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Abstract. We propose a method for the segmentation of medical images based
on a novel parameterization of prior shape knowledge and a search scheme based
on classifying local appearance. The method uses diffusion wavelets to capture
arbitrary and continuous interdependencies in the training data and uses them
for an efficient shape model. The lack of classic visual consistency in complex
medical imaging data, is tackled by a manifold learning approach handling op-
timal high-dimensional local features by Gentle Boosting. Appearance saliency
is encoded in the model and segmentation is performed through the extraction
and classification of the corresponding features in a new data set, as well as a
diffusion wavelet based shape model constraint. Our framework supports hier-
archies both in the model and the search space, can encode complex geometric
and photometric dependencies of the structure of interest, and can deal with ar-
bitrary topologies. Promising results are reported for heart CT data sets, proving
the impact of the soft parameterization, and the efficiency of our approach.

1 Introduction

Data acquired by medical imaging modalities has a level of richness that needs com-
puter based methods to extract relevant information in a consistent and efficient manner.
The automatic and accurate delineation of the left ventricle (LV) is a prominent exam-
ple for a critical component of computer-assisted cardiac diagnosis. Information with
respect to the ejection fraction, the wall motion, and the valve behavior can be very
useful toward predicting and avoiding myocardial infarction. Existing segmentation ap-
proaches include the use of a shortest path algorithm along with shape matching which
was considered in [1],or an alternative shape representation using level set functions
was proposed in [2].

These methods depend heavily on the accuracy of the inter-subject registration for
group comparison and the parameterization of the shape. A promising line of research
considering wavelets for the representation of shapes was initiated in [3] by build hier-
archical active shape models of 2-D anatomical objects using 1-D wavelets, which are
then used for shape based image segmentation. A further extension was proposed in [4]
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where spherical wavelets are used to characterize shape variation in a local fashion in
the space and frequency domain.

Two crucial components of image model based methods are the parameterization of
the shape manifold, and the capturing and representation of the appearance in the train-
ing and search data. The model based segmentation approach proposed in this paper
accounts for the systematic behavior of shape variation and image support in anatom-
ical structures, with a parameterization that goes beyond pre-defined reference mani-
folds. For the parameterization of complex structures it is worthwhile to not rely on
a reference manifold with an a priori topology, but to learn the appropriate topology
from the training data. For this we have to determine the intrinsic topology of a shape
for which multiple examples are available, and have to encode this information in the
shape model, to use it in the representation and during segmentation.

We propose a method that integrates local voxel classification and global search mod-
els. We model and parameterize shape variation of structures with arbitrary topology,
by using diffusion wavelet shape models [5] to represent the shape variation with a
learnt parameterization based on mutual distance. The approach deals with complex
and soft connectivity properties of objects by encoding their interdependencies with a
diffusion kernel [6]. The topology is learned from the training data instead of using a
priori choices like e.g., a sphere and represents the shape variation by means of diffu-
sion wavelets [7]. A detailed explanation of diffusion wavelet shape models, including
variants of the parameterization can be found in [8].

During search this model is used together with a GentleBoost classifier [9] trained
on the local appearance of the individual landmarks describing the anatomical structure.
The method obtains an accurate delineation of partially visible surfaces and complex
texture, that cannot be achieved with registration based methods. The shape represen-
tation is based on a finite set of landmarks, that can be repeatedly identified and exhibit
significant differentiation to the background on different examples of the anatomical
structure, and more particularly for CT cardiac volumes. During the search the hierar-
chical diffusion wavelet shape model [8] is fitted to new data based on local appearance
captured by the classifier. Related approaches combining local features with standard
shape models are [10], or [11]. The method computes a local feature vector for every
voxel and maps it via a GentleBoost classifier [9] to a probability that the voxel belongs
to a specific landmark in the object. The classifier is trained from the training data set
segmentations. The probabilistic output is constrained by the shape model. The map-
ping onto the diffusion wavelet coefficient space ensures valid results with regard to the
training data. The result of this procedure is a probability for each voxel regarding its
match to the structure to be segmented, conditioned on both local and global informa-
tion. We report results on CT left heart ventricle data sets, that illustrate the impact of
the soft parameterization, as well as the global classifier based search.

2 Hierarchical Shape Model Building

We model the shape variation observed in the training data by means of diffusion
wavelets. Wavelets represent a robust mathematical tool for hierarchically decomposing
functions into different frequency components. We refer the reader to [12] for complete
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Fig. 1. Scheme of Diffusion Wavelet Coefficient Process

description of the theory. The major advantage of wavelets is the compact support of
basis functions on one hand, and on the inherently hierarchical representation based
on multi-resolution modeling of processes at different spatial and temporal scales. The
diffusion wavelet technique introduced by [7] associates multi-scale representation of
training data as well as the topological information captured by means of a diffusion
kernel [6]. Diffusion wavelets enable local as well as global variation detection, which
makes it useful and suitable for our application.

For the modeling of the variation, we consider the heart volumes as a finite set of land-
marks. Starting from m landmark positions, Hi = 〈xi

1,x
i
2, . . .x

i
m, 〉, are known in n

training volume images V1,V2, . . . ,VN . Our data comprises H = {H1,H2, ..,HN},
where xi

j ∈ R
d, and we refer to Hi ∈ R

dm a shape. Since we are only interested
in the non-rigid deformation, all anatomical shapes are aligned by Procrustes analysis,
which produces the series of examples Hp

i , from which we compute the mean shape
H̄p (Fig. 1). Once registered, the shapes are used through their deviation Si from the
mean shape, Si = Hp

i − H̄p, where H̄p represents the volumes mean shape.
We now specify a topology over the set of landmarks. For this we use a hierarchical

geometric graph framework introduced in [6]. It applies the concept of diffusion to cap-
ture mutual relations between nodes in a Markov chain, and derives the global structure
of a shape. In our case, this structure is the neighborhood relation between landmarks
of the shape, that determines the domain upon which the wavelet representation is built.
Diffusion maps grant a canonical representation of high-dimensional data. By this we
are able to represent spatial relations as well as the data behavior. The structure is en-
coded in a diffusion operator Δ ∈ R

m×m. Combining those two diffusion approaches
leads us to a prior knowledge of global and local training population variation [8]. The
diffusion operator Δ is built on the set of points embedded in a metric space utiliz-
ing their mutual distance in the mean shape, and reflects all pairwise relations between
individual points in the shape set.

After defining the diffusion operator Δ, we build the according diffusion wavelet
tree. For this we apply general multi resolution construction for efficiently computing,
representing and compressing Δ2j , for j > 0. The latter are dyadic powers of Δ, and
we use them as dilation operators to move from one level to the next, which is a simple
way of compressing high orders of the diffusion operator. The process of constructing
the diffusion wavelet, the tree and the coefficients is described in detail in [7].
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Once the tree is built based on the diffusion operator, we can compute the diffusion
wavelet coefficients Ω for each shape Si, so that ΩSi = Ψ−1Si, where Ψ represents the
diffusion wavelet tree. Hence we can rebuild our shape as Hp

i = H̄p + ΨΩSi .
Now we move to a representation scale by scale, in order to construct a model of

the variation at each level for all the population training. We gather the low frequency
information in the coarser level, while localized variations will be detected through high
level coefficients in the multi scale representation. We define Ωlevelj at every scale j,
with (1 ≤ j ≤ K), such as Ωlevelj =

{
ΩSi/level=j

}
i=1...N

. Afterward we perform
principle component analysis (PCA) for the coefficients of all scales.

The eigenspace resulting from this PCA will be referred as {Λ, Σ}, where more pre-
cisely will have Σ = {σj}j=1...K , and the corresponding eigenvalues Λ = {λj}j=1...K
of the covariance matrix of the diffusion wavelets coefficients at each level j, and the ac-
cording coefficients Ωlevel

∗
j that represent each training shape in this coordinate system.

Hence in each level the coefficients would be expressed such as:

Ωlevelj = Ω̄levelj + σj

(
σ′

j .Ωlevel
∗
j

)
(1)

Finally we can activate the shape reconstruction process: (1) we compute the diffu-
sion wavelet coefficients ΩSiRec in each level,(2) we remodel the shape based on the
diffusion wavelet tree, and get the reconstructed shape: Υ p

i = H̄p + ΨΩSiRec.

3 Segmentation Based on Image Information and the Model Prior

The segmentation of the LV is challenging mostly due to the similar visual properties
with the other chambers of the heart cavity, as well as the presence of papillary muscles.
The use of edge-driven terms with regional statistics along either with deformable con-
tours or active shape and appearance models. In the first case, computational complexity
is an issue and the proper handling of papillary muscles is problematic. In the second
case, one has to deal with either the linearity of the sub-space or the fact that building
appearance modes requires appearance normalization and too many samples. We adopt
recent developments in machine learning that explores the use of weak classifiers and
arbitrary image features. In the context of the heart muscle, our feature space involves
the (i) gradient phase and magnitude, (ii) structure tensor plus their (iii) curvature [13]
and (v) the responses to Gabor filters with different phases and orientations.

3.1 Learning a Classifier for Appearance Modeling

Starting from this feature space, we apply Gentle Adaboost [9] to obtain a local ap-
pearance prior for the search in new data. The boosting process aims to build a strong
classifier by combining a number of weak classifiers, which need only be better than
chance. For this we call upon a sequential learning process: at each iteration, we add
a weak classifier. It is the basic learning algorithm introduces by Viola, Jones in [14].
Our classification problem evolves as a two class training set that can be represented as:
S = {(xi, yi)}l

i=1 ⊂ R
N× {−1, +1}.

Given these classifiers, we use them to locate landmarks during the segmentation
process. The classifiers detect landmarks present on the ventricle muscle wall against
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Fig. 2. Scheme of the appearance model: Based on local features, and a classifier we can assign
each position in the volume an evidence value for landmarks presence. This results in a set of
hypotheses for landmark positions, that are verified by the shape model constraint.

background. This is a very different strategy in comparison to standard search methods
[15]. The main search strategy is: extract features from the volume, for each landmark
obtain a few candidate positions with a very strong classifier response, fit the DW model
to these candidates, and determine the candidate configuration with the highest plausi-
bility with regard to the shape prior. After continue with the local search at the current
landmark estimates constraint by the DW model. During the shape model fitting we
check which candidates have the highest plausibility with the trained DW model.

In Fig. 2 the scheme of the model search is depicted. For each landmark the search
volume V is projected into a hypothesis space VH

i that reflects the evidence for the
landmark presence for each point in the volume. This results in a position hypothesis x̂i

for each landmark. The set of landmark hypotheses 〈x̂1, . . . , x̂n〉 is tested with the dif-
fusion wavelet shape model, resulting in a position prediction for each landmark. These
predictions are used to generate new hypotheses based on the local image support VH′

i

and the shape model. The hypothesis space is the classifier response on each position
in the volume. During the progressing search we just consider the neighborhood of the
current landmark location estimate during the last iteration.

3.2 The Segmentation Algorithm

Let us summarize the learning and search concepts introduced in this paper. The method
consists of a training phase and an execution step. First, the shape model and parame-
terization, and the local classifiers for the appearance representation are learnt. During
search they are used to locate and segment structures in new image data.

Learning: During the training both geometry and appearance of the structure of
interest are learned.

– Given n examples of the structure of interest location and the corresponding
images, we represent the shape variability through diffusion wavelets.

– Using the same examples, we compute the selected feature images for each
training example for different resolutions. For each landmark, at each reso-
lution, we construct a set of training samples containing local features and
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(a) (b) (c)

Fig. 3. Reconstructed surfaces for Heart CT data using projected wavelet coefficients on PCA
eigenspace, representing 99% of the total variance at finest level. The surfaces are showing the
±3sqrt(λi) from left to right. Figure is dedicated to the sagital view.

corresponding labels which indicate if the position is the landmark location or
the background, i.e., whether it is on the ventricle wall or on the background.
Let’s note here that background voxels are chosen randomly in the volume
except the particular landmark positions for training.

– To train for the fine local differentiation we take into consideration only the
neighborhood of every landmark candidate in each training image. We train a
classifier for each landmark and retain only the ones with solid performance or
wide-margins between the different classes.

Segmentation: Using both geometric and appearance priors and the corresponding
feature space in the image we perform the structure delineation as follows: the
process is initiated with the mean shape, and proceeds in an iterative manner,

– Perform a local search for the most probable landmark positions using the
trained classifiers

– Constrain the solution using the diffusion wavelet coefficient constraints, and
repeats the previous search steps until convergence.

This results in landmark location estimates in the search image, that are based on the
appearance, and the shape constrained learned during the training phase.

4 Experimental Validation

To assess the performance of our approach, we consider a data set that includes 25
CT volumes of the heart, with an approximate voxel spacing of 1.5 mm, for which 90
anatomical standard of reference landmarks, and a set of 1451 control points for the
left ventricle was available, in addition to the ground truth segmentation from experts
concerning the diastole as well as the systole.

We have run our algorithm in a leave-one-out cross validation fashion. For the dif-
fusion wavelet building part, we obtain 9 diffusion wavelet levels of decomposition for
the shape prior. As for the initialization of our framework, we used the mean shape
displaced by a random translation of 30 mm.

To evaluate the efficiency of our method, we computed two error measures: (i) the
Hausdorff distance revealing the maximum error between the standard of reference and
our model reconstruction, as well as (ii) mean distance error of the detected landmarks.
In Fig.4.a, one can see that the Hausdorff distance error decreases with an increasing
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Fig. 4. Multiscale Diffusion Wavelets Reconstruction. (a) Hausdorff Error Distance (in voxel) of
reconstructed heart at each diffusion scale for all data in the training set. (b) Data, green: ground
truth segmentation, red: reconstruction result for finest scale and (c) coarsest wavelet scale.

(a) (b)

Fig. 5. Model search result for Heart muscle. Ground truth in green, in red: search results. (a)
standard Gaussian search approach, and (b) method presented in this paper.

number of diffusion wavelet levels used for reconstruction. When we consider the mean
reconstruction error over all data, we reach a distance of 2.2313 voxel in the image for
the finest level, while as for the coarsest level we obtain 2.7073 voxel. The comparison
of detection results for different numbers of levels used during reconstruction can be
seen in Fig.4. Note that diffusion wavelets have been shown to outperform standard
Gaussian models in terms of search error in [5] on muscle MRI data.

During the search validation experiments, we consider a multi-resolution approach
for each landmark patch which goes from 5*5 pixels to 20*20 pixels in 4 steps. We
obtain 200 landmarks candidates, for 15 training hearts and 10 testing examples. Ex-
periments were carried out using Gentle Adaboost, which is adequate to deal with a
large number of negative examples as well as the rather limited size of our training set.

In the quantitative assessment of the search/segmentation algorithm explained in
Sec.3, we obtain a lowest error of 4.72 voxel between ground truth and relative seg-
mented volume. In a typical segmentation scenario, the method takes approximately
68 seconds in average through non-optimized code implemented in Matlab 7.5, on a
2GHz DELL Duo Computer with 2Gb RAM. One should note here that we are work-
ing toward search in very large data sets, while searching for small complex structures,
thus the efficiency of gradient descent of ASM is limited. In an ideal case one would
combine the trade off between the reconstruction accuracy and the classification error
to choose the best candidate for the search segmentation.
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5 Conclusion

In this paper we propose a 3D hierarchical shape prior segmentation framework based
on diffusion wavelets and local appearance classifiers. The diffusion wavelets are able
to represent subtle inter-dependencies in the training data, by clustering coefficients,
and representing the topology of the structure by a diffusion kernel, instead of a fixed
pre-defined manifold. The conjunction of the diffusion wavelet constraint with a search
method based on a GentleBoost classifier leads to an effective segmentation scheme. It
can deal with ambiguous appearance and complex structures. Future work will focus on
extensive evaluation, and the integration of efficient optimization techniques in addition
to the studied priors to obtain a more flexible and powerful paradigm for representing
shapes of arbitrary topologies, and the search in large data sets.
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