performs the two processes
above described, it is also responsible for storing the membership functions of
the output variables. As illustration, Fig. 1 shows the proposed multilayer model,
which is constituted by two inputs and one output, having three fuzzy rules in
its inference layer.

In the following subsections further details will be presented about how fuzzy
inference systems can be represented by a three-layers model.
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Fig. 1. Fuzzy inference system composed by two inputs and one output

3.1 Input Layer

The inputs fuzzification has the purpose of determining the membership degree
of each input related to the fuzzy sets associated with each input variable. To
each input variable of the fuzzy system can be associated as many fuzzy sets as
necessary. In this way, let a fuzzy system constituted by only one input with N
fuzzy sets, the output of the input layer will be a column vector with N elements,
which are representing the membership degrees of this input in relation to those
fuzzy sets. If we define the input of this fuzzy system with a unique input x,
then the output of the input layer will be the vector I1 represented by:

I1(x) = [μA1(x) μA2(x) . . . μAN (x)]T . (1)

where μAk
(.) is the membership function defined to input x, which is referring

to the k-th fuzzy set associated with it. The generalization of the input layer
concept for a fuzzy system having p input variables can be achieved if we consider
each input being modeled as a sub-layer of the input layer. Taking into account
this consideration, the output vector of the input layer I(x) is then defined by:

I(x) =
[
I1(x1)T I2(x2)T . . . Ip(xp)T

]T
. (2)

where xi is the i-th input of the fuzzy system and Ik(.) is the k-th vector of
membership functions associated with the input xk. In Fig. 1 is illustrated the
input layer for a fuzzy system composed by two inputs, which are mapped by
the vectors I1 and I2.

There are several membership functions that can be used in the proposed
approach. One of the necessary requisites for those functions is that they are
normalized in the closed domain [0,1].
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3.2 Inference Layer

The inference layer of a fuzzy system has the functionality of processing the fuzzy
inference rules defined for it. Another functionality is to provide a knowledge base
for the process.

In this paper, the fuzzy inference system has initially all the possible inferred
rules. Therefore, the tuning algorithm has the task of weighting the inference
rules. The weighting of the inference rules is a proper way to represent the most
important rules, or even to allow that conflicting rules are related to each other
without any linguistic completeness loss. Thus, it is possible to express the i-th
fuzzy rule as follows:

Ri (I(x)) = wiri (I(x)) . (3)

where Ri(.) is the function representing the fuzzy weighting of the i-th fuzzy
rule, wi is the weight of the i-th fuzzy rule and ri(.) represents the fuzzy value
of the i-th fuzzy rule. In Fig. 1, it is shown the composition involving ri(.) and
Ri(.) for the three fuzzy rules belonging to the inference layer.

3.3 Output Layer

The output layer of the fuzzy inference system aims to aggregate the inference
rules as well as the defuzzification of the fuzzy set generated from the aggregation
of these inference rules.

Besides the operational aspects, the aggregation and defuzzification methods
must consider the requisites of hardware performance in order to reduce the
computational effort needed for processing the fuzzy system. In this paper, the
output layer of the inference system is also adjusted. The adjustment of this
layer occurs in a similar way to that used for the input layer of the fuzzy system.
As example, an illustration representing the procedures involved with the output
layer is also shown in Fig. 1.

4 Adjustment of the Fuzzy Inference System

Let a fuzzy system with two inputs, each one composed of three Gaussian mem-
bership functions, with a total of five inference rules, and having an output
defined by two Gaussian membership functions. It is known that, for each Gaus-
sian membership function, two free parameters should be considered, i.e., the
mean and the standard deviation. Consequently, the number of free parameters
of the input layer is 12. For each inference rule, a weighting factor has been as-
sociated, resulting a total of 5 free parameters in the inference layer. In relation
to the output layer, the same considerations used for the input layer are valid.
Therefore, four free parameters are associated with the output layer.

Thus, the mapping f between the input space x and the output space y may
be defined by:

y = f(x,mfIn, w,mfOut) . (4)
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where mfIn is the parameter vector associated with the input membership func-
tions, w is the weight vector of the inference rules, and mfOut is the parameter
vector associated with the output membership functions. Therefore, mfIn, w
and mfOut represent the free parameters of the fuzzy system, which can be
rewritten as follows:

y = f(x,Θ) . (5)

where Θ is the vector resulting from concatenation of the free parameters in-
volved with the fuzzy system, i.e.

Θ =
[
mfTIn, w

T ,mfTOut

]
. (6)

The energy function to be minimized, considering the fixed tuning set {x, y}, is
defined by:

ξ ≡ ξ(x,y)(Θ) . (7)

where ξ represents the energy function associated with the fuzzy inference
system f .

4.1 Unconstrained Optimization Techniques

Let an energy function ξ(x,y)(Θ) differentiable in relation to free parameters of
the fuzzy inference system. Thus, the objective is to find an optimum solution
Θ∗ subject to:

ξ(Θ∗) ≤ ξ(Θ) . (8)

Therefore, we can observe that to satisfy the condition expressed in (8), it is
necessary to solve an unconstrained optimization problem to obtain the solution
Θ∗, which is given by:

Θ∗ ≡ argmin
Θ

ξ(Θ) . (9)

The condition that expresses the optimum solution in (9) can also be rewritten
as follows:

∇ξ(Θ∗) = 0 . (10)

where ∇ is the gradient operator defined by:

∇ξ(Θ) =
[
∂ξ

∂Θ1
,
∂ξ

∂Θ2
, . . . ,

∂ξ

∂Θm

]T
. (11)

There are several techniques used to solve unconstrained optimization problems.
A detailed description of these methods can be found in [7]. The selection of
the most proper method is related to the complexity associated with the energy
function. For example, the Gauss-Newton method for unconstrained optimiza-
tion can be more applicable in problems where the energy function is defined
by:

ξ(Θ) =
1
2

m∑
i=1

e2(i) . (12)

where e(i) is the absolute error in relation to the i-th tuning pattern.
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In this paper, a derivation of the Gauss-Newton method is used for tuning
fuzzy inference system, which is defined by the expression following:

Θnext = Θnow −
1
2
(
JTJ

)−1
g . (13)

where g is the gradient of ξ expressed in (11) and J is the Jacobean matrix of e
defined in (12). The optimization algorithm used was the Levenberg-Marquardt
method [8], which can efficiently handle ill-conditioned matrices JTJ by altering
equation (13) as follows:

Θnext = Θnow −
1
2
(
JTJ + λI

)−1
g . (14)

The calculation of the matrices J and the vectors g were performed through the
finite differences method.

5 Methodology and Results

Using the adjustment methodology presented in this paper, a fuzzy inference
system of Mandani type was developed with objective to predict the Mackey-
Glass time series [9], which is defined by:

dx(t)
dt

= −b · x(t) +
a · x(t− τ)

1 + x(t − τ)c
. (15)

where the values of the constants are usually assumed as a = 0.2, b = 0.1
and c = 10. The value for the delay constant τ was 17. The tuning set was
constituted by 500 patterns. The input variables of the fuzzy inference system
were four, which correspond to values x(t− 18), x(t− 12), x(t− 6) and x(t). As
output variable was adopted x(t + 6).

The fuzzy inference system was defined having 4 fuzzy sets attributed to each
input variable and also to the output variable. A total of 64 inference rules have
been used in the inference process.

The energy function of the system was defined as being the mean squared
error between the desired values x(t+ 6) and the estimated values x̄(t+ 6), i.e.

ξ(Θ) =
1
L

L∑
i=1

[xi(t+ 6)− x̄i(t+ 6)]2 . (16)

where L is the number of data used in the tuning process (L = 500).
After minimization of (16), the membership functions of the fuzzy inference

system were adjusted as illustrated in Fig. 2.
In Fig. 3 is presented the prediction results provided by the fuzzy inference

system for 1000 sample points. The mean squared error of estimation for the
proposed problem was 0.000598 with standard deviation of 0.0245.



814 I. da Silva and R. Flauzino

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

x(t-18)

mf1

mf2 
mf3mf4 

   
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0

0.2

0.4

0.6

0.8

1

x(t-12)

mf1 mf2 mf3 
mf4 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 
0.2 
0.4 
0.6 
0.8 

1 

x(t-6) 

mf1 

mf2 mf3 mf4

   
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0

0.2

0.4

0.6

0.8

1

x(t)

mf2

 
 

Fig. 2. Input membership functions
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Fig. 3. Estimation of the fuzzy inference system for the Mackey-Glass series

For comparison, it was developed a fuzzy inference system adjusted by the AN-
FIS (Adaptive Neural-Fuzzy Inference System) [12]. This fuzzy inference system
was composed by 10 membership functions for each input, being the knowledge
database constituted by 10 rules. The mean squared error of estimation was
0.000165 with standard deviation of 0.0041.

The proposed methodology was also used in other example in order to model
a two-dimensional sinc function defined by:

z = sinc(x, y) =
sin(x) · sin(y)

x · y . (17)
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Fig. 4. Tuning data (a) and reconstructed surface (b)

From uniformly distributed grid points into the input range [-10,10] x [-10,10] of
(17), 225 tuning data pairs were obtained. The fuzzy inference system used here
contains 11 rules, with 8 membership functions assigned to input variable x, 7
membership functions assigned to input y and 3 membership functions assigned
to output z. The tuning data and reconstructed surface are illustrated in Fig. 4.

6 Conclusions

In this paper was highlighted the basic foundations involved with the fuzzy
inference system tuning process from unconstrained optimization techniques.
To validation purposes, the results obtained by the proposed approach were
compared to those provided from the ANFIS. Based on these promising results,
new perspectives of researches related to the tuning process of fuzzy inference
systems can be investigated.
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al. Armii Krajowej 36, 42-200 Czȩstochowa, Poland
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Abstract. The paper proposes a new ensemble of neuro-fuzzy rough set classi-
fiers. The ensemble uses fuzzy rules derived by the Adaboost metalearning. The
rules are used in an ensemble of neuro-fuzzy rough set systems to gain the abil-
ity to work with incomplete data (in terms of missing features). This feature is
not common among different machine learning methods like neural networks or
fuzzy systems. The systems are combined into the larger ensemble to achieve
better accuracy. Simulations on a well-known benchmark showed the ability of
the proposed system to perform relatively well.

Keywords: Neuro-fuzzy, rough sets, classifier ensemble.

1 Introduction

By combining various soft computing and machine learning methods we can achieve
some kind of their synergy. The proposed solution joins neural networks, fuzzy systems,
rough sets and ensemble learning. Neural networks have ability to perfectly fit to data.
Fuzzy logic use interpretable knowledge and rough set systems can operate on data with
missing features.

One of soft computing applications is classification which consists in assigning an
object described by a set of features to a class. The object x ∈ X is described by the vec-
tor of features v ∈ V. Thus we can equate object x class membership with its feature
values v = [v1, v2, . . . , vn] class membership. Consequently, we can use interchange-
ably x or v . Let us assume that fuzzy set A ⊆ V is given as its membership function
μA(x) = μA(v) = μA(v1, v2, . . . , vn) where vi ∈ Vi for i = 1, . . . , n. We also de-
fine the set of all object x features Q = {v1, v2, . . . , vn}. There are many methods for
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classifying data. The traditional statistical classification procedures [1] apply Bayesian
decision theory and assume knowledge of the posterior probabilities. Unfortunately, in
practical situations we have no information about an underlying probability model and
Bayes formula cannot be applied. Over the years, numerous classification methods were
developed [1] based on neural networks, fuzzy systems [2][3][4][5], support vector ma-
chines, rough sets and other soft computing techniques. These methods do not need the
information about the probability model. Yet, they usually fail to classify correctly in
case of missing data (features). Generally, there are two ways to solve the problem of
missing data:
- Imputation - the unknown values are replaced by estimated ones. The estimated value
can be set as the mean of known values of the same feature in other instances. An an-
other idea is to apply the nearest neighbor algorithm based on instances with known
value of the same feature. The statistical method can be also used.
- Marginalisation - the features with unknown values are ignored. In this way the prob-
lem comes down to the classification in lower-dimensional feature space.

Fuzzy classifiers are frequently used thanks to their ability to use knowledge in the
form of intelligible IF-THEN fuzzy rules. They fall into one of the following categories
[6], depending on the connective between the antecedent and the consequent in fuzzy
rules:

(i) Takagi-Sugeno method - consequents are functions of inputs,
(ii) Mamdani-type reasoning method - consequents and antecedents are related by the
min operator or generally by a t-norm,
(iii) Logical-type reasoning method - consequents and antecedents are related by fuzzy
implications, e.g. binary, Łukasiewicz, Zadeh etc.

Unfortunately neuro-fuzzy systems are not able to cope with missing data. Here rough set
systems show their advantage of coping with missing data. They describe the uncertainty
of an object classification taking into consideration limited knowledge about the object.

Classifiers can be combined to improve accuracy [7]. By combining intelligent learn-
ing systems, the model robustness and accuracy is nearly always improved, comparing
to single-model solutions. Popular methods are bagging and boosting which are meta-
algorithms for learning different classifiers. They assign weights to learning samples
according to their performance on earlier classifiers in the ensemble. Thus subsystems
are trained with different datasets created from the base dataset.

In this paper we will combine fuzzy methods with the rough set theory [8][9][10]
and classifier ensemble methods. An ensemble of neuro-fuzzy systems is trained with
the AdaBoost algorithm and the backpropagation [11]. Then rules from neuro-fuzzy
systems constituting the ensemble are used in a neuro-fuzzy rough classifier. In this
way, we obtain rules that are perfectly fitted to data and use them in the classifier which
can operate on data with missing features.

2 Neuro-fuzzy Rough System for Classification

In the case of classification, the information about an object x membership to the class
ωj can be fuzzy and is specified by the corresponding consequent (zkj = μωj (x). In
such a case fuzzy rules have the following form [3]
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Rk : IF v1 is Ak1 AND v2 is Ak2 AND . . .
. . . AND vn is Akn THEN x ∈ ω1(zk1), x ∈ ω2(zk2), . . .
. . . , x ∈ ωm(zkm)

, (1)

where observations vi of the object x are independent variables, k = 1, . . . , N , N is
the number of rules, and zkj is the membership degree of the object x to the j–th class
ωj according to rule k. We also assume that memberships of objects to classes are crisp
rather than fuzzy, i.e.

zkj =

{
1 if x ∈ ωj
0 if x /∈ ωj

. (2)

In case of rough sets it is assumed that the universe of discourse U is subjected to
fuzzy partition Φ into fuzzy sets Fi ⊆ U and approximation of the fuzzy set A ⊆ U is
performed on basis of this partition [12], [13]

Definition 1 (Fuzzy rough set). Fuzzy rough set is a pair
(
ΦA,ΦA

)
, where set ΦA is

Φ–lower approximation of the fuzzy set A ⊆ U , and set ΦA is its Φ–upper approxima-
tion. Membership functions of sets ΦA and ΦA are determined as follows

μΦA(Fi) = sup
x∈U

min (μFi(x), μA(x)) , (3)

μΦA(Fi) = inf
x∈U

max (1− μFi(x), μA(x)) . (4)

Therefore, the lower and upper membership grades are expressed by:

zj∗ =

N∑
r=1

r : zk
j =1

μAk
L
(v)

N∑
r=1

μAk
L
(v)

(5)

and

z∗j =

N∑
r=1

r : zk
j =1

μAk
U
(v)

N∑
r=1

μAk
U
(v)

, (6)

where AkL and AkU are defined as follows

AkL =

{
Ak∗ if zkj = 1
Ak∗ if zkj = 0

(7)

and

AkU =

{
Ak∗ if zkj = 1
Ak∗ if zkj = 0

. (8)
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Fig. 1. Neuro-fuzzy rough classifier architecture

The resulting neuro-fuzzy rough architecture is shown in Figure 1. The defuzzification
method used in the system is similar to the fuzzy rough classification case. Let zj∗ be the
lower membership grade of the object x to the class ωj and z∗j be its upper membership
grade in the form of equations (5) and (6), respectively. In this case, we may fix two
numbers (thresholds) zIN and zOUT such that 1 > zIN ≥ zOUT > 0. Consequently, the
crisp decision can be defined as follows⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x ∈ ωj if zj∗ ≥ zIN and z∗j > zIN

x /∈ ωj if zj∗ < zOUT and z∗j ≤ zOUT

perhaps x ∈ ωj if zIN > zj∗ ≥ zOUT and z∗j > zIN

perhaps x /∈ ωj if zj∗ < zOUT and zOUT < z∗j ≤ zIN

undefined otherwise.

(9)

When we assume that zIN = zOUT = 1
2 , equation (9) takes the following form⎧⎪⎨⎪⎩

x ∈ ωj if zj∗ ≥ 1
2 and z∗j >

1
2

x /∈ ωj if zj∗ < 1
2 and z∗j ≤ 1

2

undefined otherwise.

(10)
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3 AdaBoost Algorithm

To build the ensemble we use the AdaBoost algorithm which is the most popular boost-
ing method [14][15][16]. Let us denote the l-th learning vector by zl = [xl1, ..., x

l
n, y

l] ,
l = 1...m is the number of a vector in the learning sequence, n is the dimension of input
vector xl, and yl is the learning class label. Weights Dl assigned to learning vectors,
have to fulfill the following conditions

(i) 0 < Dl < 1 , (ii)
m∑
l=1

Dl = 1 . (11)

The weightDl is the information how well classifiers were learned in consecutive steps
of an algorithm for a given input vector xl. Vector D for all input vectors is initialized
according to the following equation

Dl
t =

1
m
, for t = 0, ..., T , (12)

where t is the number of a boosting iteration (and a number of a classifier in the en-
semble). Let {ht(x) : t = 1, ..., T} denotes a set of hypotheses obtained in consecutive
steps t of the algorithm being described. For simplicity we limit our problem to a bi-
nary classification (dichotomy) i.e. y ∈ {−1, 1} or ht(x) = ±1 . Similarly to learning
vectors weights, we assign a weight ct for every hypothesis, such that

(i)
T∑

t=1

ct = 1 , (ii) ct > 0 . (13)

Now in the AdaBoost algorithm we repeat steps 1-4 for t = 1, . . . , T :

1. Create hypothesis ht and train it with a data set with respect to a distribution dt for
input vectors.
2. Compute the classification error εt of a trained classifier ht according to the formula

εt =
m∑
l=1

Dl
t(z

l)I(ht(xl) �= yl) , (14)

where I is the indicator function

I(a �= b) =
{

1 if a �= b
0 if a = b

. (15)

If εt = 0 or εt ≥ 0.5, stop the algorithm.
3. Compute the value

αt = 0.5 ln
1− εt

εt
. (16)

4. Modify weights for learning vectors according to the formula

Dt+1(zl) =
Dt(zl) exp{−αtI(ht(xl) = yl)}

Nt
, (17)
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where Nt is a constant such that
m∑
l=1

Dt+1(zl) = 1 . To compute the overall output of

the ensemble of classifiers trained by AdaBoost algorithm the following formula is used

f(x) =
T∑

t=1

ctht(x) , (18)

where
ct =

αt∑T
t=1 |αt|

(19)

is classifier importance for a given training set. The AdaBoost algorithm is a meta-
learning algorithm and does not determine the way of learning for classifiers in the
ensemble.

4 Experimental Results

In this section we test the proposed approach using the Glass Identification problem
[17]. The goal is to classify 214 instances of glass into window and non-window glass
basing on 9 numeric features. We took out 43 instances for a testing set. At first we
created an Adaboost ensemble of neuro-fuzzy systems. The ensemble consisted of 4
neuro-fuzzy systems each with 4 rules. The NFS systems were learned by the backrop-
agation algorithm. The fuzzy rules obtained that way were used to create rough fuzzy
classifiers. They were created with the use of different implications. The classification
results for learning and testing datasets are presented in Table 1.

Table 1. Performance of the proposed neuro-fuzzy rough classifier ensemble with different im-
plications on learning/testing Glass dataset

Classification accuracy [%]
Kleene-Dienes implication

learning dataset 96.7
testing dataset 84.4

Mamdani/Lukasiewicz implication
learning dataset 99.3
testing dataset 90.6

Larsen/Reichenbach implication
learning dataset 98.7
testing dataset 84.4

5 Conclusions

The ensemble is created using the AdaBoost algorithm. The fuzzy subsystems are
learned by gradient learning and initialized by modified FCM clustering algorithm.
We obtain fuzzy rules from the ensemble and incorporate this rules to the ensemble
of neuro-fuzzy rough systems. The systems work on data with missing features. Sim-
ulations on a well known benchmark shows very good ability to classify data. Results
are comparable to the best ones from the literature [6].
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Abstract. In this work, a new approach for intrusion detection in com-

puter networks is introduced. Using the KDD Cup 99 dataset as a bench-

mark, the proposed method consists of a combination between feature

selection methods and a novel local classification method. This classifi-

cation method –called FVQIT (Frontier Vector Quantization using In-

formation Theory)– uses a modified clustering algorithm to split up the

feature space into several local models, in each of which the classification

task is performed independently. The method is applied over the KDD

Cup 99 dataset, with the objective of improving performance achieved by

previous authors. Experimental results obtained indicate the adequacy

of the proposed approach.

1 Introduction

Data security is a serious concern in an information society. The overcrowding
of internet has contributed to the increases in security risk of information sys-
tems. Nowadays, every single company and private individual is exposed to this
hazard, which explains why Intrusion Detection Systems (IDS) are now an im-
portant part on any network security architecture. IDSs aim to inform the system
administrator of any suspicious activities inside the target computer network.
In general, there exist two types of Intrusion Detection Systems: Misuse-based
and Anomaly-based IDSs [1]. The former try to model abnormal behavior by
recording signatures for known attacks, while the latter aspire to model normal
behavior in order to be able to detect operations beyond normal practice. Ar-
tificial Neural Networks and other Machine Learning techniques have proved to
be suitable Anomaly-based IDSs.

Over the last few years, scientific and technological interest in techniques for
intrusion detection in computer networks has risen steadily. In 1999, the dataset
known as KDD Cup 99 was released in the homonym classifier learning contest
[2]. It contains an enormous number of connection records and it has become
a valuable benchmark to test intrusion detection systems and, broadly, to test
pattern recognition and machine learning algorithms.
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This paper presents a new method for intrusion detection based on a com-
bination between some feature selection methods [3] and a novel classification
method [4]. This classification method –called FVQIT (Frontier Vector Quanti-
zation using Information Theory)– uses a modified clustering algorithm to split
up the feature space into local models, in each of which the classification task
is performed independently. Several machine learning techniques have been ap-
plied over the KDD Cup 99 dataset. However, and up to the authors’ knowl-
edge, this dataset has not been addressed from the perspective of local modeling
techniques. An explanation for this could be that these methods might have
experienced very poor computational performance when applied to such a large
dataset. As will be shown, the FVQIT classification method is able to adequately
manage large amounts of data, provided that a feature selection method is ap-
plied so as to reduce input dimensionality. The objective in this work is to utilize
this feature selection and local modeling combined technique to improve perfor-
mance achieved over the KDD Cup 99 dataset by previous authors.

The remainder of this work is organized as follows. Sect. 2 details the feature
selection methods utilized. Sect. 3 explains the classification method chosen. In
Sect. 4 an empirical comparative study over the application of the proposed
method to the KDD Cup 99 dataset is performed. Lastly, Sect. 5 summarizes
the conclusions inferred and proposes some future lines of research.

2 Data Preprocessing

Feature Selection (FS) is a technique that tries to eliminate irrelevant and/or
redundant attributes. In this manner, classification algorithms benefit from the
decrease in the number of features, improving their predictive accuracy and
shortening their learning period. In fact, one of the main problems when facing
the KDD Cup 99 dataset is precisely the computational efficiency due to its
enormous size.

There is a large number of feature selection methods, which are usually clas-
sified into two main models: wrapper methods and filter methods [5]. While the
former optimize a predictor to carry out selection, the latter rely on general
characteristics of data to get the features selected. As wrappers are more com-
putationally expensive than filter methods, and because of the large size of the
KDD Cup 99 dataset, in this work the filter approach is adopted, as in [3], where
combinations of discretizators and filters were used so as to improve classification
performance over large datasets.

2.1 Filter Methods: INTERACT and Consistency-Based

Among the filters utilized in [3], INTERACT [6] and Consistency-based Filter [7]
have been chosen due to their good performance. INTERACT is a new method
based on the interaction between features, from an Information Theory point
of view; while Consistency-based follows a more classical approach, evaluating
consistency between classes.
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– INTERACT : This algorithm is based on symmetrical uncertainty (SU) [8],
which is defined as the ratio between the Information Gain (IG) and the
Entropy (H) of two features, x and y:

SU (x, y) = 2
IG (x/y)

H(x) +H (y)
(1)

where IG (x/y) = H (y)+H (x)−H (x, y) is the Information Gain, H (x) is
the entropy, and H (x, y) is the joint entropy.

Besides SU, INTERACT also deals with the consistency contribution
(C-contribution). The C-contribution of a feature is an indicator about how
significantly the elimination of that feature will affect consistency. The al-
gorithm utilizes SU and C-contribution to assess whether to remove each
feature. It is stated in [6] that INTERACT can thus handle feature interac-
tion, and efficiently select relevant features.

– Consistency-based Filter : The Consistency-based Filter judges the value of
a subset of features according to the level of consistency of class values de-
pending on training data and tries to minimize the number of features. With
this in view, a random subset of features S is generated in each iteration,
and these data are checked against an inconsistency criterion. If the inconsis-
tency rate is lower than a given threshold, S becomes the current minimum.
The inconsistency criterion is the key for the success of this algorithm. It
specifies a quality measure that determines how much the dimensionality of
data can be reduced. If the inconsistency rate of data is smaller than a given
threshold, the dimensionally reduced data are acceptable.

2.2 Discretization Methods: PKID and EMD

Some features of the KDD Cup 99 dataset present high imbalance and variability,
that is to say, their range is very large but most values are brought together inside
a small sub-interval. This situation may cause a malfunction in most classifiers.
This problem is softened up by using discretization methods. In substance, the
process of discretization involves putting continuous values into groups, by means
of a number of discrete intervals. Among the discretization algorithms utilized
in [3], PKID (Proportional k-Interval Discretization) [9] and EMD (Entropy
MInimization Discretization) [10] have been chosen, because both INTERACT
and Consistency-based Filter worked best with them.

– Proportional k-Interval Discretization (PKID): Created by Yang & Webb,
the idea behind PKID is seeking an appropriate trade-off between the bias
and variance of the probability estimation by adjusting the number and
size of discretization intervals to the number of training instances. Thus, a
numeric attribute Xi is discretized into

√
n intervals, each of them containing√

n instances, where n is the number of training instances with known values
{x1, . . . , xn} for the attribute Xi. In this way, bias and variance are given
equal weight. Furthermore, if n increases, both number and size of intervals
increases correspondingly, which means PKID can decrease both bias and
variance of the probability estimation.
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– Entropy Minimization Discretization (EMD): Proposed by Fayyad & Irani,
EMD considers the midpoint between each successive pair of sorted values
(xj , xj+1) as a candidate cut-point. For each candidate cut point, all data
left at both sides are discretized into two intervals and the resulting class
information entropy is calculated. The cut-point for which the entropy is
minimum is selected. The process is repeated recursively, hence selecting the
minimum-entropy cut-points. The Minimum Description Length Principle
(MDL) [11] is utilized as a stopping criterion.

3 Classification Method: FVQIT

The FVQIT Method is a novel supervised architecture for binary classification
based on local modelling and information theory [4]. It is composed of two stages
(see Fig. 1): first, a piecewise representation of the frontier between classes is
constructed by means of a set of nodes; secondly, given that each of these nodes
defines a local model, a hyperplane is constructed and adjusted in each of them
by using one-layer neural networks.

3.1 Stage 1: Selection of Local Models

Training data are split up into groups by applying the FVQIT algorithm. The
objective is to have a set of nodes placed on the frontier between the two classes,
in such a way that each of the nodes will represent a local model. In order to
achieve this, both data points and nodes are thought to be two kinds of particles,
where each particle has a potential field associated to it. These fields induce
repulsive and attractive interactions between particles, depending on the sign of
the particles. Among data particles, those which belong to different classes have
different signs. In this context, the algorithm minimizes a function of energy that
calculates the divergence between the Parzen density estimator of data points
f (x) and the estimator of the distribution of the nodes g (x), where f (x) and
g (x) are:

Fig. 1. Structure of the FVQIT Architecture



828 I. Porto-Dı́az et al.

f (x) = 1
N

∑N
i=1K

(
x− xi, σ

2
f

)
g (x) = 1

N

∑N
i=1K

(
x− wi, σ

2
g

) (2)

where N is the number of data points, K is a kernel function, σ2
f and σ2

g are the
variances of the kernel functions, xi ∈ IRn are data points, and wi ∈ IRn are the
weights associated to the nodes.

Using the Cauchy-Schwarz inequality and applying logarithms to avoid divi-
sions (see [12]), the function of energy J (w) to be minimized with respect to the
location of the nodes can be written as:

J (w) = log
∫
f2 (x) dx− 2 log

∫
f (x) g (x) dx+ log

∫
g2 (x) dx (3)

The first term of (3) (log
∫
f2 (x) dx) is the cross-correlation among the distribu-

tions of data. The second addend (−2 log
∫
f (x) g (x) dx) is the cross-correlation

between the distributions of data and nodes. Finally, the third addend is the
cross-correlation among the distributions of nodes. Thus, in order to minimize
J (w), the second term needs to be maximized and the third term, minimized.
Since data points are stationary, the first term will no longer be considered.

The second term of (3) is rewritten so that the piecewise frontier between
classes may be obtained. Two new terms are introduced to replace it. Each one
of them is related to each of the two classes, the idea being that the algorithm
considers that each node “belongs” to just one of the two classes. So, J (w) is
expressed now as:

J (w) = 2 log
∫
f+ (x) g (x) dx− 2 log

∫
f− (x) g (x) dx+ log

∫
g2 (x) dx (4)

where f+ (x) and f− (x) are the estimators of the distributions of data of both
classes. In order to minimize J (w) in (4), the algorithm tries to: (a) minimize
the cross-correlation between distributions of nodes and distributions of data of
one class and (b) maximize the cross-correlation between distributions of nodes
and distributions of data of the other class. In this way, minimizing the function
J (w) will place the nodes along the frontier between both classes. In case of
overlapping classes, the corresponding nodes will tend to be situated halfway
between classes.

Assuming this formulation, when a minimum of the function of energy J (w)
is reached, the nodes are stuck in the frontier between classes and no effective
force acts on them. Thus, let C+ =

∫
f+ (x) g (x) dx be the contribution of data

of one class to J (w); C− =
∫
f− (x) g (x) dx the contribution of the data of

the other class, and V =
∫
g (x)2 dx the contribution of the interactions among

nodes. Using the gradient descent method, it is demonstrated in [4] that the
weight update rule for node k becomes:

wk (n+ 1) = wk (n)− η

(
ΔV

V
+
ΔC+

C+
− ΔC−

C−

)
(5)
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where n denotes the learning epoch, η the learning rate, and Δ indicates “deriva-
tive with respect to wk”.

Initially, each node is placed on the position of a randomly selected data
point. So as to get them smoothly approaching the frontier, both the variances
of the kernel functions and the learning rate η are annealed (decreased) on each
learning epoch.

The idea seems to be similar to the Learning Vector Quantization (LVQ),
although the background philosophy is actually different, because LVQ places
centroids in the center of gravity of classes while FVQIT places nodes in the
frontiers between classes.

3.2 Stage 2: Adjustment of Local Models

Local models are generated and associated with each of the aforementioned
nodes. Each local model comprises the closest data to its node according to the
euclidean distance. In this manner, the problem is completely filled by the set
of local models, as input data are always assigned to a local model, following
a distance criterion. Since nodes define the frontier between classes, the goal
of each local model is to adjust a classifier for the data points in the region of
influence around its associated node. Figure 2 depicts the areas of influence of a
set of local models adjusted using a 2D example dataset. As nodes –represented
by squared dots in Figure 2– are placed on the frontier between classes, it is
guaranteed that local models –represented by three different gray levels– are
constructed in close proximity to “critical zones”.

Local modelling algorithms may sometimes suffer from temporal efficiency
problems, intrinsically associated with the simultaneous training process of sev-
eral local classifiers. That is why choosing a lightweight algorithm has been a
high priority. Thus, the classifier adopted is the One-Layer Neural Network,
trained with the efficient algorithm presented in [13]. This algorithm is powerful
enough to construct an accurate classifying hyperplane for each region of the
problem. Besides, it is very efficient: the task of obtaining the weights of a neu-
ron is performed with a complexity of O

(
(I + 1)2

)
, where I is the dimension

Fig. 2. Areas of influence of a set of three local models
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of the input vectors. In this way, training a large number of local models is not
so costly. The algorithm is based on an alternative cost function to the classical
Mean Squared Error (MSE). This cost function measures the error committed
by the network before the non-linear output function is applied. In this manner,
the set of weights can be obtained simply by solving a system of linear equa-
tions, which requires fewer computational resources than classical methods, as
stated in [13]. Finally, after the training process, when a new pattern needs to
be classified, the method works as follows: (1) Calculate the closest node wk to
xn using the Euclidean Distance and (2) Classify xn using the neural network
of the local model associated to wk.

4 Experimental Study over the KDD Cup 99 Dataset

The KDD Cup 99 dataset is a processed version of the DARPA 1998 dataset [14],
which was constructed from a simulation performed by the Defense Advanced
Research Projects Agency (DARPA) through the Intrusion Detection Evalua-
tion Program (IDEP) in 1998. It was released for a classifier learning contest,
which task was to distinguish between legitimate and illegitimate connections in
a computer network [2], at the KDD (Knowledge Discovery and Data Mining)
Conference in 1999. The training dataset consists of about 5,000,000 connection
records (even though a reduced training dataset containing 494,021 records was
released as well) [15]. Each record contains values of 41 variables which describe
different aspects of the connection, and the value of the class label (either nor-
mal, either the specific attack type). The test dataset comprises 311,029 records
and has certain peculiarities: (a) test data is not from the same probability dis-
tribution as training data, and (b) the test dataset includes specific attack types
not included in the training dataset.

Following the KDD Cup contest, the dataset has been extensively used for
development of intrusion detection systems. Specifically, it is utilized as a bench-
mark for pattern recognition and machine learning algorithms. The dataset is
very demanding not only because of its size but also due to the great inner vari-
ability among features. For those reasons, the KDD Cup 99 dataset is one of the
most challenging classification problems nowadays. Despite that KDD Cup 99 is
a multiclass dataset, it can be treated as a binary dataset, simply by grouping all
specific attack types into one generic Attack class. This approach is interesting
in the sense that, most of the time, it is enough to distinguish between normal
connections and attacks. This transformation has been carried out by other au-
thors [16,17], and there exist several results in the literature which are utilized
as part of the comparative study. The percentages of distribution of both attack
and normal classes are, respectively, 80.31% and 19.69% in the training dataset,
and 80.52% and 19.48% in the test dataset.

In this work, the experimental study performed involves applying the pro-
posed method –FS+FVQIT– to the binary version of the KDD Cup 99 dataset.
The aforementioned discretization methods (PKID and EMD) are considered in
combination with the above-named filters (INTERACT and Consistency-based).
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Table 1. Results obtained by the four versions of the proposed method and by other

authors

Method Error TP FP Feature No.

PKID+Cons+FVQIT 5.95 92.73 0.48 6
EMD+INT+FVQIT 5.40 93.50 0.85 7

EMD+Cons+FVQIT 4.73 94.50 1.54 7

PKID+INT+FVQIT 5.68 93.61 2.75 7

KDD Winner 6.70 91.80 0.55 41

PKID+Cons+C4.5 5.14 94.08 1.92 6

EMD+INT+C4.5 6.69 91.81 0.49 7

5FNs poly 6.48 92.45 0.86 41

5FNs fourier 6.69 92.72 0.75 41

5FNs exp 6.70 92.75 0.75 41

SVM Linear 6.89 91.83 1.62 41

SVM RBF 6.86 91.83 1.43 41

ANOVA ens. 6.88 91.67 0.90 41

Pocket 2cl. 6.90 91.80 1.52 41

Thus, four combinations of discretizator plus filter are analyzed in order to check
which subset of features works best with the FVQIT method.

The model is trained with the KDD Cup 99 training dataset –494,021 sam-
ples– and is tested using the standard KDD Cup 99 test dataset of 311,029
samples. Three performance measures –standard for previous authors– are em-
ployed:

– Test Error (TE): indicates the overall percentage error rate for both classes
–Normal and Attack–.

– Attack Detection Rate: also known as True Positive Rate (TP), it shows the
overall percentage of detected attacks.

– False Positive Rate (FP): indicates the proportion of normal patterns clas-
sified as attacks.

Hereafter, the results of the proposed method –which parameters have been
obtained by means of trial-error experimentation– are compared with those ob-
tained by other authors [2,3,16,17], as can be seen in Table 1. Specifically, the
methods chosen are decision trees (C4.5), functional networks (5FN), Support
Vector Machines (SVM) models, ANalysis Of VAriance (ANOVA) (ANOVA ens.)
and linear perceptrons (Pocket). Font in boldface indicates best results consid-
ering all three measures altogether. Last column specifies the number of features
employed.

As can be seen in Table 1, the combination PKID+Cons+FVQIT obtains the
best result as it improves the performance obtained by the KDD Cup Winner
in all three measures utilized, using a considerably reduced number of features
Moreover, this combination outperforms all other results included in this study.
Despite the fact that individual values of Error and True Positive rate for the
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combination EMD+Cons+FVQIT are better than those for the abovementioned
combination –4.73 versus 5.95 and 94.50 versus 92.73–, it must be noted that the
variations in percentage between these amounts are quite small –20% and 2%
respectively– in contrast to the variation between the values of False Positive
rate –1.54 versus 0.48 (300%)–. On the other hand, Error and True Positive
rates for EMD+INT+FVQIT, EMD+Cons+FVQIT, and PKID+INT+FVQIT
are good, but unfortunately at the expense of False Positive rates, which appear
to be somewhat high for all of them.

5 Conclusions and Future Work

The contribution presented in this paper is a method for detecting intrusions
based on the combination of feature selection methods with a local classification
method. The system designed is able to detect a large number of intrusions while
keeping the false positive rate reasonably low, obtaining better performance
than the KDD Cup Winner and other authors. Specifically, the combination
PKID+Cons+FVQIT obtains the best result. Furthermore, while previous works
had already reduced the necessary number of features, we have achieved an
improvement in general performance using the same number of features.

When dealing with the multiclass version of the KDD Cup 99 dataset, pattern
recognition and machine learning algorithms usually obtain poor performance,
as they usually fail to detect most of the less represented types of attack, mainly
because the KDD training and test datasets represent dissimilar probability dis-
tributions for these minority categories [18]. Thanks to the good results obtained
in this work, future work will involve expanding the proposed method to deal
with multiclass problems and applying it to the multiclass version of the KDD
Cup 99 dataset.

In addition, dynamic methods for initializing the nodes will be considered in
order to be able to deal more efficiently with overlapping classes problems.
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Abstract. A Pulse Coupled Neural Network (PCNN) is proposed as a numerical
model of cat visual cortex, and it has been applied to the engineering fields espe-
cially in an image processing, e.g., segmentation, edge enhancement, and so on.
The PCNN model consists of neurons with two kind of inputs, namely feeding
input and linking input and they each have a lot of parameters. The Parameters
are used to be defined empirically and the optimization of parameters has been
known as one of the remaining problem of PCNN. According to the recent stud-
ies, parameters in PCNN will be able to be given using parameter learning rule
or evolutionary programming. However these methods require teaching images
for the learning. In this study, we propose a parameter adjustment method of
PCNN for the image segmentation. The proposed method changes the parame-
ters through the iterations of trial of segmentation and the method doesn’t require
any teaching signal or teaching pattern. The successful results are obtained in the
simulations, and we conclude that the proposed method shows good performance
for the parameter adjustment of PCNNs.

Keywords: PCNN, image segmentation, parameter adjustment.

1 Introduction

A Pulse Coupled Neural Network (PCNN) is proposed as a model which can show a
synchronous dynamics of neurons’ activity in the cat visual cortex[1][2][3]. The PCNN
model consists of neurons and two kinds of inputs, namely feeding input and linking
input with leaky integrators. These inputs lead the discrete time evolution of neurons’
internal state and neurons generate a spike output corresponding to the internal state.
The linking and feeding inputs are received from neurons’ receptive fields which is
defined by synaptic weights and directly from the environment.

On the other hand, in engineering point of view, PCNN is considered as a temporal
pulse coding system which shows a synchronous pulse dynamics in the network. Using
this significant characteristics of PCNN, a lot of applications to the engineering fields
are proposed, especially in the field of an image processing, e.g., segmentation, edge
enhancement, and so on[4]-[10].

A pattern segmentation is one of the most significant issue in the image processing
and an application of the PCNN for pattern segmentation is proposed[4]. To achieve a
pattern segmentation, 2D PCNN which has latticed connection is used and one neuron
in the network corresponds to one pixel of the image[11]-[19].
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To design the PCNN for particular problem such as pattern segmentation, we have
to set a lot of number of parameters, e.g., connection weight matrix, time constant and
the other coefficients. This means that we have to find a lot of valid parameters of
PCNN empirically through the trial and error. Actually, obtaining the valid parameters
of PCNN is sometimes difficult because a lot of parameters are defined in the PCNN
and the parameters strongly affect the results of its dynamics.

The method of parameter adaptation based on the evaluation of the output of the
PCNN in random parameters has been proposed in conventional study[20]. Also, in
recent studies, automatically parameter setting algorithm has been proposed using a
scheme of evolutionary programming[21]. These parameters and structure adaptation
algorithm achieve successful results for the aim of parameter setting. However, these
algorithms require teaching pattern to evaluate the output of the PCNN.

In this study, we propose a novel parameter adjustment method of the PCNN for the
pattern segmentation. In our proposed method, it doesn’t require any teaching patterns
or signals to obtain valid parameters of PCNN. We show an implementation of our
proposed method to the image segmentation using 2D-PCNN. In the simulation results,
we show that the valid parameters of the 2D-PCNN for the pattern segmentation are
successfully obtained.

2 The PCNN Model

PCNN is a model of cat visual cortex proposed by Echorn et.al.,[3] and a lot of applica-
tions in engineering fields have been proposed especially in an image processing[4][5][6].
Figure 1 shows a schematic of the neuron in the PCNN. The model consists of the
dendrite model and the soma model. In the PCNN, dendrite model forms connections
among neurons and input from an environment, and soma model functions as a spike
generator.

In general, the PCNN to achieve image processing has two-dimensional structure
with lattice connection among neurons and each neuron in the PCNN receives infor-
mation from each corresponding pixel via feeding input. The two-dimensional PCNN
model is mathematically described as follows. The internal state of the neuron Nij ,
namely membrane potential in biological model, is given by,

Uij(t) = Fij(t)(1 + βijLij(t)). (1)
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Fig. 1. The schematic of the neuron in Pulse Coupled Neural Network
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Note that the indices ij denote neuron number in the two dimensional PCNN. In the
PCNN model, there are two kinds of inputs which are propagated via different connec-
tions. One is a feeding input and the other is a linking input. Each input is described as
follows, respectively.

Fij(t+ 1) = Fij(t) exp (−1/τF ) + VF
∑
k

∑
l

Mij,klYkl(t) + Iij , (2)

Lij(t+ 1) = Lij(t) exp (−1/τL) + VL
∑
m

∑
n

Wij,mnYmn(t). (3)

Where Mij,kl and Wij,mn are weight matrices which define a receptive field of the
neuron Nij , Iij is a constant input to the neuron, and Ykl(t) and Ymn(t) are spike
output of the neuron Nkl and Nmn, respectively. This spike output is defined as a step
function which is given by,

Ykl(t) =

{
1 if Ukl(t) > Θkl(t)
0 else

. (4)

WhereΘkl(t) is a threshold of the action potential of the neuronNkl which is given by,

Θkl(t+ 1) = Θkl(t) exp(−1/τT ) + VTYkl(t) (5)

Through Eq.(1)−Eq.(5), parameters, Wij,mn, Mij,kl, βij , τF , τL, τT , VF , VL, and VT
are decided appropriately.

In this study, the feeding input of the neuron accept only an external input, i.e., pixel
intensity, as assumed in conventional studies[5][9]. This assumption is widely used in
an application for the image processing. Thus, the feeding input of the neuron is again
defined as follows.

Fij(t+ 1) = Iij =
Xij
255

. (6)

Where Xij denotes 8-bit intensity of the pixel Pij . Therefore, unknown parameters
of the PCNN which is used for the image segmentation are βij , τL, τT , VL, VT and
Wij,mn.

Through the segmentation process using PCNN, an output image from the PCNN
is obtained in every time step, and some of them will be adopted as a segmentation
image. Figures 2 and 3 show the examples of an image segmentation using PCNN in
the case that the object in the input image is a monochrome and a gradation image,
respectively. In both results, (a) shows an input image and the others are appropriately
selected output images of the PCNN. According to these results, we can know that the
results of the segmentation depend on the parameters in PCNN and tunable algorithm
for the parameter setting will be required to obtain proper segmentation results.

3 Automatic Adjustment Method for the Parameters in PCNN

As described in previous section, a lot of parameters have to be defined in PCNN for im-
age segmentation and these parameters are designed empirically in conventional stud-
ies. To achieve an automatically parameter setting of PCNN for image segmentation,
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Fig. 2. Results of the segmentation using the PCNN. (a) shows an input image. Figures in upper
row, (b)-(e), show the results of segmentation in proper parameters, and figures in lower row,
(f)-(i), show the results in wrong parameters.

Fig. 3. Another results of the segmentation using the PCNN. (a) shows an input image. Figures in
upper row, (b)-(e), show the results of segmentation in proper parameters, figures in middle row,
(f)-(i), and lower row, (j)-(m), show the results in wrong parameters.

we propose the parameter adjustment method. In our proposed method, we assumed
that only the parameter βij , τT and Wij,mn will be adjusted. Also, in this study, we as-
sumed that the goal of the image segmentation is extracting the plausible area from the
input image as an object to be segmented. In other words, the result of the segmentation
should represent the characteristics of the object, i.e., a shape and an area.

Some of recent papers had been proposed an algorithm for automatically parameter
setting[20][21]. One of these algorithms is based on the evaluation of PCNN’s output
and reflects its evaluation to the parameters. Also, another algorithm uses evolutionary
programing for the parameter adaptation. In any case, an algorithm requires a teaching
pattern and the evaluation, which is how similar the output pattern is to the teaching
pattern.

On the other hand, our proposed method does not require any teaching pattern or
teaching signal. The proposed method is executed through the iteration of trials. Where
the trial is defined that the PCNN represent its output pattern for 30 time steps. In our
proposed method, through the iteration of the trials, the parameters to be adjusted will
be updated gradually.
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In our proposed method, the update rules are derived from the characteristics of
the parameters. Here, let us summarize the characteristics of parameters τT , βij and
Wij,mn, as follows.

– In large τT , a number of firing neurons at same time step will decrease, and in small
τT , it will increase.

– In large βij , firing rate of the neuron Nij will increase and a possibility of the
synchronized firing with neighboring neuron increase. On the other hand, in small
βij , activity of neighboring neurons become unrelated each other.

– In large Wij,mn, a possibility of the synchronized firing of the connected neurons
will increase, i.e., a range of synchronized firing will expand, and in small Wij,mn,
it will shrink. Here we assume that the Wij,mn is in inverse proportion to the dis-
tance between neuronsNij andNmn and a number of connected neurons is initially
defined.

Considering these characteristics of the parameters, we propose a parameter adjustment
method as described in the following. The basic strategy of the method is to search
the appropriate value of parameters which lead the stable V1 and V2 to the parameter
perturbation. Here V1(s) and V2(s) show a variance of the number of firing neurons in
a time step and the firing frequency of neurons, respectively. Here, we assumed that the
image to be processed has M ×N pixels.

1. Set the initial value of parameters randomly.
2. Execute a trial for 30 time step and calculate following values from the output.

– S1t: a number of firing neurons at time t
– S2ij : a number of times that the neuron Nij fires through the trial

3. Derive M1(s), M2(s), V1(s) and V2(s) as follows. Where s is a number of trials.

M1(s) =
1

tmax

tmax∑
t

S1t(s), (7)

M2(s) =
1

MN

M∑
i

N∑
j

S2ij(s), (8)

V1(s) =
1

tmax

tmax∑
t

(S1t(s)−M1(s))2, (9)

V2(s) =
1

MN

M∑
i

N∑
j

(S2ij(s)−M2(s))2. (10)

4. Update the parameters τT and β using following equation.

τT (s) = τT (s− 1) + tanh
(

V1(s) + 1
V1(s− 1) + 1

− 1
)
. (11)

β(s) = β(s− 1) + tanh
(

V2(s) + 1
V2(s− 1) + 1

− 1
)
. (12)
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Fig. 4. Results of the segmentation using proposed method (case 1). In first trial (s = 0), pa-
rameters are defined as, τT = 1.0, β = 3.0, τL = 1.0, VL = 5.0 and VT = 50. (a) shows an
input image. Figures in upper row show the results of segmentation in initial wrong parameters
(s = 0), and figures in lower row show the results of segmentation in proper parameters which is
obtained by our proposed method (s = 40).

Fig. 5. Changes of parameters by proposed method in case 1: (a) τT , (b)β, (c) the linking weight
to itself of the neuron N128,64 , i.e., W128 64,128 64

5. Update the parameters Wij,mn using following equation.

Wij,mn =
1

S2ij(s) + 1
exp
(
−20

S2ij(s)−K + 1
P −K + 1

r

R

)
, (13)

where, r shows the distance between connected neurons Nij and Nmn, R shows
the maximum distance between connected neurons, P and K show maximum and
minimum value of S2ij for all ij, respectively.

6. Return to 2.

4 Simulation Results and Discussions

In this section, we show the simulation results of image segmentation using PCNN,
which is described in section 2, with proposed parameter adjustment method. Here the
parameters to be adjusted are τT , β and Wij,mn, and the other parameters are fixed
appropriately. We also assume that the neighboring 5×5 neurons are connected using
linking input. In the simulations, the initial parameters are wrong parameters which
lead the results shown in Fig.2 and 3, and parameters are adjusted using our proposed
method.

In Fig.4, (a) shows an input image, (b)-(e) show the results in wrong parameters
which is also shown in Fig.2, and (f)-(i) show the results in adjusted parameters using
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Fig. 6. Results of the segmentation using proposed method (case 2). In first trial (s = 0), pa-
rameters are defined as, τT = 1.0, β = 3.0, τL = 1.0, VL = 5.0 and VT = 50. (a) shows an
input image. Figures in upper row show the results of segmentation in initial wrong parameters
(s = 0). Figures in 2nd and 3rd row show the results that the proposed method is still in progress
(s = 2, s = 8). Figures in lower row show the results of segmentation in proper parameters
which is obtained by our proposed method (s = 40).

Fig. 7. Changes of parameters by proposed method in case 2: (a) τT , (b)β, (c) the linking weight
to itself of the neuron N128,64 , i.e., W128 64,128 64

proposed method. Here the results are the selected output images of PCNN in some time
steps through the trial and resolution of the image is 256 × 256. As shown in Fig.4(f)
and (h), the object and the background are segmented in some time steps.

Figure 5 (a), (b) and (c) show the convergence characteristics of the parameter τT ,
β and Wij,mn through the adjustment process, respectively. Here, in Fig.5(c), we show
the characteristics of the linking weight to itself of the neuron N128,64 as a representa-
tive value of the distribution of weight matrix. As shown in figures, each parameter is
converged to the value to achieve proper segmentation and it is obviously stable after
the parameters are converged.

Similar to the simulation results in Fig.4 and 5, we show another simulation results in
Fig.6, 7, 8 and 9. In these simulation, initial parameters are set to the wrong parameters
which is also shown in Fig.3. Here, the wrong results shown in the middle row in Fig.3
corresponds to the results in Fig.6 and 7, and the lower row in Fig.3 corresponds to the
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Fig. 8. Results of the segmentation using proposed method (case 3). In first trial (s = 0), pa-
rameters are defined as, τT = 2.0, β = 0.1, τL = 1.0, VL = 5.0 and VT = 50. (a) shows an
input image. Figures in upper row show the results of segmentation in initial wrong parameters
(s = 0). Figures in 2nd and 3rd row show the results that the proposed method is still in progress
(s = 4, s = 5). Figures in lower row show the results of segmentation in proper parameters
which is obtained by our proposed method (s = 40).

Fig. 9. Changes of parameters by proposed method in case 3: (a) τT , (b)β, (c) the linking weight
to itself of the neuron N128,64 , i.e., W128 64,128 64

results in Fig.8 and 9. From these simulations, we also find that the plausible image
segmentation is achieved using proposed method and all the parameters are converged.
Add to that, in the 2nd row and the 3rd row in Fig.6 and 8, we also show the results
that the proposed method is still in progress. From these results, we can find that the pa-
rameters keep changing related to the results of the image segmentation. Through these
simulations, we can conclude that our proposed method can detect proper parameters
to achieve image segmentation.

Through the trials for the parameter adjustment, the output images of the PCNN
approaches to plausible segmentation gradually. Therefore, we show an evaluation of
the error which is defined as a ratio of mismatched pixels between an output image and
a target image, where the target image of the segmentation is assumed such as in Fig. 10.
Each result in Fig.11 shows the error characteristics of each simulation in Fig.4, 6 and
8, respectively. Note that, in the simulation in Fig.11 (c), we evaluate the errors of two
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Fig. 10. (a) The target object to be segmented (b) Background

Fig. 11. The characteristics of the error ratio: figures show a difference between object or back-
ground obtained by PCNN and the target image shown in Fig.10

object because two objects are obtained as a segment in early trials in the simulation.
From the results, even if the error doesn’t converge to zero, the error decreased as trials
for parameter adjustment progress and be in stable at a low level.

5 Conclusions

One of the most significant problem of PCNN is its difficulty and complexity of pa-
rameter design, especially for the use in engineering fields. In this study, we proposed
an automatic parameter adjustment method of PCNN for pattern segmentation. The
proposed method adjusts parameters β, τT and weight matrices through the iteration
of trials. Also one of the most remarkable feature of the proposed method is that the
method requires no teaching images or teaching signals for the parameter adjustment.
The proposed method was applied to the image segmentation using PCNN and suc-
cessful results are obtained in the simulations. From the results, we conclude that the
proposed method showed a good performance for the parameter adjustment problem.
However, an effect of parameters which is not concerned in the proposed method were
not revealed in this study. These remaining problem will be discussed in future works.
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Abstract. A method of estimation of the quality of data identifica-

tion by a parametric perceptron is presented. The method allows one

to combine the parametric perceptrons into a committee. It is shown

by the example of the Potts perceptrons that the storage capacity of

the committee grows linearly with the increase of the number of per-

ceptrons forming the committee. The combination of perceptrons into a

committee is useful when given task parameters (image dimension and

chromaticity, the number of patterns, distortion level, identification re-

liability) one perceptron is unable to solve the identification task. The

method can be applied in q-ary or binary pattern identification task.

Keywords: Identification, Potts model, storage capacity, committee,

perceptron.

1 Introduction

The analysis of parametric fully connected neural networks [1]-[8] has shown that
at the present the parametric vector models of the associative memory are the
best both with regard to the storage capacity and noise immunity. At the same
time their high recognition characteristics of the aforementioned models were not
used up to now. The situation changed after the publication of the paper [9] (see
also [10]-[12]), where the algorithm of mapping of binary patterns into q-valued
ones was proposed. It was also shown in [9] that such mapping allows one to use
vector neural networks for storing and processing of signals of any type and any
dimension. Moreover, the mapping brings to nothing the main difficulty of all
the associative memory systems, which is the negative influence of correlations
between the patterns. Thus, in the cited work the authors presented an effective
and simple approach, showing how the vector models of neural networks can be
used and discussed the advantages related to them.

In the papers [13]-[16], a parametric perceptron based on the Potts neurons
was presented. The reliability and the processing speed of the Potts percep-
tron are orders of magnitude higher than the ones of the fully connected neural
networks.
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However, there are problems requiring either identification of heavily distorted
patterns or identification of very large amount of patterns those the single per-
ceptron can’t solve them. Here we present a method, which allows one to estimate
the quality of the data identification by the parametric perceptron. The quality
of the identification is the measure of proximity between an input vector and the
stored pattern associated with the input vector as a result of the identification
process. The advantage of this method is that it doesn’t require any additional
calculations (one has to calculate only the states of the output neurons). This
method allows one to combine the parametric perceptrons into a committee,
where each perceptron is trained on its own ensemble of patterns with cardinal
number m = M/K (divide to conquer strategy), where M is the total pattern
amount and K is the number of perceptrons. Patterns are split to different sets
randomly. To identify an input vector we initialize all perceptrons of the commit-
tee by this input vector. Then all the perceptrons give some answers, but which
of them is correct? To define the perceptron, which has identified the input vec-
tor with the highest precision, one should use the ”winner takes all” strategy:
the winner perceptron is the perceptron having maximal quality of identifica-
tion. The winner perceptron number and its output vector uniquely define the
stored pattern, whose distortion is the input vector.

It is shown by the example of the Potts perceptrons that the storage capacity
of the committee grows linearly with the increase the number of the perceptrons.
However, the price to pay if that the required RAM needed for modeling and
the number of arithmetic operations increase linearly too.

2 The Perceptron Scheme

At first, let us examine the scheme of the parametric perceptron for the case of
a great number of colored randomized patterns (multiparameter vectors). This
scheme can be easely generalized on the case of vectors of an arbitrary dimension,
in particular on binary vectors, and on strongly correlated patterns.

So, let us have a set of N-dimensional Q-valued patterns {Xμ}:

Xμ = (xμ1,xμ2, ...,xμN ) (1)

where xμi is the unit vector directed along one of the Cartesian axes of Q-
dimensional space (μ = 1,m; i = 1, N), that is xμi ∈ {ek}Q, where {ek}Q
is the set of basis vectors of the space RQ. Each pattern Xμ is in one-to-one
correspondence with its key (identifier) that is a unique randomly generated
q-valued n-dimensional vector Yμ:

Yμ = (yμ1,yμ2, ...,yμn),yμi ∈ {νk}q (2)

where νk is the basis vector of the space Rq (νk ∈ Rq). Here n and q are the free
parameters of the problem, which obey the inequality:

qn ≥ m (3)
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There are two strategies of choosing of the free parameters n and q:

1. minimization of the required RAM and the number of the arithmetic oper-
ations: q should be small and n = logqm+ 1;

2. maximization of the storage capacity: n = 2 and q =
√
m.

For simplicity we suppose that the patterns {Xμ} are the set of colored images
with a number of pixels N and the number of different colors Q. In this case
with each color we associate an integer number ranging between 1 and Q, or,
equivalently, a unit vector in Q-dimensional space.

n

1

1

2

N

3

x1

x2

x3

xN

y1

yn

input neurons output neurons 

Fig. 1. The scheme of the parametric perceptron

Fig.1 shows the neural network, which is able to retrieve the key corresponding
to the pattern, whose distorted image was presented to the network. It consists
of two layers of vector neurons, where each neuron of the input layer is connected
with all the neurons of the output layer. The algorithm works as follows. We con-
struct the vector neural network based on the standard patterns {Xμ} and {Yμ}
(Fig.1). The network consists of N input and n output neurons. To construct the
network, we use the parametrical vector neuron approach [6]-[8]. Each neuron
of the input and of the output layers may be, respectively, in one of Q and q
different states, where Q ≥ 2 and q ≥ 2. The k-th state of a neuron of the input
layer is associated with the basis vector ek ∈ RQ of the Q-dimensional space
(k = 1, Q). The states of the output neurons are associated similarly. The same
as in [6]-[8], the interconnection matrix elements are given by the generalized
Hebb rule:

Tij =
m∑
μ=1

yμix+
μj (4)
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where x+
μj is the vector-row (1 ≤ i ≤ n, 1 ≤ j ≤ N). Note, in this approach the

interconnections Tij are not scalars, as they are in the standard Hopfield model,
but q ×Q matrices.

3 Identification Algorithm of Single Perceptron

Let an image X = (x1,x2, ...,xN ) be input to the network. The local field created
by all the neurons from the input layer, which is acting on the i-th output neuron,
can be calculated as:

hi = hi0 +
N∑
j=1

Tijxj (5)

where

h0i = −N
Q

m∑
μ=1

yμi (6)

Under the action of the local field the i-th neuron becomes aligned along the
basis vector, whose direction is the most close to that of the local field. The
calculation algorithm is as follows:

1. The projections of the local field vector hi onto all the basis vectors of the
q-dimensional space are to be calculated;

2. The maximal projection is to be found. Let it be the projection onto a basis
vector νki and its value is hmax

i = hki

i (ki = 1, q);
3. The value νki is set to the output neuron (the ”Winner takes all” strategy):

yi = νki .

As it was shown in [13]-[16], under this dynamics all the components of the
encoding output vector Ym are retrieved reliable.

The suggested scheme and the identification algorithm of the Potts perceptron
aren’t classic (compare with [1]-[5] and [13]). The state of a classic Potts neuron

is described by the vector ek − ē, where ē = 1
Q

Q∑
k=1

ek. The conversion of the

Potts’s vectors to the basis vectors ek allows one to accelerate the identification
algorithm by a factor of Q, and the calculation of interconnection matrix by a
factor of Q× q. It’s easy to show that both models are identical.

4 The Identification Quality and Its Applications

The estimation of the quality of identification is defined by the quantity:

< hmax
i >=

1
n

n∑
i=1

hmax
i . (7)

To understand the meaning of the quantity < hmax
i >, let’s consider the value

hmax
i (hmax

i = hki

i ) and make the following assumptions. Let the input vector X
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be a distorted copy of the r-th pattern Xr ∈ {Xμ}m, in which Nb elements are
distorted (b is the level of distortion):

X = (x̃r1, x̃r2, ..., x̃r Nb,xr Nb+1, ...,xrN ). (8)

And let the i-th component of Yr be equal yri = νki . Then substituting the
expressions (1) and (3) into (2),we obtain the projections of the local field hi:

hki

i = N (1− b− 1/Q) +Rki (9)

and
hli = Rl, l = 1, q, l �= ki (10)

where the quantity

Rk =
m∑
μ�=r

(νk,yμi)
N∑
j=1

[(xμj ,xj)− 1/Q] (11)

is the noise constituent with the average< Rk >= 0 and some dispersion σ2
R, and

N (1− b) is the signal constituent. The value N (1− b) is the number of the non-
distorted components in the input vector X, that is the quantityN−< hmax

i > ≈

Nb is statistically the Hemming distance between the input vector X and the
stored pattern Xr associated with X by the identification process. Note, this
method doesn’t require any additional calculations (one needs to calculate only
the states of the output neurons).

There is a number of problems, which can be solved using the estimation of
the quality of identification < hmax

i >:

1. Some times one needs to identify the cases, in which the input vector X was
obtained as a result of distortion of a pattern not stored into perceptron. To
do it one needs to introduce a threshold t and use the following strategy:

– if < hmax
i > ≤ t , then the input vector is an unknown pattern of it is

too much distorted;
– if < hmax

i > > t , then the pattern with the key Y was given onto the
perceptron and we can estimate the part of the distorted components in
X by the expression

b ≈ 1− < hmax
i >

N
(12)

2. Some times one needs to identify data, which were distorted by a shift or/and
a rotation. The parametric perceptron can’t solve this problem directly. To
struggle with these types of noise one can use the following strategy:

(a) The input image X is shifted or/and rotated (this operations should not
be done at the first iteration);

(b) The obtained image is identified by the perceptron. The result of iden-
tification is a pair (< hmax

i >, Y) The pairs obtained at each iteration
are written into a list.
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(c) The number of iteration of items (a) and (b) depends on time interval
in which one needs to make a decision;

(d) In the list of pairs (< hmax
i >, Y) one should choose the pair with the

largest < hmax
i >. The key Y of the found pair would be the output of

the system.

Let the input image X be the pattern Xr shifted to the right onto 5 pixels
and rotated clockwise onto 5 degrees. Then the pair (< hmax

i >, Y), which
is the result of the identification of the image X shifted to the left onto 5
pixels and rotated anticlockwise onto 5 degrees, statistically has the maximal
quality of identification < hmax

i >.
3. There are problems consisting either in identification of heavily distorted

patterns, or in identification of a very large amount of patterns that a sin-
gle perceptron can’t solve. Such a problem can be solved by committee of
parametric perceptrons. The main idea consists in the following:

(a) K perceptrons are trained on their own ensembles of patterns with the
cardinal number m = M/K, where M is the total amount of patterns.
Patterns are split to different sets randomly;

(b) all perceptrons are initialized by the input vector;
(c) the states of all output neurons are calculated;
(d) the number of the perceptron, which has the maximum identification

quality is determined (WTA strategy);
(e) the number of the winner perceptron and the values of its output neurons

uniquely define the stored pattern, whose distortion is the input vector.

The characteristics of such a committee are considered in the next section.

5 Characteristics of Committee

To estimate the operational capability of the committee consisting of K per-
ceptrons, let us define its characteristics, namely the reliability of identification
and the storage capacity, the computational complexity of the algorithm and the
capacity of the required RAM needed for the modeling.

The probability of a faithful identification (the reliability of identification) is
defined by the expression

P = Pr

⎡⎣ n⋂
i

q⋂
l �=ki

(
hki

i (1) > hli(1)
)⎤⎦Pr

⎡⎣ K⋂
z �=1

n⋂
i

q⋂
l

(
hki

i (1) > hli(z)
)⎤⎦ , (13)

where hli(z) is l-th projection of local field of i-th neuron in z-th perceptron.
Here in addition to assumptions we made before expression (9), is suggested
that the r-th pattern Xr, which distortion is the input vector X, was stored in
the first perceptron. The first member in (13) is the probability of a faithful
identification by the first perceptron. The second one is probability that the
identification quality of the first perceptron higher then other.
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The hli(z) can be approximately described by Gaussian distribution. In this
case we can estimate the expression (13) by the equation

P 	
(

1− 1
γ
√

2π
e−

γ2
2

)Kqn
, (14)

where γ is the so-called signal-noise ratio:

γ2 = K
N(1− b)2Qq

2M
. (15)

Here b is a part of the distorted components of the input vector. The maximal
number of the standards Mmax which can be reliably identified by the committee
with the error probability less than a given value P0, is defined from (3):

Mmax = K
N(1− b)2Qq
4 ln(nqK/P0)

. (16)

This estimation we obtained from conditions 1 − P = P0 and P0 → 0 are per-
formed, when γ2/2+ lnKqn/P0. One can see, the number of identified patterns
M grows proportionally to the number of the perceptrons of the committee. The
storage capacity of one Potts perceptron (expression (13) with K = 1) is Qq
times larger then that of Hopfield model. The computational complexity of the
algorithm is estimated by:

C = nqNK. (17)

As stated above, the computational complexity of the algorithm based on the
classical Potts neurons is equal to nqQNK. The capacity of the required RAM
needed for the modeling is defined by

RAM = 32nqQNK bit. (18)

As it’s shown in [17], setting h0i = 0 in Eq.(5) and clipping (binarizing) the
elements of synaptic weights Tij , the required RAM can be decreased by a factor
of 32. Moreover, the storage capacity of such a model (for a single perceptron)
in the area N ≈ Q is twice as large as that of the Potts model, and in the area
N > Q the storage capacity is restricted by

Mclip = qQ ln
(

1 +
N(1− b)2

2 ln(nq/P0)

)
. (19)

We can increase the magnitude (15) or decrease the magnitudes (16) and (17)
varying the free parameters n and q, which are restricted by the inequality
(3). Moreover, as each perceptron can be stored and processed on a separate
PC, this can be used to decrease the consumption of RAM and to increase the
productivity of the committee as a whole.

Note, the expressions (13)-(17) with K = 1 describe the characteristic of one
Potts perceptron.
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6 Conclusions

Usually real-world problems of identification have stringently fixed parameters
such as dimension of the input vector N , number of possible values of the input
vector componentsQ, number of patternsM , part of the distorted components of
the input vector and the satisfactory maximal probability of identification error
P0. Unfortunately, the single parametrical perceptron not always can solve such
problems, although it has the record storage capacity and the record reliability
of identification (see the expressions (13)-(15) when K = 1). The current article
describe an approach, which allowed combining the parametric perceptrons into
the committee. The committee successfully copes with problems described above.

Let us illustrate the above by following example. Picture 2 represent both
experimental and theoretical dependencies of the identification error probability
on a quantity of the perceptrons forming committee. As we can see, an attempt
to solve the assigned problem (please see the picture for problems parameters)
using just one identification perceptron has not been successfully, because error
probability makes up to 9%. If the committee consisted of 3 perceptrons, the error
probability would drop to 0.04%. The difference between theory and experiment
is explained in that the real distribution of hli(z) is binomial, not Gaussian.

The core of the presented algorithm is the method of identification quality es-
timation of the input vector by the parametrical perceptron. The superiority of
the approach described above is that there is no need to conduct any additional
calculations whatsoever. The capability of the fast identification quality estima-
tion allows to partially tackle shifting and turning noises, to determine whether

N=100; n=2; Q=16; q=16; M=255; b=0,6
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the input vector is one the stored patterns or not, whether that actual pat-
tern their distortion or not. And most important of it all this capability allows
to combine the perceptrons in the committee, which significantly extends the
parametrical networks application area. The storage capacity of the committee
grows linearly with the increase the number of the perceptrons. The conducted
experiments prove this dependence. Of course there are some side effects - the
RAM capacity necessary for modulation along with the calculation complexity
will lineally increase. Free parameters n, q and K allow solving identification
challenges in order of such priorities as reliability, RAM efficiency and capac-
ity. In addition to that any perceptron can be separately kept and processed on
different computers, which in fact would lower the RAM load and increase the
efficiency of the committee in general.

We used the algorithm presented above to recognize and identify N-dimensional
q-valued input vectors. However, rather easily it can be adapted for processing of
binary input patterns by means of simple preprocessing, which is the mapping
of the binary vector onto q-valued pattern (see [9]-[12]). After that we use our
algorithm. Note, the mapping procedure suppresses the correlations between the
patterns.

The ideas laid down in this work allow building up perceptron committees,
where the core elements would be the following types of neurons:

– Potts neurons (see [1]-[5] and [13]-[16]);
– Phasic vector neurons (see [6]-[8]);
– Phasic vector neurons with clipped synaptic coefficients (see [17]);
– Phaseless vector neurons with clipped synaptic coefficients [18].

The parametric neural networks with clipped synaptic coefficients are of special
interest. The clipping of the synaptic coefficients allows decreasing the require-
ments to RAM necessary for holding of the connection matrix by 32 times. Apart
from that, the memory capacity of the clipped phaseless neural network when is
twice as high as that of Potts network. All that combined stimulates the demand
for such an approach in contemporary systems.

Acknowledgments. I would like to express my special gratitude to Marina
Litinskaia and Evgeny Belyaev for help in preparation of the present paper. The
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Abstract. Chapelle proposed to train support vector machines (SVMs)

in the primal form by Newton’s method and discussed its advantages. In

this paper we propose training L2 SVMs in the dual form in the similar

way that Chapelle proposed. Namely, we solve the quadratic program-

ming problem for the initial working set of training data by Newton’s

method, delete from the working set the data with negative Lagrange

multipliers as well as the data with the associated margins larger than

or equal to 1, add to the working set training data with the associated

margins less than 1, and repeat training the SVM until the working set

does not change. The matrix associated with the dual quadratic form

is positive definite while that with the primal quadratic form is posi-

tive semi-definite. And the former matrix requires less kernel evaluation.

Computer experiments show that for most cases training the SVM by

the proposed method is more stable and faster than training the SVM

in the primal.

1 Introduction

In a support vector machine (SVM), the input space is mapped into a high-
dimensional feature space, and since the mapping function is not explicitly
treated by the kernel trick, usually the SVM is trained in the dual form. And
many training methods have been developed [1,2,3,4,5,6,7,8,9]. But because the
coefficient vector of the hyperplane is expressed by the kernel expansion, substi-
tuting the kernel expansion into the coefficient vector, the SVM in the primal
form can be solvable. Based on this idea Chapelle [10] proposed training the
SVM in the primal form. Namely, starting from the initial working set selected
from the training data, the associated primal quadratic programming program is
solved by Newton’s method. Then the training data with the associated margins
larger than or equal to 1 are deleted from the set, the training data with the
margins smaller than 1 are added to the working set, and the above procedure
is repeated until no deletion or addition is made to the working set. Chapelle
discussed several advantages in training the SVM in the primal over in the dual.

In this paper we propose training SVMs in the dual form in the similar way
that Chapelle proposed training SVMs in the primal. Namely, starting from the
initial working set, we solve the associated dual quadratic programming problem,

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 854–863, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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delete from the working set the data whose associated Lagrange multipliers are
negative as well as the data with the associated margins larger than or equal to
1, add to the working set the data with the associated margins smaller than 1,
and the above procedure is repeated until no data are added to, or deleted from,
the working set. We call this method dual SVM and Chapelle’s primal SVM.
We discuss the advantages of dual SVMs over primal SVM and by computer
experiments demonstrate the effectiveness of the dual SVM.

In Section 2, we briefly summarize L1 and L2 SVMs, and in Section 3 we
discuss primal SVMs. In Section 4, we compare primal and dual SVMs and clarify
the advantages of dual SVMs and in Section 5, we demonstrate the advantages
of dual SVMs over primal SVMs for some benchmark data sets.

2 Support Vector Machines

In this section, we summarize support vector machines for two-class problems.
In training an SVM, we solve the following optimization problem:

minimize Q(w, ξ) =
1
2
||w||2 +

C

p

M∑
i=1

ξpi (1)

subject to yi (wTφ(xi) + b) ≥ 1− ξi for i = 1, ...,M, (2)

where w is the weight vector, φ(x) is the mapping function that maps an m-
dimensional input vector x into the feature space, b is the bias term, (xi, yi)
(i = 1, ...,M) are M training input-output pairs, with yi = 1 if xi belongs to
Class 1, and yi = −1 if Class 2, C is the margin parameter that determines
the tradeoff between the maximization of the margin and minimization of the
classification error, ξi are the nonnegative slack variables for xi, and p = 1 for
an L1 SVM and p = 2 for an L2 SVM. We call the value of yi (wTφ(xi)+ b) the
margin for xi.

Introducing the Lagrange multipliers αi, we obtain the following dual problem
for the L1 SVM:

maximize Q(α) =
M∑
i=1

αi −
1
2

M∑
i,j=1

αiαj yi yjK(xi,xj) (3)

subject to
M∑
i=1

yi αi = 0, 0 ≤ αi ≤ C for i = 1, ...,M, (4)

and for the L2 SVM:

maximize Q(α) =
M∑
i=1

αi −
1
2

M∑
i,j=1

αiαj yi yj

(
K(xi,xj) +

δij
C

)
(5)

subject to
M∑
i=1

yi αi = 0, αi ≥ 0 for i = 1, ...,M, (6)
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where K(x,x′) is a kernel function that is given by K(x,x′) = φT (x)φ(x′) and
δij = 1 for i = j and 0 for i �= j.

In this study we use polynomial kernels with degree d: K(x,x′) = (xTx′ +1)d

and radial basis function (RBF) kernels: K(x,x′) = exp(−γ||x− x′||2), where d
is a positive integer and γ is a positive parameter for slope control.

The KKT complementarity conditions for the L1 SVM are given by

αi

⎛⎝ M∑
j=1

yi yj αj K(xi,xj) + yi b− 1 + ξi

⎞⎠ = 0 for i = 1, . . . ,M, (7)

(C − αi) ξi = 0 αi ≥ 0, ξi ≥ 0 for i = 1, . . . ,M. (8)

For the solution of (3) and (4), if αi > 0, xi are called support vectors; especially
if αi = C, bounded support vectors and if 0 < αi < C, unbounded support
vectors.

The KKT complementarity conditions for the L2 SVM are given by

αi

⎛⎝ M∑
j=1

yi yj αj K(xi,xj) + yi b− 1 +
αi
C

⎞⎠ = 0, αi ≥ 0 for i = 1, . . . ,M. (9)

Here, αi = C ξi.

3 Training Support Vector Machines in the Primal

The optimization problem given by (1) and (2) is converted to the following
optimization problem without constraints:

minimize
1
2

wTw +
C

p

M∑
i=1

max(0, 1− yi (wTφ(xi) + b))p (10)

Assume that w is expressed by

w =
M∑
i=1

βiφ(xi), (11)

where βi (i = 1, . . . ,M) are constants. Substituting (11) into (10), we obtain

minimize Q(β, b) =
1
2

M∑
i,j=1

K(xi,xj)βi βj

+
C

p

M∑
i=1

max

⎛⎝0, 1− yi

⎛⎝ M∑
j=1

βj K(xj ,xi) + b

⎞⎠⎞⎠p .(12)

Let define a set of indices associated with the data that give the optimal solution
for the L1 SVM:

S = {i | yiD(xi) ≤ 1 for i ∈ {1, . . . ,M}} , (13)
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where D(x) is the decision function and is given by D(x) = wTφ(x) + b and for
the L2 SVM

S = {i | yiD(xi) < 1 for i ∈ {1, . . . ,M}} . (14)

Here equality does not hold because of αi = C ξi.
We consider whether we can obtain the solution restricting the training data

to the data associated with S. Then (12) reduces to

minimize Q(β, b) =
1
2

∑
i,j∈S

K(xi,xj)βi βj

+
C

p

∑
i∈S

⎛⎝1− yi

⎛⎝∑
j∈S

βj K(xj ,xi) + b

⎞⎠⎞⎠p . (15)

For the L1 SVM (p = 1), from the KKT conditions (7) and (8), the slack
variables ξi associated with unbounded support vectors xi (i ∈ S) are zero. But
in (15), the sum of the slack variables is minimized. Thus, each constraint is
not necessarily enforced to zero. In addition, because there is no quadratic term
for b, b cannot be determined by this formulation. Therefore, we cannot obtain
the solution by solving (15). To solve this problem, Chappell used a Huber loss
function, in which a linear loss is combined with a quadratic loss. Because this
method gives the approximate solution for the L1 SVM, we do not consider
solving L1 SVMs in the primal form.

For the L2 SVM, from (14) ξi associated with support vectors xi (i ∈ S)
are positive. Thus (12) with the restriction of i ∈ S is equivalent to (15). Let
β′
S = (βTS , b)

T , where βS = {βi | i ∈ S} and (15) be

minimize Q(β′
S) = cTS β′

S +
1
2
β′
S
T
KS β′

S , (16)

where KS is the (|S| + 1) × (|S| + 1) matrix, cS is the (|S| + 1)-dimensional
vector, and

cSi = −C
∑
k∈S

ykK(xk,xi) for i ∈ S, (17)

cSb
= −C

∑
i∈S

yi, (18)

KSij = K(xi,xj) + C
∑
k∈S

K(xi,xk)K(xk,xj) for i, j ∈ S, (19)

KSib
= C

∑
j∈S

K(xi,xj) for i ∈ S, (20)

KSbb
= C |S|. (21)

Solving ∂Q/∂β′
S = 0, the optimal solution is given by

β′
S = −K−1

S cS . (22)
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Here, notice that KS is positive semi-definite. If KS is singular, usually a small
value is added to the diagonal elements [10]. But because this will increase the
number of support vectors, we delete data that cause singularity of the matrix
from the working set.

4 Comparison of Training SVMs in the Primal and the
Dual

4.1 Training in the Primal

The differences of the training method of the primal SVM and Chapelle’s method
are that we start training with a small number of chunking data and we avoid
singularity of KS by deleting the associated row and column in decomposing KS

by the Cholesky factorization, instead of adding a small value to the diagonal
elements of KS. We use the variable chunking algorithm. Namely, We solve (22)
for the initial working set, delete, from the working set, the data with zero slack
variables (the associated margins larger than or equal to 1), add to the working
set the data with the positive slack variables (the associated margins smaller
than 1), and solve (22), and repeat the above procedure until the same working
set is obtained. Let the chunk size be h, where h is a positive integer. Then the
procedure is as follows:

1. Set h training data to the working set and go to Step 2.
2. Solve (22) for the working set by the Cholesky factorization. If the diagonal

element is smaller than the prescribed value, delete the associated row and
column, overwrite the column and row using the next data sample, and
resume factorization and obtain β′

S .
3. Delete from the working set the data with zero slack variables, namely xi that

satisfy yiD(xi) ≥ 1. And add to the working set at most h most violating
data, namely xi that satisfy yiD(xi) < 1 from the smallest yiD(xi) in
order. If the obtained working set is the same with the previous iteration,
stop training. Otherwise, go to Step 2.

4.2 Training in the Dual

Similar to the primal SVM, we train the dual SVM. The idea is to eliminate the
equality constraint (6) by solving it for one variable and substitute it into (5).
Then the problem is reduced to the maximization problem with the positive con-
straints. We solve the sub-problem without considering the positive constraints,
and delete negative variables from the working set. Other procedure is the same
with that of the primal SVM.

Consider solving (5) and (6) for the index set S. Solving the equality constraint
in (6) for αs (s ∈ S), we obtain

αs = −
M∑

i�=s,
i∈S

ys yi αi. (23)
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Substituting (23) into (6), we obtain the following optimization problem

maximize Q(αS) = cTS α′
S −

1
2
α′
S
T
KS α′

S (24)

subject to αS ≥ 0, (25)

where αS = {αi|i ∈ S}, α′
S = {αi|i �= s, i ∈ S}, cS is the (|S| − 1)-dimensional

vector, KS is the (|S| − 1)× (|S| − 1) positive definite matrix, and

cSi = 1− ys yi for i �= s, i ∈ S (26)
KSij = yi yj (K(xi,xj)−K(xi,xs)−K(xs,xj)

+K(xs,xs) +
1 + δij
C

)
for i, j �= s, i, j ∈ S. (27)

Now the procedure for training the dual SVM is as follows.

1. Set h training data to the working set and go to Step 2.
2. Solve KS α′

S = cS for αS and using (23) obtain αs. Determine b by

b = yi −
∑
j∈S

αj yj

(
K(xi,xj) +

δij
C

)
for i ∈ S. (28)

3. Delete from the working set the data with negative variables, as well as the
data xi that satisfy yiD(xi) > 1. And add to the working set at most h
most violating data, namely xi that satisfy yiD(xi) < 1 from the smallest
yiD(xi) in order. If the obtained working set is the same with the previous
iteration, stop training. Otherwise, go to Step 2.

Although there may be negative αi in Step 2, the first equation in (9) is satisfied
because αS is obtained by solving the set of linear equations. Thus any i (∈ S)
will give the same value. Because we ignore the positive constraints in solving
KS α′

S = cS and delete negative variables afterward, the convergence of the
above algorithm is not guaranteed.

4.3 Comparison

The differences of the dual SVM and the primal SVM are summarized as follows.

1. Matrix KS for the dual SVM is positive definite while that for the primal
is positive semi-definite. Comparing (17)-(21) and (26), (27), Ks and cS for
the dual SVM require less kernel evaluations than the primal. Thus, the dual
SVM will give more stable solution with less computation time.

2. Mapped support vectors for the primal SVM are interpreted as the inde-
pendent data that span the empirical feature space [11]. Thus for the linear
kernels the number of support vectors for the linear primal SVM is at most
the number of the input variables. And any data can be support vectors so
long as they span the empirical feature space.
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3. Unlike the conventional training methods based on the decomposition tech-
nique such as SMO, training for primal and dual SVMs does not guaran-
tee monotonic convergence or may not converge. This is because there is
no guarantee that the objective function is monotonic as the iteration pro-
ceeds. Thus, to avoid divergence, we may need to incorporate acceleration
mechanism such as developed for linear programming SVMs [12].

5 Performance Evaluation

We evaluated performance of the proposed dual SVM with that of the primal
SVM using the benchmark data sets shown in Table 1, which lists the numbers of
inputs, classes, training data, and test data. The table also shows the parameter
values for L2 SVMs determined by fivefold cross-validation. For instance, d4 and
γ10 mean that the kernels are polynomial kernel with degree 4 and RBF kernels
with γ = 10, and C105 means that the value of the margin parameter is 105.
We used fuzzy one-against-all SVMs [13] and measured the training time using
a personal computer (3GHz, 2GB memory, Windows XP operating system). As
in [10], we prepared a cache memory with the size equal to the kernel matrix.

Table 1. Benchmark data sets and parameters for L2 SVMs

Data Inputs Classes Train. Test Parm.

Thyroid [14] 21 3 3,772 3,428 d4C105

Blood cell [13] 13 12 3,097 3,100 γ10C100

Hiragana-50 [13] 50 39 4,610 4,610 γ10C1000

Hiragana-13 [13] 13 38 8,375 8,356 γ10C500

Hiragana-105 [13] 105 38 8,375 8,356 γ10C104

Satimage [14] 36 6 4,435 2,000 γ200C10

USPS [15] 256 10 7,291 2,007 γ10C100

Table 2 shows the effect of the chunk size on the performance of primal and
dual SVMs for the USPS data set. In the table “Chunk,” “SVs,” “Iterations,”
“Kernels,” “Rec.”, and “Time” denote, respectively, the chunk size, the average
number of support vectors per one decision function, the number of iterations,
the total number of kernel accesses, the recognition rate of the test (training)
data set, and training time. “Kernels” means that kernel values are provided
through the cache memory if they are in it, and after evaluation if they are not.
For “SVs,” “Iterations,” “Kernels,” and “Time” columns, the better value is
shown in boldface between dual and primal SVMs.

From the table, the numbers of support vectors for the dual SVM are the
same for the five cases, but for the primal SVM, the number increases as the
chunk size increases. Although the number of iterations for the primal SVM is
smaller, the number of kernel accesses is smaller and training time is shorter for
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the dual SVM. This means that the computation burden per iteration for the
primal SVM is larger as discussed previously. For the primal SVM, the result
did not change even if we added the small value to the diagonal elements.

We examined performance of the case where singularity of the matrix occurs.
Table 3 shows the result for the blood cell data set for the linear kernel and
C = 100. For the primal SVM we also include the results when the diagonal
elements are added with 0.00001 denoted as Primal (added). The numeral in the
parentheses in the SVs column shows the working set size after training. Thus,
for example, for the chunk size of 50, among 497 data only 15 data are support
vectors and the remaining data are deleted because of singularity of the matrix.

From the table, training of the dual SVM was the fastest for all the chunk
sizes. Comparing the results for the primal SVM with the primal SVM (added),
training is faster for the primal SVM (added) but the solutions are different and
the number of support vectors increased as the number of the chunk size was

Table 2. Effect of the chunk size for primal and dual SVMs for the USPS data set

Method Chunk SVs Iterations Kernels Rec. Time (s)

10 597 68 1,889,358,476 95.47 (99.99) 253
50 597 19 593,529,638 95.47 (100) 114

Dual 100 597 15 585,495,205 95.47 (99.99) 129
500 597 26 1,926,210,878 95.47 (99.99) 650
1000 597 26 2,627,126,816 95.47 (99.99) 1527

10 597 66 28,647,597,296 95.47 (99.99) 1,437

50 604 16 8,116,273,966 95.47 (99.99) 412

Primal 100 604 11 6,928,602,363 95.42 (99.99) 385

500 724 7 33,628,904,338 95.47 (99.99) 1,826

1000 724 7 103,084,629,720 95.47 (99.99) 5,074

Table 3. Comparison of primal and dual SVMs for the blood cell data set with d = 1

and C = 100

Method Chunk SVs Iterations Kernels Rec. Time (s)

10 497 55 1,043,872,194 88.97 (91.99) 212
Dual 50 497 17 326,186,052 88.97 (91.99) 71

100 497 13 274,730,520 88.97 (91.99) 63
500 497 13 561,872,500 88.97 (91.99) 252

10 15 (497) 78 110,167,255,737 88.97 (91.99) 4,735

Primal 50 15 (497) 20 27,464,672,230 88.97 (91.99) 1,203

100 16 (497) 14 19,333,796,617 88.97 (91.99) 848

500 16 (497) 9 36,858,682,541 88.97 (91.99) 1753

10 498 53 53,685,575,039 88.97 (91.99) 2,387

Primal 50 517 14 14,051,320,440 88.97 (91.99) 644

(Added) 100 545 9 10,042,016,165 88.90 (91.73) 475

500 1,073 5 27,336,218,781 87.45 (89.60) 1,287



862 S. Abe

Table 4. Comparison of primal and dual SVMs for the benchmark data sets

SVM Data SVs Iterations Kernels Rec. Time

Thyroid 98 1439 2,660,742,540 97.81 (100) 220
Blood cell 188 13 86,324,885 93.58 (97.19) 10

Dual H-50 77 20 386,391,968 99.28 (100) 50
H-13 39 83 2,343,986,783 99.55 (100) 282

H-105 91 22 812,259,183 100 (100) 147

Satimage 1001 28 600,106,924 91.70 (99.71) 157
USPS 597 19 593,529,638 95.47 (100) 114

Thyroid No convergence

Blood cell 203 10 445,319,582 93.61 (97.19) 21

Primal H-50 70 (78) 15 605,637,116 99.28 (100) 52

H-13 99 12 749,712,635 99.70 (99.96) 93
H-105 111 13 907,360,383 100 (100) 140
Satiamge 1006 25 26,125,955,619 91.70 (99.71) 1258

USPS 604 16 8,116,273,966 95.47 (99.99) 412

increased. The results clearly show that the addition of a small positive value to
the diagonal elements is not a good strategy for avoiding the singularity of the
matrix.

Table 4 lists the results for the primal and dual SVMs using the benchmark
data sets. We set the chunk size of 50 for all the cases. For the thyroid data set,
training of the dual SVM was very slow. And for the primal SVM the working
set size fluctuated considerably and the training did not converge within 10,000
iterations. Except for hiragana-13 and hiragana-105 data sets, the dual SVM was
faster and except for the hiragana-50 data set the number of support vectors for
the dual SVM was smaller.

From our experiments it is clear that the dual SVM is better than the primal
SVM from the standpoints of stable convergence and fast training.

6 Conclusions

In this paper we proposed a new training method for SVMs in the dual form
(dual SVMs). Namely, starting with an initial working set, we solve the sub-
problem expressed in the dual form by Newton’s method, delete the data if the
associated Lagrange multipliers are non-positive as well as the data with zero
slack variables, add the data with positive slack variables, and repeat solving
the subproblem until the same working set is obtained. We clarified the advan-
tages of the dual SVM over the primal SVM from the standpoint of positive
definiteness of the matrix. By computer experiments we show that training of
the dual SVMs was faster than that of the primal SVMs and usually the number
of support vectors was smaller. We also showed that adding a small value to the
diagonal element for the primal SVMs makes a larger number of support vectors
and gives different solutions for the change of the chunk size.
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Abstract. As described in this paper, we propose a fast learning al-

gorithm of a support vector machine (SVM). Our work is base on the

Learning Vector Quantization (LVQ) and we compress the data to per-

form properly in the context of clustered data margin maximization. For

solving the problem faster, we propose a fast Best Matching Unit (BMU)

search and introduce it to the Threshold Order-Dependent (TOD) algo-

rithm, which is one of the simplest form of LVQ. Experimental results

demonstrate that our method is as accurate as the existing implemen-

tation, but it is faster in most situations. We also show the extension of

the proposed learning framework for online re-training problem.

Keywords: Kernel Machine, Online re-training, Large data processing.

1 Introduction

The Support Vector Machine (SVM) [1] is a strong tool for many binary or
multiple classification tasks. However, SVM’s learning process requires much
time for training with vast data because it is a quadratic programming problem.

Many researchers have addressed this problem. The Sequential Minimal Op-
timization (SMO) by Platt[2], which treats only two updated samples called the
“active working set” is well known. Some implementations[3] have been adopted.
Dong et al. proposed decomposition into some partial problems by particularly
addressing a block-diagonal matrix[4]. The Core Vector Machine (CVM)[5] which
solves the Minimal Enclosing Ball problem, and its simplified version Ball Vector
Machine (BVM) [6] are efficient handful subset finding techniques. Recent works
use the cutting plane algorithm (CPA) for performing optimization in linear
time. [7]. Its convergence acceleration technique was also proposed[8]. Neverthe-
less, CPA has only limited application to the linear SVM.

One of the approach which increases performance on such tasks is to reduce
the problem size[9,10]. As a reduction technique, Bin Li et al. reported a prin-
cipled approach in their past work: the Support Cluster Machine (SCM)[11].
They treat neighbor data as a cluster, and show that the whole problem can be
formulated by introducing a Probability Product Kernel (PPK). Each cluster is
made using a Threshold Order-Dependent (TOD) algorithm[12]. However, their
proposition is the integration of the generative model and the discriminative

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 864–873, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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model. And the cluster they made using the TOD procedure should be rather
interpreted as Learning Vector Quantization(LVQ). Based on this point of view,
in this paper we show that the variance are not needed for its training. Further-
more, we propose an improved algorithm to build up the compressed data faster
than the original algorithm. It is based on TOD, but it includes the fast Best
Matching Unit (BMU) search. The improved algorithm retains the accuracy and
the online data processing ability that are useful for additional data re-training.

2 LVQ-SVM

The SVM constructs a separating hyperplane via maximization of the margin
between the two datasets. Its dual formulation is as described below.

maximize :
N∑
i=1

αi −
1
2
αT Qα (1)

subject to : 0 ≤ αi ≤ C, i = 1, . . . , N
N∑
i=1

yiαi = 0 (2)

Therein, C is a constant defining the soft-margin. αi is a Lagrangian corre-
sponding to a training sample (xi, yi) ∈ (Rd, {−1, 1}), and Q is a matrix whose
elements are Qij = yiyjK(xi,xj), where K(xi,xj) = ΦT (xi)Φ(xj).

For a large dataset, the computational cost of the optimization step is expen-
sive for solving Cholesky decomposition of Q. First, we introduce θ, which is
a concentrated neighbor data expression, to reduce the size of matrix Q. θ is
defined as a single Gaussian to retain the generality of the data expression and
to ease calculation.

θi = (μiΣi, yi) (3)

In that equation, μi, Σi respectively represent the mean and covariance matrix
of the distribution. yi is a class label of each cluster. The probability of each
datum generated from the cluster is

p(x|θi) =
e−

1
2 (x−μi)

T Σ
−1
i (x−μi)

(2π)
d
2 |Σi|

1
2

. (4)

We introduce symmetric Kullback–Leibler divergence to obtain a separate hy-
perplane based on the cluster.

D(p(x|θi)||q(x|θj)) =∫
Rd

p(x|θi) log
p(x|θi)
q(x|θj)

dx+∫
Rd

q(x|θj) log
q(x|θj)
p(x|θi)

dx (5)
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These are solvable in the case where p, q is Gaussian.

tr(ΣiΣ
−1
j ) + tr(ΣjΣ

−1
i )− 2d

+tr((Σ−1
i + Σ−1

j )(μi − μj)(μi − μj)T ) (6)

Therein, d is a dimension of the input data. Furthermore, we can introduce the
KL-kernel to deal with a nonlinear problem[13].

K(p, q) = e−aD(p||q)+b (7)

In that equation, a and b are constants. The SCM employed the Probability
Product Kernel (PPK)[14]. That expression is as presented below.

K(p, q) =
∫
Rd

pρqρdx (8)

If ρ = 1 and p and q are Gaussians defined by θi, θj , then it can be described as
shown below.

K(p, q) = (2π)
d
2 |Σ̃| 1

2 |Σi|−1
2 |Σj|− 1

2

exp(−1
2
(μT

i Σ−1
i μi + μT

j Σ−1
j μj − μ̃T Σ̃−1μ̃)) (9)

where Σ̃ = (Σ−1
i + Σ−1

j )−1, μ̃ = Σ−1
i μi + Σ−1

j μj

For both KL-kernel and PPK, one important common feature exists. If we as-
sume covariance as unit matrix I, then they converge with the well-known Gaus-
sian kernel:1

K(p, q) = e−a
′‖μi−μj‖+b′ . (10)

The SCM suggested that PPK can accommodate Σ → 0 in the testing phase.
Nevertheless, when we assume I for all cluster(and that constant variance exists
behind testing samples), the cluster expression retaining only average informa-
tion is interpreted as quantized vector. And it can be processed in the normal
SVM with Gaussian kernel. We call this type of learning LVQ-SVM in this pa-
per. Note that this is a natural formulation for the use of the TOD algorithm
(described in section 3) because it does not presume data overlap like Gaussian
mixture estimation by such as Expectation Maximization(EM) algorithm.

The LVQ-SVM can be optimized using Sequential Minimal Optimization
(SMO). It solves the partial problem constructed by two Lagrangians iteratively.
It is much faster than the native solution. The next section presents details of
our fast LVQ algorithm.

3 A Fast BMU Search in TOD Algorithm

The SCM tried both the TOD algorithm and EM: the former algorithm provides
good accuracy and is faster. The TOD is based on competitive learning, we
improve it to further fast algorithm.
1 Note that this is true in the generalized form σI .
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3.1 TOD Algorithm

First, we describe the TOD Algorithm.

1. Define the similarity threshold T of a quantized vector by the Euclidean
norm. Initialize the quantized vector set S according to the first data.

2. Input new data ξ ∈ Rd.
3. Search for the best matching unit (BMU) s1 by s1 = argmins∈S‖ξ − μs‖.
4. If the distance between ξ and μs1 is greater than similarity threshold T ,

then the input data are a new quantized vector: add it to S and go to Step
2) to process the subsequent data.

5. If the distance is less than T , then update the mean vector of s1 as (Note
that LVQ-SVM can skip the equation (12) for variance)

Δμ =
1
t
(ξ − μ(t−1)) (11)

ΔΣ =
(ξ − μ(t))T (ξ − μ(t))−Σ(t−1)

t
, (12)

where t signifies the frequency at which the quantized vector is selected as
BMU.

6. Go to Step 2).

The algorithm described above is a simple form of competitive learning; nev-
ertheless, it still has room for improvement of time. We specifically examine
the time it takes to search BMU and propose improved algorithm with intro-
duction of the neighbor quantized vector set, which enables realization of the
approximate BMU search.

3.2 The Improved BMU Search

1. Define the upper layer threshold as T ∗(> T ). Initialize the center set of the
neighbor quantized vectors Λ = {ω1}, with ω1 as equal to the first data. Set
the index of the first quantized vector to 1.

2. Input new data ξ ∈ Rd.
3. Search for the nearest center point as p = argmin1≤i≤|Λ|‖ξ − ωi‖. Next,

search BMU only from the quantized vectors whose index is p.
4. If the distance between ξ and μs1 is less than T , update the center position

as

Δωp =
1

t× t∗
(ξ − μs1), (13)

where t means the frequency that the quantized vector s1 is selected as
BMU, and t∗ is number of quantized vectors whose index is p. Update the
quantized vector information by (11) and go to Step 2).
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5. If the distance between ξ and μs1 is greater than T and distance between ξ
and ωp is less than T ∗, add a new quantized vector whose position μ|S|+1=ξ
to S, and set its index p. Update ωp in the following manner.

Δωp =
1
t∗

(ξ − ωp) (14)

Go to Step 2).
6. If the distance between ξ and ωp is greater than T ∗, Add ω|Λ|+1 = ξ to Λ.

And a new quantized vector whose index is |Λ| and position is μnew = ξ to
S. Go to Step 2).

The possibility exists of generating an overlapped index region in our improved
algorithm. However, if that happens, it has little effect on either the recognition
performance or calculation time in practice. We call our improved algorithm
“iTOD” in this paper. For confirmation, we formally verify that iTOD has lower
cost.

Proposition. If the TOD algorithm and iTOD generate the same number of
quantized vectors M >> 1, and if each set having same index in iTOD includes
the same number of vectors, then iTOD’s computational cost is approximately
equal to or less than that of the original TOD algorithm.

Proof. Let N be the number of data; let L be the number of indices in our
algorithm (1 ≤ L ≤ M). Both the computational costs of TOD and iTOD’s
depend practically on the BMU search. Here, the computational cost of the
BMU search is O(NM) in TOD, and O(N(ML + L)) in iTOD.

M ≥ M

L
+ L⇔ 1 � L � M (15)

We can lay out the fastest situation by setting L =
√
M on the assumption

described above.

4 Experimental Results

We tested the LVQ-SVM and other methods using six large datasets on a 3.0
GHz Intel Xeon Windows XP machine. As special cases, we only cite results of
HeroSVM2 from their experiment because it is unavailable now. We can review
the details later. Kernel and soft-margin parameters are optimized using Grid
Search.

4.1 Forest CoverType

The first experiment is on Forest CoverType in the UCI repository3. We select
the two major labels “Spruce-Fir” and “Lodgepole Pine” from among all seven
2 HeroSVM, MNIST http://www.cenparmi.concordia.ca/˜jdong/HeroSvm.html
3 Available at http://kdd.ics.uci.edu/databases/covertype/covertype.html
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Table 1. Result on Forest CoverType: ”Data Size” means inputs for optimization

step (i.e. Number of quantized vectors or reduced vectors of random setting). The first

term in brackets is the LVQ processing time; the second term is the optimization time.

Random results are included for purposes of reference.

LVQ-SVM(iTOD) LVQ-SVM(TOD) LibSVM OCAS Random

Data Size 2453 1968 445627 445627 2453

Number of SV 2434 1968 221620 38 973

Accuracy (%) 80.11 79.28 78.58 72.65 60.4

Train-Time (s) 10.15(8.03+2.12) 22.66(21.22 + 1.44) 52494 71 0.67

Test-Time (s) 17.66 14.78 3714 0.15 9.73

labels. The data consist of 495,141 vectors with 54 dimensions. We try ten-
fold cross validation with 9:1 train and test split ratio and comparison with
the LVQ-SVM using TOD, LibSVM4 which is a popular implementation of the
SMO Algorithm, OCAS5, which solves the convergence accelerated CPA and
LibSVM with random reduction preprocessing tuned in to same number of our
quantized vectors. The result is presented in Table 1. The first term in brackets
shows the LVQ processing time of TOD and iTOD. The second term shows
the optimization time. The test time means the sum of 49,514 testing samples.
We set T = 0.5 for TOD and T ∗ = 2.5T for iTOD. OCAS is tested using the
Octave interface on Vine Linux 4.2 (same PC), and we select the best parameter
C = 0.1 from among 0.001, 0.01, 0.1, 1.0, and 10. The training time of the
proposed method is about 10 seconds, which is the fastest. Random sampling
ends in low accuracy. Consequently, it is said that the LVQ process generates
a handful of significant vectors for learning. In addition, LVQ-SVM produces a
discrimination boundary by fewer support vectors efficiently. Generally speaking,
the fewer support vectors leads to a faster classifier in testing phase. LVQ-SVM
also presents an advantage for classification time. Although OCAS shows the
fewest support vectors because it is a linear solver; OCAS solves the primal
problem and provides the sum of linear weights directly. For that reason, the
classification time is independent of the number of support vectors and it is fast.
CPA appears to be a promising optimization algorithm, and LVQ-SVM can use
CPA instead of SMO for the optimization step if CPA deals with a nonlinear
problem.

4.2 MNIST

The second experiment is on MNIST2 which is a handwritten number (0–9) pre-
diction task. Training data are 60,000 samples; the test data are 10,000 samples.
For comparison with Dong’s HeroSVM2.1, we use the same feature extraction
of 576 dimensions[15]. We set T = 0.5 and T ∗ = 2.5T . The result is shown in
Table 2 (The result of HeroSVM, as obtained on a computer with a 1.7 GHz

4 LibSVM http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
5 Shogun toolbox http://www.shogun-toolbox.org/
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Table 2. Result on MNIST

LVQ-SVM(iTOD) LVQ-SVM(TOD) HeroSVM2.1 LibSVM

Data size 15961 16171 60000 60000

Number of SV 3440 3505 24470 9527

Accuracy (%) 99.37 99.38 99.40 99.42

Train Time (s) 101.9(7.42+94.48) 165.8(68.81 + 97.02) (230) 1682

Test Time (s) 91.56 95.58 - 303

Table 3. KDD Cup 1999, WEB, IJCNN and USPS

Train Test Dim Class

KDD Cup1999 4898431 311029 127 2

WEB 49749 14951 300 2

IJCNN 49990 91701 22 2

USPS 266079 75383 676 2

Intel Pentium 4 processor). The SCM also tested MNIST database, their results
reported was 98.97%.

We also check the LVQ processing time of TOD and improved TOD for chang-
ing T (Fig. 1). The property of our improved TOD for changing T ∗ is shown
in Fig. 2. It is said that the proposed method is faster than the original TOD
for every T . Additionally, users need not be nervous about decisions of param-
eter T ∗ because iTOD converges to TOD even in the worst case. Furthermore,
optimal T ∗ is obtained when the number of indices L approximately equals the
square root of the cluster number M .

4.3 KDD Cup 1999, Web, IJCNN, USPS

For comparison of the LVQ-SVM to recent implementations of Core Vector Ma-
chine (CVM), which chooses the core set by solving a Minimum Enclosing Ball
(MEB), and the Ball Vector Machine (BVM), which substitutes MEB with En-
closing Ball (EB)6, we attempt an additional experiment on KDD Cup 1999,
Web, IJCNN and USPS7. Details of each dataset are shown in Table 3.

In this case, we set (T, T ∗) = (0.01, 10T ) for IJCNN and set different T
for two classes in case of KDD Cup 1999, WEB, and USPS. Each setting is
TKDD1 = 2.0, TKDD2 = 1.0, TWEB1 = 2.0, TWEB2 = 20, TUSPS1 = 130 and
TUSPS2 = 40. Actually, T ∗ is the same in all cases and 2.5T . The results are
presented in Table 4.

Both CVM and BVM present a tradeoff relationship between the learning
speed and the recognition rate for parameter ε. The details are reported in [6]; we

6 Available at http://www.cse.ust.hk/˜ivor/cvm.html
7 KDDCup1999, Web, and IJCNN and USPS are available at

http://www.cse.ust.hk/ivor/cvm.html
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tested ε = 10−5 with recommended parameters. LVQ-SVM using iTOD achieves
the fastest or second-fastest SVM learning on IJCNN, USPS, and WEB. KDD
Cup 1999 is a rare case because the number of support vectors is very small for
its data size. Although CVM and BVM present advantages over LVQ-SVM for
such special cases, it is said that LVQ-SVM is useful learning framework.
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Fig. 1. iTod vs. TOD for changing T on MNIST (T ∗ = 2.5T )
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Fig. 2. Details of the iTOD algorithm on MNIST (T = 0.5) for changing T ∗: The total

cluster generation time depends on the number of average (MNIST has 10 classes)

indices, and the best condition available when L ≈
√

M(around 40 in this case). Over-

large T ∗ results in only one index that includes all clusters, and converges to the original

TOD. Accuracy is not influenced at all by T ∗.

Table 4. Comparison between LVQ-SVM, CVM, and BVM

LVQ-SVM(iTOD) LVQ-SVM(TOD) CVM BVM

KDD Cup Number of SV 500 923 53 219

1999 Accuracy (%) 94.51 94.02 92.34 91.95
Train Time (s) 50.97(50.77 + 0.20) 130.4(130.1 + 0.34) 1.27 2.09

WEB Number of SV 3175 3099 9889 3540

Accuracy (%) 98.91 98.82 99.07 99.04
Train Time (s) 28.87(23.78 + 5.09) 39.34(34.40 + 4.94) 220.2 23.17

IJCNN Number of SV 3594 3581 9316 5721

Accuracy (%) 99.02 99.04 98.37 98.38
Train Time (s) 20.28(3.08+17.20) 77.48(61.54 + 15.94) 259.4 67.38

USPS Number of SV 1171 1600 4094 1426

Accuracy (%) 99.52 99.38 99.50 99.54
Train Time (s) 33.57(29.30+4.27) 187.94(183.63 + 4.31) 735.8 67.03
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Fig. 3. Performance of online IJCNN data processing: Accumulated training time (left).
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Fig. 4. Performance of online IJCNN data processing: Accumulated training time (left).

Accuracy (right).

4.4 Online Re-training

We show that LVQ-SVM is a very efficient online re-training processor. We
assume a situation in which data are not obtained all together. In such a case,
one might gather data continuously and try re-training of the classifier repeatedly
at a certain amount of data collected. We use IJCNN and KDD Cup for this
experiment. All classifiers are re-trained once every 1000 samples obtained for
IJCNN and every 10,000 samples for KDD Cup. The results are portrayed in
Fig. 3 and Fig. 4. The proposed iTOD can accommodate online data, so the
accumulated training time is much lower than that of either CVM or BVM,
while retaining almost equal accuracy. For the KDD Cup, although influential
to accuracy data are coming around 200 step, LVQ-SVM does not miss such
data behavior. We briefly presented LVQ based online performance here, and if
LVQ algorithm is designed to include forgetting of attributes (e.g. a certain type
of SOM) instead of TOD, LVQ-SVM will turn into real-time adaptive SVM.

5 Conclusions

As described herein, we proposed a fast BMU search for Learning Vector Quanti-
zation, resulting in a faster SVM learning algorithm. We also showed the advan-
tage of LVQ based approach in treating online re-training problems. we are now
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interested in threshold analysis using the point process(e.g. Ripley’s k-function)
for the future work.
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Abstract. We explore the pricing performance of Support Vector Re-

gression for pricing S&P 500 index call options. Support Vector Regres-

sion is a novel nonparametric methodology that has been developed in

the context of statistical learning theory, and until now it has not been

widely used in financial econometric applications. This new method is

compared with the Black and Scholes (1973) option pricing model, using

standard implied parameters and parameters derived via the Determin-

istic Volatility Functions approach. The empirical analysis has shown

promising results for the Support Vector Regression models.

Keywords: Option pricing, implied volatility, non-parametric methods,

support vector regression.

1 Introduction

A call option gives the holder the right, not the obligation, to buy the underlying
asset (e.g. a stock) by a certain date (i.e. the expiration date or maturity) by
fixing the price of the asset now (i.e. the exercise price). There are American
and European styled options. American options can be exercised at any time up
to the maturity of the option, whilst European options can be exercised only
on the expiration date itself. European styled options can be priced using the
Black-Scholes (1973) option pricing model [5]. Moreover, they are generally easier
to analyze than American options, and some of the properties of an American
option are frequently deduced from those of its European counterpart (see Hull,
2008 [13]).

The Black and Scholes (BS) (1973) model is considered as the most promi-
nent achievement in the option pricing theory. Empirical research has shown that
the formula suffers from systematic biases known as the volatility smile/smirk
anomaly that result from the simplistic assumptions that governs its pricing
dynamics (see [19], [3]). More elaborated parametric Option Pricing Models

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 874–883, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(OPMs) that allow for stochastic volatility and jumps have been introduced in
an attempt to eliminate some of the BS biases (i.e. [3]). Although these models
seem to produce more accurate pricing results compared to the BS, yet, they are
quite challenging and complex when used in real time applications. For this rea-
son, the BS is considered to be a significant benchmark model for both academic
and practical purposes.

Nowadays, there is a great quest for nonparametric methods and techniques
that can potentially alleviate the limitations of parametric OPMs. Practitioners
have always a need for more accurate OPMs that can be utilized in real-world
applications. Nonparametric methods, such as Artificial Neural Network, Radial
Basis Functions, Kernel Regression and other approaches, have been extensively
investigated in empirical option pricing applications (see [14], [1], [6], [18], [2]
and referenced therein). Support Vector Regression (SVR) is another power-
ful, nonparametric-data driven, method that is suitable for use in the empirical
option pricing area as well. Support Vector Machines have found significant
applications in electrical engineering, bioinformatics, pattern recognition, text
analysis, computer vision etc (see [20], and references therein). Despite this,
they have not gained, yet, any significant popularity in financial econometric
applications, with only few studies being the exception to this. For instance, [17]
apply them to approximate the noisy Mackey-Glass system and the Santa Fe
Times Series Competition; [12] apply such methods for one-step ahead predic-
tion of the weekly 90-day T-bill rate and the daily DAX30 closing prices; and
[7] apply SVR to forecast the five day relative difference in percentage of price
for five futures contracts.

In this paper, we develop SVR models for pricing European options and com-
pare them with parametric OPMs. We consider the traditional SVR approach as
originally developed by Vapnik based on the ε-insensitive loss function (ε-SVR
thereafter, see [23]), which is considered to be more robust when noise is non-
Gaussian. In addition, we consider the Least Squares Support Vector Regression
(LS-SVR), which is a subsequent variant of the original methodology, proposed
by Suykens and co-workers (see [21]). LS-SVR can be more robust when noise is
Gaussian and it relies on fewer tuning hyper-parameters that can expedite the
estimation process. It also minimizes a least squares loss function which is most
common in empirical options pricing studies (see [9]).

In this study, we estimate SVR models using two different target functions
(desired outputs). One that approximates the unknown empirical option pricing
function explicitly, by modeling the market prices of the call options (called the
market target function), and one implicitly, by modeling the residual between
the actual call market price and the parametric option price estimate (called the
hybrid target function). These target functions have been also considered previ-
ously in the empirical option pricing research (see [2] and references therein). The
SVR models are compared with the parametric BS model using overall average
implied parameters and contract specific implied volatility versions derived by
the Deterministic Volatility Functions (DVF) approach proposed by [10]. To the
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best of our knowledge, this is the first time that such a comprehensive application
is considered1 in the empirical option pricing field.

In the following, we first review the parametric models and the market and
hybrid ε-SVR and LS-SVR models. Then we discuss the dataset and the method-
ologies employed to get the implied parameter estimates. Subsequently we review
the numerical results and we conclude.

2 The Parametric Models Used

The BS formula for European call options modified for dividend-paying under-
lying asset is:

cBS = Se−dyTN(d)−Xe−rTN
(
d− σ

√
T
)

(1)

d =
ln (S/X) + (r − dy)T +

(
σ
√
T
)2
/2

σ
√
T

(2)

where cBS is premium paid for the European call option, S is the spot price of the
underlying asset, X is the exercise price of the call option, r is the continuously
compounded risk free interest rate, dy is the continuous dividend yield paid by
the underlying asset, T is the time left until the option expiration date, σ2 is
the yearly variance rate of return for the underlying asset and N(.) stands for
the standard normal cumulative distribution.

In this study, we also employ the DVF approach which was proposed by [10].
DVF can be used to estimate per contract volatility for the BS model and it is
a practical approach to mitigate the volatility smile anomaly. We estimate the
following DVF specification:

DV F : σBSDV F = max
(
0.01, α0 + α1X + α2X

2 + α3T + α4XT
)

(3)

Based on [10] the above model specification seems to work well for the market
under consideration.

3 The Nonparametric Approaches

3.1 ε-Insensitive Support Vector Regression

The idea behind the SVR is to estimate the coefficient values w and b that
optimize the generalization ability of the regressor by minimizing the following
regularized loss function:
1 Trafalis et al. (2003) [22] create artificial option pricing data via the Monte-Carlo

simulation technique. In order to compare the Black and Scholes equations with the

ε-SVR models, they use 1,500 option observations in their out-of-sample tests. In

contrast, one of the major contributions of our study is that, we employ market

data for the S&P 500 Index options, and we include 21,644 observations in our

out-of-sample pricing performance comparisons.
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min
w,b

1
2
wTw + C

P∑
j=1

Lε (tj , f(xj)) (4)

where t denotes the target function observed in market data and P denotes
the number of datapoints considered. In addition, f(x) is the form of the SVR
function approximation and is given by:

f(x) = wTφ(x) + b (5)

and Lε (tj , f(xj)) is the so-called Vapnik’s ε-insensitive loss functions defined as:

Lε (t, f(x)) = |t− f(x)|ε =
{

0 if |t− f(x)| ≤ ε
|t− f(xj)| otherwise (6)

In the above formulations φ(x) : RN → RNh represents a nonlinear mapping
(transformation) of the input space to an arbitrarily high-dimensional feature
space, which can be infinite dimensional (in such case the weights vector will
also become infinite dimensional). The constant C > 0 determines the trade-off
between the amount up to which deviations larger than ε are tolerated and the
flatness (complexity) of the estimated model. The estimation of the w and b is
done by formulating the following optimization problem in the primal weight
space of the unknown coefficients:

min
w,b,ξ,φ

Lp(w, ξ, ψ) =
1
2
wTw + C

P∑
j=1

(ξj + ψj) (7)

subject to
tj − wTφ(xj)− b ≤ ε+ ξj , j = 1, · · · , P
wTφ(xj)− tj + b ≤ ε+ ψj , j = 1, · · · , P
ξj , ψj ≥ 0, j = 1, · · · , P

(8)

where ξj and ψj are defined in the prime space and they are introduced in order
to make the solution of the optimization problem feasible for all datapoints that
are outside the ε-tube. Transforming the above into its dual formulation2 and
after applying the kernel trick results to a quadratic programming problem (see
[23]). To successfully apply the methodology for nonlinear regression problems
it is necessary to apply the kernel trick by choosing a proper kernel function:

K(xj , xi) = φ(xj)Tφ(xi) (9)

A function that is symmetric, continuous and satisfies Mercer’s condition (see
[23] for details) is admissible for this case. The Gaussian kernel is a widespread
kernel function that is admissible for use with SVR:

K(xj , xi) = exp

(
−||xj − xi||2

2v2
K

)
(10)

2 In nonlinear regression problems the primal weights vector w can become infinite

dimensional due to the applied transformation φ(xj). For this reason the solution of

the problem is better derived via its dual formulation.
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where ||xj − xi||2 measures the distance between two datapoints and v2
K is called

the kernel width parameter and is used as a normalizing factor. It can be shown
that when the Gaussian kernel function is considered, the nonlinear mapping
φ(xj) is infinite dimensional and also that SVR are universal approximators (see
[23] for details), an implication of paramount importance that also contributes
to the growing popularity of the SVR approach.

3.2 Least Squares Support Vector Machines

The Least Squares Support Vector Machines method is a variant of the ε-SVR
originally proposed and developed by Suykens and co-workers (see [21]). Accord-
ing to this approach, the model estimated is given by the following optimization
problem in the primal weight space3:

min
w,b,e

= LP (w, e) =
1
2
wTw + ω

1
2

P∑
j=1

e2j (11)

subject to
tj = wTφ(xj) + b+ ej , j = 1, · · · , P (12)

The above formulation is nothing else but a ridge regression cost function formu-
lated in the featured space defined by the mapping φ(x). Parameter ω determines
again the trade-off between the model complexity and goodness of fit to the es-
timation data. As in the case of ε-SVR (see [21]), after applying the kernel trick
we obtain the following linear system in a∗ and b∗:

P∑
j=1

(
a∗jK(xj , x)

)
+ b∗ +

a∗j
ω

= tj , j = 1, · · · , P (13)

P∑
j=1

a∗j = 0 (14)

where the resulting LS-SVR model that characterizes the estimated regression
function is given by:

f(x) =
P∑
j=1

a∗jK(x, xj) + b∗ (15)

The error variable ej is used to control deviations from the regression function
instead of the slack variables ξj , ψj and a squared loss function is used instead of
the ε-insensitive loss function. This has two implications regarding the solution of
the problem: i) lack of sparseness since every data point will now be a support

3 We will continue using the notation w and b but the reader should be careful not to

confuse these free parameters with the ones used in ε-SVR; although their meaning

is closely related the estimation techniques are different.
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vector, something that can be considered as a drawback compared to the ε-
SVR, and ii) only two parameters ω and v2

K are needed to be tuned compared
to three for ε-SVR; this is an advantage, since it reduces the possible parameters
combinations (2-D grid instead of 3-D) and at the same time reduces the risk
of selecting a suboptimal parameter combination. Due to the reasons explained
above, estimating a set of LS-SVR models can be potentially faster compared to
ε-SVR.

4 Data and Methodology

4.1 Data and Filtering Rules

Our dataset covers the period February 2003 to August 2004. The S&P 500
index call options are used because this option market is extremely liquid. They
are the most popular index options traded in the CBOE and the closest to
the theoretical setting of the parametric models (see [11]). In our analysis, we
use the midpoint of the call option bid-ask spread since as noted by [10], using
bid-ask midpoints rather that trade prices reduces noise in the cross sectional
estimation of implied parameters. Each day, the midpoint of the call option bid
ask spread at the close of the market, cmrk, is matched with the closing value
of S&P 500 index4. To create an informative dataset we employ various filtering
rules previously adopted by mainstream papers in this field like the one of [3]
(see [2] for further details).

4.2 SVR Hyper-parameters and Data Splitting

Model capacity for SVR models is part of the optimization problem but cross-
validation may be needed to properly select the tuning hyper-parameters and to
ensure high out-of-sample accuracy. For ε-SVR and LS-SVR, we have conducted
a pilot study using data from 20025 in order to determine areas of the tuning
parameters values that result to models which performed well out-of-sample.
For ε-SVR we examine 40 possible combinations per (weekly) training sample by
looking into parameter values in the following areas: 10 ≤ C ≤ 200 , 0.025 ≤ ε ≤
0.05 and 1.00 ≤ vK ≤ 10.00 . For LS-SVR we examine 30 possible combinations
per (weekly) training sample by looking into parameter values in the following
areas: 10 ≤ ω ≤ 1000 and 10 ≤ vK ≤ 50.

Regarding the data splitting, our estimating (training) sample is always by
using one month of data (around 23 trading days) and our validation sample is
always five trading days (one week). After estimating all possible model combi-
nations using the hyper-parameter values, the regression model with the least
4 Data synchronicity should be minimal issue for this highly active market (see also

[11]). Among others, [9] and [8] use daily closing prices of European call options

written on the S&P 500 index.
5 Note that 2002 data is not included in our out-of-sample testing. Specifically, our

out-of-sample period starts in March 2003.



880 P.C. Andreou, C. Charalambous, and S.H. Martzoukos

Root Mean Squared Error (RMSE) in the validation dataset is chosen and used
for out-of-sample pricing during the next five trading days (one week). In this
paper, the period March 2003 to August 2004 is a period where we can get out-
of-sample pricing estimates from all models. For this out-of-sample period we
have 21644 datapoints. The focus of our analysis will be based on the RMSE
measure since Bates (2000, [4]) points out that it is a relatively intuitive error
measure and is useful for comparison with other work in empirical option pricing.

4.3 Implied Parameters for the Black and Scholes Model

The methodology employed here for the estimation of the overall average im-
plied volatility (single per day) is similar to that in previous studies ([3]) that
adopt the Whaley’s (1982) [24] simultaneous equation procedure to minimize a
price deviation function with respect to the unobserved parameters. The above
methodology is applied daily to estimate a single overall average implied volatil-
ity (σBSav ) and also to estimate the coefficient values of the DVF specification
shown in Eq. (3), so as to have a daily unique per contract volatility estimate
(σBSDV F ).

4.4 The Set of Alternative Models

With the BS models we use as input S, X , T 6, dy7, r8, and any of the fol-
lowing two volatility estimates: σBSj where j = {av,DV F}, with BSj denoting
the alternative BS parametric models. The dividend adjusted moneyness ratio(
Se−dyT

)
/X and time to maturity (T ) are always inputs to the SVR models.

We examine two different target functions. The market target function, which
represents actual market prices of call options, and the hybrid target function,
which represents the residual between the actual call market price and the para-
metric option price estimate. The notation here depends on the additional inputs
that are used from the parametric models. Specifically, we estimate and examine:
ε−SV RMav, ε−SVRMDV F , ε−SV RHDV F as well as LS−SV RMav, LS−SV RMDV F ,
LS−SVRHDV F , where the superscripts “M” and “H” are used to denote models
estimated based on Market and the Hybrid target function respectively, and the
subscripts “av” and “DV F” denote the volalitility used as an additional input.

6 Time to maturity is computed assuming 252 days in a year.
7 We have collected a daily dividend yield provided by Thomson Datastream. Jackw-

erth (2000) [15] also assumes that the future dividends for the S&P 500 index can

be approximated by a dividend yield.
8 Previous studies have used 90-day T-bill rates as approximation of the interest rate.

In this study we use nonlinear cubic spline interpolation for matching each option

contract with a continuous interest rate, r , that corresponds to the option’s maturity.

For this purpose, 1, 3, 6, and 12 months constant maturity T-bills rates (collected

from the U.S. Federal Reserve Bank Statistical Releases) were considered.
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4.5 Analysis of the Out-of-Sample Results

Table 1 exhibits the out-of-sample performance of the benchmark parametric
BS model with two different volatility estimates. As expected, we observe that
the DVF based BS model (BSDV F ) provides better performance than the cor-
responding overall average one (BSav).

Table 1. Out-of-sample pricing performance of the parametric models

BSav BSDV F

RMSE 3.285 2.008

The out-of-sample results for ε-SVR are shown in the upper panel of Table 2
and for LS-SVR in the lower panel of Table 2. First, we observe the hybrid models
to perform considerably better than the models estimated with the market target
function. Second, the models estimated with σBSDV F perform better than the
models estimated with σBSav . The most important observation from this table is
that the models ε − SV RHDV F and LS − SV RHDV F outperform the parametric
alternatives since they have RMSE substantially lower than 2.00. Specifically,
RMSE for ε − SV RHDV F is equal to 1.623 and for LS − SV RHDV F is equal to
1.594; as shown in Table 3, these values are lower than the BSDV F ’s RMSE in
statistical terms as well.

Table 2. Out-of-sample pricing performance for ε-SVR and LS-SVR

ε − SV RM
av ε − SV RM

DV F ε − SV RH
DV F

RMSE 5.944 2.361 1.623

LS − SV RM
av LS − SV RM

DV F LS − SV RH
DV F

RMSE 4.899 2.107 1.594

We should note that in all cases, the performance of the LS-SVR models is
better compared to the ε-SVR models. The above does not necessarily imply
that LS-SVR is a superior methodology compared to the ε-SVR. One explana-
tion for their superiority regards the naive hyper-parameter selection process we
follow. Second, someone should notice that ε-SVR and LS-SVR employ different
functional forms to model the problem under investigation and they use different
loss functions to measure performance. If the error in the data is governed by a
pure Gaussian noise then we may observe LS-SVR that are optimized based on
a sum of squares loss function to perform better; ε-SVR can potentially perform
better when noise is non-Gaussian ([17]). In addition, ε-SVR that use inappro-
priate large values for ε may introduce systematic bias to the estimation and
considerably underfit the relationship ([17]). Nevertheless, the most important
fact we must keep from the above analysis is that both SVR methods outperform
the benchmark BS model.



882 P.C. Andreou, C. Charalambous, and S.H. Martzoukos

Table 3. t-tests for out-of-sample model performance comparison. Values in the upper

(lower) diagonal report the Student’s (Johnson’s modified [16]) t-value regarding the

comparison of means of the squared residuals between models in the vertical heading

versus models in the horizontal heading. In general, a positive (negative) t-value larger

(smaller) than 1.96 (-1.96) indicates that the model in the vertical (horizontal) heading

has a larger MSE than the model in the horizontal (vertical) heading at 5% significance

level (for 1% significance level use 2.325 and -2.325 respectively).

BSDV F ε − SV RH
DV F LS − SV RH

DV F

BSDV F - 4.812 5.257

ε − SV RH
DV F -6.134 - 0.900

LS − SV RH
DV F -6.077 -2.045 -

5 Conclusions

In this paper, we investigate the option pricing performance of ε-insensitive
Support Vector Regression and Least Squares Support Vector Regression for call
options of the S&P 500 index and, we compare it with the withstanding Black
and Scholes model. In our view, the results obtained for the Support Vector
Regression models are promising enough for the problem under investigation.
We expect that under more sophisticated strategies for calibrating the models’
hyper-parameters, both methods can improve their out-of-sample performance
further.
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Abstract. This paper proposes a modelling of Support Vector Machine

(SVM) learning to address the problem of learning with sloppy labels. In

binary classification, learning with sloppy labels is the situation where a

learner is provided with labelled data, where the observed labels of each

class are possibly noisy (flipped) version of their true class and where

the probability of flipping a label y to −y only depends on y. The noise

probability is therefore constant and uniform within each class: learning

with positive and unlabeled data is for instance a motivating example for

this model. In order to learn with sloppy labels, we propose SloppySvm,

an SVM algorithm that minimizes a tailored nonconvex functional that is

shown to be a uniform estimate of the noise-free SVM functional. Several

experiments validate the soundness of our approach.

1 Introduction

This paper addresses the problem of learning a Support Vector Machine (SVM)
from sloppily labelled data, that is from labelled data where the observed labels
are possibly noisy versions of the true labels. We focus on binary classification
and the noise process that we consider is the one where the probability of flip-
ping a label to the opposite class depends only on the true label; the flipping
probabilities (for the +1 and -1 classes) are therefore constant for each class.

Beyond simple theoretical motivations, being able to learn a large margin
classifier is of interest for a few practical situations. If the training data at hand
are manually labelled, there are reasons to believe that the labelling process
is not perfect and that mislabelling may occur, and uniform mislabelling may
be a seen as a consequence of the tiresomeness of the manual annotating task.
Even more interesting is the connection between learning with sloppy labels and
semi-supervised learning where the (few) labelled data available come from only
one class; this is a common situation in, e.g., bioinformatics. This connection
is formalized in Section 2 where it is also discussed how learning with sloppily
labelled data may help learn in the multi-instance framework.

In order to tackle the problem of learning an SVM from sloppy labels, we
propose to minimize a new objective functional, that is shown to be a uniform
estimate of the noise-free SVM objective functional. The minimization of this
nonconvex functional is done using a classical quasi-Newton minimization al-
gorithm, where the nonconvex functional is rendered differentiable using the

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 884–893, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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smoothing trick proposed in [3] for the hinge loss. We also propose a heuristic
to automatically estimate the noise levels from the training data.

The paper is organized as follows. Section 2 describes the learning setting and
shows how it is related to the problem of semi-supervised learning with posi-
tive and unlabeled data only. Section 3 describes the new nonconvex objective
functional that we propose to minimize together with our heuristic to automat-
ically estimate the noise levels. Finally, Section 4 reports a number of numerical
simulations that support the soundness of our proposed learning method.

2 Formal Setting and Motivations

2.1 Notation

Focusing on binary classification, the target space is Y = {−1,+1} and the
input space X is assumed to be a Hilbert space with inner product 〈·, ·〉. The
family of classifiers we consider is that of zero-bias hyperplanes on X defined as
〈w,x〉 = 0.1 The class predicted for x using w is given by sign(〈w,x〉). Even if
we describe our results in the context of linear classifiers, they naturally carry
over to the case of kernel classifiers.

Given a fixed (unknown) distribution D on X × Y, a noise-free sample S =
{(xi, yi)}ni=1 is made of n data independently and identically distributed accord-
ing to D. Throughout, we assume: ∃R > 0 : Px∼D(〈x,x〉 ≤ R2) = 1.

Let us introduce N = {η : η = [η+ η−] ∈ [0, 1)2, η+ + η− < 1}. The sloppy
labelling is defined with respect to a noise vector η = [η+, η−] ∈ N such that
a sample S = {(xi, yi)}ni=1 is corrupted by independently flipping each label yi
to −yi with probability ηyi , where ηy = η+ if y = +1 and ηy = η− otherwise.
This noise process can be modeled using a Rademacher vector σ = [σ1 · · ·σn]
of size n, with P(σi = −1) = ηyi = 1 − P(σi = 1), to give the noisy version
Sσ = {(xi, σiyi)}ni=1 of S. In this paper, we will assume that the noise vector
η ∈ N is known (and fixed). We discuss in the conclusion how a reliable estimate
of this vector can be carried out from the data.

The margin γ : X ×X ×Y → R is defined by γ(w,x, y) = y〈w,x〉. � : R → R+

denotes the hinge loss: �(γ) = max(0, 1− γ).

Tackled problem. We address the problem of learning a large margin separating
hyperplane from Sσ = {(xi, σiyi)}ni=1, where large margin must be understood
with respect to the noise-free sample S = {(xi, yi)}ni=1.

2.2 Main Motivation: Asymmetric Semi-supervised Learning

Our primary motivation to study the possibility of learning a large margin clas-
sifier from sloppily labelled data is that of being able to perform semi-supervised

1 The inclusion of a bias term is straightforward and would not change our message.

For sake of clarity and conciseness, we choose to consider zero-bias hyperplanes only.
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learning when the labelled data only come from one class, which is called asym-
metric semi-supervised learning [4]. In this situation, the training data can be
written as S = S+1 ∪ Sunl where S+1 = {(xi, 1)}mi=1 and Sunl = {xi}ni=m+1,
and where the data from S+1 are supposed to be actual (i.e. noise free) positive
data. The strategy that we envision to tackle this problem is to arbitrarily label
all the data from Sunl as negative data, to give S−1 = {(xi,−1)}ni=m+1, which
in turn gives rise to a new training set S = S+1 ∪ S−1. Hence, as Sunl possibly
contained positive instances, the data of S are sloppily labelled data with η+ > 0
(the positive data from Sunl are erroneously labelled as −1) while η− = 0 (no
negative data is labelled as +1). This way of tackling the problem of learning
from positive and unlabeled data only was successfully undertaken in [4].

Note that the problem of multi-instance learning can also be cast, to some
extent, in a problem of learning with sloppy labels. Indeed, in multi-instance
learning, the training set is of the form S = {(xi, yi)} where each xi is a bag of
descriptions, i.e. xi = {x1

i , . . . ,x
ni

i } where xji ∈ X . A bag is classified as +1 if at
least one element of the bag is indeed positive. A strategy to address the multi-
instance learning problem is simply to break each multi-instance labelled pair
(xi, yi) in ni labelled pairs (xji , yi) and to consider the question of learning from
S = {(xji , yi)}

n,ni

i,j=1. Hence, the negative instances from S are indeed negative,
whereas some of the positive instances are in fact negative (recall that it suffices
for a bag to contain one positive element for it to be positive). If each bag of
instances roughly contains the same ratio of positive instances, then the problem
is that of learning from the sloppy training set S with η+ = 0 and η− > 0.

This paper intends to provide a first step to envision tackling asymmetric
semi-supervised learning with Svms.

3 Proposed Approach

3.1 SloppySvm: A Version of CSvm Robust to Sloppy Labels

Recall that the CSvm problem for a sample S of size n writes as (see, e.g., [6])

min
w,b

1
2
〈w,w〉 +

C

n

n∑
i=1

�(yi〈w,xi〉). (1)

where C ∈ R+ is a regularization parameter. It is clear that when a sloppily
labelled dataset Sσ is fed to the learning algorithm there is no reason for the w
minimizing (1) to be a valid classifier because of the evaluation of the slack/hinge
errors, accounted for by the second term of (1). Therefore, if it were possible to
estimate the value of the noise-free slack errors, it would be possible to accurately
learn a large margin classifier from the noisy data. In this section, we actually
show that such an estimation is possible.

Let η = [η+ η−] ∈ N be fixed and let Kη denote Kη = 1
1−η+−η− from now

on. Let us introduce the mapping �̂ : R× Y → R, with

�̂(γ, y) = Kη

[
(1− η−y)�(γ)− ηy�(−γ)

]
. (2)
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The following lemma holds.

Lemma 1. ∀i ∈ {1, . . . , n} : Eσi �̂(σiyi〈w,xi〉, σiyi) = �(yi〈w,xi〉). Therefore,

Eσ
1
n

n∑
i=1

�̂(σiyi〈w,xi〉, σiyi) =
1
n

n∑
i=1

�(yi〈w,xi〉).

Proof. The proof is straightforward. Assume that yi is fixed (hence is the dis-
tribution of σi). Let us introduce γi = yi〈w,xi〉. We have

Eσi �̂(σiγi, σiyi) = (1 − ηyi)�̂(γi, yi) + ηyi �̂(−γi,−yi)

= Kη

[
(1 − ηyi)

[
(1 − η−yi)�(γi) − ηyi�(−γi)

]
+ ηyi

[
(1 − ηyi)�(−γi) − η−yi�(γi)

]]
= Kη

[
(1 − ηyi)(1 − η−yi)�(γi) − ηyiη−yi�(γi)

]
= Kη(1 − ηyi − η−yi)�(γi) = �(γi).

The linearity of the expectation gives the second result of the lemma. �
This lemma says that, for given parameter w, we can estimate the noise-free
slack/fitting errors from the noisy data. Using �̂ we therefore propose a new ver-
sion of CSvm based on noisy data. Given a sloppy dataset Sσ = {(xi, σiyi)}ni=1,
this new learning strategy, called SloppySvm, aims at solving

min
w

1
2
w ·w +

C

n

n∑
i=1

�̂(σiyi〈w,xi〉, σiyi). (3)

First observe that the objective function of SloppySvm can actually be com-
puted from the sloppy dataset Sσ . Additionally, note that (a) if the noise rates
are such that η+ = 0 and η− = 0 then problem (3) boils down to the classical
CSvm problem (1), (b) the expectation of the objective function of (3) with
respect to the noise process is the objective function of (1). Finally, notice that
even though the objective function of (1) is convex, that of (3) is not necessar-
ily convex, because of the nonconvexity of �̂ (see (2)). Figure 1 illustrates the
behaviors of the mappings �̂y, for y = 1 and y = −1, defined as:

�̂y : R → R, γ �→ �̂y(γ) = �̂(γ, y). (4)

3.2 Uniform Closeness of the New Functional to Its Expectation

The question we address now is to quantify how close the objective of (3) is
to the objective of the corresponding noise free CSvm problem (for the same
value of C and the same instances xi), i.e. its expectation. We show using con-
centration inequalities and properties on the Rademacher complexity of (kernel)
linear classifier that uniform bounds (with respect to w) on the closeness of these
functionals can be drawn.
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Fig. 1. Left: �̂+1 (resp. Right: �̂−1) as a function of γ for different η = [η+ η−] (see (2));

the �̂y’s are nonconvex and Lipschitz with constant Kη(1 +
∣∣η+ − η−∣∣) (cf. Lemma 2)

To do so, we only consider vectors w such that ‖w‖ < W , for some W > 0.
We are therefore to investigate the closeness of

μ(S,w) =
1
n

n∑
i=1

�(yi〈w,xi〉) and μ̂(S,σ,w) =
1
n

n∑
i=1

�̂(σiyi〈w,xi〉, σiyi). (5)

In order to state our main proposition (Proposition 1), we first introduce and/or
recall some results.

Lemma 2. Let Lη be the constant defined by Lη = 1−|η+−η−|. The mappings
�̂y, for y = +1 and y = −1 are Lipschitz with constant KηLη.

Proof. It suffices to observe that the slopes of γ �→ �̂y(γ) are (see also Figure 1),
Kη(1 − η−y) if γ < −1, Kη(1 − η−y + ηy) if −1 ≤ γ < 1, and Kηη

y otherwise.
Observing that ηy ≤ 1 − η−y + ηy and 1 − η−y < 1 − η−y + ηy together with
1− η−y + ηy < 1 + |η+ − η−| = Lη ends the proof. �

Theorem 1 (McDiarmid [5]). Let X1, . . . , Xn be independent random vari-
ables taking values in a set X , and assume that f : Xn → R satisfies

sup
x1,...,xn∈X

x′
i∈X

|f(x1, . . . ,xi, . . . ,xn)− f(x1, . . . ,x′
i, . . . ,xn)| ≤ ci

for every 1 ≤ i ≤ n. Then, for every t > 0,

P {|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ t} ≤ 2 exp
(
− 2t2∑n

i=1 c
2
i

)
.

Theorem 2 (Bartlett and Mendelson [1]). Let F be a class of real func-
tions, and let

Rn(F ) = ESκ
2
n

sup
f∈F

∣∣∣∣∣
n∑
i=1

κif(xi)

∣∣∣∣∣
be the Rademacher complexity of F for samples of size n (κi are i.i.d random
Rademacher variables, i.e. P(κi = +1) = P(κi = −1) = 1

2). The following holds:
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– If ϕ : R → R is Lϕ-Lipschitz and ϕ(0) = 0, then Rn(ϕ ◦ F ) ≤ 2LϕRn(F )
– If F = {x �→ 〈w,x〉, ‖w‖ ≤W} then Rn(F ) ≤ 2WR√

n
.

Note that given a distribution D on X × Y, the noise process that gives rise
to sloppy labels entails a distribution on X × Y × {−1, 1} for triples of the
form (X,Y, σ), with P(σ = 1|Y = y) = 1 − ηy ; conditioning on Y σ = t for
t = {−1,+1}, we may therefore define the conditional distribution DXY σ|Y σ=t

over X × Y × {−1, 1}. Then, given vector t = [t1 · · · tn] with ti ∈ {+1,−1},
Dn

Sσ|Yσ=t = ⊗ni=1DXY σ|Y σ=ti
is the distribution of samples S = {(Xi, Yi)}ni=1

and noise vector σ = [σ1 · · ·σn] such that Yiσi = ti. Note that all the triples
(Xi, Yi, σi) such that ti = 1 (ti = −1) share the same distribution – and are, of
course, independent. The meaning of Dn

S|Yσ=t is easily deduced.

Proposition 1. Let t = [t1 . . . tn] be a fixed vector of {−1,+1}n. For all dis-
tributions D, ∀η = [η+ η−] ∈ N , ∀δ ∈ (0, 1], ∀ε ∈ R

+, for all random sample S
and noise vector σ of size n drawn from Dn

Sσ|Yσ=t if

n ≥ max

(
8K2

ηL2
η(1 + RW )2

ε2
ln

4

δ
,
256 (2KηLηWR + 1)

2

ε2

)
then, with probability at least 1− δ,

|μ(S,w) − μ̂(S,σ,w)| < ε, ∀w ∈ X , ‖w‖ ≤W. (6)

Proof. Here, expectations must be understood with respect to Dn
Sσ|Yσ=t and

Dn
S|Yσ=t, n

+ (n−) is the number ti equal to 1 (−1). We derive a uniform (wrt w,
‖w‖ ≤W ) bound on |ESσμ(S,w)−μ(S,w)| and on |ESσμ̂(S,σ,w)−μ̂(S,σ,w)|
(cf equation (5)). It turns out that an adequate sample size for the latter to be
lower than ε > 0 is sufficient for the former to be lower than ε as well (the proof
omitted for sake of conciseness but it can be easily deduced from the present
proof). We thus focus on bounding the function Δ defined as

Δ(S,σ) = sup
w∈X ,‖w‖≤W

|ESσμ̂(S,σ,w)− μ̂(S,σ,w)| .

Since ‖w‖ ≤ W and ‖x‖ ≤ R, the minimum and maximum achievable margin
by w on any pair (x, y) are γmin = −RW and γmax = RW , respectively. Hence,
since �̂y is a decreasing function of γ and according to (4), �̂y takes values in the
range (both for y = −1 and y = +1) [�̂y(γmax); �̂y(γmin)], which is a subset of[

−Kη max(η+, η−)(1 + RW );Kη(1 −min(η+, η−))(1 +RW )
]
.

Therefore, using again γi = yi〈w,xi〉, the maximum variation of �̂ti(σiγi) when
changing any triple (xi, yi, σi) to another one is at most

Kη(1 +RW )
[
max(η+, η−) + max(1− η+, 1− η−)

]
= KηLη(1 +RW ).
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Hence, given the definition of μ̂(S,σ,w) (cf. (5)), the maximum variation of
Δ(S,σ,w) when changing any (xi, yi, σi) is at most KηLη(1 + RW )/n. Using
Theorem 1, we thus have (the triples (Xi, Yi, σi) are independent of each other)

P

{
|Δ(S,σ)− ESσΔ(S,σ)| ≥ ε

4

}
≤ 2 exp

(
− nε2

8K2
ηL

2
η(1 +RW )2

)
,

which is upper bounded by δ/2 for the choice of n stated in the lemma.
Then, we have the following upper bounding on ESσΔ(S,σ) (the sup is taken

over w ∈ X , ‖w‖ ≤ W ), where κ is a vector of n independent Rademacher
variables and S′σ′ ∼ Dn

Sσ|Yσ=t, and, thus, S′ ∼ Dn
S|Yσ=t:

ESσΔ(S ,σ) = ESσ sup
∣∣ES′σ′ μ̂(S ′, σ′,w) − μ̂(S ,σ,w)

∣∣
≤ ESσ sup ES′σ′

∣∣sμ̂(S ′, σ′,w) − μ̂(S ,σ,w)
∣∣ (triangle ineq.)

≤ ESσS′σ′ sup
∣∣μ̂(S ′, σ′,w) − μ̂(S ,σ,w)

∣∣ (Jensen ineq.)

=
1

n
ESS′ sup

∣∣∣∣∣
n∑

i=1

�̂ti(ti〈w,x′
i〉) −

n∑
i=1

�̂ti(ti〈w,xi〉)
∣∣∣∣∣ ((5) and S ,S ′ ∼ Dn

S|Yσ=t)

=
1

n
ESS′κ sup

∣∣∣∣∣
n∑

i=1

κi

(
�̂ti(ti〈w, x′

i〉) − �̂ti(ti〈w,xi〉)
)∣∣∣∣∣ (xi and x′

i are i.i.d)

≤ 2

n
ESκ sup

∣∣∣∣∣
n∑

i=1

κi �̂ti(ti〈w,xi〉)
∣∣∣∣∣ (triangle ineq.)

≤ 2

n

[
ES+κ sup

∣∣∣∣∣ ∑
i:ti=+1

κi �̂+1(〈w,xi〉)
∣∣∣∣∣+ ES−κ sup

∣∣∣∣∣ ∑
i:ti=−1

κi�̂−1(−〈w,xi〉)
∣∣∣∣∣
]

,

where S+ ∼ Dn+

S|Yσ=[1...1] and S− ∼ Dn−
S|Yσ=[−1...−1].

To further upper bound ESσΔ(S,σ), we introduce Qn+(W ) defined as

Qn+(W ) =
2

n+
ES+κ sup

w,‖w‖≤W

∣∣∣∣∣∣
n+∑
i=1

κi�̂+1(〈w,xi〉)

∣∣∣∣∣∣ ,
and we observe that

Qn+(W ) ≤ 2

n+
ES+κ sup

∣∣∣∣∣∣
n+∑
i=1

κi �̂+1(〈w,xi〉) − 1

∣∣∣∣∣∣ + 2

n+
Eκ

∣∣∣∣∣∣
n+∑
i=1

κi

∣∣∣∣∣∣ (triangle ineq.)

≤ 2

n+
ES+κ sup

∣∣∣∣∣∣
n+∑
i=1

κi �̂+1(〈w,xi〉) − 1

∣∣∣∣∣∣ + 2√
n+

,

since Eκ |
∑n
i=1 κi|

2 = Eκ

[∑n
i,j=1 κiκj

]
= n and for any random variable X ,

0 ≤ V(|X |) = E(|X |2)− E2(|X |) and, thus, E(|X |) ≤
√

E(|X |2).
From Lemma 2, �̂+1(γ)− 1 is Lipschitz with constant KηLη and �̂+1(0)− 1 =

0. The first term of the last inequality is the Rademacher complexity of the
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class of functions defined by the composition of �̂()− 1 and the set of zero-bias
hyperplanes w such that ‖w‖ ≤W . Using Theorem 2, we therefore have:

Qn+(W ) ≤ 4KηLηWR√
n+

+
2√
n+

=
2(2KηLηWR + 1)√

n+
,

while a similar inequality holds for the counterpart Qn−(W ) of Qn+(W ). Hence,

ESσΔ(S ,σ) ≤ n+

n

2(2KηLηWR + 1)√
n+

+
n−

n

2(2KηLηWR + 1)√
n− ≤ 4(2KηLηWR + 1)√

n

which, for the value of n stated in the lemma is upper bounded by ε/4. Therefore,
with probability at least 1−δ/2 the following holds uniformly over w, ‖w‖ ≤W :

|ESσ μ̂(S ,σ,w) − μ̂(S ,σ,w)| ≤ ε

4
+ ESσΔ(S ,σ) ≤ ε

4
+

ε

4
=

ε

2
.

Likewise, |ESσμ(S,w)− μ(S,w)| ≤ ε/2 with probability 1− δ/2 as well. Noting
that ESσμ(S,w) = ESμ(S,w) = ESσμ̂(S,σ,w) and using

|μ(S ,w) − μ̂(S ,σ, w)| ≤ |ESσμ(S ,w) − μ(S ,w)| + |ESσ μ̂(S ,σ,w) − μ̂(S ,σ,w)|

ends the proof. �

Proposition 2. With the same hypotheses as in Proposition 1, for S drawn
according to D (no conditioning on Yσ), and corresponding random vector σ,
the following holds with probability at least 1− δ:

|μ(S,w) − μ̂(S,σ,w)| < ε, ∀w ∈ X , ‖w‖ ≤W. (7)

Proof. It Φ denotes the event given by equation (6), then we just stated that
∀t ∈ {−1,+1}n, PSσ∼Dn

Sσ|Yσ=t
(Φ) ≥ 1− δ. Then,

PS∼D(Φ) = ET[ESσ∼Dn
Sσ|Yσ=T

IΦ] =
∑
t

ESσ∼Dn
Sσ|Yσ=t

IΦP(Yσ = t)

=
∑
t

PSσ∼Dn
Sσ|Yσ=t

(Φ)P(Yσ = t) ≥
∑
t

(1 − δ)P(Yσ = t) = 1 − δ. �

This establishes the closeness of the functional of SloppySvm to the original
Svm functional and justifies the strategy that consists in minimizing (3), when
sloppily labeled data are available.

3.3 A Quasi-Newton Optimization Method

In order to actually minimize (3), we use the bfgs quasi-Newton minimization
procedure directly applied to the primal. As proposed by [3], we used a twice-
differentiable approximation Lh of the hinge loss function �, with, for h > 0

Lh(γ) :=

⎧⎨⎩
0 if γ > 1 + h
(1+h−γ)2

4h if |1− γ| ≤ h
1− γ if γ < 1− h

(8)

Plugging in this loss function in (3) as a surrogate for �, we end up with an
unconstrained minimization problemfor which it is easy to find a local minimum.
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Table 1. Generalization errors (and standard deviations) obtained from simulations

conducted on 5 datasets from the UCI repository when corrupted by various amount

of noise. Italicized results indicate best errors (not necessary statistically significant).

[η+, η−] Alg. Diabetis Flare-Solar German Heart Splice

[0, 0] All 23.3 ± 1.59 32.32 ± 1.81 24.03 ± 2.24 15.31 ± 3.17 16.11 ± 0.56

[0, 0.2]
CSvm 25.18 ± 2.08 38.99 ± 6.15 25.32 ± 2.65 18.11 ± 4.02 19.20 ± 1.02

Sloppy 23.69 ± 1.74 32.45 ± 1.73 24.67 ± 2.04 16.19 ± 3.78 17.10 ± 0.70

[0, 0.4]
CSvm 44.06 ± 11.9 44.74 ± 1.81 44.77 ± 7.81 30.10 ± 6.48 29.64 ± 2.14

Sloppy 24.02 ± 1.79 33.91 ± 4.08 26.06 ± 2.47 17.68 ± 3.88 18.71 ± 0.68

[0.2, 0]
CSvm 25.00 ± 2.37 37.45 ± 3.02 27.93 ± 3.12 18.78 ± 3.9 18.24 ± 1.10

Sloppy 23.63 ± 1.64 32.78 ± 1.66 24.40 ± 2.31 16.63 ± 4.01 16.93 ± 0.10

[0.2, 0.4]
CSvm 33.83 ± 9.93 44.57 ± 2.52 37.39 ± 6.39 29.97 ± 8.10 28.08 ± 2.17

Sloppy 26.04 ± 2.96 35.65 ± 4.32 28.32 ± 3.14 20.73 ± 5.27 23.67 ± 1.73

[0.4, 0]
CSvm 33.93 ± 2.93 41.43 ± 2.89 29.82 ± 1.95 27.97 ± 6.42 28.3 ± 2.14

Sloppy 24.1 ± 1.91 33.37 ± 2.71 25.36 ± 2.4 17.18 ± 3.75 18.08 ± 0.90

[0.4, 0.2]
CSvm 33.49 ± 3.56 40.61 ± 3.5 29.82 ± 1.95 26.96 ± 7.06 27.84 ± 2.42

Sloppy 26.29 ± 2.80 35.85 ± 4.15 28.80 ± 2.96 21.66 ± 7.08 23.33 ± 2.08

4 Numerical Simulations

In order to illustrate the behavior of SloppySvm on real data, we have carried
out simulations on 5 Uci datasets, preprocessed and made available by Gunnar
Rätsch2. These numerical simulations consist in adding a class dependent noise
to the data, and then learn on the sloppy datasets with CSvm, and SloppySvm,
the actual noise levels being provided to SloppySvm. For each problem, the data
are split into 100 training and test sets (except for Splice, where only 20 replicates
are available). All the experiments have been made using a linear kernel, as they
make it possible in the noise free case to achieve nearly ’optimal’ accuracies.
Several values (from 0.005 to 1000) of the parameter C have been tested. For
each problem and for each noise level, we picked the value of C that minimizes
the generalization error of CSvm. For SloppySvm, whichever the level of noise,
we use the value of C that minimizes the generalization error when CSvm is
trained on the noise-free data.

The results of the simulations are reported in Table 1, which shows the error
rates and the standard deviations computed on the replicates of the different
problems. It is clear that, even if the behavior of CSvm may seem satisfactory
on some problems, especially when η+ and η− are close to each other, CSvm
is consistently outperformed by SloppySvm on all the conducted experiments.
The performances of SloppySvm are close, even under rather high noise levels,
to the performance obtained by CSvm on noise-free datasets, while keeping a
relatively low standard deviation. This shows the stability of SloppySvm.
2 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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5 Conclusion

We have proposed SloppySvm, a new large margin algorithm that can deal with
sloppily labeled data. It makes use of a new objective function that computes
an estimator the noise-free fitting term of usual CSvm. A theoretical analysis
ensures the closeness of the proposed objective functional to the noise-free one.
Using a standard quasi-Newton minimization procedure, numerical simulations
conducted on noisy problems prove the soundness of our approach.

We have carried out preliminary experiments on asymmetric semi-supervised
learning problems where the noise is estimated from the data. The procedure
of noise estimation is that proposed in [2] for co-training, which is proved to
be consistent: among candidate noise vectors, this suggests to select the noise η
that minimizes the quantity P(h(x) = 1|yσ = −1)+P(h(x) = −1|yσ = 1), where
h is a learned SloppySvm using η. The results we obtain are very promising
and we plan to investigate this empirical evaluation more thoroughly.
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Abstract. Emotion recognition from speech is an important field of

research in human-machine-interfaces, and has various applications, for

instance for call centers. In the proposed classifier system RASTA-PLP

features (perceptual linear prediction) are extracted from the speech sig-

nals. The first step is to compute an universal background model (UBM)

representing a general structure of the underlying feature space of speech

signals. This UBM is modeled as a Gaussian mixture model (GMM). Af-

ter computing the UBM the sequence of feature vectors extracted from

the utterance is used to re-train the UBM. From this GMM the mean

vectors are extracted and concatenated to the so-called GMM supervec-

tors which are then applied to a support vector machine classifier. The

overall system has been evaluated by using utterances from the public

Berlin emotional database. Utilizing the proposed features a recognition

rate of 79% (utterance based) has been achieved which is close to the

performance of humans on this database.

1 Introduction

Research in affective computing aim to provide simpler and more natural inter-
faces for human-computer interaction applications. Detecting and recognizing
the emotional status of a user is important in designing and developing efficient
and productive human-computer interaction interfaces [5]. Emotion analysis and
processing is a multi-disciplinary topic, which has been emerging as a rich re-
search area in recent times [7,17,21]. Speech can be used for emotion recognition
which is not only simple to process, but can also be incorporated into the existing
speech processing applications [5,9,20].

One of the main issues in designing an automatic emotion recognition system
is the selection of the features that can represent the corresponding emotions.
In [16], pitch and linear predictive coding (LPC) features were used as input

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 894–903, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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to an artificial neural network (ANN). After detecting the on- and off-sets of
the utterances, a 300 dimensional vector was used, which resulted in classifi-
cation rates of around 50% detecting eight different emotions. In earlier work
multi classifier systems (MCS) were trained with three feature types, comprising
modulation spectrum, relative spectral transform - perceptual linear prediction
(RASTA-PLP), and perceived loudness features, to recognize seven different
emotions with an accuracy of more than 70% [21]. The Mel Frequency Cepstral
Coefficients (MFCC) based features were used in [15], which were obtained with
a window of 25 ms sampled every 10 ms. The Hidden Markov Model (HMM)
was then used for training each of the four targeted emotions. After training
a combination of all the phoneme class based HMMs on the TIMIT database,
for each of the emotions, the classification performance reached around 76%. In
[6], k-nearest neighbor (KNN) algorithm was applied to classify four emotions,
which resulted in 65 % accuracy. The pitch based statistics, such as contour
of pitch, maximum, minimum, and slope were considered as features. Broadly
speaking, differences in the various approaches arise from the overall goal (rec-
ognizing single vs. multiple emotions), the specific features used, and the clas-
sification framework. The anger vs. neutral emotion classification was studied,
particularly in the context of interactive voice response systems with specific
application to call centers in [23]. 37 prosody features related to pitch, energy,
and duration were used as features, and for classification neural networks, SVM,
and KNN were applied. With the most significant feature set of 19 features, the
best recognition accuracy about 90% was achieved using SVMs.

The Gaussian Mixture Models (GMM) supervector approach has been used
for text-independent speaker recognition tasks. The key idea of this approach
is to re-train a universal background model realized by a GMM by utilizing
the current utterance through maximum a-posteriori (MAP) adaptation, and to
use the adapted means of the mixture components as supervectors for speaker
recognition [4]. In this paper we propose RASTA-PLP features which might be
computed by standard signal processing techniques. These features are biolog-
ically inspired since perceptually scaled filtering is used, and they have been
applied to various speech processing tasks[12]. In Sections 3, 4, and 5 GMMs,
the GMM supervector approach, and support vector machines (SVM) are intro-
duced. Finally, the recognition system is discussed and the results are shown in
Section 7.

2 Feature Extraction

The feature extraction proposed in this paper is composed of tow indepen-
dent feature streams, namely RASTA-PLP coefficients [12], often used in speech
recognition besides MFCC, and spectral energy modulation features [11]. Both
are motivated by the human auditory system, which is not equally sensitive to
every frequency. Frequencies in the range of around 100 to 2000 Hz are perceived
more intensely as frequencies above.
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Frame Conversion
and Spectral
Computation

Mel-Filter-Bank

Band 1

Secondary
Spectrum
Analysis

Energy

Band 8

Secondary
Spectrum
Analysis

Energy

Fig. 1. Schematic description for feature extraction

2.1 RASTA Perceptual Linear Prediction

The PLP feature extraction is based on short term spectrum of speech. PLP
is sensitive towards short-term spectral value changes. However, human speech
perception does not seem to be that sensitive. For this reason in his work Her-
mansky proposed the RASTA-PLP approach, which renders the features more
robust to linear spectral distortions [12].

2.2 Modulation Spectral Features

Short term analysis of the speech signal, such as extracting spectral features from
frames not more than several milliseconds, dominates speech processing for many
years. However, these features are strongly influenced by environmental noise and
are therefore unstable. In [11], it is suggested to use the so called modulation spec-
trum of speech to obtain information about the temporal dynamics of the speech
signal to extract reliable cues for the linguistic context. Since emotion in speech is
often communicated by varying temporal dynamics in the signal the same features
are used to classify emotional speech in the following experiments [20].

The proposed features are based on long term modulation spectrum. In this
work, the features based on slow temporal evolution of the speech are used to
represent the emotional status of the speaker. These slow temporal modulations
of speech emulate the perception ability of the human auditory system. Ear-
lier studies reported that the modulation frequency components from the range
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between 2 and 16 Hz, with dominant component at around 4 Hz , contain im-
portant linguistic information [10,8,14]. Dominant components represent strong
rate of change of the vocal tract shape. This particular property, along with
the other features has been used to discriminate speech and music [19]. In this
work, the proposed features are based on this specific characteristic of speech,
to recognize the emotional state of the speaker.

The block diagram for the feature extraction for a system to recognize emo-
tions is shown in Fig. 1. The fast Fourier transform (FFT) for the input signal
x(t) is computed over N points with a shift of n samples, which results in a N

2
dimensional FFT vector. Then, the Mel-scale transformation, motivated by the
human auditory system, is applied to these vectors. The Mel-filter bank with
eight triangular filters Hi[k], is defined by:

Hi[k] =

⎧⎪⎨⎪⎩
2(k−bi)

(di−bi)(ci−bi)
bi ≤ k ≤ ci

2(di−k)
(di−bi)(di−ci)

ci ≤ k ≤ di

, (1)

where i = 1, ..., 8 indicates the index of the i-th filter. bi and di indicate the fre-
quency range of filter Hi and the center frequency ci is defined as ci = (bi+di)/2.
These ranges are equally distributed in the Mel-scale, and the corresponding fre-
quencies bi and di are listed in Table 1. For k < bi and k > di Hi[k] = 0.
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Fig. 2. Modulation spectrum for the first four bands of a single angry utterance. The

x-axis represents the time scale, in frames and the y-axis, the frequency in Hz.

For each of the bands, the modulations of the signal are computed by taking
FFT over the P points, shifted by p samples, resulting in a sequence of P

2
dimensional modulation vectors. Most of the prominent energies can be observed
within the frequencies between 2 - 16 Hz. Figure 2 illustrates the modulation
spectrum based energies for a single angry utterance, for the values N = 512,
n = 160, P = 100 and p = 1 for the first four bands. For the classification task
following values were used: N = 1600, n = 640, P = 10, p = 1. Since the signal
is sampled with 16 kHz, N corresponds to 100 ms and n to 40 ms resulting in
a feature extraction frequency of 25 Hz. According to the window size P a lead
time of 400 ms is necessary. Therefore, one feature vector in the modulation
spectrum takes 400 ms into account with an overlap of 360 ms, due to p.
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Table 1. Start and end frequencies of the triangular Mel-filters

Band Start Freq. (Hz) End Freq. (Hz)

1 32 578

2 257 964

3 578 1501

4 966 2217

5 1501 3180

6 2217 4433

7 3180 6972

8 4433 8256

3 Gaussian Mixture Models

GMM is a semi-parametric estimation technique used to estimate the probability
density function (PDF) from a set of data points drawn from this function. The
PDF is regarded as a linear combination of M Gaussian functions (components
of the model). The value of the PDF at a point xi in the d-dimensional space is
given by

p(xi) =
M∑
m=1

P (m) · p(xi|m) (2)

under the constraints:

0 ≤ P (m) ≤ 1
M∑
m=1

P (m) = 1
∫

Rd

p(x|m)dx = 1 (3)

P (m) is the weight (prior probability) of component m and p(xi|m) is the value
of the Gaussian function described by component m, and can be calculated as
follows

p(xi|m) =
1

(2π)d/2
· |Σm|−1/2 · e− 1

2 ·(xi−μm)T ·Σ−1
m ·(xi−μm) (4)

The GMM is completely defined by the means of its components, their covariance
matrices and their weights. In order to estimate these parameters the well known
EM-algorithm is used [1].

4 GMM Supervectors

The feature vectors extracted from speech are passed to classifiers in order to
recognize the different emotions. Usually different utterances have different du-
rations leading to feature vectors of different lengths. Since almost all classifiers
require constant length vectors as inputs, the stream of feature vectors must
transformed in such an input vector of constant length (see Fig.3). This is the
idea of GMM supervectors which are calculated as follows:
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Fig. 3. Calculation of GMM supervectors

1. Collect a general large speech database for the universal background model
(UBM). In this study the available data is divided into training and testing
sets according to 10-fold cross validation test and the database was built by
gathering all the utterances from the current training data set.

2. Calculate the UBM. This UBM is a GMM calculated using the general
database. The UBM acts as a basic model that is independent of any emo-
tion, speaker, etc. It is used in order to guarantee a general representation
for all possible utterances. Basically, this database should be a large set of
speech samples covering different speakers (male or female), in the state of
different emotions, in different environments (for instance different types of
background noise).

3. For each utterance the pre-trained UBM is adapted in order to represent
the information carried by the current utterance. Adaptation is performed
through the maximum-a-posteriori (MAP) algorithm.

4. Construct the supervector by concatenating the means of the Gaussian mix-
ture components of the adapted model according:

μ = [μT1 ...μ
T
M ] (5)

these vectors μ - the GMM supervectors - are then the input vectors to the
subsequently following classifiers.

The basic steps of MAP are as follows [2]:

1. Calculate the posterior probability of each component of the model given the
current utterance. This corresponds to the probability that this component
has contributed to generating the utterance:

nm =
T∑

t=1

P (m|xt) (6)

here m is a Gaussian component and xt is an interval of the utterance that
currently is used to adapt the UBM, assuming that the utterance is divided
into T intervals. The factor P (m|xt) is calculated through
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P (m|xt) =
P (m)f(xt|m)∑M
k=1 P (k)f(xt|k)

(7)

here f(xt|m) is the value of the Gaussian function representing component
m at point xt.

2. Calculate the new estimate of the mean and covariance parameters, accord-
ing to the equations

Em(x) =
1
nm

T∑
t=1

P (m|xt)xt (8)

Em(xxT ) =
1
nm

T∑
t=1

P (m|xt)xtxTt (9)

3. Adapt the UBM parameters to represent the features of the current utterance
using the equations

P̂ (m) = [αmnm/T + (1− αm)P (m)]γ (10)

μ̂m = αmEm(x) + (1− αm)μm (11)

Σ̂m = αmEm(x2) + (1− αm)(Σm + μ2
m)− μ2

m (12)

here P̂ (m), μ̂m and Σ̂m are the adapted weight, mean and covariance matrix
of component m, respectively.

The factor γ in equation (10) ensures that the weights sum up to one, so that the
constraints in Eq 3 are satisfied. The adaptation coefficient αm is a factor bal-
ancing the adapted values between old estimates (from the UBM) and calculated
parameters (by using MAP adaptation). The adaptation coefficient is calculated
using the following equation αm = nm

nm+r here r is the relevance factor.

5 Support Vector Machines

Basically, SVMs are binary classifier that can be extended to multi-class SVMs.
Two main decomposition techniques have been used in our study, one-against-
one decomposition and one-against-all decomposition. Since the performance of
these two decomposition schemes was very similar in this application, the results
of the one-versus-rest scheme are presented (see [22] for an overview).

6 Database Description

The Berlin Database of Emotional Speech is used as a test bed for our approach.
This corpus is a collection of around 530 utterances spoken in seven different
emotions: anger, boredom, disgust, fear, happiness, sadness, and neutral [3]. The
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database is publicly available at http://pascal.kgw.tu-berlin.de/emodb/.
Ten professional actors (five male and five female) read the predefined utter-
ances in an anechoic chamber, under supervised conditions. The text was taken
from everyday life situations, and did not include any emotional bias. The ut-
terances are available at a sampling rate of 16 kHz with a 16 bit resolution and
mono channel. A human perception test to recognize various emotions with 20
participants resulted in a mean accuracy of around 84% [3].

7 Numerical Evaluation

RASTA-PLP features were extracted from the utterances of the Berlin emo-
tional database. This results in 530 sequences of feature vectors, the length of a
sequence depends on the duration of the utterance and ranges from 150 to 500
feature vectors per utterance. The set of utterances has been divided into train-
ing and testing sets according to a 10-fold cross validation procedure. For each
fold a UBM was constructed using the extracted feature vectors from the fold’s
training utterances. For each utterance the pre-trained UBM is adapted in order
to reflect the individual information and structure of the current utterance, and
the mean vectors of the components of an adapted GMM are concatenated to
form the supervectors. Nonlinear support vector machines (with the Gaussian
kernel function and the one-versus-rest decomposition scheme) are then trained
from the collected supervectors of the current fold.

Different numerical tests have been performed on the GMM and the SVM. For
the GMM various tests concerning the number of Gaussian components and the
type of covariance matrix to be used in the GMM kernel function have been per-
formed. SVM parameters testing included the type of multi-class decomposition
scheme, the optimization procedure, the kernel type, the kernel parameter(s) and
the hyper-parameter(s) of the SVM approach. As a result of this preprocessing
diagonal covariance matrices have been chosen for the GMM components. Di-
agonal covariance matrices are suitable for many applications since they are a
compromise between the full covariance matrix and the spherical model with a
single real width parameter. Diagonal models are computationally efficient and
usually they lead to more robust GMM estimates than full covariance matrices
because smaller training data sets can be used [2]. Based on the numerical test,
m = 40 Gaussian components have been used for the RASTA features.

The one-against-one approach for the decomposition of the multi-class clas-
sification problem, and the sequential minimal optimization (SMO), see [18] for
details, to solve the quadratic optimization problem have been used. Further-
more, the radial basis function kernel is used in the system. The kernel parameter
has been optimized and was chosen to σ2 = 3. Different hyper-parametersC have
been tested, and based on these test C was set equal to 10. Using these parameter
settings the RASTA-based system scores a mean accuracy of 79% on the basis
of 10 runs of 10-cross validation tests. This accuracy scored by a RASTA-based
system approaches close to the human recognition of emotions from the same
database which is 84% [21].

http://pascal.kgw.tu-berlin.de/emodb/
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8 Conclusion

In this work, an emotion recognition system for spoken speech employing the
idea of GMM supervectors as a preprocessor of data and SVM as a classifier has
been developed (recognition accuracy of 79% utilizing RASTA-PLP features).
It was the first time that the GMM supervector approach together with the
biological inspired RASTA-PLP features has been used. The data provided by
the Berlin database is free of noise. For further research, it is recommended to
apply the proposed technique to speech data recorded from a telephone line or in
noisy environments. GMM supervectors offer a rather flexible processing scheme
for the classification of any type of sequential data, the approach is not limited
to speech signals only, for instance it might be applied for image processing tasks
such as the recognition of facial expressions.

Acknowledgements

This paper is based on work done within the the Transregional Collaborative
Research Centre SFB/TRR 62 Companion-Technology for Cognitive Technical
Systems funded by the German Research Foundation (DFG).

References

1. Bilmes, J.A.: A Gentle Tutorial of the EM Algorithm and its Application to Pa-

rameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical

report, International Computer Science Institute and Computer Science Division,

Department of Electrical Engineering and Computer Science, U.C. Berkeley (1998)

2. Bimbot, F., Bonastre, J.-F., Fredouille, C., Gravier, G., Magrin-Chagnolleau, I.,

Meignier, S., Merlin, T., Ortega-Garcia, J., Petrovska-Delacrètaz, D., Reynolds,
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A Simple Proof of the Convergence of the SMO
Algorithm for Linearly Separable Problems
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Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. We give a new proof of the convergence of the SMO algorithm for
SVM training over linearly separable problems that partly builds on the one by
Mitchell et al. for the convergence of the MDM algorithm to find the point of a
convex set closest to the origin. Our proof relies in a simple derivation of SMO
that we also present here and, while less general, it is considerably simpler than
previous ones and yields algorithmic insights into the working of SMO.

1 Introduction

Given a sample S = {(Xi, yi) : i = 1, . . . , N} with yi = ±1, the standard formu-
lation of SVM for linearly separable problems [1] wants to maximize the margin of a
separating hyperplane (W, b) by solving the problem

min
1
2
‖W‖2 with yi(W ·Xi + b) ≥ 1, i = 1, . . . , N. (1)

In practice, however, one solves the simpler dual problem of minimizing

f(α) =
1
2

∑
i,j

αiαjyiyjXi ·Xj −
∑
i

αi with αi ≥ 0,
∑
i

αiyi = 0. (2)

There are quite a few proposals of algorithms to solve (2); many of them can be traced to
two decomposition methods, Platt’s SMO [2] or Joachims’ SVM–Light [3] algorithms.
When the SVM–Light working set has 2 patterns, it coincides with Keerthi et al.’s
Modification 2 proposal for SMO (see [4]). Modification 2 [5] is by now the standard
approach in first order SMO and from now on we will mean it when referring to SMO.

The convergence of SMO and, more generally, SVM–Light has been widely studied
by several authors. The most comprehensive study has been that of Chih-Jen Lin and his
coworkers who, in a series of papers, have proved the convergence of a general SVM–
Light procedure even for non linearly separable problems under very general conditions
on the kernel matrix. Specifically, asymptotic convergence of SVM–Light is proved in
[6], whereas for the special case of SMO no assumption on the positive definiteness of
the kernel matrix is needed in the proof [7]. Finally, in [8] the convergence of several
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y Predicción. The first author is kindly supported by FPU-MICINN grant AP2007–00142.
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variants of SMO is proved, including the selection of the working set using second order
information.

While general and powerful, these proofs are also involved and here we shall give an
alternative, much simpler proof of the asymptotic convergence of SMO’s Modification
2 for linearly separable problems that partly builds on a much earlier proof given in [9]
of the convergence of the Mitchell–Demyanov–Malozemov algorithm (MDM) to find
the point in a convex subset nearest to the origin. The closely related problem of finding
the nearest points between two convex subsets has been long known to be equivalent to
SVM solving [10] and, in fact, the generalized MDM algorithm that solves this second
nearest point problem is closely related to Keerthi et al.’s Modification 2 [11].

Our proof relies in showing first that the distance between the current weight W and
the optimal one W ∗ is dominated by the gap between the primal and dual problems
and that, in turn, the gap is dominated by a quantity Δ that we call the violation extent
and that is maximized by the selection of the indices U,L for the SMO working set.
Essentially as done in [9], we will then show that some subsequence of the Δ values
given by SMO tends to 0 and, hence, so do the correspondingW updates. At this point,
a simple compactness argument ends the proof.

There is a clear limitation in the approach followed here, which is the fact that in its
present form it only applies to linearly separable SVM training. On the other hand, our
arguments reveal the working of the various SMO components towards the limit and
gives some algorithmic insights on the overall behavior of SMO, such as, for instance,
the fact that after a finite number of iterations, the only active patterns are those that lie
in the support hyperplanes.

The paper is organized as follows. In section 2 we give a brief and simple overview
of the SMO algorithm and pinpoint some facts that will be required for the convergence
proof, which is given in section 3. Further insights on the behavior of SMO derived
from the proof are given in section 4 and a brief discussion ends the paper.

2 A Simple Derivation of SMO for Linearly Separable Problems

We will briefly review here an approach that derives SMO from a maximum gain view-
point (see also [11]). In general, SMO performs updates of the form W ′ = W +
δLyLXL+δUyUXU , with δL, δU the update steps to be used. The restriction

∑
αiyi =

0 implies δUyU = −δLyL and the updates become W ′ = W + δyL(XL −XU ) where
we write δ = δL and, hence, δU = −yUyLδ. As a consequence, the multiplier updates
are α′

L = αL + δ, α′
U = αU − yUyLδ and α′

j = αj for other j. Therefore, the dual
function f(α′) on the new α′ can be written as a function Φ(δ) of the dilation factor δ,
namely

Φ(δ) = f(α) + δyLW · (XL −XU ) +
1
2
δ2‖XL −XU‖2 − δ + yLyUδ

= f(α) + δyLW · (XL −XU ) +
1
2
δ2‖XL −XU‖2 − yLδ(yL − yU ).

Solving 0 = Φ′(δ) = yL{W · (XL −XU ) − (yL − yU )} + δ‖XL −XU‖2 yields the
possibly optimal dilation factor
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δ = yL
W · (XU −XL)− (yU − yL)

‖XL −XU‖2

and implies that

f(α′) = f(α)− (W · (XU −XL)− (yU − yL))2

‖ZL,U‖2
= f(α)− (ΔU,L)2

‖ZL,U‖2
,

where we write ΔU,L = W · (XU −XL)− (yU − yL) and ZL,U = XL−XU . We may
callΔU,L the violation extent associated to the U,L pair. Ignoring the ‖ZL,U‖2 denom-
inator, we can approximately maximize the gain in f(α′) by choosing in principle L, U
as

L = arg min {W ·Xj − yj}, U = arg max {W ·Xj − yj}
so that the violation extent ΔU,L is largest. Writing Δ = ΔU,L and λ′ = Δ

‖ZU,L‖2 , we
then have Δ > 0, λ′ > 0 and δ = yLλ

′; moreover,

Φ(δ) = f(α′) = f(α)− λ′Δ+
1
2
(λ′)2‖ZU,L‖2

and the α updates become α′
L = αL + yLλ

′, α′
U = αU − yUλ

′. Thus, α′
L or α′

U will
decrease if yL = −1 or yU = 1. This requires the corresponding αL and αU to be > 0
and we must replace the previous L,U choices by

L = arg min {W ·Xj − yj : j ∈ IL}, U = arg max {W ·Xj − yj : j ∈ IU},

where we use the notations IU = {i : (yi = 1, αi > 0) ∨ (yi = −1)} and IL = {i :
(yi = 1) ∨ (yi = −1, αi > 0)}. Moreover, to make sure that α′

L and α′
U remain then

> 0, we may have to clip λ′ as follows

λ = min{λ′, αL} if yL = −1, λ = min{λ′, αU} if yU = 1. (3)

If λ is so clipped it turns out that either α′
L, α′

U or even both will become 0. Moreover,
if, say, λ = αL with yL = −1 = yU , we will then have α′

L = αL + yLλ = 0,
α′
U = αU − yUλ = αU + αL. Thus, if αU = 0, it receives the previous value of αL

and the multiplier values are shuffled then among the Xi patterns and the number of
non–zero multipliers does not change. If, however, αU was already not zero, the new
number of non–zero multipliers will decrease by one. A similar situation will hold when
λ = αU with yU = 1 = yL.

We finish this section with some observations to be used later on. First, notice that
we clearly have λ‖ZL,U‖2 ≤ Δ whatever the λ value chosen. As a consequence we
will always have f(α′) ≤ f(α) − 1

2λΔ; in particular, f(α′) < f(α) whenever Δ > 0.
On the other hand, if W,W ′ are feasible weight vectors (i.e., yi(W · Xi + b) ≥ 1 for
all i), we have

W ·W ′ =
∑

αiyiW
′ ·Xi =

∑
αiyi(W ′ ·Xi + b′) ≥

∑
αi.

In particular, if W ∗ denotes the optimal margin weight, W ·W ∗ ≥
∑
α∗
i = ‖W ∗‖2,

where the last equality follows from the KKT conditions for SMO.
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3 The Convergence of SMO

We give now the proof of the convergence of SMO for linearly separable problems. As
said above, it partly builds on the proof in [9] for the MDM algorithm; in fact, lemmas
3 and 4 are adapted from [9] while the other results in this section are specific for SMO.

Lemma 1. We have ‖W −W ∗‖2 ≤ 1
2Δ
∑
αi.

Proof. The previous observations imply

‖W −W ∗‖2 = ‖W‖2 −W ·W ∗ − (W ·W ∗ − ‖W ∗‖2) ≤ ‖W‖2 −W ·W ∗

≤ ‖W‖2 −
∑

αi.

In other words, ‖W −W ∗‖2 is dominated by the dual gap, i.e., the difference between
the primal and dual objective functions. Now, writing I± = {i : yi = ±1} and observ-
ing that

∑
I+
αi =

∑
I− αj , we have

‖W‖2 −
∑

αi =
∑

αiyiW ·Xi −
∑

αiy
2
i =

∑
αiyi(W ·Xi − yi)

=
∑
I+

αi(W ·Xi − yi)−
∑
I−

αi(W ·Xi − yi)

≤ max
{I+,αi>0}

{W ·Xi − yi}
∑
I+

αi − min
{I−,αi>0}

{W ·Xi − yi}
∑
I−

αi

=
1
2

(
max

{I+,αi>0}
{W ·Xi − yi} − min

{I−,αi>0}
{W ·Xi − yi}

)∑
αi

≤ 1
2

(
max
IU

{W ·Xi − yi} −min
IL

{W ·Xi − yi}
)∑

αi

=
1
2
Δ
∑

αi,

as we wanted to prove. 01
Starting with some feasible W 0, SMO iteratively applies the previous index selection
and multiplier updates to build a sequence of multipliers αk and weight vectors W k.
The null vectorW 0 = 0 is clearly feasible and f(α0) = 0. Thus, we will have f(αk) ≤
0 for all k, i.e., ‖W k‖2 ≤ 2

∑
αki .

Lemma 2. If f(α0) ≤ 0, the sums
∑
i α

k
i of the successive SMO multipliers will be

bounded.

Proof. Cauchy’s inequality and the fact that we assume the matrix Q = (Qij), with
Qij = yiyjXi ·Xj , to be positive definite imply

N∑
1

αki ≤
√
N

(
N∑
1

(αki )
2

) 1
2

≤
√
Nη‖W k‖.
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This and the preceding observation yield

‖W k‖2 ≤ 2
∑
i

αki ≤ 2
√
Nη‖W k‖,

and, therefore, ‖W k‖ ≤ 2
√
Nη. Thus, using this and the feasibility conditions at

each Xi, we arrive at
∑N

1 αki ≤
∑N

1 αki yi(W
k ·Xi + bk) = W k ·W k = ‖W k‖2 ≤

4Nη2. 01
Let λk and Δk be the λ and Δ values obtained in the SMO iterations. We show next
that for some subsequence kj , we have Δkj → 0, which, by lemmas (1) and (2), will
also imply W kj →W ∗. We first have

Lemma 3. lim λkΔk = 0.

Proof. Assume to the contrary that λkΔk does not converge to 0. There is then an ε > 0
and a subsequence kj such that λkjΔkj > 2ε. Now, as observed above, we would then
have

f(α1+kj ) ≤ f(αkj )− 1
2
λkjΔkj < f(αkj )− ε,

and since the sequence f(αk) decreases, we would have

f(α1+kj+M ) < f(αkj+M )− ε ≤ f(α1+kj+M−1 )− ε < f(αkj+M−1)− 2ε ≤ . . .

≤ f(α1+kj )−Mε < f(αkj )− (M + 1)ε,

which would eventually contradict that f(αk) ≥ f(α∗) for all k. 01
The inferior limit of a sequence an is lim inf an = supn infm≥n{am} = lim(infm≥n
{am}). We have now

Lemma 4. lim inf Δk = 0.

Proof. If not true, there is some ε > 0 such that Δk ≥ ε. Then by the previous lemma,
λk → 0 and we will show that this leads to a subsequence kj for which Δkj → 0,
contradicting our starting assumption on the Δk. To do so, we claim that there must be
a subsequence kj for which

λkj = λ′kj
=

Δkj

‖XLkj
−XUkj

‖2 , (4)

i.e., no λ clipping takes place. If so, writingR = max{‖Xm‖}, we have ‖Xi−Xj‖2 ≤
2 max{‖Xm‖2} = 2R2, and, therefore, Δkj = λkj‖XLkj

−XUkj
‖2 ≤ 2R2λkj .

Thus, Δkj → 0 as we wanted to show.
It remains to prove (4). Recall that when the λk are not defined as in (4), we must

have either λk = αkL or λk = αkU . To obtain the desired subsequence we show that the
number of different subsequent consecutive updates for which λk+m equals αk+mL or
αk+mU must be a finite M . In fact, let Nk denote the number of non–zero multipliers
in αk and assume that clipped updates are applied at each iteration. Then, as observed
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before, for any such update p we will clearly have Np+1 ≤ Np. Thus, if these clipped
updates would go on indefinitely,Np should become constant and> 0 at some iteration
q (it cannot become zero). But then, the subsequent updates would simply interchange
the values of the αq multipliers among the sample patterns, which after a finite number
of iterations would lead to a pair (r, s) such thatW r = W s for s > r ≥ q, contradicting
that f(αs) < f(αr). Hence, the clipped updates should stop at some point and there
must be a subsequence kj verifying (4). 01
Now a general compactness argument ends the convergence proof.

Theorem 1. The sequence W k provided by SMO verifies W k →W ∗.

Proof. As a consequence of the previous lemmas, we know that there is a subsequence
W kj for which W kj → W ∗ =

∑
α∗
i yiXi. Moreover, the SMO algorithm ensures

that f(αk+1) ≤ f(αk) and, therefore, f(αk) → f(α∗). Assume that, nevertheless,
W k does not converge to W ∗. For some ε there is then a sequence W pq such that
‖W pq − W ∗‖2 ≥ ε. Since the W k form a bounded subset, there is a subsequence
W pqm such that W pqm → W ′ for some W ′. Then we must have f(α′) = f(α∗) and
since all theW k are feasible, so is W ′. But by uniqueness of the primal solution [12], it
would then follow that W ′ = W ∗ and this contradiction implies that W k →W ∗. 01

4 Other Consequences

We first observe that
∑
i α

k
i →

∑
i α

∗
i . In fact, by theorem 1, ‖W k‖2 → ‖W ∗‖2 and

we have then

∑
i

αki =
1
2
‖W k‖2 − f(αk) → 1

2
‖W ∗‖2 − f(α∗) =

∑
i

α∗
i .

Next, the KKT conditions for SVM imply that at the optimal α∗, W ∗ and b∗ we must
have α∗

i [yi(W
∗Xi + b∗) − 1] = 0. Let H1 denote the index set of those i such that

yi(W ∗Xi+b∗) = 1 andH2 denote the index set of those i such that yi(W ∗Xi+b∗) > 1.
The main result of this section, Theorem 2, states that after a finite number of iterations
all the non–zero multipliers in W k must be taken fromH1. In other words, if Sk = {i :
αki > 0}, then Sk ⊂ H1. We shall prove this after two lemmas, which we precede by
the following observations.

First, it is clear from the KKT conditions that {i : α∗
i > 0} ⊂ H1 and if i ∈ H1

we have W ∗Xi − yi = −b∗. Set ρ = min{yi(W ∗Xi + b∗) − 1 : i ∈ H2}. Then, if
i ∈ H2∩I+ we haveW ∗Xi+b∗ ≥ 1+ρ = yi+ρ andW ∗Xi−yi ≥ −b∗+ρ; similarly,
if i ∈ H2 and yi = −1, W ∗Xi + b∗ ≤ −1− ρ = yi − ρ and W ∗Xi − yi ≤ −b∗ − ρ.
On the other hand, if R = maxi ‖Xi‖, since

max |yiW k ·Xi − yiW
∗ ·Xi| ≤ ‖W k −W ∗‖R

and W k →W ∗, we must also have max |yiW k ·Xi − yiW
∗ ·Xi| → 0.
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Lemma 5. There is a K1 such that if k ≥ K1,

W k ·Xi − yi ≥
ρ

2
+W k ·Xj − yj for all i ∈ H2 ∩ I+, j ∈ H1;

W k ·Xi − yi ≤ −
ρ

2
+W k ·Xj − yj for all i ∈ H2 ∩ I−, j ∈ H1.

Proof. Let K1 be such that for k ≥ K1, max |yiW k · Xi − yiW
∗ · Xi| ≤ ρ/4. If

i ∈ H2 ∩ I+, j ∈ H1, we have

W k ·Xi − yi = W k ·Xi −W ∗ ·Xi +W ∗ ·Xi − yi ≥ −
ρ

4
− b∗ + ρ

=
3ρ
4

+W ∗ ·Xj − yj =
3ρ
4

+W ∗ ·Xj −W k ·Xj +W k ·Xj − yj

≥ 3ρ
4
− ρ

4
+W k ·Xj − yj =

ρ

2
+W k ·Xj − yj,

and the same argument yields W k ·Xi − yi ≤ − ρ
2 +W k ·Xj − yj for i ∈ H2 ∩ I−,

j ∈ H1. 01
As a consequence, notice that ifH2 ∩ I+ ∩ Sk �= ∅, we shall have Uk ∈ H2. Similarly,
ifH2 ∩ I− ∩ Sk �= ∅, we shall have Lk ∈ H2. On the other hand, ifH2 ∩ I+ ∩ Sk = ∅,
we will take Uk ∈ H1 and we shall also have Lk ∈ H1 ifH2 ∩ I− ∩ Sk = ∅.

Another consequence is that for k ≥ K1, if eitherH2∩I+∩Sk �= ∅ orH2∩I−∩Sk �=
∅, we will have Δk ≥ ρ/2.

Lemma 6. The quantity
∑

H2
αki tends to 0 as k →∞.

Proof. We can decompose any W k in the SMO sequence as W k = W k
1 +W k

2 , with

W k
1 =

∑
H1

αki yiXi, W k
2 =

∑
H2

αkj yjXj.

Therefore,

(W k −W ∗) ·W ∗ =
∑

αki yi(W
∗ ·Xi + b∗)−

∑
α∗
jyj(W

∗ ·Xj + b∗)

=

(∑
H1

+
∑
H2

)
αki yi(W

∗ ·Xi + b∗)−
∑

α∗
i

≥
∑
H1

αki + (1 + ρ)
∑
H2

αki −
∑

α∗
i

=
∑

αki −
∑

α∗
i + ρ

∑
H2

αki ,

and it follows that
∑

H2
αki → 0. 01

We turn now to the desired result.

Theorem 2. There is a K0 such that for all k ≥ K0, we have Sk ⊂ H1; that is, all the
non–zero multiplier vectors in W k will be in the optimal support hyperplanes.
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Proof. We know that there is a K1 such that for all k ≥ K1, Δk ≥ ρ/2 if Sk ∩H2 �= ∅
and, as a consequence, Δk

‖Z‖2 ≥ ρ
2R2 . Moreover, we can find a K2 such that for all

k ≥ K2,
∑

H2
αki ≤ ρ

2R2 . Thus, if K3 = max(K1,K2) and either Lk or Uk are taken
from H2, it will follow that λk will be either αkUk

or αkLk
whenever Sk ∩ H2 �= ∅ for

k ≥ K3. In other words, at least one pattern Xj with j ∈ H2 will be removed from
the representation of W k+1 as its multiplier is set to 0. Moreover, if a new pattern Xi
is added to W k+1 (i.e., αki = 0, but αk+1

i > 0), we must have i ∈ H1. It is thus clear
that in at most |H2| iterations after K3, all theH2 multipliers are zero and are no longer
considered when computing Uk and Lk for k ≥ K0 = K3 + |H2| . 01
Finally, since the Uk and Lk indices in Δk = ΔkUk,Lk

must be taken from H1 when
k ≥ K0, it follows that Δk and, hence, λk tend to 0.

5 Conclusions and Further Work

In this work we present a new, simple and direct proof of the convergence of Keerthi
et al.’s Modification 2 for the SMO algorithm when applied to linearly separable prob-
lems which partly builds on the proof of the MDM algorithm for the minimum norm
problem given in [9]. Many authors, most notably C.J. Lin and his coworkers, have ex-
haustively studied the convergence of several general decomposition methods for SVM
classification and regression that include SVM Light, SMO and various first and second
order variants. While much less general than these results, our proof relies on the con-
crete steps of the SMO algorithm. In particular, it is simpler and more direct than other
convergence proofs and sheds light on some aspects of the algorithm, such as how the
dual gap controls the distance between the current weight vector and the optimal one
or how this gap is, in turn, dominated by the violation extent value Δ that SMO uses to
select the new pair of updating patterns. We show that Δ tends to zero and that, after a
finite number of iterations, all the updating pattern pairs will be taken from the support
hyperplanes. Our proof implies the convergence of SMO for quadratic penalty SVM
problems, as they can be written as linearly separable SVM problems in an extended
weight and pattern space [13]. Also, although not proved here, our arguments apply to
Support Vector Regression.

As of future work, an obvious step is to extend the proof here to SMO for non–
linearly separable problems. However, a more interesting approach would be to further
exploit the arguments here to obtain other insights on the behavior of SMO that may
help in devising more efficient SVM training algorithms. We are currently working on
these and other related questions.
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Abstract. Personalized Transductive Learning (PTL) builds a unique

local model for classification of each test sample and therefore is prac-

tically neighborhood dependant. While existing PTL methods usually

define the neighborhood by a predefined (dis)similarity measure, in this

paper we introduce a new concept of knowledgeable neighborhood and

a transductive SVM classification tree (t-SVMT) for PTL. The neigh-

borhood of a test sample is constructed over the classification knowledge

modelled by regional SVMs, and a set of such SVMs adjacent to the test

sample are aggregated systematically into a t-SVMT. Compared to a

regular SVM and other SVMTs, the proposed t-SVMT, by virtue of the

aggregation of SVMs, has an inherent superiority on classifying class-

imbalanced datasets. Furthermore, t-SVMT has solved the over-fitting

problem of all previous SVMTs as it aggregates neighborhood knowledge

and thus significantly reduces the size of the SVM tree.

1 Introduction

The widely used inductive reasoning approach is concerned with the creation of
a model from all training data which represents the available information from
the problem space (induction), and then the application of the model to new
coming data to predict the property of interest (deduction or generalization). In
contrast, a transductive approach, first introduced by Vapnik [1], is defined as a
method which estimates the value of an unknown model for a single point in the
problem space (a sample vector) employing information relevant to that vector.
While the inductive approach is useful when a global model of the problem is
needed in an approximate form, the transductive approach is more appropriate
for applications where the focus is not on the overall precision of the model, but
rather on every individual case. In this sense, transductive learning well fits the
cases in clinical and medical applications where the interest is on the preciseness
of the prediction for an individual patient.

Different from an inductive learner which conducts learning only on training
data hL = Li(Strain), a transductive learner learns from both training and

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 913–922, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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test data, hL = Lt(Strain, Stest). With respect to how the unlabelled data Stest

can be used for learning, personalized transductive learning methods approach
‘personalized’ learning by creating a unique model for each test sample based
on its neighboring samples. A typical personalized learning approach usually
consists of two steps: (1) Neighbor-sample filtering: for each new input sample
xj ∈ Stest that needs to be processed for a prognostic/classification task, its Nj
nearest neighbors are selected from the training set to form a neighborhood set
Dj ∈ Strain. (2) Regional decision making: a personalized model Mj is created
on Dj to approximate the function value yj at point xj .

The simplest personalized transductive model is the k nearest neighbor classi-
fier (kNN). kNN dynamically creates a prediction model for each test sample by
learning upon its k nearest neighbors. Neuro-Fuzzy Inference (NFI) is a newly
introduced personalized transductive learning method [2]. By employing a fuzzy
inference model for regional decision making, NFI outperforms kNN on some
benchmark data sets. However, since the personalized prediction models for NFI
and kNN are based on the same neighbor-sample filtering, their generalization
abilities are not significantly different.

It is worth noting that for data collected from real world applications, the
neighborhood directly defined by inter-sample dissimilarities is subjected to high
noise or ill-posed conditions, which in turn renders the personalized prediction
models unreliable. A neighborhood based on inter-sample dissimilarity is unable
to approximate such neighborhood data distribution precisely, because samples
adjacent to the query sample might be just noise data. Thus for a better neigh-
borhood modelling, it is desirable to take into consideration, besides the dis-
tance metric, also the classification information/knowledge to enable constructed
neighborhood knowledgeable. Motivated by this, we propose in this paper a
transductive SVM tree (t-SVMT), which implements personalized multi-model
cooperative learning in a transductive manner.

2 Personalized Neighborhood Calculation

Given a query sample x in data space D, the neighborhood of x is defined as a
subset Zx adjacent to x, possibly containing samples from different classes.

Zx = z1, · · · , zk,x, d(zi,x) < θ, (1)

where zi represents a neighboring sample, d(zi,x) is the distance between neigh-
boring sample and the query sample x, θ is a predefined neighborhood up bound.

Personalized transductive learning assumes that f(x, Zx) approximates the
ground truth f(x) better than f(x, D) for the reason that noise data is removed
due to neighboring instance selection. Thus, a personalized transductive function
can be learned just from the neighborhood data set Zx, but not from the full
data set D. However, it is noticeable that (1) exclusively relies on inter-sample
dissimilarity evaluation. The obtained neighborhood, depending on what kind
of dissimilarity measure is used, is presented either as a circle-type scope shown
in Fig. 1 (b) or as a rectangle of Fig. 1 (c). Such neighborhood calculation is
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xi xi

(a) (b) (c)

xixi

(d)

Fig. 1. Illustration of dynamic neighborhood modelling. (a) Truth personalized neigh-

borhood of xi; (b) circle-type neighborhood approximation; (c) rectangle-type neigh-

borhood approximation; (d) the proposed subset aggregated neighborhood.

improper when a dynamic neighborhood is required for more accurate person-
alized modelling. Moreover, the neighborhood obtained from (1) is merely in
the sense of dissimilarity measure, ignoring discriminative knowledge between
different classes, which in some cases leads to degeneration in the generalization
performance.

A personalized neighborhood Zx is modelled based on the following two poli-
cies: (1) class label information is incorporated for defining the neighborhood,
and (2) a neighborhood is composed of flexible-size multi-instance packages in-
stead of individual instances. Mathematically, the proposed personalized neigh-
borhood model is defined as

Z∗
x = Z1 ∪ Z2 ∪ · · · ∪ Zk ∪ {x}, Subject tod(Zi,x) < θ, and Zi ← ℘(D), (2)

where Zi is a subset containing neighboring samples to x, d(Zi,x) the distance
between Zi and query sample x, and θ a predefined dissimilarity upper bound. It
is noticeable that Zi is a flexible-size multi-instance package, which is a subset of
D, or sometimes only a single instance. Also, Z∗

x considers the class label infor-
mation as every Zi is obtained from a supervised clustering ℘(D). Therefore, Z∗

x

is personalized for x in terms of the membership of the neighborhood. As an il-
lustration, Fig. 1 (d) gives an aggregated neighborhood by a set of multi-instance
packages represented as circles in the figure. It is obvious that Fig. 1 (d) presents
a more accurate neighborhood approximation than Fig. 1 (b) and (c).

3 Personalized Mode Transductive Spanning SVM Tree

SVM tree (SVMT) [4] is a type of inductive SVM aggregation. It overcomes the
difficulty of SVM ensemble by determining the number of SVMs automatically
during learning. The disadvantage of existing SVMTs [3,4] is that the spanning
of SVMT is completely data-driven (called DDS SVMT here afterward): the tree
grows easily into a large-size SVM decision tree with terminal SVM nodes built
on extremely small dataset, which results in the generated SVMT over-fitting to
the training data. Here we present a new SVM aggregating method which con-
structs an SVMT in a transductive way. The proposed approach is capable of
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preventing the over-fitting of SVMT learning as it aggregates only neighborhood
knowledge and hence largely reduces the size of generated SVM tree. Towards
a multi-model transductive SVM aggregation classifier with high generalization
ability, in this section we address three aspects of the model: (1) problem decom-
position, i.e. data partitioning, (2) modelling of local knowledge, i.e. individual
SVM training on regional multi-instance package, and (3) individual SVMs ag-
gregation, i.e. transductive aggregation.

3.1 Data Partitioning

In the spirit of searching for better partitions with good discriminative ability,
we are aiming at partitioning data into geographically adjacent subsets while
taking class label information into account.

Let X = {x1, . . . ,xN} be the training set, and the associative labels given
by {y1, . . . , yN}, a new attribute zi can be formed out of the original attributes
as zi = (xi, yi), embodying the information contained in X as a set of data
partitions {Z1, . . . , Zk}. A supervised data decomposition can be accomplished
by introducing cost function based on a regional SVM approximation,

E(Zk) =
∑
x∈Zk

(x− xk) + α
∑

x∈Zk

(fsvm(xk)− fsvm(x)), (3)

where fsvm is a standard SVM approximation given later, and α is a balancing
weight.

Given a partitioning function ℘ on X with adjustable partitioning scale, (3)
can be used for a supervised recursive partitioning procedure as,

[Z1, · · · , Zi, · · ·] = ℘n(X, ρ0), Subject to E(Zi) < ξ, (4)

where ρ is the partitioning scale, ξ the threshold of E, and Z1, · · · , Zk are the set
of partitions selected by optimizing the cost E. ℘n = ℘(℘n−1(Xn−1, ρn−1), ρn),
ρn = ρn−1 +Δ, and Δ is the partitioning scale interval normally set to a small
value in the range of ℘ definition. For example, for K-means, Δ can be an integer
greater-equal to 1.

By (4), X can be partitioned into a set of data partitions in different sizes
{Z1, Z2, · · · , Zi, · · ·}, such that Z1 ∪ Z2 ∪ · · · ∪ Zi ∪ · · · ≈ D, and each partition
Zi is associated with the partitioning scale ρ, in which Zi is produced.

3.2 SVM Particles

To formalize classification as the task of finding partitions with maximum likeli-
hood, a local SVM is associated with each partition obtained by the above data
partitioning procedure. An SVM particle is defined as a structure that combines
the dataset Zi, and the trained SVM f isvm on Zi, Vi = {Zi, f isvm}.

In the case that Zi has data from two classes, a regular two-class SVM model
fsvm = sign(

∑l
i=1 yi(w

T
i

˙ϕ(xi) + b∗i )), where ϕ is the kernel function, l is the
number of training samples, and wi and b∗i are optimized by
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min
1
2
wT
i wi + C

l∑
t=1

η2
i , Subject to yi(w

T
i ϕ(xt) + bi) ≥ 1− ηi, (5)

where C is the margin parameter to weight the error penalties ηi, and ϕ(.) is the
mapping function implemented by the kernel function. On the other hand, when
Zi only contains data from one class, a one-class SVM is applied. Following [5], a
class SVM function can be modelled as an outlier classifier by labelling samples
in Zi as positive and samples in the complement set Zi as negative. Then the
SVM is trained on a dataset Z ′

i = {xi|i = 1, · · · , N}, and

y′i =
{

+1 if xi ∈ Zi,
−1 if xi ∈ Zi.

(6)

Consequently, the following two types of SVM particles are obtained: (1) one-
class SVM particles V <1> = {g, ρ, fsvm<1>} for class 1, V <2> = {g, ρ, fsvm<2>}
for class 2, and (2) two-class SVM particle V <2> = {g, ρ, fsvm}. Given a data
partition belonging to one class, a one-class SVM is applied to model the data
by separating the samples in the partition from the outliers. In the case that the
data belong to two classes, satisfying E(g) > ξ, then a two-class SVM is applied
to the partition, and a standard SVM particle is created.

3.3 Personalized Mode Transductive Aggregation

Given a test sample x, and a set of SVM particles {Vi} derived over Strain, the
distance between x and a particle Zi is measured by the normalized Euclidean
distance defined as follows,

d(x, Zi)2 = (x−
∑

xk∈Zi
xk

|Zi|
)T (x−

∑
xk∈Zi

xk

|Zi|
), (7)

where |Zi| denotes the cardinal number of the particle.
Then, all selected SVM particles compose the knowledgeable neighborhood for

the new input instance x, and the decision of classification is made transductively
by an aggregation f̂ of those SVM particles in the neighborhood as,

f̂(x) =

⎧⎨⎩fsvm<1> if x ⇀ V <1>,
fsvm<2> if x ⇀ V <2>,
fsvm otherwise,

(8)

where fsvm<1> and fsvm<2> are one-class SVM decision makers for class 1 and
2, respectively, and fsvm is a 2-class SVM decision maker. Taking each SVM
particle as a tree node and the partitioning scale ρ as the level of tree structure,
f̂ can be represented as an SVM tree. Thus, ‘⇀’ in (8) indicates that x is
branched to a certain node of the SVM tree.

Clearly, there may be errors in the classification of above constructed f̂ , as
f̂ may differ from the true classification function f . Thus, a suitably chosen
real-value loss function L = L(f̂ , f) is used to capture the extent of this error.
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Therefore loss L is data dependent: L = |f̂ − y|. As f̂ is applied to datasets
drawn from the data domain D under a distribution of θ(x). The expected loss
can be quantified as,

L =
I∑
i=1

|fsvmi − fi|(i +
J∑
j=1

|fsvm<1>
j

− fj|q1j +
K∑
k=1

|fsvm<2>
k

− fk|q2k, (9)

where fi, fj , and fk are the regional true classification function. (i is the prob-
ability that the ith particle contains two class data. qr(r = 1, 2) represent the
probability that a partition contains data from only one class. I, J , and K rep-
resent the number of two-class SVM particles, one-class SVM particles for class
1, and class 2, respectively. Here, I, J , K and N are determined automatically
after f̂ is created.

From (7), the aggregation risk is determined by 2-class SVM and one-class
SVM classifiers over all the particles/regions. Also, the risk from ℘ has already
been minimized during the process of data partitioning. Thus an optimized SVM
aggregation is achieved as long as the risk from every regional SVM is minimized.

4 The Proposed t-SVMT Algorithm

In this section, the above personalized transductive modelling is interpolated as
an algorithm of transductive SVM tree (t-SVMT). First, the training data is
divided in a recursive data partitioning procedure. Then, regional knowledge of
the input data is approximated as a set of SVM particles. Finally, the selected
transductive particles (i. e. particles neighboring to a test instance x) are aggre-
gated into a personalized SVM tree model. Below is a step by step explanation
of the operations taken by the t-SVMT Algorithm:

Step 1: Partitioning. The input training data is decomposed and modelled into
a set of SVM particles. Algorithm 1 gives the partitioning function, where ρ0
is a predefined initial resolution for t-SVMT to start analyzing. Default ρ0 is
normally set as a scale that gives the biggest size data partitions. For example,
for K-mean, ρ0 is set as 2. If some prior knowledge of the data is known, e.g.
serious class-imbalance and class-overlap, a finer scale is suggested to enable t-
SVMT to analyze the data with a finer resolution. In our experiments, we adopt
a standard K-mean clustering approach with ρ = 2.

Step 2: Spanning transductive SVMT. Given a new input instance x, a person-
alized t-SVMT Ti is constructed by transductive SVM particle training followed
by SVMT aggregation. Algorithm 2 describes the t-SVMTtraining function. In
our experiments, two-class SVMs use a linear kernel and one-class SVMs employ
RBF kernel with parameter adjusted via cross-validation.

Step 3: Testing the constructed t-SVMT y = T (x). Test sample x is first judged
by the test function T0(x) at the root node in the SVM tree. Depending on the
decision made by the root node, x will be branched to one of the children of
the root node. This procedure is repeated until a leaf node or an SVM node is
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Function: Partitioning(Xtrain, ρ0)

Xtrain; /* training dataset */
ρ; /* initial partition scale */
P ; /* output data partition set*/

begin
1 P = ø ; /* initialize output */

2 ρ = ρ0 ; /* initialize partition scale*/

3 if Xtrain is empty

4 return P ; / * Iteration stops when Xtrain is empty */

5 [Z1, · · · , Zk] = Partition(Xtrain, ρ0);

6 for each Zk {
7 if all x ∈ Zk is in one-class

8 P = P ∪ [Zk, ρ];

9 if Zk in two-class, and E(Zk) > ξ
10 P = P ∪ [Zk, ρ];

11 Xtrain = Xtrain − Zk; }
12 if Xtrain size is not decreasing

13 ρ = ρ −�;

14 Partitioning(Xtrain, ρ);/* zooming in */
end

Algorithm 1. Partitioning

reached, then the final classification decision is made for the test sample by a
node one-class classifier or a regular SVM classification.

5 Experiments and Discussions

In our experiments, we compare the results of t-SVMT with those of standard
inductive SVM, and previous SVM aggregation methods: SVM ensemble [7]
and DDS SVMT [4]. On the other hand, we also compare t-SVMT with other
transductive methods including transductive SVM [6], kNN and NFI [2]. In the
comparison, we set all SVMs with a linear kernel, and aggregation parameters for
SVMTs (e.g. ρ0 and ξ) as well as parameters for kNN and NFI to be determined
by cross validation experiments. For performance evaluation, a consistent 10-fold
cross-validation policy is applied for all experiments by using one tenth data as
a testing set, and the rest of data as a training set.

5.1 Robustness Tests on Face Membership Authentication

To evaluate the algorithm’s robustness to class-imbalance, we study the face
membership authentication (FMA) problem in [4]. The membership authentica-
tion problem is to distinguish the membership class from the non-membership
class based on the personal facial images stored in a database. An FMA problem
is a typical class-imbalance problem, since the membership group is generally
much smaller than the nonmembership group. The dataset from [4] includes
images collected from 270 individuals (5 images for each).
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Function: t-SVMTtraining(P , x)

x; /* a test instance */
K; /* SVM Kernel for constructing SVM Tree*/
T ; /* output t-SVMT of x */

begin
1 Vt = ø;/* initialize transductive particle set */
2 for each Zk ∈ P {
3 if Zk is close to x
4 Vt = Vt ∪ [Zk, ρp]; }
5 T = ø ; /* initialize t-SVMT as a root node */

6 for each Zk ∈ Vt {
7 if Zk is one-class

8 Mk=Train SVMone(Zk, K);/* one-class SVM*/

9 else
10 Mj=Train SVM(Zk, K);}
11 T = T ∪ [Zk, Mk, ρk];/* Add a tree node at level ρj */
end

Algorithm 2. Transductive Spanning SVM Classification Tree
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Fig. 2. The class-accuracy imbalance versus class-distribution imbalance. t-SVMT is

compared with inductive SVM (ISVM), transductive SVM (TSVM), and SVM Ensem-

ble, and DDS SVMT.

To see how the class-imbalance influence the imbalance of the class accu-
racy, we gradually decrease the size of the membership class from 135 to 10.
Fig. 2 shows the comparison of 5 methods on the class-distribution imbal-
ance versus class-accuracy imbalance, where the imbalance value is defined as
1 − min(class1,class2)

max(class1,classs2) . As can be seen, as the imbalance of class-distribution in-
creases from 0 (1− 135

270−135 ) to 0.9615 (1− 10
270−10 ), the class-accuracy imbalance

of inductive SVM shows an immediate dramatic increase. TSVM does suppress
the class-accuracy imbalance a little, but for most cases the class-accuracy imbal-
ance is above 0.5. SVM ensemble has made the class-accuracy imbalance below
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0.5 in most cases, but large fluctuations exist at the later part of the curve. The
promising property of DDS-SVMT is that it shows good robustness to class-
distribution imbalance, even for class-distribution imbalance greater than 0.6.
However the active fluctuation shows the potential instability. The proposed t-
SVMT shows the best robustness to class-distribution imbalance such that it
keeps a smooth curve with the class-accuracy imbalance kept below 0.2, even
for the most imbalanced case when the class-distribution imbalance is at the
maximum of 0.962. On the other hand, by comparing the face membership au-
thentication performance, the proposed t-SVMT is shown to clearly outperform
single SVMs and SVM ensemble and to be very competitive with respect to the
DDS-SVMT in terms of the 10-fold cross validation output. This indicates that
the proposed t-SVMT has an outstanding discrimination, but an even better
class balancing capability than the previous DDS-SVMT.

5.2 Over-Fitting Tests on Cancer Diagnosis

To see if the t-SVMT can prevent over-fitting to the training dataset, we com-
pared the proposed t-SVMT with DDS SVMT on the scale of the tree structures,
i.e. the number of nodes in the tree, and the classification performance, i.e. the
classification accuracy with 10-fold cross validation. The experiments are done
on eight well-known two-class cancer datasets. We check the performance of the
algorithms under two conditions: For the first case, the raw gene features are
used as input, and for the second case, 100 genes selected by a standard t-test
gene selection algorithm are used as input.

Table 1. Average classification accuracies for 8 cancer datasets, based on 10-fold cross

validation, values are means of 10 runs. Numbers in boldface indicate the best results.

Cancer Genes/with Bias ratio DDS SVMT t-SVMT

dataset selection class 1/2 /Tree size /Tree size

7129/ 84.4%/15 77.9%/6

Lymphoma(1) 100 19/58=0.33 80.5%/12 84.4%/8

7219/ 64.7%/24 78.3%/12

Leukemia* 100 11/27=0.41 91.2%/12 91.2%/7

7129/ 50.0%/34 72.0%/8

CNS Tumour 100 21/39=0.53 63.0%/26 78.3%/8

Colon 2000/ 71.3%/21 80.7%/10

Cancer 100 22/40=0.55 75.8%/31 86.5%/9

15154/ 97.3%/13 75.0%/4

Ovarian 100 91/162=0.56 96.4%/12 98.4%/6

Breast * 24482/ 52.6%/38 73.7%/4

Cancer 100 34/44=0.77 68.4%/14 78.9%/6

6431/ 51.7%/27 60.3%/10

Lymphoma(2) 100 26/32=0.81 58.6%/26 66.7%/15

Lung * 12533/ 64.4%/15 75.0%/8

Cancer 100 16/16=1.0 77.8%/12 73.8%/7

* Independent validation dataset was used for the accuracy evaluation.
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Table 1 lists the details and the experimental results of the datasets. As seen
from the table, over-fitting happens for DDS SVMT as it yields big tree struc-
tures that have about 30 nodes for datasets with less than 80 instances, such
as CNS Tumour, Breast Cancer, and Lymphoma(2). In these cases, the classi-
fication accuracies are lower than 50%. On the contrary, the trees created by
t-SVMT are normally 2-3 times smaller than those by DDS SVMT, and outper-
forms DDS SVMT in classification accuracy on 12 out of 16 case studies. This
indicates that t-SVMT is capable of preventing over-fitting by reducing the size
of SVMT, whilst maintains a superior classification accuracy on datasets with
significant class imbalance.

6 Discussions and Conclusions

In this paper, we introduced a new type of SVM classification tree that performs
effective personalized transductive learning for new test instances, which imple-
ments a new type of SVM aggregating intelligence [3] for transductive learning.

The proposed t-SVMT, from the viewpoint of personalized transductive learn-
ing, is different from previous PTL methods such as kNN and NFI, as it uses
SVM particle based knowledgeable neighborhood instead of the simple neigh-
borhood defined by distance metric. On the other hand, from the viewpoint of
SVM aggregating intelligence [3], t-SVMT follows the same route of recursive
data partitioning plus aggregating as the previous SVM tree methods. However,
t-SVMT is also different from all previous SVMT aggregating methods since it
does not consider all the knowledge of the overall dataset, but only the regional
knowledge (i.e. knowledge related to the test instance), therefore the proposed
t-SVMT solves successfully the over-fitting problem of previous SVMTs.
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Abstract. Text classification is generally the process of extracting in-

teresting and non-trivial information and knowledge from text. One of

the main problems with text classification systems is the lack of labeled

data, as well as the cost of labeling unlabeled data. Thus, there is a grow-

ing interest in exploring the use of unlabeled data as a way to improve

classification performance in text classification. The ready availability of

this kind of data in most applications makes it an appealing source of

information.

In this work we propose an Incremental Background Knowledge (IBK)

technique to introduce unlabeled data into the training set by expand-

ing it using initial classifiers to deliver oracle decisions. The defined in-

cremental SVM margin-based method was tested in the Reuters-21578

benchmark showing promising results.

1 Introduction

Applications of text mining are ubiquitous, since almost 80% of the information
available is stored as text. Thus, there is an effective interest in researching and
developing applications that better help people handling text-based information.
On the other hand, the wealth of text in digital form has made the organization
of that information into a complex and vitally important task.

Most text categorization methods, e.g., K-Nearest Neighbor, Näıve Bayes,
Neural Nets and Support Vector Machines, have their performance greatly de-
fined by the training set available. To achieve the best classification performance
with a machine learning technique, there has to be enough labeled data. How-
ever, these data are costly and sometimes difficult to gather. This is one key
difficulty with current text categorization algorithms, since they require manual
labeling of more documents than a typical user can tolerate [1].

Labeling data is expensive but, in most text categorization tasks, unlabeled
data are often inexpensive, abundant and readily available. Therefore, to achieve
the purpose of using relatively small training sets, the information that can be
extracted from the testing set, or even unlabeled examples, is being investigated
as a way to improve classification performance [2,3]. Seeger in [4] presents a
report on learning with unlabeled data that compares several approaches.
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In general, unlabeled examples are much less expensive and easier to gather
than labeled ones. This is particularly true for text classification tasks involving
online data sources, such as web pages, email and news stories, where large
amounts of text are readily available. Collecting this text can frequently be done
automatically, so it is feasible to collect a large set of unlabeled examples. If
unlabeled examples can be integrated into supervised learning, then building
text classification systems will be significantly faster, less expensive and more
effective.

There is a catch however, because, at first glance, it might seem that nothing is
to be gained from unlabeled data, since an unlabeled document does not contain
the most important piece of information - its classification.

Consider the following example to give some insight of how unlabeled data can
be useful. Suppose we are interested in recognizing web pages about conferences.
We are given just a few conferences and non-conferences web pages, along with a
large number of pages that are unlabeled. By looking at just the labeled data, we
determine that pages containing the word paper tend to be about conferences.
If we use this fact to estimate the classification of the many unlabeled web
pages, we might find that the word deadline occurs frequently in the documents
that are classified in the positive class. This co-occurrence of the words paper
and deadline over the large set of unlabeled training data can provide useful
information to construct a more accurate classifier that considers both paper
and deadline as indicators of positive examples.

In this work we propose an Incremental Background Knowledge (IBK) tech-
nique that uses the Support Vector Machine (SVM) classification margin to de-
termine unlabeled examples classification and strengthen the training set. The
IBK is an improvement of a Basic Background Knowledge (BBK) approach al-
ready proposed by the authors in [5]. The new incremental technique provides
a more stable convergence to an improved performance without using any new
supervisor knowledge.

The rest of the paper is organized as follows. Section 2 addresses several text
classification issues, setting guidelines for problem formulation, including the
application of Support Vector Machines (SVMs) to text classification tasks.

Section 3 presents the proposed Incremental Background Knowledge (IBK)
approach comparing with the previous technique, followed by experimental setup
and results in Sections 4 and 5 respectively. Finally, Section 6 presents some
conclusions and future work.

2 Text Classification

The goal of text classification is the automatic assignment of documents to a fixed
number of semantic categories. Each document can be in multiple, exactly one,
or no category at all. Using machine learning, the objective is to learn classifiers
from examples, which assign categories automatically. This is usually considered
a supervised learning problem. To facilitate effective and efficient learning, each
category is treated as a separate binary classification problem. Each of such
problems answers the question of whether or not a document should be assigned
to a particular category [6].
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Documents, which typically are strings of characters, have to be transformed
into a suitable representation both for the learning algorithm and the classifi-
cation task. The most common representation is known as the Bag of Words
and represents a document by the words occurring in it. Usually the irrelevant
words are filtered using a stopword list and the word ordering is not deemed
relevant for most applications. Information retrieval investigation proposes that
instead of words, the units of representation could be word stems. A word stem
is derived from the occurrence form of a word by removing case and inflection
information. For example ”viewer”, ”viewing”, and ”preview” are all mapped to
the same stem ”view”.

This leads to an attribute-value representation of text. Each distinct word
wi corresponds to a feature TF (wi, x), representing the number of times word
wi occurs in the document x. Refining this basic representation, it has been
shown that scaling the dimensions of the feature vector with their inverse doc-
ument frequency IDF (wi) leads to an improved performance. IDF (wi) (1) can
be calculated from the document frequency DF (wi), which is the number of
documents the word wi occurs in.

IDF (wi) = log

(
D

DF (wi)

)
(1)

Here, D is the total number of documents. The inverse document frequency of a
word is low if it occurs in many documents and is highest if the word occurs in
only one. To disregard different document lengths, each document feature vector
x is normalized to unit length [7].

2.1 SVM Text Classification

Support Vector Machines (SVMs) are a learning method introduced by Vapnik
[8] based on his Statistical Learning Theory and Structural Risk Minimization
Principle. When using SVMs for classification, the basic idea is to find the op-
timal separating hyperplane between the positive and negative examples. The
optimal hyperplane is defined as the one giving the maximum margin between
the training examples that are closest to it. Support vectors are the examples
that lie closest to the separating hyperplane. Once this hyperplane is found, new
examples can be classified simply by determining on which side of the hyperplane
they are.

Although text categorization is a multi-class, multi-label problem, it can be
broken into a number of binary class problems without loss of generality. This
means that instead of classifying each document into all available categories,
for each pair {document, category} we have a two class problem: the document
either belongs or does not to the category. Although there are several linear
classifiers that can separate both classes, only one, the Optimal Separating Hy-
perplane, maximizes the margin, i.e., the distance to the nearest data point of
each class, thus presenting better generalization potential.

The output of a linear SVM is u = w × x− b, where w is the normal weight
vector to the hyperplane and x is the input vector. Maximizing the margin can
be seen as an optimization problem:
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minimize
1
2
||w||2,

subjected to yi(w.x + b) ≥ 1, ∀i,
(2)

where x is the training example and yi is the correct output for the ith training
example. Intuitively the classifier with the largest margin will give low expected
risk, and hence better generalization.

3 Incremental Background Knowledge

Some authors [9] refer to unlabeled data as background knowledge, defining it
as any unlabeled collection of text from any source that is related to the classi-
fication task. Joachims presents in [6] a study on transductive SVMs (TSVMs)
introduced by Vapnik [8]. TSVMs make use of the testing set and extend induc-
tive SVMs, finding an optimal separating hyperplane not only of the training
examples, but also of the testing examples [10].

The Incremental Background Knowledge (IBK) technique we now propose
is in fact a development of a Basic Background Knowledge (BBK) approach
already proposed by the authors in [5]. We will start by generally describing
the basic strategy that will serve as base comparison, and then the incremental
approach that constitutes the main contribution of this work (more details on
BBK can be found in [5]).

In the BBK, first an inductive SVM classifier (see Section 2.1) is inferred from
the training set, and then it is applied to the unlabeled examples. The BBK
approach incorporates, in the training set, new examples classified by the SVM
with larger margin, which can be assumed as the ones where the SVM classifier
presents more confidence. Fig. 1 illustrates an example where four unlabeled
examples (black dots) are classified with small and large margins.

Formally, the BBK approach proceeds by incorporating unlabeled examples
(only the features, not the classification) from the unlabeled/testing set directly

gin

Fig. 1. Unlabeled examples (black dots) with small and large margins
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into the training set as classified by the baseline inductive SVM, i.e., an example
(xi, yi) will be chosen if Equation (3) holds:

(xi, yi) : ρ(xi, yi) =
2
‖w‖ > Δ, (3)

Δ was heuristically defined. Notice that Δ is intrinsically related to the margin,
i.e when Δ is decreased, in fact we are decreasing the classification margin of
accepted unlabeled examples and thus accepting examples classified with less
confidence. This level of confidence should depend on the capabilities of the
base classifier, or in other words, the better the base classifier the lower we can
set the threshold on Δ (and thus on the margin) to introduce newly classified
unlabeled examples into the training set.

In the IBK approach we now suggest, a structural change is proposed to deal
with the weaker point of the BBK technique, i.e. the definition ofΔ. We proposed
the iterative procedure illustrated in Fig. 2. As can be gleaned from this figure,
the training set is incrementally constructed by iteratively decreasing the value
of Δ, i.e. reducing the confidence threshold for an unlabeled example to be added
as classified by the SVM. This approach rational is that as Δ is decreased, the
classifiers are also getting better due to the additional information in the training
set, thus justifying lowering the confidence threshold. Algorithm 1 below more
formally defines the IBK procedure.

Fig. 2. Proposed approach: Incremental Background Knowledge

Algorithm 1. Incremental Background Knowledge Algorithm
Current training set ← Initial dataset

Δ ← initial Δ value

WHILE not all unlabeled examples added

Infer an SVM classifier with current training set

Classify unlabeled examples with the classifier

Select the newly classified examples with margin larger that Δ
Add the selected examples to the current training set

Decrease Δ
ENDWHILE
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4 Experimental Setup

4.1 Reuters-21578 Benchmark

The widely accepted Reuters-21578 benchmark was used in the experiments. It
is a financial corpus with news articles documents averaging 200 words each.
Reuters-21578 is publicly available at http://kdd.ics.uci.edu/databases/reuters-
21578/reuters21578.html. In this corpus 21,578 documents are classified in 118
categories.

Reuters is a very heterogeneous corpus, since the number of documents as-
signed to each category is very variable. There are documents not assigned to
any of the categories and documents assigned to more than 10 categories. On
the other hand, the number of documents assigned to each category is also not
constant. There are categories with only one assigned document and others with
thousands of assigned documents. The ModApte split was used, using 75% of
the articles (9603 items) for training and 25% (3299 items) for testing. Table 1
presents the 10 most frequent categories and the number of positive training and
testing examples. These 10 categories are widely accepted as a benchmark, since
75% of the documents belong to at least one of them.

Table 1. Number of positive training and testing documents for the Reuters-21578

most frequent categories

Category Train Test

Earn 2715 1044

Acquisitions 1547 680

Money-fx 496 161

Grain 395 138

Crude 358 176

Trade 346 113

Interest 313 121

Ship 186 89

Wheat 194 66

Corn 164 52

4.2 Performance Metrics

In order to evaluate a binary decision task we first define a contingency matrix
representing the possible outcomes of the classification, as shown in Table 2.

Several measures have been defined based on this contingency table, such
as, error rate ( b+c

a+b+c+d), recall ( a
a+c ), and precision ( a

a+b ), as well as combined
measures, such as, the van Rijsbergen Fβ measure [11], which combines recall
and precision in a single score, Fβ = (β2+1)P×R

β2P+R . The latter is one of the best
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Table 2. Contingency table for binary classification

Class Positive Class Negative

Assigned Positive a b

(True Positives) (False Positives)

Assigned Negative c d

(False Negatives) (True Negatives)

suited measures for text classification used with β = 1, i.e. F1, and thus the
results reported in this paper are macro-averaged F1 values.

5 Experimental Results

Experiments were carried out varying the values of Δ starting with no inclusion
of new unlabeled examples until practically all available examples were added.
In the BBK approach, for each value of Δ a new training set was constructed,
learned and tested, while for IBK the training set in each iteration, corresponding
to a value of Δ, was used as baseline for the next iteration, where it was again
incremented (see Fig. 2).

Fig. 3 shows the F1 performance for both approaches and for the several va-
lues of Δ. Notice that the values of Δ in x-axis are decreasing values, reflecting
the nature of the IBK technique that starts to add large margin classified ex-
amples (with high confidence and large Δ values) and proceeds with decreasing
values of margin, confidence and Δ. It is clear from this figure that the IBK gen-
erally surpasses BBK. However, the most compelling analysis is in its stability
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Fig. 3. F1 performance for IBK and BBK for different Δ values
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to different values of confidence. While BBK presents sensitivity when the con-
fidence drops below an acceptable threshold, IBK remains fairly insensitive and
stable, even when all examples are added. It is possible to assert the number of
added examples and of these how many are wrongly classified in the graphic in
Fig. 4. It is interesting to notice that although more examples are added in the
BBK, the number of examples introduced with the wrong classification in the
training sets are fairly low and equivalent, despite the difference in classification
performance.

6 Conclusions and Future Work

In this work we proposed an Incremental Background Knowledge (IBK) tech-
nique that uses the Support Vector Machine (SVM) classification margin to de-
termine unlabeled examples classification and strengthen the training set. The
IBK is an improvement of a Basic Background Knowledge (BBK) approach pre-
viously developed by the authors.

The main contribution is in the area of semi-supervised learning, by devis-
ing a stable and efficient mechanism for automatically incorporating unlabeled
examples in the learning task. In fact, the incremental approach does not limit
the number of examples introduced and requires no feedback from an oracle.
Results shown that the improvement obtained in an optimal point of operation
is at least maintained even in severe circumstances of very low level of confidence
in the added unlabeled examples.

Future work is expected in further validating the strategy in different appli-
cations, namely multiclass applications.
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Abstract. Many applications of machine learning involve sparse high-

dimensional data, where the number of input features is (much) larger

than the number of data samples, d � n. Predictive modeling of such

data is very ill-posed and prone to overfitting. Several recent studies

for modeling high-dimensional data employ new learning methodology

called Learning through Contradictions or Universum Learning due to

Vapnik (1998,2006). This method incorporates a priori knowledge about

application data, in the form of additional Universum samples, into the

learning process. This paper investigates generalization properties of the

Universum-SVM and how they are related to characteristics of the data.

We describe practical conditions for evaluating the effectiveness of Ran-

dom Averaging Universum.

1 Introduction and Background

Sparse high-dimensional data is common in modern machine learning applica-
tions. In micro-array data analysis, technologies have been designed to measure
the gene expression levels of tens of thousands of genes in a single experiment.
However, the sample size in each data set is typically small ranging from tens to
low hundreds due to the high cost of measurements. Similarly, in brain imaging
studies using magnetic resonance imaging (MRI) and in image recognition stud-
ies, the dimensionality d of the data vector is much larger than the sample size
n. Such sparse high-dimensional training data sets represent new challenges for
classification methods.

Most approaches to learning with high-dimensional data focus on improve-
ments to existing inductive methods (Cherkassky and Mulier 2007, Schölkopf and
Smola 2002) that try to incorporate a priori knowledge about the good models.
Another approach to handling ill-posed high-dimensional classification problems
adopts new non-standard learning formulations that incorporate a priori knowl-
edge about application data and/or the goal of learning directly into the problem
formulation (Cherkassky and Mulier, 2007). Such non-standard learning settings
reflect properties of real-life applications, and can result in improved generaliza-
tion, relative to standard inductive learning. However, these new methodologies
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are more complex, and their relative advantages and limitations are still poorly
understood.

The idea of ‘inference through contradiction’ was introduced by Vapnik (1998)
in order to incorporate a priori knowledge into the learning process. This knowl-
edge is introduced in the form of additional unlabeled data samples (called vir-
tual examples or the Universum), that are used along with labeled training
samples, to perform inductive inference. Examples from the Universum are not
real training samples, however they reflect a priori knowledge about application
domain. For example, if the goal of learning is to discriminate between hand-
written digit 5 and 8, one can introduce additional ‘knowledge’ in the form of
other handwritten digits 0, 1, 2, 3, 4, 6, 7, 9. These examples from the Univer-
sum contain certain information about handwritten digits, but they can not be
assigned to any of the two classes (5 or 8).

Next we briefly review optimization formulation for the Universum SVM clas-
sifier (Vapnik, 2006). Let us consider inductive setting (for binary classification),
where we have labeled training data (xi, yi), (i = 1, ..., n), and a set of unlabeled
examples from the Universum (x∗

j ), (j = 1, ...,m). The Universum contains data
that belongs to the same application domain as training data, but these samples
are known not to belong to either class. These Universum samples are incorpo-
rated into inductive learning as explained next. Let us assume that labeled train-
ing data is linearly separable using large margin hyperplanes f(x, ω) = (w·x)+b.
Then the Universum samples can either fall inside the margin or outside the mar-
gin borders (see Fig. 1). Note that we should favor hyperplane models where the
Universum samples lie inside the margin, because these samples do not belong
to either class. Such Universum samples (inside the margin) are called contra-
dictions, because they have non-zero slack variables for either class label. So the
Universum learning implements a trade-off between explaining training samples
(using large-margin hyperplanes) and maximizing the number of contradictions
(on the Universum).

The quadratic optimization formulation for implementing SVM-style infer-
ence through contradictions is shown next following (Vapnik, 2006). For labeled
training data, we use standard SVM soft-margin loss with slack variables ξi.
For the Universum samples (x∗

j ), we need to penalize the real-valued outputs
of our classifier that are ‘large’ (far away than zero). So we adopt ε-insensitive

Fig. 1. Two large-margin separating hyperplanes explain training data equally well, but

have different number of contradictions on the Universum. The model with a larger

number of contradictions should be favored.
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loss (as in standard support vector regression). Let ξ∗j denote slack variables for
Universum samples. Then the Universum SVM formulation can be stated as:

minimize R(w, b) = 1
2 (w ·w) + C

∑n
i=1 ξi + C∗∑m

j=1 ξ
∗
j whereC,C∗ ≥ 0(1)

subject to constraints
yi[(w · xi) + b] ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n (for labeled data)
|(w · xj) + b| ≤ ε+ ξ∗j , ξ

∗
j ≥ 0, j = 1, . . . ,m (for the Universum),

Parameters C and C∗ control the trade-off between minimization of errors and
maximizing the number of contradictions. Selecting ‘good’ values for these pa-
rameters is a part of model selection (usually performed via resampling). When
C∗ = 0, this U-SVM formulation is reduced to standard soft-margin SVM.

Solution to the above optimization problem defines the large margin hy-
perplane f(x, ω∗) = (x · w∗) + b∗ that incorporates a priori knowledge (i.e.
Universum samples) into the final SVM model. The dual formulation for in-
ductive SVM in the Universum environment, and its nonlinear kernelized ver-
sion can be readily obtained using standard SVM techniques (Vapnik, 2006).
The above quadratic optimization problem is convex due to convexity of con-
straints for labeled data and for the Universum. Efficient computational algo-
rithms for solving this optimization problem involve modifications of standard
SVM software (Weston et al, 2006). Universum SVM software is available at
http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html

Successful application of U-SVM depends on implementation of model selec-
tion and selection of Universum data. Note that model selection becomes more
difficult as kernelized U-SVM has 4 tunable parameters: C, C∗, kernel and ε.
In addition, we need to specify the number of Universum samples. In contrast,
standard SVM has only two tuning parameters. So in practise, standard SVM
may yield better performance than U-SVM, simply because it has inherently
more robust model selection.

Selection of Universum samples is usually application-dependent (Vapnik 2006,
Weston et al 2006). However, there is a possibility of generating Universum data
directly from labeled training data. This approach is called random averaging
(RA) and it does not rely on a priori knowledge about application domain. Such
RA Universum samples are generated by randomly selecting a pair of positive and
negative training samples, and computing their average. This paper investigates
practical conditions for the effectiveness of U-SVM using random averaging (RA).
As Universum samples are generated directly from labeled training data, we ex-
pect to express these conditions via the properties of training data. These proper-
ties can be conveniently presented using novel representation of high-dimensional
training data via univariate histograms introduced in section 2. Section 3 speci-
fies practical conditions for the effectiveness of RA Universum. Section 4 provides
empirical examples illustrating the effectiveness of U-SVM learning. Conclusions
are presented in Section 5.

http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html
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2 Representation of High-Dimensional Data via
Univariate Projections

Let us consider binary classification problems with sparse high-dimensional data,
where the input dimensionality is larger than training sample size (d+ n). Since
n points generate n-dimensional subspace (in the input space), the projections
of the data points onto any direction vector in the d − n dimensional subspace
are all zeros. Also, the projections of the data points onto any vectors orthog-
onal to the hyperplane generated by the data are non-zero constants. Ahn and
Marron (2005) analyzed asymptotic (d+ n) properties of high-dimensional data
for the binary classification setting, under the assumption that input variables
are ‘nearly independent’. Their analysis suggests that asymptotically there is a
direction vector such that the projections of data samples from each class onto
this direction vector collapse onto a single point. This projection vector is called
the Maximal Data Piling direction vector.

Various linear classifiers differ in approach for selecting the value of the vector
w, specifying the normal direction of a hyperplane (x ·w) + b. For linear SVM
classifiers under sparse high-dimensional settings, most data samples (from one
class) lie on the margin border, and their projections onto the SVM hyperplane
normal direction vector w tend to be the same (i.e., they project onto the same
point). In real-life applications, analytic assumptions in (Ahn and Marron 2005)
do not hold, so the data piling effect can be observed only approximately, in the
sense that many data samples lie near the margin borders. Next we illustrate
the data piling effect using the WinMac text classification data set (UCI KDD
20 Newsgroups entry). This is a binary classification data set where each sample
has 7511 binary features. The data is very sparse, and on average only a small
portion (∼7.3%) of features are non-zeros. We use 200 samples for training, and
200 independent validation samples for tuning linear SVM model parameter C.
Fig. 2(a) shows the histogram of univariate projections of the training data onto
the normal direction vector w of the SVM hyperplane. As expected, training
data is well separated and training samples from each class cluster near the
margin borders, marked as +1 and -1. Also shown in Fig. 2(b) is the histogram
of projections of the Universum samples generated from training data via Ran-
dom Averaging. As training samples cluster at the margin borders, Universum
samples will cluster near linear SVM decision boundary (marked 0 on the hori-
zontal axis). In Fig. 2, the y axis of a histogram indicates the number of samples
and the histogram of projections are evaluated, separately for each class, by first
calculating the range of projected values (i.e., max value − min value), and
then dividing this range into 10 different bins. This procedure is used for other
histograms of projections shown later in this paper.

For this data set, U-SVM is not likely to provide an improvement over linear
SVM, because optimization formulation (1) tries to force the Universum sam-
ples to lie near decision boundary. However, as shown in Fig. 2(b), Universum
samples already lie near the optimal hyperplane (of standard SVM model), so
no additional improvement due to U-SVM can be expected for this data set.
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Fig. 2. Histogram of projections of training data onto the normal direction vector w
of the SVM hyperplane

Next we show empirical comparisons between standard linear SVM and U-
SVM for the WinMac data set, in order to confirm our intuitive interpretation
of Fig. 2. Our comparisons use

- 200 training samples (100 samples per each class);
- 200 independent samples for validation, where validation data set is used for
tuning parameters of SVM and U-SVM;
- 1,000 Universum samples generated from training data via random averaging;
- 1,000 independent test samples (used to estimate testing error for each method).

All samples are randomly selected from the WinMac data set, and experiments
are repeated 10 times. During model selection, possible values for tuning param-
eters of U-SVM are given below:

C ∼[0.01,0.1,1,10,100,1000], C∗/C ∼[0.01,0.03,0.1,0.3,1,3,10] and ε ∼[0,0.02,
0.05,0.1,0.2]. These parameter values for U-SVM are also used for modeling
other data sets presented in this paper.

Performance results in Table 1 show average training and testing error for
each method, where averages are calculated over 10 runs. As expected, Univer-
sum SVM shows no improvement over standard linear SVM. Additional infor-
mation in Table 1 shows ‘typical’ values of tuning parameters selected by the
model selection procedure. Note small values of parameter C∗ suggesting that
Universum data samples have little effect on the final model. In Table 1, the
typical value of ε is also shown, but the effectiveness of Universum is mainly
determined by the values of C and C∗ (or their ratio). So only typical values of
parameter C and C∗ will be shown later in this paper.

3 Conditions for Effectiveness of Random Averaging
Universum

Comparisons for the WinMac data set suggest that it may be possible to judge
the effectiveness of RA Universum by analyzing the histograms of projections of
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Table 1. Comparison of Linear SVM and U-SVM on WinMac data set. Standard

deviation of error rate is shown in parenthesis.

Training/validation set size 200

Average training error rate (SVM) 0

Average training error rate (U-SVM) 0

Average test error rate (SVM) 7.11%(0.92%)

Average test error rate (U-SVM) 7.14%(0.92%)

Ave. Number of Support Vectors (SVM) 195.60

Typical C values 1 or 0.01

Typical C∗ values 0.01 or 0.001

Typical ε values 0

training samples onto the normal direction vector w of standard SVM model. In
fact, for sparse high-dimensional training data sets, we can have 3 distinct types
of projections:

- Case 1: univariate projections of training data onto SVM decision boundary
cluster strongly on margin borders (as in Fig. 2).
- Case 2: univariate projections of training data onto SVM decision boundary
cluster inside margin borders, as shown in Fig. 3(a).
- Case 3: univariate projections of training data onto SVM decision boundary
cluster outside margin borders, as shown in Fig. 3(b).

From the nature of the U-SVM optimization formulation (1), it can be expected
that Universum would not provide any improvement for cases (1) and (2), be-
cause Universum samples generated by random averaging are distributed nar-
rowly near SVM decision boundary in the projection space, as shown in Fig. 2(b).
However, U-SVM is expected to provide an improvement in case (3), where ran-
dom averaging would produce Universum samples scattered far away from SVM
decision boundary in the projection space, and possibly outside the margin bor-
ders of standard SVM.
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Fig. 3. Typical histograms: training data is separable and its projections cluster inside
or outside the margin borders
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Note that histograms in Figs. 2-3 assume that training data is separable. This
is generally true for sparse high-dimensional data. For lower-dimensional data,
we assume that separability can be achieved using some nonlinear kernel. So the
conditions for the effectiveness of RA Universum can be stated as follows:

1. Training data is well-separable (in some optimally chosen kernel space).
2. The fraction of training data samples inside SVM margin borders is small.

The same conditions are also sought by standard SVM classifiers during model
selection. That is, optimally selected SVM parameters (kernel and C value) aim
at achieving high degree of separation between training samples from two classes.
So analysis of univariate histograms for standard SVM model, optimally tuned
for a given data set, can be used to ‘predict’ the usefulness of RA Universum.

The univariate histograms of projections of training data for nonlinear kernels
are calculated using representation of SVM decision function in the dual space,
f(x) =

∑
αiyiK(xi,x) + b. That is, the value of projection of training sample

xk onto the normal direction of nonlinear SVM decision boundary is expressed
as f(xk) =

∑
αiyiK(xi,xk) + b. The predicted class label for sample xk is the

sign of f(xk). Most existing SVM software packages supply both the label values
and real values of the decision function.

In practice, data samples will not always fall precisely on the margin borders
(denoted as -1 or +1 in the projection space), so the condition for the effective-
ness of RA Universum can be quantified via simple separation index:

Separation Index ∼ the fraction of training data samples falling in the
interval (-0.99,+0.99) in the univariate projection space.

Smaller values of this index, say less than 5-6%, indicate higher separability
of the training data, and will generally ensure improved prediction accuracy
due to Universum generated via random averaging. This index can be used in
practise as ‘rule-of-thumb’ rather than precise necessary condition guaranteeing
improved performance of U-SVM vs standard SVM.

4 Empirical Results

This section presents additional empirical comparisons between standard SVM
and U-SVM classifiers, using two high-dimensional data sets:

- Synthetic 1000-dimensional hypercube data set, where each input is uniformly
distributed in [0,1] interval and only 200 out of 1000 dimensions are significant.
An output class label is generated as y = sign(x1+x2+ . . .+x200−100). For this
data set, only linear SVM is used because optimal decision boundary is known
to be linear. Training set size is 1,000, validation set size is 1,000, and test set
size is 5,000. For U-SVM, 1,000 Universum samples are generated via random
averaging from training data.
- Real-life MNIST handwritten digit data set, where data samples represent hand-
written digit 5 and 8. Each sample is represented as a real-valued vector of size
28∗28 = 784. On average, approximately 22% of the input features are non-zero.
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Training set size is 1,000, validation set size is 1,000. For U-SVM, 1,000 Univer-
sum samples are generated via random averaging from training data. Separate
test set of size 1,866 is used for all experiments.

For each data set, a classifier is applied to training data, its model complexity
is optimally tuned using independent validation data set, and then the test
error of an optimal model is estimated using test data. The results of such an
experiment would depend on random realization of training and validation data.
So each experiment is repeated 10 times, using different random realizations, and
average error rates are reported for comparison. Linear SVM parameterization
is used for synthetic data set, and both linear SVM and nonlinear RBF SVM are
used for MNIST data set. Comparison of generalization performance of standard
SVM and U-SVM is shown in Table 2, where standard deviation of estimated
average test error is indicated in parenthesis.

Table 2. Test error rates for MNIST and synthetic data sets

SVM U-SVM

MNIST (RBF Kernel) 1.37%(0.22%) 1.20%(0.19%)

MNIST (Linear Kernel) 4.58%(0.34%) 4.62%(0.37%)

Synthetic data (Linear Kernel) 26.63%(1.54%) 26.89%(1.55%)

These results indicate that U-SVM yields improvement over SVM only for
digits data when using RBF kernel. These results can be explained by examin-
ing the histograms of projections of training data. Fig. 4 shows the histogram
of training data projections onto the normal direction of the RBF SVM deci-
sion boundary, suggesting that this data is well-separable. On the other hand,
histogram of projections for linear SVM shown in Fig. 5 for both data sets, indi-
cate that training data is not well-separable, so the Universum SVM should not
provide any improvement. For MNIST data with RBF SVM, (average) value of
separability index is 1.55%, whereas for MNIST data with linear SVM, (average)
value of separability index is 15%.

Finally, we investigate the effectiveness of other types of Universum for MNIST
data. In this experiment, the training set size is varied as 100, 200 and 1,000;
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Fig. 4. Histogram of projections of MNIST training data onto normal direction of RBF

SVM decision boundary. Training set size∼1,000 samples.
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and the validation set size is always taken to be the same as training set. For
Universum data, 125 samples are randomly selected from each of the digits other
than 5 or 8. So the total of 1,000 Universum samples are used. Table 3 presents
comparison between standard SVM and Universum SVM using ‘other digits’ as
Universum. Table 3 shows that using other digits for Universum always results
in improvement over standard SVM. These results (for 1,000 training samples)
should be compared with results obtained using random averaging U-SVM re-
ported in Table 2.

In addition, two types of Universum, Random Averaging and Other Digits,
are compared for low sample size (100 training samples) in Fig. 6, showing
the histograms of projections. As evident from Fig. 6(a), the RA Universum is
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(a) MNIST data set
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Fig. 5. Histogram of projections onto normal direction of linear SVM hyperplane

Table 3. Test error rates and parameter values of ‘other digits’ Universum SVM

Training set size 100 200 1000

SVM (RBF Kernel) 5.66%(1.89%) 3.69%(0.66%) 1.51%(0.20%)

U-SVM using ‘Other Digits’ Universum 4.86%(2.08%) 3.03%(0.67%) 1.09%(0.26%)

Typical C values selected for SVM 10 or 1 or 0.01 1 10 or 1

Typical C∗ values selected for U-SVM 0.1 or 0.01 0.1 3 or 0.3
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(a) Random Averaging Universum
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Fig. 6. The histogram of projections of Universum data onto normal direction of RBF

SVM decision boundary. Training set size∼100 samples.
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less effective because its projections are narrowly clustered near SVM decision
boundary. On the other hand, projections of the Other Digits Universum are
distributed more uniformly between margin borders, suggesting its effectiveness.

Comparison of histograms of projection in Fig. 4 (for 1,000 training samples)
and Fig. 6(a) (for 100 samples) shows that the effectiveness of the RA Universum
depends on the training sample size.

5 Summary

This paper investigates the effectiveness of the Random-Averaging Universum
SVM for high-dimensional data. Our analysis suggests that relative advantages
of using U-SVM depend on the properties of training data, such as sample size
and noise level. In many situations, using RA Universum SVM does not offer
any improvement over standard SVM.

In general, relative performance of learning methods is always affected by the
properties of application data at hand. New learning settings, such as Universum-
SVM, are inherently more complex than standard SVM, and they have more tun-
ing parameters. So it is important to have simple practical criteria that guarantee
potential advantages of using U-SVM, for a given data set. To this end, the paper
describes novel representation of high-dimensional training data using projections
of this data onto the normal direction of SVM decision boundary. Analysis of the
univariate histograms of projected training data, presented in this paper, leads
to practical conditions for the effectiveness of RA Universum. Empirical results
using several real-life and synthetic data sets illustrate the usefulness of the pro-
posed histogram representation and analysis, for random averaging Universum.
The same approach can be used for analyzing effectiveness of other types of Uni-
versum, such as ‘other digits’ used for MNIST data set.
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Abstract. A relevance feedback (RF) approach for content-based image

retrieval (CBIR) is proposed, which is based on Support Vector Machines

(SVMs) and uses a feature selection technique to reduce the dimension-

ality of the image feature space. Specifically, each image is described by

a multidimensional vector combining color, texture and shape informa-

tion. In each RF round, the positive and negative examples provided by

the user are used to determine a relatively small number of the most im-

portant features for the corresponding classification task, via a feature

selection methodology. After the feature selection has been performed,

an SVM classifier is trained to distinguish between relevant and irrele-

vant images according to the preferences of the user, using the restriction

of the user examples on the set of selected features. The trained classi-

fier is subsequently used to provide an updated ranking of the database

images represented in the space of the selected features. Numerical ex-

periments are presented that demonstrate the merits of the proposed

relevance feedback methodology.

Keywords: Content-based image retrieval, relevance feedback, support

vector machines, feature selection.

1 Introduction

The target of content-based image retrieval (CBIR) [1] is to retrieve images
relevant to a query of a user, which is expressed by example. In CBIR, an image
is described by automatically extracted low-level visual features, such as color,
texture and shape. After a user has submitted one or more query images as
examples of his/her preferences, a criterion based on this image description is
used to rank the images of an image database according to their similarity with
the examples of the query and, finally, the most similar are returned to the

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 942–951, 2009.
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user as the retrieval results. Nevertheless, there is an intrinsic difficulty for low-
level image features to capture the human perception of image similarity. The
reason for this is that the user is usually interested in the semantic content of
the images. Unfortunately, the semantic content of an image is very difficult to
describe using only low-level image features. This is the well-known semantic
gap problem.

Relevance feedback (RF) has been proposed as a technique which can be used in
order to bridge the semantic gap. RF is an interactive process between the user and
the retrieval system. In each RF round, the user assesses the previously retrieved
images as relevant or irrelevant to the initial query and provides this assessment
as feedback to the system. This feedback is used, subsequently, by the system so
that the ranking criterion is updated and a new set of images is retrieved. In this
way, the subjective human perception of image similarity is incorporated to the
system and the retrieval results are expected to improve, according to the user’s
viewpoint, with the RF rounds. With regard to RF approaches proposed in the
literature, much work has been done during the last years, e.g. [2], [3], [4], [5],
[6]. Among the proposed RF methodologies, the most prominent are those which
use classifiers to distinguish between the classes of relevant and irrelevant images,
e.g. [2], [3], [4]. In this context, the images assessed by the user as relevant or ir-
relevant up to the current RF round are used as positive and negative examples,
respectively, to train a classifier. This classifier is used, subsequently, to update
the database image ranking. It must be mentioned here that, among all the learn-
ing models proposed for this classification task, Support Vector Machines (SVMs)
[12] constitute the most popular one.

The users of a CBIR system are usually not patient enough to provide the
system with a large number of examples in each RF round. On the other hand,
the description of the images is, generally, of very high dimensionality. From
the above, it becomes obvious that, for RF methodologies which are based on
training a classifier using the feedback examples, the available training set of the
classifier is, almost always, very small compared to the dimensionality of training
patterns. This can deteriorate the classifier performance, leading to poor retrieval
results. To alleviate this problem, a methodology for selecting a relatively small
number of good features for the classification task, based on the properties of
the feedback examples, can be used. In this way, a significant dimensionality
reduction can be achieved by removing irrelevant or redundant features. Train-
ing the classifier on the resulting lower-dimensional feature space can improve
its ability to capture the underlying data distribution, thus leading to better
classifier performance. Moreover, by reducing feature space dimensionality and,
hence, the complexity of data, a decrease in training and image re-ranking time
can be achieved. Many feature selection methods for classification have been
proposed in the literature, e.g. [7], [8], [9]. As will be shown below, some of these
methods can be incorporated straightforwardly in a CBIR system using RF.

The rest of the paper is organized as follows. The SVM methodology in the
context of CBIR using RF is described in Section 2. Section 3 presents the feature
selection methods used in this work. In Section 4, the details and results of the
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experiments are provided and, finally, in Section 5, conclusions and directions
for future research are presented.

2 Using SVMs for RF in CBIR

Consider the binary classification problem {(xi, yi)}Ni=1, where xi are the labeled
patterns and yi ∈ {−1,+1} the corresponding labels. Based on this training set,
we want to train an SVM classifier. The SVM classifier maps the patterns to
a new space, called kernel space, using a transformation x �→ ϕ(x), in order
to get a potentially better representation of them. This new space can be non-
linear and of much higher dimension than the initial one. After the mapping,
a linear decision boundary is computed in the kernel space. In the context of
SVM methodology, the problem of classification is addressed by maximizing the
margin, which is defined as the smallest distance, in the kernel space, between
the decision boundary and any of the training patterns. This can be achieved by
solving the following quadratic programming problem:

max

⎡⎣ N∑
i=1

ai −
1
2

N∑
i=1

N∑
j=1

aiajyiyjk(xi, xj)

⎤⎦ over ai, i = 1, . . . , N (1)

s.t. 0 ≤ ai ≤ C and
N∑
i=1

aiyi = 0 (2)

where
k(xi, xj) = ϕ(xi)Tϕ(xj) (3)

is the kernel function and C is a parameter controlling the trade-off between
training error and model complexity. The most popular non-linear kernel func-
tions used for SVMs belong to the class of Radial Basis Functions (RBFs). From
all RBF functions, the most commonly used is the Gaussian RBF, which is
defined by:

k(xi, xj) = exp(−γ‖xi − xj‖2) (4)

After the training of the classifier, the value of the decision function for a new
pattern x is computed by:

y(x) =
N∑
i=1

aiyik(xi, x) + b (5)

where b is a bias parameter the value of which can be easily determined after the
solution of the optimization problem (see [12]). The value |y(x)| is proportional
to the distance of the input pattern x from the decision boundary. Thus, the
value y(x) can be regarded as a measure of confidence about the class of x, with
large positive values (small negative values) strongly indicating that x belongs
to the class denoted by +1 (−1). On the contrary, values of y(x) around zero
provide little information about the class of x.
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In the framework of CBIR with RF, in each round of RF we have to solve
a classification problem as the one described above, where a number of images,
represented as feature vectors, correspond to the feedback examples provided by
the user so far, and each image is labeled by −1 or +1 corresponding to irrelevant
or relevant, respectively. The initial query is considered to be one of the relevant
images and is labeled by +1. From the above, it is obvious that we can train an
SVM classifier based on the feedback examples and use it to distinguish between
the classes of relevant and irrelevant images. Each image in the database will
be presented to the trained classifier and the value of the decision function (Eq.
(5)) will be used as the ranking criterion. The higher the value of the decision
function for an image, the more relevant this image is considered by the system.

3 Feature Selection

Assume, again, we have the binary classification problem presented above, each
pattern xi being a d-dimensional vector of features. Feature selection consists in
reducing the dimensionality of the patterns, usually before training the classifier,
by removing those features which are irrelevant or redundant for distinguishing
between the training set categories, while keeping informative and important
features. As far as the problem of re-ranking the database images can be con-
sidered as a binary classification problem, feature selection techniques can be
applied in each RF round.

Specifically, in this work, we propose an RF scheme for CBIR, which uses
SVMs for the RF task along with the methodology introduced in [7] for fea-
ture selection. The proposed feature selection methodology is described next.
Additionally, another popular and promising methodology for feature selection
is considered, which can be incorporated in the RF scheme in exactly the same
way. This variation will be used for reasons of comparison with the proposed
method.

3.1 Recursive Feature Elimination Using SVMs (SVM-RFE)

The feature selection methodology proposed in [7], called SVM Recursive Fea-
ture Elimination (SVM-RFE), is based on a recursive elimination of the less
important features, based on the results of classification of the training patterns
using SVM classifiers. Thus, the learning model used by this methodology for
feature selection is the same as that adopted for the task of RF in this work. This
results to the benefit of selecting those features which are the most important
for the subsequent training of the SVM classifier used for RF.

Specifically, the SVM-RFE methodology is based on linear-kernel SVMs. Con-
sidering a linear SVM kernel:

k(xi, xj) = xT
i xj (6)

Eq. (5), for the decision function, takes the form:

y(x) = wTx+ b (7)
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with

w =
N∑
i=1

aiyixi (8)

where the vector w is of the same dimensionality as the training patterns xi. This
form of decision function implies that the higher the value |wk| or w2

k for the k-th
coordinate of the vector w, the larger is the influence of this coordinate on the
value of the decision function for an unknown pattern x. This notion provides
us with a criterion which can be used to rank the image features according to
their importance for the classification task.

SVM-RFE is a recursive method. In each repetition, it updates a feature set,
Sf , which initially includes all the available features, by eliminating the less
important feature of the set. To determine the less important feature, it trains
an SVM classifier with a linear kernel, using the training patterns restricted on
the features currently included in Sf . After training, the feature with the smaller
value w2

k is considered the less important one and is eliminated from Sf . This
procedure is repeated until a predefined number of features remain in Sf . These
are the features selected by the method.

3.2 Minimum Redundancy Maximum Relevance (mRMR)

Another popular feature selection technique, called minimum Redundancy Max-
imum Relevance (mRMR), is proposed in [8]. This methodology is based on mu-
tual information, which is a measure of relevance between two random variables
x, y. The mutual information is defined by:

I(x; y) =
∫ ∫

p(x, y) log
p(x, y)
p(x)p(y)

dxdy (9)

where p(x), p(y) and p(x, y) are the probability density function (pdf) of x, the
pdf of y and the joint pdf of x, y, respectively. In the framework of mRMR, the
d pattern features and the pattern label are considered to be random variables.
Under these assumptions, the task consists in the incremental selection of those
features which have large relevance with the training labels and, at the same
time, have small redundancy among them. This notion is expressed formally by:

maxH(fj) over fj ∈ X − Sf (10)

with
H(fj) = D(fj)−R(fj) (11)

D(fj) = I(fj ; y) (12)

R(fj) =
1

card(Sf )

∑
fi∈Sf

I(fj ; fi) (13)

where fi (or fj), y denote the random variables corresponding to the features
and the label, respectively. In this case, Sf is the set of features which have been
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selected until now and X is the set of all features. Initially, Sf is empty. In the
first repetition, the feature fj ∈ X with the maximum value for D(fj), i.e. the
most relevant with the labels, is selected and inserted in Sf . In each subsequent
repetition, a feature fj from the current set X−Sf is inserted in Sf . This feature
is one with a sufficiently large relevance with the labels, D(fj), and a sufficiently
small mean relevance with the already selected features in Sf , R(fj) (which is
used as a measure of redundancy), so as to maximize H(fj). This procedure is
repeated until the set of selected features, Sf , contains the desired number of
features.

When the random variables are discrete, the mutual information between
them can be computed very easily, as the integrals in Eq. (9) are converted
to summations for all the possible values of the random variables. The values
of the pattern label are naturally discrete. The values of the pattern features
can be easily discretized by computing for each feature the mean (μ) and the
standard deviation (σ) of the values it takes for all training examples. Then, a
common label is assigned for all values in each one of the intervals (−∞, μ− σ],
(μ− σ, μ+σ] and (μ+ σ,+∞). After discretization, the probabilities needed for
the mutual information computation can be determined by simply counting the
corresponding instances in the training set.

4 Experiments

In order to assess the performance of the proposed method, an image set con-
taining 3740 images from the image database in [13] is used. These images are
manually classified into 17 semantic categories, and this categorization will be
the ground truth of the RF simulations.

For each image, color, texture and shape information is extracted. As color
features we used a 256-dimensional histogram in HSV color space, with quan-
tization 8 × 8 × 4 for the color coordinates H, S and V, respectively, and a
9-dimensional color moment vector in CIE-Lab color space, containing the first
3 moments (mean, standard deviation and skewness) for each one of the 3 color
coordinates L*, a* and b*. As texture features we used the 104-dimensional
vector produced by the 3-level tree-structured wavelet transform [10], which in-
cludes, for each one of the 4 sub-bands resulted by each signal decomposition,
the corresponding mean and standard deviation of the energy, and is based on
recursive decomposition of the first 3 sub-bands of lower frequency. Finally, as
shape features we used the 80-dimensional edge histogram [11], which is formed
by the uniform partitioning of the image into 16 sub-images and the computa-
tion, for each one of them, of the frequency of occurrence of 5 types of edges
(horizontal, vertical, 45 degrees diagonal, etc.). All the above vectors are merged
in a single 449-dimensional one, which is the final representation of the image.

We implemented an RF simulation scheme, using Precision as measure of
performance, which is the ratio of relevant images within the top T retrieved
images. A retrieved image is considered relevant (irrelevant) if it belongs to the
same (different) category as (than) the initial query. In this simulation scheme,
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Fig. 1. Average Precision in scope T = 20, for K = 25 selected features
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Fig. 2. Average Precision in scope T = 20, for K = 50 selected features

1000 database images are used once as initial queries. For each initial query, we
simulated 6 rounds of RF. In each RF round, at most 3 relevant and 3 irrelevant
images are selected randomly from the first 50 images of the ranking. These
images are used in combination with the examples provided in the previous RF
rounds to select a number, K, of important features and, then, to train a new
SVM classifier in the resulting lower-dimensional feature space. Based on this
new classifier, the ranking of the database images is updated. For the initial
ranking, when no feedback examples have been provided yet and, hence, neither
feature selection nor classifier training can be employed, the euclidean distance
in the initial feature space is used.
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Fig. 3. Average Precision in scope T = 20, for K = 75 selected features
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Fig. 4. Average Precision in scope T = 20, for the 6th RF round

The first comparison is performed between the two previously described fea-
ture selection methodologies, used along with SVMs for the task of CBIR using
RF. The number of features to retain is passed as a parameter to the methods.
Figures 1, 2 and 3 show the results of the RF simulations, i.e. the average Presi-
cion in scope T = 20 during different RF rounds, for selected features K = 25,
K = 50 and K = 75, respectively. As can be seen, the proposed method con-
stantly outperforms the mRMR variation. Moreover, regarding the computation
time required by the two methods, it must be mentioned that the proposed
method is much faster. In particular, when K = 50, the average time (on a
3GHz PC) consumed by the proposed method per initial query is 2.5 sec for 6
rounds of RF, whereas the mRMR variation needs 15 sec per initial query.
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In a second set of experiments, the performance of the proposed method is
compared with that obtained when no feature selection is used. Specifically,
Figure 4 displays the average Presicion in scope T = 20, for the 6th round of
RF, when the proposed method is used with different values of K (e.g., 10, 25,
50, 100, 200 etc.), in comparison with that obtained without feature selection.
It can be easily seen that, using a relatively small number of features, we can
achieve equal or even better performance with respect to that obtained when
using the full feature set.

In the experiments, a Gaussian RBF kernel is adopted for the SVM classifiers
(except for the case of SVM-RFE method, which assumes linear kernel SVMs).
The values of the SVM parameter C and the Gaussian RBF kernel parameter
γ are empirically chosen for each experimental setup, so as to obtain the best
performance. We used the SVM implementation provided in [14], and the mRMR
implementation in [15].

5 Conclusions – Future Work

A new relevance feedback approach for CBIR is presented in this paper. This
approach uses SVM classifiers to distinguish between the classes of relevant and
irrelevant images, along with an SVM-based feature selection technique to re-
duce the feature space dimensionality according to the feedback examples. The
experimental results demonstate the superiority of the proposed method com-
pared to an approach based on a very popular feature selection methodology.
Furthermore, as indicated by our experiments, even with a very large reduc-
tion of the features, a performance equivalent or even better compared to that
obtained for the full feature set can be achieved.

In the future, we aim to use more sophisticated image features to represent
the image content. Furthermore, we aim to apply techniques for automatic de-
termination of the most appropriate number of features for each round of RF.
Finally, we would like to test the scalability of the proposed method using even
larger image databases.
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Abstract. Recursive Neural Networks are non-linear adaptive models

that are able to learn deep structured information. However, these mod-

els have not yet been broadly accepted. This fact is mainly due to its

inherent complexity. In particular, not only for being extremely com-

plex information processing models, but also because of a computational

expensive learning phase. The most popular training method for these

models is back-propagation through the structure. This algorithm has

been revealed not to be the most appropriate for structured process-

ing due to problems of convergence, while more sophisticated training

methods enhance the speed of convergence at the expense of increasing

significantly the computational cost. In this paper, we firstly perform

an analysis of the underlying principles behind these models aimed at

understanding their computational power. Secondly, we propose an ap-

proximate second order stochastic learning algorithm. The proposed al-

gorithm dynamically adapts the learning rate throughout the training

phase of the network without incurring excessively expensive computa-

tional effort. The algorithm operates in both on-line and batch modes.

Furthermore, the resulting learning scheme is robust against the van-

ishing gradients problem. The advantages of the proposed algorithm are

demonstrated with a real-world application example.

Keywords: Recursive neural networks, structural patterns, machine

learning, generative principles.

1 Introduction

Recursive neural networks were introduced last decade [1,2] as promising ma-
chine learning models for processing data from structured domains (i.e.: protein
topologies, HTML web pages, DNA regulatory networks, parse trees in natural
language processing, and image analysis amongst others). These computational
models are suited for both classification and regression problems being capable
of solving supervised and non-supervised learning tasks. One of the goals behind
this approach was to fill the existing gap between symbolic and sub-symbolic pro-
cessing models. Specifically, to develop computational schemes able to combine
numerical and symbolic information in the same model. Moreover, the princi-
pal advantage associated to them was their ability to work with patterns of
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information of different sizes and topologies (i.e. trees or graphs) as opposed
to feature-based approaches where the information pertinent to the problem is
encoded using fixed-size vectors. Graphs are more flexible data structures than
vectors since they may consist of an arbitrary number of nodes and edges, while
vectors are constrained to a predefined length which has to be preserved by all
patterns composing the training set. So far, these models have found applications
mainly in bio-informatics [3,4] although they have also been applied to image
analysis [5] and natural language processing tasks [6] between others.

However, despite the initial interest motivated by these models their devel-
opment is still in its infancy. This fact can be explained in part because the
inherent restrictions associated to the first models where the recursive paradigm
was limited to work only with acyclic structures under causality and stationary
assumptions, something too restrictive for many real-world problems. Another
limiting factor to be considered is that structured domains possess very lit-
tle mathematical structure. Specifically, basic mathematical operations such us
computing the sum or the covariance of two graph objects are not available. Fur-
thermore, it is also important to note that nowadays, early research problems like
learning generic mappings between two structured domains (e.g.: IO-isomorphic
and non IO-isomorphic structured transductions) still remains as challenging
open research problems.

Although some advances have been recently reported regarding not only the
recursive processing of cyclic structures [7,8] but the contextual processing of
information (i.e. recursive models breaking the causality hypothesis) [9,10], fol-
lowed by some basic proposals on generating structured outputs [11,12], from a
practical point of view, the intrinsic complexity of these models together with
a computationally hard learning phase has strongly limited the interest of the
research community on this kind of models. It is important to note that learning
in structured domains has been traditionally considered a very difficult task.
Furthermore, it has been recently pointed out [13] that two important future
challenges for these models will rely on the design of efficient learning schemes,
and tackling appropriately theoretical problems as learning structural transduc-
tions or structure inference as occur in various machine learning areas such as
the inference of protein structures or parse trees.

In this paper we present an approximate stochastic second order training algo-
rithm aimed to overcome the complexity of the training phase associated to these
models. The main advantage of this training method is that is robust against the
vanishing gradients problem. Furthermore, the resulting scheme leads to an algo-
rithm which achieves an optimal trade-off between speed of convergence and the
required computational effort. In addition, this paper puts also the emphasis on
the analysis of the underlying principles of the computational model associated
to recursive neural networks. This analysis will permit us to better understand
their computational power. The rest of the paper is organized as follows: In
the next section we analyze in detail the principles behind the computational
model implemented by recursive neural networks. Section 3, is devoted to show
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the background of the approximate second order stochastic algorithm. In sec-
tion 4, experimental results are provided comparing the proposed algorithm with
existing approaches. Finally, concluding remarks are outlined in section 5.

2 Implications of the Recursive Neural Model

2.1 Definitions and Notations

A graph U is a pair (V,E), where V is the set of nodes and E represents the set
of edges. Given a graph U and a vertex v ∈ V, pa[v] is the set of parents of v,
while ch[v] represents the set of its children. The in-degree of v is the cardinality
of pa[v], while its out-degree is the cardinality of ch[v]. Under the recursive
model the patterns of information are labeled graphs. Specifically, the graph
nodes contain a set of domain variables characterized by a vector of real and
categorical variables. Furthermore, each node encodes a fragment of information
that is believed to play an important role in the task at hand. The presence of a
branch (v,w) between two nodes explicitly models a logical relationship between
the fragments of information represented by nodes v and w.

The recursive neural network model is composed of a state transition func-
tion f and an output function g (see figure 1). These functions are usually im-
plemented by multi-layer perceptron networks. The standard model is suited
to process directed positional acyclic graphs with a super-source node. Further-
more, they implement deterministic IO-isomorphic transductions based on the
following recursive state representation:

(1)

In expression (1) Wf and Wg represent the synaptic weights (model parameters)
of networks f and g respectively. In order to process a graph U the state transi-
tion network is unfolded through the structure of the input graph leading to the
encoding network. This unfolding procedure is followed in both learning and re-
call phases of the neural network. The resulting network has the same structure
of the input graph, while nodes are replaced by copies of the state transition
network and a copy of the output network is inserted at the super-source. Af-
terwards, a feed-forward computation is carried out on the encoding network.
More specifically, at each node v of the graph, the state a(v) is computed by
the transition network as a function of the input label I(v) and the state of its
children (first equation of expression (1)) with:

(2)

In expression (2) the index o stands for the maximum out-degree of node v. The
base case for the recursion is a(nil) = a0 which correspond to a frontier state
(e.g. if node v lacks of its i-th child). At the super-source (node s) the output
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is computed as y = g(a(s)). It is important to note that the standard model of
recursive neural networks implements transductions consisting on the mapping
of input structures U into an output structure Y which is always made of a single
node (the output is not structured).

2.2 Generative Principles of Intelligence

Generally speaking, the notion of intelligence cannot be conceived without the
existence of two fundamental principles [14]: The maximization of transfer and
the recoverability principle. Basically, the first principle states that whenever it
is possible an intelligent system builds knowledge by maximizing the transfer
of previously acquired knowledge. Specifically, more complex structures are the
result of assembling previously learnt or memorized structures (e.g. to transfer
actions used in previous situations to handle new situations). However, this
mechanism of transfer must be understood as a gestalt procedure (the resulting
structures being more than a simply combination of previously learnt structures).
In addition, the recoverability principle is associated to the concept of memory
and inference. It states that a system displaying intelligence must be able to
recover itself from its actions. Specifically, an intelligent system must be able
to infer causes from its own current state in order to identify what it failed or
succeed something not possible without the existence of memory.

It is has been recently shown [15] that the human information processing
system follows these two generative principles. Specifically, the perception system
organizes the world by using cohesive structures. Furthermore, such a structure
is the result of a hierarchically organized information processing system [16,17]
that generates structure by correlating the information processed at the different
levels of its hierarchy. As a result of this process, world complexity is turned into
understanding by finding and assigning structure. This mechanism, amongst
many other things, permits us to relate objects of different kinds. In addition,

Fig. 1. Block diagram of the Recursive neural network model (left side of the figure).

The right side of the picture depicts the unfolding procedure.



956 A. Chinea

the nature of the perceived structures and their relationships is also linked to
the context under consideration. For instance, the relationships between objects
can be causal in a temporal context, geometrical in pattern recognition problems
(e.g. the shapes appearing in an image) or topological in bio-informatics problems
(e.g. chemical compounds, protein structures etc).

2.3 Recursive Networks as Generative Models

Under the recursive neural networks framework the perceived structure of a
problem is captured and expressed by using graphical models. In particular, the
patterns used for the learning and recall phases not only encode the fragments
of information (e.g.: information that can be characterized by specific attributes
that are quantifiable and/or measurable) which play an important role in the
machine learning problem but also the logical relationships between them. The
nature of such relations is determined by the application context and attempts
to explicitly model the logical correlations between fragments of information.
For instance, in a temporal domain the fragments of information are events and
the co-occurrence of two or more events is interpreted as an existing or possible
correlation between them. Therefore, this information encoding procedure con-
tains more knowledge rather than if such pieces of information were considered
in isolation. It is important to note that the notion of information content is
strongly connected to the notion of structure. Indeed, the fact of building more
complex structures from more basic ones is reflecting the first of the two gener-
ative principles related to the concept of intelligence resulting in a gain not only
in information representation but in information content.

On the other hand, the computational scheme imposed by the recursive state
equation (1) leads to a sequential propagation of information which follows a
reversed topological sort of the input graph during the recall phase of the net-
work (hidden states are updated starting from leaves toward the super-source
node). In addition, this flow of information is bidirectional during the learn-
ing phase. The main consequence of this message passing procedure is that the
computational model of recursive networks can be viewed as an inference sys-
tem that learns the hidden dependencies explicitly encoded within the structural
patterns used for the training phase of the network. Furthermore, as stated in
[18] recursive neural networks can be viewed as limits, both in distribution and
probability, of Bayesian networks with local conditional distributions. Therefore,
they implement in a simplified form the notion of recoverability.

3 Reducing Complexity of the Training Phase

3.1 Theoretical Background

The concept of learning in neural networks is associated to the minimization
of some error function E(W) by changing network parameters W. In the case
of recursive networks the learning phase consists in finding the appropriate
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model parameters for implementing the state transition network f and the out-
put network g with regards to the given task and data. Without a loss of
generality let us suppose that we express the parameters of function f and g
in a vector W = [w1, w2, w3, . . . ., wm]. A perturbation of the error function
around some point of the model parameters which can be written as follows:
E(W +ΔW ) = E(w1 +Δw1, w2 +Δw2, . . . ., wm+Δwm). Considering the Tay-
lor expansion of the error function around the perturbation ΔW we obtain:

(3)

The training phase consists roughly in updating the model parameters after
the presentation of a single training pattern (on-line mode) or batches of the
training set (off-line or batch mode). Each update of model parameters can be
viewed as perturbations (e.g. noise) around the current point given by the m
dimensional vector of model parameters. Let us assume a given sequence of N
disturbance vectors ΔW. Ignoring third and higher order terms in expression
(3), the expectation of the error <E(W)> can be expressed as:

(4)

Rearranging the previous expression we obtain a series expansion of the expec-
tation of the error in terms of the moments of the random perturbations:

(5)

In addition, the weight increment associated to the gradient descent rule is Δwi
= −ηgi . The third term of expression (4) concerning the covariance can be
ignored supposing that the elements of the disturbance vectors are uncorrelated
over the index n. This is a plausible hypothesis given that patterns are presented
randomly to the network during the learning phase. Moreover, close to a local
minimum we can assume that mean(Δwi) ≈ 0 (the analysis of this approxi-
mation is omitted for brevity, but they show that its effects can be neglected).
Taking into account these considerations the expectation of the error is then
given by:

(6)

From equation (5) it is easy to deduce that the expected value of the error
increases as the variance (represented by the symbol σ2) of the disturbance
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vectors (gradients) increases. This observation suggests that the error function
should be strongly penalized around such weights. Therefore, to cancel the noise
term in the expected value of the error function the gradient descent rule must be
changed to Δwi = −ηgi/σgi. This normalization is known as vario-eta and was
proposed [19] for static networks. Specifically, the learning rate is renormalized
by the stochasticity of the error signals. In this line, it is important to note that
the error signals contain less and less information at the extent they pass through
a long sequence of layers, due to the shrinking procedure carried out by the non-
linear (hyperbolic tangent or sigmoidal functions) network units. This is a well-
known problem [20] that makes very difficult to find long-term dependencies that
could eventually appear encoded within the structural patterns of the training
set. For the case of recursive neural networks this problem is even worst due to
the unfolding procedure (error signals can traverse many replicas of the same
network). However, this normalization procedure avoids the gradients vanishing
thanks to the scaling of network weights.

3.2 Algorithm Description

The whole algorithmic description is provided in figure 2. By inspection of the
pseudo-code, the algorithm proceeds as follows: after the initialization of al-
gorithm parameters (lines 1 and 2), the algorithm enters in two nested loops:
The external or control loop is in charge of monitoring the performance of the
algorithm.

In addition, it also performs the update of model parameters (line 12) fol-
lowing the derived learning rule (Δwi = −ηgi/σgi). The constant φ is summed
to the standard deviation of the error gradients for avoiding eventual numerical
problems.

Figure 3 shows the pseudo-code of the function S Gradients (S stands for
Structure). This function is in charge of computing the first derivatives of the
error function with respect to model parameters. This function takes as argu-
ments a structural pattern U together with its category Y and returns the error
gradient vector. The details of the notation used can be found in [22].

The internal loop (lines 5 up to 11) operates recursively in order to obtain
the variance (line 9) of the error gradients (line 7). Similarly, the mean value
of the gradients is computed recursively in line 8. It is important to note that
the algorithm can operate in both batch mode kmax = ‖D‖(number of training
patterns) or in on-line mode kmax << ‖D‖ just by selecting appropriately the
value of kmax. Finally, it is important to note that the proposed algorithm can be
easily adapted to other extensions of the recursive model like contextual models
or graph neural networks.

3.3 Preliminary Complexity Analysis

From a computational point of view, the proposed algorithm scales O(W) in
terms of memory storage requirements, where W = Wf ∪Wg is the number of
parameters of the model. In addition, the computational cost scales roughly as



Understanding the Principles of Recursive Neural Networks 959

O(NW) where N is the number of patterns in the data set. In this line, it must
be noted that quasi-Newton methods that builds iterative approximations of the
inverse Hessian lead in general, to algorithms with overall computational cost
of O(NW 2) and memory storage requirements of O(W 2). Similarly, conjugate-
gradients method achieves a memory storage of O(W) at the same computa-
tional cost of a quasi-Newton method. In addition, it is important to note that a
rigorous complexity analysis would require a careful study of the statistical dis-
tribution of the gradient errors throughout the optimization procedure followed
by an analysis of the generating functions associated to the recursions (lines 8
and 9 of pseudo-code of figure 2).

Therefore, taking into account that the proposed learning rule behaves like
a stochastic approximation of a quasi-Newton method, the proposed algorithm
achieves a good trade-off in terms of memory storage and computational com-
plexity.

Fig. 2. Pseudo-code of the proposed approximated second order stochastic learning

algorithm
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Fig. 3. Pseudo-code of the function in charge of computing the first derivatives of the

error with respect to model parameters

4 Experimental Results

The performance of the algorithm was tested for the problem exposed in [21].
Specifically, this application comes from the intelligent transportation research
field and consists on the development of an advanced intersection safety system.
The ultimate goal is to provide appropriate warnings to the driver to avoid
fatal collisions. For this task, the structural patterns are trees ranging from one
up to sixteen levels depth encoding temporal situations at road intersections.
Generally speaking, a road intersection situation is composed of a set of dynamic
(eg: vehicles, pedestrians, traffic lights, etc) and static entities (eg: trees, bushes,
road signs, etc) interacting during a variable time frame. For this application, the
pattern set is composed of 4000 structural patterns where approximately half of
them representing highly-risky situations (e.g.: situations leading to collisions).
The dynamic aspects of road intersections are encoded within the topology of the
trees while static aspects are encoded within the label space of the tree-graphs.
This task provides an illustrative example of how an extremely complex problem
is modeled using the recursive paradigm.

Figure 4 provides a comparison of Back-propagation through the structure
(Bpts), a quasi-Newton through the structure algorithm [21] (Qnts) and the
proposed algorithm (Vets) running in batch mode. Graphics depict the result
of averaging 10 simulations for two different network architectures. Specifically,
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Fig. 4. Simulation results for the proposed stochastic algorithm (Vets), back-

propagation through the structure (Bpts) and a quasi-Newton algorithm (Qnts)

each simulation consist on running a training phase of 20 epochs for each al-
gorithm starting from identical weight initialization conditions. Afterwards, the
resulting error values are normalized for the three algorithms in the interval [0,1]
(the value that is mapped to 0 is the minimum value reached at epoch 20 by the
best performing algorithm).

Finally, the normalized error values are averaged over the 10 simulations. The
left side of the figure shows the averaged results for an architecture of 23x160x1
(23 units implementing the state transition function and 161 units for the output
function). Similarly, the right side of the picture shows the results for a 60x80x1
architecture. Due to the prohibitive memory requirements of the quasi-Newton
algorithm (Hessian matrix contains more than 107 elements) the comparison was
only possible with the Bpts algorithm for this network architecture.

Therefore, although further experimentation must be carried out the proposed
stochastic algorithm provides a good trade-off between the memory storage re-
quirements and algorithm complexity.

5 Conclusions

In this paper we have described the principles behind the recursive neural net-
work model. It was shown that associated with any given problem, the infor-
mation content presents a certain geometry that these models can attempt to
exploit. Furthermore, the fact of using structured representations of information
is translated into a substantial gain in information content. In addition, in order
to tackle the inherent complexity of these models a stochastic learning algorithm
was also described. The proposed algorithm is able to achieve a good trade-off
between speed of convergence and the computational effort required by setting
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the local learning rate for each weight inversely proportional to the standard de-
viation of its stochastic gradient. The scaling properties of the algorithm make it
suitable for the computational requirements of the recursive model. Furthermore,
the proposed learning scheme can be easily adapted to other recursive models
such as contextual models or graph neural networks. The computer simulations
demonstrated the efficiency of the algorithm for a practical learning task.
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Abstract. Recurrent neural networks serve as black-box models for

nonlinear dynamical systems identification and time series prediction.

Training of recurrent networks typically minimizes the quadratic differ-

ence of the network output and an observed time series. This implicitely

assumes that the dynamics of the underlying system is deterministic,

which is not a realistic assumption in many cases. In contrast, state-

space models allow for noise in both the internal state transitions and

the mapping from internal states to observations. Here, we consider re-

current networks as nonlinear state space models and suggest a train-

ing algorithm based on Expectation-Maximization. A nonlinear transfer

function for the hidden neurons leads to an intractable inference prob-

lem. We investigate the use of a Particle Smoother to approximate the

E-step and simultaneously estimate the expectations required in the M-

step. The method is demonstrated for a sythetic data set and a time

series prediction task arising in radiation therapy where it is the goal to

predict the motion of a lung tumor during respiration.

Keywords: Recurrent neural networks, Dynamical System identifica-

tion, EM, Particle Smoother.

1 Introduction

Recurrent neural networks (RNNs) represent dynamical systems. With a large
enough number of hidden neurons, a given dynamical system can in principle be
approximated to arbitrary precision. Hence, recurrent networks have been used
as black-box models for dynamical systems, e.g. in the context of time series
prediction [1].

When using recurrent neural networks for dynamical system identification, it
is typically assumed that the dynamics of the system to be modeled is deter-
ministic. RNNs do not model process noise, i.e. uncertainty in the internal state
transition between two time steps. Hence, RNNs may not be suitable models for
systems exhibiting process noise as a characterizing feature.

In contrast, state space models allow for noise in both the internal state
transitions and the mapping from internal states to observations, and therefore
represent a richer class of probabilistic models for sequential data. In the special
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case of linear-gaussian state space models [2, chapter 13.3], the parameters of the
model can be learned using an instantiation of the Expectation-Maximization
(EM) algorithm [3]. However, computationally tractable algorithms for exact
inference in the E-step are limited to the linear-gaussian case. Nonlinear, non-
gaussian models require approximation.

Here, we consider RNNs as nonlinear state space models and suggest a train-
ing algorithm based on Expectation-Maximization. We investigate the use of a
sequential sampling method, the Particle Smoother [4], to approximate the E-
step and simultaneously estimate the expectations required in the M-step. In the
M-step, the similarity of linear-gaussian state space models and simple recurrent
networks can be exploited.

The proposed method has the advantage that the RNN can model dynamical
systems characterized by process noise, and that it represents a generative model
of the data. This is not the case for conventionally trained RNNs, e.g. using a
quadratic objective function minimized through gradient descent.

Stochasticity in recurrent networks has been introduced before in the context
of training algorithms based on Extended Kalman Filtering [5]. However, this
work did not aim at training a recurrent network as a generative model for a
stochastic dynamical system, but at further developing training algorithms for
conventional recurrent networks.

Related work includes inference and learning in nonlinear state space models
in general. For example, Ghahramani [6] addresses learning in nonlinear state
space models where the nonlinearity is represented by radial basis functions.
The E-step is approximated via Extended Kalman Filtering. The M-step can be
solved in closed form for this model.

Our algorithm is demonstrated for a synthetic data set and a time series pre-
diction task arising in radiation therapy. Lung tumors move during respiration
due to expansion and contraction of the lungs. Online adjustment of the radi-
ation beam for tumor tracking during treatment requires the prediction of the
tumor motion for about half a second. The variability of the breathing pattern
is characterized by process noise rather than measurement noise.

The remainder of this paper is organized as follows: Section 2 reviews Linear
Dynamical Systems1 and Recurrent neural networks as black-box models for
dynamical systems. Section 3 describes the EM-based training algorithm for
recurrent networks, where subsection 3.1 details the sampling method used in
the E-step. Section 4 discusses two applications of the method.

2 Dynamical System Identification

Given is a sequence Y = {yt}Tt=1, where yt is a vector of observations at time step
t. We wish to find a model of the underlying dynamical system that generated
the sequence, e.g. for the purpose of time series prediction. Below, we introduce

1 Linear Dynamical System and Linear-gaussian state space models refer to the same

model.
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notation, review linear dynamical systems (LDS) and recurrent neural networks,
and address the parameter learning problem in these models.

2.1 Linear Dynamical Systems

A stochastic linear dynamical system is described by

xt = Axt−1 + ηpt (1)
yt = Bxt + ηmt (2)

where x is an internal state vector, y is an observation vector, A and B are
matrices with constant coefficients, ηp is zero mean gaussian process noise with
covariance matrix Γ , and ηm is zero mean gaussian measurement noise with
covariance matrix Σ.

The stochastic LDS can be formulated as a probabilistic model with observed
variables yt and latent variables xt. The model is defined via the conditional
probabilities

P (xt|xt−1) = N (xt|Axt−1, Γ ) (3)
P (yt|xt) = N (yt|Bxt, Σ) (4)

Hence, the hidden variables xt form a markov chain.

2.2 Learning in Linear Dynamical Systems

In LDS the model parameters θ = (A,B, Γ,Σ) can be learned using maximum
likelihood through an instantiation of the EM algorithm [2, chapter 13.3.2]. In
the E-step, we need to solve the inference problem and calculate the marginal
probabilities of the hidden variables conditioned on the observation sequence:

P (X |Y ; θ) (5)

where X = {xt}Tt=1 and Y = {yt}Tt=1 denote the entire sequence of hidden states
and observations, respectively. For LDS, the inference problem can be solved ex-
actly as P (X |Y ; θ) remains a Gaussian. It’s mean and covariance matrix can be
calculated with a forward-backward algorithm. Given the posterior distributions
over the latent variables, the M-step can also be performed analytically2.

2.3 Recurrent Neural Networks

If we model the sequence of observations with a recurrent neural network3, equa-
tions 1 and 2 are replaced by

xt = Af (xt−1) + ηpt (6)
yt = Bf (xt) + ηmt (7)

2 Here, we assume for simplicity that x0 = 0. However, it is straight forward to learn

the mean and covariance matrix of a Gaussian distribution over the initial internal

state.
3 This type of network is also referred to as an Elman network.
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where x is now interpreted as the vector of net inputs of the hidden neurons,
f = tanh is the transfer function of the hidden neurons so that f(x) is the vector
of hidden neuron activations, y is the network output, A is the weight matrix
for the recurrent connections, and B is the output weight matrix. Hence, the
structure of the RNN model is very similar to LDS. The measurement equation
7 represents a linear output layer. The network has no external inputs in this
formulation (except the process noise which can be interpreted as an unknown
external influence).

2.4 Conventional Learning in Recurrent Neural Networks

When training recurrent networks, the process noise ηp is typically neglected. In
addition, the measurement noise ηm is assumed to be uncorrelated and of the
same variance in all components of y. In this case, maximizing the likelihood of
the data corresponds to minimizing a quadratic cost function:

minimize
A,B

1
2

T∑
t=1

[yt −Bf (xt)]
2 (8)

Minimization of the cost function can be performed via gradient descent. Back-
propagation through time (BPTT) and Real time recurrent learning (RTRL)
are well-known algorithms to calculate the gradient [7]. Alternative methods in-
clude Evolino [8], where the matrix A is determined via evolutionary methods
whereas B is determined through linear regression. In Echo-State networks [9],
A is chosen to be a fixed sparse random matrix and B is determined via linear
regression.

3 EM Based Learning in Recurrent Neural Networks

Here, we wish to train recurrent networks without neglecting the process noise
term. The RNN is considered as a nonlinear state-space model. We exploit the
similarities of RNNs and LDS to obtain an EM-based training algorithm.

We wish to maximize the following likelihood function with respect to the
model parameters θ = (A,B, Γ,Σ):

maximize
θ

L =
∫
P (X,Y |θ) dX (9)

where
∫
dX denotes the integration over all latent variables X = {xt}Tt=1. The

complete data Likelihood is given by

P (X,Y |θ) =
T∏

t=1

P (xt|xt−1;A,Γ )P (yt|xt;B,Σ) (10)

so that the complete data log-Likelihood is given by

lnP (X,Y |θ) =
T∑

t=1

lnN (xt|Af(xt−1), Γ ) +
T∑

t=1

lnN (yt|Bf(xt), Σ) (11)
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In the M-step, we maximize the following Q-function with respect to the model
parameters θ:

maximize
θ

Q(θ|θold) =
∫
P
(
X |Y ; θold

)
lnP (X,Y |θ) dX (12)

The structure of the Q-function is, apart from the non-linear transfer function
f , identical to the one for linear dynamical systems [2, chapter 13.3.2]. This
similarity can be exploited in the M-step as detailed in section 3.2.

In the E-step, we need to determine the joint probability distribution over the
latent variables X conditioned on the observation sequence Y , given the current
parameter values θold:

P
(
X |Y ; θold

)
(13)

Since exact inference is intractable, we employ a sampling method, the Particle
Smoother, to approximate the distribution 13 as detailed in section 3.1.

3.1 The Particle Smoother for Approximate Inference

In the E-step of the Expectation-Maximization algorithm, we wish to approx-
imate the probability density of the latent variables X conditioned on the ob-
served sequence Y . However, inspecting the structure of the log-Likelihood func-
tion 11 shows that we only need the marginals P (xt|Y ; θ) and P (xt, xt−1|Y ; θ).

To start, we consider P (xt|Yt), i.e. the probability of xt given the observations
Yt = {y(t′)}t

t′=1 until time step t. This can be approximated via a sequential
Monte Carlo method, the particle filter. At each time step t, the distribution is
approximated by

P̂ (xt|Yt) =
N∑
i=1

witδ
(
xt − xit

)
(14)

where xit is the position of particle i at time t, wit is the particle weight, δ denotes
the delta-function, and N is the number of particles. To proceed to the next time
step, we sample new particles xjt+1 from a mixture of Gaussians:

xjt+1 ∼
N∑
i=1

witN
(
xjt+1|Af(xit), Γ

)
(15)

The new particles are weighted according to the probability of generating the
next obsevation yt+1:

wjt+1 =
P
(
yt+1|xjt+1

)
∑N
k=1 P

(
yt+1|xkt+1

) (16)

An approximation of the probability density P (xt|Y ), now conditioned on the en-
tire observation sequence Y , can be obtained using a forward-backward smoother
[4]. Following this method, we first approximateP (xt|Yt) for every time step using
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a particle filter, and in a second step, correct the particle weights via a backwards
recursion. The smoothed distribution P (xt|Y ) is then approximated via

P̂ (xt|Y ) =
N∑
i=1

vitδ
(
xt − xit

)
(17)

with modified weights vit. To derive the backward recursion, we consider the
following identity:

P (xt|Y ) =
∫
P (xt+1|Y )P (xt+1|xt, Y ) dxt+1

=
∫
P (xt|Yt)

P (xt+1|Y )P (xt+1|xt)∫
P (xt+1|xt)P (xt|Yt) dxt

dxt+1 (18)

By inserting equations 14 and 17 into 18, we obtain the backward recursion for
the corrected weights vit:

vit = wit

⎡⎣ N∑
j=1

vjt+1
P jit∑N

k=1 w
k
t P

jk
t

⎤⎦ (19)

where P jit = P (xjt+i|xit) is the transition probability from particle i at time t to
particle j at time t+ 1. The backward recursion is initialized as viT = wiT . After
obtaining particle weights wit in the forward pass and weights vit in the backward
pass, equation 18 gives also rise to an approximation of the joint probability for
xt and xt+1:

P̂ (xt, xt+1|Y ) =
N∑
i=1

N∑
j=1

[
witv

j
t+1P

ji
t∑N

k=1 w
k
t P

jk
t

δ(xt − xit)δ(xt+1 − xjt+1)

]
(20)

3.2 The M-Step

In the M-step, we need to maximize the Q-function 12 with respect to the model
parameters θ = (A,B, Γ,Σ). Here, we can make use of the fact that the structure
of the dynamic equation describing the RNN is similar to those for LDS. This
leads to similar update equations for the parameters. Exemplarily, we consider
the update equation for the recurrent weight matrixA which we obtain by setting
the Q-function derivative with respect to A to zero:

Anew =

[
T∑

t=1

E
[
xtf(xt−1)�

]] [ T∑
t=1

E
[
f(xt−1)f(xt−1)�

]]−1

(21)

where E denotes the expectation with respect to the distribution P (X |Y ; θold).
The expectations in equation 21 are approximated through the particle smoother
as
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E
[
f(xt−1)f(xt−1)�

]
=

N∑
i=1

vit−1f(xit−1)f(xit−1)
� (22)

E
[
xtf(xt−1)�

]
=

N∑
i=1

N∑
j=1

wit−1v
j
tP

ji
t−1∑N

k=1 w
k
t P

jk
t−1

xitf(xit−1)
� (23)

The update equations for the parameters B, Γ and Σ are obtained in analogy
to the update equations for linear-gaussian models as described in [2, chapter
13.3.2]. They are obmitted here due to space limitations.

4 Applications

The method is demonstrated for a synthetic data set and a real data set describ-
ing irregular breathing motion of a lung cancer patient.

4.1 Synthetic Data

We consider synthetic data generated by a recurrent network with two hidden
neurons with parameters

A =
(

1 1
−0.05 0.98

)
B =

(
1 0
)

Γ =
(

0.001 0
0 0.001

)
Σ = (0.01)

These parameters were chosen so that the system outputs an oscillation which
is perturbed by both process and measurement noise. Without noise, the system
generates an (almost harmonic) oscillating output signal with a period of 28 time
steps. Figure 1 shows a sample sequence generated by the system with noise. A
recurrent network with 5 hidden neurons4 was trained on a data set containing
1000 time steps. Figure 1 shows parts of a test data set, together with predictions
of the trained RNN (blue circles). Every 20 time steps, the network prediction
for the next 10 time steps is shown. For prediction, a particle filter is used to
estimate the mean of the posterior distribution over the hidden state. Then the
deterministic dynamics of the network (without noise) is used for prediction,
starting from the estimated hidden state5. In order to compare the predictions
of the RNN, figure 1 also shows the predictions based on the true dynamical
system (green dots). In this example, the prediction performance of the RNN is
similar to the best possible prediction where the true generative process of the
data is known6.

Figure 2 shows the internal, noise free dynamics of the network. The network
output is shown as the thick red line, whereas the blue thin lines show the
4 Similar results are obtained with 2 or more hidden neurons.
5 A prediction method where all particles were propagated forward in time and aver-

aged at each time step, yields almost identical results.
6 The mean squared errors of the trained network are 0.145/0.259/0.327 for

the 1/5/10-step prediction. The corresponding values for the true system are

0.142/0.240/0.307. The standard deviation of the test data is 0.380.
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Fig. 1. Synthetic time series (red line). Every 20 time steps, the network predictions for

the next 10 time steps are shown (blue circles), together with the predictions obtained

using the true dynamical system (green dots).
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Fig. 2. Deterministic dynamics of the network trained on the noisy data set. Red thick

line: network output; Blue thin lines: internal states.

dynamics of the internal state. The network was able to learn the underlying
harmonic oscillation of the dynamical system and estimate the amount of process
and measurement noise.

4.2 Breathing Motion Data

Figure 3 (red line) shows a surrogate for breathing motion for a lung cancer pa-
tient7. The signal is roughly periodic, but has substantial variations in amplitude
and period. In radiation therapy practice, the goal is to predict the breathing
pattern for about 500 milliseconds (5 time steps), where the length of one breath-
ing cycle is around 3 seconds. It is also of interest to have a generative model of
the breathing signal in order to simulate the effect of breathing on the accuracy
of a radiation treatment.

A recurrent network with 10 hidden neurons was trained on a sequence of
1000 time steps. Figure 4 shows the intrinsic dynamics of the trained network,

7 The expansion of the abdomen was measured as a function of time.
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Fig. 3. Breathing signal time series (red line). Every 20 time steps, the next 10 time

steps predicted by a trained network are shown (blue circles).
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Fig. 4. Deterministic, noise free dynamics of a trained network. Red thick line: network

output; Blue thin lines: internal states.

i.e. the dynamics without noise. Figure 3 shows samples of the network prediction
on the test data. Every 20 time steps, the network predictions for the next 10
time steps are shown. Like in the synthetic data example above, the training
algorithm is able to find solutions that model the oscillatory behaviour of the
system. However, it failed to model the dynamics very precisely. Consequently,
in order to explain the deviation of data and network output, the estimated
amount of measurement noise Σ is too large, and the trained network does not
represent an adequate generative model.

4.3 Remarks

Initialization of parameters. The weight matrix A was initialized to a diago-
nal matrix plus random values with a standard deviation of 0.1. The components
of B were initialized to random values with mean one and standard deviation
0.1. These values led to solutions qualitatively similar to those shown above.

Local minima. Dynamical system identification tends to be a difficult task. For
the breathing motion data set, the network did not learn details of the dynamics.
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However, the same problem applies to linear-gaussian state space models and
RNNs trained with gradient descent.

Number of particles. The results presented above were generated with N =
100 particles. However, similar results were obtained for only 10 particles –
although particle numbers that low are not expected to provide an adequate
characterization of the posterior distribution at a given time step. This aspect
will be investigated in future work.

5 Conclusion

We address the problem of training recurrent neural networks as black box models
for stochastic nonlinear dynamical systems. In conventional training algorithms
based on a quadratic objective function, it is assumed that the underlying dynam-
ics to be modelled is deterministic, i.e. process noise is neglected. In this paper,
we generalize RNNs to model stochastic dynamical systems characterized by pro-
cess noise. We suggest a training algorithm based on Expectation-Maximization,
exploiting the similarities between RNNs and linear dynamical systems. We ap-
ply a particle smoother for approximate inference in the E-step and simultane-
ously estimate expectations required in the M-step. The algorithm is sucessfully
demonstrated for one synthetic and one realistic data set. Further characteriza-
tion of the performance of the training algorithm, the influence of the number of
particles, and comparison to standard training methods for RNNs are subject to
current studies.
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Abstract. Recurrent Neural Networks have been used extensively for space
weather forecasts of geomagnetospheric disturbances. One of the major draw-
backs for reliable forecasts have been the use of training algorithms that are
unable to account for model uncertainty and noise in data. We propose a proba-
bilistic training algorithm based on the Expectation Maximization framework for
parameterization of the model which makes use of a forward filtering and back-
ward smoothing Expectation step, and a Maximization step in which the model
uncertainty and measurement noise estimates are computed. Through numerical
experimentation it is shown that the proposed model allows for reliable forecasts
and also outperforms other neural time series models trained with the Extended
Kalman Filter, and gradient descent learning.

1 Introduction

Neural Networks have established themselves as effective tools in the prediction of
geomagnetic disturbances [4,7,8]. In this paper we extend the work in the field of ge-
omagnetic storm forecasting by proposing an EM Kalman filtering and smoothing
framework for estimation of recurrent neural network (RNN) parameters. The advan-
tage of our approach is the probabilistic representation of model uncertainty and noise
in the data, which has been neglected in prior work in the area. This is achieved through
the use of the EM algorithm for tuning of model hyper-parameters representing the
process and measurement noise components, leading to improved out of sample perfor-
mance on Dst forecasting tasks. In the following sub-section we provide an overview
of geomagnetospheric distrubances and a brief review of neural forecasting of geomag-
netic storms.

1.1 Geomagnetic Storm Forecasting

A number of studies [1,3,5] have shown that changes in the solar activity induces a dis-
turbance of the earths magnetic field. This disturbance of the near-earth environment is
influenced by the injection of energetic particles through the solar wind1 into the mag-
netosphere. The solar wind carries the sun’s magnetic field through the solar system,
forming what we call the Interplanetary Magnetic Field2 (IMF ). A transfer of energy

1 Solar winds are a stream of charged particles, mostly electrons and protons, that are ejected
from the upper atmosphere of the sun.

2 The sun’s magnetic field carried through the solar system by the solar wind.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 975–984, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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from the solar wind into the magnetosphere takes place when the IMF opposes the
Earth’s magnetic field. A disturbance of the magnetosphere, known as a magnetic storm,
occurs if this transfer of energy persists for several hours [5]. Geomagnetic storms can
have many negative effects on technical systems in space and on Earth, such as a change
in a spacecraft orientation or disruption of power lines on the Earth.

Several models have been applied for the prediction of the ring current index Dst in-
cluding feed-forward, FIR, and recurrent neural networks [4,7,8]. Also, various com-
binations of exogenous variables such as proton density (n), velocity (v), and the
IMF data (b, bx,by ,bz)3 have been used as inputs to various types of neural net-
works. It was found that forecasts produced by feed-forward Neural Networks gives
good results for the initial and main phase of magnetic storms, but not the recovery
phase [5]. This results from the fact that the internal state of the magnetosphere has
a great impact on the storm recovery phase. Freeman et al. [4] have used the Dst in-
dex the magnitude of the IMF (b), the IMF southward component (bz), and the
solar wind dynamic pressure (n) to give one hour a head predictions of the Dst in-
dex. The use of Elman RNNs [9,17] has shown to give superior Dst predictions than
feed-forward Neural Networks. Wu and Lundstedt [17] have used different coupling
functions of solar wind and IMF parameters as inputs to their Elman RNN for
Dst prediction. In [9] Lundstedt et al. have used an optimised RNN, driven solely by
hourly averages of the solar wind parameters, particle density (n), and velocity (v) and
the IMF southward component, bz. They have shown that their recurrent model has
smaller errors than previous models. Pallocia et al. [10] argued that the instruments
used to measure the plasma parameter, pressure and velocity, can often be affected by
enhanced X-Ray and energetic particle flux. This gives rise to wrong or missing gaps in
the plasma data. The use of wrong data can have a negative effect on storm prediction.
To circumvent this data quality problem, a model built with IMF parameters, bz, b

2

and by
2, only was proposed to predict Dst. It was found that for quiet periods the inputs

of Lundstedt and Wu [9] perform better than IMF only models, however during se-
vere storms, IMF only models provide better predictions. The authors concluded that
for the period of severe storms the plasma data are not reliable and will deleteriously
affect the predictions of magnetic activity. Recent research has experimented with var-
ious advanced machine learning techniques such as wavelet based forecasting [15] and
radial basis function networks [16]. The results reported with these alternative meth-
ods suggest that significant improvements in forecasts can be achieved with advanced
machine learning techniques.

We elaborate on a Maximum Likelihood training framework based on the EM algo-
rithm, for RNN parameter estimation, which allows for estimation of model uncertainty
and noise in the data [2,6,14]. The extended Kalman Filter (EKF) [11] and smoother
are used for sequential estimation of the network weights. The EKF is a second order
estimation algorithm for Neural Networks [13], which evolves an approximate covari-
ance matrix that encodes second order information about the underlying system during
training. Through the use of the EM algorithm, the process and measurement noise
hyper-parameters of the filters are estimated via a maximum likelihood approach, which

3 b is the magnitude of the IMF , where, bx ,by , and bz are the three components of
the IMF .
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leads to improved out of sample performance on Dst forecasting. Experimental sim-
ulations show that forecasts of Dst with the EM-RNN algorithm provide more accu-
rate forecasts that the RNN trained with first-order gradient descent [18], and an RNN
trained with the second-order extended Kalman filter(EKF) [11].

This paper is organised as follows. In Section 1.1, the architecture of the RNN net-
work is described. The next section provides the extended Kalman filter and smoother.
Section 4 offers the EM-RNN training approach for recursive hyperparameter re-
estimation. Section 5 presents the simulation results, and finally a brief conclusion is
provided in Section 6.

2 Recurrent Neural Networks

RNNs are nonlinear adaptive models with internal states trainable by specialised weight
adaptation algorithms. The recurrent architecture chosen for this study is known as
the Williams and Zipser fully recurrent network [18], which is the most general RNN
architecture (shown in figure 1). We adopt the following notation to describe the fully
recurrent network: st is the input vector for each neuron, which contains the exogenous
input to the network xt, the bias b, and the previous activation of each neuron st =
[c(1), . . . , c(H), x(H+1), b(H+2)], where {c(1), c(2), . . . , c(H)} are the activations of the
network at the previous time step. The superscript (l) refers to the lth element s(l) ∈ st

for l = 1, 2, . . . , H + 2 where H is the number of neurons. The output activation of
each neuron is defined as a function y(i)

t = g(w(i)
t , st) where w(i)

t = [wi,1, . . . , wi,H+2]
is the weight vector associated with the ith neuron at time t, and the overall network
weight vector is defined as W = [w(1), . . . ,w(H)]. The functions g(·) and are logistic
sigmoidal nonlinearities g(a) = 1/(1 + exp(−a)) which map the input a fromR into
a bounded interval Ω = (0, 1) of length |Ω| = 1 where Ω ⊂ R.

g1 g2
gH

x
t

...

...

yt+1

wi,l
 network weights

c(H) previous states (context nodes)

xt  inputs

b

wi,l

c(1)
c(2)

c(H)

Fig. 1. Fully Recurrent Neural Network
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The fully recurrent Neural Network architecture consists of a single layer of pro-
cessing neurons which are fully connected to each other. The input layer consists of the
exogenous inputs along with the bias, which feed temporal information to the process-
ing layer at each time step. Each neuron in the processing layer computes a weighted
sum of the previous processing layer activations, along with the exogenous inputs to the
network, and the bias given by

v
(i)
t =

H+2∑
l=1

wi,ls
(l)
t (1)

where wi,l is the weight connecting the ith neuron to the lth component of the s vec-
tor. Each weighted sum vi is then passed through the nonlinear activation function to
produce the activation outputs

y
(i)
t = g(i)(v(i)

t ) (2)

where the output of the network is y1. The entire network is referred to as highly non-
linear function h of the weights Wt and input xt

dt = h(Wt, xt) + εt (3)

where the noise εt is assumed to be independent zero-mean Gaussian with covari-
ance R: εt ∼ N (0, R), and where dt are the targets from the provided data set
D = {xt, dt}Nt=1, where xt+1 = dt.

3 Kalman Filtering and Smoothing

One of the most popular recursive Bayesian state estimation algorithms for RNN train-
ing is the extended Kalman filter (EKF). In the Kalman filtering framework, it is as-
sumed that the Neural Network parameter vector evolves over time in the sense of a
first order stochastic process

Wt = Wt−1 + νt (4)

where the process noise is assumed to be normally distributed ν ∼ N (wt−1,Q). The
RNN provides a nonlinear mapping of the evolving state and the system inputs to the
measurements yt, as defined in equation 3.

For Neural Networks, the EKF requires the computation of the Jacobian matrix jt =
∂h(·)/∂Wt of partial derivatives of the output yt+1 with respect to the weights of the
network, where the Jacobian jt is evaluated at each time step, usually with the RTRL
algorithm [18]. The following equations describe the EKF training algorithm for the
RNN:

Wt
t+1 = Wt

t

Pt
t+1 = Pt

t + Q

Kt+1
t+1 = Pt

t+1jt+1[jt+1Pt
t+1jTt+1 +R]−1

Ŵt+1 = Ŵ
t

t+1 + Kt+1(dt+1 − h(Ŵ
t

t+1, xt))

Pt+1
t+1 = Pt

t+1 −Kt+1jTt+1Pt
t+1

(5)
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The EKF is a suboptimal estimator based on linearization of the nonlinearity of the
underlying Neural Network. It provides an approximation of the state mean Wt and the
state covariance Pt. The matrix Kt is the Kalman gain.

After computing the estimates Wt and Pt by equations 5 the Rauch-Tung-Striebel
smoother [12] is utilised for recursively computing corrections to the EKF estimates.
This is achieved through the following backward recursions:

St−1
t−1 = Pt−1

t−1(P
t−1
t )−1

Ŵ
N

t−1 = Ŵ
t−1
t−1 + St−1

t−1(Ŵ
N

t − Ŵ
t−1
t−1)

PNt−1 = Pt−1
t−1 + St−1

t−1(P
N
t − Pt−1

t )(St−1
t−1)

T

PNt,t−1 = Pt
t(S

t−1
t−1)

T + St
t(P

N
t+1,t − Pt−1

t )(St−1
t−1)

T

(6)

The extended Kalman smoother provides a minimum variance Gaussian approximation
to the posterior probability density function p(W|x1:N ).

4 Expectation Maximisation Learning

The EM algorithm is an iterative method for finding a mode of the likelihood function
p(x1:N |R,Q). The algorithm alternates between two steps, the E-step (expectation) and
the M-step (maximisation). In the E-step, an estimate of the state W given the data x1:N
and parameters θ = [R,Q,μ,Σ] is produced, and in the M-step, the parameters θ are
then estimated given the new state.

Maximum likelihood estimation of the parameters W are found through maximising
the complete likelihood of the data, assuming Markovian state evolution and uncorre-
lated state and measurement noise:

p(W, x1:N |θ) = p(W1|θ)
N∏

t=2

p(Wt|Wt−1,θ)
N∏

t=1

p(dt|Wt,θ) (7)

It is assumed that the likelihood of the data given the states, and the evolution of the
states is Gaussian.

p(W1|θ) =
1

(2π)q/2|Σ|1/2 exp[−
1
2
(W1 − μ)Σ−1(Wt − μ)] (8)

p(Wt|Wt−1,θ) =
1

(2π)q/2|Q|1/2 exp[−
1
2
(Wt −Wt−1)Q−1(Wt −Wt−1)] (9)

p(xt|Wt,θ) =
1

(2π)m/2|R|1/2 exp[−
1
2
(dt − h(Wt, xt))R−1(dt − h(Wt, xt))] (10)
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By taking the log of the likelihood of the complete data we arrive at

ln p(W, x1:N |θ) = −
N∑

t=1

[1
2
(dt − h(Wt, xt))R−1(dt−h(Wt, xt))

]
−N

2
ln |R|

−
N∑

t=2

[
1
2
(Wt −Wt−1)Q−1(Wt−Wt−1)]−

N − 1
2

ln |Q|− 1
2
(W1 − μ)Σ−1(Wt − μ)

− 1
2

ln |Σ| − N(m+ q)
2

ln(2π)

(11)

Taking the Expectation of both sides of the equation and differentiating the expected
log-likelihood with respect to R−1

∂E[ln p(W, x1:N |θ)]
∂R−1 ≈ 1

2
∂

∂R−1 (
N

2
ln |R−1| −

N∑
t=1

tr(R−1[jTPNt j

+ (dt − h(Ŵt, xt))(dt − h(Ŵt, xt))T ]))

=
N

2
−

N∑
t=1

1
2
(jTPNt j + (dt − h(Ŵt, xt))(dt − h(Ŵt, xt))T )

(12)

and setting the resulting solution equal to zero and solving for R results in

R =
1
N

N∑
t=1

(jTPNt j + (dt − h(Ŵt, xt))(dt − h(Ŵt, xt))T ) (13)

Similarly, differentiating with respect to Q

∂

∂Q−1 E[ln p(W, x1:N |θ)] ≈ N − 1
2

Q− 1
2
(C− 2BT + AT ) (14)

where Q is a diagonal matrix. Equating to zero and solving for Q leads to

Q =
1

N − 1
(C− BA−1BT ) (15)

where we define the quantities

A =
N∑

t=1

(PNt+1 + Ŵ
N

t−1(Ŵ
N

t−1)
T )

B =
N∑

t=1

(PNt,t+1 + Ŵ
N

t (Ŵ
N

t−1)
T )

C =
N∑

t=1

(PNt + Ŵ
N

t (Ŵ
N

t )T )

(16)
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It is also possible to solve for the initial conditions in the M step, via taking the deriva-
tive of the expected log-likelihood with respect to the initial mean

∂

∂μ
E[ln p(W, x1:N |θ)] ≈ 1

2
Σ−1(−2Ŵ

N

1 + 2μ) (17)

which leads to the initial value of μ = WN
1 and similarly for the covariance, taking the

derivative with respect to Σ

∂

∂Σ−1 E[ln p(W, x1:N |θ)] ≈ 1
2
Σ − 1

2
(Ŵ

N

1 − μ)(Ŵ
N

1 − μ)T + PN1 (18)

leads to the initial covariance Σ = PN1 .

4.1 The EM Steps

The algorithm starts off with an initial guess for θ. Then, in the E-step, the expected val-

ues of Ŵ
N

t , PNt and PNt,t−1 are obtained from their current estimates through extended
Kalman filtering and smoothing. In the M-step, the new values of θ are obtained using
the above equations.

5 Experimental Results

To assess the performance of the proposed model, we have implemented several train-
ing algorithms that are similar to the presented EM-RNN, including the RNN-RTRL
algorithm [18], and the Extended Kalman Filter trained recurrent network (RNN-EKF).
Here we consider hourly observations of the Dst index, along with observations of
the bx, by , and bz components of the IMF index. These exogenous variables were
selected due to previous research that has indicated that sensors measuring IMF com-
ponents are less prone to error during periods of high geomagnetic activity [10]. The
data considered in this study consisted of 9000 data points ranging from January 1,
1980 to February 5, 1981. Three studies were conducted to assess the model’s ability
to perform during periods of geomagnetic instability (storms), which correspond to the
dates of March 31 to August 14 1980 for the mild series of storms, and from December
12, 1980 to December 24, 1980 for the severe storm. The quiet period ranged from De-
cember 25, 1980 to February 5, 1981. In building the model, we used the period ranging
from January 1 1980 to March 31, 1980.

The forecast errors were measured by the root mean squared error (RMSE) computed
by RMSE = ((1/T )

∑T
t=1(dt − yt)2)1/2, where T is the length of the data set. In all

simulations, the weights of the networks were initialised with random uniformly dis-
tributed weights in the range of [−2, 2]. Each of the recurrent networks were initialised
with 3 hidden neurons and 3 input neurons for each factor (bz , b2, by

2,Dst), resulting
in a total input window of size 12. All RNNs had one output neuron corresponding to the
one hour ahead value of the Dstsignal. For the EKF trained network, the initial diago-
nal elements of the covariance matrix of the [Q]ii and R were set to 1.0e−3 and 1.0e−2

respectively, and for the EM trained models, the diagonal of the matrix [Q]ii was set to
.01 and R was set to 10. The learning rate for the RTRL algorithm was set to .05.
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Fig. 2. Plots of the EM-RNN and Dstmeasurements. The top left plot is of the in sample fitting
of model to the data. The lower left plot shows out of sample forecast performance on a series of
mild storms. The lower right hand plot shows the model performance during a quiet period (no
storm), and in the top right plot, the model performance on the severe storm is provided.

5.1 Forecasting Dst

Table 1 summarises the experimental results of single step ahead model fitting and pre-
diction of the storms. The in sample performance of EM and the EKF were quite simi-
lar, and the gradient descent trained RNN had the worst fit. In both the severe and mild
storm forecasting tasks, the EM-RNN outperforms the other recurrent network training
algorithms including the recurrent network trained by RTRL and the EKF. However, in
the quiet period, the EM-RNN and the RNN-EKF perform similarly. The plots of the
experiments are given in Figure 2. The use of the EM algorithm has led to improvements
in out of sample predictions over the EKF, however, the EM-RNN more closely approx-
imates the target series than the remaining algorithms as shown in the given plots. As
shown in the plot of the severe storm, the forecast model is unable to capture the entire
amplitude of the storm. This is most likely due to the training set which does not contain
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Table 1. Numerical Performance of the Studied Algorithms on One Hour Ahead Forecasts of the
Dst index

Model RMSE(training) RMSE(severe) RMSE(mild) RMSE(quiet)

RNN-RTRL 9.64 21.17 11.83 12.78
RNN-EKF 3.57 16.62 4.04 3.16
RNN-EM 3.41 11.78 3.65 3.24

any severe storms (i.e. the maximum negative amplitude is−150nT which is similar to
what the model predicts in the case of the severe storm. Further studies will investigate
predictions with different data wets, some which include severe negative geomagnetic
activity.

6 Conclusion

RNNs have been found to be useful in modeling space weather phenomena. Most of the
literature in neural space weather forecasting has focused on finding relevant inputs to
the RNN, and little effort has been spent on improving the recurrent model itself. This
paper presented a probabilistic training algorithm for dynamic recurrent neural models,
which has improved Dst index forecasts over the current state of the art reported in the
literature. Through experimental simulations, the paper has demonstrated that the EM
training of the RNN is able to improve forecasts of Dst for one hour ahead forecasts.
The presented results are encouraging as they show that the EM-RNN has the capacity
to accurately model complex Geo-magnetic phenomena.
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Abstract. Reservoir Computing (RC) offers a computationally efficient
and well performing technique for using the temporal processing power of
Recurrent Neural Networks (RNNs), while avoiding the traditional long
training times and stability problems. The method is both simple and
elegant: a random RNN (called the reservoir) is constructed using only
a few global parameters to tune the dynamics into a desirable regime,
and the dynamic response of the reservoir is used to train a simple lin-
ear regression function called the readout function - the reservoir itself
remains untrained. This technique has shown some experimentally very
convincing results on a variety of tasks, but a thorough understanding
of the importance of the dynamics for the performance is still lacking.
This contribution aims to extend this understanding, by presenting a
more sophisticated extension on the traditional way of characterizing the
reservoir dynamics, by using the dynamic profile of the Jacobian of the
reservoir instead of static, a priori measures such as the standard spec-
tral radius. We show that this measure gives a more accurate description
of the reservoir dynamics, and can serve as predictor for the performance.
Additionally, due to the theoretical background from dynamical systems
theory, this measure offers some insight into the underlying mechanisms
of RC.

1 Introduction: Reservoir Computing

Reservoir Computing (RC) [15], an idea that was originally independently intro-
duced as Echo State Networks (ESN) [5] and Liquid State Machines (LSM) [7]
has grown in the last few years into a research subfield that has attracted quite
some attention. This is likely due to the attractive properties of the method: it
can be used to solve temporal learning tasks without extensive parameter tuning
or long training times and is easy to use and understand.

Reservoir Computing relies on the dynamic response of an excitable, (usually)
nonlinear medium - the reservoir - to a one- or multidimensional input signal.
The state of the system - which is in effect a nonlinear transformation with fading
memory of the input - is then used as input for a linear regression function, which
can be trained using any of the available online or offline training methods for
� Corresponding author.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 985–994, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



986 D. Verstraeten and B. Schrauwen

ReservoirInput

x[k]

Output

y[k+1]

Li
ne
ar

re
ad
ou
t

Fig. 1. Schematic view of an RC system, with the input signals (left) driving the
reservoir, which is then used as input for the linear readout that in turn extracts the
output

linear classifiers or regressors (see Fig. 1). In a sense, the functionality of the
reservoir can be interpreted as being a random, temporal and nonlinear kernel
[11], which performs a temporal-to-spatial transformation. This transformation
boosts the computational capabilities of the subsequent linear classifier, enabling
it to solve problems it would not be able to without the reservoir. Thus, in
RC, two difficult tasks needed for solving temporal classification or regression
problems are elegantly separated, namely the nonlinear dynamic preprocessing,
and the training of the actual classifier.

In practice, the methodology to construct and train an ESN system can be
summarized as follows:

– Construct a recurrent neural network consisting ofN nodeswith sigmoid (tanh)
nonlinearities. The weights of theN×N reservoir weight matrix Wres and an
M×N input weight matrix Win are drawn from a random distribution (e.g. a
gaussian distribution), or a from discrete set. Rescale Wres globally, such that
the spectral radius of Wres is set to the desired value. The spectral radius of a
matrix is its largest absolute eigenvalue, and denoted as ρ(Wres). The ratio-
nale behind the rescaling is explained later. RescaleWin with a constant value,
the input scale factor (usually around 1).

– Simulate the network by driving it with an external (possibly multidimen-
sional) input signal u[k]. The network state at time k is denoted as s[k].
The network is simulated recursively, in a timestep based way, as follows:
s[k + 1] = f(Wress[k] + Winu[k]).

– Compute the output weights by least squares regression on the matrix A -
which is a concatenation of all vectors s[k] - using the desired output matrix
o as the right-hand side. I.e., compute the matrix Wout that satisfies the
following equation: Wout = minW ‖AW−o‖2 .In practice, this can be done
in a single step by using the Moore-Penrose generalized matrix inverse [10], or
pseudo-inverse A† of the matrix A, which is defined as : A† = (ATA)−1AT,
as follows: Wout = A†o = (ATA)−1ATo.
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– Simulate the network on the test set in the same way as above, and compute
the output as follows: ô[k] = Wouts[k].

– Evaluate the performance based on the difference between the RC output
ô[k] and the target output o[k].

While RC as a research area is rooted in neural network research and is still
mainly active there, its ideas are extendable to other fields. The basic idea of
using a nonlinear dynamic system to act as a complex preprocessing filter for the
linear readout is very powerful, and can be ported to other research areas. More
exotic incarnations of RC have already been described in literature, which include
(ranked in order of ‘deviation from the standard RNN’) : bandpass reservoirs
[12,18], Cellular Nonlinear Network (CNN) reservoirs [16] and a reservoir built
from coupled nano-photonic nonlinear components [13].

2 Disadvantages of Static Reservoir Measures

As was mentioned in the brief description of the ESN methodology, the spectral
radius is an important parameter that controls the dynamic regime of the reser-
voir. It amounts to a global scaling of the eigenvalues of the connection matrix.
From a system theoretic point of view, this can be interpreted as follows: for
a small-signal approximation (i.e. the state of the reservoir remains near the
zero fix-point), the reservoir can be approximated as a linear time-invariant,
discrete-time system:

x[k + 1] = Ax[k] + Bu[k]
y[k + 1] = Cx[k + 1] + Du[k + 1]

where x[k] represents the state of the reservoir (the vector of neuron activations)
at time k, and u[k] and y[k] represent the input and output to the system, respec-
tively. The matrix A contains the internal weights of the reservoir (Wres from
above), the B matrix contains the input-to-reservoir weights (Win from above),
and C and D contain the (trained) reservoir-to-output (Wout from above) and
input-to-output weights respectively (the latter is usually left zero).

It follows from linear system theory [2] that if the matrix A has all singular
values smaller than 11, it is definitely stable, while if any absolute eigenvalue
(i.e. spectral radius) is larger than 1, the system (i.e. the reservoir) will surely
be unstable in the sense that it will deviate unboundedly from the fixed point
when started from a non-zero state. However, the reservoirs of the ESN type
(and the reservoirs that we will consider in this contribution), have a squashing
tanh() nonlinearity, that counteracts this unbounded growth - which means that
the norm of the state vector of the reservoir will always remain bounded. This
nonlinearity also means that the spectral radius as a stability measure looses its
significance when the system deviates from an ε-region around the zero state.
1 This implies that the maximal gain in any direction in state space is smaller than

one, and the system is always contracting.
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Fig. 2. The gain of the sigmoid nonlinearity is largest around the origin (white circle).
Once the neuron is driven by an external signal or a constant bias, the working point
shifts up or downward (gray circle) and the local gain decreases, resulting in a less
dynamically excitable reservoir.

This means that it is possible that reservoirs with a spectral radius larger than
one do possess the echo state property when driven by an external input - this
was e.g. proven experimentally in [14]. Once the system is driven by an external
input or if a constant bias is fed to the nodes, the operating point of all neurons
shifts along the nonlinearity and the effective local gain (i.e. the slope of the
tangent in the operating point) becomes smaller (see Fig. 2).

In [5], the linear approximation described above is used to derive some mathe-
matically founded guidelines for constructing weight matrices for suitable reser-
voirs. The suitability of a reservoir in this case is mainly identified through the
presence of the so-called echo state property, which roughly states that the state
of the reservoir is only determined by the inputs from a sufficiently long time in
the past, and that the initial state of the reservoir eventually gets washed out.
Several bounds for this property have been described in literature:

– A reservoir whose weight matrix Wres has a largest singular value (LSV)
(denoted as σ(Wres)) smaller than one, is guaranteed to have the echo state
property. However, in practice this guideline is of little use since these reser-
voirs are not dynamically rich enough to perform well.

– A reservoir whose weight matrix has a spectral radius (SR) - i.e. a largest
absolute eigenvalue - larger than one is guaranteed not to have the echo
state property. So, ρ(Wres) ≤ 1 is a necessary condition for the echo state
property. While the spectral radius criterium is not a sufficient condition, in
practice it is used as a guideline for constructing good reservoirs for many
problems.

– In [1], a tighter bound on the echo state property than σ(Wres) < 1 was
presented. A Euclidean weighted matrix norm ‖W‖D =

∥∥DWD−1
∥∥

2 =
σ(DWD−1) was introduced, and it turns out that for a certain class of
structured weighting matrices Dδ, the relation ρ(W) < infDδ

∥∥DδWD−1
δ

∥∥ <
σ(W) holds. The center term infDδ

∥∥DδWD−1
δ

∥∥ is called the structured
singular value μSSV , a quantity widely used in robust control theory. It turns
out that μSSV offers a bound on the echo state property (namely, μSSV < 1)
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that is less conservative than the standard σ(Wres) < 1. However, while this
new bound is an improvement over the standard LSV and SR bounds, it is
computationally quite demanding to evaluate (21 seconds for a reservoir of
500 nodes, versus .6 seconds to compute the spectral radius).

All the quantities described above are static measures that only take the internal
reservoir weight matrix into account and disregard other factors such as input
scaling, bias or dynamic range of the input signals - factors that are equally
important in defining the dynamic properties of the system. Clearly, an accurate
way of quantifying the dynamics of the reservoir, evaluated in the current work-
ing point of the reservoir, would be very useful. This notion is explored further
in the next section.

3 Quantifying Dynamic Properties of Reservoirs

The readout of the RC system is quite unsophisticated in terms of computa-
tional power: it is both linear and memoryless. While these properties enable
the application of easy and optimal training algorithms, this also means that
complex temporal problems cannot be solved by the linear readout alone. Thus,
the functionality of the reservoir is twofold: it should perform a suitably nonlin-
ear transformation of the input so that the discriminating power of the linear
readout gets boosted, and it should also offer a fading memory of past inputs
to the readout. In some ways, these two functions are contrary to each other:
it was shown theoretically that linear networks and even long delay lines have
the largest memory of past inputs [4,17,3], but many non-trivial tasks require at
least some form of nonlinear behaviour, which reduces the memory of the net-
work. Thus, a good reservoir should ideally find the optimal trade-off between
these two opposing goals. This is closely linked to the dynamic regime of the
reservoir.

The dynamic properties of the reservoir at a given point in time are determined
by a couple of factors: the reservoir weight matrix (this was discussed in the
previous section), an optional bias, the nonlinearity of the nodes and the external
input that drives the reservoir. These factors determine the operating regime of
the reservoir, and as such the local gain of the system at any given time. Here,
we will discuss two (related) tools for quantifying these dynamic properties,
namely the local Lyapunov exponent (LLE) and the Jacobian of the reservoir.
The Jacobian Jf of a map f(s) is given by:

Jf (s) =

(
∂f1
∂s1

(s) · · · ∂f1∂sn
(s)

∂fn

∂s1
(s) · · · ∂fn

∂sn
(s)

)
,

where s = [s1s2 . . . sn] is the vector of activation values of the neurons in the
reservoir, and f is the nonlinearity of the nodes - in this case a tanh(). The
matrix contains the local derivative of every state value w.r.t. every other state
value. In the case of a tanh() reservoir, this simplifies to:

Jf (s) = diag[1− s21[k], 1− s22[k], . . . , 1− s2n[k]]Wres,
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where the notation diag[] signifies a diagonal matrix with the given values on the
diagonal, and W is the weight matrix of the reservoir. From this, the kth LLE
λ̃k can then be approximated as: λ̃k = log

(∏N
n=1(rk)

1/n
)

with N the number
of timesteps in the trajectory that is considered, and rk the kth eigenvalue of
Jf . The LLE offers a local estimation of the predictability or excitability of a
dynamic system around a certain point in state space. It is only an approximation
of the true Lyapunov spectrum for two reasons: first of all, we only consider a
finite trajectory while the definition of the Lyapunov exponent requires thatN →
∞, and secondly the system under consideration is driven by an external input
signal. However, we argue that this spectrum can still offer a valid quantification
of the local dynamic properties of the reservoir.

In [15], the relationship between the mean of the maximum of the local Lya-
punov spectrum and the performance of the reservoir was studied, and it was
found that for a given task, the optimal performance of a reservoir was consis-
tently attained for the same value of the maximal LLE. While this finding was
useful from a theoretical point of view because it offered a more refined mea-
sure of the reservoir dynamics that the stationary measures mentioned in the
previous section, it does not supply a practical means for choosing the reservoir
dynamics or offers insight into the meaning of this metric.

Closer inspection of the complete local Lyapunov spectrum reveals another,
and in some ways more useful phenomenon. Figure 3 shows a plot of the mean
over time of all LLEs as the spectral radius of the reservoir is varied from .1 to
3 and the reservoir is driven by noise (which is the input for the NARMA task,
see below). The plot shows that the maximal exponent increases monotonically
(as was shown previously in [15]), but also that the minimal exponent reaches a
maximum for a spectral radius of 1, and then decreases again. Thus, the bundle
of LLEs becomes narrower and then broader again as the spectral radius of the
reservoir weight matrix is increased. More importantly, the maximum of the
minimal lyapunov exponent is a good predictor for the optimal performance of
the system. In the next section, we will present some more elaborate experimental
results and discuss the implications of this phenomenon.
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Fig. 3. The full mean (over time) local lyapunov spectrum for a reservoir of 100 nodes
for the NARMA task
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4 Experiments and Discussion

The maximal LE is - for autonomous systems - an indicator of chaotic behaviour:
if it is larger than zero the system is said to be chaotic, meaning that perturba-
tions from a trajectory are amplified exponentially in at least one direction. At
first sight no such interpretation exists for the minimal LE - it simply quantifies
the direction of minimal expansion of the system. However, closer inspection
reveals that a more informative interpretation is possible by inspecting the Ja-
cobian matrix itself.

We start with the following remark: when evaluating the Jacobian around the
origin in state space (zero fixpoint, i.e. s = 0), it reduces to the weight matrix W
of the reservoir, and its largest eigenvalue is precisely the spectral radius of the
reservoir. Therefore, the eigenvalue spectrum of the Jacobian can be seen as a
dynamic extension of the static eigenvalue spectrum of the weight matrix (which
was the subject of previous work on dynamics in reservoirs, e.g. [9]). Moreover,
the lyapunov spectrum at a single point in time, given by log(eig(JTf Jf )), is equal
to the log of the singular value spectrum of the Jacobian itself2 . Following this
line of reasoning, we measured the minimal singular value (SV) of the Jacobian 3

and computed its mean over time as we vary the spectral radius of the reservoir
weight matrix, and the scaling factor of the input matrix. We then compared
this measure with the performance on two tasks:

– The Mackey-Glass timeseries prediction. This mildly chaotic timeseries (with
delay parameter τ = 17) is a common benchmark and RC systems have
shown very good performance on this task [6]. The RC system was trained
to do one-step ahead prediction on a training timeseries of 4000 timesteps,
and was then used to autonomously generate the signal by feeding its own
prediction back as input into the reservoir. The performance is evaluated
as the first timestep when the divergence (expressed as the absolute error)
between the predicted and target signal exceeds 0.1.

– Modelling a 30th order Nonlinear AutoRegressive Moving Average (NARMA)
system. Here, the input u[k] to the network is a random signal sampled
from a uniform distribution in [0, .5], and the target output is given by
y[k+1] = 0.2y[k]+0.04y[k](

∑29
i=0 y[k−i])+1.5u[k−29]u[k]+0.001. The per-

formance is measured with the normalized root mean square error (NRMSE).

Figure 4 shows the mean maximal LLE, the mean minimal singular value of the
Jacobian, and the score on both tasks, as the spectral radius and scaling factor
of the input matrix are swept within the plausible range [.1, 2] with steps of .1
(every point in the plots represents the average over twenty different reservoir
instantiations). The top plots show the same measure that was introduced in [15].
This measure clearly does not capture all necessary dynamic properties of the
2 In general, for a matrix M, the squares of its singular values are equal to the eigen-

values of MT M.
3 At every 50th timestep for computational reasons, but this provides sufficient accu-

racy.
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Fig. 4. The top plots show the maximal LLE, the middle plots show the minimal SV
and the bottom plots show the performance for the Mackey-Glass prediction (left)
and NARMA (right) task. Note that for the Mackey-Glass performance plot, higher is
better while for NARMA lower is better.

reservoir, since it increases monotonically with the spectral radius, and the input
scaling has hardly any influence. The middle plots on the other hand - which
show the minimal SV σm - offer a much more nuanced image. The minimal SV
σm varies with both the spectral radius and the input scaling - which indicates
that it captures the changing dynamical properties of the reservoir as a function
of the scaling parameters quite well. Moreover, the area of optimal performance
(bottom plots) coincides quite nicely with the areas where σm is highest. Thus,
σm is a more accurate predictor of performance than both the largest LLE and
the spectral radius.

The interpretation of σm of the Jacobian is at first sight not trivial: it simply
qualifies the minimal gain of the system in any direction in state space. However,
σm can be written as the ratio between the norm ‖Jf‖ and the condition number
κ(Jf ) of the Jacobian:σm = ‖Jf‖2

κ(Jf ) , since σ−1
m =

∥∥∥J−1
f

∥∥∥ and κ(Jf ) =
∥∥∥J−1

f

∥∥∥ ‖Jf‖
and where ‖·‖2 denotes the l2 norm.

This relation yields an interesting interpretation. In the field of robotics (which
borrows substantially from dynamical system theory), both the condition num-
ber and the norm of the Jacobian are widely used measures for quantifying the
dynamic behaviour of e.g. robotic manipulators [8]. In particular, the norm of
the Jacobian is a measure of the maximal gain of the system in any direction,
while the condition number is used to quantify the dexterity of the robot arm or
the closeness to a singular position (where the robot looses one or more degrees
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of freedom due to constraints on the joints) - large condition numbers are an in-
dication of low dexterity. When we transpose this interpretation to the reservoir,
we can see that the maximization of σm is in fact a joint optimization of:

– the maximal gain of the system, thus ensuring good excitability and separa-
tion of the input signals in state space, and

– minimization of the condition number, which means that the dynamical sys-
tem is far from singularity and has many degrees of freedom.

These two quantities are in opposition: if the gain of the reservoir is too high,
the nodes will start to saturate and the expressive power of the nonlinearity
decreases, which means that the reservoir is constrained to a lower-dimensional
subspace of the state space. If it is too low, the reservoir does not separate the
input signals enough. This trade-off is clearly present in the measure presented
here.

One disadvantage of this measure is that it does not apply to linear reservoirs
- a maximization of the minimal SV of the jacobian (which is then just the
reservoir weight matrix) results in unbounded weights.

5 Conclusions

While RC often achieves impressive performance on many tasks, the tuning of
the parameters that control the dynamics of the reservoir is still a matter of
expertise and manual experimentation, which is partly due to a lack of measures
for accurately quantifying the dynamics of the reservoir. We have presented
a novel metric for measuring the dynamical properties of the reservoir, and
have shown that it is a more accurate predictor of performance than previously
published measures. Moreover, we have given an interpretation of the measure
that offers more insight into the functionality of the reservoir, showing that a
trade-off is made between the excitability of the reservoir and its ‘degrees of
freedom’ in state space.

Reservoir Computing has originated in the field of neural networks, but has
since been extended to other, more generic implementations. For these more
exotic reservoirs (such as reservoirs built from nano-photonic components [13])
especially, the standard tuning parameters such as spectral radius become mean-
ingless. The measure introduced in this contribution can fill this void and offers
a useful method for tuning and quantifying the dynamics of these novel reservoir
implementations.
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Abstract. The competitive layer model (CLM) can be described by the

optimization problem that is formulated with the CLM energy function.

The minimum points of CLM energy function can be achieved by running

some proper recurrent neural networks. In other words, the CLM can

be implemented by the recurrent neural networks. This paper proposes

the discrete-time linear threshold recurrent networks to solve the CLM

problem. The conditions for the stable attractors of the networks are

obtained, which just correspond to the conditions of the minimum points

of CLM energy function established in the literature before. Therefore,

the proposed network can be used to implement the CLM.

1 Introduction

The Competitive Layer Model (CLM) was first proposed by Ritter in [1] as a
model for spatial feature binding that may provide one of the basic sensory
information processing principles [2]. In the mathematical point of view, CLM
can be described by the optimization problem which is further formulated by an
energy function, called CLM energy function, in some subspace of nonnegative
orthant. In order to solve the CLM problem, it requires to find out the minimum
points of the CLM energy function. Since the CLM is a model of recurrently
connected structure, some recurrent neural networks (RNNs) can be used to
solve CLM problem, i.e., implement CLM with RNNs by making the attractors
of the RNNs correspond to the minimum points of the CLM energy function.

In [3], the continuous-time Linear-Threshold (LT) RNNs were used to im-
plement the CLM for feature binding and sensory segmentation. Moreover, the
foundations of implementing the CLM by Lotka-Volterra RNNs were totally
established in [4]. However, the implementations of CLM are all based on the
continuous-time RNNs so far. As we know, the discrete-time networks possess
the advantages for direct computer simulations over digital simulation of the
continuous-time neural network model. Since LT RNNs possess many good dy-
namical properties (see for example, [5,6]), while the dynamics of discrete-time

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 995–1004, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



996 L. Zhang, P.A. Heng, and Z. Yi

networks are generally different from the corresponding continuous-time ones [7],
this paper proposes the discrete-time LT RNNs enabling to solve CLM problem.

The rest of the paper is organized as follows. In Section 2, a brief description
of the CLM is presented. The model of discrete-time LT RNNs used to solve
the CLM problem is proposed in Section 3. Section 4 studies some properties
of equilibrium points of the proposed model. The main results of conditions
enabling the proposed network to solve the CLM problem are given in Section 5.
Section 6 presents a simulation example to further illustrate the theories. Finally,
the conclusions are given in Section 7.

2 Competitive Layer Model

The CLM is a model of recurrently connected structure, as shown in [4]. It
contains a set of L layers and there are N neurons in each layer. Neurons in each
layer are connected with each other and the connection weights are independent
of any layer. Each neuron has an external input which is also independent of
any layer. Between the different layers, only those neurons that are arranged
in the same row are connected. Neurons in the same layer are required to be
cooperative, while neurons in the same row are required to be competitive. At
the result of competition, there is only one active neuron in each row.

Throughout this paper, the symbols α, β, γ(1 ≤ α, β, γ ≤ L), called layer
indexes, will be used to index the layers, and the symbols i, j(1 ≤ i, j ≤ N),
called row indexes, will be used to index the rows. Thus, the index iα indicates
that the neuron is located at the ith row of the αth layer. Let xiα be the activity
of the neuron located at iα, wij be the connection weight between neuron iα and
neuron jα, note that each wij is independent of the layer index α and wii > 0.
The external input for neuron iα is denoted by hi (assumed hi > 0) which is
also independent of the layer index.

Denote the nonnegative orthant of RNL by

RNL+ =
{
x
∣∣x ∈ RNL, x ≥ 0

}
,

where x ≥ 0 implies that each element of the vector x is nonnegative. The CLM
energy function E(x) is defined in [4] by

E(x) =
C

2

N∑
i=1

⎛⎝ L∑
β=1

xiβ − hi

⎞⎠2

− 1
2

L∑
α=1

N∑
i,j=1

wijxiαxjα

for x ∈ RNL+ . Solving the CLM problem means to find out the minimum points
of E(x). By the rigorously mathematical analysis, [4] has shown that x∗ ∈ RNL+
is a minimum points of E(x), if and only if given any row index i(1 ≤ i ≤ N),
there exists one and only one layer index α(1 ≤ α ≤ L) such that{

x∗iα > 0,
x∗iγ = 0, for γ �= α,

(1)
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and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C (hi − x∗iα) +

N∑
j=1

wijx
∗
jα = 0,

C (hi − x∗iα) +
N∑
j=1

wijx
∗
jγ < 0, for γ �= α.

(2)

Therefore, the study in [4] presented a precise instruction of implementing the
CLM by designing some RNNs. That is, the trajectories of a designed RNN
should converge to the minimum points of the CLM energy function E(x), i.e.,
the conditions for the attractors in the designed RNN should match (1) and (2).

3 Discrete-Time Linear Threshold Recurrent Neural
Networks

The model of discrete-time linear threshold recurrent neural networks that can
be used to implement the CLM is described by

xiα(k + 1) =

⎡⎣C
⎛⎝hi − L∑

β=1

xiβ(k)

⎞⎠+
N∑
j=1

wijxjα(k) + xiα(k)

⎤⎦+

, k ≥ 0 (3)

for 1 ≤ i ≤ N and 1 ≤ α ≤ L. [s]+ = max{s, 0} is a linear threshold function.
x(k) ∈ RNL denotes the state of the network (3) at time k, it can be written as

x(k) =
(
xT1 (k), · · · , xTL(k)

)T ∈ RNL
with

xα(k) = (x1α(k), · · · , xNα(k))T ∈ RN , (1 ≤ α ≤ L),

and each vector xα(k) ∈ RN is called a layer of the state x(k).
In this paper, denote by I the identity matrix. Denote by W = (wij)N×N ,

and
h = max

1≤i≤N
{hi} , h = min

1≤i≤N
{hi} .

The trajectories of the network (3) are expected to converge to minimum points
of the CLM energy function in RNL+ space. Thus, it is a basic requirement that
any trajectory of the network (3) starting from a point in RNL+ remains in RNL+
for ever. It is easy to see that the requirement is satisfied. Hence, in the next of
this paper, it considers only the trajectories starting from the points in RNL+ .

4 Equilibrium Points Analysis

This section studies the properties and distribution of equilibrium points of the
network (3) in RNL+ . The equilibrium points of the network (3) are some special
vectors in RNL+ space, any trajectory starting from an equilibrium point stays
at the point all the time.
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Definition 1. Suppose that x∗ ∈ RNL+ . If it holds that

x∗iα =

⎡⎣C
⎛⎝hi − L∑

β=1

x∗iβ

⎞⎠+
N∑
j=1

wijx
∗
jα + x∗iα

⎤⎦+

for 1 ≤ i ≤ N and 1 ≤ α ≤ L, then x∗ is called an equilibrium point of the
network (3). Denote by E the set of all the equilibrium points in RNL+ .

Lemma 1. If x∗ ∈ E, then it holds that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
C

⎛⎝ hi −
L∑
β=1

x∗iβ

⎞⎠+
N∑
j=1

wijx
∗
jα = 0, if x∗iα > 0

C

⎛⎝ hi −
L∑
β=1

x∗iβ

⎞⎠+
N∑
j=1

wijx
∗
jα ≤ 0, if x∗iα = 0

(4)

for 1 ≤ i ≤ N and 1 ≤ α ≤ L.

Proof. The proof is trivial.

The equilibrium points are distributed in the space RNL+ . Next, we show that
under some conditions, all the equilibrium points are located within a bounded
set in the space RNL+ . Denote

M = max
1≤i≤N

⎧⎨⎩
N∑
j=1

|wij |

⎫⎬⎭ and Π =
Ch

C −M
.

Lemma 2. Suppose that C > M . Define a set by

D =
{
x ∈ RNL+

∣∣ xjβ ≤ Π, (1 ≤ j ≤ N ; 1 ≤ β ≤ L)
}
.

Then, it holds that E ⊆ D.

Proof. Given any x∗ ∈ E , suppose that

x∗iα = max
{
x∗jβ
∣∣ 1 ≤ j ≤ N ; 1 ≤ β ≤ L

}
.

If x∗iα = 0, then clearly, x∗ ∈ D. If x∗iα > 0, by (4), it must hold that

0 = C

⎛⎝hi − L∑
β=1

x∗iβ

⎞⎠− N∑
j=1

wijx
∗
jα

≤ C
(
h− x∗iα

)
+ x∗iα ·M

= Ch− x∗iα (C −M) .

It gives that
x∗jβ ≤ x∗iα ≤ Π

for 1 ≤ j ≤ N and 1 ≤ β ≤ L, i.e., x∗ ∈ D. The proof is complete.
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Theorem 1. Suppose that

C >

(
h

h
+ 1
)
·M.

If x∗ ∈ E, then given any row index i(1 ≤ i ≤ N), there must exist at least one
layer index α(1 ≤ α ≤ L) such that x∗iα > 0.

Proof. Given any row index 1 ≤ i ≤ N , suppose that x∗iα = 0 for all 1 ≤ α ≤ L.
It follows from (4) that

0 ≥ C

⎛⎝hi − L∑
β=1

x∗iβ

⎞⎠+
N∑
j=1

wijx
∗
jα

= Chi +
N∑
j=1

wijx
∗
jα

for 1 ≤ α ≤ L. However, by the condition and Lemma 2, it gives that

Chi +
N∑
j=1

wijx
∗
jα ≥ Ch−Π ·M > 0

for all 1 ≤ α ≤ L. This contradiction shows that there must exist a layer index
α such that x∗iα > 0. The proof is complete.

5 Stable Attractors

Since it is expected to use the network (3) to find out the minimum points of the
CLM energy function E(x) in RNL+ , the trajectories of the network (3) should
be able to converge to the minimum points of E(x). Generally, a point in RNL+
is called a stable attractor if it attracts all trajectories starting from the points
around it. The following discussion will show that the stable attractors of the
network (3) correspond to the minimum points of the CLM energy function.

Definition 2. Let x∗ be an equilibrium point. The equilibrium point x∗ is called
stable, if given any constant ε > 0, there exists a constant δ > 0 such that

|xiα(0)− x∗iα| ≤ δ, (1 ≤ i ≤ N ; 1 ≤ α ≤ L)

imply that
|xiα(k)− x∗iα| ≤ ε, (1 ≤ i ≤ N ; 1 ≤ α ≤ L)

for all k ≥ 0. The equilibrium point x∗ is called unstable, if it is not stable.

Definition 3. Let x∗ be a stable equilibrium point, it is called a stable attractor,
if there exists a small neighborhood B of x∗ such that x(0) ∈ B implies that

lim
k→+∞

xiα(k) = x∗iα

for 1 ≤ i ≤ N and 1 ≤ α ≤ L.
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A stable attractor is an equilibrium point with the properties: it should be stable
in the sense of Definition 2, and it must attract the trajectories around it.

Theorem 2. Suppose that

C >

(
h

h
+ 1
)
·M (5)

and

C < 2 + min
1≤i≤N

⎧⎨⎩wii −
N∑

j=1,j �=i
|wij |

⎫⎬⎭ . (6)

The equilibrium point x∗ of the network (3) is a stable attractor, if it satisfies
that (1) and (2).

Proof. Denote two index sets by{
P = {iα|x∗iα > 0; 1 ≤ i ≤ N ; 1 ≤ α ≤ L}
Z =

{
iγ|x∗iγ = 0; 1 ≤ i ≤ N ; 1 ≤ γ ≤ L

}
.

By (2), given any index iγ ∈ Z, denote a constant Δiγ by

Δiγ = −C (hi − x∗iα)−
N∑
j=1

wijx
∗
jγ > 0.

It follows that

C (hi − x∗iα) +
N∑
j=1

wijx
∗
jγ +Δiγ = 0.

Then the network (3) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xiα(k + 1) =

⎡⎣−C L∑
β=1

(
xiβ(k)− x∗iβ

)
+

N∑
j=1

wij
(
xjα(k)− x∗jα

)
+ (xiα(k)− x∗iα) + x∗iα

⎤⎦+

, iα ∈ P

xiγ(k + 1) =

⎡⎣−C L∑
β=1

(
xiβ(k)− x∗iβ

)
+

N∑
j=1

wij
(
xjγ(k)− x∗jγ

)
+ xiγ(k)−Δiγ

⎤⎦+

, iγ ∈ Z

for all k ≥ 0.
Given any constant ε such that

0 < ε ≤ 1
3
· min
iα∈P,iγ∈Z

{x∗iα, Δiγ} ·min
{

1
CL

,
1

M + 1

}
,
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define a constant δ by

δ =
ε

3
·min

{
1
CL

,
1

M + 1

}
.

Then define a neighborhood Bδ of x∗ by

Bδ =
{
x ∈ RNL+

∣∣ |xiα − x∗iα| ≤ δ(iα ∈ P );xiγ ≤ δ(iγ ∈ Z)
}
,

and another neighborhood Bε of x∗ by

Bε =
{
x ∈ RNL+

∣∣ |xiα − x∗iα| ≤ ε(iα ∈ P );xiγ = 0(iγ ∈ Z)
}
.

We will prove by mathematical induction that for any x(0) ∈ Bδ, it holds that
x(k) ∈ Bε for all k ≥ 1. By x(0) ∈ Bδ, we have

xiγ(1)=

⎡⎣−C L∑
β=1

(
xiβ(0)− x∗iβ

)
+

N∑
j=1

wij
(
xjγ(0)− x∗jγ

)
+ xiγ(0)−Δiγ

⎤⎦+

= 0

for iγ ∈ Z, and

xiα(1) =

⎡⎣−C L∑
β=1

(
xiβ(0)−x∗iβ

)
+

N∑
j=1

wij
(
xjα(0)−x∗jα

)
+(xiα(0)− x∗iα)+x∗iα

⎤⎦+

= −C
L∑
β=1

(
xiβ(0)− x∗iβ

)
+

N∑
j=1

wij
(
xjα(0)− x∗jα

)
+ (xiα(0)− x∗iα) + x∗iα

for iα ∈ P . Then,

|xiα(1)− x∗iα| ≤ C

L∑
β=1

∣∣xiβ(0)− x∗iβ
∣∣+ N∑

j=1

|wij | ·
∣∣xjα(0)− x∗jα

∣∣+ |xiα(0)− x∗iα|

≤ ε

3
+
ε

3
+
ε

3
= ε.

This shows that x(1) ∈ Bε. Next, suppose x(k) ∈ Bε, we will prove that x(k+1) ∈
Bε for all k ≥ 1. In fact, it follows from x(k) ∈ Bε that

xiγ(k + 1) =

⎡⎣−C (xiα(k)− x∗iα) +
N∑

j=1,jγ∈P
wij
(
xjγ(k)− x∗jγ

)
−Δiγ

⎤⎦+

= 0 (7)

and

xiα(k + 1)

=

⎡⎣−C (xiα(k)− x∗iα) +
N∑

j=1,jα∈P
wij
(
xjα(k)− x∗jα

)
+ (xiα(k)− x∗iα) + x∗iα

⎤⎦+

= −C (xiα(k)− x∗iα) +
N∑

j=1,jα∈P
wij
(
xjα(k)− x∗jα

)
+ (xiα(k)− x∗iα) + x∗iα
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for all k ≥ 1. Then,

xiα(k + 1)− x∗iα = −C (xiα(k)− x∗iα) + (xiα(k)− x∗iα)

+
N∑

j=1,jα∈P
wij
(
xjα(k)− x∗jα

)
(8)

for k ≥ 1. Since given any row index there exists one and only one layer index
such that the indexed neuron is active, the set P has N elements in total. Denote
by xP ∈ RN+ and x∗P ∈ RN+ the vectors which are composed of the elements xiα
and x∗iα, respectively. Then it follows from Eq. (8) that

xP (k + 1)− x∗P = Φ · (xP (k)− x∗P ) ,

where the matrices Φ = (1− C)I +WP with WP = (vij)N×N and{
vij = wij , if iα, jα ∈ P,
vij = 0, if iα /∈ P or jα /∈ P.

Then it holds that

‖xP (k + 1)− x∗P ‖ ≤ max {|λ|} · ‖xP (k)− x∗P ‖ , (9)

where λ is the eigenvalue of Φ. By applying Gerschgorin’s Theorem [8], (5) and
(6) imply that max {|λ|} < 1. Then (7) and (9) show that x(k + 1) ∈ Bε for all
k ≥ 1.

Thus, any trajectory x(k) starting from a point x(0) ∈ Bδ will stay in Bε
forever. Moreover, because of max {|λ|} < 1, it is clear that{

xiα(k) → x∗iα
xiγ(k) → 0

as k → +∞. It shows that x∗ is a stable attractor. The proof is complete.

By the necessary and sufficient conditions (1) and (2) for the minimum points of
CLM energy function E(x), Theorem 2 shows that the stable attractors of the
network (3) correspond to the minimum points of E(x) on the nose. Therefore,
the proposed model of discrete-time LT RNNs can be used to solve the CLM
problem.

6 Illustrative Example

To further understand the attractors of the network (3), consider the case that
L = 2, N = 2, wij = w > 0(i, j = 1, 2) and hi = h > 0(i = 1, 2). The network is⎧⎪⎪⎨⎪⎪⎩

x11(k + 1) = [C (h− x11(k)− x12(k)) + w (x11(k) + x21(k)) + x11(k)]
+

x21(k + 1) = [C (h− x21(k)− x22(k)) + w (x11(k) + x21(k)) + x21(k)]
+

x12(k + 1) = [C (h− x11(k)− x12(k)) + w (x12(k) + x22(k)) + x12(k)]
+

x22(k + 1) = [C (h− x21(k)− x22(k)) + w (x12(k) + x22(k)) + x22(k)]
+

(10)
for k ≥ 0.
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Suppose that C = 0.9, w = 0.2 and h = 1, which satisfy (5) and (6). Solving
the equilibrium point of the network (10), it gives that

E =
{
(1.8, 1.8, 0, 0)T , (0, 0, 1.8, 1.8)T

}
.

By Theorem 2, it can be check that the two equilibrium points above are both
stable attractors of the network (10). Moreover, given any row index, there is
one and only one active neuron on the row. Fig. 1 shows the attractivity of the
two stable attractors, respectively.
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Fig. 1. The attractivity of attractors in the network (10): (a) The trajectory starting

from a randomly generated point x(0) = (0.0596, 0.6820, 0.0424, 0.0714)T converges

to (1.8, 1.8, 0, 0)T ; (b) The trajectory starting from another randomly generated point

x(0) = (0.0987, 0.2619, 0.3354, 0.6797)T converges to (0, 0, 1.8, 1.8)T

7 Conclusions

The paper induces the discrete-time LT RNNs enabling to implement CLM.
It gives some properties of the equilibrium points of this model. Furthermore,
the conditions for stable attractors of the networks are established based on the
rigorously mathematical analysis, which just match those of the minimum points
of CLM energy function established before. Therefore, the proposed model can be
used to solve the CLM problem. The study of this paper enables a perspective to
implementing CLM by the discrete-time LT RNNs for the potential applications.
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Scalable Neural Networks for Board Games
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Abstract. Learning to solve small instances of a problem should help in

solving large instances. Unfortunately, most neural network architectures

do not exhibit this form of scalability. Our Multi-Dimensional Recurrent

LSTM Networks, however, show a high degree of scalability, as we empir-

ically show in the domain of flexible-size board games. This allows them

to be trained from scratch up to the level of human beginners, without

using domain knowledge.

1 Introduction

In a wide range of domains it is possible to learn from a simple version of a
problem and then use this knowledge on a larger one. This particular form of
incremental learning is commonly employed by humans, and for machine learning
it is especially useful when training on the large version is much more expensive.

Board games are a particularly suitable domain for investigating this form
of scalability, because for many of them either the board size can be varied, or
the rules can be trivially adjusted to make it variable. In addition, despite being
described by a small set of formal rules, they often involve highly complex strate-
gies. One of the most interesting board games is the ancient game of Go (among
other reasons, because computer programs are still much weaker than human
players), which can be solved for small boards [1] but is very challenging for
larger ones [2,3]. Its extremely large search space defies traditional search-based
methods. Human experts rely heavily on patterns, and thus it is not surprising
that a substantial amount of research effort has been devoted to applying neural
networks – which are good at pattern recognition – to Go [2,4]. Unfortunately
most of these methods do not scale well w.r.t. board size, i.e. networks trained
successfully on small boards (where training is efficient) do not play well when
the board is enlarged [5,3]. The present paper builds on the promising prelimi-
nary results [6,7] of a scalable approach based on Multi-dimensional Recurrent
Neural Networks (MDRNNs; [8,9]) and enhances the ability of that architecture
to capture long-distance dependencies.

We conduct experiments on three different Go-inspired games, which is possi-
ble without modifying our network architecture as it is free of domain knowledge.
We train it against opponents of varying difficulty and measure how the playing
performance scales to larger board sizes. Furthermore, we put our architecture
into context by comparing it to a number of competing ones.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 1005–1014, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Scalable Neural Architectures

We consider a neural network architecture to be scalable if it is not tied to a
fixed input dimension. This section provides an overview of such architectures
that have been proposed for solving board games, it then describes MDRNNs in
general and finally gives the details of the specific instantiation we propose.

2.1 Background

One approach to designing scalable network architectures is to scan across the
board, processing the inputs from a limited receptive field, independently of
their positions. The outputs of that stage are then fed into another architec-
ture that combines them (e.g. [10]). An extension of this idea is the convolu-
tional network [11], which repeats this step on multiple levels, thereby capturing
higher-level features instead of just local patterns. These architectures introduce
a trade-off: a small receptive field severely limits the kind of patterns that can
be recognized, whereas a large one makes learning very difficult (because of the
exploding number of parameters).

‘Roving-eye’-based architectures [5] contain one component with a fixed re-
ceptive field that can be aimed at any part of the board. This is then combined
with an active component that decides where to rove over the board, and when
to choose an output action.

Other architectures have been proposed [12,13] which make use of weight-
sharing to capture domain-specific symmetries, but these are limited to a par-
ticular game, and also restricted w.r.t. what kind of strategies they can learn.

For the related but different problem of scaling the problem resolution, a
number of approaches for generative encodings of neural networks have been
found to be successful (e.g. Compositional Pattern Producing Networks [14]).

2.2 MDRNNs

Multi-dimensional Recurrent Neural Networks [8,9], are an extension of bi-
directional RNN proposed by Schuster [15], and a special case of the DAG-RNNs
proposed by Baldi [16]. Their unbounded receptive fields (explained below) make
them scalable by design. Successful applications include vision [8], handwriting
recognition [17], and supervised learning of expert Go moves [4].

Unlike standard recurrent neural networks (RNNs) which are only effective for
handling sequences with a single (time-)dimension, MDRNNs are are applicable
to multi-dimensional sequences [9]. In the case of Go, the single time dimension
is replaced by the two space dimensions of the game board.

Consider a hidden layer h↗ that swipes diagonally over the board from
bottom-left to top-right. At each board position (i, j) its activation h↗(i,j) is
a function of the current input ini,j and its own earlier activations h↗(i−1,j) and
h↗(i,j−1):

h↗(i,j) = f
(
wi ∗ ini,j + wh ∗ h↗(i−1,j) + wh ∗ h↗(i,j−1)

)
(1)
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%(i-1,j-1)

swipe start

h%(i,j)h%(i-1,j)

h%(i,j-1)

in(i,j)

out(i,j)

=

=

Fig. 1. MDRNN for Go The structure diagram on the left shows the connections of

a hidden layer in one of the swiping directions: it receives its two earlier activations, as

well as the local board input. The network as a whole takes the game board as input

(bottom right) and outputs move preferences (top right). The darker the square, the

higher the preference for the corresponding move (illegal ones are ignored).

where w∗ are the connection weights. On the boundaries we use a fixed default
value h↗(0,i) = h↗(i,0) = wb, for 0 < i ≤ n. See also Figure 1 for an illustration.

Because of the recurrency, the layer has indirect access to board information
from the whole rectangle between (0, 0) and (i, j). In order to have access to the
whole board, we use 4 swiping layers, one for each of the diagonal swiping direc-
tions in D = {↘,↗,↙,↖}. The output layer then, for every position, combines
the outputs of these 4 layers into a single value outi,j (which is indirectly derived
from the information of the entire input). More formally:

outi,j = g

(∑
♦∈D

wo ∗ h♦(i,j)

)
(2)

where the function g is typically the sigmoid function.

2.3 Proposed Architecture

We instantiate MDRNNs such that they are appropriately generating a playing
policy, given a symmetric game board. At each position, the network takes two
inputs which indicate the presence of a stone at this position. The first one is 1
if a stone of the network’s own color is present and 0 otherwise, the second input
encodes the presence of an opponent’s stone in the same way. A black/white
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symmetric encoding, as used in other approaches (e.g. [12]) is not applicable
here, because the output is not symmetrical: the best move for both players
might be the same.

The output value at each position expresses the network’s preference for play-
ing there (see also Figure 1). Assuming that a deterministic playing behavior is
desired, moves are selected greedily, randomly breaking ties. This is the case in
our experiments because the opponents act stochastically. In practice, we ignore
the network’s preferences for illegal moves. For stochastic play one can interpret
the preferences probabilistically, e.g. by drawing a position from their Gibbs
distribution.

MDRNNs are invariant w.r.t. stationary shifts of the input. In order to also
enforce rotation and reflection symmetry, we use the same connection weights
for all swiping directions and the same wb on all boundaries.

Typically a swiping layer u is composed of k sigmoidal neurons (e.g. f = tanh).
Although in theory such an MDRNN can learn to make use of the whole board
context, it is very difficult to achieve in practice, because the information is prop-
agated recurrently through non-linear units and thus tends to decay quickly with
distance [18]. One solution to this problem is to use Long short-term memory
cells (LSTM), which are based on protecting the recurrent state with gating sub-
units [18]. As in [8,9] (and in contrast to [6]), we therefore use a swiping layer
composed of k LSTM cells and call it MDLSTM.

In our implementation we unfold the MDRNN along both spacial dimensions,
leading to a large but simple feed-forward network. On a normal desktop com-
puter (Intel Xeon 2.8 GHz), a network needs about 3ms to choose a move on a
7x7 board, and 25ms on a 19x19 board. The total number of weights is 4k + k2

for sigmoidal swiping layers and 5k2 + 16k for LSTM layers. All the code used
for this paper is available as part of the PyBrain library at www.pybrain.org.

3 Methodology

We conduct our experiments on a number of different flexible-size board games,
all of which are played on the Go board:

Atari-Go: Also known as Ponnuki-Go or ‘Capture Game’, is a simplified version
of Go that is widely used for teaching the game of Go to new players. The
rules are the same as for Go, except that passing is not allowed, and the
first player to capture a predetermined number (here: one) of his opponent’s
stones wins.

Go-Moku: Is also known as ‘Five-in-a-row’. Players alternate putting stones
onto any of the intersections on the board. The first player to have 5 con-
nected stones in a row, column or diagonal, wins.

Pente: Has similar rules to Go-Moku, except that it is now possible to capture
stones, in pairs, by putting stones at both ends of a pair of the opponent.
The game is won by the first player who either has 5 connected stones, or
has captured 5 pairs.
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Each game has a number of predefined opponents associated with it: a) a ran-
dom player, which randomly chooses any of the legal moves, b) a naive player,
which does a one-ply search. If possible, it always picks a move that makes it
win the game immediately, and never picks a move that would make it lose the
game immediately. In all other cases (the large majority), it randomly picks a
legal move, c) a publicly available heuristic player (only for Atari-Go), based
on a set of hand-coded heuristic tactics (exploited greedily [7,19]). Its difficulty
can be adjusted by imposing that a proportion ε of its moves are chosen ran-
domly. According to the author, the level of play (with ε = 0) is ‘challenging for
beginners’.

As fitness we use the average outcome of 100 games against a fixed opponent,
counting a win as 1, a draw as 0 and a loss as -1. Each player plays 50 times as
black and 50 times as white.

In addition to MDRNNs with sigmoidal neurons or LSTM cells (as described
in section 2.3), we use – as a performance baseline – standard multi-layer per-
ceptrons (MLP), containing a single fully connected hidden layer of size k, with
tanh units. We compare the performance of our architecture to simple convolu-
tional networks (CONV), with one layer of k feature maps (of identical receptive
field size ρxρ), no subsampling, and a sigmoid output layer that combines the
features. Here, the input board is padded with additional positions around the
borders. They have k(ρ2 + 1) + 1 parameters.

One the one hand, we analyze the performance of networks produced by the
simplest possible algorithm, namely random weight guessing (using the normal
distributionN(0, 1)). On the other hand we train the networks using the the well-
established Covariance Matrix Adaptation Evolution Strategy (CMA-ES [20]) to
optimize all the weights.

Our two quantitative measures of scalability are: a) the linear correlation
(Pearson coefficient) between the fitness on different board sizes b) the proportion
p of networks for which the fitness is higher on the larger board than on the
smaller one.

4 Results

As training networks is expensive, we start by empirically investigating the per-
formance of the different networks (and their parameters) with random weights.
Moreover, we determine under what circumstances the performance scales to
larger boards. We then train the networks on small boards and analyze whether
their performance improvement is transferred to larger boards.

4.1 Random Networks

We measure the performance of different kinds of networks with randomly guessed
weights, on different games and against various opponents. Figure 2(a) shows the
percentiles of fitnesses of random MDRNNs, giving an indication of the difficulty
of the different opponents on each game. Training is easier if initial weights with
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Fig. 2. Fitnesses of random networks evaluated on 7x7 (400 networks per scenario).

The percentiles show what proportion of random networks reach at least a given fitness

(e.g. at least 25% or random MDRNNs win at least 3
4

of Go-Moku games against the

naive opponent, i.e. have a fitness of 0.5). Figure 2(c) shows the differences between a

number of different networks (on Atari-Go, vs. Naive).

reasonably good fitness (> 0) can be found relatively easily. This is indeed the case
for the naive and the random opponent but not for the heuristic one. For MLPs,
however, reasonable initial weights are very rare (Figure 2(b)).

Figure 2(c) more explicitly shows the differences between the network archi-
tectures, comparing MDRNNs, MDLSTMs (for varying k), CONVs (for varying
ρ) and MLPs. Despite only corresponding to random networks, the results in-
dicate that small values of k are appropriate for MDRNNs (we will fix k = 3
hereafter), and do not bode well for MLPs.

We determine the scalability of random networks by evaluating the fitness
on multiple board sizes and then computing their correlation (see Table 1). As
the linear correlation by itself can be a misleading measure, we provide a visual
intuition about the high correlation in Figure 4(a). The results indicate that one
can train networks on boards as small as 7x7 and use them to play on 19x19,
for all three games.

4.2 Trained Networks

Figure 3(a) shows the learning curves for different networks trained on Atari-Go
against the naive player on 7x7, using CMA-ES to optimize the weights. MLPs
are in this comparison as a baseline, but clearly fail to learn how to play. The
other architectures learn to beat the naive opponent, with MDLSTMs clearly
outperforming the others. Convolutional networks are learning slightly slower,
but still faster than MDRNNs. The same conclusions also hold for the results
on Go-Moku and Pente (results not shown).

Learning to play against the significantly stronger heuristic opponent is a
bigger challenge. Figures 3(b) and 3(c) show the learning curves against the
heuristic player with settings ε = 0.2 and ε = 0.05 respectively (averaged over
5 runs). Here, MDLSTMs clearly outperform the convolutional networks, for
which only the best results are shown (produced with ρ = 5). We suspect that
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Table 1. Correlations between the fitnesses of random MDLSTMs on different board

sizes (based on 100 networks per scenario, evaluated against the naive opponent). They

are high in all cases except Go-Moku between 5x5 and larger boards (which is due to

the fact that it is disproportionately easier for a game to end in a draw on a 5x5 board).

Sizes Atari-Go Go-Moku Pente

5x5 vs. 7x7 0.86 0.20 0.47

5x5 vs. 9x9 0.72 0.09 0.31

5x5 vs. 11x11 0.67 0.37 0.49

5x5 vs. 19x19 0.37 0.38 0.46

7x7 vs. 9x9 0.88 0.83 0.83

7x7 vs. 11x11 0.82 0.85 0.87

7x7 vs. 19x19 0.62 0.59 0.64

9x9 vs. 11x11 0.92 0.92 0.90

9x9 vs. 19x19 0.71 0.76 0.64
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Fig. 3. Learning curves for training against different opponents on Atari-Go (board

size 7x7, averaged over 10 independent runs). The solid line corresponds to the average

fitness per generation, the broken one corresponds to the best.

this is due to the limited receptive field: at a certain level of play it simply
becomes necessary to use non-local information. MDLSTMs can learn how much
context is necessary, and automatically increase their effective receptive field
during training.

The scalability results for trained networks are summarized in Table 2. Gener-
ally, there is a low correlation for the convolutional networks, but a relatively high
one for MDLSTMs. Figure 4(b) illustrates this difference for networks trained
against the naive opponent in Atari-Go. Note the large number of convolutional
networks on the bottom right, for which good performance on 7x7 corresponds
to poor performance on 11x11.

Comparing the correlations and the proportions p to the values for random
MDLSTMs, we find the correlations to be lower but p to be higher (especially
when scaling to 19x19). This means that the fitness on a small board is not
perfectly predictive of the fitness on the large board, but it is almost always
significantly higher on the large board.
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Table 2. Scalability of networks trained on 7x7 against the naive opponent (based

on 100 networks per scenario). The correlations are higher for MDLSTMs than for

convolutional networks. Also, note the really high proportion p of MDLSTMs that are

stronger on 19x19 than on 7x7, for all games.

Game Sizes CONV MDLSTM

Correlation p Correlation p

Atari-Go 7x7 vs. 9x9 0.13 0.20 0.38 0.48

Atari-Go 7x7 vs. 11x11 0.17 0.18 0.27 0.45

Atari-Go 7x7 vs. 19x19 0.17 0.21 0.38 0.76

Go-Moku 7x7 vs. 9x9 0.06 0.42 0.47 0.67

Go-Moku 7x7 vs. 11x11 0.15 0.61 0.38 0.87

Go-Moku 7x7 vs. 19x19 0.04 0.68 0.66 0.84

Pente 7x7 vs. 9x9 0.05 0.45 0.08 0.61

Pente 7x7 vs. 11x11 0.24 0.58 0.39 0.79

Pente 7x7 vs. 19x19 0.23 0.58 -0.05 0.95

7x7

1
1
x
1
1

MDLSTM

CONV

(a) Random, naive oppo-

nent.

7x7

1
1
x
1
1

MDLSTM

CONV

(b) Trained, naive opponent.
7x7

1
5
x
1
5

MDLSTM

CONV

(c) Trained, heuristic opp.

(ε = 0.2).

Fig. 4. Illustrations of fitness scalability on Atari-Go. The points correspond to MDL-

STMs, the crosses to convolutional networks.

Of particular interest is the scalability of the networks trained against the
strongest opponent – as figure 4(c) illustrates (for 7x7 versus 15x15), MDLSTMs
achieve a high correlation (0.64), unlike convolutional networks (0.08).

5 Discussion

MDRNNs are scalable because they are approximately translation-invariant, in
addition to capturing the board symmetries. They handle the same situation on
a bigger board (with empty positions around it) in the exact same way as on a
smaller board. This allows them to use a comparatively low number of weights
(MDRNNs and MDLSTMs with k = 3 have 21 and 93 weights respectively,
independently of board size), thereby reducing the dimensionality of the search
space and making training efficient. Incorporating LSTM cells in the swiping
layer further enabled the architecture to better handle long-distance context,
which is necessary for learning complex strategies, as our experiments versus the
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heuristic opponent show. Finally, the results show that MDLSTMs transfer the
strategies learned on small boards to large ones, leading to a level of play on
15x15 that is on par with human beginners.

Directly training against a stronger opponent (e.g. ε = 0.0) is like finding a
needle in a haystack, as almost all initial networks will lose all games. In future
work we will attempt to address this issue by training against incrementally
harder opponents [21]. We expect to eventually reach a limit on the complexity
of strategies that MDLSTMs can represent. In that case we propose increasing
their representative power by stacking two (or more) MDLSTMs on top of each
other, the lower one producing a map of high-level features that the top one scans
over. MDLSTMs performed equally well on a number of different games, which
we attribute to them being free from domain knowledge. However, in case perfor-
mance is preferred over generality, our approach can easily be extended to make
use of such knowledge, e.g. by feeding the network a number of domain-specific
features [4] instead of the raw board. Due to the generality of our approach and
the similarity of our three games to Go, we expect our positive results to carry
over the game of Go itself, which we intend to investigate as our next step.

6 Conclusion

We have developed and investigated the properties of MDLSTMs, a scalable neu-
ral network architecture based on MDRNNs and LSTM cells. By validating our
results on three different games, we showed that it is suitable for the domain of
board games. Further, we found that training lead to an impressive level of play,
given that they are devoid of domain knowledge and learn the games from scratch.
Finally, the networks trained on small boards scale very well to large ones.
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Abstract. Reservoir computing is a recent paradigm that has proved to be quite
effective given the classical difficulty in training recurrent neural networks. An
approach to using reservoir recurrent neural networks has been recently proposed
for static problems and in this paper we look at the influence of the reservoir size,
spectral radius and connectivity on the classification error in these problems. The
main conclusion derived from the performed experiments is that only the size
of the reservoir is relevant with the spectral radius and the connectivity of the
reservoir not affecting the classification performance.

1 Introduction

Recently a new paradigm for Recurrent Neural Networks (RNNs) has been proposed
with the Echo State Networks (ESN) [1] and the Liquid State Machines (LSM) [2].It is
called reservoir computation [3].

These types of networks have been used traditionally for time domain tasks. But a
proposal for its use in static classification problems has been done in [4,5]. These papers
showed how the reservoir approach could be used in static classification problems and
made a benchmark study showing that this approach is quite competitive. One of the
key issues is the specification of the reservoir: its size, connectivity and spectral radius.
These values depend, of course, on the influence they have on the performance of the
learning machine. A study on how they influence the performance is needed.

In this paper we perform such study: we made controlled experiments where only
one of these parameters is varied at a time such that its effect on the performance can
be observed. This is not straightforward since changing either the size, connectivity or
the random initialization of the reservoir weights changes the spectral radius in a way
that is not analytically foreseeable.

The presented experiments showed the following results: first, the size of the reser-
voir in terms of the number of neurons it possesses is directly related to the classification
performance: as the size increases so does the error. Second, the spectral radius does
not seem to have any influence on the performance, as long as it is under 1.0 (otherwise
the stabilization process would not converge). This is in contrast to what seems to be
the case of time dependent problems [6]. The third conclusion is that the connectivity
does not seem to affect the performance either.

C. Alippi et al. (Eds.): ICANN 2009, Part I, LNCS 5768, pp. 1015–1024, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Representation of a reservoir network. Large circles are the neurons and the small ones
represent the input data. The middle (blue) layer is the reservoir. Dashed connections are optional
(and not used in this paper). Only a small subset of all possible connections is represented.

The remaining of the paper is organized as follows: the next section presents a brief
introduction to reservoir computing; section 3 explains how reservoir computing can be
adapted to static classification problems. In section 4 we present the experiments and
the last section contains the conclusions.

2 Reservoir Computing

The idea of reservoir computing revolves around using a large recurrent hidden layer
(called the reservoir) with fixed weights and only adjusting the output layer weights
(see figure 1). Since the output layer neurons use linear activation functions (usually
the identity function), learning can be done with a linear system solver. This solves a
big problem in traditional RNNs training which had to deal with the minimization of a
usually complex function.

For the most simple case (the only recurrent connections are in the reservoir), we can
write the state x(t+1) of a N neurons reservoir at time t+1, of an ESN with K inputs
and L outputs, as:

x(t + 1) = f(Wx(t) +W inu(t+ 1)) (1)

where f(·) is the reservoir nonlinear activation function, W is the N × N reservoir
weight matrix, W in is the N ×K input weight matrix and u(t+ 1) is the input data.

The L-dimensional network output is given by

y(t) = g(W outx(t)) (2)
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where g(·) is the output linear activation function and W out is a L ×N output weight
matrix. We consider the activation function g(·) to be the identity function.

Regarding the solution of the linear problem that yields the output layer weights, any
linear solver can be used. Consider m to be the number of training patterns. The states
are collected in a m×N matrix, S, and the desired values go into a m× L matrix, D.
The system to be solved is

S(W out)′ = D (3)

The problem with this formulation is that S is not squared and depends on m. With
a simple operation it is possible to deal with both these issues: just multiply both sides
by S′

(S′S)(W out)′ = (S′D) (4)

This transformation does not change the solution of the system but makes it independent
of m and with the new matrix R = S′S, square.

Moreover, more evolved ways than the simple solver can be used, such as, ridge
regression or partial least squares [7]. The problem with these approaches is that an-
other parameter must be found: in the first case, the regularization parameter and in the
second, the number of latent variables. In this paper we used the LAPACK’s [8] linear
solver to solve directly the system in (4) thus requiring no further parameters but not
benefiting from regularization.

3 Reservoir Approach to Static Pattern Classification

The way to use a reservoir network for static pattern classification was introduced, to
our best knowledge, in [4].

The issue was that the reservoir had a dependency of its state, x(t + 1), on the
previous network state, x(t), as can be seen in equation (1).

To break this dependency, that is meaningless in static classification tasks, a stabi-
lization phase was proposed in [4]: keep each input signal present in the network input
until the outputs of the reservoir neurons have almost no change. During stabilization
the output layer is ignored. This way the reservoir can now process data that is not
ordered in time.

The index t in the equations is only used to distinguish between different patterns
and does not represent time.

The state equation is iterated (upper index) until x(t + 1) does not change signifi-
cantly. Notice that we do not use the activation function here.

x(t+ 1)(i) = Wx(t+ 1)(i−1) +W inu(t+ 1) (5)

where x(t + 1)(0) = 0. Equation (5) replaces equation (1) in the case of static classifi-
cation tasks.

4 Experiments

In this section we present experiments to evaluate the importance of the reservoir size,
its spectral radius and connectivity.
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4.1 Datasets

We chose 5 datasets freely available to perform the tests.
All datasets are from the UCI repository [9] with the exception of Olive which is

from [10]. Table 1 contains their main features.

Table 1. Dataset list with its properties

Dataset N. classes N. features N. points
Diabetes 2 8 768
Iris 3 4 150
Olive 9 8 572
Sonar 2 60 208
Wine 3 13 178

4.2 Parameters

Consider N to be the number of neurons in the reservoir, s the connectivity of the
neurons in the reservoir (e.g., s = 0.1 means that only 10% of the possible connections
are not null) and ρ to be the spectral radius (the size of the largest eigenvector) of the
reservoir weight matrix.

The issue in these experiments was: how to vary only one of the parameters without
varying the remaining ? It is not possible to change the spectral radius, ρ, directly. It
depends on N , s, the distribution of the random weights in the reservoir and also on the
range of possible values for these weights: [−init, init]. Changes in either N , s or init
will all change ρ in a way that is not possible to analytically predict since the matrices
are randomly generated.

To be able to vary only one of the parameters we generated 10 random reservoirs for
each triplet (N, s, init) and ploted the average ρ. This was done keeping the value of
N fixed. The left plot in figure 2 shows the results when N was kept at 200. The right
plot presents the contours of left plot: this information was used to follow a contour and
find the values of init that made ρ constant for different values of s, for this particular
value of N . The whole process was repeated for all values of N listed above.

A similar analysis was done for the case where s was fixed and N and init varied.
Using the information gathered on the contours lines, we produced 10 reservoirs with

the desired ρ up to an error of 0.005, by trial and error, for each combination on N , s
and ρ used in the experiments: each reservoir was used in one of the repetitions of a
2-fold cross validation.

In the graphics below, the values of the parameters varied according to:

N = {20, 35, 50, 65, 80, 100, 150, 200, 250, 300, 350},
s = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35} and
ρ = {0.20, 0.40, 0.60, 0.80, 0.99}.

4.3 Results

Consider figures 3 to 7. Regarding the left plot, each color ball represents the average
error of 10 repetitions of a 2-fold cross validation, on the respective dataset. The color
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Fig. 3. Results for the Diabetes dataset

encodes the average error according to the scales by the main graphics. The right plots
contain the average error for each of N , s and ρ found averaging the error over all
the remaining parameters, i.e., for N = 20, the figures show the average error when
N = 20 for all the possible values of s and ρ.

4.4 Condition Number

To evaluate if the problem with increasing the size of the reservoir is due to numeric
instability in the linear system solver, we found the condition number of the matrix R
for each dataset.



1020 L.A. Alexandre and M.J. Embrechts

0 50 100 150 200 250 300 350

0

0.2

0.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5

10

15

20

25

30

35

40

45

50

ρ

N

Iris

s

0
0

1

20

40

50

60

100 150 200 250 300 350

0.05 0.1 0.15

0.2

0.2 0.25

0.3

0.3 0.35

0.4

0.4

0.5 0.6 0.7 0.8 0.9
31.5

32

32

33

32.2

32.4

32.5

32.6

32.8

ρ

s

N

Iris

A
v
e
r
a
g
e

e
r
r
o
r

A
v
e
r
a
g
e

e
r
r
o
r

A
v
e
r
a
g
e

e
r
r
o
r

Fig. 4. Results for the Iris dataset
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Fig. 5. Results for the Olive dataset

The condition number of a matrix A is κ(A) = ||A||.||A−1||. If we choose the L2
norm we find that κ(A) = σmax/σmin where σmax is the maximum and σmin the
minimum singular values of A. The condition number should be small to ensure the
stability of the numeric calculations.

Since the previous experiments showed that the values of the spectral radius and the
connectivity did not influence the performance, we repeated the experiments just taking
N into account (fixing the other two parameters).

Figure 8 shows the value of the condition number for each of the datasets asN varies.
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Fig. 6. Results for the Sonar dataset

Table 2. Best results and respective parameters for all datasets

Dataset Error Std. dev. N s ρ

Diabetes 22.85 1.07 20 0.05 0.99
Iris 2.47 1.04 20 0.20 0.80
Olive 4.63 0.52 65 0.25 0.80
Sonar 23.75 2.9 35 0.15 0.20
Wine 3.99 0.93 20 0.10 0.20

4.5 Discussion

Table 2 presents the best results for each dataset and the respective parameters. The
values do not point to a “best” value of s or ρ. But for N , we see that smaller values
are preferred (3 out of 5 of the values are the smallests tested, 20; another is the next in
terms of size, 35; the last one is 65 which is still much smaller than the largest tested
value of 350).

From the figures 3 to 7 and table 2 we conclude that asN increases the error increases
for all datasets, with the exception of Sonar in which case the error decreases from
N = 20 to N = 35 and then continues increasing. The error for the Olive dataset also
shows a small decrease for the first values ofN but it rapidly increases asN grows. This
is surprising as one would suppose no harm would come from an oversized reservoir,
other than computational cost. What appears to be happening is a problem with the liner
system solving. As can be seen from the values of the condition number of the matrix
R in figure 8, the problems become ill-conditioned very fast with the increase in the
size N .

The spectral radius and the connectivity do not seem to influence the performance at
all. Notice the behavior of error as a function of these two parameters in the two lower
right plots of figures 3 to 7 and also the figure’s scale: parameter changes only make
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Fig. 7. Results for the Wine dataset
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minor random changes in the performance. This point is made clear in table 3 where the
difference between the largest and the smallest values of the error when both the spectral
radius and the connectivity are varied, is presented for all datasets, in absolute value and
as a percentage of the mean error. The differences in the error that come from varying
both the spectral radius and the connectivity are always under 0.9% in absolute terms
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Table 3. Percentage changes in the error induced by changes in the spectral radius and the con-
nectivity both in absolute and relative terms

Spectral radius Connectivity
Absolute [%] Relative [%] Absolute [%] Relative [%]

Diabetes 0.24 0.77 0.18 0.57
Iris 0.71 2.21 0.58 1.79
Olive 0.17 0.93 0.43 2.33
Sonar 0.32 0.80 0.30 0.74
Wine 0.61 1.85 0.84 2.50

and under 2.5% in relative terms. With the exception of the change in the spectral radius
for the Diabetes dataset that decreases the error as ρ increases (see bottom right plot
in figure 3) there is no other linear relation between the changes in these parameters and
the error variations. Even in this case, we believe that this apparent inverse correlation
is casual since only 5 different values of ρ are considered.

Regarding the values of N at which the values of the error stop increasing (top right
plot in figures 3 to 7), they are the same as the ones where the condition number also
stops increasing. These values of N are the ones closer to the size of the training sets.
Remember, the evaluation is done using 2-fold cross validation. For instance, in the case
of Iris, the training set will have 75 points. The error shows its peak around this value
of N (see the right plot in figure 4) and also the condition number stops increasing after
this value (see figure 8). So one concludes that, when using a simple linear solver, the
value of N should always be smaller than the size of training set.

5 Conclusions

This paper presented a study on the influence of several parameters on the classification
performance of reservoir networks for static pattern classification.

The study showed that: 1) The spectral radius of the reservoir matrix does not in-
fluence the classification performance given that it remains in the interval (0, 1) such
that the stabilization process converges; 2) An increase in the size of the reservoir in-
creases the error apparently as a result of the ill-conditioning of the linear system solver
(improvements might be obtained using, for instance, ridge regression); 3) The con-
nectivity does not change the results; 4) The value of N should not exceed the size of
training set when using a simple linear solver.
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Alexandre, Lúıs A. I-1015

Allinson, Nigel M. II-445

Almeida, Leandro M. I-485

Alonso-Betanzos, Amparo I-824

Alzate, Carlos II-315

Andreou, Panayiotis C. I-874

Antonelo, Eric A. I-747

Antonic, Radovan II-475

Antoniou, Pavlos II-986

Apolloni, Bruno I-449

Araujo, Aluizio F.R. I-515

Arcay, Bernardino II-378

Atiya, Amir F. II-275

Austin, Jim I-728

Ban, Tao I-913

Barbosa, Alexandre Ormiga G. II-495

Barth, Erhardt II-923

Bassani, Hansenclever F. I-515

Bassis, Simone I-449

Bayer, Justin II-755

Belle, Vanya Van I-60

Bertol, Douglas W. II-845

Bhaya, Amit I-668

Blekas, Konstantinos II-145

Bodyanskiy, Yevgeniy I-718

Bogdan, Martin I-181

Borisov, Alexander II-944

Bors, Adrian G. II-245

Bouchain, David I-191

Boutalis, Yiannis II-875

Brdys, Mietek A. II-823
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Ďuračková, Daniela I-363

Dutoit, Pierre I-277

Eggert, Julian II-804, II-855

El-Laithy, Karim I-181

Eliades, Demetrios G. II-954

Embrechts, Mark II-175, I-1015

Erwin, Harry I-208

Espinoza, Marcelo II-315

Fernandes, João L. I-356

Fernandez, Emmanuel I-296
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Tiňo, Peter I-567

Titov, Mykola I-718

Tobe, Yutaro I-864

Togelius, Julian II-755, II-765
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