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Preface

The 12th International Conference on Medical Image Computing and Computer-
Assisted Intervention, MICCAI 2009, was held in London, England at Imperial
College during September 20–24, 2009. The venue was situated in one of Lon-
don’s finest locations, adjacent to landmarks such as The Royal Albert Hall and
the Science, Natural History and Victoria and Albert Museums, with Hyde Park
just a short walk away.

Over the last decade, the MICCAI conferences have become a premier in-
ternational event, with papers of very high standard addressing the multidis-
ciplinary fields of biomedical image computing, computer-assisted intervention
and medical robotics. The conference has attracted annually leading scientists,
engineers and clinicians from a wide range of disciplines.

This year, we received a record submission of 804 papers from 36 differ-
ent countries worldwide. These covered medical image computing (functional
and diffusion image analysis, segmentation, physical and functional modelling,
shape analysis, atlases and statistical models, registration, data fusion and mul-
tiscale analysis), computer-assisted interventions and robotics (planning and im-
age guidance of interventions, simulation and training systems, clinical platforms,
visualization and feedback, robotics and human–robot interaction), and clinical
imaging and biomarkers (computer-aided diagnosis, organ/system specific appli-
cations, molecular and optical imaging and imaging biomarkers).

A careful, systematic review process was put in place to ensure the best possi-
ble program for MICCAI 2009. The Program Committee (PC) of the conference
was composed of 39 members, each with recognized international reputation in
the main topics covered by the conference. Each one of the 804 submitted papers
was assigned to two PC members (a Primary and a Secondary). At least three
external reviewers (outside the PC) were assigned to each paper according to
their expertise. These external reviewers provided double-blind reviews of the
papers, including those submitted by the conference organizers. All reviewers,
except a handful who provided last minute “emergency” reviews, refereed be-
tween 8 and 10 papers each, giving each reviewer a reasonable sample for ranking
the relative quality of the papers. Authors were given the opportunity to rebut
the anonymous reviews.

Then, each PC member graded (typically 20) papers as primary based on
the external reviews, the rebuttal and his/her own reading of the papers. In
addition he/she provided input, as Secondary PC, to typically 20 more papers
assigned to various Primary PCs. In summary, each paper was graded by two PC
members and three external reviewers (i.e., by five assessors). During a two-day
PC meeting involving the PC members held during May 17–18, 2009, papers
were selected in a three-stage process:
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– First stage: initial acceptance of those papers ranked very high and rejection
of those papers ranked very low. Eight groups were formed, each comprising
four or five PC members. The groups considered acceptance of the top three
papers from each PC member and rejection of the bottom eight. Any papers
in doubt were transferred to the second stage.

– Second stage: the same groups of PC members ranked the remaining papers
and accepted between 9 and 18 of the highest ranking papers per group and
rejected between 18 and 32 of the lowest ranking papers.

– Third stage: a different set of groups were formed and assigned the remaining
undecided papers to the “accept” or “reject” category through an iterative
process.

In all, we accepted 259 papers (32%) to be included in the proceedings of
MICCAI 2009. Of these, 43 were selected for podium presentation (5%) and 216
for poster presentation at the conference (27%).

The review process was developed from that used in previous MICCAI con-
ferences. In particular we are grateful to Rasmus Larsen for his input on the
statistical basis for the protocol. Each step of the process ensured that, for ran-
dom selections of papers to PC members, the probability of correctly assigning
rejections and acceptances was at least 95%. With the combined skill and ex-
pertise of the PC, we are confident that it exceeded this figure and that we ran
a robust system. Acceptance of papers at MICCAI is a competitive process and
with such a strong submission rate it is inevitable that many good papers were
not able to be included in the final program and we understand the frustration
of authors. We too have had many papers rejected. We congratulate those who
had papers accepted and encourage those who did not to persevere and submit
again next year.

We wish to thank the reviewers and the PC for giving up their precious time
ensuring the high quality of reviews and paper selection. These tasks are time
consuming and require skill and good judgment, representing a significant effort
by all. The continued improvement in the quality of the conference is entirely
dependent on this tremendous effort.

We particularly wish to thank James Stewart of precisionconference.com for
the efficient organization of the website and rapid response to any queries and
requests for changes, many of them totally unreasonable and at a very short
notice.

One highlight of MICCAI 2009 was the workshops and tutorials organized
before and after the main conference. We had a record number of submissions
which resulted in a very exciting, diverse and high-quality program. The work-
shops provided a comprehensive coverage on topics that were not fully explored
during the main conference, including “grand challenges,” and some emerging ar-
eas of MICCAI, whereas the tutorials provided educational material for training
new professionals in the field including students, clinicians and new researchers.
We are grateful to all workshop and tutorial organizers for making these events
a great success.
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We would also like to thank our two invited keynote speakers, Sir Michael
Brady, University of Oxford, UK, and Koji Ikuta, Nagoya University, Japan.
Their presentations on “Oncological Image Analysis” and “Nano and Micro
Robotics for Future Biomedicine” were both inspiring and entertaining.

The conference would not be possible without the commitment and hard
work of the local organizing team. In particular, we thank our Associate Edi-
tors Adrian Chung and Su-Lin Lee for their help in working with all authors
in improving the final manuscript, and Dominique Drai, Ron Gaston, Thomy
Merzanidou, Christiana Christodoulou, Karim Lekadir, Felipe Orihuela-Espina,
Lichao Wang, Fani Deligianni, and Dong Ping Zhang for checking the original
submissions and for assisting in the compilation of the proceedings.

We are grateful to Ferdinando Rodriguez y Baena for coordinating the corpo-
rate sponsorship and industrial/academic exhibitions, Dan Elson and Fernando
Bello for coordinating MICCAI workshops and tutorials, Eddie Edwards for
managing the conference registration and social events, and Raphaele Raupp
for assisting with all the conference logistics. We also thank Robert Merrifield
for his kind help in graphics design and George Mylonas for his huge effort in
designing and implementing the hardware/software platforms for the conference
e-Teaser sessions.

We are extremely grateful to Betty Yue, Ulrika Wernmark and their team for
their tireless effort in managing all aspects of the conference organization—it is
through their effort that we managed to have a seamless event on a busy campus
where many dedicated facilities including the fully equipped poster hall had to
be installed specially for the conference. We also thank all the session Chairs and
Co-chairs in managing and coordinating the presentations during the conference.

We would also like to thank the MICCAI Society for providing valuable
input and support to the conference, especially Guido Gerig for coordinating
the MICCAI Young Scientist Awards and Richard Robb for coordinating the
Best Paper Awards.

Last but not least, we would like to thank all our sponsors for their kind
support, particularly in this most difficult economic climate. Their generosity
ensured the highest quality of the conference and essential support to students
and young researchers.

It was our pleasure to welcome the MICCAI 2009 attendees to London. In
addition to attending the workshop, we trust that the attendees also took the
opportunity to explore the rich culture and history of the city. We look forward
to meeting you again at MICCAI 2010 in Beijing, China.

September 2009 Guang-Zhong Yang
David Hawkes

Daniel Rueckert
Alison Noble
Chris Taylor
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Both oral and poster presentations are eligible for the awards, and the awards
are presented to the winners in a public ceremony at the end of the conference.
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MICCAI 2008:

– The Effect of Automated Marker Detection on In Vivo Volumetric Stent Re-
construction: Gert Schoonenberg, Pierre Lelong, Raoul Florent, Onno Wink,
Bart ter Haar Romeny, Technische Universiteit Eindhoven, The Netherlands,
Philips Healthcare Best NL, Philips France, Paris, France.

– Passive Ventricular Mechanics Modelling Using Cardiac MR Imaging of
Structure and Function: Vicky Y. Wang, Hoi Leng Lam, Daniel B. Ennis,
Alistair A. Young, Martyn P. Nash, University of Auckland New Zealand,
UCLA, USA.

– On-the-Fly Motion-Compensated Cone-Beam CT Using an A Priori Motion
Model : Simon Rit, Jochem Wolthaus, Marcel von Herk, Jan-Jakob Sonke,
The Netherlands Cancer Institute, The Netherlands.

– A Constrained Non-Rigid Registration Algorithm for use in Prostate Image-
Guided Radiotherapy: William Greene, Sudhakar Chelikani, Kailas Purusho-
thaman, Zhe Chen, Jonathan Krisely, Lawrence Staib, Xenophon Papademe-
tris, Jim Duncan, Yale University, USA.
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– Sparse Approximation of Currents for Statistics on Curves and Surfaces:
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Elsevier MedIA-MICCAI Prize 2008
Two prizes were awarded by Elsevier during MICCAI 2008 to the first authors
of two outstanding articles of the special issue of the Medical Image Analysis
journal (volume 12, issue 5, October 2008) dedicated to the previous MICCAI
2007 conference.
– First prize awarded to Cyril Poupon for the article: Real-time MR diffu-

sion tensor and Q-ball imaging using Kalman filtering, Cyril Poupon, Alexis
Roche, Jessica Dubois, Jean-François Mangin, Fabrice Poupon, Medical Im-
age Analysis 12(5) (2008), pages 527-534.

– Second prize awarded to Gabor Fichtinger for the article: Robotic assistance
for ultrasound-guided prostate brachytherapy, Gabor Fichtinger, Jonathan P.
Fiene, Christopher W. Kennedy, Gernot Kronreif, Iulian Iordachita, Danny
Y. Song, Everette C. Burdette, Peter Kazanzides, Medical Image Analysis
12(5) (2008), pages 535-545.
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Parcellation of fMRI Datasets with ICA and PLS-A Data Driven
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984
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Building Shape Models from Lousy Data

Marcel Lüthi, Thomas Albrecht, and Thomas Vetter
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Abstract. Statistical shape models have gained widespread use in medical image
analysis. In order for such models to be statistically meaningful, a large number of
data sets have to be included. The number of available data sets is usually limited
and often the data is corrupted by imaging artifacts or missing information. We
propose a method for building a statistical shape model from such “lousy” data
sets. The method works by identifying the corrupted parts of a shape as statistical
outliers and excluding these parts from the model. Only the parts of a shape that
were identified as outliers are discarded, while all the intact parts are included
in the model. The model building is then performed using the EM algorithm for
probabilistic principal component analysis, which allows for a principled way
to handle missing data. Our experiments on 2D synthetic and real 3D medical
data sets confirm the feasibility of the approach. We show that it yields superior
models compared to approaches using robust statistics, which only downweight
the influence of outliers.

1 Introduction

Statistical shape models have become a widely used tool in medical image analysis,
computer vision, and computer graphics. From a technical point of view, the methods
for model building are well established. The first and most challenging step is to estab-
lish correspondence among the examples. Once the shapes are in correspondence, each
shape is regarded as a random observation, and standard methods from statistics can
be applied. In practice, however, building statistically representative models is much
more difficult. Often, acquiring a large enough data set of sufficient quality constitutes
the most difficult step. This is especially true in the medical domain, where the image
acquisition process is tailored to the physician’s needs and to minimize harm for the
patient. The data available to the researcher is therefore often noisy, incomplete, and
contains artifacts.

In this paper we propose a method for building statistical shape models from data sets
which can include incomplete and corrupted shapes. The main motivation for our work
comes from a project involving the construction of a statistical model of the human skull
from CT data. In many scans, teeth are missing completely or contain dental fillings
resulting in severe metal artifacts. Others show only the region of the skull that was
used to diagnose a certain pathology. As is often the case with medical data, some
skulls show severe pathologies which should not be included in a model representing
the normal anatomy.

To be able to build statistically representative models, we need to make sure that the
corrupted parts do not distort the space of possible shapes the model can represent. Our
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approach identifies the corrupted parts as statistical outliers and excludes them from the
model building. This is done by dividing the shapes into parts and checking for each
part individually whether it is corrupted. During model building, the best reconstruction
of the corrupted parts is estimated from the remaining data sets. This is achieved in a
statistically sound way using the EM algorithm for Probabilistic PCA. Performing the
outlier analysis part-wise has two advantages: In statistical shape modeling, the obser-
vations are usually high-dimensional objects which can naturally be decomposed into
smaller structures. Rather than throwing away all the information, we still use the parts
that are intact to learn the shape variability of these substructures. More importantly,
however, looking for outliers on individual parts makes it possible to detect small, local
outliers, which would remain unrecognized if the shape was analyzed as a whole.

In our approach missing data and artifacts are just different instances of statistical
outliers. There are two main approaches for dealing with outliers. Outlier identification
can be performed to identify corrupted samples and exclude them from the data set.
Methods for identifying outliers are well known in statistics [1]. Most of the traditional
methods, however, consider only the case in which the number of examples is much
larger than the dimensionality of the data. Such methods are not applicable to shape
statistics. In recent years, outlier detection in high-dimensional data has been greatly
advanced in the field of bioinformatics, where outlier-ridden data is the rule and not
the exception [2,3]. The second approach for dealing with outliers is to robustify the
procedure, i.e. to adapt it such that outliers have less influence on the results. This can
be achieved by using robust statistics [4] or by incorporating prior information [5,6].
All steps of the workflow leading to a statistical shape model, from image denoising,
segmentation, and registration to principal component analysis could benefit from being
robustified [4]. In our method, however, we want corrupted parts to remain visible until
the registration process has been performed. This makes it possible to detect and elimi-
nate them completely. Therefore, we do not robustify any of these preprocessing steps.
Knowing that a part of a shape is an outlier allows us to choose an adequate strategy to
deal with it.

2 Method

We first give a brief overview of our approach. Let a set of surfaces be given. We sin-
gle out one surface as the reference shape, which we know to be complete and free of
artifacts. This reference is segmented into parts as illustrated in Figure 1(a). While the
method would work with arbitrary patches of reasonable size, we usually use anatomi-
cally significant parts for ease of interpretation. Before attempting any statistical anal-
ysis, we need to identify corresponding points in all the shapes. We assume that every
target shape can be obtained by deforming the reference surface with a smooth vec-
tor field, which we find using a non-rigid registration algorithm. Figure 1(b) shows the
result of warping the reference surface with such a vector field. We observe that both
artifacts and missing data result in (locally) unnatural deformations. We aim at identi-
fying these as statistical outliers. To do so, we rigidly align the individual parts of each
shape to the corresponding part of the reference and apply an outlier identification algo-
rithm to the locally aligned shapes. The parts that were identified as outliers are marked
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(a) (b) (c) (d)

Fig. 1. Workflow of the outlier detection: 1(a) A reference surface is segmented into parts. 1(b)
Some shape used for model building are incomplete or noisy. 1(c) The reference is warped to
match the shape of the target. The missing parts lead to an unnatural deformation and can thus be
identified as outliers. 1(d) The outlier parts are reconstructed from the remaining data.

as missing in the surface. The statistical model is built from these partial data sets using
a PCA method that can handle missing data. We propose the use of the EM algorithm
for probabilistic PCA (PPCA) [7,8]. Figure 1(d) shows a reconstruction obtained by the
PPCA algorithm.

In the following we provide the details of the methods we use in the individual steps
of the workflow. However, the approach is general and does not depend on the particular
registration or outlier identification algorithm used.

Registration. To establish correspondence among the examples we use a registration
algorithm based on Thirion’s Demons algorithm [9]. Similar to the approach of Paragios
et al. [10], we do not register the surfaces directly, but rather their distance images.
After registration, each shape Γi ⊂ IR3 (i = 1, . . . , n) can be represented as a warp of
a reference surface Γ1 with a vector field φi : Γ1 → IR3:

Γi = {x + φi(x) |x ∈ Γ1}. (1)

The vector field φi can be used to transfer any discretisation of the reference Γ1 to the
shape Γi and thus allows us to treat the surfaces as discrete random observations (i.e.
the surfaces become random vectors).

The parameter in the registration algorithm which controls the smoothness of the
vector field is deliberately chosen to be small, in order to make the outliers visible
and limit their influence on neighboring regions. In the case that smoother registration
results are required for the final shape model, the registration can be run again after the
outliers have been identified.

Procrustes Alignment. The reference shape Γ1 is partitioned into m parts, which we
denote by Γ j

1 , j = 1, . . . , m. Since the surfaces are in correspondence, the same par-
titioning is induced on all shapes. To perform outlier identification, we first align the
individual parts of each shape to the corresponding part of the reference by Procrustes
alignment. In this way only the shape of the part and not its position in space is con-
sidered in the outlier identification. As correspondence among the shapes has already
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been established, the landmarks necessary for the Procrustes alignment only need to be
labeled on the reference. These points can either be selected manually or by an auto-
matic procedure. Let xj

k, k = 1, . . . , N be the landmark points on the j-th part of the
reference. To align the shapes, we find the rotation matrix R ∈ IR3×3, translation vector
t ∈ IR3 and scaling factor s ∈ IR as:

(s, R, t) = arg min
s,R,t

1
N

N∑
k=1

‖xj
k − (sR(xj

k + φi(x
j
k) + t)‖2. (2)

The minimum of (2) admits a closed form solution and can be found efficiently (see
Umeyama [11]).

Outlier Identification in High Dimensional Data. The place in this workflow to iden-
tify and remove outliers is after the alignment step, before they have a chance to corrupt
the statistics, but after they have been brought into correspondence. We use the algo-
rithm PCOut, proposed by Filzmoser et al. [2], which is especially designed for detect-
ing outliers in high-dimensional spaces. As the method is quite intricate and its details
are not critical for understanding our method, we only give a broad overview and refer
the interested reader to the original paper [2].

The main idea of PCOut is to robustly build a PCA model and then identify those
samples that do not fit well into this model. In order to build the robust PCA model, it
suffices to robustly estimate the mean and covariance matrix. PCOut uses the robust es-
timators median and MAD (mean absolute deviation) to rescale the data, and performs
a principal components analysis of this rescaled data. A weighting scheme using a ro-
bust kurtosis measure is used to identify the data sets that do not fit the PCA model well
enough, according to a user-specified threshold. This value is referred to as the “outlier
boundary”.

Probabilistic Principal Component Analysis. In the last step, the parts that were
identified as outliers are marked as missing in the surface. There exist several methods
for PCA that can deal with incomplete data [12]. One such algorithm, which is based
on a sound probabilistic framework, is probabilistic PCA (PPCA) [7,8]. Formulated in
terms of the EM algorithm, PPCA can be seen as an iterative method, which simulta-
neously provides an estimation of the principal subspace and a reconstruction of the
missing data given this subspace. It corresponds to the following generative model for
an observation s:

s = Wx + μ + ε. (3)

That is, s is given as a linear mapping W of the latent variable x ∼ N (0, I) plus
the mean of the observation μ and some additive Gaussian noise ε ∼ N (0, σI). The
mapping W can be found using an EM algorithm, which consists of the following steps:

E-Step: X = WT W−1WT S M-Step: W new = ST XT (XXT )−1.

Here, S is a matrix of all the observed data and X is the matrix of the latent variables
x. Of most relevance for our work is that this EM algorithm enables us to extend the E-
Step such that missing data can be handled. To reconstruct the complete vector s from
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the incomplete data s∗, PPCA finds the unique pair (x, s∗) such that ‖Wx − s∗‖2 is
minimized. The completed observation can be obtained explicitly by computing s =
Wx (i.e. s is the maximum a-posteriori reconstruction of p(s|x)). In each iteration of
the algorithm the reconstruction is improved, as the current estimation of the subspace
given by W becomes more accurate.

3 Results

We performed experiments on a synthetic data set of 2D hand contours and a 3D data
set of human skull surfaces. Our implementation is solely based on freely available
software packages. The registration algorithm is a variant of the Demons algorithm,
as implemented in the Insight Toolkit [13]. The algorithms for outlier detection and
PPCA are readily available as R packages [14,2,15]. The same parameter settings were
used for all our experiments. To align the parts, we automatically determined 20 evenly
distributed landmarks for each part. In all experiments we computed the first 10 princi-
pal components. While the individual algorithms have many parameters that could be
tuned, our experiments showed that the given default values yield good results. Only
the parameter of the outlier boundary for the algorithm PCOut critically influences the
result (cf. Section 2). We found a value of 0.45 to work well with all our data sets.

For the first experiment we considered the case in which only the outlier framed
in Figure 2 is present. Our algorithm successfully identifies the outlier and removes it
from the analysis. The reconstruction computed by the PPCA algorithm is shown in
Figure 3(c). Figure 3 clearly shows that in the presence of such outliers, standard PCA
will fail. For comparison, we computed a robust PCA using the PCAproj algorithm as
provided in the R package pcapp [16]. While the effect of the outlier is reduced, it still
influences the model as illustrated in Figure 3(d). We performed a further experiment,
now including all artifacts shown in Figure 2. Figure 4 shows the variation represented
by the first two principal components. The variation in the data is captured well, without
being influenced by the outliers. We observe that a cusp appears in the model. This may
happen at the borders of a segment, when an outlier part is reconstructed using PPCA,
but the model is not expressive enough to fit the remaining shape exactly. Table 1 shows
a quantitative comparison of the different methods to a ground truth model, which is
built from the complete data sets from Figure 2. We evaluated the Hausdorff distance

Fig. 2. The hand data set consisting of 19 hands. The hand is divided into 6 parts, as shown by the
colors in the first shape. The grey area in the shape images shows manually introduced defects.
The framed data-set marks the corrupted shape used in the first experiment.
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(a) (b) (c) (d)

Fig. 3. Different methods for building shape models from noisy data: 3(a) The mean (black) and
2nd variation using standard PCA. 3(b) The mean and 2nd variation with our method. 3(c) The
reconstruction from the PPCA algorithm (red) together with the corrupted shape. 3(d) A result
from robust PCA: The outlier is still visible and leads to the thinning of the ring finger.

Table 1. Hausdorff distance (in mm) between the ground truth model and the models computed
from data with outliers (σi stands for 1σ in the direction of the i−th principal component)

mean μ μ + σ1 μ − σ1 μ + σ2 μ − σ2 μ + σ3 μ − σ3

PCA 5.77 13.31 12.61 15.90 16.07 15.60 14.19

robust PCA (PCAproj) 5.45 7.12 8.05 6.45 7.91 8.37 8.54

outlier PPCA 1.90 6.09 4.62 6.72 6.30 5.88 5.96

between the mean and first three principal components of the ground truth to the models
computed with regular PCA, robust PCA, and our proposed method. Our method clearly
gives the best approximation to the ground truth model.

We finally applied the algorithm to a data set of 23 human skulls. Some of the skull
shapes in the data set are shown in Figure 5. As before, the artifacts are detected as
outliers and automatically reconstructed, as shown in the same figure. In this test, the
method reaches its breaking point. As a common problem in skull data is that some or all
of the teeth are missing, the reconstruction of the teeth looks slightly unnatural. This is
due to the small number of examples in which the teeth are intact. However, in the final
statistical model, this effect is only visible in the last few principle components. Further,
as the parts are still identified as outliers, a different reconstruction strategy could be
used, such as using a statistical model of the teeth. The comparison with robust PCA

mean +2σ1 −2σ1 +2σ2 −2σ2

Fig. 4. The first two principal components of the model. No artifacts are visible, despite the large
number of artifacts in the data set. At segment boundaries, small discontinuities can appear (red
circle), when the segment is reconstructed from limited data.
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(a) (b) (c) (d)

Fig. 5. 3D Reconstruction 5(a) and 5(c) show two example surfaces from a skull data set. Their
reconstruction is shown in 5(b) and 5(d) respectively.

given in Figure 6 leads again to the conclusion, that in the presence of large outliers,
explicit outlier removal yields superior results than applying robust PCA.

4 Discussion

We presented an approach for building a statistical shape model in the presence of arti-
facts and missing data. The main idea is to divide the shapes into parts, and to perform
outlier detection on each part individually. Once a part is identified as an outlier, it is
removed from the data set. The remaining shape is still used to build the model. In
this way, it becomes possible to build shape models from data sets in which almost
every shape has some defect. Compared to robust approaches for model building, our
method has the advantage that it does not only downweight the influence of an outlier
but eliminates it completely. Further, explicit identification of corrupted parts is useful,
as it enables us to choose an adequate strategy to replace it. The strategy we presented
here is to complete these parts implicitly during model building. Depending on the ap-
plication, a different approach could be to either remove the parts completely from the
analysis, or to perform a reconstruction using a dedicated shape model for this specific
part. In general, some of the methods used in our workflow might not be suitable for
some applications. For instance, the rigid alignment removes the rotational component,

(a) (b) (c) (d)

Fig. 6. Models from real data. 6(a) and 6(b) show the mean and the first principal variation using
our method. The outliers are clearly visible when using standard PCA (Figure 6(c)) and still
influence the results of robust PCA (Figure 6(d)).
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and hence makes it impossible to detect rotational outliers. In the skull example, an
open jaw is therefore not detected as an outlier. However, the only step that has to be
changed in order to detect such cases is the local alignment. In this respect, the approach
we presented here should be seen as a strategy to deal with “lousy” data sets rather than
a ready-made method.

While we used anatomically significant parts to perform outlier identification, arbi-
trary surface patches could be used. How to choose these patches optimally is by itself
an interesting problem, which will be the subject of future research.
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work was funded by the Swiss National Science Foundation in the scope of the NCCR
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Statistical Location Model for Abdominal Organ 
Localization 
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Abstract. Initial placement of the models is an essential pre-processing step for 
model-based organ segmentation. Based on the observation that organs move 
along with the spine and their relative locations remain relatively stable, we 
built a statistical location model (SLM) and applied it to abdominal organ local-
ization. The model is a point distribution model which learns the pattern of 
variability of organ locations relative to the spinal column from a training set of 
normal individuals. The localization is achieved in three stages: spine align-
ment, model optimization and location refinement. The SLM is optimized 
through maximum a posteriori estimation of a probabilistic density model con-
structed for each organ. Our model includes five organs: liver, left kidney, right 
kidney, spleen and pancreas. We validated our method on 12 abdominal CTs 
using leave-one-out experiments. The SLM enabled reduction in the overall  
localization error from 62.0±28.5 mm to 5.8±1.5 mm. Experiments showed that 
the SLM was robust to the reference model selection.  

1   Introduction 

Segmentation of anatomical structures is often the first step in computer-aided diag-
nosis using medical images. In recent years there has been considerable interest in 
methods that use deformable models or atlases to segment anatomical structures. One 
category of deformable models, such as active contour models [1] and geodesic level 
sets [2], is based on the optimization of objective functions.  Another category of 
models, including active shape models (ASM) [3], probabilistic atlases [4], and statis-
tical shape models [5], is constructed based on prior information extracted from sam-
ples. The motivation is to achieve robust segmentation by constraining solutions to be 
valid examples of the structure modeled in a population. 

Abdominal organ segmentation on CT scans is a challenging task due to the fol-
lowing reasons. First, different organs have similar Hounsfield number, which limits 
the use of thresholding methods. Second, organs have irregular shapes and often 
demonstrate large anatomical variations amongst individuals. Third, image artifacts, 
such as beam-hardening, partial-volume and motion, raise more difficulties.  

Instead of segmenting each organ separately, multi-organ segmentation has at-
tracted investigations in recent years [4-6]. Park et al. [4] constructed a probabilistic 
atlas of three organs (liver, both kidneys) and the spinal cord. The atlas was optimized 
in a Bayesian framework using mutual information as the similarity measure. Okada  
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Fig. 1. Organ location model. Left: relative location model; right: probabilistic density model. 

et al. [5] proposed a hierarchical statistical atlas to embed the constraints on inter-
relations amongst organs in an orga`nization of probabilistic atlases and statistical 
shape models. Shimizu [6] et al. proposed a simultaneous extraction method for 12 
abdominal organs based on abdominal cavity standardization and the EM algorithm.  

Initial placement of the models is essential to the success of model-based methods, 
and this is especially important for organ segmentation due to the large variability. 
Most methods [4] [7] require the models be placed in close proximity of the targets. 
Some methods relied on human experts for manual initialization and guidance [4]. 
Fujimoto et al. [7] set up a coordinate system centered at the T12 vertebra and  
employed normalized distance for model initialization.  

In this paper, we propose a novel method to initialize the model location for multi-
organ segmentation. We observed that the spinal column supports the human upper 
body. When the spine moves, the organs move along with it and the relative location 
between the organs and the spine remains relatively stable. Furthermore, the organ 
location configurations amongst normal individuals are similar. Therefore, we model 
the statistics of the organ location relative to the spinal column using a point distribu-
tion model. The organs are also equipped with probabilistic density models. Our 
model includes five abdominal organs: liver, spleen, pancreas and both kidneys.  

2   Methods 

Our method is summarized as follows. In the modeling phase, we first segment the 
spinal column and partition it into vertebrae. The vertebrae are used as anchor points, 
and the relative locations between organs and vertebrae are recorded. We then build  
a statistical location model (SLM) to learn all possible configurations of organ rela-
tive locations from a training set of normal individuals. We also build a probabilistic 
density model for each organ. In the application phase, the SLM is applied to a new 
data set to obtain the initial organ location through maximum a posteriori (MAP) 
estimation of the probabilistic density model. 
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2.1   Automated Spinal Column Extraction and Partitioning 

The details of the automated spinal column extraction and partitioning can be found in 
[8]. A threshold of 200 HU is applied to mask out the bone pixels. Then a connected 
component analysis is conducted to obtain the initial spine segmentation. The spinal 
cord is then extracted using a watershed algorithm and a directed acyclic graph 
search. Then curved planar reformation is computed along the centerline to partition 
the spinal column into vertebrae. After that, the ribs are detected using features such 
as size, location, shape, orientation and density.  Finally the vertebrae are labeled on 
the basis of two pieces of anatomical knowledge: 1) one vertebra has at most two 
attached ribs; 2) ribs are attached only to thoracic vertebrae. Figure 1 illustrated one 
example of partitioned spinal column. In our model, only six vertebrae, T10, T11, 
T12, L1, L2 and L3, are included since they are present in most abdominal CT scans. 

2.2   Organ Location Model 

We build an organ location model based on the spinal column. We fit a B-Spline 
curve for the centerline of the spinal cord. A local frame { })(),(),(),( 21 iiii VfVfVtVc

rrr  is 

established for each vertebra Vi. Here c(Vi) is the center point of Vi  at the spinal cord, 
)( iVt

v
 is the tangent of the spinal cord, )(1 iVf

v
 and )(2 iVf

v
 are two orthogonal vectors 

on the plane perpendicular to )( iVt
v

. Given the local frame at Vi, the relative location 

and orientation of each organ can be computed. 
In the modeling phase, we manually segment each organ and compute its 3D sur-

face. For an organ Oj, we use the center of mass of the 3D surface as its center. The 
relative location between an organ Oj and a vertebra Vi is defined as, 

rl(Oj, Vi) = c(Oj)-c(Vi) (1)

here c(Oj) is the center of organ Oj and c(Vi) is the center of vertebra Vi. The location 
vector of organ Oj is then defined as,  

L(Oj) = {rl(Oj, V1), rl(Oj, V2), …, rl(Oj, Vn)}  (2)

here n is the number of vertebrae in the model (n=6 for vertebra T10 to L3).  The 
location vector for multiple organs is the concatenation of the location vector of each 
organ in the model, i.e., 

L = {L(O1), L(O2), …, L(Om)} = {rl(O1, V1), rl(O1, V2), …, rl(Om, Vn)} (3)

here m is the total number of organs in the model (m=5). The location vector is a 90 
dimensional vector (5*6*3=90). The organ location model is illustrated in Figure 1. 

2.3   Probabilistic Density Model 

We build a probabilistic density model for each organ. The model is a conditional 
Gaussian model using sample mean and variance over the manually segmented organ 
region. The density model of an organ Oj is represented as,  

G(Oj) = (µ(Oj), σ(Oj)) (4)
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where µ(Oj) is the mean tissue density and σ2(Oj) is the variance. Given this model, 
the conditional probability of a tissue yi belonging to organ Oj is,  
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Figure 1 (right) shows the probabilistic density models of five organs. 
 

 

Fig. 2. Statistical location model (SLM). Cylinders are vertebra models. Note variations in the 
relative locations of liver (cyan), left kidney (yellow), right kidney (orange), spleen (blue) and 
pancreas (green) as the largest mode b1 is varied. 

2.4   Statistical Location Model 

Our aim is to build a statistical location model (SLM) for abdominal organs. The 
SLM describes both the typical location and variability of the organs from a training 
set of normal individuals. This is achieved by a point distribution model (PDM).  

In order to compute the statistics, all training models must first be aligned. We ran-
domly select a reference model from the training set and align other models to it. The 
technique is described in detail in Section 2.5.1. The alignment is through the spinal 
column and the aligned location models form an “allowable location domain”, which 
can be modeled using a PDM. 

A principal component analysis (PCA) method is employed to extract the “modes 
of variation” from the training set. Given a set of N aligned location models {Li} (Eq. 
3), the mean location model L   is computed, 

∑
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A covariance matrix S is constructed using the deviation from the mean model,  
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The eigenvectors {e1, e2, .. eN}and their corresponding eigenvalues {λ1, λ2, …, λN} are 
computed. The variance explained by each eigenvector is equal to its corresponding 
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eigenvalue. The first t (t<N) eigenvectors are often sufficient to define the “allowable 
location domain”. Any location model in the domain can be represented by taking the 
mean and adding a linear combination of the eigenvectors, i.e., 

EbLbL +=)(  (8)

where E={e1, e2, .. et} is the matrix of first t eigenvectors, and b=(b1, b2, …, bt)
T is the 

model parameter vector. By varying b, we can generate new location instances within 
the “allowable location domain”. Given an instantiated location model L(b), the rela-
tive location rl(Oj, Vi) can be extracted from the vector (Eq. 3), and the location of an 
organ can be computed as,  
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Figure 2 shows examples of instantiated location models by varying the largest mode 
b1 of the SLM. 

2.5   Organ Localization Using SLM 

Given the SLM, the organ localization is treated as an optimization problem in which 
we maximize the similarity between one instantiated model and an image. After the 
spinal column is extracted and partitioned from the image (section 2.1), the organ 
localization is conducted in three steps: first, the spinal column in the SLM is aligned 
with the spinal column in the image (2.5.1); second, the model parameter is optimized 
through MAP estimation of the probabilistic density model (2.5.2); and third, the 
location of each organ is locally refined (2.5.3). 

 
2.5.1   Model Alignment 
The location models are aligned 
using the spinal column. That is, the 
vertebrae in one model are aligned 
to their corresponding vertebrae in 
another model. The organs are then 
relocated according to the spine 
alignment. Assuming the translation 
of vertebra Vi from the moving 
model to the fixed model is ∆t(Vi), 
the new location of organ Oj is, 
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Currently only the positions of the vertebrae are aligned, not the orientation. Figure 3 
shows two models before and after the alignment. 

2.5.2   Model Optimization 
The optimization of the SLM is through MAP estimation of the probabilistic density 
model. Given a location model L(b), we can extract the organ location l(Oj) using  
 

Fig. 3. Model alignment. a) Before alignment, b)
after alignment 

b) a) 
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Fig. 4. Organ localization example. Reference models are superimposed on the image data, 
orientation not optimized. Liver (cyan), left kidney (yellow), right kidney (orange), spleen 
(blue) and pancreas (green). 
1st row: axial view; 2nd row: sagittal view; 3rd row: coronal view  
1st column: initial state; 2nd column: after spine alignment; 3rd column: after model optimiza-
tion; 4th column: after local refinement. 

 
Eq. 3 and 9. The manually segmented organ region in the reference model is moved to 
location l(Oj), and the set of voxels inside the region are generated, denoted as Ω(Oj, 
L(b)). The average probability that Ω(Oj, L(b)) coincides with organ Oj is, 
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here p(yi|Oj) is defined in the probabilistic density model (Eq. 5). To obtain the opti-
mal location model, we maximize the a posteriori probability for all organs. That is, 
the optimal model parameter b is, 
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The optimization algorithm is Powell’s method. 

2.5.3   Location Refinement 
Since the SLM can only model the variability present in the training set, we conduct a 
location refinement for each organ independently. The refinement is conducted in a 



 Statistical Location Model for Abdominal Organ Localization 15 

small neighborhood of L(bopt) and through MAP estimation of the probabilistic den-
sity model, i.e., 

( ))|))(,((maxarg)( j
opt

j
l

opt
j OlbLOPOl Δ+Ω=Δ

Δ

 (13)

here ∆l(Oj)
opt is the optimal location adjustment.  

Figure 4 shows an example of organ localization using the statistical location 
model. The reference model is superimposed on the image data. 

2.6   Validation Dataset and Analysis 

Our method was validated on 12 (6 males and 6 females) abdominal CT scans. The 
CT reconstruction interval is 1 mm. We manually segmented the five organs from all 
cases. The center of mass is treated as the location of an organ. The localization error 
is computed as the distance between the manually determined organ location and the 
computed organ location, 

∑
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(14)

here l(Oj)
cp is the computed organ location (Eq. 10), l(Oj)

gt is the location determined 
by manual segmentation (used as ground truth), ∆d is the overall localization error. 

In our validation, we adopted a leave-one-out strategy. That is, we used 11 data 
sets to build a SLM, and applied the SLM on the left-out data to compute the organ 
locations. 

3   Results 

The eigenvalues of the SLM built from 12 data sets are shown in Table 1. It shows 
that the first 6 modes of the SLM cover more than 95% of the variability. 

Table 1. Eigenvalues of the SLM 

λ1’ λ2’ λ3’ λ4’ λ5’ λ6’ λ7’ λ8’ λ9’ λ10’ λ11’ λ12’ 
42.6% 27.1% 10.0% 7.5% 5.9% 2.5% 1.9% 1.1% 0.7% 0.3% 0.1% 0% 
λi’= λi/ λt , λt is the sum of all λs. 

 
Figure 5 shows the statistics (mean and standard deviation of all leave-one-out ex-

periments) of the localization error in each stage of the organ localization. The local-
ization error was reduced dramatically (91%) from the initial stage to after the final 
refinement. Figure 6 shows the localization error of each organ. It shows that the liver 
is most accurately located, but the differences of localization errors amongst organs 
are small. 

To evaluate the sensitivity to the reference model selection, we build different 
SLMs using different data sets for the reference models. The leave-one-out strategy 
was again adopted in the validation. Table 2 shows the results with different reference 
models. It indicates that our model is robust to the reference model selection.  



16 J. Yao and R.M. Summers 

Table 2. Localization error (mm) of different reference models 

model 1 2 3 4 5 6 7 8 9 10 11 12 
mean (mm) 5.9 5.8 6.3 6.2 5.9 5.5 5.8 5.7 5.6 5.9 5.6 5.9 
stdev (mm) 1.4 1.0 1.7 1.6 1.9 1.3 1.2 1.6 1.4 1.5 1.5 1.5 

 
Leave-one-out Validation
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Fig. 5. Localization error in each stage of 
organ localization 

Fig. 6. Localization error for each organ 

4   Discussion 

The SLM is similar to the active shape model (ASM) [3] in the way that the model is 
constructed. Instead of modeling the variability of labeled landmark positions as in 
the ASM, we model the variability of the abdominal organ locations relative to the 
spinal column. Our model ensures that the instantiated organ locations are consistent 
with the ones in the training set. The organ localization is only the first step towards a 
fully automated organ segmentation method. The final segmentation can be achieved 
using techniques such as level sets [2], ASMs [3], and statistical atlases [5].  

More work is still needed to improve the SLM. For instance, variability of organ 
orientation and scale can be incorporated so that the SLM can bring the model even 
closer to the target during the initialization. Furthermore, the constraint of relative 
locations amongst organs can be incorporated to prevent organs from intersecting 
each other. The model will be trained on a larger training set to provide better estima-
tion of the variability being modeled. Currently the model only works when vertebrae 
T10-L3 are present in the dataset. Although this requirement is met for most abdomi-
nal CTs, we could improve the spine alignment to accommodate data sets with fewer 
vertebrae. 

In conclusion, we have developed a novel SLM that provides accurate and fast  
initialization of multiple organs in abdominal CT segmentation. 
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Abstract. In this paper, we describe methods for constructing shape
priors using orientation information to model white matter tracts from
magnetic resonance diffusion tensor images (DTI). Shape Normaliza-
tion is needed for the construction of a shape prior using statistical
methods. Moving beyond shape normalization using boundary-only or
orientation-only information, our method combines the idea of sweeping
and inverse-skeletonization to parameterize 3D volumetric shape, which
provides point correspondence and orientations over the whole volume
in a continuous fashion. Tangents from this continuous model can be
treated as a de-noised reconstruction of the original structural orien-
tation inside a shape. We demonstrate the accuracy of this technique
by reconstructing synthetic data and the 3D cingulum tract from brain
DTI data and manually drawn 2D contours for each tract. Our output
can also serve as the input for subsequent boundary finding or shape
analysis.

1 Introduction

Shape priors are powerful tools for image analysis [1,2,3,4,5,6,7,8]. In cases where
the signal-to-noise ratio is low, using a prior model, typically generated by man-
ual delineation, can substantially improve the accuracy of the end result. With
Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) [9,10,11], see Fig. 1
(left), one can now evaluate directional structural information within a volume
in addition to the boundary of a shape. There is a natural demand for incorporat-
ing volumetric structural information into prior models for DTI data [12,13,14].
Such models are useful for quantifying and comparing white matter structure in
neurologic and psychiatric disorders.

1.1 Shape Representation

Common shape representations include the boundary mesh [3,8], the distance
map [1,4,5,7], and coefficients of harmonic functions [6]. In the context of shape
sampling, we can manually specify boundary points and use straight lines in 2D
or triangles in 3D to represents the actual boundary of a shape. A distance map
can be computed based on the shortest distance from each point to the boundary.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 18–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. (Left) Diffusion Tensor Image showing fractional anisotropy (FA) and main
diffusion orientations. (Middle) Position and orientation around the cingulum tract
within the white matter. (Right) One of the manual segmentations of the cingulum
tract.

Such implicit representations have the advantage of representing complex shapes
using a single map. On the other hand, a projection from boundary points to
harmonic functions transforms the representation from the spatial to a frequency
domain. A frequency representation is generally shift and rotation invariant as
well as continuous in the spatial domain and therefore easy to resample.

1.2 Point Correspondence in a Volume

Shape normalization [15] establishes a common ground for comparing shapes.
Boundary samples on one training shape need to be at the same relative loca-
tions on all the others in order to provide a meaningful comparison. If point
correspondence cannot be established manually, this could be a point-based reg-
istration problem. When using a labeled map, for example the FA map in Fig. 1
(left), instead of boundary points, this could be an intensity-based registration
[16]. However, accurate non-rigid intensity-based inter-subject registration can
be very difficult for small structures. Assuming intensity maps can be registered
reasonably well, if no interior landmark points or features [3] are given, inter-
nal point correspondence established over these homogeneous regions through
registration is purely controlled by the interpolation between boundaries and
smoothing constraints, which are unrelated to the internal structure of the train-
ing shape. In cm-reps [17], a shape is parameterized based on an object map and
a manual skeleton, which provides interior landmarks, using the idea of inverse-
skeletonization. Sun et al. [15] further analyze the cm-rep approach targeted at
the corpus callosum from 2D brain DTI.

1.3 Training Shape with Orientation Data

Our goal is to create a set of normalized 3D training shapes with meaningful
interior point correspondence. In most cases, specifying internal landmark points
over all shapes would be impractical. So, we restrict our input to a limited num-
ber of 2D contours, see Fig. 1 (right), which are drawn on several slices of an
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image volume. Unlike previous surface-driven [15,17] or line-based orientation-
driven [12,14] normalization techniques, we represent the training shapes using
combinations of continuous basis functions and incorporate orientation data into
our normalization process. The analysis of normalized shapes and their under-
lying orientation patterns can be performed on either the frequency domain or
at freely selected spatial locations without the problem of under-sampling or
re-meshing.

2 Fourier Surface and Volume in 3D

We begin with a set of 2D manual contours drawn on z-planes, see Fig. 1 (right).
We represent each individual contour as a closed curve, with x(βs), y(βs) ex-
pressed in terms of the arc-length parameter βs ∈ [0, 2π] and decompose as
Fourier series. The Fourier coefficients of the contour at each z level are them-
selves decomposed as Fourier series over the range αs ∈ [0, π]. We construct the
Fourier surface [6]: S(αs, βs) =

⎡
⎣x(αs, βs)

y(αs, βs)
z(αs, βs)

⎤
⎦ =

K1∑
k1=0

K2∑
k2=0

[
a11(k1, k2) · · · a14(k1, k2)
a21(k1, k2) · · · a24(k1, k2)
a31(k1, k2) · · · a34(k1, k2)

]⎡
⎢⎣

cos(k1, αs) cos(k2, βs)
cos(k1, αs) sin(k2, βs)
sin(k1, αs) cos(k2, βs)
sin(k1, αs) sin(k2, βs)

⎤
⎥⎦ (1)

K1, K2 are the number of harmonics used to represent the long-axis and cir-
cumferential variations. To compute the coefficients aij for all frequencies, we
perform Fourier Transforms:

a11(k1, k2) =
ˆ 2π

αs=0

ˆ 2π

βs=0
x(αs, βs) cos(k1, αs) cos(k2, βs)dαsdβs (2)

Although we define the contours’ αs parameter up to π, the x(αs, βs) are re-
peated in reverse z-direction such that we have a full period of samples, see [6]
for details. The other aij can be computed similarly. To perform integration in
(2) by discrete summations, S(αs, βs) is preprocessed to be equally spaced.

After computing the surface coefficients aij(k1, k2) from the input contours,
our goal is to solve for the unknown coefficients aij(k1, k2, k3), defined in Eq. (3),
which also carry orientation information from the image data D(x, y, z) ∈ �6.
D is the symmetric diffusion tensor computed at each voxel from the DTI data.
This computation can be performed by inverse Fourier Transform of V (α, β, γ) :

⎡
⎣x(α, β, γ)

y(α, β, γ)
z(α, β, γ)

⎤
⎦ =

K1∑
k1=0

K2∑
k2=0

K3∑
k3=0

[
a11(k1, k2, k3) · · · a18

a21(k1, k2, k3) · · · a28

a31(k1, k2, k3) · · · a38

]⎡
⎢⎢⎣

cos(k1α) cos(k2β) cos(k3γ)
cos(k1α) sin(k2β) cos(k3γ)
sin(k1α) cos(k2β) cos(k3γ)
sin(k1α) sin(k2β) cos(k3γ)
cos(k1α) cos(k2β) sin(k3γ)
cos(k1α) sin(k2β) sin(k3γ)
sin(k1α) cos(k2β) sin(k3γ)
sin(k1α) sin(k2β) sin(k3γ)

⎤
⎥⎥⎦ (3)

where V (α, β, 0) = S(αs, βs) are the boundary conditions (4)

which is an extension of the Fourier surface with an additional parameter γ rep-
resenting the boundary-to-axis variation of the volume. K3 defines the number
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Fig. 2. (Left) A cross section of the parameterized shape with the sweeping plane.
(Right) An example of minimum energy 2D front propagation on the sweeping plane.

of harmonics used for this variation. Generally, parameter α �= αs and β �= βs.
Also, we do not have interior samples of V . In the next section, we will discuss our
method of generating ordered samples of V (α, β, γ) from S(αs, βs). The input
structural orientation data is given by the eigen-decomposition of D and taking
the main eigenvector v denoting the orientations of the underlying tissue. We
will represent the orientations by the partial derivative of V (α, β, γ) w.r.t. α:

∂

∂α
V (α, β, γ) = v(D), v : �6 → �3 (5)

3 Volumetric Parameterization through the Sweeping
Plane

Similar to the challenge in white matter fiber tracking [11,12,13], v(D) contains
noise and irrelevant orientations belonging to other structures and thus we can-
not normalize the shape solely depending on the data orientations. Our method
combines the idea of sweeping [18,13] and inverse-skeletonization [15] to gen-
erate ordered samples of V (α, β, γ) which satisfies (4) as well as (5). Without
specifying a skeleton, we iteratively track the tract’s axis V (α, β, π) from the ori-
entation data. We use a sweeping plane to assist the estimation to reduce local
tracking error by taking boundary information into account. With the estimated
axis position and a 2D boundary extracted from the input surface S(α, β), we
find the inverse-skeleton on the sweeping plane by solving a minimum energy
front propagation equation using a 2D level set method [19], see Fig. 2 (right),
as described below:

Assume the first manual contour is the same in our final volume, i.e. V (0, β, 0)
= S(0, βs). Let N(α0, β, γ) be the inward normal of the contour. We solve for
V (α0, β, γ), the area enclosed by V (0, β, 0), according to:
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∂

∂γ
V (α0, β, γ) = (1 − εK(β, γ))N(α0, β, γ), β ∈ [0, 2π], γ ∈ [0, π] (6)

Here, K(β, γ) is the curvature of the evolving front and ε is a small constant. Let
V (α0, β, γ) be the first sweeping plane, see Fig. 2 (left). Let

(
x̄(α0), ȳ(α0), z̄(α0)

)
= V (α0, β, π) be the estimated tract’s axis location relative to the first contour.
We then compute the average orientation f ′(α0) from D over a neighborhood Ω
of the most recent axis point defined by the maximum inscribed disc from that
point:

f ′(α0) =
˚

(x,y,z)∈Ω

Wα (x − x̄(α0), y − ȳ(α0), z − z̄(α0))v(D(x, y, z))dxdydz (7)

with weighting function and maximum axis point-to-boundary distance:

Wα(d1, d2, d3) = e−
√

(d1)2+(d2)2+(d3)2/d(α) (8)
d(α) = maxdist

α

(
V (α, β, 0), (x̄(α), ȳ(α), z̄(α)

)
(9)

Now we move to the next α value by advancing Δα step in the parametric space
and Δs step in the image space along the average orientation:

α1 = α0 + Δα (10)
V (α1, β, π) = V (α0, β, π) + Δsf ′(α0)/|f ′(α0)| (11)

Before going back to (6), we need V (α1, β, 0) which is not S(α1, βs) in general
except when α = α0. However, we know that V (α1, β, 0) must be on S(αs, βs).
So we reconstruct V (α1, β, 0), which will later become part of the reconstructed
surface, from parameterized data points by the intersection between the sweeping
plane passing through V (α1, β, π) with the normal f ′(α1) and the input surface
S(αs, βs). That is, we solve by gradient descent on a set of surface parameters
{(αs, βs)} for:

V (α1, β, 0) = {S(αs, βs)|
(
S(αs, βs) − V (α1, β, π)

) · f ′(α1) = 0} (12)

After looping through Equations (6)-(12) for all α ∈ [0, π], we obtain a set of
P sweeping planes with nested level contours on each plane. P will increase if
Δs decreases. From the nested contours on each plane, we sample K3 number
of contours with uniform separation. The first contour on each plane must be
the boundary and the last one must be the tract axis. Each level contour is also
equally sampled, having 2K2 number of points, with the first point defined as
the closest point to the previous contour. The first boundary point is defined to
be the closest point to the first boundary point on the previous plane. In order
to measure the distance of points between two sweeping planes, we apply a rigid
transformation to align their tract centers and plane orientations. At the end, we
have P × 2K2 ×K3 number of ordered points of V (α, β, γ). We then project our
sampling points V (α, β, γ) into Fourier space defined by (3) and take derivatives
to obtain the orientation vectors.
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Table 1. Reconstruction errors for the synthetic tract orientations. Example artificial
contours shown on the right. Errors are the angles in degrees between the reconstructed
tangents and ground truth orientations. Four methods compared: (1) our method, (2)
fit input contours to volumetric basis functions without sweeping, (3) linearly interpo-
late input contours and use central differences to compute tangents, and (4) forward
difference for tangents. The last three methods do not depend on orientation data, and
thus are not affected by orientation noise.

Method
\ Error
(degree)

Basis fcn
w sweep

Basis fcn
w/o

sweep

Mesh &
Central

diff.

Mesh &
Forward

diff.
Min

(w noise)
0.083-0.170
0.0234-0.15

0.036-0.041 0.017-0.030 0.029-0.118

Max
(w noise)

5.61-14.0
11.98-15.55

31.8-37.9 20.4-63.5 26.0-89.5

Mean
(w noise)

2.62-2.96
2.93-4.23

3.52-3.97 3.06-3.47 2.97-3.57

Variance
(w noise)

1.50-1.95
1.93-2.84

3.37-5.49 3.39-5.59 3.72-8.04

4 Experimental Results

As a validation, we synthesize a tract with orientations by sampling the tan-
gents of a portion of a parametric conical spiral [20]. K1 = 10 is the number
of input contours. K2 = 41 and K3 = 6 are user-defined. K1 and K2 are the
same in S(αs, βs) so that V (α, β, γ) reconstructs S(αs, βs) with very small nu-
merical errors. Table 1 compares results on a synthetic image. Input contours
are obtained from numerical intersections of vertical planes and the spirals at
different locations. The table shows the range of results from 5 sets of contours,
and there are 10 contours in each set. Synthetic tensors are formed from the
spiral tangents with additional gaussian noise variance from 0.01 to 0.2. With
orientation noise variance below 0.1, the basis function approach with sweeping
performs the best in terms of average and maximum error as well as error vari-
ance. Using basis functions has a smoothing effect which slightly increases the
minimum error. However, finite differences are sensitive to individual inaccurate
input contours. When orientation data becomes unreliable, the average error of
the first method will be similar to the finite difference schemes; however, it is
still better in terms of maximum error and error variance. We also applied this
method to a set of 18 normal human MR-DTI images with manually traced cin-
gula. Fig. 3 shows our reconstructed orientations of the cingulum tract from real
DTI data and visually compares to the original main diffusion direction. Our
process filtered out unaligned diffusion vectors, mostly near the tract boundary,
which are likely due to partial volume effects or were corrupted by noise. Addi-
tional reconstructed surfaces and orientations are given in Fig. 4. Our method
does not change the input surface S(αs, βs), but modifies its parameterization
to become V (α, β, 0).
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Fig. 3. Unaligned orientations (lines in the left figure) in a cingulum tract from DTI
data and the reconstructed shape (transparent gray volume) and orientations (lines in
the right figure)

Fig. 4. Examples of reconstructed tract surfaces V (α, β, 0) (top row) and the corre-
sponding orientations ∂

∂α
V (α, β, γ) (bottom row)

5 Conclusion

We demonstrated a technique to parameterize tracts with boundary and volu-
metric orientations. Using volumetric basis functions makes the computation of
the derivative simple, flexible and precise, which is important for brain tractog-
raphy [18] based on a prior model derived from these training shapes. Future
work includes improving the manual tract surface S(αs, βs) by simultaneously
sweeping the FA data.
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Abstract. Probabilistic models are extensively used in medical image
segmentation. Most of them employ parametric representations of den-
sities and make idealizing assumptions, e.g. normal distribution of data.
Often, such assumptions are inadequate and limit a broader applica-
tion. We propose here a novel probabilistic active shape model for organ
segmentation, which is entirely built upon non-parametric density esti-
mates. In particular, a nearest neighbor boundary appearance model is
complemented by a cascade of boosted classifiers for region information
and combined with a shape model based on Parzen density estimation.
Image and shape terms are integrated into a single level set equation. Our
approach has been evaluated for 3-D liver segmentation using a public
data base originating from a competition (http://sliver07.org). With
an average surface distance of 1.0 mm and an average volume overlap
error of 6.5 %, it outperforms other automatic methods and provides
accuracy close to interactive ones. Since no adaptions specific to liver
segmentation have been made, our probabilistic active shape model can
be applied to other segmentation tasks easily.

1 Introduction

Probabilistic modeling plays an important role in medical image segmentation.
When dealing with images of complex anatomical structures, often impaired
with noise or low contrast, it is convincing to search for the most likely bound-
ary, region, or shape. In a related fashion, active shape models [1,2] use statistical
knowledge about an object’s shape and local gray level appearance for segmen-
tation, traditionally assuming normal distribution of both. Deciding for a certain
parametric distribution may be necessary because the model is not manageable
without, or because little knowledge is available about the true nature of data.
Often, a model works under the given assumptions for a specific problem, but a
generalization to other fields of application is not possible.

In order to overcome such limitations, we propose a novel active shape model,
which is entirely built upon non-parametric estimates of probabilities. In particu-
lar, we use a nearest neighbor appearance model of the organ boundary, a cascade
of boosted classifiers to detect the object region, and Parzen density estimation
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to deduce a shape model. No assumptions about the underlying distribution of
data are made, and no specific training, such as establishing correspondences
between landmark points, is required. All image and shape terms are combined
in a single equation within the level set framework [3]. Employing an implicit
shape representation moreover avoids a parameterization of the target shape.
While the proposed model is highly generic, it can nevertheless compete with or
even outperform methods tailored to a specific problem, which is demonstrated
for liver segmentation using a public data base [4].

The remainder of this paper is organized as follows. In the next section, related
work is reviewed. The proposed boundary and region models are described in
Sect. 3, along with the shape model. In Sect. 4, the application of the active shape
model to liver segmentation is detailed, and evaluation results are presented.
The paper concludes with a discussion of the obtained results and directions for
further research.

2 Related Work

At the 2007 MICCAI conference, a competition for liver segmentation was held
at a conference workshop [4,5]. The majority of automatic methods ranking in
the highest quantile incorporated shape knowledge. They were mostly based on
active shape models (ASM) [1], such as the approach proposed in [6], where a
heuristic intensity model is used for incorporating image information.

In order to increase flexibility, a recursive subdivision of the liver shape into
smaller patches was proposed in [7]. Individual models are trained, and during
segmentation, an adhesiveness constraint ensures that patches overlap smoothly.

The ASM principle has been widely extended in [8] with marginal space learn-
ing and steerable features for rapidly detecting the liver pose and initializing the
first modes of the shape model. Segmentation is then performed in a hierarchical
manner from coarse to fine scales, with image information being inferred from a
probabilistic boosting tree.

3 Probabilistic Active Shape Model

We segment an organ by evolving an active surface, which is implicitly described
through the zero level set of a level set function φ (x), with x ∈ R

3 [3]. In contrast
to explicit shape representations, e.g. through meshes, the implicit representa-
tion is parameter free and consequently does not depend on the target shape.
Furthermore, when deforming the surface through the level set framework, self
intersections do not pose a problem.

A popular edge based level set segmentation method is geodesic active con-
tours [9], which is associated with the following partial differential equation to
track the evolving boundary over time.

∂

∂t
φ = g |∇φ| div

(
∇φ

|∇φ|

)
+∇g · ∇φ (1)
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The first term accounts for the smoothness of the boundary, while the second
part constitutes an advection term. The stopping function g is the reciprocal of
an edge detector, which in turn depends on the image I. A common choice for
g is 1/

(
1 + |∇I|2

)
.

3.1 Boundary Model

In most cases, a simple edge detector based on the image gradient is not sufficient
to deal with poorly discriminable tissues or noise. In contrast, the information
contained in an intensity profile sampled at the organ boundary is much richer
and more specific. An appearance model may be obtained by sampling profile
vectors perpendicular to the boundary in a training stage. Traditionally [2],
profiles were assumed to be normally distributed. In that case, the appearance
model is given by the mean vector and covariance matrix. However, a normal
distribution of profiles often is not present. In Fig. 1(a), profiles sampled from
the liver boundary in computed tomography (CT) images are shown. The mean
vector is not characteristic for the sample set.

As a non-parametric alternative, we instead build a nearest neighbor appear-
ance model of the organ boundary. This approach, originally proposed in [10],
allows capturing arbitrary distributions of profile vectors. During the training
stage, additional false profiles are sampled off the true organ boundary. In order
to evaluate the boundary probability, the k nearest neighbors found in the train-
ing set are determined using the L2 norm. Amongst these, the number of true
boundary profiles divided by k yields the desired probability. How to incorpo-
rate this procedure into a level set evolution has been described in [11]. For each
point which is part of the narrow band around the active surface, an intensity
profile is sampled. The profile orientation is given by the gradient of the level
set function ∇φ, which is collinear to the normal. The boundary probability is
then determined by finding the nearest neighbors in the training set and calcu-
lating the ratio mentioned before. The result is a probability image, from which
a stopping function is calculated, as described for (1).

3.2 Region Model

Since the capture range of the boundary model is limited, an inaccurate initial-
ization can result in slow convergence to the targeted boundary. In the worst
case, the algorithm will stop at a local extremum. We therefore complement the
boundary model with a region model, which leads to a global optimization.

Organs may have inhomogeneous intensities and contain tumors and vessels
filled with contrast agent. Hence, a region model should be able to represent com-
plex intensity distributions. Since distributions of different tissues may overlap, it
is also advantageous to incorporate contextual information. As an example, high
intensity values may be observed for voxels within vessels and for voxels within
bones. While in the former case, the voxel shall be included in the segmentation
if surrounded by organ tissue, in the latter case it shall be excluded.
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(a) (b) (c)

Fig. 1. (a) Profiles sampled from the liver boundary in CT images. The intensity
scale is given in Hounsfield units (HU). Characteristic modes are highlighted (solid
lines). The mean profile (dotted line) is not representative. (b) Cascade of boosted
classifiers. At each stage ξi, a sample is either rejected (−1) or passed on to the next
stage. Samples accepted at the final stage (+1) are considered to be part of the organ.
(c) Principle of the kernel density shape model depicted for the 2-D case. Evolving
active contour (solid line) and reference shapes (dashed lines) are rigidly aligned. The
active contour is moved towards each reference shape, weighted according to their
similarity.

How to define meaningful features and train a classifier to meet these require-
ments is not evident in advance. We therefore build a cascade χ of M boosted
classifiers, as illustrated in Fig. 1(b). At each stage i = 1, 2, . . . , M , a strong clas-
sifier ξi either rejects a sample or passes it on to the next stage. Only when the
sample is accepted at the final stage, it is considered to be part of the organ. A
strong classifier ξi is a weighted combination of weak classifiers and is determined
by the AdaBoost [12] algorithm. Classification and regression trees (CART) [13]
are used here as weak classifiers in order to further increase flexibility and handle
complex region statistics. Within a CART, the decision which branch to take
is based on Haar-like features [14]. They resolve to simple intensity differences,
which are defined in large combinatorial numbers for a neighborhood around
the sample voxel. Thereby, contextual information is integrated in the region
model. While training a cascade of boosted classifiers may take several days, the
application is extremely fast through the use of integral images. Further details
can be found in [14]. Our implementation is based on OpenCV1.

The result χ (x) of the cascade is +1, if the sample voxel x is accepted and
−1, if it is rejected. This region information is incorporated as a dilatation or
erosion of the surface into the level set equation (1), which leads to

∂

∂t
φ = g |∇φ| div

(
∇φ

|∇φ|

)
+∇g · ∇φ + χg |∇φ| . (2)

1 http://opencvlibrary.sourceforge.net
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3.3 Shape Model

We further increase the robustness of the proposed active surface by incorporat-
ing a shape model. Shape knowledge is highly valuable in regions with ambiguous
or missing image information. For example, the boundaries between liver and
stomach or liver and muscle tissue may be virtually non-existent, depending on
the level of contrast enhancement. When the surface is about to leak into other
tissue, shape knowledge allows constraining such an unlikely deformation.

Most ASMs assume a normal distribution of shapes. The according shape space
captured by the model is spanned by the mean shape and a linear combination of
Eigen modes, which are obtained through principal component analysis performed
on a training set [1]. We pursue the more generic non-parametric approach of [15],
which is to determine the probability of observing a shape through Parzen den-
sity estimation [16]. The employed distance metric for shapes represented through
level set functions is

Δ (φ1, φ2) =
∫

x

(H (φ1)−H (φ2))
2
dx. (3)

H (.) denotes the Heaviside function, which is 1 if the argument is non-negative
and 0 otherwise. When evaluating the distance, both shapes have to be aligned.
This is achieved intrinsically by normalizing the center of gravity, scaling, and
principal axes of both shapes, i.e. of H (φ1) and H (φ2).

Given a set of N reference shapes {φi}N
i=1, a Parzen estimate of the probability

of a shape φ is given by

P (φ) ∝ 1
N

N∑
i=1

Kσ (Δ (φ, φi)) , (4)

where Kσ is a Gaussian kernel, whose standard deviation σ is chosen according to
the nearest neighbor distances: σ2 = 1

N

∑N
i=1 minj �=i Δ2 (φi, φj). By optimizing

this shape probability with respect to φ, a constraint is derived for the level
set equation which evolves the surface towards similar shapes. The principle is
illustrated in Fig. 1(c). Instead of maximizing (4), a minimization problem is
obtained by taking the negative logarithm. Calculating the functional derivative
of − logP (φ) with respect to φ leads to a shape constraint term, which extends
the active surface of (2) to a probabilistic active shape model.

∂

∂t
φ = g |∇φ| div

(
∇φ

|∇φ|

)
+∇g ·∇φ+χg |∇φ|+

∑N
i=1 Kσ (Δ (φ, φi)) ∂

∂φΔ2 (φ, φi)

2σ2
∑N

i=1 Kσ (Δ (φ, φi))
(5)

We refer to [15] for further details on the derivation of the shape constraint.

4 Evaluation

The proposed algorithm has been evaluated for liver segmentation from CT
scans. Both training and test images were taken from a public data base, which
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had been assembled for a segmentation competition held at a workshop of the
2007 MICCAI conference [4,5]. Since ground truth segmentations are not pro-
vided for test images and the evaluation is conducted by the organizers, results
are meaningful and comparable. The 20 training and 10 test images have a slice
resolution of 512 × 512 voxel and 64 to 502 slices. Intra slice spacing varies be-
tween 0.56 mm × 0.56 mm and 0.86 mm × 0.86 mm, inter slice spacing varies
between 0.7 mm and 5 mm. The data base comprises both normal and abnormal
liver shapes with tumors and varying levels of contrast enhancement.

The boundary appearance model was built by sampling intensity profiles of
length 7 with 1 mm spacing. In addition to true boundary profiles, negative
examples were obtained with offsets of±1 mm and±3 mm. During segmentation,
the k = 10 nearest neighbors were used to estimate the boundary probabilities.
A cascade with M = 5 stages was trained for the region model. With the inter
slice spacing being large compared to the intra slice spacing, we decided for 2−D
Haar-like features. In order to train with a large context while at the same time
preventing the classifier from over fitting, we conducted training and application
for slices down sampled to a resolution of 128 × 128 voxel. Using a window
of 12 × 12 voxel, the Haar feature pool consisted of about 16000 features. In
contrast to PCA based approaches, no training of the shape model is required
here.

For segmentation, the initial pose of the shape model was determined by
extracting the largest object detected by the region model. In order to accelerate
convergence, segmentation was performed in a multi-scale manner, starting with
an image down sampled by a factor of 4. The whole process ran without user
interaction and took about 3 min. per image on a 3 GHz CPU.

The obtained segmentation results were submitted to the organizers of the
competition and evaluated with respect to volume overlap and difference as

Table 1. Results of the evaluation metrics and scores for all test cases. The maximum
score, corresponding to a segmentation identical with the reference, would be 100.
While interactive systems have reached scores in the range of 73 to 82, the majority of
automatic systems falls within the range of 52 to 69. See http://sliver07.org for all
results and [4,5] for details on the metrics and the score scale.

Case Ovrl. Error Vol. Diff. Avg. Dist. RMS Dist. Max. Dist. Total
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

1 6.41 74.98 1.16 93.82 1.02 74.51 1.99 72.32 18.61 75.51 78.23
2 6.41 74.95 -0.64 96.59 0.98 75.62 2.31 67.93 22.29 70.68 77.15
3 5.10 80.08 0.54 97.11 1.00 75.10 1.83 74.65 15.82 79.19 81.23
4 7.27 71.62 4.31 77.09 1.20 70.05 2.49 65.47 28.99 61.86 69.22
5 5.61 78.10 1.86 90.13 0.96 76.04 2.12 70.55 21.91 71.17 77.20
6 7.99 68.77 -3.02 83.94 1.27 68.25 2.37 67.14 18.28 75.95 72.81
7 5.04 80.33 2.79 85.17 0.73 81.71 1.42 80.25 13.00 82.89 82.07
8 7.06 72.42 3.45 81.65 1.18 70.59 2.17 69.90 14.16 81.37 75.19
9 6.79 73.49 3.85 79.55 0.84 78.97 1.47 79.64 16.01 78.94 78.12

10 7.04 72.52 -3.92 79.17 1.01 74.76 1.80 75.01 14.15 81.38 76.57
Avg. 6.47 74.72 2.55 86.42 1.02 74.56 2.00 72.29 18.32 75.89 76.78
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Fig. 2. From left to right, segmentation results for cases 3, 6, and 10 in transversal
(top) and coronal (bottom) views. The large tumor in case 3 and the majority of tumors
in case 10 were correctly included in the segmentation. For case 6, the shape model
was too restrictive in the region of the gall bladder, which therefore was not completely
excluded. What appears as a circle in the transversal view is actually a bulge in 3-D.

well as symmetric average, root mean squared, and maximum surface distance.
Results are listed in Table 1 and displayed in Fig. 2 for several data sets.

5 Discussion and Conclusion

We have presented a novel probabilistic active shape model for organ segmenta-
tion, which combines boundary, region, and shape information in a single level
set equation. Non-parametric estimates are used for all involved densities, which
leads to a generic approach that can be applied to various segmentation tasks.

The proposed algorithm has been evaluated for liver segmentation from CT
images using a public data base (cf. Sect. 4). As shown in Table 1, our method
achieved constantly high scores for all test cases. On average, the surface distance
is 1.0 mm and the overlap error is 6.5 %, which is close to interactive methods
[4,5] and meets clinical requirements.

Failure to exclude the portal vein resulted in a higher overlap error and surface
distance in case 4. For some cases where heart and liver share similar levels of
contrast enhancement, the region term was not able to discriminate between
both of them, leading to slight over segmentation indicated by positive volume
differences in Table 1.

The advantages of our non-parametric approach are most evident when deal-
ing with images that differ from the ordinary. For example, case 6 was accurately
segmented except for a small part of the gall bladder, although the liver is unlike
most training shapes. In contrast,ASM approachesperform considerablyworse for
organs significantly different from the mean, since the underlying PCA inherently



A Generic Probabilistic Active Shape Model 33

assumes a normal distribution of shapes. This can be observed also for the top rank-
ingmethodof the competition [6], even though itwas trainedwithanextensivedata
base of 112 images [5], much more than the 20 images we used.

For the future, we are confident that results can be further improved by in-
creasing the training set, from which all three terms will benefit. In addition, we
plan to apply the proposed approach to the segmentation of other structures.
Preliminary results show a high accuracy also for the segmentation of the nu-
cleus caudate. No changes to the core system were made, which emphasizes the
broad applicability of our method.

References

1. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models – their
training and application. CVIU 61(1), 38–59 (1995)

2. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for medical image
analysis and computer vision. In: SPIE Medical Imaging, vol. 4322, pp. 236–248
(2001)

3. Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge
University Press, New York (1999)

4. Heimann, T., Styner, M., van Ginneken, B.: 3D Segmentation in the Clinic – A
Grand Challenge. In: MICCAI Workshop Proceedings (2007)

5. Heimann, T., van Ginneken, B., Styner, M., et al.: Comparison and evaluation of
methods for liver segmentation from CT datasets. In: IEEE TMI (2009)

6. Kainmüller, D., Lange, T., Lamecker, H.: Shape constrained automatic segmenta-
tion of the liver based on a heuristic intensity model. In: 3D Segmentation in the
Clinic – A Grand Challenge, pp. 109–116 (2007)

7. Okada, T., Shimada, R., Sato, Y., Hori, M., Yokota, K., Nakamoto, M., et al.: Au-
tomated segmentation of the liver from 3D CT images using probabilistic atlas and
multi-level statistical shape model. In: Ayache, N., Ourselin, S., Maeder, A. (eds.)
MICCAI 2007, Part I. LNCS, vol. 4791, pp. 86–93. Springer, Heidelberg (2007)

8. Ling, H., Zhou, S.K., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.:
Hierarchical, learning-based automatic liver segmentation. In: CVPR (2008)

9. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Jour-
nal of Computer Vision 22(1), 61–79 (1997)

10. van Ginnecken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever,
M.A.: Active shape model segmentation with optimal features. IEEE Transactions
on Medical Imaging 21(8), 924–933 (2002)

11. Wimmer, A., Soza, G., Hornegger, J.: Implicit active shape model employing
boundary classifier. In: ICPR (2008)

12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. JCSS 55(1), 119–139 (1997)

13. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Chapman & Hall, New York (1984)

14. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Com-
puter Vision 57(2), 137–154 (2004)

15. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic align-
ment for shape priors in level set segmentation. IJCV 69(3), 335–351 (2006)

16. Parzen, E.: On the estimation of a probability density function and the mode.
Annals of Mathematical Statistics 33, 1065–1076 (1962)



Organ Segmentation with Level Sets Using Local
Shape and Appearance Priors

Timo Kohlberger1, M. Gökhan Uzunbaş1, Christopher Alvino1, Timor Kadir2,
Daniel O. Slosman3, and Gareth Funka-Lea1

1 Siemens Corporate Research, Imaging and Visualization Dept., Princeton, USA
2 Siemens Healthcare Molecular Imaging, Oxford, UK

3 Clinic Generale-Beaulieu, Geneva, Switzerland

Abstract. Organ segmentation is a challenging problem on which re-
cent progress has been made by incorporation of local image statistics
that model the heterogeneity of structures outside of an organ of interest.
However, most of these methods rely on landmark based segmentation,
which has certain drawbacks. We propose to perform organ segmenta-
tion with a novel level set algorithm that incorporates local statistics
via a highly efficient point tracking mechanism. Specifically, we compile
statistics on these tracked points to allow for a local intensity profile out-
side of the contour and to allow for a local surface area penalty, which
allows us to capture fine detail where it is expected. The local intensity
and curvature models are learned through landmarks automatically em-
bedded on the surface of the training shapes. We use Parzen windows
to model the internal organ intensities as one distribution since this is
sufficient for most organs. In addition, since the method is based on level
sets, we are able to naturally take advantage of recent work on global
shape regularization. We show state-of-the-art results on the challenging
problems of liver and kidney segmentation.

1 Introduction

Level set methods have many strengths that make them suitable for general
organ segmentation, which include the ability to naturally represent complex
shapes non-parametrically, and the ability to incorporate powerful shape mod-
els [4,10,15,5]. Until recently, most level set-based segmentation methods have
focused on global data likelihood models [16] and global priors on contours such
as surface area penalty [9]. Unfortunately, such global models do not fully exploit
the fact that surrounding image intensities and local organ curvatures vary in a
predictably local fashion, e.g., in the segmentation of livers in computed tomog-
raphy (CT) images in which the outside intensities and contour curvatures are
naturally heterogeneous.

Thus many mechanisms to allow for local evolution have been introduced
both in the computer vision literature [13], and in the medical imaging liter-
ature [11,6,12]. Some methods allow for local intensity models in a level set
framework, but not in a way that allows position dependent knowledge to be
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accounted for [13]. Other methods use landmarks to represent the organ bound-
ary [8,6,12,11], and allow incorporation of shape through active shape models [3].
While these methods have achieved significant progress on difficult organ seg-
mentation problems such as the liver, no completely satisfactory solution exists
due to high variability in anatomical shape, from disease, and in acquisition
protocol. Additionally, segmenting only within the space of shapes allowable by
ASM’s is a limiting factor since ASM’s tend to naturally produce shapes that
smooth out naturally high curvature structures. Furthermore, determining seg-
mentation boundaries in between points requires, as a final step, choosing some
method of interpolating between landmarks [11].

In this paper, we introduce a novel efficient point tracking mechanism into
standard level set evolution, which allows us to formulate the problem as a max-
imum a posteriori estimation problem with both a local likelihood model for the
data term as well as a local prior model for the surface area penalty term. In
doing this, we extend the work of [14], where point tracking is used to define
correspondence during level set evolution, by simplifying the tracking for greater
efficiency at the cost of maintaining an approximate correspondence that is still
sufficient for segmentation. In addition, we show how introducing shape-guidance
into this level set framework is natural and we can take advantage of recent work
on shape-guided level set methods (see [5] and references therein.) We validate
the efficacy of this point tracking method on complex organ segmentation prob-
lems such as liver and kidney segmentation, while also showing that it is very
efficient. We show that the method produces segmentations with state of the art
overlap and surface error statistics, as made popular in the MICCAI 2007 Liver
challenge.

2 Key Point Tracking on Evolving Zero Level Sets

To facilitate the application of local prior statistics and constraints it is necessary
to track explicit points on the evolving surface. This is done as follows.

Consider a set of discrete points {xi(t)}i=1,...,N defined on the initial zero
level set of a signed distance function φ(x, t),x ∈ Ω ⊂ R

3 at t = 0. As explained
in [14] and the references therein, those can be tracked along with the evolution
of the zero level set by mapping them along its outer normal n

(
xi(t), t

)
=

−∇φ
(
xi(t), t

)
/
∣∣∇φ

(
xi(t), t

)∣∣ by the amount of the level set speed Δφ(·, t + 1):

xi(t + 1) ← xi(t) + Δφ
(
xi(t), t + 1

)
n
(
xi(t), t

)
. (1)

This is to be carried out for each level set update, see Fig. 1 for an example.
However, in the case of a narrow-band implementation, especially when the

speed of the level set is high, the update of the key point xi(t) might locate
the new position xi(t + 1) such that it lies outside of the band of φ(·, t + 1). In
order to handle such cases, we linearly search along the normal of φ(·, t) to a
pre-defined extent, i.e. along the line xi(t) + τ n0

(
xi(t), t

)
, with τ > 0 . (We

found sampling τ at intervals of one voxel length to be a reasonable value.) By
this we bring down the fraction of “lost” key points typically below 0.1%.
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Furthermore, due to numerical inaccuracies in the update scheme (1), the key
points may deviate from the zero levelset after some iterations. For such points,
we apply an additional correction scheme:

xi(t) ← xi(t) + φ
(
xi(t), t

)
n0

(
xi(t), t

)
, (2)

which guarantees that the updated key points are always on the zero level.
In the following, we use the described algorithm to establish shape correspon-

dences between the initial shape φ(·, 0), which we will refer to as reference shape,
and the segmenting shape φ(·, t). Obviously, because of neglecting the tangential
evolution of similarity features, such a correspondence is only approximate, but
will be sufficient in the following if the reference and the target shape are not too
dissimilar and are roughly rigidly aligned. Compared to Poisson-equation-based
methods, cf. [14], this method has the advantage of being computationally much
more efficient. For example, tracking 3126 key points in the case shown in Fig. 1
along with a narrow-band consisting of 35000 voxels added only 2.3% to the
average computation time of a level set update.

Fig. 1. (a) Example of initial key points on an initial zero level being rigidly aligned
to the organ to segment. (b) Evolution of each key point along the normals of the zero
level sets while carrying out a standard data-driven segmentation iteration. (c) Result
after 200 level set/key point tracking iterations. Given a sufficient similarity of the
initial shape as well as an initial alignment, tracking points along the normal at each
iteration is sufficient to retrieve an approximate shape correspondence.

3 Levelset Segmentation Driven by Local Feature Models

Given a set of explicit points that have correspondences to the initial shape,
we can assign locally measured features of different level set evolutions to one
common reference shape. Such measurements from the segmentation of a set
of training samples are accumulated on the reference shape to deduce localized
feature models and it is these models which then are introduced as priors in the
segmentation approach.
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3.1 Local Intensity Statistics

To build a localized intensity prior, we carried out a standard data-driven seg-
mentation approach [2] on expert-generated binary annotation masks of the
intended organs, while employing the scheme presented in section 2 to track the
key points in parallel. Thereby the initial/reference shape was a typical shape
of the organ and rigidly aligned to each of those masks.

Once the zero level set had converged at or near the binary edge, at each
key point, we sampled the local intensity outside the contour from the intensity
volume being aligned with the annotation mask. Specifically, we convolved with
small Gaussian windows which were centered at each point separately for inside
and outside voxels, which in the latter case reads:

Iout
j,ρ (xi) =

∫
Ωi

gρ(xi − y)
(
1−H(φi(y))

)
Ij(y) dy∫

Ωi
gρ

(
xi − y

)(
1−H(φi(y))

)
dy

(3)

with gρ(x) = exp(−x�x/(2ρ2)), Ij(x) referring to the value of the intensity vol-
ume (not the segmentation mask) at x, and H denoting the Heaviside function.

In a next step, for each key point on the reference shape, we accumulated
these samples across the training cases by fitting Gaussian distributions, whose
spatially dependent parameters were determined according to:

μout(xi) =
1
L

∑L

j=1
Iout
j,ρ (xi), σ2

out(xi) =
1

L− 1

∑L

j=1

(
μout(xi)− Iout

j,ρ (xi)
)2

.

See Fig. 2(a)-(b) for an example on the liver.
Subsequently, during the course of the level set evolution, the such inferred

Gaussian likelihoods are not only available at tracked key point locations, but
can be interpolated to any voxel in the narrow-band. In case of a simple nearest-
neighbor interpolation, the prior probability of observing an intensity I(x) at a
location x near or at the zero level can thus be approximated by

pout(I(x)|x) :=
1√

2πσ2
out(xl(x))

exp

(
−

(
I(x) − μout(xl(x))

)2

2σ2
out(xl(x))

)
, (4)

with l(x) = arg mini=1,...,N‖x − xi‖2
L2

being the closest key point with regards
to the Euclidean distance. With respect to implementing the latter, we found [1]
to provide a very efficient solution.

3.2 Local Mean Curvature Constraint

Local correspondences between the evolving and a reference shape not only en-
able spatially dependent intensity priors, but also allow for a spatially dependent
weighting of feature measurements, such as the mean curvature.

Given the tracked key points at the boundaries of ground truth annotation
masks, as described in the previous section, one can similarly sample local mean
curvatures and average them over the set of training cases, which yields an
average mean curvature for each key point (see Fig. 2(c) for an example):
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Fig. 2. Means (a) and variances (b) of the outward-bound local intensities across 100
liver shapes, which were traced back to the shown reference shape. (c) Average mea-
sured mean curvatures. Despite high shape variability, sharp correspondences are re-
trieved by the proposed key point tracking method, which is visible especially at the
rib region in (a)+(b), and at the liver tips in (c).

κP (xi) =
1
L

∑L

j=1
div

∇φj(xi)
|∇φj(xi)|

. (5)

Instead of inferring prior densities, which would involve second-order derivates
of φ in the energy and thus numerically problematic fourth-order derivatives
in the Euler-Lagrange equations, here we propose to introduce the spatially-
dependent prior by modulating the weight of the area term, cf. [2], in the energy:

EC(φ) =
∫

Ω

ωC(x) |∇H(φ)| dx, with ωC(x) =
ξ

1 + νκ2
P (x)

, (6)

with a parameter ν controlling the amount of weight variation and ξ denoting a
global weigth.

Thus, we penalize surface area of the segmenting contour more strongly at
locations when low curvatures were observed on the training contours, and vice-
versa for high curvatures. For example, by this the curvature term can be weak
at the tip regions of a liver shape, while enforcing low curvatures everywhere at
relatively straight regions. See Fig. 3 for examples on the CT liver.

4 Organ Segmentation Approach

In the following we combine the localized feature priors with established ideas
in order to obtain a highly accurate, robust and generic organ segmentation
approach. Thereby our objects of study are the segmentation of the liver and
the right kidney in 3D CT images.

4.1 Local Models for the Liver and the Kidney

We applied the technique described in Sec. 3.1 on 100 liver and 20 right kidney
ground truth segmentations, in order to estimate the local mean and variance of
the intensities inside and outside the segmentation boundary. For the outside in-
tensities, we obtained maps which clearly reflect heterogeneous intensity regions
of the neighboring tissue classes, see Fig. 2(a)-(b).



Organ Segmentation with Level Sets 39

By contrast, the accumulated inside measurements turned out to be very
homogeneous per training case, but to vary in a range of about 150 Hounsfield
units across all training cases. Both observations are in line with the fact that the
tissues of both organs exhibit relatively homogeneous CT intensities, while their
mean fluctuates with the concentration of contrast agent. In order to account
for these effects, we chose an adaptive region-based Parzen density model, cf.
e.g. [4], for the observed intensities inside the organ:

pin(I(x)|φ) :=
∑Imax

l=Imin

h(l)
H

gσ(I(x) − l) , where H =
∑Imax

l=Imin

h(l) , (7)

with h(I)denoting the histogram of observed (discrete) intensities I∈ [Imin, Imax].
Combining the new local intensity term for the outside and the region-based

term for the inside yields the energy:

EI(φ) = −
∫

Ω

αH(φ) log pin(I(x)|φ) + (1− α)
(
1−H(φ)

)
log pout(I(x)|x) dx ,

while the role of the weights α and (1− α) are to balance those opposing forces
which typically occur in slightly different value ranges.

With regards to the local curvature models, we determined the local mean
curvatures as described in Sec. 3.2 for each organ. By this we obtained curvature
maps which reflect the different convex and concave region of each organ, see
Fig. 2(c).

4.2 Global Shape Prior and Final Approach

Although the spatially modulated curvature term imposes local constraints on
the shape, in order to increase robustness of the overall segmentation approach,
we also add prior information based on a global statistical shape model. Specif-
ically, we follow a similar approach as recently reported in [5], where projec-
tions φ̂ of the current level set map φ into a linear subspace of learned shape
variations are used to guide the shape evolution, by adding a term of the form
ES(φ) :=

∫
Ω(φ− φ̂)2dx to the overall energy. In our experiments, we used a liver

model which was built on a training set of 100 liver and 20 right kidney shapes,
respectively.

Finally, the overall segmentation algorithm amounts to minimize the weighted
sum of intensity-dependent EI , the curvature-dependent EC and the shape-prior-
based energy ES , by iteratively descending along the negative energy gradient,
which is represented by the partial differential equation:
∂E

∂φ
=δε(φ)

(
ωI

(
α log pin(I|x)−β log pout(I|φ)

)
+ωC(x)div

∇φ

|∇φ|+ωS(φ− φ̂)
)

.

Thereby, the key points {xi} are updated according to (1) in every iteration in
parallel.

In our experiments, φ was initialized by the reference shape of the local fea-
tures models, which were manually aligned with the organ in question with
regards to translation and rotation. The latter can easily be automatized by an
atlas registration technique, or a Pictorial structure based approach, for example.
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Fig. 3. Qualitative comparison of a standard approach with adaptive Parzen density
estimation of the background intensities, cf. [4], and a global mean curvature force, cf.
[2], (yellow) against the proposed local intensity prior (blue) and the locally modulated
area penalization term in addition (red).

5 Experiments

Besides qualitative comparisons of the new local feature priors versus existing
global approaches (see Fig. 3), we evaluated our algorithm on the 20 (mostly
pathological) CT liver cases from the MICCAI ’07 Liver challenge [7], and for the
right kidney on 13 other CT cases which were annotated by own experts. None of
them were included in the training sets. The reference shape of the local feature
models served as initial shapes, which were manually aligned to each organ. The
iteration were let run until convergence. All parameter values were the very same
for all cases, except for a slightly weaker global curvature weight ξ in the kidney
cases. The obtained volumetric and surface-based errors in Table 1 show that our
proposed method produces state-of-the-art results, especially w.r.t. the average
surface distance error of only 1.46mm/0.88mm for the liver/kidney, respectively.
In addition, the fact that these results were gained without adjusting none of the
involved parameter to any individual data set clearly shows the high degree of
generalization and, given the strong variability of liver shapes and appearances
in the test set, the high robustness of the presented algorithm.

Table 1. Volumetric and surface errors, cf. [7], as well as scores for the 20 training
data sets of the Liver 2007 Challenge, as well as for 13 other CT right kidney data sets

Mean/std.dev. Overlap. Volume Avg. Surf. RMS Surf. Maximum Challenge
Err. [%] Diff. [%] Dist. [mm] Dist. [mm] Dist. [mm] Score

20 liver cases 8.44±1.7 3.94±2.72 1.46±0.38 2.91±0.95 24.18±8.34 66.67±8.5
13 r.kidney cases 10.6 ± 1.9 4.82 ± 3.44 0.88 ± 0.23 1.92±0.52 15.31±4.51 72.8±7.3

6 Conclusion

In conclusion, we have developed a new method for general organ segmentation
with level sets that incorporates local intensity statistics and local curvature by
means of an efficient point-based tracking mechanism. We have shown that using
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level set methods enables us to incorporate recent advances in shape regularized
segmentation. We have achieved results that are both qualitatively and quanti-
tatively strong on some of the most challenging problems in organ segmentation.

In practice, we have not found point correspondence problems to effect the
performance of the algorithm, however for future work we wish to investigate
the effect of the tangential component of the tracked points. Proper treatment of
this task would require ensuring correct correspondence, which is not explicitly
guaranteed even by the method of [14].

In addition, we wish to investigate limitations of uni-modal statistical mod-
els employed by the tracked points, and whether using multi-modal or more
sophisticated methods would yield improved segmentation.

Acknowledgments. We would like to thank Haibin Ling for helpful discussions
and Bogdan Georgescu for providing some of the annotations we used.
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Abstract.  This paper presents a novel liver segmentation algorithm. This is a 
model-driven approach; however, unlike previous techniques which use a statis-
tical model obtained from a training set, we initialize patient-specific models di-
rectly from their own pre-segmentation. As a result, the non-trivial problems 
such as landmark correspondences, model registration etc. can be avoided. 
Moreover, by dividing the liver region into three sub-regions, we convert the 
problem of building one complex shape model into constructing three much 
simpler models, which can be fitted independently, greatly improving the com-
putation efficiency. A robust graph-based narrow band optimal surface fitting 
scheme is also presented. The proposed approach is evaluated on 35 CT images. 
Compared to contemporary approaches, our approach has no training require-
ment and requires significantly less processing time, with an RMS error of 
2.44±0.53mm against manual segmentation. 

1   Introduction 

This work forms part of a project to develop virtual environments for training in 
interventional radiological procedures. It requires major abdominal structures, e.g. 
liver, kidney and blood vessels etc, to be segmented with particular interest in those 
cases where typical pathology is presented. The data for liver segmentation in this 
study therefore comes from patients with various pathologies and is obtained from 
different sources using different protocols which vary in quality and resolution and 
include both contrast enhanced and non-enhanced data. These diversities increase the 
variability of the liver data in both shape and texture. 

Many techniques for liver segmentation have been proposed and implemented in 
recent years, see [1] for a recent review. These can be classified as texture-based and 
model-driven approaches. Due to the similar intensity values of some surrounding 
structures in CT data, approaches which are mainly based on local intensity or inten-
sity gradient features are usually not sufficient to differentiate liver tissue. Therefore, 
model-based approaches have been widely explored where prior knowledge about the 
typical shape of a liver is used to constrain the segmentation process. Despite a num-
ber of different representations [2,3,4], many of these approaches rely on principal 
component analysis of corresponding landmark points marked on a training set to 
calculate allowed modes of variation of the shape model which may result in limited 
deformations impeding the exact adaptation to the structure of interest. Although 
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techniques [5,6] have been developed to overcome this, these approaches still require 
the shape model to be roughly aligned and oriented to the structure of interest so that 
the iterative search procedure can lock onto the target. 

In this paper, a novel shape model construction method is presented. Unlike previ-
ous work utilizing training datasets to capture the mean modes of shape variations, 
our patient-specific shape model is directly derived from each image dataset. Our 
previous work [7] has shown how a target region can be captured through applying 
morphological erosion on an edge enhanced image followed by a region growing 
algorithm (Fig. 1a); this pre-segmentation is then automatically embedded into a cur-
vature-driven level set to evolve a smooth surface toward the real boundary. Due to 
the similarity of intensity values with surrounding structures, the liver pre-
segmentation is likely to include some non-liver tissues (Fig. 1b). Hence in this paper, 
we construct a three-patch surface model (Fig. 1c) to eliminate such unwanted parts 
from the pre-segmentation. Only the most reliable information from the pre-
segmentation is used to initialize our three-patch shape model, representing upper, 
right lobe and lower liver boundaries. A graph-based optimal surface fitting scheme is 
then applied independently on each patch (Fig. 1e), from which we obtain a refined 
pre-segmentation result having non-liver tissues removed (Fig. 1d). 

 

Fig. 1. Model construction 1 . (a) Initial liver estimation (blue) with manual segmentation 
(white). (b) Pre-segmentation (blue) with manual segmentation (white). (c) Deformed surface 
patches (orange) on the pre-segmentation (blue). (d) Refined pre-segmentation after non-liver 
tissues are removed. (e) Manual segmentation with surface patches (orange), for comparison 
with (d). (f) Final result of liver segmentation (blue) with the manual segmentation (white). 

2   Method 

The method consists of the following three main steps: 

1) Liver pre-segmentation. This is obtained by applying our previous work [7] fol-
lowed by a smoothness operation using a curvature-driven level set approach. The 
liver pre-segmentation serves as a basis for the subsequent segmentation. 
                                                           
1 All the cases illustrated in this paper are from the datasets provided by [8]. 
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2) Model initialization and deformation. This is a fully automatic process to remove 
unwanted tissues from the pre-segmentation. Firstly a three-patch surface model is 
initialized, representing the upper, right lobe and lower liver surfaces, separately (sec-
tion 2.1). Next a graph-based optimal surface fitting scheme (section 2.2) is applied to 
recover the “real” liver boundaries (Fig. 1c,1e), from which we can obtain a refined 
pre-segmentation result with non-liver tissues removed (Fig. 1d). 
3) Liver pre-segmentation refinement and precise liver region recovery by level 
set evolution (section 2.3). To recover some missing parts, such as some tips or small 
perturbations of the liver edges, due to morphological and smoothness operations in 
step one, we re-implement the level set evolution but driven by both image force and 
inner force, to obtain a more accurate liver contour (Fig. 1f). 

2.1   Model Initialization 

The feature points for the three-patch surface construction are identified on each  
coronal slice of the pre-segmentation images. Due to the property of B-Splines, the 
sensitivity of the surface to some poorly located feature points is reduced when it is 
initialized from a large number of points. 

2.1.1   Upper Liver Surface Construction 
The upper liver surface aims to separate liver and heart regions by using a curved 
surface approximating the base of the right and left lungs. 

Initially, the lungs are segmented using region growing, seeded automatically by 
finding points with the lowest HU value directly above the highest part of the liver 
right lobe found from the pre-segmentation. From the segmentations the corner points 
on the bottom of each lung (Fig. 2a) are detected automatically on every coronal slice 
and a number of points sampled between the left and right corners of right/left lung 
along large gradient values. The number of sampled points is determined by the dis-
tance between the left and right bottom corners of the right and left lung. The B-Spline 
reconstruction technique [9] is applied to create the curved surface approximating the 
set of sample points (Fig. 2). 

 

Fig. 2. Upper liver surface construction. (a) Feature points of lungs and B-Spline reconstruction 
(2D). (b) Constructed upper liver surface (orange) fitting to the bottom of the lungs (3D). (c) 
Upper liver surface is overlapped on the manual segmentation result (white). 

2.1.2   Liver Right Lobe Boundary Construction 
The liver right lobe boundary is created to delineate the abdominal cavity wall  
even when it is only partially detectable on the image. The initialized curved surface 
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encapsulates the right lung wall2 and the right lobe of the liver pre-segmentation  
(Fig. 3b, 4b). A point set for B-Spline interpolation is created by sampling points in 
each coronal slice. For the lung wall, three evenly spaced points are selected. For 
feature points on the liver right lobe wall, to avoid noise introduced to the pre-
segmentation, only two points located close to the bottom of the lung and one point 
located at the inferior segment of the right lobe (Fig. 3a) are used.  

 

Fig. 3. Liver right lobe boundary (yellow) initialization and deformation (2D). (a) Feature 
points (yellow). (b) B-Spline reconstruction. (c) Discretization. (d) Deformation. 

The initialization and deformation result (3D) of the liver right lobe wall is also 
shown in Fig. 4. For comparison, we overlay the fitted boundary onto the manual 
segmentation result in Fig. 4d. More detailed discussion on the deformation procedure 
is given in section 2.2. 

 

Fig. 4. Liver right lobe boundary initialization and deformation (3D). (a) Liver pre-segmentation 
(blue) and right lung detection (pink). (b) Liver right lobe boundary initialization (red). (c) Liver 
right lobe boundary deformation (fitting). (d) Deformed liver right lobe boundary (red) overlays 
on the manual segmentation result (white). 

2.1.3   Lower Liver Surface Construction 
The objective of approximating the lower liver surface is to exclude any non-liver 
tissues under the liver. The main problematic area in our pre-segmentation result is the 
portal vein, which is located near the centre of the liver. Therefore, we choose two 
pairs of sample points at both sides of the bottom of the liver, 1) the leftmost point on 
the left lobe boundary and a second point on the left lobe boundary but 7mm under the 
first, 2) the lowest point on the inferior segment of the right lobe and a point which is  
7 mm above (Fig. 5a). The distance is only used as a reference to obtain the second 
point in each pair. This distance is small enough to ensure the initialized liver lower 
patch excludes the portal vein. In a similar manner to the other surfaces, the lower liver 
surface is created from the sample points by using B-Spline reconstruction (Fig. 5b). 
                                                           
2 The right lung always exists for liver segmentation where the top of the liver right lobe is 

included in image sources.  
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Fig. 5. Lower liver surface (yellow) initialization and deformation (2D). (a) Feature points 
(yellow). (b) B-Spline reconstruction. (c) Discretisation. (d) Deformation. 

2.2   Deformable Model 

Similar to the work presented in [5,10], the initial liver model (Fig. 6a) is deformed to 
create the “real” liver boundary (Fig. 6d) by applying a graph based fitting scheme. 
The details of constructing the directed graph can be found in [10]. A simplified visu-
alization of this graph structure is given in Fig. 6c. To increase computation efficiency 
and robustness to outliers, we introduce the narrow band concept of the level set 
method. The lower liver surface is used to illustrate our approach. 

According to the property of the B-Spline, the continuous lower liver surface can 
be discretised at any desired resolution [9]. In practice, to increase robustness to the 
local minimum, we adopt a sampling scheme where an average distance between 
adjacent vertices is about 3 times the voxel size of the original image (Fig. 3c,5c). We 
denote the discretised lower liver surface as S t =0 = (V0, E) with vertices set V0 and 
edges set E. The graph search determines the optimal position vi* for each vertex vi ∈ 
V0. The final optimized surface is denoted as S*=(V*, E). The vertex at any location 
can then be derived using B-Spline interpolation. 

The external force is computed from the edge map of the pre-segmentation image, 
which serves as a template eliminating any region outside the liver region (Fig. 6b). 
The region inside the liver pre-segmentation is denoted by Rps. Defining an infinite 
line L(vi) starting at vertex vi with the direction N(vi, t), L(vi) intersects with an edge 
on the edge map at point pi*. A spring force drives the vertex vi in the corresponding 
direction: 
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δ is the width of the narrow band around St. A smoothness constraint, denoted by Δ, is 
imposed on the geometric relations of the nodes in the graph. That is, a shift between 
any pair of neighbouring points on each sought surface cannot be bigger than Δ. A 
smaller value of Δ forces the sought surface to be smoother.  

The surface fitting scheme is implemented in an iterative way. The process is 
stopped when either the predefined number of iterations has been achieved or the 
average vertex movement falls below a given threshold. More example results of 
deformation have been depicted in Fig. 3(5)d (2D) and Fig. 4c (3D). 
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Fig. 6. Deformable model (patient-2). (a) Model initialization. (b) Edge map. (c) Graph.  
(d) Model deformation. 

2.3   Pre-segmentation Refinement and Precise Liver Segmentation 

Using the three optimized surface patches, the tissues outside the boundary (indicated 
by the surface normal direction) can be removed from the pre-segmentation (Fig. 1d). 
The result is a refined liver pre-segmentation which is the input of the level set evolu-
tion for accurate liver shape recovery (automatically). 

The level set evolution in this section is driven by a joint force, i.e. image based 
force (external force) and curvature force (internal force), where the image based 
force is dominant. The external force is computed from a probabilistic map [11]. 

As the refined estimation is close to the real boundary, only a few iterations are re-
quired and thus the final result is not sensitive to the choice of parameters. We use 0.2 
and 0.8, corresponding to the weights of curvature and image force respectively, for 
all experiments. 

3   Evaluation and Experimental Results 

In our project, it is desirable to segment liver inner structures, e.g. tumors and vessels, 
as separate objects. For comparison, we automatically integrate the explicitly seg-
mented inner structures into the liver segmentation (Fig. 7b). The surface patches 
constructed in section 2 are used to trim vessels outside the liver region (Fig. 7a). 

3.1   Evaluation of Accuracy 

Our approach has been evaluated on 20 patient CT datasets3 provided by the organiz-
ers of the MICCAI Workshop on 3D Segmentation in the Clinic [8] and 5 further 
patient CT data from the CRaIVE 4  project. Both volume-based and mesh-based 
evaluations are conducted. Manual segmentations are taken as references. 

1) Volume comparison. 
This is measured based on three criteria defined by [12], which are all expressed as a 
fraction of the volume of reference models; 1) True positive volume fraction (TPVF): 
the fraction of voxels in the intersection of our segmentation and the reference model; 
2) False negative volume fraction (FNVF): the fraction of voxels defined in manual 
segmentation but missed by our method; 3) False positive volume fraction (FPVF): 
the fraction of voxels falsely identified by our method. The average TPVF is 

                                                           
3 Since there is no training process required by our method, we use their 20 training datasets for 

testing as well. The results of 10 test datasets have been submitted to [8] for evaluation. 
4 Collaborators in Radiological Interventional Virtual Environments, http://www.craive.org.uk  
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95.77(±2.07)%. FNVF and FPVF are 4.23(±2.07)% and 4.31(±2.49)%, respectively.. 
To be comparable with other liver segmentation experiments, we also calculate the 
overlap error and volume difference (Table 1).  

2) Mesh comparison 
This experiment is based on the distance measurement between vertices of the refer-
ence model and our result. The mesh is created by using the marching cubes algo-
rithm from the VTK library, using the same parameters for all datasets. The average 
RMS error is 2.44±0.53mm. The average maximum distance 16.84±4.35mm and the 
average mean distance is -0.15±0.22mm. 

3.2   Evaluation of Efficiency 

Our method was performed on an Intel Core2 2.66GHz processor. The average seg-
mentation time is about 1 minute (step1: 15sec.; step2: 25-30sec.; step3: 10sec.). The 
comparison to recent liver segmentation experiments is given in Table 1.  

 

Fig. 7. (a) Liver Segmentation (light blue), tumor (white) and vessels (dark blue and brown). 
(b) Segmentation after merging (in blue), overlapped with the manual segmentation (white). 

Table 1. Comparison to recent liver segmentation experiments. They are listed in the order of 
the best automatic, fastest automatic and best semi-automatic methods. 

Method 
Overlap Error 

[%] 
Volume Diff. 

[%] 
Avg. Dist. 

[mm] 
RMS Dist. 

[mm] 
Max. Dist. 

[mm] 
Run time

Datasets 
tested 

contrast 

Kainmueller [13] 7.0 -3.6 1.1 2.3 20.9 15 mins 10 yes 
Rusko [14] 10.7 -4.3 1.8 3.8 28.3 56 sec. 10 yes 

Lee et al. [15] 6.9 -1.3 1.1 2.1 21.3 7.4 mins 10 yes 
Our approach 8.15 0.079 -0.15 2.44 16.84 1 min 25 mixed 

4   Conclusions and Future Work 

Despite a large body of literature, (semi-) automatic liver segmentation from a 3D 
volume remains a challenge. Due to the large variations in shape and intensity pattern, 
the success of the classic statistical model-based approaches is often compromised  
by the limited number of training datasets. To overcome this, we propose a novel 
model-driven approach which creates a deformable model from each patient dataset 
directly. Moreover, by converting the problem of building one complex shape model 
into constructing three much simpler models that can be fitted independently, we 
greatly improve the computation efficiency. 
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Abstract. This paper proposes a method to extract the airway tree
from CT images by continually extending the tree with locally optimal
paths. This is in contrast to commonly used region growing based ap-
proaches that only search the space of the immediate neighbors. The
result is a much more robust method for tree extraction that can over-
come local occlusions. The cost function for obtaining the optimal paths
takes into account of an airway probability map as well as measures of
airway shape and orientation derived from multi-scale Hessian eigen anal-
ysis on the airway probability. Significant improvements were achieved
compared to a region growing based method, with up to 36% longer trees
at a slight increase of false positive rate.

1 Introduction

Analysis of the airways in computed tomography (CT) is crucial for the un-
derstanding of various lung diseases [1]. However due to the difficulties of the
extraction process, the airways remain among the least understood structures in
the lungs.

Most methods used for segmenting the airway tree from CT images are based
on the concept of region growing [2,3,4,5]. The main problem with the standard
region growing approach is that the segmentation may “leak” to surrounding
lung parenchyma, if the contrast with the airway wall is low due to e.g. noise
or pathology. Various strategies have been used to solve this problem, e.g. us-
ing geometric criteria to detect and remove leakage [2,3,4], or using improved
appearance models to avoid leakage [5].

In this paper, we propose a new method for airway tree extraction method
that continually extends the tree with locally optimal paths. The advantage of
using such a path search approach is that the algorithm is able to look further
ahead and can therefore overcome local occlusions. Occlusions may be caused
for instance by noise or pathologies such as mucus plugging. Using the trained
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appearance model described in [5] as the basis for our cost function, the Dijkstra
algorithm is applied within a sphere centered at a seed point to obtain candi-
date airway paths. Candidate paths that satisfy various criteria based on airway
probability, shape, and orientation are retained, and potential bifurcation points
and new end points are stored and subsequently used as new seed points. This
process is repeated until no more valid candidate paths can be found.

The work is inspired by minimal path based approaches in vessel segmen-
tation and diffusion tensor imaging (DTI) tractography (see e.g. [6,7]). These
approaches are however typically either limited to extracting a single optimal
path or require a user to specify the end points in advance. Another example
is [8], where a complete vessel tree is extracted as a collection of optimal paths
from a converged fast marching algorithm. In contrast to [8], we may be able to
extract also less salient branches and thus find a more complete tree by searching
for optimal paths locally and recursively. The notion of performing optimal path
extraction locally was recently also proposed in [9], where various examples are
shown in which a local approach outperforms the global approach. However, the
focus of that paper was on extracting single paths or contours and the method
is not capable of handling bifurcations.

Our work is similar in spirit to [10], which aims at reaching a more global solu-
tion for airway segmentation by detecting potential airway branches throughout
the lungs with a tube detection scheme, and subsequently connecting these using
a graph search method. However, our method is more flexible and can be cus-
tomized to other tree segmentation tasks by simply modifying the cost function
and the confidence measure.

2 Tracking Locally Optimal Paths

This section explains how the Dijkstra algorithm is applied locally and how
the optimal paths are selected. We assume that a cost function F , a confidence
measure D, and a list of initial candidate points are provided. A candidate point
is a point that belongs to a previously extracted airway branch, and for which
the departing paths are not yet extracted. Each candidate point is associated
with the orientation and the average radius of the airway branch it belongs to.

At every iteration, a candidate point is taken from the list and evaluated. New
paths extending from the candidate points are generated through a process of
candidate path extraction and selection. Additional new candidate points from
these new paths will then be added into the list. The iterative process ends once
no more candidate points are available for evaluation.

2.1 Extracting Candidate Paths

Given a candidate point x0, with the branch orientation d0, optimal paths are
computed from x0 to every point within a sphere of radius rs using the Dijkstra
algorithm. We refer to these optimal paths as the candidate path from x0 to
x. The traveling cost between two neighboring voxels is computed using cost
function F .
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Candidate paths are extracted for all points on the surface of the sphere that
satisfy the following conditions:

1) Local minima: End points should form a local minimum, in terms of minimal
cost from x0, on the surface of the sphere.

2) Departing angle: To limit the search to branches that do not deviate too
much from the initial direction, end points should satisfy � (x− x0), d0 ≤ α, as
shown in Fig. 1(c).

2.2 Evaluating the Candidate Paths

The most likely airway branches are selected from the extracted candidate paths
by the following three selection criteria in a low to high cost order:

1) Confidence: The majority of points on a path must have high confidence
measure D. Hence, we require the Nth percentile of the confidence measure of
a path to be greater than β in order to be selected.

2) Straightness: As airway branches are relatively straight in general, we re-
quire a path C to satisfy lpath(C) < γl(x0, x), where lpath(C) is the length of
the path C and l(x0, x) is the distance from x0 to x.

3) Non-overlap: Selected paths are not allowed to overlap each other and
should be at least δ mm apart. The distance between a candidate path and
the previously selected paths is measured as the minimum distance between the
end point of the candidate path and the points in the selected paths. We also
ensure that a selected candidate path will not intersect with other paths obtained
from previously evaluated candidate points. Prior to applying this criterion, an
additional trimming process is added to remove low confidence points at the end
of the path, which exist because of the used of fixed end points. The trimmed
path is stored if the path is selected.

A maximum of Nmax paths is retained.

2.3 Updating the List of Candidate Points

The end points of the newly selected paths are added to the list of candidate
points. All potential bifurcation points, defined as points where candidate paths
depart from a selected path, are also added to the list. The direction for each of
the new candidate points is the direction of the selected path it belongs to.

3 Cost Function

Unlike most current airway segmentation methods [2,3,4,10] that use only image
intensity, our proposed method operates on the soft classification resulting from
a voxel classification based appearance model [5].

The appearance model uses a K nearest neighbor (KNN) classifier that is
trained to differentiate between voxels from airway and non-airway classes using
various local image descriptors at different scales. To circumvent the requirement
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for high-quality ground truth segmentations of the complete airway tree, we
follow the interactive training procedure described in [5]. A moderated KNN [11]
output is used, where the posterior probability of a feature vector f(x), obtained
at voxel position x, to belong to the airway class is defined as

PA(f(x)) =
KA(f (x)) + 1

K + 2
,

where KA(f (x)) is the number of nearest neighbors around f (x) that belong to
the airway class obtained from a total of K nearest neighbors.

The airway probability PA(f(x)) is used directly as the confidence measure
D in Section 2 to discard unlikely paths. The cost function F is designed such
that local paths are searched in the direction of probable airways, which appear
as bright, cylindrical structures in PA. The local orientation of the airways is de-
rived through multi-scale Hessian eigen analysis on the airway probability map.
The scale is selected for each voxel independently using the scale normalized [12]
Frobenius norm of the Hessian matrix ω(σi) = σ2

i

√
λ1(σi)2 + λ2(σi)2 + λ3(σi)2,

where |λ1| ≥ |λ2| ≥ |λ3| are the eigenvalues of the Hessian matrix. The local
scale, σl, is then obtained as the smallest scale that corresponds to a local max-
imum of ω(σi) across a list of scales {σmin, . . . , σmax}, where σmax is chosen
slightly larger than the current airway radius. A measure Mtube, indicating how
well the surrounding image structure fits the model of a solid bright tube, can
then be defined as

Mtube(x) =

{
0, λ1(σl) ≥ 0 or λ2(σl) ≥ 0,
|λ2(σl)|−|λ3(σl)|

|λ2(σl)| , otherwise,

The orientation of the tube at x is given by v3(x), which is the eigenvector
corresponding to λ3(σl).

The cost function F combines the airway probability, tubeness measure, and
airway direction estimates as:

F (xs, xt) =
‖xs − xt‖2

| < xs−xt

‖xs−xt‖2
, v3(xt) > |PA(f (xt)(1 + Mtube(xt))

,

where xs and xt is the source and target location. The cost F (xs, xt) is low, when
both the local airway probability is high and the propagation direction is parallel
with the estimated airway orientation. The term with Mtube is used to lower the
cost further, when the local structure at xt resembles a solid bright tube.

4 Experiment and Results

Experiments were conducted on low-dose CT images from the Danish Lung
Cancer Screening Trial (DLCST) [13], where participants were current or for-
mer smokers at an age between 50-70 years. All images had a slice thickness
of 1 mm and in-plane voxel size ranging from 0.72 to 0.78 mm. A total of 32
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Fig. 1. (a) Example of a case where it is not possible to segment the correct part
(the largest part of the branch) from the leakage, with the branch segment highlighted
in yellow and an arrow indicating the leakage. (b) A scatter plot of the tree length
obtained by both methods for the 10 test cases. (c) A schematic of the search sphere.
(d) Surface rendering of the results from proposed method (left) and region growing
based method (right), with correct regions in blue, missing regions in yellow, partly
wrong regions in purple and false positives in red.

randomly selected images were used for the training of the voxel classification
based appearance model. The method was tested on an additional 10 randomly
selected CT scans from different subjects.

Results were compared to a region growing based method that uses a trained
airway appearance model and exploits the fact that orientation of airways and ves-
sels are similar [5]. Airways branches from the second up to and including the third
generation obtained by this method were used to initialize the proposed method.
Since extraction of these first few branches is relatively easy, simpler methods such
as intensity based region growing could be used for initialization instead.

The centerlines of the initial segmentation were used as the initial set of
candidate points needed for the proposed method. A simplified version of the
segmentation algorithm presented in [2], without any leakage detection, were
used to extract the centerlines. The direction and radius associated to each
candidate point is derived from the branch they belong to. For newly added
candidate points, the radius is simply propagated directly from their parents.
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4.1 Parameter and Settings

For extracting the optimal paths, the radius of the search sphere was set to
rs = 20 mm and the maximum allowed angle to α = 100 degrees. In selection
of the optimal paths, at most N = 30 percent of points on the path may have a
confidence below β = 0.5, the straightness measure γ = 1.05, minimum required
distance between selected optimal paths δ = 3 mm. The maximum number of
selected paths from a single candidate point Nmax was set to 2.

For the appearance model, K = 21 was used for the KNN classifier and 7
scales distributed exponentially from 0.5 to 3.5 mm were used both to generate
the features (refer to [5] for details) and for the multi-scale Hessian eigen analysis.

To prevent paths from growing into border of the lungs, candidate points that
were within 3 mm of the lung surface were not evaluated.

4.2 Results

All results were evaluated manually by an experienced observer using the dedi-
cated airway segmentation evaluation tool developed for the EXACT’09 airway
extraction challenge [14]. The results were divided into individual branches us-
ing the simplified version of [2], without any leakage detection. Airway branches
are subsequently visually inspected and classified into the categories ‘correct’,
‘wrong’, or ‘partly wrong’ based on several views obtained from different cut
planes at different angles and positions. Branches are said to be correct, if there
is no leakage visible at all. A branch is said to be wrong, if the majority (more
than 50%) of it is leakage, and partly wrong, if the majority is correct.

As the evaluation tool was designed for evaluating segmentation and not cen-
terlines, results from the proposed method were dilated in order to make them
compatible with the evaluation tool.

As the evaluation process only separates branches at bifurcations, we are
unable to isolate leakage from a branch, if it extends from the endpoints and
does not bifurcate. This usually occurred at the end segments, where a whole
branch is classified as ‘partly wrong’ due to a small amount of leakage at the
end. Figure 1(a) shows an example of this situation. All partly wrong regions
were excluded from further evaluation.

Compared to the results from the region growing approach, we observe a
significant (p < 0.01) increase of 36% in total tree length for the results of the
proposed method, from an average of 192 cm tree length to 258 cm. The tree
length is defined as the sum of the lengths of all branches obtained, excluding
the trachea and main bronchi. The average false positive rate, computed as a
percentage of the total tree with the trachea and main bronchi excluded, was
3.79% for the proposed method, slightly larger than for the region growing based
method (1.35%). The total number of branches extracted was similar for both
methods, around 174 branches on average. A plot showing the tree length for
the 10 cases from the two methods are given in Fig. 1(b). Surface renderings of
a randomly selected case are given in Fig. 1(d).

Finally, a third segmentation was constructed as the union of the airway trees
extracted from the two methods. A comparison of the union against the result
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from the region growing based method shows a significant (p < 0.01) increase of
9% in branch count. Results from the proposed method cover 96% of the tree
length in the union, while results from the region growing based method only
have 71% coverage.

5 Discussion and Conclusions

The proposed method improves results significantly, especially in terms of tree
length, where an average improvement of 36% was observed. The branches missed
by the proposed method that were extracted correctly using the region growing
based method were very short, with an average length of 5 mm. Despite having
similar branch count when comparing the proposed method and the region grow-
ing based method, significant increase (9%) in branch count was observed when
comparing the results from the region growing based method against the union.
This indicates that the proposed method is capable of obtaining new branches,
and not only merely extending branches obtainable by the region growing based
method. It should be noted that the multi-scale version of the work from [5],
used for comparison, is a method that gives results comparable to other recent
state of the art methods such as [4].

In the current work, the estimate of the airway radius is propagated from old to
new candidate points unaltered. Although this estimate is only used to determine
the upper bound in the scale selection of Section 3, more reliable estimates of
local tubeness and tube orientation may be found if the radius is updated with
each bifurcation to reflect the overall decrease in airway diameter towards the
higher generations. Alternatively, an airway wall segmentation algorithm such
as [15] could be used to obtain the radius, with the additional advantage that
the result can be directly used for airway dimension analysis.

Another potential improvement would be to introduce a “multi-radius”
scheme, which involves searching paths within multiple search spheres of dif-
ferent radii. This might increase the number of new branches found, as shorter
branches may then be extracted using a smaller radius, while occlusions can still
be overcome using the larger radii.

In conclusion, an airway tree extraction method that is based on a recursive
search for locally optimal paths is presented. In contrast to common airway tree
segmentation methods that only consider the immediate neighbors of seed points,
our method considers both the appearance and structure of a whole path. This
enables the method to extend past local occlusions caused by noise or pathologies
such as mucus plugging. The proposedmethod handles bifurcations automatically,
which is a topic rarely touched upon by optimal path tracking methods.
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Abstract. Inspired by the motion of a solid surface under liquid pres-
sure, this paper proposes a novel deformable surface model to segment
blood vessels in medical images. In the proposed model, the segmented
region and the background region are respectively considered as liquid
and an elastic solid. The surface of the elastic solid experiences various
forces derived from the second order intensity statistics and the surface
geometry. These forces cause the solid surface to deform in order to seg-
ment vascular structures in an image. The proposed model has been
studied in the experiments on synthetic data and clinical data acquired
by different imaging modalities. It is experimentally shown that the new
model is robust to intensity contrast changes inside blood vessels and
thus very suitable to perform vascular segmentation.

1 Introduction

Vascular segmentation is essential to the clinical assessment of blood vessels.
To extract vasculatures from medical images, the deformable surface models
have been actively studied in the past decade. Lorigo et al. have proposed the
CURVES algorithm in [1]. CURVES makes use of the minimal curvature to aid
the detection of thin vessels. Vasilevskiy and Siddiqi [2] have introduced the
image gradient-flux to deform surfaces for the segmentation of vascular struc-
tures. The image gradient-flux encapsulates both the image gradient magnitude
and direction. It is capable of detecting small and low contrast vasculatures.
Rochery et al. have devised the higher order active contour model in [3]. The
higher order active contour model factors in the image intensity, the geometry
of target structures and the contour smoothness to extract tubular structures.
Klein et al. [4] have presented the use of a B-Spline based deformable surface
model to segment vessels. Yan and Kissim have elaborated the capillary action
[5] for segmentation of vessels. The capillary force aims at pulling the evolving
surface into thin and low contrast vessels. Nain et al. devised the shape driven
flow [6] to reduce the chance of false positive detection when segmenting vessels.

In this paper, a novel deformable surface model is proposed. The deformable
surface can be viewed as the surface of an elastic solid (the background region)
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that is in contact with the liquid (the segmented region). The surface is rep-
resented as a level set function. It experiences forces derived from the second
order intensity statistics and the surface geometry. These forces are related by
the force equilibrium equation of a solid-liquid interface [7]. The dynamics of
the surface are governed by the net force acting on the surface. The surface
deformation equation can inspect the second order intensity change along the
surface tangential plane as well as the surface normal direction. It helps deform
the surface to propagate through the position where changes of object intensity
contrast happen.

The proposed model is studied using a synthetic and numerical image volume.
It is also compared against a well founded vascular segmentation approach, the
CURVES algorithm [1], by using the clinical datasets consisting of three differ-
ent imaging modalities. It is experimentally shown that the proposed model is
suitable to perform segmentation of vascular structures.

2 Methodology

2.1 The Proposed Model

In the proposed model, the segmented region and the background region are
respectively regarded as liquid and an elastic solid (Fig. 1). As such, the solid
surface is the boundary that separates the segmented region and the background
region. There are three kinds of forces acting on the solid surface. First, the
liquid exerts pressure on the solid surface. Second, the surface of the elastic solid
has surface stress which opposes the change of the surface area of the solid.
Third, an external bulk stress is acted on the surface of the solid. These forces
are derived based on the second order intensity variation and the geometry of
the solid surface. Given P is the pressure exerted by the liquid, s and B are
symmetric tensors which represent the surface stress force and the bulk stress
force at the solid surface respectively, at the force equilibrium position, these
forces are related as [7],

(P − divss)n + Bn = 0, (1)

where divs is surface divergence and n is the inward surface normal of the solid.
By placing an initial surface inside the target vessels, the proposed model

allows the solid surface to deform according to the net force acting on it. This
aims at seeking the force equilibrium position of the surface. Denote C be the
solid surface, the change of the surface with respect to time t is determined by
the net force acting on the surface,

Ct = (P − divss)n + Bn. (2)

The liquid pressure and the bulk stress experienced by the solid surface are
devised based on the second order intensity statistics, which are widely used
for the detection of vasculatures [8] [9] [10]. The pressure exerted by the liquid
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is defined as P = −ΔI. Inside tubular structures, the Laplacian responses are
negative and with large magnitudes. A large negative Laplacian response results
in a high liquid pressure inside tubular structures to push the solid surface.
On the other hand, the bulk stress acting on the solid surface B is defined as
the negative second order intensity change along the surface normal, i.e. B =
−αInnnnT , where α determines the strength of the stress force. Since the second
order intensity changes are large along the vessel cross-sectional planes, and small
along the vessel direction, this bulk stress force intends to pull the solid along
the vessel cross-sectional planes.

The second order intensity change magnitudes decrease at the positions away
from the vessel centers and thus, the stress force as well as the liquid pressure
decline accordingly. The bulk stress and the liquid pressure finally become small
or vanish at the vessel boundaries. The surface receives very small or no force at
the vessel boundaries where the deformation of the surface is therefore stopped
at the vessel boundaries. Besides, the surface stress of the solid which opposes to
the change of the solid surface area is designed to be constant and isotropic. As
discussed in Section 2.3, such a constant and isotropic surface stress leads to a
smooth resultant surface. Given u and v are two arbitrary orthogonal tangential
directions of the surface, the tensor of the constant and isotropic surface stress
can be written as, s = γ[u v][u v]T , where γ controls the surface stress strength.

Assigning the aforementioned forces to Eqn. 2, we have Ct = (−ΔI − divs

(γ[u v][u v]T ))n − αInnnnT . Since ΔI = Tr(H) and divs([u v][u v]T ) =
−2κn [11] for the Euclidean mean curvature of the surface κ,

Ct = (−Tr([u v]T H[u v]) + 2γκ)n− (1 + α)(InnnnT )n. (3)

For the simplicity of discussion, denote γ′ = 2γ, α′ = 1 + α, G(H; n) =

(nT Hn)(nnT ) = InnnnT , M =
[

Iuu Iuv

Iuv Ivv

]
=

[
uT Hu uT Hv
uT Hv vT Hv

]
= [u v]T H[u v],

Ct = (−Tr(M) + γ′κ)n− α′G(H; n)n. (4)

2.2 Vessel Specific Image Features and Multiscale Detection

If the surface is deforming along a vessel, the surface tangential plane is equiv-
alent to the cross-sectional plane of the vessel. The eigenvalues of M would be
negative and with large magnitudes. Furthermore, vessels are mainly in tubular
shape with roughly circular cross-sections. Therefore, the ratio and the signs of
these two eigenvalues are exploited to suppress the surface deformation speed
in the structures producing non-negative eigenvalues or large difference between
the two eigenvalues. The surface deformation equation (Eqn. 4) is refined as
Ct = (−f(H; u, v) + γ′κ)n− α′G(H; n)n, and

f(H; u, v) =

{
Tr(M) exp

(
1− ξ2

ξ1

)
if ξ1 < 0 and ξ2 < 0,

0 otherwise,
(5)

where ξ1 and ξ2 are the eigenvalues of M and |ξ1| ≤ |ξ2|.
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Since vessel sizes vary in practice, the second order intensity statistics are
computed on the images smoothed by Gaussian kernels with various scales (de-
fined by the value of σ as shown in Fig. 2a) for multiscale detection. The scales
are sampled logarithmically as discussed by Sato et al. in [10]. Suppose the Hes-
sian matrix obtained at the scale σ is Hσ and the associated Hessian matrix
along the surface is Mσ, the surface deformation equation becomes,

Ct = −f(Harg maxσ |Tr(Mσ)|; u, v)n− α′G(Harg maxσ |nT Hσn|; n)n + γ′κn, (6)

where the terms arg maxσ |Tr(Mσ)| and argmaxσ |nT Hσn| select the scales that
exhibit the largest second order intensity changes along the surface tangential
plane and along the surface normal, among a set of pre-defined scales.

The solid surface is represented as the zero boundaries of the level set function
[12]. The evolution of the level set function was implemented according to the
description by Whitaker [13] and based on the Insight-Toolkits [14]. The level set
function evolution was stopped when the change of the level set function was less
than 0.0001 per segmented voxel over 40 evolution iterations. When the level set
function is evolving, H in one scale is obtained in a 3∗3∗3 local window by taking
central difference on one buffered image, which is Gaussian-smoothed before the
evolution begins. M is retrieved from H and the surface tangents u and v.
Bilinear interpolation is used at the positions with non-integer coordinates. This
procedure is repeated for each scale. The complexity of evaluating Eqn. 6 for
one voxel is linear with respect to the number of scales used.

2.3 Properties of the Proposed Model

The function f(·) (Eqn. 5) has a large magnitude when the eigenvalues are neg-
ative, with large and similar magnitudes. This corresponds to the scenario that
the surface is deforming along the vessel, as illustrated in Case 1 of Figs. 2b-d. In
Cases 2 and 3 of Figs. 2b-d, the magnitudes of either one of or both of the eigen-
values of Mσ are small. In such cases, the resultant values of f(·) are suppressed
by the exponential term. The surface is deformed according to the second and the
third terms in the right hand side of Eqn. 6. The surface beyond vessel boundaries
in Case 2 and the solid surface approaching the vessel boundary in Case 3 are ex-
panded and shrunk respectively, according to the value of nT Hn. The surface is
in turn converged to the vessel boundary. Besides, Case 4 of Fig. 2 corresponds to
the situation that the surface reaches the vessel boundary and the second order in-
tensity variations along all directions are small. The deforming surface is therefore
halted at the vessel boundary.

Regarding the parameters of the proposed model, the solid stress strength α′

is used to specify how much the second order intensity change along the surface
normal influences the speed of surface deformation. A small value of α′ reduces
the surface deformation speed induced by the second order intensity change
along the surface normal. It causes the surface deforming aggressively along
tubular structures. Enlarging the value of α′ increases the chance of detecting
non-tubular structures, such as, high curvature vessels or junctions. On the other
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Fig. 1. The proposed deformable surface model
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1, deforming ≈ 0 ξ1 ≈ ξ2 
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vessel boundary
3, approaching < 0 ≈ 0 < 0
vessel boundary

4, at vessel ≈ 0 ≈ 0 ≈ 0
boundary

(a) (b) (c) (d)

Fig. 2. (a) A plot of the second derivative of a Gaussian function along u. (b) An
example showing various situations when the surface is deforming to segment a vessel.
(c) The surface tangential planes in different cases in (b). The black lines show the
positions where the vessel boundary crosses the tangential planes. (d) The descriptions
of various terms appeared in the definitions of f(·) and G(·). σ is assumed to be the
same as the vessel radius.

hand, the surface stress term of the solid (the third term in the right hand side
of Eqn. 6) is analogous to the curvature regularization term which is commonly
utilized in active contour methods. The value of γ′ determines the smoothness
of the resultant surface.

As the proposed model makes use of a 2D-circular-constraint (Eqn. 5), it
exhibits extra flexibility on handling branches as compared to Hessian based
methods which have a more restrictive 3D-tubular-constraint. Meanwhile, the
proposed method inspects the second order intensity changes along the surface
tangential plane and the surface normal direction separately. This makes our
method more robust when the vessel intensity contrast varies rapidly along the
vessel. The rapid change of vessel contrast can be caused by image noise or closely
located objects with intensity similar to the vessels. A rapid change of vessel
intensity contrast can significantly alter the directions of the image gradient
and the principle directions of the Hessian matrix. It can undesirably terminate
the deformation of the moving surface inside vessels in some deformable surface
models, which are grounded on the image gradient [1][5] or the Hessian matrix
[15]. For the proposed model, the intensity variations are measured along the
directions defined by the deforming surface. When the surface is deforming along
and inside vessels, the surface tangential plane at the evolving tip of the surface
is equivalent to the vessel cross-sectional plane. Inspecting the intensity changes
along the surface tangential plane is therefore able to capture the second order
intensity changes along vessel cross-sectional plane. It consequently keeps the
surface deforming along vessel despite of the rapid change of intensity contrast.
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Fig. 3. The synthetic and numerical image volume with the size of 20×20×60 voxels,
consists of a vertical tube with a radius of 2 voxels. (a) The x = 10 slice of the image
volume. (b) The intensity values in different parts of the image volume. (c) The initial
surface. (d-f) The surface deformation results of Ct = −f(Harg maxσ |Tr(Mσ)|; u, v)n ;
Ct = −G(Harg maxσ |nT Hσn|; n)n ; the proposed model using α′ = 1 and γ′ = 0.

3 Experimental Results

The proposed method is validated by using four volumetric images: a numerical
image volume consisting of a synthetic tube (Fig. 3a), an intracranial phase con-
trast magnetic resonance angiographic (PCMRA) image1(Fig. 4a), an intracra-
nial time-of-flight magnetic resonance angiographic (TOFMRA) image 1(Fig. 4d)
and a cardiac computed tomographic angiographic (CTA) image 2(Fig. 4g).

3.1 Synthetic Data

In this section, we employ a synthetic tube (Figs. 3a and b) which exaggerates
a rapid change of intensity contrast along a vessel. With this rapid change of
vessel intensity contrast, we demonstrate the behavior of the term involving
the second order intensity change along the surface tangential plane, and the
term involving the second order intensity change along surface normal in the
surface deformation equation. These two terms are f(·)n and G(·)n in Eqn. 6
respectively.

In this experiment, an initial surface is placed at the bottom of the tube (Fig. 3c).
Two resultant surfaces are obtained by deforming this initial surface according to
Ct = −f(Harg maxσ |Tr(Mσ)|; u, v)n and Ct = −G(Harg maxσ |nT Hσn|; n)n. Five
logarithmic scale samples are taken from the range of 1 to 5 voxel length. The resul-
tant surfaces are shown in Figs. 3d and e respectively. Since the surface tangential
plane at the evolving tip corresponds to thevessel cross-sectional plane, thedeform-
ing surface can propagate through the position where the tube intensity contrast
changes. However, it cannot segment the entire tube as f(·) is small or zero when
the surface tangential plane does not correspond to the vessel cross-sectionalplane,
where ξ1 and ξ2 are not both negative and with similar magnitudes (see Eqn. 5).

1 Acquired using a Philips 3T ACS Gyroscan MR scanner without the use of contrast
agent, at the University Hospital of Zurich, Switzerland.

2 Rotterdam Coronary Artery Algorithm Evaluation Framework,
“http://coronary.bigr.nl/”
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Fig. 4. (a, d, g) The three clinical datasets used in the experiments, an intracranial
PCMRA image with 512×512×46 voxels and voxel size of 0.39mm×0.39mm×0.8mm;
an intracranial TOFMRA image with 512 × 512 × 60 voxels and voxel size of
0.39mm×0.39mm×0.95mm; and the z = 190 slice of a cardiac CTA image with
512 × 512 × 190 voxels and voxel size of 0.34mm×0.34mm×0.4mm, the white arrow
points at the position where the initial surface/contour is placed. (b, e, h) The segmen-
tation results using the CURVES algorithm. (c, f, i) The segmentation results using
the proposed method.

Besides, in Fig. 3e, the deforming surface is halted by the rapid change of intensity
contrast. Finally, by making use of both f(·)n and G(·)n, deforming the surface
based on Eqn. 6 can segment the entire tube Fig. 3f, despite of the large change of
tube intensity contrast.
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3.2 Clinical Data

We have applied both our method and the CURVES algorithm [1] to segment the
vasculatures in the three clinical datasets (Figs. 4a, d, g). The initial surface and
contour of the proposed method and CURVES in the first and the second cases
are obtained by thresholding the regions with 0.5% of the highest intensity in the
entire image. In the CTA dataset, a single-voxel region manually placed in the
right coronary artery is employed as the initial surface for the proposed method
and the initial contour for CURVES. Five scale samples are obtained analogous
to the synthetic experiment for the multiscale detection of the proposed model.
The values of the parameters α′ and γ′ are 0.75 in all cases. For CURVES, in
each dataset, we only show the segmented region which gives no leakage and
that region has the largest number of segmented voxels among those obtained
using various parameter values in the evolution equation of CURVES.

Comparing Figs. 4b and c, the proposed method is capable of segmenting more
vessels in the PCMRA image. The main reason is that the analysis of the second
order intensity variation along the surface tangential plane helps the surface
deform along vessels, despite the present of intensity contrast variations along
vascular structures. In the TOFMRA image and the CTA image, we have found
that the evolving contours of CURVES leak frequently at the boundaries where
adjacent tissues with intensity similar to vessels present. CURVES could only
segment a small portion of the vessels (see Figs. 4e and h) before leakages happen.
Besides, the proposed method has no problem to extract the vasculatures from
the TOFMRA and the CTA images (Figs. 4f and i).

4 Discussion and Conclusion

The surface dynamics described in Eqn. 2 is a simplified case of the motion of a
solid surface under liquid pressure in practice [16]. For instance, in the proposed
model, the solid surface is assumed to be purely elastic and the bonding between
the atoms on the solid surface does not break during deformation. Nevertheless,
the proposed model based on the simplified deformation dynamic of the solid
surface well serves the purpose of segmentation of vessels. Meanwhile, handling
stenoses or aneurysms, and quantitative evaluation for a specific applications
will be the future research directions of this work.

In summary, this paper proposes a novel physics-based deformable surface
model for segmenting blood vessels in medical images. By considering the sec-
ond order intensity statistics as various forces acting on the deforming surface,
the proposed method allows the surface to propagate along vessels despite the
presence of undesired intensity contrast fluctuations along vessels. The proposed
method has been studied in the experiments using synthetic data, and compared
with a classic deformable surface model, the CURVES algorithm [1], in the ex-
periments using medical images acquired by various imaging modalities. It is
demonstrated that the proposed method is well suited to segment vasculatures
from medical images.
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Abstract. This paper addresses reconstruction of a temporally deform-
ing 3D coronary vessel tree, i.e., 4D reconstruction from a sequence of
angiographic X-ray images acquired by a rotating C-arm. Our algorithm
starts from a 3D coronary tree that was reconstructed from images of one
cardiac phase. Driven by gradient vector flow (GVF) fields, the method
then estimates deformation such that projections of deformed models
align with X-ray images of corresponding cardiac phases. To allow ro-
bust tracking of the coronary tree, the deformation estimation is reg-
ularized by smoothness and cyclic deformation constraints. Extensive
qualitative and quantitative tests on clinical data sets suggest that our
algorithm reconstructs accurate 4D coronary trees and regularized esti-
mation significantly improves robustness. Our experiments also suggest
that a hierarchy of deformation models with increasing complexities are
desirable when input data are noisy or when the quality of the 3D model
is low.

1 Introduction

A four dimensional (4D) representation of the coronary artery tree – i.e., a
temporally deforming 3D coronary artery model, would have many interesting
applications, e.g., motion compensated tomographic reconstruction, stenosis de-
tection [1], foreshortening-free visualization, accurate measurement of cardiac
motion parameters, and motion-based heart disease diagnosis. Automatic 4D
reconstruction is challenging using traditional 2D cardiac monoplane or biplane
angiograms due to difficulties with calibration and limited baselines, as shown by
several prior studies [2,3,4]. This paper introduces a 4D reconstruction method
using intra-operative rotational C-arm systems. Compared to biplane X-ray, ro-
tational X-ray on a C-arm is clinically more prevalent, less costly, and it enables
tomographic reconstruction.

4D reconstruction seems to have a straightforward solution: by repeating 3D
reconstruction for every cardiac phase. However, this is not a viable solution in
practice for several reasons. First, independent 3D reconstruction results in the
loss of vessel branch correspondences, which are necessary for a diagnostically
useful time-dynamic model. The second reason is related to the rotational ac-
quisition protocol. As opposed to biplane X-ray, no two images are acquired at
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exactly the same heart phase. A small temporal offset can cause a significant
spatial error for fast motion cardiac phases (e.g. in early systole [5]), rendering
3D reconstruction impractical. This is less of an issue for slowly moving cardiac
phases. Indeed, there is research aimed at finding the optimal cardiac phase that
are best for 3D coronary tree reconstruction [6].

In this work, starting from a successfully reconstructed 3D model [7] for a
relatively static cardiac phase, we explicitly estimate coronary tree deformations
from one cardiac phase to the next. Since we track deformations of the 3D
coronary tree, this is a 4D reconstruction by deformation tracking approach.

State-of-the-art work in coronary artery tree reconstruction was done by Blon-
del et al. [1]. The authors use 4D B-solids to model coronary motion with reported
computation times of 15 to 30 minutes. Our approach is distinct in the follow-
ing important ways. First, we derive the external force from gradient vector flow
(GVF) [8] computed from the vessel enhancement filter responses (“vesselness”)
[9]. GVF was proven to have superior capture range and convergence behavior
over a regular gradient. It is also known that GVF is robust to noise perturbations,
while 2D centerline extraction is extremely sensitive to noise, rendering centerline-
based methods unstable in noisy sequences. Second, we adopted more robust mo-
tion models (rigid and affine), involving 90 ∼ 180 parameters, compared to the
B-solid motion model used in [1] involving 30,000 parameters. Complex models
have two known disadvantages, 1) costly to optimize; and more importantly 2)
prone to over-fit noise. We show in our experiments that simpler 4D reconstruc-
tion algorithm is able to handle structural perturbations (due to missing branches)
and heavy image noise perturbations more stably.

A biplane 4D reconstruction method is reported in [10]. Besides differences in
the image acquisition procedures (thus different problems), the external driving
forces (GVF versus gradient-based potential field) and data representations are
different. In our work, we work directly on 3D point sets while the method in [10]
requires a B-spline fitting preprocessing step that brings additional challenges
such as selection of control points for B-spline and detecting bifurcation points.
In the approach presented by Jandt et al. [11], the 4D motion vector field of
the coronary tree is recovered by correspondence matching of multi-phase 3D
centerline models. In contrast, our method circumvents the aforementioned in-
herent inaccuracy of 3D models reconstructed for high-velocity cardiac phases
(see above) by requiring only one baseline 3D reconstruction. Furthermore, our
approach solves the challenging correspondence problem implicitly.

Motion estimation is a well-studied topic in the computer vision community,
e.g. [12] and [13]. Our problem differs from the traditional tracking problem
in that image plane motions are induced by two major sources: the rotation of
the projection plane around the patient, and nonrigid cardiac deformation. In
our problem, the former is known given the calibrated C-arm rotation. What is
left to be estimated is the cardiac deformation. In addition, a X-ray image is
in its projective nature different from a photometric image, as it can be seen as
a superposition of multiple transparent layers. 2D motion field estimation thus
requires different techniques.
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2 Method

In the following we denote vectors and matrices as boldface letters, e.g., R.
A letter with a tilde means that it is in a homogeneous coordinate, X̃(p)

n =[
X(p)T

n , 1
]T

. A letter with a prime, e.g., u′,X′ represents deformation updated
version of the same point (in 2D and 3D), u,X.

Problem Formulation. We are given a sequence of F X-ray images, I = {If}
and their corresponding projection matrices {Pf} , f = 1, 2, . . . , F , taken by an
X-ray C-arm. Recorded ECG signals allow us to map each frame f into one
of P discrete cardiac phases, p = 0, 1, . . . , P − 1. A 3D model of the coronary
artery tree is reconstructed from a heart phase involving a low amount of motion.
Without loss of generality, we term the optimal phase the base phase and denote
it as phase 0. The model is in the form of a set of N 3D points, X (0) =

{
X(0)

n

}
,

n = 1, 2, . . . , N . The problem is to infer a temporally deforming coronary artery
tree, X (p) for all cardiac phases, from the images, such that projections of X (p)

align with observations in all image frames corresponding to the cardiac phase.

Deformation Models. In this study, we model deformation of a coronary tree
by two 3D parametric deformation models, i.e., rigid and affine. The affine model
can capture the majority of the beating motion associated with the cardiac cycle.
Both transformations can be represented by a compact 4×4 matrix T (θ), where
θ is the vector of motion parameters. Forward and inverse mappings between T
and θ are assumed understood [14, Ch. 1.4 pp. 16].

A 4D Coronary Tree Model. Then deformation from phase p− 1 to p is

X̃(p)
n = T

(
θ(p−1)

)
· X̃(p−1)

n (1)

Note that all points in a 3D model X(p−1) are deformed to the next phase by
the same T. By applying (1) recursively, we have

X̃(p)
n =

⎛
⎝ 0∏

i=p−1

T
(
θ(i)

)⎞⎠ · X̃(0)
n

.= T (p) (θ) · X̃(0)
n , (2)

where T (p) (θ) .=
∏0

i=p−1 T
(
θ(i)

)
is the accumulative deformation from frame

0 to p and θ = (θ(0)T , . . . , θ(P−1)T )T ∈ RmP×1 is a concatenation of θ(p), and
m is the parameter length (6 for rigid and 12 for affine).

Deformation Update. We adopt an iterative deformation update approach.
Initially, the 4D coronary tree is trivial, i.e., X (p) = X (0), ∀p. Due to cardiac
deformations, projections of this trivial 4D coronary reconstruction will not align
with the observed X-ray images except for the base phase. The iterative update
approach then seeks to find updates to T(p), ∀p, such that the projections pro-
gressively match towards the image observations. In the following, we will use a
compositional update rule:
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T(θ(p)) ← T(δθ(p)) ·T(θ(p)). (3)

Put all the update parameters in a vector δθ
.= (δθ(0)T , . . . , δθ(P−1)T )T ∈

RmP×1 and by slight abuse of notation, denote

T (p) (θ, δθ) .=
0∏

i=p−1

(
T

(
δθ(i)

)
·T

(
θ(i)

))
(4)

as the updated accumulative deformation. An updated 2D projection ũ′(in ho-
mogeneous coordinate) is derived by

ũ′
nf (θ, δθ) .=

[
x′

nf , y′
nf , z′nf

]T ∼= P(p)
f · T (p) (θ, δθ) · X̃(0)

n . (5)

where ∼= means equal up to a scale. Note that the phase-frame correspondence
p ↔ f is known given the recorded ECG signal. Next, the updated 2D projection
in nonhomogeneous coordinate is

u′
nf =

[
x′

nf

z′nf

,
y′

nf

z′nf

]T

≈ unf +
[
d1nf

d2nf

]
· δθ (6)

where in the second (approximate) equality we used first order approximations
and dknf , k = 1, 2 are data term related Jacobian for point n in frame f . Denote

vnf
.= [v1nf , v2nf ]T .= u′

nf − unf (7)

as the desired vector flow in a 2D image. Thus for each point n and a frame f ,
we have derived two linear constraints on the deformation update parameters,

dT
knf · δθ ≈ vknf , k = 1, 2. (8)

In this study, we choose the gradient vector flow (GVF) field to provide vknf

due to many known advantages as stated previously in this paper.

Cyclic Deformation Constraints. Cardiac motions are cyclic, which implies
that after a complete cycle, a point should end up at the same starting point,

T (P ) (θ, δθ) X̃(0)
n = X̃(0)

n . (9)

A first order approximation can be derive for each point X(0)
n

cT
kn · δθ ≈ ckn, k = 1, 2, 3 (10)

each for a coordinate X, Y, Z. The right hand side has an intuitive explanation of
cyclic residues, i.e., cyclic motion residue due to currently estimated deformation
model θ. The above constraints express the requirement to make up for these
residues using the deformation update δθ.

Smooth Deformation Constraints. Cardiac motions are smooth, which can
be modeled by a Laplacian constraint,(

T (p−1) (θ, δθ)− 2 · T (p) (θ, δθ) + T (p+1) (θ, δθ)
)
· X̃(0)

n = 0. (11)
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Again, a first order approximation can be derived,

s(p)T
kn · δθ ≈ s

(p)
kn , k = 1, 2, 3. (12)

The above constraints also has an intuitive interpretation: The deformation up-
date (left) should make up for any non-smooth deformation (right side) due to
the currently estimated deformation θ.

The Cost Function. Finally, by combining (8), (10), and (12), a cost function
for 4D coronary tree reconstruction can be written as

C (δθ) =
∑

f,n,k

(∥∥∥dT
knfδθ − vknf

∥∥∥ + λs

∥∥∥s(p)T
kn δθ − s

(p)
kn

∥∥∥ + λc

∥∥cT
knδθ − ckn

∥∥)
(13)

where λs and λc are weights for smoothness and cyclic constraints respectively.
We use L2 norm in this study. (13) can be solved efficiently using least-squares.

3 Results

The X-ray sequences for our experiments were acquired with a Siemens AXIOM-
Artis C-arm system featuring a digital flat panel detector. The system has a con-
stant source intensifier distance (SID), constant cranio/caudal angle and varying
anterior/oblique angle, covering a range of 220 degrees. It is run in rotational
acquisition mode, which is commonly used to reconstruct CT-like volumes. The
C-arm is calibrated so that the perspective projection matrix for each image
is known accurately and the acquisition is done under patient breath-hold. A
contrast dye is injected into the coronary arteries immediately preceding the
acquisition. In addition, the ECG signal is recorded in sync with the image
sequence, which allows retrospective gating.

We designed the experiments to test the limits of our 4D reconstruction algo-
rithm along two dimensions. Along the first dimension, we tested the influence of
structural perturbation, utilizing 3D models of different quality and detail. The
experiments were conducted with four 3D models on three distinct sequences
of X-ray images. The first 3D model was constructed using a set of manually
labeled vessel centerlines, which resulted in the best quality input 3D model (but
still not perfect). The other 3D models were reconstructed fully automatically.
The last 3D model contained only two branches that were almost coplanar, an
ill-conditioned case for complex deformation models, including the affine model.
Ground-truth vessel centerline segmentation was provided for quantitative eval-
uation of the first two experiments. All GVF fields were automatically com-
puted from vesselness images [9]. We tested the algorithms on four variations:
un-regularized (λs = λc = 0) rigid and affine, regularized rigid and affine. For
all regularized methods, we used fixed regularization parameters λs = 0.1 and
λc = 1.0. A cardiac cycle was divided into 15 discrete cardiac phases, i.e, P = 15.

Along the second dimension, we studied the influence of noise perturbations.
We added zero mean Gaussian noise over 10 noise-levels (σ = 0, 25, . . . , 225) to
the X-ray images, whereas the input images have a dynamic range of 16 bit and
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un-reg. rigid

un-reg. affine

reg. rigid

reg. affine

Fig. 1. 4D reconstruction results on the four 3D models. The regularized versions (the
last two rows) outperformed the un-regularized versions (the first two rows). The last
column shows enlarged views of red box bounded regions of the second column.

the gray value contrast of the major vessels ranged between 50 and 600. For each
noise level, we conducted 20 trials of reconstruction using all four methods. For
the first two experiments, we conducted 724 reconstructions each.

A qualitative overview of reconstruction results is provided in Figure 1. In
general the regularized versions worked better than the non-regularized ver-
sions. For the first three cases, we could always find frames that regularized
versions succeeded while the non-regularized versions failed, but not the other
way around. For the last (ill-conditioned) case, however, we observed that 4D
reconstruction using regularized affine was not stable. We could observe rapid
shrinkage and expansion of a branch along the true vessel. This was a signature
of an over-complex deformation model and noise overfitting.

For the first two experiments, where ground-truth vessel centerlines were avail-
able, we measured the 2D projection errors: the distances from projections of
points on the 4D model to the nearest centerline point. Overall, 2D projection
error has standard deviations about 3.2mm for the un-regularized versions and
1.9mm for the regularized versions. For the first case, the majority (72%) of the
points have a projection error of less than 3mm. Figure 2 shows errors averaged
over all points, all frames and all 20 trials. The black line at the bottom shows
the baseline error: average 2D projection error of the base phase. We can draw
similar conclusions for both experiments. 1) The regularized versions resulted in
lower 2D projection errors. 2) With good quality input, a more complex defor-
mation model (affine) resulted in better reconstruction accuracy. 3) Over a large
range of noise levels, the reconstruction accuracy did not suffer for the regular-
ized versions. In addition to the effect of the regularization terms, the superior
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Fig. 2. Average 2D error. Left, using the best 3D model constructed from manually
labeled vessel centerlines. Right, starting from a fully automatic 3D reconstruction.

noise-resistance capability of GVF helped. Our experiments show that even a
moderate noise perturbation can change centerline extraction dramatically, ren-
dering centerline-based methods [1] unstable.

To further understand how robust the algorithms were with respect to noise
perturbation, we studied the variance σ̂2 of a reconstructed point X(p)

n,t over all
trials t. The variance is then averaged over all points and all three dimensions
to give an average measurement. The first observation was that in all cases
the simpler rigid model was more stable than the affine model (standard de-
viation σ̂ on average 37% smaller). Also, as expected, the regularized versions
were much more stable than the un-regularized counterparts (σ̂ on average 66%
smaller). Second and more interestingly, in the ill-conditioned case, regularized
affine model resulted in a comparable standard deviation to un-regularized rigid,
indicating instability of the former. It can be assumed that models more complex
than affine would have suffered even more.

Finally, note that all 3D models contained less than 300 points, providing less
than 600 constraints per frame. The B-solid model of Blondel et al. [1] required
1000 variables per frame, far larger than the number of constraints. Very strong
regularization terms would be required for their method to succeed on our data.
In the first experiment, deformation updates (13) converged in less than 10
seconds for the un-regularized methods, 30 and 90 seconds for regularized rigid
and affine respectively, compared to 15 ∼ 30 minutes reported in [1].

4 Conclusions

We proposed a 4D coronary tree reconstruction by deformation tracking method
in this paper. Its effectiveness is shown by our extensive experiments. Key ele-
ments of our method are 1) GVF as external force; 2) the regularization terms.
Fast computation time makes this approach usable in an intra-operative scenario.

We also find that for well-conditioned problems, complex models matching
true deformations provide better reconstruction accuracy. However, for ill-posed
problems, simpler models or a hierarchical approach are preferred. The right
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balance between model complexity, data degeneracy and noise-level can be for-
mally addressed by statistical model selection theories, e.g., Geometric-AIC [15],
which we leave as a future research topic.
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Abstract. The exact localization of the mandibular nerve with respect
to the bone is important for applications in dental implantology and
maxillofacial surgery. Cone beam computed tomography (CBCT), often
also called digital volume tomography (DVT), is increasingly utilized in
maxillofacial or dental imaging. Compared to conventional CT, however,
soft tissue discrimination is worse due to a reduced dose. Thus, small
structures like the alveolar nerves are even harder recognizable within
the image data. We show that it is nonetheless possible to accurately
reconstruct the 3D bone surface and the course of the nerve in a fully
automatic fashion, with a method that is based on a combined statistical
shape model of the nerve and the bone and a Dijkstra-based optimization
procedure. Our method has been validated on 106 clinical datasets: the
average reconstruction error for the bone is 0.5± 0.1 mm, and the nerve
can be detected with an average error of 1.0 ± 0.6 mm.

1 Motivation and Contributions

Three-dimensional (3D) imaging has become an important technology for diag-
nosis and planning in dentistry and maxillofacial surgery [1]. Cone beam com-
puted tomography (CBCT) yields an alternative to conventional CT because of
its affordable costs as well as its reduced dose per examination. Thus, CBCT
is likely to become a preferred imaging technique for dental practices. One ma-
jor application for CBCT is dental implantology. Here, a primary concern is an
optimal and stable placement of implants within the jaw bone without any im-
pairment of the facial nerves. As a side effect of the low dose, however, the signal
to noise ratio is not that high as with CT and soft tissue structures cannot be
discriminated clearly. In addition the field of view (FoV) is small compared to
conventional CT. This renders the exact localization of the mandibular nerve
canal within the alveolar bone highly challenging.

Stein et al. [2] present a Dijkstra and balloon inflation based method for
interactively segmenting the nerve canal in CT data, yet report only qualitatively
good accordance on five datasets. Hanssen et al. [3] suggest a level-set approach
for interactive 3D segmentation of the nerve canals in CBCT data, but do not
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present any quantitative validation. Rueda et al. [4] propose a semi-automatic
system to perform 2D segmentation of the lower cortical and trabecular bone as
well as to detect the nerve canal and center in specific 2D slices of conventional
CT data. Their method is based on an active appearance model, and requires
manual initialization. It yields an accuracy of 1.6mm for the cortical bone, and
3.4mm for the dental nerve on 215 single 2D slices in the CT data. More recently,
Yau et al. [5] proposed a semi-automatic method to segment the nerve canal from
conventional CT data. It requires the user to manually specify a seed point for
a subsequent automatic adaptive region-growing approach in consecutive slices
of the CT data. However, no quantitative validation was performed.

In contrast to existing work, our method is based on (1) 3D segmentation of
the complete mandibular bone surface and (2) localization of the 3D course of
the mandibular nerve, both in a fully automatic manner. Instead of relying on
conventional CT data, our method operates on CBCT data, an imaging modal-
ity increasingly used in clinical routine. Our approach yields an accuracy that
significantly surpasses the 2D results of Rueda et al. [4]. It is based on a com-
bined statistical shape model (SSM) of the bone surface and the course of the
nerve, which extends the work of Zachow et al. [6]. In order to match the SSM
to CBCT data we extend the work of Lamecker et al. [7] in two major ways:
(1) We use a modified version of the algorithm presented in Seim et al. [8] to
segment the mandibular bone surface. Here, we adapt image feature extraction
to the characteristics of mandibular CBCT data. (2) We improve an initial re-
construction of the nerves’ position derived from the SSM using a Dijkstra-based
tracing algorithm tailored to the specific characteristics of CBCT data.

2 Image Data

CBCT scanners aim for a compromise between image quality and dose, and
hence produce images of lesser quality than conventional CT. For our study
106 datasets of complete mandibles were availible from a PACS at the Univer-
sity Hospital of Cologne, Germany, all of which acquired with a Sirona Galileos
CBCT at the maxillofacial surgery department (patients of age 16 to 71, 56
female, 50 male). CBCT imaging is performed routinely in cases of suspected
orbital floor fractures, mandibular condyle evaluation, wisdom teeth removal,
abscesses, etc. Images are taken in seated position with a scan duration of about
15 seconds. All images consist of 5123 voxels with an isotropic voxel size of
0.3mm. The FoV is approx. 15 cm3. The X-ray source is operated at 85 kV with
a tube current of 5-7mA. Fig. 1, right, depicts typical slices through such data.
In each dataset the bone as well as the nerve canal were interactively labelled
by an experienced dentist using the Amira software.

3 Statistical Shape Model

The SSM is generated on the basis of the CBCT datasets described in Sec. 2. For
each mandibular bone a surface model is generated from the labellings, while for
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Fig. 1. Volume rendering (left) and coronal slices (right) of CBCT data. Arrows indi-
cate the location of the nerve canal.

(a) (b) (c)

Fig. 2. SSM of mandible bone and nerves: mean shape (b), 1st mode of variation (a/c)

each pair of nerve canals piecewise linear center lines are computed using a skele-
tonization algorithm [9]. To create the point distribution model underlying the
SSM, correspondence must be established between both the bone surfaces and
the nerve lines. We use the method of consistent patch decomposition and param-
eterization to create surface correspondences, see [7] for details. The mandibular
surface model is divided into eight patches (Fig. 2) that are bounded by charac-
teristic feature lines, detectable on every mandible. The teeth are not considered
in the SSM due to an individually varying dentition state. For the nerves, we
consistently resampled the center lines of the segmented nerve canals with a fixed
number of points equally spaced starting at the mental foramen. After resam-
pling all 106 mandibular shapes with a common reference mesh (triangulation
for bone surface, piecewise linear segments for nerve) and aligning them in a
common frame of reference, Principal Component Analysis (PCA) is performed.
The SSM is then represented as a bi-linear function S(b, T ) = T (v +

∑
k bk · pk)

of the weights bk of the PCA-eigenmodes pk, and a global affine transformation
T of the coordinates. v is the average shape vector, whose dimension is three
times the number of bone (8561) and nerve (200) points.

4 SSM-Based Reconstruction of Bone and Nerve

The SSM based method for reconstruction of the mandibular bone and nerves in
CBCT data is composed of a preprocessing of the image data with a 3D median
filter, a position initialization and a subsequent image driven adaptation of the
SSM described in Sec. 3. We adapted an approach for pelvis segmentation [8] to
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the task of mandible segmentation. Note that only the mandible bone is adapted
to image features, while the mandibular nerves are derived from the SSM.

Initialization. The pose initialization of the mandible SSM in CBCT data,
that is based on the Generalized Hough Transform (GHT), closely follows a
global approach for 3D object detection introduced by Khoshelham [10].

Image Driven SSM Adaptation. Segmentation using the SSM is the task
of iteratively finding transformation and shape parameters (b, T ) such that the
shape S(b, T ) approximates the unknown target shape R∗ as good as possible.
Let Ri = S(bi, T i) denote the segmentation in iteration i: A displacement vector
field ΔRi is computed that assigns a vector Δrj to each vertex j of Ri. ΔRi

describes the desired deformation of the model towards R∗ in the underlying
image data I. Then, both transformation parameters T and shape parameters b
are adapted to the target shape (Ri + ΔRi), as originally proposed by Cootes
et al. [11]. The following paragraph explains how ΔRi is generated.

Image Features. The displacement vector field ΔR for surface R is computed
by analyzing 1D intensity profiles in the image data I : R

3 → R: For each vertex
j of R, I is sampled over a length L along the surface normal uj at vertex
position vj . A cost function cj : Pj → R

+
0 is computed on the set of sampling

points Pj = {vn
j := vj + ( n−1

Nj−1 − 0.5) · L · uj : 1 ≤ n ≤ Nj}. The displacement
vector at vertex j is then defined as Δrj = v∗j − vj , with v∗j = argminvn

j
cj(vn

j ).
Dropping the indices for clarity, we define the cost at a sampling point c(v) =⎧⎪⎪⎨
⎪⎪⎩

(2i+1)
(

−g
dI(v) +2 |N−n|

N

)
if I(v)∈ [t+iw, t+(i+1)w]∧ dI(v)<−g, i=0, 1, 2

7
(

−g
dI(v) + 2 |N−n|

N

)
if I(v) ∈ [t, t + 3w] and − g < dI(v) < −0.5 · g

30 + 2 |N−n|
N else.

Here, t and w define an intensity threshold and window width, and g a threshold
for gradient magnitude. dI(v) denotes the directional derivative of I along u.

5 Dijkstra-Based Optimization of Nerve Reconstruction

SSM-adaptation as described in Sec. 4 yields an accurate reconstruction of the
mandible bone, as well as approximate nerve reconstructions. The SSM-based
nerve reconstructions are not based on any image features, but are merely derived
by the SSM. We use them as initialization for a Dijkstra-based optimization
method. The SSM-based bone reconstruction is also utilized by excluding the
area outside the reconstructed bone from the search space for the nerve. The
key idea of our method is to build a graph through which the path with minimal
cost from source to target is basically the “darkest tunnel” through the image
data, while regions where a dark tunnel is surrounded by a brighter border are
of particular interest. To achieve this, a graph with weighted edges is built based
on the approximate nerve reconstruction as described in the following. Note that
all indices used for graph description start at 1, unless stated otherwise.
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Fig. 3. Dijkstra Optimization. (left) Normal planes along initial nerve reconstruction.
(middle) Graph nodes on a normal plane. (right) Sampling cylinder at a graph node.

Graph Nodes. For each point pk at index k of the piecewise linear initial nerve
representation, equidistantly distributed points in the normal plane at pk serve
as graph nodes. Fig. 3 shows some exemplary normal planes (left) and a normal
plane with graph nodes (middle). The normal plane at pk is spanned by two
directions perpendicular to the line tangent tk, namely yk = tk × xdata, where
xdata is the x-axis of the image data coordinate system, and xk = yk × tk. A
graph node is described by k and its indices i, j on the normal plane. Let Ni,
Nj be the number of nodes and X , Y the lengths for which the normal plane is
considered in xk- and yk- direction, respectively. The position of node (k, i, j) is
then pk,i,j = pk + ( i−1

Ni−1 − 0.5) · X · xk + ( j−1
Nj−1 − 0.5) · Y · yk. In addition to

these nodes, two “artificial” nodes serve as source and target of the graph.

Graph Edges. The graph contains directional edges from each node (k, i, j)
to all nodes (k + 1, i + di, j + dj) with di, dj ∈ {−1, 0, 1}, as well as directional
edges from the source to all nodes with k = 1, and from all nodes with k = N
to the target, where N is the number of points on the nerve representation.

Edge Weights. For any edge starting at node (k, i, j), a scalar cost function c,
evaluated at position pk,i,j , serves as edge weight. For edges starting at the source
node, the edge weights are 0. The cost c(pk,i,j) is computed from intensities
sampled inside a cylinder with center pk,i,j , orientation tk, some length H and
radius R. Fig. 3 (right) shows an exemplary cylinder with its sampling points.
A sampling point is described by a length index h, a radius index r, and an
angle index a. Let Nh be the number of sampling points in length direction,
Nr the number of sampling points along a radius, and Na the number of angles
for which radii are sampled. Then the position of sampling point (h, r, a) is
p0 + h−1

Nh−1 · H · tk + r−1
Nr−1 · R · ra with ra being a normalized radius vector,

rotated by an angle a−1
Na−1 ∗ 2π around tk, and p0 = pk,i,j −0.5 ·H · tk. Note that

for r = 1, no angle index is necessary to describe the sample point.
To determine the cost c(pk,i,j), the unfiltered image intensities at the cylinder

sampling points are evaluated as follows: The mean “inner” intensity mi and
standard deviation si is computed from all sampling points with r no bigger
than an “inner radius index” ri. For each angle index a, the mean “border”
intensity mba and standard deviation sba is computed from all sampling points
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(a) (b)

Fig. 4. Surface reconstruction with statistical shape model. (a) Color encodes distance
to gold standard surface. from left to right: good, average and bad case. (b) Average
surface distance error metrics.

with r > ri and r no bigger than a “border radius index” rb. Furthermore,
the mean “outside” intensity moa is computed for each angle index a from all
sampling points with r > rb. The number cf of angle indices is counted for
which mba − 0.1 · sba > mi + si and mba − 0.1 · sba > moa. Then the cost is
c(pk,i,j) = mi−50 ·cf . If a graph node position pk,i,j lies outside the mandibular
bone as reconstructed by the SSM, the cost is set to infinity.

6 Results

We evaluated the SSM based reconstruction as well as the Dijkstra based opti-
mization (OPT) described in Sec. 4 and 5 on the 106 CBCT datasets described
in Sec. 2. For each dataset, before performing SSM based reconstruction, the
respective training shape was removed from the mandible SSM described in
Sec. 3, i.e. the evaluation was conducted in a leave-one-out manner. The respec-
tive training shape that has been left out serves as gold standard reconstruction
for both bone and nerves.

From experiment, we set our method’s parameters as follows: SSM adaptation:
consider 80 shape modes. Image features: L = 6mm, t = 350, w = 180, g =
150/mm. Optimization, graph nodes: X =12mm, Y =7mm, Ni =121, Nj =71,
cylinder: L=3mm, R=2.1mm, Nl =11, Nr =8, Na =12, ri =4, rb =6.

The average errors for the mandible surface reconstructions as compared to
the respective gold standard surfaces are: mean, root mean square (rms) and
maximum surface distance: 0.5± 0.1 mm, 0.8± 0.2 mm, and 6.2± 2.3 mm, see
also Fig. 4(b). Fig. 4(a) shows exemplary reconstructions and their distances to
the respective gold standard surface. Apart from errors around the teeth, the
largest errors occur at the mental protuberance and the condyles, due to the
increasing noise towards the fringe of the field of view. The average mean curve
distances for the SSM based nerve reconstructions are 1.7±0.7 mm (right nerve),
and 2.0± 0.8 mm (left nerve).

For the optimized nerve reconstructions, the average mean curve distances to
the respective gold standard nerve are 1.0 ± 0.6 mm (right nerve), and 1.2 ±
0.9 mm (left nerve). The average fraction of the optimized reconstruction that
lies within the gold standard nerve canal is 80 ± 24% (right nerve), and 74 ±
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Fig. 5. Reconstruction by optimization, exemplary case for a bad reconstruction.
White line: gold standard nerve. Red line: reconstructed nerve. Error measures for this
case: Mean distance to gold standard nerve: right 1.5 mm, left 2.1 mm. Fraction that
lies within the gold standard nerve canal: right 45%, left 30%.

(a) (b)

Fig. 6. (a) Average reconstruction error (SSM and OPT) along the nerve from poste-
rior to anterior end (1..100). (b) Nerve fraction within gold standard nerve canal.

27% (left nerve), see also Fig. 6(b). Fig. 5 shows an exemplary optimized nerve
reconstruction with high reconstruction error. Fig. 6(a) shows the average curve
distance of SSM based and optimized nerve reconstructions per point along
the curve. This illustrates that the optimization method is able to reduce the
reconstruction error significantly in a region in the middle of each nerve, while
the reduction is not that obvious towards the ends of each nerve.

7 Conclusions and Future Work

We presented an accurate and robust method to automatically reconstruct a
geometric 3D model of the mandible including the course of the alveolar nerve
from CBCT data. There is still room for improvement of the nerve reconstruc-
tion, especially concerning the ends of the nerve canal. In this work we chose a
conceptually simple approach for nerve detection, yet other methods for tracing
tubular structures may be considered, e.g. as described for vessel detection, see
for instance [12,13] and references therein.

In future work, the statistical shape model shall be extended to distinguish
cortical and trabecular bone as well. Furthermore, a mid-term goal is to find a
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way to incorporate the teeth, too. This is more challenging since the number of
teeth may vary between patients, especially in clinical cases, and it is not quite
clear how to incorporate topological changes into the model.
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Abstract. We propose to increment a statistical shape model with surrogate vari-
ables such as anatomical measurements and patient-related information, allowing 
conditioning the shape distribution to follow prescribed anatomical constraints. 
The method is applied to a shape model of the human femur, modeling the joint 
density of shape and anatomical parameters as a kernel density. Results show that 
it allows for a fast, intuitive and anatomically meaningful control on the shape de-
formations and an effective conditioning of the shape distribution, allowing the 
analysis of the remaining shape variability and relations between shape and anat-
omy. The approach can be further employed for initializing elastic registration 
methods such as Active Shape Models, improving their regularization term and 
reducing the search space for the optimization. 

1   Introduction 

Statistical Shape Models [1] (SSM) are increasingly used for medical image analysis. 
For segmentation purposes, they allow making use of prior anatomical knowledge for 
compensating low contrast and high noise level in the images. SSM are also used for 
regularizing elastic registration algorithms [2], so that the estimated shape is both 
anatomically plausible and matches the image information. Recent extensions use 
them for predicting unobserved parts of a shape [3,4], or even predicting the shape of 
one organ from the observation of another [5]. 

The general idea behind SSM is to perform a linear decomposition of the shape 
variability by defining modes of deformations through various mathematical criteria. 
The most commonly used, Principal Component Analysis (PCA), estimates orthogo-
nal directions which iteratively maximize the variance. Other linear decompositions 
have been proposed, based on Principal Factor Analysis (PFA) methods [6], or Inde-
pendent Component Analysis (ICA) [7,8] which define modes of deformations which 
are, among other characteristics, more localized and easier to interpret. However, 
these modes, resulting from purely mathematical criteria, seldom correspond to  
deformations which have a direct, anatomically meaningful interpretation [6]. [9] 
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proposed to estimate the remaining variability of a shape model after fixing a part of 
it, by calculating the conditional distribution under a multivariate normal assumption. 
However, due to rank deficiency problems, they had to allow for limited random 
deviations from the observations, too, in order to allow for any remaining variability. 
Consequently, the conditional distribution they estimated is strongly dependent on the 
level of tolerated variability. In the context of surgical simulators, [10] employed a 
non-linear optimization approach for estimating the most probable shape within a 
SSM, satisfying exact constraints on characteristic dimensions of the uterus. Never-
theless, the remaining shape variability is not explicitly assessed. The approach nei-
ther allows to consider generic patient information such as height, weight or age for 
restricting the shape model, while these certainly impose morphological constraints, 
e.g. for bony structures. 

We propose in this paper to extend linear SSM description in order to provide with 
intuitive anatomical control over shape deformations, by explicitly integrating such 
anatomical information within the model. Section 2 recalls basics about SSM and 
introduces notations employed throughout the paper. In section 3, we present a 
method for conditioning the shape distribution based on a set of surrogate variables, 
in particular for non-parametric kernel densities. In section 4, we apply the method to 
a shape model of the human femur, and evaluate the effectiveness of the conditioning. 
Conclusions and perspectives are summarized in Section 5. 

2   Statistical Shape Models 

Statistical shape models aim at describing the natural variability of a shape, e.g. the 
morphological manifestations of an organ over different individuals or through time. 
Such models usually rely on a specific parameterization of a set of training shapes 

{ }, 1,...,i i n∈z , e.g. by a set of d  landmarks in correspondence across the various 
shapes [11], usually lying on the shape’s outline. Through this parameterization, the 
k-dimensional shape, { }2;3k ∈ , is stored as a column vector with p kd=  elements, 
and can be viewed as a single point in a p − dimensional space. A collection of dif-
ferent instances of a shape, e.g. the same organ observed for different individuals, 
then corresponds to a point cloud in the parameterized space. This point cloud  
contains the information about the shape’s variability observed from the available 
samples and can be analyzed using multivariate statistical techniques [12]. 

The most classical approaches for shape modeling are linear, in the sense that any 
shape z  is described as a linear combination of a set of r  modes of deformations: 

≈ +z Ub m , with 
1

1 n

i
in =

= ∑m z  and ( )T= −b U z m                           (1) 

The different existing approach differ in the definition of the modes of deformation 
U . PCA searches orthogonal modes which iteratively maximize the variance, and can 
make use of the Singular Value Decomposition to efficiently estimate them. The more 
general PFA can use other criteria, which usually define orthogonal rotations of the 
PCA modes. In particular, the varimax rotation [13] intends to cluster the modes of 
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deformations so that each mode has a large influence over only a limited number of 
variables, and nearly no impact on the others [6]. ICA includes higher order moments, 
such as skewness or negentropy [8], in order to find directions in which the shape 
deformations are as independent as possible. It was shown to perform better than PCA 
when the shape distribution is significantly non-gaussian [7]. 

Whichever method is chosen, the subspace of admissible shapes is spanned by the 
r  modes of deformation retained by U , and the r − variate distribution of the model 
parameters { }, 1,...,i i n∈b  observed on the training samples allow to define compact 
models for the shape distribution. In the following, we will restrict to PCA, for which 
the domain of plausible shapes is usually defined by constraining every parameter to 
be within a [ ]3 ;3σ σ−  interval, 2σ  being the corresponding eigenvalue. 

3   Conditioning the Shape Distribution with Surrogate Variables 

Though a shape is explicitly represented by its parameterization, using either z  or 
more conveniently the r  parameters b , it is more intuitive to describe a shape 
through a set of anatomically meaningful measures, such as lengths, angles, curva-
tures, etc. Those measures can be obtained either through an automatic procedure or 
defined manually as functions of landmarks of a reference shape, taking advantage of 
established correspondences allowing a consistent definition across the different sam-
ples available. It is also possible to include surrogates which are not directly related to 
the organ’s shape, but provide generic information about the patient, such as its age, 
height or weight, which is likely to correlate with morphology. This set of surrogate 

variables { }, 1,...,i i n∈x  offer an easily interpretable description, and can be used for 

controlling the predicted shape. 
By concatenating the surrogates ix  to the shape parameters ib , the set of n  train-

ing examples form samples from the joint multivariate distribution ( ),p b x , which 
can be exploited to condition the shape to follow prescribed anatomical constraints. 
Indeed, the conditional distribution ( )0p =b x x  of the shape parameters given spe-
cific values 0=x x  for the surrogates, is directly given by Bayes theorem: 

( ) ( )
( )

0
0

0

,p
p

p
= =

b x
b x x

x
                                     (2) 

where ( )0p x  stands for the marginal probability density of x  evaluated at 0x . 
Assuming that ( ),p b x  follows a multivariate Gaussian distribution, with mean μ  

and covariance Σ , the conditional distribution ( )0p =b x x  is known [12 p.87] to be 
also Gaussian, with mean and covariance given by: 

( )1
0 0

1
0

T

E

Cov

−

−

= ⎡ = ⎤ = + −⎣ ⎦
= ⎡ = ⎤ = −⎣ ⎦

0

0

b bx xx xb x

bb bx xx bxbb x

μ b x x μ Σ Σ x μ
Σ b x x Σ Σ Σ Σ

                          (3) 

where the different variables are taken from μ  and Σ :  
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Unless there are more surrogate variables than available samples in the training set, 
the only reason for xxΣ  not to be invertible is that some surrogates are linear combi-
nations of the others, which means that they could be safely ignored. 

Nevertheless, the Gaussian assumption may not always be realistic, especially 
when considering surrogates related to distances or angles. A non-parametric alterna-
tive is to rely on kernel density estimation [14], and to model the joint density 

( ),p x b  as follows, by averaging the contribution of each training sample: 

( ) ( )
1

1
, ,

n

i i
i

p K
n =

= − −∑ Hb x b b x x                                        (5) 

where KH  is a normalized multivariate kernel function with bandwidth matrix H . 
Choosing a Gaussian kernel, KH  is the classical Gaussian density, with zero mean 
and covariance 2=W H . For this case it can be shown that the conditional mean and 
conditional covariance are given by: 

( ) ( )( ) ( )( )
1 1

;
n n T

i i i
i i

i i

w w
= =

⎛ ⎞= = + − −⎜ ⎟
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There is a general agreement that the “shape” of the kernel KH  is much less impor-
tant than the choice of the bandwidth [14 chap.2]. However, full multivariate band-
width selection is still a difficult issue. A data-driven method has been proposed in 
[16], where the optimal bandwidth is estimated through a Markov Chain Monte Carlo 
approach (MCMC). Unfortunately, this approach is still very expensive for high-
dimensional distributions. A general rule of thumb for the bandwidth matrix is to 
choose H  proportional to 1 2Σ  [15 p. 152].  

Once the conditional distribution has been calculated, random shapes following  
the prescribed constraints can be drawn by sampling from ( )0p =b x x . A sample 
from the conditional distribution can be generated by first selecting i  with probability 

iw  and then drawing a sample from the Gaussian distribution with mean ( )i
0b xμ  and 

covariance 0xbbW . 
Such samples are classical shape parameters, and the plausibility of the correspond-

ing shapes can be evaluated by observing their likelihood in the original, unconditional 
SSM. In the following, we rely on such random samples to evaluate the effectiveness 
of the conditioning, by comparing the prescribed values of the anatomical parameters 
with values measured on those shapes.  

4   Application to the Human Femur 

In this section, we illustrate the concepts developed above on a 3D statistical model of 
the human femur. The model consists of 170n =  femurs obtained from CT scans. 
The images have been registered using the non-rigid diffeomorphic registration  
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technique proposed by [17]. A mesh, consisting of 23536d =  vertices ( 70608p = ), 
was extracted from the segmentation of the reference bone, and propagated to the 
other samples using the correspondences obtained during the volumetric registration 
step. The SSM is defined by this set of meshes. The parameters { }, 1,...,i i n∈b  were 
computed using a PCA, keeping 99,9% of the variance ( 144r = ) in order to preserve 
the shape distribution as much as possible while reducing the dimensionality of the 
problem and avoiding numerical instabilities in the computations of the densities. 

A set of anatomical surrogate variables has been defined as functions of manually 
selected vertices of our model, based on [18] and as illustrated on Fig. 1. Thanks to 
the established correspondences, these measurements { }, 1,...,i i n∈x  are defined in a 
reproducible way over shapes from the SSM. Additionally, the age (>21 years), height 
(between 150 and 181 cm) and weight (between 42 and 140 kg) of each subject was 
recorded. The gender was also recorded (55% males) but not used in the following. 

 

Fig. 1. Reference bone and definition of surrogate variables: femur length (1), inter-condyle 
distance (2), neck length (3), vertical head diameter (4), collo-diaphysal (neck/shaft) angle θ  
and anteversion angle β . The distances are stored in mm, and the angles in degrees. 

The joint distribution ( ),p x b  was modeled through a gaussian kernel density. Using 
the rule of thumb presented above, the optimal bandwidth matrix was estimated as 

0.59=W Σ . The retained proportionality factor has been obtained through the optimiza-
tion of the Kullback-Leibler information criterion, as proposed by [16]. For different 
combinations of the variables used for conditioning, we estimated the corresponding 
conditional distribution ( )0p =b x x . Three such combinations used in the following are 
presented in Table 1. Due to imperfect shape representation through the SSM, a limited 
number of training shapes, and the fact that the estimation of the conditional distribution 
does no rely on any known relation between the surrogate variables and the position of 
the shape vertices, synthetic shapes generated from the conditional distribution may not 
follow perfectly the prescribed constraints. Consequently, we evaluated the effectiveness 
of the conditioning by drawing 5000 random shapes from the estimated conditional dis-
tribution, and computed the anatomical measurements described on Fig. 1. As can be 
seen on Table 2, the conditional distributions do not exhibit significant biases and present 
a low variance, indicating that the conditioning is quite effecitve. 

By comparing the traces of the covariance matrices of the joint and conditional dis-
tributions for various choices of the conditioning surrogates, their relative influence 
on the variability of the full shape or of individual morphological parameters can be 
investigated. This also can provide information about correlations among the surro-
gates. For example, looking at “Conditions 3”, conditioning on the age, weight and 
height already reduced the shape variability by nearly 50%, especially constraining 
the femur length while letting the angle β  mostly unaffected. 
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Table 1. Three different choices of the conditioning variables and their values 

Surrogates (1) (2) (3) (4) θ  β  age height weight 
Conditions 1 441.75 66.22 72.03 (free) (free) 9.36 (free) (free) (free) 
Conditions 2 (free) 63.28 64.52 46.03 115.16 11.07 (free) (free) (free) 
Conditions 3 (free) (free) (free) (free) (free) (free) 40 180 65 

Table 2. Effectiveness of the anatomical conditioning. The “% bias” column indicates the 
observed bias on the prescribed values of the surrogates for the shapes of the conditional 
distribution. For the variables which were left unconstrained, the observed mean is given 
instead. The “% var” column indicates the remaining variance of the anatomical measures.  

Initial distribution Conditions 1 Conditions 2 Conditions 3 Surrogate 
variables mean std % bias % var % bias % var % bias % var 

(1) 426.62 26.63 0.01 % 0.01% (424.39)(28.76%) (458.60)(32.75%)

(2) 56.68 6.50 -0.07 % 0.61 % 0.06 % 0.59% (58.85) (54.27%)

(3) 66.34 5.73 0.09 % 0.51 % 0.04 % 0.24 % (71.22) (50.45%)

(4) 46.55 4.88 (50.02) (30.05%) 0.07 % 0.48 % (48.79) (46.98%)

θ  115.08 5.48 (112.33) (34.35%) -0.08 % 0.63 % (115.33)(58.21%)

β  10.87 2.15 1.33 % 1.34 % 0.14 % 1.32 % (10.71) (87.10%)

Remaining shape variability 15.03 % 34.06 % 47.74 % 

 

Fig. 2. The three femurs on the left (resp. right) correspond to samples for the Conditional 
Distribution 1 (resp. 2) defined in Table 1. For both groups, the central bone correspond to the 
conditional mean, while the bone on the left (resp. right) correspond to variations related to the 
main mode of the conditional shape covariance, with coefficient -2 (resp. +2). 
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The conditional covariance matrix 0bb xΣ  has been further diagonalized, so as to 
define orthogonal modes of deformations for the remaining shape variability. For the 
first two conditional distributions of Table 1, the shape corresponding to the condi-
tional mean and deformations of +/-2 times the standard deviation of the main mode 
of remaining covariance are represented on Fig. 2. For conditional distribution 1, the 
femur length remains approximately constant while the remaining variability seems to 
be mostly related to the unconstrained neck/shaft angle θ . On the other hand, the 
femur length is clearly dominating the remaining variability of the 2nd distribution, 
while other parameters do not significantly vary. The obtained shapes were found to 
be generally plausible – from the initial SSM viewpoint –, as long as the constraints 
were themselves realistic. 

5   Conclusion 

In this paper we show how to incorporate explicit anatomical constraints in statistical 
shape models, in the form of surrogate variables. The conditional shape distribution 
allows analyzing the remaining shape variability, as well as drawing plausible random 
shapes following specific anatomical constraints. The method was demonstrated and 
validated on a statistical shape model of the human femur. 

Besides the potential interest for anatomy and morphometry studies, the approach 
can be further used in conjunction with classical SSM-based registration methods, by 
providing an initialization of the shape following easily measurable surrogate vari-
ables, optimizing the likelihood term used for regularization and reducing the size of 
the search space. In particular, we plan to adapt the method for SSM of organs subject 
to respiratory motion, such as the liver, and to rely on the shape distribution condi-
tioned by the phase within the breathing cycle, which could significantly accelerate 
tracking algorithms. 

Finally, in our experiments, we experienced a clear deterioration in both the accu-
racy of the estimation of the anatomical parameters and in the effectiveness of the 
conditioning when fewer eigenmodes have been retained. We plan to investigate how 
this behaviour is influenced if the modes of deformation are defined through PFA or 
ICA instead of relying on PCA analysis. More generally, this raises the interest for 
dimensionality reduction techniques which would specifically consider the fidelity of 
the anatomical representation as a criterion. 

References 

1. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., 
Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg 
(1998) 

2. Kelemen, A., Székely, G., Gerig, G.: Elastic model-based segmentation of 3-D neurora-
diological data sets. IEEE Trans. on Medical Imaging 18(10), 828–839 (1999) 

3. Rajamani, K.T., Hug, J., Nolte, L.-P., Styner, M.: Bone Morphing with statistical shape 
models for enhanced visualization. In: Proc. SPIE, vol. 5367, pp. 122–130 (2004) 

4. Rao, A., Aljabar, P., Rueckert, D.: Hierarchical statistical shape analysis and prediction of 
sub-cortical brain structures. Medical Image Analysis 12, 55–68 (2008) 



 Conditional Variability of Statistical Shape Models Based on Surrogate Variables 91 

5. Yang, Y.M., Rueckert, D., Bull, A.M.J.: Predicting the shapes of bones at a joint: applica-
tion to the shoulder. Computer Methods in Biomech. and Biomed. Eng. 11(1), 19–30 
(2008) 

6. Reyes Aguirre, M., Linguraru, M.G., Marias, K., Ayache, N., Nolte, L.P., Gonzalez  
Ballester, M.A.: Statistical Shape Analysis via Principal Factor Analysis. In: IEEE Interna-
tional Symposium on Biomedical Imaging (ISBI), pp. 1216–1219 (2007) 

7. Üzümcü, M., Frangi, A.F., Sonka, M., Reiber, J.H.C., Lelieveldt, B.: ICA vs. PCA active 
appearance models: Application to cardiac MR segmentation. In: Ellis, R.E., Peters, T.M. 
(eds.) MICCAI 2003. LNCS, vol. 2878, pp. 451–458. Springer, Heidelberg (2003) 

8. Üzümcü, M., Frangi, A.F., Reiber, J.H.C., Lelieveldt, B.P.F.: Independent Component 
Analysis in Statistical Shape Models. In: Medical Imaging 2003: Image Processing,  
Proceedings of SPIE, vol. 5032, pp. 375–383 (2003) 

9. Albrecht, T., Knothe, R., Vetter, T.: Modeling the Remaining Flexibility of Partially Fixed 
Statistical Shape Models. In: Workshop on the Mathematical Foundations of Computa-
tional Anatomy, MFCA 2008, New York, USA, September 6 (2008) 

10. Sierra, R., Zsemlye, G., Székely, G., Bajka, M.: Generation of variable anatomical models 
for surgical training simulators. Medical Image Analysis 10, 275–285 (2006) 

11. Styner, M.A., Rajamani, K.T., Nolte, L.-P., Zsemlye, G., Székely, G., Taylor, C.J., Davies, 
R.H.: Evaluation of 3D correspondence methods for model building. In: Taylor, C.J.,  
Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003) 

12. Timm, N.H.: Applied Multivariate Statistics. Springer, Heidelberg (2002) 
13. Abdi, H.: Factor rotations. In: Lewis-Beck, M., Bryman, A., Futing, T. (eds.) Encyclopedia 

for research methods for the social sciences, pp. 978–982. Sage, Thousand Oaks (2003) 
14. Wand, M.P., Jones, M.C.: Kernel Smoothing. Monographs on Statistics and Applied Prob-

ability, vol. 60. Chapman & Hall, Boca Raton (1995) 
15. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. J. 

Wiley & Sons, Chichester (1992) 
16. Zhang, X., King, M.L., Hyndman, R.J.: Bandwidth Selection for Multivariate Kernel Den-

sity using MCMC. In: Australasian Meetings, p. 120. Econometric Society (2004) 
17. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic Demons: Efficient 

Non-parametric Image Registration. NeuroImage 45(Suppl. 1), 61–72 (2009) 
18. Samaha, A.A., Ivanov, A.V., Haddad, J.J., Kolesnik, A.I., Baydoun, S., Yashina, I.N., 

Samaha, R.A., Ivanov, D.A.: Biomechanical and system analysis of the human femoral 
bone: correlation and anatomical approach. Journal of Orthopaedic Surgery and Research 2, 
8 (2007) 



Surface/Volume-Based Articulated 3D Spine
Inference through Markov Random Fields�

Samuel Kadoury and Nikos Paragios

Laboratoire MAS, Ecole Centrale de Paris, France
{samuel.kadoury,nikos.paragios}@ecp.fr

GALEN Group, INRIA Saclay, Ile-de-France, France

Abstract. This paper presents a method towards inferring personal-
ized 3D spine models to intraoperative CT data acquired for corrective
spinal surgery. An accurate 3D reconstruction from standard X-rays is
obtained before surgery to provide the geometry of vertebrae. The out-
come of this procedure is used as basis to derive an articulated spine
model that is represented by consecutive sets of intervertebral articula-
tions relative to rotation and translation parameters (6 degrees of free-
dom). Inference with respect to the model parameters is then performed
using an integrated and interconnected Markov Random Field graph that
involves singleton and pairwise costs. Singleton potentials measure the
support from the data (surface or image-based) with respect to the model
parameters, while pairwise constraints encode geometrical dependencies
between vertebrae. Optimization of model parameters in a multi-modal
context is achieved using efficient linear programming and duality. We
show successful image registration results from simulated and real data
experiments aimed for image-guidance fusion.

1 Introduction

Spinal deformity pathologies such as idiopathic scoliosis are complex three-
dimensional (3D) deformations of the trunk, described as a lateral deviation
of the spine combined with asymmetric deformation of the vertebrae. Surgi-
cal treatment usually involves correction of the scoliotic curves with preshaped
metal rods anchored in the vertebrae with screws and arthrodesis (bone fusion)
of the intervertebral articulations. This long procedure can be complex since it
requires high level of precision for inserting pedicle screws through the spinal
canal [1,2].

With recent advances in medical imaging enabling CT acquisitions during
the surgical procedure, real-time fusion of anatomical structures obtained from
various modalities becomes feasible. It offers the unique advantage to visualize
anatomy during intervention and localize anatomical regions without segmenting
operative images. By fusing the 3D volume images such as CT, C-arm CT [2] or

� This work was partially supported by an FQRNT grant. The authors would like to
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MR with an accurate preoperative model, the surgeon can see the position and
orientation of the instrumentation tools on precise anatomical models in real
time. In this work, we take advantage of a personalized preoperative 3D model
which reflects the detailed geometry of the patient’s spine from standard biplanar
X-rays. While the morphology of each vertebra remains identical between initial
exam and surgery, intervertebral orientation and translation vary substantially.

Registration of intraoperative fluoroscopic images and preoperative CT/MR
images has been proposed to aid interventional and surgical orthopedic pro-
cedures [3]. For example in [4,5], 3D models obtained from CT or MR were
registered to 2D X-ray and fluoroscopic images using gradient amplitudes for
optimizing the correspondence of single bone structures. Similar objective func-
tions using surface normals from statistical PDMs [6] were applied for the femur.
In spine registration however, one important drawback is that each vertebra is
treated individually instead of as a global shape. An articulated model may
allow to account for the global geometrical representation [7] by incorporating
knowledge-based intervertebral constraints. These 3D intervertebral transforma-
tions were transposed in [8] to accomplish the segmentation of the spinal cord
from CT images, but multi-modal registration has yet to be solved. Optimization
is also based on gradient-descent, prone to non-linearity and local minimums.
These methods require segmentation of 3D data or fluoroscopic image, which
itself is a challenging problem and has a direct impact on registration accuracy.

In this paper, we propose a framework for registering preoperative 3D articu-
lated spine models in a standing position to lying intraoperative 3D CT images.
The general approach is described as follows. We first use a personalized 3D
spine reconstructed from biplanar X-rays to derive an articulated model repre-
sented with intervertebral transformations. We then formulate inference through
a Markov Random Field (MRF) model, proposing an image-based registration
which avoids CT image segmentation, is computational efficient (few seconds)
and with known optimality bounds. The optimization integrates prior knowledge
to constrain the adjustment of intervertebral links between neighboring objects
of the articulated model with pairwise potentials, as well as modular image data-
terms. One of the applications is to help surgeons treat complicated deformity
cases by fusing high-resolution preoperative models for increased accuracy of
pedicle screw insertion, reducing surgery time. Sections 2 and 3 presents the
method in terms of geometric modeling and MRF inference. Experiments are
showed in Section 4, with a discussion in Section 5.

2 Personalized 3D Reconstruction of Articulated Spines

2.1 Preoperative Spine 3D Reconstruction

From calibrated coronal and sagittal X-ray images of the patient’s spine, the
personalized 3D model is achieved by means of a reconstruction method merg-
ing statistical and image-based models based on the work of [9]. The patient’s
spine centerline is first embedded onto a 3D database containing scoliotic spines
to predict an initial model with 17 vertebrae (12 thoracic, 5 lumbar), 6 points
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Fig. 1. Articulated spine in an MRF graph, integrating three types of constrained
pairwise potentials

per vertebra (4 pedicle tips and 2 endplate midpoints). This crude statistical
3D model is then refined with an individual scoliotic vertebra segmentation ap-
proach by extending 2D geodesic active regions in 3D, in order to evolve prior
deformable 3D surfaces. An atlas of vertebral meshes Si = {xi1, ..., xiN} with
triangles xj are initially positioned and oriented from their respective 6 precise
landmarks si composing Xpreop, and the surface is evolved so that the projected
silhouettes of the morphed 3D models would therefore match the 2D information
on the biplanar X-rays. At the end of process, the 3D landmark coordinates si

and corresponding polygonal vertebral meshes Si are optimal with regards to
statistical distribution and image correspondences.

2.2 Articulated Spine Model

The 3D landmarks si obtained in the previous section are used to rigidly register
each vertebra to its upper neighbor, and the resulting rigid transforms are opti-
mized in the registration problem. Hence, the spine is represented by a vector of
local intervertebral rigid transformations A = [T1, T2, . . . , TN ] as illustrated in
Fig. 1. To perform global anatomical modeling of the spine, we convert A into
an absolute representation Aabsolute = [T1, T1 ◦T2, . . . , T1 ◦T2 ◦ . . .◦TN ] using re-
cursive compositions. The transformations are expressed in the local coordinate
system of the lower vertebra, defined by vectors vx, vz and vy = vx × vz , where
vx and vz are the vectors linking pedicle and endplate midpoints respectively.
Center of transformation is located at the midpoint of all 4 pedicle tips. The rigid
transformations described in this paper are the combination of a rotation matrix
R and a translation vector t. We formulate the rigid transformation T = {R, t}
of a vertebral mesh triangle as y = Rx + t where x, y, t ∈ �3. Composition is
given by T1 ◦ T2 = {R1R2, R1t2 + t1}, while inversion as T−1 = {RT ,−RT t}.

3 Intraoperative Spine Inference from Images with MRFs

Our method reformulates inference as an MRF optimization where a set of labels
L = {l1, . . . , li} defined in the quantized space Θ = {d1, ...,di} is associated
with the set of vertebral transformations T represented by nodes p. One seeks
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to attribute a label to each node of graph G such that once the corresponding
deformation has been applied, the MRF energy measure between the source and
target models is optimal for all vertebrae:

Etotal =
∑
p∈G

Vp(lp) +
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (1)

where Vp(·) are the unary potentials representing the image data term, which
can be defined independently from the target imaging modality g(x) such that:

Vp(lp) =
∫

Ω
ηdata(g(x), Si(Ti + dα))dT. (2)

The data term ηdata seeks to minimize the distance between the multi-modal
images. We will discuss the choice of these costs in the next section where two
different applications are considered. The right hand side of Eq.(1) are the pair-
wise potentials representing the smoothness term between vertebrae connected
in the MRF (Fig. 1) and help to constrain the vertebrae main directions in the
optimization process. Three classes of pairwise neighborhoods N are defined in
this problem: neighboring nodes between levels l and l + 1 measuring the de-
viation from the initial pose; deformation magnitudes between interconnected
translation and rotation nodes; and consistency in length of the segment. These
smoothness terms are described below, with λpq used as a weighting factor:

Vpq(lp, lq) =

⎧⎪⎨
⎪⎩

λpq ‖(T pre
p × dlp)− (T pre

q × dlq)‖2, if p ∈ l and q ∈ l + 1
λpq (‖dlp

rz
+ dlp

ry
‖ − ‖dlp

tx
+ dlp

tz
‖), if p ∈ �t and q ∈ �R

λpq |(T pre
p − T pre

q )− (dlp − dlq)|, if p ≡ T17 and q ≡ T1.

(3)
The optimization strategy for the resulting MRF is based on a primal-dual prin-
ciple where we seek to assign the optimal labels L to each translation and ro-
tation node p of the linked vertebrae, so that the total energy of the graph is
minimum. We apply a recently proposed method called FastPD [10]1 which can
efficiently solve the registration problem in a discrete domain by formulating the
duality theory in linear programming. The advantage of such an approach lies in
its generality, efficient computational speed, and guarantees the global optimum
without the condition of linearity. Two types of inter-modality inferences are
explored: 3D surface reconstructed X-ray, and intra-op CT volume images.

4 Experimental Validation

While validating image registration is not a straightforward problem and ground
truth data in medical applications is often not available, we assessed the methods
performance using both synthetic and real deformations from datasets obtained
in scoliosis clinics. To explore the solution space, sparse sampling considering
1 Details of authors implementation: http://www.csd.uoc.gr/˜komod/FastPD/
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only displacements along the 6 main axis was selected, resulting in 6N +1 labels
in 3D (N is the sampling rate). The smoothness term was set at λpq = 0.4.
Tests were performed in C++ on a 2.8 GHz Intel P4 processor and 2 GB DDR
memory.

An atlas of 17 generic prior vertebra models obtained from serial CT-scan
reconstruction of a cadaver specimen was used to construct the 3D preopera-
tive model. Models were segmented using a connecting cube algorithm [11]. The
same six precise anatomical landmarks were added on each model by an expert.
The atlas is divided into 3 levels of polygonal mesh catalogues of increasing com-
plexity, to adopt the widely used multi-resolution registration approach where
coarse-to-fine geometrical models are applied for optimal convergence.

The method was evaluated with three experiments: (a) simulate synthetic de-
formations on preoperative spines for ground truth data comparison; (b) evaluate
intra-modal registration accuracy on 20 cases with pre- and intra-op 3D X-ray
models; and (c) test multi-modal image registration using 12 CT datasets. The
data term in (a) and (b) was based on the geometric distance between the re-
constructed spine and the inferred one, while in (c) it measures the strength of
the edges over the triangles corresponding to the inferred spine.

– Geometric Inference Support: the singleton data term potential is de-
fined as ηRX = |Si

⋂
Xintra|/|Si

⋃
Xintra|, which represents the volume inter-

section between the source Si and target model Xintra.
– Volume/CT Inference Support: the singleton data term potential de-

fined as ηCT =
∑

xij∈Si
(γ2 + γ‖∇CT (xij)‖)/(γ2 + ‖∇CT (xij)‖2) attracts

mesh triangles to target high-intensity voxels in the gradient CT volume
without segmentation. The term γ is defined as a dampening factor.

4.1 Ground Truth Validation Using Synthetic Deformations

The first experiment consisted of taking six baseline scoliotic patients exhibiting
different types of mild curvatures (15 - 50 deg), and simulating target models
by applying synthetic deformations to the spine replicating variations observed
intraoperatively. Uniformly distributed random noise (mean 0, SD 2 mm) was
added to the target models. In Table 1, we present average translation and ro-
tation errors to ground truth data for all six patients. Direct correspondences of
mesh vertices between source and target spines were used to compute the Eu-
clidean distance error, compared to an image gradient-descent method which is
equivalent to an optimization without any pairwise constraints. The average 3D
error was improved by 7.6 mm compared to gradient-descent. This confirms the
advantage of integrating global anatomical coherence of the articulated object
during registration instead of straightforward optimization techniques which are
sensitive to large deformations and poor initialization. Fig. 2 illustrates good
model alignment of the MRF approach with constrained articulations, while
gradient-descend may cause vertebra collisions and overlapping.
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Table 1. Ground truth errors from 6 synthetic deformation models, with a 3D mean
Euclidean distance (MED) comparison of spine models to a gradient-descent approach

Measures / Subject P1 P2 P3 P4 P5 P6 Average

Translation (Tt) error (mm) 0.41 0.48 0.44 0.76 1.10 0.38 0.59

Angular (TR) error (deg) 0.37 0.34 0.39 0.61 0.92 0.44 0.51

3D MED error - MRF method (mm) 0.37 0.57 0.12 0.45 0.89 0.52 0.48

3D MED error - Grad. desc. (mm) 7.33 7.94 6.34 8.79 9.15 9.10 8.11

Fig. 2. Ground truth evaluation of multi-level MRF method using synthetic defor-
mations on 6 typical scoliotic cases (target in red). Results show the importance of
pairwise intervertebral links in the registration process compared to gradient descent.

(a) (b)

Fig. 3. (a) Operating room configuration for acquiring biplanar reconstructive X-rays.
(b) Box-whisker diagrams of DICE scores for the 20 operative patients.

4.2 Validation by Comparison of Intra-op Reconstructed X-Rays

In the next experiment, registration accuracy was determined in-vivo in a surgi-
cal context using intraoperative 3D models generated from X-ray images. In addi-
tion to the patient’s preoperative model, the 3D reconstruction was also obtained
from X-rays taken during surgery in a setup illustrated in Fig. 3a. A set of 20 op-
erative patients with corresponding pre- and intraoperative biplanar X-rays were
selected for this experiment. We compared the average point-to-surface distances
and DICE scores between source and target mesh models for all 20 patients and all
vertebral levels. For thoracic and lumbar regions respectively, DICE scores were
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Fig. 4. Visual inspection of registration results. From left to right. Global alignment of
preop model with CT images. Fused 3D model for guidance of pedicle screw insertion.
Series of CT slices with corresponding geometrical vertebral models.

0.91 and 0.94 (Fig. 3b shows box plots), while the mean distances were of 2.25±0.46
and 2.42±0.87 mm. While these results seem promising and confirm the ability to
compensate the shape-pose changes, discrepancies can be explained from the in-
tensity and slight shape variations between both acquisitions, which may influence
the statistical shape instantiation.

4.3 Validation through Multi-modal Model Registration

We finally performed multi-modal medical image registration using the articu-
lated MRF method. Data consists of 12 separate CT volumes of the lumbar and
main thoracic regions obtained from different patients (512× 512× 251, resolu-
tion: 0.8×0.8 mm, thickness: 1−2 mm), acquired for operative planing purposes.
Preoperative X-rays of patients were obtained for initial 3D reconstruction. The
CT data was manually annotated with 3D landmarks, corresponding to left and
right pedicle tips as well as midpoints of the vertebral body. A coarse initializa-
tion is performed using a customized user interface to roughly align both models.
Registration is performed to automatically align the CT dataset with γ = 0.05
and segmentation error is estimated by measuring the average distance with the
manually segmented landmarks. Table 2 presents the quantitative evaluation of
this experiment with 3D landmark differences, final energy term and registra-
tion time. Results for vertebral pedicle landmark errors are 1.62 ± 0.57 mm,
which is promising for the required accuracy of surgical screw insertion. Visual
registration results of the 3D model with CT is shown in Fig. 4, demonstrating
the multi-modal alignment where one could observe accurate superposition of
geometrical models on selected CT slices.

Table 2. Quantitative results from multi-modal registration using 12 CT datasets

Subject 1 2 3 4 5 6 7 8 9 10 11 12 Mean

3D landmark diff. (mm) 1.9 2.2 1.6 1.8 2.0 2.7 2.2 3.1 1.8 2.1 2.5 1.7 2.1

Registration time (sec) 3.8 4.5 4.8 3.3 3.7 4.1 3.5 3.5 3.2 4.2 3.8 2.9 4.4
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5 Discussion and Future Work

We presented a method for registering preoperative images to intraoperative 3D
data for spinal surgery applications. Compared to previous works, our method
represents a personalized 3D spine model obtained from baseline X-rays with
articulated intervertebral transformations for fast and accurate multi-modal in-
ference through MRFs. We showed results obtained on data acquired in both
X-ray and CT experiments, demonstrating good alignment for simulated and
natural configurations. Simple modular data terms were able to achieve satisfac-
tory results, although the use of alternative image data costs better capturing
the spine properties with bone density could enhance the performance. Intro-
ducing prior knowledge with respect to the allowable geometric dependencies
between the relative position of vertebrae is also a promising direction. Such a
concept could be enhanced through a hierarchical decomposition of the spine us-
ing higher order cliques improving the accuracy and the precision of the results.
By extending the framework to online cases using tracked dynamic CT, this can
help surgeons improve screw insertion accuracy and reduce surgery time.
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Abstract. In this paper we address the challenge of matching patient
geometry to facilitate the design of patient treatment plans in radio-
therapy. To this end we propose a novel shape descriptor, the Overlap
Volume Histogram, which provides a rotation and translation invariant
representation of a patient’s organs at risk relative to the tumor volume.
Using our descriptor, it is possible to accurately identify database pa-
tients with similar constellations of organ and tumor geometries, enabling
the transfer of treatment plans between patients with similar geometries.
We demonstrate the utility of our method for such tasks by outperform-
ing state of the art shape descriptors in the retrieval of patients with
similar treatment plans. We also preliminarily show its potential as a
quality control tool by demonstrating how it is used to identify an organ
at risk whose dose can be significantly reduced.

1 Introduction

In the treatment of patients with malignant tumors, the goal of intensity-
modulated radiation therapy (IMRT) is to deliver a high dose of radiation to
the tumor volume while sparing nearby organs at risk (OAR). In practice, a
pre-treatment computed tomography (CT) scan of the patient is segmented
to identify the tumor volume and OAR. The segmented scan is then used by
a dosimetrist to guide the settings for each multi-leaf collimator (MLC) on a
radiotherapy machine targeting the tumor. This step is referred to as IMRT
planning.

The design of a high-quality IMRT plan is one of the most time-consuming
and least automated steps of the treatment cycle. The dosimetrist must optimize
the MLC settings to achieve a dose distribution that most closely meets a set of
physician-driven constraints. For example, in a commonly used treatment proto-
col for head-and-neck cancer [1] at least 95% of the tumor volume should receive
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a dose of at least 70 Gy, while no more than 50% of each parotid should receive
more than 30 Gy, and no part of the spinal cord should receive more than 45 Gy.
The objective function is non-convex and requires that the dosimetrist perform
multiple refinement optimization steps in order to best meet the constraints. Fur-
thermore, computing the dose distribution from a set of MLC settings requires
a complex simulation involving the inhomogeneous attenuation and scattering
properties within the patient volume, making each individual refinement step
computationally expensive. As a result, the process of planning an individual
patient usually takes many hours to complete, often resulting in a time-lag of
several days between the time that a patient comes in for scanning and when
the patient can return for treatment.

We will argue that through shape matching using an appropriate shape rela-
tionship descriptor, both the speed and quality of the treatment planning process
can be increased. Using a database of previously treated patients, the segmented
geometry of the new patient serves as a query into the database, returning the
treated patients whose configurations of tumor volume to OAR most closely
resemble those of the new patient. Using the treatment plans of these most sim-
ilar patients, we can facilitate the treatment of new patients, either by directly
suggesting a treatment plan for the new patient or by using the retrieved plans
as seeds in the optimization. The key challenge in designing such a system is
the definition of a shape descriptor that captures not only the geometries of the
tumor volume and OAR, but also their configurations relative to each other.
Intuitively, the closer an OAR is to the tumor, the harder it is to irradiate the
tumor while sparing the OAR.

To this end, we introduce the Overlap Volume Histogram (OVH). For each
OAR, this 1D histogram describes the distribution of distances of the organ’s vol-
ume relative to the tumor volume. Since the “spareability” of an organ strongly
depends on its proximity to the irradiated tumor, this descriptor provides a
simple shape signature that is well-suited to the challenge of treatment plan
retrieval. In our results we compare the OVH to several existing state-of-the-
art shape descriptors and show significantly improved performance in retrieving
patients with similar treatment plans.

2 Related Work

Due to the large size of the databases and guided by the need for real-time
performance, many recent techniques for shape retrieval have taken the shape
descriptor approach. The goal has been to obtain a concise, robust, and dis-
criminating abstraction of the shape geometry that is well-suited for efficient
querying. Most typically, the shape descriptor is represented as a vector in a
high-dimensional space, dissimilarity of two shapes is measured as the distance
between the corresponding descriptors, and database retrieval reduces to finding
nearest neighbors in a high-dimensional space.

In whole-object retrieval the challenge is to find the shapes in the database
which, up to transformation, are most similar to the query. Since the entire shape
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Fig. 1. Visualization of the tumor volume (black) and several OAR (left) and the
corresponding OVHs in differential (center) and cumulative (right) forms

is used for retrieval, normalization techniques can be used to remove much of the
transformational ambiguity in matching, allowing for the use of the center of mass
for removing translational ambiguity, radial-variance or mean-/bounding-radius
for removing scaling ambiguity, and principal axes for rotational ambiguity. These
methods have included: 1D histograms capturing the distribution of points [2,3,4],
crease angles [5], and curvature [6] over the surface; spherical functions character-
izing the distribution of surface normals [7], axes of reflective symmetry [8], confor-
mality [9], and angular extent [10]; 3D functions characterizing the rasterization
of the boundary boundary points [11] and the distance transform [12]; and even
4D plenoptic functions characterizing the 2D views of a surface [13].

Partial object retrieval is more difficult. The goal is to retrieve shapes con-
taining sub-regions that are a good match to a subset of the query. Because it
is not known in advance which subsets of the shapes will be used for matching,
global normalization techniques cannot be applied. Instead, partial matching
methods represent a shape by a multitude of shape descriptors, each centered
at a different point on the shape’s boundary and characterizing only the subset
of the shape in its vicinity. Using these descriptors, retrieval can be performed
by rating target models in terms of the number and quality of matches between
the descriptors of the query and the descriptors of the target. Commonly used
shape descriptors for partial shape matching have included spin images [14,15],
shape contexts [16], and curvature maps [17].

What makes patient retrieval difficult is that the notion of shape similarity
required for retrieving treatment plans is not one characterized by either of
these two methodologies. The geometric relationship between the tumor and the
surrounding anatomy is more important than the detailed shapes of individual
structures. The volume of overlap has been suggested for characterizing the
relationship between OAR and target [18]. However, this only provides a single
value and becomes uninformative when the OAR and target do not overlap.

3 The Overlap Volume Histogram

In designing a shape descriptor, our goal is to capture the proximity of the different
OARs to the tumor volume. To this end, we define the Overlap Volume Histogram
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Algorithm 1. GetOVH( BinaryVoxel O, BinaryVoxel T )
Require: Binary voxel grids for organ O and tumor T

Histogram dOVH ←− 0
Voxel DT ←− GetSignedDistanceTransform(T )
for all o ∈ O do dOVH[DT (o)] += 1/|O|
Histogram OVH ←− cumulative(dOVH)
return OVH

(OVH). This is a one-dimensional distribution associated to each organ at risk,
measuring its distance from the tumor.

For a tumor T and organ O, the value of the OVH of O with respect to T at
distance t is defined as the volume of the subset of the organ a distance of t or
less from the tumor:

OVHO,T (t) =

∣∣∣ {p ∈ O|d(p, T ) ≤ t}
∣∣∣

|O| ,

where d(p, T ) is the signed distance of p from the tumor’s boundary and |O| is
the volume of the OAR.

In practice, the OVH of an organ with respect to the tumor is efficiently
computed from the segmented CT scans. Using the segmented tumor volume,
we compute its signed Distance Transform. We iterate over the voxels interior to
the organ and for each voxel, we evaluate the distance transform of the tumor,
splatting a unit-volume vote into the associated bin. This gives us the differential
of the volume which can then be used to compute the final cumulative form in a
single pass. Since the signed distance transform can be computed in linear time
(e.g. using [19]) the total running time of the algorithm is linear in the size of
the CT scan. The algorithm is given in Algorithm 1.

An example of a patient’s OVH descriptors is shown in Fig. 1. The image on
the left shows the geometry of the tumor volume (black), spinal cord (red), brain-
stem (blue), and right and left parotid glands (dark and light green respectively).
Examining the OVHs, we can quickly identify properties of the geometric config-
uration of the organs relative to the tumor. For example, the fact that the OVH of
the left parotid has non-zero values at negative distances indicates that part of the
parotid is overlapped by the tumor volume and therefore it will not be possible to
spare the parotid in its entirety when fully irradiating the tumor. Similarly, since
the the OVH values for both the spinal cord and brainstem are zero for distance
values smaller than one centimeter, we know that no point on the tumor can be
within a centimeter of these organs. Therefore, a treatment plan keeping most of
the radiation within a centimeter of the tumor is likely to spare them.

To use the OVH for retrieval we need to define a metric on the space of
descriptors. Since the differentials of the OVH correspond to distributions, a
natural metric is the Earth Mover’s Distance (EMD) which measures the amount
of work needed to transform one distribution into the other. Although computing
this distance in general is computationally difficult, requiring the solution of a
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Fig. 2. DVHs for the treatment plan of the patient in Fig. 1

bipartite graph matching problem, it is straightforward to compute in our case.
As shown by Rubner et al. [20], in the case that the distributions are normalized
and one-dimensional, the EMD between two distributions is the L1-distance
between their cumulative histograms. As a result, run-time retrieval only requires
finding the target descriptor(s) in the database minimizing the L1-distance to
the query.

4 Experimental Results

To evaluate the effectiveness of a shape descriptor in patient retrieval, we measure
the accuracy with which similarity of descriptors predicts similarity of treatment
plans. The challenge in implementing such an experiment is that there does not
exist a canonical metric for measuring plan similarity.

After a treatment plan is designed by a dosimetrist, a simulation of the IMRT
is performed to determine the resulting dose distribution. In practice, the plan
quality is evaluated by considering the dose-volume histograms (DVHs) [21] of
the different organs and target volumes. These are 1D distributions, whose value
at a specific dose is the volume of the organ or tumor that would receive at most
that much dose under the proposed plan.

Fig. 2 shows the DVHs derived from the treatment plan for the patient shown
in Fig. 1. Since the goal of the treatment is to kill the tumor, the plan results
in a DVH for the tumor that has large values for all doses. For serial organs like
the spinal cord and brainstem, the goal of the treatment is to ensure that no
part of the organ receives a high dose, and the DVHs for both have zero value
beyond 50 Gy. Since the parotids are parallel organs that remain functional even
after a noticeable fraction of their volume has received high dose, the DVHs for
both the left and right parotids show small volumes of the organ receiving doses
larger than 60 Gy. Additionally, since the proximity of the left parotid to the
tumor makes it hard to spare, the treatment results in more irradiation of this
gland, with 10% of the organ receiving as much as 70 Gy.

We evaluate the quality of a descriptor by measuring the effectiveness with
which it retrieves patients having similar DVHs. We do this by calculating the
variation in DVH distances between a patient and the patient’s k nearest neigh-
bors (sorted by descriptor similarity).
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Fig. 3. Plots of the avg. distances from a patient’s DVH to the DVHs of its k-nearest
neighbors as defined using several different shape descriptors

Given a patient, we compute the sum of squared L1-distances from the DVH
of patient to the DVHs of the patient’s k-nearest neighbors, summing over both
the nearest neighbors and the different OARs. We repeat the experiment for all
patients in the database and average the (root of the) sums. This gives a 1D
distribution of the expected distance of a patient’s DVH from the DVH of its
k nearest-neighbors. In general, we expect descriptors that better predict DVH
similarity to give rise to distributions with smaller expected distances. Clearly,
the best results are obtained when patients are sorted based on DVH similarity.

Fig. 3 compares the distance distribution obtained with our OVH descrip-
tor with the distributions obtained using several other common shape descrip-
tors, including Extended Gaussian Images (EGI) [7], angular extent functions
(EXT) [10], and Gaussian Euclidean Distance Transforms (GEDT) [12]. As a
baseline, the figure also shows the results when DVH similarity is used to sort
the patients, (“Ground Truth” plot).

For each competing method, we obtained a representation of the organ-tumor
relationship by computing the descriptor of the union of the organ and tumor
geometries. We also addressed the problem of rotational alignment in three ways.
Harmonic: We made the descriptors rotation invariant by storing only the
magnitudes of the spherical frequencies. PCA: We used PCA to align each
patient into a canonical pose prior to the computation of the descriptor. And,
No Alignment: We used the given poses to allow for the possibility of consistent
alignment across patients.

As the plots indicate, despite the quality of the traditional descriptors in gen-
eral shape matching tasks, they are not well-suited patient retrieval, where it
is the inter-organ relations that determine similarity. In contrast, our OVH de-
scriptor is specifically designed to capture the proximity of different geometries.
Thus it outperforms these methods, more often successfully using organ geome-
try to identify patients with similar treatment plans. The distance to the ground
truth curve implies that, in practice, similarity of patient geometry does not al-
ways result in similar treatment. In fact, we have found that in some instances,
two patients with nearly identical anatomies receive plans of markedly differing
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Fig. 4. Parotid DVH (blue) along with the DVHs of its 3 nearest OVH neighbors (dot-
ted green) and the DVH obtained after re-planning (dashed red.) Note the reduction
of V (30Gy) from 55.6% to 48.2%.

quality. This is because, given the difficulty of the planning process, physicians
can unwittingly approve suboptimal plans.

The OVH can be used as a tool in plan quality assessment by searching the
database for similar patients with better plans. As an example, Fig. 4 illustrates
a preliminary result in which a parotid’s IMRT plan (blue) was automatically
flagged as a candidate for replanning because the three database parotids with
most similar OVHs (green) received much lower doses. The DVH obtained after
replanning is illustrated in dashed red. With the new plan, the V (30Gy) value
to the patient’s parotid was reduced from 55.6% to 48.2%, crossing the 50%
spareability mark in the RTOG protocol. This replanning result is preliminary,
since the focus of this paper is the introduction of the OVH and its shape-retrival
performance evaluation (Fig. 3). In a related work [22], we focus specifically on
the application of our OVH descriptor to IMRT planning. In this study based
on sorting the mid-points of OVHs and comparing to the order of DVHs to find
outliers, we were able to improve 13 out of 32 patient treatment plans.

5 Conclusion and Future Work

We have introduced the OVH, a novel shape relationship descriptor focused on
the characterization of the inter-spacial relationship of different geometries. We
have shown it can be computed efficiently and have demonstrated its practical
efficacy by showing that it outperforms traditional shape descriptors in retrieving
patients with radiotherapy treatment plans similar to the query using geometry
alone. We also showed its potential as a quality control tool by demonstrating
how it was used to identify an OAR whose dose could be significantly reduced.
Based on these encouraging preliminary results, we have begun to explore the
use of more complex OVH features and search methods for their application in
patient retrieval for radiation therapy.
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Abstract. This paper presents feature-based morphometry (FBM), a
new, fully data-driven technique for identifying group-related differences
in volumetric imagery. In contrast to most morphometry methods which
assume one-to-one correspondence between all subjects, FBM models im-
ages as a collage of distinct, localized image features which may not be
present in all subjects. FBM thus explicitly accounts for the case where
the same anatomical tissue cannot be reliably identified in all subjects
due to disease or anatomical variability. A probabilistic model describes
features in terms of their appearance, geometry, and relationship to sub-
groups of a population, and is automatically learned from a set of sub-
ject images and group labels. Features identified indicate group-related
anatomical structure that can potentially be used as disease biomarkers
or as a basis for computer-aided diagnosis. Scale-invariant image features
are used, which reflect generic, salient patterns in the image. Experiments
validate FBM clinically in the analysis of normal (NC) and Alzheimer’s
(AD) brain images using the freely available OASIS database. FBM
automatically identifies known structural differences between NC and
AD subjects in a fully data-driven fashion, and obtains an equal error
classification rate of 0.78 on new subjects.

1 Introduction

Morphometry aims to automatically identify anatomical differences between
groups of subjects, e.g. diseased or healthy brains. The typical computational
approach taken to morphometry is a two step process. Subject images are first
geometrically aligned or registered within a common frame of reference or at-
las, after which statistics are computed based on group labels and measure-
ments of interest. Morphometric approaches can be contrasted according to the
measurements upon which statistics are computed. Voxel-based morphometry
(VBM) involves analyzing intensities or tissue class labels [1,2]. Deformation or
tensor-based morphometry (TBM) analyzes the deformation fields which align
subjects [3,4,5]. Object-based morphometry analyzes the variation of pre-defined
structures such as cortical sulci [6].

A fundamental assumption underlying most morphometry techniques is that
inter-subject registration is capable of achieving one-to-one correspondence
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between all subjects, and that statistics can therefore be computed from mea-
surements of the same anatomical tissues across all subjects. Inter-subject regis-
tration remains a major challenge, however, due to the fact that no two subjects
are identical; the same anatomical structure may vary significantly or exhibit
distinct, multiple morphologies across a population, or may not be present in
all subjects. Coarse linear registration can be used to normalize images with
respect to global orientation and scale differences, however it cannot achieve
precise alignment of fine anatomical structures. Deformable registration has the
potential to refine the alignment of fine anatomical structures, however it is dif-
ficult to guarantee that images are not being over-aligned. While deformable
registration may improve tissue overlap, in does not necessarily improve the ac-
curacy in aligning landmarks, such as cortical sulci [7]. Consequently, it may
be unrealistic and potentially detrimental to assume global one-to-one corre-
spondence, as morphometric analysis may be confounding image measurements
arising from different underlying anatomical tissues [8].

Feature-based morphometry (FBM) is proposed specifically to avoid the as-
sumption of one-to-one inter-subject correspondence. FBM admits that correspon-
dence may not exist between all subjects and throughout the image, and instead
attempts to identify local patterns of anatomical structure for which correspon-
dence between subsets of subjects is statistically probable. Such local patterns
are identified and represented as distinctive scale-invariant features [9,10,11,12],
i.e. generic image patterns that can be automatically extracted in the image by
a front-end salient feature detector. A probabilistic model quantifies feature vari-
ability in terms of appearance, geometry, and occurrence statistics relative to sub-
ject groups. Model parameters are estimated using a fully automatic, data-driven
learning algorithm to identify local patterns of anatomical structure and quantify
their relationships to subject groups. The local feature thus replaces the global at-
las as the basis for morphometric analysis. Scale-invariant features are widely used
in the computer vision literature for image matching, and have been extended to
matching 3D volumetric medical imagery [11,12]. FBM follows from a line of re-
cent research modeling object appearance in photographic imagery [13] and in 2D
slices of the brain [14], and extends this research to address group analysis, and to
operate in full 3D volumetric imagery.

2 Feature-Based Morphometry (FBM)

2.1 Local Invariant Image Features

Images contain a large amount of information, and it is useful to focus compu-
tational resources on interesting or salient features, which can be automatically
identified as maxima of a saliency criterion evaluated throughout the image.
Features associated with anatomical structures have a characteristic scale or
size which is independent of image resolution, and a prudent approach is thus to
identify features in a manner invariant to image scale [9,10]. This can be done
by evaluating saliency in an image scale-space I(x, σ) that represents the image
I at location x and scale σ. The Gaussian scale-space, defined by convolution
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of the image with the Gaussian kernel, is arguably the most common in the
literature [15,16]:

I(x, σ) = I(x, σ0) ∗G(x, σ − σ0), (1)

where G(x, σ) is a Gaussian kernel of mean x and variance σ, and σ0 represents
the scale of the original image. The Gaussian scale-space has attractive properties
including non-creation and non-enhancement of local extrema, scale-invariance,
and causality and arises as the solution to the heat equation [16]. Derivative
operators are commonly used to evaluate saliency in scale-space [9,10], and are
motivated by models of image processing in biological vision systems [17]. In this
paper, geometrical regions gi = {xi, σi} corresponding to local extrema of the
difference-of-Gaussian (DOG) operator are used [9]:

(xi, σi) = local argmax
x,σ

{ ∣∣∣∣dI(x, σ)
dσ

∣∣∣∣
}

. (2)

Each identified feature is a spherical region defined geometrically by a location
xi and a scale σi, and the image measurements within the region, denoted as ai.

2.2 Probabilistic Model

Let F = {f1, . . . , fN} represent a set of N local features extracted from a set of
images, where N is unknown. Let T represent a geometrical transform bringing
features into coarse, approximate alignment with an atlas, e.g. a similarity or
affine transform to the Talairach space [18]. Let C represent a discrete random
variable of the group from which subjects are sampled, e.g. diseased, healthy.
The posterior probability of (T, C) given F can be expressed as:

p(C, T |F ) =
p(C, T )
p(F )

p(F |C, T ) =
p(C, T )
p(F )

N∏
i

p(fi|C, T ), (3)

where the first equality results from Bayes rule, and the second from the as-
sumption of conditional feature independence given (C, T ). Note that while
inter-feature dependencies in geometry and appearance are generally present,
they can largely be accounted for by conditioning on variables (C, T ). p(fi|C, T )
represents the probability of a feature fi given (C, T ). p(C, T ) represents a joint
prior distribution over (C, T ). p(F ) represents the evidence of feature set F .

An individual feature is denoted as fi = {ai, αi, gi, γi}. ai represents feature
appearance (i.e. image measurements), αi is a binary random variable repre-
senting valid or invalid ai, gi = {xi, σi} represents feature geometry in terms of
image location xi and scale σi, and γi is a binary random variable indicating the
presence or absence of geometry gi in a subject image. The focus of modeling is
on the conditional feature probability p(fi|C, T ):

p(fi|C, T ) = p(ai, αi, γi, gi|T, C) = p(ai|αi)p(αi|γi)p(gi|γi, T )p(γi|C), (4)
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where the 2nd equality follows from several reasonable conditional independence
assumptions between variables. p(ai|αi) is a density over feature appearance ai

given feature occurrence αi, p(αi|γi) is a Bernoulli distribution of feature occur-
rence αi given the occurrence of a consistent geometry γi, p(gi|γi, T ) is a density
over feature geometry given geometrical occurrence γi and global transform T ,
and p(γi|C) is a Bernoulli distribution over geometry occurrence given group C.

2.3 Learning Algorithm

Learning focuses on identifying clusters of features which are similar in terms of
their group membership, geometry and appearance. Features in a cluster repre-
sent different observations of the same underlying anatomical structure, and can
be used to estimate the parameters of distributions in Equation (4).

Data Preprocessing: Subjects are first aligned into a global reference frame,
and T is thus constant in Equation (3). At this point, subjects have been normal-
ized according to location, scale and orientation, and the remaining appearance
and geometrical variability can be quantified [19]. Image features are then de-
tected independently in all subject images as in Equation (2).

Clustering: For each feature fi, two different clusters or feature sets Gi and Ai

are identified, where fj ∈ Gi are similar to fi in terms of geometry, and fj ∈ Ai

are similar to fi in appearance. First, set Gi is identified based on a robust binary
measure of geometry similarity. Features fi and fj are said to be geometrically
similar if their locations and scales differ by less than error thresholds εx and εσ.
In order to compute geometrical similarity in a manner independent of feature
scale, location difference is normalized by feature scale σi, and scale difference
is computed in the log domain. Gi is thus defined as:

Gi = {fj : ||xi − xj ||/σi ≤ εx ∧ |log(σj/σi)| ≤ εσ } . (5)

Next, set Ai is identified using a robust measure of appearance similarity, where
fi is said to be similar to fj in appearance if the difference between their ap-
pearances is below a threshold εai . Ai is thus defined as a function of εai :

Ai(εai) = {fj : ||ai − aj || ≤ εai} , (6)

where here || || is the Euclidean norm. While a single pair of geometrical thresh-
olds (εx, εσ) is applicable to all features, εai is feature-specific and set to:

εai = sup
{

εa ∈ [0,∞) : 1 ≤ |Ai(εa) ∩Gi ∩ Ci|
|Ai(εa) ∩Gi ∩ Ci|

}
, (7)

where Ci is the set of features having the same group label as fi, and εai is
thus set to the maximum threshold such that Ai is still more likely than not to
contain geometrically similar features from the same group Ci. At this point,
Gi ∩ Ai is a set of samples of model feature fi, and the informativeness of fi

regarding a subject group Cj is quantified by the likelihood ratio:

p(fi|Cj , T )
p(fi|Cj , T )

=
|Ai ∩Gi ∩ Cj |
|Ai ∩Gi ∩ Cj |

. (8)
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The likelihood ratio explicitly measures the degree of association between a
feature and a specific subject group and lies at the heart of FBM analysis.
Features can be sorted according to likelihood ratios to identify the anatomical
structures most indicative of a particular subject group, e.g. healthy or diseased.
The likelihood ratio is also operative in FBM classification:

C∗ = argmax
C

{
p(C, T |F )
p(C, T |F )

}
= argmax

C

{
p(C, T )
p(C, T )

∏
i

p(fi|C, T )
p(fi|C, T )

}
, (9)

where C∗ is the optimal Bayes classification of a new subject based on a set of
features F in the image, and can be used for computer-aided diagnosis.

3 Experiments

FBM is a general analysis technique, which is demonstrated and validated here in
the analysis of Alzheimer’s disease (AD), an important, incurable neurodegener-
ative disease affecting millions worldwide, and the focus of intense computational
research [20,21,22,23]. Experiments use OASIS [22], a large, freely available data
set including 98 normal (NC) subjects and 100 probable AD subjects ranging
clinically from very mild to moderate dementia. All subjects are right-handed,
with approximately equal age distributions for NC/AD subjects ranging from
60+ years with means of 76/77 years. For each subject, 3 to 4 T1-weighted
scans are acquired, gain-field corrected and averaged in order to improve the
signal/noise ratio. Images are aligned within the Talairach reference frame via
affine transform T and the skull is masked out [23]. In our analysis, the DOG
scale-space [9] is used to identify feature geometries (xi, σi), appearances ai are
obtained by cropping cubical image regions of side length 4

√
σi centered on xi

and then scale-normalizing to (11 × 11 × 11)-voxel resolution. Features could
be normalized according to a canonical orientation to achieve rotation invari-
ance [12], this is omitted here as subjects are already rotation-normalized via T
and further invariance reduces appearance distinctiveness. Approximately 800
features are extracted in each (176× 208× 176)-voxel brain volume.

Model learning is applied on a randomly-selected subset of 150 subjects (75
NC, 75 AD). Approximately 12K model features are identified, these are sorted
according to likelihood ratio in Figure 1. While many occur infrequently (red
curve, low p(fi|T )) and/or are uninformative regarding group (center of graph),
a significant number are strongly indicative of either NC or AD subjects (extreme
left or right of graph). Several strongly AD-related features correspond to well-
established indicators of AD in the brain. Others may provide new information.
For examples of AD-related features shown in Figure 1, feature (a) corresponds to
enlargement of the extracerebral space in the anterior Sylvian sulcus; feature (b)
corresponds to enlargement of the temporal horn of the lateral ventricle (and one
would assume a concomitant atrophy of the hippocampus and amygdala); feature
(c) corresponds to enlargement of the lateral ventricles. For NC-related features,
features (1) (parietal lobe white matter) and (2) (posterior cingulate gyrus)
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Fig. 1. The blue curve plots the likelihood ratio ln p(fi|AD,T )
p(fi|NC,T )

of feature occurrence in
AD vs. NC subjects sorted in ascending order. Low values indicate features associated
with NC subjects (lower left) and high values indicate features associated with AD
subjects (upper right). The red curve plots feature occurrence probability p(fi|T ).
Note a large number of frequently-occurring features bear little information regarding
AD or NC (center). Examples of NC (1-3) and AD (a-c) related features are shown.

correspond to non-atrophied parenchyma and feature (3) (lateral ventricle) to
non-enlarged cerebrospinal fluid spaces.

FBM also serves as a basis for computer-aided diagnosis of new subjects.
Classification of the 48 subjects left out of learning results in an equal er-
ror classification rate (EER) of 0.781. Classification based on models learned
from randomly-permuted group labels is equivalent to random chance (EER =
0.50, stdev = 0.02), suggesting that the model trained on genuine group labels
is indeed identifying meaningful anatomical structure. A direct comparison with
classification rates in the literature is difficult due to the availability, variation
and preprocessing of data sets used. Rates as high as 0.93 are achievable using
support vector machines (SVMs) focused on regions of interest [21]. While rep-
resentations such as SVMs are useful for classification, they require additional
interpretation to explain the link between anatomical tissue and groups [5].

4 Discussion

This paper presents and validates feature-based morphometry (FBM), a new,
fully data-driven technique for identifying group differences in volumetric
images. FBM utilizes a probabilistic model to learn local anatomical patterns in
the form of scale-invariant features which reflect group differences. The primary

1 The EER is a threshold-independent measure of classifier performance defined as
the classification rate where misclassification error rates are equal.
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difference between FBM and most morphological analysis techniques in the lit-
erature is that FBM represents the image as a collage of local features that need
not occur in all subjects, and thereby offers a mechanism to avoid confounding
analysis of tissues which may not be present or easily localizable in all subjects,
due to disease or anatomical variability. FBM is validated clinically on a large
set images of NC and probable AD subjects, where anatomical features consis-
tent with well-known differences between NC and AD brains are automatically
identified in a set of 150 training subjects. Due to space constraints only a few
examples are shown here. FBM is potentially useful for computer-aided diagno-
sis, and classification of 48 test subjects achieves a classification ERR of 0.78.
As validation makes use of a large, freely available data set, reproducability and
comparison with other techniques in the literature will be greatly facilitated.

FBM does not replace current morphometry techniques, but rather provides a
new complementary tool which is particularly useful when one-to-one correspon-
dence is difficult to achieve between all subjects of a population. The work here
considers groupdifferences in terms of feature/groupco-occurrence statistics, how-
ever most features do occur (albeit at different frequencies) in multiple groups, and
traditional morphometric analysis on an individual feature basis is a logical next
step in further characterizing groupdifferences. In terms of FBM theory, the model
could be adapted to account for disease progression in longitudinal studies by con-
sidering temporal groups, to help in understanding the neuroanatomical basis for
progression from mild cognitive impairment to AD, for instance. A variety of dif-
ferent scale-invariant features types exist, based on image characteristics such as
spatial derivatives, image entropy and phase. These could be incorporated into
FBM to model complementary anatomical structures, thereby improving analy-
sis and classification. The combination of classification and permutation testing
performed here speaks to the statistical significance of the feature ensemble iden-
tified by FBM, and we are investigating significance testing for individual features.
FBM is general and can be used as a tool to study a variety of neurological dis-
eases, and we are currently investigating Parkinson’s disease. Future experiments
will involve a comparison of morphological methods on the OASIS data set.
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Abstract. Brain imaging provides a wealth of information that com-
puters can explore at a massive scale. Categorizing the patterns of the
human cortex has been a challenging issue for neuroscience. In this paper,
we propose a data mining approach leading to the construction of the
first computerized dictionary of cortical folding patterns, from a database
of 62 brains. The cortical folds are extracted using BrainVisa open soft-
ware. The standard sulci are manually identified among the folds. 32
sets of sulci covering the cortex are selected. Clustering techniques are
further applied to identify in each set the different patterns observed in
the population. After affine global normalization, the geometric distance
between sulci of two subjects is calculated using the Iterative Closest
Point (ICP) algorithm. The dimension of the resulting distance matrix
is reduced using Isomap algorithm. Finally, a dedicated hierarchical clus-
tering algorithm is used to extract out the main patterns. This algorithm
provides a score which evaluates the strengths of the patterns found.
The score is used to rank the patterns for setting up a dictionary to
characterize the variability of cortical anatomy.

1 Introduction

With the advances in brain imaging techniques such as MR imaging, human brain
can be studied non-invasively. We are in an exciting era, when part of the tedious
work of mapping the brain conducted by neuroscientists and neurosurgeons can
be handled by computers, integrating anatomical, functional and genetic informa-
tion. However, this work of mapping the brain cannot be accomplished without
better understanding of the brain cortical folding anatomy and its variations.

The cortical folding process is relatively consistent, yet a huge variability
exists from one individual to another. The primary sulci that appear early on
in development, before the 30th week of gestation, are deeper and more stable
[1,2]. The secondary and tertiary folds that form later are more variable from
one individual to another [3,4]. The relationship between the sulcation pattern
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of the cerebral hemispheres and genetics is still controversial despite the efforts
of many authors [5,6]. There are evidences that link folding patterns to brain
functionality and pathology [3,7]. However, our knowledge of the functionality
around the smaller and less stable folds is far from being certain. It is extremely
difficult to study the functional implication of these folding patterns, because of
the huge variability that exists across individuals.

The standard approach to overcome this variability is to map the individual
brains to an average brain, so that group studies can be carried out using a sim-
ple voxel-based strategy [8]. The drawback of this approach is that some spatial
information concerning the individual brains is averaged out and lost, which is par-
ticularly dramatic when studying the folding patterns. A careful alignment of the
maingyralpatterns is improving the spatial normalization [10,11,12]but is stillhid-
ing the existence of incompatible folding patterns, namely patterns that can not be
aligned by a smooth warping. The final average brain is made up of the concate-
nation of the most frequent local patterns. In places where incompatible patterns
occur with similar frequencies, the average brain has unpredictable shapes.

In this paper, we set up a different framework that aims at studying these
incompatible patterns. The key point is to split the population into subgroups
of brains with similar patterns. This leads to clustering analysis, where we try
to find representation clusters that summarize the behaviour of the population.
Each of these clusters represents a subgroup of the population. In this paper,
the patterns defining these clusters are local but the same framework could
be applied to infer global patterns. This framework was already proposed in a
previous publication [13], but the shape descriptors used were not sufficient to
cover all the complexity of the sulcal patterns. The innovation in this paper
over the previous work is a new way to describe the sulcal shapes combining the
Iterative Closest Point (ICP) and the Isomap algorithms [9,14]. This innovation
leads to a much richer dictionary. The same clustering algorithm as in [13,15] is
used but we provide a new set of validations dedicated to the new descriptors.

The rest of the paper focuses on our efforts for discovering and mapping the
hidden patterns of cortical folding. The goal is to compute the first computerized
dictionary of these folding patterns, which is performed from a database of 62
brains. The cortical folds have been extracted using BrainVisa open software.
The standard sulci have been manually identified among the folds by human ex-
perts. Then these sulci are grouped into 32 different sets with some overlaps. In
this paper, we limit the search to these sets. The sulcal sets cover all the regions
in the frontal, temporal, parietal and occipital lobes. Some of these regions are
defined to address the ambiguities that arise during the labelling process. For
example, it is sometimes reported that some brains have two parallel cingulate
sulci. Therefore one sulcal set grouping cingulate, intracingulate and paracingu-
late sulci has been created. The other regions correspond to the gyri which are
more intrinsic to the functional organisation than the sulci. For example infe-
rior frontal sulcus and some branches of the Sylvian valley are grouped together
to represent Broca’s area. Clustering is applied independently to each of these
sulcal sets. The method is discussed below and validated using simulated and
real datasets. Some results on the real datasets are presented.
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2 Clustering Algorithm

The clustering process requires some descriptors of the shape of the sulcal sets.
Sophisticated shape descriptors based on 3D moment invariants have been pro-
posed before for this purpose [13]. This approach was based on only 12 general
descriptors which is not enough to represent all the complexity of the folding
patterns: very different shapes can sometimes lead to similar descriptors which
is disturbing the clustering. In order to overcome this weakness, we propose in
this paper to describe a shape by a vector of distance to a large number of
similar shapes. This approach has been proven to be very efficient to compare
shapes in large dimension spaces [14]. Hence the representation of the sulcal set
of one subject is consisting of the distances to the same sulcal set in all the other
subjects. Each pairwise distance is computed using the simple ICP algorithm
after affine global spatial normalization of the brains [8]. Note that performing a
global normalisation removes non-interesting patterns induced by global differ-
ences in brain size. Our ICP implementation is providing the minimal distance
obtained whatever the rotation between the two shapes [9].

The input to the clustering analysis are the feature vectors of dimension 62.
The curse of dimensionality is a well-known problem occurring in such situa-
tions. Therefore, dimension reduction is applied before clustering using Isomap
algorithm. This algorithm has the computational efficiency and global optimality
of PCA and MDS, it has also the flexibility to learn a broad class of non-linear
manifolds [14]. The input is the distance matrix among the subjects. Linking
each point to its K nearest neighbours, a graph is created that is supposed to
describe a low dimensional manifold. Isomap first estimates the geodesic distance
between points (here the set of sulci of each subject). The geodesic distance is
the length of the shortest path in this graph. It is important to choose an ap-
propriate neighbourhood size. When the neighbourhood is too large, too many
”short-circuit” edges would be created; when the neighbourhood is too small,
the graph becomes too sparse to approximate the geodesic paths. To our knowl-
edge, there is no consensual general way to choose K whatever the problem.
In this paper, K has been set to 6 (one tenth of the dataset size). Once the
matrix of pairwise geodesic distances has been computed, dimension reduction
is achieved using classical MultiDimensional Scaling. This algorithm chooses a
N-dimensional configuration minimizing the stress defined by Σ(gij−dij)2/Σd2

ij

where gij denotes geodesic distances and dij denotes pairwise distance in the low
dimensional space. In the rest of the paper, N is set to 4. Further work will be
carried out to study the dependence of the final patterns on K and N.

The clustering algorithm PCBB is applied to the Isomap result. This algo-
rithm has been recently proposed to perform robust detection of tight clusters
in a very noisy environment [15]. In this specific situation PCBB was shown to
perform better than GMM (Gaussian Mixture Models [16]). It provides a score
evaluating the significance of the set of detected clusters. The clustering algo-
rithm consists of two steps. In the first step, the number of clusters and their
size are estimated automatically. This is performed using a modified hierarchical
clustering algorithm, where the p-value of the result is estimated by a parametric
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sampling process. This process is performed many times on bootstrap samples
of the original data. The centers of all the clusters detected during the boot-
strap are gathered into a new dataset to be clustered in the second step. This
two step strategy provides robustness to the clustering. PAM algorithm (Parti-
tioning Around Medoids [17]) is applied to this new dataset to define the final
clusters. PAM is an algorithm similar to K-means including estimation of the
optimal number of clusters. In our experiments, R cluster toolbox is used [17].
The estimation of the number of clusters performed by PAM in this context
has been shown to be reliable [15]. The score of the final result is the average
of the p-values provided during the first step of PCBB. This score is inversely
proportional to the strength of the underlying patterns.

3 Validation and Results

The motivation for performing dimension reduction with Isomap method is illus-
trated by Fig 1. A dataset of 3∗62 shapes is generated combining the datasets of
three different sulci from our manually labelled database. Dimension reduction
of the ICP-based distance matrix is performed with three alternative classical
approaches: Isomap, classical MDS and PCA. The result shows that Isomap
outperforms the other methods for the separation of sulci.

Next, the performance of the clustering algorithm is evaluated with simula-
tions. Our database of 62 central sulci is used for the generation of simulated
datasets. Each of them is composed of 3 simulated tight clusters of 7 sulci plus
41 original central sulci, leading to a total of 62 sulci. For each simulation,
three subjects are picked randomly from the original database. Six random vari-
ations are generated for each of them. Each variation results from a random
transformation applied to the original sulcus. This transformation is an affine
transformation endowed with a diagonal of 1 and with 6 random numbers sam-
pled from a Gaussian distribution elsewhere. An example is provided in Fig. 2.
41 additional subjects are picked randomly among the 62 − 3 other subjects to

CentralCingulate

Sup. Temporal

Isomap Classical MDS PCA

Fig. 1. Comparison of three dimension reduction methods applied on the ICP distance
matrix computed for a dataset of 3 x 62 = 186 sulci. The dataset contains 62 different
instances of Central (black), Cingulate (red) and Superior Temporal Sulci (green). The
dimension is reduced from 186 to 2.
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PAM GMM
Number of hits

1 2 3 1 2 3 10 2 3

HIDDEN

Fig. 2. Validation of the clustering of tight sulcal clusters using 50 simulated datasets.
The 62 central sulci of the database are used. Each simulation includes 3 simulated tight
clusters of 7 sulci each and 41 original sulci. Each cluster is generated through random
deformations of one original sulcus. An example of simulation is provided on the left
after ICP-based alignment (0.11 standard deviation, see text). Each color corresponds
to one cluster embedded in the 41 transparent original sulci in grey. An example of
clustering is provided on top where PCBB detected the three targets, while PAM and
GMM missed some. Histograms of the number of hits resulting from 50 simulations
are shown on the right.

complete the dataset. Ten different sets of three subjects are picked, and five
different standard deviations ranging from 0.11 to 0.15 are used for generating
the deformation. A total of 50 simulated datasets are obtained.

For each simulation, the ICP-based distance matrix is computed, Isomap is
used for dimension reduction (K=6). Three different clustering methods are ap-
plied: PCBB [15], GMM and PAM. GMM involves first fitting a mixture model
by expectation-maximization and computation of posterior probabilities [18].
The Bayesian Information Criterion (BIC) provides the number of components.
The state-of-the-art Mclust toolbox from R is used to run GMM [16].

The results are evaluated in terms of the number of simulated clusters found.
A detected cluster is considered a hit if the distance from its center to the center
of the closest simulated cluster is within the radius of this last cluster. The radius
is defined as the median of the distances to the center. Extra clusters found are
not penalized since it is possible that the real data contains some clusters. Fig 2
shows a typical result and the performance statistics. PCBB outperforms the two
other methods. This is not so surprising since PAM and GMM aim at providing
a complete partitioning of the dataset. This goal is not always compatible with
the detection of tight clusters.

Clustering was applied to the 32 sulcal sets using PCBB. Group of clus-
ters with scores below 0.05 were collected for the dictionary. 13 sets of the left
hemisphere and 12 sets of the right hemisphere passed the threshold. Fig. 3 de-
scribes three of the items of our first dictionary. Some of the discovered patterns
clearly fit our initial idea of incompatibility. For instance the three patterns of
left superior temporal sulcus correspond to a simple long sulcus, a Y-shaped
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Left Sup. Temporal

Left Cingulate region

(1)

(2)

(3)

(4)

Left Inf−Inter Frontal Gyrus

Inter. frontal sulcus

Fig. 3. Three sulcal sets with strong patterns. One example of the sulcal set is shown
first. Then for each pattern, three aligned subjects are superimposed in order to high-
light the areas of stability making up the patterns. The left superior temporal
sulcus exhibits three incompatible configurations of its terminal branches. The left
cingulate region is highly variable. The key features are (1) the development of the
intracingulate sulcus (long shallow fold at the bottom of violet pattern), (2) the devel-
opment of the paracingulate sulcus (series of small folds at the top of red pattern), (3)
the interruptions of the cingulate sulcus and (4) the shape of the anterior part of the
region. The posterior part is relatively stable. The left Inf-Inter frontal gyrus is
made up of intermediate precentral and intermediate, marginal, orbitary and inferior
frontal sulci. The main difference among the three patterns shown here lies in the dif-
ferent configurations of the intermediate frontal sulcus (small and split: violet, large:
red, large and transverse: cyan).
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sulcus, and a split sulcus with two parallel folds in the posterior part. These
patterns cannot be aligned easily using spatial normalisation. This implies that
if a set of brains can be split into 3 groups based on STS patterns, intra and inter
group analysis of functional data could reveal new results. A sophisticated anal-
ysis including functional data, diffusion-based tractography and post-mortem
histology could help us to define the correct match between the three patterns.
Hence, the future of spatial normalisation might lie in a multi-template strategy
based on the kind of pattern mapping proposed in this paper.

4 Conclusion

The first atlas of the variability of the cerebral sulci was proposed by Ono et al.
in 1990 [4]. Tedious and patient manual work was required to collect information
about a small database of 20 brains. The patterns highlighted in this seminal
book were mainly related to sulcus interruptions and sulcus connexions. Taking
into account the geometry of the sulci was not possible because this work was
performed from flexible moulds of the brains and not from neuroimaging data
using computers. Note that the ICP-based distance used for our pattern defini-
tion is not based on nonlinear warping but on the smallest distance provided by
the rotation group. Therefore our clustering detects not only what was defined
in the introduction as incompatible patterns but also compatible patterns that
could be aligned by a nonlinear warping. This second kind of patterns could have
some interest for morphometric studies.

The first results presented in this paper show that a computerized approach
to the mapping of the sulcal patterns could be much more fruitful than any
similar manual work. Comparing brains visually is a very difficult task even
if computer graphics replaces moulds. Analysing the variability of the folding
patterns is often beyond the capacity of the human visual system. On the other
hand, we now have access to thousands of MR brain images that could be mined.
Some computer vision softwares like BrainVISA can perform the sulcus recogni-
tion automatically. These softwares are not perfect. They do not overcome yet
the ambiguities resulting from noncompatible patterns. However, applying the
method described in this paper to a very large database, we do think that the
quality of the automatic sulcus recognition is enough to perform a large scale
mapping of the patterns. Much more sulcal sets could be considered.

Pattern analysis adds a wealth of information to our understanding of the
variability that exists. For a long time, morphological variability was considered
as a difficulty for functional imaging. This led to the design of the spatial nor-
malisation paradigm. The recent understanding that brain morphology could be
used to develop early diagnosis in various diseases has raised some new inter-
ests in the study of variability [19]. The research on linking the folding patterns
with diseases is ongoing. Environmental and genetic factors can both play a role
in early brain development, thus affecting the cortical folding process. Hence
it is likely that some patterns could be used to define the signature of some
developmental diseases.
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Abstract. A brain surface reconstruction allows advanced analysis of structural 
and functional brain data that is not possible using volumetric data alone.  
However, the generation of a brain surface mesh from MRI data often intro-
duces topological defects and artifacts that must be corrected.  We show that it 
is possible to accurately correct these errors using spherical harmonics. Our re-
sults clearly demonstrate that brain surface meshes reconstructed using spheri-
cal harmonics are free from topological defects and large artifacts that were 
present in the uncorrected brain surface. Visual inspection reveals that the cor-
rected surfaces are of very high quality. The spherical harmonic surfaces are 
also quantitatively validated by comparing the surfaces to an “ideal” brain 
based on a manually corrected average of twelve scans of the same subject. In 
conclusion, the spherical harmonics approach is a direct, computationally fast 
method to correct topological errors. 

1   Introduction 

In brain analyses, it is sometimes desirable to deform the grey matter (GM) sheet into 
a sphere. A brain surface is not required to be homeomorphic with a sphere (e.g., 
contain no topological errors) before being mapped to a sphere. However, correcting 
topological defects is a necessary prerequisite for inter-subject analysis. When analyz-
ing inter-subject data, a common coordinate system must be used to extract meaning-
ful comparisons between the subjects. Since a brain surface mesh is roughly spherical, 
a logical choice is a spherical coordinate system. 

There are three common representations of the cortical surface: the interface be-
tween GM and white matter (WM); the interface between GM and cerebrospinal fluid 
(CSF); and the central surface (CS), which is approximately midway between the 
GM/WM and GM/CSF interfaces. Compared to the other representations, the CS 
provides an inherently less distorted representation of the cortical surface [1]. 

Due to noise, partial volume effects, and other problems during the MRI data ac-
quisition process, a brain surface mesh reconstructed from volumetric data often con-
tains topological defects and artifacts.  Topological defects can include handles and 
holes that prevent the surface from being homeomorphic with a sphere. Artifacts are 
topologically correct sharp peaks (usually due to noise) that have no relation to brain 
anatomy. Both types of errors should be repaired before the surface is inflated to a 
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sphere. Artifacts can be minimized via smoothing. However, accurately correcting 
topology defects is a more complicated endeavor. 

Here, we propose to use spherical harmonics for the first time to accurately correct 
topological defects. Spherical harmonic analysis has recently been applied to brain 
surface meshes, usually in the realm of shape analysis [2]. It has been applied to quan-
tifying structural differences in subcortical structures [3-6] and full surfaces [7, 8].  
Spherical harmonic analysis can be described as a Fourier transform on a sphere that 
decomposes the brain surface data into frequency components.  The surface can also 
be reconstructed from the harmonic information. Generally, the RMS error of the 
reconstructed surface decreases as the number of coefficients increases. Furthermore, 
the coefficients can be weighted to achieve a smoothing effect [9]. 

A drawback to spherical harmonics is the computation time required to calculate 
the coefficients. However, a modification of the fast Fourier transform compatible 
with spherical coordinates significantly decreases the computation time, since it is no 
longer necessary to directly calculate the coefficients [10, 11]. 

Previously, there were two general approaches used to correct topology defects.  
The first approach is to start with a surface with the desired topology and deform it to 
match the brain surface. This includes active contours or deformable models, and 
there is a wealth of literature on variations of this method applied to brain data; for a 
review, see [12, 13]. The second approach is to retrospectively correct the topology 
after the brain data has been segmented into WM and GM [14-19]. 

In this paper, we show for the first time that spherical harmonics processing can 
accurately and quickly repair topological defects. The spherical harmonics approach 
retrospectively corrects topological errors directly on the brain surface mesh, and 
results in an accurately reconstructed cortical surface free from topological defects 
and large artifacts.  

2   Methods 

Topological correction using spherical harmonics can be subdivided into four proc-
essing steps. First, we resample a spherical mapping of the surface mesh and calculate 
coordinates of location for each sampled point based on its approximate location in 
the surface mesh. For this step, a spherical mapping of the cortical surface is required. 
This spherical mapping is not homeomorphic with a sphere, since it still contains the 
topological defects from the original surface.  However, low distortion in the spheri-
cal mapping improves the re-parameterization process. 

Second, the coordinates of location mapped on the regularly sampled sphere are 
forward transformed using a Fourier transform to extract the harmonic content. The 
harmonic content is either left intact or bandwidth-limited using a low-pass Butter-
worth filter. This creates two sets of data that are passed through a third step, namely 
an inverse Fourier transform that reconstructs the harmonic data into two distinct 
surfaces: a high-bandwidth surface and a bandwidth-limited smoothed surface. In the 
high-bandwidth reconstruction, the topological defects are replaced with a spiked 
topology. Finally, the spiked topology is corrected by replacing local patches with 
points from a lower-bandwidth reconstructed surface. The result is a defect-free brain 
surface that retains a high level of detail and replaces the topological defects with a 
smoothed, more anatomically accurate representation. 
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2.1   Spherical Parameterization and Generation of Tensor Fields 

To analyze the harmonic content of a spherical surface, the spherical surface needs to 
have regularly sampled points with respect to θ and φ, where θ is the co-latitude and φ 
is the azimuthal coordinate.  However, spherical maps of cortical surfaces usually do 
not have regularly sampled points, so an initial step is a re-parameterization of the 
spherical surface. In order to accomplish this, points are generated from equally sam-
pled values of θ and φ for all members in the sets, such that there are 2B points per 
set, where B is the bandwidth. For each regularly sampled spherical point, the inter-
secting polygon on the cortical spherical mapping is found. Within that intersecting 
polygon, a coordinate of location is approximated using barycentric coordinates, e.g., 
the location of the regularly sampled point within the intersecting polygon on the 
spherical mapping determines a certain set of barycentric coordinates, and these bary-
centric coordinates are then used within the corresponding polygon in the original 
cortical surface to find the cortical location.  The result is a regularly sampled spheri-
cal map in which every point is associated with a coordinate related to the location on 
the original cortical surface. 

2.2   Harmonic Analysis 

The harmonic content of a spherical mesh can be obtained using normalized spherical 

harmonics Yl

m θ ,φ( ): 

Yl

m θ ,φ( ) = Pl

m (cosθ )eimφ
, (1) 

where l and m are integers with |m| ≤ l, and Pl

m is the associated Legendre function 
defined by: 

Pl
m (x) =

1
2 l l!

1 − x 2( )
m
2 d l+m

dx l +m
x 2 −1( )l

.  (2) 

A square-integrable function f(θ,φ) on the sphere can be expanded in the spherical 
harmonic basis such that: 

f (θ ,φ) = Y
l

m

2

−2 ˆ f (l,m) ⋅ Y
l

m

m =−l

l

∑
l =0

B

∑ , (3) 

where the coefficients ˆ f (l,m) are defined by the inner product ˆ f (l,m) = f ,  Yl

m  

and the L2-norm of Yl

m is given by: 

Y
l

m

2

−2

=
4π

2l + 1
⋅

(l + m)!

(l − m)!
 . (4) 

It is possible to solve this system directly by finding the bases first, but a more effi-
cient approach is to use a divide-and-conquer scheme as described in [10]. 

The calculated coefficients are either left as is or are bandwidth-limited using a 
128-order Butterworth low-pass filter in order to exclude the contributions from 
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higher-frequency coefficients. A Butterworth filter reduces ringing artifacts and re-
sults in a smoother reconstructed surface. Finally, the harmonic content is processed 
through an inverse Fourier transform to produce bandwidth-limited coordinates asso-
ciated with each spherical point. These filtered coordinates are used to reconstruct a 
cortical mesh without topological defects. 

2.3   Refinement of Reconstructed Cortical Meshes 

After reconstruction via spherical harmonics, the resulting cortical mesh is homeo-
morphic with a sphere. However, adjacent to regions formerly containing topological 
defects, the spherical harmonics reconstructed surface generally replaces the defect 
with a spiked topology that does not correspond to actual brain anatomy (Figure 1).  
The spiked appearance is only present if the bandwidth is high enough to admit higher 
frequencies; if a lower bandwidth is used, the surface near former topological defects 
is smooth and well-reconstructed, yet some detail is also lost. 

 

 

Fig. 1. Topological correction using spherical harmonics relies on a union between a high-
bandwidth (B = 1024) and bandwidth-limited (Bl = 64) surface.  A cubic surface (a) contains 
three holes (red arrows), two bridges (yellow arrows), and two artifacts (white arrows). The 
bandwidth-limited surface (b) corrects the topological errors but loses detail. The high-
bandwidth reconstruction (c) replaces topological defects with sharp spikes. The union of the 
two surfaces (d) optimizes detail retention and topological error correction.  Generally, smaller 
topological defects are repaired more accurately than larger topological defects. 

As a final step, these surfaces are combined such that the regions that exhibit 
spiked topology in the higher-bandwidth (B = 1024) surface are replaced with patches 
from a bandwidth-limited (Bl = 64) cortical reconstruction. The lower bandwidth was 
chosen such that the spiked regions were smooth but the surface retained the ap-
proximate shape of the original cortical surface, such that the union of the two sur-
faces does not result in large discontinuities. 

Topologically spiked regions are found by calculating a sharpness value for each 
point. The sharpness is the maximum angle between normals of nearest-neighbor 
polygons. If sharpness is above a threshold, then this point and a set of neighbors are 
replaced with corresponding points in the bandwidth-limited cortical surface. 

Theoretically, optimal defect correction in both the WM and CS should result in 
the same sharpness threshold, since the bandwidths of the two proposed surfaces are 
the same. Basing the sharpness threshold on a certain standard deviation within the 
sharpness histogram is not adequate, since the brain surfaces vary widely in the num-
ber and size of their topology defects. Instead, the sharpness threshold should be set to 
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maximize the overlap between the proposed patch area and the defect regions, while 
minimizing patches outside of the defect regions.  It was found that a threshold of ts = 
110° fulfilled these criteria, and separate threshold optimization of the WM and CS 
surfaces resulted in the same threshold value. 

By default, the patch includes the high-sharpness point and the two nearest 
neighbors. However, it is possible that there may be a discontinuity between the patch 
and the high-bandwidth surface at the edge. Our approach was to measure the dis-
tance between the points surrounding the patch and their corresponding points in the 
high-bandwidth surface, and to include in the patch any points that were more than 2 
mm distant. The union of these two surfaces results in a continuous cortical surface 
that retains high-frequency information for gyri and sulci, and an anatomically accu-
rate reconstruction of regions that previously contained topological defects. 

2.4   Sample Data Set and Verification of Results 

Alongside visual validation, we wished to quantitatively assess the validity of the 
corrected surface. Our approach was to create an “ideal” brain by averaging twelve 
scans of the same brain. The averaging reduces noise and almost all of the topological 
defects. The remaining defects were extremely small and corrected manually using 
publicly available manual editing tools. 

The sample data set included 12 brain scans of the same brain. These scans were 
acquired with a 1mm isotropic resolution on two 1.5T scanners. Each scan was proc-
essed to produce WM and CS surface representations for each hemisphere using pub-
licly available software [20, 21]. The CS spherical mappings were additionally post-
processed using in-house tools to improve re-parameterization accuracy.  

All topology corrected brain surfaces were then compared to the “ideal” averaged 
brain surface using mean distance error and outlier reduction percent. The mean dis-
tance error de is the average minimum distance between a set of points X and a surface 
S. The minimum distance function d(p,S) between a point p∈X and the surface S can 
be defined as: 

d p, X( ) =
p '∈S

min p − p '  , (5) 

where p’ is a point on surface S.  The mean distance error is then defined as follows: 

de =
1

N p

d (p,S)
p∈X
∑  , (6) 

where Np is the number of points in the set of points X. 
Because the distance error histograms are not significantly different, a new metric 

was developed to quantify the reduction in distance error. The outlier reduction per-
cent represents the fraction of points that remain above a distance error threshold set 
in the uncorrected brain surface, such that: 

OP = 1 −
N t

N t
o ⋅

N p
o

N p

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
× 100  , (7) 
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where Nt
° and Nt are the number of points whose distance errors are above threshold 

in the original brain surface and the corrected surface, respectively, and Np
° and Np are 

the total number of mesh points in the original brain surface and the corrected surface, 
respectively. The threshold is set to include the top 5% points with the largest distance 
error in the uncorrected brain surface. A value of 100% indicates that all outliers have 
been removed, while a value of 0% indicates no improvement. 

3   Results and Discussion 

Visual inspection reveals that the surface reconstructed using spherical harmonics is 
free from topological defects and is similar to the “ideal” averaged brain surface  
(Figure 2). The approach is valid for both the central surface and the WM surface. 
High-bandwidth spherical harmonic reconstruction replaces topological defects with a 
spiked topology (Figure 2b,f). These regions are repaired by replacing local patches 
with points from a bandwidth-limited reconstruction (Figure 2c,g). The result is a 
corrected surface that is closer to the “ideal” averaged surface compared to the origi-
nal uncorrected surface (Figure 2d,h). 

Quantitatively, spherical harmonics generates a corrected surface that has a lower 
mean distance error (0.5371 for WM; 0.6127 for CS) compared to the uncorrected 
surface (0.7485 for WM; 0.7757 for CS), when both surfaces are compared to the 
ideal surface.  The outlier reduction percent was 85% for WM and 50% for CS, indi-
cating that points with large errors are significantly reduced. 

There is almost no difference between the spherical harmonic surface and the 
original uncorrected surface in areas that do not contain topological defects or arti-
facts (Figure 3). It is mostly the corrections in the areas of topological defects that are 
responsible for the improved distance error metrics. 

By using a fast Fourier transformation rather than calculating the spherical har-
monic coefficients directly, topology correction using spherical harmonics requires  
 

 

 

Fig. 2. Spherical harmonic correction of the WM (a-d) and CS (e-h). The original surfaces (a, e) 
contain holes, handles, and large artifacts (marked for visibility). These are eliminated via 
spherical harmonics reconstruction. At high bandwidths (b, f), the topological errors are re-
placed by a spiked topology. By patching these regions, the surface is reconstructed consistent 
with cortical anatomy (c, g). As a reference, the “ideal” brain surface is shown in (d, h). In (b-d) 
and (f-h), the colors represent sharpness, with red indicating high sharpness. 
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Fig. 3. Away from topological defects, surface information remains unchanged. The uncor-
rected surfaces for CS (a) and WM (c) are almost identical to the spherical harmonics corrected 
surfaces for CS (b) and WM (d), except around regions near topological defects (red). The 
distance in mm is the error between these surfaces and the “ideal” averaged surface. 

approximately 5 minutes on a 2.4 GHz iMac for a mesh that contains 150,000 verti-
ces. The resulting mesh contains approximately the same number of vertices. 

These results are the raw output from the spherical harmonic reconstruction. There 
is no post-processing beyond patching the bandwidth-limited reconstruction into the 
high-bandwidth surface. Reconstruction can be improved by increasing the accuracy 
of the initial segmentation or via smoothing. Either the full brain or local regions 
containing high curvature or high sharpness would benefit from smoothing, especially 
for the CS with its low curvature. The WM surface can be further optimized using a 
post-refinement process that uses the original T1 data in the correction routines. 

4   Conclusion 

The spherical harmonics approach is a fast, straightforward method to accurately 
correct topological defects. We have applied spherical harmonics to cortical surfaces 
with the goal of correcting topological defects and artifacts, and we have shown that 
this approach accurately reconstructs the cortical surface. The resulting surfaces have 
lower mean distance errors to an “ideal” template than the original uncorrected sur-
faces. The computation time per hemisphere is on the order of a few minutes, suggest-
ing that spherical harmonic reconstruction is a fast, accurate approach for topology 
error correction.  It is highly suitable for inclusion into a processing pipeline for corti-
cal surface analysis. 
 
Acknowledgments. This work was supported by the following grants: BMBF 
01EV0709 and BMBF 01GW0740. 

References 

1. Van Essen, D.C., Maunsell, J.H.R.: Two-dimensional maps of the cerebral cortex. Journal 
of Comparative Neurology 191(2), 255–281 (1980) 

2. Brechbühler, C., Gerig, G., Kübler, O.: Parametrization of closed surfaces for 3-D shape 
description. Computer Vision and Image Understanding 61(2), 154–170 (1995) 

3. Kelemen, A., Szekely, G., Gerig, G.: Elastic model-based segmentation of 3-D neurora-
diological data sets. IEEE Transactions on Medical Imaging 18(10), 828–839 (1999) 

4. Gerig, G., Styner, M., Jones, D., Weinberger, D., Lieberman, J.: Shape analysis of brain 
ventricles using SPHARM. In: MMBIA 2001, Kauai, HI, USA, pp. 171–178 (2001) 



132 R.A. Yotter, R. Dahnke, and C. Gaser 

5. Shenton, M.E., Gerig, G., McCarley, R.W., SzÈkely, G.B., Kikinis, R.: Amygdala-
hippocampal shape differences in schizophrenia: the application of 3D shape models to 
volumetric MR data. Psychiatric Research: Neuroimaging 115(1-2), 15–35 (2002) 

6. Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape analysis 
of the hippocampus in schizophrenia. Medical Image Analysis 8(3), 197–203 (2004) 

7. Shen, L., Chung, M.K.: Large-scale modeling of parametric surfaces using spherical har-
monics. In: 3DPVT 2006, Chapel Hill, NC, pp. 294–301 (2006) 

8. Chung, M.K., Shen, L., Dalton, K.M., Davidson, R.J.: Multi-scale voxel-based morphome-
try via weighted spherical harmonic representation. In: Yang, G.-Z., Jiang, T.-Z., Shen, D., 
Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 36–43. Springer, Heidelberg 
(2006) 

9. Chung, M.K., Dalton, K.M., Li, S., Evans, A.C., Davidson, R.J.: Weighted Fourier series 
representation and its application to quantifying the amount of gray matter. IEEE Transac-
tions on Medical Imaging 26(4), 566–581 (2007) 

10. Healy, D.M., Rockmore, D.N., Moore, S.S.B.: FFTs for the 2-sphere-improvements and 
variations. Technical Report, Dartmouth College (1996) 

11. Kostelec, P.J., Maslen, D.K., Healy, D.M., Rockmore, D.N.: Computational harmonic 
analysis for tensor fields on the two-sphere. J. Comp. Physics 162(2), 514–535 (2000) 

12. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. 
Med. Image Anal. 1, 91–108 (1996) 

13. Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology, ge-
ometry and deformation. Image Vis. Comp. 19, 1023–1040 (2001) 

14. Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: constructing geometrically 
accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. 
Imaging 20, 70–80 (2001) 

15. Shattuck, D.W., Leahy, R.M.: Automated graph-based analysis and correction of cortical 
volume topology. IEEE Trans. Med. Imaging 20, 1167–1177 (2001) 

16. Han, X., Pham, D.L., Tosun, D., Rettmann, M.E., Xu, C., Prince, J.L.: CRUISE: Cortical 
reconstruction using implicit surface evolution. Neuroimage 23, 997–1012 (2004) 

17. Jaume, S., Rondao, P., Macq, B.: Open Topology: A Toolkit for Brain Isosurface Correc-
tion. In: MICCAI (2005) 

18. Segonne, F., Pacheco, J., Fischl, B.: Geometrically Accurate Topology-Correction of Cor-
tical Surfaces Using Nonseparating Loops. IEEE Trans. Med. Imag. 26, 518–529 (2007) 

19. Wood, Z., Hoppe, H., Desbrun, M., Schroder, P.: Removing excess topology from isosur-
faces. ACM Trans. Graph. 23, 190–208 (2004) 

20. Drury, H.A., Van Essen, D.C., Anderson, C.H., Lee, C.W., Coogan, T.A., Lewis, J.W.: 
Computerized mappings of the cerebral cortex: A multiresolution flattening method and a 
surface-based coordinate system. Journal of Cognitive Neuroscience 8(1), 1–28 (1996) 

21. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: Inflation, flatten-
ing, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999) 

 



Teichmüller Shape Space Theory and Its
Application to Brain Morphometry

Yalin Wang1,2, Wei Dai3, Xianfeng Gu4, Tony F. Chan2, Shing-Tung Yau5,
Arthur W. Toga1, and Paul M. Thompson1

1 Lab. of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90095, USA
2 Mathematics Department, UCLA, Los Angeles, CA 90095, USA

3 Mathematics Department, Zhejiang Univ. Hangzhou, China
4 Comp. Sci. Department, SUNY at Stony Brook, Stony Brook, NY 11794, USA
5 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

{ylwang}@loni.ucla.edu

Abstract. Here we propose a novel method to compute Teichmüller
shape space based shape index to study brain morphometry. Such a shape
index is intrinsic, and invariant under conformal transformations, rigid
motions and scaling. We conformally map a genus-zero open boundary
surface to the Poincaré disk with the Yamabe flow method. The shape
indices that we compute are the lengths of a special set of geodesics
under hyperbolic metric. Tests on longitudinal brain imaging data were
used to demonstrate the stability of the derived feature vectors. In leave-
one-out validation tests, we achieved 100% accurate classification (versus
only 68% accuracy for volume measures) in distinguishing 11 HIV/AIDS
individuals from 8 healthy control subjects, based on Teichmüller co-
ordinates for lateral ventricular surfaces extracted from their 3D MRI
scans.

1 Introduction

In the computational analysis of brain anatomy, volumetric measures of struc-
ture identified on 3D MRI have been used to study group differences in brain
structure and also to predict diagnosis [1]. Recent work has also used shape-
based features [2] to analyze surface changes. In research studies that analyze
brain morphometry, many shape analysis methods have been proposed, such as
spherical harmonic analysis (SPHARM) [3], medial representations (M-reps) [4],
and minimum description length approaches [5], etc.; these methods may be ap-
plied to analyze shape changes or abnormalities in subcortical brain structures.
Even so, a stable method to compute transformation-invariant shape descriptors
would be highly advantageous in this research field. Here we propose a novel
and intrinsic method to compute surface Teichmüller space coordinates (shape
indices) and we apply it to study brain morphometry in Alzheimers disease (AD)
and HIV/AIDS. The computed Teichmüller space coordinates are based on the
surface conformal structure and can be accurately computed using the Yamabe
flow method.
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There are extensive research on brain surface conformal parameterization
[6,7,8,9,10,11]. All surfaces may be classified by the conformal equivalence re-
lation. If there exists a conformal map between two surfaces, then they are
conformally equivalent. Any two conformally equivalent surfaces have the same
conformal invariants and the same Teichmüller space coordinates. By comput-
ing and studying Teichmüller space coordinates and their statistical behavior,
we can provide a promising approach to describe local changes or abnormalities
in anatomical morphometry due to disease or development.

In this work, only genus-zero surfaces with three boundaries are considered.
With the discrete surface Ricci flow method [10] (also called the discrete Yam-
abe flow), we conformally projected the surfaces to the hyperbolic plane and
isometrically embedded them in the Poincaré disk. The proposed Teichmüller
space coordinates are the lengths of a special set of geodesics under this spe-
cial hyperbolic metric and can index and compare general surfaces. To the best
of our knowledge, it is the first work to apply the Teichmüller space theory to
brain morphometry research. For the cerebral cortex surface, first, we converted
a closed 3D surface model of the cerebral cortex into a multiple-boundary surface
by cutting it along selected anatomical landmark curves. Secondly, we confor-
mally parameterized each cortical surface using the Yamabe flow method. Next,
we computed the Teichmüller space coordinates - the lengths of three boundaries
(geodesics) on the hyperbolic space - as a 3 × 1 feature vector. This measure is
invariant in the hyperbolic plane under conformal transformations of the original
surface, and is the same for surfaces that differ at most by a rigid motion.

We tested our algorithm on cortical and lateral ventricular surfaces extracted
from 3D anatomical brain MRI scans. We tested our algorithms on brain lon-
gitudinal data to demonstrate the stability of our proposed Teichmüller space
coordinate features. Finally, we used a nearest-neighbor classifier together with
our feature vector on the lateral ventricular surface data from a group of 11
HIV/AIDS individuals and a group of 8 matched healthy control subjects. Our
classifier achieved a 100% accuracy rate and outperformed a nearest neighbor
classifier based on lateral ventricle volumes, which achieved an overall 68.42%
accuracy rate on the same dataset.

2 Computational Algorithms

This section briefly introduces the computational algorithms in the current work.
The theoretic background and definitions were abbreviated due to the page limit.
For details, we refer readers to [12] for algebraic topology and [13] for differential
geometry.

In this work, only genus-zero surfaces with three boundaries are considered,
which are also called as topological pants. Let (S,g) be a pair of topological pants
with a Riemannian metric g, with three boundaries ∂S = γ1 + γ2 + γ3. Let g̃
be the uniformization metric of S, such that the Gaussian curvature is equal to
−1 at every interior point, and the boundaries are geodesics. If the length of
the boundary γi is li under the uniformization metric, then (l1, l2, l3) are the
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Teichmüller coordinates of S in the Teichmüller space of all conformal classes of
a pair of pants. Namely, if two surface share the same Teichmüller coordinates,
they can be conformally mapped to each other.

Figure 1(a) illustrates a pair of pants with the hyperbolic metric and its
embedding in Poincaré disk, such that the three boundaries, γi, are geodesics.
The τi are the shortest geodesics connecting γj, γk, so τi is orthogonal to both
γj and γk. The γi are divided to two segments with equal lengths by τj , τk. τ1, τ2
and τ3 split the surface to two identical hyperbolic hexagons, with edge lengths
γ1
2 , τ3,

γ2
2 , τ1,

γ3
2 , τ2. Furthermore, all the internal angles are right angles. The

lengths of τ1, τ2, τ3 are determined by γ1, γ2, γ3. For the mapping in Figure 1(a)
to be made, the pair of pants can have any geometry, as long as it has the
topology shown. It helps us to study general brain anatomical structures.

In practice, most surfaces are approximated by discrete triangular meshes. Let
M be a two-dimensional simplicial complex. We denote the set of vertices, edges
and faces by V, E, F respectively. We call the ith vertex vi; edge [vi, vj ] runs
from vi to vj ; and the face [vi, vj , vk] has its vertices sorted counter-clockwise.
Figure 1(b) shows the hyperbolic triangle, and its associated edge lengths li, yi,
corner angles θi and conformal factors ui.

A discrete metric is a function l : E → R
+, such that triangle inequality

holds on every face, which represents the edge lengths. In this work, we assume
all faces are hyperbolic triangles. The discrete curvature K : V → R is defined
as the angle deficit, i.e., 2π minus the surrounding corner angles for an interior
vertex, and π minus the surrounding corner angles for a boundary vertex.

Discrete conformal deformation. Suppose the mesh is embedded in R
3, so it has

the induced Euclidean metric. We use l0ij to denote the initial induced Euclidean
metric on edge [vi, vj ].

Let u : V → R be the discrete conformal factor. The discrete conformal metric
deformation, shown in Figure 1(b), is defined as sinh(yk

2 ) = eui sinh( lk
2 )euj . The

discrete Yamabe flow is defined as dui

dt = −Ki, where Ki is the curvature at the
vertex vi.

Let u = (u1, u2, · · · , un) be the conformal factor vector, where n is the number
of vertices, and u0 = (0, 0, · · · , 0). Then the discrete hyperbolic Yamabe energy
is defined as E(u) =

∫ u
u0

∑n
i=1 Kidui.

The differential 1-form ω =
∑n

i=1 Kidui is closed. We use ck to denote cosh(yk).
By direct computation, it can be shown that on each triangle, ∂θi

∂uj
= A

ci+cj−ck−1
ck+1 ,

where A = 1
sin(θk) sinh(yi) sinh(yj)

, which is symmetric in i, j, so ∂θi

∂uj
= ∂θj

∂ui
.

It is easy to see that ∂Ki

∂uj
= ∂Kj

∂ui
, which implies dω = 0. The discrete hy-

perbolic Yamabe energy is convex. The unique global minimum corresponds
to the hyperbolic metric with zero vertex curvatures. This requires us to com-
pute the Hessian matrix of the energy. The explicit form is given as follows:
∂θi

∂ui
= −A

2cicjck−c2
j−c2

k+cicj+cick−cj−ck

(cj+1)(ck+1) .
The Hessian matrix (hij) of the hyperbolic Yamabe energy can be computed

explicitly. Let [vi, vj ] be an edge, connecting two faces [vi, vj , vk] and [vj , vi, vl].
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Then the edge weight is defined as hij = ∂θjk
i

∂uj
+ ∂θlj

i

∂uj
; also for hii =

∑
j,k

∂θjk
i

∂ui
,

where the summation goes through all faces surrounding vi, [vi, vj , vk]. The
discrete hyperbolic energy can be directly optimized using Newton’s method.
Because the energy is convex, the optimization process is stable.

Given the mesh M , a conformal factor vector u is admissible if the deformed
metric satisfies the triangle inequality on each face. The space of all admissible
conformal factors is not convex. In practice, the step length in Newton’s method
needs to be adjusted. Once the triangle inequality no longer holds on a face,
then an edge swap needs to be performed.

3 Experimental Results

We applied our shape analysis to various anatomical surfaces extracted from 3D
MRI scans of the brain. In this paper, the segmentations are regarded as given,
and result from automated and manual segmentations detailed in other prior
works, e.g. Thompson et al. [14,15].

3.1 Feature Stability Study with Longitudinal Brain Imaging Data

To validate the feasibility and efficiency of our proposed shape index, we compute
and compare our shape index on a longitudinal brain imaging dataset [14]. The
data set consists of a total of 15 pairs of cortex hemisphere surfaces of individuals
with Alzheimer’s disease (AD). They were scanned at 2 time points about 2 years
apart [14]. AD is characterized by gradual tissue loss throughout the brain; the
overall hemisphere volume decreases by around 1 percent per year but it is not
known how much change there is in the overall cortical surface shape.

We selected a group of 3 landmark curves per hemisphere: the Central Sul-
cus, Superior Temporal Sulcus, and Primary Intermediate Sulcus. After we cut
a cortical surface open along the selected landmark curves, a cortical surface
becomes topologically equivalent to an open boundary genus-2 surface,which is
topologically equivalent to the topological pant surface (Figure 1(a)). Figure 1
(c)-(e) illustrate a right hemisphere cortical surface and its embedding in the
Poincaré disk. The three boundaries are labeled as γi and two shortest geodesics
that connect boundaries are labeled as τi.

We computed the obtained feature vector for two surfaces, for both the left
and right sides of the brain, extracted from the same subject scanned at two dif-
ferent times. For each of 15 subjects, we treated left and right hemisphere brain
surfaces equivalently at both time-points, computing shape feature vectors
(T 1i, T 2i), i = 1, ..., 30, where T 1i and T 2i each is a 3 × 1 vector. We calcu-
lated the L2 norm of the shape difference for a given cortex hemisphere over time,

di =
√∑3

j=1(T 1i,j − T 2i,j)2, i = 1, ..., 30. For comparison, we also computed the
L2 norm of each feature vector, lm, m = 1, ..., 60. The ratio of the median (di)
and the median of (lm) was 0.76%. Although this was a relatively small data set,
considerable shape differences were found between different cortical hemispheres.
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The relatively small difference over time demonstrated the relative stability and
efficiency of our proposed feature vector for brain morphometry research.

3.2 Studying Lateral Ventricular Surface Morphometry

The lateral ventricles - fluid-filled structures deep in the brain - are often enlarged
in disease and can provide sensitive measures of disease progression [15,16,17,18].
Ventricular changes reflect atrophy in surrounding structures; however, the con-
cave shape, complex branching topology and narrowness of the inferior and pos-
terior horns have made automatic analysis more difficult. To model the lateral
ventricular surface, we introduced three cuts on each ventricle (topology optimiza-
tion), in which several horns are joined together at the ventricular “atrium” or
“trigone”. After modeling the topology in this way, a lateral ventricular surface,
in each hemisphere, becomes an open boundary surface with 3 boundaries, a
topological pant surface (Figure 1(a)).

Fig. 1. (a) shows a pair of hyperbolic pants. (b) shows conformal deformation of a
hyperbolic triangle. (c)-(e) illustrate how to compute the shape index on a right hemi-
sphere cortical surface with 3 selected landmarks. (f)-(h) illustrate how to compute
the shape index on a left ventricular surface. When using it as a feature vector for
shape classification, a nearest neighbor classifier achieved a 100% accuracy classifica-
tion in distinguishing 11 HIV/AIDS individuals from 8 healthy control subjects (versus
68% accuracy for volume measures). The shape index also detected genetic influences
more powerfully than volumetric measures in a set of lateral ventricle surfaces from 76
identical twins and 56 same-sex fraternal twins than volume measures.
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Figure 1 (f)-(h) illustrates how to compute Teichmüller space coordinates for
a lateral ventricle. In Panel (f) and (g), γ1, γ2, and γ3 are labeled boundaries and
τ1 and τ2 are the shortest geodesics between boundaries. Panel (h) illustrates
the surface with the hyperbolic metric that is isometrically flattened onto the
Poincaré disk. When we make the topological change, we make sure each new
boundary has the same Euclidean length across different surface. As a result,
the lengths of each boundary under the Poincaré disk metric are valid metrics
for studying lateral ventricular surface morphometry.

In our experiments, we compared ventricular surface models extracted from
3D brain MRI scans of 11 individuals with HIV/AIDS and 8 control subjects.
The data was from a prior work [15]. The data collection, MRI image pro-
cessing and surface construction were done then. We assume the surface data
are given in our current work. We automatically perform topology optimiza-
tion on each ventricular surface and compute their lengths in the Poincaré
disk by the Yamabe flow method. For each pair of ventricular surfaces, we ob-
tained a 6 × 1 vector, t = (t1, t2, ...t6), which consists of 3 boundary lengths
for the left ventricular surface and 3 boundary lengths for right ventricular
surface. Given this Teichmüller space coordinate based feature vector, we ap-
ply a nearest neighbor classifier based on the Mahalanobis distance, d(t) =√

(t− μTc)T Σ−1
Tc

(t− μTc)−
√

(t− μTa)T Σ−1
Ta

(t− μTa), where μTc , μTa , ΣTc and
ΣTa are the feature vector mean and covariance for the two groups, respectively.
We classify t based on the sign of the distance of d(t), i.e., the subject that is
closer to one group mean is classified into that group. For this data set, we per-
formed a leave-one-out test. Our classifier successfully classified all 19 subjects
to the correct group and achieved a 100% accuracy rate.

For comparison, we also tested a nearest neighbor classifier associated with
a volume feature vector. For each pair of ventricular surface, we measure their
volumes, (vl, vr). We also use a nearest neighbor classifier based on the Maha-
lanobis distance. We classify v based on the sign of the distance, i. e., the subject
that is closer to one group mean is classified into that group. In the same data
set, we performed a leave-one-out test. The classifier based on the simple vol-
ume measurement successfully classified only 13 out of 19 subjects to the correct
group and achieved a 68.42% accuracy rate.

The new Teichmüller space shape descriptor requires more validation on other
data sets. However, these experimental results suggest that (1) ventricular sur-
face morphometry is altered in HIV/AIDS; (2) volume measures are not suffi-
cient to distinguish HIV patients from controls; and (3) our Teichmüller space
feature vector can be used to classify control and patient subjects. Our ongoing
work is studying the correlation between the proposed feature vector and clinical
measures (e.g., future decline) in an Alzheimer’s Disease data set [18].

4 Discussion

An important step in our algorithm is the topology change, i.e. we cut open
surfaces along certain curves. It turns a closed surface into a genus-zero open
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boundary surface that is topologically equivalent to the topological pant surface
in Figure 1(a). In our work, they have strong clinical motivations. In modeling the
brain’s lateral ventricles (which split in a Y-shape), the anatomical motivation is
that we introduce cuts at the ends of the anterior, posterior, and inferior horns,
which join at the ventricular “atrium” or “trigone” (the center of the Y-shape).
The cuts - where the 3 horns join - are automatically located. For the cortical
surface, we select landmark curves that consistently appear in all subjects. An
automatic algorithm can locate the landmarks as inputs for the cortex work.
There are at least two benefits for us to make topology change. First, the cutting
boundaries serve as landmark curves for a consistent comparison across surfaces.
Secondly, with the introduced artificial cuts, it is possible for us to compute
a global conformal parameterization from the entire surface to the hyperbolic
space. In the hyperbolic space, we can conveniently compute shape index that
continuously depends on the original surface conformal structure. In some sense,
it is similar to Fast Fourier Transform (FFT) for signal processing. Our work
can discriminate surface structures by computing a valid shape index from the
hyperbolic conformal parameterization.

Our algorithm is based on solving elliptic partial differential equations, so the
computation is stable. The computation is also insensitive to the surface trian-
gular mesh quality so it is robust to the digitization errors in the 3D surface
reconstruction. Overall, it provides an intrinsic and stable way to compute sur-
face conformal structure based shape index for further morphometry study. For
a genus zero surface, if we cut along three individual curves on a surface, we
achieve a genus-zero surface with three boundaries. The shape index consists of
the geodesic lengths (γi, i = 1 − 3) under the hyperbolic metric in the Poincaré
disk. The boundaries are clinically motivated and easy to find automatically; the
shape feature is purely determined by the major anatomical features, which are
easily identified and consistent across surfaces. For both applications, the shape
index is determined by the overall shape so it is not very sensitive to changes in
a small neighborhood. Any closed anatomical structure surfaces can be modeled
in this way and becomes a topologically equivalent to a topological pant surface.
Even we only consider the topological pant surface here, our method is general
and can handle all arbitrary topology surfaces with negative Euler numbers. In
future, we will explore more general surface applications and compare it with
other shape-based surface measures.
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Abstract. Diffusion tensor imaging plays a key role in our understand-
ing of white matter (WM) both in normal populations and in popula-
tions with brain disorders. Existing techniques focus primarily on using
diffusivity-based quantities derived from diffusion tensor as surrogate
measures of microstructural tissue properties of WM. In this paper, we
describe a novel tract-specific framework that enables the examination
of WM morphometry at both the macroscopic and microscopic scales.
The framework leverages the skeleton-based modeling of sheet-like WM
fasciculi using the continuous medial representation, which gives a nat-
ural definition of thickness and supports its comparison across subjects.
The thickness measure provides a macroscopic characterization of WM
fasciculi that complements existing analysis of microstructural features.
The utility of the framework is demonstrated in quantifying WM atrophy
in Amyotrophic Lateral Sclerosis, a severe neurodegenerative disease of
motor neurons. We show that, compared to using microscopic features
alone, combining the macroscopic and microscopic features gives a more
holistic characterization of the disease.

1 Introduction

Diffusion tensor imaging (DTI) has become an indispensable tool for studying
white matter (WM) both in normal populations and in populations with brain
disorders because of its unparalleled ability to depict in vivo the intricate archi-
tecture of WM [1]. Many techniques have been developed recently for localizing
WM differences across populations using DTI. The tract-based spatial statis-
tics (TBSS) developed by Smith et al. [2] signficantly advanced the traditional
whole-brain voxel-based WM analysis by harnessing the power of statistics on
the skeleton structure of WM. However, the whole-brain approach of the TBSS
fundamentally limits its anatomical specificity. Recognizing the importance of
tract-specific analysis, many groups have recently developed innovative tech-
niques for analyzing individual WM tracts with either tubular geometry [3,4, 5]
or sheet-like appearance [6].

This recent explosion of advances in tract-specific analysis is in large part
made possible by our success in robustly segmenting individual WM tracts using
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diffusion data. The availability of tract segmentations presents a new opportu-
nity for assessing macroscopic properties of a tract in addition to the standard
quantification of microscopic features derived from diffusion data, such as, frac-
tional anisotropy (FA). In this paper, we propose a tract-specific framework
that, to the best of our knowledge, enables for the first time the joint analysis
of tract morphometry in both macroscopic and microscopic scales. In partic-
ular, we leverage the skeleton-based modeling of sheet-like tracts proposed by
Yushekvich et al. [6] to derive tract thickness maps. We show how the thick-
ness information can be combined with microstructural features, such as FA, to
enhance our understanding changes in WM morphometry. The potential of the
proposed framework was illustrated in an application to quantify WM atrophy
in Amyotrophic Lateral Sclerosis (ALS), a severe neurodegenerative disease.

The rest of the paper is organized as follows: Sec. 2 describes the proposed
framework in detail and discusses its application in ALS. Sec. 3 reports the results
from the ALS study that demonstrates the strength of combining information
from different scales. Future works are discussed in Sec. 4.

2 Methods

The proposed framework has three components: (1) WM parcellation that seg-
ments the tracts of interest in all the study subjects; (2) skeleton surface-based
tract modeling and matching that establishes spatial correspondence of the tracts
across the study cohort and enables thickness measurement on the tracts; (3)
statistical analysis that combines both thickness and standard diffusion mea-
surement. The following discusses each component in detail.

2.1 White Matter Parcellation

We adopt the atlas-based segmentation strategy that has been successfully
applied in the literature [7, 6, 3]. It involves WM parcellation in a population-
averaged DTI template using fiber tractography. The parcellation in the template
is then mapped to individual subjects via spatial correspondence between the
template and the subjects established with image registration. If appropriate,
an existing template, such as the ICBM-DTI-81 template [8], can be used. Here
we choose the more general approach of deriving a population-specific template
from the subject data, which simultaneously establishes spatial correspondence
between the template and the subjects as part of the construction.

Construction of the Population-Averaged DTI Template. We choose the
template construction method described in [9]. The method has been tailored
for DT-MR data by employing a high-dimensional tensor-based image regis-
tration algorithm shown to improve upon scalar-based alternatives. Briefly, the
initial average image is computed as a log-Euclidean mean [10] of the input DT-
MR images. The average is then iteratively refined by repeating the following
procedure: register the subject images to the current average, then compute a
refined average for the next iteration as the mean of the normalized images. This
procedure is repeated until the average image converges.
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Tract Parcellation in the Template. We follow the approach described in [6]
and parcellate the template into individual WM tracts using an established fiber
tracking protocol [11]. The validity of such an approach, WM segmentation by
tracking in a DTI template like ours, has recently been demonstrated by Lawes
et al. [7] in a comparison to classic postmortem dissection. Our framework fo-
cuses on the tracts that have a major portion that is sheet-like. As identified
in [6], six major tracts fit into this category: corpus callosum (CC), corticospinal
tracts (CST), inferior fronto-occipital tracts (IFO), inferior longitudinal tracts
(ILF), superior longitudinal tracts (SLF), and uncinates (UNC). White matter
tracts that are more appropriately represented by tubular models have been
extensively studied in the literature [3, 4, 5] and are not considered here. After
fiber tractography, binary 3D segmentations of individual tracts are generated
by labeling voxels in the template through which at least one fiber passes.

Tract Parcellation in the Subjects. The tracts of interest in each subject
are parcellated by mapping the binary segmentations delineated in the template
to the subject space using the spatial correspondence between the template and
the subject determined above. In practice, this involves, for each subject, first
inverting the transformation that aligns the subject to the template and then us-
ing the resulting inverse transformation to warp the template space segmenation
into the subject space. The transformations derived from [9] have well-defined
inverse since they are constrained to be diffeomorphic with strictly positive
Jacobian determinant everywhere in the image domain.

2.2 Skeleton Surface-Based Tract Modeling and Matching

Skeleton surfaces have been shown to be a natural way of modeling sheet-like
WM tracts using either direct skeletonization [2] or deformable modeling with
the continous medial representation (cm-rep) [6]. In our framework, we choose
to adopt the cm-rep approach because its ability to enforce a consistent skeleton
topology – a 2D surface patch in our case – across subjects, which the direct
skeletonization approach can not. The consistency in skeleton topology is essen-
tial for establishing spatial correspondence across subjects.

The cm-reps are models that describe the skeleton and the boundary of a geo-
metrical object as parametric digital surfaces with predefined topology. The mod-
els describe the geometrical relationship between the skeleton and the boundary
by defining a synthetic skeleton consisting of a parametric medial surface rep-
resented as a dense triangular surface mesh and a radial field defined over the
surface. The radial field specifies, for each vertex on the mesh, the radius of a
sphere centered at the vertex. The boundary of the object represented by the
cm-rep is uniquely determined and can be computed from the synthetic skeleton
via inverse skeletonization [12].

In our framework, we use the standard deformable fitting algorithm described
in [12] to fit the cm-reps to the tract segmentations in the individual subjects
and leverage two key feature of the cm-reps. First, the model enables a natural
definition of thickness. The sphere associated with a point on the skeleton is
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tangent to the boundary surface at a pair of points (which may coincide at
edges of the skeleton). The thickness at the point can then be estimated as
the diameter of the sphere, which is two times the radial field [12]. Second,
it establishes spatial correspondence across the subjects via the shape-based
coordinate system that parametrizes the entire interior of the model. Because the
line segments connecting a point on the skeleton to the points of tangency of the
associated sphere, known as the “spokes”, are orthogonal to the boundary and
no two spokes intersect inside the model, it allows the definition of a coordinate
system for interior of the object based entirely on the shape of the object, where
two of the coordinate values parametrize the skeleton surface and the third gives
the position of a point on the spokes.

2.3 Statistical Analysis of Thickness and Diffusion Features

The deformable modeling of subject-space tract segmentations using the cm-rep
approach produces a parametric skeleton surface with an associated thickness
map for each tract of each subject. Using the dimensionality reduction approach
described in [2,6], diffusion features of interest can be similarly projected onto the
same skeleton surface of each subject. We adopt the strategy originally proposed
in [2] to minimize the adverse effect of errors in image alignment. Specifically,
for each point on the surface, we search along its two spokes, find the location
with the highest FA, then assign its diffusion features to the point.

These maps of thickness and diffusion properties computed for each subject
in the same shape-based coordinate frame enable a combined analysis of both
macroscopic and microscopic features. In our framework, we apply univariate
statistical mapping on thickness and diffusion features separately to gain comple-
mentary tract information at different scales. A nonparametric statistical map-
ping of group differences is implemented as described in [6]. Briefly, we compute
a two-sample t-test at each point on the skeleton surface of a tract and correct
for multiple comparison with the standard permutation-based non-parametric
cluster analysis introduced by Nichols et al. [13].

In addition, we utilize a novel multivariate analysis [14] to directly exploit
the relationship between thickness and diffusion properties. Specifically, for each
subject, we build a joint probability density function (pdf) of thickness and dif-
fusion properties which captures the interdependencies of thickness and diffusion
features as provided solely by the data. The pdf of a subject is estimated by de-
termining the fraction of points on its skeleton surface with a particular value of
thickness and diffusion properties (See Fig. 2 for an example). We use this pdf
as the multivariate high-dimensional descriptor of the associated WM tract to
summarize its macroscopic and microscopic properties jointly. Statistical testing
for group differeces with these high-dimensional descriptors is then done via the
same nonparametric test as the univariate statistical mappings above, except
here the test is done in the functional domain of the pdf rather than the spatial
domain of the skeleton surface.
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2.4 Application: WM Atrophy in ALS

We demonstrate the proposed analysis in an application to identify WM changes
in ALS. The present study consisted of 8 ALS patients and 8 healthy controls.
Diffusion tensor imaging was performed on a 3T Siemens scanner with a 12-
direction diffusion sequence (b = 1000 s/mm2). For each subject, 40 axial slices
with in-plane resolution of 1.72×1.72 mm and thickness of 3.0 mm were ac-
quired. Because of the existing hypothesis that ALS strongly affects the motor
pathway, only the left and right CSTs were included in the analysis. Two univari-
ate statistical mappings on thickness and FA were first performed, followed by
the multivariate analysis using the joint pdfs of thickness and FA. The clusters
with FWE-corrected p-value < 0.05 were deemed significant in all analyses.

3 Results

The results of the two univariate statistical mappings are shown in Fig. 1. Two
significant clusters of reduced thickness in ALS compared to healthy controls
were found with one on each CST. The cluster on the left CST corresponds to
the internal capsule and the one on the right CST maps to Broadmann area (BA)
6, the premotor cortex and supplementary motor cortex. One significant cluster
of reduced FA in ALS was found on the left CST, which maps to BA 1, 2 & 3,
the primary somatosensory cortex, BA 4, the primary motor cortex. Evidently,
the macroscopic changes highlighted by the thickness analysis provides a more
complete picture of WM atrophy caused by ALS than the microscopic changes
identified by the FA analysis alone.

The results of the multivariate analysis using the joint pdfs of thickness and
FA are shown in Fig. 2. The appearance of the joint pdfs is illustrated in Panels
(a) and (b) using the joint pdfs of the left CSTs averaged for the healthy controls
and the ALS patients, respectively. The two visibly different pdfs indicate that

thickness FA

Fig. 1. The significant clusters of reduced thickness and FA in ALS compared to healthy
controls (in red) overlaid on the corresponding t-statistics maps on the skeleton surfaces
of the CSTs. From left to right: the thickness cluster and t-statistics map for the right
CST, the thickness cluster and t-statistics map for the left CST, the FA cluster and
t-statistics map for the left CST. Note that image left corresponds to physical right.
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the healthy controls have more regions of large FA and thickness while the ALS
have more areas of low FA and thickness. A similar pattern is observed for the
right CST (not shown). These observations are supported by subsequent non-
parametric statistical testing. Panels (c) and (e) show the t-statistics maps of
comparing the joint pdfs of the healthy controls to those of the ALS patients.
The significant clusters, determined by permutation-based multiple comparison
correction, were shown in Panel (d) for the left CST and (f) for the right CST.
The red clusters represent the areas of higher density in the healthy controls –
high FA, while the blue clusters pinpoint the regions of higher density in the
ALS patients – low FA and low thickness.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. The joint analysis of thickness and FA. In all panels, FA is plotted along the
horizontal axis and varies from 0.1 to 0.7, while thickness is plotted along the vertical
axis and varies from 0 to 8 mm. Both values are plotted in linear scale. Panels (a)
and (b) show the joint pdfs of the left CST averaged for all the healthy controls and
all the ALS patients, respectively, with the hot color corresponding to higher density.
Panels (c) and (e) show the t-statistics maps of comparing the joint pdfs of the healthy
controls to those of the ALS patients for the left and right CSTs, respectively. Panels
(d) and (f) show the significant clusters with z-scores determined via permutation-
based non-parametric testing for the left and right CSTs, respectively. The red clusters
corresponds to larger density in the healthy controls and the blue clusters higher density
in the ALS patients.

The significant clusters from the joint analysis can be better understood by
mapping them back into the spatial domain, i.e., onto the skeleton surfaces of
the CSTs of the individual subjects. Specifically, for each of the four clusters and
for each subject group, we determined a cluster-membership probability map of
the corresponding CST skeleton surface. Each of these maps were computed by
finding, at each point on the corresponding skeleton surface, the probability of
the location with their FA and thickness values falling within the corresponding
cluster for the corresponding subject group. For instance, for some point V on
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ALS

CTRL

RED CLUSTER BLUE CLUSTER

Fig. 3. The cluster-membership probability maps on the left CST for the red cluster
and the healthy controls (top left), the red cluster and the ALS patients (bottom left),
the blue cluster and the healthy controls (top right), and the blue cluster and the ALS
patients (bottom right). See Sec. 3 for details.

the left CST, if 4 out of 8 healthy controls have their FA and thickness values
at V fall within the red cluster on the left CST, then the probability map of the
healthy controls for the red cluster on the left CST will have a value of 0.5 at V.

The four probability maps corresponding to the two clusters on the left CST
are shown in Fig. 3. One striking observation is that, for both the healthy controls
and the ALS patients, the red cluster is mapped to almost identical anatomical
areas, including, from interior to superior, the cerebral peduncle, the internal
capsule, and the primary motor and somatosensory areas (BA 1-4). For these
areas, the cluster-membership probability is significantly less in ALS compared
to the healthy controls. Because the red cluster corresponds to high FA, this
finding indicates that some of the high FA normally found in these areas in the
healthy controls are compromised and replaced by lower FA in ALS. Similarly,
the blue cluster is mapped to near identical anatomical areas, including the
premotor area (BA 6) and the peripheral of the structures. For these areas, the
cluster-membership probability is significantly higher in ALS compared to the
healthy controls. Since the blue cluster corresponds to low FA and thickness,
this finding suggests that some of the normal FA and thickness found in these
areas in the healthy controls are compromised and replaced by lower FA and
thickness. Similar observations can be made with the probability maps on the
right CST (not shown). Compared to the results of the univariate results, these
results appear to give a more complete depiction of the extent of WM atrophy
in this severe neurodegenerative disease.
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4 Discussion

In this paper, we described a new tract-specific framework that supports the
evaluation of WM morphometry at both the macroscopic and microscopic scales.
The potential of the framework was illustrated with an application to assess
WM atrophy in ALS. In the future, we plan to explore extending the novel
multivariate analysis framework for tubular WM tracts proposed recently by
Goodlett et al. [3] to sheet-like tracts. This should enhance our ability to capture
additional patterns of morphological differences in the spatial domain.
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Abstract. Probabilistic tractography provides estimates of the proba-
bility of a structural connection between points or regions in a brain
volume, based on information from diffusion MRI. The ability to esti-
mate the uncertainty associated with reconstructed pathways is valuable,
but noise in the image data leads to premature termination or erroneous
trajectories in sampled streamlines. In this work we describe automated
methods, based on a probabilistic model of tract shape variability be-
tween individuals, which can be applied to select seed points in order
to maximise consistency in tract segmentation; and to discard stream-
lines which are unlikely to belong to the tract of interest. Our method
is shown to ameliorate false positives and remove the widely observed
falloff in connection probability with distance from the seed region due
to noise, two important problems in the tractography literature. More-
over, the need to apply an arbitrary threshold to connection probability
maps is entirely obviated by our approach, thus removing a significant
user-specified parameter from the tractography pipeline.

1 Introduction

Probabilistic tractography uses diffusion MRI (dMRI) data to provide estimates
of the probability of a connection existing between a seed point, or seed region,
and all other points within a brain volume. When the seed region is placed
within a white matter tract, areas of high probability are typically found within
other sections of the same tract. The first step towards estimating these proba-
bilities of connection is to derive an orientation distribution function (ODF) for
each voxel in the brain, which characterises the orientations of local structure.
Several alternative methods for calculating such an ODF have been described
[1], some of which are based on a specific model of diffusion, while others take a
model-free approach. Probabilistic streamlines are then generated by alternating
between sampling from these ODFs and stepping along the sampled direction.
The probability of connection between the seed region and any other voxel is
then estimated as the proportion of these streamlines that visit the target voxel.

Unfortunately, the probabilities of connection estimated by this Monte Carlo
method are strongly affected by nuisance characteristics of the basic data, par-
ticularly noise, as well as limitations of the applied diffusion model. Streamlines
may be deflected away from the tract of interest or prematurely truncated due
to the nearby presence of a disparate tract, or due to ambiguity in the estimated
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ODFs, or because of noise—and the estimated probability of connection at a
given voxel may be affected in turn by any or all of these. The most common
method of compensation for these effects is to threshold the visitation map to
avoid including pathways which are unlikely to belong to the tract of interest.
But this approach is very sensitive to an arbitrary user-specified parameter, the
threshold level; and relies on the flawed assumption that false positive pathways
are nonrepeatable and spatially dispersed. Moreover, it cannot correct for effects
which lead to underestimation of the probability of connection, such as the pre-
mature termination of streamlines. A method to compensate for the latter has
been proposed by Morris et al. [2], which uses a “null connection map” to dif-
ferentiate true connections from chance events, but a threshold is still required,
and the technique cannot compensate for the effects of neighbouring pathways.

Seed points or regions may be placed by an observer, or transferred from a
reference tract or atlas by registering dMRI data to a standard brain template.
In either case, seed regions typically have no special anatomical significance,
but are instead located to maximise the chance of reconstructing the tract of
interest as fully as possible. Unfortunately, direct transfer of a seed region from
an atlas space to diffusion space is generally not a reliable basis for consistent
tract reconstruction, although recent work by Clayden et al. [3] described how a
probabilistic model of tract shape variability can be used to select one or more
suitable seed points from within such a region. A related approach was applied
to the clustering of deterministic streamlines by Maddah et al. [4], whereby a
tract trajectory model was used to infer cluster membership.

In this work we describe how the shape modelling approach can be applied not
just to the choice of seed points, but also to the selection of streamlines which
accurately represent a tract of interest. Using a reference tract for prior infor-
mation, but also allowing for the topological variability of a given tract between
individuals, we demonstrate dramatic improvements in patterns of estimated
connectivity, without the need for a user-defined threshold to be applied.

2 Methods

The tract shape model used for this work is based on that described in [3].
Streamlines are represented by uniform cubic B-splines. The knot separation
distance is fixed for each tract of interest, but is invariably larger than the
typical width of an image voxel, so that small scale directional perturbations are
of less importance than the large scale topology of the tract.

Given a set of seed points for a dMRI data set, indexed by i, each of which
generates a set of streamlines, indexed by j, a single B-spline is initially fitted
to the spatial median of the streamline set. The data, mi, which are relevant
to the model then consist of the lengths of this B-spline either side of the seed
point—Li

1 and Li
2—and the angles, φi

u, between the straight lines connecting
successive knot points, and the corresponding lines in the reference tract. The
B-spline is transformed into MNI standard space for the purpose of calculating
these lengths and angles only. The location index u is, by convention, negative
on one side of the seed point and positive on the other side.



152 J.D. Clayden, M.D. King, and C.A. Clark

Given the observed data, mi, for tract i, the model likelihood is given by

P (mi |Θ) = P (Li
1 |L∗

1,L1)P (Li
2 |L∗

2,L2)
Ľi

1∏
u=1

P (φi
−u |αu)

Ľi
2∏

u=1

P (φi
u |αu) (1)

where L∗
1 and L∗

2 are the lengths of the reference tract corresponding to Li
1 and Li

2
respectively; Ľi

1 = min{Li
1, L

∗
1} and equivalently for Ľi

2; and Θ = {L1,L2, (αu)}
is a set of model parameters. The distributions over each variable are given by

Li
1 |L∗

1 ∼ Multinomial(L1)
Li

2 |L∗
2 ∼ Multinomial(L2) (2)

cosφi
u + 1
2

∼ Beta(αu, 1) .

The model parameters are fitted using an Expectation–Maximisation (EM) al-
gorithm, the E-step of which calculates a posterior probability of each tract
representing the best match to the reference tract [5]. All tracts are assumed to
be a priori equiprobable matches. We use the implementation of this algorithm
provided by the TractoR software package (http://code.google.com/p/tractor).
For the M-step we apply the hyperprior αu − 1 ∼ Exponential(λ), thereby con-
straining each αu to ensure that smaller deviations from the reference tract are
always more likely (i.e. αu ≥ 1), and simultaneously avoiding model overfitting
for small data sets. We take λ = 1 throughout this work.

The fitted model and posterior matching probabilities enable us to select one
or more seed points which produce sets of probabilistic streamlines whose medi-
ans are accurate representations of the tract of interest for that subject. However,
some individual streamlines may not resemble the median, and therefore may
not accurately represent the tract of interest. To establish this, we additionally
apply the modelling framework described above to streamline selection.

In this streamline-level selection phase, we begin by fitting a B-spline to each
streamline, j, individually, and recovering a data vector, dij , which describes it.
This data vector is analogous to mi for the median. Treating (1) as a function
of the data, with the model parameters fixed to those estimated by the EM
algorithm, denoted Θ̂, we calculate the probability of each streamline under the
model, which in turn allows us to derive the value

πij =
P (dij | Θ̂)
P (mi | Θ̂)

. (3)

We then retain streamlines probabilistically, such that

Pr(keep streamline j) = min{πij , 1} . (4)

Hence, streamline j will be retained with certainty if it has higher probability
under the model than the median line itself; otherwise it may be kept if it has not
much lower probability. Since heavily truncated streamlines—and those following
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Fig. 1. Stages of the pruning process, shown in coronal projection. The knots of the
reference tract are shown with 95% confidence intervals on the orientations of each tract
segment (a). We also show a full set of 5000 probabilistic streamlines at full opacity
(b), and with the alpha level for streamline j given by πij (c). The rejection algorithm
is applied to the set, and remaining streamlines are then truncated to the length of the
reference tract (d). A visitation map is finally calculated from this subset (e).

paths that differ substantially from the reference tract—will be associated with
much lower values of πij , the contributions of such paths to estimates of the
probability of connection will be annulled. The final step of our algorithm is
to truncate all remaining streamlines to the length of the reference tract in the
portions distal to the seed point. This is necessary for consistent results because
the reference tract provides no orientational information in these regions, and
so inappropriate trajectories have no effect on the value of (3).

This process of streamline pruning is illustrated by Fig. 1 for the left pyramidal
tract. The model fitted from the median streamlines embodies the variability in
tract topology across the whole data set. The amount of deviation “allowed” by
the model over each segment of the reference tract is shown in Fig. 1a, in terms
of the 95% confidence intervals on the angular deviation from the reference tract,
which is controlled by the αu parameters in the model. It can be seen that these
confidence intervals tend to be wider towards the ends of the tract, particularly
at the inferior extreme, due to greater uncertainty or variability in this region
of the structure. Mapping the level of transparency to the value of πij for each
streamline in the visualisation makes the effect of the method clear (Fig. 1c):
some spread in the trajectories can be observed at the inferior extreme, in line
with the greater local uncertainty in the model, but other branching structures
are no longer visible. The probabilistic streamline retention algorithm is applied,
the streamlines are truncated to the length of the reference, and a visitation map
is produced (Fig. 1e).
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3 Experiments and Results

Eight young, healthy right-handed volunteers (four male; mean age 31.9±5.3 yr)
underwent a dMRI protocol on three separate occasions. Scans were performed
on a GE Signa LX 1.5 T clinical scanner using 64 noncollinear diffusion direc-
tions at a b value of 1000 s mm−2, and 7 b = 0 images. Reconstructed voxel
dimensions were 2 × 2 × 2 mm. ODFs were calculated using the Markov chain
Monte Carlo method of Behrens et al., and all tractography was performed using
the “ProbTrack” algorithm described by the same authors [6]. Reference tracts
were created using a published white matter atlas [7], as described in [8].

For each dMRI data set, initial seed points for each tract of interest were
placed by transferring reference seeds from MNI standard space to diffusion
space, using the FLIRT linear registration algorithm [9]. A neighbourhood of
7 × 7 × 7 voxels (volume 2744 mm3) centred at this point was then used as
a source of seed points for the modelling process. However, seed voxels with a
fractional anisotropy (FA) of less than 0.2 were excluded to save time, since such
voxels are very likely to be outside white matter. Throughout our experiments, a
single seed point from this neighbourhood was retained by the seed-level selection
phase for simplicity—although our approach generalises to multiple seed points
without modification.

In order to investigate the effects of the streamline-level selection which is
the main novelty in this work, we begin by examining the lengths of streamlines
retained. Histograms of the streamline lengths in Fig. 1, before and after pruning,
are shown in Fig. 2. It is immediately evident from this figure that there is far
greater homogeneity in streamline length after the pruning algorithm has been
applied. Inferior to the seed point, in particular, the bimodal distribution seen
before pruning—due to a short and erroneous pathway followed by a plurality
of probabilistic streamlines—is completely absent after pruning.

A significant effect of discarding prematurely truncated streamlines is the
removal of the usual dependence of visitation count on distance from the seed
point. Fig. 3 shows that while applying a 1% threshold to visitation maps can
remove most—though, in this case, not all—false positive pathways, visitation
counts are conspicuously reduced at the superior and inferior extremes of the
tract. After applying the pruning algorithm this issue disappears (Fig. 3c).

The effect on diffusion tensor parameters of applying each of the three treat-
ments is shown graphically in Fig. 4. It is apparent that the three different treat-
ments produce substantially different patterns of FA and MD across the data set,
with greatest dispersion for the untreated case corresponding to Fig. 3a. To fur-
ther quantify the effects on these widely used parameters, we used a simple random
effects model to estimate their group means and variance components under each
treatment. Treating equivalent tracts in the two hemispheres as repeated measure-
ments, indexed by n, we model the measurement of FA or mean diffusivity (MD)
in the mth scan of the lth subject with flmn = μ + Δl + δlm + εlmn, where

Δl ∼ N(0, σ2
b ) δlm ∼ N(0, σ2

w) εlmn ∼ N(0, σ2
e) . (5)
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Fig. 2. Histograms showing the lengths of the pruned and unpruned streamline sets
from Fig. 1, on the superior (top) and inferior (bottom) sides of the seed point

Fig. 3. An untreated visitation map for a left pyramidal tract in the data set (a). Equiv-
alent visitation maps after thresholding at 1% of initiated streamlines (b), and after
pruning (c) are also shown. No threshold is applied in the latter case. The colour scale
indicates the proportion of streamlines passing through each voxel, with red indicating
fewest and yellow most. The underlying images are FA maps.
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Between-subject (σ2
b ), within-subject (σ2

w) and error (σ2
e) variances over the data

set are thereby distinguished from one another. This model was fitted using the
“nlme” package for the R statistical environment (http://stat.bell-labs.com/
NLME/), using the restricted maximum likelihood method [10]. The group mean
and error variances for pyramidal tracts and cingulum bundles are summarised in
Table 1, using visitation thresholds of 1% and 5% as well as untreated and pruned
data. Mean FA and MD vary substantially depending on the threshold level ap-
plied, with the untreated results differing noticeably from the rest. The pruning
algorithm produces values between those corresponding to thresholds of 1% and
5%, and on average the smallest error variance.

Table 1. Estimated group mean and error standard deviations for two major tracts

1% threshold 5% threshold pruned untreated
μ σe μ σe μ σe μ σe

pyramidal tracts, FA 0.448 0.038 0.481 0.038 0.469 0.024 0.389 0.030
pyramidal tracts, MD† 0.804 0.044 0.772 0.038 0.798 0.042 0.891 0.067
cingulum bundles, FA 0.374 0.033 0.438 0.045 0.386 0.044 0.285 0.021
cingulum bundles, MD† 0.782 0.033 0.740 0.035 0.763 0.030 0.907 0.035

† mm2 s−1 (×10−3)

4 Discussion

We have demonstrated in this work a process by which a model of tract topology,
combined with a predefined reference tract, can be used to select seed points for
optimal tract segmentation, and also to retain or reject individual streamlines
based on their probabilities under the model. The latter “pruning” method is a
substantial improvement over standard thresholding approaches.

The absence of any user-specified parameters is a major advantage of the
technique. It is rarely advisable to calculate parameters of interest over a region
segmented using untreated tractography output (e.g. Fig. 3a), but we observe
from Fig. 4 and Table 1 that the absolute recovered values and variances of such
parameters are strongly dependent on the chosen threshold level. Moreover, the
tacit assumption that erroneous pathways are nonrepeatable is false—as shown
by the remaining false positive in Fig. 3b—and so finding a single threshold level
which works well for different tracts, or even different parts of a single tract, is
essentially impossible. Unlike a simple threshold, our model is sensitive to the
meaning of the streamline data, and flexible enough to allow appropriate devi-
ation from the reference tract whilst rejecting streamlines which do not follow
its whole length, or branch off it. Since the streamline rejection criterion, (4), is
specific to each subject, variation in tract shape from individual to individual is
implicitly accounted for. Compared to region-of-interest approaches to stream-
line selection, our approach is very much less labour-intensive. Although the
technique described in [2] also attempts to remove irrelevant tractography out-
put, it is not tract specific and continues to rely upon a user-specified threshold.
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In the present study we have limited application of our technique to probabilis-
tic tractography using single seed points. Whilst the method could be directly
applied to probabilistic or deterministic fibre tracking output derived from a
neighbourhood of seed voxels, it could not, in its present form, be applied to
whole-brain deterministic tractography. In addition, our focus has been on seg-
menting very specific pathways in groups of subjects with very high consistency,
rather than covering the entire extent of the complex tracts of interest. These
decisions impose some limitations on the immediate scope of this work, but the
general approach has broad applicability. All tractography techniques raise the
question of validation, but an increasing number of studies are vindicating fibre
tracking, and our approach does not make validation any more difficult.

Finally, we have shown that the method ameliorates the usual falloff in connec-
tion probability with distance from the seed region. By retaining only sampled
streamlines which accurately represent the tract of interest, estimates of con-
nection probability are more robust, and reflect only genuine uncertainty in the
tract location, rather than the effects of noise.
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Abstract. We present a novel computational framework for character-
izing signal in brain images via nonlinear pairing of critical values of the
signal. Among the astronomically large number of different pairings pos-
sible, we show that representations derived from specific pairing schemes
provide concise representations of the image. This procedure yields a
“min-max diagram” of the image data. The representation turns out to
be especially powerful in discriminating image scans obtained from dif-
ferent clinical populations, and directly opens the door to applications in
a variety of learning and inference problems in biomedical imaging. It is
noticed that this strategy significantly departs from the standard image
analysis paradigm – where the ‘mean’ signal is used to characterize an
ensemble of images. This offers robustness to noise in subsequent statisti-
cal analyses, for example; however, the attenuation of the signal content
due to averaging makes it rather difficult to identify subtle variations.
The proposed topologically oriented method seeks to address these limi-
tations by characterizing and encoding topological features or attributes
of the image. As an application, we have used this method to character-
ize cortical thickness measures along brain surfaces in classifying autistic
subjects. Our promising experimental results provide evidence of the
power of this representation.

1 Introduction

The use of critical values of measurements within classical image analysis and
computer vision has been relatively limited so far, and typically appear as part
of simple preprocessing tasks such as feature extraction and identification of
“edge pixels” in an image. For example, first or second order image derivatives
may be used to identify the edges of objects (e.g., LoG mask) to serve as the
contour of an anatomical shape, possibly using priors to provide additional shape
context. Specific properties of critical values as a topic on its own, however, has
received less attention. Part of the reason is that it is difficult to construct a
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streamlined linear analysis framework using critical points, or values of images.
Also, the computation of critical values is a nonlinear process and almost always
requires the numerical estimation of derivatives. In some applications where this
is necessary the discretization scheme must be chosen carefully, and remains
an active area of research. It is noticed that in most of these applications, the
interest is only in the stable estimation of these points rather than (1) their
properties, and (2) how these properties vary as a function of images. We note
that in brain imaging, on the other hand, the use of extreme values has been
quite popular in other types of problems. For example, these ideas are employed
in the context of multiple comparison correction using random field theory [9].
Recall that in random field theory, the extreme of a statistic is obtained from
an ensemble of images, and is used to compute the p-value for correcting for
correlated noise across neighboring voxels. Our interest in this paper is to take
a topologically oriented view of the image data. We seek to interpret the critical
values in this context and assess their response as a function of brain image
data. In particular, we explore specific representation schemes and evaluate the
benefits they afford with respect to different applications.

The calculation of the critical values of a certain function of images (e.g.,
image intensities, cortical thickness, curvature maps etc.) is the first step of our
procedure. This is performed after heat kernel smoothing [3]. It is the second step
which is more interesting, and a central focus of the paper. The obtained critical
values are paired in a nonlinear fashion following a specific pairing rule to produce
so-called min-max diagrams. These are similar to the theoretical construct of
persistence diagrams [6] in algebraic topology and computational geometry, but
have notable differences (discussed in §2.2). Min-max diagrams resemble scatter
plots, and lead to a powerful representation of the key characteristics of their
corresponding images. We discuss these issues in detail, and provide a number
of examples and experiments to highlight their key advantages, limitations, and
possible applications to a wide variety of medical imaging problems.

This paper makes the following contributions: (1) We propose a new topo-
logically oriented data representation framework using the min-max diagrams;
(2) We present a new O(n log n) algorithm for generating such diagrams with-
out having to modify or adapt the complicated machinery used for constructing
persistence diagrams [2] [6]; (3) Using brain MRI, we demonstrate that using
the min-max diagram representation, upon choice of a suitable kernel function,
the subsequent classification task (e.g., using support vector machines) becomes
very simple. In other words, because this representation captures the relevant
features of the image nicely, it induces separability in the distribution of clini-
cally different populations (e.g., autism vs. controls). We show that significant
improvements can be obtained over existing techniques.

2 Main Ideas

Consider measurements f from images given as

f(t) = μ(t) + ε(t), t ∈ M ⊂ R
d, (1)
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where μ is the unknown mean signal (to be estimated) and ε is noise. The
unknown mean signal is estimated via image smoothing over M, and denoted
as μ̂. Traditionally, the estimate for the residual f − μ̂ is used to construct a
test statistic corresponding to a hypothesis about the signal. The mean signal
may not be able to fully characterize complex imaging data, and as a result,
may have limitations in the context of inference. Hence, we propose to use a
new topologically motivated framework called the min-max diagram, which is
the scatter plot of specific pairing of critical values. Intuitively, the collection of
critical values of μ can approximately characterize the shape of the continuous
signal μ. By pairing critical values in a nonlinear fashion and plotting them, we
construct the min-max diagram. We will provide additional details shortly.

2.1 Heat Kernel Smoothing

In order to generate the min-max diagram, we need to find the critical values of
μ. It requires estimating the unknown signal smoothly so that derivatives can be
computed. We avoid the diffusion equation based implicit smoothing techniques
[1] since the approach tend to result in unstable derivative estimation. Instead,
we present a more flexible spectral approach called heat kernel smoothing that
explicitly represents the solution to the diffusion equation analytically [3]. Heat
kernel smoothing analytically solves the following equation

∂F

∂σ
= ΔF, F (t, σ = 0) = f(t).

The solution is given in terms of eigenfunctions ψk (and the corresponding eigen-
values λk) of the Laplace-Beltrami operator, i.e., Δf + λf = 0. Define the heat
kernel Kσ as

Kσ(t, s) =
∞∑

k=0

e−λkσψk(t)ψk(s).

The heat kernel smoothing estimate of μ is then given by

μ̂ =
∫

M

Kσ(t, s)f(s) dη(s) =
∞∑

i=0

e−λkσfkψk(t). (2)

Examples. For M = [0, 1], with the additional constraints f(t + 2) = f(t)
and f(t) = f(−t), the eigenfunctions are ψ0(t) = 1, ψk(t) =

√
2 cos(kπt) with

the corresponding eigenvalues λk = k2π2. For simulation in Fig. 1, we used
σ = 0.0001 and truncated the series at the 100-th degree.

For M = S2, the eigenfunctions are the spherical harmonics Ylm(θ, ϕ) and
the corresponding eigenvalues are λl = l(l + 1). The bandwidth σ = 0.001 and
degree k = 42 was used for cortical thickness example in Fig. 2. We found that
bandwidths larger than 0.001 smooth out relevant anatomical detail.

The explicit analytic derivative of the expansion (2) is simply given by

Dμ̂ =
∞∑

i=0

e−λiσfiDψi(t)
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Fig. 1. The birth and death process of sublevel sets. Here a < b < c < f are minimums
and d < e < g are maximums. At y = b, we add a new component to the sublevel
set. When we increase the level to y = d, we have the death of the component so we
pair them. In this simulation, we pair (f, g), (c, e) and (b, d) in the order of parings
generated in Algorithm 1.

where D is ∂
∂t for [0, 1] and ( ∂

∂θ , ∂
∂ϕ) for S2. For the unit interval, the derivatives

are Dψl(t) = −
√

2lπ sin(lπt). For S2, the partial derivatives with respect to θ
can be given in slow iterative formulas. To speed up the computation through
the paper, the convexity of the first order neighbor of a vertex in a cortical mesh
is used in determining a critical point. Fig. 2 shows the result of minimum and
maximum detection after heat kernel smoothing.

2.2 Min-Max Diagram

A function is called a Morse function if all critical values are distinct and non-
degenerate, i.e., the Hessian does not vanish. For images (where intensities are
given as integers), critical values of intensity may not all be distinct; however,
the underlying continuous signal μ in (1) can be assumed to be a Morse function.
For a Morse function μ̂, define a sublevel set as R(y) = μ̂−1(−∞, y]. The sublevel
set is the subset of M satisfying μ̂(t) ≤ y. As we increase y from −∞, the number
of connected components of R(y) changes as we pass through critical values.

Let us denote the local minimums as g1, · · · , gm and the local maximums as
h1, · · · , hn. Since the critical values of a Morse function are all distinct, we can
strictly order the local minimums from the smallest to the largest as g(1) < g(2) <
· · · < g(m) and similarly for the local maximums as h(1) < h(2) < · · · < h(n) by
sorting them. At each minimum, the sublevel set adds a new component while
at a local maximum, two components merge into one. By keeping track of the
birth and death of components, it is possible to compute topological invariants
of sublevel sets such as Euler characteristics and Betti numbers (see [6]).

Simulation. The birth and death processes are illustrated in Fig. 1, where the
gray dots are simulated with Gaussian noise with mean 0 and variance 0.22 as

f(t) = t + 7(t − 1/2)2 + cos(8πt)/2 + N(0, 0.22).
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Fig. 2. Heat kernel smoothing of cortical thickness and surface coordinates with σ =
0.001 and degree k = 42. For better visualization, it has been flattened onto the unit
sphere. The white (black) crosses are local minimums (maximums). They will be paired
in a specific manner to obtain the min-max diagram. The min-max diagram is invariant
to whether it is constructed from the cortical surface or from the unit sphere.

The signal is estimated and plotted as the red line using the 1D heat kernel
smoothing in §2.1. Let us increase y from −∞ to ∞. At y = b, we add a new
component to the sublevel set R(y). When we increase the level to y = d, we
have the death of the component so we pair b and d. In this simulation, we need
to pair (b, d), (c, e) and (f, g).

Pairing Rule. When we pass a maximum and merge two components, we pair
the maximum with the higher of the minimums of the two components [6]. Doing
so we are pairing the birth of a component to its death. Note that the paired
critical values may not be adjacent to each other. The min-max diagram is then
defined as the scatter plot of these pairings.

For higher dimensional Morse functions, saddle points can also create or merge
sublevel sets so we also have to be concerned with them. If we include saddle
points in the pairing rule, we obtain persistence diagrams [2] [6] instead of min-
max diagrams. In one dimension, the two diagrams are identical since there
are no saddle points in 1D Morse functions. For higher dimensions, persistence
diagrams will have more pairs than min-max diagrams. The addition of the
saddle points makes the construction of the persistence diagrams much more
complex. We note that [10] presents an algorithm for generating persistence
diagrams based on filteration of Morse complexes.

Algorithm. We have developed a new simpler algorithm for pairing critical val-
ues. Our algorithm generates min-max diagrams as well as persistence diagrams
for 1D Morse functions. At first glance, the nonlinear nature of pairing does
not seem to yield a straightforward algorithm. The trick is to start with the
maximum of minimums and go down to the next largest minimum in an itera-
tive fashion. The algorithm starts with g(m) (step 3). We only need to consider
maximums above g(m) for pairing. We check if maximums hj are in a neighbor-
hood of g(m), i.e. hj ∼ g(m). The only possible scenario of not having any larger
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Fig. 3. Min-max diagram for 11 control (blue) and 16 autistic (red) subjects. The
pairings for autism often occurs closer to y = x line indicating there is greater high
frequency noise in autism. This observation is consistent with the autism literature
where it has been found that there is greater anatomical variability in autism subjects
than the controls subjects. This figure suggests that the min-max diagram may indeed
be useful for discriminating populations.

maximum is when the function is unimodal and obtains the global minimum
g(m). In this situation we have to pair (g(m),∞). Since ∞ falls outside our ‘plot’,
we leave out g(m) without pairing. Other than this special case, there exists at
least one smallest maximum h∗

m in a neighborhood of g(m) (intuitively, if there
is a valley, there must be mountains nearby). Once we paired them (step 4), we
delete the pair from the set of extreme values (step 5) and go to the next max-
imum of minimums g(m−1) and proceed until we exhaust the set of all critical
values (step 6). Due to the sorting of minimums and maximums, the running
time is O(n log n). This may also be implemented using a plane-sweep approach
[4] which also gives a running time of O(n log n). In this case, pairing will be
based on how points enter or leave the queue of “events” as the plane (or line)
sweeps in the vertical direction.

Algorithm 1 . Iterative Pairing and Deletion

1. H ← {h1, · · · , hn}.
2. i ← m.
3. h∗

i = argminhj∈H{hj |hj > g(i), hj ∼ g(i)}.
4. If h∗

i �= ∅, pair (g(i), h
∗
i )

5. H ← H − h∗
i .

6. If i > 1, i ← i− 1 and go to Step 3.

Higher dimensional implementation is identical to the 1D version except how
we define neighbors of a critical point. The neighborhood relationship ∼ is es-
tablished by constructing the Delaunay triangulation on all critical points.

3 Experimental Results

We used an MRI dataset of 16 highly functional autistic subjects and 11 nor-
mal control subjects (aged-matched right-handed males). These images were
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Fig. 4. (a) Min-max diagram of an autistic subject from Fig. 2. (b) The concentration
map of the min-max diagram is constructed by discretizing the square [1, 7]2 into 502

uniform pixels and evaluating the number of pairs within a circle (r = 0.2) centered on
the pixel. (c) The t-test statistic (autism - control) shows significant group differences
in red regions (t ≥ 3.61) vs blue (t ≤ −4.05) regions at level 0.05 (corrected). (d) PDF
of the concentration map.

obtained from a 3-Tesla GE SIGNA scanner, and went through intensity nonuni-
formity correction, spatially normalized into the MNI stereotaxic space, and tis-
sue segmentation. A deformable surface algorithm [7] was used to obtain the
inner cortical surface by deforming from a spherical mesh (see Fig. 2). The outer
surface M was obtained by deforming the inner surface further. The cortical
thickness f is then defined as the distance between the two surfaces, this mea-
sure is known to be relevant for autism. Since the critical values do not change
even if we geometrically change the underlying manifold from M to S2, the min-
max diagram must be topologically invariant as well. Therefore, the min-max
diagram is constructed on the unit sphere by projecting the cortical data on
to the sphere. Fig. 3 shows the superimposed min-max diagram for 11 control
(blue) and 16 autistic (red) subjects. A single subject example is shown in Fig.
4. Pairings for autistic subjects are more clustered near y = x indicating higher
frequency noise in autism. More pairing occurs at high and low thickness values
in the controls showing additional topological structures not present in autism.

Statistical Inference. We have formally tested our hypothesis of different topo-
logical structures between the groups. Given a min-max diagram in the square
[1, 7]2, we have discretized the square with the uniform grid such that there are
a total of 502 pixels (see Fig. 4-b). A concentration map of the pairings was
obtained by counting the number of pairs in a circle of radius 0.2 centered at
each pixel. The inference at 0.05 level (corrected for multiple comparison) was
done by performing 5000 random permutations on the maximum of t-statistic
of concentration maps (Fig. 4-c).

If data is white noise, pairings occur close to y = x line. The deviation from
y = x indicates signal. In the t-test result, we detected two main clusters of pair-
ing difference. High number of pairings occurs around (2,6) for controls and (4,4)
for autism. This is only possible if surfaces have more geometric features/signal
in the controls. On the other hand, the autism shows noisier characteristic.
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SVM Based Classification. Our final set of experiments were performed to
evaluate the usefulness of min-max diagrams for classification at the level of in-
dividual subjects. We view the concentration map of each min-max diagram as
a PDF (Fig. 4), which allows easy construction of appropriate kernels and mak-
ing use of Support Vector Machines (SVM). We evaluated linear and Gaussian
weighted kernels (using Bhattacharya distance between the two PDFs [5]) and
found that the accuracy results were quite similar. To perform our evaluations
relative to existing techniques, we used data shared with us by the authors in
[8]. We summarize our results next.

For k-fold cross-validation, by varying k ∈ {9, · · · , 2}, and performing 30
random runs for each k value (calculating the mean accuracy), we consistently
achieved near perfect accuracy. The algorithm performs exceedingly well for 2-
fold cross-validation as well – when only one half of the data is used as the
training set. We incrementally decreased the size of the training set (up to 35%)
and found that the algorithm still gives more than 96% accuracy. A simple com-
parison with 90% accuracy reported in [8] that uses the same data suggests that
the improvements in accuracy comes primarily from our min-max representation.

4 Conclusions

We have presented a unified framework of the min-max diagram based signal
characterization in images. While unconventional, we believe that this represen-
tation is very powerful and holds considerable promise for a variety of learning
and inference problems in neuroimaging. To demonstrate these ideas, we applied
the methods to characterize cortical thickness data in a dataset of autistic and
control subjects, via the use of a new Iterative Pairing and Deletion algorithm
(to generate the min-max diagram). Our results indicate that significant im-
provements in classification accuracy are possible (relative to existing methods)
merely by representing the input data as a set of min-max diagrams. Finally, we
note that this paper only scratches the surface, and future research will clearly
bring up other applications where these ideas might be useful.

References

1. Cachia, A., Mangin, J.-F., Riviere, D., et al.: A primal sketch of the cortex mean
curvature: a morphogenesis based approach to study the variability of the folding
patterns. IEEE Transactions on Medical Imaging 22, 754–765 (2003)

2. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data.
In: Proc. of Information Processing in Medical Imaging, IPMI (2009)

3. Chung, M.K., Dalton, K.M., Shen, L., Evans, A.C., Davidson, R.J.: Weighted
fourier representation and its application to quantifying the amount of gray matter.
IEEE Transactions on Medical Imaging 26, 566–581 (2007)

4. De Berg, M., Cheong, O., van Kreveld, M.: Computational Geometry: Algorithms
and Applications. Springer, Heidelberg (2008)

5. Deza, E., Deza, M.M.: Dictionary of Distances. Elsevier Science, Amsterdam (2006)



166 M.K. Chung et al.

6. Edelsbrunner, H., Harer, J.: Persistent homology - a survey. A survey on Discrete
and Computational Geometry: Twenty Years Later, 257–282 (2006)

7. MacDonald, J.D., Kabani, N., Avis, D., Evans, A.C.: Automated 3-D extraction
of inner and outer surfaces of cerebral cortex from MRI. NeuroImage 12, 340–356
(2000)

8. Singh, V., Mukherjee, L., Chung, M.K.: Cortical surface thickness as a classifier:
Boosting for autism classification. In: Proc. of Medical Image Computing and Com-
puter Assisted Intervention (2008)

9. Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C.: A
unified statistical approach for determining significant signals in images of cerebral
activation. Human Brain Mapping 4, 58–73 (1996)

10. Zomorodian, A.J., Carlsson, G.: Computing persistent homology. Discrete and
Computational Geometry 33, 249–274 (2005)



Particle Based Shape Regression of Open
Surfaces with Applications to Developmental

Neuroimaging

Manasi Datar, Joshua Cates, P. Thomas Fletcher, Sylvain Gouttard,
Guido Gerig, and Ross Whitaker

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, Utah

Abstract. Shape regression promises to be an important tool to study
the relationship between anatomy and underlying clinical or biological
parameters, such as age. In this paper we propose a new method to
building shape models that incorporates regression analysis in the pro-
cess of optimizing correspondences on a set of open surfaces. The statis-
tical significance of the dependence is evaluated using permutation tests
designed to estimate the likelihood of achieving the observed statistics
under numerous rearrangements of the shape parameters with respect
to the explanatory variable. We demonstrate the method on synthetic
data and provide a new results on clinical MRI data related to early
development of the human head.

1 Introduction

Technologies for shape representation and statistical shape analysis are impor-
tant for several problems in medical imaging including image segmentation,
quantitative analysis of anatomy, and group comparisons. A widely used ap-
proach is to evaluating shapes is assign correspondences or landmarks to shapes
(curves, or surfaces) and to compare the positions or configurations of these
landmarks. This approach has benefitted in recent years from methods for the
automatic placement of landmarks in a way that captures the statistical prop-
erties of an ensemble of images [1,2,3]. Finding correspondences that minimize
description length [2] or entropy [1] has been shown to generate shape models
that systematically capture the underlying variability of the population and con-
form, qualitatively, to the underlying anatomy. This paper extends the method
of Cates et al. [1], which uses an variational formulation of ensemble entropy to
position dense collections of landmarks, or particles.

On the clinical front, quantitative magnetic resonance imaging has signifi-
cantly advanced our understanding of brain development during childhood and
adolescence. Courchesne et al. [4] describe differences in growth patterns in
autism compared to controls. However, these studies do not include children
below the age of 4 years. Data measured in infants from birth to 4 years are
mostly volumetric measurements, such as intracranial volume and volumes of
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brain lobes and subcortical structures [5]. Whereas this selection of previous
work demonstrates very active research towards determining brain growth at
early stage of development, there is little data on modelling head and brain
growth across a continuum of time and almost no work on the study of how
development influences shape.

In developmental analyses, such as paediatric neurodevelopment, shape re-
gression gives aggregate models of growth, with variability. Thus shape analysis
promises to give not only basic insights into the process of development, but also
allow comparisons of individuals against normative models. Of course, precise
characterizations of these relationships will require shape models that can tease
apart those aspects of shape variability that are explained by the underlying
variables and those that are not. Likewise, in order to understand the statistical
significance of such relationships we will need a systematic, unbiased method for
testing these correlations. These are the topics addressed in this paper.

2 Methodology

This section gives a brief overview of the particle-system correspondence opti-
mization method, which is first described in [1]. The general strategy of this
method is to represent correspondences as point sets that are distributed across
an ensemble of similar shapes by a gradient descent optimization of an objective
function that quantifies the entropy of the system. Our proposed extension to
this method incorporates a linear regression model into the correspondence op-
timization. We also present a new methodology for correspondence optimization
on open surfaces where surface boundaries are defined by arbitrary geometric
constraints—which is important for studying paediatric head shape.

Correspondence Optimization
We define a surface as a smooth, closed manifold of codimension one, which
is a subset of �d (e.g., d = 3 for volumes). We sample a surface S ⊂ �d

using a discrete set of N points that are considered random variables Z =
(X1,X2, . . . ,XN )T ,X ∈ �d drawn from a probability density function (PDF),
p(X). We denote a realization of this PDF with lower case, and thus we have
z = (x1,x2, . . . ,xN )T , where z ∈ SN . The probability of a realization x is
p(X = x), which we denote simply as p(x).

The amount of information contained in such a random sampling is, in the
limit, the differential entropy of the PDF, which is

H [X] = −
∫

S

p(x) log p(x)dx = −E{log p(X)}, (1)

where E{·} is the expectation. Approximating the expectation by the sample
mean, we have H [X] ≈ − 1

Nd

∑
i log p(xi). To estimate p(xi), we use a non-

parametric Parzen windowing estimation, modified to scale density estimation
in proportion to local curvature magnitude. The kernel width σ is chosen adap-
tively at each xi to maximize the likelihood of that position. We refer to the
positions x as particles, and a set of particles as a particle system.
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Now consider an ensemble E , which is a collection of M surfaces, each with
their own set of particles, i.e., E = z1, . . . , zM . The ordering of the particles on
each shape implies a correspondence among shapes, and thus we have a matrix
of particle positions P = xk

j , with particle positions along the rows and shapes
across the columns. We model zk ∈ �Nd as an instance of a random variable Z,
and minimize a combined ensemble and shape cost function

Q = H(Z) −
∑

k

H(P k), (2)

which favors a compact ensemble representation balanced against a uniform dis-
tribution of particles on each surface. Given the low number of samples relative
to the dimensionality of the space, we use a parametric approach described in [1]
for density estimation in the space of shapes. The entropy cost function Q is min-
imized using a gradient descent strategy to manipulate particle positions (and,
thus, also correspondence positions). The surface constraint is specified by the
zero set of a scalar function F (x). This optimization strategy balances entropy
of individual surface samplings with the entropy of the shape model, maximizing
the former for geometric accuracy (a good sampling) and minimizing the latter
to produce a compact model.

Any set of implicitly defined surfaces is appropriate as input to this frame-
work. For this paper, we use binary segmentations, which contain an implicit
shape surface at the interface of the labeled pixels and the background. To re-
move aliasing artifacts in these segmentations, we use the r-tightening algorithm
given by Williams et al. [6]. Correspondence optimizations are initialized with
the splitting strategy described in [1], starting with a single particle on each
object. We use a Procrustes algorithm, applied at regular intervals during the
optimization, to align shapes with respect to rotation and translation, and to
normalize with respect to scale.

Correspondence with Regression Against Explanatory Variables. With
the assumption of a Gaussian distribution in the space of shapes, we can
introduce a generative statistical model

z = μ + ε, ε ∼ N (0, Σ) (3)

for particle correspondence positions, where μ is the vector of mean correspon-
dences, and ε is normally-distributed error. Replacing μ in this model with a
function of an explanatory variable t gives the more general, regression model

z = f(t) + ε̂, ε̂ ∼ N (0, Σ̂). (4)

The optimization described in the previous section minimizes the entropy asso-
ciated with ε, which is the difference from the mean. In this paper, we propose
to optimize correspondences under the regression model in Eqn. 4 by instead
minimizing entropy associated with ε̂, the residual from the model. Considering
particle correspondence to be a linear function of t, given as f(t) = a + bt, we
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need an estimate of parameters a and b to compute ε̂. We estimate these with
a least-squares fit to the correspondence data,

arg min
a,b

E(a,b) =
1
2

∑
k

[(a + btk)− zk]T Σ−1 [(a + btk)− zk] . (5)

Setting δE
δa = δE

δb = 0 and solving for a and b, we have a = 1
n (

∑
k zk −

∑
k btk),

and b = (
∑

k tkzk −
∑

k zk

∑
k tk) /

(∑
k t2k − (

∑
tk)2

)
.

The proposed regression model optimization algorithm then proceeds as fol-
lows. Correspondences are first optimized under the nonregression model (Eqn 3)
to minimize the entropy associated with the total error ε, and to establish an
initial estimate for a and b. We then follow the same optimization procedure as
described in Section. 2, but replace the covariance of the model with the covari-
ance of the underlying residual relative to the generative model. We interleave
the two estimation problems, and thus the parameters a and b are re-estimated
after each iteration of the gradient descent on the particle positions.

Correspondences on Open Surfaces. To compute correspondence positions
on a set of open surfaces, we propose an extension to the sampling method re-
viewed in Section. 2. The proposed method is to define the boundary as the
intersection of the surface S with a set of geometric primitives, such as cutting
planes and spheres. Our goal is to formulate the interactions with these bound-
aries so that the positions of these constraints has as little influence as possible
on the statistical shape model.

For each geometric primitive, we construct a vir-

Fig. 1. Particle system
with geometric primitives
defining the boundary

tual particle distribution that consists of all of the
closest points on its surface to the particles xi on S.
During the gradient descent optimization, particles
xi interact with the virtual particles, and are there-
fore effectively repelled from the geometric primi-
tives, and thus from the open surface boundary. The
virtual distributions are updated after each iteration
as the particles on S redistribute under the opti-
mization. Because the virtual particles are allowed
to factor into the Parzen windowing kernel size es-
timation, particles xi maintain a distance from the
boundary proportional to their density on the surface S. In this way, features
near the boundary may be sampled, but particles are never allowed to lie on the
actual boundary itself. One such configuration is shown in Figure. 1

Permutation Test of Significance. Analysis of variance (ANOVA) is the
standard parametric test for testing if the explanatory variables have a significant
effect in a linear regression. The test statistic used is

T =
R2/(m− 1)

(1 −R2)/(n−m)
, (6)
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where R2 is Pearson’s coefficient of regression, generally defined as R2 = 1− SSerr
SStot

,
where SS err is the sum-squared residual error, and SS tot represents total variance
in the data. In general, R2 can be related to the unexplained variance of the
generated model, and is used to measure the goodness-of-fit for the regression
model. When the residuals of the linear model are iid Gaussian, the statistic T
follows an F distribution with m − 1 and n −m degrees of freedom under the
null hypothesis.

In this case where the outcome variables are correspondence-optimized shape
parameters, the underlying assumptions of the parametric F -test may not hold.
Furthermore, optimization with knowledge of the underlying parameter could
lead to optimistic estimates of significance, because we are explicitly minimizing
the residual. To overcome this, we propose a nonparametric permutation test
for significance. Permutation tests for regression work by permuting the values
of the explanatory variables. This allows us to compute a distribution of our
test statistic under the null hypothesis that the explanatory variable has no
relationship to the dependent variable. Given data (zi, ti), we generate the kth
permuted data set as (zi, tπk(i)), where πk is a permutation of 1, . . . , n. For
each permutation we compute a test statistic Tk using (6). Then comparing our
unpermuted test statistic T to the distribution of Tk, we can compute the p-
value as the percentage of Tk that are greater than T . Notice, that for the case
of regression-optimized correspondences, described in Section 2, we perform a
the correspondence optimization on each permutation separately, and thus the
results of our permutation test are not biased by the correspondence method.

3 Results and Discussion

This section details experiments designed to illustrate and validate the proposed
method. First, we present an experiment with synthetically generated tori to
illustrate the applicability of the method and validation based on permutation
tests. Next, we present an application to the study of early growth of head shapes
extracted from structural MRI data.

To illustrate and validate the proposed methods, we performed two exper-
iments on sets of 40 synthetically generated tori, parameterized by the small
radius r and the large radius R. The values for the shape parameters were cho-
sen as independent functions of a uniformly distributed explanatory variable t.
The definition of R2, used to compute the test statistic as explained in Section. 2,
is extended to include the two independent variables for this experiment:

R2 = 1− (SS err)r + (SS err)R

(SS tot)r + (SS tot)R
. (7)

We examine sets of time-dependent shapes with p-values {0.01, 0.1} in order
to examine the performance of the system with and without significance. To
construct these example data sets, we use the value for the statistic T (look
up from the F -distribution) to generate a target R2. The values of r and R
are chosen such that the R2 of the generated set is approximately equal to the
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target R2 for that experiment. Along with explicit correspondences generated
from the standard torus parametrization, we use the correspondence methods
from Section. 2, optimization with and without an underlying regression model,
to optimize correspondences using 256 particles on each shape. An analysis of
the resulting models showed that all three sets of correspondences exhibited two
pure modes of variation.

Synthetic Data (Tori). Here we present the results of the statistical analysis
of the tori test data using permutation tests consisting of 1000 permutations of
the explanatory variable t. For the correspondences we compute the test statis-
tics using the two dominant modes from a PCA on the set of correspondences.
The procedure described in Section. 2 is then applied to get the corresponding
p-values. Table. 1 shows the results of the two permutation tests for the explicit
correspondences, and correspondences generated using the proposed methods. A
comparison of the parametric p-value with the p-values obtained by the permuta-
tion tests confirms that the proposed methods preserve the relationship between
the explanatory variable and the dependent variables. The correspondence-based
approaches, particularly with the regression model, show greater significance
than the parametric case. This might be an inherent property of the statistic
or it could be an artifact due to the limited number of example datasets and
the limited number of permutations. Future work will include more datasets,
more permutations, and a bootstrapping procedure to analyze variability of the
p-values computed by the various methods.

Table 1. Results of permutation tests (1000 permutations)

p-value
(theory)

p-value
(parametric)

Correspondence Type
Explicit Min. Entropy Regression-based

0.01 0.011 0.011 0.007 0.004
0.1 0.095 0.095 0.067 0.066

Head Shape Regression. The proposed regression-based correspondence
method is also used to study the growth of head shape from structural MRI
data obtained from clinical studies spanning the age range from neonate to 5
year old. The 40 cases include 1.5T, T1-weighted MRI scans with resolutions of
1mm×1mm×1mm and 0.4mm×0.4mm×3.6mm. The scans are preprocessed
and segmented to obtain the head surfaces, which are input to the optimization
process. Manually placed landmarks on the bridge of the nose and the openings
of the left and right ear canals define a cutting plane and a pair of spheres that
we use as constraints, as in Section. 2, to repel the correspondences from the
neck, face, and ears, in order to restrict the analysis to the cranium, which is
most interesting from a neurological point of view. Figure. 1 shows the particle
system distributed across one of the head shapes after optimizing 500 particles.

Head size, measured in volume or circumference is well known to correlate
with age. This is confirmed by the linear regression plot (size versus log of age)
with p < 2 × 10−16, shown in Figure. 2. Next, the shapes were preprocessed
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using methods mentioned in Section. 2 to remove the effects of size. Changes in
head shape along the linear regression line (shape versus log of age) are shown
in Figure. 3. Note the relative lengthening of the head, and the narrowing at the
temples with increasing age. These shape changes are consistent with clinical
observations that neonatal brain growth proceeds more rapidly in the forebrain.
These results tie head shape to age in the paediatric setting.

The permutation tests for both

Fig. 2. Changes in head size with age

the proposed methods for this ex-
ample showed that none of 1000
permutations gave a better corre-
lation than the input data. While
this p = 0 result is not conclusive,
it does give strong evidence for sig-
nificance. Future work will include
more permutations to more accu-
rately evaluate the significance.

The experiments were run on a
2GHz processor with run times of
approximately 15 minutes for the

tori (256 particles) and 40 minutes for the head shapes (500 particles). The per-
mutation tests (1000 permutations) were run as parallel processes on a
16-processor machine.

0.0 1.5 3.0 4.5 6.0

Fig. 3. Overview of head shape regression: Changes in head shape with age

4 Conclusion

This paper describes a method for shape regression that accounts for explana-
tory variables in the placement of correspondences and allows for open surfaces
with arbitrary geometric constraints, and presents a mechanism for hypothesis
testing of the role of underlying variables in shape. Results from a study of head
shape growth indicate that the proposed method can be applied to quantita-
tive characterization of the relationship between age and head shape in young
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children. Such analysis will generate data beyond the currently established stan-
dard of head circumference measurements as an index of growth. Moreover, it
will generate normative data as a continuous growth model of shape, which can
be useful in building optimal MRI head coils for young infants. The continu-
ous shape model could also find use in population studies where two groups are
compared with respect to growth trajectory rather than differences at individual
time points.
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Abstract. We show that a simple probabilistic modelling of the regis-
tration problem for surfaces allows to solve it by using standard clus-
tering techniques. In this framework, point-to-point correspondences are
hypothesized between the two free-form surfaces, and we show how to
specify priors and to enforce global constraints on these matches with
only minor changes to the optimisation algorithm. The purpose of these
two modifications is to increase its capture range and to obtain more
realistic geometrical transformations between the surfaces. We conclude
with some validation experiments and results on synthetic and real
data.

1 Introduction

In medical image analysis, nonlinear registration is a key tool to study the nor-
mal and abnormal anatomy of body structures. It allows to spatially normalise
different subjects in a common template, to build the average anatomy in a pop-
ulation and to assess the variance about this average, and ultimately to perform
group studies via statistical analyses. Many methods have been dedicated to
deal with grey level volumes directly, while others have been devised to tackle
surfaces representing anatomical structures (e.g. after segmentation from MRI
or CT) [1]. The last approach allows a more focused analysis of structures of
interest, and is the topic of our paper. In Section 2 we show that a simple proba-
bilistic modelling of the registration problem allows to solve it by using standard
clustering techniques. In this framework, point-to-point correspondences are hy-
pothesized between the two free-form surfaces, and we show how to specify priors
(Section 3) and to enforce global constraints (Section 4) on these matches with
only minor changes to the optimisation algorithm. This extends our previous
work on the same problem [2]. The purpose of these two modifications is to in-
crease its capture range and to obtain more realistic geometrical transformations
between the surfaces. We conclude with some validation experiments and results
on synthetic and real data (Section 5).
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2 Surface Registration as a Clustering Problem

The problem of interest in this paper is to find the transformation T best super-
posing two free-form surfaces X and Y (represented by point clouds or meshes).
A convenient probabilistic viewpoint on this classical problem is to consider
the surface Y as a noised version of T (X). If we note Y = (yj)j=1... card(Y )
and X = (xk)k=1... card(X), and if we hypothesize an isotropic Gaussian noise,
a simple way to formulate this viewpoint is to assume that each sample yj has
been drawn independently from any one of card(X) possible 3-variate normal
distributions with means T (xk) and covariance matrices σ2I (with σ unknown).

This way, the registration problem becomes a clustering problem, whose chal-
lenge is i) to find the label of each point yj, i.e. the one out of card(X) possible
distributions from which yj has been drawn, and ii) to estimate the parameters
of these card(X) distributions. The connection between registration and cluster-
ing becomes clear when one realises that i) actually amounts to match each point
yj in Y with a point xk in X , while ii) simply consists in computing T given
these matches. This viewpoint is extremely fruitful, as it allows one to refer to
classical clustering techniques and especially the maximum likelihood principle
to solve the registration problem. Two different paradigms have been especially
followed in this context [3]. Let us introduce some notations first:

∀k ∈ 1... card(X), pk(.; T ) = N (T (xk), σ2I)
∀j ∈ 1... card(Y ), ∀k ∈ 1... card(X), zjk = 1 if yj comes from pk(.; T ), 0 else

In the Classification ML (CML) approach, one tries to find the indicator
variables zjk and the parameter T so as to maximise the criterion CL [4]:

CL =
∏

yj∈Y

∏
xk∈X

[pk(yj ; T )]zjk (1)

The problem is typically solved by the Classification EM (CEM) algorithm [5],
which can be shown to find an at least local maximum of the criterion CL and
proceeds as follows, in an iterative way, starting from an initial value T̃ :

EC-step: ∀j, z̃jk = 1 if k maximises pk(yj ; T̃ ), 0 else
M-step: T̃ = arg minT

∑
jk z̃jk||yj − T (xk)||2

In other words, the Expectation-Classification (EC) step consists in matching
each point yj of Y with the closest point in T̃ (X), while the Maximisation (M)
step consists in computing the transformation best superposing these pairs of
matched points. In case T is a rigid-body transformation, this is nothing else
than the popular ICP algorithm [6].

In the ML approach, the indicator values zjk are no longer considered as
unknown quantities to estimate, but rather as hidden/unobservable variables of
the problem. This is actually a drastic and fundamental change of viewpoint,
as the focus is no longer on assigning each yj to one of the distributions pk
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but rather on estimating the parameters of the Gaussian mixture made of these
distributions. If we involve priors πjk on the indicator variables (∀j, k, 0 < πjk <
1, and ∀j,

∑
k πjk = 1), the likelihood then simply writes [7]:

L =
∏

yj∈Y

∑
xk∈X

πjkpk(yj ; T ) (2)

In essence, the prior πjk conveys the probability that the point yj comes from
the distribution pk without knowing anything else. The criterion L can be max-
imised by using the popular EM algorithm, which converges to an at least local
maximum of the likelihood [8]. If we consider the priors πjk as known beforehand
and if we introduce the notation γjk as the posterior probability of the hidden
indicator variable zjk to be equal to 1, the EM algorithm writes:

E-step: γ̃jk =
πjk exp[−||yj−T̃ (xk)||2/(2σ2)]∑
i πji exp[−||yj−T̃ (xi)||2/(2σ2)]

M-step: T̃ = arg minT

∑
jk γ̃jk||yj − T (xk)||2

To our knowledge, Granger & Pennec [9] were the first to formulate the prob-
lem this way, and they proposed the so-called EM-ICP as a simplified ver-
sion of the previous algorithm for rigid-body registration, where the priors πjk

were considered as uniform. They noted that the parameter σ, which is not
estimated in this framework, acts as a scale parameter, and that it can be
given an initial value and decreased throughout the iterations for improved
performances.

Interpretation & Extensions. Intuitively, the EM approach is a fuzzy version
of the CEM. It appears clearly from the iterative formulas of both algorithms
that the classification likelihood is an “all-or-nothing” version of the likelihood,
leading to a “bumpier” and harder-to-maximise criterion, something that is well
known by those who are familiar with the ICP algorithm. Note that the ML for-
mulation and the EM algorithm lead to the same iterative formulas that would
have resulted from the addition of a barrier function on the indicator variables
in the ICP criterion [10]. This formalism is not limited to rigid-body transfor-
mations, and can be easily used for any T , the challenge being to choose T
such that the M-step remains tractable. In particular, the ML estimation can
be easily turned into a MAP problem with only slight modifications to the op-
timisation scheme, as shown by Green [11]. This allows to view T as a random
variable, on which priors (acting as regularisers on T ) can be easily specified.
Different choices have been proposed for T and associated priors in this con-
text, such as the thin plate splines [10] or locally affine transformations [12].
If p(T ) is a prior of the form p(T ) ∝ exp(−αR(T )) then the optimal transfor-
mation can be found using the MAP principle (also termed penalised ML) and
the EM algorithm with only a slight modification to the M-step (addition of
αR(T )).
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3 Setting Priors on Matches

3.1 Why Using Priors on Matches?

Most works in this context have been focused on designing transformations and
related priors allowing to i) compute realistic deformations between the two sur-
faces and ii) keep the M-step tractable. Much little has been done to enforce
similar constraints on the matches (E-step). Dropping the priors πjk, as done
in the ICP of Besl & McKay or the EM-ICP of Granger & Pennec amounts to
say that the posteriors γjk are only estimated using the spatial distance between
the points yj and T (xk) (E-step). This is unsatisfactory, for two reasons. First,
this distance is highly conditioned by the previous estimation of T , which in
turn depends on the previous estimation of γjk and so on. This chicken-and-egg
problem limits the capture range of the algorithm, which is likely to converge
to a bad solution if no good initial T is given. Second, in medical imaging it is
difficult to design a physical model T capturing the expected deformation be-
tween two structures. Thus the global maximiser of the ML criterion is likely not
to be realistic. By specifying relevant priors πjk, we provide a way to partially
alleviate these two limitations. First, it allows to introduce additional informa-
tion on matches independent of the transformation and thus to compute reliable
posteriors even for a bad initial estimate of T . Second, it allows to modify the
criterion in a way that its global maximiser is a more realistic transformation.

3.2 Building Priors on Matches

In this section we show how to design the priors πjk to encode very hetero-
geneous types of a priori knowledge on the matches, such as “two points with
similar curvatures are more likely to be matched than others” as well as knowl-
edge of the labels of structures in the objects to be matched (e.g. gyri/sulci
in cortical registration). In practice, we choose to design π = (πjk) such that
πjk ∝ exp(−βc(yj , xk)) where c : X × Y → IR+ conveys the cost of matching
points yj and xk, independently of T . The parameter β > 0 weighs the influence
of πjk over ||yj − T (xk)|| during the E-step. Depending on the information to
encode (continuous value or label), we propose two approaches to build c.

Using descriptors. c can be computed via the comparison between continuous
values (or vectors) d(x) describing the surface around the considered points. To
account for potential inaccuracies on d(.), we define the measure as: cd(yj , xk) =
0 if ||d(yj)−d(xk)|| < τ ; = penalty > 0 else. To the best of our knowledge, there
exists no descriptor invariant to any nonlinear transformation. However, one can
use some descriptors invariant to more constrained transformations (Fig. 1, left):

– the shape index sh(x) [13] that describes the local shape irrespective of the
scale and that is invariant to similarities

– the curvedness cu(x) [13] that specifies the amount of curvature and that is
invariant to rigid-body transformations

– the (normalised) total geodesic distance tgd(x) [14] that is invariant to isome-
tries in the shape space (including non-elastic deformations).
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Fig. 1. Left: Mapping of descriptor values: From left to right: curvedness, shape index
and total geodesic distance on two lateral ventricles. Homologous anatomical landmarks
yield qualitatively the same descriptor values. Right: point-based matching (top) vs
line-based matching performed by our algorithm (bottom).

Using labels. c can be computed via the comparison between labels on points
(cortical sulci/gyri). We define: c(yj , xk) = 0 if points j and k have compatible
labels; = penalty > 0 else. In practice, we extract the crest lines from both
meshes as they constitute salient features. Each point is given a label depending
on whether it belongs to a crest line or not. Then, we define ccrest(yj , xk) = 0 if
yj and xk have the same label and c(yj , xk) = penalty else.

Mixing the two approaches. In practice, we choose to mix the previous
four sources of information to build the function c: c(yj , xk) = a1c

sh(yj , xk) +
a2c

cu(yj , xk)+a3c
tgd(yj , xk)+a4ccrest(yj , xk) with a1 +a2 +a3+a4 = 1. Param-

eters ai allow to weigh the different terms. Their values is application-dependent
and will not be studied in this paper, in which we set them to 0.25.

3.3 Efficient Implementation

In practice, we do not consider all points during the computation of γjk (E-step).
For that, we consider pk(.; T ) as a truncated Gaussian pdf with cut-off distance
δ. This allows to reduce the computational burden (by the use of a kd-tree) and
increase robustness. It can be shown that our algorithm still converges to an at
least local maximum of the new (truncated) criterion. The E-Step becomes:

initialise γ = (γjk) to the null matrix
∀xk ∈ X

S = {yj ∈ Y such that ||yj − T̃ (xk)||2 < δ} (using a kd-tree)
∀yj ∈ S

γjk = exp(−(||yj − T̃ (xk)||2/(2σ2) + βc(yj , xk)))
∀j, ∀k, γ̃jk = γjk/

∑
l γjl (normalisation)

Moreover, we choose to initialise α (regularisation weight), σ (scale parameter)
and β (prior weight) with high values and reduce them throughout iterations.
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4 Enforcing Global Constraints on Matches

In the formalism presented so far, the matches in the E-step are performed on
an individual basis without any global constraint such as one-to-one matches for
instance. Another desirable global constraint is that some geometrical relation-
ships between points in Y should be preserved between their correspondences
in X . Thus if we consider each crest line in Y as a set of ordered points, then
their correspondences must i) lie on the same crest line in X and ii) be ordered
in the same way (up to the orientation of the line) (Fig. 1 right). To enforce
these two constraints, let us introduce some notations first. Let L and M be the
sets of crest lines of Y and X , each crest line being defined as a set of ordered
points. Let u = (ulm) be a block matrix whose lines (resp. columns) correspond
to the concatenated crest lines of Y (resp. X). Then ulm

jk is the indicator variable
ulm

jk = 1 iff yj in crest line l corresponds to the point xk in crest line m. The two
constraints i) and ii) are specified as follows: the submatrix ulm is either null
(the line l does not match with the line m) or contains one 1 per line, with the 1s
drawing a “staircase” going to the left or to the right, all “steps” of the staircase
having potentially different widths and different heights. Then we propose to
maximise the following criterion over T and u having this staircase structure:

L−CL =

⎡
⎣ ∏

yj∈Y \L

∑
xk∈X\M

πjkpk(yj |T )×
∏
l∈L

∏
yj∈l

∑
xk∈m

[pk(yj |T )]u
lm
jk

⎤
⎦×p(T ) (3)

This criterion is an hybrid between the classification likelihood and the like-
lihood approaches. Introducing u only modifies the E-step of the algorithm, in
which u and γ can be estimated independently. The algorithm becomes:

E-Step: compute γ̃ as before
∀l, compute ũlm respecting the staircase structure
and maximising

∏
yj∈l

∑
xk∈m[pk(yj |T̃ )ũlm

jk ]
M-Step: T̃ = arg minT

∑
yj∈Y \L,xk∈X\M γ̃jk||yj − T (xk)||2

+
∑

l∈L

∑
yj∈l,xk∈m ũlm

jk ||yj − T (xk)||2 + αR(T )

To our knowledge, an exhaustive search is the only way to maximise the proposed
criterion over u. Instead, we propose to design an heuristic algorithm to do so,
that extends the one proposed by Subsol [15] and consists of two steps: i) finding
the crest line m ∈ M that corresponds to each l ∈ L and ii) starting from different
initial potential matches and assigning iteratively each point yj ∈ l to a point
xk ∈ m by keeping the staircase structure of the submatrix ulm.

5 Experiments and Results

In the following we choose to adopt a locally affine regularisation [12] (with only
the translational part) because of its ability to perform efficiently (∼ 7min) on
large datasets (∼ 50K points).
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5.1 Experiments on Synthetic Data

Generation of ground truth data. We first segment a structure X (typically,
a pair of lateral ventricles or caudate nuclei, giving surfaces of about 10K points,
itksnap.org) from a 3T T1-weighted brain MRI of a healthy subject. Then Y
is generated from X by applying a random thin plate spline transformation [2].
Then, we add a uniform Gaussian noise of std 0.5 mm on each point of the
deformed surface and remove groups of adjacent vertices to generate holes. This
way we generate ground truth pairs of 100 ventricles and 100 caudate nuclei.

Evaluation. We evaluate the error by computing the mean distance between
homologous points after registration using different strategies. The results are
reported in Tab. 1 and an example is displayed in Fig. 2. They show the strong
added value of using priors. The error is further reduced when using constraints,
which ensure that the ordering of the points on the lines is kept unchanged, and
thus help the algorithm to obtain anatomically coherent matches elsewhere.

Table 1. Experiments on synthetic data (stats). Mean and std (mm) of the registration
error for the 100 ventricles and 100 caudate nuclei by varying the parameters.

no prior/no constraint prior/no constraint prior/constraint
ventricle 2.19 ± 0.82 1.43 ± 0.91 1.39 ± 0.93

caudate nuclei 1.54 ± 0.43 1.04 ± 0.57 0.98 ± 0.56

Fig. 2. Experiments on synthetic data. From left to right: Experiments on two different
structures: ventricles and caudate nuclei. a) and d) original and deformed; b) and e)
mapping of registration error (mm) without using prior/constraint; c) and f) mapping
of registration error using prior/constraint.

5.2 Experiments on Real Data

In a first experiment, we choose X and Y as two different lateral ventricles and
manually extract a set of 8 anatomical landmarks common to X and Y . We then
apply a random affine transformation A to Y , register A(Y ) to X with and with-
out using priors/constraints, and evaluate the registration error on landmarks.
We perform this experiment 100 times (but we display only 10 on Fig. 3 for better
clarity). We observe a mean error of 1.73 ± 1.24mm with the priors/constraints
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Fig. 3. Experiments on real data. Ventricles: From left to right : X (green) and A(Y )
(red) before registration, position of the 8 anatomical landmarks of the 10 random
experiments after registration without priors/constraints and with priors/constraints.
Brain: From left to right and top to bottom: 1) brain 1 (top) and brain 2 (bottom);
2) brain 2 (with sulci shown in transparency) towards brain 1 without (top) and with
(bottom) using priors/constraints. The four sulci are the central (red), lateral (blue),
superior frontal (green) and inferior frontal (yellow) sulci.

and 2.55 ± 2.46mm without (Fig. 3, left). In a second experiment, we segment
the brain from T1-weighted MRI data of two healthy subjects (300,000 points,
brainvisa.info), and we extract four sulcal fundus beds (using our algorithm
for crest lines) and label them manually for each subject. Then we register the
two surfaces with and without using priors/constraints. The distance between
the homologous sulci after registration is used as a quality metric. It is evaluated
to be 3.3mm in the first case and 6.8mm in the second (Fig. 3, right).

6 Conclusion and Perspectives

We proposed techniques to set priors and enforce some global geometrical con-
straints on matches for ML-based nonlinear registration of surfaces. The priors
on matches give a flexible way to devise structure-specific registration algorithms.
They ideally complement the global, generic, prior on the transformation and
thus help to obtain a result coherent with the application of interest. In addition,
they provide a convenient framework to include additional knowledge (segmen-
tation, landmarks, etc.) provided by experts when available. In the future, com-
parisons with other recent methods, especially landmark-free approaches [16]
and others that do not resort to point-to-point correspondences [17] will be led.
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Abstract. The development of folding descriptors as an effective approach for 
describing geometrical complexity and variation of the human cerebral cortex 
has been of great interests. This paper presents a parametric representation of 
cortical surface patches using polynomials, that is, the primitive cortical patch is 
compactly and effectively described by four parametric coefficients. By this 
parametric representation, the patterns of cortical patches can be classified by 
either model-driven approach or data-driven clustering approach. In the 
model-driven approach, any patch of the cortical surface is classified into one of 
eight primitive shape patterns including peak, pit, ridge, valley, saddle ridge, 
saddle valley, flat and inflection, corresponding to eight sub-spaces of the four 
parameters. The major advantage of this polynomial representation of cortical 
folding pattern is its compactness and effectiveness, while being rich in shape 
information. We have applied this parametric representation for segmentation of 
cortical surface and promising results are obtained. 

1   Introduction 

Quantitative description of the geometrical complexity and variability of the human 
cerebral cortex has been of great interests. The development of shape descriptors that 
model the cortical folding pattern is essential to understand brain structure and func-
tion. Recent study has shown that cortical folding pattern could be used to predict brain 
function [1]. Besides, quantitative cortical folding descriptor may help reveal the un-
derlying mechanism of cortical gyrification [2, 3] and provide clues for the under-
standing of abnormal cortical folding in brain disorders [4, 5]. 

In order to quantitatively and effectively measure cortical folding, a couple of at-
tempts have been made in literature. In [6], the cortical surface area was compared to its 
external surface areas to determine the degree of folding. In [7], the gyrification index 
(GI) was proposed to compute the ratio between the pial contour and the outer contour 
in successive coronal sections, which has been widely used in many studies [8, 9]. 
Recently, the GI measurement was extended to 3D [10]. Curvature, which is a 3D 
parametric measurement, was also widely used as a metric to study cortical folding 
pattern [11]. These descriptors have their own advantages, but also have their limita-
tions. Novel folding pattern descriptors that incorporate 3D geometric shape pattern 
information are still to be developed.  
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In this paper, a compact parametric model with four polynomial coefficients is de-
veloped to describe cortical surface patch shape pattern. By this parametric represen-
tation, the patterns of cortical patches can be classified by either model-driven or 
data-driven clustering approaches. In particular, by taking the advantage of symmetry 
of cortical patch, the model-driven approach is able to classify the patches into one of 
the eight primitive shape patterns: peak, pit, ridge, valley, saddle ridge, saddle valley, 
flat and inflection, which altogether cover the 4-dimensional parametric space. In order 
to show the effectiveness of this method, we have applied this parametric representa-
tion for segmentation of cortical surfaces of 80 subjects, and promising results are 
obtained.   

2   Methods 

2.1    Parametric Polynomial Model  

Our work is inspired by the 2D power function based representation of tectonic folding 
presented in [12]. Our parametric polynomial surface model is represented as: 

                      ∑+∑=
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where x, y and z are vertex coordinates, ai and bj are coefficients. In order to decide the 
maximal values of m and n, we fitted the 2D power function to 1000 randomly selected 
patches along two directions corresponding to two principal curvatures of the central 
vertex of each patch. The sizes of surface patch are ranging from 1-ring to 7-ring 
neighborhood. The statistical results of the exponent n are shown in Fig. 1. It is evident 
that the exponent n is rarely over 3. We have similar results for the exponent m. 

 
Fig. 1. The statistical distribution of exponent n in power function fitting 

Therefore, we present the cortical surface patches by polynomials in the following 
format: 

                   
3322 dYcXbYaXZ +++=                                    (2)                            

where a and b describe the mirror symmetric components of the patch, while c and d 
represent the rotational symmetric components.  
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2.2   Model Fitting 

We use the Frenet frame as the coordinate 
system to estimate parameters in Eq. (2). 
The origin of Frenet frame coincides with 
the central vertex of the patch, and the cen-
tral vertex’s normal is regarded as the 
Z-axis of the frame that always points to-
wards outside of the brain. The X-axis and 
Y-axis are set free in the beginning, and will 
be determined later by the estimated pa-
rameters. So the Frenet frame is called 
semi-free Frenet frame here (Fig. 2). Eq. (2) 

is rewritten as 0)( =, xf
rr

θ , and we have: 

ZdYcXbYaXxf −+++=, 3322)(
rr

θ �����������������(3) 

where Tdcba ),,,(=θ
r

, and TZYXx ),,(=r . It is worth noting that TZYX ),,(  is the 

coordinates in the semi-free Frenet frame. Therefore, all the coordinates of surrounding 
patch vertices should be rotated as follow:  
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where [x0, y0, z0]
T the coordinate of the central vertex; α  and β  are two angles be-

tween the axes of different coordinates frames; θ is a new parameter introduced to 
rotate the semi-free Frenet frame on X-Y plane. Then, the Eq. (3) is rewritten as: 

0)( =, xuf
rr

                                                       (5) 

where parameter Tdcbau ),,,,( θ=r , and T
iii zyxx ),,(=r . 

To estimate the parameters in Eq. (5), the non-linear least square fitting (NLLSF) 
method is adopted to fit the patch. There is no closed-form solution to a non-linear least 
squares problem. However, the nonlinear problem can be iteratively linearized and 
becomes a linear least squares problem in each iteration. In order to apply the NLLSF 
method to our model, Eq. (5) is rewritten in the following way: 

)(
~

xufz
rr,= ���������������������������(6) 

Supposing there are n vertices on the patch, the model fitting algorithm is as follows: 

Step.1. Initialize parameter 0u
r

, maximum iteration times N andε , k = 0; 

Step.2. Compute the shift vector ku
rΔ by equations written in matrix notation as 

zJJJu TTk rr Δ=Δ −1)( ������������������������(7) 

where T
n

k
n

k xufzxufzz )),(
~

),,(
~

( 11

rr
L

rrr −−=Δ , and J is the Jacobian matrix.  

 

Fig. 2. The semi-free Frenet frame 



 Parametric Representation of Cortical Surface Folding Based on Polynomials 187 

Step.3. If ε≤Δ ku
r

, or Nk > , stop iteration and output ku
r

; else go to Step.4; 

Step.4. kkk uuu
rrr Δ+=+1 , 1+= kk , go to Step.2.�

A critical issue in the polynomial model fitting is the patch size. Generally, the larger 
the patch is, the more shape information it will enclose. However, if the patch is too 
large, its folding shape will be too asymmetric to be described by polynomials. By 
considering the combination of complexity and symmetry degrees of one patch, both 
qualitative and quantitative experiments show that 3-ring neighborhood is good to 
maintain the symmetry property of surface patches.  

2.3   Model Pattern Classification 

As mentioned above, the estimated parameter sets Tdcba ),,,( will be used to deter-

mine the X- and Y- axis as follows. Intuitively, the largest value in a, b, c and d will 
dominate the shape of a surface patch, as shown in Fig. 3. For example, in the valley 
shape, the parameter a will be the largest and dominate the patch shape. So for the sake 
of convenience, we use the X-axis to represent the dominating direction, i.e., the largest 
absolute value is either a or c, and Y-axis is orthogonal to X-axis. If b or d is of the 
largest absolute value, we switch a and c with b and d.   

 

Fig. 3. Eight primitive folding patterns of surface patches 

2.3.1   Model-Driven Method 
The surface patch patterns represented by above polynomial model are classified into 
eight primitive fold patterns including peak, pit, ridge, valley, saddle ridge, saddle 
valley, flat, and inflection as shown in Fig. 3. This classification approach is similar to 
that in [14]. The decision tree for this model-based classification method is shown in 
Fig. 4, where the absolute component ratio is defined as: 

),,,(,)( dcba
dcba

Ratio ∈
+++

= λ
λ

λ                         (8) 
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This classification method (Fig. 4a) covers the entire four dimensional space of 
parameter a, b, c and d. The parameter c or d will determines the inflection pattern if 
any of them is larger than 0.25. Otherwise, the parameter a and b will decide the other 
shape patterns as shown in Fig. 4b. Currently, all of these thresholds are determined by 
expert visual inspections.  

 

  

(a)                                                          (b) 

Fig. 4. (a) The clustering decision tree. (b) The parametric subspaces of a and b for different 
patterns.  

2.3.2   Data-Driven Method 
We applied the K-means clustering method to classify the surface patches represented 
by the four coefficients into different patterns. The distance measurement between 
patches is simply the summed squared Euclidean distance of the four model parameters. 

3   Results 

The proposed method is applied on 80 randomly selected normal brains in the OASIS 
MR image database. All the topologically correct and geometrically accurate cortical 
surfaces are generated via the method in [15].  

3.1   Results of Model-Driven Method  

The model-driven folding pattern classification method introduced in Section 2.3.1 was 
applied to 80 cortical surfaces. As an example, Fig. 5 shows the primitive patch shape 
classification result on a cortical surface. Currently, the thresholds k, l, n, m in Fig. 4a 
used in this classification are manually determined. Fig. 5 clearly illustrates the dis-
tributions of the eight primitive folding patterns over the cortex. Ridges and valleys are 
commonly distributed on the crests of gyri and at the bottoms of sulci. Pits mostly sit in 
bowl-shaped sulcal regions. Peaks are more likely to be the joints of connected gyri. 
Inflections tend to be slender lines separating straight and long slopes where gyral 
regions meet the sulcal regions. The flats are located on smooth walls beneath the crests 
of gyri or the plain-shaped gyri crests. Saddle ridges and saddle valleys are distributed 
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relatively evenly. The result in Fig. 5 shows that the proposed cortical patch repre-
sentation and classification method can properly discriminate the shape differences 
across the whole cortical surface. Our preliminary results show that the percentage of 
flats is significantly higher in normal brains than Autism patients.   

 

Fig. 5. The model-driven classification result on a cortical surface. Eight primitive folding pat-
terns are represented by different colors. The blue dots on the right patches represent the central 
vertices of the corresponding patches. 

In order to evaluate the accuracy of the folding pattern classification methods, 600 
patches randomly selected from 80 cortical surfaces are manually classified into the 8 
patterns in Fig. 5 respectively. The automatic classification results are compared with 
the manual labeling results, and Table 1 summarizes the sensitivity and specificity of the 
automatic classification method. It is apparent that the automatic folding pattern classi-
fication method is quite accurate, given the high sensitivity and specificity over 0.9.      

Table 1. The comparison result for model-driven method 

Cluster 
name 

Saddle 
Valley 

Inflection 
Saddle 
Ridge 

Ridge Flat Peak Pit Valley 

sensitivity 0.8333 0.9091 0.8636 0.9792 0.8438 0.9483 0.8710 0.9792 

specificity 0.9929 0.9827 1 0.9762 0.9873 0.9752 0.9926 0.9921 

3.2   Results of Data-Driven Method  

Fig. 6 shows the data-driven classification results with the number of clusters ranging 
from 2 to 8. With the increase of cluster numbers, more detailed shape patterns are 
generated. Especially, the 2-classes clustering results, parcelling cortex into gyral and 
sulcal regions, is similar to the curvature based parcellation of cortex [13] as shown in 
the right bottom of Fig. 6. Also, to evaluate the accuracy of the methods, the same 600 
surface patches are manually classified into 5 clusters respectively. The data-driven 
automatic clustering results are compared with the manual labeling, and the results are 
provided in Table 2. Evidently, the sensitivity and specificity of the data-driven clus-
tering method are quite high. 

To investigate the parameter distribution in the data-driven clustering, we take an 
arbitrary case with 47600 vertices as an example. Distributions of a and b, the two 
dominant parameter (see Table 3), in each clustering result using different cluster 
numbers from 2 to 8 are shown in Fig. 7. 
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Table 2. The comparison result for data-driven method 

Cluster index Cluster 1
 

Cluster 2
 

Cluster 3
 

Cluster 4
 

Cluster 5 

sensitivity 0.9833 0.9661 0.9672 0.9333 0.9000 
specificity 0.9958 0.9917 0.9916 0.9833 0.9750 

 
Fig. 6. K-means clustering results with the number of clusters ranging from 2 and 8 

Table 3. The numbers of dominant parameters 

Dominant parameter a b c d 

Number of vertices  47258 11244 1802 472 

 
Fig. 7. Distribution of parameter a and b for each cluster across different cluster numbers. The 
boxes are color coded according to the corresponding clusters in Fig. 6.  

4   Discussion and Conclusion 

Compared to previous cortical folding descriptors such as curvature and gyrification 
index, the proposed polynomial parametric representation is able to differentiate  
cortical surface patches into primitive shape patterns. The major advantage of the 
polynomial representation of cortical folding pattern is its compactness and effective-
ness, while being rich in shape information. However, the polynomial representation in 
Eq. (2) is not perfect. It requires that the shape of the patch in consideration to be 
symmetric. As the size of surface patch grows, e.g., larger than 4-ring or 5-ring 
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neighborhood, the symmetry requirement might be violated. Also, the shape com-
plexity of the cortical patch might be beyond the description ability of the polynomial 
model in Eq. (2). In the future, more factors such as twisting effect should be added into 
the shape model in Eq. (2) for better description capability of cortical shape patterns. 
The work presented in this paper demonstrates that parametric shape descriptor is a 
powerful tool to model cortical folding patterns. Potential applications include auto-
matic parcellation of cortical surface as shown in Fig. 5 and Fig. 6, automatic recog-
nition of cortical structures using folding patterns as features, as well as studies of 
abnormal folding patterns in brain diseases.   
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Abstract. In medical imaging analysis and computer vision, there is a
growing interest in analyzing various manifold-valued data including 3D
rotations, planar shapes, oriented or directed directions, the Grassmann
manifold, deformation field, symmetric positive definite (SPD) matri-
ces and medial shape representations (m-rep) of subcortical structures.
Particularly, the scientific interests of most population studies focus on
establishing the associations between a set of covariates (e.g., diagnos-
tic status, age, and gender) and manifold-valued data for characterizing
brain structure and shape differences, thus requiring a regression mod-
eling framework for manifold-valued data. The aim of this paper is to
develop an intrinsic regression model for the analysis of manifold-valued
data as responses in a Riemannian manifold and their association with
a set of covariates, such as age and gender, in Euclidean space. Because
manifold-valued data do not form a vector space, directly applying clas-
sical multivariate regression may be inadequate in establishing the rela-
tionship between manifold-valued data and covariates of interest, such
as age and gender, in real applications. Our intrinsic regression model,
which is a semiparametric model, uses a link function to map from the
Euclidean space of covariates to the Riemannian manifold of manifold
data. We develop an estimation procedure to calculate an intrinsic least
square estimator and establish its limiting distribution. We develop score
statistics to test linear hypotheses on unknown parameters. We apply our
methods to the detection of the difference in the morphological changes
of the left and right hippocampi between schizophrenia patients and
healthy controls using medial shape description.

1 Introduction

Statistical analysis of manifold-valued data has gained a great deal of attention
in neuroimaging applications [1], [2], [3], [4], [5], [6], [7], [8], [9]. Examples of
� This work was supported in part by NSF grants SES-06-43663 and BCS-08-26844 and

NIH grants UL1-RR025747- 01, R01MH08663 and R21AG033387 to Dr. Zhu, NIH
grants R01NS055754 and R01EB5-34816 to Dr. Lin, Lilly Research Laboratories, the
UNC NDRC HD 03110, Eli Lilly grant F1D-MC-X252, and NIH Roadmap Grant
U54 EB005149-01, NAMIC to Dr. Styner.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 192–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Intrinsic Regression Models for Manifold-Valued Data 193

Fig. 1. Four different manifold-valued data (from the left to the right): deformation
field reflecting brain deformation obtained from the registration of either diffusion ten-
sor images (DTIs) or T1 magnetic resonance images (T1 MRIs); principal direction
(PD) field reflecting fiber orientations obtained from DTIs; diffusion tensor field re-
flecting water diffusion along fiber tracts from DTIs; medial shape representations of
hippocampi from multiple subjects obtained from the segmented T1 MRIs

manifold-valued data that we encounter in medical imaging analysis include the
Grassmann manifold, planar shapes, deformation field, symmetric positive defi-
nite (SPD) matrices and the medial shape representations (m-rep) of subcortical
structures (Fig. 1). Some review papers on the applications of manifold-valued
data in medical imaging can be found in a recent special issue of NeuroIm-
age [10]. However, the existing statistical methods for manifold-valued data are
primarily developed to estimate intrinsic and extrinsic means, to estimate the
structure of population variability, to carry out principal geodesic analysis, and
to compare intrinsic (or extrinsic) means across two or more groups [11], [9],
[12], [13], [14], [15], [16], [17].

Little literature exists for regression analyses of manifold-valued data. The
existing parametric and nonparametric regression models for manifold-valued
data were primarily developed for 2 (or 3) dimensional directional data [6], [18].
In parametric regression of directional data, parametric distributions, such as
the Von Mises distribution, are commonly assumed for directional data, whereas
it can be very challenging to assume useful parametric distributions for other
manifold-valued data, such as SPD matrices and the m-rep, which can character-
ize the feature (e.g., shape) of real imaging data [15]. In the nonparametric anal-
ysis of manifold-valued data, although smoothing splines have been developed
for directional data and planar landmark data, it is computationally difficult to
generalize such smoothing splines to other manifold-valued data [6]. Recently,
local constant regressions have been developed for manifold-valued data, but
these regression models are defined with respect to either the Frechet mean or
the geometric median [2], [4].

According to the best of our knowledge, this is the first paper that devel-
ops a semiparametric regression model with manifold-valued data as responses
on a Riemannian manifold and a set of covariates, such as time, gender, and
diagnostic status, in Euclidean space. Our regression model are solely based
on the first-order moment, thus avoiding specifying any parametric distribu-
tions. We propose an inference procedure to estimate the regression coefficients
in this semi-parametric model. We establish asymptotic properties, including
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consistency and asymptotic normality, of the estimates of the regression coef-
ficients. We develop score statistics to test linear hypotheses on unknown pa-
rameters. Finally, we illustrate the application of our statistical methods to
the detection of the difference in morphological changes of the hippocampi be-
tween schizophrenia patients and healthy controls in a neuroimaging study of
schizophrenia.

2 Method

2.1 Review of Regression Models

We consider a dataset that is composed of a response yi and a p × 1 covariate
vector xi for i = 1, · · · , n. Responses may be continuous observations in classical
linear models, such as age, weight, income, and they may be discrete or ordinal
observations, such as differing severity of diseases and disease status (patients v.s.
healthy subjects). Covariates may be quantitative, such as age, or qualitative,
such as handiness, gender, and presence of risk factors (yes/no).

Regression models often include two key elements: a link function μi(β) =
g(xi, β) and a residual εi = yi − μi(β), where β is a q × 1 vector of regression
coefficients and g(·, ·) is an known mapping from Rp×Rq to R. Regression models
assume that

E[εi|xi] = 0 for all i = 1, · · · , n, (1)

where the expectation denotes the conditional expectation of ε given x. More-
over, nonparametric regressions include a link function μi = g(xi), in which
g(·) is an unknown function, and a residual εi = yi − g(xi), for which equation
(1) holds.

To carry out statistical inference on β (or g(·)), we need at least three statis-
tical methods. The first one is an estimation method for calculating parameter
estimate of β, denoted by β̂. Various estimation methods include maximum like-
lihood estimation, robust estimation, estimating equations, among many others.
The second is to prove that β̂ is a consistent estimator of β and has certain
asymptotic distribution (e.g., normal). The third is to develop test statistics for
testing the hypotheses:

H0 : h0(β) = b0 vs. H1 : h0(β) �= b0, (2)

where h0(·) is an r × 1 vector function and b0 is an r × 1 specified vector. In
most applications, we are interested in testing h0(β) = Hβ = b0 for a given
r × q matrix H [18], [7], [8].

2.2 Intrinsic Regression for Manifold-Valued Data

We formally develop an intrinsic regression model for manifold-valued responses
and covariates of interest from n observations. Suppose we observe a dataset
{(Si,xi) : i = 1, · · · , n}, where Si are points on a Riemannian manifold S and
xi are covariates of interest in Euclidean space.
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The intrinsic regression model first involves modeling a ‘conditional mean’ of
an manifold-valued response Si given xi, denoted by μi(β) = g(xi, β), where
g(·, ·), called link function, is a map from Rp × Rq to the manifold S. Note
that we just borrow the term ‘conditional mean’ from Euclidean space. Given
two points Si and μi(β) on the manifold M, the intrinsic regression model also
define the residual or ‘difference’ between Si and μi(β) to ensure that μi(β) is
the proper ‘conditional mean’ of Si given xi. At μi(β), we have a tangent space
of the manifold S, denoted by Tμi(β)S, which is a Euclidean space representing
a first order approximation of the manifold S near μi(β). Then, we calculate the
projection of Si onto Tμi(β)S, denoted by Logμi(β)(Si), which can be regarded
as the difference between Si and μi(β) for i = 1, · · · , n. If S is a Euclidean space,
then Logμi(β)(Si) = Si − μi(β).

The intrinsic regression model for manifold-valued data is then defined by

E[Logμi(β)(Si)|xi] = 0, (3)

for i = 1, · · · , n, where the expectation is taken with respect to the conditional
distribution of Si given xi. Model (3) does not assume any parametric distribu-
tion for Si given xi, and thus it allows for a large class of distributions [15]. In
addition, our model (3) does not assume homogeneous variance across all i. This
is also desirable for the analysis of imaging measures, such as diffusion tensors,
because between-subject and between-voxel variability in the imaging measures
can be substantial.

2.3 Estimation

We calculate an intrinsic least squares estimator (ILSE) of the parameter vector
β, denoted by β̂, by minimizing the total residual sum of squares given by

Gn(β) =
n∑

i=1

d(Si, μi(β))2 =
n∑

i=1

<< Logμi(β)(Si), Logμi(β)(Si) >>, (4)

where << ·, · >> is an inner product of two tangent vectors in Tμi(β)S and d(·, ·)
is the Riemannian distance function on S. Thus, let Gn(β) =

∑n
i=1 d(Si, μi(β))2,

β̂ solves the estimating equations given by

∂βGn(β) =
n∑

i=1

∂βd(Si, μi(β))2 = 0, (5)

where ∂ denotes partial differentiation with respect to a parameter vector, such
as β. The ILSE is closely related to the intrinsic mean μ̂IM of S1, · · · ,Sn ∈ S,
which is defined as

μ̂IM = argminμ

n∑
i=1

d(μ,Si)2. (6)

In this case, μi is independent of i and covariates of interest. Moreover, un-
der some conditions, we can establish consistency and asymptotically normality
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of β̂. A Newton-Raphson algorithm is developed to obtain β̂. Let ∂βGn(β)
and ∂2

βGn(β), respectively, be the first- and second-order partial derivatives

of Gn(β). We iterates β(t+1) = β(t) + ρ{−∂2
βGn(β(t))}−1∂βGn(β(t)), where

0 < ρ = 1/2k0 ≤ 1 for some k0 ≥ 0 is chosen such that Gn(β(t+1)) ≤ Gn(β(t)).
We stop the Newton-Raphson algorithm when the absolute difference between
consecutive β(t)’s is smaller than a predefined small number, say 10−4. Finally,
we set β̂ = β(t). In addition, because −∂2

βGn(β(t)) may not be positive defi-

nite, we use E[−∂2
βGn(β(t))] instead of −∂2

βGn(β(t)) in order to stabilize the
Newton-Raphson algorithm.

2.4 Hypotheses and Test Statistics

In medical analysis, most scientific questions of interest involve a comparison of
manifold-valued data across diagnostic groups or detecting change in manifold-
valued data across time [8], [19]. These scientific questions usually can be for-
mulated as follows:

H0 : Hβ = b0 vs. H1 : Hβ �= b0. (7)

We test the null hypothesis H0 : Hβ = b0 using a score test statistic Wn defined
by

Wn = Ln
T Î−1Ln, (8)

where Ln = n−1/2 ∑n
i=1 Ûi(β̃) and Î = n−1 ∑n

i=1 Ûi(β̃)Ûi(β̃)T , in which β̃

denotes the estimate of β under H0 and Ûi(β̃) is associated with ∂βGn(β). It
can be shown that Wn is asymptotically χ2 distributed.

2.5 Positive Definitive Matrices

We develop an intrinsic regression for SPDs. We introduce the tangent vector and
tangent space at any μ ∈ Sym+(m), the space of SPDs [8]. The tangent space
of Sym+(m) at μ, denoted by TμSym+(m), is identified with a copy of Sym(m),
the space of symmetric matrices. Then we consider the scaled Frobenius inner
product of any two tangent vectors Yμ and Zμ in TμSym+(m), which is defined
by << Yμ, Zμ >>= tr(Yμμ−1Zμμ−1). Given the inner product, we can formally
construct the Riemannian geometry of Sym+(m) [8].

We consider the link function μ(x, β) using the Cholesky decomposition of
μ(x, β). For the i−th observation, through a lower triangular matrix Ci(β) =
C(xi, β) = (Cjk(xi, β)), the Cholesky decomposition of μ(xi, β) equals μ(xi, β)
= μi(β) = Ci(β)Ci(β)T . We must specify the explicit forms of Cjk(xi, β) for all
j ≥ k in order to determine all entries in μi(β). As an illustration, for m = 2, we
may choose the 2×2 matrix Ci(β) with C11(xi, β) = exp(zT

i β(1)), C12(xi, β) =
0, C21(xi, β) = zT

i β(2), and C22(xi, β) = exp(zT
i β(3)), where zi = (1,xT

i )T and
β(k) for k = 1, 2, 3 are subvectors of β. We introduce a definition of ‘residuals’ to
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ensure that μi(β) is the proper ‘conditional mean’ of Si given xi. Then, we calcu-
late the residual Logμi(β)(Si) given by Ci(β) log(Ci(β)−1SiCi(β)−T )Ci(β)T .

The intrinsic regression is defined in (3).
The first- and second-order derivatives of Gn(β) are given as follows. The a-

th element of ∂βGn(β) is given by−2
∑n

i=1 tr{Ei(β)Ci(β)−1∂βaμi(β)Ci(β)−T },
where Ei(β) = log(Ci(β)−1SiCi(β)−T ) and ∂βa = ∂/∂βa. The (a, b)-th element
of ∂2

βGn(β) is given by −2
∑n

i=1 tr{∂βb
Ei(β)[Ci(β)−1∂βaCi(β) + ∂βaCi(β)T

Ci(β)−T ]} − 2
∑n

i=1 tr{Ei(β)∂βb
[Ci(β)−1∂βaCi(β) + ∂βaCi(β)T Ci(β)−T ]},

where ∂2
βaβb

= ∂2/∂βa∂βb and ∂βb
Ei(β) =

∫ 1
0 h(s, β)ds, in which

h(s, β) = {[S̃i(β)− I3]s + I3}−1∂βb
S̃i(β){[S̃i(β)− I3]s + I3}−1 (9)

and S̃i(β) = Ci(β)−1SiCi(β)−T .

2.6 Median Representation

We develop an intrinsic regression for m-reps. An m-rep model consisting of k
medial atoms can be considered as the direct product of k copies of M(1) =
R3 × R+ × S(2) × S(2), that is M(k) =

∏k
i=1 M(1), where S(2) is the sphere

in R3 with radius one [5]. We introduce a tangent space TP M(1) at the point
P = (O, r,n0,n1), where O ∈ R3, r ∈ R+, and n0 and n1 ∈ S(2). The tangent
vector U ∈ TP M(1) takes the form U = (U0, Ur, Un0 , Un1), where U0 ∈ R3, Ur ∈
R, Uni ∈ R3 and UT

ni
ni = 0 for i = 0, 1. The inner product of any two tangent

vectors U (0) and U (1) in TP M(1) is defined by << U (0), U (1) >>= U (0)T U (1).
The geodesic distance between P and P1 = (O1, r1,n0,1,n1,1) in M(1) is uniquely
given by√

(O −O1)T (O −O1)+(log(r)−log(r1))2+[arccos(nT
0 n0,1)]2+[arccos(nT

1 n1,1)]2.

To introduce an intrinsic regression for m-rep, we need to define a link func-
tion μ(x, β) = (μO(x, β), μr(x, β), μ0(x, β), μ1(x, β))T ∈ M(1), which is a
10 × 1 vector. For instance, we may set μO(x, β) = (xT β1,x

T β2,x
T β3)

T and
μr(x, β) = exp(xT β4). A link function for μk(x, β) = (μx

0k(β), μy
0k(β), μz

0k(β))
(k = 0, 1) is based on the stereographic projection given by

μx
0k

1− μz
0k

= g5(xT β5,k) and
μy

0k

1− μz
0k

= g6(xT β6,k), (10)

where g5(·) and g6(·) are known link functions and β5,k and β6,k are subvectors
of β. The residual Logμ(x,β)(P ) is given by

(O − μO(x, β), log(r/μr(x, β)), Logμ0(x,β)(Un0), Logμ1(x,β)(Un1)),

where Logμ0(x,β)(Un0) = arccos(μ0(x, β)T Un0)v/||v||2, in which v = Un0 −
(μ0(x, β)T Un0)μ0(x, β).



198 X. Shi et al.

Fig. 2. Results for the m-rep shape analysis result mapped to the surface of the
hippocampal schizophrenia study: the color-coded uncorrected p−value maps of the
diagnostic status effects for (a) the left hippocampus and (b) the right hippocampus;
the corrected p−value maps for (c) the left hippocampus and (d) the right hippocampus
after correcting for multiple comparisons

3 Results

To demonstrate our regression method, we applied our methods to the m-rep
shape of the hippocampus structure in the left and right brain hemisphere in
schizophrenia patients and healthy controls, collected at 14 academic medical
centers in North America and western Europe [19]. There were 56 healthy con-
trols and 238 schizophrenia patients who met the following criteria: age 16 to 40
years; onset of psychiatric symptoms before age 35; diagnosis of schizophrenia,
schizophreniform, or schizoaffective disorder according to DSM-IV criteria; and
various treatment and substance dependence conditions.

We investigated the difference of m-rep shape between schizophrenia patients
and healthy controls while controlling for other factors, such as gender and age.
The hippocampi m-rep shape at the 24 medial atoms of the left and right brain
were used as the response in our intrinsic regression model. Covariates of interest
include Whole Brain Volume (WBV), race (Caucasian, African American and
others), age (in years), gender, and diagnostic status (patient or control).

We tested the diagnostic status effect on the whole m-rep structure. We pre-
sented the color-coded p-values of the diagnostic status effects across the atoms
of both the left and right reference hippocampi in Fig 2 (a) and (b) and the
corresponding adjusted p-values using false discovery rate were shown in Fig 2
(c) and (d). We observed large significance area in the left hippocampus, and
some in the right hippocampus even after correcting for multiple comparisons.

4 Discussion

We have developed an intrinsic regression model for the analysis of manifold-
valued data as responses in a Riemannian manifold and their association with
a set of covariates. We have developed an estimation procedure to calculate the
intrinsic least square estimates. We have developed score statistics for testing
linear hypotheses on unknown parameters. We plan to apply our method to
other manifold-valued data including the Grassmann manifold, planar shapes,
and deformation field.
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Abstract. This paper presents a study of gender differences in adult
human cerebral cortical folding patterns. The study employs a new mul-
tivariate statistical descriptor for analyzing folding patterns in a region of
interest (ROI) and a rigorous nonparametric permutation-based scheme
for hypothesis testing. Unlike typical ROI-based methods that summa-
rize folding complexity or shape by single/few numbers, the proposed de-
scriptor systematically constructs a unified description of complexity and
shape in a high-dimensional space (thousands of numbers/dimensions).
Furthermore, this paper presents new mathematical insights into the re-
lationship of intra-cranial volume (ICV) with cortical complexity and
shows that conventional complexity descriptors implicitly handle ICV
differences in different ways, thereby lending different meanings to “com-
plexity”. This paper describes two systematic methods for handling ICV
changes in folding studies using the proposed descriptor. The clinical
study in this paper exploits these theoretical insights to demonstrate
that (i) the answer to which gender has higher/lower “complexity” de-
pends on how a folding measure handles ICV differences and (ii) cortical
folds in males and females differ significantly in shape as well.

1 Introduction

Cerebral cortical folding forms an underpinning for the cognitive skills and be-
havioral traits in humans. For the last few decades, magnetic resonance (MR)
imaging has enabled in vivo studies of human cortical folding patterns. One class
of approaches to folding analysis rely on spatial normalization [1,2] and subse-
quently perform statistical hypothesis testing at every voxel or surface element
in the normalized space. However, the difficulty in finding sufficiently-many ho-
mologous features [3,4] may directly affect the normalization and, thereby, the
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reliability of findings in the clinical study. Furthermore, the phenomenon of cor-
tical folding has an inherent large-scale or non-local character. A second class
of approaches propose region-based folding descriptors [5,6,7], which avoid the
challenges associated with normalization by reducing spatial sensitivity from a
voxel to a region of interest (ROI) that can be reliably defined in each individual
based on observed homologous features.

Most studies in the literature measure only the complexity of folding, ignoring
information related to shape, orientation, etc. Although some recent ROI-based
approaches propose descriptors incorporating shape information [8], they fail to
integrate all the information on shape and complexity in a single descriptor.
Furthermore, typical ROI-based approaches produce scalar or low-dimensional
summary statistics for the entire ROI, risking serious information loss. This
paper builds on a new ROI-based statistical framework for folding analysis [9]
relying on a rich multivariate non-local descriptor that captures the spectrum
of complexity and shape. The proposed descriptor is a joint probability den-
sity function (PDF) of two variables, one capturing surface complexity and the
other capturing surface shape. The paper proposes a new application of a non-
parametric permutation-based approach for statistical hypothesis testing with
multivariate cortical descriptors. In these ways, the proposed framework couples
the reliability of ROI-based analysis with the richness of the proposed descriptor.

While several folding studies concern neurodevelopmental disorders, studies
on gender differences, in the normal population, have received very little atten-
tion. Moreover, while one study [10] using the fractal-dimension (FD) measure
reported higher complexity in adult females, two very recent studies [11,12] using
the isoperimetric ratio (IPR) measure report higher complexity in larger adult
brains (i.e. males). The study in this paper elucidates these seemingly-conflicting
findings. This paper provides new theoretical insights into relationships between
folding measures with intra-cranial volume (ICV), pinning them down to the
fundamental issues of scale and replication. It shows that standard folding mea-
sures in the literature imbibe different meanings of “complexity”. It shows that
handling ICV differences in folding studies may not be as simple as including
ICV as a covariate in the underlying statistical test. This paper proposes two sys-
tematic methods for handling ICV changes in folding studies using the proposed
descriptor and shows that while the findings using one method are consistent
with [10], those using the other method are consistent with [11,12].

While it is well known [5] that the shape of cortical folds is asymmetric, i.e.
surface area buried in sulci (predominantly concave areas) being more than that
for gyri, the literature on gender differences in folding ignores studies of shape.
This paper is, perhaps, the first to demonstrate that the fraction of the cortical
surface that is convex (predominantly gyri) is significantly higher in males.

2 Background

This section describes a variety of existing ROI-based folding descriptors summa-
rizing a small part of the complexity-shape spectrum via one or a few numbers.
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One class of descriptors quantify surface complexity alone. FD [10] captures
the rate of increase in surface area over multiscale representations of the surface.
Gyrification index (GI) [13] is the ratio of the lengths of a planar curve to its
envelope. Convexity ratio (CR) [6] is the ratio of the area of the surface to the
area of the convex hull/envelope of the surface. IPR [6,11,12] is the ratio of
the surface area to the two-third power of the volume enclosed by the surface.
Average curvedness (AC) [8] measures the deviation of the surface from a plane.
Another measure is the 2D centroid of the histogram (HC) of curvature [7].

Some folding descriptors capture a part of the complexity-shape spectrum
by summing up specific measures for all surface patches, e.g. intrinsic curva-
ture index (ICI) [5] sums up degrees of hemisphericity, mean curvature norm
(MCN) [6] sums up degrees of hemisphericity and cylindricity, Gaussian cur-
vature norm (GCN) [6] sums up degrees of hemisphericity and saddle-likeness,
average shape index (AS) [8] sums up shape measures, etc.

3 Methods and Materials

3.1 A Multivariate High-Dimensional Folding Descriptor

This section describes a novel high-dimensional multivariate surface descriptor
that captures the spectrum of complexity and shape [9].

At every point m on surfaceM, the principal curvatures Kmin(m) andKmax(m)
completely describe the local patch geometry. The space < Kmin, Kmax > can be
reparameterized into the orthogonal basis of curvedness C and shape index S [14],
meaningfully separating notions of bending and shape (Figure 1).

We propose the following generative model of cortical surfaces. Let us consider
C : M→ [0,∞] and S : M→ [−1, 1] as random fields. Let us also consider the
joint PDF that captures the dependencies between C(m) and S(m) for a specific
class of surfaces. Consider a finite collection O = {dM1, . . . , dMT } of T surface

(a) (b) (c) (d)

Fig. 1. (a) A sagittal slice of an MR image overlapped with the zero crossing of the
level set that represents the cortical surface. (b) Curvedness C(m) values painted on
M (red→blue ≡ low→high). (c) Shape-index S(m) ∈ [−1, 1] values painted on M
(red→blue ≡ −1 → 1). (d) Proposed descriptor PM(C, S) (blue→red ≡ low→high;
for all plots in this paper, horizontal axis ≡ S and vertical axis ≡ C).
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patches, located at points {m1, . . . , mT } ∈ M uniformly distributed over the sur-
faceM, coveringM. Then, {(C(m1), S(m1)), . . . , (C(mT ), S(mT ))} is an instan-
tiation of the field of random vectors at locations {m1, . . . , mT }. We assume that
the random field is stationary, i.e. each observation (C(mt), S(mt)), is randomly
drawn from a single PDF PM(C, S). The complexity and variability in cortical
folding suggests that dependencies between random vectors (C(mt), S(mt)) and
(C(ms), S(ms)) decrease at a fast rate with increasing geodesic distance between
locations mt and ms. Thus, we assume that the random field is mixing.

We propose the joint PDF PM(C, S) as the multivariate high-dimensional
descriptor of cerebral cortical folding patterns for surface M (Figure 1(d)).
PM(C, S) subsumes scalar descriptors like ICI, MCN, GCN, AC, AS, HC. Dis-
cretizing PM(C, S) on an MxN grid leads to an MN -dimensional descriptor. In
this paper M = N = 64.

For a given surface M, we propose to estimate the folding pattern descriptor
PM(C, S) from the sample {(C(mt), S(mt)) : t = 1, . . . , T} drawn from a station-
ary mixing random field. A consistent nonparametric estimate [15] for the folding
descriptor is the Gaussian mixture: PM(C, S) ≈ 1

T

∑T
t=1 Gt((C(mt), S(mt)), Σt),

where G((μ1, μ2), Σ) is a 2D Gaussian kernel with mean (μ1, μ2) and covariance
Σ. Consistency requires an optimal choice of Σt, dependent on the T , and we em-
ploy a penalized maximum likelihood scheme [16] to estimate Σt; the literature
provides many schemes. Figure 1(d) shows a typical PM(C, S) that is multimodal
and unlike standard parametric PDFs, thus justifying nonparametric PDF esti-
mation for reliability. In practice, typical ROIs yield sample sizes T in the range
of thousands or tens of thousands, producing robust estimations.

3.2 A Testing Scheme for Multivariate Histogram Analysis

This section proposes a new application of a known nonparametric permutation-
based approach, i.e. statistical nonparametric mapping (SnPM) [17], for statisti-
cal hypothesis testing with N multivariate cortical descriptors in a clinical study,
i.e. {PMn(C, S) : n = 1, . . . , N}, Unlike typical usage of SnPM for functions on
the image or surface domain, which necessitates spatial normalization, we pro-
pose to apply SnPM to discretized versions of the cortical descriptors PMn(C, S).
Unlike conventional multivariate histogram analysis (e.g. Hotelling T2), SnPM
provides the locations (pixels and clusters), in the histogram domain < C, S >,
for significant differences/effects.

3.3 Complexity and Volume Relationships: New Insights

This section presents new theoretical insights into (i) relationships between fold-
ing and ICV and (ii) different meanings of “complexity” underlying descriptors.

In Figure 2, S1 and S2 occupy equal volumes but S2 has finer-scale features
than S1. Desirably so, all measures inform that S2 is more complex than S1.

Now consider surfaces occupying different volumes. ICV increase can be as-
sociated with two kinds of effects on cortical surfaces: (i) folds are scaled up/
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Fig. 2. What does “complexity” mean when volumes differ: issues of scale and repli-
cation. S1 and S2 occupy the same volume; S2 is more complex than S1. S3 and S4
occupy larger volumes than S2. S3 enlarges/scales the folds in S2. S4 replicates the
folds in S2. How do we compare the complexities of (i) S3 and S2 and (ii) S4 and S2 ?

enlarged, e.g. comparing S2 and S3, or (ii) folds are replicated, e.g. comparing S2
and S4. This section shows that the meaning of “complexity” imbibed in folding
descriptors reflects how the descriptors handle scaling and replication.

One class of measures, including GI and CR (both normalized by their convex-
hull surface area), are invariant to the aforementioned issues of scale and repli-
cation. Thus, GI and CR inform that S2, S3, and S4 have equal complexity.

A second class of measures, including IPR, ICI, MCN, GCN, and AC [6,11,12,8]
(all normalized by surface-patch area or, equivalently, ICV2/3), is designed to be
invariant to scale. However, this sacrifices invariance to replication. Thus, these
measures inform that S3 and S2 have equal complexity, but S4 is more complex
than S2.

A third class of measures, including FD [10], HC [7], and the proposedPM(C, S)
in Section 3.1, are invariant to replication, but not scale. Unlike the first two classes,
these measures are not normalized via area or ICV2/3. Thus, they inform that S4
and S2 are equally complex, but S3 is less complex than S2.

We now propose a new scale-invariant descriptor. Enlarging volume by a factor
β3 reduces curvedness by a factor of β. Indeed, unit-area patches in enlarged
surfaces appear more planar (Taylor’s theorem). Thus, a scale-invariant version
of PM(C, S) is PM(Cβ, S), where β3 is the ratio of the mean group ICV to the
ICV for cortical surface M. Similar to the second class of measures, PM(Cβ, S)
informs that S3 and S2 have equal complexity, but S4 is more complex than S2.

Subsequent sections denote P replication = PM(C, S) and P scale = PM(Cβ, S).

3.4 Clinical Cohort, Imaging, and Image Analysis

The cohort comprised T1 MR images (1 mm3 isotropic voxels) of 30 females
(age 34.8± 9.6 years) and 27 males (age 36± 11 years), obtained after enforcing
quality-assurance checks on every image in the dataset in [18].

Image analysis: (i) parcellate lobes, (ii) segment tissues [19], (iii) resample
segmentations to 0.43 mm3 isotropic voxels, (iv) fit a level set to the cortical gray-
white interface M, (v) compute (C(m), S(m))∀m ∈ M, (vi) estimate P replication
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(Section 3.1) and P scale (Section 3.3) for all lobes, (vii) cross-sectional test for
gender differences via SnPM (Section 3.2). P replication has been validated in [9].

4 Results and Discussion

4.1 Gender Differences in Cortical Complexity and Shape in Adults

The proposed replication-invariant folding descriptor P replication,
described in Section 3.1, produces t maps (Figure 3(a)-(d)) indicating larger his-
togram mass for males (red) in low-curvedness regions (bottom half) and larger
histogram mass for males (red) in convex regions (right half). SnPM produces
significant clusters for the occipital lobes (Figure 3(e)), but not for other lobes.
Nevertheless, when the ROI size is increased to a hemisphere, these effects get
significantly strengthened; evident in t maps (Figure 3(f),(h)) and significant
clusters (Figure 3(g),(i)). These results show that female cortical surfaces are
more complex based on P replication (consistent with [10]) and significantly less
convex than those of males. Figures 3(j)-(k) visualize the complexity differences.

The proposed scale-invariant folding descriptor P scale, described in Sec-
tion 3.3, produces t maps (Figure 4(c)) indicating larger histogram mass for
males (red) in high-curvedness regions (top half) for all lobes. Complexity dif-
ferences are very strong, producing significant locations (Figure 4(d)) and clus-
ters for all lobes, and overwhelm shape differences. These results show that,

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Fig. 3. (a)-(d) Student’s t statistics for a cross-sectional study with P replication (pos-
itive t ≡ larger value in males) for frontal, parietal, temporal, and occipital lobes, re-
spectively, in the left hemisphere. Similar patterns exist for lobes in right hemisphere.
(e) Significant clusters via SnPM for left occipital lobe. For all plots in this paper,
corrected p values for significant locations/clusters are indicated by coloring them
by the associated z score: e.g. z(p = 0.05) = 1.65, z(p = 0.005) = 2.58. (f)-(h) t
statistics and (g)-(i) significant clusters for P replication for left hemisphere (4 lobes)
and whole brain (8 lobes), respectively. A similar pattern exists for the right hemi-
sphere. (j)-(k) female and male brains, respectively, painted by C values (red→blue
≡ low→high). The female brain appears more blue/cyan (more “complex”).
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(a) (b) (c) (d) (e) (f)

Fig. 4. (a)-(b) Average of P scale for males and females, respectively, for the left frontal
lobe. (c)-(d) t statistics (positive t ≡ larger value in males) and significant locations,
respectively, for the left frontal lobe. Similar patterns exist for all other lobes. (e)-
(f) female and male brains, respectively, adjusted for ICV and painted by C values
(red→blue ≡ low→high). The female brain appears more red/yellow (less “complex”).

when ICV differences have been accounted for (via P scale), male cortical sur-
faces are more complex than those of females. This interpretation is consistent
with [11,12]. Figures 4(e)-(f) help visualize the complexity differences.

This paper exploited two new multivariate high-dimensional (65536 dimen-
sional) folding descriptors, unifying complexity and shape information, to pro-
vide new mathematical insights into the different meanings of complexity in
the context of ICV differences. The paper exploits these insights to resolve two
seemingly-contradictory findings in the state of the art on gender-based corti-
cal folding, i.e. [10] and [11,12] differ in which gender has higher “complexity”.
The cross-sectional clinical study in this paper demonstrates that while the fe-
male cortex has more fine-scale features (which is the meaning of “complexity”
in [10]), the male cortex has a disproportionately greater bending in proportion
to its larger volume (which is the meaning of “complexity” in [11,12]). Thus,
the results show that folding patterns in males differ from those in females in
two fundamental ways: (i) enlargement/scaling of folds and (ii) additional folds
or bending. Amazingly, the magnitude of the latter effect is (i) weak enough to
keep the bending in female folds, without any adjustment for ICV, more than
the bending in males, but (ii) strong enough to reject the hypothesis that folding
patterns in the two genders are simply scaled versions of each other. Further-
more, this paper is perhaps the first to show significant gender differences in
gyral/sulcal shape.

Recent studies [20] have found that the female cortex is thicker in some regions
even without compensating for lower ICV. After accounting for ICV differences,
the entire cortex is significantly thicker in females. The complementary find-
ings concerning cortical complexity, shape, and thickness might help explain the
similarities and differences in cognitive skills possessed by both genders.
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Abstract. For the automated analysis of cortical morphometry, it is crit-
ical to develop robust descriptions of the position of anatomical structures
on the convoluted cortex. Using the eigenfunction of the Laplace-Beltrami
operator, we propose in this paper a novel feature space to characterize the
cortical geometry. Derived from intrinsic geometry, this feature space is in-
variant to scale and pose variations, anatomically meaningful, and robust
across population. A learning-based sulci detection algorithm is developed
in this feature space to demonstrate its application in cortical shape anal-
ysis. Automated sulci detection results with 10 training and 15 testing
surfaces are presented.

1 Introduction

The analysis and registration of cortex morphometry is an important area in
human brain mapping and has produced valuable findings for the modeling of
both normal and pathological brains[1]. With the increasing availability of brain
scans from large scale studies[2], manual labeling becomes infeasible and it is thus
critical to automate the cortical shape analysis process and robustly resolve its
complicated and highly variable convolution pattern. In this paper, we propose
a novel feature space derived from the eigenfunction of the Laplace-Beltrami
operator to study the cortical surface. This feature space provides an intrinsic
and anatomically interesting characterization of locations on the cortical surface
and leads to compact modeling of anatomical landmarks invariant to scale and
natural pose differences.

One main goal of cortical shape analysis is the automatic labeling of the
major sulci that can serve as the landmarks for cortical normalization[1,3]. Var-
ious learning-based approaches have been developed to incorporate priors from
manual labeling[4,5,6,7,8]. The features used in previous work, however, rely on
coordinates in canonical spaces such as the Euclidean space of a brain atlas or
the unit sphere to model the position of anatomical landmarks on the cortex,
which is not intrinsic and can be sensitive to the image registration results.
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Roadmap for Medical Research, Grant U54 RR021813 entitled Center for Com-
putational Biology (CCB). Information on the National Centers for Biomedical
Computing can be obtained from http://nihroadmap.nih.gov/bioinformatics.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 208–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Cortical Shape Analysis in the Laplace-Beltrami Feature Space 209

(a) (b) (c) (d)

Fig. 1. (a) M. (b) M̃. (c) Level contours of f1 and the surface patches used to define
F2 and F3. (d) Medial(blue) and lateral(red) points of Dj .

This is especially problematic for pathological brains as they can exhibit large
deviations from standard atlases. To overcome this limitation, we propose to
characterize the relative locations of cortical landmarks with an intrinsic feature
space that has the nice property of being invariant to pose and scale variations.
This feature space is computed using the eigenfunction of the Laplace-Beltrami
operator[9,10,11,12] of the cortex and a series of surface patches to describe in-
trinsically the anterior/posterior, superior/inferior, and medial/lateral profile of
the cortex. A sulci detection algorithm in the feature space is also developed to
demonstrate the application of this feature space in cortical shape analysis.

The rest of the paper is organized as follows. In section 2, we propose the
Laplace-Beltrami feature space and develop the algorithm for its numerical com-
putation. In section 3, we develop a learning-based sulci detection algorithm in
the feature space to demonstrate its value in analyzing cortical anatomy. Pre-
liminary experimental results are presented in section 4. Finally conclusions are
made in section 5.

2 Laplace-Beltrami Feature Space of Cortical Surfaces

For general data analysis, a subset of the Laplacian eigenfunctions were used
to form a feature space [13]. To study medical shapes, however, this is not suf-
ficient because it does not take into account the anatomical knowledge of the
underlying structure. For elongated structures such as hippocampus, the sec-
ond eigenfunction of the Laplace-Beltrami operator was used to detect stable
anatomical landmarks [14]. In this section, we generalize this approach to corti-
cal surfaces and define a Laplace-Beltrami(LB) feature space F = (F1,F2,F3),
where Fi : M → R(i = 1, 2, 3) and M is a cortical surface, to capture the
anatomical characteristics of cortex morphometry. We assume all brains are in
the neurological orientation to remove ambiguity in the sign of eigenfunctions.

Compared with simple shapes such as hippocampus, the cortical surface is a
much more complicated structure. In particular, the highly variable convolution
pattern makes the extraction of stable features a challenging problem. To tackle
this difficulty, we follow the multi-scale strategy. Given a cortical surface M, we
construct its feature space using a surface M̃ that represents M at a coarser
scale. For numerical computation, we represent both M = (V , T ) and M̃ =
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(Ṽ , T ) as triangular meshes, where V and Ṽ are the set of vertices and T is
the set of triangles. In this work, the surface M̃ is obtained by applying the
Laplacian smoothing to the original surface M, thus the vertices in Ṽ have
one-to-one correspondences to vertices in V . As shown in Fig. 1(a) and (b), the
smoothing process filters out the fine details in the convolution pattern and keeps
geometric structures at the coarser scale shared across population, thus making
the smoothed surface suitable to derive intrinsic location characterizations that
are stable across population. Using the correspondences between Ṽ and V , we
can then compare detailed cortical features defined on the vertices of M in
the common feature space F and perform analysis tasks such as sulci and gyri
labeling.

For the surface M̃, the eigenfunctions of its Laplace-Beltrami operator ΔM̃
are defined as:

ΔM̃f = −λf (1)

The eigenvalues of ΔM̃ can be ordered according to their magnitude as 0 = λ0 ≤
λ1 ≤ λ2 ≤ · · · . The corresponding eigenfunction of λi is denoted as fi : M̃→ R.
By using the weak form of (1) and the finite element method, we can compute
the eigenfunctions by solving a generalized matrix eigenvalue problem:

Qf = λUf (2)

where Q and U are matrices derived with the finite element method.
The first feature function F1 is defined using the Reeb graph [15] of the second

eigenfunction f1, which minimizes the smoothness measure
∫
M̃ ||∇f ||dM̃ and

can be viewed as the smoothest non-constant projection from M̃ to the real line
R. As shown in Fig. 1(c), the nodes of the Reeb graph are the level contours of
the eigenfunction. Because the eigenfunction is generally a Moss function [16],
the Reeb graph of f1 has a tree structure. Small branches in the Reeb graph are
pruned according to the length of the associated level contour such that the final
graph has a chain structure. The level contours of the Reeb graph are denoted
as Ci(i = 0, · · · , N) with their order determined by the corresponding value of
the eigenfunction f1. Numerically we represent each contour as a polyline of
K points Ci = [Ci,1, Ci,2,, · · · , Ci,K ]. The linear interpolation relation between
these points and the vertices of M̃ can be expressed as the following equation:

C = AṼ (3)

where C = [C0, C1, · · · , CN ]T and A is the matrix representing the linear in-
terpolation operation. To quantitatively describe the anterior/posterior distri-
bution of the cortical surface, we define F1 on the level contours as F1(Ci,k) =
−1 + 2 ∗ i/N . To extend F1 from the level contours to the vertices of the entire
mesh, we solve the following regularized linear inverse problem:

||F1(C)−AF1(Ṽ)||2 + βF1(Ṽ)
T
QF1(Ṽ) (4)
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(a) F1. (b) F2. (c) F3.

Fig. 2. Feature functions plotted on M̃

where F1(C) and F1(Ṽ) are vectors of the values of F1 on the level contours and
the vertices of the mesh M̃, respectively, and the matrix Q is the same as in (2).

The regularization term F1(Ṽ)
T
QF1(Ṽ) encourages smoothness of the feature

function. By solving this least square problem, we obtain F1(Ṽ) as

F1(Ṽ) = (AT A + βQ)−1ATF1(C). (5)

To define the second feature function F2, we first compute a surface patch
approximating the minimal surface of each level contour Ci as proposed in [14].
As shown in Fig. 1(c), this surface patch smoothly interpolates the interior of
the contour. We use the eigenfunction of each surface patch to define F2 and
characterize the superior/inferior profile of cortical surfaces. Let gi

1 denote the
second eigenfunction of the Laplace-Beltrami operator of the i-th surface patch.
We then compute the Reeb graph of gi

1 by sampling it at N + 1 level contours
Dj(j = 0, · · · , N) and assign a value 1− 2Li(N−j)

NLmax
to Dj to describe its superior-

to-inferior position on the surface, where Li is the length of Ci and Lmax is
the maximal length of all level contours. The value of F2 on the points Ci,k is
defined using linear interpolation from the values of neighboring level contours
of gi

1. Following the same approach of computing F1, we can extend the second
feature function to the vertices of the entire mesh:

F2(Ṽ) = (AT A + βQ)−1ATF2(C) (6)

where F2(C) and F2(Ṽ) are the vectors of values of F2 on the level contours and
the vertices, respectively.

We use the same eigenfunction gi
1 of the surface patches to define the third

feature function F3 to characterize the medial/lateral distribution of the cortical
surface. Using the assumption that the cortical surface is in the neurological
orientation, we denote the two end points of the level contour Dj as the medial
and lateral point of Dj by comparing the magnitude of their x-coordinates, which
are plotted as the blue and red dots in Fig. 1(d). For the medial point of Dj ,
we assign a value (|2j−N |−N)Li

NLmax
. For the lateral point of Dj , we assign a value

(N−|2j−N |)Li

NLmax
. The same interpolation procedure of computing F2 is then applied

to extend these values to the entire mesh and obtain the feature function F3.
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As an illustration, we plot in Fig. 2(a), (b) and (c) the three feature functions
of the surface in Fig. 1(b) with the parameter β = 1, N = 100, K = 100. Using
the sign of F3, we can easily separate the medial and lateral side of the surface.
For each point on the medial or lateral side, the two functions (F1,F2) provide
an intrinsic description of its relative location on the cortex. With the only
assumption that the brain is in neurological orientation, these descriptions are
invariant to scale differences and natural pose variations.

3 Sulci Detection in the Feature Space

In this section, we demonstrate the application of the LB feature space in cortical
shape analysis by applying it to the automated detection of major sulci. To
illustrate the advantage of the LB feature space in describing the location on
cortical surfaces, we show in Fig. 3(a) two cortical surfaces in the Euclidean
space and their central and pre-central sulcus in Fig. 3(b). After we compute
the LB feature functions, we project the sulci of both surfaces into the common
space (F1,F2). From the result in Fig. 3(c), we can see the sulci are much better
aligned in the feature space than in the original space. This shows the invariance
of LB features and suggests their ability of building more compact sulcal models.

For automated sulci detection, we follow the learning-based approach in [8] by
first generating a sample space of candidate curves in the feature space and then
finding the most likely curve as the projection of the detected sulci in F . Due to
space limitation, we describe our method briefly in the following. To learn the
prior model of a sulcus in the feature space, we assume a training set of cortical
surfaces with manually labeled sulcal curves and compute the feature functions
for each surface to project the sulcus into the feature space. Using these projected
training curves, we estimate a density function p(−→x ,−→v ) with the Parzen window
method, where −→x represents a point of a curve in the feature space and −→v is the
tangent vector of the curve at the point −→x . For a curve in the feature space, we
can then compute its likelihood of being part of the major sulcus as the integral
of the density function on this curve divided by its length. Besides this local
model, we also apply the principal component analysis (PCA) [17] to the set of
projected training curves to capture their global characteristics.

There are four main steps in our sulci detection algorithm. Using the central
sulcus as an example, we illustrate the result generated from each step in Fig. 4.
Given a cortical surface M, we first construct the skeletal representation of the

(a) (b) (c)

Fig. 3. Sulci in the Euclidean and LB feature space
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(a) (b) (c) (d)

Fig. 4. (a) Hamilton-Jacobi skeletons of sulcal regions. (b) Skeletons in the LB feature
space. (c) The most likely path (red) in the LB feature space. (d) The detected central
sulcus on the original cortical surface.

folding pattern by computing the Hamilton-Jacobi skeleton of the sulcal regions
[18] as shown in Fig. 4(a). After that, we compute the feature space (F1,F2,F3).
For major sulci on the lateral surface, we then project all skeletal branches with
F3 > 0 onto the feature space (F1,F2). Similarly, skeletal branches with F3 < 0
will be processed for major sulci on the medial surface. We divide each skeletal
branch into curve segments of fixed length and compute their probability of
being on the major sulcus of interest using the density function p(−→x ,−→v ). Curve
segments with the probability greater than a threshold, which we set as 0.01 in
all our experiments, are then chosen as candidate segments on the major sulcus,
which we plot in blue in Fig. 4(b). In the third step, we follow the sample space
generation algorithm in [8] to construct a graph model from these curve segments
and generate a set of candidate curves via random walking on the graph model.
For each candidate curve, we compute its likelihood of being the major sulcus as
the product of the probability obtained from the density function and the PCA
model to account for both local and global information. The most likely path,
as shown in red in Fig. 4(c), is chosen as the projection of the detected sulcal
curve in the feature space. Finally we connect the skeletal segments of the most
likely path with curvature-weighted geodesics on the original surface M as the
automatically generated major sulcus shown in Fig. 4(d).

4 Experimental Results

In this section, we present preliminary experimental results on the detection of
two major sulci: the central and precentral sulcus using the LB feature space.
The data set is composed of 25 right hemispherical cortical surfaces of spherical
topology[19]. We manually labeled the two sulci on 10 of the 25 surfaces and use
them as the training data. The projection of these training curves in the feature
space is shown in the upper left of Fig. 5. From these training curves, we learn
the density function and PCA model. Using these prior models, we tested our
sulci detection algorithm on the other 15 cortical surfaces. The automatically
detected sulcal curves on these surfaces are plotted in Fig. 5.

From the results we can see that our method is able to successfully detect
the two major sulci on all testing surfaces. Even though the brains vary quite
significantly in terms of shape and orientation, our method is robust to such pose
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Fig. 5. Training data (upper left) and sulci detection results on the 15 testing surfaces
(red: central sulcus; blue: pre-central sulcus)

and geometric variations because it is designed in the space of intrinsic eigen-
features. In our future work, we will incorporate Markovian priors of neighboring
sulci in the feature space for the detection of multiple sulci and validate on larger
data sets of different populations.

5 Conclusion

In this paper, we proposed a novel approach of constructing feature spaces for
cortical shape analysis using the eigenfunction of the Laplace-Beltrami operator.
The LB feature space provides an intrinsic and anatomically meaningful way of
characterize locations on the cortical surfaces. We demonstrated its application
in automated sulci detection and preliminary experimental results have been
presented.
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Abstract. This paper introduces a novel approach to analyze Yakovle-
vian torque by quantifying the bending of human brain interhemispheric
fissure in three-dimensional magnetic resonance imaging. It extracts the
longitudinal medial surface between the cerebral hemispheres, which are
segmented with an accurate and completely automatic technique, as the
shape representation of the interhemispheric fissure. The extracted me-
dial surface is modeled with a polynomial surface through least-square
fitting. Finally, curvature features, e.g. principal, Gaussian and mean
curvatures, are computed at each point of the fitted medial surface to de-
scribe the local bending of the interhemispheric fissure. This method was
applied to clinical images of healthy controls (12 males, 7 females) and
never-medicated schizophrenic subjects (11 males, 7 females). The hy-
pothesis of the normal interhemispheric fissure bending (rightward in the
occipital region) was quantitatively demonstrated. Moreover, we found
significant differences (p < 0.05) between the male schizophrenics and
healthy controls with respect to the interhemispheric fissure bending in
the frontal and occipital regions. These results show that our method is
applicable for studying abnormal Yakovlevian torque related to mental
diseases.

1 Introduction

The left and right hemispheres of human brain are roughly equal in volume,
weight and density, however, the tissue distribution differs notably between the
two hemispheres. Among the most prominent observations of structural asym-
metry of human brain are the right frontal and left occipital petalias [1]. Petalias
are the greater protrusion of one hemisphere relative to the other at the frontal
and occipital regions.

The right frontal and left occipital petalias were revealed from computed to-
mography (CT) and magnetic resonance imaging (MRI) scans with width mea-
surements [2,3]. Bilder et al. [4] conducted the first volumetric study for petalias
in MRI using manual outlining of lobar volumes. Recently, automatic image
analysis methods have been applied to investigate the petalias of human brain
in MRI with respect to local volumetric asymmetry. The voxel-wise interhemi-
spheric differences in tissue volume [5] and tissue density [6] was studied using the
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reflection-based registration. In [7] and [8], the reflection method was extended
to produce low dimensional maps showing interhemispheric differences in tissue
volume in an array of column orthogonal to the mid-plane (two-dimensional) and
profiles of coronal slice volumes (one-dimensional). Thirion et al. [9] quantified
the regional volume differences between homologous structures in opposite brain
hemispheres by nonrigidly co-registering the two hemispheres with each other.

Another prominent geometric distortion of the brain hemispheres, known as
Yakovlevian torque, is that the right frontal lobe is torqued forward the left, and
the left occipital lobe extends across the midline (over the right occipital lobe)
and skews the interhemispheric fissure towards the right [1]. In this work, we
developed an automatic shape analysis method to analyze the interhemispheric
fissure bending of human brain in three-dimensional (3D) MRI using curvature
features. This method can provide morphological interpretations of brain asym-
metry that are easy to understand. To our knowledge, no previous studies of
Yakovlevian torque by quantifying the interhemispheric fissure bending exist.

2 Methods

2.1 Image Preprocessing

The cerebral hemispheres (CH) are extracted and segmented in MR brain im-
ages in the acquisition space by using an automatic CH segmentation technique
[10,11]. For inter-subject comparisons, the segmented CH volumes are normal-
ized into the ICBM152 space (dimension: 91×109×91 voxels, voxel size: 2×2×2
mm3) [12] with a 12-parameter affine transformation in SPM5 [13].

2.2 Representation of the Interhemispheric Fissure Shape

The interhemispheric fissure of human brain refers to the narrow groove separat-
ing the left and right CH. We use a medial interhemispheric surface to represent
the shape of the interhemispheric fissure. Denote the lateral, longitudinal and
vertical axes of the image space as X , Y and Z, respectively, the normalized
segmented left and right CH as lCH and rCH , the Euclidean distances from
a image voxel (x, y, z) to lCH and rCH as Dl(x, y, z) and Dr(x, y, z). We de-
fine the medial interhemispheric surface as a longitudinal surface S where each
surface point is located with its projection (y, z) on the Y Z plane. The lateral
magnitude xS of S at (y, z) is found as

xS(y, z) = argmin
x
{| Dl(x, y, z)−Dr(x, y, z) |}. (1)

To build a mathematical model of S, a two-variable polynomial of degree k

x̂S(y, z) =
k∑

i=0

i∑
j=0

aijy
i−jzj (2)

is used to fit it, where x̂S is the approximation of the lateral magnitude xS at
(y, z). Because the curvature features will be computed based on the second
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fundamental form of the fitted surface, the polynomial must be two-times dif-
ferentiable, i.e. k ≥ 2. In addition, k should not be very large, since the fitted
surface needs to be smooth enough to present the global bending tendency of the
interhemispheric fissure. The coefficients aij are estimated with the least-square
fitting approach. In the image space, let xS be the column vector containing
the xS values of all surface points, B be the matrix whose each row consists of
the values of item yi−jzj in Eq.2 for all (y, z). The least-square solutions of aij ,
written in a column vector a, are

a = (BT B)−1BT xS . (3)

2.3 Curvature Feature Computation

We compute the 2× 2 Hessian matrix

H =

⎛
⎜⎝

∂2x̂S

∂y2
∂2x̂S

∂y∂z

∂2x̂S

∂y∂z
∂2x̂S

∂z2

⎞
⎟⎠ , (4)

based on the approximation (Eq.2) of S. Through H, a number of curvature
features can be computed at each point of S. The two eigenvalues of H, κ1 and
κ2, are the principal curvatures, which describe the maximum and minimum
curvatures. The tangent directions of the principal curvatures, called principal
directions, are given by the orthogonal eigenvectors of H. The Gaussian curva-
ture K = κ1κ2 and mean curvature H = (κ1 + κ2)/2. The diagonal elements of
H, CXY = ∂2x̂S

∂y2 and CXZ = ∂2x̂S

∂z2 , are the curvatures in XY and XZ planes,
respectively. The above curvature features, except Gaussian curvature and prin-
cipal directions, are taken to be positive if the relative curve turns in the same
direction as the surface’s chosen normal, and otherwise negative.

We also define the integrated average of the curvature features in regions of
interest (ROIs). ROIs were extracted by masking S with the projection of the
LONI Probabilistic Atlas (LPBA40) [14] on its mid-sagittal plane. The employed
version of LPBA40 is LPBA40/SPM5, which was constructed by transforming
the manual delineations into the ICBM152 template where the longitudinal me-
dian plane is the mid-sagittal plane. Because the image containing the normalized
CH volumes is digital and has voxel size of 2×2×2 mm3, the projection of each
ROI on the mid-sagittal plane consists of a number of square cells with size of
2× 2 mm2. Thus, the integrated average ξf of a curvature feature f in a ROI is

ξf =

∑
ci

∫ y0
i +2

y0
i

∫ z0
i +2

z0
i

f(y, z)
√

(∂x̂S

∂y )2 + (∂x̂S

∂z )2 + 1 dydz∑
ci

∫ y0
i +2

y0
i

∫ z0
i +2

z0
i

√
(∂x̂S

∂y )2 + (∂x̂S

∂z )2 + 1 dydz
, (5)

where ci = [y0
i , y0

i + 2)× [z0
i , z0

i + 2) is a single cell in the projection of the ROI
on the mid-sagittal plane; y0

i and z0
i are the Y and Z coordinates of the origin

of ci; the numerator is the total value of f in the ROI; and the denominator is
the total area of the ROI. In this work, the numerical integrations in Eq.5 were
solved with the two-dimensional Simpson’s rule [15].
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2.4 Statistical Shape Analysis

We introduce two alternative ways to conduct the statistical shape analysis of
the curvature features of the interhemispheric surface between two subject pop-
ulations. The first is point-to-point analysis. The average of the normalized seg-
mented CH volumes of all studied subjects is computed. The projection of this
averaged volume on the ICBM152 template’s mid-sagittal plane are used to lo-
cate the points of interest (POIs) on the fitted medial interhemispheric surface.
Because the probability distribution types of the curvature features are unknown,
the nonparametric Wilcoxon Rank Sum test is used to assess the differences in
the curvature features between two populations at each POI. The second way
is ROI-to-ROI analysis. The computation of the integrated average curvatures
in ROIs includes a large amount of integration (see Eq.5). Therefore, due to
the central limit theorem, we can assume that the integrated average curvatures
are approximately Gaussian distributed. For each ROI, the integrated average
curvatures are analyzed between groups with t-test. For both the point-to-point
and ROI-to-ROI analyses, the significance level is set to 0.05.

3 Experiments and Results

3.1 Materials

The proposed method was applied to clinical T1-weighted MR images (voxel size:
1.5× 1.5× 1.0 mm3; dimension: 256× 256× 150 or 256× 256× 170 voxels) of 18
schizophrenic subjects (11 males, 7 females) and 19 healthy controls (12 males,
7 females) [16]. All the subjects were right-handed. The schizophrenic patients
were never-medicated, i.e. the brain asymmetry patterns in these subjects were
not affected by antipsychotic drugs.

3.2 Quantification for Interhemispheric Fissure Bending

The degree of the polynomial used for surface fitting (Eq.2) was 4, because it is
the lowest degree for the curvature features, computed based on the second fun-
damental form of the fitted surface, to remain nonlinear w.r.t to (y, z). Employing
polynomial surfaces with a higher degree would produce more accurate surface
fitting, but it would also produce non-essential shape information (noise) for
analyzing the interhemispheric fissure bending. In MRI, the laterally-oriented
interhemispheric fissure bending caused by Yakovlevian torque is mainly ob-
served in the transverse view (XY planes), and the geometric interpretations
of the Gaussian and principal curvatures are complicated. Therefore, we only
considered the mean curvature H and the curvature in the XY plane CXY in
the presented experiments. Because the projections of chosen normals on X axis
at each point of the fitted medial interhemispheric surface were always right-
ward, positive values of H and CXY indicated laterally rightward bending, and
negative values indicated leftward bending. Figs.1 and 2 illustrate medial inter-
hemispheric surface extraction, fitting and the corresponding H and CXY values
at POIs.
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Fitted medial surfaceMedial surfaceNormalized CHSegmented CHOriginal image

Fig. 1. Medial interhemispheric surface extraction and fitting. The first and second
rows respectively show examples for subjects with normal (rightward) and abnormal
(leftward) interhemispheric fissure bending. Original images were in neurological con-
vention, namely the left (or right) hemisphere was in the left (or right). The extracted
medial interhemispheric surfaces and fitted surfaces are visualized as longitudinal lines
in the transverse view.

C
XYH

Posterior
Y

Anterior

Fig. 2. Visualization in the sagittal view (Y Z plane) for the values of H and CXY at
POIs. The first and second rows respectively correspond to the subjects shown in the
first and second rows in Fig.1.
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Table 1. Means of ξH and ξCXY in the frontal and occipital regions for male controls
(MC), female controls (FC), male schizophrenics (MS), and female schizophrenics (FS)

MC FC MS FS
Frontal region

mean of ξH 7.8 e-4 -2.8 e-4 -8.2 e-4 7.5 e-5
mean of ξCXY 7.5 e-4 -3.4 e-4 -5.3 e-4 3.9 e-4

Occipital region
mean of ξH 1.8 e-3 2.4 e-4 8.9 e-4 8.3 e-4

mean of ξCXY 2.6 e-3 9.6 e-4 1.1 e-3 1.6 e-3

Fig. 3. Statistically significant results of point-to-point analysis (uncorrected p < 0.05)
for comparison between controls and schizophrenics with respect to H and CXY . The
first and second rows respectively present the results for males and females.

We calculated the integrated average values of H and CXY , denoted as ξH

and ξCXY , in ROIs corresponding to the frontal and occipital regions. For ev-
ery subject, the accuracy of the proposed method to automatically detect the
lateral direction of interhemispheric fissure bending with curvature features was
evaluated by comparing the bending direction indicated by the sign of ξH or
ξCXY in the occipital region against the bending direction manually identified
in the transverse slices of the original image. For all the 37 studied subjects, the
proposed method obtained correct detection for 34 subjects with ξH and for 36
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subjects with ξCXY . The means of ξH and ξCXY for different populations are
tabulated in Table 1. In all populations, the means of ξH and ξCXY in the occip-
ital region were positive, and their absolute values were always notably greater
than their counterparts in the frontal region. This indicates that, in average,
the interhemispheric fissure bending of right-handed subject mainly occurs in
the occipital region and is laterally rightward. This re-confirms the hypothesis
of interhemispheric fissure bending caused by normal Yakovlevian torque [1].

3.3 Statistical Shape Analysis between Controls and Schizophrenics

The results of statistical comparison between controls and schizophrenics with
point-to-point analysis are shown in Fig.3. It can be seen that, for males, POIs
of the significant difference between controls and schizophrenics were mainly lo-
cated in the superior frontal region for H and CXY , and in the inferior occipital re-
gion for H . Pointwise differences between female controls and schizophrenics were
not as great as in males. From the ROI-to-ROI analysis, we found significant dif-
ference between male controls and schizophrenics with respect to the integrated
average curvatures ξH (p = 0.0084) and ξCXY (p = 0.036) in the frontal region.
This finding is well in line with above results of point-to-point analysis.

4 Conclusion

The traditional methods based on width and volume measurements have limited
capabilities to quantify brain asymmetry in neuroimages. In this paper, we de-
veloped a novel method to automatically quantify the interhemispheric fissure
bending caused by Yakovlevian torque with curvature features in 3D MRI. This
method is applicable for making inferences on individual subjects as well as sub-
ject populations. In the application of the proposed method to a clinical data set
containing MR images of healthy controls and never-medicated schizophrenics,
the hypothesis of normal rightward interhemispheric fissure bending was quan-
titatively confirmed with the extracted curvature features. With the statistical
analysis of the curvature features, the interhemispheric fissure bending of male
schizophrenics was found to be significantly different from male controls’ in the
frontal and occipital regions.
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Abstract. Spatial normalization of images from multiple subjects is a common
problem in group comparison studies, such as voxel-based and deformation-based
morphometric analyses. Use of a study-specific template for normalization may
improve normalization accuracy over a study-independent standard template
(Good et al., NeuroImage, 14(1):21-36, 2001). Here, we develop this approach
further by introducing the concept of subject-matched templates. Rather than
using a single template for the entire population, a different template is used
for every subject, with the template matched to the subject in terms of age,
sex, and potentially other parameters (e.g., disease). All subject-matched tem-
plates are created from a single generative regression model of atlas appearance,
thus providing a priori template-to-template correspondence without registration.
We demonstrate that such an approach is technically feasible and significantly
improves spatial normalization accuracy over using a single template.

1 Introduction

A essential task in group comparison studies is the normalization of all individual
anatomies in a subject population to a joint template, which provides the reference
coordinate system for statistical analysis. Hundreds such studies haven been published
in the fields of voxel-based morphometry [1] and deformation-based morphometry [2]
alone, and others come from functional and diffusion tensor magnetic resonance (MR)
imaging studies.

As noted by Good et al. [3], it is typically advantageous to use a template generated
from the population specific to a study itself, rather than a generic template shared by
many different studies. Despite many years of research, the image registration algo-
rithms used for normalization are still imperfect. In particular, these algorithms tend to
produce less accurate coordinate correspondences when the images to register are very
different, be it in terms of morphology or image intensities. Thus, it is not surprising
that a study comparing the brains of younger adults would achieve better normalization
using a template representing a younger brain than one representing an older brain.

This example can be considered an application of a minimum deformation template
(MDT) [4]. The fundamental principle of MDT is to construct a template that mini-
mizes, on average, the deformation applied to all individual images when they are de-
formed to that template, thus increasing the average registration accuracy as deformation
is minimized.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 224–231, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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(a) (b)

Fig. 1. Illustration of the difference between a minimum-deformation template and subject-
matched templates from a single regression appearance model. (a) Each subject image (numbered
1 through 7) is registered to the Minimum Deformation Template. (b) Each subject image is reg-
istered to its own subject-matched template. All subject-matched templates relate to the model
mean template via known transformations (dashed arrows), which do not need to be computed
by registration.

One problem with study-specific templates is that their unique quality poses a se-
rious challenge for comparison of results across studies. We have recently suggested,
albeit not experimentally demonstrated, a technique [5], to address this problem by
generating study-appropriate templates, rather than study-specific ones, from a single
study-independent appearance model of brain anatomy, so that all different templates
remain compatible via a priori dense correspondences between them. The appearance
model itself is created by a regression-based modeling framework, which is similar to
the shape-regression framework by Davis et al. [6].

Our contribution in this paper is to take the idea of study-specific or study-appropriate
templates further by using subject-matched individual templates. In other words, we
propose to use a different template for normalization of each subject’s images, such that
the subject demographic parameters (e.g., age, sex) match the corresponding template
parameters. As all templates are generated from the same regression appearance model,
they all relate to a common “mean model” via a priori coordinate transformations. The
mean model provides a natural reference system for all studies that use instances of the
same model as their templates.

The concept of using subject-matched instances of an appearance model as templates
is similar to registration using an active appearance model [7], wherein registration is
performed by varying model parameters until the generated model instance optimally
matches the target image. Our approach is substantially different, however, in that it
decouples the model parameter determination, which we achieve directly by using a
regression-based rather than PCA-based model, from the residual nonrigid registration.
The ultimate normalization transformation for each subject is thus a concatenation of
a transformation from mean template to subject-matched template, which is defined by
the appearance model, with a second transformation from subject-matched template to
subject image, which is determined via registration. This is illustrated in Fig. 1.
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The goal of our proposed method is to improve registration accuracy and achieve
better normalization of all subjects by reducing the residual deformations between
subject-matched templates and subject images. We demonstrate the effect in this paper
by normalizing images from 64 normal subjects to subject-matched as well as per-study
templates and by comparing the overlaps of tissue segmentations as a measure of spatial
normalization accuracy.

2 Methods

2.1 Test Subjects

To test spatial normalization, MR images from 64 normal controls, 30 men and 34 women,
age range 22.4 to 79.2 years (mean±std.dev. = 50.5±15.2 years) were acquired as part of an
ongoing study in our laboratory. For each subject, aT1-weighted three-dimensional image
with 256×256×124 pixels (pixel size 0.9375×0.9375×1.25)was acquired on a 3T GE clin-
ical scanner using a SPoiled Gradient Recalled echo (SPGR) sequence. All images were
bias-field corrected [8] using in-house software, skull stripped using FSL BET [9], and
segmented into three tissue classes (gray matter: GM, white matter: WM, cerebrospinal
fluid: CSF) using FSL FAST [10].

2.2 Template Model Generation

The template model was created from MR images of 36 normal subjects (none of them
part of the above test set) scanned at 3T. Skull-stripped SPGR images from all subjects
were aligned using a simultaneous groupwise nonrigid registration algorithm [11]. A
regression appearance model was then created that relates the two independent vari-
ables age and sex to anatomical shape and image intensities. Details of the regression
appearance modeling procedure and the input data used here can be found in Rohlfing
et al. [5].

In short, all input images were first aligned using template-free, unbiased groupwise
nonrigid image registration. Template shape was then modeled analogous to the active
deformation model [12], but using generalized multi-linear regression instead of prin-
cipal components analysis. The resulting model relates each subject’s image space to a
common template space, where the latter depends on the independent variables of the
model. To create actual atlas images in template space, image intensity at each pixel
was also modeled via the same regression model, rather than simple averaging [13].
The result of the modeling procedure is an appearance model than can be instantiated
for arbitrary values of the independent variables. For the model used here, each such
instance represents a brain of given age and sex, but all instances are related to each
other via known coordinate transformations defined by the regression model.

2.3 Experimental Procedure

The SPGR image of each of the 64 test subjects was registered independently to: a) each
of seven mixed-sex template, instantiated for ages 20, 30, 40, 50, 60, 70, and 80 years, b) a
template that matched subject age and sex, c) a mixed-sex template that matched subject
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20y 30y 40y 50y 60y 70y 80y

SPGR

Tissue

Fig. 2. Templates created from the continuous atlas regression model for ages 20 through 80 years
in 10 year increments. Top row: SPGR channel; bottom row: three-class tissue segmentation.
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Fig. 3. Scatter plots and linear regression fits of tissue overlaps for (a) age-matched vs. age- and
sex-matched templates, and (b) age-matched vs. decade-matched templates.

age, and d) a mixed-sex template that matched the age of the subject by closest decade1.
All registrations were computed via a variant of the algorithm by Rueckert et al. [14]
with a multi-resolution deformation strategy and 2.5 mm final control point spacing.

For each template that was needed for registration, SPGR and tissue segmentation
images were created at 1 mm isotropic resolution (shown in Fig. 2 for the decade at-
lases). The SPGR channel was used for registration to the subject SPGR images, the
tissue segmentation channel was used for computing the overlaps (in terms of fraction
of matching pixels) between the template tissue image and the subject tissue.images,

1 Registration to the template with the closest age by decade was already covered by the registra-
tions mentioned in a), but for the decade-matched template evaluation we grouped the results
differently.
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Fig. 4. Tissue overlaps plotted vs. subject-template age difference. (a)–(g), results for mixed-sex
templates instantiated for ages 20, 30, 40, 50 60, 70, and 80 years. See text for details.
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after reformatting the latter into template space. To make the results comparable across
templates, tissue images of all subjects were actually reformatted, via concatenation
of transformations, into the space of the model mean template (mixed-sex, age=52.2
years) and overlaps computed in that space.

3 Results

The different subject matching techniques (age matched, age and sex matched, decade
matched) are compared via scatter plots in Fig. 3. These results suggest that all three
matching strategies work comparably well. Because including sex and matching the ex-
act subject age each increase the number of templates that need to be generated from the
atlas appearance model, we limit further consideration to the decade-matched templates
as the more computationally efficient option.

The influence of age difference between subject and template on tissue overlap is
illustrated in Fig. 4. In each plot, the mean of overlaps for the decade-matched templates
is shown for comparison as a dashed horizontal line, and the range of ±1 standard
deviation as a gray box. Each plot also shows a second-order polynomial regression
line fitted to the individual overlaps via nonlinear least squares. These plots, in particular
the incremental tilt of the regression lines, suggest that indeed normalization accuracy
decreases with increasing age difference, although it appears that younger subjects are
more easily registered to an older template than the other way around.

As Fig. 5 shows, the average performance of middle-aged templates comes close to
the performance of the decade-matched templates. Going back to Fig. 4, however, it is
clear that the situation would be more favorable for the decade-matched templates if we
excluded the middle-aged subjects from the test set and compared only the very young
and the very old.
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20 y 0.9027±0.0071 1.8 × 10−9

30 y 0.9051±0.0065 3.8 × 10−4

40 y 0.9054±0.0061 1.3 × 10−4

50 y 0.9054±0.0056 5.3 × 10−6

60 y 0.9055±0.0052 6.6 × 10−5

70 y 0.9052±0.0048 5.0 × 10−5

80 y 0.9033±0.0047 3.6 × 10−10

Fig. 5. Comparison of tissue overlaps over all subjects vs. template age. Left: mean±standard
deviation of overlap vs. template age. For comparison, the dashed line and gray box show mean
± standard deviation for decade-matched templates. Right: Actual numerical values represented
by the plot on the left, including results of two-sided, paired t-tests of overlap values by subject
for each of the single atlases vs. decade-matched subject-specific atlases.
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4 Discussion

This paper has introduced the concept of using individually age-matched templates for
spatial normalization of neuroimage data. Because all matched templates were gen-
erated from a single, regression-based appearance model, they were all related to each
other through known spatial correspondences without the need for template-to-template
registration.

Using test data from 64 subjects and a model from a separate set of 36 subjects
we have demonstrated that matched templates can slightly, but significantly, increase
the accuracy of spatial normalization. By excluding middle-aged subjects from the test
set, we could have made the results appear even more favorable, but chose not to do
so because it is important to investigate the performance of our method even in
less-than-ideal circumstances.

Likewise, using a weaker nonrigid (or even an affine) registration algorithm for test-
ing would have amplified the superiority of our method, because clearly a perfect reg-
istration algorithm would deliver perfect label overlaps regardless of the template used.
Instead, we still observed an improvement in label overlap using a registration algo-
rithm [14] that has been found to be at least on par with all other currently available
algorithms (“IRTK”, see [15]).

Using matched templates for normalization incurs only moderate additional compu-
tational complexity once the appearance model for template generation has been cre-
ated. It is particularly encouraging to note that we achieved essentially the same results
using templates matched to subjects only by age rounded to the nearest decade, which
greatly reduces the number of templates needed to cover a subject population.

Fundamental problems with our approach could arise in situations where, for exam-
ple, the actual ages of subjects do not match their “brain ages,” e.g., due to neurodegener-
ative disorders. The obvious solution to this problem would be to create subject-matched
templates using a more appropriate regression model. Using a model that includes dis-
ease factors as additional independent variables would then allow subjects to be matched
to templates in terms of these variables as well, in addition to age and sex.
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Abstract. Despite substantial progress in understanding the anatomical and 
functional development of the human brain, little is known on the spatial-
temporal patterns and genetic influences on white matter maturation in twins. 
Neuroimaging data acquired from longitudinal twin studies provide a unique 
platform for scientists to investigate such issues. However, the interpretation of 
neuroimaging data from longitudinal twin studies is hindered by the lacking of 
appropriate image processing and statistical tools. In this study, we developed a 
statistical framework for analyzing longitudinal twin neuroimaging data, which 
is consisted of generalized estimating equation (GEE2) and a test procedure. 
The GEE2 method can jointly model imaging measures with genetic effect, en-
vironmental effect, and behavioral and clinical variables. The score test statistic 
is used to test linear hypothesis such as the association between brain structure 
and function with the covariates of interest. A resampling method is used to 
control the family-wise error rate to adjust for multiple comparisons.  With dif-
fusion tensor imaging (DTI), we demonstrate the application of our statistical 
methods in quantifying the spatiotemporal white matter maturation patterns and 
in detecting the genetic effects in a longitudinal neonatal twin study. The pro-
posed approach can be easily applied to longitudinal twin data with multiple 
outcomes and accommodate incomplete and unbalanced data, i.e., subjects with 
different number of measurements. 

1   Introduction 

Longitudinal neuroimaging studies have grown rapidly for better understanding the 
progress of neuropsychiatric and neurodegenerative disorders or the normal brain 
development, and typical large-scale longitudinal studies include ADNI (Alzheimer's 
Disease Neuroimaging Initiative) and the NIH MRI study of normal brain as in [1]. 
Compared with cross-sectional neuroimaging studies, longitudinal neuroimaging 
follow-up may allow characterization of correlation between individual change in 
neuroimaging measurements (e.g., volumetric and morphometric) and the covariates 
of interest (such as age, diagnostic status, gene, and gender). Longitudinal design may 
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also allow one to examine a causal role of time-dependent covariate (e.g., exposure) 
in disease process. A distinctive feature of longitudinal neuroimaging data is the tem-
poral order of the imaging measures (see more discussions in [2, 3]). Particularly, 
imaging measurements of the same individual usually exhibit positive correlation and 
the strength of the correlation may decrease with prolonged time separation.  

Twin neuroimaging studies are invaluable for disentangling the effects of genes and 
environments on brain functions and structures. The twin design typically compares the 
similarity of monozygotic twins (MZ, who are developed from a single fertilized egg 
and therefore share 100% of their genes) to that of dizygotic twins (DZ, who are devel-
oped from two fertilized eggs and therefore share on average 50% of their alleles). 
These known differences in genetic similarity, together with the assumption of equal 
environments for MZ and DZ twins allows us to explore the effects of genetic and envi-
ronmental variance on a phenotype, such as brain structure. The current neuroimaging 
twin studies have focused upon locating the brain regions subject to either environ-
mental factors or genetic factors. For instance, high heritability was found in intracranial 
volume, global gray and white matter volume [4], cerebral hemisphere volume [5]. 
Cortical thickness in sensorimotor cortex, middle frontal cortex and anterior temporal 
cortex were found to be under the influence of genetic factors [6]. High heritabilities 
were also located in paralimbic structures and temporal/parietal neocortical regions [7].  

The longitudinal twin neuroimaging studies, which combine both the longitudinal 
design and the twin design, provide a unique platform for examining the effects of 
gene and environment on the development of brain functions and structures. To prop-
erly analyze the longitudinal twin imaging measures, any image processing and statis-
tical tools must account for three key features: the temporal correlation among the 
repeated measures, the different genetic and environmental effects among MZ and DZ 
twins, and the spatial correlation between each twin pair. Failure to account for these 
three features can result in misleading scientific inferences [2]. However, advanced 
image processing and statistical tools designated to complex and correlated image 
data along with behavioral and clinical information remains lacking. The cross-
sectional image processing and statistical tools may be useful for longitudinal twin 
imaging data, but they are not statistically optimal in power. To the best of our 
knowledge, most existing neuroimaging software platforms including SPM, AFNI, 
and FSL do not have any valid methods to process and analyze neuroimaging data 
from longitudinal twin studies. 

We propose two statistical methods for the analysis of neuroimaging data from 
longitudinal twin studies. We develop second-order generalized estimating equations 
(GEE2) for jointly modeling univariate (or multivariate) imaging measures with  
covariates of interest in longitudinal twin studies (including genetic and environ-
mental factors, behavioral and clinical variables). Compared with the structural equa-
tion modeling (SEM) for twin neuroimaging data, GEE2 avoids the assumption that 
latent genetic and environmental variables follow a Gaussian distribution. We develop 
a score test statistic to test linear hypotheses such as the associations between brain 
structure and function and covariates of interest. In order to adjust for multiple  
comparisons, a resampling method is used to control the family-wise error rate. We 
demonstrate the utility of the proposed approach in analyzing diffusion tensor imag-
ing (DTI) data to quantify spatiotemporal patterns and detect genetic influences on 
early postnatal white matter development. 
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2   Methods 

2.1   Image Acquisition and Preprocessing 

Our study is approved by the institutional review board. A total of 30 pairs of same 
sex twins were recruited with the consents of parents. These subjects were followed 
longitudinally at the time close to birth, at 1 year and 2 years after birth. With missing 
data, a total of 142 datasets were obtained. All subjects were fed and calmed to sleep 
on a warm blanket inside the scanner wearing proper ear protection. All images were 
acquired using a 3T Allegra head only MR system with 6 encoding gradient directions 
with an istropic voxel size of 2 mm3. Two DTI parametric maps including fractional 
anistropy (FA) and mean diffusivity (MD) were computed with the diffusion tensor 
tool box in FSL (http://www.fmrib.ox.ac.uk/fsl/). In order to construct voxel based 
atlas, the FA images from all subjects were co-registered towards a template of a two-
year old FA image (not a subject in this study) with a widely used elastic registration 
method HAMMER [8], which relies on neighborhood intensity distribution and edge 
information for image alignment instead of image intensity alone.   

2.2   Generalized Estimating Equations 

We observe imaging, behavioral and clinical data from n twins at mi time points tij for 

1,..., , 1,..., ii n j m= =  in a longitudinal study. Let ,1 ,( ,... )T
ij ij ij qx x x=  be a qx1 covariate 

vector, which may contain age, gender, height, gene, and others. Note that the number 

of time points for the i-th twin mi may differ across twins. There are a total 
1

n

i
i

m N
=

=∑  

sets of images in this study. Based on observed image data, we compute 

neuroimaging measures, denotated by { ( ) : , 1,..., }i ij iY y d d D j m= ∈ =  across all mi 
time points from the i-th twin, where d represents a voxel (or a region of interest) on  
D, a specific brain area. For simplicity, we assume that imaging measure 

,1 ,2( ) ( ( ), ( ))T
ij ij ijy d y d y d=  at voxel d is a 2x1 vector consisting of the same measure 

from two subjects within each twin. 
We apply the second-order GEE method for jointly modeling univariate (or multi-

variate) imaging measures with covariates of interest in longitudinal twin studies 
(such as behavioral, clinical variables or genetic and environmental effects). The 
GEE2 explicitly introduces two sets of estimating equations for regression estimates 
on original data and covariance parameters, respectively. For notational simplicity,  
d is dropped from our notation temporarily. 

To study the growth trajectories for imaging measures in healthy neonatal/pediatric 

subjects, we assume that the model for ,ij ky at the j-th time point for the i-th twin is 

,1 1, , , ,( ) ... T
ij ij ij k ij q q k ij kE y u x x xβ β β= = + + =  (1)

for 1,..., , 1,..., ii n j m= =  where ,1ijx is usually set to 1, ,ij kx  ( 2k ≥ ) can be chosen as 

time, gender, gene, and others, and β is a qx1 vector. 
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For all measurements from the i-th twin, we can form a 2 1im ×  vector 

1,1 1,2 ,1 ,2( , ,..., , )
i i

T
i i i im imY y y y y=  and 1,1 1,2 ,1 ,2( ) ( , ,..., , )

i i

T
i i i im imU u u u uβ = . To solve the regres-

sion coefficients in ,1, ,2( )Tβ β β= , we construct a set of estimating equations given by  

1

1

( ( )) 0
n

i i i i
i

DV Y u β−

=

′ − =∑  (2)

where ( ) /i iD u β β= ∂ ∂  and iV  is a working covariance matrix such as autoregressive 

structure. To study the genetic and environmental effects on imaging measures, we 
assume that  

0: 0: 0: : : :ij ij i i i ij s i ij s i ij s i ijy u a d c t a t d t c ε− = + + + + + +  (3)

where ,ij kε  is random error, 0: ,i ka , 0: ,i kd  and 0: ,i kc  are, respectively, the additive 

genetic, dominance genetic, and environmental residual random effects (so called 
ADE model in twin study) associated with intercept. 

: ,s i ka , 
: ,s i kd  and 

: ,s i kc  are the 

additive genetic, dominance genetic, and environmental residual random effects 
associated with time, respectively. We assume that 

,ij kε , 
0: ,i ka , 

0: ,i kd , 
0: ,i kc ,

: ,s i ka , 
: ,s i kd  

and : ,s i kc  are independently distributed with zero mean and variances 2
eσ , 

2
0,aσ , 2

0,dσ , 2
0,cσ , 2

,s aσ , 2
,s dσ , and 2

,s cσ , respectively. According to ADE models, we assume 

that 
2

0: ,1 0: ,2 0,cov( , ) / 2i i aa a σ= , 
2

0: ,1 0: ,2 0,cov( , ) / 4i i ad d σ= , 
2

: ,1 : ,2 ,cov( , ) / 2s i s i s aa a σ=  and 
2

: ,1 : ,2 ,cov( , ) / 4s i s i s ad d σ=  for DZ, and 
2

0: ,1 0: ,2 0,cov( , )i i aa a σ= , 
2

0: ,1 0: ,2 0,cov( , )i i ad d σ= , 
2

: ,1 : ,2 ,cov( , )s i s i s aa a σ=  and 
2

: ,1 : ,2 ,cov( , )s i s i s ad d σ=  for MZ. For model identifiability, we 
may drop either dominance genetic effect or environmental effect from the model.  

Based on these assumptions, we calculate the covariance between 
, , ,ij k ij k ij ky y u= −%  

and 
, , ,ij k ij k ij ky y u′ ′ ′ ′ ′ ′= −%  for any ,j j′ and ,k k ′ . Specifically, 

, ,( )ij k ij kE y y ′ ′% %  can be ex-

pressed as  

2 2 2 2 2 2
,( , ),( , ) ,1 0, ,2 0, 0, ,1 , ,2 , ,( )i j j k k i a i d c ij ij i s a i s d s cz z t t z zσ σ σ σ σ σ σ′ ′ ′= + + + + +  (4)

in which ,1 ,2( , )i iz z  takes (1,1) for either k k ′=  or MZ and (0.5, 0.25) for DZ. For 

all products between ,ij ky%  and ,ij ky% , we can form a (2 1) 1i im m + ×  vector 
2 2
1,1 1,1 1,1 ,2( , ,..., )

i

T
i i i i imS y y y y= % % % %  and 

,(1,1),(1,1) ,( , ),(2,2)( ) ( ,..., )
i i

T
i i i m mS σ σ σ= . 

To solve the regression coefficients in σ, we construct a set of estimating equations 
given by  

1
,

1

( ( )) 0,
n

i S i i i
i

DV S S σ−

=

′ − =∑ %  (5)

Where, ( ) /i iD S σ σ= ∂ ∂% and ,S iV  is a working covariance matrix. 
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Applying GEE2 methods has many attractive advantages.  First, this model pro-
posed above is very flexible and free of distribution assumption.  Second, the GEE2 

estimator is consistent even we mis-specify the covariance structure iV and ,S iV .  

Third, our inferences using the empirical standard errors are robust even if our knowl-
edge of the covariance structure is imperfect.  Fourth, our GEE2 method avoids mod-
eling the high order moments of imaging measures.  Finally, it is computationally 

straightforward to compute GEE2 estimators β̂  and σ̂  by iterating between Eq. (2) 

and Eq. (5).     

2.3   Hypothesis and Test Statistics 

In longitudinal twin studies, one is interested in answering various scientific questions 
involving the asessment of brain development across time and the testing of genetic 
influences on brain structure and function. These questions concerning brain 
development can often be reformulated as either testing linear hypothesis of β  as 

follows:  

0 0:H R bβ = vs. 
1 0:H R bβ ≠  (6)

where R is an 2r q× matrix of full row rank and b0 is an r 1× specified vector.  The 

question concerning genetic effect on brain are usually formulated as testing 

0, : 0S sH R σ = vs. 
1, : 0S sH R σ >  (7)

where
sR is an kx7 of full row rank.  For instance, if we are interested in testing the 

genetic effect 0: ,i ka , then we choose 2
0,s aR aσ = . To test these hypotheses in Eq. (6) and 

[7], we use the score test statistics with appropriate asymptotic null distributions [9]. 
A wild boostrap method was used to control for multiple comparisons. The proposed 
test procedure is computationally much more efficient than the permutation method. 

3   Results 

3.1   Growth Patterns 

In the longitudinal analysis of the DTI images using GEE2 (Eq. (2) for growth pattern 
quantification), covariates of interest including intercept, age, age*age, zygote (0 for 
MZ and 1 for DZ) and zygote * times were tested for significance (Eq. (8)).  

2
1 2 3 4 5( ) * * * * *ij ijE y u age age zygote zygote ageβ β β β β= = + + + +  (8)

Significant contributions were only found for 1β , 2β and 3β . Thus, nonlinear chang-

ing patterns were observed in early postnatal stages for FA and MD.  But no zygote 
related significance was detected. Squared ROIs with a fixed size (2x2 pixels) were 
drawn in axial view at posterior limb of internal capsules, external capsules bilaterally 
and at the centers of genu and splenium.  The growth patterns of FA and MD from 



 Mapping Growth Patterns and Genetic Influences on Early Brain Development 237 

these regions are given in Fig. 1 for both MZ and DZ twins.  There is a slight differ-
ence existed between the growth curves between MZ and DZ twins. Among these 
brain regions, external capsule and internal capsule respectively have the lowest FA 
and MD values in this period of time (Fig. 1). 

 

 

Fig. 1. Temporal growth patterns for FA (nonlinear increase, left panel) and MD (nonlinear 
decrease, right panel) in both MZ (top panel) and DZ (bottom panel) twins in external capsule 
(EC), posterior limb of internal capsule (IC), genu (GE) and splenium (SP) 

3.2   Genetic Influence 

For model identifiability, we use AE model to estimate genetic influences on brain 
development.  Since each twin pair share similar nurturing environment, the squared 
difference (sqd= 2

,1 ,1 ,2 ,2[( ) ( )]ij ij ij ijy u y u′ ′ ′ ′− − − ) between the DTI images from the same 

twin pair should exclude the environmental effect from analysis. In such a situation, 
Eq. (4) can be shortened as in Eq. (9). In our current implementation, statistical  
testing was performed with Eq. (10].  

2 2 2
1 0, 2 1,( ) *a aE sqd ageβ σ β σ= +  (9)

2 2
,1 ,2 1 2 3([ ] ) * * *ij ijE y y zygote zygote ageβ β β− = + +  (10)

In Eq. (10), the two zygote related terms can be tested for the significance of static 
and dynamic genetic influences upon early brain development separately.  Significant 
regions were found in left parietal white matter with FA, and significant regions in 
basal gangalia and right frontal white matter were identified with MD for term zygtote 
in Eq. (10). Thus, these regions demonstrate static genetic influence (Fig. 2). Fur-
thermore, brain regions with significant genetic influence on growth were identified 
with MD in frontal, occipital and parietal white matter for term 2*zygote age , which 

demonstrates dynamic genetic influence (Fig. 3).  
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Fig. 2. Regions under significant static genetic influence on growth in FA (left panel) and MD 
(right panel) 

 

Fig. 3. Regions under significant dynamic genetic influence on growth in MD 

4   Discussion 

In this study, we have demonstrated the potentials of using GEE2 based statistical 
methods in analyzing twin images in a longitudinal study.  This work may be the first 
study to identify the growth patterns of DTI parameters in longitudinal twin study. 
Our preliminary results demonstrated that genetic influences upon brain development 
can be identified with the squared difference images under the assumption of equal 
environmental exposure.  Furthermore, our approach may suggest the existence of 
dynamic component of genetic influences on brain development in this early postnatal 
stage.  

There are several potential improvements can be made to the current approach. 
One is to use the two GEE equations (Eq. (2) and (5)) iteratively for joint estimation 
of growth patterns and genetic influences. Another extension is to use multivariate 
analysis to improve the sensitivity in detecting genetic related influences. At last, 
from imaging registration end, the statistical analysis will benefit from an improved 
registration of the DTI images across different ages.   
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Abstract. Tensor-based morphometry (TBM) is an analysis technique
where anatomical information is characterized by means of the spatial
transformations between a customized template and observed images.
Therefore, accurate inter-subject non-rigid registration is an essential
prerrequisite. Further statistical analysis of the spatial transformations
is used to highlight some useful information, such as local statistical
differences among populations. With the new advent of recent and pow-
erful non-rigid registration algorithms based on the large deformation
paradigm, TBM is being increasingly used. In this work we evaluate the
statistical power of TBM using stationary velocity field diffeomorphic
registration in a large population of subjects from Alzheimer’s Disease
Neuroimaging Initiative project. The proposed methodology provided at-
rophy maps with very detailed anatomical resolution and with a high sig-
nificance compared with results published recently on the same data set.

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia and one of
the most serious health problems in the industrialised world. Dementia affects
approximately 1–5% of the population over 65 years of age, and 20–40% of the
population over 80 years of age. Mild cognitive impairments (MCI) may affect
10 times as many individuals.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [1] is a large multi-
site longitudinal magnetic resonance imaging (MRI) and fluorodeoxyglucose
positron emission tomography (FDG-PET) study of 800 adults, ages 55 to 90,
including 200 elderly controls, 400 subjects with mild cognitive impairment, and
200 patients with AD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD.
Determination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials.

Tensor-based morphometry (TBM) is a relatively new image analysis tech-
nique that identifies regional structural differences in the brain, across groups
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or over time, from the gradients of the deformation fields that warp images to a
common anatomical template. The anatomical information is encoded in the spa-
tial transformation. Therefore, accurate inter-subject non-rigid registration is an
essential tool. With the new advent of recent and powerful non-rigid registration
algorithms based on the large deformation paradigm, TBM is being increasingly
used [2,3,4]. Further statistical analysis of the spatial transformations is used
to highlight some useful information, such as local statistical differences among
populations. The simplest and most common feature is given by the Jacobian
determinant |J | which can be interpreted as a local atrophy/expansion factor.
More complete descriptors are the Jacobian matrix, or other invariant features,
such as

√
JT J [2].

By diffeomorphic registration we mean algorithms where the transformation
can be arbitrarily large, and still keeping smoothness and invertibility. Most of
these methods use time-varying velocity fields either to update or to charac-
terize the warpings. The first approach was based on viscous-fluid methods [5].
Later, regularization was obtained by minimizing the length of a path on the
group of diffeomorphisms [6]. Among the benefits of the latter approach is that
its parametrization lives in a metric linear space allowing statistical analysis.
The main limitation of these methods is their large computational complexity.
In order to alleviate this computational requirement some algorithms were pro-
posed [7,8,9] using a stationary velocity field parameterization.

The aim of this study was to evaluate the performance of stationary velocity
field (SVF) diffeomorphic registration on a TBM study.

2 Materials and Methods

2.1 Subjects

In this study we selected the same subset of subjects as in [10] in order to allow
an easier comparison. To summarize, MRI screening scans of 120 subjects, di-
vided into 3 groups: 40 healthy elderly individuals, 40 individuals with amnestic
MCI, and 40 individuals with probable AD. Each group of 40 subjects was well
matched in terms of gender and age. Likewise [10], an independent second group
of normal subjects, age- and gender-matched to the first group of controls, was
selected to test whether analysis techniques correctly detects no differences when
no true differences are present. More details about criteria for patient selection
and exclusion can be found in [10] and in the ADNI protocol [1,11].

In addition, a larger set of subjects was analyzed including 231 control sub-
jects, 200 AD patients and 405 MCI patients from the ADNI study at screening
stage. During the clinical follow up 127 MCI subjects converted to AD group.
The MCI group was divided into converters (MCIc) and non-converters (MCInc).

2.2 MRI Acquisition, Image Correction and Preprocessing

High-resolution structural brain MRI scans were acquired at multiple ADNI
sites using 1.5 Tesla MRI scanners using the standard ADNI MRI protocol.
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For each subject, two T1-weighted MRI scans were collected using a sagittal
3DMP-RAGE sequence with voxel size of 0.94 × 0.94 × 1.2mm3. The images
were calibrated with phantom-based geometric corrections to ensure consistency
among scans acquired at different sites Additional image corrections included
geometric distortion correction, bias field correction and geometrical scaling.
The pre-processed images are available to the scientific community and were
downloaded from the ADNI website.

2.3 Stationary Velocity Fields (SVF) Diffeomorphic Registration

A diffeomorphism ϕ(x) (smooth and invertible mapping) characterized by a
stationary velocity field v is obtained as the solution at time t = 1 of

d

dt
φt(x) = v(φt(x)), φ0(x) = Id(x), (1)

i.e. ϕ(x) ≡ φ1(x) and v(x) is a smooth vector field. Several efficient numerical
scheemes can be used to compute the exponential mapping exp(tv) ≡ φt [12].
Note that the inverse mapping is ϕ−1 = φ−1 = exp(−v).

Many registration methods can be formulated as a variational problem, where
the cost function to be minimized contains an image term measuring matching
between a template T and a target image I and a regularization term

E(I, T, v) =
1
σ2 ‖T (ϕ−1)− I‖2 + 〈v, v〉V . (2)

In this work the regularization term is of the form: 〈v, v〉V = 〈Hv, v〉L2 , with
H the linear differential operator H = (Id − α�)2, where � is the Laplacian
operator. The gradient of this functional is (see [6])

∇vE(I, T, v) = 2v − 2
σ2 H−1

∫ 1

0
|Dφ1−t|

(
T (φ−t)− I(φ1−t)

)
∇xT (φ−t)dt (3)

Different strategies have been proposed to minimize the energy functional defined
by (2) [13,8,7,9]. In [7] the derivative of exp(v) was appoximated by ∂h exp(v) ≈ h
for v ≈ 0, resulting in a simplified gradient∇vE(I, T, v) = 2v− 2

σ2 H−1
(
(T (φ−1)−

I)∇xT (φ−1)
)

which reduces significatively the computational complexity when
using gradient descent.

2.4 Unbiased Average Template

An average template is one of the key components of TBM studies. It provides
a coordinate system where all image samples will be registered. In order to
make automatic registration easier and more robust, the template must represent
common intensity and geometric features from the group of subjects. Population
templates should not be biased toward any particular image or sub-group of
images.
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In this work the unbiased template T was estimated from images of the normal
group, likewise in [10]. An initial affine average atlas was estimated by means of
global affine registration of all intensity-normalized normal group images Ii to
the ICBM53 template and voxel-wise averaging. Next, an iterative process was
used to estimate the template, including three stages for each iteration: non-
linear registration of the affine-alligned images (N = 40) to the current estimated
template; computing the bi-invariant mean ϕ = exp(v) [14] of all warpings ϕi =
exp(vi), and finally image intensities are averaged after subtracting the mean
warping T = 1/N

∑
i Ii(ϕi ◦ exp(−v)).

2.5 Voxel-Wise Statistical Analysis of Brain Atrophy

To quantify spatial distribution of brain atrophy in MCI and AD compared to
the normal group, all individual brains were non-linearly registered to the normal
group template. Hypothesis testing is usually performed on logarithm of Jaco-
bian determinants to assess effect size and statistical significance of local brain
atrophy between patient groups. Statistical maps that visualize the patterns of
significant expansion factors between groups were computed by means of t-test.

2.6 Regions of Interest Statistical Analysis

In order to summarize the information of hypothesis testing from the voxel level
to the region of interest (ROI) level, a scalar descriptor of the ROI, such as a
weighted average, the maximum value or many others, can be used. Similarly
to [10], we used the average Jacobian determinant, which is equivalent to the
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Fig. 1. Statistical maps of brain atrophy in the selected population (N=120 ) of AD ver-
sus Normal group. Top: Student’s t-test map (blue/red denotes expansion/contraction
respectively. Bottom: corresponding significance map (−log10 p).
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Fig. 2. Statistical maps of brain atrophy in the selected population (N=120 ) of MCI
versus Normal group. See legend of Fig. 1.

overall volume change of the ROI. In this work the following ROIs were consid-
ered: hippocampus, amygdala, caudate nucleus, thalamus, nucleus accumbens
and lateral ventricles. These subcortical nuclei were automatically segmented at
the normal template using the tool FIRST [15] from FSL package.

3 Results

The statistical significance (p-value) and Student’s t-test maps in Fig. 1(2) il-
lustrate the atrophy pattern observed in the AD(MCI) groups compared to the
normal group. AD patients showed larger areas affected by more severe brain
atrophy specially at the hippocampus and amygdala. In contrast, brain atro-
phy in MCI patients affects smaller regions with a less pronounced effect size.
Note that detected areas have a well defined anatomical boundary compared
to previous results using the same data set [10]. The statistical map under the
null hypothesis (between the two independent normal groups) did not show any
significant region.

Table 1. ROI analysis: Student’s t-test on large population (N=836 )

Groups\ROI LAccu LAmyg LHipp LLate LThal RAccu RAmyg RHipp RLate RThal
Nor vs AD 4.07 13.84 6.47 -6.48 4.68 4.17 13.57 9.66 -7.07 5.21

Nor vs MCIc 2.69 10.16 5.40 -5.12 3.68 2.54 8.98 6.96 -5.13 3.77
Nor vs MCInc 2.86 6.59 4.88 -3.49 3.69 2.45 5.78 6.07 -2.86 3.91
AD vs MCIc -0.81 -2.29 -0.42 0.86 -0.45 -1.00 -2.58 -1.27 1.40 -0.55
AD vs MCInc -1.44 -7.65 -2.18 3.15 -1.41 -1.98 -8.13 -4.26 4.38 -1.71
MCI c vs nc -0.39 -4.31 -1.44 1.89 -0.76 -0.62 -4.16 -2.21 2.43 -0.83
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Fig. 3. Student’s t-test maps of brain atrophy in the large population (N=836 ). From
top to bottom: AD versus Normal group; converter MCI versus Normal group; non-
converter MCI versus Normal group; AD vs non-converter MCI group.

If the TBM analysis is performed on the larger population (N=836), very
similar anatomical patterns of atrophy are obtained (see Fig. 3) but with a
much higher statistical significance due to the larger number of subjects in the
analysis. Interestingly, the brain atrophy map in the MCInc group was closer to
the normal group, while the MCIc group was closer to the AD group.

The Jacobian determinant was spatially averaged within each ROI and sub-
ject. Student’s t-test was performed on these scalar descriptors to assess the
statistical significance between mean atrophy levels. Table 1 contains the Stu-
dent’s t-test statistic for each ROI on the complete set of subjects (N=836 ).
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Again hippocampus and amygdala obtained the most significant volumetric dif-
ferences between groups, in agreement with previous studies.

4 Discussion and Conclusions

In this study a large deformation registration method was used in a cross-
sectional TBM study in order to localize brain atrophy regions in Alzheimer’s
disease and mild cognitive impairment patients. Compared to a recent TBM
study with the same data set of 120 images at baseline from ADNI [10], our
brain atrophy patterns presented a higher spatial resolution with a larger sta-
tistical significance. In our opinion, the improved performance obtained in this
work may be due to the higher spatial resolution of the registration algorithm.

The evaluation was also extended to 836 subjects from ADNI corroborating
brain atrophy patterns shown in the subset of subjects with stronger significance.
Interestingly, brain atrophy patterns between converters and non-converters sub-
groups of MCI compared to the normal group were very different. In particular,
non-converters were much close to normal group, while converters were much
closer to AD group. Our first preliminary results found brain atrophy at amyg-
dala, hippocampus, entorhinal cortex, cingulate gyrus, posterior parts of the
thalamus, frontal regions of the insular cortex, and superior temporal sulcus, all
of them involved in Alzheimer’s Disease. To our knowledge, this is the first time
that all these structures are jointly identified in a brain morphometry study with
such anatomical detail.

In future studies correlation between image-driven atrophy measurements and
clinical variables (including cognitive tests, genotypes and biomarkers) will be
assessed as it is proposed in [16], prediction of conversion to AD, single-subject
analysis and evaluation of atrophy rates using longitudinal images.
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Abstract. In finite element simulation, size, shape, and placement of
the elements in a model are significant factors that affect the interpo-
lation and numerical errors of a solution. In medical simulations, such
models are desired to have higher accuracy near features such as anatom-
ical boundaries (surfaces) and they are often required to have element
faces lying along these surfaces. Conventional modelling schemes consist
of a segmentation step delineating the anatomy followed by a meshing
step generating elements conforming to this segmentation. In this pa-
per, a one-step energy-based model generation technique is proposed.
An objective function is minimized when each element of a mesh covers
similar image intensities while, at the same time, having desirable FEM
characteristics. Such a mesh becomes essential for accurate models for
deformation simulation, especially when the image intensities represent
a mechanical feature of the tissue such as the elastic modulus. The use of
the proposed mesh optimization is demonstrated on synthetic phantoms,
2D/3D brain MR images, and prostate ultrasound-elastography data.

1 Introduction

The finite element method (FEM) is a common technique for medical simula-
tions. Its speed and accuracy depend on the number of nodes/elements used and
their shape and placement in the domain. In this paper, a single-step and fully-
automatic variational modelling approach is presented to produce good FEM
meshes for given tissue domains in both 2D and 3D. The method, which aligns
FEM elements to group similar intensities while still keeping element shapes
relatively good for FEM, is applicable on most medical imaging modalities. Its
use becomes particularly important if the input image represents a mechanical
feature distribution of the tissue such as Young’s modulus.

In the conventional modelling methods for tissue FEM simulation, a dis-
crete representation of the anatomy of interest is obtained from an intensity
image/volume by employing two steps, segmentation and meshing. Segmenta-
tion, which consists of recognition and delineation of anatomy, has been studied
in several medical contexts using numerous different approaches. Although au-
tomatic segmentation techniques do exist, recognition is not a computationally
well-defined problem and thus is usually achieved with manual intervention lead-
ing to semi-automatic implementations. In contrast, delineation, which in many
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cases can be stated roughly as grouping similar pixels, allows for algorithmic
approaches. Nonetheless, segmentation overall often requires some a priori in-
formation about both the anatomy and the medical imaging modality.

The result of segmentation is a representation of the organ boundary, which is
often in an explicit form such as a surface mesh, although implicit representations
are also viable. This anatomical boundary is then supplied to a meshing scheme,
which tiles the space with elements while ensuring some geometrical measures
of such elements meet given or well-known criteria. Popular meshing schemes
include octree-based methods, Delaunay approaches, and advancing fronts, most
of which were developed and tuned for modelling of mechanical structures and
systems [1]. The final mesh is then used for simulating tissue deformation for
procedures such as laparoscopic surgery, brain surgery, and brachytherapy.

Most segmentation methods require some sort of a manual intervention not
only demanding the scarcely available time of health professionals but also pre-
venting an automatic modelling for FEM. The surface mesh generated during
the segmentation is often left unchanged by the meshing software since this sur-
face is used as a boundary constraint for meshing. Thus, for a meshing scheme to
guarantee good FEM elements using a limited number of nodes/elements, these
surfaces should either be inherently FEM-friendly delineations or should be fixed
using some intermediate steps. Furthermore, boundary conforming meshes, when
the inside and outside of an anatomical feature are to be discretized with no el-
ement faces cutting the boundary, present a challenge for otherwise successful
schemes such as Delaunay tessellation [1]. The technique presented in this paper
intrinsically overcomes these issues producing high-quality FEM elements that
are also aligned with the features in a given image.

2 Methods

2.1 Element Shape Optimization

Let u(x) be the deformation of a point x within a continuous domain M⊂ R
n,

where this deformation is approximated using the FEM by a piece-wise linear
discrete function gT (x) over a tessellation T . During such modelling of deforma-
tion, the two main sources of error are the interpolation errors for the approx-
imation to the function and its gradient (which is strain for deformation), and
the numerical errors during the solution of the approximation [2].

Variational (energy-minimization based) methods were shown to produce suc-
cessful meshes for various applications including meshes suitable for FEM [1].
Recent studies showed that a primal mesh energy definition is superior to the
Voronoi-based approaches [3]. It was also shown that the following error [1]:

EG = ‖u(x)− gT (x)‖ =
1

n + 1

∑
i

x2
i |Ωi| −

∫
M

x2dx (1)

is minimized by the following two operations: a Delaunay tessellation of given
node locations, and a relocation of a node xi to the weighted average of the
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Fig. 1. A random mesh initialization (a), its optimized configuration (b), the energy
and convergence during this optimization (c), and the initial/final ρ distributions (d)

element circumcenters in its 1-ring neighbourhood Ωi, where the weighting is
the element volume. Consequently, a (local) minimizer mesh for EG is found us-
ing Lloyd’s relaxation by alternately re-tessellating and relocating the nodes [1].
Figure 1(a-b) shows an initial mesh of randomly-distributed 61 nodes and its
optimized configuration after having converged. The energy EG and the nodal
position convergence ‖xt+1

i − xt
i‖/‖xt

i‖ at iteration t are presented in Fig. 1(c).
Comparing two meshes using merely a single error measure is an attractive

approach, not only simply to choose the better mesh, but also to formulate
energy definitions that can derive variational schemes. No such single measure
has been developed in the literature. For predicting the worst interpolation-
error in a single element, various measures were proposed in [2]. The inradius-
to-circumradius ratio ρ , which was presented in [1] as the fairest comparison in
3D that punishes all types of poor-geometry elements including slivers, is used
in this paper. This ratio is maximized at 1/2 for the equilateral triangle and
at 1/3 for the regular tetrahedron. Similarly to [1], normalized histograms of
this ratio are used to compare meshes, where a desired mesh has a histogram
more compacted towards higher ratios as displayed in Fig. 1(d) for the initial and
optimized meshes presented above. Since a qualitative comparison of curves can
be difficult, we propose the following measures in this paper: (i) mean quality
error mean( 1

n − ρ), (ii) harmonic-mean quality error 1/
∑ 1

1
n−ρ

, (iii) L2-norm

quality error | 1n −ρ|2, and (iv) worst quality error max( 1
n −ρ). All these quality

errors improve during the sample optimization above as seen in Table 1.

Table 1. The inradius-to-circumradius ratios for each row corresponding to the meshes
presented in Figs. 1(a,b), Figs. 2(a,c,d), and Figs. 3(c,d), respectively

Error measures based on ρ i ii iii iv

Initial mesh with uniform background in Fig. 1(a) 0.1576 0.1029 3.6807 0.4335
Final mesh with uniform background in Fig. 1(b) 0.0405 0.0274 0.2671 0.1558
Initial mesh for synthetic phantom in Fig. 2(a) 0.0858 0.0858 1.4424 0.0858
kD = 0.05 mesh for synthetic phantom in Fig. 2(c) 0.0399 0.0301 0.4789 0.1418
kD = 0.30 mesh for synthetic phantom in Fig. 2(d) 0.0438 0.0251 0.6910 0.2467
Initial mesh for prostate elastography in Fig. 3(c) 0.0859 0.0856 1.4532 0.0922
Final mesh for prostate elastography in Fig. 3(d) 0.0372 0.0232 0.4668 0.1595
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2.2 Modelling a Known Background Distribution

The methods above assume isotropic meshing of a uniform domain. Anisotropic
meshes [3] and effective adjustment of element sizes throughout the mesh [1] have
been studied in the literature by incorporating these in the energy definition
in (1). However, it is not clear from these and other work, how the information
about a feature distribution through the tissue (e.g. distribution of elastic mod-
ulus) can be incorporated into the mesh generation, assuming this distribution
is known in the continuum a priori. There exist well-established methods, as
part of the post-processing stage of FEM simulations, that can refine or modify
a mesh based on a computed simulation output such as element strains during
deformation. However, this requires the cumbersome process of first running the
simulation, which in turn requires a priori knowledge of the boundary conditions
such as the fixed and the excited nodes of a mesh during deformation. These
boundary conditions may not be known during meshing. Furthermore, their lo-
cation and nature may change substantially from simulation to simulation such
as encountered when a medical tool interacts with different parts of an organ
and/or in different directions. Moreover, post-process refinement approaches aim
to minimize interpolation error by adjusting node/element density locally. How-
ever, such refinement techniques do not formulate an optimum placement for
an element intrinsically and refining elements may worsen stiffness matrix con-
ditioning. Also, unlike mechanical engineering, where higher accuracy around
high-strain contact areas is desired, medical simulations often require higher
accuracy around organ surfaces or anatomical features such as tumors or an
overall accuracy in the entire domain. In addition, for a non-uniform property
distribution, refining a high-strain element may not always be the right strategy:
Consider a 1D example of two elements, one covering a homogeneous soft region
and the other one covering an overall stiffer region which internally consists of
two disjoint sections with slightly-different elastic properties. Note that, for mesh
refinement, subdividing the former element may not necessarily be the optimal
strategy despite its higher strain. As a result, we propose the following method
based on an error definition that encourages element placement consistent with
a given background distribution.

Due to mesh discretization, the FEM models a feature h(x),x ∈ τj of the
entire space within an element τj using a single value h̃j. An error associated
with the fitness of this single-value approximation is suggested intuitively to be
the L2-norm of the difference between this approximation value and the known

background distribution, i.e.
∫

τj

(
h(x)− h̃j

)2
dx . This is derived below from

the elastic strain energy of a linear element, where the known tissue feature is
Young’s modulus E . For a linear stress-strain relationship, the strain energy of
an element can be written in terms of the four corner displacements uj , the
constant partial-derivative matrix Bj (found from the corner positions), and
the material stiffness matrix C as Ej

strain(uj) = 1
2

∫
τ j ujT

BjT
CBjujdx [4]. In

the conventional derivation, C is constant as each element is modeled with a
single set of material properties. With C constant, this integration results in the
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Fig. 2. An initial synthetic phantom with its discretization (a), the combined error E
as a function of center node position for a simple 4-element mesh (b), and the two
optimized versions of the initial phantom mesh using kD = 0.05 (c) and kD = 0.3 (d)

element volume vj . However, C is indeed a linear function of Young’s modulus E ,
the distribution of which is assumed to be known in this paper (i.e., C = E(x)C′).
Then, the strain energy can be written for a non-uniform element as:

Ej
strain(uj) =

1
2
ujT

BjT
C′Bjuj

∫
τ j

E(x)dx =
1
2
ujT

BjT
C′Bjuj Ẽjv

j (2)

which is satisfied when Ẽj is the mean of the distribution within the element.
The above observations show that a single-value equivalent of a known back-

ground distribution within an element is its mean value. This is presented in
Fig. 2(a) with a uniform mesh overlaid on a synthetic phantom, where the ele-
ment colors represent the mean value of the underlying image pixels.

In this paper, an L2-norm discretization error measure ED for a single-value
approximation h̃j and the actual known distribution h(x) is defined as:

ED =
∑

j

∫
τj

∣∣∣h(x)− h̃j

∣∣∣2 dx =
∑

j

vjVar (h(x) : x ∈ τj) (3)

where Var is the second-moment of a distribution around its mean. Then, the
two error measures EG and ED above are combined into a single error definition
in order to derive a variational scheme trading off between element geometry
and image representation as:

E = (1− kD)EG + kDED (4)

where kD ∈ [0, 1) is a weighting factor. This energy is plotted in Fig. 2(b) as a
function of the center node position, which defines a unique four-triangle mesh
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over the simple image presented. Note the change of priority from better element-
geometry to lower element-variance as kD increases.

A good approximate initial configuration for geometry error EG can easily
be defined as a uniform mesh of regular elements throughout the domain, al-
though it is difficult to define a good initial approximation for ED. Therefore,
an initial uniform mesh is chosen to start the optimization process. Note that
the combined error E depends on how the given image is partitioned by the
current tessellation and hence it does not have a simple closed-form expression.
In order to minimize this error, a gradient descent search with numerical deriva-
tives has been implemented, where a given node xi is relocated at each iteration
using the error EΩi in its 1-ring neighbourhood Ωi , calculated for perturba-
tions in each coordinate axis by a given step length. Sub-step length updates are
further achieved using a parabola fit in each individual axis. In our implementa-
tion, the step length is defined as a ratio of the distance to the closest element
centroid.

3 Results

The initial 2D mesh of the synthetic phantom in Fig. 2(a) was optimized using
two different energy weighting factors yielding the meshes and their discretiza-
tions shown in Fig. 2(c-d). The ρ-error definitions for this initial mesh and its
two different optimized configurations are presented in Table 1. Note that all
measures, except for the worst element error (iv), were improved, meaning that
even for a higher kD value the mesh geometry overall is not worsened while
modelling a background image.

The feasibility of our method was next studied on MR images of the brain.
An MR slice is first discretized using an initial regular mesh with 128nodes
and 224 triangles as seen in Fig. 3(a). This mesh is next optimized for kD = 0.2
resulting in the discretization in Fig. 3(b) in 20 iterations. Although the mesh
still remains coarse, a substantial improvement in the representation of the given
image is observed once a mesh is optimized using the technique presented. The
mesh optimization method was also applied on prostate elastography images.
Several methods of tissue parameter identification from displacement estimations
have been proposed in the literature [5]. For the purpose of this paper, a simple
approximation to the tissue elastic modulus from a tissue strain map e(x) was
derived as 1/e(x) [6]. An initial 2D mesh with 113 nodes and 196 triangles in
Fig. 3(c) takes the form seen in Fig. 3(d) after an optimization taking 15 iterations
using kD = 0.3 . A preliminary result of this mesh optimization in 3D is presented
in Fig. 3(e-f), where 1078nodes and 3900 tetrahedra were employed.

The geometric quality of elements, which is traded off in this work for a better
discretization of an image, is a major contributor to stiffness matrix condition-
ing. In this paper, the conditioning k of the stiffness matrices compiled using the
initial and final meshes presented have also been studied in order to show that it
does not increase significantly, which would negatively affect a simulation. The
maximum eigenvalue λ of such matrices was proposed in [2] as a good estimate to
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Fig. 3. Initial and optimized meshes of ventricles in brain MR images (a-b) and sagittal
approximate-stiffness images from prostate elastography (c-d). Slices from a 3D brain
MR dataset are shown embedded in an initial 3D mesh (only, part of the mesh is plot-
ted) and the ventricle surface extracted from this volume is presented for comparison
purposes (e). Initial and optimized 3D meshes of this MR volume (f). For better 3D
visualization, only the largest connected-set of tetrahedra j with h̃j lower than a chosen
threshold are displayed.

the conditioning assuming that the volume of the minimum element is not much
smaller than the other elements’, which is the case for our nearly uniform-size
meshes. The increase in λ and k after optimization were 16% and 7%, respec-
tively. These expected increases were observed to be within acceptable range so
as not to introduce numerical instabilities to an FEM application. Furthermore,
it was desired to see whether the aggregate strain energy ET

strain would decrease
for a tessellation T that is optimized as a better discretization of an image using
our method. Note that the discretized energy ET

strain is an overlaid approximant
to the exact continuous strain energy and hence bounded below. To compute k
and Estrain, the top of the meshes were fixed while the bottom was compressed
using a plane-stress model. Estrain was observed to be reduced by 5% for the
given constraints after the mesh optimization for the prostate. This agrees with
our expectation of improving the strain energy approximation by better aligning
the elements with a given parameter distribution.

4 Discussion

Some active-contours segmentation approaches that move a parametric surface
minimizing the variance inside and outside this surface [7] use a variance-based
energy definition similar to our method. However, in contrast to such techniques,
where a surface can be evolved at any of its points, linear FEM element faces
cannot be modified arbitrarily but instead they are expressed through a con-
nectivity of the mesh nodes. Therefore, an explicit relation between given FEM
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node relocations and the resulting variance change within elements does not ex-
ist. Furthermore, there are no longer just two regions, namely inside and outside,
but instead multiple disjoint but neighbouring simplex-shaped regions, the FEM
elements. Consequently, image feature resolution that a mesh can resolve now
depends on the FEM element size. Only uniform meshes were implemented in
this paper. Nonetheless, the definition of EG can easily be modified to incorpo-
rate a desired local mesh-size information [1] to produce smaller elements that
model small anatomical features or higher strain regions, where needed.

Note that the conditioning and strain energy measures presented do not de-
pend only on the mesh and its parametrization, but also are tightly bound by the
boundary conditions applied to the FEM. Meshes are optimized by our method
assuming that there is no a priori knowledge of the boundary constraints and
hence this boundary information is not incorporated into our variational ap-
proach. Nevertheless, considering both measures above, an optimized mesh is
still expected to rank well for a range of different boundary conditions, one of
which was presented in this paper by simply constraining the top and the bot-
tom surface for the prostate mesh. This choice was to model the pubic bone and
the ultrasound probe motion during a trans-rectal prostate biopsy.

Although a re-tessellation of nodes ensures a decrease in EG, it may possibly
increase ED and hence the total energy since it changes the nature of the problem
for ED. Nonetheless, allowing for re-tessellation is essential to yield geometrically
good elements, therefore, re-tessellations are enabled in our optimization scheme
during the first nt number of iterations, after which the element connectivity is
fixed so the combined energy can be minimized consistently. Alternatively, a
tessellation can be accepted only if it decreases the combined energy. In this
paper, the initial nodes distributed regularly on the domain boundary are kept
fixed during the optimization process and only the position of the internal nodes
are optimized. This constraint can be relaxed in various ways to yield better
meshes, such as letting these nodes move tangential to the boundary [1]. Note
that the errors EG and ED may be in different scales given the image, mesh,
and domain dimensions. For similar results among different optimizations using
a given kD, these error values were normalized to their values in the initial mesh.

5 Conclusions

In this paper, an error definition based on FEM interpolation error is combined
with a proposed image-representation error and the combined error is optimized
to produce high-quality FEM elements that also discretize a given image suc-
cessfully. With the emerging fields of elastography imaging and tissue parameter
identification, this method becomes essential for optimal meshes conforming to
such parameters. Note that such an optimized discretization can further be used
for a fast approximate segmentation since optimized elements represent an image
using far fewer degrees-of-freedom than the underlying pixels. In future work,
other optimization techniques will be studied in order to improve on the current
descent-based approach. The methods presented do not rely on any assumptions
of 2D and they extend to 3D easily, as shown by our ventricle-meshing example.
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Biomechanically-Constrained 4D Estimation of
Myocardial Motion
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Abstract. We propose a method for the analysis of cardiac images with
the goal of reconstructing the motion of the ventricular walls. The main
feature of our method is that the inversion parameter field is the ac-
tive contraction of the myocardial fibers. This is accomplished with a
biophysically-constrained, four-dimensional (space plus time) formula-
tion that aims to complement information that can be gathered from
the images by a priori knowledge of cardiac mechanics. Our main hy-
pothesis is that by incorporating biophysical information, we can generate
more informative priors and thus, more accurate predictions of the ven-
tricular wall motion. In this paper, we outline the formulation, discuss
the computational methodology for solving the inverse motion estima-
tion, and present preliminary validation using synthetic and tagged MR
images. The overall method uses patient-specific imaging and fiber infor-
mation to reconstruct the motion. In these preliminary tests, we verify
the implementation and conduct a parametric study to test the sensitiv-
ity of the model to material properties perturbations, model errors, and
incomplete and noisy observations.

1 Introduction

Medical Imaging can help in the diagnosis of cardiac masses, cardiomyopathy,
myocardial infarction, and valvular disease. Advances in medical imaging meth-
ods have enabled us to acquire high-resolution 4D images of the heart that
capture the structural and functional characteristics of individual hearts. Our
long term goal is the integration of the proposed framework with cine magnetic
resonance imaging (cine-MRI), which is emerging as the method of choice for
diagnosing a variety of cardiovascular disorders [1,2]. However, our framework
can be used with any cardiac modality that gives spatio-temporal information,
for example tagged cine-MRI, stimulated echo, CT. Computational challenges
limit analysis to 3D (2D × time) motion estimation, where in fact 4D analysis
would be preferable [3,4]. Segmentation of the ventricles and the myocardium
is the first step toward quantitative functional analysis of cine-MRI data. How-
ever, segmentation is time consuming, thereby limiting clinical throughput [5].
Moreover, sometimes accuracy is limited by long-axis motion, and inter and
intra-observer variability.

Related Work. To address these problems in motion reconstruction, one of
the main thrusts in recent research has been 4D motion estimation using
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biomechanical models. There is significant work on the integration of imaging
with cardiovascular mechanics. In [6], a piecewise linear composite biomechanical
model was used to determine active forces and the strains in the heart based on
tagged MRI information. In [7] MR images were combined with biomechanical
models for cardiac motion estimation. Interactive segmentation was combined
with a Bayesian estimation framework that was regularized by an anisotropic,
passive, linearly elastic, myocardium model. The authors recognized the impor-
tance of neglecting active contraction of the left ventricle. In [8], the need for
realistic simulations and the need for inversion and data assimilation was out-
lined. In [9], Kalman filters were used to recover the initial state of the heart
and spatial abnormalities. That method however, is difficult to generalize to
nonlinear inversion with time-dependent inversion parameters.

Overview of the Method. Given 4D imaging data of cardiac motion the
main steps in our framework are the following: (1) segment the end-diastolic
frame to myocardium, blood pool, and surrounding tissue; (2) register the seg-
mented frame with a cardiac atlas in order to assign material properties and
fiber-orientation information [10]; and (3) solve an inverse problem for forces
along the fibers in the myocardium by minimizing an image-similarity func-
tional, which is constrained by the biomechanical model of the heart. In this
way, we explicitly couple raw image information with cardiac mechanics.

Contributions. We propose a biomechanically-constrained motion estimation
algorithmthathasthepotentialtoaddress intra-individualmotionestimationprob-
lems. We discuss formulation, numerical implementation, and we present prelim-
inary verification tests that confirm the potential of the method. The novelty of
our approach is in the formulation and the algorithms (solvers and parallel imple-
mentation). The main features of our scheme are (1) a patient-specific image-based
inversion formulation for the active forces; (2) a octree-based, adaptive finite-
element forward solver that incorporates anatomically-accurate fiber information;
(3)anadjoint/Hessian-based inversionalgorithm;and (4)a4Dcoupled inversion for
all images. This work builds on our previous work on parallel octree-based
methods [11].

2 Formulation of the Inverse Problem

The basic premise of our formulation is the following: The heart motion is in-
duced by the active forces in the myocardium. If we knew the exact biomechanical
model for the myocardial tissue (constitutive law, geometry, fiber orientations,
material properties for the heart and surrounding tissues, endocardial tractions
due to blood flow) and the active stretching time-space profile, then we could
solve a system of partial differential equations (PDEs) that describe the motion
of the myocardial tissue for the displacements given the fiber forces; we refer to
this system of PDEs (typically nonlinear elasticity) as the “forward problem”.
Similarly, if we knew the displacements at certain locations in the myocardium,
we could solve the so-called “inverse problem” to reconstruct active forces so that
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the motion due to the reconstructed forces matches the observed one. More gen-
erally, we have imaging data, typically cine-MRI, but not the displacements. We
can still invert for the displacements; by solving a biomechanically-constrained
image registration problem. In this context, an abstract formulation of the
myocardium motion estimation problem is given by

min
u,s

J (It, I0, u) subject to C(u, s) = 0. (1)

Here, It := It(x, t) is the cine-MR image sequence with x, t denoting the space-
time coordinates, I0 := I(x, 0) is the end-diastolic frame, u := u(x, t) is the
displacement (motion), s = s(x, t) is the active fiber contraction, and C is the
forward problem operator. Also, J is an image similarity measure functional.
This is a classical PDE-constrained inverse problem. Notice that there is no need
for elastic, fluid, or any kind of regularization for u. It is constrained through
the biomechanical model C.1

Objective Function. (Operator J ). Different image similarity metrics can be
used depending on the modality, like sum of squared differences and mutual
information [12]. In this paper for simplicity, we consider point correspondences.
We compute point-correspondences for all time frames, i.e., dj(t) := u(xj , t)

M
i=1

at M points. Then, the objective function is given by

J :=
∫ 1

0
(Qu− d)2 dt :=

∫ 1

0

M∑
i=1

(u(xj , t)− dj(t))2 dt, (2)

where Q is the so called spatial observation operator.

Forward Problem. (Operator C). We make several approximations in our bio-
physical model. We assume a linear isotropic inhomogeneous elastic material
for the myocardium; we ignore the geometric nonlinearities in both material re-
sponse and active forces; we model the blood pool as an incompressible material
with very small stiffness and large dissipation. We recognize that these are very
strong assumptions but the model is meant to be driven by image data and
assist in the motion reconstruction. More complex models, in particular non-
linear elasticity, will be incorporated in the future, if necessary. In addition to
the constitutive assumptions, we assume a model for the active forces: given the
fiber contractility s as a function of space and time, we define the active stretch
tensor U = I + s n⊗ n, whose divergence results in a distributed active force of
the form div(s n ⊗ n); here I is the 3D identity matrix. Taken together, these
assumptions result in the following form for C:

Mü(t) + Cu̇(t) + Ku(t) + As(t) = 0 t ∈ (0, 1). (3)

Using a Ritz-Galerkin formulation, with φ and ψ basis functions for u and s
respectively, the expressions for M , K and A(n) are given by Mij =

∫
I(φiφj),

1 However, one can show that the problem is ill-posed on s. Here we regularize by
discretization of s.
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K =
∫

(λ + μ)∇φi ⊗ ∇φj + μI(∇φi · ∇φj), Aij =
∫
(n ⊗ n)∇φiψj , and C =

αM + βK, with α and β viscous-damping parameters. Here, ⊗ is the outer
vector product, and λ and μ are the Lamé constants. Equation (3) is derived by
the Navier linear elastodynamics equation [13]. The domain of spatial integration
(for M , K, and A) is the unit cube, corresponding to the image domain. In our
formulation, we solve for the motion of all the tissue in the MR images. At
the outer boundaries of the cube we impose homogeneous Neumann boundary
conditions(zero traction). Also, we assume zero displacements and velocities as
initial conditions.

Inverse Problem. The inverse problem is stated by (1) where J is given by
(2) and C is given by (3). By introducing Lagrange multipliers p, the first-order
optimality conditions for (1) can be written as:

Mü(t) + Cu̇(t) + Ku(t) + As(t) = 0, u̇(0) = u(0) = 0,

Mp̈(t)− Cṗ(t) + Kp(t) + QT (Qu− d) = 0, ṗ(1) = p(1) = 0,

AT p(t) = 0.

(4)

Equation (4) consists of a system of partial-differential equations for u (cardiac
motion), p (adjoints), and s (active fiber contraction). It is a 4D boundary value
problem since we have conditions prescribed at both t = 0 and t = 1.

Discretization and Solution Algorithms. We discretize the forward and
adjoint problems in space using a Ritz-Galerkin formulation. We have devel-
oped a parallel data-structure and meshing scheme, discussed in [11]. The basis
functions are trilinear, piecewise continuous polynomials. In time, we discretize
using a Newmark scheme. The overall method is second-order accurate in space
and time. The implicit steps in the Newmark scheme are performed using the
method of Conjugate Gradients (CG) combined with a domain-decomposition
preconditioner in which the local preconditioners are incomplete factorizations.
The solver and the preconditioner are part of the PETSc package [14].

For these particular choices of objective function and forward problem the
inverse problem (4) is linear in p, u, and s. We use a reduced space approach
in which we employ a matrix-free CG algorithm for the Schur-complement of
s; also called the (reduced) Hessian operator. Each matrix-vector multiplication
with the Hessian requires one forward and one adjoint cardiac cycle simulation.
One can show that the Hessian is ill-conditioned and the overall cost of the
method can be quite high. Although, there are ways to accelerate the calcula-
tions, here we report results from a simple CG method. To reduce the compu-
tational cost for the calculations in the present paper, we used a reduced-order
model for s in which ψ is a product of B-splines in time and radial functions
in space (Gaussians). The activation s is parmeterized only when we solve the
inverse problem. For the forward problem, we use the underlying finite element
basis.
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3 Results

We first describe the set of experiments performed to validate the motion esti-
mation framework using synthetic datasets. This is followed by results using MR
tagged images.

Tests on Synthetic Datasets for Verification. In order to assess the
parametrized model of the forces, we use an ellipsoidal model of the left ventricle.
The fiber orientations are generated by varying the elevation angle between the
fiber and the short axis plane between +60◦ and −60◦ from the endocardium
to the epicardium [15]. For this model we selected a Poisson’s ratio ν = 0.45
and a Young’s modulus of 10 kPa for the myocardial tissue and 1 kPa for the
surrounding tissue and ventricular cavity2. Raleigh damping (C = αM + βK)
was used with parameters α = 0 and β = 7.5 × 10−4. In order to drive the
forward model, we generated forces by propagating a synthetic activation wave
from the apex to the base of the ventricles. The number of time steps were set
to be 50. The motion field obtained by solving the forward problem was used
to drive the inverse estimation. The relative residual tolerance for the forward
solver (CG) was set to 10−8 and to 10−4 for the inverse solver.

Table 1. Error in recovery of activation
for increasing number of radial basis func-
tions. By changing the inversion solver ac-
curacy, we can accelerate the calculation
without compromising accuracy (e.g., the
43 calculation).

Basis Size Relative Error (%) Time
23 13.1 36 mins
43 5.67 ≈ 5 hrs
43 11.2 108 mins
83 9.66 141 mins

Table 2. Error in the recovery of activa-
tion with partial observations of the dis-
placements. Errors are reported on the
ellipsoidal model for a grid size of 32 with
43 basis functions.

Observations Relative Error (%)
Full 5.36 × 10−2

1/8 6.21 × 10−2

1/64 8.51 × 10−2

We calculated the error in the estimation of the activations for different de-
grees of parametrization using the radial basis. In all cases, the time dependence
of the force was parametrized by five B-splines. The relative error in the estima-
tion of the activation for a 643 grid was computed for spatial parametrizations
of 23, 43 and 83 and is tabulated in Table 1. In addition, we investigated the er-
ror in the estimation when only partial observations are available. We compared
estimations based on full and sparse observations with 12% and 6% samples
against the analytical solutions. These results are tabulated in Table 2. In order
to assess the sensitivity of the motion estimation framework, we estimated the
motion for the synthetic model of the heart at a grid size of 64 with a radial basis
parametrization of 43 by adding noise to the system. We added a 5% random
error on the estimates of the fiber orientation and to the material properties of

2 We treat the blood pool as an incompressible solid with low shear resistance.
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the myocardium. In addition, we added a 1% noise to the true displacements.
The system converged and the relative error, in the L2 norm, increased from
5.67× 10−2 to 9.43× 10−2. Overall, the solution is not sensitive to the errors in
the material properties (due to the well-posedness of the forward problem) and
on the noise (due to the presence of model regularization).

Validation using Tagged MR Images. We acquired tagged MR sequences
for 5 healthy volunteers, on a Siemens Sonata 1.5TTM scanner, in order to
validate our motion estimation algorithm. Three short axis and a single long
axis grid tagged, segmented k-space breath-hold cine TurboFLASH images with
image dimensions of 156x192 pixels and with pixel size of 1.14x1.14 mm2 were
acquired. The slice thickness was 8mm. The displacements (observations) at
the tag intersection points within the myocardium were computed manually.
An average of 70-tag intersection points were selected over the left and right
ventricles on each plane resulting in around 300 observations in space. Three
independent observers processed all five datasets to get three sets of observations.
To account for observer variability, we treated the mean location of the landmark
as the ground truth observations.

The fiber orientations required for the biomechanical model were obtained us-
ing using ex-vivo DTI data and a tensor mapping method [10]. The end-diastolic
MR image was segmented manually to assign material properties to the myocar-
dial tissue, the blood and the surrounding tissue.

In three separate experiments, we used 70%, 50%, and 20% of the ground truth
observations (selected per slice) as the data for the inversion. The observations
that are not used during the inversion are the control observations and are used
for assessing the goodness of the inversion. We used the B-spline and the radial
bases to reduce the parameter space. We used a total of 43 spatial parameters,
each with 5 B-spline temporal parameters, giving us a total of 320 parameters.
We used a grid size of 643 for all inversions.

After inversion, one additional forward solve was performed using the dense
estimates of the fiber contractions to obtain dense estimates of myocardial dis-
placements. These displacements were compared with the ground truth displace-
ments at the tag-intersection points. The relative error (as a percentage) and the
absolute error in millimeters for all observations and restricted to only the con-
trol observations are shown in Table 3. The RMS errors over time for different
levels of partial observations are plotted in Figures 1a-1c.

An alternate way of interpreting the results is to analyze the left-ventricular
volume, obtained using manual segmentation and by the using the motion es-
timates, as seen for one particular subject in Figure 1d. The volume estimates
using 70% and 50% observations are in general agreement with those obtained
using manual segmentation. The volume estimated using 20% observations does
not match very well with the manual segmentation, although the general trend
is captured even when using only 20% observations.
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Table 3. Results from tagged data using a 643 forward mesh size and an inverse
parametrization of 43 spatial parameters and 5 temporal B-spline parameters. The
percentage specifies the percentage of total observations that were used to drive the
inverse optimization. The control observations are the remaining observations that were
not used during the inverse optimizations and are used for validation purposes.

Error (%) Error (%) Error (mm) Error (mm)
All obs. Control obs. All obs. Control Obs.

Observers 9.21 8.41 1.39 1.26
Algorithm 70% 12.46 14.22 1.88 2.13
Algorithm 50% 16.37 21.02 2.47 3.15
Algorithm 20% 41.61 51.19 6.28 7.67
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Fig. 1. Comparison of the RMS errors over time for the motion estimation algorithm
using partial observations. Motion estimation was performed using (a)70%, (b)50%
and (c)20% partial observations, and the errors are plotted as a function of time for
each of the partial observation cases. (d) Left ventricular volume of a selected subject,
segmented automatically and by manually over all frames in a cardiac cycle.
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4 Conclusions

We presented a method for cardiac motion reconstruction. We integrate tagged-
MR images and a biomechanical model that accounts for inhomogeneous tissue
properties, fiber information, and active forces. We presented an inversion algo-
rithm. Using only a total of 320 parameters we were able to reconstruct the 4D
cardiac motion quite accurately.

The limitations of our current implementation (but not the method) is the
assumptions of linear geometric and material response and the potential bias
due to template-based fibers that does not account for anatomical variability,
that is still requires some preprocessing of the initial frame to assign material
properties and fiber orientation, that assumes zero residual stresses and initial
conditions, and that it does not include an electrophysiology model.

Our on-going work includes transition to an intensity-based image-registration
inversion (in which case we need to solve a nonlinear inversion) and its clinical
validation by reconstructing motions of normal and abnormal populations and
conducting statistical analysis. Among the many open problems are the level
of required model complexity for clinically relevant motion reconstructions, the
bias of the fibers, the sensitivity to the values of the material properties, and the
sensitivity to the image similarity functional.
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Abstract. This paper proposes a method for performing predictive sim-
ulation of cardiac surgery. It applies a hybrid approach to model the
deformation of blood vessels. The hybrid blood vessel model consists of
a reference Cosserat rod and a surface mesh. The reference Cosserat rod
models the blood vessel’s global bending, stretching, twisting and shear-
ing in a physically correct manner, and the surface mesh models the
surface details of the blood vessel. In this way, the deformation of blood
vessels can be computed efficiently and accurately. Our predictive simu-
lation system can produce complex surgical results given a small amount
of user inputs. It allows the surgeon to easily explore various surgical op-
tions and evaluate them. Tests of the system using bidirectional Glenn
shunt (BDG) as an application example show that the results produced
by the system are similar to real surgical results.

1 Introduction

Many cardiac surgeries for correcting congenital heart defects, such as arterial
switch operations and bidirectional Glenn shunt [1], involve complex operations
on the cardiac blood vessels. At present, cardiac surgeons mostly rely on echocar-
diography, cardiac catheterization and CT images of a patient’s heart to examine
the specific anatomical anomalies of the patient. Without appropriate surgical
planning and visualization tool, they often resort to manual drawings to visual-
ize the surgical procedures and the expected surgical results. This approach is
imprecise and is impossible to provide details of the possible outcome of the sur-
gical procedures. To improve the precision and effectiveness of cardiac surgery
planning, novel surgical simulation systems are desired.

Among existing surgical simulation systems, reactive systems (e.g., [2,3]) at-
tempt to simulate real-time displacement and deformation of body tissues in
response to user inputs that emulate surgical operations. They are useful for
training and navigational planning of surgical operations. However, to use a re-
active system to predict results of complex surgeries, the surgeon would need to
go through all the detailed surgical steps, which is tedious and time-consuming.

In contrast, predictive simulation systems (e.g., [4]) aim at efficiently produc-
ing complex surgical results based on the physical properties of the anatomies
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and a small amount of user inputs that indicate the surgical options. In this
way, the surgeon can easily explore various surgical options and evaluate the
predicted surgical results without going through the surgical details.

This paper illustrates a predictive simulation system for bidirectional Glenn
shunt (BDG), which is a very important cardiac surgery for the treatment of
several congenital heart defects (Sec. 3). In the predictive simulation of BDG,
as in the simulation of other surgical procedures that involve soft tissues, the
model objects should deform according to their physical properties. In addition,
the deformation of the blood vessels should comply with an additional constraint:
they should not be overly stretched or twisted to avoid obstruction of blood flow.
This constraint translates to the requirement of modeling global strains such as
bending, stretching and twisting of the blood vessels.

Blood vessel deformation can be modeled using 3D finite elements [5] or thin
shell models [6,7]. These methods are in general computationally expensive. For
reactive simulation, mass spring model has been applied to the simulation of car-
diac tissue and blood vessel deformation [2,3]. However, its simulation accuracy
highly depends on careful placements of springs between mass points, which may
not have physical correlates. More importantly, these general surface/volume de-
formation methods do not explicitly model global bending and twisting, which
are important characteristics of blood vessels.

To meet the requirement of modeling global strains in the predictive simu-
lation of BDG, this paper presents a hybrid approach for modeling blood ves-
sel deformation (Sec. 2). The hybrid blood vessel model binds a surface mesh
elastically to a reference Cosserat rod [8]. The mesh model represents the sur-
face details of the blood vessel while the reference rod models global bending,
stretching, twisting and shearing of the vessel. Deformation of the hybrid model
is accomplished by first deforming the reference rod according to Cosserat the-
ory, then deforming the mesh according to its binding to the rod and its surface
elastic energy. This approach allows the blood vessel to deform in a physically
correct manner in relation to its global strains. It also allows the surface to de-
form realistically and efficiently. Moreover, the hybrid model provides structural
information of the blood vessel, thus reducing the amount of user inputs that
indicate surgical options (Sec. 3). Experimental results (Sec. 4) confirm the effec-
tiveness of our model in the predictive simulation of BDG. Note that although
the example application in this paper is BDG, our blood vessel model is general
enough for the predictive simulation of other complex cardiac surgeries.

In comparison to our work, existing reactive simulation systems of cardiac
surgery [2,3] focus on low-level operations such as incision and retraction of the
heart [2,3] and suturing of ventricular septal defect [2], rather than complex
operations on the cardiac blood vessels. For predictive simulation of cardiac
surgery, Li et al. [4] applied differential geometry approach to predict the sur-
gical results of aorta reconstruction. The predictive simulation idea is in spirit
similar to that of this paper. However, the deformation approach adopted in [4]
is a pure geometrical approach, which is not necessarily accurate. Moreover, it
took into consideration only the surface elastic energies and did not model the
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global strains of blood vessels. Although torsion energy can be approximated as
described in [9], it is nontrivial to incorporate the torsion energy term to affect
the behavior of the blood vessel model.

2 Hybrid Blood Vessel Model

Our hybrid model of a blood vessel consists of a reference Cosserat rod and a
surface mesh of the blood vessel (Fig. 2.1). For a given surface mesh of a blood
vessel, we construct the hybrid model by fitting a reference rod to the centerline
of the surface using the technique described in [9,10]. A binding relationship
between the surface model and the reference rod is then established. The de-
formation of the blood vessel is achieved by first deforming the reference rod
according to Cosserat theory [8] (Sec. 2.1), then deforming the mesh model ac-
cording to the surface elastic energy in terms of surface bending and stretching,
and the established binding relationship to the reference rod (Sec. 2.2).

2.1 Cosserat Rod

A Cosserat rod C [8] is represented by a 3D curve r(s) and orthonormal directors
dk(s), with k ∈ {1, 2, 3} and the arc length parameter s ∈ [0, L]. d3(s) is normal
to the cross-sectional plane Xs of the rod at s. d1(s) and d2(s) are in Xs and
point at two material points on the rod’s surface (Fig. 2.1).

The strains of a Cosserat rod are expressed as linear strain vector v(s) and
angular strain vector u(s) [8] such that

v(s) = ∂sr(s), ∂sdk(s) = u(s)× dk(s), k ∈ {1, 2, 3}. (1)

The strain vectors u(s) and v(s) can be resolved into three components by the
directors dk to yield the strain variables uk and vk:

uk = u · dk, vk = v · dk, k ∈ {1, 2, 3}. (2)

Together with global translation and rotation of the rod, uk and vk define the
rod’s configuration, i.e., r and dk. The components u1 and u2 are the curvatures
along d1 and d2 which measure the bending of the rod, while u3 measures
twisting. The components v1 and v2 measure shear, and v3 measures stretching.
Let us denote

u ≡ [u1, u2, u3]�, v ≡ [v1, v2, v3]�. (3)

Assuming the Kirchhoff constitutive relations, the couple (i.e., inner torque)
m(s) and stress n(s) experienced by the rod are

m(s) = J(s)(u(s) − u0(s)), n(s) = K(s)(v(s) − v0(s)), (4)

where J(s) and K(s) are stiffness matrices that depend on the geometric mo-
ments of inertia and material properties of the rod, and u0(s) and v0(s) are the
strain values in the initial configuration. The potential energy of the rod is [8]:

E =
1
2

∫ L

0

[(
u(s)− u0(s)

)�
m(s) +

(
v(s)− v0(s)

)�
n(s)

]
ds. (5)
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Fig. 1. A hybrid blood vessel model with its reference rod, directors and surface mesh

Given boundary conditions on the positions r or the directors dk, the deformed
configuration Ct = {rt,dt

k} is the equilibrium state of the rod, with minimum
potential energy E that minimizes the difference between the strains.

2.2 Blood Vessel Surface Deformation

Binding Surface to Cosserat Rod. If the cross-sections do not change, the
surface of a blood vessel can be considered as a shape function defined by the
reference Cosserat rod. For each mesh vertex p, there exists an s such that p is
on the cross-section Xs of the blood vessel at s. A one-to-one mapping function
f can then be established between the local coordinates (x, y, z) in the directors
dk at s and the global coordinates p:

p = f(s, x, y, z) = r(s) + xd1(s) + y d2(s) + z d3(s). (6)

In the initial configuration, the local coordinates (x, y, z) for each mesh vertex
are computed from the initial reference rod. When the reference Cosserat rod
deforms, function f defines the reference binding position p′ of the mesh vertex
p in the deformed configuration. The elastic binding energy between the surface
mesh and the reference Cosserat rod can then be defined as:

Ec(p) = kc‖p− p′‖2
2, (7)

where kc is the corresponding binding coefficient.

Surface Bending and Stretching. When a blood vessel deforms, its surface
undergoes stretching and bending, which incur stretching and bending energies.
For discrete meshes, various techniques have been presented to approximate
the energies (e.g., [7]). Since stretching and bending are essentially non-linear
characteristics, the resulting deformable model are usually non-linear, which may
be computationally costly.

One efficient way to approximate the bending energy is to use Laplacian
operators [11,12]. Since Laplacian is a linear operator, it is rotation variant. Tra-
ditional ways of achieving rotation-invariant Laplacian is to approximate the ro-
tation of Laplacian from known handle vertices [12] or by using multi-resolution
hierarchies [11]. In our model, rotation-invariance is achieved by measuring the
Laplacians with respect to the directors of the reference rod, which are intrin-
sic properties of the rod. This is a more natural approach to achieving rotation
invariance of Laplacian for tubular objects like blood vessels. Therefore, the
reference Cosserat rod serves the important roles of modeling global strains of
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(a) (b) (c)

Fig. 2. Models and inputs. (a) Heart and blood vessel models reconstructed from a
patient’s CT images. (b) User input points to indicate surgical options. (c) Cross-
sectional cut path and incision path generated by the system.

the blood vessel, as well as achieving rotation-invariant Laplacians. The surface
bending energy at a vertex p with its Laplacian l(p) is:

Eb(p) = kb‖l(p)−R(p) l0(p)‖2
2, (8)

where l0(p) is the Laplacian of p in the initial configuration, R(p) is the rotation
of the corresponding directors, and kb is the bending stiffness.

Surface stretching energy is measured by the change of edge lengths similar
to [7]. For an edge e that connects vertices pi and pj , the stretching energy is:

Es(e) = ks (‖pi − pj‖ − ‖p0
i − p0

j‖)2, (9)

where ks is the stretching stiffness related to the Young’s modulus, and ‖p0
i−p0

j‖
is the edge length in the initial configuration.

The total surface deformation energy to be minimized is thus:

E = Ec + Eb + Es. (10)

Note that the binding and bending terms are both linear. The stretching term,
although non-linear, can be solved efficiently in an iterative way described in
[13]. Hence, the overall surface deformation can be achieved efficiently.

3 Predictive Simulation of Bidirectional Glenn Shunt

Bidirectional Glenn shunt (BDG) is a very important operation involved in the
treatment of several congenital heart detects such as tricuspid atresia, hypoplas-
tic left heart syndrome, and single ventricle anomalies [1]. It is performed by first
detaching the superior vena cava (SVC) from the heart through a cross-sectional
cut on the SVC, then making an incision on the top side of the right pulmonary
artery (RPA), and connecting the distal end of the SVC to the top side of RPA.
After BDG, venous blood from the head and upper limbs will pass directly to the
lungs, bypassing the right ventricle such that the volume load on the ventricle
will be decreased and the oxygen saturation will be improved.
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In the surgical planning of BDG, the surgeon needs to decide: a) the position
of the cross-sectional cut on the SVC to detach it from the heart; b) the incision
path on the top side of the RPA; c) the correspondence between the two joining
boundaries to join the SVC and RPA with minimum twisting.

These decisions should be carefully made for every patient to reduce the po-
tential risk (e.g., obstruction of blood flow) and to improve the long-term out-
come. In addition, the surrounding cardiac structures (e.g., the aorta and the
heart) limit the desirable deformation of the SVC and RPA, making the surgical
decisions very crucial.

3.1 Predictive Simulation Algorithm

Our predictive simulation system allows the user to simply pick a point on
the SVC and RPA respectively to indicate the surgical decision (Fig. 2(b)).
It then automatically predicts the result of BDG with minimum blood vessel
deformation. The simulation algorithm consists of the following three steps:

Step 1. Given the cut position c on the SVC (Fig. 2(b)), the algorithm computes
its projection to the reference rod of SVC to get the parameter s and the cross-
sectional plane Xs of the reference rod (Fig. 2(c)). The surface is cut by this
cross-sectional plane and the reference rod is split into two parts.

Step 2. Given the incision point i on the RPA (Fig. 2(b)), an incision path is
drawn on RPA’s surface (Fig. 2(c)) such that it is parallel to RPA’s reference
rod and the mid-point of the path is the input point i. The length of the incision
path is determined by the perimeter of the distal end of the cut SVC.

Step 3. The point correspondence between the two joining boundaries is estab-
lished such that the center of the distal end of SVC is aligned with point i, and
the director d3 is normal to the surface of RPA. Next, the deformation algorithm
is applied to solve for the final configuration that minimizes the Cosserat rod
energy E (Eq. 5), the surface energy E (Eq. 10), and an additional spring energy
introduced to join the corresponding points of the two boundaries.

The final configuration illustrates the expected surgical results based on the
given surgical decision, which is the minimally deformed configuration. In addi-
tion, the system also illustrates a way of cutting and joining the blood vessels
with minimum deformation.

4 Tests and Discussions

For testing our hybrid model, a straight tube (Fig. 3(a)) was constructed to
model a real elastic tube that the surgeon uses to emulate blood vessels during
surgery planning. Figure 3(b, c) compares the bending and twisting deformation
of the model and that of the real tube, which was manipulated by hand at its two
ends. The similarity of our tube model to the real tube shows the correctness
of our hybrid approach in simulating tubular object deformation. Figure 3(d)
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Fig. 3. Deformation of hybrid model (lower) in comparison with real elastic tube ma-
nipulated by hand (upper). (a) Initial configuration, (b) bending, (c) twisting. (d) Mesh
variation with respect to change of Young’s (Y) and shear (G) moduli.

(a) (b) (c) (d) (e)

Fig. 4. Predicted surgical results of various surgical options. (a) Desired result, free of
congestion and twisting. (b) Result with undesirable twisting indicated in green. (c–e)
Different selections of cut points on SVC result in different amount of pressure due to
collision with aorta. SVC’s are made semi-transparent to illustrate the pressure in red.

(a) (b) (c) (d)

Fig. 5. Comparison of (a, c) simulation results with (b, d) volume rendering of post-
operative CT data. (a, b) Frontal view. (c, d) Side view.

illustrates mesh variation with respect to change of material property in simu-
lating the twisting example (Fig. 3(c)). The Young’s and shear moduli varied
from their default values with a factor ranging from 0.01 to 100. Figure 3(d)
shows that the deformation algorithm is robust, i.e., produces small mesh varia-
tion with small change of material property. The slight fluctuation of the curves
for factors close to 1 may be attributed to the non-linear behavior of the model
and numerical error in discrete optimization.
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For testing the predictive simulation algorithm, 3D mesh models of the heart,
aorta, pulmonary artery and superior vena cava were segmented and recon-
structed from a patient’s CT images (Fig. 2(a)), and the hybrid models were
constructed. For blood vessels with branches such as the aorta and pulmonary
trunk, the major branches can also be modeled using the hybrid model with ref-
erence rods connected to the reference rod of the main trunk, thus constructing
a tree structure of rods. The BDG simulation algorithm was performed on the
blood vessel models to join the SVC to the RPA. Various surgical options were
tested as inputs for evaluating the predicted surgical results.

Figure 4(a) shows a desired surgical result which is free of congestion and
twisting. Explicit modeling of global strains in our model allows strain values
to be easily visualized. For example, by intentionally rotating the distal end of
SVC, undesirable twisting of SVC was produced and visualized (Fig. 4(b)). The
selection of the cut position on the SVC is crucial since it affects the length
of the cut SVC. As shown in Figure 4(c–e), when the cut SVC was too short,
it collided with the aorta thus resulting in pressure on both vessels (Fig. 4(c)).
The pressure decreased with increasing SVC length (Fig. 4(d)), and became zero
when the cut SVC was long enough to avoid collision (Fig. 4(e)).

Note that quantitative validation of the predictive simulation system is dif-
ficult to achieve because the reconstructed 3D models cannot be exact due to
errors in CT scanning and image segmentation. Moreover, the blood vessel shape
is affected by other factors such as blood pressure. Therefore, this paper presents
only a qualitative validation by comparing the simulation result with the volume
data of the patient’s postoperative CT rendered by VTK [14]. Frontal and side
views of the volume rendering were selected such that the SVC and aorta can
be clearly seen. Figure 5 shows that the shapes of the blood vessels in our sim-
ulation result are similar to those in the volume data. The heart model differs
somewhat from the real heart due to segmentation error and rendering effects.

The above tests were carried out on a 2.33 GHz Core 2 Duo PC. The execution
time for BDG simulation is on average 10 seconds, with the blood vessel models
containing a total of 24, 393 vertices (AO: 8, 995, PA: 9, 824, VC: 5, 574).

5 Conclusion

This paper presented a predictive simulation system for bidirectional Glenn
shunt (BDG) in cardiac surgery. The system uses a hybrid approach to model
blood vessel deformation. The hybrid model binds a reference Cosserat rod and
a surface mesh elastically. The reference rod models the global strains of the
blood vessel in a physically correct manner, while the 3D mesh models the sur-
face details of the blood vessel. In this way, blood vessel deformation can be
achieved accurately and efficiently. Our blood vessel model also provides struc-
tural information that facilitates predictive simulation procedure. Experiments
and qualitative validation confirm the feasibility and effectiveness of the hybrid
blood vessel model for the predictive simulation of BDG.
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Abstract. We have developed a system for computer-assisted surgical planning 
of tracheal surgeries. The system allows to plan the intervention based on CT 
images of the patient, and includes a virtual database of commercially available 
prostheses. Automatic segmentation of the trachea and apparent pathological 
structures is obtained using a modified region growing algorithm. A method for 
automatic adaptation of a finite element mesh allows to build a patient-specific 
biomechanical model for simulation of the expected performance of the implant 
under physiological movement (swallowing, sneezing). Laboratory experiments 
were performed to characterise the tissues present in the trachea, and movement 
models were obtained from fluoroscopic images of a patient. Results are  
reported on the planning and biomechanical simulation of two patients that  
underwent surgery at our hospital. 

1   Introduction 

A number of pathologies affecting the trachea exist, both benign and malignant, lead-
ing to the obstruction of the airways and, ultimately, to asphyxia. Tracheostomy  
consists in performing an orifice in the trachea, distal to the obstruction, to ensure 
access to the air. This type of procedures – reported as early as 3.600 b.C. – have 
evolved towards new therapeutic variants, leading to the design of modern tracheal 
endoprostheses and stents 1.  

Preoperative planning of tracheal surgery is performed nowadays on CT or MR 
images of the patient. Planning includes the selection of the material, type and place-
ment of the prosthesis, and these choices are largely influenced by the previous ex-
perience of the surgeon. Further, planning based on a single static image of the patient 
does not portray the behaviour of the implant under stress conditions derived from 
physiological movements (swallowing, sneezing, etc.). 

We have developed a system for computer-aided planning and simulation, allow-
ing to explore the anatomy of the patient and automatically segment the trachea and 
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any apparent pathological structures. A database of models of commercially available 
tracheal implants permits to select and virtually position the implant of choice. Fi-
nally, the established plan is used as initial condition for biomechanical simulations  
of swallowing movement. Prior to such simulations, laboratory experiments were 
performed to characterise the tissues present in the trachea and thus build realistic 
constitutive models. 

We present our framework for surgical planning (section 2) and biomechanical 
simulation (section 3). Results are presented on data from 2 patients that underwent 
tracheal surgery with the implantation of an endoprosthesis (section 4). 

2   Surgical Planning 

We have developed a software for surgical planning of tracheal implants. The tool 
supports full connectivity to PACS systems and DICOM conformance, as well as 
professional 2D, MPR and 3D volume rendering capabilities for the exploration of the 
data sets. We have implemented an implant database integrated into the GUI of the 
application, allowing to explore the full range of implant models and sizes commer-
cially available, and including CAD models of each of them for virtual placement. 
Intuitive manipulation tools allow to fine tune the selection and placement of the 
implant, and determine potential complications due to factors such as the distance to 
the vocal chords and the tracheal wall. 

2.1   Automatic Segmentation of the Trachea 

Several segmentation methods for automatic identification and delineation of the 
trachea in CT images have been tested, ranging from basic thresholding algorithms  
 

 

Fig. 1. Automatic segmentation of the trachea (shown in blue) based on anisotropic diffusion, 
region growing and morphological operations. An alternative approach based on level sets was 
tested and yielded similar results at higher computational cost. 
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to sophisticated level-set evolution techniques 2. Based on criteria such as speed, 
robustness and minimum user interaction, we designed an adapted region growing 
method consisting of the following steps:  

1) anisotropic diffusion 3; 
2) adaptive region growing 4; 
3) morphological operations for segmentation refinement 5.  

Segmentation results were validated by surgeons on 30 cases, via detailed visual in-
spection. An example of the application of this algorithm to one of our datasets is 
shown in figure 1. 

 

   

Fig. 2. A database of virtual models of commercially available tracheal endoprostheses was 
implemented. This allows to make multiple simulations using different implant models and sizes. 

 

Fig. 3. Planning module for virtual placement of tracheal implants. A preoperative CT scan is 
used as reference to plan the position and orientation of the chosen implant. The plan is stored 
and further used for biomechanical simulations. 
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2.2   Implant Database and Virtual Placement 

We have created 3D models of a total of 93 prostheses of different models and  
sizes (figure 2). These models have been incorporated into our software as a “virtual 
catalogue”. Once a model has been selected, the 3D representation of the implant  
is shown on the patient’s image data. An intuitive 3D interface allows to virtually 
position and align the prosthesis (figure 3). 

3   Biomechanical Simulation 

The choice of implant model, size and position has been made based on a single  
static CT image of the patient. However, as part of its normal function, the trachea 
undergoes demanding physiological movements that have an important effect on the 
performance and lifespan of the prosthesis. To take this into account, we create a 
patient-specific biomechanical model of the trachea and the implant, and perform 
finite element simulations to predict the dynamic behaviour and thus identify possible 
risks due to excessive stress on the tracheal walls. 

3.1   Patient-Specific Models of the Trachea 

We built a detailed finite element mesh including all tissues present in the trachea. This 
model was constructed from a CT data set of a subject with no tracheal pathology, 
using the segmentation method described above and the commercial meshing software 
packages: PATRAN (MSC, Santa Ana, USA) and I-DEAS (Siemens PLM, Plano, 
USA). The resulting mesh contains 28.350 hexahedral elements, grouped into 3 
groups: membrane, tracheal muscle, and cricoid and thyroid cartilage (figure 4, left). 

 
Fig. 4. Complete finite element model of the human trachea, including cartilage (red), muscle 
(blue), internal membrane (green). On the right, automatic adaptation of the finite element 
mesh (cartilage is shown) to a new tracheal geometry, in this case with a stenosis, obtained by 
deforming the mesh to the segmented tracheal surface of a patient (middle). 
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This mesh can be adapted to the particular patient’s anatomy by deforming it to 
match the segmented internal and external surfaces of the patient’s trachea. To this 
end, first a surface matching process is used to find correspondences between these 
surfaces and the nodes of the mesh defining the internal and external surfaces in the 
model. Using these correspondences, a simple elastic transformation is applied to de-
form the complete mesh (solved as a linear perturbation problem using the commercial 
software ABAQUS, DSS, Providence, USA). Thus, an automatic procedure can be 
followed to construct finite element models of each patient in a matter of seconds. An 
example of this mesh adaptation can be seen in Fig. 4. 

3.2   Tissue Characterization 

Laboratory experiments were performed to characterise the two main tissues in the 
trachea: cartilage and muscle. There is no possibility of taking samples of internal 
membrane out of the trachea, but its structure is similar to the muscular membrane, 
so, its mechanical behaviour will be assumed to be the same. A blinded controlled 
trial on 20 patients was performed as follows. An experimental study consisting of an 
extension test 67 (up to 5% deformation) of the cartilage was used to determine its 
elastic behaviour. A Neo-Hookean 8 curve regression was fitted to the experimental 
results, yielding to a value of C=0.56 MPa for the stiffness of the cartilage. In order  
to determine the anisotropy of the material, histology was performed on several  
cuts over various tracheal rings. These observations allowed to confirm that tracheal 
cartilage is a material in which collagen fibres are randomly distributed.  

Regarding the tracheal muscle, histology showed that it consists of two families of 
orthogonal fibres. In order to optimise computational time, we opted for building two 
different models, based on traction experiments of transversal and longitudinal tissue 
cuts. A Neo-Hookean material was assumed, and validated by curve fitting on the 
extension curves. The resulting parameters were C=0.032715 MPa for the longitudinal 
and C=0.008984 MPa for the transversal directions. For simulations of swallowing 
movement the longitudinal model was used, as this is the predominant direction of the 
movement. Conversely, the transversal model was used for simulations of sneezing 
movements. 

Finally, the tracheal prosthesis was assumed to be elastic, since it is usually made 
of silicone. 

3.3   Simulation of Swallowing Movement 

Fluoroscopic image sequences were used to build a realistic model of the physiologi-
cal swallowing movement. Several images were available, portraying both normal 
and pathological movement patterns, including explorations of patients after the im-
plantation of endoprostheses. We adopted the movement of a healthy subject as the 
base for our simulations, as this is the movement that ideally would be recovered after 
the intervention. Further, it has been clinically seen that the movement of the trachea 
among different patients is not very different, because the glottis has to close to let the 
food going through the oesophagus. 

Key anatomical landmarks (e.g. crycoid) are identified and tracked in the fluoro-
scopic images, and the resulting displacement fields are taken to the finite element 
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analysis using correspondences on the deformed mesh. The finite element simulation, 
incorporating the models for the trachea and the implant, and reproducing the estab-
lished movement pattern, was performed using ABAQUS. 

4   Results 

The framework was tested on data from 2 patients that underwent tracheal surgery. 
For each patient, two simulations were run, one on the data prior to the intervention 
and without incorporating the implant, and another one including the implant as posi-
tioned by the clinical expert using our tools. For the first patient (62 y.o., male, 83 
kg), we obtained a global displacement of the thyroid cartilage of 27.89 mm, which is 
within the normal physiological range of 20-35 mm, and a maximum principal tension 
of 0.487 MPa, when simulating without implant. Running the same simulation includ-
ing the prosthesis led to a maximum displacement of 5.69 mm and a maximum prin-
cipal tension of 0.61 MPa, meaning that the movement was reduced to only 20.4% of 
the original one, but the tension was 1.25 times higher. 

    

     

Fig. 5. Simulation of swallowing movement for patient 2, first without the implant (top row) 
and then simulating the implantation and the interaction with the tracheal wall (bottom row). 
For each case, we show the norm of the displacement (left) and the maximum tension (right). 
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For the second patient (28 y.o., male, 75 kg), the simulation without implant 
yielded a displacement of the reference cartilage of 7.41 mm, with a maximum prin-
cipal tension of 0.128 MPa. Incorporating the implant we obtained a displacement of 
2.56 mm and a maximum principal tension of 0.563 MPa (figure 5). 

The results support the clinical hypothesis that tracheal implants lead to a loss of 
roughly 50% of the ability to swallow, and generate a damage (due to the increase in 
tension around the edges of the implant) that leads to the creation of granulomas in 
the tracheal wall 9. 

5   Conclusions 

We have developed a software for surgical planning of tracheal interventions, com-
bining image segmentation, a database of virtual models of implants, and patient-
specific biomechanical simulations of physiological movements to predict implant 
performance. Laboratory experiments were performed to characterise the tissue ele-
ments in the model, and adaptation of a detailed finite element mesh to fit the patient 
data was implemented. The method was tested on data from 2 patients, and results are 
clinically sound. 

Several issues remain to be further explored. In future work, we plan to continue 
on the evaluation of the method an quantitatively evaluate its performance. That is, 
we will define clinical surrogates that can be measured from post-operative data and 
compared to the simulations. This is work in progress. 

On the methodological side, one of the issues to be refined is the establishment of 
suitable movement models for different physiological processes. In addition to swal-
lowing, sneezing movement simulations are underway. Further, movement models are 
currently obtained from fluoroscopic data of one patient (or normal subject). One of 
the approaches we are exploring is the construction of a parametric movement model, 
or even a statistical 4D model, such as the ones built for breathing movements 10.  

We believe that the results presented in this paper are promising and contribute  
to the development of novel therapies based on patient-specific virtual models includ-
ing physiological simulations, which are bound to replace current ad-hoc surgical 
planning procedures and lead to principled evidence-based patient care. 

 
Acknowledgments. This work was in part supported by Grant PI07/90023 of the 
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Abstract. The problem of generating realistic computer models of ob-
jects represented by 3D segmented images is important in many biomed-
ical applications. Labelled 3D images impose particular challenges for
meshing algorithms because multi-material junctions form features such
as surface pacthes, edges and corners which need to be preserved into the
output mesh. In this paper, we propose a feature preserving Delaunay
refinement algorithm which can be used to generate high-quality tetra-
hedral meshes from segmented images. The idea is to explicitly sample
corners and edges from the input image and to constrain the Delau-
nay refinement algorithm to preserve these features in addition to the
surface patches. Our experimental results on segmented medical images
have shown that, within a few seconds, the algorithm outputs a tetrahe-
dral mesh in which each material is represented as a consistent submesh
without gaps and overlaps. The optimization property of the Delaunay
triangulation makes these meshes suitable for the purpose of realistic
visualization or finite element simulations.

1 Introduction

Motivation. Advanced medical techniques frequently require geometric repre-
sentations of human organs rather than grey-level MRI or CT-scan images. The
precondition for extracting geometry from a medical image is usually to segment
it into multiple regions of interest (materials). This paper focuses on the next
step: the automatic generation of meshes from 3D labelled images. These meshes
are either surface meshes approximating the boundaries of anatomical structures
or volume meshes of these objects.

The generation of geometric models from segmented images presents many
challenges. In particular, the algorithm must handle arbitrary topology and
multiple junctions. Multi-material junctions form surface patches (2-junctions),
edges (1-junctions) and corners (0-junctions) which are expected to be accu-
rately represented in the output mesh. However, it is still very challenging to
construct a good mesh where each feature (surface patch, edge or corner) is
accurately represented.
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In this paper, we present a Delaunay refinement algorithm which addresses
this issue. In a matter of seconds, the algorithm outputs a high-quality tetra-
hedral mesh where each anatomical structure is represented by a submesh with
conforming boundaries.

Related work. There are only a few meshing strategies which directly pro-
vide volume meshes from multi-material images. Early grid-based methods deal
with tetrahedral elements that are created from the original rectilinear volume
subdivision [1,2]. More recently, an octree-based method has been proposed [3]
that outputs tetrahedral or hexahedral meshes with consistent multi-material
junctions. However, like the other grid-based methods, this algorithm does not
offer a mesh quality control and elements of poor quality are always gener-
ated along boundaries. Quality improvement techniques are usually used as a
post-processing step to deliver acceptable meshes.

Another powerful strategy based on Delaunay refinement, has been proposed
for meshing smooth surfaces [4] and volumes bounded by smooth and piecewise
smooth surfaces [5,6]. The refinement process is controlled by highly customiz-
able quality and size criteria on triangular facets and on tetrahedra. Pons et al.
[7] have adapted this mesh generation strategy to labelled images and have shown
that the sizing criteria can be tissue-dependent leading to high-quality volume
meshes of the different materials. However, in this work, 1- and 0-junctions are
not explicitly handled and they are not accurately represented in the output
mesh. It is well recognized that the presence of edges where different surface
patches meet forming small angles, jeopardize the termination of Delaunay re-
finement in 3D [8]. A recent method [9] deals with this problem using the idea of
protecting small angle regions with balls so that during the refinement no point
is inserted into these protecting balls.

Very recently, Mayer et al. [10] proposed a sampling strategy for labelled im-
ages based on a dynamic particle system which explicitly samples corners, edges,
and surface patches. The resulting set of well-distributed points is adapted to
the underlying geometry of multi-material junctions. From these surface points,
Delaunay-based meshing scheme outputs high-quality surface meshes. However,
this sampling approach relies on heavy pre-processing computations and takes
between 3 and 12 hours for small medical images.

Our contribution. In this paper, we propose a feature (edge and corner) pre-
serving extension of the Delaunay refinement algorithm introduced by Pons et al.
[7]. The basic idea is to explicitly sample 1- and 0-junctions before launching the
Delaunay refinement and to constrain the latter to preserve these features. The
algorithm first extracts, from the input 3D image, all multi-material junctions
where 3 or more materials meet. Then it samples and protects these junctions
with protecting balls as in [9]. The Delaunay refinement is then run using a
weighted Delaunay triangulation, with the protecting balls as initial set of data
points. This allows to preserve 0-junctions (corners) and to reconstruct accu-
rately the 1-junctions (edges) with a sequence of mesh edges. In contrast to
Mayer et al. [10], we sample only 0- and 1-junctions and not the 2-junctions
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which are meshed by the Delaunay refinement algorithm according to user-given
quality and sizing criteria. Our multi-material junction detection and sampling
algorithm is very fast and has little influence on the computation time of the
Delaunay refinement algorithm.

The remainder of this paper is organized as follows: Section 2 gives a brief back-
ground and recalls the Delaunay refinement algorithm. Our multi-material junc-
tion detecting and protecting strategy is presented in Section 3. Section 4 reports
some results and numerical experiments which demonstrate the effectiveness of
our approach for segmented medical 3D images.

2 Delaunay Refinement Mesh Generation from 3D
Images

The method is related to the concept of restricted Delaunay triangulation,
borrowed from computational geometry.

(a) (b) (c) (d)

Fig. 1. (a) A set of points in the plane and its Voronoi diagram. (b) The dual Delaunay
triangulation. (c) The Delaunay triangulation restricted to the blue curve is plotted
with a black line. (d) The Delaunay triangulation restricted to the yellow region is
composed of triangles whose circumcentres are inside the region.

Background. Let E = {p0, ..., pn} be a set of points in R
3 called sites hereafter.

The Voronoi cell, denoted Vor(pi), associated to the site pi is the locus of points
that are closer to pi than to any other site in E. The Voronoi diagram of E,
denoted Vor(E), is the partition of space induced by the Voronoi cells Vor(pi).
The Delaunay complex is the dual of the Voronoi diagram defined as follows: for
esch subset of sites T ⊂ E, the convex hull conv(T ) is a cell of the Delaunay
complex if and only if the intersection ∩p∈T (V or(p)) of the Voronoi cells of sites
in T is non empty. When the set E is in general position, i.e. there are no 5 sites
lying on the same sphere, the Delaunay complex is a simplical complex called
the Delaunay triangulation of E, denoted Del(E).

Let us now consider a subset Ω ⊂ R
3 and a set of points E. We call Delaunay

triangulation of E restricted to Ω, and denote Del(E)|Ω, the subcomplex of
Del(E) composed of Delaunay simplices whose dual Voronoi faces intersect Ω.
Fig.1 gives an example of these notions in 2D.

Let us consider a multi-material 3D image I as a function F : Z
3 → J , where

J = {0, ..., n} is a set of labels where 0 represents the background and 1...n the
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other materials. Each label i defines a characteristic function fi : Z
3 → {0, 1}

such as fi(p) = 1 iff F (p) = i and 0 otherwise. Let f̃i : R
3 → {0, 1} be the

trilinear interpolation of fi. Then we define the extension F̃ : R
3 → J of the

image function F , as follows: F̃ (p) = i iff f̃i(p) = maxj∈J{f̃j(p)}. F̃ defines a
partition of the domain to be meshed Ω = ∪i�=0Ωi, where Ωi = F̃−1(i), i ∈ J .
We call Bi the boundary of Ωi and B = ∪Bi denotes the locus of multi-material
junctions including surface patches, edges and corners.

The Delaunay refinement meshing algorithm presented in the next section
samples a set of points E ∈ R

3 and builds the Delaunay triangulation of E
restricted to Ω. The algorithm outputs Del(E)|Ω=∪i∈J,i�=0 Del(E)|Ωi where
Del(E)|Ωi is the set of tetrahedra whose circumcentres are contained in Ωi.
In other words, each tetrahedron is labelled according to the material in which
its circumcentre lies. We call boundary facets the facets incident to two tetrahe-
dra with different labels. These boundary facets form a watertight non-manifold
surface mesh that approximates surface patches where two material meet.

Delaunay refinement algorithm. The algorithm starts by sampling a small
initial set of points E on ∪Bi. Three points per connected component of ∪Bi

are sufficient. Next it calculates the Delaunay triangulation Del(E) and its re-
strictions Del(E)|Ωi and the boundary fecets. This initial approximation is then
refined until it meets the following user-given quality criteria for boundary facets
and tetrahedra:

– criteria for boundary facets: minimum angle α; maximum edge length l;
maximum distance between a facet and the surface patch d;

– criteria for tetrahedra: ratio between tetrahedron cirumradius and shortest
edge length β; maximum edge length L.

Thus, the mesh refinement criteria are given by the 5-uplet (α, l, d, β, L). A bad
element is an element that does not fulfil criteria. Bad facets are removed from
the mesh by inserting their surface centres. The surface centre of a boundary
facet is the point of intersection between its dual Voronoi edge and a surface
patch.

Bad tetrahedra are removed from the mesh by inserting their circumcentres.
The algorithm inserts refinement points one by one and maintains the current set
E, Del(E), Del(E)|Ω and boundary facets. The refinement procedure is iterated
until there is no bad element left.

After the refinement, degenerated tetrahedra with small dihedral angles (sliv-
ers) are removed from the mesh using a sliver exudation algorithm [11].

It is proven in [6] that for appropriate choices of refinement criteria, the al-
gorithm terminates. It delivers surface and volume meshes which form a good
approximation of the image partition as soon as E is a “sufficiently dense”
sample of its boundaries and volumes. However, 0- and 1-junctions are not
handled explicitly and they are poorly reconstructed in the output mesh. As
shown on Fig.2(1) the 1-junctions are zigzagging and the 0-junctions are not
preserved.
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Fig. 2. (1) Delaunay refinement 3D mesh. (2) Multimaterial junctions: five 1-junctions
and two 0-junctions. (3) Sampled points on junctions. (4) Protecting balls. (5) Edge pre-
serving Delaunay refinement 3D mesh. (6) A cut of the tetrahedral mesh. (7) Dihedral
angles distribution.

3 Feature Preserving Extension

In order to constrain the Delaunay refinement algorithm to mesh properly 0-
and 1-junctions, firstly we need to extract these junctions from the input image.

Multi-material junction extraction. Here, we extend the image function F :
Z

3 → J into a function F̃ : R
3 → J using the the concept of continuous analog,

borrowed from digital geometry and topology [12,13]. Following this concept, for
any point p ∈ R

3, F̃ (p) = F (pi), where pi is the point of Z
3 closest to p. As before,

this function F̃ defines a partition of the domain to be meshed Ω = ∪i�=0Ωi but
now Ωi = F̃−1(i), i ∈ J is a set of cubic voxels with the same label. As before,
B = ∪Bi denotes the multi-material junctions which are composed of:

– 2-junctions S (surface patches composed of voxel faces) which correspond to
the intersection of exactly 2 materials;

– 1-junctions L (composed of voxel edges) which are defined at the intersection
of exactly 3 or 4 materials;

– 0-junctions P (defined by voxel vertices) which correspond to the intersection
of 4 or more materials (at maximum 8).

As it has been stressed before, our multi-material junction extraction algo-
rithm delivers only 0- and 1-junctions because the Delaunay refinement algo-
rithm handles surface patches well. The result is a 1D cellular complex composed
of edges {Li} and their end points {Pi}. Fig.2(2) shows the 1D complex obtained
for the multi-material sphere which is composed of five edges and two corners.
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Protecting multi-material junctions. It is well known that neighbourhoods
of edges and corners are regions of potential problems for Delaunay refinement
algorithm. First, as we have already seen, the usual Delaunay refinement does not
reconstruct these sharp features accurately. Secondly, if we constrain these edges
to appear in the mesh and if the surface patches incident to them make small
dihedral angles, the usual Delaunay refinement may not terminate. However,
Cheng et al.[9] have shown that if the edges are protected with protecting balls
the Delaunay refinement terminates.

In this work, we protect 0- and 1-junctions with balls before launching the
mesh refinement. We first keep all corners in {Pi} and then we sample points on
edges {Li} according to some user-specified density (see Fig.2(3)). This distance
d between two sampled points should be at most the maximum edge length
parameter for facets l. We protect each sampled point p ∈ Li with a ball b = (p, r)
where r = 2/3∗d (see Fig.2(4)). The protecting balls have to satisfy the following
properties:

– each edge Li is completely recovered by the protecting balls of its samples
– any two adjacent balls on a given edge Li overlap significantly without con-

taining each other’s centres
– any two balls on different edges Li and Lj do not intersect
– no three balls have a common intersection

After the sampling and protection step, we use the previous Delaunay refine-
ment algorithm as follows: Each protecting ball b = (p, r) is turned into a weighted
point (p, r) and inserted into the initial set of points E. The Delaunay triangulation
is turned into a weighted Delaunay triangulation where the Euclidean distance is
replaced by the weighted distance. The weighted distance from a point x ∈ R

3 to
a weighted point (p, r) is defined as ||x − p||2 − r2. All the other points inserted
during the refinement are considered as points of weight zero.

The protecting balls and the weighted Delaunay triangulation guarantee two
important properties. First, the segment between two adjacent points on any pro-
tected edge Li remains connected with restricted Delaunay edges (see Fig.2(5)).
Secondly, since the algorithm will never try to insert a refinement point into the
union of protecting ball, its termination is guaranteed (see [9] for more detail).

In practice, when a multi-material 3D image is the input, the algorithm out-
puts high-quality tetrahedral meshes of different materials which are consistent
with each other. In particular, 1-junctions are properly reconstructed with edges
whose vertices lie on these junctions (see Fig.2(5)).

4 Results and Conclusion

The Delaunay refinement algorithm and its feature preserving extension have
been implemented upon robust primitives to compute the Delaunay triangulation
provided by the CGAL library [14].

We have tested our meshing algorithm on synthetic labelled images and on
segmented medical images provided by IRCAD [15]. Figure 3 shows the meshes
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Fig. 3. Meshes generated from labelled liver images: (a) A liver adjacent to a right
kidney and a zoom on their edge. (b) A liver segmented into 4 anatomical regions
and a zoom on one of the corners. The first raw shows meshes obtained with the
usual Delaunay refinement. The second raw shows meshes resulting from our feature
preserving extension and histograms of their dihedral angles distributions.

Table 1. Quantitative results and parameters for three different 3D images. The α in
the refinement criteria is given in degree and l, d and L are given in mm. The four last
raws give the computation times of different algorithm steps in seconds.

Experiment sphere liver-kidney liver segments
Image size 62×62×62 512×512×112 402×356×238

Image resolution (mm) 1×1×1 0.67×0.67×2 2×2×2
Refinement criteria

(α, l, d, β, L) (20,10,3,4,10) (30,12,2,4,14) (25,14,4,4,18)
# vertices 964 6142 12381

# boundary facets 1431 5439 9646
# tetrahedra 4434 31043 64485

Junction Extraction (sec) 0.72 4.56 21.35
Surface meshing (sec) 1.74 9.99 11.04
Volume meshing (sec) 1.13 5.82 17.23
Sliver exudation (sec) 3.75 13.82 48.64

generated from two labelled liver datasets by the Delaunay refinement strategy
with and without the feature preserving extension. Figure 3(a) displays the mesh
of a liver adjacent to a right kidney and the 1-junction produced at the intersec-
tion of these two objects and the background. In this case, the 1-junction is a
simple closed curve which has been protected with balls of radius 6mm. Figure
3(b) shows the mesh of a liver which has been cut into 4 anatomical regions.
There are 8 1-junctions and 4 0-junctions produced at the intersection of these
anatomical regions which have been protected with balls of radius 3mm.
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Table 1 lists the quantitative results for these two liver images and the multi-
material sphere on Fig.2. The refinement criteria for Delaunay refinement are
given as the 5-uplet (α, l, d, β, L) defined in section 2. Note that our edge ex-
traction and protection algorithm takes few seconds and does not penalize the
Delaunay refinement which also has a reasonable computation time. A typical
liver image (512×512×112) segmented into 4 different materials is meshed with
target edge length of 10mm in less than half a minute.

In conclusion, we have proposed a feature preserving Delaunay refinement
meshing strategy to generate conforming 3D meshes from labelled images. These
meshes are targeted towards applications in the finite element methods which re-
quire conforming multi-material junctions to avoid instabilities and errors during
the simulation.
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Abstract. This paper presents a new modeling method for the insertion
of needles and more generally thin and flexible medical devices into soft
tissues. Several medical procedures rely on the insertion of slender medi-
cal devices such as biopsy, brachytherapy, deep-brain stimulation. In this
paper, the interactions between soft tissues and flexible instruments are
reproduced using a set of dedicated complementarity constraints. Each
constraint is positionned and applied to the deformable models without
requiring any remeshing. Our method allows for the 3D simulation of
different physical phenomena such as puncture, cutting, static and dy-
namic friction at interactive frame rate. To obtain realistic simulation,
the model can be parametrized using experimental data. Our method is
validated through a series of typical simulation examples and new more
complex scenarios.

1 Introduction

Needles, electrode or biopsy tools are some examples of thin and flexible medical
tools used in a clinical routine. Several medical applications are concerned by the
use of these tools, such as biopsy, brachytherapy or deep brain stimulation. As
these objects are often thin and flexible, the accuracy of their insertion into soft
tissues can be affected. Moreover, different physical phenomena, such as punc-
ture, friction or cutting through heterogeneous tissues could alter the procedure.
The simulation of the insertion of thin and flexible medical tools into various
tissues can enable useful clinical feedback, such as training but also planning.
We chose the example of a needle to explain our methodology but our method
can be generalized to thin and flexible instruments.

Pioneering works concerning needle insertion were presented by Di Maio et
al. [1] and Alterovitz et al. [2]. They proposed modeling methods based on FEM
for the interaction between a needle and soft tissues. A recent survey proposed
by Abolhassani et al. [3] summarizes the different characteristics of the existing
methods in the literature. Remeshing process of tissue models remains an obsta-
cle to obtain interactive simulations. In [4], the authors simulate the insertion of
several rigid needles in a single soft tissue (such as during brachytherapy proce-
dures). The interaction model between needle and tissue is the most challenging

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 291–299, 2009.
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part as it combines different physical phenomena. Different studies based on
experimental data are proposed in the literature to identify the forces occuring
during the needle insertion [5]. Three different types of force are often underlined:
puncture force, cutting force and friction force. Recent studies use experimental
data to perform an identification of the model parameters [6,7,8].

In this paper, a new generic method based on the formulation of several
constraints is proposed in order to simulate the insertion of thin and flexible
medical devices into soft tissues. Any classical deformation model of both tissue
and needle can be used with our approach. For this study, we obtain interactive
frame rate while modeling the geometrical non-linearities of the tissue and needle
deformations. Contrary to existing methods, no remeshing process is needed,
even if Finite Element Method (FEM) is used for the tissue simulation. Our
method can handle complex scenarios where needle steering, non-homogeneous
tissues and interactions between different needles can be combined.

The paper is divided into five sections. In Section 2, the formulation of our
modeling method is presented. Section 3 details the simulation process. Section
4 shows the results obtained with the new modeling method. Section 5 draws
conclusions and discusses future works.

2 Constraint-Based Modeling of Needle Insertion

In this work, we propose a new model for the interactions that take place at the
surface of a needle during its insertion in soft tissues. The formulation relies on
a constraint formulation which is independent of both needle and tissue mod-
els that are used to simulate deformations. We highlight two different aspects:
Firstly, for the constraint positioning, no remeshing is necessary. Secondly, we
present several new constraint laws, based on complementarity theory [9]. These
laws capture in a unified formalism all the non-smooth mechanical phenomena
that occur during insertion.

2.1 How to Avoid Remeshing?

The constraint positioning is defined by two points: one on the tissue volume
P and one on the needle curve Q. For each constraint, δ measures the distance
between these two points along a defined constraint direction n. The points can
be placed anywhere in the volume of the soft tissue and anywhere on the needle
curve. The displacements of these points are mapped with the same interpolation
than the deformable models (see Fig. 1). The variation of δ can be mapped on
the displacements of deformable model nodes Δqn (needle) and Δqt (tissue):

Δδ = nT (un − ut) = nT (JnΔqn − JtΔqt) = HnΔqn + HtΔqt (1)

In the following, λ represents the force used to solve the constraint (applied by
the tissue on the needle). To map this force on the deformable model nodes, we
use the virtual work principle (λT Δδ = fT

t Δqt + fT
n Δqn). We obtain:

ft = HT
t λ and fn = HT

nλ (2)
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Fig. 1. Example of mapping for a constraint point. A linear interpolation is used on
tetrahedra for the soft tissue model, the displacement ut of a tissue constraint point
placed inside a tetrahedron is given by the barycentric coordinates and the displacement
Δqt of the 4 nodes ut = JtΔqt. The displacement of the needle point un is mapped
using the interpolation of the needle deformation model un = JnΔqn.

2.2 Puncturing Soft Tissue

Puncturing illustrates the interest of using complementarity theory to model the
constraint: three successive steps of the interaction can be defined with a set of
inequalities, as illustrated in Fig. 2. Here, Q is the tip of the needle and P is
the contacting point (or the penetration point) on the tissue surface. n is the
surface normal vector at point P .

The puncture constraint can be applied several times during the simulation if
the needle passes through different tissue layers: different values for the threshold
fp can be defined in order to simulate different tissue behaviors. If the tip of the
needle hits a bone for example, fp is very high and never reached by λp: the
needle slips along the surface of the bone. The constraint is associated with an
other constraint on each lateral direction: friction constraint when contact is
established (step 2), and tip path constraint (see section 2.4) when puncture
states are activated (step3).

Fig. 2. Puncturing steps. During step 1, Q is only approaching the tissue surface. The
gap δ is positive (δp ≥ 0) and the interaction force must be null (λp = 0). During step
2, Q is touching without puncturing the tissue surface. The gap between P and Q is
null (δp = 0) and the interaction force is necessarily positive in the direction of the
surface normal (λp ≥ 0). The value of this force is strictly less than a puncturing force
threshold λp ≤ fp. During step 3, the needle tip enters in the tissue, the gap along
the constraint direction is negative (δp ≤ 0) and the constraint force is equal to the
threshold (λp = fp).

2.3 Cutting through Different Layers

The cutting force fc is the force needed to traverse a tissue structure. As for fp,
it can be tuned to different values from a layer to another. This force disappears
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if the needle is re-inserted at the same location. The constraint used to simulate
cutting is similar to the one used for puncturing, except that δc measures the
relative displacement between the needle tip and the extremity of a curve created
by a previous cutting path. λc is still the force that solves the constraint.

2.4 Tip Path and Needle Steering

A direction is associated to the needle tip in order to constrain its lateral motion.
To obtain needle steering due to bevel-tip needle, a specific orientation of the
cutting direction in the tip frame is defined (Fig. 3(a)) and the displacement of
the tip is tangential to this direction (δt = 0). In that case, whether the needle
is being pushed or pulled, the constraint is not aligned in the same direction
(Fig. 3(b)). During needle insertion, the path of the tip inside the soft tissues
is followed by the rest of the needle. This behavior is modeled using additional
constraints: we impose a null relative displacement δt between the needle and
the organ along the tangential directions of the needle curve (Fig. 3(c)). Here λt

will provide the force necessary to solve this equality constraint.

Fig. 3. Needle model is constrained on the path defined by the needle tip

2.5 Friction

Dry friction resists to the motion when the needle is inserted but also retracted.
The complementarity constraint for the friction defines two states: adherence
(stick) when there is no relative motion δf = 0 due to static friction and dynamic
friction (slip) when the relative motion is not null δf �= 0 (Fig. 4).

A threshold μ.p is used to limit adherence: μ is the coefficient of friction and p
is the pressure exerted by the soft tissue on the needle. Currently, this pressure is
estimated from the stiffness of the soft tissue and remains constant. To model it
more accurately, we plan to use stress measures based on the soft tissue deformable
model. The value of the friction resistance r, given by the graph (Fig. 4) is inte-
grated along the inserted surface of the needle. Each constraint point owns a part
of the needle curve and computes the friction force by using the length l of this
curve part (λf = lπd.r where d is the diameter of the cross-section).

Fig. 4. Friction model: static and dynamic friction are included
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3 Simulation of Tissue and Needle Interaction

In this section, we describe how we combine, using Lagrangian mechanics, the
previously defined insertion constraints with the deformation models of the nee-
dle and the soft tissues. Let’s consider the dynamic deformation models of the
needle n and the soft tissue t. We use the synthetic formulation:

Mnv̇n = pn − Fn (qn,vn) + HT
nλ (3)

Mtv̇t = pt − Ft (qt,vt) + HT
t λ (4)

where q ∈ R
n is the vector of generalized degrees of freedom, M is the mass

matrix, v ∈ R
n is the vector of velocity. F represents internal visco-elastic forces,

and p gathers external forces. λ is the vector of the constraint forces that is
multiplied by matrices HT

n and HT
t presented on section 2.1.

To allow a stable interaction between models, implicit integration is used with
backward Euler scheme. The simulation is realized in three steps: during the first
step, constraint forces are ignored to obtain what we call a free motion of each
model. During the second step, constraint forces λ are computed as described in
the following. Then when λ is known, a correction of the motion of each model
is performed in order to respect equations (3) and (4).

The computation of the contact forces, during step 2, relies on solving the
constraint laws presented on section 2 with the following equation:

δ=

⎡
⎢⎢⎢⎣Hn

(
Mn

h2 +
dFn

hdvn
+

dFn

dqn

)−1

HT
n︸ ︷︷ ︸

Wn

+Ht

(
Mt

h2 +
dFt

hdvt
+

dFt

dqt

)−1

HT
t︸ ︷︷ ︸

Wt

⎤
⎥⎥⎥⎦λ+δfree (5)

where h is a time step and
(

M
h2 + dF

hdv + dF

dq

)
is the dynamic tangent matrix. We

note that depending on the deformation model, the computation of matrices W
could be time consuming (see discussion on section 4). To find the constraint force
value, we propose to use a Gauss-Seidel like algorithm. Considering a constraint
α, among m instantaneous constraints, one can rewrite equation (5):

δα − [Wα,α]λα =
α−1∑
β=1

[Wα,β ]λβ +
m∑

β=α+1

[Wα,β ]λβ + δfree
α

︸ ︷︷ ︸
δ−

α

(6)

where [Wα,β] is the value of the matrix W = Wn + Wt at line α and column
β. It models the coupling between constraint points α and β. At each iteration
of the Gauss-Seidel solver, each constraint α is visited and a new estimate of
λα is performed while ”freezing” the contributions of λβ with α �= β. The new
estimate of λα is found at the intersection of the characteristic graph of each
constraint law described in section 2 with the line of equation (6). Note that
for all mechanical models, the local compliance of a point is always positive :
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Fig. 5. Example of graph intersection to find λα on a given constraint graph

[Wα,α] > 0, so we obtain a unique solution for λα (see Fig 5). We stop the
algorithm when the error on the values of vector δ reach a given threshold.

In our approach, the sampling of the constraints is important for both accu-
racy and convergenceof the constraint solver. Namely, if there are more constraints
than degrees of freedom involved, the problem is over-constrained. However, if the
space between the constraints points is too large, the accuracy decreases. In prac-
tice, we use a regular sampling of the constraint points along the needle curve that
corresponds to the discretization of the needle deformation model. During the in-
sertion and the withdrawal of the needle, constraint points are dynamically in-
serted and removed to obtain a sufficient number of constraints along the needle
curve.

4 Results

4.1 Deformable Models

In this work, the needle model that relies on a series of beam elements can handle
deformations with large displacements. The parameters of the model are mainly:
E, the Young Modulus, ν the poisson ratio, and A the area of the cross section
(hollow needles can be simulated). The computation is optimized using a band
tri-diagonal solver: Wn value is obtained at high refresh rate (few milliseconds)
with a precise discretization of the needle (50 beams).

The soft tissues of the human anatomy often have a visco-elastic anisotropic be-
havior which leads to complex FEM models if high precision is needed. However,
to assess our constraint-based model of the interaction between the needle and the
soft tissues during insertion, we use basic shapes and simple tissue model. The sim-
ulated soft tissue can only undergo large displacements with small deformations.
We use Hooke’s constitutive law: deformations are considered to be isotropic and
elastic and the Poisson ratio is tuned to quasi incompressibility (ν = 0.49). A vis-
cous behavior is obtained using Rayleigh model. It provides an attenuation that is
proportionally related to both elastic and inertial forces. Using this model, we can
obtain a very fast estimation of the compliance matrix Wt [10] that leads to the
ability of obtaining real-time simulation of the needle insertion. Once again, this
tissue model is only used in a preliminary approach, to validate the constraints
used for needle insertion. More complex model could be used.
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Fig. 6. Insertions and pullbacks. Stippled line represents the motion imposed to the
needle. At step (1), the needle punctures the tissue surface. During step (2), friction is
increasing with the penetration distance and (3) is the relaxation. After being partially
retracted (4), the needle is inserted again along the same path (5); therefore no cutting
force is applied. During the last and complete pullback (6), the friction force decreases.

4.2 Experiments

Our first experiment consists in inserting and pulling back multiple times the
needle in a 3D soft tissue. This experiment is similar to the measurements pro-
posed in [8], and the results obtained with our simulation (presented in Fig. 6)
match the previous work.

Then we propose a second experiment based on the 3D simulation of an ob-
stacle avoidance using needle steering. Indeed, surgeons sometimes use thin and
flexible needles with beveled tip to reach the target with a curved path. How-
ever, flexible needle insertion and navigation deep into the tissue complicate the
procedure [11]. The experiment is close to the one presented in [12], except that
their tissue phantom was considered as rigid and here the tissue is deformable.
The Fig. 7 shows a real-time simulation of needle steering in a deformable object
(we obtain an average of 28 frames per second).

In-vivo tissues are inherently non-homogeneous and thin medical tools can
be deflected by harder regions inside overall soft tissues. We simulate this phe-
nomenon using a 3D volume mesh composed of two regions with different stiff-
nesses. During its insertion, a needle collides with the surface of the stiff re-
gion: as the force at the tip is lower than the puncture threshold, the needle
slides along the surface of this object. Using the same parameters, but with an

Fig. 7. The needle is first inserted one half of the distance into the phantom, then spun
180 degrees, and finally inserted the remaining distance
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Fig. 8. Needle deviation when puncturing nonhomogeneous layers. (Left) the needle
cannot penetrate the harder inclusion. (Center) First solution: by increasing the stiff-
ness of the needle, it can now puncture the second region. (Right) Second solution:
additional needles are inserted into the soft tissue, the flexible needle can penetrate.

increase of its stiffness, the needle punctures the stiff region, as shown in Fig. 8.
The soft region can also be rigidified by the insertion of other needles. It allows
for a precise insertion of the flexible needle without increasing its stiffness. This
technique is commonly used for brachytherapy.

5 Conclusion and Future Work

In this paper, we demonstrate the interest of using complementarity constraints
for the simulation of the insertion of flexible needles into soft tissue. The pre-
sented model can be parameterized using previous work experiments, and also
allows for the simulation of more complex scenarios.

We plan to complete our simulations using more realistic constitutive laws
for the deformation of the anatomy. In the near future, we will perform some
validations on experiments to assess the precision on scenarios that are closer to
clinical procedures. We aim at using the simulation as a planning tool for some
therapeutic protocols that rely on the insertion of slender medical instruments.

Acknowledgments. This work is supported by ANR project 06-MDCA-015
VORTISS.
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Abstract. Patient-specific biomechanical models implemented using specialized 
nonlinear (i.e. taking into account material and geometric nonlinearities) finite 
element procedures were applied to predict the deformation field within the brain 
for five cases of craniotomy-induced brain shift. The procedures utilize the Total 
Lagrangian formulation with explicit time stepping. The loading was defined by 
prescribing deformations on the brain surface under the craniotomy. Application 
of the computed deformation fields to register the preoperative images with the 
intraoperative ones indicated that the models very accurately predict the intraop-
erative positions and deformations of the brain anatomical structures for limited 
information about the brain surface deformations. For each case, it took less than 
40 s to compute the deformation field using a standard personal computer, and 
less than 4 s using a Graphics Processing Unit (GPU). The results suggest that 
nonlinear biomechanical models can be regarded as one possible method of 
complementing medical image processing techniques when conducting non-rigid 
registration within the real-time constraints of neurosurgery. 

1   Introduction 

Distortion of the preoperative anatomy due to surgical intervention and misalignment 
between the actual position of pathology and its position determined from the preop-
erative images are one of the key challenges facing image-guided neurosurgery. A 
typical example is the craniotomy-induced brain shift that results in movement of the 
pathology (tumor) and critical healthy tissues. As the contrast and spatial resolution of 
the intraoperative images are typically inferior to the preoperative ones [1], the high-
quality preoperative data need to be aligned to the intraoperative brain geometry to 
retain the preoperative image quality during the surgery. Accurate alignment requires 
taking into account the brain deformation, which implies nonrigid registration. In 
recent years image-based methods for nonrigid registration have been improved by 
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including the biomechanical models that take into account the mechanical properties 
of anatomical structures depicted in the image, and, therefore, ensure plausibility of 
the predicted intraoperative deformation field [2-4]. In most practical cases, such 
models utilize the finite element method to solve sets of partial differential equations 
of solid mechanics governing the behavior of continua. In the vast majority of biome-
chanical models for nonrigid registration linear finite element procedures were used 
[2, 3, 5]. In these procedures, the brain deformation is assumed to be infinitesimally 
small, i.e. the equations of solid mechanics are integrated over the initial (unde-
formed) brain geometry. It has been reported in several studies, that linear finite ele-
ment procedures can facilitate computations of brain deformation within the real-time 
constraints of neurosurgery (below 60 s according to [6]). For instance, Warfield et al. 
[2] reported the computation time of around 15 s and Skrinjar et al. [5] – time of 80 s.  

However, the brain surface deformations due to craniotomy can exceed 20 mm [7] 
which is inconsistent with the infinitesimally small deformation assumption. Therefore, 
in several studies [4, 8], finite element models utilizing geometrically nonlinear (i.e. 
finite deformations) formulation of solid mechanics have been used to compute the 
deformation field within the brain for neuroimage registration. Despite facilitating accu-
rate predictions of the brain deformations, the nonlinear biomechanical models have 
been, so far, of little practical importance as the algorithms used in such models led to 
computation times appreciably exceeding the real-time constraints of neurosurgery [9]. 

Recently, however, specialized nonlinear finite element algorithms and solvers for 
real-time computation of soft organ deformation for image registration have become 
available [10-11]. In this study, we use them to compute brain deformation in five 
cases of craniotomy-induced brain shift. We demonstrate that biomechanical models 
using specialized nonlinear finite element algorithms facilitate accurate prediction of 
deformation field within the brain for computation times below 40 s on a standard 
personal computer and below 4 s on a Graphics Processing Unit (GPU).  

2   Methods 

2.1   Analyzed Cases 

To account for various types of situations that occur in neurosurgery, we analyzed 
five cases of craniotomy-induced brain shift with tumor (and craniotomy) located 
anteriorly (cases 1 and 2), laterally (case 3) and posteriorly (cases 4 and 5) (Fig. 1). 

2.2   Construction of Finite Element Meshes for Patient-Specific Brain Models 

Three-dimensional patient-specific brain meshes were constructed from the seg-
mented preoperative magnetic resonance images (MRIs). The segmentation was done 
using seed growing algorithm followed, in some cases, by manual corrections.  

Because of the stringent computation time requirements, the meshes had to be con-
structed using low order elements that are not computationally expensive. The linear 
under-integrated hexahedron is the preferred choice. Many algorithms are now avail-
able for fast and accurate automatic mesh generation using tetrahedral elements, but 
not for automatic generation of hexahedral meshes [12]. Template based meshing 
algorithms could not be used here because of the presence of irregularly placed and  
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Fig. 1. Preoperative T1 MRIs (inferior view) showing tumor location in the cases analyzed in 
this study. White lines indicate the tumor segmentations. a) Case 1; b) Case 2; c) Case 3; d) 
Case 4; and e) Case 5. 

 
 

Fig. 2. Typical example (Case 1) of a patient-specific brain mesh built in this study. In this 
example the ventricles were discretized using tetrahedral elements only. 

Table 1. Summary of the patient-specific brain meshes built in this study 

 Case1 Case2 Case3 Case4 Case5

Number of Hexahedral Elements 14447 10258 10127 9032 8944
Number of Tetrahedral Elements 13563 20316 23275 23688 21160
Number of Nodes 18806 15433 15804 14732 14069
Number of Degrees of Freedom 55452 45315 46896 43794 42018

 
shaped tumors. Therefore, to partly automate the meshing, we used mixed meshes 
consisting of both linear hexahedral and tetrahedral elements (Fig. 2, Table 1). As the 
brain parenchyma is typically regarded as either incompressible or nearly incom-
pressible [13, 19], the linear tetrahedral elements with average nodal pressure ANP 

d)                                                   e)       

 a)                                                    b)                                               c) 
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formulation [14] were used to prevent volumetric locking. The meshes were built 
using IA-FEMesh (a freely available software toolkit aimed at hexahedral mesh gen-
eration developed at the University of Iowa [15]) and HyperMesh (a high-
performance commercial finite element mesh generator by Altair of Troy, MI, USA). 

2.3   Biomechanical Model for Brain Shift Computation 

Loading and Boundary Conditions. There are always uncertainties in patient-
specific properties of the living tissues. To reduce the effects of such uncertainties, we 
loaded the models by prescribing displacements on the exposed (due to craniotomy) 
part of the brain surface. It has been suggested in [9] that for this type of loading, the 
unknown deformation field within the brain depends very weakly on the mechanical 
properties. The displacements for loading the models were determined from the seg-
mented preoperative and intraoperative cortical surfaces. The correspondences be-
tween the preoperative and intraoperative surfaces were determined by applying the 
vector-spline regularization algorithm described in [16] to the surface curvature maps.  

To define the boundary conditions for the remaining nodes on the brain model sur-
face, a contact interface was defined between the rigid skull model and the part of the 
brain surface where nodal displacements were not prescribed. Contact formulation de-
scribed in [17] was used. This formulation prevents the brain surface from penetrating the 
skull while allowing for frictionless sliding and separation between the brain and skull. 
 
Mechanical Properties for the Models. It has been reported in [9] that, when the 
geometrical nonlinearity is taken into account, constitutive model of the brain tissue 
exerts negligible effects on the brain shift prediction. Therefore, we used the simplest 
hyperelastic model: the neo-Hookean one [18]. Based on the published experimental 
data [13] a value of 3000 Pa was used for the parenchyma Young’s modulus. The 
Young’s modulus of the tumor was designated a value two times larger than that of 
the parenchyma, which is consistent with the experimental data of Sinkus et al. [20]. 
Following [8], we used Poisson’s ratio of 0.49 for the brain parenchyma and tumor.  
 
Solution Algorithms. We described the details of the applied algorithms (including 
their verification and validation) in our previous publications [10, 11, 14, 21]. There-
fore, only a brief summary is given here. Computational efficiency of the algorithms 
for integrating the equations of solid mechanics used in this study have been achieved 
through application of the following two means: 1) Total Lagrangian (TL) formula-
tion [10, 11] for updating the calculated variables; and 2) Explicit Integration in the 
time domain combined with mass proportional damping. In the Total Lagrangian 
formulation, all the calculated variables (such as displacements and strains) are re-
ferred to the original configuration of the analyzed continuum. The decisive advan-
tage of this formulation is that all derivatives with respect to spatial coordinates  
can be pre-computed [10]. As indicated in [10], this greatly reduces the computation 
time in comparison to Updated Lagrangian formulation used in vast majority of 
commercial finite element solvers (such as e.g. LS-DYNA, ABAQUS). 

In explicit time integration, the displacement at time t+ Δt (where Δt is the time 
step) is solely based on the equilibrium at time t. Therefore, no matrix inversion and 
iterations are required when solving nonlinear problems. In consequence, application 
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of explicit integration can reduce the time required to compute the brain deformations 
by an order of magnitude in comparison to implicit integration typically used in 
commercial finite element codes for steady state solutions [8]. 
 
Accuracy Evaluation. Universally accepted “gold standards” for validation of nonri-
gid registration techniques have not been developed yet [22]. Objective metrics of the 
images’ alignment can be provided by automated methods using image similarity 
metrics (such as e.g. Mutual Information and Normalized Cross-Correlation). One of 
the key deficiencies of such metrics is that they quantify the alignment error in terms 
that do not have straightforward geometrical (in Euclidean sense) interpretation.  

To provide an error measure that enables such interpretation, we compared X, Y 
and Z bounds of the ventricles determined from the intraoperative segmentations and 
obtained by registration (i.e. warping using the predicted deformation field) of the 
preoperative data. The bounds provide six numbers that can be geometrically inter-
preted as the X, Y and Z coordinates of vertices P1 and P2 defining a cuboidal box 
bounding the ventricles (see Fig. 3). The difference between the coordinates of these 
vertices determined from the intraoperative MRIs and predicted by our biomechanical 
models was used as a measure of the alignment error. The coordinates of the vertices 
P1 and P2 can be determined automatically, which makes such difference less prone to 
subjective errors than the measures based on anatomical landmarks selected by ex-
perts. We provide no error measure for the tumor registration as we were not able to 
reliably quantify the intraoperative bounds of tumors due to limited quality of the 
intraoperative images. 

 

Fig. 3. Definition the ventricles’ bounds. Vertices P1 and P2 define a cuboidal box that bounds 
the ventricles. The box faces are formed by planes perpendicular to X, Y and Z axes. 

3   Results 

The maximum displacement of the cortical surface was 7.7 mm (Case 2), and the 
brain maximum (Green) strain predicted by our models was 30%. The computation 
times on a PC (Intel E6850 dual core 3.00 GHz processor, 4 GB of internal memory, 
and Windows XP operating system) varied from 30 s (Case 1) to 38 s (Case 5). Fol-
lowing our earlier work [23] on application of Graphics Processing Units (GPUs) for 
scientific computations, we also implemented our algorithms using the NVIDIA 
Compute Unified Device Architecture (CUDA). Non-trivial details of this implemen-
tation are given in [24]. For the NVIDIA CUDA implementation of our algorithms, 
the computation times were under 4 s for all the craniotomy cases analyzed in this 
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study. The maximum errors when predicting the intraoperative bounds of the ventri-
cles were 1.6 mm in X (lateral) direction, 1.6 mm in Y (i.e. anterior-posterior) direc-
tion and 2.2 mm in Z (inferior-superior) direction (Table 2). These errors compare 
well with the voxel size (0.86x0.86x2.5 mm3) of the intraoperative images. Detailed 
comparison of the contours of ventricles in the intraoperative images and the ones 
predicted by the finite element brain models developed in this study indicate some 
local misregistration. However, the overall agreement is remarkably good (Fig. 4).  

In Table 2, the computation results are presented to one decimal place as it has been 
reported in the literature [8] that this is approximately the accuracy of finite element 
computations using the type of finite element algorithms applied in this study. 

Table 2. Error in predicting the X, Y, and Z coordinates (in millimeters) of vertices P1 and P2 
defining the bounds of the ventricles in the intraoperative MRIs (see Fig. 3). The directions of 
the X, Y, and Z axes are as in Fig. 3. The numbers in bold font indicate the maximum errors. 

 X Coordinate Error [mm] Y Coordinate Error [mm] Z Coordinate Error [mm] 
 P1 P2 P1  P2 P1  P2  

Case 1 0.3 0.2 0.7 1.3 0.7 0.2 
Case 2 0.0 0.5  1.2 0.5 0.6 0.5 
Case 3 1.6 0.4 0.6 1.6 2.2 0.1 
Case 4 0.5 0.0 0.5 0.4 0.1 0.7 
Case 5 0.1 0.4 0.5 1.5 1.1 0.4 

 

   

  

 

 

 

 

 

Fig. 4. The registered (i.e. deformed using the calculated deformation field) preoperative con-
tours of ventricles and tumor are imposed on the intraoperative images. The images were 
cropped and enlarged. a) Case 1; b) Case 2; c) Case 3; d) Case 4; and e) Case 5. 

4   Discussion 

Instead of relying on unrealistic linearization (i.e. assumption about infinitesimally 
small brain deformation during craniotomy and linear stress–strain relationship of 
brain tissue) used so far in biomechanical models to satisfy real-time constraints of 

e)  

b)  a)  c)  

d)  
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neurosurgery, we applied specialized fully nonlinear (i.e. including both geometrical 
and material nonlinearities) finite element procedures and predicted deformation field 
within the brain due to craniotomy-induced brain shift in less than 40 s using standard 
personal computer with a single dual-core processor, and less than 4 s using Graphics 
Processing Unit. 

Thus, our results indicate that accurate computations of deformation field within 
the brain by means of state-of-the-art finite element procedures utilizing fully nonlin-
ear formulation of solid mechanics can be achieved in real time without advanced 
computer hardware. This is an important step in enabling application of such formula-
tion in neuroimage registration practice. However, before nonlinear computational 
biomechanical models can become a part of clinical systems for image-guided neuro-
surgery, reliability and accuracy of such models must be confirmed against much 
larger data sample than five cases of craniotomy-induced brain shift analyzed in this 
study.  
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Abstract. The estimation of ventricular deformation has important clinical im-
plications related to neuro-structural disorders such as hydrocephalus. In this 
paper, a poroelastic model was used to represent deformation effects resulting 
from the ventricular system and was studied in 5 feline experiments. Chronic or 
acute hydrocephalus was induced by injection of kaolin into the cisterna magna 
or saline into the ventricles; a catheter was then inserted in the lateral ventricle 
to drain the fluid out of the brain. The measured displacement data which was 
extracted from pre-drainage and post-drainage MR images were incorporated 
into the model through the Adjoint Equations Method. The results indicate that 
the computational model of the brain and ventricular system captured 33%  
of the ventricle deformation on average and the model-predicted intraventricu-
lar pressure was accurate to 90% of the recorded value during the chronic  
hydrocephalus experiments.  

1   Introduction 

The cerebral ventricles in the brain are cavities filled with cerebrospinal fluid (CSF). 
The deformation of the ventricular system is related to diseases such as hydrocephalus 
and edema but may also occur as the result of a space occupying lesion. Together 
with the compression of the white matter adjacent to the ventricles, these diseases can 
cause serious neurological problems including cognitive impairment and even death.  

Different research groups have been studying the mathematical modeling of the 
ventricular system in the brain. Drake’s approach represents the brain as a lumped-
parameter system [1], but given that the brain is a sponge-like material, a more realistic 
poroelastic model has been investigated to incorporate the fluid distribution in the 
parenchyma. Nagashima et al. [2] modeled the brain and ventricles based on Biot’s 
consolidation theory [3]. A 2D finite element model of the parenchyma was created 
using computed tomography (CT) scans. Pena et al. further studied the poroelastic 
model to represent the stress concentrations and ventricular anatomy more accurately 
[4, 5]. Several groups have attempted to improve the boundary conditions and material 
parameters used in the poroelastic model [6, 7, 8]. Miller et al. proposed a nonlinear 
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viscoelastic representation [9]. Kyriacou et al. compared it with the linearly elastic 
approach and concluded that the viscoelastic model is more suitable to capturing high 
stain rates [10]. Considering the fact that ventricular deformation is related to CSF 
flow and is not representative of high stain rate deformation, we modeled the brain as 
an elastic porous medium to allow the flow of the interstitial fluid into and out of the 
extracellular space through the ventricular walls. We represented the ventricular sys-
tem through mixed boundary conditions and used sparse measurement data to estimate 
the driving fluid pressure required to deform the brain during the induction and release 
of pressure-induced ventriculomegaly. The importance of the work is that we show for 
the first time an algorithm that is able to successfully estimate the unknown pressure 
parameters in the boundary conditions from displacement data that allows the fluid-
filled ventricles to be represented by their surface, rather than directly including them 
within the discretized computational domain in which case a phase change would need 
to be incorporated into the mechanical equations describing brain deformation that is 
far more complicated to implement numerically. 

2   Materials and Methods 

2.1   Experimental System 

A group of five felines was studied with MR imaging for in vivo observation of the 
progression of ventricle deformation. Chronic or acute hydrocephalus was first in-
duced by injection of kaolin into the cisterna magna or saline into the ventricle as a 
control. Following that, a catheter was inserted into the lateral ventricle to drain fluid 
out of the brain, which caused the enlarged ventricles to shrink. The model simulated 
the ventricular shrinking process.  

Five adult female domestic felines were quarantined for three days prior to the be-
ginning of the experiment. On the day of cisternal injection, general anesthesia was 
induced and a peripheral intravenous catheter was placed. All animals underwent 
baseline magnetic resonance imaging (MRI) of the brain. Animals then underwent 
cisternal injection of kaolin or saline. Each animal was placed prone on a heated oper-
ating table with the neck partially flexed. A pediatric spinal needle was inserted in the 
midline, under fluoroscopic guidance, into the occiput-C1 interspace until clear CSF 
was returned (Figure 1, left). The needle was secured using a mobile clamp affixed to 
the table (Figure 1, right). The kaolin dose was 10 -50 mg mixed in sterile saline. 
Slow injection of kaolin was completed over 10 minutes. 

 

Fig. 1. Lateral fluoroscopic view of injection via occiput-C1 interspace (left) and operative 
photograph of 1 cc syringe affixed to stabilizing clamp (right) [11] 
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Once ventriculomegaly was confirmed, a ventricular catheter connected to a subcu-
taneous reservoir was placed in the right frontal region, to enable subsequent meas-
urement of intracranial pressure (ICP). The catheter-reservoir construct was inserted 
into the right lateral ventricle using a central stylet. [11]  

Another MRI session was scheduled between 7 and 17 days after the initial injec-
tion. Cats were anesthetized and the animal's head was fixed on the exam table as 
shown in Figure 2(a). After the ventricles were enlarged, a series of MR images were 
taken (Figure 2(b)). These images are referred to as pre-drainage MR. Intraventricular 
pressures (IVP) were measured after induction of hydrocephalus. One hour later, the 
fluid was drained out of the ventricle through the catheter. The enlarged ventricle 
shrunk markedly. Another set of images (Figure 2(c)) were acquired at this point 
which are called post-drainage MR. IVPs were measured again at this stage.  

 By comparing the two sets of images, substantial ventricular shrinkage was ob-
served. We attempted to drain the ventricles in stages, for example, by removing fluid 
in 0.5 cc increments but observed a threshold effect whereby either no observable 
deformation occurred (if too little fluid was removed) or no additional deformation 
resulted (if more fluid was removed after an initial amount sufficient to cause an im-
mediate and measurable reduction in ventricular size was taken). The images were 
acquired with a 3.0 T MRI (Philips) system and had a resolution of 256×256×24 
voxels and a voxel size of 0.3125 mm×0.3125 mm×1.2 mm.  

               (a)                                                        (b)                                                        (c)              

Fig. 2. (a) The cat was anesthetized and the head was fixed on the exam table. (b) Pre-drainage 
MR. (c) Post-drainage MR of the same cat brain. 

2.2   Computational Model 

The biomechanical model was based on Biot’s consolidation theory, and the brain 
was modeled as poroelastic material [3, 12]. The mathematical description is [13, 14]:  
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where  
f  body force (e.g., gravity) per unit volume ( 3/ mN ); 
Ψ  pressure source strength ( sPa / ); 
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 G  shear modulus ( Pa ); 
 v  Poisson’s ratio; 
u  displacement vector ( m ); 
p  pore fluid pressure ( Pa ); 

α  ratio of fluid vol. extracted to vol. change of the tissue under  compression; 

 k  hydraulic conductivity ( kgsm /3 ); 

1/S    amount of fluid which can be forced into the tissue under constant vol. ( Pa/1 ). 

By using the finite element method (FEM), these equations can be solved with the 
adjoint equations method (AEM) [15] to incorporate the intraoperative measurements. 

2.3   Model Generation 

The FEM discretization process begins with segmentation of the region of interest. A 
semi-automatic method was used to segment the cat brain and ventricles from the pre-
drainage MR images. A surface description consisting of triangular patches was gen-
erated from the segmented brain and ventricles. Then, a 3-D tetrahedral mesh was 
created to define the computational domain. The volume mesh contained about 
11,000 nodes and 53,000 elements. Given the boundary conditions and material prop-
erties, and the input of measured displacement data around the ventricle, the biome-
chanical model can be solved with FEM. The original mesh was deformed using the 
displacement results and the pre-drainage MR images were morphed to predict the 
post-drainage MR status. Figure 3 illustrates the entire procedure.  

The ventricles were modeled as a cavity since they only include CSF which is 
treated as a void in the consolidation equations. Approximate boundary conditions 
were imposed to simulate the physical conditions. The upper brain surface was speci-
fied as stress free and allowed free flow of CSF. The ventricle surface was set to be 
stress free to allow displacements, and pressure was handled by a mixed (type 3) 
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Fig. 3. Illustration of the modeling procedure for the ventricular system in the brain 
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boundary condition, )( vppk
n

p −=
∂
∂  where p is the brain tissue interstitial pressure, n 

is the normal to the boundary of the ventricle, vp is the ventricle fluid pressure and k  

is the conductivity coefficient. This condition specifies the drainage through the  
ventricle surface as a function of the interstitial pressure and permeability of the ven-
tricular wall. The flow of fluid is determined by the hydraulic conductivity and the 
pressure difference between the interstitial and ventricular fluid pressures. The lower 
part of the brain was modeled as brainstem which was assumed to have no displace-
ments and free flow of CSF.  

Reliable tissue properties are important to the biomechanical modeling. There are 
many studies on the mechanical properties of brain tissue. The material properties 
deployed here were Young's modulus E = 3240 Pa, Poisson's ratio v  = 0.45 and the 

hydraulic conductivity,  kgsmk /101 37−×=  [14, 16].  

3   Results 

The first cat was a control animal. Saline was infused into the ventricle before the pre-
drainage stage of the experiment. Fluid was drained from the ventricle before the post-
drainage MR session. In Figure 4(a), the red arrows around the ventricles show the 31 
sparse data points which were incorporated into the model. They were evenly distributed 
around the ventricles, except in areas where unreliable displacements were measured. In 
the quantitative validation, the number of validation data points was 1105. The brain 
configuration and ventricle deformation are presented in Figure 4(b), which shows that 
the maximum displacement is about 3 mm. In Figure 4(c), the gray color is the pre-
drainage ventricle, the brown color is the measured post-drainage ventricular shape (after 
shrinkage), and the green is the model estimate of the post-drainage ventricle. The 3D 
view shows that the model results match the measured ones very well. In order to better 
visualize the model results, four 2D slices were generated to produce an overlay of the 
ventricle boundary in the 3 experimental states.  

                                                                                   
                                                                      

                  (a)                                   (b)                                             (c)  

Fig. 4. (a) Sparse data distribution around the ventricle used for data assimilation in cat 1.  
(b) Displacement results of the cat brain surface. (c) Overlay of the pre-drainage ventricle 
(gray), post-drainage ventricle (brown) and model estimated post drainage ventricle (green).  
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In Figure 5 (left), the blue line is the pre-drainage ventricle, background MR shows 
the post-drainage ventricle, and the red dots represent the model estimate of the post-
drainage ventricle. The pre-drainage ventricle (blue) is large as seen from the 2D 
slices. After the fluid was drained, its size shrunk. The model result (red) matches the 
measurement (MR) better in the slices compared to the pre-drainage ventricle (blue).  

 

Fig. 5. Overlays of the predrainage ventricle (blue), postdrainage ventricle (background MR) 
and model deformed ventricle (red) for cat 1(left) and cat 2 (right) 

The second cat was also a control animal. There were 48 sparse data around the ven-
tricle used in this case and 710 data were deployed for validation. The results are shown 
in Figure 5 right. The 2D overlay indicates the model made certain improvements for 
cat 2. For both of the control animals, the model-estimated intraventricular pressure was 
less than 1000 Pa, which is lower than the measured 3000 Pa pressure. This may have 
occurred because of the leakage of fluid around the catheter, an effect which was ob-
served during the injection in the experiments. Another possible explanation is that the 
fluid can flow out the lateral ventricle through the third ventricle, and therefore, reduce 
the pressure around the lateral ventricles which are modeled in the study. 

The remaining three cats underwent hydrocephalus experiments. Hydrocephalus 
was induced by injection of kaolin into the cisterna magna. The intraventricular pres-
sure was different in the pre-drainage state, but it was the same post-drainage and 
equaled 500 Pa. The difference in the measured intraventricular pressure between the 
two stages was 1000 Pa, 700 Pa and 600 Pa for cat 3, cat 4 and cat 5, respectively.  

The displacement results for cat 3, cat 4 and cat 5 are reported in Figure 6 left, 
middle and right, respectively. The number of sparse data was 35, 31 and 41 and 
number of validation points was 414, 381 and 719 in each case, respectively. Points  
 

 

 
 

Fig. 6. Overlays of the pre-drainage ventricle (blue), post-drainage ventricle (background MR) 
and model deformed ventricle (red) for cat 3 (left), cat 4 (middle) and cat 5 (right) 
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were evenly distributed around the ventricle. The model estimations achieved differ-
ent levels of success. Both the displacement and pressure results from the model 
match the measurements. The model estimations of IVP were 900Pa, 730Pa and 570 
Pa, respectively. Compared to the measured pressure differences of 1000 Pa, 700 Pa 
and 600 Pa, the model estimates were accurate to 90% in all three experiments. 

A quantitative comparison of the displacement results is shown in Table 1. The 
data indicates that in all five cases, the model captured 33% of the deformation on 
average. The misfit reported in Table 1 is the average distance between the measured 
and model estimated ventricles for each cat.  

Table 1. The misfit before and after the model prediction for five cat studies 

 
 

  Mean Misfit (before) 
 (mm) 

Mean Misfit (after)
           (mm) 

Improvements 
        (%) 

Cat1                1.27 0.786        38.0 
Cat2 0.799 0.555       30.5 
Cat3 0.616 0.419       32.0 
Cat4 0.515 0.349       32.8 
Cat5 0.725 0.364       29.9 

4   Discussion 

The results showed that the computational method was able to estimate ventricular 
deformation in the cat brain within 1 mm through type 3 boundary condition represen-
tation of the ventricular surface which holds promise for improving modeling accu-
racy as well as avoiding the need of implementing the more complicated mechanical 
modeling framework that would be required to represent the fluid phase of the ventri-
cles, if they are discretized directly within the computational domain. The quantitative 
analysis indicates that the model captured 33% of the ventricular deformation on 
average in five cat experiments and the model estimated IVP to be accurate within 
90% compared to the measured value in the chronic hydrocephalus experiments. 

Although the mathematical representation of the ventricles has produced relatively 
good results, in some respects the average percentage of deformation capture (33%) is 
disappointing. Here, it is important to recognize that the overall deformation in the cat 
brain was very small (~ 1mm), placing a premium on the fidelity of the image proc-
essing and displacement data extraction procedures that were used in the study. Fur-
ther investigations are needed to explore the extent to which the modeling errors are, 
in part, a result of imperfections in the data analysis techniques. For example, in the 
segmentation and surface and volume meshing processes, error is accumulated and 
can be reduced. The nonrigid motion of the ventricles was also approximated through 
Iterative Closest Point to determine displacements. In order to provide better guidance 
and improve model-data mismatch, more accurate displacement measurements are 
needed. The brain mechanical properties employed in this study were taken from the 
literature whereas material properties determined experimentally for each feline brain 
will likely contribute to improved modeling accuracy.  
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The methodology can be extended to human clinical studies. Since the CSF pres-
sure in the intraventricular space is measurable during the neurosurgery, data on both 
displacement and pressure will be available. The measurements can then be used  
as data for the model computed brain deformation. Incorporating the ventricle struc-
ture and the pressure data will help to further develop the model to yield more accu-
rate estimates of the state of the brain during surgery and can help the surgeon to 
optimize the planned surgical path. Additional clinical studies are needed for future 
validation at the human scale but the in vivo results presented here in the cat brain 
appear promising and suggest that the approach will be successful in humans as well. 
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Abstract. A pneumatic simulator of the knee joint with five DOF was devel-
oped to determine the correlation between the kinematics of the knee joint, and 
the wear of the polyethylene componenent of a TKR prosthesis. A physical 
model of the knee joint with total knee replacement (TKR) was built by rapid-
prototyping based on CT images from a patient. A clinically-available prosthe-
sis was mounted on the knee model. Using a video analysis system, and two 
force and contact pressure plates, the kinematics and kinetics data were re-
corded during normal walking of the patient. The quadriceps muscle force  
during movement was computed using the Anybody software. Joint loadings 
were generated by the simulator based on recorded and computed data. Using 
the video analysis system, the precise kinematics of the artificial joint from the 
simulator was recorded and used as input for an explicit dynamics FE analysis 
of the joint. The distribution of the contact stresses in the implant was computed 
during the walking cycle to analyze the prosthesis behavior. The results suggest 
that the combination of axial loading and anterior-posterior stress is responsible 
for the abrasive wear of the polyethylene component of the prosthesis. 

1   Introduction 

At present, the short life cycle of TKR represent a great concern for both orthopedic 
surgeons and prosthesis designers. Loosening of the tibial component is an important 
cause of  TKR failure [1]. During the gait cycle, the forces developed in the knee have 
a cyclic pattern with values between 10 and 30 MPa, resulting in high stress values 
and wear of the artificial joint components. The mechanisms responsible for TKR 
wear are delamination, scratching, pitting and abrasion [1-3]. 

The present study used clinical investigation, engineering and computational meth-
ods: non-invasive imaging methods to collect data directly from the patient, a newly 
developed knee simulator to reproduce the physical forces acting on the joint during 
movement, and finite element analysis to integrate the clinical observations and experi-
mental data and to compute the resulting stresses in the joint. The purpose of the study 
was to determine the correlation between the kinematics of the knee joint, and the stress 
distribution in the polyethylene componenent of the TKR during the gait cycle. 
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2   Materials and Methods 

The three-dimensional computational joint reconstruction (Fig. 1, a) was achieved 
from CT serial sections of the patient’s leg and radiographic images of the joint with 
TKR. Images have been acquired in DICOM format and converted to JPEG using the 
MRIco software. The three-dimensional CAD model of the patient's knee joint was 
used to develop an artificial human knee by rapid prototyping using an Objet Eden 
260 3D printer. The femoral metallic components and the tibial metallic tray with 
polyethylene plate were mounted on the plastic components (Fig. 1, b) using medical 
cement. Five HBM LY strain gages were placed on both components of the joint for 
data recording during the simulation (Fig. 1,c). 

A new 5DOF simulator for the knee joint was designed and developed in our labs 
to study the biomechanical changes in different pathological cases and to establish the 
efficacy of the type of osteotomy with different fixation systems and prostheses. 

 

a     b     c 

Fig. 1. Three-dimensional CAD models of the TKR joint of the patient (a), the prosthesis com-
ponents and the artificial joint with implants mounted (b), the artificial femur and tibia with 
artificial prosthesis and strain markers (c) 

The knee simulator is based on the general principles of the Purdue Knee Simula-
tor with several novel patent-pending improvements. The new design allows an un-
constrained flexion/extension motion between femur and tibia, with the hip and ankle 
joints attached to the frame (Fig. 2). The loads on the knee are: the simulated quadri-
ceps muscle action (quadriceps load), and the applied external loads at the simulated 
hip (body weight) and ankle (vertical rotation torque and medial-lateral translation 
load) (Fig. 2, b).  This particular design can simulate the natural behavior of the joint 
by varying the applied loads and articular geometry of the knee. 

There are two DOF between the femur and simulator frame: vertical translation of 
the hip and flexion/extension/rotation relative to the translating hip sled. The hip sled 
is constrained by two vertical precision rails attached to the frame, and the load that 
simulates the body weight (max. 200 kgf) is provided by a pneumatic cylinder. The 
flexion-extension rotation (±65°) is imposed through the quadriceps muscle simulated 
by an actuator fixed to the femur. The action of the quadriceps actuator cause an ex-
tension moment about the knee that extended the hip as well. The ankle sled provides 
four degrees of freedom between the tibia and the ground. A universal joint gives the  
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a b 

c   d 

Fig. 2. The CAD design (a), resultant loads diagram on the joint (b), the newly developed knee 
simulator (c) and close-up of the knee joint region (d) 

flexion-extension and adduction-abduction of the tibia at the ankle. The universal 
joint also rotate about a vertically oriented axis (±20°). The ankle assembly is free  
to move on a medial/lateral direction (±7.5 mm). The motion of the ankle sled is  
controlled by the adduction-abduction load actuator (max. 1000N). 

The tibia is free to abduct/adduct. Its motion is dependent on the medial-lateral 
translation of the ankle sled since the femur is fixed to the frontal plane. Internal-
external rotation of the tibia is controlled by a rotational actuator (max. 45 Nm) in a 
vertical axis translating with respect to the ankle sled. 

The ankle flexion moment induced by a rotational actuator (max. 55 Nm), applies a 
torque between the tibia and the ankle sled relative to the flexion-extension axis. The 
actuator translates in the medial-laterally direction, and rotates relative to the vertical 
axis of the tibia. 
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Mechanical Testing of the Knee Joint. The testing was performed on an artificial 
knee implanted with a clinically-available prosthesis. The plastic femur and tibia were 
mounted on stainless steel tubes in the aluminum fixture.  Both tubes include a three-
axis force and a torque sensor allowing a closed-loop feedback control. 

The load profile on the ankle joint from the medial-lateral translation, and the torque 
movement were obtained directly from the patient using coupled AMTI/RSSCAN 
force/pressure plates. The values of the quadriceps load and ankle flexion moment dur-
ing walking cycle were computed using the Anybody and Gait Model (Aalborg Univ.) 
software packages (Fig. 3).  The patient lower member segments dimensions, body 
weight and foot center of pressure constitute the input data for the Anybody model. 

 

  

Fig. 3. Anybody model and quadriceps muscle values (N) during the walking cycle 

The force generated by all pneumatic actuators were set to half of the measured 
values during the walking cycle to prevent damage to the artificial plastic model, 
which has a lower mechanical strength compared to the natural bone. The pressure 
values were also adjusted to account for differences in congruency between the syn-
thetic and biological component surfaces during movement. 

The movement of the joint in the simulator was recorded using two high speed 
(100f/s) Basler cameras and an image acquisition and analysis system , SIMI Motion 
(SIMI Reality Motion Systems GmbH). The kinematics data for the artificial joint 
have been obtained and the kinematics curves have been plotted (Fig. 4, a, b). 

The finite element model of surface of the TKR prosthesis has been developed on 
the three-dimensional model using Ansys/LS-DYNA software (Fig. 4, c). 

To decrease the computational burden and facilitate the analysis, the femoral im-
plant and polyethylene tibial element were separated from the model.  

The contact/impact conditions were simulated based on the assumption that at the 
time of contact the two surfaces have the same distortion speed in the direction of the 
impact. In this way, the impact was separated from the rest of the dynamic analysis.  

The values (solutions) of the serial impulse equations were propagated over the 
impact, and generate initial conditions for the subsequent steps of the analysis. The 
erosion of the polyethylene component was estimated by calculating the quantity of 
material removed by friction for a given contact pressure.  Experimentally, the degree 
of erosion can be assessed by weighing the polyethylene component after a large 
number of movement cycles and observing its microstructure under the microscope. 
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a

b

c 

Fig. 4. The knee joint kinematics obtained with the simulator, and analyzed with the  
SIMI Motion software: translations (a) and rotations (b).  The 3D finite elements model of the 
femoral component, tibial polyethylene and boundary conditions (c). 

3   Results 

The correlation between the TKR  kinematics and tibial polyethylene loading was 
computed for two different ankle flexion moments, 15º and 20º flexion, corresponding 
to mid stance during the gait cycle (Fig. 5). 
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a 

b 

Fig. 5. Contact pressure (in MPa) for 150 (a) and 200 (b) flexion angles 

Table 1. Contact pressure (in MPa), shear stress, anterior-posterior stress, axial stress,  
medial-lateral stress and peripheral stress 

 

  

15º of flexion  20º of flexion 

Contact pression Internal compartment  14, 5 9,46 

External compartment 8,9 7,76 

Shear stress   Internal compartment 3,2 2,97 

External compartment 2,49 1,98 

A – P stress  Internal compartment 12,8 6,79 

External compartment 8,4 5,21 

Axial loading  Internal compartment 14,01 9,29 

External compartment 11,7 7,45 

M – L stress  Internal compartment 8,07 7,97 

External compartment 8,07 4,11 

Peripheral loading  Internal compartment 7, 05 4,3 

External compartment 4,24  2,4 
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Polyethylene loadings were highest for 15º flexion corresponding to the mid stance 
of the gait cycle.  For comparison we used a second position of 20º flexion. For the 
first position (15º flexion), the contact pressure in the medial compartment is 14.5 
MPa, and is correlated with axial loading (14.01 MPa). For the 20º flexion, contact 
pressure is 9.46 MPa and the axial loading is 9.29 MPa (Table 1).  

4   Conclusions 

The present paper used interdisciplinary engineering methods to understand the clini-
cal problem of the wear of the TKR prostheses. The novelty of the study comes from 
using a new knee joint simulator, image acquisition and interpretation techniques, but 
also numerical methods to simulate the inverse dynamics of the patient lower limb 
and finite elements models to determine the explicit dynamics of the stress and strain.  
The input data for the computational simulations was collected directly from the pa-
tient (joint geometry and magnitude of physical forces), and from experiments per-
formed with the joint simulator. The output data resulted from computation can be 
verified using strain markers on the artificial joint in simulator.  

The relationship between axial loading and anterior-posterior stress is responsible 
for the initiation of abrasive wear of polyethylene. The stress in this direction is 
maximal in the internal compartment for a 15º flexion. The delamination of polyeth-
ylene can result from association at the same level of shear and axial forces.  

The same pattern of stress distribution is observed in the external compartment but 
the values are lower. The difference between medial and lateral compartments is re-
lated to the presence of the various moments at the level of internal compartment in 
the unipodal weight bearing. 

The presented simulator and the overall research methodology were designed for 
the study of the biomechanical behavior of bone components of the knee joint in dif-
ferent pathological cases and different types of movement. This system can also be 
used for fatigue and wear studies of some types of the prosthesis and osteotherapy 
devices.  

The simulator can be used for research, prosthetics testing, and orthopedic surgeon 
training. Future studies using the knee simulator are needed to continue to determine and 
the regions where the physical forces produce wear and fatigue into the TKRimplant. 
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Abstract. In this paper we present a hybrid 1D/3D approach to haemo-
dynamics modelling in a patient-specific cerebral vasculature and
aneurysm. The geometric model is constructed from a 3D CTA image. A
reduced form of the governing equations for blood flow is coupled with
an empirical wall equation and applied to the arterial tree. The equation
system is solved using a MacCormack finite difference scheme and the
results are used as the boundary conditions for a 3D flow solver. The
computed wall shear stress (WSS) agrees with published data.

1 Introduction

Intracranial aneurysms are dilated arterial lesions in the brain. The majority of
them are saccular shaped and arise from the Circle of Willis (CoW), the ring of
vessels formed at the skull base (Fig. 1a). When a cerebral aneurysm ruptures,
blood will flow into the subarachnoid space causing subarachnoid hemorrhage
(SAH), which has a high mortality and morbidity rate [1]. Although the mech-
anisms underlying the formation of aneurysms are still not fully understood, it
has been suggested that haemodynamic factors play an important role in their
genesis and development [2].

To better understand these factors, many research groups have studied the
flow patterns in cerebral aneurysms e.g. in [2,3,4,5]. The techniques used include
non-invasive in vivo MR imaging [3], in vitro phantom experiments [4], and
three-dimensional (3D) computational fluid dynamics (CFD) modelling [2], or
a combination of these techniques [5]. Among these methods, well validated
CFD has the advantage of being able to predict flow at locations where in-vivo
flow data are difficult to obtain. The problem of 3D CFD models, however, is
that a huge number of computational elements are generally required to capture
complex flow patterns in tortuous vessels and bifurcations, therefore making 3D
modelling for large vasculatures computationally infeasible. On the other hand,
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Fig. 1. (a) Circle of Willis (posterior view); (b) A CTA image: the arrow indicates an
aneurysm at the anterior communicating artery (ACoA)

blood flow in a vasculature can be modelled with reduced 1D formulations of the
governing equations, as used to model flow in cerebral and coronary arterial trees
e.g. in [6,7]. However, the 1D models are not capable of capturing complex flow
patterns, such as vortices, flow separation and reattachment, or flow reversal as
in 3D models.

To absorb the strength from both 1D and 3D modelling strategies, some re-
search groups have investigated hybrid or multidimensional modelling strategies
[8,9]. The philosophy is to employ a 3D CFD model to analyze the flow in the
vessel of interest in high detail, and use the 1D CFD model for the remain-
ing part of the arterial tree. The result is a reduced number of parameters and
substantially decreased computational cost [9].

This work takes a similar approach i.e. by applying a hybrid 1D/3D modelling
technique to haemodynamic analysis in a patient-specific cerebral aneurysm,
which grows at the anterior communication artery (ACoA) (Fig. 1b). The differ-
ence between our work and that of [8,9] is that both the 1D arterial tree and the
3D aneurysm in our model are digitized from a 3D CTA image, and therefore
reflect the actual vascular anatomy.

2 Method

2.1 Vascular Model Construction

Arterial Tree. The 3D CT Angiography (CTA) image of Fig. 1(b) contains
421 slices of 378 × 336 pixels. The spatial resolution of the image is 0.488 ×
0.488 × 0.7 mm. Using the open source imaging and visualization tool CMGUI
we manually select 175 key points along the centre line of large blood vessels
as nodes. The radius at each node is defined as a field for that particular node.
These nodes are then connected by 1D cubic Hermite elements. Cylinders are
constructed along these elements to represent the major arteries supplying blood
to the brain. Fig. 2 depicts this digitization process.
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Fig. 2. Vascular tree construction pipeline: (a) Node selection; (b) 1D elements con-
struction; (c) Cylinder simulation incorporating radius information

Aneurysm Models. Using CMGUI, the isosurface of the aneurysm lumen is
extracted from the volume image as an isovalue of the image intensity at the
lumen boundary. The initial isosurface (triangular mesh) is further repaired by
mesh smoothing or decimation algorithms, which are available in CMGUI. Fig.
3(a) and 3(b) show the initial triangular mesh extracted from the volume image,
and the surface mesh after repairing.

Computational Grid Generation. As with other Finite Element Analysis
software, the geometrical model must be split into a finite set of elements, the
so-called computational grid, to be used for flow analysis. In this work we employ
a commercial grid generator ANSYS ICEM and use the octree method, which
results in the grid shown in Fig. 3(c).

Fig. 3. (a) Isosurface extracted from volume image; (b) Surface triangular mesh after
repairing; (c) Computational grid at the cross-section of aneurysm
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2.2 Haemodynamics Modelling

1D Model. In large arteries, the relative size of red blood cell to vessel di-
ameter is small and blood can be modeled as an incompressible, homogeneous,
Newtonian fluid [6,7,8]. If we further assume that the flow in the circumferential
direction is negligible and that the radial velocity is small compared to axial ve-
locity, then the governing equations can be reduced to two equations. By further
including a constitutive wall equation [7] we get:
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where P , R, V , ρ and υ represent pressure, inner vessel radius, velocity, blood
density and viscosity respectively. The parameter α specifies axial velocity pro-
file. Go is a stiffness reference, Ro is the unstressed radius, and β is the wall
elasticity coefficient. The hyperbolic set of nonlinear partial differential equa-
tions (1-3) is solved numerically using a second order MacCormack finite differ-
ence method. Furthermore, a bifurcation model is incorporated to predict flow
distribution, velocity and pressure gradient across branches, and thus the whole
arterial tree [7].

3D Model. The full 3D version of the governing Navier-Stokes equation can
be expressed in a vector form:

∇ · v = 0 (4)

ρ(
∂v
∂t

+ v · ∇v) = −∇p +∇ · τ (5)

where v represents the flow velocity in 3D. The practice of 3D CFD modelling
is to discretize the equations (4-5) over the computational mesh of the physical
domain (in this case the cerebral aneurysm), and solve the system numerically.
The flow solver employed in this work is a finite volume based CFD solver,
ANSYS CFX [10], which has a well defined interface with the grid generator
ICEM. In brief, the process of patient specific CFD modelling can be streamlined
into a pipeline:

(a) the surface mesh of a vascular structure is extracted from medical images
(e.g. by using a threshold isovalue, or other image processing methods);

(b) the initial surface mesh is repaired, improved and translated into a format
(e.g. the stereolithography format STL) acceptable to a grid generator;

(c) a computational grid is generated (e.g. by using ICEM) and exported to a
3D flow solver (e.g. CFX-Pre);
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(d) the flow and domain configuration, the initial and boundary conditions plus
solver parameters are specified (e.g. in CFX-Pre);

(e) the (transient) flow is solved (e.g. by using CFX);
(f) the results are post-processed (e.g. in CFX-Post or CMGUI).

Steps (a)-(c) in the pipeline constitute the pre-processing block, (d)-(e) the solver
block and (f) the post-processing block.

Coupling of 1D/3D Solvers. The 1D and 3D solvers are coupled in step (d)
of the pipeline. The flow solver CFX allows transient waveforms to be prescribed
as boundary conditions and these waveforms must be expressed as functions of
time. The waveforms calculated from the 1D model, however, are not analytical
functions but discrete numeric values. Hence, we perform Fourier analysis for
these waveforms and supply their leading ten harmonics to CFX.

3 Results

1D Model. When solving the governing equations, the density ρ and viscosity ν
of the blood are set as 1.05g/cm3 and 3.2cm2/s respectively. The initial velocity
and pressure at all vessel segments are 0mm/s and 10.6kPa (80mmHg) respec-
tively. The spatial and temporal step of the finite difference grid is set as 1mm
and 0.1 millisecond, respectively. A physiological pulsatile pressure (80mmHg-
120mmHg) is prescribed from the inlet i.e. the ascending aorta. The pressure at
outlets is fixed at 80mmHg. The pressure gradient between the inlet and out-
lets therefore drives blood flow through the arterial tree. It takes about three
minutes to compute the flow during a cardiac cycle using a laptop PC (1.73
GHz, Intel Pentium Dual-Core) and the resulting pressure distribution at four
distinct phases of a cardiac cycle is shown in Fig. 4a. The velocity profiles at
three locations of the aneurysm region are shown in Fig. 4b and the data from
sites B and C will be passed to the 3D model as boundary conditions.

3D Model. The computational grid of Fig. 3c contains about 129,500 elements,
which have a combination of tetrahedra and pentahedra. The boundary condi-
tions are set as follows: the velocities computed from the 1D model (at sites
B and C of Fig. 4b) are used as the inflow boundary conditions for the 3D
model. The zero pressure boundary condition is prescribed from outlets. The
viscoelastic properties of vessel wall are ignored and the no-slip wall boundary
condition is applied. The flow type is defined as laminar which is justified by the
highest Reynolds number (754) which occurs at the ventricular ejection phase.
The computational results include important flow data such as pressure, velocity
in the whole fluid domain and wall shear stress (WSS) at the vessel wall. The
distribution of WSS at time steps 0.15s, 0.3s, 0.5s and 0.9s are visualized in
Fig. 5a. These time steps represent four different phases of cardiac cycle as illus-
trated in the pressure profile chart of Fig. 5. The streamlines in Fig. 5b which
bears the flow velocity information visualize the pathway of blood flow.
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Fig. 4. Haemodynamics modelling in the cerebral vasculature: (a) Velocity distribution
in the arterial tree at 0.2s; (b) A closer look at cerebral arteries: A - the communicating
artery where the aneurysm grows; B,C - two inlets on ACA; (c) Velocity waveform at
CCA: Left-1D model; Right-Doppler measurement

Model Validation. A LogicScan 128 ultrasound scanner (TELEMED Ltd.,
Lithuania) is used to detect the flow velocity at the inner carotid artery to val-
idate the 1D result. The measured waveform, which varies between 55mm/s to
310mm/s during a cardiac cycle, is shown in Fig. 4c. A comparison with the 1D
model indicates that the largest velocity (about 31-32 cm/s, occurs at systole)
of the simulation matches that of the ultrasonic data. However, our model over-
estimates the flow velocity at diastole. Overall, we consider the simulation result
is within the acceptable physiological range of in vivo measurement.

We also compare the computed WSS data with the results published by other
research groups e.g. in [2,5]. The comparison is tabulated in Table 1 and it shows
that our result agree favourably with the published data.

4 Discussion

A number of in vivo, in vitro measurements and CFD modellings (e.g. in [2,3,4,5])
have been performed to study the WSS induced by blood flow and its relationship
with aneurysm genesis. The problem with the CFD approach is that a huge com-
putational cost is required for full 3D analysis of a large vasculature. In this work
we adopt a hybrid 1D/3D approach to a patient-specific cerebral vasculature and
aneurysm. The benefits of such a strategy are obvious: (1) the difficulties arising
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Fig. 5. Postprocessing of data for the aneurysm (posterior view). (a) WSS on vessel
wall at 4 time steps, postprocessed in CMGUI; (b) Streamline in the fluid domain,
postprocessed in CFX-Post.

Table 1. Comparison of flow data in literatures

Time step Our model at selected sites Shojima et al [2] Steinman et al [5]
A(Dome) B C(Neck) D Dome Sac Neck Dome Sac

T1 0.35 2.65 9.87 5.73 - - - - -
T2 0.86 2.77 6.52 4.03 - - - - -
T3 0.71 2.78 6.98 4.34 - - - - -
T4 0.24 0.55 1.68 0.84 - - - - -

Average 0.54 2.18 6.26 7.52 0.3-0.5 1 - 5 8 - 10 0.4-0.8 1.6-2

from the treatment of boundary conditions for 3D models are handled naturally
from the 1D model; and (2) the computational cost is substantially reduced [9]. At
regions of interest, the 3D model reveals more flow information (e.g. the streamline
in Fig. 5b) which cannot be captured by a pure 1D model.

It is worth noting that in this work we assumed that the arterial wall is elas-
tic in the 1D model but rigid in the 3D model. That is to say, we ignored the
wall deformation during a cardiac cycle in 3D modelling. This is an acceptable
approximation for intracranial arteries because they are stiffer than extracra-
nial arteries [5,6]. However, the same assumption may not hold true for carotid
arteries and certainly not for the aorta. In the latter case, a more complex de-
formable wall model and an Arbitrary Lagrangian Eulerian (ALE) formation of
the governing equations need to be solved, and this remains as our future work.
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5 Conclusion

In this study we used a hybrid 1D/3D method to model a patient-specific
aneurysm and the surrounding vasculature. We have developed a computational
pipeline which starts from vascular model construction, to grid generation, and
to 1D/3D CFD modelling. The pipeline leads to a substantial reduction of com-
putational cost. The initial results agree with previously published data. Future
work include applying such a pipeline to CFD analysis of aneurysms arising from
other (intracranial) arteries.
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Abstract. Interpolation from sparse imaging data is typically required
to achieve dense, three-dimensional quantification of left ventricular func-
tion. Although the heart muscle is known to be incompressible, this fact
is ignored by most previous approaches that address this problem. In
this paper, we present a method to reconstruct a dense representation
of the three-dimensional, incompressible deformation of the left ventricle
from tagged MR images acquired in both short-axis and long axis orien-
tations. The approach applies a smoothing, divergence-free, vector spline
to interpolate velocity fields at intermediate discrete times such that the
collection of velocity fields integrate over time to match the observed dis-
placement components. Through this process, the method yields a dense
estimate of a displacement field that matches our observations and also
corresponds to an incompressible motion.

1 Introduction

To measure regional function in the heart, magnetic resonance tagging [1] gen-
erates images that can be processed to find two-dimensional in-plane motion at
every pixel location, and when short-axis and long-axis images are combined,
three-dimensional (3D) motion of each point in the left ventricle (LV) can be in-
ferred through interpolation of the sparse imaging data. Although dense methods
for directly imaging 3D myocardial motion have been developed, they require
too much time for routine acquisition of dense, three-dimensional myocardial
motion in scientific research or clinical medicine. Therefore, interpolation meth-
ods are likely to be required in practice and may well be the critical element in
promoting routine imaging of dense, 3D myocardial function in the heart. It is
widely accepted that the volume change of myocardium during the cardiac cycle
is no more than 4% [2]. Since materials that are incompressible undergo defor-
mations that preserve volumes at all scales and have divergence-free velocity
fields, it is natural to assume that one can improve interpolation by exploiting
this constraint. Song et al. [3] first applied this property in building the 3D ve-
locity of the heart from cine CT images. Denney et al. [4] directly applied the
divergence-free constraint to reconstruct the 3D displacement field of the LV
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in an estimation theoretic approach. Recently, Bistoquet et al. [5] constructed
nearly incompressible cardiac motion field from non-tagged MR images using
a vector spline with a divergence-free matrix-valued function. There is a key
problem with these approaches, however. Because the temporal resolution of the
image sequences, the deformation between two neighboring time frames may be
large. A velocity field that is approximated as the displacement field divided by
the time interval is not theoretically predicted to be divergence-free. When this
fact is ignored and the underlying field is interpolated in a divergence-free fashion
this can lead to considerable errors when reconstructing motion fields in a time
sequence since the errors in earlier time frames propagate to later time frames.
In [5], this error was reduced by interpolating both forwards and backwards in
time and then computing a weighted average of these solutions. However, solu-
tions generated this way do not yield motions that have divergence-free velocity
fields or correspond to incompressible motions. In this paper, we present a new
approach to reconstruct a 3D, dense, incompressible deformation field in the LV
of the heart from tagged MR images based on divergence-free vector spline with
incomplete data samples. A key novelty of our approach is that, instead of com-
puting divergence-free displacement field, we seek a sequence of divergence-free
velocity fields from which the final displacement field is computed by integration.
We also adopt a multi-resolution strategy and adaptive smoothing to reduce the
computation and improve the accuracy. Our method was validated using both
numerical simulation and in vivo cardiac experiments.

2 Background

2.1 Smoothing Divergence-Free Vector Spline

Given N points in space xn = [xn, yn, zn]T , n = 1, . . . , N , and vector-valued ob-
servations vn, n = 1, . . . , N , at these points, vector splines (VS) [6] interpolates
a smooth vector field over the whole space. Specifically, the smoothing VS finds
a vector field v(x) that minimizes

C(v) = ρJα,β(v(x)) +
1
N

N∑
n=1

||v(xn)− vn||2, with (1)

Jα,β(v) =
∫

[α||∇k(divv(x))||2 + β

3∑
i=1

||∇k(rotv(x))i||2]dx (2)

where ρ is the smoothing parameter, α and β are the weighting coefficients, div
yields the divergence of a vector field, and rot yields the curl. It has been shown
that (1) has the closed form solution [6] v(x) =

∑N
n=1 K(x − xn) · cn + p(x),

where cn are the unknown vectorial coefficients and K(x) is the matrix-valued
kernel function given by

KVS(x) = [
1
β
�I + (

1
α
− 1

β
)∇∇T ]h(x) (3)
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where I is the identity matrix, h(x) = ||x||2k+1 is the solution to �k+1h(x) =
δ(x) and � is the Laplace operator. p(x) is a polynomial of order k. The co-
efficients in the smoothing VS can be solved using known vector values at the
sample points.

As a special case, the VS can be used to interpolate the divergence-free vector
field by constraining the vector field to be divergence-free, i.e., divv(x) = 0. The
divergence-free vector spline (DFVS) solution is similar to that of VS except
that the kernel matrix becomes KDFVS(x) = [�I−∇∇T ]h(x), and p(x) is also
constrained to be divergence-free.

2.2 Smoothing VS from Incomplete Samples

In some applications—such as the displacement computed from tagged MR
images—only selected components of the vector field are observed at the sam-
ple points. This incomplete sample data can be written as: {xn, ln, wn} for
n = 1, 2, . . . , N , where ln is a normal vector representing a projection direc-
tion, and wn = ln · v(xn) is the projection of v(xn) on ln. The minimization
problem of a smoothing VS given incomplete data can be expressed as

arg min
v

C(v) = ρJ(v(x)) +
1
N

N∑
n=1

(lTnv(xn)− wn)2. (4)

Arigovindan [7] showed that the solution to this problem is

v(x) =
N∑

n=1

K(x− xn)lncn + p(x), (5)

where the coefficients cn are scalars, and K(x) and p(x) are the same as in VS.
By replacing K with KDFVS, Eqn. (5) describes the solution to smoothing DFVS
with incomplete samples.

3 Method

3.1 Experiments and Data Processing

We acquired CSPAMM cardiac image sequences using a breath-hold scenario
on a Phillips 3T Achieva MRI scanner (Philips Medical Systems, Best, NL). An
approved IRB protocol was used and informed consent was obtained. Both short
axis (SA) and radial long axis (LA) images were acquired on a healthy subject.
Two sets of images with orthogonal tag directions were acquired separately on
each SA slice. The LA images were tagged in a direction perpendicular to the SA
image planes. The imaging parameters were: tag spacing = 12 mm, pixel spacing
= 1.25 mm, temporal resolution = 30 msec, time frames=20. We acquired twelve
SA image slices with a 4 mm slice separation, and six LA image slices. The SA
slices were divided into two interleaved groups (even and odd slice numbers) so
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that the slice separation within each group is 8 mm. The first group of six SA
slices and all six LA slices were used to reconstruct a 3D, dense, incompressible
displacement field of LV. The slices in the second group were used for valida-
tion. The relative locations of the slices used in the motion reconstruction are
illustrated in Fig. 1.

All of the images were first processed using the harmonic phase (HARP)
method [8] to yield sequences of HARP images. Let us define the time that the
tags are just applied and have not deformed as the reference time t0. At t0, the
tagging phase φ is a linear function of the point’s coordinate x, and wrapped
to the range [−π, π), i.e., φ(x, t0) = W (kx · l + φ0) , where k is the known
tagging frequency, l is a unit vector representing the tagging orientation, φ0 is
an unknown phase offset, and W is a phase wrapping operator. By assuming the
tags do not deform much at the first time frame, φ0 can be estimated from the
HARP images at the first time frame [9]. Therefore, the tissue points at each time
frame can be tracked back to t0 using HARP tracking [8]. For tagging direction
l and a 3D spatial point xj imaged at t, if it comes from Xj = xj(t)−u(xj(t), t)
at t0, then HARP tracking computes the projection of its displacement u(x, t)
onto l as:

wj = l · u(xj, t) = l · (xj −Xj) . (6)

Because the SA images are acquired with two tag orientations, two projections of
the displacement of each point are computed. For tissue points in the LA images,
only one projection is computed. Therefore except for points at the intersections
of LA and SA image planes, only partial knowledge of the displacement is avail-
able for any other pixel on the observed images. (Of course, no observations are
available at 3D points that do not lie on an observed image plane.)

Intermediate image frames are not used to assist in tracking later frames
because the observed tissues are not the same, primarily due to through-plane
motion; thus the Lagrangian framework that is used to carry out incompressible
interpolation (see next section) cannot take advantage of these observations.

3.2 3D Incompressible Displacement Field Reconstruction

The myocardium can be considered incompressible because it is composed mainly
of water. For an incompressible elastic body subjecting to a deformation x = X+
u(X), the Jacobian determinant of the deformation satisfies det(I+∇Xu(X)) =
1 for any material point X, where ∇X is the material gradient operator. As
well, the spatial velocity field v(x) giving rise to such a deformation must be
divergence free, i.e., divv(x) = 0. Based on this physical property of the heart,
we propose an approach based on DFVS to reconstruct the displacement field
of the LV of the heart. HARP tracking provides N incomplete and non-uniform
data samples {xn, ln, wn} at any time frame. Our goal is to reconstruct the 3D,
incompressible displacement field u(x) such that ln · u(xn) = wn.

The deformation is calculated through the integration of the velocity. Let us
define the integration variable as s, which takes on values in the interval [0, 1],
and let the velocity of x at s be v(x(s), s). We define
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(a) Short axis (b) Long axis

Fig. 1. A tagged (a) SA and (b) LA image. For visualization purposes, the SA image
shown is the product of the separately acquired horizontal and vertical tagged images.
The overlaying lines depict the geometry of the (a) LA and (b) SA images.

w(x, s) =
∫ s

0
v(x(τ), τ)dτ, and v(x(τ), τ) =

dw(x, τ)
dτ

, (7)

with x(s) = x+w(x, s). Then the displacement field u(x) = w(x, 1). The prob-
lem can be reduced to a finite-dimensional problem by dividing the integration
into discrete steps, i.e., sm = mδ for m = 0, 1, . . . , M with δ = 1/M . When
M is reasonably large, the velocity is assumed constant within each interval,
so u(x) = w(x, 1) = δ

∑M−1
m=0 v(x(sm), sm). Note v is not the true myocardial

velocity, but rather a computational tool for the estimation of the displacement.
We use DFVS from incomplete data samples to interpolate the divergence-

free velocity fields separately over each interval. The velocity fields are computed
sequentially starting from s0 = 0 through sM = 1. Let us denote rn(sm) =
ln · v(xn(sm), sm) for any step sm, and the data samples at sm are written as
{xn(sm), ln, rn(sm)} for n = 1, . . . , N . The velocity at any sample point xn(sm)
at sm is approximated by taking the first order expansion

u(xn)−w(xn(sm), sm) = v(xn(sm), sm)(1 − δm), (8)

so that

rn(sm) = ln · v(xn(sm), sm) =
wn − ln ·w(xn(sm), sm)

1− δm
. (9)

With the N data samples, the continuous velocity field v(x, sm) is interpolated
with smoothing DFVS using Eqns. (4) and (5).

From Taylor’s expansion, the first order approximation of the velocity is accu-
rate up to the order (1−δm)2. Therefore, it is less accurate at smaller s and more
smoothing is required at earlier steps. So the smoothing parameter ρ should be
chosen to be large at small s and grow smaller as s approaches 1. At sM−1, ρ
should be set to 0 so that the final displacement w(xn, 1) matches the original
data samples exactly—i.e., ln · u(xn) = ln ·w(xn, 1) = wn for n = 1, . . . , N . In
practice, we choose the smoothing parameter as ρm = M−m−1

M−1 ρ0, where ρ0 is
determined empirically.

To reduce computation time, a multi-resolution scheme is adopted. For smaller
m, the sample points are downsampled so that only a subset of the samples is
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used in the interpolation. Since the computation time is dominated by solv-
ing the coefficients from Eqn. (5) with complexity O(N3), the multi-resolution
scheme can greatly reduce the computation while not affecting the accuracy of
the displacement field reconstruction.

The algorithm can be summarized as follows.

Algorithm 1: Dense 3D incompressible displacement field reconstruction
Given the data samples {xn, ln, wn}, and wn = ln · u(xn) for n = 1, . . . , N , and
a dense 3D grid of data points yk for k = 1, . . . , K of which the 3D displacement
vectors are to be computed, carry out the following steps:

1. Initialize ρ0, M , yk(0) = yk, w(yk, 0) = 0, and w(xn, 0) = 0 for all k and n.
2. for m = 0 to M − 1

(a) set sm = mδ, ρm = ρ0(M −m− 1)/(M − 1);
(b) downsample the data points x(sm) if needed;
(c) compute rn(sm) using Eqn. (9) for all sample points;
(d) compute the interpolating coefficients with samples {xn(sm), ln, rn(sm)}

and ρ = ρm;
(e) compute the velocities v(yk(sm), sm) and v(xn(sm), sm) using Eqn. (5);
(f) set w(xn, sm+1)=w(xn, sm)+δv(xn(sm), sm), w(yk, sm+1)=w(yk , sm)

+ δv(yk(sm), sm), xn(sm+1) = xn(sm) + w(xn, sm+1), and yk(sm+1) =
yk(sm) + w(yk, sm+1);

3. Set u(xn) = w(xn, sM ) and u(yk) = w(yk, sM ), and the algorithm ends.

4 Results

4.1 2D Numerical Simulation

A 2D incompressible vector field was simulated using second order polynomials:

ux =
1
90

(
8

281
x + y)2 +

1
15

(x− 0.5y)− 15

uy =
1

900
(

8
281

x + y)2 +
1
15

(2x− y)− 3

on an image with ranges x ∈ [−50, 50] and y ∈ [−50, 50]. This vector field is
incompressible because det(I + ∇u) = 1. The two displacement components
are shown in Figs. 2(a) and (b). We picked a grid of sample points, shown
in Fig. 2(c), and assumed the vectors on these sample points were known. To
mimic the tagged image acquisition, these points were distributed densely in one
dimension and sparsely in the other. Our method was then applied to reconstruct
the 2D motion field in the whole image with M = 20 and ρ = 0.1.

The reconstructed motion field was then compared with the closed-form so-
lution. In this simulation the mean interpolation error was 0.064 pixel, and the
standard deviation was 0.036 pixel. Fig. 2(d) shows the Jacobian determinant of
the deformation. The average error of Jacobian determinant of the reconstructed
deformation from 1 was 0.0046. For comparison, we also reconstructed the mo-
tion field using the direct divergence-free interpolation approach of Bistoquet
et al. [5]. This approach yielded a mean interpolation error of 0.95 pixel and a
mean error of Jacobian determinant (Fig. 2(e)) of 0.099.
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(a) ux (b) uy (c) samples (d) Jacobian (e) Jacobian

Fig. 2. (a) The x and (b) y components of the simulated motion. The (c) sample points
used in the interpolation. The Jacobian determinant from the motion field constructed
using (d) our method and (e) one step divergence-free interpolation.

(a) Time 5 (b) Time 10 (c) Time 15 (d) Time 20

Fig. 3. The 3D displacement field illustrated using three SA slices. From top to bottom:
two different views; From left to right: the displacement field at different time frames.

(a) Our method (b) Bistoquet’s method (c) Our method (d) Bistoquet’s method

Fig. 4. The displacement error map on one slice using (a) our method and (b) Bisto-
quet’s method. The Jacobian determinant of the deformation field computed on the
same slice from (c) our method and (d) Bistoquet’s method.

4.2 Cardiac Motion Experiments

We applied Algorithm 1 to the cardiac images shown in Fig. 1 using a smooth-
ing parameter ρ0 = 0.1 and M = 20 integration steps. The reconstructed 3D
displacement field in the LV regions of three SA slices are shown in two views
in Fig. 3 at different times. The reconstructed displacements of points on the
LV in the validation slices were compared with the 2D displacement projection
computed using HARP. Over all time frames, the mean displacement error was
0.446 mm, and the standard deviation was 0.310 mm. For comparison, we also
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computed the displacement field using Bistoquet’s approach, i.e., direct DFVS
interpolation with backward-forward averaging [10]. The mean displacement er-
ror was 0.803 mm, and the standard deviation was 0.652 mm. Figs. 4(a) and
(b) show the displacement error maps on the 5th validation slice at time frame
10 of our method and Bistoquet’s method, respectively. We also compared the
incompressibility of the reconstructed motion fields. At time frame 10 when the
heart deforms the most, the average absolute difference between the Jacobian
determinant and unity of our approach was 0.030. The difference was mainly
caused by both spatial and temporal discretization. The average absolute dif-
ference of Bistoquet’s method was 0.067. Figs. 4(c) and (d) show the Jacobian
determinants at the 5th validation slice.

5 Conclusion

We presented an approach to reconstruct a 3D, dense, incompressible displace-
ment field of the left ventricle of the heart using tagged MR images. Our method
uses a divergence-free vector spline on incomplete and non-uniform sample data
to interpolate the velocity fields at discrete integration steps, and the displace-
ment field is achieved by integrating these velocity fields. Our method was vali-
dated with both numerical simulation and in vivo cardiac experiment.
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Abstract. We show that vibro-elastography, an ultrasound-based
method that creates images of tissue viscoelasticity contrast, can be used
for visualization and segmentation of the prostate. We use MRI as the
gold standard and show that VE images yield more accurate 3D volumes
of the prostate gland than conventional B-mode imaging. Furthermore,
we propose two novel measures characterizing the strength and continu-
ity of edges in noisy images. These measures, as well as contrast to noise
ratio, demonstrate the utility of VE as a prostate imaging modality. The
results of our study show that in addition to mapping the visco-elastic
properties of tissue, VE can play a central role in improving the anatomic
visualization of the prostate region and become an integral component
of interventional procedures such as brachytherapy.

1 Introduction

Segmentation of the prostate is required in prostate cancer treatment. In low
dose rate brachytherapy, permanent radioactive seeds must be accurately placed
in the prostate and peri-prostatic tissue. In high dose rate brachytherapy, tem-
porary catheters must be repeatedly and accurately placed for radiation fraction
delivery. Thus accurate visualization and segmentation of the prostate is impor-
tant in treatment planning and delivery, and can reduce the possible treatment
side effects such as impotence, rectal bleeding, and urinary incontinence.

Image-based guidance for prostate interventions is an active area of research
[1,2]. Ultrasound (B-mode) is the primary imaging modality used for radiation
treatment planning and delivery. While safe, accessible and real-time, ultrasound
B-mode imaging does not delineate the prostate reliably [3].

In our prior work, we have introduced ultrasound vibro-elastography (VE) to
generate patient-specific viscoelastic models of the prostate region, and have
shown, based on phantom images and a few patient images, that the method
has promise in delineating the prostate and anatomical details such as the ure-
thra [4]. In this paper, we show the effectiveness of VE-based segmentation
quantitatively by analyzing data from a more extensive patient study in novel
ways. First, we use volume-based measures to compare the overall shape of the
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gland as seen in VE and B-mode images, with MRI images as the gold standard.
We then evaluate the performance of VE-based segmentation by computing the
contrast to noise ratio (CNR) of the prostate relative to the background in VE
and standard B-mode images, and show that VE is vastly superior. Finally, be-
cause CNR measures are not appropriate for relatively uniform images that may
present strong edges, we propose a third measure based on the strength of the
prostate edges. The conventional methods for characterizing edge strength in
images include using the maximum of a gradient-based edge detector [5] and
measuring the changes in the distribution of image features such as brightness
and texture on the two sides of the edge. These approaches have met with lit-
tle success in the case of ultrasound images due to speckle and image artifacts.
Therefore, we propose a new correlation-based index of edge continuity and a
model-based statistical approach that relates the edge strength with stationarity
of the edge intensity profile.

2 Vibro-Elastography

A brachytherapy stepper (EXII, CIVCO Medical Solutions) was modified to en-
able the acquisition of 3D vibro-elastography (VE) images during conventional
prostate brachytherapy. A shaker was mounted on the transducer cradle in or-
der to vibrate the transducer radially. The cradle rotation was motorized, and
a control system and interface were developed to enable the application of com-
pression waves (0 − 10 Hz frequency, 0 − 3 mm amplitude) to the rectal wall
with probe rotation from -45 to 50 degrees from the sagittal plane. Synchro-
nized with the probe motion, ultrasound B-mode and high-frequency RF data
images were acquired from a Sonix RP machine with the sagittal array of a dual
plane linear/microconvex broadband 5 − 9 MHz endorectal transducer (Ultra-
sonix Medical Corp.). The RF data, collected at the approximate rate of 40 fps,
was processed to compute the tissue motion resulting from the applied com-
pression. A measure of strain energy was computed in the frequency domain
to show tissue stiffness contrast [6]. Our studies involving 14 patients show that
the average normalized correlation (NC) of tissue displacement estimation in the
vibro-elastography approach is around 0.95 and the average coherence function
is over 0.8. This is a clear sign of the reliability of the estimation.

Since elastography measures the mechanical properties of tissue, it can be
used for biopsy guidance [7] and to create tissue elasticity models used for nee-
dle insertion planning. However, the goal of this paper is to evaluate the VE
performance in prostate visualization and segmentation.

3 Data Acquisition

The images analyzed in this paper were collected from patients going through the
standard prostate brachytherapy procedure at British Columbia Cancer Agency
in Vancouver, with additional MR and VE image acquisition. After obtaining
informed consent, MR images (slice spacing 4 mm, pixel size 0.27 × 0.27 mm)
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Fig. 1. Transverse planes divide the prostate into base, mid and apex regions. Within
each transverse view the prostate is divided to anterior, posterior and lateral sectors.

were collected at the UBC Hospital with a Philips Achieva 3.0 Tesla MRI scanner
1-2 weeks prior to the brachytherapy intervention. A pelvic coil was used for
patient comfort and to minimize the deformation of the gland. Transverse B-
mode images (slice spacing 5 mm, pixel size 0.156 × 0.156 mm) were obtained
as part of the standard treatment planning using an ultrasound machine (B&K
Pro-Focus System B-Series machine with the MFI Biplane Transducer). Intra-
operatively, 3D VE images showing the tissue stiffness contrast were acquired at
the beginning of the brachytherapy intervention. The sagittal VE images were
converted to transverse views via interpolation. For each patient, this process
results in 128 transverse images (slice spacing 0.43 mm, pixel size 0.5×0.5 mm).
So far data from seven patients has been acquired and included in the reported
results. MRI images are available from five patients.

4 Evaluation Methods

3D reconstructions have been generated through delineating the prostate in B-
mode, VE and MRI transverse images by an expert. Two types of measures
have been used for the evaluation of VE images; volume-based measures and
2D edge/contrast measures. Volume-based measures include “volume difference”
and “volume error.” 2D edge/contrast measures are the contrast-to-noise ratio,
edge strength and edge continuity. The following subsections describe the details
of each method. To best represent the critical regions surrounding the prostate,
edge evaluation was carried out on the nine distinct regions of the prostate
depicted in Figure 1. Division of the prostate in the transverse plane produces
three anterior, posterior and lateral sectors and axial division results in the apex,
base and mid sectors.

4.1 Comparison of the Volumes

Since boundaries of the prostate are more visible in MRI, this modality has been
selected as the gold standard. The volume of the prostate gland is an important
parameter used in planning the dose distribution in prostate brachytherapy. Vol-
ume difference measures the difference between this volume computed from the
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B-mode and VE imaging with that from the gold standard (MRI). Volume error,
on the other hand, measures the volume between two registered reconstructed
surfaces from VE/B-mode and MRI. Volume error determines how well the ex-
tracted “3D shape” from VE/B-mode matches with that of the gold standard.

The VE and B-mode shapes were registered to the MRI by first matching
the centers of the volumes and applying a rotation to align the two superior-
inferior axes. Then, the point-based Iterative Closest Point (ICP) method [8]
was applied to the two surfaces to fine-tune the registration. Due to the clarity
of the boundaries in the mid portion of the gland in all three modalities, this
region has been selected for volume error calculation. A comparison between the
volume-difference of the total gland and volume-error of the mid portion can
provide additional information about the base and apex regions.

4.2 Evaluation of the Contrast - the CNR

The higher the contrast-to-noise ratio of an image object with respect to the im-
age background, the more distinguishable the object is. To compare the contrast
of B-mode and VE images, the CNR was calculated using [9]:

CNR =
2(mt −mb)2

σ2
t + σ2

b

(1)

in which m and σ2 are the mean and variance of the target, t, and background,
b, pixel intensities in a region of interest (ROI). The target and background
ROI’s are selected as regions with the best visible contrast, the target being
an area inside the prostate close to the boundary and the background being
an area outside the prostate close to the target ROI. Histogram stretching was
performed on B-mode and VE images to ensure that the range of intensities in
both modalities match.

Because an object may have a low CNR but still be visually distinguishable due
to a strong edge, characterization of edges is also required in order to compare the
segmentation of the prostate gland in B-mode and VE images.

4.3 Edge Continuity - A Correlation-Based Measure

An important characteristic of a good edge is “continuity”. We propose a new
measure based on the correlation of neighboring edge profiles.

In transversal images, we extended radii in polar coordinates from the cen-
ter of the prostate. The intersections rθi , i = 1, ..., Nθ of these radii with the
boundary of the prostate were manually identified for each θi, and a radial edge
intensity profile function Iθi(r) was computed for a window r ∈ [rθ −Δ, rθ +Δ].
The normalized cross-correlations Rθiθi±δθ(r) of Iθi(r) and Iθi±δθ(r) and the av-
erage c(θi)(r) = 1

2 [Rθiθi+δθ +Rθiθi−δθ] were computed from these edge intensity
profiles. The parameters used in implementation were Δ = 0.3 cm, Nθ = 12 and
δθ = 2◦. For a strong edge at θi, the function c(θi)(r) should have a shape sim-
ilar to a Gaussian distribution with a large peak and small standard deviation
indicating high similarity of the two profiles. Thus, we let P (θi) and σ(θi) be
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Fig. 2. B-mode (top row) and VE (bottom row) images along with the cross-correlation
curve for the specified edge

the peak and standard deviation of a Gaussian function fitted to c(θi) and we
define a measure of edge profile consistency, K(θi), as:

K(θi) =
P 2(θi)
σ(θi)

. (2)

The average over the dataset of K value was computed for each of the nine
regions defined in Figure 1. Figure 2 shows c(θi)(r), the fitted Gaussian function,
and the calculated K for a strong edge in both B-mode and VE images.

4.4 Edge Strength - A Model-Based Statistical Measure

Apart from being continuous, a good edge should also exhibit high contrast
normal to it. Gradient-based edge detectors do not work well in B-mode images
as they are plagued by local minima. Therefore, we propose a new approach that
models the difference of the radial edge intensity profile as an autoregressive
process. The edge strength is characterized based on the degree of stationarity
of this process.

In each image, each edge profile I(θk)(r) was considered as a time series
I(i) := I(θk)(δr i), where the discretized radius distance i replaces the usual
time index. For the edge profile I, the first order difference is calculated as:
DI(i) = I(i) − I(i − 1). We model DI as a first order autoregressive (AR(1))
processes of the form:

DI(i) = φDI(i− 1) + e(i) (3)
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Fig. 3. Typical PACF of the differenced intensity profiles from VE (left) and B-mode
(right). The horizontal lines mark the 5% and 10% significance levels.

where e(i) is white noise and φ is the model parameter, estimated based on
Yule-Walker equations [10]. The length of the edge profiles is 2 cm. In order to
show that an AR(1) model is sufficient for modeling DI , we compute the partial
autocorrelation function (PACF) of DI . The PACF of an AR(1) process only
has significant values at lag=1. In 78% of the edge profiles extracted from both
B-mode and VE images, at the significance level of 0.05, the PACF function only
has significant values at lag=1. Figure 3 shows typical PACF functions for DI

extracted from B-mode and VE images.
If a strong edge exists, DI is expected to have a strong peak at the edge.

This “trend” of existence of a strong peak means that DI is non-stationary (a
signal with a trend can not be stationary, since its statistical moments depend
on time, or in our model, on distance). On the other hand, if the radial edge
profile does not pass through a strong edge, its derivative is more likely to be
trend-free. For an AR(1) model, the condition for stationarity is |φ| < 1. There-
fore, in our model, larger |φ| values indicate strong edges. We also performed
the Augmented Dickey Fuller (ADF) test [11] to statistically evaluate the edge
profiles for their stationarity. The ADF test examines the null hypothesis of
non-stationarity against the hypothesis of stationarity.

5 Results

Volume measures. Table 1 shows the percentage of volume error (VE/MRI
vol. error % = 100×(non-overlapping vol. from V E and MRI)/(VMRI +VV E))
and volume difference (VE/MRI vol. difference % = 100×(VV E−VMRI)/VMRI)
between 3D reconstructed prostate shapes from B-mode/MRI and VE/MRI of
five patients. The average volume error over the five patients, which is calcu-
lated for the mid-region, is similar in both cases (5.1% vs. 5.2%). However, the
percentage of volume difference between B-mode and MRI, calculated on the
whole volume, is higher than that between VE and MRI (5% vs. 9.6%). Since
the volume error in the mid sections are fairly similar, the volume differences
over the entire gland should be mainly originating from the base and apex.

Contrast evaluation. The CNR of VE and B-mode images, averaged over the
three sections of the prostate, is shown in Table 2. In all three regions the CNR
of VE is clearly higher than that of B-mode.
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Table 1. Percentage of vol. error and vol. difference for VE/B-mode and MRI

% P1 P2 P3 P4 P5

VE/MRI volume error 4.0 3.0 7.9 5.6 4.4
B-mode/MRI volume error 6.8 2.7 5.8 4.7 6
VE/MRI volume difference 1.8 -5.1 -2.7 8.9 -6.6

B-mode/MRI volume difference 6.0 9.7 9.7 14.6 8.1

Table 2. CNR comparison of VE and B-mode images (data from seven patients)

Base Mid Apex

CNR VE 21.2±10.2 24.5±11.6 25.4±15.2
CNR B-mode 4.8±1.9 1.3±0.6 1.8±1.2

Table 3. Edge continuity measure for nine sectors of the prostate (seven patients)

Base Mid Apex

Ant. 1.43±1.56 1.29±1.1 0.67±0.79
Lat. 0.86±0.88 1.11±0.94 0.48±0.57
Post 0.85±0.73 0.87±0.81 0.38±0.54

(a) B-mode

Base Mid Apex

Ant. 0.78±0.64 1.03±0.82 0.78±0.54
Lat. 0.69±0.58 0.94±0.71 0.75±0.65
Post 0.34±0.38 0.33±0.41 0.52±0.44

(b) VE

Fig. 4. B-mode, VE and MRI sample images from two patients

Edge continuity: Tables 3a and 3b show the mean and standard deviation of
the edge continuity measure, K, for nine sectors of the prostate. The B-mode
and VE images of seven patients have been used. The overall mean value of K
for VE images is larger than that of B-mode in the apex of the gland. However,
K values for VE images degrade in the mid and base sections.

Edge strength based on the AR model and ADF test. The absolute value
of AR(1) coefficient |φ| for the difference edge profiles (DI) was significantly
larger in VE images than in B-mode images in all nine areas (|φ| = 0.59± 0.19
for VE images and |φ| = 0.19± 0.11 for B-mode images). The ADF test shows
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that in VE images, the stationarity hypothesis is rejected (p < 0.1) for 94%
of the edge profiles. Whereas, in B-mode images, the stationarity hypothesis is
rejected only in 23% of the profiles. In other words, more than 77% of the B-
mode edge profiles are stationary, suggesting that there is no strong trend in the
profile which goes against having a strong edge.

6 Discussion and Conclusions

In this paper, vibro-elastography (VE) is evaluated as an imaging modality to
visualize and segment prostate. A visual comparison of VE and B-mode in more
than 20 patients scanned so far clearly shows that VE imaging is a promising
modality for prostate interventions (Figure 4). Quantitative results presented in
this paper also confirm this observation. We showed that VE is successful in ex-
tracting the 3D shape of the prostate specially in the base and apex region, with
MRI as the gold standard. The regional CNR of VE images is significantly higher
than that of B-mode. In order to compare the edge qualities in B-mode and VE
images, novel measures have been proposed that show stronger edges in VE im-
ages, characterized by non-stationarity of the edge profiles in VE modality. Our
proposed measure of edge continuity indicates more consistent edges, compared
to B-mode, in VE images of the apex region. In other areas, specially in the
posterior region near the transducer, VE images deteriorate. Potential causes to
this problem are transducer slip, which deteriorates the image close to the probe,
and the use of only axial strain estimation [6] in determining prostate elasticity.
This can generate known “softening” artifacts. Understanding this shortcoming
and the visualization of other anatomical details, e.g. urethra and the cavernosal
nerve plexi, are the subject of future research. Also, as a future goal, we plan
to carry out a more thorough investigation of the proposed measures of edge
strength and continuity on simulated ultrasound data.

Acknowledgments. We would like to thank Dr. T. Pickles, Dr. M. McKenzie,
the staff at the BC Cancer Agency, Mr. O. Goksel and Mr. R. Zahiri Azar.
Financial support from NIH grant R21 CA120232-01 is gratefully acknowledged.

References

1. Jain, A., Deguet, A., Iordachita, I., Chintalapani, G., Blevins, J., Le, Y., Armour,
E., Burdette, C., Song, D., Fichtinger, G.: Intra-operative 3D guidance in prostate
brachytherapy using a non-isocentric c-arm. Med. Image Comput. Comput. Assist
Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. 10(Pt 2), 9–17
(2007)

2. Wei, Z., Ding, M., Downey, D., Fenster, A.: 3D TRUS guided robot assisted
prostate brachytherapy. Med. Image Comput. Comput Assist. Interv. Int. Conf.
Med. Image Comput. Comput. Assist. Interv. 8(Pt 2), 17–24 (2005)

3. Smith, S., Wallner, K., Merrick, G., Butler, W., Sutlief, S., Grimm, P.: Interpreta-
tion of pre- versus postimplant TRUS images. Med. Phys. 30(5), 920–924 (2003)



Vibro-Elastography for Visualization of the Prostate Region 347

4. Salcudean, S.E., French, D., Bachmann, S., Zahiri-Azar, R., Wen, X., Morris, W.J.:
Viscoelasticity modeling of the prostate region using vibro-elastography. Med. Im-
age Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput.
Assist. Interv. 9(Pt 1), 389–396 (2006)

5. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

6. Zahiri-Azar, R., Salcudean, S.E.: Motion estimation in ultrasound images us-
ing time domain cross correlation with prior estimates. IEEE Trans. Biomed.
Eng. 53(10), 1990–2000 (2006)

7. Pesavento, A., Lorenz, A.: Real time strain imaging and in-vivo applications in
prostate cancer. In: Proc. IEEE Ultrasonics Symposium, vol. 2, pp. 1647–1652
(2001)

8. Besl, P.J., McKay, H.D.: A method for registration of 3D shapes. IEEE Trans.
Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

9. Bilgen, M., Insana, M.F.: Predicting target detectability on acoustic elastography.
In: IEEE Ultrasonics Symposium, pp. 1427–1430 (1997)

10. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: With R
Examples. Springer Texts in Statistics. Springer, Heidelberg (2006)

11. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time
series with a unit root. Journal of the American Statistical Association 74(366),
427–431 (1979)



G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II,  LNCS 5762, pp. 348–355, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Modeling Respiratory Motion for Cancer Radiation 
Therapy Based on Patient-Specific 4DCT Data 

Jaesung Eom1, Chengyu Shi2, Xie George Xu1, and Suvranu De1 

1 Department of Mechanical, Aerospace and Nuclear Engineering,  
Rensselaer Polytechnic Institute, Troy, NY 12180, USA 

{eomj,xug2,des}@rpi.edu 
2 Department of Radiation Oncology,  

University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA 
shic@uthscsa.edu 

Abstract. Prediction of respiratory motion has the potential to substantially  
improve cancer radiation therapy. A nonlinear finite element (FE) model of res-
piratory motion during full breathing cycle has been developed based on patient 
specific pressure-volume relationship and 4D Computed Tomography (CT) 
data. For geometric modeling of lungs and ribcage we have constructed inter-
mediate CAD surface which avoids multiple geometric smoothing procedures. 
For physiologically relevant respiratory motion modeling we have used pres-
sure-volume (PV) relationship to apply pressure loading on the surface of the 
model. A hyperelastic soft tissue model, developed from experimental observa-
tions, has been used. Additionally, pleural sliding has been considered which 
results in accurate deformations in the superior-inferior (SI) direction. The finite 
element model has been validated using 51 landmarks from the CT data.  
The average differences in position is seen to be 0.07 cm (SD = 0.20 cm), 0.07 
cm (0.15 cm), and 0.22 cm (0.18 cm) in the left-right, anterior-posterior, and 
superior-inferior directions, respectively. 

1   Introduction 

Respiratory motions have a profound impact on the radiation treatment planning of 
cancer in the lung and adjacent tissues. In external beam radiation treatment, for ex-
ample, a lethal radiation dose is delivered through precisely conformed radiation to 
the target. The current radiation treatment paradigm, however, is largely based on an 
assumption that both tumor location and shape are well known and remain unchanged 
during the course of radiation delivery. Such a favorable rigid-body relationship does 
not exist in anatomical sites such as the thoracic cavity and the abdomen, owing pre-
dominantly to respiratory motions. When the tumor-bearing normal organs move 
during radiation therapy, discrepancies between planned and actually delivered radia-
tion doses can be quite significant. As a result, although higher radiation doses have 
shown better local tumor control, organ motions have sometimes required less aggres-
sive treatment strategies having relatively large dose margins to tolerate potential 
targeting errors.  
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One previous approach to account for respiration caused target movement is to 
consider a larger planning target volume which covers a composite of 3D volumes of 
the moving target defined by the entire respiratory cycle. A relatively new approach is 
based on an image-guided technique which aligns and delivers the radiation according 
to a gated time and position or follows the tumor’s trajectory during the respiratory 
cycle, to allow for a smaller and more conformal treatment volume. Hence, it is im-
portant to be able to predict the pattern of the lung motion as part of radiation therapy 
and know the tumor location in real time. 

Discrepancies between the Deformable Image Registration (DIR) and physics 
based modeling methods are apparent when comparing motion field estimates. The 
question arises as to what motion field is more realistic and physiologically correct. 
There are several attempts to include the physiology in non-linear registration based 
methods [1, 2]. The basic assumptions of DIR often concern image-related aspects, 
and hence physiological and anatomical processes are not taken into consideration. As 
a result, gray values of anatomically corresponding voxels are treated to be constant 
over time. More accurate physics based techniques have also been reported more 
recently [3-5]. However, in most of the existing models the physiological data is ig-
nored both in applying the boundary conditions and in using appropriate material 
models for the lung tissue.  

To investigate these issues, a patient-specific non-linear finite element (FE) lung 
model is developed in this study by considering vigorous physiological conditions in the 
modeling.  During inspiration, the diaphragm and the external intercostals contract with 
each other, resulting in an increased the thoracic volume. The resulting decrease in 
alveolar pressure causes the air to enter the lung. Expiration, on the other hand, is pas-
sive and the diaphragm relaxes, leading to a reduced thoracic volume and an increased 
pressure. The chest pressure-volume (PV) curve can be constructed by plotting lung 
volumes against pleural pressures that are estimated from esophageal pressures and 
body plethysmography [6]. Such PV curve data is used to drive the lung motion which 
simulates the breathing. Additionally, we take advantage of the sophisticated Computer 
Aided Engineering (CAE) concept in the geometric modeling of organs. The CAD 
surface reconstruction procedure affords more interactive mesh control and preserves 
the original geometric features of organs obtained from 4D CT image data.  

This paper introduces the CAD surface reconstruction procedure using 4D CT data 
and then briefly discusses the outline of a nonlinear finite element modeling including 
the application of boundary and contact/sliding conditions. The advantage of the pro-
posed geometric modeling procedure over conventional smoothing for the purposes of 
improving the accuracy of the respiratory simulation is presented. 

2   Methods and Materials 

2.1   Geometric Modeling 

4D respiration gated CT images were acquired using a 16 Slice Brilliance CT Big Bore 
Oncology configuration (Philips). Breathing information was obtained using the asso-
ciated Pneumo Chest bellows (Lafayette Instruments). Each Image slice has a resolu-
tion of 0.98 mm x 0.98 mm and a thickness of 2 mm. The categorized 10 phases of 
images were contoured into different ROIs (regions of interest) as [7]. According to the 
volume of each phase, the end of expiration (EE) state and the end of inspiration 
 



350 J. Eom et al. 

 

Fig. 1. Geometric modeling procedure using the CAD surface reconstruction (Reverse  
engineering) 

(EI) states were selected. For accurate simulations, a uniform mesh of “good quality” 
must be used. However, for patient-specific geometric modeling, the characteristic 
features of the 4D CT image data must be preserved. It is noted that, in most previous 
studies [4, 5, 8], combination of mesh decimation and Laplacian smoothing were used 
to reduce the number of elements from the highly dense but non-regular mesh to the 
more uniform mesh acceptable in FE simulations. The problem of this procedure is that 
details of the mesh topology are lost. Also, the procedure is not interactive as multiple 
steps are involved. In this study, we used a CAD surface reconstruction approach to 
convert the ROIs into FE meshes as depicted in Figure 1. Primary surfaces are gener-
ated from ROI contour lines in Rhinoceros 3D (Robert McNeel & Associates, Seattle, 
WA). From these surfaces, NURBS-based CAD surfaces are reconstructed and con-
verted into suitable FE meshes using HYPERMESH (Altair Engineering, Troy, MI). 
The surface that closely fits the tessellated surface is generated. This approach greatly 
simplifies the procedure of FE mesh generation and from CT scanned image data 
without losing the geometric details. 

2.2   Physiologically-Based Respiratory Motion Modeling 

The motion of the lungs during inhalation is physiologically caused by the expansion 
of the thoracic cavity. This expansion is induced by contraction of the diaphragm and 
outer intercostal muscles. These movements cause the pressure to change in the pleu-
ral cavity surrounding the lungs and the alveoli and, as a result, the air flows from the 
atmosphere into the lungs. This in turn causes a change in the intrapleural pressure 
which exerts force on the lung surface. Hence, the lung expands and the visceral 
pleura slides against the internal surface of the thoracic cavity with nearly frictionless 
contact due to lubrication of pleural liquid [9].  

To model the motion of the lungs between EE to EI, a quasi-static nonlinear finite 
element model has been developed. A distributed time-varying pressure load was ap-
plied to the surface of the geometric lung model. The current paper outlines a physio-
logically-based modeling approach. The pressure amplitudes have been computed by 
comparing CT image data and FEM results. For now, the pressure history was assumed 
to follow the sinusoidal curve [10] according to the body plethysmography and the 
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parameterized P-V curve [11]. We limited the expansion to a geometry defined by the 
lung shape at the end of inspiration phase. Pleural sliding is treated as a contact-friction 
model. Any contact between the lungs and the ribcage is modeled without friction⎯an 
approach that is justified as there is an incompressible and friction-minimizing pleural 
fluid in and between the visceral and parietal pleural. 

 

Fig. 2. Finite element models including a thoracic cavity, a tumor (gross target volume for 
radiation treatment purposes) and lungs 

The FE model, which has 66704 tetrahedral elements and 55947 degrees of free-
dom in total, is composed of the thoracic cavity and the lungs with an embedded tu-
mor in the right lung as seen in Figure 2. The lungs and thoracic cavity are fixed at the 
root of lungs according to anatomy.  

The lung tissue was modeled as a hyperelastic material with the following expres-
sion for the strain energy per unit volume [12] 
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where c, a1, a2, a4 are material constants derived from experiments, and Exx, Exy etc. 
are the components of the Green strain. For simplicity, lung tissue was assumed to be 
homogeneous and thoracic cavity was assumed to be linear elastic material (E = 
6.0kPa Poisson’s ration = 0.4 from [5]). Simulations, using Abaqus (Dassault 
Systèmes Simulia Corp., Providence, RI), have been carried out on an Intel Core2 
Quadcore 2.83 GHz CPU machine with 8 GB RAM for 2.1 hours. 

3   Results and Discussion 

3.1   Comparison on Laplacian Smoothing vs. CAD Surface Reconstruction 

To assess the advantage of the CAD surface reconstruction procedure over conven-
tional mesh preparation using multiple Laplacian smoothing and decimating [6], we 
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compared the geometric quality of the elements. Four mesh quality indices, com-
monly used in CAE [13] are used: 

(a) Aspect ratio: This is the ratio of the longest edge of an element to its shortest 
edge.  

(b) Maximum and minimum interior angles: These maximum and minimum values 
are evaluated independently for triangle facet.   

(c) Jacobian: This measures the deviation of an element from its ideal or "perfect" 
shape, such as a triangle’s deviation from equilateral. The Jacobian value ranges 
from 0.0 to 1.0, where 1.0 represents a perfectly shaped element.  The determi-
nant of the Jacobian relates the local stretching of the parametric space which is 
required to map it to the global coordinate space. 

In Figure 3, elements which violate the mesh quality indices for each approach are 
color-coded. The threshold for violation is 0.9 for Jacobian, 2.0 for aspect ratio, 80º 
and 50º for the maximum and minimum interior angle, respectively. The volume 
change under modeling procedure can indicate the loss of geometric feature. It is clear 
 

 

Fig. 3. Comparison of relaxing (Laplacian smoothing) vs. proposed CAD surface reconstruc-
tion procedure showing changes in mesh volume and elements that are close to or violating the 
quality indices using the following color coding : light blue = warning that an index is close to 
threshold and yellow = failure. 

Table 1. Percentage of elements violating threshold criteria 

Mesh Jacobian (0.9) Aspect Ratio (2.0) Max angle 
(>80º) 

Min angle  
(<50º) 

Initial 21.1% 0.2% 49.9% 83.7% 
Laplacian Smoothing 
 
5 Iterations 4.2% 0.2% 28.3% 66.9% 
10 Iterations 4.1% 0.2% 27.7% 66.0% 
15 Iterations 3.4% 0.2% 24.7% 63.7% 
20 Iterations 3.9% 0.2% 27.6% 66.2%  
Proposed model 3.0% 0.0% 21.3% 59.3% 
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that the proposed geometric modeling procedure preserves initial geometry of the CT 
scan data. Laplacian smoothing is an algorithm to smooth a polygonal mesh. For each 
vertex in the mesh, a new position is chosen based on local information (such as the 
position of neighbors) and then the vertex is moved. Laplacian smoothing focuses on 
moving point locations to improve triangulation without any guarantees on the pres-
ervation of the original geometric features.  

In previous studies, 10 iterations of Laplacian smoothing and additional 10 
smoothing iterations with decimation were used to prepare the computational mesh[5, 
8]. Table 1 shows that 10 cycles of smoothing iterations reduce the original volume 
by 20.3 ml and the relaxing operations fail to enhance the mesh quality indices, while 
our proposed approach has achieved better meshes with 13.2 ml of volume loss. 

3.2   Validation Based on Landmarks 

The procedure to evaluate the modeling accuracy was based on the patient specific 
models and 4D CT image data. As shown in Figure 4, anatomical points that represent 
the bifurcation of vessels and airways were chosen on the exhale and inhale images. A 
total of 51 such landmarks were chosen from the CT images. The motion of the corre-
sponding points in the FE model provides a measure of our modeling accuracy. 

 

Fig. 4. Landmark bifurcation positions inside the lungs determined by radiologists 

 

Fig. 5. Histogram of errors at landmarks at end of inhalation 
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We observe that the mean deviations ( )FEM CTP P−  of our FE model predictions 

from the CT data are 0.07cm (SD = 0.20cm), 0.07cm (SD = 0.15 cm), and 0.22 cm 
(SD = 0.18 cm) in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) 
directions, respectively. On the majority of landmarks the displacement errors are less 
than 2 mm (Figure 5). It should be noted that the landmarks are located in regions 
where effects of heterogeneity of the lung tissue are not negligible. Considering this, 
the accuracy of our homogeneous model is remarkable. 

4   Conclusions 

We present a nonlinear finite element model of respiratory motion during full breath-
ing cycle based on patient-specific pressure-volume relationship and 4D CT data. For 
geometric modeling of the lungs and ribcage we have constructed an intermediate 
CAD surface between 4D CT scanned images and meshes for FE computation. This 
avoids multiple geometric smoothing procedures and increases the quality of the FE 
mesh while preserving geometric features of the CT scans. For a patient-specific FE 
lung model we have used pressure-volume (PV) relationship of lungs as physiological 
conditions and hyperelastic soft tissue model [12]. The PV relationship provides 
physiologically relevant boundary conditions over the entire breathing cycle. Valida-
tion using 51 landmarks from the CT image has been performed and our proposed 
model shows excellent agreement with CT data with a position error of less than 2 
mm for most of the landmarks. 
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Markus Kleemann2, Christoph Koch3, Dirk Petersen3, and Achim Schweikard1

1 Institute for Robotics and Cognitive Systems, University of Lübeck, DE
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Abstract. In robotic radiosurgery, the compensation of motion of in-
ternal organs is vital. This is currently done in two phases: an external
surrogate signal (usually active optical markers placed on the patient’s
chest) is recorded and subsequently correlated to an internal motion sig-
nal obtained using stereoscopic X-ray imaging. This internal signal is
sampled very infrequently to minimise the patient’s exposure to radia-
tion. We have investigated the correlation of the external signal to the
motion of the liver in a porcine study using ε-support vector regression.
IR LEDs were placed on the swines’ chest. Gold fiducials were placed
in the swines’ livers and were recorded using a two-plane X-ray system.
The results show that a very good correlation model can be built using ε-
SVR, in this test clearly outperforming traditional polynomial models by
at least 45 and as much as 74 %. Using multiple markers simultaneously
can increase the new model’s accuracy.

1 Introduction

In recent years, it has become possible to irradiate tumours in the whole body
without using respiratory coaching, gating or stereotactic fixation. The Cyber-
Knife R© [1] system – a robotic device used to detect and compensate for respi-
ratory motion in radiosurgery – records optical markers placed on the patient’s
chest and correlates them to the position of landmarks, i.e. gold fiducials, ob-
tained during stereoscopic X-ray imaging [2]. This model is subsequently used
to guide a γ-radiation source. That this correlation indeed exists has been eval-
uated before [3,11]. Currently, this model is built using 10-20 measurements
of internal fiducials acquired during the first couple of breathing cycles. The
model is checked and updated periodically. This is typically done once every
2-5 minutes by taking another X-ray shot. Furthermore, the markers (currently
three) are placed on the patient’s chest at those points showing the greatest ex-
cursion. The currently employed correlation model is either linear, curvilinear,
dual-curvilinear or a mixture of those and is based on the principal directional
component of motion of each individual chest LED [4].

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 356–364, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We propose to improve the CyberKnife by modifying the correlation model
employed in clinical practice. We compute the correlation using all three dimen-
sions of movement of the LEDs as well as their first and second derivatives. This
is done with a novel correlation model we have developed which is based on
ε-support vector regression (ε-SVR) [5]. With this model it is also possible to
use multiple LEDs as input surrogates.

2 Materials and Methods

For this work, four gold fiducials were implanted into the liver of a living swine
under US guidance. Respiratory motion of the liver was recorded in two sessions
while the swine was ventilated manually using a bag valve mask. The swine was
killed minutes prior to the experiments. An ethics proposal has been approved.

2.1 Data Acquisition

To acquire the fiducials’ 3D position, a two-plane X-ray imaging device (Philips
Allura Xper FD20/10, Fig. 1a) at the Institute for Neuroradiology (University
Hospital Schleswig-Holstein, Lübeck) was connected to a high resolution/high
speed frame grabbing system (Matrox Helios XA) to allow the capturing of live
fluoroscopic video streams. The X-ray system takes images at a frame rate of
15 Hz. To record the swine’s chest surface motion, a net of 19 IR LEDs (see [6]
and Fig. 1b) was placed on the swine’s abdomen. The LEDs were tracked using
the atracsys accuTrack compact system, effectively delivering a recording frame
rate of 216 Hz for each LED. The signals were then downsampled to 15 Hz to
match the acquisition speed of the X-ray cameras.

To determine the geometric relation between the two X-ray imaging units and
the tracking camera, a custom calibration rig was used: an acrylic box (10x7x5
cm3) with twelve embedded metallic spheres and eight LEDs was built. The
system was calibrated by simultaneously acquiring an image of the calibration

(a) Experimental setup (b) The LED net

Fig. 1. X-ray device, tracking camera, calibration rig and LED net
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Fig. 2. The tracking GUI. Both the fiducials and the LEDs are clearly visible. The
regions used for segmentation are marked with white rectangles.

rig with the X-ray devices and determining the rig’s position using the tracking
camera. The actual calibration was performed using the POSIT algorithm [7],
resulting in a projection error of less than one pixel (RMS). Both the LEDs and
the metal spheres could be detected with sub-millimetre accuracy.

The frame grabber and the IR tracking system are connected to one machine
(Intel Q9450, 8 GiB RAM, ubuntu 8.04 x64). To track the gold fiducials in the
X-ray images, we developed a graphical tool kit written in C++ to perform
region-of-interest based segmentation of ellipsoidal objects and triangulate the
3D position of the fiducials (Fig. 2).

2.2 Correlation Methods

To compute the 3D position of the gold fiducials from the surrogate signal, the
following methods were investigated:

– The polynomial models traditionally used in the CyberKnife, see [4]
– Our correlation model based on ε-SVR machines

These correlation algorithms were developed and implemented in MATLAB. The
SVR machines were built using LibSVM [8].

Let us assume that N is the number of samples we have taken. To build the
correlation model, the input signal is divided into two parts: a training part
T = {1, . . . , m} and an evaluation part E = {m + 1, . . . , N}. On the training
part, we select points M⊆ T representative of the breathing pattern (i.e., points
at maximum inspiration and expiration as well as points halfway between). Now
let Li,j,n be the time series of the 19 IR LEDs (i = 1, . . . , 19 is the number of
the LED, j = 1, . . . , 3 are the spatial coordinates and n is the temporal index)
and let Fk,j,n be the time series of the four gold fiducials (k = 1, . . . , 4 is the
fiducial number, j and n as before).

The polynomial models given in [4] are used to find coefficients of a linear or
quadratic polynomial relating the principal directional component of motion of
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one LED to the principal directional component of motion of the fiducial. Addi-
tionally, the model supports breathing hysteresis by building two polynomials,
one for inspiration and one for expiration. Both the simple quadratic model as
well as the so-called bilinear and biquadratic models can also be blended to the
simple linear model outside the values seen in the training data set M.

We introduce a new correlation model based on ε-support vector regression.
We do not only use the LEDs’ principal directional component of motion as
the polynomial models but all three dimensions. Second, information about the
direction of breathing is directly built into the model by creating vectors Di

indicating the direction of breathing:

Di,n =

⎧⎨
⎩
−1 for L̃i,·,n − L̃i,·,n−1 < −0.05mm

0 for − 0.05mm ≤ L̃i,·,n − L̃i,·,n−1 ≤ 0.05mm

1 for L̃i,·,n − L̃i,·,n−1 > 0.05mm

, n = 2, . . . , N.

Here, L̃i,·,n denotes the n-th sample of the principal directional component of the
point cloud Li,·. Third, we incorporate information about the signal’s speed and
acceleration by also bringing in the first and second derivatives L(1) and L(2) of
the LEDs’ positions. These derivatives are computed using central differences.

Now let xi,m =
(
LT

i,·,m,L(1)
i,·,m

T
,L(2)

i,·,m
T
,Di,m

)T

∈ R
9 × {−1, 0, 1}. Then for

each i = 1, . . . , 19, j = 1, . . . , 4 and m ∈ M we create training samples si,j
m ={

xi,m, F̃j,·,m
}

,i.e., the samples si,j
m , m ∈M, describe the relation between LED

i and F̃j,·, the principal directional component of motion of fiducial j. These
samples are then used to train ε-SVR machines which in turn serve as correlation
models. The SVR machines are built using a linear kernel function.

2.3 Evaluation

The correlation models outlined above were applied to two groups of signals (120
s and 590 s duration) recorded during the ventilation of the swine. During both
tests, not all LEDs were visible. In the first test, only LEDs 11, 14 and 16 to
19 were visible; in the second test, LEDs 6 to 14 and 16 to 19 were visible. The
models were built using the first 20 s of motion. The ε-SVR’s parameters were
set to C = 1 and ε = 0.2 (signal 1) and ε = 0.15 (signal 2).

We also evaluated the influence of LED selection on correlation accuracy: first,
which LED yields the best result and second, if the correlation model can be
improved by using more than one LED at the same time.

3 Results

Analysis of LED motion shows that it is not only in one direction and does
exhibit strong hysteresis relative to fiducial motion. This is the first indication
that the simple polynomial models are not adequate.
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(a) The best polynomial model (biquadratic, blended)
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(b) Output of the ε-SVR model

Fig. 3. First test run, results of the correlation process. First 60 s are shown. Fiducial
motion is shown in blue, training points used in black and the correlation output in
red. The residual error is plotted in green. The respiratory pause around t = 20 s is
accidental and not connected to the correlation model.
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Fig. 4. Second test run. The signal shows variations in breathing frequency and
amplitude.

The correlation plots of all the polynomial correlation models are given in
Fig. 5. Ideally, the red curves would cover all blue dots. Clearly, the simple poly-
nomial models don’t fit the data very well, the bipolynomial models’ matching
is better. The actual numbers are given in Tab. 1.

Evaluation results for the best polynomial model (biquadratic with blending)
and for the ε-SVR model are given in Fig. 3. The polynomial model does not
only incur a larger RMS error (see Tab. 1) but also suffers from periodic errors
at the inspiration and expiration peaks. The reason for this is that the model
does not adequately capture correlation in the regions marked with black dotted
rectangles in Fig. 5g.

Evaluation of the ε-SVR correlation model shows a much better matching:
Fig. 6 shows the correlation plots of the three axes of LED eleven versus the
principal directional component of fiducial one. Clearly, the red dots (output
of the correlation model) correspond very well to the blue dots (actual correla-
tion). This is also reflected in the numbers given in Tab. 1: the SVR approach
outperforms the best (bi)polynomial model by 45 % (signal 1) or 38 % (signal
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Table 1. RMS errors, 75 % and 95 % confidence intervals of the correlation models.
Eleventh LED to first fiducial.

model
RMS error [mm] 75 % CI [mm] 95 % CI [mm] max [mm]
sig. 1 sig. 2 sig. 1 sig. 2 sig. 1 sig. 2 sig. 1 sig. 2

linear 1.06 1.05 1.33 1.23 2.01 2.09 2.26 2.84
quadratic 1.03 1.04 1.32 1.22 1.90 2.04 2.14 2.80
quadratic, blended 1.03 1.04 1.32 1.22 1.90 2.04 2.14 2.80
bilinear 0.78 0.96 0.91 1.16 1.61 1.90 4.36 5.88
bilinear, blended 0.79 0.96 0.93 1.15 1.61 1.90 1.86 2.57
biquadratic 0.55 0.95 0.57 1.16 1.13 1.85 4.36 5.88
biquadratic, blended 0.50 0.95 0.52 1.14 1.05 1.85 1.71 2.54
ε-SVR 0.28 0.59 0.28 0.64 0.52 1.12 1.48 4.14
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Fig. 5. The polynomial models. The x-axis shows the principal directional component
of the motion of LED 11, the y-axis shows the principal directional component of
motion of the first fiducial. Model points are marked with green circles, the model
output is shown in red. In Subfig. (g), the dotted boxes show the areas corresponding
to maximum inspiration and expiration; the arrows indicate the breathing direction.

2). Furthermore, the SVR model does not suffer from systematic errors like the
polynomial models.

3.1 Selection of LEDs and Using Multiple LEDs

We also investigated the influence of LED selection on the quality of the corre-
lation model. When selecting different LEDs as input surrogates, we see that on
the first signal, the RMS error ranges from 0.27 mm to 0.38 mm whereas on the
second signal, it ranges from 0.36 mm to 1.91 mm. Since the ε-SVR correlation
model has been designed such that it can use input from more than one LED at
a time, we evaluated the model for all possible pairs (triplets, quadruplets, ...).
The results are shown in Fig. 7. We can see that on the first signal, using more
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Fig. 6. The ε-SVR model. The x-axes show the motion of LED 11, the y-axes show
the principal directional component of motion of the first fiducial. Model points are
marked with green circles, the model output is shown in red.
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Fig. 7. The plots show the range (minimum and maximum values) and mean of the
RMS error when using multiple LEDs. Read: when using six LEDs (1716 possibilites)
to build the correlation model on signal two, the resulting RMS error is, depending on
the selected sixtet, between 0.25 and 0.77 mm with a mean of 0.45 mm.

than one LED does not noticeably improve correlation results, possibly due to
overfitting. On the second signal, however, the best attainable correlation model
uses six LEDs and outperforms the best model using one LED by 32 %: the RMS
value drops from 0.36 mm to 0.25 mm. In this case, the best polynomial model is
outperformed by as much as 74 %. Additionally, the 95 % CI drops to 0.47 mm.
We believe that in this case we can clearly see that in this case the model using
more LEDs is capable of catching the changing characteristics of the signal. Note
that on signal one, only 19 and on signal two, only 17 samples are used to build
the model which is evaluated on 1,876 and 8,588 samples, respectively.

4 Discussion

The fact that correlation on the second signal (with a length of 590 s) can be
improved significantly by using multiple LEDs is due to the signal’s complexity:
ventilation speed was varied as was the ventilation volume such as to mimick
changing breathing patterns. It seems that especially the changes in breathing
mode cannot be adequately covered by using one single LED.

We also went beyond the work presented in [9,10] and [11]. In [9], the inter-
nal position of the tumour was measured with NDI’s magnetic tracking system
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using biopsy needles inserted into the swine. This approach suffers from poor
temporal and spatial resolution and also from possibly altering the organ’s mo-
tion patterns due to the insertion of biopsy needles. In [10], the evaluation of the
correlation was done retrospectively on lung tumour patients where the tumour
was located using stereoscopic fluoroscopy at changing angles and the external
motion was recorded using a laser-based measuring device. The disadvantages
in this study are the relatively short duration of the recordings (just over one
minute in average) and the fact that the laser-based measuring system can only
record distances and does not show the 3D displacement of a single point in
space. In [11], the authors use very poor temporal resolution (4-5 Hz) and only
compute the leave-one-out error of their correlation model. Furthermore, their
model is built using all signal points but one and no long-term evaluation of the
model is done.

In the near future, we plan to continue this study with more swines either un-
der mechanical lung ventilation or breathing freely. We also hope to see this new
correlation model implemented in the CyberKnife to perform tests under real
conditions. Also, further investigation needs to be done as to where to place the
LEDs on which the model is built, since this placement significantly influences
the correlation accuracy.

5 Conclusion

It has been shown that the polynomial models used in determining the tumour
position from chest marker positions are not very accurate, delivering RMS errors
of up to 0.95 mm, depending on the complexity of the input signal. On the other
hand, the correlation model based on ε-SVR can achieve far better results: for
both signals tested, RMS errors of 0.3 mm or less are feasible, a reduction of 40
to 75 %.
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Abstract. Respiratory motion introduces uncertainties when planning
and delivering radiotherapy for lung cancer patients. Cone-beam projec-
tions acquired in the treatment room could provide valuable information
for building motion models, useful for gated treatment delivery or motion
compensated reconstruction. We propose a method for estimating 3D+T
respiratory motion from the 2D+T cone-beam projection sequence by in-
cluding prior knowledge about the patient’s breathing motion. Motion
estimation is accomplished by maximizing the similarity of the projected
view of a patient specific model to observed projections of the cone-beam
sequence. This is done semi-globally, considering entire breathing cycles.
Using realistic patient data, we show that the method is capable of good
prediction of the internal patient motion from cone-beam data, even
when confronted with interfractional changes in the breathing motion.

1 Introduction

In radiotherapy, breathing motion causes uncertainties in the dose delivered to
the tumor. The existing approaches to take respiratory motion into account
include adding safety margins to ensure target coverage, breath-hold, gating,
or tracking of the target [1]. An important prerequisite to plan and evaluate
treatment when using these techniques is a detailed knowledge of the motion.
Four-dimensional (4D) computed tomography imaging [2] or cone-beam (CB)
CT [3], consisting of three dimensional (3D) frames each representing a breath-
ing phase, can provide additional motion information. However, no intercycle
variability can be measured as they represent a single respiratory cycle.

Breathing motion occurs predominantly in cranio-caudal direction and tends
to be larger for the lower lobes [1]. Trajectories of tumors and organs can be
subject to hysteresis [4], i.e. a different path is followed during inhalation and
exhalation. Cycles can differ from one another in breathing rate and level [5];
the latter influencing the amplitude of the motion. Variations in the mean tumor
position (baseline) between and during fractions have also been reported [4,6].

Previously, 4D CT [7] and cine CT volume segments covering multiple cy-
cles [8] have been used to model breathing motion. The small amount of acquired
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breathing cycles limits their ability to model intercycle variability. 4D MRI [9]
covering more cycles could offer a solution to this problem. Regardless of the cho-
sen approach, one should be able to detect and correct for interfractional changes
in breathing motion that occur frequently between treatment sessions [4,6].

A CB projection sequence consists of a series of wide angle X-ray projections
taken from viewpoints orbiting the patient. CBCT is routinely acquired for pa-
tient setup in many institutions, immediately before treatment, with the patient
in the treatment position. Zijp et al. [10] have a fast and robust method for
extracting a respiratory phase signal from a CB projection sequence. By estab-
lishing a relation to a prior 4D CT, Rit et al. [11] obtained a motion model
that proved suitable for motion compensated CB reconstruction. Zeng et al. [12]
estimated motion from a projection sequence by deforming a reference CT image
so that its projection views match the CB sequence. Optimization of the large
number of parameters of a B-spline based deformation model required adding
aperiodicity penalties to the cost function to regularize the problem.

This article deals with in situ motion estimation from CB projection data for
radiotherapy of lung cancer. With respect to [12] we incorporate prior knowledge
in the form of a patient-specific model, significantly reducing the number of pa-
rameters to be identified. No intercycle regularization is required and we obtain
improvement in speed and robustness. Within-cycle smoothness is guaranteed
automatically, through the use of a B-spline temporal model.

2 Method

First, a parametric patient-specific motion model with a small number of degrees
of freedom is built from a 4D CT image routinely acquired preoperatively for
the irradiation treatment planning of the considered patient group. The model is
able to represent changes in the breathing phase in addition to small variations
in breathing pattern. The model is then fitted to the CB projection sequence
by optimizing the model parameters to maximize the similarity between the
acquired 2D CB projections and simulated projection views of the model. Indi-
vidual cycles are processed separately and a smooth motion estimate is found by
simultaneously considering the whole cycle with suitable boundary conditions.

2.1 Motion Model

Using the demons algorithm [13], we deformably register a manually chosen
reference frame f∗ to all other frames fϑ of the 4D CT, where ϑ ∈ [0; 1) is the
breathing phase. f∗ should be chosen as to contain as little artifacts as possible.
End-exhale is usually a good choice. Let gϑ(x) be the resulting deformation
vector field, mapping f∗ to fϑ. All deformation fields are averaged and a mean
position image f̄ is created by backward warping of f∗ [14] (Figure 1a).

f̄(x) = f∗
(
ḡ−1(x)

)
with ḡ(x) =

1
b

b∑
θ=1

gθ(x) (1)
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(a) (b)

Fig. 1. (a) The procedure for obtaining a mean position image f̄ . (b) A schematic
representation of the representable space for the proposed model. Consider a point
with position x in in the image f̄ (dark oval). Its position in all frames of the 4D CT
(white ovals) is interpolated yielding the estimated breathing trajectory (bold curve).
The amplitude parameter α allows to reach breathing states sϑ,α off the trajectory.

All structures appear at their time-weighted mean position in the image f̄ [15].
Next, f̄ is registered to the original frames fϑ. The resulting deformation fields
are approximated using B-splines as

Tϑ,α(x) = x + α
∑
i

∑
j

aij βnx

(
x− xi

Δx

)
βnϑ

(
ϑ− ϑj

Δϑ

)
. (2)

where βn(.) are B-splines placed at positions xi, ϑj with uniform spacing Δx,
Δϑ; aij are the B-spline coefficients. As ϑ varies from 0 to 1, the deformation
model produces a motion corresponding to an entire breathing cycle starting
from end-exhalation. Note that this allows to model hysteresis. The second pa-
rameter α is an instantaneous amplitude (it can vary with ϑ) and helps to model
variations of the trajectory shape and breathing level. We chose cubic spline in-
terpolation for phase space (nϑ=3). For the spatial dimension however, since
dense deformation fields are available, a fast nearest neighbor (nx = 0) is em-
ployed. The coefficients aij are found quickly using digital filtering [16]. Image
sϑ,α for a particular breathing state described by ϑ,α (Figure 1b) is obtained
through forward warping [14] (where the subscript for T was omitted)

sϑ,α

(
T (x)

)
= f̄(x) . (3)

2.2 Cost Function and Optimization Strategy

We propose to optimize the parameters of the model together for each breathing
cycle. This renders the method more robust with respect to simply considering
each projection separately (see Section 3), but is computationally more tractable
than a truly global optimization (over many breathing cycles). Since breathing
cycle extrema can usually be identified well, the accuracy is not compromised.
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(a) (b) (c)

Fig. 2. (a) A simulated CB projection view calculated from the mean position image
f̄ and (b) a true CB projection of the same patient from the same viewpoint. Note
that the images are very similar except for a horizontal reinforcement of the treatment
table visible in the true CB projection. (c) Color overlay of preregistered end-inhalation
frames from the two 4D CT acquisitions of patient 1.

Given a CT volume f , an ideal cone-beam projection image p can be calculated
using a linear projection operator Pφ where the parameter φ fully describes the
(known) camera position and orientation:

p = Pφ f (4)

Figure 2a and 2b show a CB projection view of a mean position image f̄ com-
pared with a CB projection of the same patient. We measure similarity between
an observed CB projection p̂ and a modeled breathing state sϑ,α by calculating
the normalized correlation coefficient (NCC) in the 2D projection space:

J(ϑ, α; φ) = NCC(p̂,Pφsϑ,α) . (5)

In a first step, we detect the approximate time positions (projection indexes) te
corresponding to extreme breathing phases [10]. The method is based on taking
image derivatives and analyzing 1D projections of the obtained image. Second,
we refine the parameters ϑ(te) and α(te) by minimizing

J (ϑ(te), α(te); φ) + w (ϑ(te)− ϑe) with w(y) =
{

0 for|y| ≤ h
δ|y|2 otherwise .

(6)

Note we are favoring solutions near the expected phase value ϑe. Powell-Brent
[17] multidimensional search was used with h = 0.1 and δ = 20 with initial values
α(te) = 1 and ϑ(te) = ϑe = ϑee or ϑei for end-exhalation and end-inhalation,
respectively. The values for both ϑee and ϑei were determined by applying the
extrema detection method [10] to simulated projections of the model with slowly
varying phase.

Let te and te′ be the two end-inhalation positions, the beginning and end of
a breathing cycle. We have just shown how to get ϑ and α at te, te′ , what remains
is to obtain the estimates also for frames te+1, . . . , te′−1. Assuming temporal
smoothness, we propose to represent ϑ as

ϑ(t) =
k∑

i=0

ci βnϑt

(
t− ti
Δϑt

)
for te < t < te′ . (7)
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where k is the number of control points, ti are the temporal position of the knots,
Δϑt is the knot spacing and ci are the B-spline coefficients. Fixing the value for
ϑ(te) we can express the boundary coefficient c0 as

c0 =
ϑ(te)−

∑k
i=1 ciβ

nϑt

(
te−ti

Δϑt

)
βnϑt

(
te−t0
Δϑt

) . (8)

and similarly for ck. A B-spline expansion with coefficients dj is used to represent
α(t). By summing the contributions for m different time instances within the
cycle and using equations (5),(7–8), we obtain the following similarity measure:

J t(c,d) =
1
m

m∑
t=1

J (ϑ(te + t), α(te + t); φ(te + t)) . (9)

We find the coefficients c = [c1, . . . , ck],d = [d1, . . . , dl] by minimizing J t, using
a Nelder-Nead downhill simplex algorithm [17], which performed well in this
high dimensional search space, requiring less iterations than Powell-Brent and
yielding comparable results. A linear progression is used as a starting point. We
use a quadratic B-spline representation (nϑt = nαt = 2) with k = l = 4.

3 Experiments and Results

Accurately evaluating the 2D-3D motion estimation is very difficult, as no ground
truth is available. In this work we use pairs of 4D CT sequences acquired for
three lung cancer patients using a Philips Brilliance BigBore 16-slice CT scan-
ner (Philips Medical Systems, Cleveland, OH). The time between acquisitions
ranged from 20 minutes (patient 1 and 2) to 3 days (patient 3). Patients 1 and
2 were asked to stand up from the acquisition table and walk around for 10
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Fig. 3. Results of sequential motion estimation for patient 1: the recovered phase (a)
and amplitude (b) (dashed line) together with the parameters used to generate the CB
sequence (full line). The reference amplitude is a constant, α = 1.
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Table 1. Results of the semi-global motion estimation. The residual misalignment
(residual) between the found and the true motion: the mean (μ), standard deviation (σ)
and maximum (max) is compared to the original motion with respect to f̄ (original).

(mm) original residual
μ σ max μ σ Max

Patient 1 3.8 2.1 17.1 1.1 0.6 8.3
Patient 2 2.8 1.7 16.1 1.6 0.8 11.0
Patient 3 3.7 1.6 13.8 1.3 0.7 5.8
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Fig. 4. Results of the semi-global motion estimation for Patient 3: the recovered phase
(a) and amplitude (b) (dashed line) are shown together with the parameters used to
generate the CB sequence (full line). The reference amplitude is a constant, α = 1.
(c) The resulting residual misalignment (dashed line) is shown in comparison with the
original misalignment with respect to the mean position image (full line).

minutes before repositioning and acquisition of the second 4D CT. In spite of
the small time between the acquisitions, substantial difference can be observed
between the two subsequent 4D CT acquisitions due to interfractional changes
in breathing motion (see Figure 2c). We used the first 4D CT sequence to con-
struct a patient model as described in Section 2.1. The second acquisition was
first rigidly registered to the first 4D CT to align the bony structures. In order
to have a ground truth available, we took the mean position image from the first
sequence and the deformation fields from the second sequence to get a simulated
reference 4D CT sequence. A respiratory trace was randomly generated [5] and
a piece-wise linear phase signal ϑ(t) with variable breathing rate was derived.
We simulated the first 90◦ of a CB acquisition protocol in our institute by cal-
culating 150 projections for evenly spaced angles from the reference 4D CT with
varying phase value over a period of 30 s.
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When optimizing separately for each projection the criterion (5) with respect
to ϑ and α, we obtained bad results when confronted to interfractional changes
in breathing motion (see Figure 3, results for other patients were similar). Note
that an optimal result doesn’t necessarily mean recovering identical parameter
values as they correspond to different deformation fields. In this case however, we
can observe how intermediate phases during inhalation (ϑ ≈ 0.2) and exhalation
(ϑ ≈ 0.8) are confused, due to limited hysteresis and unfavorable projection
angle and are accompanied with strong variations in amplitude.

The phase and amplitude found for Patient 3 using our semi-global crite-
rion (9) are shown in Figure 4a and 4b, together with the parameters used to
generate the CB sequence. To evaluate the accuracy we calculate the residual
geometric misalignment (i.e. the norm of the difference between deformation
vector fields) between the estimated motion and the true motion. This mea-
sure is averaged over the lower lung, where the largest motion tends to occur.
For comparison, the original misalignment, i.e. the motion with respect to the
mean position image, is also given. Table 1 contains the average over all projec-
tions for each patient. Figure 4c shows this mean misalignment as a function of
the projection index for Patient 3. Note that while displacement might lo-
cally attain 3cm, the average motion as seen from the mean position does not
exceed 1cm.

4 Discussion and Conclusion

We achieved a smooth motion estimation from a CB projection sequence using
B-splines and by considering the complete movement in a respiratory cycle and
obtained a considerable reduction of the original misalignment for all patients.

To our knowledge this is the first time a respiratory motion model is tested
against clinical data containing real interfractional changes in breathing motion.
Some additional challenges presented by real CB data will include dealing with
scatter [12] and detecting and correcting for rigid misalignment (setup errors).

As a consequence of generating the ground truth, baseline shifts were not
present in our patient data. Changes in breath rate, breathing level or trajectory
shape were however present. It is expected that the method will be able to cope
with small shifts (< 20% of the motion amplitude). For larger shifts, a prior shift
estimation can be performed, e.g. from a 4D CBCT [6].

In this work we exploited only acquisitions already acquired for treatment
purposes. More preoperative data, such as breath hold CT scans [8,12] or MRI
data [9], could further improve the prior model, rendering it’s construction more
robust to artifacts and providing prior information on the intercycle variation.
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Abstract. This study investigates heart wall motion abnormality detec-
tion with an information theoretic measure of heart motion based on the
Shannon’s differential entropy (SDE) and recursive Bayesian filtering.
Heart wall motion is generally analyzed using functional images which
are subject to noise and segmentation inaccuracies, and incorporation
of prior knowledge is crucial in improving the accuracy. The Kalman
filter, a well known recursive Bayesian filter, is used in this study to esti-
mate the left ventricular (LV) cavity points given incomplete and noisy
data, and given a dynamic model. However, due to similarities between
the statistical information of normal and abnormal heart motions, de-
tecting and classifying abnormality is a challenging problem which we
proposed to investigate with a global measure based on the SDE. We
further derive two other possible information theoretic abnormality de-
tection criteria, one is based on Rényi entropy and the other on Fisher
information. The proposed method analyzes wall motion quantitatively
by constructing distributions of the normalized radial distance estimates
of the LV cavity. Using 269×20 segmented LV cavities of short-axis mag-
netic resonance images obtained from 30 subjects, the experimental anal-
ysis demonstrates that the proposed SDE criterion can lead to significant
improvement over other features that are prevalent in the literature re-
lated to the LV cavity, namely, mean radial displacement and mean radial
velocity.

1 Introduction

Early detection of motion abnormality is the utmost importance in the diagnosis
of coronary heart disease – the most common type of cardiovascular disease.
Unfortunately, early detection by visual inspection is limited due to vast amount
of information and uncertainty associated with heart motion. Computer-aided
detection systems, which can analyze extensive amount of information associated
with the heart motion, have attracted research attention in recent years [1,2,3].
Computer-aided abnormality detection primarily consists of two components:
preprocessing and classification.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 373–380, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



374 K. Punithakumar et al.

The preprocessing, centered around image segmentation, is in itself challeng-
ing due to the difficulties inherent to cardiac images [4]. Additionally, the classi-
fication is also difficult because of similarities between the statistical information
associated with normal and abnormal heart motion. Fig. 1 depicts typical exam-
ples of normal and abnormal heart motion, along with the corresponding distri-
butions of motion measurements over time. The significant overlap between these
distributions makes the classification problem difficult, and the use of distribu-
tion moments, for instance the mean [2], may not be sufficient to separate normal
and abnormal motions. To tackle the classification problem, we propose an infor-
mation theoretic measure of heart motion. In order to take full advantage of the
information related to cardiac motion, we propose to use the Shannon’s differen-
tial entropy (SDE) [5], which provides a global, theoretically grounded measure of
distributions – rather than relying on elementary measurements or a fixed set of
moments, the SDE measures a global distribution information and, as such, has
more discriminative power in classifying distributions. The typical examples in
Fig. 1 illustrate the potential of the SDE in the classification problem: the means
of abnormal and normal motion distributions are very close, whereas, the SDEs
are relatively different.

We further derive two other possible information theoretic abnormality detec-
tion criteria, one is based on Rényi entropy and the other on Fisher information
[5]. Although widely used in physics [6], computer vision [7,8], communications
[9], and many other fields, the application of information theoretic concepts is
still in its early stage in medical image analysis. Few notable exceptions include
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Fig. 1. The potential of the SDE measure in detecting abnormal motion. (a) typical
normal motion, (b) typical abnormal heart, (c) and (d) corresponding distributions of
radial distances and radial velocities. A significant overlap exists between normal and
abnormal motion distributions, and the corresponding first moments are approximately
the same, whereas the SDEs are relatively different.
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using cross and joint entropy for image registration [10,11], the Rényi entropy
for measuring the heart rate Gaussianity [12], and the Shannon entropy for
analyzing heart period variability [13].

To tackle image preprocessing, an overlap prior based left ventricle (LV) seg-
mentation [4], which does not require a training, is used, and the segmentation
results are subsequently processed with recursive Bayesian filtering. The latter,
which provides a temporal smoothing of the dataset given a suitable model, is
shown to be very effective when the data is less reliable. Specifically, a cyclic
model is used to characterize the dynamics of sample points of the segmented
LV cavity and the Kalman filter [14] is used for state estimation. The filter es-
timates are subsequently analyzed to build an information theoretic classifier of
heart motion.

Using 269 image sequences, each consisting of 20 segmented LV cavities of
short-axis magnetic resonance functional images, obtained from 30 subjects,
the experimental analysis demonstrates that the proposed information theoretic
measure of heart motion can lead to significant improvement over other features
that are prevalent in the literature related to the LV cavity, namely, the mean
radial displacement and mean radial velocity [2]. Furthermore, an analysis based
on Bhattacharyya distance (cf. plots in Fig. 3), which measures the separability
of classes in classification problems, show that the SDE yields better classifi-
cation ability amidst the stochastic nature of the cardiac motion and image
segmentation inaccuracies.

2 The Recursive Bayesian Filtering

The analysis is performed by sampling a set of points along the segmented LV
cavity. We assume a cyclic state-space model for the dynamics of sample points
that characterize the temporal evolution of the points for a periodic heart motion.
Let xi

k = [x̄i
k xi

k ẋi
k ȳi

k yi
k ẏi

k]T be the state vector, consisting of mean position
(x̄i

k, ȳi
k), current position (xi

k, yi
k) and velocity (ẋi

k, ẏi
k) of sample point i,

respectively, in x and y coordinate directions at time step k (for k = 1, . . . , K).
The state transition equation for cyclic motion is given by

xi
k = Fk−1xi

k−1 + vi
k−1 for i = 1, . . . , N (1)

where Fk =
[
Ak 03×3
03×3 Ak

]
, Ak =

⎡
⎣ 1 0 0

1− cos(ωT ) cos(ωT ) 1
ω sin(ωT )

ω sin(ωT ) −ω sin(ωT ) cos(ωT )

⎤
⎦, {vi

k−1}

is a zero-mean Gaussian noise sequence with covariance Qk, ω the reciprocal of
period of heart cycle, and T the interval between two subsequent image frames.
The additive noise in the dynamic model is an approximation, and is included
to accommodate significant differences between the modeling and real motion of
the LV cavity points.

The measurement equation is given by

zi
k = Hkxi

k + wi
k for i = 1, . . . , N (2)
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where Hk =
[

Bk 01×3
01×3 Bk

]
, Bk =

[
0 1 0

]
and {wi

k} is a zero-mean Gaussian

noise sequence with covariance Rk. The measurements are obtained by sampling
the segmented LV cavities. The measurement equation indicates the fact that
only the current position of a sample point is measured.

The Kalman filter, which yields an optimal estimate for linear/Gaussian sys-
tems, is applied for state estimation. In some very rare cases, the segmentation
results of the LV deviate significantly, and such inconsistencies are detected by
gating the center of the segmented LV. The segmentation results are ignored in
such cases, and the sample points were only predicted using the dynamic model,
i.e., they were not updated by filter.

In order to find the sequence of corresponding points over time, the symmetric
nearest neighbor correspondences [15] is applied by sampling a set of equally-
spaced points along the LV boundary. The construction of a sequence of points is
essential to analyze wall motion regionally. Using spline interpolation, Ns points
were sampled along the LV cavity in each frame, and N points were chosen as
measurements to the filter. A kernel density estimation based on normal kernel
function is applied to obtain the probability density. The radial distance for each
dataset is normalized with respect to maximum value, which allows analyzing
different long-axis segments, namely, apical, mid and basal, without additional
processing.

3 The SDE of Normalized Radial Distance

We define the following normalized radial distance ri
k by

ri
k =

√
(x̂i

k − 1
N

∑
i x̂i

k)2 + (ŷi
k − 1

N

∑
i ŷi

k)2

max
i

√
(x̂i

k − 1
N

∑
i x̂i

k)2 + (ŷi
k − 1

N

∑
i ŷi

k)2
, (3)

where x̂i
k and ŷi

k are the estimates of xi
k and yi

k, respectively. Let r ∈ R be a
random variable. The kernel density estimate of the normalized radial distance
is given by

f(r) =

∑
i,k K(ri

k − r)
NK

, (4)

where K(y) =
1√

2πσ2
exp(− y2

2σ2 ) is the Gaussian kernel. In this study, we derive

the SDE measure of heart motion as follows

Sf = −
∫
r∈R

∑
i,k K(ri

k − r)
NK

⎛
⎝ln

∑
i,k

K(ri
k − r)− ln NK

⎞
⎠ dr (5)

We further derive two other information theoretic criteria to measure the global
information associated with heart motion, one is based on the Rényi entropy

Rα
f =

1
1− α

ln
∫
r∈R

(∑
i,k K(ri

k − r)
NK

)α

dr for 0 < α < ∞, α �= 1 (6)



Heart Motion Abnormality Detection 377

and the other on Fisher information

If = 4
∫
r∈R

|∇g(r)|2dr, (7)

where

g(r) =

√∑
i,k K(ri

k − r)
NK

. (8)

4 Experiments

The data contain 269 short-axis image sequences, each consisting of 20 func-
tional 2D-images acquired from 20 normal and 10 abnormal hearts. The data
were acquired on 1.5T MRI scanners with fast imaging employing steady state
acquisition (FIESTA) image sequence mode. The Kalman filter positions and
velocities were initialized using two-point initialization [14], and mean positions
were initialized using all the measurements in the sequence.

The experiments compare the proposed information theoretic measure based
on the SDE with other classifier elements, namely, the mean radial displacement
and mean systolic radial velocity, as well as other information measures, namely,
Rényi entropy (α = 2) and Fisher information. Radial velocity computations are
based on the systolic phase of cardiac cycle. The results were compared with
ground truth classification of the cine MRI sequences by experienced medical
professionals. A heart is considered to be abnormal in an image sequence if any
of its segments [16] is abnormal.

We used two criteria to measure the performance of each classifier element,
namely, classification accuracy via leave-one-subject-out method1 and the re-
ceiver operating characteristic (ROC) curves with corresponding area under the
curves (AUCs). Furthermore, we used the Bhattacharyya measure to assess the
discriminative power of each classifier elements. Table 1 summarizes the results.

The ROC and AUC. The ROC curves for classifier elements is shown in
Fig. 2. The more inclined the curve towards the upper left corner, the better
the classifier’s ability to discriminate between abnormal and normal hearts. The
figure shows that the proposed SDE has superior classifying ability than other
classifier elements. The AUCs that correspond to the ROC curves in Fig. 2 are
reported in Table 1. The AUC represents the average of the classifier sensitivity
over false-positive resulting from considering different threshold values, and gives
an overall summary of the classification accuracy. The SDE yielded the highest
AUC and, therefore, has the best performance.

The Bhattacharyya measure. We used the Bhattacharyya distance metric to
evaluate the overlap between the distributions of classifier elements over normal
and abnormal motions. The Bhattacharyya metric [17] is given by

B =
√

1−
∑
y∈R

√
fN (y)fA(y) (9)

1 Each subject is classified given the information learned from other subjects.
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where fN and fA are the distributions over, respectively, normal and abnormal
hearts. The higher B, the lesser the overlap (Refer to Fig. 3 for an illustration)
and, therefore, the better the discriminative ability of the classifier. The SDE
yielded the highest B as reported in Table 1 and, therefore, the best discrimi-
native ability. This is consistent with the previous findings based on ROC/AUC
evaluations.

Classification accuracy. Evaluating the percentage of correctly classified
hearts using leaving-one-subject-out method, the proposed SDE yielded 90.5%
true positive (TP) and 78.6% true negative (TN), i.e., 90.5% of abnormal hearts
and 78.6% of normal hearts were classified correctly, which is the best overall
performance among the reported classifier elements in Table 1.

Table 1. The area under the curve corresponding to Fig. 2, Bhattacharyya distance
metric of normal/abnormal distributions given in Fig. 3, and the percentage of classi-
fication accuracy using leaving-one-subject-out method for classifier elements

Bhattacharyya
distance Classification accuracy

Classifier element AUC (%) metric (B) Abnormal (%) Normal (%)

Mean systolic velocity 70.8 0.32 79.4 54.9
Mean radial displacement 87.3 0.53 76.2 70.9
Fisher information 89.3 0.59 84.1 85.0
Rényi entropy 90.8 0.60 87.3 84.5
Shannon’s differential entropy 90.9 0.62 90.5 78.6
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Fig. 2. Receiver operating characteristics of classifier elements. The closer the curve
to the left hand top corner, the better the classification performance. The proposed
information theoretic measure based on the SDE outperforms other classifier elements.
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Fig. 3. Distribution of normal and abnormal hearts categorized using classifier ele-
ments. The Bhattacharyya distance metric show that information theoretic measure
based on the SDE has better discriminative ability over other classifier elements.

5 Conclusions

This study investigates heart wall motion abnormality detection, which primarily
consists of two components: preprocessing and classification. In preprocessing,
an overlap prior based segmentation is used to generate left ventricular (LV)
contours and the results are subsequently processed using Kalman filter, given
a cyclic dynamic model. More importantly, we propose an information theoretic
measure based on the Shannon’s differential entropy (SDE) for classification.
The proposed method analyzes wall motion quantitatively by constructing dis-
tributions of the radial distance estimates of the LV cavity. We further derive
two other possible information theoretic abnormality detection criteria, one is
based on Rényi entropy and the other on Fisher information. The experimental
analysis is performed using 269×20 short-axis magnetic resonance images ob-
tained from 30 subjects. The results, based on receiver operating characteristics,
area under the curves, Bhattacharyya distance metrics and leave-one-subject-out
cross validation, show that the proposed SDE criterion can lead to significant
improvement over other prevalent classifier elements.
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of Image Sequences
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Abstract. We propose a novel method to detect the current state of
the quasi-periodic system from image sequences which in turn will en-
able us to synchronize/gate the image sequences to obtain images of the
organ system at similar configurations. The method uses the cumulated
phase shift in the spectral domain of successive image frames as a mea-
sure of the net motion of objects in the scene. The proposed method is
applicable to 2D and 3D time varying sequences and is not specific to
the imaging modality. We demonstrate its effectiveness on X-Ray Angio-
graphic and Cardiac and Liver Ultrasound sequences. Knowledge of the
current (cardiac or respiratory) phase of the system, opens up the pos-
sibility for a purely image based cardiac and respiratory gating scheme
for interventional and radiotherapy procedures.

1 Introduction

Image synchronization and gating are problems faced during the imaging and
subsequent processing of organs with quasi-periodic motion, like the heart. The
two most common sources of organ motion during imaging are respiratory and
cardiac motion. The deformations caused by cardiac and respiratory motion
make it difficult to image organs in the thorax and the abdomen. This severely
limits the efficacy and efficiency of interventional and radiotherapy procedures
performed in this region.

Different approaches have been devised to overcome cardiac and respiratory
motion. Cardiac motion is usually handled by ECG gating whereas respiratory
motion is usually handled by the use of markers placed on the patients body [1].
The problem with these approaches is that the ECG requires additional hard-
ware, long setup times and in most cases there is a delay between the ECG signal
and the image acquisition which makes it hard to make them synchronized. As
far as the detection of respiratory phase is concerned, the placement of markers
is usually impractical in a clinical setting; furthermore it is difficult to set up
and prolongs the overall acquisition procedure. In addition most laboratories and
existing image databases do not contain either ECG or respiratory information.
Additionally, since the end goal is to perform image gating, detecting the phase
using the images should be more reliable and robust compared to cases where
an external signal is used.
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Another strategy for reducing respiratory motion is to acquire images using
breath-hold techniques [2]. Although this reduces breathing motion by relatively
simple and natural means, it is, nonetheless, restricted by the patient’s ability
to perform a supervised breath hold during the treatment [3]. A third class of
strategies addresses the problem of respiratory motion correction by incorporat-
ing suitable motion models. Manke et al. [4] proposed a linear parametric model
describing the relation between the variation of the diaphragmatic position and
the respiratory-induced motion derived from image-intensity based registration
for cardiac-triggered 3D MR imaging. King et al. [5] present an affine model
which is based on the tracked motion of the diaphragm to compensate for respi-
ratory motion in real-time X-ray images. The main drawback of these approaches
is that they require manual landmark selection for diaphragm tracking.

Related Work. Prior work in this area is fairly limited, with [6] presenting an
approach for retrospective gating of Intra coronary ultrasound (ICUS) sequences
using feature extraction and classification. The method is computationally ex-
pensive and requires processing the whole sequence together as some of the
features are temporal. In [7], the authors propose a method to analyze images
in the sequence and retrieve the cardiac phase by using average image intensity
and absolute image difference between the consecutive frames. The method is
not very robust and has not been shown to work with real datasets. In [8], the
authors propose to detect the respiration (phase) using mutual information. The
mutual information (MI) is calculated between the fluoroscopic image and a ref-
erence angiogram. The MI calculation is performed only on selected regions of
interest (ROI) and the results are variable depending on the choice of ROIs. A
similar approach using Normalized MI is presented in [9]. A review of the effects
of respiratory motion is presented in [10] and highlights the importance and need
for reliable detection of the respiratory phase, specifically for the target organ.
In [11], Berbeco et al. detect the breathing phase information by analyzing the
fluoroscopic intensity fluctuations in the lung. However, the approach requires
the selection of region of interest(ROI) in a section of the middle of the lung
that does not contain the tumor.

Contributions. We propose a novel method to detect the current state of the
quasi-periodic system which in turn will enable us to synchronize/gate image
sequences to obtain images of the organ system at similar configurations. The
proposed method is applicable to 2D and 3D time varying sequences and all
imaging modalities. We demonstrate its effectiveness on 2D X-Ray Angiographic
and 3D Liver and intra-cardiac Ultrasound sequences.

2 Methods

Let It(x, y) represent the image at time t of a scene changing with time. According
to the phase correlation technique [12], if we represent the Fourier transform of
It(x, y) by F(ξ, η), and assume that objects in the scene exhibit only translations,
then for It+1(x, y) = It(x − xt, y − yt), we have

Ft+1(ξ, η) = e−j2π(ξxt+ηyt)Ft(ξ, η). (1)
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By inverse transforming the ratio of the cross-power spectrum of It+1 and It to
its magnitude,

Ft+1F∗
t

‖Ft+1F∗
t ‖

= exp(−j2π(ξxt + ηyt)),

we obtain a peak at (xt, yt). If we consider a simple 1D example as shown in
Figure 1, we have the original image represented by the blue sinusoidal curve,
and applying a translation to the image produces a phase shift in the spectrum.

φ

Fig. 1. The Relationship between object motion and the phase shift (φ)

This approach was used in [13] to compensate for translational motion in
coronary angiogram sequences.

It is important to realize that image features can be thought of as being a
combination of signals at different frequencies, and that calculating the phase
shift of the different frequencies in an image amounts to measuring the motion of
image features corresponding to those frequencies. Measuring the phase shift in
the frequency domain allows us to estimate the overall motion within an image
without explicitly solving the problem of correspondence detection. The phase
shift can be calculated in the Fourier domain [14]. The overall change in the
energy within the object being imaged can be estimated by integrating over the
phase shift, which is the same as the energy change only due to the motion in
the spatial domain because of Parsevals Theorem [14]. It is important to note
that this energy is not affected by changes in intensity which might happen as a
result of varying levels of contrast agent and differing acquisition parameters. In
addition, the proposed method is relatively insensitive to noise, as long as the
spectrum of the noise is similar in successive images. As in this usually the case
with image sequences acquired on the same scanner during the same acquisition
session, the phase detection is robust to the noise levels during acquisition.

We estimate the energy change of the system being imaged by analyzing
consecutive frames. The energy change in the system is computed in the spectral
domain making the system more robust to outliers that might be introduced in
the scene. Common examples are catheters, contrast agents, needles etc. The
energy change in the scene is given by,

E =
∫ F(It)∗ · F(It+1)
|F(It)∗| |F(It+1)|

df, (2)

where, F(It) represents the Fourier transform of the image I at time t.



384 H. Sundar et al.

Fig. 2. Results of Phase detection in X-Ray sequences. The estimated phase is overlaid
with the actual ECG signal. The low frequency variation in the phase corresponds to
the respiratory cycle. The cardiac and respiratory cycles are also shown in this figure
are separated using high and low pass filters respectively.

This energy is used as an estimate of the current phase of the organ. The
extrema of this signal can be easily detected to detect the cardiac and the res-
piratory phases. Additionally, if separate cardiac and respiratory signals are
required, then a band pass filter centered at 1Hz should recover the cardiac sig-
nal, whereas a low pass filter will recover the respiratory signal. The system can
be used with N -dimensional by computing the appropriate higher order Fourier
transform.

3 Results

In order to test the efficacy and accuracy of the proposed method, we tested it on
X-Ray and ultrasound(US) images and compared it against ground truth data.
ECG signals were treated as ground truth for the detection of the cardiac cycle,
and breathing phase obtained using a magnetic tracking system was treated as
ground truth for respiratory motion.

Validation on Cardiac X-Ray Angiography images. We validate our
method by comparing it against ECG signals embedded within 20 X-Ray an-
giographic and fluoroscopic images acquired on a biplane C-arm system (AX-
IOM Artis, Siemens Medical Solutions, Erlangen, Germany). The minima of the
image-based phase correspond to end-diastole and therefore, we compared the
alignment of this minima with the P-wave on the ECG signal. Additionally,
for the cases where a mismatch existed, a visual comparison of images gated
using the 2 methods yielded no obvious winner. An example of the detected
phase overlaid on the ECG signal and with sample images is shown in Figure 2.
Figure 2 also illustrates the separation of cardiac and respiratory signals from
the combined phase signal.
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Fig. 3. Simple validation using biplane sequences. Normalize phase signals from a
biplane Xray sequence are plotted along with the normalized ECG signal. It can clearly
be seen that the phase is correctly calculated from both views independently.

We also compared the image-based phase signals from biplane X-Ray images.
Since the two images are basically projections of the same heart, the phase
signals should match, in spite of differences due to the projection angles. In
Figure 3 we illustrate one such case in which the phase signals from both planes
are plotted with the ECG QRS trigger signal. As can be seen, although there are
small variations in the signals from the two planes, they are in overall agreement
regarding the cardiac phase.

Validation on Liver 3D Freehand Ultrasound Images. In order to test the
efficacy of the system on detecting respiratory motion, we used a Siemens ACU-
SON Sequoia 512 ultrasound machine (Siemens Ultrasound, Mountain View,
CA) with abdominal curved-array probe, and a MicroBird magnetic tracking
system (Ascencion Technology Corp., Burlington VT). “Tracked ultrasound”
recordings were made in free breathing, with the transducer moving arbitrarily
to image any longitudinal and transversal planes of the liver. A second MicroBird
magnetic position sensor was attached to the chest and was tracked. The domi-
nant translation of the tracked sensor was treated as a measure of the breathing
phase [15]. This was tested on four volunteers and in all cases the image based
phase was in agreement with the tracked sensor. An example of this is shown in
Figure 4.

Table 1. Correlation ratio of the detected phase against ground truth for angiography
and liver ultrasound datasets

Modality Compared with Correlation
2D Angiography ECG 0.92
3D Liver US Respiratory tracker 0.88

Validation on Intracardiac Echocardiography images. In order to test the
image-based phase detection method on highly dynamic images, we applied it on
Intracardiac Echocardiography (ICE) images acquired using a Siemens ACUSON
AcuNavTMcatheter[16]. The images were acquired within the left atrium. Being
inside the heart the image acquired by the ICE catheter changes rapidly and
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Fig. 4. Results of Phase detection in Liver ultrasound sequences. The estimated phase
is overlaid with the dominant translation of a magnetic marker placed on the chest.
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Fig. 5. Results of Phase detection in intra cardiac ultrasound sequences. The end-
diastolic image are detected using the image-based phase detection algorithm. The
figure also highlights the effect of a quick catheter move on the image-based phase
signal.

is especially pronounced when the catheter is moved. The phase detection does
however manage to detect the phase correctly, although in some cases there phase
is lost when the catheter is moved rapidly. An example of the phase detection
on ICE images is shown in Figure 5. The figure also illustrates the effect of a
rapid catheter move.

4 Implementation and Performance Considerations

The major use of the proposed algorithm will be in real time interventional appli-
cations requiring a motion phase signal. Additionally, one of the main problems
in using external triggers like ECG signals or displacement transducers is that
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the delay between the systems can be substantial and will limit the acquisition
frequency. For any image based phase detection method to be practical, perfor-
mance is as important as the accuracy with which the phase can be detected. The
proposed algorithm is very fast, and we tested its performance using optimized
code written using the Intel Integrated Performance Primitives for computing the
Fourier transforms. We also tested using an implementation using nVidias CUDA
library. The performance was evaluated on a Intel Core 2 Duo 2.2GHz notebook
with a nVidia Quadro FX 5500 graphics card. We tested using a 1024× 1024 an-
giographic sequence having 132 frames. The optimized software implementation
took on an average 2.3 secs, implying a 60 fps capability with 1024×1024 images.
The GPU implementation worked slightly faster on the same dataset, taking on
an average 1.84 secs to process all 132 frames. Additionally, since the complexity
of the proposed algorithm is dependent on Fourier transform of the input images,
one easy way to speed up the algorithm further is to define regions of interest.

5 Conclusion

In this paper, we presented a novel algorithm for the automatic detection of the
phase of a moving organ system directly from images. The algorithm is able to
detect cardiac and respiratory phases from images of different imaging modality.
We validated the algorithm on XRay angiographic, liver US and intra cardiac
echocardiography images. ECG signals were used to validate the detection of the
cardiac phase, and magnetic markers attached to the chest were used to validate
the detection of the respiratory phase. The algorithm is very fast and can process
images of size 1024× 1024 at rates in excess of 60 fps.

The algorithm should be particularly useful in cardiac and abdominal inter-
ventional procedures where cardiac and respiratory motion make localization
difficult and challenging. Current attempts at image fusion for such procedures
are limited for these reasons. The availability of a reliable image-based phase
detection algorithm should make it possible to compensate for intra-operative
cardiac and/or respiratory motion. It is possible to use the signal for not only
gating but also for real-time dynamic compensation. Real-time dynamic com-
pensation is not currently available mainly because of the high computational
complexity of most motion compensation algorithms. Since a pre-operative com-
pensation for different phases of cardiac/respiratory motion can be performed,
and the results simply recalled based on the current phase of the system, the
image-based phase detection should be most useful for dynamic roadmapping
applications for cardiac interventions.
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Abstract. This paper addresses an approach toward tomographic re-
construction from rotational angiography data as it is generated by C-
arms in cardiac imaging. Since the rotational acquisition scheme forces a
trade-off between consistency of the scene and reasonable baselines, most
existing reconstruction techniques fail at recovering the 3D + t scene.

We propose a new reconstruction framework based on variational level
sets including a new data term for symbolic reconstruction as well as
a novel incorporation of motion into the level set formalism. The re-
sulting simultaneous estimation of shape and motion proves feasible in
the presented experiments. Since the proposed formulation offers a great
flexibility in incorporating other data terms as well as hard or soft con-
straints, it allows an adaption to a wider range of problems and could
be of interest to other reconstruction settings as well.

1 Introduction

The clinical motivation for providing a 3D(+t) reconstruction of the coronary
arteries from rotational angiography data is to provide the physician with intra-
interventional 3D data. Currently, patients with chest pain and other symptoms
for a cardiac infarction either get a conventional CT (for a definite rule-out)
or are directly sent to the catheter lab where diagnosis and intervention are
performed at once using a C-arm system. In the former case, the physician may
obtain a 3D reconstruction which is not intra-interventional whereas in the latter
case, there are only series of 2D X-rays available for diagnosis and navigation.

Bringing the two worlds together requires a reconstruction from calibrated
angiographic projections which can be obtained during a rotational run (190◦)
of the C-arm around the patient (see Fig. 1). Such a run takes about 4 s to
5 s which is a hard limit for technical as well as security reasons. Therefore, a
human heart beats about 4 to 7 times during imaging. The resulting inconsistent
projection data inhibits 3D reconstruction. This is the reason why a simultaneous
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Fig. 1. Rotational angiography of a dynamic scene. (Image is derived from
work by Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist.
http://creativecommons.org/licenses/by/2.5/)

reconstruction of shape and motion is needed in order to compensate for the
heart motion during the reconstruction of the shape.

The ill-posedness of a direct tomographic 4D reconstruction suggests to seek
a symbolic/binary reconstruction first and then use the recovered motion for a
later tomographic reconstruction. Such a symbolic reconstruction is performed
on the coronaries since they are contrasted and cover the motion in the relevant
area around the patient’s heart.

2 Related Work

To the authors’ knowledge, all previous work on cardiac cone beam CT makes
strong use of the assumption that the heart motion can be grouped into several
phases (usually defined by a percentage value between two adjacent R-peaks).
Within such a phase (e. g. 10% − 20%), the heart is assumed to re-position to
the same state in each of the phase’s images. This permits a retrospective gating
using the simultaneously recorded ECG signals. Based on this, Blondel et al. [1],
Hansis et al. [2], and Movassaghi et al. [3] mostly rely on epipolar geometry and
triangulation. Temporally distant but spatially consistent projections (yielding a
wider baseline) are used to reconstruct 3D points and track them over time. Us-
ing traditional computed tomography solutions (like filtered back projection [4]
or algebraic reconstruction [5,6]) Prümmer et al. [7] and Schäfer et al. [8] perform
phase-wise tomographic reconstructions. These phase-wise reconstructions can
then be fused if the motion between cardiac phases is somehow known. [8] focuses
on themotion-compensatedFDK-reconstruction algorithmassuming aknownmo-
tion field whereas [7] also proposes to do multiple sweeps for acquiring enough
projection data.

For the following reasons we propose a level set framework for symbolic re-
construction instead of using tomographic- or triangulation-based methods: Due
to the bad image quality of contrasted angiographic X-ray projections, an algo-
rithm not explicitly using correspondences but just a soft coupling of points in
3D space would be desirable. Although healthy hearts beat in a more or less reg-
ular manner, assuming exact re-positioning and perfectly periodic ECG signals
is a quite strong requirement. This is in particular problematic for patients with



Dynamic Cone Beam Reconstruction 391

pathologies like congenital cardiac defects or a prior bypass-surgery. To this end,
a soft coupling in time domain could also prove to be advantageous. Level sets
have the further advantage of being able to handle the unknown tree structure.

Although we will present novel data terms and a new space-time coupling,
we still want to point the reader to the following works which we share some
ideas with: Yoon et al. [9] perform a CT-like reconstruction from X-ray data
using multiphase level sets. This work enables the reconstruction of piece-wise
constant tissue from very few projections but does not deal with motion. Rathi
et al. [10] and Cremers et al. [11] perform deformable tracking on 2D images
using active contours which is related to our time-coupling.

Additionally, there is a lot of related work on 3D reconstruction from optical
images using level sets, graph cuts, or voxel occupancy techniques. For the sake
of brevity, we do not delve into this field but just want to mention Franco et al.
[12] who give a nice derivation and solution to the problem of 3D reconstruction
from probabilistic silhouette images in a synchronized multi-view environment.

3 Methods

Having laid out our motivation for developing a level set framework (offering
the desired soft coupling) for symbolic reconstruction we now proceed to its
modeling. The main theoretical contributions of this paper are the development
of energy terms, fitting a level set function to the given image data, and its usage
with a dynamic1 level set function.

3.1 Dynamic Level Sets

Since we seek to obtain a symbolic or binary reconstruction of our 3D scene
over time, we have chosen to model the “inside” and “outside” of reconstructed
objects using a level set function

Φ0 :
{

R
3 → R

x0 �→ Φ0(x0)
(1)

on some reference domain with coordinates x0 and the convention Φ(x0) < 0 for
“inside” or reconstructed points. In order to establish a temporal relationship
of the reconstruction frames, this level set function is made dynamic by intro-
ducing a warping transformation ϕ. Similar to what was presented in [13], this
transformation maps points from location x at time t to coordinates x0 in the
reference frame where the shape is reconstructed using one single level set func-
tion Φ0. For the experiments presented in this paper, we modeled a rigid motion
over time using 6 temporal B-splines (with 10 degrees of freedom each) for the
time-dependent rotation matrix R and translation vector T yielding coefficients
α ∈ R

6×10:
1 “Dynamic” in this context means the deformation of the level set function over the

real time variable t (as opposed to an evolution of the level set function over artificial
time during iterations).
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ϕ :
{

R
3 × R× R

6×10 → R
3

(x, t, α) �→ R(t, α) ·x + T (t, α) (2)

Note that the reference frame is arbitrary and not fixed to any point in time.
This way, we avoid any bias toward a specific time.

Putting together equations (1) and (2), we obtain the dynamic level set func-
tion Φ : R

3 × R× R
6×10 → R

Φ(x, t, α) = Φ0
(
ϕ(x, t, α)

)
. (3)

Note that one could also choose to directly model a 4D level set function Φ(x, t).
But using a dynamic warping function ϕ has several advantages:

– The shape reconstruction is implicitly regularized over time, since there is
only one shape model.

– The motion can be recovered directly, simplifying its later use in a tomo-
graphic reconstruction as well as enabling a direct motion regularization.

– Memory requirements are much lower compared to a 4D grid if ϕ is
parametrized.

3.2 Reconstruction Energies

Having built a model for the shape and motion to be reconstructed, we now
proceed to setting up an energy functional that fits the reconstruction parameters
Φ0 and α to the given L projection images Il acquired at times tl, 1 ≤ l ≤ L.
The projection images’ pixels are assumed to contain intensity values in [0, 1]
corresponding to the probability that the associated ray hit a vessel. Imposing
penalties on false positive and false negative reconstructed points in space works
in a manner similar to what was first presented by Chan and Vese [14] but taking
into account the projective character of the imaging device:

Let V be the reconstruction volume, Pl : R
3 → R

2 the projection operator
for frame l, and H the Heaviside step function (or rather a mollified version of
it, see [14] for examples). The false positive term then is

EFP(Φ0, α) =
L∑

l=1

∫
V

SFP

(
Il

(
Pl(x)

))
·
[
1−H

(
Φ0(ϕ(x, tl, α))

)]
·
[
1− Il

(
Pl(x)

)]
dx , (4)

where SFP(i) = H
( 1

2 − i
)

is a switching function, enabling the false positive
penalty for low intensities/probabilities i ∈ [0, 1

2 ] only. In this formula, the first
two factors filter out the false (1st factor) positive (2nd factor) reconstructions,
whereas the 3rd factor is a weighted penalty. This way, reconstructed points are
penalized every time they are hit by a “non-vessel ray”.

Penalizing false negatives works in a similar way. However, the big difference is
that we cannot accumulate penalties in volume space. Due to the images being
probabilistic projections, we may only impose a false negative penalty if, and
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only if, no object is reconstructed along the whole ray corresponding to a high
intensity pixel.2 Thus, whole rays have to be considered instead of single points:

EFN(Φ0, α) =
L∑

l=1

∫
A

SFN
(
Il(p)

)
·H

(
min

x∈Xl(p)
Φ0

(
ϕ(x, tl, α)

))
· Il

(
p
)

dp (5)

Here, A ⊂ R
2 is the projection image space, Xl(p) is the set of volume points

corresponding to pixel p in image l, and SFN(i) = H
(
i− 1

2

)
is the switch-

ing function enabling the term for falsely reconstructed points only. The three
factors here are responsible for selecting pixels which indicate a vessel to be
reconstructed on the ray to pixel p (1st factor), selecting rays where all Φ val-
ues are positive, i. e. there is no object reconstructed (2nd factor), and adding a
weighted penalty (3rd factor), respectively.

The two data terms seem to be of very different type. This is remedied by
either appropriately weighting them or reformulating the false negative term to
a volume integral using the coarea formula.

3.3 Regularization

In terms of regularization we only need to care about shape regularization at this
point since the motion parameters are inherently regularized due to the usage of
B-Splines with an appropriate number of knots. For obtaining a smooth shape
reconstruction in the reference frame, we use

Eshape(Φ0) =
∫

V0

δ(Φ0(x)) · ‖∇Φ0(x)‖ dx (6)

for penalizing the level set surface and thereby favoring reconstructions with low
surface curvatures.

3.4 Implementation

Optimizing the system

E(Φ0, α) = λFN ·EFN(Φ0, α) + λFP ·EFP(Φ0, α) + λshape ·Eshape(Φ0) , (7)

resulting from putting together the terms (4)–(6), is rather complex as two sets of
parameters must be computed simultaneously, namely the shape model Φ0 and
the deformation parameters α. The former is minimized using the variational
derivative of δE

δΦ0
, the latter by calculating the gradient ∇αE. Computing these

terms from their analytic forms involves deriving the minimum functional from
equation (5), several numerical approximations, and a step size management
during gradient descent for Φ0 and α.

2 Note that another approach would be to focus on a point in space and impose a false
negative penalty iff all projected intensities enforce an object. However, this would
favor “empty” reconstructions due to the initially inconsistent data.
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The most demanding issue to solve is the computation of EFN and its deriva-
tive. It involves ray casting (customized to using 3× 4 projection matrices and
applying the estimated motion for every sample point) for computing the mini-
mum contained in the equation’s second factor. Updates to Φ0 have to be applied
at the sample points (which are in general not at grid locations of Φ0) and thus
be “backward-interpolated”.

Several approaches to implement such a scheme are possible, including GPU-
based methods. After considering aspects related to memory usage and speed of
computation, we decided to use a CPU-based procedure, optimized using the
OpenMP framework. Even though GPUs appear to be a natural choice for ray
casting, their bad support for arbitrary writes disqualifies them for this algorithm.

4 Experiments and Discussion

We tested our method using synthetic and phantom data. The “synthetic” data
was created by modeling tubes of considerable diameter clearly visible in the
projection images (see Fig. 2(a) and (b)) while the “phantom” data was physi-
cally built, scanned, reconstructed (without motion) and segmented. It contains
thin vessels of just 1 or 2 voxels diameter as visible in Fig. 2(d). In both cases, we
used 3×4 projection matrices, obtained from the calibration of a real stationary
C-arm, to generate synthetic views of the data. During the virtual image ac-
quisition process we applied a dynamic but rigid motion with realistic intervals

(a) (b) (c)

(d) (e) (f)

Fig. 2. Two examples of the imaging and reconstruction process. Top row: “Synthetic”
data without noise. Bottom row: “Phantom” data with 50 % noise. From left to right:
Ground truth models, exemplary projection, and the final reconstruction. Note that
the projections do not show a static setting, but a snapshot of a moving artery tree.
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Table 1. Comparison of the reconstruction errors. The two data sets “Synthetic” and
“Phantom” were reconstructed at three different noise levels. All errors are given in
mm and have been evaluated for a series of 5-10 experiments.

Data Set Noise Mean St.D. Max. Med.

Synthetic 0% 0.54 0.30 2.19 0.47
Synthetic 25% 0.68 0.36 3.14 0.60
Synthetic 50% 2.36 2.53 11.73 1.18

Phantom 0% 0.91 0.48 4.41 0.82
Phantom 25% 0.88 0.46 4.37 0.81
Phantom 50% 4.15 2.70 9.79 3.86

Data Set Noise Mean St.D. Max. Med.

Synthetic 0 − 50% 1.20 1.70 11.73 0.64
Phantom 0 − 50% 1.98 2.22 9.79 1.03

both 0% 0.81 0.47 4.41 0.72
both 25% 0.83 0.45 4.37 0.75
both 50% 3.68 2.77 11.73 3.07

and amplitudes. An image inhancement step as necessary in the real applica-
tion could be omitted grace to the use of symbolic ground truth data. Instead,
we randomly added Gaussian noise (with zero mean and standard deviations
of 25 % and 50 % of the full intensity range) to the projection images in order
to test the proposed algorithm’s sensitivity to noise. Sample projections with
different magnitudes of noise are shown in Fig. 2.

As a result of these steps, we obtained a series of projection images of the
moving artery tree, and their corresponding projection matrices. In order to
speed up testing, we worked on rather coarse data using 48 projections at 155×
120 pixels each (compared to 200-400 images at 620× 480 pixels each in a real
setting). The reconstruction volume V covered a cube of size (15cm)3, discretized
as grid of 503 voxels.

All experiments have been run on high-performance hardware, including quad-
core and 24-core equipment. The execution time depends on several factors such
as noise and complexity of both motion and image content. For the 24-core
machine, an average execution time of roughly 5 min for 100 iterations has been
attained, after which the result was stable.

In order to compute a meaningful error measure, we collected all spatial points
Xk=1..K corresponding to vessel voxels in the ground truth data. Afterwards,
for each moment tl, we warped these points using both the ground truth motion
R̂(tl), T̂ (tl) and the reconstructed motion R(tl, α), T (tl, α) and computed the
reconstruction error∥∥∥[R̂(tl) ·Xk + T̂ (tl)]− [R(tl, α) ·Xk + T (tl, α)]

∥∥∥
2

(8)

for every point Xk at every moment tl.
A comparison of errors for two data sets and three noise levels is given in

Table 1. Obviously, the algorithm supports a fair amount of noise. Still, low-
noise images (25 %) compare best to the segmented vessel images to be used in
the final application. The phantom data set performs worse than the synthetic
model. However, this problem can most likely be traced to the coarse resolution
we used despite the fine structures of this data set (see Fig. 2, bottom row).
Nevertheless, the motion was usually still well estimated, in these cases. The
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average errors for reasonably posed problems with max. 25 % noise does not
exceed 1 mm (and thus is sub-voxel accurate) even though we downsampled all
data by factor four in space and time compared to the real setting.

5 Conclusion

The presented method is a promising alternative to other cone beam reconstruc-
tion procedures. Its major benefit is that it does not depend on hard constraints
such as perfect ECG signals (although they may be included as a soft constraint
later) or an exact re-positioning of cardiac anatomy between heart beats.

However, the motion description does not yet cover all possible motions that
one encounters in the clinical setting. Future work will thus aim at more universal
descriptions providing more degrees of freedom, such as affine transformations
and fully deformable models. Especially in the latter case, application-specific
soft constraints (e. g. relating ECG and motion) will become necessary.
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7. Prümmer, M., Wigström, L., Hornegger, J., Boese, J., Lauritsch, G., Strobel, N.,
Fahrig, R.: Cardiac C-arm CT: Efficient motion correction for 4D-FBP. In: NSS
and MIC, pp. 1–20. Springer, Heidelberg (2006)
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Abstract. Traditionally, dynamic PET studies reconstruct temporally
contiguous PET images using algorithms which ignore the inherent con-
sistency between frames. We present a method which imposes a regular-
isation constraint based on wavelet denoising. This is achieved efficiently
using the Dual Tree – Complex Wavelet Transform (DT-CWT) of Kings-
bury, which has many important advantages over the traditional discrete
wavelet transform: shift invariance, implicit measure of local phase, and
directional selectivity. In this paper, we apply the decomposition to the
full spatio-temporal volume and use it for the reconstruction of dynamic
(spatio-temporal) PET data.

Instead of using traditional wavelet thresholding schemes we introduce
a locally defined and empirically-determined Cross Scale regularisation
technique. We show that wavelet based regularisation has the potential
to produce superior reconstructions and examine the effect various levels
of boundary enhancement have on the overall images.

We demonstrate that wavelet-based spatio-temporally regularised re-
constructions have superior performance over conventional Gaussian
smoothing in simulated and clinical experiments. We find that our
method outperforms conventional methods in terms of signal-to-noise
ratio (SNR) and Mean Square Error (MSE), and removes the need to
post-smooth the reconstruction.

1 Introduction

Positron Emission Tomography (PET) is a functional medical imaging modality
which is able to record accurate pharmacokinetic information. When a radio-
tracer such as 18F -FDG is administered to the patient, the reconstruction of the
detected projection data enables the visualisation of a tracer distribution in-vivo.
Dynamic PET typically involves detecting and independently reconstructing a
contiguous sequence of scans (“frames”), which can range in duration from a
few seconds to many minutes. The choice of the specific frame duration is usu-
ally difficult to justify, with short frames having higher temporal resolution and
long frames having higher spatial resolution. The majority of clinical PET scans
� We are thankful to Anthonin Reilhac for the use of PET-SORTEO; Siemens Molec-

ular Imaging for providing clinical data; and the Department for Business Enterprise
and Regulatory Reform for their financial assistance.
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which have been performed to date are static in nature. However, in this work
we show the potential improvements in image quality that are possible when the
goal of dynamic imaging is explicitly incorporated into the reconstruction.

The main motivating factor of Dynamic PET over simple Static images is
that abnormal physiology provides clinicians far more information than abnor-
mal anatomy alone. This is particularly true for cancer radiotherapy treatment
plans, where there is growing evidence that PET is able to visualise a patient’s
responsiveness to treatment before anatomical changes are apparent. Detecting
early responses to treatment enables clinicians to modify treatment plans as
required, reducing the patient’s discomfort and improving their survival chance.

True signal recovery from noisy estimates is a classical signal analysis prob-
lem. Many attempts have been made to reduce the noise inherent in dynamic
PET using various regularisation techniques. One idea is to apply Gaussian tem-
poral filtering to smooth the Time Activity Curve (TAC) estimates. Another is
the method of Nichols et al, which estimate TACs using B-Spline temporal basis
functions [1]. Reader et al. proposed using a specific compartmental model [2].
Kamasak et al. [3] extended the idea of Carson and Lange [4] of directly esti-
mating kinetic parameters from the projection data, but require that that com-
partmental model is known a priori. Various data-driven reconstruction methods
have also been previously explored in the literature, such as PCA [5] and the
KL transform [6].

Wavelet denoising has also been a popular topic in PET recently, with there
being many attempts to remove noise from both the projection data as well as
the reconstructed images. Shidhara et al. provides a good summary of a number
of these methods with emphasis on how their application affects pharmacokinetic
parameter estimates [7]. Lee et al. [8] utilises Robust Wavelet Shrinkage, Bhatia
et al. [9] remodelled the FBP algorithm in the wavelet domain and Verhaeghe
et al. recently proposed a reconstruction algorithm using E-Spline wavelet-like
temporal basis functions [10].

The method we present explicitly incorporates a modified spatio-temporal
wavelet regularisation procedure directly into the reconstruction algorithm. The
method decomposes the spatio-temporal activity estimate into the complex
wavelet domain and empirically regularises the reconstruction. The Dual Tree –
Complex Wavelet Transform (DT-CWT) [11] is used due to its many superior
properties. We show that our method results in improved dynamic PET recon-
structions when tested on simulated data and leads to less noisy and visually
improved images for clinical colorectal data.

2 Method

2.1 Image Reconstruction

The forward projection model of dynamic PET for a matrix of F temporal I-
dimensional detected projection data vectors Y ∼ Poisson

{
Ŷ

}
can be written

as:
Ŷ = PX + R + S (1)
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where X is the J × F spatio-temporal image activity matrix used to represent
the dynamic radioactivity distributions; P is the forward projection matrix rep-
resenting the probability that an emission from the jth spatial basis function is
detected by the ith Line of Response (LOR); and R and S are the Randoms and
Scatter contribution vectors to the expected data.

Substituting Equation (1) into the Log-Likelihood function of a Poisson
process, differentiating and then rearranging gives the conventional ML-EM
algorithm [12] for reconstructing the spatio-temporal tracer distribution X:

Xk+1(t) =
Xk(t)
PT 1

PT Y(t)
PXk(t) + R(t) + S(t)

, (2)

where the product and division of vectors are understood to be carried out
element-wise (as in [2]), 1 represents a vector of 1′s, and each temporal frame
t = 1, · · · , F is reconstructed independently.

We modify the above algorithm to include spatio-temporal regularity between
neighbouring voxels and temporal frames with the aim of preserving boundaries.
After a single independent update of each of the F images using Equation (2), the
reconstruction volume is decomposed, denoised and then recomposed using the
multi-resolution complex wavelet transform. The overall regularised algorithm
therefore becomes:

Xk+1(t) =
X̃

k
(t)

PT 1
PT Y(t)

PX̃
k
(t) + R(t) + S(t)

(3)

X̃
k+1

(t) = W
(
μ
(
W−1

(
Xk+1

)))
(4)

where Xk is the current reconstruction estimate for all time frames obtained
from Equation (3), W and W−1 are the DT-CWT forward and inverse multi-
resolution complex wavelet transforms, and μ is the denoising operator.

2.2 DT-CWT Cross Scale Regularisation

Gaussian Smoothing (GS) can be thought of as low-pass filtering in the fre-
quency domain. Any high-frequency structures are assumed to be noise and
smoothed regardless of their relative magnitudes. Wavelets on the other hand
decompose signals into multi-resolution representations, based on scaled and
translated “mother” wavelet functions. Compactly supported wavelets with large
coefficients indicate jumps in signal value, whilst small absolute valued coeffi-
cients indicate mostly noise. This encodes important information at every res-
olution level in the coefficients on that level which have the largest absolute
values. Keeping only these coefficients will result in less noisy reconstructions
while ensuring edges remain sharp.

The Dual Tree – Complex Wavelet Transform (DT-CWT) of Kingsbury, which
is documented in [11], is an efficient implementation of the complex-valued
wavelet transform which has many advantageous properties over the traditional
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Dyadic Discrete Wavelet Transform (DWT). For our work it can be considered
a “black-box” which decomposes spatio-temporal volumes into multi-resolution
complex coefficients. For a 1D signal, the complex valued wavelet coefficients
are calculated by applying two separate standard DWT decompositions to the
signal (with separate bio-orthogonal filters), with one tree containing the real
coefficients and the other tree containing the imaginary coefficients.

The DT-CWT decomposition is shift invariant, directionally selective with
strong orientation at multiple angles, has a measure of local phase1 and is mini-
mally redundant.2 In this paper we use the advantageous properties of the DT-
CWT and introduce a novel spatio-temporally varying denoising method aimed
at being not only level dependent, but also adaptive to both varying signal and
noise levels. We choose to use 3 decomposition levels and near-symmetric filters.

Conventional wavelet denoising methods usually consist of thresholding or
shrinking wavelet coefficients with the aim of removing noise regardless of the
signal’s frequency content. The choice of particular threshold method and thresh-
old value is in practice still an active area of research, and strongly influences the
resulting images. Cross scale regularisation notes that edge information propa-
gates across multiple frequencies, enabling an empirical level-dependent denois-
ing scheme based on the boundary information from coarser levels.

Let F l
w denote the multi-resolution complex wavelet decomposition for level l

and directional sub-band w. Then, for each directional sub-band independently,
and working from the second coarsest level to the finest, we pointwise multiply∣∣F l

w

∣∣ by the locally normalised coefficients of the next coursest level (performing
interpolation where necessary):

Mnew
l =

∣∣F l
w

∣∣ ·
∣∣F l+1

w

∣∣
(1− α)max

{∣∣{F l+1
w ∈ N3

}∣∣} , (5)

where N3 is proportional to an eighth of the size of the current decomposition
level and α is the boundary enhancement term used to amplify dominant coef-
ficients. The use of an enhancement factor is somewhat ad hoc but its aim (and
advantage) is to encourage sharper edges between regional boundaries3. Finally,
we use the phase of the original complex wavelet coefficients to convert the new
wavelet magnitudes back into the complex domain.

The denoising scheme proposed here is an extension to the conventional cross-
scale method. It is able to account for the spatially varying noise levels found in
PET reconstruction by working with local maximums, enabling boundaries for
regions of any activity to be sharpened.
1 It is well known that phase carries significant visual information and therefore should

not be corrupted during the denoising process.
2 TI-DWT of Coifman and Donoho is also shift-invariant but at the cost of being

maximally redundant.
3 We note that choosing α to be too large may result in imaging artefacts being

produced due to the possible over amplification and dampening of voxel values either
side of a boundary and hence we encourage erring on the side of caution when
choosing the value.
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(a) Biologically plausible
TACs

(b) Example TACs estimates for the various reconstruc-
tion algorithms.

Fig. 1. Simulation TACs and reconstruction TAC estimates

3 Results and Discussion

The proposed DT-CWT denoising algorithm was assessed using both highly re-
alistic 3D+t PET-SORTEO simulation data and clinical colorectal data. We
compared our method to conventional FBP and OSEM, and a method which
uses Gaussian Smoothing (GS) as opposed to Wavelet denoising. Many alterna-
tive reconstruction algorithms have previously been proposed but their clinical
significance is less tried and tested. GS denotes the convolution of the current
estimate with a spatio-temporal Gaussian kernel of size σ = 1.

3.1 PET-SORTEO Simulated 3D+t PET Data

The PET-SORTEO Monte Carlo-based simulator [13] is used to generate realistic
dPET data based on the NCAT phantom. The biologically plausible TACs shown
in Figure 1(a) taken from [2] were assigned to the four regions of the NCAT
phantom shown in Figure 2. TAC 1 was assigned to the background, TAC 2 to
the round anomalous region within the liver, TAC 3 to the liver and TAC4 to
the round anomalous region in background.

Sixty four temporal frames each 93.75 seconds in duration were generated to
produce sinograms of size 144× 288× 239 covering the whole 1 hour 40 minute
scan acquisition. A total of approximately 4.3 million events were recorded along
the central slice through the phantom for which we show results. Randoms and
Scatter events were not included in this simulation as, in the ideal case, they
would be perfectly accounted for by the Randoms and Scatter matrices R and S
respectively. Attenuation was also not simulated because it is assumed that this
would be accounted for in practice using one of a variety of correction techniques.
Images of size 64× 64 were produced for reconstruction algorithms.

We compare the conventional reconstruction algorithms with our new method,
after 10 iterations (8 subsets). Figure 1(b) shows (typical) example voxel TAC
estimates for the different algorithms compared. We see that the un-regularised
FBP and OSEM algorithms have greatly varying activity curves compared to



Spatio-temporal Reconstruction of dPET Data 403

Fig. 2. Single central slice of frame 20 for different reconstructions. Top row: true
image, FBP, FBP with post-Gaussian smoothing, OSEM, OSEM with inter-iteration
GS and OSEM with post-GS. Bottom row: DT-CWT methods for enhancement levels
0, 0.1, 0.2, 0.3 and 0.4, and OSEM with post- DT-CWT denoising.

Table 1. Comparison of reconstruction algorithms: MSE and SNR

MSE ROI 1 ROI 2 ROI 3 ROI 4
FBP 66.35 3.511 4.767 -4.6114 -4.4709

FBP-GS 15.11 11.3985 11.5186 5.4651 4.1076
OSEM 52.67 2.3062 3.1173 -2.6621 -3.3012

OSEM-GS 13.79 11.5342 8.3733 4.0789 0.99131
OSEM- Post GS 12.48 11.6388 11.225 6.1949 3.5224
DT-CWT (0) 10.02 11.6642 11.8975 6.2744 2.9651

DT-CWT (0.1) 10.04 11.6567 11.8726 6.3042 3.0846
DT-CWT (0.2) 10.87 11.5011 11.7983 6.3400 2.7726
DT-CWT (0.3) 14.17 10.9838 9.0917 4.7827 1.3988
DT-CWT (0.4) 22.51 9.8971 4.3427 2.9892 0.54596

OSEM- Post DT-CWT 11.31 10.3631 9.6655 5.2576 2.8127

the regularise TACs. We note that the new method provides the best estimate
out of all the algorithms, being not only lower in bias but temporally smoother.

Figure 2 shows the reconstructions of frame 20 for both conventional and
our DT-CWT algorithms with five levels of enhancement. All of the regularised
and smoothed images have reduced noise. Significant speckling remains for post
reconstruction smoothing, however. The DT-CWT for small enhancement levels
produces less noisy images with sharper edges between regions of interest. As
expected, artefacts are introduced for large enhancement levels.

The quantitative accuracy of the reconstructions are compared by using the
Mean Square Error (MSE) and Temporal Signal to Noise Ratio (TSNR) mea-
sures, taken from Verhaeghe et al [10]. Table 1 shows that the new method results
in lower MSE than the conventional algorithms. Even though MSE is known not
to be the best quantitative measure for medical imaging, it encourages further
investigation. The average temporal SNR of each region shows that for the first
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Fig. 3. Single central slice showing TSNR for the different reconstructions. Results
shown for FBP (with and without post-GS), OSEM (with and without inter-iteration
and post-GS), our DT-CWT method (with an enhancement level of 0.1) and OSEM
with a single operation of post-reconstruction DT-CWT denoising.

(a) Single central slice of frame 28 (b) Central voxel TACs

Fig. 4. FBP, FBP with post-GS, OSEM, OSEM with inter-iteration GS, and DT-CWT
methods with enhancement levels 0, 0.1 and 0.2

three regions the new method out-performs the conventional methods. FBP with
post-Gaussian smoothing results in larger TSNR for the last region, which we
suspect is caused by slight biasing due to the region’s proximity to the phan-
tom’s exterior. Figure 3 shows the TSNR values of each voxel in the 2D slice. We
see that our DT-CWT with a boundary enhancement of 0.1 results in superior
SNR around region edges than the OSEM-GS method and less speckling than
post-Gaussian smoothing.

3.2 Clinical 3D+t Colorectal PET Data

To aid the validation process for the above new DT-CWT dynamic PET recon-
struction technique we apply the algorithms to clinical colorectal data. A total
of 321 million events where recorded for a 60 minute acquisition, acquired from
Siemens Molecular Imaging. These events were then histogrammed into twenty
eight equal duration contiguous sinograms of size 336 × 336 × 313. Results are
again shown for the 64× 64 central slice reconstruction.

Figure 4(a) shows the reconstructions of the final frame (128 seconds of data)
for the DT-CWT method with three levels of enhancement, FBP with and
without post-Gaussian smoothing, and conventional OSEM with and without
inter-iteration Gaussian smoothing. It appears that the DT-CWT method sig-
nificantly reduces noise due to the spatio-temporal regularisation, but without
overly blurring boundary edges seen in the OSEM-GS image. An enhancement
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greater than zero again appears to lead to sharper images, but it needs to be
small enough not to introduce artefacts. Figure 4(b) compares the TACs ob-
tained by the various methods, demonstrating again that noise is reduced by the
DT-CWT method.

4 Conclusion

A novel approach to dynamic PET iterative reconstruction is proposed which en-
sures consistency between neighbouring voxels and frames using DT-CWT. The
method regularises the reconstruction process using spatio-temporal wavelet de-
noising. The Cross-Scale Regularisation method is examined and shown to lead to
better results than Gaussian smoothing for our experiments. Results are shown for
simulated and clinical dPET data and imply that wavelet regularisation enables
superior quantitative reconstructions.
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Abstract. We address the problem of efficient sampling of the diffusion
space for the Diffusion Magnetic Resonance Imaging (dMRI) modality.
While recent scanner improvements enable the acquisition of more and
more detailed images, it is still unclear which q-space sampling strategy
gives the best performance. We evaluate several q-space sampling distri-
butions by an approach based on the approximation of the MR signal by
a series expansion of Spherical Harmonics and Laguerre-Gaussian func-
tions. With the help of synthetic experiments, we identify a subset of
sampling distributions which leads to the best reconstructed data.

1 Introduction

The random Brownian motion of the water molecules is constrained by the
microstructure of the brain white matter. The Diffusion Magnetic Resonance
Imaging (dMRI) modality captures this local average displacement in each voxel
using the pulse gradient spin echo sequence [1] and thus indirectly leads to images
of the brain architecture. These images provide useful information to diagnose
early stages of stroke and other brain diseases [2]. However, this average molecu-
lar displacement is not directly measured. Indeed, as the diffusion gradient pulse
duration δ is negligible compared to the diffusion time Δ, the normalized MR
signal E defined in the q-space is related to the average displacement Probability
Density Function (PDF) P by the Fourier transform [3]

P (p) =
∫
q∈R3

E(q) exp(−2πiqTp)dq, with E(q) =
S(q)
S0

, (1)

where p is the displacement vector and q stands for the diffusion wave-vector of
the q-space. The symbols S(q) and S0 respectively denote the diffusion signal
at gradient q and the baseline image at q = 0.

Eq.(1) naturally suggests one should sample the whole q-space and use the
Fourier transform to numerically estimate the PDF. This technique, known as
Diffusion Spectrum Imaging (DSI) [4], is not clinically feasible mainly because of
the long acquisition duration required to retrieve the whole set of needed q-space
coefficients. As a result of DSI constraints, High Angular Resolution Diffusion
Imaging (HARDI) [5] has come as an interesting alternative and proposes to
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sample the signal on a single sphere of the q-space. Most of the methods of the
literature working on HARDI images [6,7,8,9] consider a single shell acquisition
and have thus to assume strong priors on the radial behavior of the signal,
classically a mono-exponential decay for instance.

Sampling schemes on several spheres in the q-space have been only proposed
very recently [9,10,11,12,13,14]. Since the number of samples still remains too
low for computing the Fourier transform, proposed methods rather consider com-
puted tomography technique [13] or approximations of the MR signal radial at-
tenuation by multi-exponential functions [9,11]. Note that even if these methods
use a larger set of data, they are still using a-priori models of the radial behavior
of the input signal. In section 2, we first overview the mathematical background
of one previous diffusion features estimation method introduced in [15,16]. Then,
we review several q-space sampling strategies proposed so far in the literature
and detail the evaluation procedure of the experiments in section 3. We conclude
on the results in section 4.

2 Spherical Polar Fourier Expansion

To be as self-contained as possible, we briefly overview our previous estimation
method introduced in [15,16] based on the Spherical Polar Fourier (SPF) ex-
pansions. In order to be able to reconstruct the PDF from Eq.(1) even with few
samples, we seek to build a basis in which the acquired signal is sparse.

Let E be the normalized MR signal attenuation. We propose to express it as a
series in a spherical orthonormal basis named Spherical Polar Fourier (SPF) [17]:

E(q) =
S(q)
S(0)

=
∞∑

n=0

∞∑
l=0

l∑
m=−l

anlmRn(||q||)ym
l

(
q
||q||

)
, (2)

where anlm are the expansion coefficients, ym
l are the real Spherical Harmonics

functions (SH), and Rn is an orthonormal radial basis function.
The angular part of the signal E then is classically reconstructed by the com-

plex SH Y m
l which form an orthonormal basis for functions defined on the single

sphere. They have been widely used in diffusion MRI [18]. Indeed, as the dif-
fusion signal exhibits real and symmetric properties, the use of a subset of this
complex basis restrained to real and symmetric SH ym

l strenghten the robust-
ness of the estimated reconstruction to signal noise and reduces the number of
required coefficients [18].

Meanwhile, the radial part of the signal E is reconstructed in our approach
[15,16] by the elementary radial functions Rn. A sparse representation of the
radial signal should approximate it in a few radial order N . Based on these
observations, we propose to estimate the radial part of E using the normalized
generalized Gaussian-Laguerre polynomials Rn:

Rn (||q||) =
[

2
γ3/2

n!
Γ (n + 3/2)

]1/2

exp
(
−||q||

2

2γ

)
L1/2

n

(
||q||2

γ

)
, (3)
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where γ denotes the scale factor and L
(α)
n are the generalized Laguerre polynomi-

als. The Gaussian decay arises from the normalization of the Laguerre polynomials
in spherical coordinates.

The SPF forms an orthonormal basis where a low order truncation assumes a
radial Gaussian behavior as in [9,11] and a high order truncation provides model-
free estimations. Besides, the square error between a function and its expansion
in SPF to order n <= N and l <= L converges to zero as N and L go to infinity.
We fit the signal to the SPF by a damped least square minimization procedure.
The best fitting coefficients anlm are thus given by a regularized Moore-Penrose
pseudo-inverse scheme:

A = arg min
A

||E−MA||2 + λl||L||2 + λn||N||2 = (Mreg)−1MTE (4)

where M = (Rn(||qj ||)ym
l ( qj

||qj ||))nlm×j∈N3×N denotes the SPF basis matrix,
Mreg = MTM + λnNTN + λlLTL and E,A respectively denote the vectors
(E(q1), . . . , E(qns))

T and (a000, . . . , aNLL)T. Since the matrix Mreg is likely to
be ill-conditioned because of the highly reduced number of samples, we use reg-
ularization matrices L and N with entries l2(l + 1)2 and n2(n + 1) along their
diagonal. They penalizes high variations of the angular and radial parts of SPF in
the estimation under the assumption that they are likely to capture signal noise.
The symbols λl and λn respectively denote angular and radial regularization
weights.

3 Material and Methods

The number of data samples is limited because of the restricted acquisition. So
the sampling scheme is actually something critical and should be chosen wisely.
Indeed, given a fixed number of samples (clinical constraint), which repartition
of the q-space samples is the best ? Which radial order truncation N should be
chosen to fit Gaussian or bi-Gaussian MR datasets ? All these questions about
the acquisition protocol are the focus of the following experiments.

3.1 q-Space Sampling

Let ns ∈ N be the total number of samples and nb ∈ N the number of sampling
sphere. Let f be the number of samples on one sphere x ∈ [1, nb] so that

fx(η) =
qη
x∑nb

i=1 qη
i

ns, and qi(β) =
(

i− 1
nb − 1

)β

(qmax − qmin) + qmin (5)

where qi ∈ [qmin, qmax] refers to the radius of the i-th sphere. For simplic-
ity sakes, the radii are considered as uniformly distributed (β = 1) between
[qmin, qmax] = [1, 30] cm−1. The sampling points on each sphere should be as
evenly spread as possible and are thus computed by electrostatic energy mini-
mization as proposed in [14]. The spheres which possess very few samples are
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Table 1. Overview of the different considered strategies for the q-space sampling. From
a fixed number of total samples ns = 300 and spheres nb, the parameter η sets the
spherical repartition of samples in the q-space as described by Eq.(5). The radii of the
spheres are uniformly distributed (β = 1).

η = −2 η = −1 η = 0 η = 1 η = 2 η = 3

nb = 2

nb = 5

nb = 10

randomly rotated to capture more signal (fx(η) ≤ 6 in our experiments). Over-
all, f(η = 0) corresponds to a constant number of samples on each sphere as
described in [13,15,19]. f(η = 2) corresponds to a uniform spherical sampling as
introduced in [11,12].

3.2 Data Processing

The following multi-exponential model was used to generate the considered syn-
thetic data,

E(q) = E(q · u) =
Nf∑
k=1

fk exp
(
− (q −mk)2uTDku

2 σ2

)
(6)

where
∑Nf

k=1 fk = 1 and ||u|| = 1. The symbol Nf stands for the number of
fibers, mk is the mean diffusion and Dk is a 3 × 3 symmetric definite positive
matrix defining the diffusion anisotropy for the k-th fiber. The scale factor γ was
calculated on the data samples using the Apparent Diffusion Coefficient (ADC)
with a linear least square fit so that γ = (2 ADC)−1. Thus the decay of the SPF
basis eigenfunctions at order n = 0 have the same scale as the sampled data. For
a single fiber configuration as in Fig.1b, diag(Dk) = [1.5; 0.2; 0.2] mm2s−1 and
σ = 5.

In Fig.2, we determine which truncation order is sufficient to capture the
standard data pattern presented in Fig.1. The normalized error of the power
spectrum between the original and reconstructed data is expressed as

Normalized Error =

∑ns

i=1 E[qi]2 −
∑N

n=0
∑L

l=0
∑l

m=−l a
2
n,l,m∑ns

i=1 E[qi]2
(7)
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(a) Isotropic (b) One fiber (c) Crossing fibers (d) Bi-Gaussian

Fig. 1. Some standard pattern of q-space local diffusion data in the human brain white
matter. Data are centered on a volumic image of size 64 × 64 × 64.

Fig. 2. Influence of radial truncation order N on the normalized error between the
power spectrum of the original data and its reconstruction in the proposed basis. The
number of samples is ns = 643. The angular truncation order is L = 4.

The condition number C is an interesting index as it relates the correspon-
dence between the sampling distribution and the reconstruction basis, indepen-
dently of the data. It measures how numerically well-conditioned the regularized
matrix Mreg from Eq.(4) is,

C = ||Mreg||∞||M−1
reg||∞ (8)

Fig.3 shows a comparison between several sampling strategies, which were gener-
ated according to Eq.(5). This figure illustrates the evolution of the reconstruc-
tion quality along with the number of sampling spheres nb and the repartition
of samples η on each sphere. Only the crossing fibers data configuration is il-
lustrated in this experience as we found no significant differences with other
data configuration. Fig.4 illustrates for the same experiment qualitative results
for good and bad reconstruction. Fig.5 shows the comparison of two sampling
schemes: non-uniform and uniform sampling of the q-space, respectively η = 0
and η = 2. The case f(η = 2) corresponds to a uniform sampling considering
spherical coordinates. ns = 300, nb ∈ [1, 10] and the angular truncation order is
set to L = 4.
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(a) ns=120
No regularization.

(b) ns = 200
No regularization.

(c) ns = 300
No regularization.

(d) ns=120.
With regularization.

Fig. 3. Condition number C evolution with the sampling distribution η and the number
of sampling sphere nb. The lower C is, the more stable the reconstruction is. The
symbol ns denotes the total number of samples. Angular truncation order is L = 4.
Radial truncation order is N = 3, consequently nb ≥ 3 (120 coefficients). (d) Radial
and angular regularization weights: λn = 10−4, λl = 10−6. Data simulates crossing
fibers diffusion signal Fig.1c.

(a) PSNR=40.23 dB (b) PSNR=39.98 dB (c) PSNR=27.54 dB

Fig. 4. Example of some sampling distributions and their respective reconstruction

4 Results and Discussion

Fig.2 illustrates that a reasonably good radial truncation order N depends on the
MR data pattern (c.f . Fig.1). Nonetheless, in all our experiments with standard
data configurations in the brain white matter, the convergence to the data truth
is achieved with N = 3. Concerning the sampling distribution η, the results
of Fig.3 indicate that the best sampling distribution is η ∈ [−1, 2], especially
in the case of a small number of total samples (c.f . Fig.3(a-c)). This result is
in accordance with the propositions already found in literature [11,12,15,19].
Therefore, Fig.5 shows a deeper comparison of two sampling η = 0 and η = 2.
Fig.5(a) shows the evolution of C the condition number along with the num-
ber of sampling sphere nb and the radial truncation order N . As expected,
C is very high when N > nb and leads to very unstable results. When N ≤
nb, the condition number increases slowly along with increasing values of N
and is quite constant along variations of nb. Results obtained using the non-
uniform sampling exhibit more monotonous evolutions than with the uniform
sampling.

Fig.5(b) and (c) illustrate the PSNR (Peak Signal to Noise Ratio) evolution
of the reconstruction of a Gaussian mixture MR signal. Although the maximum
of the PSNR for all sampling protocols are quite the same (≈ 40) (c.f . Fig.3),
it is clear that the non-uniform sampling protocol (η = 0) is more robust to
wrong values of N and nb. Besides, the robustness to wrong values of the scale
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(a) Condition number.
The lower the better.

(b) Isotropic dataset with wrong
scale factor γ. The higher the better.

(c) Bi-Gaussian dataset.
The higher the better.

(d) Bi-Gaussian noisy dataset.
The higher the better.

Fig. 5. Comparison of uniform (η = 2) vs non-uniform (η = 0) sampling (respectively
left and right image) on Gaussian and bi-Gaussian isotropic datasets. N stands for
the radial truncation in the SPF basis and nb is the number of sampling sphere in the
q-space. (b) Isotropic data with σ2 = 25 (Fig.1a), with erroneous scale factor γ = 5σ2.
(d) The input data are noised with Rician noise (PSNR=18.9 dB).

factor γ is illustrated by the lines of Fig.5b. Indeed, the first order N = 0 of
the SPF basis has a Gaussian decay and should entirely capture an isotropic
Gaussian data (c.f . Fig.2). In Fig.5b, we set an arbitrary erroneous scale factor
value γ not adapted to the signal decay σ so that γ/σ2 = 5. The signal is
reconstructed for N ≥ 3 in accordance to Fig.2. Once again, Fig.5b shows that
the non-uniform sampling protocol is the most robust to wrong values of γ.
Finally, Fig.5d shows the results on a bi-Gaussian noisy dataset, estimated using
our damped linear least square method Eq.(4). Besides the lower PSNR average
compared to Fig.5c, it is remarkable that best results of Fig.5d were also obtained
from lower radial truncation order N than Fig.5c. Indeed, a reconstruction using
high N can significantly capture more noise than using lower N .

Out of the results, the non-uniform sampling protocol (η = 0) gives better
global results than the uniform protocol (η = 2). The best reconstructions are
obtained for N ≈ 3 and nb ≈ 4. It confirms that a better reconstruction of
the low q-space frequencies of the MR signal leads to a better reconstruction of
the whole signal since low frequencies really carry the greatest part of the MR
signal. Note that in contrast to our conclusion, Jones et al . in [14] interestingly
observed in the restricted case of DTI with 2 spheres that more samples in the
outer sphere gives the best results. This result might be explained by the strong
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restrictions of DTI to capture a Gaussian signal. Nonetheless, it is important to
stress that the optimal parameters in this work are for the SPF basis.

5 Conclusion

In this paper, we proposed a unifying diffusion estimation formalism able to
study the effect of several sampling schemes already proposed in the literature.
We evaluated the influence of these schemes on the quality of the reconstruction
for different shapes of diffusion signal. Out of the results, our findings indicate
it is preferable to favour a high density of samples with low diffusion gradi-
ents rather than high diffusion gradients. We successfully identified a subset of
sampling schemes which gives the best performances in adequacy with realistic
clinical constraints.
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Abstract. One known issue in Q–Ball imaging is the blurring in the
radial integral defining the Orientation Distribution Function of fiber
bundles, due to the computation of the Funk–Radon Transform (FRT).
Three novel techniques to overcome this problem are presented, all of
them based upon different assumptions about the behavior of the atten-
uation signal outside the sphere densely sampled from HARDI data sets.
A systematic study with synthetic data has been carried out to show that
the FRT blurring is not as important as the error introduced by some
unrealistic assumptions, and only one of the three techniques (the one
with the less restrictive assumption) improves the accuracy of Q–Balls.

1 Introduction

High Angular Resolution Diffusion Imaging (HARDI) allows the characterization
of complex tissue microarchitectures beyond one single fiber bundle per image
voxel. Therefore it has become a very interesting topic in the recent literature
[1,2,3,4]. Among the existing techniques, Q–Balls [5,6] have gained especial in-
terest [7,8] for being fast and easy to estimate [9], and not needing further
assumptions on the behavior of the diffusion signal outside the sampled sphere.

This technique is based on the integration of the attenuation signal in the
equators of the sphere, estimating the Orientation Distribution Function (ODF)
as the radial projection of the probability density along the corresponding axis.
This is the so–called Funk–Radon Transform (FRT), whose main problem is that
it is only an approximation of the radial integral defining the ODF. The error
in the estimation of this integral produce the angular blurring of the ODF [6].
On the other hand, a recent study [8] has shown that the Diffusion Orientation
Transform (DOT), as introduced in [3], may outperform Q–Balls in some situa-
tions, even when it is based upon the unrealistic assumption that the attenuation
signal shows a mono–exponential decay. Based on this result, we propose three
novel techniques to overcome FRT blurring from assumptions related to the one
in [3]. They are tested with a systematical methodology similar to [8]. As a re-
sult we conclude, first, that the error (blurring) due to the FRT has less impact
than the error introduced by the aforementioned assumption on the attenuation
signal. Secondly, since such an assumption produces very accurate results with
the DOT using very similar numeric schemes, the problem with Q–Balls relies
on the estimation of the ODF instead of any other orientation information.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 415–422, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Theory

2.1 Characterization of Water Diffusion in the White Matter

Under the assumption of narrow pulses, the probability density for the displace-
ment of water molecules to a position R for one single fiber bundle is related to
the attenuation signal by the Stejskal–Tanner equation [10]:

P (R) =
1√

(4π2τ)3|D|
exp

(
−RTD−1R

4τ

)
⇔ E(q) = exp

(
−bgTDg

)
, (1)

where q = qg, ‖g‖ = 1, b = 4π2τq2 is the magnitude of the sensitizing gradients,
τ is the effective diffusion time and the positive–definite matrix D is the diffusion
tensor. For complex micro–architectures the Gaussian model in eq. (1) no longer
holds and P (R) can be computed in terms of the Fourier transform of E(q) [11]:

P (R) = F {E(q)} (R) =
∫ ∫ ∫

R3
E(q) exp(−2πiqT R)dq, (2)

where the expresion of E(q) in eq. (1) has to be substituted by:

E(q) = exp
(
−4π2τq2D(q,g)

)
< 1, (3)

where D(q,g) is a positive function, the Apparent Diffusion Coefficient (ADC),
defined for each spatial direction g. In general the ADC depends on q, but for the
tensor model D(q,g) = gTDg and this is not the case; the diffusion process may
be characterized then by the sampling of the attenuation signal E(q) in a sphere
of a given radius q0, E(q0g). The DOT (see [3]) relies on the over–simplified
assumption that the ADC does not depend on q, D(q,g) = D(g).

2.2 The Orientation Distribution Function

Although the sampling of E(q0g) for a given q0 does not completely characterize
the diffusion process, it is often enough to infer not the detailed behavior of
P (R), but only its underlying orientation information, associated to the presence
of fiber bundles in these same directions. The ODF is defined in [5,6] as:

Ψ(r) ≡ Ψ(θ, φ) =
∫ ∞

0
P (Rr)dR =

1
2

∫ ∞

−∞
P (Rr)dR, (4)

where R = ‖R‖ and r = [sin θ cosφ, sin θ sin φ, cos θ]T . Although the ODF is not
a true probability density (see [5]) it provides useful orientation information, as
has been widely reported [7,8]. From eqs. (2) and (4) it follows:

2Ψ(r) =
∫ ∞

−∞

∫ ∫ ∫
R3

E(q)e−2πRiqT rdqdR =
∫ ∫ ∫

R3
E(q)

∫ ∞

−∞
e−2πRiqT rdRdq

=
∫ ∫ ∫

R3
E(q)δ(qT r)dq =

∫ ∫
〈r〉⊥

E(s)ds, (5)

where 〈r〉⊥ is the orthogonal set to the span of r, i.e., the ODF at direction r
may be computed as the integral of E(q) in the plane perpendicular to r.
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2.3 The Funk–Radon Transform

For a given r the computation of the ODF Ψ(r) requires to integrate E(q) in
the plane perpendicular to r, but HARDI techniques allow only to characterize
E(q) in a circumference of radius q0 inside this plane. The principle of Q-Ball
imaging is to reduce the integral in eq. (5) to the integral in the circumference
Sr ≡ {q|qT r = 0, ‖q‖ = q0} ⊂ 〈r〉⊥ to compute the FRT of E(q0g) as [5]:

G {E(q0g)} (r) Δ=
∮

Sr

E(q0g)q0dg ∝
∫ ∞

−∞

∫ ∞

0

∫ 2π

0
P (ρ, ϕ, R)J0(2πq0ρ)ρdϕdρdR

�
∫ ∞

−∞
P (Rr)dR = 2Ψ(r), (6)

where (ρ, ϕ, R) are the coordinates of a cylindrical system with the z axis aligned
with r: the FRT is proportional to the integral of P (R) not along r but inside
a tube along r which has the shape of a Bessel function J0. Q–Balls obviate the
need to characterize the whole E(q) (they take into account its value only for q0)
at the expense of blurring the radial integral of P (R). It is commonly assumed
that this is the main drawback of Q–Ball imaging.

2.4 Beyond the Funk–Radon Transform

Given the nice results of DOT when assuming that the ADC is constant with
q [3], even better than Q–Balls in certain situations [8], our aim is to use this
same assumption to reduce the blurring due to the computation of the FRT.

Artificial Increase of the b-Value. Increasing the value of q0 reduces the
width of the Bessel kernel J0 and therefore the blurring [5]. Assuming that
D(q,g) � D(q′,g) for similar values of q and from eq. (3):

E(q′0g) = exp
(
−4π2τq′0

2
D(q′0,g)

)
� exp

(
−4π2τq′0

2
D(q0,g)

)
= E(q0g)q′

0
2/q2

0 = E(q0g)ξ, (7)

and so we will refer to Q–Balls–ξ as the FRT of E(q0g)ξ, ξ > 1.

Integration in the Whole Orthogonal Plane to r. If we now assume that
D(q,g) � D(g) for all q, the integral in eq. (5) may be explicitly computed.
Using the auxiliar cylindrical coordinates (ρ, ϕ, R) introduced above:

2Ψ(r) =
∫ 2π

0

∫ ∞

0
E(ρ, ϕ, 0)ρdρdϕ �

∫ 2π

0

∫ ∞

0
exp(−4π2τρ2D(g(ϕ)))ρdρdϕ

=
∫ 2π

0

1
8π2τD(g(ϕ))

dϕ ⇒ Ψ(r) � G
{

1
16π2τ

D−1(q0g)
}

(r), (8)

so we will refer to Q–Balls–ADC as the FRT of the inverse of the ADC.
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Application of Stokes’ Theorem. Instead of the integral in all the plain
orthogonal to r, we may compute the integral in the circle Ω inside Sr (Sr ≡ ∂Ω);
since E(q) shows in general an exponential decay, the error commited in this way
will be small. Using once again the cylindrical coordinates system with ez ≡ r,
this approximation may be identified with the flux integral:

2Ψ(r) �
∫ ∫

Ω

E(ρ, ϕ, 0)dA =
∫ ∫

Ω

E(ρ, ϕ, 0)ez · dA

=
∮

Sr

Fϕ(q0, ϕ, 0)eϕdl =
∫ 2π

0
Fϕ(q0, ϕ, 0)q0dϕ, (9)

for some F(ρ, ϕ, z) = Fϕ(ρ, ϕ, z)eϕ such that ∇× F = Eρeρ + Eϕeϕ + Eez, by
virtue of Stokes’ theorem (note that Eρ and Eϕ are irrelevant since they do not
contribute to the flux integral). Given the expression of the curl in cylindrical
coordinates, Fϕ and E must be related in the way:

1
ρ

∂ρFϕ(ρ, ϕ, z)
∂ρ

= exp
(
−4π2τρ2D(ρ, ϕ, z)

)
� exp

(
−4π2τρ2D(q0, ϕ, z)

)
⇒ Fϕ(ρ, ϕ, z) �

− exp
(
−4π2τρ2D(q0, ϕ, z)

)
8π2τρD(q0, ϕ, z)

+
Θ(ϕ, z)

ρ
, (10)

where Θ(ϕ, z) is a constant with respect to ρ: F needs to be non–singular at ρ = 0
for Stokes’ theorem to apply, so we must choose Θ(ϕ, z) = (8π2τD(ϕ, z))−1.
This is only a mathematical artifact, and has no other meaning in terms of the
assumptions made. From eqs. (9) and (10) we define Q–Balls–Stokes as:

2Ψ(r)�
∫ 2π

0
q0Fϕ(q0, ϕ, 0)dϕ �

∫ 2π

0

1−E(q0, ϕ, 0)
8π2τD(q0, ϕ, 0)

dϕ ∝ G
{

1−E(q0g)
D(q0g)

}
(r).

(11)
Note that in eq. (10) we need to assume that the ADC is constant only in a local
sense (in a differential environment of q0), since we only need to define F for q0.
It is worth to compare this with Q–Balls–ξ, where D should be constant in a
range of values of q (the larger ξ, the wider the range) and with Q–Balls–ADC,
where the ADC should be constant for all q. We may highly relax the assumption
of constant ADC at the expense of neglecting the integral outside Ω.

3 Methods

3.1 Practical Computation of the Estimators

The three proposed estimators based on Q–Balls (Q–Balls–ξ, Q–Balls–ADC and
Q–Balls–Stokes) may be computed as the FRT of a given 3–D function (see
above); therefore, we use in all cases the method and parameters suggested in
[9] to find the Spherical Harmonics (SH) expansion of the corresponding signal
and then to analitically compute its FRT. Note that we have obviated all the
constants relating the FRT with the estimators; this is not an issue since, as
suggested in [5], we normalize the resulting ODF so that their minimum is 0 and
they sum to 1. For the DOT, we use the parametric implementation in [3] with
R0 = 12μm (a larger R0 makes the DOT too sensitive to noise).
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3.2 Assessment of the Accuracy Resolving Fiber Crossings

A DWI signal has been generated from a synthetic architecture comprising two
crossing fiber directions in a known angle. The error between local maxima of
the ODF and the ground–truth directions has been measured whenever the two
fibers have been correctly detected. This methodology has been extensively used
in the related literature [1,2,3,4,5,6,8,9]. In [3,8] the diffusion signal is generated
with a model based on isotropic diffusion inside a bounded cylinder; however,
we prefer to use the more standard methodology of multi–tensor approaches (a
linear combination of eq. (1)) for three reasons:

1. The multi–tensor approach has been extensively validated, see [1,2,4,5,6,9].
2. According to our experience, both approaches perform very similar.
3. The bounded cylinder is a simplified model for the diffusion inside a neural

axon, which typically has a diameter of about 5μm. Comparing this to the
voxel size (1–2 mm.), it is easy to appreciate that one single voxel describes
not the microscopic diffusion inside a nervous cell but the macroscopic be-
havior given by several hundreds or more nervous fibers. This yields a mix-
ture of independent and (roughly) identically distributed bounded cylinder
statistics, and therefore a mixture of Gaussians is a more correct model.

3.3 Setting Up of the Experiments

We use a similar methodology to that of [8]. For several combinations of b values
(b = 1500, 2500 and 3500mm/s) and gradient directions (Ng = 61 and 121)
we measure the angular error commited in the estimation of the local maxima
of two fiber bundles (matched to realistic biological parameters). We use order
L = 6 in the SH expansion in all cases. For the noisy scenarios, we corrupt the
diffusion signal with Rician noise adding a complex Gaussian noise with standard
deviation σ and computing its envelope. Noise power is parameterized by the
Peak Signal to Noise Ratio (PSNR), defined as the quotient between the value
of the baseline and σ. Results are an average for 100 Montecarlo trials, and in
this case we consider that a given estimator is able to find the two fibers if they
are detected in more than the 50% of the trials.

4 Results and Discussion

In Fig. 1 the results without noise contamination are shown. First, note that the
results are consistent with those previously reported in [8]: increasing the b value
or the number of gradient directions improves the capability detection for all
estimators, and the angular error is decreased as well. For a given configuration,
Q–Balls perform worse than DOT, which is the same as saying that Q–Balls need
a greater b value or more gradient directions to achieve an accuracy similar to
DOT [8]. Second, if we compare traditional Q–Balls with the estimators based
on a constant (at least in a range of b values) ADC (i.e., Q–Balls–ξ and Q–Balls–
ADC), regular Q–Balls perform better in all cases: although assuming a constant



420 A. Tristán-Vega, S. Aja-Fernández, and C.-F. Westin

40 5060 60

55

5065 70

60 40 40

5570 80

65 50 50

6075 90

70 60 60

6580
0

75 70 70

7085

5

80 80 80

7590

10

85 90 90

80
0

15

90
0 0

85

5

0

2 2

90

10

5 4 4

0

15

10

Angle between fiber bundles (degrees)

6 6

5

A
n

g
u

la
r 

er
ro

r 
(d

eg
re

es
)

20

15

8 8

10

25

20

10 10

15

12 12

20

14 14

Angle between fiber bundles (degrees)

Angle between fiber bundles (degrees)

16 16

A
n

g
u

la
r 

er
ro

r 
(d

eg
re

es
)

A
n

g
u

la
r 

er
ro

r 
(d

eg
re

es
)

Q−Ball
Q−Ball−

Angle between fiber bundles (degrees)

A
n

g
u

la
r 

er
ro

r 
(d

eg
re

es
)

ξ
Q−Ball−ADC

Angle between fiber bundles (degrees) Angle between fiber bundles (degrees)

Q−Ball−Stokes

A
n

g
u

la
r 

er
ro

r 
(d

eg
re

es
)

A
n

g
u

la
r 

er
ro

r 
(d

eg
re

es
)

DOT

Q−Ball

Q−Ball

Q−Ball−

Q−Ball−

ξ

ξ

Q−Ball

Q−Ball−ADC

Q−Ball−ADC

Q−Ball−

Q−Ball−Stokes

ξ

Q−Ball−Stokes

Q−Ball Q−Ball

Q−Ball−ADC

DOT

DOT

Q−Ball− Q−Ball−

Q−Ball−Stokes

ξ ξ
Q−Ball−ADC Q−Ball−ADC

DOT

Q−Ball−Stokes Q−Ball−Stokes
DOT DOT

b=1500
N=61

b=2500
N=61

b=3500
N=61

b=1500
N=121

b=2500
N=121

b=3500
N=121

Fig. 1. Angular error in the recovering of two fiber bundles vs. the original angle
between their directions, for the six configurations tested and for all estimators. The
diffusion signals have not been contaminated with Rician noise.

Fig. 2. 3–D plot of the orientation functions (ODF for Q–Balls based estimators and
P (R0r) for DOT), for b = 3500, Ng = 121 and an angle of 60o. Red axis represent
local maxima of the estimators, and green axis the ground–truth directions.

ADC allows to reduce (for Q–Balls–ξ) or completely eliminate (for Q–Balls–
ADC) the blurring due to the FRT, the error introduced by this oversimplified
assumption does not compensate its benefit. Note that Q–Balls–ADC perform
worse than Q–Balls–ξ except for very high b–values (when they perform very
similar), so the more restrictive the assumption the worse the accuracy. Third,
Q–Balls–Stokes perform better than regular Q–Balls in all cases (and even better
than DOT for b = 1500 and 121 gradient directions), although the improvement
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Fig. 3. Angular error vs. the inverse of the PSNR, for Ng = 121, and different b values
and crossing angles, for all estimators

is quite subtle; in this case, the constant ADC assumption is needed only in
a local (differential) sense, which is far more realistic. For Q–Balls–Stokes, the
error due to the assumption has to be added to the error due to the integration
inside Sr and not the whole orthogonal plane to r, but they still improve the
performance of Q–Balls. For illustrative purposes, we show in Fig. 2 a 3–D
plot of the orientation functions given by each estimator: DOT is able to yield
well defined lobs, meanwhile Q–Balls based estimators produce wider lobs and
therefore a higher uncertainty in the location of fiber directions. Q–Balls–Stokes
yield a very similar ODF to Q–Balls, but for Q–Balls–ξ and Q–Balls–ADC the
lobs are even more blurred; once again, we may conclude that the constant
ADC assumption introduces a high error in the estimation of the ODF which
does not compensate the reduction of the FRT blurring, unless the assumption
is applied in a local sense.

To test the behavior in the presence of noise, we vary the noise power σ and
study the angular error (see Fig. 3). First, note that in general regular Q–Balls
are still better than Q–Balls–ξ and Q–Balls–ADC, and Q–Balls–Stokes better
than Q–Balls. Second, Q–Balls and Q–Balls–Stokes are more stable to noise
than DOT: its accuracy is worsened in the presence of noise, but not as much
as DOT accuracy does. Third, note that Q–Balls and Q–Balls–Stokes may be
preferable to DOT for very noisy scenarios and large angles of crossing or low b
values; this issue has been previously reported for regular Q–Balls in [8].

5 Conclusion

One of the benefits of Q–Ball estimation of fiber populations is that it does
not require to make any assumption on the behavior of the diffusion signal;
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this advantage carries out the drawback of the blurring in the radial integral
defining the ODF, driving to broadened lobes in the orientation information.
This drawback may be palliated by including some sort of assumptions. However,
we have shown that the mono–exponential decay model in general introduces an
important error, more important than the blurring inherent to Q–Balls. The
same model has been successfully used in the DOT, which has been shown to
be more accurate than Q–Balls in general. Since the implementations used here
for both of them use the same numerical scheme (based on the SH expansion of
the attenuation signal, compare [9] and [3]), the reason for this difference has to
be in the orientation function Q–Balls estimate, which is, the ODF: the ODF
is more sensible than the probability profile P (R0r) computed with the DOT.
On the other hand, we have introduced a new technique, Q–Balls–Stokes, to
improve the accuracy of regular Q–Balls; although its benefit is quite subtle, it
outperforms Q–Balls in all cases, and even may outperform, for noisy scenarios
with low b values (or high crossing angles), the DOT.
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8. Prčkovska, V., Roebroeck, A., Pullens, W., Vilanova, A., ter Haar Romeny, B.:
Optimal acquisition schemes in High Angular Resolution Diffusion Weighted Imag-
ing. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part
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Abstract. Q-ball imaging (QBI) is a high angular resolution diffusion imaging 
(HARDI) technique which has been proven very successful in resolving 
multiple intravoxel fiber orientations in MR images. The standard computation 
of the orientation distribution function (ODF, the probability of diffusion in a 
given direction) from q-ball uses linear radial projection, neglecting the change 
in the volume element along the ray, thereby resulting in distributions different 
from the true ODFs. A new technique has been recently proposed that, by 
considering the solid angle factor, uses the mathematically correct definition of 
the ODF and results in a dimensionless and normalized ODF expression from a 
single q-shell. In this paper, we extend this technique in order to exploit HARDI 
data from multiple q-shells. We consider the more flexible multi-exponential 
model for the diffusion signal, and show how to efficiently compute the ODFs 
in constant solid angle. We describe our method and demonstrate its improved 
performance on both artificial and real HARDI data. 

1   Introduction 

Diffusion-weighted magnetic resonance imaging (DWMRI) provides valuable 
information about the fiber architecture of neural tissue by measuring the diffusion of 
water molecules in three-dimensional (3D) space. The diffusion function may be 
measured by using the model-free diffusion spectrum imaging (DSI) [1], which is the 
direct Fourier inversion of the diffusion signal. This technique is however time 
intensive, as it measures the diffusion signal on a 3D Cartesian lattice. Thus, an 
alternative approach based on sampling on one or multiple spherical shells has been 
proposed, referred to as high angular resolution diffusion imaging (HARDI) [2]. 

While the 3D probability density function (PDF) of the diffusion is helpful in 
studying the tissue microstructure, the orientation distribution function (ODF) – the 
marginal probability of diffusion in a given direction – is the quantity of interest for 
mapping the orientation architecture of the tissue. Q-ball imaging (QBI), [3], is a 
widely used ODF reconstruction scheme for HARDI, based on a spherical 
tomographic inversion called the Funk-Radon transform. This technique’s simplicity 
and its ability to resolve intravoxel fiber orientations have made it popular for fiber 
tracking and characterizing white matter architecture. Moreover, a few works have 
suggested exploiting data from multiple q-shells to benefit from the high signal-to-
noise ratio (SNR) and high angular contrast-to-noise ratio (CNR) of the data acquired 
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at respectively low and high b-values, [3]–[5]. Using multiple q-shells also allows us 
to employ richer models for the diffusion signal, as discussed in this paper. 

Nonetheless, with the exception of our previous paper [6] and a very recent parallel 
and independent work [7] (the differences will be detailed in Sec. 2.2), the definition 
of the ODF used in QBI has been different from the actual marginal PDF of diffusion 
in a constant solid angle. It has been computed as a linear radial projection of the 
PDF, which does not take into account the quadratic growth of the volume element 
with respect to its distance from the origin (see Sec. 2.1 for details). This inaccurate 
formulation generally distorts the ODF, and has created the need for post-processing 
such as manual normalization and sharpening [8]. 

We recently proposed, [6], a new ODF expression for QBI which is derived from 
the proper definition of the ODF in constant solid angle. We showed that the 
computed ODF is inherently normalized and dimensionless, producing without any 
post-processing, sharp ODFs with improved resolution of multiple fiber orientations. 
In this paper, we extend this work by deriving a general formulation for multiple q-
shell QBI. We demonstrate the improvement achieved by considering the information 
from multiple q-shells, and using richer multi-exponential models. 

In Sec. 2 we describe the foundation of our mathematical derivation, along with a 
brief version of the proof, and also provide an implementation scheme. Experimental 
results are presented in Sec. 3, along with a brief discussion. 

2   ODF Computation in Solid Angle: Multiple q-Shell Formulation 

2.1   General ODF Definition 

The PDF of the diffusion of water molecules, , gives the displacement 
probability  of a molecule, initially placed at the origin, to be in the 
infinitesimal volume  located at  after a certain amount of time. We assume this 
function to be symmetric (i.e. ), which is a quite common assumption 
in DWMRI. The PDF is represented in the standard spherical coordinates, , , , 
with the displacement vector  and the unit direction vector ,sin cos , sin sin , cos . The volume element in this case is Ω 
with Ω sin  being the infinitesimal solid angle element. 

We denote by Ω the probability of diffusion in the direction  through 
the solid angle Ω, which is computed by integrating the displacement probabilities, 
i.e., Ω, for all magnitude , while keeping  constant: 

∞
 (1) 

The above definition, which is normalized and dimensionless, is the integral of the 
probability values in a cone of “very small” constant solid angle. This correct 
definition was used for instance by the authors of [1] in DSI, where  was first 
computed from the diffusion data via Fourier inversion and then integrated to 
calculate the ODF. However to the best of our knowledge, the expression for ODF 
reconstruction so far used in QBI [3], (except for our previous work [6] and a very 
recent parallel and independent paper [7], both for single q-shell) is different from  
Eq. (1), in the sense that the integral is not weighted by the important (and 
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mathematically correct) factor . Without including this factor, the radial projection 
gives an artificial weight to  which is, respectively, too large and too small for 
points close to and far from the origin. Moreover, the ODF will not be necessarily 
normalized or dimensionless, and manual normalization will be required. 

Next we derive a closed-form ODF expression in multiple q-shell QBI using the 
correct -weighted integral. 

2.2   Q-Ball Imaging ODF Reconstruction 

In this section, we derive the ODF expression in multiple q-shell QBI, and present a 
brief proof of the derivation. 

Let  be the 3D Fourier transform function of . Theoretically, we know 
that 0 1, since the zero frequency of a PDF is its integral over the entire space, 
yielding 1. In addition, we have the values of  measured on  different q-balls, 
i.e., the frequencies with constant norm | | , 1, … , , as 

, where  is the HARDI signal on the th q-ball and  is the base-line image. 

Our mathematical derivation is based on the following two relatively simple yet 
fundamental facts from Fourier analysis:  

• The Fourier transform of | |  is , where  is the Laplacian 
operator. 

• For a symmetric function :  with the 3D Fourier transform 

function , and for the arbitrary unit vector , we have that 
∞

, with  being the plane perpendicular 

to . 

Combining these statements with Eq. (1) leads to 18  

Now, without loss of generality, we choose our coordinates such that ̂ , thus 
making  the -  plane. We then use the following expansion for the Laplacian in 
spherical coordinates, , , : 1 1

 

where  is the Laplace-Beltrami operator, which is defined independently of the 

radial component , as sin . The surface integral on 

the -  plane is computed by fixing  and using the expression  ̂ 18 ∞
 18 1 1∞
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The integral of the first term can be seen to be constant and independent of , 1∞ 2 0 2  

Therefore, ̂ 14 18 1∞
 

while  is kept constant in the integration. 

To compute the integral of the second term, the values of  are required in the 
entire q-space, which are in general – except for the time-consuming DSI modality –
not available. Thus, we need to approximate  from the values measured on the q-
balls. In this work, we consider the following radial multi-exponential model [9], 

 

with the constraints 0 , 1 

1 (2)

where Eq. (2) comes from the fact that 0 1.1 Once the values of  and  are 
estimated (see Sec. 2.3), they can be used in the following ODF expression, which is 
obtained by a few more steps of calculation, 

̂ 14 116 ln ln  

Finally, rewriting the expression independent of the choice of the axes, the following 
analytical formula can be derived for the ODF: 14 116 ln ln  (3)

where | | 1  is the Funk-Radon transform [3]. 
The above ODF expression is dimensionless and intrinsically normalized, since the 

integrals of the first and second terms over the sphere are respectively 1 and 0. This is 
in contrast to the (single q-shell) ODF formulas used in original QBI, i.e., 

, and also in [7], where a normalization factor  is needed. Additional 

differences can be observed in the approach presented here and in [6], compared to 

                                                           
1

 This is in fact an additional advantage of this model over the original QBI model for single q-
shell, i.e. , where 0  was assumed to be zero. 
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[7]. As demonstrated here, integration of the radial part of the Laplacian on the plane 
always results in a constant without requiring any model for the diffusion signal. Yet, 
[7] uses the Bessel approximation of the Dirac delta function which yields a variable 
(sometimes negative) term. As for the integral of the tangential term of the Laplacian, 
we use the exponential model that is particularly consistent with 0 1, in contrast 
to [7] that assumes the tangential term to be zero outside the q-ball, leading to an 
expression similar to Laplacian-Beltrami sharpening. 

2.3   Parameter Estimation 

In order to approximate the diffusion signal in a direction  by a weighted sum of  
exponentials, we need to estimate the 2  parameters  and , for 1, … , . We continue this subsection considering a fixed direction, and therefore drop 
the notation . To estimate the aforementioned parameters, at least 2 1 
independent equations – besides Eq. (2) – are required, which can be obtained from 
the HARDI signals measured on  q-balls, for 2 1. Numerical optimization 
approaches such as the trust region algorithm, [10], may be employed to solve this 
non-linear system in the most general case. Here, however, we discuss two special 
cases with closed-form analytical solutions. 

The mono-exponential assumption ( 1) requires measurement on at least 1 q-ball. As it has been shown in [6], 1 leads to 1 and .2 
Furthermore, if measured values are provided on more than one q-balls and the mono-
exponential model is still desired, one can fit the best exponential by computing the 

average Apparent Diffusion Coefficient ( ln ) across all the q-shells. 

Another practical case of great interest arises when we consider the richer bi-
exponential model ( 2, see for example [11]) to reconstruct the ODFs from (at 
least) 3 q-shells. Parameterizing the problem in terms of b-values, , and 
choosing the physical units such that the diffusion time 1 (see also Footnote 2), 
we obtain (for 3) the following system of equations for each direction:  1        ,       1,2,3 0 , , 1 

An analytical solution can be derived for the particular and reasonable case when the 
sequence 0, , ,  is an arithmetic progress.3 We describe this solution here, along 
with some regularization that guarantees the parameters to remain within the correct 
range.4 Without loss of generality, let us assume , and also choose the physical 
units such that 1, 2, and 3. Then, 

                                                           
2 Note that if the set  is a solution, then  for a constant  can be shown to 

result in the same computed ODF. Therefore, since in the mono-exponential case  is a 
constant,  is also a correct solution. 

3 The sequence , , … , , … is an arithmetic progress if  is constant. 
4

 Recall that the three parameters can also be computed in the general case following 
optimization techniques such as those in [10]. The proposed ODF model is general, and it 
becomes only simpler when the data is acquired at an arithmetic sequence of b-values. 
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1        ,       1,2,3 

We first define and calculate the following two quantities: 

2 2       ,      2 2  

The parameters are afterward computed as follows:           ,                    ,          12 2  

However, we still need to ensure that they are real and in the correct ranges. One can 
verify that these conditions are satisfied by enforcing the following constraints: 0 1          ,                    ,           

 

Thus, we can obtain the optimal values of , , and , by initially projecting s onto 
the subspace defined by these inequalities,5 and then computing the parameters. 

2.4   Implementation 

Our implementation of the ODF reconstruction from the estimated values of  and 
 makes use of the spherical harmonic (SH) basis, , which is common for 

the analysis of HARDI data. The steps taken here to numerically compute Eq. (3) are 
similar to those described in [8]. Particularly, we use the real and symmetric modified 
SH basis introduced in [8], where SH functions are indexed by a single parameter  
corresponding to  and . We adopt a minimum least square scheme to compute a set 
of modified SH coefficients, , such that ∑ ln ln ∑ , 
where 1 2 /2 , with  being the order of the SH basis (we chose L 4 
throughout our experiments). Next, since the SH elements are eigenfunctions of the 
Laplace-Beltrami operator, we compute ∑ ln ln  by multiplying 
the coefficients  by their corresponding eigenvalues, – 1 . Then, as suggested 
in [8], the Funk-Radon transform is computed by multiplying the coefficients by 2 0 , where ·  is the Legendre polynomial of degree , with 01  for even . Finally, given that √ , the SH coefficients of 

the ODF are derived as 

′

12√ 118 1 1 3 12 4 2 1 

                                                           
5 Note that such projection is usually necessary, because the bi-exponential assumption may not 

be accurate and the data may be noisy. Moreover, using a small separating margin of 0.01~0.1 in the inequalities makes the ODFs in practice more stable. 
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The implementation of the proposed formula for the true ODF is as straightforward as 
the one introduced in [8] for the original ODF formula. 

3   Results and Discussion 

To demonstrate the advantages of exploiting multiple q-shells in QBI, we first show 
the experimental results on an artificial example which consists of large diffusion 
values in two orthogonal directions. We synthesized diffusion images by sampling the 
sum of two exponentials, |sin | / |cos | / /2 , on seven q-shells 
( 1,2, … ,7) and in 76 directions, uniformly distributed on the hemisphere. 
Figure 1 illustrates the ODFs reconstructed from single q-shells for different b-values, 
three q-shells with mono-exponential model, and three q-shells with bi-exponential 
model. As can be observed, for the data acquired at low b-values ( 1,2,3), the bi-
exponential model using three q-shells is the only method correctly resolving the 
horizontal and vertical ODF peaks, corresponding to the strong ADC values in those 
directions ( 0°, 90°, 180°, 270°). It should be noted, however, that the drawback 
of such a more general model is its lesser robustness to noise, as low order models are 
often more robust (e.g., computing the average of a signal is more robust than 
estimating the actual signal). ODFs are shown as they are; no min-max normalization 
is used in any of the figures. Dark red represents negative values. 

We also tested our method on the real HARDI dataset introduced in [12]. An 
anesthetized young Macaca mulatta monkey was scanned using a 7T MR scanner 
(Siemens) equipped with a head gradient coil (80mT/m G-maximum, 200mT/m/ms) 
with a diffusion weighted spin-echo EPI sequence. Diffusion images were acquired 
(twice during the same session, and then averaged) over 100 directions uniformly 
distributed on the sphere. We used three b-values of 1000, 2000, and 3000 s/mm², 
TR/TE of 4600/65 ms, and the voxel size of 1×1×1 mm³. The ODFs were 
reconstructed from the three q-shells using both mono-exponential and bi-exponential 
methods, and also from the single q-shells individually. Figure 2 depicts the results on 
a coronal slice through the centrum semiovale area, superimposed on the fractional 
anisotropy (FA) map. Note how using the bi-exponential method allows for more 
clear recovery of certain fiber bundles, such as callosal radiations and corticospinal 
tract, and better resolution of crossing areas (see outlined regions in Fig. 2). Figure 2 
(top, right) is the only subfigure illustrating results by the original QBI (without ). 

 

Fig. 1. Results of the ODF reconstruction on synthetic data. Note how the bi-exponential model 
correctly resolves the maxima of the ODF from low b-values. 

bi-exp. 
b = 1,2,3 

mono-exp. 
b = 1,2,3 b = 7 b = 6 b = 5 b = 4 b = 3 b = 2 b = 1 
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Fig. 2. Reconstructed ODFs from the real brain data, shown on the FA map. The bi-exponential 
model ODFs (top, left) have been scaled down 1.5 times for better comparison. All the ODFs 
except those in (top, right) have been reconstructed considering the factor . 

Acknowledgments. This work was partly supported by NIH, NSF, the Keck 
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Lossless Online Ensemble Learning (LOEL) and
Its Application to Subcortical Segmentation�
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Abstract. In this paper, we study the classification problem in the situ-
ation where large volumes of training data become available sequentially
(online learning). In medical imaging, this is typical, e.g., a 3D brain MRI
dataset may be gradually collected from a patient population, and not all
of the data is available when the analysis begins. First, we describe two
common ensemble learning algorithms, AdaBoost and bagging, and their
corresponding online learning versions. We then show why each is ineffec-
tive for segmenting a gradually increasing set of medical images. Instead,
we introduce a new ensemble learning algorithm, termed Lossless Online
Ensemble Learning (LOEL). This algorithm is lossless in the online case,
compared to its batch mode. LOEL outperformed online-AdaBoost and
online-bagging when validated on a standardized dataset; it also per-
formed better when used to segment the hippocampus from brain MRI
scans of patients with Alzheimer’s Disease and matched healthy subjects.
Among those tested, LOEL largely outperformed the alternative online
learning algorithms and gave excellent error metrics that were consis-
tent between the online and offline case; it also accurately distinguished
AD subjects from healthy controls based on automated measures of
hippocampal volume.

1 Introduction

The fields of data mining and biomedical engineering have recently seen a vast
increase in the amount of available data. Ongoing medical imaging studies com-
monly analyze images from hundreds or even thousands of patients, sometimes
scanned at multiple time-points. Many brain MRI studies focus on one particu-
lar brain region (hippocampus, caudate, etc.), and a first step in studying these
structures is finding them on brain MRI, using a classification or segmentation
algorithm. Boosting [1] and bagging [2] algorithms and their extensions have
shown great promise for effective classification of voxels in images [3,4,5], but
it is not always straightforward to create a training dataset for the algorithm
� This work was funded by the National Institutes of Health through the NIH
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to learn which features are relevant for classification. In studies where data ac-
quisition is ongoing (such as the Alzheimer’s Disease Neuroimaging Initiative,
ADNI [6], which scans 800 subjects every 6 months for 3 years), one may wish
to begin to use a segmenter after each set of scans becomes available; in other
applications, one may not have access to all previous scans used to train the al-
gorithm in the past, or have time to retrain. In either case, an online algorithm
is desirable. In imaging studies, the set of relevant features for classification may
lie in a very high-dimensional space, so the algorithm must be able to use this
information in a reasonable amount of time. Ensemble learning methods (such
as bagging and boosting) are good candidate classifiers for combining informa-
tion from thousands of potentially useful features: they combine weak classifiers
- which individually may perform only slightly better than chance - to create a
strong classifier that outperforms all of the component classifiers. These learn-
ing algorithms can be very effective for image segmentation as they can “select”
important features, and overlook unimportant ones.

In such a situation, training data may arrive as a sequence of image sets, e.g.,
100 volumes at a time. For example, in multi-site drug trials or longitudinal stud-
ies such as ADNI [6], it is vital to begin data analysis as soon as possible, while
benefiting from the increasing pool of available scans. The original formulations
of boosting and bagging required all training data to be available before training
could begin; this is known as batch learning. The recently-developed online ver-
sions of bagging and boosting [7] have drawbacks because the algorithm focuses
on updating the weights based on the sampled data each time, to simulate the
batch training mode on a fixed set of weak learners. By just focusing on updating
the weights (in boosting), and selecting the training samples (in bagging), these
methods overlook the need to select appropriate features automatically, which
is vital in image segmentation applications.

In this paper, we first use Oza’s versions of online boosting and online bag-
ging and then introduce our new algorithm, LOEL, which extends the idea of
online learning to medical image segmentation. LOEL is lossless and outperforms
both boosting and bagging in the online case, and is comparable to both in the
offline case.

2 Methods

2.1 Problem and Previous Work

When segmenting brain structures in 3D MRI scans, one seeks to assign each
voxel to one or more regions of interest (ROI). Here we focus on the two-class
case and, without loss of generality, we will study the segmentation of the hip-
pocampus, a structure that degenerates in Alzheimer’s disease and is a target of
interest in ongoing drug trials. Let X = (x1 · · ·xN ) be all the voxels in the man-
ually labeled testing set and Y = (y1 · · · yN ) be the ground truth labels for each
xn, such that yn ∈ [−1, 1]. From discriminative learning point of view, we seek
a classifier to minimize the error e =

∑
i |yi − F (XNi)| where XNi is an image

patch centered at voxel i. An ensemble learner essentially combines the outputs
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of weak learners, which can be based upon a feature pool. Each weak learner
hn, which takes in X and outputs Y , pushes the overall solution towards the
optimal solution. Combining these weak learners is the function of the specific
ensemble algorithm. For instance in AdaBoost F (XNi) =

∑
αjh(XNi), and in

bagging F (XNi) =
∑

h(XNi).

2.2 Background

To optimally combine a set of different weak learners from a feature pool, most
ensemble methods either re-weight or iteratively modify the training data pre-
sented to each weak learner, bias the weak learners in some way, or both. Boost-
ing (and its variants) can create a highly effective ensemble classifier as it keeps
updating a weight wi over the training examples in X to force weak learners
to focus on difficult examples. While this is effective, it is not the only way
to perturb the data. Bagging repeatedly resamples the training data, with re-
placement. After each resampling, a weak learner is created based on the resam-
pled data, and the average prediction over all weak learners defines the strong
learner. This resampling provides enough variation in the data to make each
weak learner hn(X) different enough to contribute to the classification problem.
Random forests [8] both resample the data and limit the search space from which
to construct each hn(X). This provides randomization on both the dataset and
the feature space. Even the extreme case of randomization has shown success,
where extremely randomized trees [9] allow only one feature for each split of the
tree and randomize the cut point of that feature.

2.3 Online Learning

First, we must use weak learners that can take advantage of sequentially pre-
sented training data. Unless the base learning algorithm can use data presented
online, online ensemble learning becomes very difficult. For this paper, we will
use both decision stumps and a modified 1-deep decision tree (explained later)
that are both lossless in the online case. To coax an ensemble method into an
online mode, the weak learner selection method must be changed.

To adapt bagging for online training, we use Oza’s method [7] to sample
the training data with replacement as more training data become available. In
offline bagging, each sample is presented to each weak learner from 0 to N
times, where N is fixed before learning. The number of times, K, that a sample
is presented to each weak learner, may be modeled as a binomial distribution
P (K = k) =

(
N
k

) ( 1
N

)k (
1− 1

N

)N−k. In the online case, we can view N → ∞,
and then the binomial distribution tends to a Poisson distribution with mean
1, P (K = k) = exp(−1)/k!. Given a set of weak learners, running bagging in
the online case is therefore equivalent to batch bagging. The online bagging
algorithm is described in Fig. 1.

For online boosting, the algorithm is slightly more complicated. Again, we
follow Oza’s idea [7], which switches the roles of feature selecting and example
gathering. Once a set of weak learners is obtained, the “difficulty” of an example
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Given a set of weak learners H and a new example (x, y)
For each weak learner hn ∈ H,n ∈ 1, · · · , N
• Set p = rand(0, 1)
• while p > e−1

• Update classifier hn with example (x, y)
• p = p ∗ rand(0, 1)

Fig. 1. The online bagging training procedure from Oza [7]

Initialize λsc
n = 0, λsw

n = 0 before seeing any training examples.
Given a set of weak learners H and a new example (x, y), set λ = 1
For each weak learner hn ∈ H,n = 1, · · · , N
• Update hn with example (x, y) and weight λ

if y = hn(x) else
• λsc

n = λsc
n + λ • λsw

n = λsw
n + λ

• εn = λsc
n

λsc
n +λsw

n
• εn = λsc

n
λsc

n +λsw
n• λ = λ 1

2(1−εn)
• λ 1

2εn

Fig. 2. The online boosting training procedure. λsc
n keeps track of the correctly clas-

sified examples, and λsw
n keeps track of the incorrectly classified examples per weak

learner. λ attempts to model the weights w from batch AdaBoost.

is estimated by having each weak learner classify it, and then updating the weak
learner and its weight based on the difficulty of that example. Online boosting
is described in Fig. 2.

By Oza’s own admission, the online boosting algorithm is not lossless com-
pared to its batch mode; an online learning algorithm is lossless if it returns
a model identical to that of the corresponding batch algorithm trained on the
same examples. This can best be seen by example. Assume that weak learner n
sees an example and correctly classifies it. That example’s weight will decrease
when weak learner n+1 classifies it. Based on its decreased weight weak learner
n+1 may or may not classify it correctly. Then another example is presented to
weak learner n, and it is updated such that it no longer correctly classifies the
previously seen example. This means that the weight assigned for the previous
example was incorrect, and it should have been assigned a higher weight when
given to weak learner n + 1 (and all m > (n + 1) weak learners). In addition to
this drawback, online boosting does not lend itself to feature selection. Although
Grabner [10] has shown a way to induce online boosting into feature selection,
it still suffers a drawback in that it is lossy versus its batch mode. Additionally,
Fern [11] has produced an online ensemble learning method based on Arc-x4,
however it too suffers from the inability to generate new weak learners.

2.4 LOEL

The two main drawbacks of online bagging (no feature selection) and online
boosting (it is lossy) make them less than ideal for online ensemble learning. We
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Given a pool of weak learners H and a new example (x, y)
For each weak learner hn ∈ H, n = 1, · · · , N
• Update hn with example (x, y)
For t = 1 · · ·T
• Create a new feature pool, Hsm, of size S by random sampling from H

For s = 1 · · ·S
• Randomize the parameters of hs

• εs = error(hs)
• Add h∗ = argminHsmεs to the model

Fig. 3. The LOEL training procedure. Test data are classified using an unweighted
vote of each h∗. For all experiments in this paper, we set size(Hsm) = 0.3size(H).

overcame these limitations with the Lossless Online Ensemble Learning (LOEL)
algorithm (Fig. 3).

The first for loop in LOEL is the weak learner updating loop, where the next
example is added to all weak learners without weighting. Any weak learner can be
used with LOEL, so long as it (1) is lossless, and (2) has a compact way of storing
examples that is independent of the number of examples seen. An example of the
second caveat is the decision stump. By storing two histograms of the data already
seen (a histogram of the positive data, and a histogram of the negative data), each
weak learner can keep track of the examples it has seen, independently of the total
number of examples. By transforming these histograms into cumulative distribu-
tion functions, the error for a threshold can be estimated quickly, and in order to
randomize the parameters, we just randomly choose a cut point.

Because each example is given exactly once to each weak learner, perturba-
tions must be made on the weak learners themselves to differentiate between
each run of the interior loop of Fig. 3. These perturbations were borrowed from
both random forests (restricting the weak learner space) and from extremely ran-
domized trees (randomizing the parameters of each weak learner) and as such
should prove effective in LOEL.

Following the logic of Breimann [8], we can show that as more weak learners
are added to the classifier we are fitting a more effective model. If I(hn(X) =
Y ) is an indicator function, then marginN (X, Y ) =

∑N
n=1 I(hn(X) = Y ) −

I(hn(X) �= Y ) The margin is the confidence in each sample; increasing margin
means a sample is more likely in a given class. We can then define the optimal
classifier as Y ∗

N = P (marginN (X, Y ) < 0) In LOEL, hn(X) = hs,p
n where s is the

size of the resampled feature pool, and p are the randomized parameters. Then,
following the law of large numbers PX,Y (P (hs,p(X) = Y )−P (hs,p(X) �= Y ) < 0).

LOEL is provably lossless as it is very similar to its batch version. The only
difference between batch and online modes is the existence of the first loop in
Fig. 3. So long as the weak learners conform to the specifications above, the
construction of the weak learners will be no different in batch versus online
modes. In fact, in online learning, the model that is output at each iteration
is not even used when the next training example is presented, the compact
representation of the whole weak learner pool is instead stored and updated.
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This is in contrast to the online bagging and boosting methods where the model
itself is updated. By having access to the entire feature pool and all examples
already seen, LOEL can select weak learners that minimize the error over all
weak learners and all examples.

3 Results

3.1 Tests on Standardized Data

We first compared AdaBoost, bagging, and LOEL in the offline case on a standard
dataset from the UCI machine learning repository (archive.ics.uci.edu/ml/). We
chose to use the breast cancer data because it presented a medical imaging two-
class classification test. For this dataset we only aimed to show that LOEL is as
effective as both AdaBoost and bagging in the offline case. We will reserve the
online case to the full hippocampal segmentation task.

Fig. 4 shows how testing error varies as the number of weak learners grows. The
error is defined as the number of incorrect examples divided by the total number
of examples. For this test, we defined a weak learner as a decision stump, and ran-
domly chose half the data set for training and half for testing. All three methods
perform well on this data, with LOEL best at minimizing the testing error.
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Fig. 4. Effects of varying the number of weak learners as a function of the testing error
on a standard breast cancer dataset. LOEL outperforms both AdaBoost and bagging
when minimizing error on the test set.

3.2 Hippocampal Segmentation

To apply LOEL to a real imaging problem, we segmented the hippocampus in
a dataset from a study of Alzheimer’s disease (AD) which significantly affects
the morphology of the hippocampus [12]. This dataset includes 3D T1-weighted
brain MRI scans of individuals in three diagnostic groups: AD, mild cognitive
impairment (MCI), and healthy elderly controls. All subjects were scanned on a
1.5 Tesla Siemens scanner, with a standard high-resolution spoiled gradient echo
(SPGR) pulse sequence with a TR (repetition time) of 28 ms, TE (echo time)
of 6 ms, 220mm field of view, 256x192 matrix, and slice thickness of 1.5mm. For
training we used 20 subjects in a variety of disease states (AD, MCI, or Normals).
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Given the ground truth segmentation (A) and an automated segmentation (B), both
represented as binary sets, we define the following error metrics; d(a, b) is the Eu-
clidean distance between 2 points, a and b:

• Precision = A∩B
B

• Recall = A∩B
A

• Relative Overlap = A∩B
A∪B

• Mean = avga∈A(minb∈B(d(a, b)))

Fig. 5. Error metrics used to validate hippocampal segmentations
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Fig. 6. Hippocampal segmentation errors as a function of the number of training brains.
Offline training is the upper row and online, the lower row. The f-value is the average
of precision and recall. In the offline case, all three methods show improvement as more
training data is added. AdaBoost is not as effective in the offline case at minimizing
the mean distance. In the online case, both bagging and LOEL show similar trends
in each category. However, for bagging, this can be attributed to always choosing the
prior feature. Since the prior improves as more brains are added the error metrics also
tend to improve. The volatility of online AdaBoost arises from the fact that it is lossy.

For testing we used an independent set of 80 subjects (40 AD, 40 Normals).
To assess segmentation accuracy, we present results that varied the number of
training brains while testing on all 80 subjects. For the tests in this section, we
slightly changed our weak learner formulation. Instead of a weak learner being a
decision stump, it is instead a 1-deep modified decision tree. Some of our features
are based on a “prior” image, which we define as the pointwise average of all
the available training masks, which takes values in the range [0,1]. The features
based on this image are so strong that they tend to overpower the other features.
To provide more balance, we define the first level of the decision tree to be “is
the prior less than 0.2.” This gives other features more prominence during the
construction of weak learners. This formulation of the weak learners still follows
the rules set out by the LOEL requirements because the root node is hardcoded.
Instead of storing a positive and negative histogram per weak learner, we store
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Table 1. This table shows p-values comparing the mean hippocampal volume of 40
AD vs. 40 normal subjects. Online bagging was not effective because every subject had
the exact same hippocampal volume. Both AdaBoost and LOEL correctly distinguish
AD from normal, but as shown by Fig. 6, AdaBoost is too volatile in the online case.
Without the ability to make such a well known differentiation, a segmentation is not
accurate enough for real use.

AdaBoost Bagging LOEL

Offline 0.00023 0.034 0.028
Online 0.022 NA 0.0027

4 histograms, a positive and negative histogram for examples in which the prior
is less than 0.2 and the same for examples in which the prior is greater than 0.2.

Fig. 6 shows our results in both the offline and online cases. In the offline case,
all three methods are effective after 6 or 7 brains have been used for training.
In the online case, AdaBoost is quite volatile, whereas both bagging and LOEL
gradually improve with more training brains. Bagging and LOEL are close in the
online case, but error metrics only tell half the story. Because the prior is such
a good feature, by just choosing the prior for each weak learner, bagging is able
to keep up with LOEL. Table 1 shows results of a 2-sample t-test comparing the
mean hippocampal volume of AD to normal subjects. Each algorithm correctly
differentiates AD from normal in the offline case, but LOEL and AdaBoost are
the only algorithms that also do so in the online case. Bagging is just returning
the prior as it cannot make any distinction between brains in the online case.
AdaBoost can distinguish AD from normal, but the error metrics show that
online AdaBoost is too volatile to be effective.

4 Conclusion

In this paper we developed a new ensemble learning method that is lossless in
the online case. While this algorithm is not better than boosting or bagging in
the offline case, it outperformed both of them in the online case. In the future,
we hope to apply LOEL to more classification tasks to see if it generalizes well
to other imaging problems and other domains.
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Abstract. Thickness measurements of the cerebral cortex can aid di-
agnosis and provide valuable information about the temporal evolution
of several diseases such as Alzheimer’s, Huntington’s, Schizophrenia, as
well as normal ageing. The presence of deep sulci and ‘collapsed gyri’
(caused by the loss of tissue in patients with neurodegenerative diseases)
complicates the tissue segmentation due to partial volume (PV) effects
and limited resolution of MRI. We extend existing work to improve the
segmentation and thickness estimation in a single framework. We model
the PV effect using a maximum a posteriori approach with novel itera-
tive modification of the prior information to enhance deep sulci and gyri
delineation. We use a voxel based approach to estimate thickness using
the Laplace equation within a Lagrangian-Eulerian framework leading
to sub-voxel accuracy. Experiments performed on a new digital phantom
and on clinical Alzheimer’s disease MR images show improvements in
both accuracy and robustness of the thickness measurements, as well as
a reduction of errors in deep sulci and collapsed gyri.

1 Introduction

Automatic thickness measurements of the cerebral cortex from magnetic reso-
nance imaging (MRI) can aid diagnosis and provide valuable information about
the temporal evolution of several diseases. Several surface [1] and voxel-based
[2,3,4] approaches have been proposed. Although surface based approaches al-
low easier inter-subject thickness comparisons they are computationally very
demanding, often requiring laborious manual interaction at several stages. In
contrast, voxel based approaches are much more computationally efficient but
are also more prone to noise and partial volume (PV) effects. The presence of PV
effect in collapsed grey matter folds leads to the existence of PV-corrupted deep
sulci and collapsed gyri, the latter mainly caused by the loss of white matter in
patients with neurodegenerative diseases.

Several methods have been used to segment the brain into its different struc-
tures. Expectation-Maximisation (EM) based algorithms proposed by Wells et
al. [5], Van Leemput et al. [6] and Ashburner and Friston [7] are among the most
popular and accurate [8]. Prior information about the brain anatomy is gener-
ally used to initialise and locally constrain EM based segmentation algorithms,

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 441–449, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. BrainWeb thickness measurements: Left) BrainWeb image (noise 3%, INU 20%);
Centre) Proposed method; Right) MAP with MRF but without the proposed improve-
ments. The orange arrows point to areas of improved delineation with the proposed
method.

increasing the robustness to noise. However, in some cases, due to intensity non-
uniformity (INU), PV and noise, the local difference in intensity is insufficient
to provide a correct segmentation of fine structures. The use of priors may also
cause problems in areas that have some degree of natural variability, as the prior
information used is representative of a normal population and not of the partic-
ular subject under study. All these problems lead to an incorrect delineation of
collapsed grey matter folds, resulting in incorrect thickness estimates. Acosta et
al.[4], used information derived from an Euclidean distance tranform to modify
the cost function of a Markov Random Field (MRF) and added a post processing
step to solve this problem. However, the use of an ad-hoc mask produced by a
distance-ordered homotopic thinning (DOHT) algorithm that binarily unassigns
voxels from the thickness calculation may lead to an erratic solution. Hutton
et al.[2] used a mathematical morphology based layering method to detect deep
sulci, without taking the PV effect or the intensity of the voxels into account,
resulting in a loss of accuracy. Additionally, both approaches are only concerned
with improvements in the delineation of deep sulci. However, incorrect thickness
estimates can also result from loss of tissue in the gyri, which together with PV
effects and structural readjustments can lead to a collapsed gyri.

We propose a unified Maximum a Posteriori (MAP) based framework that
iteratively changes the priors, improving the PV classification and the delineation
of deep sulci and gyri (Fig.1). Both the solution of the EM algorithm and the
information derived from the Euclidean distance are used to locally modify the
priors and the weighting of the MRF, enabling the detection of small variations
in intensity while maintaining robustness of noise. Because of the MRF, the
thickness of the PV layer is reduced, making it more in line with the theoretical
anatomical limit. This obviates the need for an empirical threshold or distance
to stop the search for the correct border within the PV classified area. After the
convergence of the MAP algorithm, the cortical thickness is computed using an
Eulerian-Lagrangian approach, as in Acosta et al. [4].

2 Method

2.1 Intensity Model and MRF Regularization

Starting from the image model developed by Van Leemput et al.[6], let y = {y1,
y2, ..., yn}, denote the intensities of an MR image of size n. Let z = {z1,z2,...zn}
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denote the tissue type to which voxel i belongs. For K tissue types, let zi = ek

for some k, 1 ≤ k ≤ K where ek is a unit vector with the kth component equal
to one and all the other components equal to zero.

Additionally, consider that a bias field can be represented as a linear combi-
nation

∑
j cjφj of J smoothly varying basis functions φj(x), with 1 ≤ j ≤ J

and x denotes the spatial position, and C = {c1,c2,...,cj} denote the bias field
parameters. Let Φy = {θ1,θ2,...,θK ,C} represent the overall model parameters.
Due to the multiplicative nature of the MR bias field, log-transformed intensi-
ties are used, making the bias field additive. Now suppose that the intensity of
the voxels that belong to class k are log-normal distributed with mean μk and
variance σ2

k grouped in θk = {μk, σ2
k}. The probability density that voxel i with

intensity yi belongs to class k is then

f(yi | zi = ek, Φy) = Gσk

(
yi − μk −

∑
j

cjφj(xi)
)

(1)

where Gσk
( ) denotes a zero-mean normal distribution with variance σ2

k.
By applying the EM algorithm, the Maximum Likelihood (ML) of the model

parameter Φy provides the following equations:

p
(m+1)
ik =

f(yi | zi = ek, Φ
(m)
y )f(zi = ei)∑K

j=1 f(yi | zi = ek, Φ
(m)
y )f(zi = ei)

(2)

μ
(m+1)
k =

∑n
i=1 p

(m+1)
ik

(
yi −

∑J
j=1 c

(m)
j φj(xi)

)
∑n

i=1 p
(m+1)
ik

(3)

(
σ

(m+1)
k

)2
=

∑n
i=1 p

(m+1)
ik

(
yi − μ

(m+1)
k −

∑J
j=1 c

(m)
j φj(xi)

)2

∑n
i=1 p

(m+1)
ik

(4)

where m denotes the number of iterations. The estimation of c
(m+1)
j is provided

by Van Leemput et al. [6].
Instead of a ML type approach, we adapted the model to a MAP approach

by incorporating prior probability information derived from digital brain atlas.
These atlases are brought into correspondence using an affine registration [9] fol-
lowed by a free-form non-rigid registration algorithm [10]. The prior probability
is introduced as a weight πik =

{
πi1, πi2, πi3

}
, where πi1, πi2 and πi3 contain

the digital atlas prior probability of white matter (WM), grey matter (GM) and
cerebrospinal fluid (CSF) respectively and are integrated in equation 1 as

f(yi | zi = ek, Φy) = πik Gσk

(
yi − μk −

∑
j

cjφj(xi)
)

(5)

Equations 2, 3 and 4 remain valid and the initial values for p0
ik, μ0

k and σ0
k are

given by their equations with c
(0)
j = 0 and f(yi | zi = ek, Φ0

y) = πik.
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Unfortunately, the intensity model alone only works in relatively ideal condi-
tions because it only classifies the voxels of the image based on the intensity and
the initial prior information. Therefore, the model has to be made more robust
to noise by including spatial constraints derived from the anatomical properties
of the tissues. This is achieved by the use of an MRF that assumes the proba-
bility that voxel i belongs to tissue k depends on its neighbours. Using the same
approximation as described in [6], Equation 2 will now be

p
(m+1)
ik =

f(yi | zi = ek, Φ
(m+1)
y )f(zi = ek | p(m)

Ni
Φ

(m)
z )∑K

j=1 f(yi | zi = ek, Φ
(m+1)
y )f(zi = ek | p(m)

Ni
Φ

(m)
z )

(6)

with,

f(zi = ek | p(m)
Ni

Φ(m)
z ) =

e
−βUmrf(zi|p(m)

Ni
,Φ(m)

z )

∑K
j=1 e

−βUmrf(zi|p(m
Ni

),Φ(m)
z )

(7)

where Umrf(zi | pNi , Φz) is an energy function dependant on the parameters
Φz = {G, H}. G and H are K x K matrixes that control the energy of the
transition between classes, and pNi is the value of p in the 6 nearest neighbours
Ni = {in, is, ie, iw, it, ib}. At this stage β is constant and equal to 1. Please refer
to Van Leemput et al. [6] for the estimation of Umrf(zi | pNi , Φz).

2.2 Prior Probability Relaxation

The EM algorithm is known to converge to a local optimum. In a MAP ap-
proach, the prior probability drives the EM algorithm to a sensible solution,
making it more robust to noise and INU. However, in areas with high anatomi-
cal variability, the MAP approach can lead to an erroneous solution because the
prior probability might be too low to allow the EM to converge to the expected
solution. It can also bias the segmentation towards the template, possibly over-
shadowing some anatomical differences. We propose a method where the prior
probability is changed iteratively at each convergence of the EM algorithm, in
an anatomically coherent way. As our model parameters become closer to the
true solution, we are able to locally relax our prior probability without loosing
robustness to noise, INU and PV.

Initially we model the problem with 3 classes, {WM, GM, CSF}. The prior
probability of WM, GM and CSF are derived from an anatomical brain atlas
and non-brain structures are removed. After the convergence of the EM algo-
rithm, the model parameters Φy are closer to the true solution, even though the
structures in areas with low prior probability might not converge to the correct
solution. Once the model parameters are closer to the true solution, the priors
are relaxed by letting neighbouring classes share prior probability. The updated
prior probability after the first convergence of the EM algorithm will be

πik =
{

pi1 + α pi2, pi2 + α (pi1 + pi3), pi3 + α pi2

}/
Πi (8)
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where α is a pre-specified parameter that controls the percentage of prior prob-
ability sharing (set to 0.2 here) and Πi is a normalisation constant ensuring∑K

k=1 πik = 1.
After the second convergence of the EM algorithm, we use the values of pik,

μk, σk to initialise a 5 class model, that considers 3 pure tissue classes and
2 mixture classes {WM, GM, CSF ,WM/GM, GM/CSF}. All the classes are
modelled as Gaussian mixtures in the same framework as before. The prior
probability, average and variance for the 5 class model are denoted as π∗

ik, μ∗
k

and (σ2
k)∗, where the superscript * is used to indicate that they belong to the 5

class model. They are initialised as

π∗
ik =

{
pi1, pi2, pi3,

√
p∗i1pi2,

√
p∗i2pi3

}/
Πi (9)

μ∗
k =

{
μ1, μ2, μ3, Γ1/2 μ1 + (1 − Γ1/2) μ2, Γ2/3 μ2 + (1− Γ2/3) μ3

}
(10)

(σ2
k)∗ =

{
σ2

1 , σ2
2 , σ2

3 , Γ 2
1/2

σ2
1 + (1− Γ 2

1/2
) σ2

2 , Γ 2
1/2

σ2
2 + (1− Γ 2

1/2
) σ2

3

}
(11)

where Πi is a normalisation constant over k and Γj/k is the average of the
fractional content (FC) between classes j and k, excluding values of FC outside
[0,1], where FC is defined as FC = (μj− ȳi)/(μj−μk) and ȳi = yi−

∑
j cjφj(xi)

is the INU corrected intensity. This new stage of the EM algorithm is initialised
with c∗j = cj and f(yi | zi = ek, Φy) = π∗

ik.

2.3 Deep Sulci and Gyri Delineation

After the EM algorithm converges again, due to the presence of the MRF, fine
structures such as deep sulci and gyri might not be correctly segmented. In Van
Leemput et al.[6], the super- and sub-diagonal of the matrices G and H are
constrained to be equal to the diagonal itself, i.e., G(i,i) = G(i,i+1) = G(i,i−1)
and H(i,i) = H(i,i+1) = H(i,i−1). This type of constraint helps the detection
of fine structures, however it globally makes the segmentation less robust to
noise. To overcome this limitation, we propose a method to locally weight the
MRF algorithm and relax the prior probability. This way, the MRF can still be
robust to noise and simultaneously allow the segmentation and correct labelling
of fine structures. In a similar way to [4], we use the information derived from a
Euclidian distance transform to estimate the location of deep sulci and gyri and
change the priors and the weighting of the MRF only in those locations. The
functions ωgyri

i , ωsulci
i that are used to relax the priors are defined as follows:

ωgyri
i = log

(
p∗i GM0.5

(
1− ‖∇ECSF+

i ‖(1− p∗i CSF − p∗iGM/CSF)
)
+ 1

)/
Ωgyri (12)

ωsulci
i = log

(
p∗i GM0.5

(
1−‖∇EWM+

i ‖(1−p∗i WM−p∗i WM/GM)
)
+1

)/
Ωsulci (13)

where the Ω are normalisation factors, EWM+
i is the distance to the sum of WM

and WM/GM labelled areas thresholded at 0.5 (and similarly for ECSF+
i with
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CSF and GM/CSF), and p∗GM0.5
is p∗GM also thresholded at 0.5. The weighting of

the MRF is incorporated in Equation 7 by replacing β with a spatially-varying
value

βi =
(
(1− ωsulci

i ) (1− ωgyri
i )

)/
Ω β (14)

The values of ωsulci and ωgyri vary between [0,1] and have a value of 1 near the
centre of the sulci and the centre of the gyri respectively. In a same way, the
value of βi is normalized by Ω β to lie between [0,1] and has a value of 0 near the
centre of the sulci and gyri. The functions ωsulci

i and ωgyri
i are going to be used

to iteratively relax πik to give more prior probability to the respective mixture
classes in areas where deep sulci and gyri should exist. πik is updated as

π∗
ik =

{
pi1, pi2, pi3, pi4 + ωgyri

i pi2, pi5 + ωsulci
i pi2

}/
Πi (15)

This last EM stage is iterated several times and every time the EM converges,
ωsulci

i , ωgyri
i , βi and π∗

ik are updated, and a new EM starts. The algorithm finishes
when the change in p∗ik at successive converged values of the EM algorithm is
less than a predefined ε.

2.4 Thickness Calculation

The cortical thickness is then computed using a hybrid Lagrangian-Eulerian
approach to solve the Laplace equation, as in [4]. This method takes into account
the PV effect and greatly improves the thickness results. The final values of
pik are used to create the labelled image, where each voxel is set to the most
probable tissue. The grey matter fractional content image, used in the thickness
calculation algorithm, is set to 1 for every voxel belonging to pure GM and set
to the correspondent FC for voxels belonging to mixture classes.

3 Experiments and Results

We created a very high resolution phantom containing finger and sheet like col-
lapsed sulci and gyri. The Euclidean thickness of the structure is constant and
equal to 8. This leads to an average Laplace equation based thickness of 8.13
and a standard deviation of 0.15 measured in the high resolution phantom. We
then use Fourier-resampling to reduce the resolution by a factor of 5, before
adding complex Gaussian noise (either low or high level) and taking the magni-
tude, resulting in two low resolution Rician noise corrupted phantoms. To obtain
artificial priors, the ground truth image was Gaussian filtered (σ = 4 mm) to
simulate the anatomical variability.

The results are shown in Fig.2. The average (standard deviation) thickness
using the proposed method is 8.36 (0.44) and 8.76 (0.77) for the low and high
noise phantom respectively. These values are in line with the expected value
of 8.13(0.15). The MAP approach with the MRF but without the proposed
improvements yields an average of 12.87 (2.98) and 12.49 (2.82) for the low and
high noise phantom respectively, values of thickness much higher than expected
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Fig. 2. Phantom segmentation for thickness: a) 3D model of the phantom, b) High
noise phantom, c) True labels and GM prior used, d) ML without MRF, e) ML with
MRF, f) Proposed method. The green arrows point to the presence of noise causing
wrong thickness measurements. The red arrows point to the detected deep gyri.
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Fig. 3. Box plot of the distribution for all AAL regions over all patients (blue/left) and
controls (red/right). The symbols *, ** and *** correspond to areas with a significance
level of p<0.01, 0.001 and 0.0001 respectively.

due to the mis-detection of the deep sulci and gyri. Finally, the approach without
either the MRF or the proposed improvements yielded an average of 12.11 (2.55)
and 9.35 (3.1) for the low and high noise phantom respectively. The average
thickness for the high noise phantom using this last technique is closer to the
true value of 8 than for the the low noise phantom, but this is due to the
noise introduced by the lack of MRF leading to a number of short paths to
mis-segmented voxels.

Secondly we tested our method on real data, comprising 28 Alzheimer’s disease
(AD) patients and 17 age- and gender-matched controls. T1-weighted volumetric
images were aquired on a 1.5 T Signa unit (GE Medical Systems, Milwaukee,
WI) with 256x256 in-plane resolution, and 124 contiguous 1.5 mm coronal slices
were acquired using a spoiled fast GRASS sequence (TR = 15 ms; TE = 5.4 ms;
flip angle = 15; TI = 650 ms).
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Further details of the protocol and subject characteristics can be found in
[11]. The same transformation used to map the priors to the individual subjects
was used to propagate the AAL template [12], and average thickness values were
computed over 26 bilateral AAL regions. Fig.3 shows the distribution, at base-
line, of values over patients and controls, illustrating group separation in the
different brain regions. To statistically quantify the group-separation, we per-
formed two-tailed unequal-variance two-group t-tests over all the AAL regions;
significance is indicated in the legend of Fig.3. The best group separation was
acheived in two of the regions (cingulate and hippocampal formation) known to
be severely affected in AD.

4 Conclusions

We present an extension of previous work to improve the accuracy of cortical
thickness measurements by refining and enhancing the segmentation of the cor-
tex. The main contribution of this work lies in a method that iteratively relaxes
and modifies the prior information in an anatomically coherent way to ameliorate
the key problem of PV effect and reduce the bias towards the priors.

The method achieves better delineation of collapsed grey matter folds without
loosing robustness to noise and intensity inhomogeneity. All segmentation steps
(such as the transition from pure-tissue to PV model) are encompassed in a single
framework, without ad-hoc post-processing. Quantitative analysis of a phantom
using the proposed method demonstrated improvements in the accuracy and
robustness of the thickness calculation when compared to other methods. Results
on real data showed clinically-expected patterns of cortical thickness in AD, with
highly significant group differences in several areas.

In the future, we plan to expand and improve our technique to study the
temporal evolution of cortical thickness in neurodegenerative diseases.
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Abstract. A new approach for fMRI group data analysis is introduced
to overcome the limitations of standard voxel-based testing methods,
such as Statistical Parametric Mapping (SPM). Using a Bayesian model
selection framework, the functional network associated with a certain
cognitive task is selected according to the posterior probabilities of mean
region activations, given a pre-defined anatomical parcellation of the
brain. This approach enables us to control a Bayesian risk that balances
false positives and false negatives, unlike the SPM-like approach, which
only controls false positives. On data from a mental calculation experi-
ment, it detected the functional network known to be involved in number
processing, whereas the SPM-like approach either swelled or missed the
different activation regions.

1 Introduction

One of the goals of fMRI group studies is to identify the brain structures that
are consistently involved in a given cognitive task across individuals. Mass uni-
variate, or voxel-based, detection [1] is to date the most widely used approach
to address such questions. It starts with normalizing individual images onto a
common brain template using nonrigid image registration. Next, a t-statistic is
computed in each voxel to locally assess mean group effects. The candidate re-
gions are then defined as the connected components (clusters) of the resulting
statistical map above an arbitrary threshold called the cluster-forming threshold.

To account for the multiple testing problem [2], only the clusters whose sizes
exceed a critical value are reported. This critical size acts as a second thresh-
old, and is generally tuned to control the probability of one or more clusters
being detected by chance. Such statistical calibration is achieved in practice
using either analytical approximations or resampling techniques [3]. For scien-
tific reporting purposes, the detected clusters may finally be related to known
anatomical regions based on expert knowledge, or using a digital brain atlas such
as the Automated Atlas Label (AAL) [4], or the Cortical Sulci Atlas (CSA) [5].

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 450–457, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Clusters detected at different cluster-forming thresholds by the SPM-like ap-
proach (axial slices z = 37mm in Talairach, with the subjects’ mean anatomical image
in the background). From left to right, the threshold is tuned to control the false pos-
itive rate (FPR) respectively at 10−2, 10−3 and 10−4 uncorrected. Each cluster with
corrected p-values less than 5% is represented with a specific color, showing how distinct
functional regions are merged. Far right: the CSA atlas.

This approach, which we will refer to in the following as Statistical Parametric
Mapping-like (SPM-like), is simple and widely applicable. However it suffers from
the following drawbacks:

Arbitrary Cluster-Forming Threshold. The fact that a suprathreshold cluster is
found significant by the cluster size test only implies that it contains some active
voxels [3]. Low values of the cluster-forming threshold may result in merging
functionally distinct regions, thus yielding poor localization power, while high
values may result in missing active regions. This is illustrated in Figure 1 (the
dataset and procedure are detailed in Section 3.2).

Exclusive Control of False Positives. False negative regions are not controlled,
meaning that the absence of activations outside the detected clusters cannot be
assessed. Consequently, there is no guarantee that the whole functional network
can be recovered. This partly explains the poor reproducibility of group analyses
across datasets [6].

Assumption of Perfect Match Between Individual Brains. Due to unavoidable
intersubject registration errors, the observed activations are not well-localized,
and possibly displaced across distinct functional regions, which may result in
blurring the group activation map and creating unhandled false positives [7].

To date, these issues have been tackled separately. In [8], the SPM-like approach
is extended to control false negatives using Bayesian inference, while [9] addresses
the arbitrary threshold problem. Uncertainty on the localization of individual ef-
fects is accounted for in [10] by comparing high-level features extracted from the
individual images and in [7] by extending the mass univariate model.

This paper introduces a new approach for fMRI group data analysis that
jointly addresses all the above issues. Our method rests upon a Bayesian model
selection framework in which models are functional networks, defined as binary
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partitions of a given brain parcellation. Each network is then rated in terms of
a posterior probability. Because regions are defined beforehand, the method is
threshold-free, while taking advantage of the prior knowledge about functionally
homogeneous regions provided that the parcellation is sensible. A similar use of
pre-defined regions with Bayesian modeling can be found in [11,12], while other
authors have used spatial priors rather than explicit parcellations [13].

By controlling a Bayesian risk, our approach balances false positives and false
negatives, with relative weights that may be tuned depending on the applica-
tion. Furthermore, the generative model, described in Section 2.1, accounts for
spatial uncertainty on the individual effects due to spatial normalization errors.
Results of this procedure are presented on both simulated and real fMRI data
in Section 3, and we conclude with a brief discussion in Section 4.

2 Method

2.1 Generative Model

After scanning several subjects during an fMRI experiment, individual datasets
are processed separately so that, for each subject i = 1, . . . , n, we are given an
image of estimated effects Yi ∈ R

p, and an image of estimation variances s2
i ∈ R

p,
where p is the number of voxels in the search volume V = {vk, k = 1, . . . , p} ⊂
R

3. Following [7], we extend the mass univariate model in [14] by relaxing the
assumption that the individual images are perfectly aligned so that, at voxel k,

Yi(vk) = μ(vk + uik) + εik. (1)

Here, we note Yi(vk) = Yik to emphasize that it is a spatial map; μ ∈ R
p is the

map of mean population effects; the vector uik is a hidden variable that models
the subject-to-atlas registration error for subject i at voxel k; finally, the εik

are independently distributed Gaussian variables N (0, σ2
I + s2

ik), where σ2
I is the

between-subject variance and s2
ik the within-subject variance due to estimation

errors in the effects. This generalizes the model in [14], which corresponds to the
special case where the estimation variances s2

ik and the registration errors uik

are neglected.
The displacements uik are modeled by a Karhunen-Loève expansion using

elementary displacements wib in a limited number of fixed control points {vkb
, b =

1, . . . , B}. As is a common approach in deformable models, those control points
are interpolated to the whole brain image using a radial basis function K,

uik =
B∑

b=1

K(vk, vkb
)wib, (2)

where K(vk, vkb
) = exp−{‖vk − vkb

‖2/γ2}, and γ controls the displacement
field’s smoothness. The wib’s are independent trivariate Gaussian variables with
zero mean and common spherical covariance matrix σ2

SI3, where σS models the
standard registration error.
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2.2 Bayesian Model Selection Framework

Our approach to functional network selection is based on an a priori partition
of the search volume into N regions of interest V = V1 ∪ . . . ∪ VN , assumed
to be homogeneous functional areas. Thus, throughout region Vj the population
mean effects {μk, vk ∈ Vj} are modeled as independent random variables with
common distribution N (ηj , σ

2
j ), where ηj is the regional mean effect and σ2

j the
regional variance.

Based on the above model (1) and (2), our final task is to select the regions
involved in the considered task. To this end, we define region Vj as being involved
in the task if its regional mean effect is nonzero, i.e. ηj �= 0, and inactive if ηj = 0.
The functional network we wish to recover is thus represented in the following by
the unknown binary label vector Γ ∗ ∈ {0, 1}N , such that Γ ∗

j = 1 if ηj �= 0 and
Γ ∗

j = 0 if ηj = 0. Adopting a Bayesian model selection viewpoint, we estimate
Γ ∗ by selecting the most probable network given the data Y :

Γ̂ ∗ = argmax
Γ

p(Γ |Y ) (3)

= argmax
Γ

p {∀j, Γj = 1 : ηj �= 0; ∀j, Γj = 0 : ηj = 0|Y } . (4)

However, computing p(Γ |Y ) for all 2N possible choices of Γ is intractable.
To cut down computational complexity, we use the following independence
approximation:

p(Γ |Y ) ≈
∏

Γj=1

p(ηj �= 0|Y )
∏

Γj=0

p(ηj = 0|Y ). (5)

It can be shown that (5) would be exact in absence of spatial uncertainty (σ2
S = 0,

uik ≡ 0) and given the inter-subject variance σ2
I . Using (5), the most probable

network Γ̂ ∗ is the one for which all regions j with p(ηj �= 0|Y ) > 0.5. are active.

2.3 Posterior Probability Computation

For all j = 1, . . . , N , the posterior probabilities Pj = p(ηj �= 0|Y ) and p(ηj =
0|Y ) = 1− Pj are computed through their Bayes’ factor:

Pj

1− Pj
=

p(Y |ηj �= 0)
p(Y |ηj = 0)

, (6)

where p(Y |ηj �= 0) =
∫

(ηj ,σ2
j )∈R×R+

p(Y |ηj , σ
2
j )π(ηj , σ

2
j )d(ηj , σ

2
j ) is the marginal

likelihood in the model where region j is involved in the considered task and

p(Y |ηj = 0) =
∫

σ2
j∈R+

p(Y |ηj = 0, σ2
j )π(σ2

j )d(σ2
j ) the marginal likelihood in

the model where region j is inactive, assuming a uniform prior π(ηj �= 0) =
π(ηj = 0) = 0.5 on the state of region j. The priors π(ηj , σ

2
j ) and π(σ2

j ) are
normal-inverse-Gamma and inverse-Gamma distributions, as in [7].
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Fig. 2. Results on simulated data. From left to right: original activation pattern (with
CSA atlas in the background), t-score map, posterior mean estimate μ̂ = E(μ|Y, θ̂) of
the mean population effect map μ and histogram of posterior probabilities Pj found
by our approach.

Computing the marginal likelihoods p(Y |ηj �= 0) is non trivial, since it involves
evaluating integrals on high dimensional spaces. Following [15], we use the basic
marginal equality :

p(Y |ηj �= 0) =
p(Y |θj , ηj �= 0)π(θj)

π(θj |Y, ηj �= 0)
, (7)

valid for any value of the parameter θj = (σ2
I , σ2

S , ηj , σ
2
j ), and apply it to the

maximum a posteriori θ̂j , which we estimate using a MCMC-SAEM algorithm
[16]. The “null” likelihood p(Y |ηj = 0) is computed in a similar fashion.

3 Results

3.1 Simulated Data

We designed an artificial activation map μ simulating the mean population effect
defined in (1), based on the CSA atlas, which we used to analyze real fMRI data
(see Section 3.2). To reflect realistic situations, we placed two activations in
neighboring regions, one at the intersection of several regions, and a smaller one
inside the largest atlas region (see Figure 2, far left).

n = 40 images were generated by warping this map according to the defor-
mation model defined by (2), with one control point in each voxel, choosing
γ = 40mm and σS = 8mm. Homoscedastic noise εik was then added to each im-
age according to the model in Section 2.1, with σ2

I = 1, and the s2
ik’s generated

as independent chisquare variables.
We then applied our Bayesian model selection algorithm to this dataset, to

recover the atlas regions j = 1, . . . , N with a nonzero regional mean activation
ηj , still using the deformation model defined in (2), except this time control
points were restricted to a regular grid with regular spacing equal to γ along
each axis. We also used the SPM-like approach, described in Section 1. The
cluster-forming threshold was tuned to control the voxel-level false positive rate
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(FPR) at 10−3 uncorrected. Clusters with corrected p-values less than 5% in the
cluster-size test were reported, and labeled according to their maximum statistic.

Results from this simulation study are illustrated in Figure 2. The posterior
mean estimate μ̂ of the mean effect map μ is more contrasted than the t-score
map, indicating a better fit of our model, which accounts for localization un-
certainty. The histogram of posterior probabilities illustrates the discriminative
power of our Bayesian model selection algorithm in separating involved from in-
active regions, with more than 90% of the posterior probabilities Pj either above
0.9 or under 0.1. Furthermore, regions j with regional means ηj above 0.04, were
all correctly reported as active and the regional means ηj were estimated with
an average relative error ε = 1

N

∑
j |η̂j − ηj |/ηj of 7%. In contrast, while at the

chosen threshold the SPM-like method detected all activations, with corrected
p-values smaller than 10−3 in the cluster-size test, neighboring active regions
were merged in both the left and right hemispheres.

3.2 Real fMRI Data

We now present results of our method on a real fMRI dataset. We considered the
activation maps of 38 subjects for a ‘Calculation–Sentences’ contrast, which sub-
tracts activations due to audio or video instructions from the overall activations
during the computation tasks. This contrast may thus reveal regions specifically
involved in number processing. As in the simulation study, the data was an-
alyzed using both the SPM-like approach and our model selection algorithm,
based on the CSA atlas [5], derived from the anatomical images of 63 subjects
and comprising 125 regions which correspond to subdivisions of cortical sulci.

As in the simulation study, the histogram of posterior probabilities suggests
a good discriminative power, with over 80% of the posterior probabilities either
above 0.9 or below 0.1. As shown in Figure 3 and Table 1, our method detected
the bilateral intra-parietal and fronto-cingular networks known to be active dur-
ing number processing [17], with posterior probabilities higher than 0.94 for all
frontal regions and higher than 0.83 for all parietal regions. Interestingly, the

Fig. 3. Real fMRI data, number processing task. From left to right: classical t-score
map, posterior mean estimate μ̂ = E(μ|Y, θ̂) of the mean population effect map μ, map
of posterior probabilities Pj , histogram of posterior probabilities.
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Table 1. Number processing task, regions detected using the Bayesian model selection
approach. Reported regions have a posterior probability of being involved in the task
greater than 0.5, and constitute the most probable functional network given the data.
η̂j is the posterior estimate of the regional mean effect. Asterisks (*) mark regions that
are found significant at 5% by the SPM-like approach (corrected cluster-level inference,
cluster-forming threshold set to FPR = 10−3), and correspond to the middle activation
map in Figure 1.

Frontal lobe
Sulcus/Fissure Pj η̂j

Left middle frontal 1.00 2.94
Right middle frontal* 1.00 3.17
Left superior frontal 0.94 2.11

Right superior frontal 1.00 1.93
Left middle precentral 1.00 4.11

Right middle precentral 1.00 1.98
Left inferior precentral 1.00 5.30
Right inferior precentral 0.97 2.69
Left anterior cingular 1.00 3.39

Right anterior cingular 1.00 4.15
Left inferior frontal* 1.00 4.38

Parietal lobe
Sulcus/Fissure Pj η̂j

Left intra-parietal* 1.00 4.87
Right intra-parietal 1.00 3.03

Left precuneus 0.98 5.58
Right precuneus 0.85 3.84

Right inferior postcentral 0.88 2.30
Right parieto-occipital 0.83 1.30

Other
Sulcus/Fissure Pj η̂j

Right callosal 0.79 1.99

bilateral precuneus sulci where also detected. Although not considered as part
of the core numerical system, the precuneus has been linked to memory access
and a wide range of high-level tasks [18]. In contrast, only three activated clusters
were detected by the SPM-like approach at the chosen cluster-forming threshold.
Each cluster contained over a thousand voxels, and extended over several atlas
regions, hence merging several functionally distinct areas. Also, no activations
were detected in the right frontal area. Using different thresholds could not solve
these problems, as illustrated in Figure 1.

4 Discussion

We have introduced a new approach for fMRI group data analysis which ad-
dresses several limitations of standard voxel-based methods, such as SPM. It is
threshold-free, accounts for the imperfect match between individual images, and
controls both false positive and false negative risks. In a calculation experiment,
our method correctly detected the functional network associated with basic num-
ber processing, while the SPM-like approach either swelled or missed the different
activation regions. Beside illustrating the benefits of combining functional and
anatomical information in neuroimaging, these results plead for a new paradigm
for fMRI group data analysis.
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Abstract. Folding of the human cerebral cortex has intrigued many people for 
many years. Quantitative description of cortical folding pattern and understand-
ing of the underlying mechanisms have emerged as an important research goal. 
This paper presents a computational 3D geometric model of cerebral cortex fold-
ing that is initialized by MRI data of human fetus brain and deformed under the 
governance of partial differential equations modeling the cortical growth. The 
simulations of this 3D geometric model provide computational experiment sup-
port to the following hypotheses: 1) Mechanical constraints of the brain skull 
regulate the cortical folding process. 2) The cortical folding pattern is dependent 
on the global cell growth rate in the whole cortex. 3) The cortical folding pattern 
is dependent on relative degrees of tethering of different cortical areas and the 
initial geometry.  

1   Introduction 

Anatomy of the human cerebral cortex is extremely variable across individuals in 
terms of its size, shape and structure patterning [1]. The fact that folding pattern of  
the cortex is a good predictor of its function [2] has intrigued many people for many 
years [3~5]. Recently, understanding of the underlying folding mechanisms [3~5] and 
their computational simulations [4, 5] have emerged as important research goals. 
Though each human brain grows from a similar shape of neuronal tube in the very 
beginning, the major cortical folding variation develops after 8 months of fetus brain 
development. Since many neurodevelopmental processes are involved in this cortex 
folding development, including neuronal proliferation, migration and differentiation, 
glial cell proliferation, programmed cell death, axon development and synaptogenesis, 
how these processes interact with each other and dynamically accomplish the cortical 
folding is still largely unknown [6]. 

In the neuroscience community, several hypotheses have been proposed to explain 
the gyrification or folding of the cerebral cortex from different perspectives [3, 6]. 
Since the cortical area becomes almost three times larger than the cranial area in hu-
man brain after evolution, the mechanical constraint was firstly considered as the 
major factor that determined the cortical folding pattern [7]. Then, the areal differ-
ence, especially the cytoarchitectonic difference, which causes regional mechanical 
property variation, is considered as the direct reason that causes gyrification [7]. The 
axongenesis process, which might cause areal differentiation [3, 6], is also considered 
as an important factor that determines the folding pattern. 
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Due to the complexity of the neurobiology involved in gyrification of the cerebral 
cortex, computational modeling of such a process is very challenging. In the literature, 
there have been a couple of attempts to develop computational models to understand 
the cortex folding process. For example, in [4], the authors proposed a 2D continuum 
mechanics based model of growth to synthesize brain cortex shapes by using physical 
laws. Recently, a computational morphogenetic model was proposed to study the fun-
damental mechanisms of cortical folding in [5]. In this model, the 2D annular cortex 
and radial glial fibres were modeled by finite-elements and the growth of cortex was 
modeled as the expansion of finite elements. More recently, MRI and diffusion tensor 
imaging data were combined with finite element modeling techniques to generate  
biologically meaningful models of the cortical folding process [15]. 

In this paper, a 3D morphogenetic model is proposed to study the mechanisms  
of cortical gyrification. Since the human cortex can be considered as a highly convo-
luted thin shell [2], the triangulated surface of the developing cortex is adopted as its 
representation. The geometric model is driven by mechanical forces occurring in the 
growing brain for simulation of shape dynamics of the developing cortex. Parametric 
models for cerebral cortex are initialized by the structural fetus MRI data [8] from 22 
to 36 week gestation. The morphogenetic model is deformed under the governance of 
partial differential equations. The mechanical forces and boundary conditions are 
guided by MRI data. After applying mechanical and growth properties of cortex on 
each triangular element, the time-varying system is solved by the Newmark scheme.  

2   Methods 

2.1   Materials and Pre-processing 

T2 MRI data of fetus brain (SE sequence TR=1329.88ms and TE=88.256ms) [8] from 
22 to 36 gestation weeks are used for the cortical surface reconstruction and folding 
model initialization. ITKSnap[9] is used to manually extract fetus brain from the 
structural MRI data and then the skull, cortex plate, white matter zone (including 
subplate and intermediate zones), ventricle zone, basal ganglia and thalami are distin-
guished from the brain regions (Figure 1a). The inner surface of the skull and outer 
surface of cortex plate are reconstructed from the volumes (Figure 1b).  

2.2   Computational Model of Cortical Folding 

The proposed computational model of folding of the human cerebral cortex is com-
posed of four key components: 1) Deformable model of the cortex. This model pro-
vides a geometric representation of the cortex that can be deformed into dynamic 
shapes via mechanical forces. 2) Driving forces of the folding. The mechanical driv-
ing forces are inferred from the cortex growth model and deform the cortical surface 
under partial differential equations. 3) Geometric constraints. The growth of the cor-
tex is constrained by the geometric constraints of the brain structures, as well as 
boundary conditions. 4) Model solvers. The numerical solution to the partial differen-
tial equations provides the dynamic evolution of the geometric surface model of the 
cortex. Figure 2 provides an overview of the proposed computational model. 
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               (a)                                      (b) 

       Fig. 1. Fetus brain structure reconstruction           Fig. 2. Flowchart of the simulation model 

2.2.1   Deformable Model 
To model mechanical properties of the developing cortex, the elasto-plasticity model 
is adopted in our methods, akin to that in [5]. The elasticity property enforces the 
surface model to restore to the original shape and at the same time, the plasticity 
property tends to maintain the deformed shape permanently. 

The developing cortex is represented as tens of thousands of triangle elements 
(21,136 in our experiments), each of which presents a small cortical region. During the 
development or growth of cortex, the elastic and plastic properties could be obtained 

from the deformed ( i
cx ) and reference ( i

c0x ) coordinates of the triangle corner i . The 

elastic force of each triangle element is defined along each edge of the triangle: 
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constant. As plasticity plays an important role in soft tissue deformation, in our 
model, the plasticity of cortex is modeled as an adaptation of the reference configura-
tion to the deformed configuration: 
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where ceτ  is the time constant for the plasticity, which is similar to that in [13]. 

Since the cortex is modeled as a zero thickness surface, the rigidity of cortex is in-
troduced as bending energy [10]. As computing mean curvature on the triangulated 
surface is computationally expensive, the simplified version of bending stress is de-
fined on each edge of the surface triangle:  
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where i  and j  are the two vertices of edge e , p and q are the two vertices that share 

the same triangle with edge e  as illustrated, q
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between vertices p and q , qp
cl

,  is the current distance between vertices p and q , and 

bK  is the elastic constant. Also, the bending energy decreases with the plasticity of qp
cl
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where cbτ  is the time constant for the plasticity of bending energy.  

2.2.2   Cortex Growth Model 
Modeling the average size and number of neurons at the cellular level is still an open 
problem in the computational neuroscience field. Here, we adopt the classic logistic-
growth function [11] to describe the growth of cortical tissues as that in [5]: 

⎟
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⎜
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⎛ −=

k

A
mA

dt

dA ti
ti

ti 1                                                (5) 

where m  is known as the Malthusian parameter, tiA is the area of triangle ti  and k   

is the carrying capacity of the system [11]. By changing the rest area of triangular 
element, the growth of cortex will generate mechanical stress that partly drives the 
deformation of the cerebral cortex surface.  

2.2.3   Constraints 
The development of cortex is limited by certain mechanical or boundary conditions 
such as cranial volume and self collision [7]. To prevent the cortex from developing 
into the skull or other brain tissues, a volumetric constraint model is maintained dur-
ing the simulated folding of the cortex. Voxels from the skull, basal ganglia/thalami 
or ventricular zone are extracted from the scanned 3D MRI image and grouped into a 
new image as a mask, outside which volumes of other brain regions are set to zero. As 
a result, the cortex model can only be deformed in the zero value space.  

Also, we applied similar techniques in [12] to prevent the self-intersection of  
deformed cortical surfaces. Specifically, current deformed cortex surface is rasterized 
to a volumetric model. When any vertex of the surface is being deformed to a new 
position x′ , the new position would be checked if it is inside the developing skull or 
other brain tissue volume, or it will cause its neighboring triangles to intersect with 
the other rasterized triangles. Otherwise, another new position x~  for this vertex will 
be found on the line from x′  to the original position x, and it is the closest point to 
position x′  that satisfies the constraints. 

2.2.4   Model Solver 
The proposed computational simulation system is formulated as a time-varying partial 
differential equation, which is commonly adopted in many deformable model  
approaches [10]. Specifically, the dynamics of each cortical surface vertex can be 
simply formulated as iii m/fx =&& , where ix&& is the acceleration of the vertex i , if  is the 

force that combines all forces affecting vertex i , and im  is the mass of vertex i , 

which is usually defined as the sum of one thirds of the masses of all triangles around 
vertex i . By combining all equations on the cortical surface together, we have the 
discrete form of developing cerebral cortex as: 
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),(1 xxMx &&& F
−=                                                      (6) 

where x , x&  and x&&  are the vertex’s position, velocity and acceleration respectively, 
M  is a nn 33 × ( n  is the number of vertices) diagonal mass matrix on vertices where 

),,,,,,,,,()( 222111 nnn mmmmmmmmmdiag K=M  and ),( xx &F  is the net force vector 

that combines all forces on cortical surface vertices. The Newmark scheme, which is 
widely used for solving ODE (ordinary differential equation) integration problem, is 
adopted in our implementation.  

3   Results 

We simulated the computational model of cortical folding introduced in Section 2. The 
parameters in the deformable model and growth model were the same in both simula-
tions with and without skull constraints, which were set as: 1=cK , 1000=ceτ , 

5=bK , 1000=cbτ , 002.0=m , 3=k , 05.0=Δt . The folding development results 

of the 3D morphogenetic model are illustrated in Figure 3. Figure 3a and Figure 3b 
show the snapshots of cortex development at the iteration number 0, 40, 80, 120, 160 
and 200 with and without skull constraints respectively. By visual evaluation, it is evi-
dent that reasonably realistic convolutions are generated during these simulations. To 
quantitatively evaluate the produced convolutions, we use the curvature as the meas-
urement of cortical folding. Also, we use the total surface area of the developing cortex 
to measure its growth rate. The differences between the total area of cortex and the 
average absolute Gaussian curvature of the cortex surface are illustrated in Figure 4a 
and Figure 4b respectively. Figure 4a shows that the cortical surface area increases 
almost linearly with the simulation iteration numbers, irrespective of whether or not 
there is skull constraint. The results in Figure 4a indicate that the cortex increases its 
surface area and convolutes itself to reduce the fast growing internal tension with or 
without skull constraint. However, as shown in Figure 4b, it is intriguing that the in-
crease in speed of average curvature in simulation with skull constraint is much higher 
than the one without skull constraint, meaning that cortex development with skull con-
straint is much more convoluted than that without skull constraint. This computational 
simulation result shows that the skull boundary condition is important in regulation of 
the cortical folding process.   

The results in Figure 3 and Figure 4 also tell that the cortex growth pattern is quite 
different because of the skull constraint. Without skull constraint, the cortex expands 
with the similar shape of the initial cortex during the first 40 iterations, and then small 
shape changes appear during 40~80 iterations. After that, primary sulci rapidly de-
velop during 80~160 iterations and then, secondary sulci develop between major 
sulci. In this model simulation, smaller tertiary gyri and sulci are not found to be  
developed. Since most of the primary sulci developed in this model simulation are 
long but not deep, the average absolute Gaussian curvature is slowly increased during 
the cortical development process. It is striking that the cortex growth pattern in the 
simulation with skull constraint is quite different, that is, the primary and secondary 
sulci are developed much earlier and faster, e.g., in the iteration 40~120. Also, smaller  
 

tertiary gyri and sulci are developed during last iterations (120~200). The sulci devel-
oped in this model simulation are deeper, compared to those simulations without skull 
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constraint. Thus, the average absolute Gaussian curvature increases faster as shown in 
Figure 4b. The quite different cortical growths patterns, due to the existence of skull 
constraints or not, further demonstrate that mechanical constraints of the brain skull 
significantly regulate the cortical folding process. 

The second experiment investigates the effect of global cell growth rate on the cor-
tical folding process. The Malthusian parameter m  in Eq. (5) models the cell growth  
 

 
                                  (a)                                                                          (b)      

Fig. 3. Cortical development with or without skull constraints. (a) and (b) show the snapshots 
of cortex development at the iteration number 0, 40, 80, 120, 160 and 200 with or without skull 
constraints respectively. The parameters are set as: 1=cK , 1000=ceτ , 5=bK , 

1000=cbτ , 002.0=m , 3=k . Mean curvature bar: -0.6  0.8. 

 
(a) (b) 

Fig. 4. The differences of the total area of cortex and the average absolute Gaussian curvature 
of the cortex surface during convolution development 

 
                    (a)                                 (b)                                  (c)                               (d)    

Fig. 5. (a) and (b) are simulations with skull constraints. (a) The parameters are set as those in 
Figure 3. (b) The parameter m  is changed to 0.004. (c) and (c) are simulations without skull 
constraints. Parameters are the same as (a) and (b).  
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                    (a)                                  (b)                               (c)                                  (d)   

Fig. 6. Effect of initial cortex shape on the development and distribution of convolution. Com-
pared to the original cortex (a), the green region in (c) is deformed around 2mm inside. (b) and  
(d) are the results of 200 iterations of simulation. Other parameters are set the same as in Figure 5. 

rate. When the growth parameter m  is increased from 0.002 (Figure 5a) to 0.004 
(Figure 5b), the cortical growth speed is almost doubled according Eq. (5). As a re-
sult, more deep sulci and smaller gyri can be found in the simulated folding, as shown 
in Figure 5b. Also, the average absolute mean curvature increased significantly from 
0.31 to 0.35 in the cortex development simulation with the skull constraint. These 
simulation results provide computational experimental support to the following hy-
pothesis: the cortical folding pattern is dependent on the global cell growth rate in the 
whole cortex. It is interesting that the effect of global cell growth rate on the cortical 
folding process is much less significant in the simulations without skull constraint, as 
shown in the Figure 5c and 5d. For example, even though the parameter m is in-
creased to 0.004 from 0.002, the average absolute mean curvature only increased 
slightly. This result further demonstrates that the skull constraint is an important 
modulator of cortical folding pattern formation.  

The computational results in this experiment demonstrate that overgrowth of the 
cortex will increase the cortical folding and convolution. This simulation result might 
provide theoretical clues to the following two independent studies: 1) In a MRI study 
of Autism, it was reported that the left frontal cortical folding is significantly in-
creased in autism patient, but there is also a significant decrease in the frontal folding 
patterns with age in the autistic group [13]; and 2) It was reported that in Autism, the 
brain overgrows at the beginning of life and slows or arrests growth during early 
childhood [14]. In the future, it would be very interesting to combine our folding 
simulation studies with longitudinal MRI studies of Autistic brains and normal con-
trols to further elucidate the relationship between brain growth and cortical folding in 
both Autism and normal neurodevelopment. 

It was hypothezied that relative degrees of tethering of different cortical areas or 
initial geometry of cortex had significant influence on cortical folding pattern [7]. To 
examine this hypothesis, a small artificial deformation is applied to the originally 
reconstructed cortex surface as illustrated in Figure 6c. The green region is manually 
labeled and is deformed around 2mm towards the ventricular zone. The cortical fold-
ing simulation results in Figure 6b and 6d demonstrate that initial geometry of the 
cortex has significant influence on the resulted cortical folding pattern. However, if 
there is no skull constraint in the simulation, less influence of the intial geometry on 
cortical folding can be seen, compared to the result with original shape of cortex (fig-
ure not shown). It is also apparent from the results in Figure 6 that the local shape 
differences not only cause the folding pattern variation near the locally deformed 
region, but also influence the cortical folding pattern all over the cortex, as denoted by 
red arrows in Figure 6. This result demonstrates that cortical folding process is a 
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global and system-level behaviour, but not a localized procedure, and provides com-
putational experiment support to the idea that cortical folding process might be a 
minimization of global energy function [3].  

4   Conclusion 

We believe that the combination of computational simulation of cortex folding and in-
vivo neuroimaging of fetus brain development will be very helpful to understand the 
mechanisms of cortical folding, as well as interactions between different mechanisms. 
Also, in the long term, the combination of computational modeling and neuroimaging 
might be helpful to understand the mechanisms of many neurological disorders that 
result in abnormal cortical folding.  
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Abstract. Tensor-based morphometry (TBM) is a powerful approach
for examining shape changes in anatomy both across populations and in
time. Our work extends the standard TBM for quantifying local volu-
metric changes to establish both rich and intuitive descriptors of shape
changes in fibrous structures. It leverages the data from diffusion ten-
sor imaging to determine local spatial configuration of fibrous structures
and combines this information with spatial transformations derived from
image registration to quantify fibrous structure-specific changes, such as
local changes in fiber length and in thickness of fiber bundles. In this
paper, we describe the theoretical framework of our approach in detail
and illustrate its application to study brain white matter. Our results
show that additional insights can be gained with the proposed analysis.

1 Introduction

Tensor-based morphometry (TBM) is one of the most popular deformation-based
approaches for analyzing anatomy. It computes, for each voxel in the image do-
main, the spatial derivatives of the transformations that align a set of input
subject images to a template of choice. These images can be acquired from
different populations, enabling cross-sectional study of anatomical differences
between populations. TBM can also be applied to study longitudinal changes in
anatomy by examining the transformations that match images acquired sequen-
tially of the same subjects. The standard TBM has primarily taken advantage
of the determinant of the spatial derivative matrix (known as the Jacobian ma-
trix) [1,2], which enables statistical mapping of local volumetric changes across
populations and in time.

A well-understood weakness of using only the Jacobian determinant is that
significant amount of information captured in the full matrix is being discarded.
As a result, it will not be able to detect many patterns of differences that in-
volve anisotropic changes along different spatial directions but result in no net
volumetric changes. Recently, Lepore et al [3] proposed the generalized TBM
as a solution to this problem. The generalized TBM extends the standard ap-
proach by applying multivariate statistics on the full deformation tensors which
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are derived from the Jacobian matrices and completely capture shape changes
contained within them. The consistent gain in power to detect structural abnor-
malities makes the approach highly desirable for drug trials or computer-assisted
diagnosis. However, the multivariate approach makes it difficult to interpret the
detected abnormalities in anatomically intuitive terms.

In this paper, we propose a different approach for remedying the weakness of
the standard TBM. The approach is specifically tailored for examining fibrous
structures such as white matter and muscle. It is driven by the key observation
that, for fibrous structures, the effect of transformation depends not only on
the properties of the transformation itself but also on the configuration of the
fibrous structure undergoing the warping. The proposed approach leverages the
configuration information of the fibrous structures available from diffusion tensor
imaging (DTI) and establishes both rich and intuitive descriptors of shape prop-
erties. Its ability to gain additional insights is demonstrated in an application to
examine gender-related white matter differences in the aging population.

The paper is organized as follows: Section 2 describes the proposed approach
in detail. Section 3 describes the application of the proposed approach to examine
gender difference of white matter in the aging population. Section 4 summarizes
the contribution and discusses future works.

2 Method

2.1 Tensor-Based Morphometry

In the TBM framework, given an input subject, we first establish the spatial
correspondence between the subject and a template using a high-dimensional
nonlinear image registration algorithm. The correspondence between the two
images is captured by some diffeomorphic spatial transformation φ : Ω → Ω,
where Ω ⊆ R

n is the image domain (n = 2 for 2D and n = 3 for 3D). In
particular, the Jacobian of the transformation, Jφ : x �→ Dφ(x), establishes a
local affine transformation model that maps the local neighborhood around a
point x in the template to the corresponding neighborhood around the point
φ(x) in the subject, such that,

φ(x + ε) = φ(x) + Jφ(x)ε + O(‖ε‖2) ,

with Jφ being a n× n matrix, the (i, j)th entry of which is (Dφ)ij := ∂φi/∂xj .
Beause the determinant of the Jacobian matrix Jφ quantifies the volume change
from mapping a local neighborhood in the template to the corresponding one in
the subject, a map of local volumetric change can be produced by computing
this quantity at each point in the image domain [1, 2]. This approach is most
commonly used in the TBM analysis, in part because the descriptive nature
of the measure makes it easy to understand and to interpret. On the other
hand, its inability to differentiate other patterns of shape changes that do not
result in volume change has motivated active research in identifying alternative
complementary measures.
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locally at x
of the template

locally at φ(x)
of the warped template

e1

e2
e′2

e′1

Fig. 1. The schematic illustrates the local behavior of warping some fibrous structure
with the transformation φ. See the main text in Section 2.2 for the details.

2.2 Overview of the Proposed Framework

The proposed framework builds upon the standard TBM analysis by establishing
a set of descriptors of shape changes that are natural and specific for fibrous
structures. We observe that the fiber orientation information encoded in DTI
can be leveraged to decompose the Jacobian matrix of a transformation into
parts that can be interpreted in intuitive terms. This observation is illustrated
in Fig. 1, which depicts, in the left panel, the local neighborhood around a point
x in a DTI template, and in the right panel, the transformed version of this
neighborhood using some transformation φ. The original neighborhood around x
is represented using a shaded rectangle; its transformed version, which is centered
around φ(x), is represented using a shaded parallelogram. The diffusion tensor
at x and its warped version at φ(x) are shown as two lightly-shaded ellipses.
The eigenvectors of each diffusion tensor form a natural local reference frame
for its neighborhood: their primary eigenvectors, denoted by e1 at x and e′1
at φ(x), are parallel to the orientations of the underlying fiber bundles; their
secondary eigenvectors, denoted by e2 at x and e′2 at φ(x), are perpendicular
to the fiber orientations. The local trajectories of the underlying fiber bundles
are depicted by the pairs of dashed curves, which shall not be interpreted as the
fiber bundle boundaries. Observe that the effect of the Jacobian matrix Jφ on the
transformation of the original neighborhood can be parsed into three steps: (1)
rotating the rectangle such that e1 and e2 coincide with e′1 and e′2, respectively;
(2) compressing the rectangle along e′2, and (3) shearing the rectangle along e′1.
In other words, by factoring out some appropriate rotation matrix, the action of
the remainder of Jφ can be interpreted intuitively in the local reference frame of
the warped underlying fiber bundle.

It turns out that this kind of decomposition of the Jacobian matrix can be
done in general for fibrous structures, provided the fiber orientation information
is available. In this paper, we consider the particular scenario in which the fiber
orientation is derived from DTI measurements. Specifically, given the diffusion
tensor D at x, its eigenvectors {ei}1≤i≤n, ordered in the descending order of
the corresponding eigenvalues, form the basis of a natural local reference frame
for the underlying fiber bundle; the rotation matrix that constitutes a change
of basis from this local reference frame to the laboratory frame, which we will
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e1

e1

e1

e1

e1

e1

Fig. 2. Tensor reorientation strategies for recovering correct fiber configuration after
warping with a horizontal shear transformation. From left to right, the image before
warping, the warped image using the PPD strategy, the warped image using the FS
strategy. Observe how the original fiber connectivity, indicated with identically colored
ellipses, is intact when PPD is used but is severely disrupted when FS is used.

denote by Q, has ei as its ith column. Similarly, the eigenvectors {e′i}1≤i≤n of
the warped diffusion tensor D′ at φ(x) form the basis of a natural local reference
frame for the warped fiber bundle; the change-of-basis matrix from this local
reference frame to the laboratory frame will be denoted as Q′. The appropriate
rotation matrix that matches the local reference frame of D to the one of D′ is
then Q′Q−1. Therefore, we can write the Jacobian matrix as

Jφ = (Q′RQ′−1) (Q′Q−1) , (1)

with R denotes the remainder of Jφ after factoring out the rotation Q′Q−1 and
being viewed in the local reference frame of D′. The following section describes
the computation of R and shows that the structure of the matrix makes it
particularly amenable to intuitive description of its action similar to the example
given in Fig. 1.

2.3 Computation of the Residual Deformation and Its Structure

The key to computing R is in finding the tensor corresponding to the fiber bundle
configuration after warping. This is known as the tensor reorientation problem,
the solution to which has been established by the seminal work of Alexander
et al. [4]. The authors proposed and validated a number of strategies for tensor
reorientation, including the finite strain (FS) strategy and the preservation of
principal direction (PPD) strategy. We choose to use the PPD strategy, summa-
rized in Algorithm 1, because it preserves the connectivity of the underlying fiber
bundle, crucial to the fidelity of warping. As illustrated in Fig. 2, the preservation
of connectivity requires that the appropriate reorientation depends both on the
warping transformation and the fiber configuration before warping, as done in
the PPD strategy. In contrast, the FS strategy applies an identical reorientation
to all tensors regardless of their fiber configurations, which evidently can disrupt
fiber connectivity and thus represents only an approximation to PPD.

Given our choice of the reorientation strategy, the computation of the resid-
ual deformation viewed in the local frame of the warped tensor can now be
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summarized in Algorithm 2, which uses Equation (1) and the fact that Q′ is or-
thogonal, i.e., Q′−1 = Q′T. The structure of the residual deformation is formally
stated with Theorem 1.

Algorithm 1. PPD strategy for tensor reorientation
1: compute e′

1: e′
1 = Je1/‖Je1‖

2: compute e′
2: e′

2 = n/‖n‖, where n = Je2 − ((Je2)Te′
1)e′

1

3: compute e′
3: e′

3 = e′
1 × e′

2

Algorithm 2. Compute the residual deformation R at a point x

1: compute the Jacobian matrix J at x
2: compute the matrix Q = (e1, e2, e3) with {ei}1≤i≤3 being the eigenvectors of the

diffusion tensor D at x ordered in the descending order of the corresponding eigen-
values

3: compute the matrix Q′ = (e′
1, e

′
2, e

′
3) with {e′

i}1≤i≤3 being derived from J and
{ei}1≤i≤3 using the PPD strategy

4: compute the matrix R = Q′TJQ

Theorem 1. The residual deformation R, computed using Algorithm 2, is an
upper-triangular matrix with positive diagonal entries.

Proof. First, we simplify and rewrite Equation (1) as

JQ = Q′R . (2)

Recall that, by defintion, Q = (e1, e2, e3). Hence we have JQ = (Je1, Je2, Je3).
Here we use a different formulation of the PPD strategy that was pointed out
by Cao et al [5]. They recognized that the PPD strategy, as described in Algo-
rithm 1, is in fact equivalent to the application of the Gram-Schmidt ortho-
normalization procedure, which produces an orthonormal basis from a non-
orthogonal but linearly-independent basis. In this case, the non-orthogonal but
linearly-independent basis is composed of the vectors Je1, Je2, and Je3. The
orthonormal basis that the Gram-Schmidt procedure generates from this basis
consists of precisely the vectors e′1, e′2, and e′3. The procedure is summarized in
Algorithm 3; its equivalence to Algorithm 1 can be readily verified.

Algorithm 3. Gram-Schmidt procedure applied to Je1, Je2, and Je3

1: Initialize vi = Jei for 1 ≤ i ≤ 3
2: compute u1: u1 = v1

3: compute u2: u2 = v2 − proju1
v2, where projab = (aTb)a/(aTa)

4: compute u3: u3 = v3 − proju1
v3 − proju2

v3

5: compute e′
1, e′

2, and e′
3: e′

1 = u1/‖u1‖, e′
2 = u2/‖u2‖, and e′

3 = u3/‖u3‖
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The equivalence of Algorithms 1 and 3 is important because the Gram-
Schmidt procedure can be further viewed as the QR-decomposition of matrices
which uniquely decompose any invertible matrix A into an orthogonal matrix
QA and an upper triangular matrix RA with positive diagonal entries such that
A = QARA (See [6] for a proof). In particular, the column vectors of the orthog-
onal matrix QA are computed from applying the Gram-Schmidt procedure to
the column vectors of the matrix A. In our case, JQ is the matrix to be decom-
posed with the QR-decomposition procedure. The matrix is clearly invertible
since J is the Jacobian matrix of a diffeomorphic transformation and Q is an
orthogonal matrix. By definition, Q′, whose column vectors are e′1, e′2 and e′3, is
precisely the orthogonal matrix computed from the QR-decomposition of JQ.
From Equation (2) and the uniqueness of the QR-decomposition, it is evident
that R is the upper-triangluar matrix with positive diagonal entries. � 

An additional property of the proposed decomposition can be seen by rewriting
Equation (1) as

Jφ = (Q′Q−1) (QRQ−1) ,

which reads that the effect of Jφ can also be seen as first applying the same
residual deformation but viewed in the local reference frame of D, then apply-
ing the same rotation Q′Q−1. In other words, the order in which the residual
deformation and the rotation are applied does not change the output.

2.4 Intuitive Descriptors for White Matter Morphometry

To derive intuitive descriptors for white matter morphometry, we first observe
that, in white matter, the primary eigenvector, e1, has been shown to provide
a good estimate to the orientation of the underlying axon fiber bundle [7]. On
the other hand, the secondary and the tertiary eigenvectors, e2 and e3, can not
be determined consistently or can be of any two orthogonal unit vectors lying
in the plane perpendicular to e1, because the secondary and tertiary eigenvalues
are often very close to one another or can not be consistently differentiated due
to noise. In this scenario, the residual deformation will take the following more
general form:

R =
(

s1 V T

0 S23

)
,

where V is a 2-dimensional vector and S23 is a 2-by-2 matrix. It can be viewed as
the QR-decomposition with the basis formed by e1 and the subspace orthogonal
to it, spanned by e2 and e3. Because det R = s1 × det(S23), the structure of R
enables us to decompose the determinant of Jacobian, detJ = detR, into two
components, s1 and detS23. s1 measures local changes along the eigenvector e1,
i.e., elongation or compression along the fiber bundle; detS23, referred to as s23
hereafter, measures local changes orthogonal to e1, i.e., expansion or shrinkage
in the cross-sectional area of the fiber bundle.
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3 Application

Todemonstrate theutilityof theproposedanalysis,we applied theanalysis to study
gender difference of white matter in the aging population. The subjects used in the
present study were extracted from the IXI brain database (http://www.ixi.org.uk)
developed jointly by Imperial College of Science Technology & Medicine and Uni-
versity College London. The IXI database consists of brain MR images from 550
normal subjects between the age of 20 and 80 years acquired at three sites and
freely available for downloads. We selected a total of 35 subjects (16 males and 19
females) with the following criteria: 65 years or older, scanned at the same site, and
with availableDTIdata of sufficient quality.To spatially normalize the data, we ap-
plied the approach described in [8] which simultaneously constructs a population-
specific DTI template from the subject data and normalizes the subjects to the
resulting template. The approach is based on high-dimensional tensor-based
image registration and has been shown to outperform scalar-based registration.

After normalization, we applied both the standard TBM and the proposed
approach to the Jacobian matrix fields computed from the spatial transforma-
tions mapping the subjects to the template. The standard voxel-based statistical
mapping on the whole-brain white matter was then computed for the Jacobian
determinant map, the maps of the two proposed descriptors. The white matter
region is defined as the voxels with fractional anisotropy above 0.2. The vox-
els with significant differences between the gender groups were determined after
FDR-based multiple comparison correction at the significance level pFDR < 0.05.

The results are shown in Fig. 3, which clearly demonstrates that additional
insights can be gained with the proposed approach. The two signifcant clusters

det s1 s23

75

det s1 s23

49 82

s23

88

s1

Fig. 3. Results of the voxel-based statistical mappings on the Jacobian determinant
(det), s1 and s23. See Sec. 3 for the details
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were identified with the standard TBM approach, shown on slice 49 and 75
respectively. The cluster on the slice 75 co-localizes with one of the clusters of
s1, suggesting that local volumetric change at the location can be attributed to
local change along the fiber bundle. On the other hand, the cluster on the slice
49 co-localizes with one of the clusters of s23, indicating that local volumetric
change at the location can be attributed to local change in the cross-sectional
area of the fiber bundle. Furthermore, additional clusters, such as the examples
on the slices 82 and 88, were identified by s1 and s23. These group differences
were otherwise not detected by the standard TBM alone.

4 Discussion

In summary, we have described a new approach for TBM tailored specifically for
examining fibrous structures. The approach derives the information on fibrous
structure configuration from DTI data and combines it with the transformations
computed from image registration to elucidate shape and orientational changes
specific to fibrous structures. The resulting descriptors are highly intuitive and
specific. We note that additional orientational descriptors can also be determined
from the rotation matrix Q′Q−1, e.g., eT1e

′
1 which measures the angle between e1

and e′1. Future works will examine the application of such orientational descriptors
and apply this new theorectical framework to study cardiac laminar structures.
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References

1. Freeborough, P.A., Fox, N.C.: Modeling brain deformations in Alzheimer disease by
fluid registration of serial MR images. J. Comput. Assisted. Tomogr. 22 (1998)

2. Gee, J.C., Bajcsy, R.K.: Elastic matching: continuum mechanical and probabilistic
analysis. In: Brain warping. Academic Press, San Diego (1999)

3. Lepore, N., Brun, C., Chou, Y.Y., Chiang, M.C., Dutton, R.A., Hayashi, K.M.,
Luders, E., Lopez, O.L., Aizenstein, H.J., Toga, A.W., Becker, J.T., Thomp-
son, P.M.: Generalized tensor-based morphometry of HIV/AIDS using multivariate
statistics on deformation tensors. IEEE TMI 27(1) (January 2008)

4. Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of
diffusion tensor magnetic resonance images. IEEE TMI 20(11) (2001)

5. Cao, Y., Miller, M., Mori, S., Winslow, R.L., Younes, L.: Diffeomorphic maching of
diffusion tensor images. In: Proc. MMBIA (2006)

6. Gallier, J.: Geometric methods and applications, for computer science and engineer-
ing. In: Texts in applied mathematics. Springer, New York (2000)

7. Pajevic, S., Pierpaoli, C.: Color schemes to represent the orientation of anisotropic
tissues from diffusion tensor data: application to white matter fiber tract mapping
in the human brain. MRM 42 (1999)

8. Zhang, H., Avants, B.B., Yushkevich, P.A., Woo, J.H., Wang, S., McCluskey, L.F.,
Elman, L.B., Melhem, E.R., Gee, J.C.: High-dimensional spatial normalization of
diffusion tensor images improves the detection of white matter differences in amy-
otrophic lateral sclerosis. IEEE TMI 26(11), 1585–1597 (2007)



G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II,  LNCS 5762, pp. 474–481, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

A Fuzzy Region-Based Hidden Markov Model for 
Partial-Volume Classification in Brain MRI 

Albert Huang1, Rafeef Abugharbieh1, and Roger Tam2 

1 Department of Electrical and Computer Engineering 
{alberth,rafeef}@ece.ubc.ca 

2 Department of Radiology, The University of British Columbia, Vancouver, B.C., Canada 
roger@msmri.medicine.ubc.ca 

Abstract. We present a novel fuzzy region-based hidden Markov model 
(frbHMM) for unsupervised partial-volume classification in brain magnetic 
resonance images (MRIs). The primary contribution is an efficient graphical 
representation of 3D image data in which irregularly-shaped image regions 
have memberships to a number of classes rather than one discrete class. Our 
model groups voxels into regions for efficient processing, but also refines the 
region boundaries to the voxel level for optimal accuracy. This strategy is most 
effective in data where partial-volume effects due to resolution-limited image 
acquisition result in intensity ambiguities. Our frbHMM employs a forward-
backward scheme for parameter estimation through iterative computation of re-
gion class likelihoods. We validate our proposed method on simulated and 
clinical brain MRIs of both normal and multiple sclerosis subjects. Quantitative 
results demonstrate the advantages of our fuzzy model over the discrete ap-
proach with significant improvements in classification accuracy (30% reduction 
in mean square error). 

1   Introduction 

Graphical models have long been successfully used in various signal processing and 
analysis applications such as speech recognition, computer vision, error correction 
coding, and genome analysis. Such models provide a graphical representation of prob-
abilistic distributions by expressing complex computations for inference and learning 
as simpler graphical structures [1]. There exist two major classes of graphical models - 
directed and undirected. The directed graphical models, or Bayesian Networks (BN), 
specify a particular directionality on the links of the graphs, which are useful for con-
veying causal relationships between the underlying random variables. An example of 
BN is the hidden Markov model (HMM), which is commonly used to represent sto-
chastic processes. On the other hand, undirected graphical models or Markov random 
fields (MRF) do not carry any directional implications but rather specify some con-
straints between the random variables. Both directed and undirected graphical models 
have been applied successfully in the context of brain tissue segmentation from mag-
netic resonance imaging (MRI) data, such that each of the image voxels represents an 
underlying hidden random variable of tissue class label, which cannot be observed 
directly but can be indirectly estimated given observations by inference. 
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Performing exact inference on a fully connected high dimensional graphical model 
is a daunting task. Regardless of whether the model is directed or undirected, the 
amount of computations is expensive if not intractable. For the directed representa-
tion, 2D/3D HMMs (causal MRF) have been proposed on a regular rectangular pixel 
lattice [2], but estimating the exact states requires exponential time thus a block-based 
approach [3] and an iterative approximation method [4] have been proposed to im-
prove efficiency. However, modeling an image in such a way is odd as voxels do not 
typically bear causal orders. Recently, a more data-driven model [5] was proposed as 
a tree-structure extension of the iterative approximation method [4]. For the undi-
rected representation, performing a maximum a posteriori (MAP) estimation on a 
hidden MRF (HMRF) is a computationally difficult problem [6]. In such cases, the 
optimal solutions were usually computed using some optimization techniques through 
local optimization or optimization on a relaxed problem [7-9]. 

For image segmentation tasks, the above mentioned estimation methods commonly 
provide a single discrete label to each image voxel. An alternative model subdivides 
the content of one voxel into numerous classes simultaneously, allowing for a more 
accurate modeling of a common physical imaging limitation, namely, partial volume 
effects. Discrete segmentations thus appear as a special case by assuming that no 
partial volume voxels exist, where all classes are null except for the hard estimate. 
One can intuitively infer the partial volumes from the class distributions of a discrete 
labeling process using techniques such as the classical forward-backward algorithm 
[10]. However, a more accurate model should simultaneously model all pixel likeli-
hoods without assuming one single, particular true label class. Furthermore, classifi-
cations based on partial-volume models have shown to achieve improved accuracies 
in tissue volume measurements [11, 12]. A number of interesting works in this aspect 
have been done using graphical models. Bricq et al. [13] converted 3D scan data into 
a 1D chain. Such vectorization is not truly 3D as only a single fixed-ordering 
neighboring pixel is considered in the estimation process, and the scan order is pre-
defined irrespective of the data. Others [12, 14] utilized fuzzy hidden MRFs to incor-
porate information from immediate neighbors. However, parameter estimation in such 
an undirected model is known to be difficult and time consuming. In contrast, estima-
tion in a directed model is comparatively easy with the results achieved being gener-
ally similar to those of an undirected model [15]. Therefore, starting with a more 
natural, data-driven region-based HMM (rbHMM) that was proposed in [5], where the 
advantages of rotational invariance and increased efficiency were shown, we propose, 
in this paper, a novel partial-volume extension for brain tissue segmentation – hence-
forth referred to as fuzzy rbHMM or frbHMM. We integrate the classical forward-
backward scheme in the tree-structured parameter estimation algorithm and refine 
region boundaries to the voxel level resulting in a more accurate classification model 
for partial-volume effects. We present quantitative validation results demonstrating 
the advantages of modeling each voxel in brain MRI scans as mixtures of multiple 
classes as opposed to one single label in simulated as well as real clinical MR data of 
both normal and Multiple Sclerosis (MS) patient subjects. 

2   Methods 

We first briefly describe the discrete rbHMM of [5] and present our proposed exten-
sion for modeling partial volumes within a new fuzzy framework (hereafter referred 
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to by frbHMM). We then describe how the forward-backward algorithm is employed 
for estimating the 3D frbHMM parameters and region class likelihoods, and how the 
classification resolution is improved by further refining image regions. 

2.1   Region-Based Hidden Markov Model Overview 

In [5], Huang et al. proposed a method where an image U is first divided into a set R 
of contiguous homogeneous local regions ri, each of size Ni=║ri║, where 1≤i≤NR and 
NR=║R║ is the total number of regions. Each voxel with coordinates (x, y, z) belongs 
to a region ri if the pixel is labeled as L(x, y, z)=i. The assumption was that each  
region would exhibit similar properties such as intensity or texture, and that by group-
ing them together using, e.g., a watershed transform or a normalized cut, the complex-
ity and computational cost can be largely reduced. For grayscale images, e.g. MRI, 
such regional features fi can be simply defined by the mean observed voxel intensities 
of ri. The observed fi represented noisy regions with true underlying discrete states si, 
which can then be optimally estimated in a MAP sense based on the three statistical 
model assumptions: 

Assumption 1: The observations for the underlying model states l∈{1, 2, …, Ns}, 
where Ns is the total number of given underlying states, follow Gaussian distributions 
with mean μl and variance σl

2, which are estimated from the observed samples.. 

Assumption 2: If si is known, then fi is conditionally independent of other regions. 

Assumption 3: The true underlying state si is governed by an irregular Markov mesh 
such that each region ri has a set of spatially neighboring regions Ri’. The transitional 
probabilities are defined as P(si=l | ni)= lni ,α , where ni={(si”,fi”): ri”∈Ri”} is a set of 

states and features of some preceding neighbors Ri”, which is a subset of Ri’ where 
states si” are already known. 

The primary advantages of this region-based modeling and its tree-structured parameter 
estimation scheme are increased efficiency over pixel-based methods and invariance to 
rotations that are commonly observed in medical images. 

2.2   Proposed Fuzzy Region-Based Hidden Markov Model 

Our main contribution here is the extension of rbHMM by introducing fuzzy states that 
allow each region to belong to multiple classes simultaneously. Rather than consider-
ing one single ‘true’ underlying state si, we now consider an underlying state vector 
Si=( ti,1, ti,2, …, ti,Ns) such that 1

1 , =∑ =

Ns

l lit , ti,l ∈[0,1] represents the proportion of the lth 

class in region ri for l = 1,…, Ns. The term ti,l can also be seen as the probability of 
labeling region ri with label l given the model and observations. For discrete or crisp 
segmentation, ti,l=0 for all l in Si except for the single element where si=l, then ti,l=1. 

To compute the model parameters, K-means clustering is used as a simple way to 
initialize the state means and variances from the samples. The state probabilities Si = 
(ti,1, ti,2, …, ti,Ns) for 1≤i≤NR are then calculated based on a Gaussian mixture assump-
tion. The transition probabilities 

lni ,α  are determined based on probability-weighted 

empirical frequencies given the constraint 1
1 , =∑ =
R

i

N

i lnα  for 1≤l≤Ns. Once these model 
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parameters are initialized, the likelihoods, ti,l , are computed using the forward-
backward algorithm, which has been shown to be efficient in 1D [10]. Thus, similar to 
rbHMM, we iteratively construct a 3D Markov tree from a randomly selected region 
outwards by traversing all regions [5]. 

For each region, we substitute the global region index i with (b,k) such that ri is the 
kth region on branch b; thus, ti,l can be represented as t(b,k),l. For each of the tree 
branches formed, the forward-backward algorithm is applied to estimate the likeli-
hood of class l by defining a forward term, ζ(b,k)(l), and a backward term, η(b,k)(l): 

),1,()( 2
),,(),(),( lllkbkbkb tfPl σμζ ==

r
 1≤l≤Ns (1) 

),,1()( 2
),,(),(),( lllkbkbkb tfPl σμη ==

s
 1≤l≤Ns (2) 

where 
),( kbf

r
 is the set of the observed mean intensity features from the start of the tree 

branch to region r(b,k), and 
),( kbf

s
 is the set of the observed mean intensity features from 

region r(b,k+1) to the end of the branch. We can solve both terms at each region i = (b,k) 
inductively by: 

),(])([)( 2
)1,(1 ,),()1,( llkb

N

m lnkbkb fPml s

i
σμαζζ +=+ ∑=  

k=1,…, length-1

1≤l≤Ns

(3)

∑ = ++= s

i

N

m mmkblnkbkb fPml
1

2
)1,(,)1,(),( )],()([)( σμαηη  k=length-1,…,1

1≤l≤Ns

(4)

where length is the number of regions in the branch. The forward term is initialized as 
ζ(b,1)(l)=P(f(b,0) | μl, σl

2) and the backward term is initialized as η(b,length)(l)=1/Ns. The 
likelihood, ti,l, is thus calculated based on both the forward and the backward terms as: 

∑ =
== sN

m kbkbkbkblkbli mmlltt
1 ),(),(),(),(),,(, )]()([)]()([ ηζηζ  (5)

Once all region likelihoods are found, the algorithm then re-evaluates the model pa-
rameters [μl, σl

2,
lni ,α ] for each state l∈{ 1,2,…,Ns } using probability weighting, by 

assuming a linear model such that the estimated region class probabilities represent 
the underlying partial volumes. A new Markov tree is then constructed from a random 
region and the estimation process repeats. The convergence criterion is defined as a 
minimum mean absolute change or a maximum number of iterations reached. 

While using watershed regions to divide the image into contiguous homogeneous 
regions as proposed by Huang et al. [5] works well for discrete classification, the 
fuzzy approach can benefit from further subdivision along the region boundaries. The 
boundary between two watershed regions represents an optimal sharp division based 
on intensity gradients, and in the discrete rbHMM framework provides an adequate 
level of detail because each region only receives one class label (Fig. 1a). However,  
in our proposed fuzzy rbHMM framework, a finer resolution around the region 
boundaries would allow for superior capturing of gradient changes due to partial  
volume effects (Fig. 1b). Thus, we first pre-segment an image using the watershed 
transform. Once the watershed regions are established, we refine them by assigning 
voxels around all region boundaries as individual regions so as to provide increased 
boundary resolution for the likelihood estimation procedure (Fig. 1c). 
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 (a)  (b)  (c) 

Fig. 1. Image (grayscale) and watershed subdivision (green) for (a) ideal and (b) partial-volume 
edges with two regions. By assigning boundary voxels as individual regions (c), we increase the 
resolution for subsequent estimations. 

3   Results and Discussion 

We tested our fuzzy partial-volume classification technique, frbHMM, on 3D MR brain 
images and compared the performance to that of the discrete approach, rbHMM [5]. We 
first validated on simulated T1-weighted BrainWeb scans (181×217×181 dimensions, 
1mm×1mm×1mm spacing, 0% noise) of normal and MS anatomical models to quantify 
our accuracy as the ground truths are available [16]. We then applied our method to real 
clinical 3DT1 MR scans (256×256×120 dimension, 0.837mm× 0.837mm×1.10mm spac-
ing) of 18 relapse-remitting MS (RRMS) patients and 14 healthy controls from the UBC 
MRI Research Centre to demonstrate the robustness of the proposed method in maintain-
ing control/subject measurements at reduced resolution, and therefore, increased partial-
volume effects. We performed a 4-class segmentation - background, white matter (WM), 
gray matter (GM) and cerebrospinal fluid (CSF). For MS data, lesions cause errors in 
CSF and/or GM classification due to intensity overlap, but frbHMM remains robust for 
WM and more importantly, does not show unexpected stability problem when model 
assumptions are violated. frbHMM required approximately twice the runtime as rbHMM. 
Results of classification improve iteratively, but for the purpose of fair comparisons, both 
discrete and fuzzy estimations were run for 10 iterations. 

3.1   Simulated Images 

We examined the segmentation accuracies of both rbHMM and frbHMM. Fig. 2 
shows qualitative results obtained by both methods. For MS data, both methods clas-
sified periventricular lesions as GM; however, frbHMM performed better than 
rbHMM in capturing the partial WM details of ambiguous regions (Fig. 2). Quantita-
tively, Table 1 shows that mean square errors (MSE) of the segmentation results. At 
the original resolution, frbHMM achieved approximately 20% lower MSE for both 
WM and GM results. Analyzing the MSE gains of partial volume regions 
(0<probability<1) yielded similar performance. To simulate progressively reduced 
resolution, hence increased partial volumes, we performed smoothing by using a 
Gaussian kernel (7×7×7 dimension) with varying standard deviations to incorporate 
intensities within ±3mm. Again, frbHMM was superior (about 40% MSE reduction). 

3.2   Clinical Scans 

Next, we tested both rbHMM and frbHMM classification accuracy on high resolution 
3DT1 scans of real clinical control (C) and subject (S) groups. With no ground truths 
available, in order to evaluate the robustness of the proposed frbHMM approach with 
increased partial-volumes, we examined the WM volume fraction measurements  
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(b) rbHMM 
WM results 

(c) rbHMM 
GM results 
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WM results 
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GM results 

Fig. 2. Experimental results on simulated BrainWeb MRI scans. (a) Input T1-weighted scans at 
1mm slice thickness, (b-c) results of discrete rbHMM, and (d-e) results of proposed frbHMM. 

Table 1. Quantitative MSE of simulated BrainWeb MRIs of normal and MS subject anatomical 
models. Classifications were performed using discrete and fuzzy rbHMMs, and results were 
compared to the discrete and fuzzy phantoms, respectively. The better performance for each 
comparison is highlighted in bold. Gain is defined as (rbHMM-frbHMM)/rbHMM. 

Original Scan 
Gaussian kernel 

std. dev. = 1.0 voxel 
Gaussian kernel 

std. dev. = 2.0 voxel Data Tissue
rbHMM frbHMM % gain rbHMM frbHMM % gain rbHMM frbHMM % gain 

WM 0.0089 0.0069 22.47 0.0217 0.0133 38.71 0.0352 0.0213 39.49 Normal 
GM 0.0149 0.0119 20.13 0.0364 0.0213 41.48 0.0572 0.0345 39.69 
WM 0.0090 0.0069 23.33 0.0222 0.0136 38.74 0.0348 0.0213 38.79 MS 

Subject GM 0.0151 0.0121 19.87 0.0364 0.0213 41.48 0.0565 0.0345 38.94 

 
(WMVF = VWM / VBRAIN × 100%, where VWM and VBRAIN are the WM and intradural 
volumes respectively). We targeted the WM as it is the largest tissue by volume and 
the pathological regions in patient scans are the most distinct in WM and thus can be 
readily excluded. We first demonstrate that both methods (rbHMM and frbHMM) 
performed comparably in terms of the WMVF measure when using the high resolu-
tion scans. However, we then demonstrate how the proposed frbHMM is far more 
robust when the image resolution is reduced. 

Table 2 shows the average WMVF obtained by using the original (high resolution) 
scans. Both methods showed that the average WMVF in the controls were signifi-
cantly (p<0.05) higher (+3.53% for discrete, +3.11% for fuzzy) than those of the  
 

Table 2. Quantitative average WMVF measurement on high resolution clinical MRI data. Note 
that both the rbHMM and frbHMM segmentation methods show consistent and significant 
differences between the control and the subject groups, while no significant differences were 
observed between the two methods for either group, which is expected in high resolution data. 

 rbHMM frbHMM Δ (methods) p-Value 
Controls (C) 42.57 (σ=1.66) 41.98 (σ=1.43) 0.58 0.33 
Subjects (S) 39.03 (σ=2.82) 38.88 (σ=2.59) 0.15 0.87 
Δ (groups) 3.53 3.11   

p-Value <0.05 <0.05   
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(a) input scans
(raw) 

(b) rbHMM 
results 

(c) frbHMM
results 

(d) input scans
(smoothed) 

(e) rbHMM 
results 

(f) frbHMM
results  

Fig. 3. Example results on real clinical MRI scans. (a-c) Input 3DT1 scans at original resolution 
and results of discrete and fuzzy rbHMMs, (d-f) smoothed 3DT1 scans (kernel standard devia-
tion=2.0 voxel) and results of discrete and fuzzy rbHMMs. 

Table 3. Quantitative segmentation comparisons on real clinical data with escalated partial 
volume effects. Classifications were performed using discrete and fuzzy rbHMMs, and results 
were compared to the segmentations obtained based on the original high resolution scans. The 
superior performance is highlighted in bold. Gain is defined as (rbHMM-frbHMM)/rbHMM. 

Gaussian kernel std. dev. = 1.0 voxel Gaussian kernel std. dev. = 2.0 voxel Metric 
rbHMM frbHMM % gain rbHMM frbHMM % gain 

MSE (C) 
0.0159 

(σ=0.0018) 
0.0102 

(σ=0.0010) 
35.89 

(p<0.05) 
0.0250 

(σ=0.0027) 
0.0179 

(σ=0.0022) 
28.40 

(p<0.05) 

MSE (S) 
0.0155 

(σ=0.0015) 
0.0100 

(σ=0.0008) 
35.48 

(p<0.05) 
0.0244 

(σ=0.0022) 
0.0173 

(σ=0.0016) 
29.10 

(p<0.05) 

MSD (C) 
11.37 

(σ=6.33) 
2.29 

(σ=3.10) 
79.86 

(p<0.05) 
35.48 

(σ=11.05) 
18.06 

(σ=10.30) 
49.10 

(p<0.05) 

MSD (S) 
6.72 

(σ=5.97) 
1.43 

(σ=1.75) 
78.72 

(p<0.05) 
22.71 

(σ=13.74) 
8.55 

(σ=8.24) 
62.35 

(p<0.05) 

 
RRMS patients due to the presence of WM lesions and enlarged ventricles in MS 
patients. Comparing the two methods within groups, no significant evidence (p≥0.05) 
of differences in WMVF was observed demonstrating that both methods achieved 
similar performances on high resolution data. 

Similar to the simulated scans case, we then progressively reduced the image reso-
lutions by Gaussian smoothing. Fig. 3 shows the effects of such smoothing on the 
classifications of control and subject scans. Again, the proposed frbHMM classified 
ambiguous intensity regions (zoomed-in regions of Fig. 3) with greater accuracy than 
the discrete model. Quantitatively, Table 3 shows the average MSE (image-to-image 
comparison) and the mean square difference or MSD (WMVF comparison) of the 
control and subject groups. The proposed frbHMM consistently achieved significantly 
(p<0.05) lower MSE (approximately 30% improvement) and MSD for both groups. 

4   Conclusions 

We introduced a novel fuzzy 3D region-based hidden Markov model for modeling 
and estimation of partial volumes in image voxels within an unsupervised framework. 
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The paper’s main contribution is a new fuzzy 3D HMM framework based on irregu-
larly-shaped homogeneous regions with further spatial refinement at the region 
boundaries, where the contents of each region are assigned to multiple underlying 
classes simultaneously rather than assuming a single true discrete label. To compute 
the region class likelihoods, we employ a classical iterative forward-backward 
scheme. We evaluated the classification accuracy and robustness of our method under 
increased partial volume effects using both simulated and real clinical brain MRI data 
of healthy controls and MS subjects. Results showed the proposed frbHMM approach 
to be consistently superior to the discrete rbHMM in labeling intensity-ambiguous 
regions, such as white matter with reduced signal due to pathology. Future work in-
cludes investigating the utility of our frbHMM approach for quantifying the extent of 
white matter disease such as diffusedly-abnormal white matter (DAWM). 
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Brain Connectivity Using Geodesics in HARDI
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Abstract. We develop an algorithm for brain connectivity assessment
using geodesics in HARDI (high angular resolution diffusion imaging).
We propose to recast the problem of finding fibers bundles and connectiv-
ity maps to the calculation of shortest paths on a Riemannian manifold
defined from fiber ODFs computed from HARDI measurements. Several
experiments on real data show that our method is able to segment fibers
bundles that are not easily recovered by other existing methods.

1 Introduction

Diffusion MRI and fiber tractography have gained importance in the medical
imaging community for the last decade. Many new diffusion models and fiber
tracking algorithms have recently appeared in the literature always seeking bet-
ter brain connectivity assessment, in particular regarding complex fiber configu-
ration such as crossing, branching or kissing fibers. Clinical applications are also
asking for robust tractography methods, as they are the unique in vivo tool to
study the integrity of brain connectivity.

The most commonly used model is the diffusion tensor (DT), which is only
able to characterize one fiber compartment per voxel. Several alternatives have
been proposed to overcome this limitation of DTI, mainly using high angular res-
olution diffusion imaging (HARDI). Several competing HARDI reconstruction
technique exist in the literature, which all have their advantages and disadvan-
tages. Nonetheless, the community seems to now agree that a sharp orientation
distribution function (ODF), often called fiber ODF or fiber orientation density
function (fODF) [1,2,3,4], able to discriminate low angle crossing fibers needs to
be used for fiber tractography.

Three classes of algorithms exist: deterministic, probabilistic and geodesic. A
large number of tractography algorithms have been developed for DTI, which are
limited in regions of fiber crossings. While HARDI-based extensions of streamline
deterministic [5,6,7,4] and probabilistic [8,9,10,11,12,13,4] tracking algorithms
have flourished in the last few years (the list is not exhaustive), [14] was the only
attempt to generalize DTI geodesic tracking [15,16] for HARDI measurements.

In this paper, we develop an algorithm for brain connectivity assessment using
geodesics in HARDI. We propose to recast the problem of finding connectivity
maps in the white matter to the calculation of shortest paths on a Riemannian
manifold. This Riemannian manifold is defined from fiber ODFs computed from
HARDI measurements.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 482–489, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Brain Connectivity Using Geodesics in HARDI 483

2 Method

Firstly, let us provide some basics definitions about Riemannian manifolds.

Definitions. Let (M, g) be a Riemannian manifold i.e.

• M is a n-dimensional manifold
• for all x ∈M , g(x) is a symmetric positive definite n× n matrix inducing a

metric ||y||x def.=
√
yT g−1(x)y over that manifold.

The length of a smooth curve γ : [0, 1] → M is then defined as

L(γ) def.=
∫ 1

0
||γ′(t)||γ(t)dt

def.=
∫ 1

0

√
γ′(t)T g−1(γ(t))γ′(t)dt. (1)

Given a set A ⊂M of seeds points and a set B ⊂M of ending points, a geodesic
γ∗(t) ⊂M joining A to B is defined as a curve with minimal length between A
and B:

γ∗(A,B) def.= argmin
γ∈π(A,B)

L(γ), (2)

where π(A,B) is the set of curves γ such that γ(0) ∈ A and γ(1) ∈ B. The
corresponding geodesic distance is d(A,B) def.= L(γ∗(A,B)).

Let us also define the Euclidean length of the curve γ

Leuc(γ) def.=
∫ 1

0
||γ′(t)||dt. (3)

and

Lsq(γ) def.=
∫ 1

0
||γ′(t)||2γ(t)dt. (4)

Following [15] if we interpret the metric induced by g as a “speed” over M , for
any smooth curve γ, L(γ)/Leuc(γ) can be thought of as the average of inverse
speed along the curve, while

√
Lsq(γ)/Leuc(γ)− (L(γ)/Leuc(γ))2 represents the

standard deviation of this quantity.

Connectivity measures. Considering A and B two subset of M we define

C(A,B) def.=
L(γ∗(A,B))
Leuc(γ∗(A,B))

, Cmax(A,B) def.= max
t∈[0..1]

||(γ∗(A,B))′(t)||γ(t)

Cσ(A,B) def.=

√(
L(γ∗(A,B))
Leuc(γ∗(A,B))

)2

− Lsq(γ∗(A,B))
Leuc(γ∗(A,B))

(5)

γ∗(A,B) being a geodesic between A and B, C(A,B), Cσ(A,B) and Cmax(A,B)
are respectively measures of average inverse speed, inverse speed standard devi-
ation, and worst inverse speed to reach B from A. They can thus be interpreted
as three different connectivity measures between A and B.
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2.1 HARDI Riemannian Manifold

We now explain how we recast the fibers bundles tracking problem from HARDI
data to the calculation of connectivity maps on a Riemannian manifold.

Let us denote E ⊂ R
3 the white matter volume, S = {eθ,ϕ | θ ∈ [0, 2π), ϕ ∈

[0, π)} the unit sphere and M
def.= E × S. Using such a 5-dimensional space

can disambiguate crossing configurations since in such a space (x, y, z, eθ,ϕ) and
(x, y, z, eθ′,ϕ′) are completely different points. The idea was introduced [17], but
the authors proposed to segment rather than track bundles using level-sets, which
is time-consuming and less accurate.

At every point (x, y, z) ∈ E, we can compute the fODF fxyz : eθ,ϕ ∈ S →
fxyz(eθ,ϕ) ∈ R

+.The full data can thus be naturally modelled as a mapping f

from M to R
+ : f : (x, y, z, eθ,ϕ) ∈M �→ fxyzθϕ

def.= fxyz(eθ,ϕ) ∈ R
+.

Let us define the metric g at any point (x, y, z, eθ,ϕ) of M as

gxyzθϕ
def.=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E︷ ︸︸ ︷ S︷ ︸︸ ︷
ρ(fxyzθϕ) 0 0 0 0

0 ρ(fxyzθϕ) 0 0 0
0 0 ρ(fxyzθϕ) 0 0
0 0 0 α 0
0 0 0 0 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(
ρ(fxyzθϕ)I3 0

0 αI2

)

where ρ is an increasing function from R
+ to R

+∗ and α is a parameter controlling
the speed on the angular space S w.r.t. the speed on the E volume. Such a metric
“favors” paths going through areas of high diffusion.

Recasting the problem in the white matter volume, let us consider two
points (x1, y1, z1) and (x2, y2, z2) ∈ E between which one wishes to estimate
the connectivity. Let us denote A = {x1, y1, z1, eθ,ϕ | eθ,ϕ ∈ S} and B =
{x2, y2, z2, eθ,ϕ | eθ,ϕ ∈ S} ⊂ E × S.
C(A,B), Cσ(A,B) and Cmax(A,B) are then natural measures of connectivity

between (x1, y1, z1) and (x2, y2, z2). Furthermore, let us denote π : E × S → E
the projection such that π(x, y, z, eθ,ϕ) = (x, y, z). To the geodesic γ∗(A,B) in
E×S then corresponds a projected path π(γ∗(A,B)) in E ⊂ R

3. Since γ∗(A,B)
follows a high diffusion trajectory, π(γ∗(A,B)) is likely to follow an actual fiber
bundle in the volume. With this point of view, α can be seen as a smoothing
parameter of the angular variations of the fibers.

However, among the paths γ : [0, 1] → M , one would like to favor the ones
such that at every point t0, π(γ(t0)) follows the corresponding direction in S :
if we denote (x0, y0, z0, eθ0,ϕ0)

def.= γ(t0), one would like to have

(π(γ)x(t0), π(γ)y(t0), π(γ)z(t0)) ≈ ±eθ0,ϕ0 ||(π(γ)x(t0), π(γ)y(t0), π(γ)z(t0))||
In order to encourage these paths, we propose the following approach : let us
consider a point (x, y, z, eθ,ϕ). Instead of using an isotropic metric ρ(fxyzθϕ)I3
in the first three directions, one would like to favor propagation along the eθ,ϕ

direction. In order to do so, ρ(fxyzθϕ)I3 is replaced by the following matrix:
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(Rθ,ϕ)T

⎛
⎝ρ(fxyzθϕ) 0 0

0 min(ε, ρ(fxyzθϕ)) 0
0 0 min(ε, ρ(fxyzθϕ))

⎞
⎠Rθ,ϕ

where Rθ,ϕ is a rotation which maps the first axis to the eθ,ϕ direction, and ε
is some constant. As long as ρ(fxyzθϕ) > ε, this tensor favors propagation in
the eθ,ϕ direction. However if ρ(fxyzθϕ) � ε (i.e. if the diffusion is small at this
point), this does not make sense, and we keep the isotropic tensor defined by
ρ(fxyzθϕ)I3.

The choice of this metric is a natural way of handling the 5-dimensional
HARDI data and to obtain connectivity maps and fibers. It ensures that (i) the
full HARDI angular information is used, (ii) geodesics go through areas of high
diffusion, (iii) geodesics travel in those areas in the correct directions and (iv)
crossing configurations are disambiguated.

3 Implementation

3.1 Djikstra and Fast-Marching Algorithms

Two algorithms can be used to compute connectivity measures on discretized
Riemannian manifolds (M, g). Assuming an initial seed A ⊂M , they both con-
sist in successive evaluations of geodesic distances d(A, {x}) and connectivity
measures from each point x ∈M to A. For one point x, d(A, {x}) is iteratively
evaluated from the {d(A, {y})}y∈N(x), where N(x) is the set of neighbors of x in
the chosen discretization. This calculation is called local update step. Only this
local update step differs between the two following methods.

• Djikstra algorithm–initially designed to compute distances and shortest
paths in graphs–can be used to approximate connectivity maps and geodesics
on Riemannian manifolds. While this algorithm is fast, paths are constrained
to be on the edges on the discretization, which limits its accuracy.

• Fast-Marching algorithm [18,19] and its variants can be view as a refine-
ment of Djikstra algorithm in which the paths are not constrained anymore.
However, while being of same asymptotic complexity, it is much slower than
Djikstra algorithm, and thus can not be directly applied to our problem.

In most tracking methods, connectivity measures are obtained explicitly from
fibers computed from deterministic or probabilistic streamlines. However, in
Djikstra and Fast-Marching algorithms, the connectivity measures are computed
intrinsically without the actual computation of any fiber, although the geodesics
– i.e. the fibers – can be retrieved from the output of the algorithm by performing
a gradient descent on the distance map.

3.2 Our Implementation

For our problem, E was discretized as a subset of a 3-dimensional grid, at the
HARDI measurement spatial definition. S was meshed in such a way that every
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vertex of the mesh corresponds to a direction of HARDI measurements. Further-
more, in order to achieve good precision, we chose to use a 26-neighborhood in
the discretization of E. Since we are mainly interested in precision in the high
diffusion directions, we propose to compute d(A, {x}) at each point by using
Djikstra local update step. The Fast-Marching local update step is then only
applied for neighbors near to the current eθ,ϕ direction, and only if the diffusion
is important enough (i.e. ρ(fxyzθϕ) > ε) at current point. This lead to signifi-
cant speed-up (∼ ×50 w.r.t the full Fast-Marching computation) of the method,
while the precision in the fibers direction is preserved.

4 Experimental Results

4.1 Real HARDI Data

We use a human brain dataset obtained on a Siemens 3T Trio scanner, with
isotropic resolution of 1.7mm3, 60 gradient directions, a b = 1000 s/mm2, seven
b = 0 s/mm2 images, TE = 100 ms and TR = 12s, GRAPPA factor of 2 and a
NEX of 3. The data is corrected to subject motion.

From these HARDI measurements, the fiber ODF was reconstructed. As
mentioned in the introduction, several fiber ODF reconstruction algorithm ex-
ist [1,2,3,4]. Here, we used the analytical spherical deconvolution transform of the
q-ball ODF using spherical harmonics [4]. We used an order 4 estimation with
symmetric deconvolution fiber kernel estimated from the real data, resulting in
a profile with FA = 0.7 and [355, 355, 1390]× 10−6mm2/s.

The geodesic tracking is performed within a white matter mask was obtained
from a minimum fractional anisotropy (FA) value of 0.1 and a maximum ADC
value of 0.0015. These values were optimized to produce agreement with the
white matter mask from the T1 anatomy. The mask was morphologically checked
for holes in regions of low anisotropy due to crossing fibers.

4.2 Geodesic Connectivity Results

For each bundle except the Superior Longitudinal Fasciculus (SLF), experiments
were carried out with ρ(f) = ln(f)/ln(2), ε = 1 and α = 2 after threshold-
ing values of the fODF under 1 to avoid negative values. Our method however
demonstrates robustness w.r.t the exact choice of these parameters. Since SLF
has high curvature, we set angular speed α = 8 in order to favor tracking of
actual SLF rather than projections on the occipital cortex. Runtime was about
90min for each bundle. It can be further reduced by computing only some of
the connectivity maps, or by computing them only on a subset of white matter.
While results presented below show connectivity maps on the full maps, exper-
iments show that the bundles can be retrieved by stopping the algorithm when
20% of the mask has been visited. The runtime is then reduced to about 14min.

Figure 1 shows connectivity measures and some geodesics obtained from dif-
ferent seeds manually placed into major fibers bundles, which agree with our
knowledge of the white matter anatomy. Notice the correctness of the maps



Brain Connectivity Using Geodesics in HARDI 487

C
ST

C
g

IF
O

A
T

R
SL

F

Fig. 1. Geodesic tracking results on five major fibers bundles. From left to right, C,
Cmax, Csigma and some geodesics superimposed over the FA.
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Fig. 2. Geodesic tracking results on major fibers bundles. We show isosurfaces of the
connectivity measures of each bundle in a different color. In yellow, the CST; in blue,
the Cg; in red, the IFO; in orange, the SLF; in green, the ATR; in dark blue, a small
part of the CC projections to the superior cortex.

on Corticospinal Tract (CST), which does not spread into the Corpus Callo-
sum (CC). Also, the Cingulum (Cg), which is a thin structure close to CC is
correctly handled by our method. This clearly shows the advantage of using a
5D space: since fibers in Cg and CC are perpendicular, these two bundles are
very distant in our 5D space, while they are extremely close in 3D. Other fibers
bundles are also correctly retrieved, such as the Inferior Fronto-Occipital (IFO)
fasciculus and the Anterior Thalamic Radiations (ATR). Furthermore, coherent
results are obtained by the three proposed connectivity measures.

On figure 2 isosurfaces of the connectivity maps are shown for all the previous
fibers bundles, as well as a small part of CC projections. Notice that CC is not
segmented by our method. Rather, fibers are tracked from the given seed.

5 Conclusion

We presented a geodesic based tracking algorithm on HARDI data. Our method
rapidly estimates connectivity maps inside a white matter mask from seed points,
without the need for an explicit computation of fibers. Its versatility allows si-
multaneous computation of several different connectivity measures. Our experi-
ments plead in favor of the use of a 5D space and show that our method is able
to recover complex fiber bundles, which are often difficult to track.
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Abstract. We propose a novel method for functional segmentation of fMRI 
data that incorporates multiple functional attributes such as activation effects 
and functional connectivity, under a single framework. Similar to PCA, our 
method exploits the structure of the correlation matrix but with neighborhood 
information adaptively integrated to encourage detection of spatially contiguous 
clusters yet without falsely pooling non-active voxels near the functional 
boundaries. In addition, our method adaptively combines PCA and replicator 
dynamics, which we show to be equivalent to non-negative sparse PCA, based 
on the sparsity of the activation pattern. We validate our method quantitatively 
on synthetic data and demonstrate that it outperforms methods including repli-
cator dynamics, PCA, Gaussian mixture models, and general linear models. 
Furthermore, when applied to real fMRI data, our method successfully seg-
mented the Brodmann area 6 into its known functional sub-regions, whereas 
other conventional methods that we examined failed to attain such delineation.  

1   Introduction 

Segmentation of functional magnetic resonance imaging (fMRI) data has by far been 
dominated by univariate analysis approaches. These methods examine each voxel in 
isolation, thus voxel interactions are ignored. To account for spatial correlations, 
Descombes et al. proposed modeling fMRI data using Markov random fields (MRF) 
[1], whereas Woolrich et al. proposed using a spatio-temporal autoregressive model 
[2]. Due to computational complexity, only local spatial correlations are typically 
modeled. Another approach for functionally segmenting the brain relies on identifying 
voxels with temporal responses similar to a pre-selected seed region [3], which  
directly models the correlations between spatially disconnected voxels. However, pre-
specifying a seed region can be difficult. To automatically identify seed regions, Gol-
land et al. proposed using Gaussian mixture models (GMM) under a hierarchical 
framework [4], which alleviates the need to pre-define the number of clusters. Instead, 
expert knowledge is exploited to determine the necessary level of decomposition. The 
limitations to these seed-based approaches are that the detected clusters may not be 
spatially contiguous and the detected voxels may not necessarily pertain to task-
related responses. To detect spatially contiguous clusters, Woolrich et al. proposed 
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applying spatial mixture models on the activation statistics [5]. Similarly, Thirion  
et al. proposed using spectral clustering with activation statistics and physical dis-
tances between voxels as similarity metrics [6]. Using activation statistics encourages 
detection of task-related clusters, but unexpected responses will be neglected. Thus, 
jointly optimizing both functional connectivity and activation effects is desired. 

To identify functional clusters without seeding, Friston et al. proposed using prin-
cipal component analysis (PCA), which exploits the structure of the covariance matrix 
[7]. Thus, correlations between spatially disconnected voxels are also modeled. How-
ever, PCA often results in diffused weightings (i.e. spatial component maps with  
non-zero weights assigned to the majority of the voxels), which complicates cluster 
identification [8]. Another covariance-based method employing replicator dynamics 
was proposed by Lohmann et al. [9]. The authors noted that replicator dynamics has 
the interesting property of detecting clusters with mutually correlated voxels. This 
property, as we have shown previously [10], is in fact a result of the equivalence be-
tween replicator dynamics and non-negative sparse PCA. Thus, replicator dynamics 
can be used to handle the problem of diffused weightings in classical PCA. However, 
connections within a brain region tend to be dense [11], hence direct application of 
replicator dynamics may not be suitable for functional segmentation. A balance  
between diffused and sparse weightings is thus needed. 

In this paper, we propose a new iterative method for functional segmentation of 
fMRI data that integrates the above desired characteristics, namely incorporation of 
activation effects, functional connectivity, neighborhood information, spatial continu-
ity, and a balance between sparse and diffused weightings, under a single framework. 
Similar to PCA, the proposed method exploits the structure of the full correlation 
matrix, where correlations between spatially disconnected voxels are modeled. How-
ever, as opposed to computing voxel correlations in a pair-wise manner, our method 
incorporates neighborhood information into the correlation estimates. Employing a 
similar approach, Neumann et al. showed that incorporating neighborhood informa-
tion encourages detection of spatially contiguous clusters, but may pool voxels near 
the functional boundaries into the clusters [12]. Therefore, we instead devise our 
method to adaptively incorporate neighborhood information based on activation dis-
similarity, which we demonstrate in Section 3.4 to be an effective means of mitigating 
non-active voxels from being falsely pooled. To account for activation effects, we 
replace the diagonal of the correlation matrix (which is simply a set of ones) with the 
correlation between each voxel and the expected response. Voxels within the detected 
clusters will thus be highly correlated as well as activated. To draw a balance between 
diffused and sparse weightings, we propose combining the weight estimates from 
PCA and replicator dynamics in an iterative manner with the relative contributions 
adaptively adjusting to the sparsity of the activation pattern. We thus refer to this 
method as adaptive non-negative sparse PCA (ANSPCA).  

2   Materials 

After obtaining informed consent, fMRI data were collected from 10 Parkinson’s 
disease (PD) patients on and off medication (4 men, 6 women, mean age 66 ± 8 
years). Each subject used their right-hand to squeeze a bulb with sufficient pressure 
such that a horizontal bar shown on a screen was kept within an undulating pathway. 
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The pathway remained straight during baseline periods, and became sinusoidal at a 
frequency of 0.25 Hz, 0.5 Hz or 0.75 Hz during time of stimulus. Each run lasted 
260s, alternating between baseline and stimulus of 20 s duration. 

fMRI was performed on a Philips Gyroscan Intera 3.0 T scanner (Philips, Best, 
Netherlands) equipped with a head-coil. T2*-weighted images with blood oxygen 
level dependent (BOLD) contrast were acquired using an echo-planar (EPI) sequence 
with an echo time of 3.7 ms, a repetition time of 1985 ms, a flip angle of 90°, an in 
plane resolution of 128×128 pixels, and a pixel size of 1.9×1.9 mm. Each volume 
consisted of 36 axial slices of 3 mm thickness with a 1 mm gap. A 3D T1-weighted 
image consisting of 170 axial slices was further acquired to facilitate anatomical lo-
calization of activation. Each subject’s fMRI data was pre-processed using Brain 
Voyager’s (Brain Innovation B.V.) trilinear interpolation for 3D motion correction 
and sinc interpolation for slice timing correction. Further motion correction was per-
formed using motion corrected independent component analysis (MCICA) [13]. The 
voxel time courses were high-pass filtered to account for temporal drifts and tempo-
rally whitened using an autoregressive AR1 model. No spatial warping or smoothing 
was performed. For testing our proposed method, we have selected Brodmann Area 6 
(BA6), which is known to consist of multiple functional subdivisions, as the region of 
interest (ROI). Anatomical delineation of this ROI was performed by an expert based 
on anatomical landmarks and guided by a neurological atlas. The segmented ROIs 
were resliced at the fMRI resolution and used to extract the preprocessed voxel time 
courses within each ROI for subsequent analysis. 

3   Methods 

This section presents our new iterative method for functional segmentation of an ROI. 
A modified correlation matrix incorporating activation effects and neighborhood 
information is first estimated. ANSPCA is then applied to detect the most correlated 
and activated cluster. Subsequent clusters are detected by removing the previously 
identified voxels from the modified correlation matrix, and repeating the procedure. 

3.1   Modified Correlation Matrix 

Let Ni and Nj be the neighborhood of voxels i and j (including voxels i and j). We 
compute a modified correlation estimate between voxels i and j, C(i,j), as follows:  
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where the matrix Ip(t) consists of voxel time courses belonging to Nm (m ∈ {i, j}) 
along the rows. dmp is the Euclidean distance between voxels m and p. Δmp is the dif-
ference in activation statistics (t-values) between voxels m and p. The t-values are 
estimated by applying a general linear model (GLM) to each voxel with a column of 
ones and a box-car convolved with the hemodynamic response, ref(t), as regressors. 
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We note that naively incorporating neighborhood information may pool voxels near 
functional boundaries into the clusters. Therefore, we have specifically designed wkp 
to adaptively reduce the influence from neighboring voxels with dissimilar activation 
level, which we demonstrate in Section 3.4 to be an effective way of moderating non-
active voxels from being mistakenly declared as part of a functional cluster. 

3.2   Replicator Dynamics 

Replicator dynamics is a well known concept that originated from theoretical biology 
for modeling the evolution of different species. In our context, each voxel corre-
sponds to a species with its fitness measured by its correlations to other voxels. Let 
wRD be a weight vector with the ith element representing the degree of which the ith 
voxel belongs to the most correlated cluster. wRD can be estimated by [14]: 

)()(

)(*).(
)1(

kCwkw

kCwkw
kw

RD
T
RD

RDRD
RD =+  , (3)

where .* represents element-wise product and k is the iteration number. Based on  
the fundamental theorem of natural selection [14], wRD is guaranteed to converge 
provided C is real-value, non-negative, and symmetric. Since voxels belonging to  
the same cluster will presumably display positive correlations, we null out the nega-
tive elements to ensure C is non-negative [9]. Restricting C to be non-negative en-
forces wRD to be non-negative. Also, (4) constrains the elements of wRD to sum to one. 
Moreover, (4) maximizes the same objective function as PCA, i.e. wRD

TCwRD. Thus, 
replicator dynamics is in fact a solution to the non-negative sparse PCA problem [8]: 
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Prior studies have noted that replicator dynamics has the desirable property of detect-
ing clusters with mutually correlated voxels [9], [12]. This property can actually be 
explained by the fact that imposing sparsity given limited weights (i.e. ∑wRD

i = 1) 
encourages weights to be assigned to mutually correlated voxels [10]. 

3.3   Adaptive Non-negative Sparse PCA 

Let C be the modified correlation matrix as described in Section 3.1 and let w be a 
weight vector with the ith element corresponding to the degree of which the ith voxel 
belongs to the most correlated and activated cluster. To adaptively adjust the sparsity 
of w, we propose to iteratively estimate w as follows: 
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where wPCA(k) is the PCA estimate of w(k) (i.e. using the Power method), but with 
||wPCA(k)||1=1 to ensure that ||w(k)||1=1 as required for computing wRD(k). γ is the per-
centage of activated voxels estimated as the number of voxels with t-values above a 
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user-specified threshold over the total number of voxels in the ROI. The typical  
t-threshold of 1.96 is used. We note that the t-threshold only serves to estimate γ, and 
not to remove voxels with t-values below the threshold. In fact, voxels with t-values 
falling below the t-threshold but functionally connected to their neighbors can still be 
declared as part of a functional cluster. Using the percentage of activated voxels as γ 
is particularly suitable for drawing a balance between sparse weighting, wRD(k), and 
diffused weighting, wPCA(k), since a sparse activation pattern will result in a low per-
centage of activated voxels, which place greater influence from wRD(k) in estimating 
w and vice versa. To avoid bias, we initialize w(0) to 1/Nr, where Nr is the number of 
voxels within the ROI. Upon convergence, elements of w corresponding to the most 
correlated and activated cluster will rise above 1/Nr, but the detected voxels may not 
form a spatially connected patch. Therefore, we perform connected component analy-
sis to first group the detected voxels into spatially connected clusters. We then find 
the cluster with the highest wTCw, remove the other clusters from C, and reapply the 
above procedure until no spatially disconnected clusters are detected. The resulting 
cluster upon convergence will thus consist of voxels that are highly activated, func-
tionally connected, and spatially connected. To identify subsequent clusters, we re-
move only voxels in the previously detected functional clusters from C and repeat the 
procedure above. 

3.4   Empirical Evaluations 

To test our proposed method on data with ground truth, we generated 1,000 synthetic 
datasets with simulated activation patterns consisting of two clusters that were one 
voxel apart (Fig.1). Also, the signal intensity of the activated voxels was set to de-
crease as a function of their distances from cluster centroids. The time courses of the 
activated voxels in the larger cluster were generated by convolving a box-car function 
having the same stimulus timing as in our experiment with the hemodynamic re-
sponse and adding Gaussian noise. The smaller cluster was generated in a similar 
manner but with the box-car delayed by 2 seconds.  

For comparisons with the state-of-the-art, we also tested the following methods: 
replicator dynamics [9] with Pearson’s correlation, PCA [7], GMM [4] assuming two 
clusters and background, and GLM with Gaussian spatial smoothing and a threshold 
estimated from Gaussian random field (GRF) theory for an uncorrected p-value of 
0.05. For PCA, we renormalized the PCs such that ||wPCA||1=1 and used the same 
threshold as ANSPCA (i.e. 1/Nr). Also, only the first PC was used, since the second 
PC mainly detected non-active voxels (squares in Fig. 1b). Fig. 1 contains the syn-
thetic data results with the average true positive rate (TP) and false positive rate (FP) 
indicated. We note that TP and FP are computed only based on whether the voxels are 
correctly labeled as active, and not based on the cluster labels. 

Replicator dynamics (Fig. 1a) did not falsely declare any non-activated voxels as 
active (FP = 0.00), but many activated voxels were missed (TP = 0.15). In contrast, 
PCA (Fig. 1b) detected most of the activated voxels with its first PC (TP = 0.83),  
but also detected many non-active voxels (FP = 0.04). Neither of these methods was 
able to separate the two clusters. GMM behaved similarly to PCA with one of its 
mixtures encompassing both clusters, and the other mixture including mainly non-
active voxels (Fig. 1c). Hence, a high FP of 0.13 with only a TP of 0.77 was obtained.  
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(c) GMM 
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(d) GLM with Gaussian spatial smoothing 
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(e) Proposed ANSPCA 
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(f) ANSPCA (at higher signal-to-noise ratio) 

TP = 1.00±0.00, FP = 0.00±0.00  

Fig. 1. Synthetic data results. t-map estimated using GLM with “dots” indicating the ground 
truth activated voxels. Voxels with a circle (square) correspond to the first (second) cluster 
detected. Note how ANSPCA was able to separate the two clusters and achieve a FP of 0.00. 
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(d) t-map, PD postdrug 
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(f) GLM with FDR, postdrug 

Fig. 2. Real fMRI data results. (a) & (d) Left BA6 t-map of a PD subject before and after medi-
cation. (b) & (e) Proposed ANSPCA segments the BA6 into its known sub-regions, whereas (c) 
& (f) GLM appears to over-divide the BA6. 

GLM resulted in a FP of 0.00 with a TP of 0.52. Examining Fig. 1d, post-processing 
the voxels detected by GLM with connected component analysis could have separated 
the two clusters. Using ANSPCA, we were able to separate the two clusters as shown 
in Fig. 1e. Compared to PCA, with a mere decrease of 0.01 in TP, ANSPCA achieved 
a FP of 0.00 without any non-active voxels near the functional boundaries being falsely 
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declared. Being able to incorporate neighborhood information without falsely pooling 
the non-active boundary voxels is especially important for functionally segmenting 
ROIs with unclear sub-region boundaries such as the BA6 [15]. We thus further tested 
our method by varying the signal-to-noise ratio (SNR). For the case shown in Fig. 1f, 
we increased the SNR, which presumably would increase the correlation between the 
active and non-active boundary voxels if their information is mistakenly pooled in the 
correlation estimates. This increase in correlation would result in a higher chance of 
falsely declaring the non-active boundary voxels as part of the functional clusters [12]. 
Yet, as shown in Fig. 1f, ANSPCA was able to attain a TP of 1 without including any 
of the non-active voxels. We note that by incorporating neighborhood information and 
functional connectivity in addition to activation effects, ANSPCA was able to detect 
many voxels with t-values below the t-threshold determined from GRF. Also, upon 
detecting the larger cluster and removing the corresponding voxels from C, ANSPCA 
was able to adapt to the sparser activation pattern without falsely declaring voxels near 
the functional boundaries as part of the second cluster. 

4   Results and Discussion 

Results obtained by applying ANSPCA on the BA6 are shown in Fig. 2. We only 
included the left BA6 results for an exemplar PD subject due to space limitation. 
Nevertheless, ANSPCA did correctly separate the SMA and PM in all subjects, al-
though the SMA and PMd appeared partly joined in 3 subjects. For comparison, we 
applied replicator dynamics, PCA, GMM, and GLM to the data. However, except for 
GLM, the results obtained were similar to that in the synthetic data experiments with 
no spatially contiguous clusters identified. Thus, we only included the GLM results in 
favour of space. Also, the t-threshold estimated using GRF with Gaussian spatial 
smoothing of 8mm FWHM was found to be too stringent. Hence, we instead present 
the thresholded t-maps for an uncorrected p-value of 0.05 with FDR correction. 

For PD predrug, despite the unclear functional boundaries (Fig. 2a), ANSPCA was 
able to delineate the left BA6 into its known functional sub-regions, namely pre-
SMA, SMA proper, dorsal premotor cortex (PMd), and ventral premotor cortex 
(PMv) [15]. We argue that this delineation was attained by the additional functional 
connectivity information included in our proposed method, which was not modeled in 
the activation statistics. Also, incorporating neighborhood information enabled AN-
SPCA to detect PMd and PMv as two spatially contiguous clusters, whereas GLM 
over-divided PMd and PMv into multiple sub-regions. For PD postdrug, ANSPCA 
was again able to delineate the left BA6 into its constituent sub-regions. Interestingly, 
our results suggest that the extent of activation within the pre-SMA (Fig. 2b) reduced 
upon medication (Fig. 2e). This “focusing” effect conforms to prior findings in com-
putational model studies, where increased dopamine level was found to be associated 
with more focused activation patterns. In contrast, GLM split the SMA proper into 
multiple pieces with islands of activation scattered across the BA6.  

5   Conclusions 

We proposed a novel method that integrates multiple functional attributes such as 
activation effects, functional connectivity, and neighborhood information under a 
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single framework for functionally segmenting fMRI data. By adaptively combining 
PCA and replicator dynamics, our method facilitates functional segmentation of acti-
vation patterns with various degree of sparsity. Applying our method to synthetic data 
outperformed all other examined methods including replicator dynamics, PCA, 
GMM, and GLM. When applied to real data, the integration of the various functional 
attributes enabled our method to segment the BA6 into its constituent functional  
sub-regions, whereas other examined methods failed to attain such delineation. 
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Abstract. Brain asymmetry has been a topic of interest for neuroscien-
tists for many years. The advent of diffusion tensor imaging (DTI) allows
researchers to extend the study of asymmetry to a microscopic scale by
examining fiber integrity differences across hemispheres rather than the
macroscopic differences in shape or structure volumes. Even so, the power
to detect these microarchitectural differences depends on the sample size
and how the brain images are registered and how many subjects are stud-
ied. We fluidly registered 4 Tesla DTI scans from 180 healthy adult twins
(45 identical and fraternal pairs) to a geometrically-centered population
mean template. We computed voxelwise maps of significant asymmetries
(left/right hemisphere differences) for common fiber anisotropy indices
(FA, GA). Quantitative genetic models revealed that 47-62% of the vari-
ance in asymmetry was due to genetic differences in the population. We
studied how these heritability estimates varied with the type of regis-
tration target (T1- or T2-weighted) and with sample size. All methods
consistently found that genetic factors strongly determined the lateral-
ization of fiber anisotropy, facilitating the quest for specific genes that
might influence brain asymmetry and fiber integrity.

1 Introduction

Asymmetries in brain structure and function have been the topic of neuroimag-
ing studies for many years. Anatomical asymmetries may help to reveal the ori-
gins of lateralized cognitive functions or behavioral traits, such as language and
handedness, that may arise from partially genetic hemispheric differences during
development [1]. Studies of brain asymmetry can also inform clinical research,
as aberrant asymmetries have been hypothesized or detected in disorders such
as schizophrenia, dyslexia, or hemiparesis, which may arise from a derailment in
processes that establish normal brain lateralization and hemispheric specializa-
tion. Deformation-based morphometry studies have used the theory of random
Gaussian vector fields to detect statistical departures from the normal level of
brain asymmetry [2].
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Many imaging studies have used MRI to study brain asymmetries, but very
few have used DTI. In DTI, the MR signal attenuation due to water diffu-
sion in direction k decreases according to the Stejskal-Tanner equation: Sk(r) =
S0(r)e−bkDk(r) where S0(r) is the non-diffusion weighted baseline intensity,Dk(r)
is the apparent diffusion coefficient (ADC), and bk is Le Bihan’s factor; the frac-
tional and geodesic anisotropy (FA and GA), calculated from a local tensor
approximation for Dk(r), are commonly used measures of fiber integrity; FA
correlates highly with IQ (intelligence quotient) in normal subjects [3].

Previous DTI asymmetry studies have focused on specific tracts (e.g., the
corticospinal tract [4], and the arcuate fasciculus involved in language process-
ing [5,6]). Frontal and temporal white matter show left greater than right FA
even in early infancy [7], suggesting greater myelination in the left hemisphere
[7]. Frontal FA differences between the two hemispheres diminish as the brain
develops, but temporal lobe asymmetries persist [8].

Studies of asymmetries in white matter characteristics may be confounded
by the vast structural asymmetries present. In frontal and occipital regions,
the natural petalia (torquing) of the brain shifts the right hemisphere structures
anterior to their left hemisphere counterparts [1]. Men may have greater anatom-
ical asymmetries than women [1], making it advantageous to reduce these pro-
nounced macrostructural differences when gauging the level of microstructural
asymmetry in a mixed-sex population.

Twin studies have long been used to determine genetically and environmen-
tally influenced human traits. Monozygotic twins share all their genes while
dizygotic twins share, on average, half. Estimates of the proportion of variance
attributable to genes versus environment can be inferred by fitting structural
equation models to data from both types of twins. Twin neuroimaging studies
reveal that genetic factors strongly influence several aspects of brain structure,
e.g., cortical thickness, and gray and white matter volumes [9], but twin studies
using DTI are rare.

Here we created the first DTI-based maps of asymmetries (left/right hemi-
sphere differences) in fiber characteristics (FA, GA) in a large twin population
(N=180). We adjusted, as far as possible, for the known structural differences
between hemispheres by aligning brains to a symmetrized minimal deformation
target (MDT) created from all of the images.

The choice of registration target is known to affect the accuracy of region of
interest (ROI) analyses [10], so we evaluated the effects of using different regis-
tration targets based on the separate structural MRI images, including (1) an
MDT created by geometrically adjusting an individual subject’s image, (2) a
population-averaged MDT, and (3) a population-averaged MDT based on the
non-diffusion-sensitized T2-weighted images collected as part of the DTI proto-
col. We then determined whether genetic factors influenced the residual asym-
metries, and examined the stability of the estimates with respect to sample size
and the choice of registration target.
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2 Methods

2.1 Image Acquisition and Subject Information

Structural and diffusion tensor (DT) MRI scans were acquired from 180 subjects
using a high magnetic field (4T) Bruker Medspec MRI scanner. T1-weighted
images were collected using an inversion recovery rapid gradient echo sequence,
with parameters: TI/TR/TE= 1500/2500/3.83msec; flip angle=15 degrees; slice
thickness = 0.9 mm, and 256x256x256 acquisition matrix. Diffusion-weighted
images were also acquired using 30 gradients (27 diffusion-weighted images and 3
with no diffusion sensitization; i.e., T2- weighted images) with gradient directions
uniformly distributed on the hemisphere. Parameters were: 23 cm FOV, TR/TE
6090/91.7ms, b-value =1132 s/mm2, scan time: 3.05 minutes. Each 3D volume
consisted of 21 5-mm thick axial slices with a 0.5mm gap and 1.8x1.8 mm2

in-plane resolution. The subjects included 90 young adult monozygotic (MZ)
twins and 90 dizygotic (DZ) same sex twins (45 pairs of each). All subjects were
right-handed young adults (average age 24.37, stdev 1.936).

2.2 Creating Templates

To determine whether asymmetric differences are influenced by the template
used for registration, several templates were created and compared. Three tem-
plates were created using the T1-weighted images to help adjust for the structural
differences across subjects and hemispheres, and another template was created
from the T2-weighted images acquired along with the diffusion weighted scans,
which are in perfect register with the diffusion tensor data. T1-weighted struc-
tural MR images were edited to remove extracerebral tissues and were linearly
registered to a symmetrical template. This symmetrical template was created by
averaging a high-resolution single subject average scan, the Colin27 [11], with
the same image reflected in the midsagittal plane. This centered each subjects
midline within the image volume. All subjects images were linearly registered to
the symmetrical template using FLIRT software http://fsl.fmrib.ox.ac.uk/
fsl/flirt with 9-parameter registration and a correlation ratio cost function.

T1 Template 1(non-symmetric). One minimal deformation target (MDT)
was created using only the original scan orientations, using non-linear fluid reg-
istration as described in [12,13]. This template was not symmetrical as all the
images used to create it were of the original orientation. MDTs were created
using the method proposed by Kochunov [14] (although alternative methods are
possible): the N 3D vector fields fluidly registering a specific individual to all
other subjects were averaged and applied to that subject, geometrically adjusting
their anatomy, but retaining the image intensities and anatomical features of that
specific subject. T1 Template 2 (initial symmetrization). Linearly aligned
subject images were reflected over the midline to produce a mirrored set. An-
other MDT was then created from four independent (one per pair) monozygotic
(MZ) twins and four independent dizygotic (DZ) twin image volumes randomly
selected with their corresponding reflected images. These 16 image sets were

http://fsl.fmrib.ox.ac.uk/fsl/flirt
http://fsl.fmrib.ox.ac.uk/fsl/flirt
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then used to generate an MDT using fluid registration as described in [12,13].
The flipped images of the same brains were included during MDT construction
to make it symmetric.

T1 Template 3 (symmetric population averaged MDT). A population-
averaged MDT was created to further reduce the structural asymmetries. 8 sep-
arate MDTs were constructed as described above, each formed from 6 subjects
and their corresponding images flipped over the midline. For 4 of these MDTs,
the initial template image was in the original orientation while for the other 4,
the template was in the flipped orientation. All 8 MDTs were then averaged to-
gether to produce the population averaged MDT, incorporating T1 information
from 50 independent subjects.

T2 Template (symmetric population averaged MDT). Another popula-
tion averaged MDT was constructed from the T2-weighted images, in the same
manner as for the T1-weighted population MDT, with the same set of subjects.
All subjects’ images were first linearly aligned to a single subject image. This
image of the single subject was aligned such that the midsagittal plane of the
brain was centered. Another image was created by mirroring the result in the
midsagittal plane. This flipped image was averaged with its original to create a
symmetric template to linearly align all the T2-weighted scans and their mirror
images before creating the MDT.

Structural T1 images from 100 subjects (25 MZ, 25 DZ pairs) were then fluidly
registered to each of the 3 T1-weighted MDTs using a 3D Navier-Stokes-based
fluid warping technique enforcing diffeomorphic mappings, using least squares
intensity differences as a cost function [12,13]. T2-weighted images for each of the
180 subjects were registered to the T2-weighted MDT with the same technique.
3D deformation fields for all mappings were retained.

2.3 Anisotropy Asymmetry Maps

Diffusion tensors were computed from the diffusion-weighted images using Med-
INRIA software http://www.sop.inria.fr/asclepios/software/MedINRIA.

Scalar images of anisotropy measures were created for each of the 180 subjects
from the eigenvalues (λ1, λ2, λ3) of the symmetric 3x3 diffusion tensor. These
included the fractional anisotropy (FA), geodesic anisotropy (GA) computed in
the Log-Euclidean framework [15], hyperbolic tangent of the GA (tGA), to take
values in the same range as FA, i.e., [0,1], and mean diffusivity (MD):

FA =

√
3
2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2√

λ2
1 + λ2

2 + λ2
3

, λ̂ = MD =
λ1 + λ2 + λ3

3
(1)

GA(S) =
√
Trace(logS− < logS > I)2, < logS >=

Trace(logS)
3

(2)

Extra-cerebral tissue was manually deleted from one directional component of
the diffusion tensors (Dxx) creating a mask that was then applied to the scalar
anisotropy maps created for each subject. Once masked, these anisotropy images

http://www.sop.inria.fr/asclepios/software/MedINRIA
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were then linearly aligned to the symmeterized templates and fluidly registered
to each of the MDTs by applying the deformation fields described in Section 2.2.

Each aligned anisotropy map was then mirrored across midline, and the voxel-
wise difference map between the original and flipped images was created. In
this new map, the left side of the image represents the difference between the
subjects right and left hemispheres; voxels on the other side of the image have
the opposite sign. Maps were obtained of the percent difference between the
resulting difference image and the average of the two mirror image orientations.

2.4 Calculating Genetic Contributions

Voxel-wise maps of the intra-class correlations (ICC) within MZ and DZ twins,
rMZ and rDZ respectively, were derived as well as Falconer′s heritability esti-
mate, h2 = 2(rMZ − rDZ) [16] for the asymmetry in FA, GA, tGA and MD.

Average measures of the anisotropy difference were examined in certain re-
gions of interest (ROIs). We determined the genetic contribution to the asym-
metries in each lobe of the brain. ROIs were traced for the four lobes (frontal,
parietal, temporal, and occipital) in one hemisphere of each MDT and were
flipped to define the same ROI in the opposite hemisphere. This ensured con-
sistency between hemispheres and reduced errors due to manual labeling. For
each anisotropy measure, covariances for the average ROI values in pairs of MZ
and DZ twins were entered into a univariate structural equation model to es-
timate additive genetic (A), shared environmental (C) and unique environmen-
tal (E) components of the variance in asymmetry [17]. Mx modeling software
http://www.vcu.edu/mx/ was used.

This form of structural equation modeling finds the maximum likelihood es-
timate (eq. 3) for Σ (α = 1 for MZ and 0.5 for DZ) to estimate genetic versus
environmental contributions to the variance, where Sg is the observed covariance
matrix for each twin group g:

MLg = Ng

{
ln |Σg| − ln|Sg |+ tr(SgΣ

−1
g )− 2m

}
, Σ =

[
a2 + c2 + e2 αa2 + c2

αa2 + c2 a2 + c2 + e2

]
(3)

3 Results

Figure 1A shows the mean FA asymmetry as a percent difference between left and
right hemispheres, relative to which genetic effects were determined. Frontal and
temporal regions show high asymmetry (∼ 25%, p < 0.05). Frontal FA is higher
in the right hemisphere, while temporal FA is higher on the left. The asymmetries
found in the temporal lobe correspond to language centers [1] consistent with
[7,8]. The magnitude of the asymmetry difference is somewhat dependent on the
number of subjects used in the study, but patterns are largely consistent. Figure
1B shows differences arising in ICC and Falconer’s heritability estimates when
using the T1-weighted population template for 100 subjects and the T2-weighted
MDT for the different population sizes. Despite evidence for some subcortical
effects, voxelwise maps are somewhat noisy even with N=180 subjects, partly

http://www.vcu.edu/mx/


Genetics of Anisotropy Asymmetry: Registration and Sample Size Effects 503

Fig. 1. A: The mean asymmetry in FA, in a sample of N=180 subjects, reaches 25%
in frontal and temporal regions. The localization of results based on 180 vs only 100
subjects is largely consistent, as shown by the difference image and the image of the
p-values. B: ICC and Falconer’s h2 maps for asymmetries in FA images. Top: FA
results of 100 subjects mapped to the population-averaged T1 MDT; Center: results
from 100 subjects mapped to population-averaged T2 MDT; Bottom: results from 180
subjects mapped to the T2 MDT

Fig. 2. A/C/E Genetic effects: Top Left: Symmetrization Effects:ACE results showing
genetic and environmental contributions of template choice asymmetry in FA; Top
Right: Frontal Lobe FA ACE results of using the population averaged T1 template (100
subjects) and T2 template (100 and 180 subjects) for FA asymmetry in the frontal lobe.
p-values derived from χ2 statistics show the ACE model fits well in all cases (p > 0.05);
Bottom: N = 180 Genetic Effects genetic component of variance (A) determined from
mapping 180 subjects to the T2-weighted MDT for all anisotropy measures, in each
lobe. Genetic effects are greatest in lobes with the highest mean asymmetries (Fig. 1).
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Fig. 3. CDF of significant p-values for anisotropy asymmetries mapped to the T2-
weighted population MDT for 100 (left) and 180 subjects (right)

because h2 is a difference in correlations. We therefore summarize FA asymmetry
in lobar ROIs, to increase power for genetic analyses.

Figure 2 shows genetic (a2) vs environmental (c2, e2) effects on FA asymmetry.
Intriguingly, the asymmetry in frontal lobe mean FA was ∼ 50% determined by
genetic factors, with no evidence for a shared environmental effect (c2 ∼ 0%).
The e2-term contains registration errors as well as unique effects, so there is
some evidence that using 180 (vs 100) subjects, and using a T2 vs T1 template,
more accurately captures the true genetic contributions to these asymmetries,
as the e2-term is slightly lower. In structural equation models, p > 0.05 denotes
that the ACE model fits well. All models here yield a good fit.

Figure 3 plots the cumulative distribution function (cdf) of the p-values associ-
ated with the ICC against those that would be expected from a null distribution.
As the cdf initially rises faster than 20 times the null, we are able to reasonably
claim significance at the 5% level. For null distributions (i.e. no group difference
detected), these are expected to fall along the x = y line, and larger deviations
from that curve represent larger effect sizes.

4 Discussion

In this study, we examined the genetic and environmental contributions to the
differences in fiber integrity across brain hemispheres. Genetic factors deter-
mined about half of the variance in these asymmetries, with greatest effects in
the frontal and occipital lobes, where mean asymmetries were greatest (reaching
25%) (Fig. 1A). Interestingly, strong genetic effects (significant ACE models)
were detectable for anisotropy indices (FA, GA). Results were stable when the
images were fluidly registered to various different anatomical templates, includ-
ing ones constructed to have hemispheric symmmetry. These results suggest that
specific genetic factors determining hemispheric asymmetries in fiber architec-
ture may be identifiable in very large samples.

Acknowledgments. Supported by grants from the NLM, NIH and NICHD.



Genetics of Anisotropy Asymmetry: Registration and Sample Size Effects 505

References

1. Toga, A., Thompson, P.: Mapping brain asymmetry. Nat. Rev. Neurosci. 4(1)
(2003)

2. Thirion, J.P., Prima, S., Subsol, G., Roberts, N.: Statistical analysis of normal and
abnormal dissymmetry in volumetric medical images. Med. Im. Analy. 4(2) (2000)

3. Chiang, M., Barysheva, M., Lee, A., Madsen, S., Klunder, A., Toga, A., McMahon,
K., de Zubicaray, G., Wright, M., Srivastava, A., Balov, N., Thompson, P.: Genetics
of brain fiber architecture and intelligence. Journal of Neuroscience (2009)

4. Westerhausen, R., Huster, R.J., Kreuder, F., Wittling, W., Schweiger, E.: Corti-
cospinal tract asymmetries at the level of the internal capsule: Is there an associ-
ation with handedness? Neuroimage 37(2), 379–386 (2007)

5. de Jong, L., Kovacs, S., Bamps, S., Calenbergh, F.V., Sunaert, S., van Loon, J.:
The arcuate fasciculus: a comparison between diffusion tensor tractography and
anatomy using the fiber dissection technique. Surgical Neurology 71(1) (2009)

6. Rodrigo, S., Naggara, O., Oppenheim, C., Golestani, N., Poupon, C., Cointepas,
Y., Mangin, J.F., Le Bihan, D., Meder, J.F.: Human subinsular asymmetry studied
by diffusion tensor imaging and fiber tracking. AJNR 28(8), 1526–1531 (2007)

7. Dubois, J., Hertz-Pannier, L., Cachia, A., Le Bihan, D., Dehaene-Lambertz, G.:
Structural asymmetries in the infant language and sensori-motor networks. Cere-
bral Cortex 19(2), 414–423 (2008)

8. Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy,
A., Dant, C.C., Reiss, A.L.: White matter development during childhood and ado-
lescence: A cross-sectional diffusion tensor imaging study. Cereb. Cortex 15(12),
1848–1854 (2005)

9. Pfefferbaum, A., Sulluvan, E.V., Carmelli, D.: Genetic regulation of regional mi-
crostructure of the corpus callosum in late life. Neuroreport 12(8), 1677–1681
(2001)

10. Wang, Q., Seghers, D., D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.,
Hammers, A.: Construction and validation of mean shape atlas templates for atlas-
based brain image segmentation. In: Christensen, G.E., Sonka, M. (eds.) IPMI
2005. LNCS, vol. 3565, pp. 689–700. Springer, Heidelberg (2005)

11. Holmes, C.J., Hoge, R., Collins, L., Woods, R., Toga, A.W., Evans, A.C.: Enhance-
ment of MR images using registration for signal averaging. J. Comput. Assist.
Tomogr. 22(2), 324–333 (1998)
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Abstract. We extended genetic linkage analysis - an analysis widely used in 
quantitati ve genetics - to 3D images to analyze single gene effects on brain fiber 
architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype 
data from 258 healthy adult twins and their non-twin siblings. After high-
dimensional fluid registration, at each voxel we estimated the genetic linkage be-
tween the single nucleotide polymorphism (SNP), Val66Met (dbSNP number 
rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional 
anisotropy (FA) derived from each subject’s DTI scan, by fitting structural equa-
tion models (SEM) from quantitative genetics. We also examined how image fil-
tering affects the effect sizes for genetic linkage by examining how the overall 
significance of voxelwise effects varied with respect to full width at half maxi-
mum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA 
maps with no smoothing yielded the greatest sensitivity to detect gene effects, 
when corrected for multiple comparisons using the false discovery rate (FDR) 
procedure. The BDNF polymorphism significantly contributed to the variation in 
FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the 
total variance in FA. Our study generated the first maps to visualize the effect of 
the BDNF gene on brain fiber integrity, suggesting that common genetic variants 
may strongly determine white matter integrity. 

1   Introduction 

Imaging genetics is a rapidly growing field that combines mathematical methods from 
image analysis and quantitative genetics to discover how specific genes influence the 
brain, cognition, and risk for disease. Although epidemiologists can relate genetic data 
to behavior in thousands of subjects, a more mechanistic understanding of these effects 

                                                           
* This work was funded in part by NIH grant R01 HD050735. 
 



 Extending Genetic Linkage Analysis to DTI 507 

is likely to be gained by linking genetic variants to specific features in images (such as 
measures of fiber integrity) that are highly correlated with intellectual performance and 
risk for disease, and may explain the basis of the genetic effect. Mapping these effects 
in 3D may also focus on specific regions where the genetic influences are stronger than 
elsewhere. This may also increase sensitivity for detecting genetic linkage because 
millions of hypotheses (voxelwise statistics) are tested simultaneously throughout the 
brain, while false discovery rate methods can still control the false positive rate. Struc-
tural MRI studies in twins have shown that many aspects of brain structure are highly 
heritable, including cortical gray matter density and thickness [1].  More recently, the 
first genetic studies of 3D diffusion tensor images have revealed that fiber integrity is 
under strong genetic control, is correlated with intelligence quotient (IQ) and the same 
genes underlie both fiber integrity and IQ [2]. These initial studies fitted quantitative 
genetic models to separate additive genetic from common and unique environmental 
components of inter-subject variance in images, for measures of fiber integrity such as 
the fractional anisotropy (FA) and generalized FA in high-angular resolution diffusion 
images (HARDI; [3]). McIntosh et al. [4] first studied the association between FA  
and individual genes, identifying the T-allele in a single nucleotide locus (dbSNP 
number rs6994992) of the neuregulin 1 gene as being associated with reduced FA in 
the anterior limb of the internal capsule.  

In this paper we extended the variance-component genetic linkage analysis method 
[5] to create voxel-level maps in fluidly registered DTI data from a population, to 
estimate the influences of a specific gene on fiber integrity in the brain. A common 
variant in the brain-derived neurotrophic factor (BDNF) gene was linked with the 
variation in FA, an accepted measure of fiber integrity. BDNF modulates synaptic 
plasticity in the hippocampus, and is crucially involved in memory acquisition and 
retention. We selected the most studied single nucleotide polymorphism (SNP) of the 
BDNF gene, Val66Met (dbSNP number rs6265), where valine (Val) is substituted by 
methionine (Met) at codon 66 in the 5′-proregion of the BDNF protein. This 
Val66Met SNP has been found to be associated with subjects’ memory performance 
and memory-related hippocampal activation using functional MRI [6]. We acquired 4 
Tesla diffusion tensor images from 258 twins and their non-twin siblings, and fitted 
structural equation models (SEM; [5]) at each voxel to estimate the contribution of the 
BDNF Val66Met SNP to the variance in FA. After multiple comparisons correction 
using FDR, we still found significant linkage between this common BDNF polymor-
phism and FA in the posterior cingulate gyrus. To inform future genetic linkage stud-
ies in image databases, we performed a post hoc (exploratory) test to see how the 
overall significance of voxelwise gene effects varied with respect to the size of the 
Gaussian filter kernel applied to the FA images. 

2   Methods 

2.1   Subject Description and Genotyping 

258 subjects (110 males/148 females; age: 23.8±1.9 years, mean±SD), consisting of 39 
monozygotic (MZ) twin pairs, 65 dizygotic (DZ) twin pairs, 1 set of DZ triplets, and 
47 of their non-twin siblings, were recruited from 133 different nuclear families, as 
part of a 5-year research project evaluating healthy Australian twins using structural 
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and functional MRI and DTI. The genotype of the BDNF Val66Met polymorphism 
was determined using primer extension on the Sequenom Mass-Array system [7], with 
Val/Val identified in 174 subjects, Val/Met in 68 subjects, and Met/Met in 16 subjects. 
Information from a larger sample of subjects [7], which include all subjects in this 
study, has shown that the frequency of BDNF Val allele is 0.81, and that the genotype 
distribution follows Hardy-Weinberg equilibrium. This candidate gene was chosen 
based on prior reports that it explained variation in memory performance, task-related 
activation on fMRI, and its known molecular role as a key growth factor affecting 
brain development and plasticity [6]. 

2.2   Image Acquisition and Registration 

All MR images were collected using a 4 Tesla Bruker Medspec MRI scanner. Diffu-
sion-weighted scans were acquired using single-shot echo planar imaging with a 
twice-refocused spin echo sequence to reduce eddy-current induced distortions. Ac-
quisition parameters were optimized to provide the best signal-to-noise ratio for esti-
mation of diffusion tensors. Imaging parameters were: 21 axial slices (5 mm thick), 
FOV = 23 cm, TR/TE 6090/91.7 ms, 0.5 mm gap, with a 128×100 acquisition matrix. 
30 images were acquired: 3 with no diffusion sensitization (i.e., T2-weighted images) 
and 27 diffusion-weighted (DW) images (b = 1132 s/mm2) in which the gradient di-
rections were evenly distributed on an imaginary hemisphere. The reconstruction ma-
trix was 128×128, yielding a 1.8×1.8 mm2 in-plane resolution. Total scan time was 
3.05 minutes. We used the FMRIB software library (FSL, http://www.fmrib.ox. 
ac.uk/fsl/) for initial pre-processing of the diffusion images. For each subject, motion 
artifacts were corrected by linearly registering all the T2-weighted and DW images to 
one of the T2-weighted image (the “eddy_correct” command). Then the three T2-
weighted images were averaged and stripped of non-brain tissues to yield a binary 
brain extraction mask (cerebellum included), using the Brain Extraction Tool (BET) 
[8], followed by expert manual editing if necessary. The masked T2-weighted image 
was then registered to the ICBM standardized brain template with a 9-parameter lin-
ear transformation using the software FLIRT [9]. The resulting transformation pa-
rameters were used to rotationally reorient the diffusion tensors (computed from DW 
images using the “DTIFIT” command) at each voxel. The tensor-valued images were 
linearly realigned based on trilinear interpolation of the log-transformed tensors, and 
resampled to isotropic voxel resolution (with dimensions: 128×128×93 voxels, resolu-
tion: 1.7×1.7×1.7 mm3). The fractional anisotropy (FA) image derived from the af-
fine-registered DT image was then fluidly registered to a randomly selected subject's 
FA image, based on maximizing the Jensen–Rényi divergence (JRD) of the joint in-
tensity histogram [10]. Here we preferred direct fluid alignment of FA, due to  
the need for computational efficiency in 258 subjects, although we are exploring al-
ternative more CPU-intensive methods we developed to fluidly align diffusion tensors 
using information theory [11]. 

2.3   Linkage between the BDNF Polymorphism and FA 

We used structural equation modeling [5] to analyze the linkage between BDNF 
polymorphism and brain diffusion anisotropy, in which the total variance of FA at 
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each voxel was attributed to the additive genetic variance of the BDNF polymorphism 
(σa

2; the variance due to the additive effect of the BDNF polymorphism), the residual 
genetic variance (σg

2; the variance due to all other genes on the genome), the variance 
of the shared family rearing environment (σc

2), and the individual unique (σe
2) envi-

ronmental factors. We note that linkage does not necessarily mean that the genetic 
marker (e.g. the BDNF Val66Met polymorphism here) directly causes a difference in 
an image, but rather indicates that the genetic marker is close to the genes that influ-
ence the phenotype. Genes close to each other on the genome tend to be inherited 
together, so one can genotype a set of specific genes to identify which genetic marker 
an influential polymorphism is close to, and in that case the genotyped gene is said to 
be in genetic linkage with the trait – here the FA of the image.  

Because of the known genetic similarity between relatives of different kinds, it is 
possible to write the covariance matrix of FA for the ith family, denoted by Φi, in 
terms of the different sources of variance being modeled (namely, σa

2, σg
2, σc

2, σe
2), 

as follows: 

Φijk =
σ a

2 + σ g
2 + σ c

2 + σ e
2,  if j =  k,  or j and k are MZ twins

σ a
2 + σ g

2 + σ c
2,  if j ≠  k,  and  j and k are MZ twins

π ijkσ a
2 +1/2σ g

2 + σ c
2,  if j ≠  k,  and j and k are not MZ twins,

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (1) 

where πijk is the expected proportion of alleles that arose from the same ancestor al-
lele, i.e., identical by descent (IBD), for subjects j and k. We estimated πijk using the 
Haseman-Elston method detailed in [12]. The structural equation model in Eq (1) was 
fitted using the maximum-likelihood method [5], given by 

logL = − 1

2
logΦi − 1

2
yi

T

i=1

N

∑ Φi
−1yi, (2)

where the ni-sample vector yi is the FA value of all ni subjects in family i, adjusted for 
the age and sex of each subject. N denotes the number of families. σa

2, σg
2, σc

2, and 
σe

2 were estimated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [13] 
to maximize logL in Eq (2). The significance of the influences of the BDNF genetic 
variation (polymorphism) was determined by the difference between the log-
likelihood of the full model that included σa

2, σg
2, σc

2, and σe
2 and the restricted 

model including σg
2, σc

2, and σe
2 only, denoted by logLf for the full and logLr for the 

restricted model. Minus two times this difference, or -2(logLr - logLf), is asymptoti-
cally distributed approximately as a chi-squared distribution with one degree of free-
dom. The resulting statistics were plotted at each point in the image to show the  
voxelwise significance of the genetic linkage between the BDNF gene and FA in all 
258 subjects. The overall significance of the resulting statistical maps was assessed 
using the false discovery rate (FDR) method [14] to correct for multiple comparisons. 
By convention, a FDR value ≤ 0.05 was considered to be significant. 

3   Results 

Fig. 1 shows that 90-95% variance of FA (with no smoothing; see below) in the pos-
terior cingulate gyrus and right frontal area was attributable to the genetic influences of  
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Fig. 1. Proportional contribution (left upper and lower panels) and its statistical significance 
(right upper and lower panels; the color scale is proportional to the decadic logarithm of  
the voxel P-value) of the BDNF polymorphism to the local variation in brain fiber integrity, 
measured by FA. The colored regions are the clusters composed of 26-connected voxels with 
P-values not greater than the threshold, computed by the FDR procedure that controls the ex-
pected false discovery rate to be no greater than 5%. For better visualization, only clusters with 
10 or more voxels are displayed. The BDNF polymorphism significantly contributes to 90-95% 
variance of FA mainly in the posterior cingulate gyrus and in the right frontal area. L: left 
hemisphere. A: anterior. 

 

Fig. 2. Plot of the ordered voxel-level P-values showing the significance of the linkage between 
the BDNF polymorphism and FA smoothed using a 3D Gaussian kernel with different FWHM 
(in mm). The P-value was computed by comparing the log-likelihood of the full versus the 
restricted structural equation models. P-values are considered significant overall when they are 
not greater than the threshold where the individual curve intersects the dashed line y=0.05x/n, 
where n is the number of voxels within the brain-only mask; then the false discovery rate is 
controlled at no more than 5%.  
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the BDNF polymorphism. BDNF is known to be an important gene for long-term 
memory and learning, which may be enhanced by greater myelination and therefore 
axonal conduction speed in the cingulate gyrus, which is known to receive fibers from 
the subiculum of the hippocampus, which is involved in working memory. 

To assess how different levels of smoothing influence the effect size of the linkage 
between the BDNF polymorphism and diffusion anisotropy, we also fitted the struc-
tural equation model [Eq (1)] with subjects’ FA images (stripped of non-brain tissues) 
smoothed using a Gaussian filter with a full width at half maximum (FWHM) = 3, 6, 
9, or 12 mm. Fig. 2 displays the voxel-level P-values of the significance for the FA-
BDNF linkage, plotted against their rank. FA with no smoothing yielded the greatest 
number of FDR-significant voxels - defined as voxels where the P-value was not 
greater than the threshold that controlled the FDR at the level of 0.05, as also shown 
in Table 1. Even so, if we compared the smoothing effect based on the size of FDR-
significant clusters, which were sets of connected (26-neighborhood) FDR-significant 
voxels, FA that was moderately smoothed (FWHM = 3 and 6 mm) yielded a single 
large cluster in the posterior cingulate gyrus, while FA with no smoothing yielded 
many tiny clusters that were one or two voxels in size (Table 1). As it is not legitimate 
to search over multiple filtered images to find effects, we report the unsmoothed data 
for purposes of statistical inference but we report the smoothed data as a post hoc as-
sessment of the parameters that are likely to give best sensitivity in future analyses of 
independent (non-overlapping) data. Scale-space searches (i.e., over multiple filtered 
images) have been proposed in fMRI studies [15] although they are computationally 
intensive and can inflate type I error unless subjected to a global FDR procedure.  

Table 1. The effect of FA smoothing on the detection of FA-BDNF linkage 

 FWHM (mm) 
 0 3 6 9 12 

Number of FDR-
significant voxels 

142 68 44 0 0 

   FDR-significant  
   clusters* 

1(18), 2(9), 3(5), 4(4), 5(1), 
10(1), 11(1), 13(1), 16(1), 20(1)

1(1), 2(1), 
7(1), 58(1)

44(1)   
 

*Listed based on their size in voxels (the number of clusters of each size is in parentheses). 

4   Conclusion 

In this paper we first visualized the linkage between the BDNF Val66Met polymor-
phism and brain fiber architecture by analyzing the FA images of a large sample of 
twins and non-twin siblings. We also compared the effects of different magnitudes of 
image smoothing, and found that using raw FA images with no smoothing was most 
sensitive for detecting the FA-BDNF linkage when the FDR method was used to cor-
rect for multiple comparisons across the whole brain. The practical importance of this 
paper is that by finding a common gene variant that affects fiber integrity, measured 
by FA, one could (1) study whether it is over-represented in the many common dis-
eases where FA is reduced, to provide a more mechanistic understanding of the dis-
ease, (2) co-vary for (adjust) its effects in studies of FA to improve statistical power, 
(3) look at the trajectory of FA over time in relation to the BDNF variant subgroups, 
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and discover how the gene acts to affect fiber integrity, and (4) see if the BNDF  
variant confers increased risk for other deficits than FA (e.g. structural or functional 
deficits in the same regions). 

Brain fiber integrity measured by FA is highly heritable, and higher FA is associ-
ated with better intellectual performance [2]. Our results show that BDNF is one of 
the genes that influence the fiber architecture in the posterior cingulate region. Both 
BDNF and the cingulate gyrus have key roles in mediating cognitive function, and 
future studies will aim to evaluate the cross-trait linkage of BDNF to FA in this region 
and to the subjects’ cognitive function and intellectual performance. 
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Abstract. Arterial Spin Labeling (ASL) permits the non-invasive assessment of 
cerebral perfusion, by magnetically labeling all the blood flowing into the brain. 
Vessel encoded (VE) ASL extends this concept by introducing spatial modula-
tions of the labeling procedure, resulting in different patterns of label applied to 
the blood from different vessels. Here a Bayesian inference solution to the 
analysis of VE-ASL is presented based on a description of the relative locations 
of labeled vessels and a probabilistic classification of brain tissue to vessel 
source. In simulation and on real data the method is shown to reliably determine 
vascular territories in the brain, including the case where the number of vessels 
exceeds the number of independent measurements. 

1   Introduction 

Arterial Spin Labeling (ASL) MRI is becoming an increasingly popular method  
for imaging cerebral blood flow (CBF), since it is both non-invasive and relatively 
rapid. ASL operates by labeling the water in blood magnetically via RF pulse inver-
sion before entry to the brain and then imaging it as it passes into the capillaries. This 
‘tag’ image is compared to a control image, taken in the absence of labeled blood, to 
remove the large static magnetization signal of the brain tissues. 

More recently a number of methods have been proposed that use an ASL approach 
for Vascular Territory Imaging (VTI). The purpose of VTI is to identify the different 
regions of the brain that are supplied by individual feeding vessels. This type of imag-
ing has a number of clinical applications, for example visualization of the vascular 
changes brought about by stroke or vascular stenosis. ASL based VTI can be achieved 
by making the ASL label spatially selective around individual vessels, for example  
[1, 2].  An alternative, but related, approach is Vessel Encoded (VE) ASL [3, 4]. In 
this method the strength of the inversion is modulated spatially across the labeling 
plane. A series of such images are collected each with different modulations chosen to 
uniquely encode each vessel’s contribution. 

VE-ASL is typically analyzed by assembling an encoding matrix that represents the 
effects of the different encoding steps on the vessels in the labeling plane. This matrix 
is then inverted to predict individual flow contributions in every brain voxel. In princi-
ple the encoding matrix is known a priori based on the experimental setup. However, 
due to head motion or imperfect alignment there may be some deviation in practice, 
leading to imperfect separation of vascular territories and inaccurate CBF estimates.  
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Here we present a Bayesian solution to the analysis for VE-ASL data. Using the 
sinusoidal form of [5] we derive the relationship between vessel location and encod-
ing matrix. A generative model based on this encoding matrix and a probabilistic 
classification of each voxel to a source vessel was constructed, using the assumption 
that voxels are typically fed by a single vessel. This method provides a unified ap-
proach to the analysis of VE-ASL combining the effects of vessel location on the 
encoding matrix with the estimation of vascular territories and local blood within a 
single adaptive algorithm. 

2   Methods 

The tag-control differencing of traditional ASL can be represented in any voxel in 
matrix form y=Ax: 

,                                           (1) 

where x represents the sources of signal, F being the signal from the flowing blood 
and S being the static magnetization of the tissues; y is the vector of measured values, 
y1 is the tag image (y1=S-F) and y2 is the control (y2=S+F). This concept can be  
extended to VE-ASL with multiple sources of blood whose selection depends upon 
the spatial encoding. For example a three vessel encoding might look like (R, L and  
B – the right and left carotid, and basilar arteries respectively): 

,                                                (2) 

Note the structure of the encoding matrix: the top row produces the control image, the 
second the tag image and there are two encoded tag images; the final column must al-
ways be all unity values, since this dictates the contribution of the static magnetization 
of the tissues to the measured signal that appears in all images. 

It is possible to find the contributions from each vessel in every brain voxel by ma-
trix inversion: x=A-1y. In practice the encoding matrix will not be square, thus  
the matrix pseudo-inverse will be required. Hence this method provides a solution 
optimal according to a least-squares cost function. 

To account for any encoding setup and allow for misalignment between vessel lo-
cations and spatial modulation of the tag, we derived a general encoding matrix based 
on the sinusoidal modulation assumption [4]. Each vessel encoded ASL image is the 
result of labeled blood arriving in the tissue from multiple source vessels. The extent 
of the inversion of the blood in each vessel is set by the spatial modulation of the 
applied tagging and is thus determined by the relative geometry between the vessel 
and the spatial modulation. The spatial modulation occurs across the tagging plane, 
although the variation in inversion is only prescribed in one direction at a time, for 
example modulation parallel to the x-axis. Each spatial modulation may thus be de-
fined in terms of a modulation centre, (cx, cy), and a modulation angle, θ, relative to a 
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Cartesian axis placed in the tagging plane. Each vessel/source can be defined in terms 
of its location in the tagging plane, (x,y), relative to the same axes, as illustrated in 
Fig. 1. The inversion state of each vessel during the acquisition of a single encoded 
image is determined by its distance, d, from the modulation centre and the form of the 
spatial modulation, f: m = f d( ) , where from Fig. 1: 

    (3) 

 

Fig. 1. The geometry for the spatial encoding of a vessel 

The spatial encoding function may be approximated by a sinusoidal form 
[5] m = sin πd 2D( ), where D is the spatial scale along the encoding direction. This 

form represents the periodic nature of the actual encoding applied. In a vessel encoding 
experiment a number of encoded images will be acquired. Hence there will be a modu-
lation value for each combination of vessel and modulation phase, i.e. for the ith en-

coded image and jth vessel mij = f x j ,ci ,θi , Di( ). This modulation value corresponds 

to an entry in a general encoding matrix: 

                                    (4) 

This form of encoding matrix permits each voxel to be fed by every vessel. In practice 
vascular territories are relatively well defined, such that most vessels will only be 
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sourced from a single vessel. This was incorporated into the forward model by way of 
a classification matrix, such that in voxel k the vector of signal intensities arising from 

the blood flow from vessel c was given by sk ,c = EPcfk , where fk = fk sk⎡⎣ ⎤⎦
T

 with 

flow, fk, and static signal sk, E is the encoding matrix based on vessel locations 
x j ∈ X : j = 1,2,..., M{ } (and known encoding setup) and Pc is the classification  

matrix that selects vessel c, which is a (M+1)x2 matrix with all elements set to zero 
except Pc,1=1 and PM+1,2=1. 

Assuming Gaussian noise the Likelihood was formed: 

Pr Y | F,X,q = κ,π,φ( )= Pr yk | qk = κ k , fk ,X,φk( )
k

∏  ,

Pr yk | fk ,X,qk = κ k ,πκ k
,φk( )= φk

N /2 2π( )N /2( )e−φk

2
yk −sk ,κk( )T yk −sk ,κ k( )

 ,
            

(5) 

where q is the map of discrete class labels and κ is a specific configuration thereof,  
φk is the noise precision and πc is the proportion of voxels belonging to vessel c.  
Application of Bayes’ theorem gave the posterior distribution: 

Pr F,X,q = κ ,π,φ | Y( )∝ Pr Y | F,X,q = κ,φ( )Pr F,X,φ( )Pr q = κ | π( )Pr π( ),     (6) 

where the following priors were chosen: 

Pr F,X,φ( )= Pr F( )Pr X( )Pr φ( ),
Pr F( )= Uniform,  Pr φ( )= φ−1,  Pr X( )= N(X0 ,0.1),                    

(7) 

where vessel locations were normalized to scale between -1 and 1 and X0 are the 
vessel locations estimated from the ideal encoding: 

Pr qk = c | π( )= π c ,  with π c∑ = 1,  Pr π c( )= Uniform(0,1).
                  

(8) 

For the purposes of inference we marginalized analytically over both the flow and 
class label in every voxel: 

.  (9) 

The resulting marginal distribution was inferred using Metropolis Hastings (MH) and 
point estimates for X, π and φ were determined. These point estimates were then used 
to determine the flow in every voxel from each vessel. 

3   Results 

Analysis was performed on simulated data to establish the ability of the method to 
infer vessel locations and flow contributions from VE-ASL data. Four source vessels 
were defined with flow contributions as in Fig. 2 (top). To simplify the interpretation 
(and for comparison with real data later) the vessels were all assumed to lie on the x-
axis with locations: -1.1, 0.9, -0.2, 0.1. The encoding setup reflected this restriction 
employing modulation only in the x-direction, as shown in Table 1. 
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Fig. 2. Four-vessel simulation showing contributions to the flow from each vessel as separate 
columns. Top row: true simulated flow maps; middle row: results of standard matrix inversion 
analysis, using true vessel locations; bottom row: results of Bayesian classification model. 

Table 1. Four vessel simulated data encoding setup 

Cycle c θ° D 
1 (0,0) 0 1 
2 (-0.5,0) 0 0.5 
3 (0.5,0) 0 1 

 
Fig. 3. MH samples for vessel locations, true locations superimposed (red dashed lines) 

A standard analysis was performed using the correct vessel locations to form the 
encoding matrix, the individual flow maps are shown in Fig. 2 (middle row). The 
Bayesian analysis was initialized with ‘ideal’ vessel locations of -1, 1, -0.1, 0.1 and 
the resulting flow maps are shown in Fig. 2 (bottom row). The standard analysis was 
able to separate out the 4 vessel’s contributions. However, the flow estimates were 
visibly noisy, a result of the encoding matrix being rank deficient, since the number of 
independent encodings is less than the number of sources. Unlike the standard analy-
sis the Bayesian approach was also able to estimate the vessel locations, as shown in 
Fig. 3. It was able to give more accurate estimates of CBF and, for the majority of the 
voxels, correctly identify the main source vessel. There was some ambiguity in the 
contribution from vessels 3 and 4. The probabilistic classification was not able to 
fully model the substantial overlap between the territories of the simulated vessels 
because it sought to classify each voxel to a specific vessel source.  
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Table 2. Encoding setup for the first real dataset 

Cycle C θ° D 
1a (0,0) 0 1 
1b (0,0) 180 1 
2a (-0.5,0) 0 0.5 
2b (-0.5,0) 180 0.5 

 

Fig. 4. Vessel encoding of the carotid and vertebral vessels. Angiographic image of the  
tagging plane (left) with encoding geometry imposed. Vascular territory map from the three-
vessel analysis using standard matrix inversion (middle) and Bayesian method (right), intensity 
represents CBF, colour coding indicates dominant source vessel. 

 

Fig. 5. MH samples for the estimation of vessel location for the first set of real data 

The Bayesian analysis method was applied to a single slice of real vessel encoded 
data. This data was encoded following a similar one-dimensional setup to the simu-
lated data used above, as shown in Table 2. Whilst four cycles were used to collect 
the data, there are only two truly independent cycles in this case. 

The tagging plane for this subject is shown in Fig. 4 (left) and the encoding was ar-
ranged such that the vessels should fall at locations -1, 0, 1, the two vertebral arteries 
being regarded as a single vessel. The results of a standard analysis taking these ves-
sel locations is shown in Fig. 4 (middle). The Bayesian classification analysis esti-
mated a VTI map as in Fig. 4 (right), there was very good agreement between the 
estimated VTI images from both methods. The estimated locations for the Bayesian 
analysis are given in Fig. 5, they tend to imply a slight mis-alignment between the  
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Fig. 6. Vessel encoding above the ‘Circle of Willis’. Angiographic image of the tagging  
plane (left) with encoding geometry. Vascular territory map from the Bayesian analysis (right), 
intensity represents CBF, colour coding indicates dominant source vessel. 

left-right encoding and the carotid arteries. The results also suggest that both the  
vertebral arteries feed the posterior territory, since there is a mode either side of zero 
in locations consistent with the vertebral locations in Fig. 4. This is consistent with 
the physiology since the two vertebral arteries merge to become the basilar above the 
tagging plane chosen here. 

Finally the Bayesian method was applied to a more complex scenario when tagging 
above the Circle of Willis. The tagging plane is shown in Fig. 6 (left) and 12 encod-
ings (6 independent) were collected, 4 left-right and 8 anterior-posterior. From the 
angiographic image 11 ‘vessels’ were identified, where for practicality some very 
closely space vessels were merged. The Bayesian method was able to identify unique 
territories for 9 of the vessels, Fig. 6 (right), this is simply not possible using encoding 
matrix inversion. The two pairs of posterior vessels were not separable, implying that 
they were not uniquely tagged due to the thickness of the tagging region. 

4   Discussion 

A Bayesian approach to the analysis of VE-ASL data has been presented. Having 
defined the geometrical relationship between vessels in the tagging plane and the 
encoding geometry it is now possible to specify the correct encoding matrix for any 
dataset. Alongside this, within the Bayesian inference it is possible to account for 
subject movement or misalignment by determining the exact vessel locations from the 
data. The inference of vessel locations will also be correcting for disagreement be-
tween the assumed sinusoidal modulation of the tag and the true function achieved in 
practice. The true form can be determined theoretically [4] and could be incorporated 
into the model. It has been shown the modulation function itself will vary with the 
flow velocity in the tagged vessel and it would be possible to incorporate this effect 
within the model introducing a further ‘flow speed’ parameter. 

The presented analysis approach uses a probabilistic classification between voxels 
and the source vessels permitting analysis of data that contains greater vessels than 
there are independent encodings. This classification approach makes the assumption 
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that each voxel is fed by only single vessel. The ‘soft’ probabilistic form of the classi-
fication makes some allowance for mixing, as might be expected in the ‘watershed 
regions’ at the borders of the vascular territories. However, simulations suggest it is 
not very accurate at estimation in regions of extensive mixing. For example the poste-
rior territory is fed by the basilar artery, which is the result of merging of the two 
vertebral arteries and was seen in the first real dataset (Fig. 4). The classification 
approach would be unable to accurately model this, though neither would the standard 
matrix inversion approach be appropriate in that situation. It would be feasible to 
extend the classification to permit two (or more) sources per voxel to more accurately 
assess mixing in ‘watershed’ regions. It is also possible to define a full ‘partial-flow’ 
model by removing the classification matrix, whilst it is only possible to infer with 
this model if the number of encoding cycles at least equals the number of vessels. If 
such data were available this would provide a true ability to analyze mixed vascular 
territories. 
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Abstract. In glioblastoma (GBM), promoter methylation of the DNA
repair gene MGMT is associated with benefit from chemotherapy. Be-
cause MGMT promoter methylation status can not be determined in all
cases, a surrogate for the methylation status would be a useful clinical
tool. Correlation between methylation status and magnetic resonance
imaging features has been reported suggesting that non-invasive MGMT
promoter methylation status detection is possible. In this work, a ret-
rospective analysis of T2, FLAIR and T1-post contrast MR images in
patients with newly diagnosed GBM is performed using L1-regularized
neural networks. Tumor texture, assessed quantitatively was utilized for
predicting the MGMT promoter methylation status of a GBM in 59
patients. The texture features were extracted using a space-frequency
texture analysis based on the S-transform and utilized by a neural net-
work to predict the methylation status of a GBM. Blinded classification
of MGMT promoter methylation status reached an average accuracy of
87.7%, indicating that the proposed technique is accurate enough for
clinical use.

1 Introduction

Glioblastoma multiforme (GBM) is the most common primary brain tumor in
adults. Standard treatment now includes a DNA alkylating agent, Temozolo-
mide (TMZ), which is the only known chemotherapeutic that prolongs survival
[1]. Interestingly, the effectiveness of TMZ may be predictable; via a test for
methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene
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promoter. Methylation of the MGMT promoter inhibits the repair of therapeu-
tic DNA damage induced by TMZ thus rendering a drug-resistant cancer more
sensitive to chemotherapy [2]. For unknown reasons, MGMT is silenced in 50% of
newly diagnosed GBMs [3]. Therefore, a sensitive and specific test that reliably
predicts the methylation status of a given GBM would be a helpful diagnostic
alternative to the standard physical biopsy currently employed to diagnose the
MGMT status of glioblastomas.

Recently Eoli et al., in [4], found significant correlations between MGMT
promoter methylation status and magnetic resonance (MR) imaging features.
Motivated by these findings, this research presents an automated method for
predicting the methylation status of the GBM based on texture analysis of T2,
FLAIR and T1-postcontrast MRI scans. In order to analyze the MR images, the
proposed system utilizes the 2-dimensional discrete orthogonal S-transform[5] to
extract texture features that are subsequently used by an �1-Regularized neural
network to predict the methylation status of a given GBM. In a leave-one-out
cross validation study, the proposed system achieved an average accuracy of
87.7%, high enough for use in clinical diagnosis.

1.1 Related Research

Image texture refers to the local characteristic pattern of image intensity that
may be used to identify a tissue. Texture, by definition, also determines local
spectral or frequency content in an image; in so far as changes in local texture
will cause changes in the local spatial frequency. Aspects of texture in an MR
image can thus be quantified by assessing the local spatial frequency content
using a space-frequency transform: strong low frequencies appear as homogenous
smooth regions, while strong high frequencies are seen as heterogeneous detailed
regions.

Texture patterns have been shown to correlate with tissue histopathology
in models of multiple sclerosis. In particular, Zhang et al.[6] characterized im-
age texture in vivo using the polar S-Transform (pST) of histologically verified
multiple sclerosis lesions within T2-weighted MRI. Both high and low frequency
components, representing inflammation and demyelination, were significantly el-
evated in pathological regions compared to normal control tissue. Their work was
one of the first studies to suggest that local spatial-frequency measures of image
texture may provide a sensitive and precise indication of disease activity.

Likewise, in [7], researchers applied a variant of the S-transform similar to the
pST in order to extract texture features from T2, FLAIR, and T1-postcontrast
MR images of patients with oligodendrogliomas, a tumor related to GBM. Their
study produced a highly accurate classifier capable detecting the co-deletion
status of 1p and 19q chromosomes, a favorable genotype associated with slow-
growing oligodendrogliomas. Unfortunately, none of the aforementioned
S-Transform based techniques have produced classifiers with high enough
accuracy for clinical use in predicting the methylation status of GBM’s [8].
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T2 FLAIR T1-postcontrast tumor ROI

Fig. 1. Methylated (Top) versus Unmethylated (Bottom) tumor appearance. Left-
to-Right: T2 image, FLAIR image, T1-postcontrast image, tumor ROI. The most
prominent feature of a methylated tumor is the diffuse border visible in all three MRI
modalities. In addition, unmethylated tumors tend to exhibit more extensive necrosis
and are more likely to appear as ring enhancing within the T1-postcontrast image.

2 Texture Analysis and Classification

2.1 2D-DOST Feature Extraction

To quantify image texture within an ROI, the 2-dimensional variant discrete or-
thogonal S-transform (2D-DOST) was utilized. Recent results by Drabycz et. al.
[5], indicates that the rotationally invariant DOST outperforms leading wavelet-
based texture analysis methods. The spatial-frequency technique extracts texture
features by decomposing an MR image into a set of images at various spatial
frequencies. With 2D-DOST a local spatial frequency spectrum describing the
amplitude of each frequency component in cycles per cm (cm−1) from the low-
est (the average of the entire image) to the highest (the fluctuations between
neighboring pixels) is obtained for each pixel in the original image. The number
of points in the spectrum is proportional to the image or ROI size.

Formally, let (i, j) index a discrete set of sites on a spatially regular N ×M
lattice:

S = {(i, j)|1 ≤ i ≤ N, 1 ≤ j ≤M} (1)

The discrete 2-D Fourier transform (2D-FT) of a function g(i, j) and its inverse,
defined on lattice S are given by:

G(u, v) =
N−1∑
i=0

M−1∑
j=0

g(i, j)e−(
√−1)2π( ui

N + vj
M ) (2)
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g(i, j) =
1

NM

N−1∑
u=0

M−1∑
v=0

G(u, v)e(
√−1)2π( ui

N + vj
M ) (3)

The 2D-DOST of a N × N image g is calculated by partitioning the 2D-FT
of the image, G, multiplying by the square root of the number of points in
the partition, and performing an inverse 2D-FT. For given frequency orders
pi, pj > 1 we extract the part of the Fourier spectrum wherem = 2pi−1 to 2pi−1
and n = 2pj−1 to 2pj − 1 and perform a circular shift by half of the bandwidth:

Gpi,pj

[m
N
,
n

N

]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G
[

m+2pi

N , n+2pj

N

]
, for m = [−2pi−2,−1]

n = [−2pj−2,−1]

G
[

m+2pi−1

N , n+2pj−1

N

]
, for m = [0, 2pi−2]

n = [0, 2pj−2]

(4)

The 2D-DOST is then calculated by taking the 2D-FT of each scaled, shifted
part of the Fourier spectrum:

Dpi,pj [i
′, j′] =

1√
2pi+pj−2

×
2pi−2−1∑

m=−2pi−2

2pj−2−1∑
n=−2pj−2

Gpi,pj

[m
N
,
n

N

]
e
2π

(
mi′

2pi−1 + nj′
2

pj1

)

(5)
Based on the 2D-DOST, a rotationally invariant spectrum, was created by av-
eraging specific frequency orders together [5]. The process is depicted in Figure
2. The average spectrum from all pixels within the tumor volume was then
calculated to obtain a single spectrum for each patient; pixels not within the
tumor masks were excluded from analysis. Furthermore, slices where the visible
tumor area was less than 50 mm2 were excluded from analysis as well. To re-
move edge effects and other artifacts that might interfere with the analysis, the
aforementioned texture extraction process was carried out on 16×16 pixel ROIs
extracted from the binary mask of each tumor slice. Finally, the spectra were
log-transformed and z-scaled (to zero mean and standard deviation of one) prior
to application of neural networks in order to stabilize the variance.

2.2 Artificial Neural Networks

The standard 2-layer neural network [9] is defined by:

hω(x) = W 2 tanh(W 1x + b1) + b2) (6)
where ω = {W 1,W 2, b1, b2} are the parameters to be learned based on a set
of training pairs 〈xk,yk〉nk=1 with input vector x ∈ R

d and y corresponding to
the target output. In our case, x is the set of MRI texture coefficients extracted
by the 2D-DOST and y ∈ {+1,−1} indicates the methylation status of a given
subject. The matrices W 1,W 2 connect the input layer to the hidden layer, and
the hidden layer to the output layer (respectively). To prevent overfitting �1-
regularization [10] is employed in conjunction with error minimization as follows:

E(y,hω(x), λ) = ‖y − hω(x)‖�2 − λ‖ω‖�1 (7)
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Fig. 2. Rotationally invariant features generated from 2D-DOST (N=8). Features
marked with the same letter are averaged together to get a rotation invariant spectrum.
The diagonal elements, where |pi| = |pj |, are excluded, since they tend to contain the
majority of the noise and thus degrade classification performance.

where the �p-norm for vector x is defined as:

‖x‖�p =

(
d∑

i=1

|x(i)|p
) 1

p

(8)

The stochastic weight updates are then defined by:

δj = W j − η
∂Emse(y, hω(x))

∂W j
(9)

W j = sign(δj)max(0, δj − ηλ) (10)

where j ∈ {1, 2}, ∂Emse

∂W j
is the error gradient, η is the learning rate, λ is the

regularization parameter, and the function sign(A) returns ±1 based on the
sign of each matrix element in A.

From a Bayesian point of view[10], �1-regularization induces a Laplacian
prior over the weights. In contrast to weight decay (i.e., �2-regularization), �1-
regularization, can drive the weights completely to zero, rather than simply make
their magnitudes small and thus enables feature selection. If the �1-norm of jth

column vector is zero (i.e., ‖W (·, j)‖�1 = 0), then the jth feature, x(j), is never
used and can therefore be removed. Analogously, the width of the hidden layer
can be controlled by letting �1-regularization prune unnecessary hidden nodes.
Once again, if a given column vector is zero within weight matrix W 2, the cor-
responding hidden unit is effectively ignored by the output layer.

3 Experimental Procedure

Patients with newly diagnosed GBM (astrocytoma grade IV, WHO classifica-
tion) were identified and included in the study based on: (i) age (18 years or
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older), (ii) existence of preoperative T2, FLAIR and T1-post contrast MR im-
ages, and (iii) existence of paraffin embedded GBM tissue from the first surgery
enabling the assessment of MGMT promoter status via MS-PCR [3].

3.1 MRI Signal Preprocessing

Because imaging parameters varied across the cohort, all images were re-sampled
to ensure a common field-of-view (FOV) and pixel resolution. Images were
cropped and/or zero-padded to achieve a 22cm FOV. The 2D Fourier transform
of each image was cropped and/or zero-padded to achieve a consistent image
resolution of 0.859 mm/pixel. The resulting processed images had a FOV=22cm
and matrix size of 256x256. A rigid registration for all MR sequences on each case
was performed by maximizing the normalized mutual information metric using
in-house software. Each volume was converted from 16-bit integer to floating
point values and normalized such that cerebrospinal fluid (CSF) in the anterior
horn of the left ventricle (or right ventricle if the left was obscured) had an av-
erage value of: 1.0 for FLAIR, 5.0 for T2, and 2.0 for T1 post-contrast with a
standard deviation of 0.1. Tumor boundaries, outlined on T1 post-contrast im-
ages using MIPAV [11], were utilized for creating the regions of interest (ROIs)
demarcating the tumor regions. Figure 1 presents examples of the collected
data.

Fifty-nine patients (39 men; 20 women) were included in the texture study,
with median age 59 years (range 29-82) at the time of diagnosis. Thirty-one
subjects had tumors that were methylated (53%). Median imaging parameters
were as follows for T2, FLAIR and T1-post contrast: TR=4160/9004/500 ms,
TE=102/105/14 ms, 19 slices; median inversion time for FLAIR = 2400 ms.

For each T2, FLAIR, and T1-postcontrast imaging modality, 10 rotationally
invariant texture feature coefficients were computed using the 2D-DOST1 The
30 features, after log-normalization and z-scaling, were presented to a neural
network in a leave-one-out cross validation strategy (LOOCV). For all experi-
ments the following parameters were kept constant: (i) Learning rate η = 0.0005,
number of stochastic weight updates = 10000, (iii) number of hidden units = 2
(Note that preliminary experiments varied the number of hidden nodes. How-
ever, �1-regularization consistently pruned the network down to two nodes). The
neural network’s ability to predict GBM methylation status was evaluated us-
ing the following performance indicators: accuracy, sensitivity, specificity, posi-
tive, and negative predictive values. Two experiments were performed in this
study. The first examined the effect of regularization on the network perfor-
mance. The second experiment used regularization parameters corresponding to
local maxima with respect to accuracy, in order to examine network stability. In
each of the 10 trials, the learning parameters (ω from Equation 6) were
randomly initialized prior to network training and subsequent texture feature
classification.
1 Since the Z-dimension of each voxel in our data was approximately 10 times the

in-plane dimensions, the relatively straightforward generalization of 2D-DOST to 3
dimensions was not utilized.
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Table 1. Neural network prediction as a function of the L1-regularization parameter,
λ in Equation 10

L1-Regularization Accuracy Sensitivity Specificity PPV NPV
0.0001 0.898 0.893 0.903 0.893 0.903
0.0005 0.932 0.929 0.936 0.929 0.936
0.001 0.915 0.897 0.933 0.929 0.903
0.005 0.898 0.867 0.931 0.929 0.871
0.01 0.898 0.867 0.931 0.929 0.871
0.1 0.915 0.897 0.933 0.929 0.903
0.2 0.848 0.828 0.867 0.857 0.839
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Fig. 3. Accuracy as a function of �1-Regularization parameter λ from Equation 10.
Data taken from Table 1.

Table 2. Performance based on 10 random initializations of the network parameters.
Top: Performance based on parameter λ = 0.1 in Equation 10. Bottom: Performance
based on λ = 0.0005.

L1 = 0.1 Accuracy Sensitivity Specificity PPV NPV
Best Run 0.915 0.897 0.933 0.929 0.903
Worst Run 0.814 0.815 0.813 0.786 0.839
Mean 0.877 0.854 0.900 0.893 0.862
Standard deviation 0.042 0.039 0.047 0.053 0.036

L1 = 0.0005 Accuracy Sensitivity Specificity PPV NPV
Best Run 0.932 0.962 0.909 0.893 0.968
Worst Run 0.661 0.633 0.690 0.679 0.645
Mean 0.812 0.814 0.812 0.789 0.833
Standard deviation 0.071 0.089 0.058 0.059 0.088

3.2 Results

Table 1 shows the effect of regularization on network performance. Two local
maxima exist at λ = {0.0005, 0.1} with respective accuracy of 93.2% and 91.5%
which can be clearly observed in Figure 3. In turn, Table 2 shows the average per-
formance from 10 random initialization trials performed with the regularization
parameters set to λ = {0.0005, 0.1} . Performance based on λ = 0.1 indicates
this regularization setting is a more stable solution that achieves higher average
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score across all metrics, while also attaining a lower standard deviation than the
λ = 0.0005 setting. With λ = 0.1, the average accuracy was 87.7%. The worst-
case accuracy remained above 80%, an important threshold for clinical utility.
The best-case accuracy was on par with that from physical biopsy (∼ 90%).

4 Discussion

In this study, we sought to identify a quantitative texture pattern in MR images
that is significantly associated with MGMT promoter methylation status. We hy-
pothesized that textural features would correlate with MGMT status, providing a
non-invasive imaging test for detection of MGMT promoter methylation in GBM.
Using the 2D-DOST in conjunction with neural networks we were able to create a
system for accurately predicting methylation status of a given GBM. Our system
achieved an average accuracy of 87.7%. The worst-case accuracy remained above
80%, an important threshold for clinical utility. The best-case accuracy was on
par with that from physical biopsy (∼ 90%). We therefore conclude that our pro-
posed virtual biopsy technique may complement traditional biopsies, particularly
for patients in whom direct testing is inconclusive, or infeasible.
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Abstract. Gliomas are one of the most challenging tumors to treat or
control locally. One of the main challenges is determining which areas of
the apparently normal brain contain glioma cells, as gliomas are known
to infiltrate for several centimeters beyond the clinically apparent lesion
visualized on standard CT or MRI. To ensure that radiation treatment
encompasses the whole tumour, including the cancerous cells not re-
vealed by MRI, doctors treat a volume of brain extending 2cm out from
the margin of the visible tumour. This expanded volume often includes
healthy, non-cancerous brain tissue.

Knowing that glioma cells preferentially spread along nerve fibers, we
propose the use of a geodesic distance on the Riemannian manifold of
brain fibers to replace the Euclidean distance used in clinical practice
and to correctly identify the tumor invasion margin. To compute the
geodesic distance we use actual DTI data from patients with glioma and
compare our predicted growth with follow-up MRI scans. Results show
improvement in predicting the invasion margin when using the geodesic
distance as opposed to the 2cm conventional Euclidean distance.

1 Introduction

Primary brain tumors are tumors which start from a glial cell in the nervous
system. High grade variations of these tumors grow very fast often leading to
a life-threatening condition. Current imaging techniques such as CT and MRI
detect only the part of the tumor with a high concentration of tumor cells. The
conventional medical practice is to perform maximally safe surgical resection and
then irradiate the remaining tumor cells (visible and occult). The radiotherapy is
conventionally applied to a margin of about 2cm around the visible tumor which
is a very rough approximation of the probable location of tumor cells. This
approach does not consider tumor growth dynamics in different brain tissues,
thus it may result in killing some healthy cells while leaving alive cancerous cells
in other areas. These cells may cause re-occurrence of the tumor later in time
which limits the effectiveness of the therapy.

To improve the therapeutic outcome, more accurate prediction of the tumor
invasion margin is necessary. Based on the generally accepted belief that glioma
cells preferentially spread along nerve fibers [1], we propose here a new approach
of computing the tumor invasion margin that makes use of a geodesic distance
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defined on a manifold of brain fibers. This formulation is very easily transferable
to radiation therapy software by replacing the uniform (Euclidean) distance cur-
rently used to define the 2cm invasion margin (that will be radiated) with the
geodesic distance.

Many efforts have been made to mathematically model the Glioma tumor
growth. Following [2] these approaches are classified in three major categories:
microscopic, mesoscopic and macroscopic. Micorscopic models describe the
growth process in sub-cellular level, concentrating on activities that happen in-
side the tumor cell. Mesoscopic approaches focus on interactions between tumor
cells and their surrounding tissue while macroscopic approaches focus on tis-
sue level processes considering macroscopic quantities such as tumor volume
and flow. As we are interested in modeling tumor invasion, we will restrict our
discussion to macroscopic models.

Most models on macroscopic tumor growth use a reaction-diffusion term based
on diffusion equation introduced by Murray [3]. Swanson et al. [4] used this term to
generate a model assuming different motility of tumor cells in gray and white mat-
ter.They further enhanced theirmodel to simulate thevirtual gliomas [5].However,
this is an isotropic model which only simulates high grade glioma while low-grade
gliomas exhibit complex shapes and are not well simulated by an isotropic model.
More recent approachesuse anisotropic diffusion alongwhite matter fibers as given
by the diffusion tensors (from Diffusion Tensor Images-DTI) to simulate more com-
plex tumors. With limited availability of DTI data, existing techniques simulate
growth based either on atlas tensors registered with the patient [6] or tensors from
a healthy subject [7] unregistered with the patient. Recently a mechanical model
of the mass effect was added to the reaction diffusion equation [6,8] resulting in a
more physically plausible growth simulation.

In this paper, we introduce a novel model more directly driven by the partic-
ular patient DTI data to predict the tumor invasion margin using the geodesic
distance defined on the Riemannian manifold of brain. The formulation of white
matter as a Riemannian manifold was first introduced by O’Donnell et al. [9]
and later formalized by Lenglet et al. [10]. They used this model for white matter
connectivity mapping (tractography). Our geodesic growth model is concerned
with predicting only the current tumor spread (invasion) that is not visible in the
MRI images for better radiation therapy planning and therefore doesn’t include
mass effect. Konukoglu et. al [11] has previously used the diffusion equation to
find tumor invasion margin but their method was tested only on synthetically
grown tumors. Our geodesic model can more easily be incorporated into ra-
diation planning software that already makes use of a distance (Euclidean) in
defining the target region.

In addition to introducing the geodesic distance in the tumor growth concept,
another contribution of the paper is the application of the method on actual
patient specific DTI data. Furthermore, our method takes into account natural
barriers to glioma growth such as the skull, the tentorium cerebelli and the falx
cerebri. We tested our model on eight different patients by growing the tumor
on the DWI scan of the patient and comparing the predicted distance with real
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growth shown on later MRI scans of the same patient. Comparative results of
using geodesic distance show an improvement vs. uniform (Euclidean) distance.

2 Material and Methods

2.1 Tumor Invasion Using Geodesic Distance on Brain Fibers
Manifold

The brain tumor infiltrating component can be mathematically modeled using
anisotropic diffusion [7,6].

∂c

∂t
= ∇ · (D∇c) = Lc (1)

where c is the normalized concentration of tumor cells and D is the diffusion
tensor of the tumor cells. Knowing that tumor diffusion is similar to water dif-
fusion [1], D can be replaced with the diffusion tensor obtained from diffusion
tensor imaging.

Tumor grows with different speed in white vs gray matter (with a factor of
about α = 10 [4]). While ideally this should be directly reflected by the diffusion
tensors (DT ) magnitude, due to noise and discretization problems and the fact
that tumor might grow at a different speed than water diffusion, D �= DT . One
could estimate a function D(x) = C(x)DT (x) where C(x) is a matrix represent-
ing a spatial transform function. However C(x) is intractable to estimate from
limited data. Instead, after experimenting with real patient DTI data, we found
that the linear weights w(x) = αFA(x) produce good results. FA represents the
fractional anisotropy computed from tensor data.

The diffusion tensors in white matter are anisotropic, indicating the direc-
tion of fibers. As a consequence the anisotropic diffusion growth model would
encourage diffusion of cancer cells along fibers [1]. We propose the use of a
geodesic distance on the Riemannian manifold of white matter fibers to model
the anisotropic tumor growth. O’Donnell et al [9] and Lenglet et al. [10] intro-
duced the formulation of the white matter as a Riemannian manifold character-
ized by the infinitesimal anisotropic diffusion operator L. They made the link
between the diffusion tensor data D and the white matter manifold geometry
and showed that the diffusion operator can be associated with a metric G = D−1.
This metric allows computation of geodesic path and distances between points
on the brain and was previously used for fiber connectivity.

Geodesic Distance Calculation. Following [10], the distance Φ from a non-
empty closed subset K is found by solving the eikonal equation on the 3-
dimensional Riemannian manifold (M, g) (connected and complete){

|gradΦ| = 1 in M\K
Φ(x) = Φ0(x) for x ∈ K

(2)

where Φ0(x) = 0 ∀x ∈ K.
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(a) Barriers (b) Geod. dist. (c) Geod. dist. on (d) Geod. dist.
white matter isocontour on FA

Fig. 1. The result of applying the geodesic distance model to a DTI atlas. Colors show
the geodesic distance from the initial position.

Representing the distance function Φ as the zero levelset of a signed distance
function Ψ , Ψ(x, t) = 0 ⇔ t = Φ(x), Equation 2 can be reformulated as finding
Ψ the viscosity solution of{

∂Ψ
∂t + |gradΨ | = 0 ∀t > 0
Ψ(x, 0) = Ψ0(x) (3)

where Ψ0 is the signed distance function of Φ0.
To numerically solve hyperbolic Hamilton-Jacobi Equation 3 we approximated

the continuous flux |gradΨ |2 as [10]:

|gradΨ |2 =
∑3

i=1 gii
(
max(D−

xi
Ψ, 0)2 + min(D+

xi
Ψ, 0)2

)
+∑

i�=j gijminmod(D+
xi

Ψ, D−
xi

Ψ)minmod(D+
xj

Ψ, D−
xj

Ψ) (4)

where gij
i,j=1...3 are components of the inverse matrix G−1, D±

xi
Ψ are upwind

approximation of the gradient of Ψ in xi and minmod(a, b) = min(a, 0) +
max(b, 0).

Geodesic Distance for Tumor Growth Prediction. When using the
geodesic distance in the context of growth prediction, we chose as the origin
of the grwoth (subset K) the visible tumor margin. In addition, as the brain
contains several obvious natural barriers to glioma growth such as the skull,
ventricular system, the tentorium cerebelli and the falx cerebri, M is defined as
the brain volume that doesn’t contain those barriers. Fig. 1(a) shows an example
of segmented barriers (ventricles, falx, tentorium). Fig. 1(b-d) shows examples
of geodesic distance computed on the ICBM DTI-81 atlas [12]: (b) shows the
geodesic distance computed with linear tensor weighting that originates from a
sphere (green circle in the figure) until reaches the skull boundary. (c) shows
the geodesic distance computed only in the white matter tensors instead of the
whole brain tensors; (d) shows an isocontour of the geodesic distance aligned
with FA values. Notice how the distance follows the fiber directions.
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Fig. 2. Overview of validation system. Tumor growth is simulated on DTI data from
time1 and compared with the manual segmentation on data at time2.

2.2 Patients and Data

We used MRI and DTI data from clinical scans of patients with GBM.1 Each
patient has a pre-RT MRI scan. Follow-up DTI or MRI scans have been made
after treatment at intervals of about 3-6 months. DTI data has a resolution of
128 × 128 × 60 while MRI data has a resolution of 512 × 512 × 21. Typically
at least one or two DTI data is acquired after radiation and the rest of the
scans are conventional MRI images (T2, T1, FLAIR). To minimize the effects of
radiation treatment not accounted in our model, we use data from the first DTI
scan acquired after radiation for estimating the diffusion-based invasion margin
and compare our model with the actual growth observed in later MRI-T2 scans.

Both the tumor growth and the comparison is done based on segmentations of
the high signal region adjacent to the gross tumor on MRI-T2 or DWI0 (the DWI
scan with zero b-value similar to T2). This region contains tumor, associated
edema and microscopic tumor cell infiltration. Segmentations are done using a
semi-automatic tool developed in our lab. Growth barriers (ventricular system,
falx cerebri and tentorium cerebelli) are manually delineated using the same
software. An expert radiation oncologist validated all segmentations.

2.3 Data Processing and Validation Procedure

Fig. 2 shows an overview of the growth validation system. We grow the tumor
from time1 to approximately its size at time2 and then compare the result of our
model with the actual growth. This validation assumes that the visible growth
1 The data collection protocol was approved by REB and the patients that have pro-

vided an informed consent.
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Table 1. Jaccard (overlap) scores for comparing registered ground truth with
geodesic and Euclidean growth. Jaccard(A, B) = (A ∩ B)/(A ∪ B) Hausdroff(A,B) =
max

{
supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)

}
.

Jaccard score (%) Hausdorff distance (mm)
1 2 3 4 mean 1 2 3 4 mean

Geodesic dist. 65 75 72 65 69.2 9.32 7.68 8.90 16.72 10.65
Euclidean dist. 59 65 64 60 62.0 10.02 8.60 9.38 17.49 11.37

in the subsequent times occurs over the invisible but already-infilterated regions
at the initial time. We use the first or second DTI scan after treatment to
generate growth starting from the manually segmented visible high signal on
DWI0 (Fig. 2 (a) - edema, tumor swelling - time1). We extract diffusion tensors
using ExploreDTI [13] that are then weighted (Fig. 2 (b)) based on the Fractional
Anisotropy values. Tumor growth is simulated by iteratively solving Eq. 3.

We validated growth by comparing the results from the geodesic distance
(Fig. 2 (c)) with manually segmented high signal on T2/DWI0 from later follow
up scans (Fig. 2 (f) - time2). This comparison requires registration. We used
affine registration of T2-MRI/DWI0 data from time2 with the DTI (DWI0)
data at time1 to determine the approximate growth volume used as a stopping
criterion for the geodesic distance simulation. We also used the same registration
for visual comparisons (comparing (c) with (e) - see Fig. 3). For fair comparison
between Euclidean and geodesic distance, we apply the same process also for the
Euclidean distance instead of simply growing the tumor to the 2cm margin.

The linear registration doesn’t take into account the mass effect as a conse-
quence of tumor growth from time1 to time2. This is easily noticed in Fig. 2
(e) which shows the result of affine registration: the growth affected ventricle
shape in time2 is incorrectly registered with data at time1. Therefore for numer-
ical scores we applied non-linear registration of DWI0 data and the predicted
geodesic growth from time1 to T2-MRI data and segmented edema at time2. For
correct non-linear registration we masked edema label (time2) and the generated
growth label (time1). Those regions contain abnormalities and they cannot be
taken into account for the registration score. Fig. 2 (d) shows the result of non-
linear registration that can now be compared with (f). Now the shape of the
ventricles correctly aligns on the space of time2. For both registrations we used
FSL tools [14] (FLIRT for linear and FNIRT for non-linear registration).

3 Results

Our dataset includes 24 DWI but we could only use the 8 data that showed tumor
growth after treatment. We applied the growth models with the data processing
explained in Section 2.3 to each patient data. Fig. 3 (2) shows the comparative
results of real growth with geodesic and Euclidean growth. The results show that
where the tensor values are less noisy, the geodesic distance model can track the
path of fibers and therefore matches tumor growth, as opposed to when using
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Fig. 3. (1) Comparative results on time2 DWI0 corresponding to Table 1 Patient 1-4
(left-right). Blue line shows manual segmentation, black line shows simulated geodesic
growth and red line shows simulated Euclidean growth.

(a) Patient at time1 (b) Patient at time2 (c) Geod. dist. (d) Euclid. Dist.

Fig. 3. (2) Comparative results for different patients of Geodesic (c) and Euclidean (d)
simulated growth starting from segmented tumor at time1 (a) and linearly registered
followed up scans at time2 (MRI-T2 or DWI) (b). Barriers are shown in blue.
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the Euclidean model. Notice how in the example from the last row of Fig. 3 the
Euclidean distance has not reached the shown tumor slice while the geodesic
distance correctly models the growth.

To numerically compare our model with the conventional Euclidean model,
we calculated the Jaccard scores and Haudorff distances shown in Table 1. Cor-
responding visual results are shown in Fig. 3 (1). As mentioned in Section 2.3
for reducing the mass effect we applied non-linear registration to warp data
from time1 into the space of time2. Due to registration problems we could
only calculate scores for 4 patients. Numerical results show an improvement of
about 5-10% for simulated growth using the geodesic distance compared to the
Euclidean distance. This difference correspond to millions of saved brain cells.

4 Discussion

In this paper, we introduced the use of geodesic distance on the Riemannian
manifold of brain fibers to detect the glioma brain tumor invasion margin. The
model was tested on several real patients data and a DTI atlas. In contrast to
most of the previous works in this area, we used real tensors of the patients
obtained by the standard clinical procedure instead or registered atlas tensors.
Comparative results between real growth in follow up scans and simulated growth
based on geodesic and Euclidean distance prove that the use of the geodesic
distance could significantly improve radiation therapy treatment.

To further improve results on noisy clinical data we plan to apply better tensor
extraction and regularization. Furthermore, although the non-linear registration
used between time1 and time2 to numerically validate results solves the prob-
lem of mass effect to a good extent, it cannot solve it completely. Hence, the
error in the non-linear registration produces inaccuracies. For better non-linear
registration in the presence of mass effect we plan to incorporate a mechanical
model into the registration (similar to [15]).
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Abstract. We consider a general modelling strategy to handle in a uni-
fied way a number of tasks essential to MR brain scan analysis. Our
approach is based on the explicit definition of a Conditional Random
Field (CRF) model decomposed into components to be specified accord-
ing to the targeted tasks. For a specific illustration, we define a CRF
model that combines robust-to-noise and to nonuniformity Markovian
tissue and structure segmentations with local affine atlas registration.
The evaluation performed on both phantoms and real 3T images shows
good results and, in particular, points out the gain in introducing reg-
istration as a model component. Besides, our modeling and estimation
scheme provide general guidelines to deal with complex joint processes
for medical image analysis.

1 Introduction

The analysis of MR brain scans is a complex task that requires several sources of
information to be taken into account and combined. The analysis is frequently
based on segmentations of tissues and of subcortical structures performed by
human experts. For automatic segmentation, difficulties arise from the presence
of various artifacts such as noise or intensity nonuniformities. For structures, the
segmentation requires in addition the use of prior information usually encoded
via a pre-registered atlas. Recently growing interest has been on tackling this
complexity by combining different approaches. As an illustration, Yang et al.
[1] propose to use a region based tissue classification approach followed by a
watershed algorithm to label brain sulci while Yu et al. [2] combine a region-
based bias field estimation and a level set method to segment the cortex. A
step further the combinaison of methods is coupling, giving the possibility to
introduce mutual interactions between components of a model. Such a coupling
can be naturally expressed in a statistical framework via the definition of joint
distributions. In this vein, Ashburner and Friston [3] couple a global statistical
tissue segmentation approach with the estimation of a bias field and a global
registration of an atlas of tissue probability maps. Another growing feature in
the literature is to locally estimate model parameters on the image to better
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fit local image properties. For instance, Scherrer et al. [4] couple a local tissue
segmentation approach with a structure segmentation approach; Pohl et al. [5]
couple structure segmentation with the local affine registration of an atlas.

In this paper, we propose to go further towards coupling methods by con-
structing a Conditional Random Field (CRF) model that performs a number of
essential tasks. We will focus on developing a statistical framework that allows 1)
tissue segmentation using local Markov Random Field (MRF) models, 2) MRF
segmentation of structures and 3) local affine registration of an atlas. All tasks
are linked and completing each one of them can help in refining the others. The
idea is to capture in a single model all the relationships that could be formalized
between these tasks. Our basis toward a solution is similar to that in [4] with the
major difference that therein a joint model was not explicitly given but defined
through the specification of a number of compatible conditional MRF models. In
this work, we specify directly a joint model from which the conditional models
are derived. As a result, cooperation between tissues and structures is treated in
a more symmetric way which results in new more consistent conditional mod-
els. In addition, interaction between the segmentation and registration steps is
easily introduced. An explicit joint formulation has the advantage to provide a
strategy to construct more consistent or complete models that are open to in-
corporation of new tasks. For estimation, we provide an appropriate variational
EM framework allowing a Bayesian treatment of the parameters. The evaluation
performed on both phantoms and real 3T brain scans shows good results and
demonstrates the clear improvement provided by coupling the registration step
to tissue and structure segmentation.

2 A CRF Approach to Segmentation and Registration

We consider a finite set V of N voxels on a regular 3D grid. Our tissue and
structure segmentation task is recast into a missing data framework in which the
observed data y = {y1, . . . , yN} are the intensity values observed respectively at
each voxel and the missing data z = (t, s) is made of two sets: the tissue classes
t = {t1, . . . , tN} and the subcortical structure classes s = {s1, . . . , sN}. The tis
take their values in {e1, e2, e3} that represents the three tissues cephalo-spinal-
fluid, grey matter and white matter. Each ek is a 3-dimensional binary vector
whose kth component is 1, all other components being 0. For the subcortical
structure segmentation we consider L structures, the sis taking their values in
{e′1, . . . , e′L, e′L+1} where e′L+1 corresponds to an additional background class.
Tissues and structures are linked and we denote by T si the tissue of structure
si at voxel i. The model parameters θ = (ψ,R) include both the intensity distri-
butions parameters ψ and the registration parameters R. We consider them in
a Bayesian framework as realizations of random variables that take their values
in Θ = Ψ ×R.

To capture interactions between the various fields y, t, s and θ we adopt
a conditional random field approach which consists in specifying a conditional
model p(t, s, θ|y). We define p(t, s, θ|y) as a Gibbs measure with energy function
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H(t, s, θ|y) ie. p(t, s, θ|y) ∝ exp(H(t, s, θ|y)) where the energy is decomposed
in the following terms. We denote by g(yi|ti, si, ψi) positive functions of yi and
consider the decomposition:

H(t, s, θ|y) = HT (t) +HS(s) +HT,S(t, s) +HT,R(t,R) +HS,R(s,R)

+HΨ (ψ) +HR(R) +
∑
i∈V

log g(yi|ti, si, ψi) . (1)

A number of essential tasks. In what follows, we show how the terms in (1)
can be specified so that the model performs the tasks listed below.

Robust-to-noise segmentation. Robust-to-noise segmentation is generally addres-
sed via MRF modelling. It introduces local spatial dependencies between vox-
els, providing a labelling regularization. For tissue and structure segmentations,
we use standard Potts models setting HT (t) =

∑
i∈V

∑
j∈N (i) ηT 〈ti, tj〉 and

HS(s) =
∑

i∈V

∑
j∈N (i) ηS 〈si, sj〉, where 〈·, ·〉 denotes the scalar product, N (i)

represents the voxels neighboring i and ηT and ηS are additional interaction
strength parameters.

Local approach to deal with nonuniformity. Generally, tissue intensity models
are estimated globally through the entire volume and then suffer from imperfec-
tions at a local level. We adopt as in [4] a local segmentation alternative. The
principle is to locally compute the tissue models in various subvolumes of the
initial volume. These models better reflect local intensity distributions and are
likely to handle different sources of intensity nonuniformity. We consider inten-
sity models that depend on the tissue class k but also on the voxel localization
so that ψ decomposes into ψ = {ψi, i ∈ V } where ψi = t(ψk

i , k = 1, 2, 3). Al-
though possible in our Bayesian framework, this general setting results in too
many parameters which could not be estimated accurately. The local approach
[4] provides an intermediate efficient solution where the ψi’s are first consid-
ered as constant over subvolumes. Let C be a regular cubic partionning of the
volume V in a number of nonoverlapping subvolumes {Vc, c ∈ C}. We write
ψ = {ψc, c ∈ C} where ψc = t(ψk

c , k = 1, 2, 3) is the common value of all ψi for
i ∈ Vc. In addition to ensure consistency and spatial regularity between the local
estimations of the ψc’s we consider a MRF prior p(ψ) ∝ exp(HΨ (ψ)). The spe-
cific form of HΨ (ψ) is the same as in [4]. When Gaussian intensity distributions
are considered, it corresponds to assign auto-normal Markov priors to the mean
parameters. Outside the issue of estimating ψ, having voxel dependent ψi’s is
not a problem. We easily go back to this case, from estimated ψc’s, by using a
cubic splines interpolation step.

Incorporating a priori knowledge via local affine atlas registration. The a priori
knowledge required for structure segmentation is classically provided via a global
non-rigid atlas registration. Most methods first register the prior information to
the medical image and then segment the image based on that aligned informa-
tion. Although reliable registration methods are available, it is still important,
in the subsequent segmentation task, to overcome biases caused by commitment
to the initial registration. Also segmentation results provide information that
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can be used for feedback on registration. Global registration approaches gener-
ally lead to a high dimensional minimization problem which is computationally
greedy and subject to a high number of local optima. We rather choose a hierar-
chical local affine registration model as in [5]. We consider 1) a global affine
transformation given by parameters RG, which describes the non structure-
dependent deformations, and 2) one local affine structure-dependent deforma-
tion for each structure, defined in relation to RG and capturing the residual
structure-specific deformations. It follows L+2 affine transformation parameters
R = (RG,RS

1 , . . . ,RS
L+1) to be estimated. Interactions between labels and regis-

tration parameters are introduced throughHT,R(t,R) andHS,R(s,R). Similarly
to [5], the interaction between S and R is chosen so as to favor configurations for
which the segmentation of a structure l is aligned on its prior atlas. We denote by
ζS = {ζl

S , l = 1, . . . , L+1} the statistical atlas of the brain subcortical structures
under consideration and by ρ(RG,RS

l , i) the interpolation function assigning a
position in the atlas space to the image space. We compute the spatial a priori
distribution f l

S(R, ·) of one structure l by f l
S(R, i) = ζl

S(ρ(RG,RS
l ,i))∑

l′=1..L+1 ζl′
S

(ρ(RG,RS
l′ ,i))

. The

normalization across all structures is necessary as RS
l are structure-dependent

parameters and multiple voxels in the atlas space could be mapped to one lo-
cation in the image space. Although some atlas are potentially available for
tissues, in our setting we build fT , the spatial a priori distribution of the K = 3
tissues, from the f l

S ’s: fk
T (R, i) =

∑
l st.T l=k f l

S(R, i)+ 1
K

fL+1
S (R, i). Agreement be-

tween structure segmentation and atlas is then favored by setting HS,R(s,R) =∑
i∈V 〈si, log (fS(R, i) + ε)〉, with the vectorial notation fS = t(f1

S , . . . , f
L+1
S ).

The logarithm and a positive scalar ε are introduced respectively for homogeneity
between probabilities and energies, and to ensure the existence of the logarithm.
We choose ε = 1, making in addition HS,R(s,R) positive, but the overall method
does not seem sensitive to its exact value. Similarly, we define the interaction
between t and R by HT,R(t,R) =

∑
i∈V 〈ti, log (fT (R, i) + ε)〉. Then, the term

HR(R) can be used to introduce a priori knowledge to favor estimation of R
close to some average registration parameters computed from a training data set
if available. In our case, no such data set were available and we set HR(R) = 0.

Cooperative tissue and structure segmentations. Tissues and structures are linked:
a structure is made of a specific tissue and knowledge on structures locations pro-
vides information for tissue segmentation. Inducing cooperation between tissue
and structure segmentations can be done through the term HT,S(t, s). We set
HT,S(t, s) =

∑
i∈V 〈ti, eT si 〉, so as to favor situations for which the tissue T si of

structure si is the same as the tissue given by ti. Cooperation between tissue and
structure labels also appear via the energy data term

∑
i∈V

g(yi|ti, si, ψi). Consid-

ering Gaussian intensity distributions, we denote by G(·|μ, λ) the Gaussian dis-
tribution with mean μ and precision λ (i.e. the inverse of the variance). Denot-
ing ψk

i = {μk
i , λ

k
i }, we see ψi as a 3-dimensional vector, so that when ti = ek,

then G(yi|〈ti, ψi〉) denotes the Gaussian distribution with mean μk
i and precision

λk
i . To account for both tissue and structure information, we set: g(yi|ti, si, ψi) =
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G(yi|〈ti, ψi〉)
1+〈si,e′L+1〉

2 G(yi|〈eT si , ψi〉)
1−〈si,e′L+1〉

2 . When tissue and structure seg-
mentations contain the same information at voxel i, ie. either ti = eT si or si =
e′L+1, then the expression of g above reduces to the usual G(yi|〈ti, ψi〉). When this
is not the case, the expression of g above leads toG(yi|〈ti, ψi〉)1/2G(yi|〈eT si , ψi〉)1/2

which is a more appropriate compromise.

3 A Bayesian EM Estimation Framework

We consider the EM algorithm and more specifically its Maximization-Maximiza-
tion interpretation as a general estimation technique in the presence of missing
data. Let T and S be respectively the spaces in which t and s take their values.
We denote by D the set of probability distributions on Z = T ×S. In a Bayesian
framework, EM can be used to find Maximum A Posteriori (MAP) estimations
(see eg [6]) and leads to the alternating maximization over q ∈ D and θ ∈ Θ of the
function defined by FMAP(q, θ) =

∑
z∈Z log p(y, z | θ) q(z)+log p(θ)+I[q], where

I[q] = −Eq[log q(Z)] is the entropy of q (Eq denotes the expectation with regard
to q and capital letters indicate random variables while small letters denote their
realizations). However, the dependencies between the missing data usually make
the optimization over D intractable. We then propose to use a Variational EM
approach [7] in which the E-step is not performed exactly. The optimization
is solved over a restricted class of probability distributions which factorize as
q(t, s) = qT (t) qS(s) where qT (resp. qS) belongs to the set DT (resp. DS) of
probability distributions on T (resp. on S). Further generalizing by dividing the
approximate E-step into two stages, it follows a variant that falls in the modified
Generalized Alternating Minimization (GAM) procedures family [8]. From the
definition of FMAP , we therefore derive a 3-steps algorithm. At iteration r + 1,
with current estimates denoted by q(r)

T , q(r)
S and θ(r), it consists of:

E-T-step: q
(r+1)
T = arg max

qT ∈DT

EqT [E
q
(r)
S

[log p(T|S,y, θ(r))]] + I [qT ] (2)

E-S-step: q
(r+1)
S = arg max

qS∈DS

EqS [E
q
(r+1)
T

[log p(S|T,y, θ(r))]] + I [qS] (3)

M-step: θ(r+1) = arg max
θ∈Θ

E
q
(r+1)
T

q
(r+1)
S

[log p(θ|T,S,y)] . (4)

Equations (2-4) show that for inference the specification of the three condi-
tional distributions p(t|s,y, θ), p(s|t,y, θ) and p(θ|t, s,y) is sufficient. These
models can be easily deduced from the conditional distribution p(t, s, θ|y) con-
firming that there is no need to define the complete joint model p(t, s,y, θ)
and emphasizing the rational of using a CRF approach for segmentation pur-
pose. Moreover, the model definition in (1) induces that the conditional models
p(t|s,y, θ) and p(s|t,y, θ) are MRF with energy functions denoted byH(t|s,y, θ)
and H(s|t,y, θ) obtained by omiting in expression (1) the terms that do not de-
pend on t, resp. on s. The two-stage E-step (2) and (3) requires then to compute
H

(r+1)
T (t) = IE

q
(r)
S

[H(t|S,y, θ(r))] and H
(r+1)
S (s) = IE

q
(r+1)
T

[H(s|T,y, θ(r))]. Ne-
glecting terms not depending on t, it comes:

H
(r+1)
T (t) =

∑
i∈V

[
〈ti, log(f̃ (r)

T (R(r), i))〉 +
∑

j∈N (i)

ηT 〈ti, tj〉 + log (gTi(yi|ti))
]
, (5)
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where gTi(yi|ti) = G(yi|〈ti, ψ
(r)
i 〉)

1+q
(r)
Si

(e′L+1)

2 and f̃
(r)
T = t(f̃k(r)

T , k = 1, 2, 3) with
f̃

k(r)
T defined by log(f̃k(r)

T (R, i)) = log(fk
T (R, i) + ε) +

∑
l st.T l=k q

(r)
Si

(e′l) . In the
latter expression, the term

∑
l st.T l=k q

(r)
Si

(e′
l) is the probability, given the current

distribution q(r)
Si

, that voxel i belongs to a structure whose tissue is k. Intuitively,
the higher this probability the more favored is tissue k. Similarly,

H
(r+1)
S (s) =

∑
i∈V

[
〈si, log(f̃ (r)

S (R(r), i))〉 +
∑

j∈N (i)

ηS 〈si, sj〉 + log (gSi(yi|si))
]
, (6)

where gSi(yi|si)=
(∏3

k=1 G(yi|ψk(r)
i )q

(r+1)
Ti

(ek)) 1+〈si,e′L+1〉
2 G(yi|〈eTsi , ψ

(r)
i 〉)

1−〈si,e′L+1〉
2

and log f̃ l(r)
S (R, i) = log(f l

S(R, i) + ε) + q
(r+1)
Ti

(eT l)(1 − 〈e′l, e′L+1〉) where the
term q

(r+1)
Ti

(eT l)(1 − 〈e′
l, e

′
L+1〉) favors a structure whose tissue is T l if l is a

proper structure. We recognize in (5) and (6) the standard decomposition of
a MRF model into three terms: an external field, a regularizing spatial term
and a data term. Then, solving the current E-T and E-S steps is equivalent to
solve the segmentation task for standard MRFs whose definition depends on
the previous iteration. In this work we consider a Mean field like algorithm to
actually compute q(r+1)

T and q(r+1)
S but any other MRF estimation strategy could

be possible.
The independence of ψ and R then leads to a two-stage M-step M-ψ and

M-R. For the M-ψ step, the choice of a Markovian prior energy HΨ (ψ) as in
[4] requires the use of a Mean Field like approximation for the maximization.
Similarly to [4], we update the ψk

c = {μk
c , λ

k
c}’s with the values obtained at

convergence of the following scheme ((ν) denotes the iteration number):

M-ψ :
μ

k(ν+1)
c =

λk(ν)
c

∑
i∈Vc

aikyi+λ0k
c |N (c)|−1 ∑

c′∈N(c) μ
k(ν)
c′

λ
k(ν)
c

∑
i∈Vc

aik+λ0k
c

λ
k(ν+1)
c =

αk
c +

∑
i∈Vc

aik/2−1

bk
c +1/2[

∑
i∈Vc

aik(yi−μ
k(ν+1)
c )2]

,

where {λ0k
c , αk

c , b
k
c , c ∈ C} are hyperparameters to be specified, N (c) denotes

the indices of the subvolumes neighboring subvolume c, |N (c)| the number of
them and aik = 1

2

(
qTi(ek) + qTi(ek)qSi(e

′
L+1) +

∑
lst.T l=k qSi(e

′
l)
)
. The first term

in aik is the probability for voxel i to belong to tissue k without any structure
knowledge. The sum over k of the two other terms is one and they can be inter-
preted as the probability for i to belong to the tissue class k when information
on structure segmentation is available. Parameter values per voxel are then com-
puted by cubic splines interpolation between ψc and ψc′ for all c′ ∈ N (c) so that
smooth variations between neighboring subvolumes are ensured and the inten-
sity nonuniformity is handled inside each subvolume. For the M-R step, we get
from (4), R(r+1) = arg maxR∈R

(
H(R)+E

q
(r+1)
T

[HT,R(T,R)]+E
q
(r+1)
S

[HS,R(S,R)]
)
.

In practice, the global parameters RG are determined in a pre-processing step
using some standard intensity based method such as FLIRT1. For the other
1 http://www.fmrib.ox.ac.uk/fsl/flirt/
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transformations, we adopt a relaxation approach and update the 12 parameters
defining each local affine transformation RS

l by maximizing in turn:

M-R :
RS (r+1)

l = arg max
RS

l

(
H(R) +

∑
i∈V

3∑
k=1

q
(r+1)
Ti

(ek) log
(
fk

T (R, i) + ε
)

+
∑
i∈V

L+1∑
i=1

q
(r+1)
Si

(e′
l) log

(
f l

S(R, i) + ε
) )

.

There exists no simple expression and the optimization is performed numerically
using a variant of the Powell algorithm.

Fig. 1. Evaluation on IBSR v2 (9 right structures) and comparison with [9]

(a) (b) (c)

Fig. 2. (a) Evolution of hippocampus local affine registration and segmentation; (b)
Evolution of the caudate atlas registration and segmentation after an artificial pertur-
bation of the initial registration; (c) Tissue segmentations with T and TSR approaches

4 Evaluation

We chose to set parameters ηT and ηS to the inverse of a decreasing temperature
as generally done. The precision parameters λ0k

c were set to Ncλ
k
g where Nc

is the number of voxels in c and λk
g is a rough precision estimation for class

k obtained by a standard global EM algorithm. The αk
c ’s were set to |N (c)|,

bkc to |N (c)|/λk
g and the tissue subvolumes size to 203 voxels. The atlas used

was the Harvard-Oxford subcortical probabilistic atlas. For a fair comparison,
we first carried out tissue segmentation only. The results were equivalent to
that in [4] and quantitatively comparable to the results from FAST and SPM5
for lower computational times. They showed robustness both to noise and to
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nonuniformities. We then rather focused on evaluating the coupling performance.
We computed via STAPLE a 3-structure BrainWeb gold standard from three
manual expert segmentations of the left caudate, left putamen and left thalamus.
When combining tissue and structure segmentations (TS approach), the mean
Dice metric over 8 experiments (phantoms with 3%, 5%, 7%, 9% of noise, and
20% or 40% of nonuniformity) was respectively 74%, 90% and 90% for the three
structures (computational time: 25 min on a Pentium 2Ghz, 2Go RAM). When
adding registration in the combination (TSR approach), it reached respectively
91%, 95% and 94% (computational time: 50 min), showing great improvement
for the caudate whose atlas was initially badly registered. Comparatively, [4]
reported respectively 74%, 85% and 91%. We then considered 18 images from
the IBSR v2 database. The mean Dice metric for the 9 right structures (17 were
segmented) is reported in Fig. 1). Most structure segmentations were improved
by the introduction of registration in the coupling (mean improvement: +4.5%
; mean degradation: -1.2%). Then Fig. 2 shows the results for a real 3T brain
scan. Fig. 2(a) illustrates how registration and structure segmentation improve
with iterations while in Fig. 2(b), the initial caudate registration was perturbed
artificially to point out the ability of our approach to correct the mis-alignment
and recover a correct segmentation. Eventually, Fig. 2(c) shows that the final
tissue segmentation is much better with the TSR approach.

5 Discussion

Our approach provides general guidelines to deal with complex joint processes.
It is based on the initial specification of a joint probabilistic model decomposed
into parts to account for various type of interactions. We used this strategy to
integrate an atlas registration with a tissue and structure segmentation process.
We proposed a model that captures several level of interactions 1) spatial depen-
dencies between voxels for robustness to noise, 2) spatial dependencies between
local intensity models to ensure their consistency, 3) relationships between tis-
sue and structure labels and 4) relationships between labels and local affine atlas
registration parameters. In addition to the inclusion of registration, we built on
the approach in [4] by introducing new tissue and structure interaction terms.
As a result of the joint approach, these new terms correspond to a more sym-
metric cooperation between tissues and structures. Besides, we obtained very
good results that confirmed the benefits of allowing symmetric interactions and
including registration as part of the model components rather than as a separate
step. Further refinements include the introduction of an a priori H(R) for the
registration and the addition of a sulci lines segmentation process. We believe
the use of training data as in [5] will facilitate registration parameters estima-
tion and further improve the results. Also, interactions between sulci lines and
tissue segmentation could reduce the over-regularization effect of MRF around
sulci.
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Abstract. We present a robust and accurate atlas-based brain segmen-
tation method which uses multiple initial structure segmentations to
simultaneously drive the image registration and achieve anatomically
constrained correspondence. We also derive segmentation confidence
maps (SCMs) from a given manually segmented training set; these char-
acterize the accuracy of a given set of segmentations as compared to
manual segmentations. We incorporate these in our cost term to weight
the influence of initial segmentations in the multi-structure registration,
such that low confidence regions are given lower weight in the regis-
tration. To account for correspondence errors in the underlying regis-
tration, we use a supervised atlas correction technique and present a
method for correcting the atlas segmentation to account for possible
errors in the underlying registration. We applied our multi-structure
atlas-based segmentation and supervised atlas correction to segment the
amygdala in a set of 23 autistic patients and controls using leave-one-out
cross validation, achieving a Dice overlap score of 0.84. We also applied
our method to eight subcortical structures in MRI from the Internet
Brain Segmentation Repository, with results better or comparable to
competing methods.

1 Introduction

Developing robust, automated tools for brain MR image registration and seg-
mentation is challenging due to many factors including the high degree of neu-
roanatomical variability in both healthy controls and patients. Registration and
segmentation of medical images can be aided by using expert-derived features,
but this manual intervention step can become costly in very large studies and
can also suffer from rater drift. Automated computation of such features can
eliminate the need for manual intervention, however the reliability and accuracy
of automatically generated features is also influenced by the variability in image
quality and neuroanatomy, in addition to the systemic bias, if any, present in
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this automated method. Hence, using a small set of manually labeled training
images, learning the accuracy of the automatically generated features can be
used to improve the overall utility of these features.

We have extended the large deformation atlas-based brain MRI segmentation
approach of [1], which used Freesurfer segmentation labels to initialize the re-
gion of interest (ROI) based registration, to instead use the Freesurfer labels as
anatomical constraints simultaneously during registration. The main motivation
for this is that the simultaneous usage of the automated segmentations as sepa-
rate cost terms allows the overall MR image matching to help avoid local minima,
while providing flexibility in setting weights for different channels to emphasize
certain properties, such as larger weight for smaller structures, or smaller weight
where the channel data is known to be less reliable. We accomplish this by using
a multi-cost registration framework, with each additional data term utilizing the
matching of one automatically-generated segmentation label.

Our approach is also similar in spirit to [2], which presented multi-channel
registration with a few semi-automatically defined subcortical structures that
were quality controlled and corrected manually prior to their use in the registra-
tion. However, instead of correcting the automated segmentations manually for
each image, we attempt to learn the errors made by the automatic segmentation
method using the segmentation confidence maps from a small set of manually
labeled images, and account for these for segmentation of all other images in the
database. To avoid computation of SCMs for each cohort atlas and to work with
cohort datasets that do not have some manually segmented scans to construct
the SCMs, we show how to transfer SCMs from another database atlas. We gen-
erate and apply the SCMs to weight the automated segmentations that are used
as “features” in our atlas-based segmentation.

In single atlas propagation, errors or bias in the atlas segmentation, perhaps
due to manual rater error, can also lead to the bias being propagated in all atlas-
propagation derived segmentations. Furthermore, if the atlas contains anatomi-
cal variability, which the registration is not able to accommodate fully, then the
propagated segmentations will also possess this template-dependent anatomical
bias. To account for this additional source of variability, we present a supervised
atlas correction procedure, which involves performing atlas-based segmentation
on a manually labeled training set to learn the systematic bias present in the
atlas, and correcting the atlas segmentation correspondingly. In this paper we
describe our method for the generation of SCMs, multi-structure registration and
supervised atlas correction, apply these techniques to two datasets, and compare
our results with current brain segmentation methods.

2 Method and Materials

2.1 Brain MRI Datasets

The Internet Brain Segmentation Repository (IBSR) dataset consists of 18 T1-
weighted MR scans, with some manually segmented structures. This is a pub-
lic database used by many groups to test segmentation methods ([3,4,5,6,7]).
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The amygdala dataset consisted of T1-weighted scans from 24 subjects (12/12
autism/control), aged 10-24 [8], along with manual segmentations.

2.2 Segmentation Confidence Maps

In using automated segmentations for registration, segmentation errors could
result in correspondence errors. We wish to learn the errors that an automated
segmentation method makes so that if a given region in an automated segmenta-
tion consistently exhibits lower accuracy, we would like to reduce its contribution
to the registration. To this end we have defined a segmentation confidence map
(SCM), αj , for each anatomical structure, j, as the probability of accuracy:

αj(x) = P (f j
error(x) < ε), (1)

where f j
error(x) is the distribution of segmentation errors at spatial location x,

and ε is a distance bound placed on the confidence map. To find f j
error(x), we

require a map of segmentation errors between a manual gold standard, M j ,
and an automated segmentation, Aj . Because correspondence between M j and
Aj is not known, we approximate this using the signed distance transforms of
the binary segmentations, denoted as DT (·), to obtain the closest boundary
distances between the manual and automated contours, so that:

f j
error(x) ≈ dj

M,A(x) =

{
0 if M j(x) = Aj(x),
(|DTMj (x)|+ |DTAj (x)|)2 if M j(x) �= Aj(x).

We also used grayscale dilation followed by Gaussian smoothing (σ = 1.0) to
widen the affected neighborhood. After computing this approximation for f j

error,
we can determine αj by evaluating P (f j

error(x) < ε) over a manually labeled
training set.

Supervised Training/Learning. For a given small set of M training images
Ak, we first compute error maps f j

error,Ak
for each structure j in each image

Ak. To learn the combined confidence map, we then spatially transform these
to a chosen template space, B, using the large deformation diffeomorphic metric
mapping (LDDMM) transformation between individual automated segmenta-
tions, Aj

k and Bj . To compute the confidence map on B, we use the transformed
error maps f j

error,Ak
◦φBj ,Aj

k
, to generate sample histograms at each voxel using

a 3×3×3×M neighborhood. We used a distance bound, ε = 1mm, and Equation
1 to compute αj

B for each segmented structure j. Note that for computational
reasons we computed confidence maps for each structure in each hemisphere
separately, then combined them to create a confidence map relating to both
hemispheres of a given structure. Figure 1 shows the SCM for the caudate nu-
cleus in which the highest variability in automated segmentation is found to be
around its tail. This is reasonable as the narrow caudate tail is where automated
segmentation algorithms are likely to yield the highest variability.
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M j=caudate
Template , Aj=caudate

Template f j=caudate
error,Template αj=caudate

Template

(a) (b) (c)

Fig. 1. Visualizations showing the generation of the segmentation confidence map
(SCM) for the caudate nucleus: (a) manual (magenta) and initial automated (blue)
segmentations for the template brain, (b) distance error map f j=caudate

error,Template, (c) cau-
date SCM, αj=caudate

Template , computed using distance error maps from all images in the
training set. Note that the SCM identifies regions of highest segmentation variability
to be near the tail of the caudate.

Propagation to Cohort Atlas. If cohorts are structurally similar such as
matched for age and pathological state, then the SCMs learned from one cohort
can be propagated to the other cohort atlas. We propagate SCMs from one
cohort atlas, αj

B , to another, αj
C , by spatially transforming the maps, defined on

B, to the space of C using the LDDMM transformation between their automated
segmentations, Bj and Cj . By performing this step for each structure, j, we can
estimate the SCMs for any cohort atlas given a previously trained SCM.

2.3 Multi-structure Confidence-Weighted Registration

To introduce multiple structures into a diffeomorphic registration scheme, we
extended the large deformation diffeomorphic metric mapping (LDDMM) [9]
method to use multiple data terms, each weighted with a SCM. Let the pair
AMR and BMR of brain ROI MR images be given to be registered, where B
is the designated template, and let their N automated segmentations, Aj , j ∈
[1, . . . , N ] and Bj , j ∈ [1, . . . , N ] be available. The diffeomorphic transformation
matching A and B is given by ϕ = φ1 : Ω → Ω such that A(φ−1

1 ) ≈ B. This
transformation φ−1

1 results from velocity φ̇t = vt(φt), vt ∈ V, t ∈ [0, 1] where V
is a space of smooth vector fields on Ω. The energy for the extended confidence-
weighted multi-structure registration to be minimized is therefore:

∫ 1

0
‖vt‖2

V dt+ ‖AMR(φ−1
1 )−BMR‖2

L2 +
N∑

j=1

‖
√
αj

B

(
Aj(φ−1

1 )−Bj
)
‖2

L2 , (2)

which uses the confidence map for a given structure, αj
B to weight the mismatch

Aj(φ−1
1 )−Bj . Note that because the cost is computed in the coordinate frame

of template B, the SCM need only be specified for B. Figure 2 shows the multi-
structure registration images for the the left amygdala ROI registration, along
with the corresponding SCMs.
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Fig. 2. Illustration of the multi-structure confidence-weighted registration for the left
ROI in the amygdala segmentation, showing the MR images, initial segmentations,
and SCMs. The multi-structure registration used the left hippocampus, amygdala and
lateral ventricle along with the MRI images to find the optimal ROI transformation.

2.4 Supervised Atlas Correction

Suppose atlas-based segmentation between an atlas, A and a target image T
gives an invertible transformation φA,T which transforms the atlas labels, AM

to T via φA,T (AM ). In the ideal case of perfect registration, if TM are known
target labels, then φT,A(TM ) = AM , but due to errors in registration and manual
labeling, this is not observed. However, if, given the manually labelled target TM ,
the atlas labels were ‘corrected’ to be φT,A(TM ), then label propagation would
result in perfect segmentation correspondence. We use this insight to average the
back-propagated labels, φT,A(TM ), for all images in a training set, and denote
this as the ‘corrected’ atlas segmentation. The corrected segmentation accounts
for both manual labeling inconsistencies and systematic correspondence errors,
thus improving the overall label propagation.

2.5 Experimental Procedure

All brain MR images were processed with the Freesurfer image analysis suite
(version 4.1.0), using the subcortical processing stream [10], which labels 37
volumetric structures; these segmentations were used as the initial automated
segmentations for our method. In preparation for atlas-based ROI segmentation,
the MR images underwent pre-processing including affine registration, definition
of a bounding box for each hemisphere and histogram-based intensity normal-
ization. Thus for each target image, a cropped region of interest (ROI) for each
hemisphere, containing the structures to be segmented, was linearly aligned and
intensity normalized to the corresponding ROI in the template MRI.

For the IBSR dataset, we used two disjoint sets for training and testing; nine
brains were used to generate Freesurfer SCMs for the left and right caudate,
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putamen, pallidum, nucleus accumbens, thalamus, hippocampus, amygdala, and
lateral ventricles, with the other nine used as the test data. The multi-structure
registration used all eight structures along with the MRI to find the diffeo-
morphic transformation for each hemispheric ROI. For the amygdala dataset,
we propagated the IBSR SCMs to an arbitrarily chosen control subject, and
performed multi-structure registration using ROIs containing the hippocampus,
amygdala and lateral ventricles. Supervised atlas correction was tested with a
leave-one-out cross-validation scheme on the above described test data. Spa-
tial overlap was measured with the Dice similarity coefficient, DSC(A,M) =

2V (A∩M)
V (A)+V (M) , where V (A) and V (M) refers to the volume of the automated and
manual segmentations respectively.

Fig. 3. Top: Mean DSC for the amygdala dataset, where the height of the error bars is
equal to the standard deviation. Bottom: Representative axial (left), sagittal (center),
and coronal (right) slices showing amygdala segmentations for the manual rater (pink),
Freesurfer (yellow) and the multi-structure atlas-corrected method.

Table 1. Dice similarity coefficients for amygdala segmentation for our method and
competing methods using various datasets, with standard deviations shown where avail-
able. Note that both methods in the first two rows use the same amygdala dataset.

Method Cohort Age range DSC (L ; R)
Our method healthy/autistic 13-23/10-24 0.85 ± 0.033 / 0.83 ± 0.043

Fischl et al. [10] healthy/autistic 13-23/10-24 0.71 ± 0.047 / 0.66 ± 0.068
Pohl et al. [11] schiz.+healthy 18-41 0.86 ± 0.028; 0.85 ± 0.030

Chupin et al. [12] healthy/Alzheimer’s < 35/66-81 0.81 ± 0.04 / 0.76 ± 0.07
Heckemann et al. [13] healthy 20-54 0.80 ; 0.81
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Table 2. DSCs on the IBSR dataset, with bold entries denoting the highest performing
for each structure, with standard deviation shown in parentheses where available

Method Lat. Vent. Caud. Put. Thal. Pall. Nuc. Acc. Hipp. Amyg.

Our method
0.85 0.83 0.87 0.89 0.72 0.61 0.76 0.66
(0.06) (0.03) (0.02) (0.01) (0.09) (0.10) (0.03) (0.08)

Fischl et al. [10]
0.78 0.82 0.81 0.86 0.71 0.58 0.75 0.68

(0.07) (0.05) (0.02) (0.02) (0.13) (0.08) (0.02) (0.06)
Akselrod-Ballin et al. [3] - 0.80 0.79 0.84 0.74 - 0.69 0.63

Gouttard et al. [4] 0.85 0.76 0.78 - 0.72 - 0.67 0.64
Joshi et al. [5] - 0.54 0.49 0.60 - - 0.41 -

Ciofolo et al. [6] - 0.65 0.70 0.77 0.58 - - -

Zhou et al. [7] - 0.80 0.81 0.84 - - 0.70 0.64
(0.08) (0.06) (0.06) (0.11) (0.15)

Shen et al. [14] (in [5]) - 0.54 0.45 0.74 - - 0.30 -
Woods et al. [15] (in [5]) - 0.40 0.36 0.65 - - 0.50 -

3 Results

Spatial overlaps for the amygdala dataset are shown in top row of Figure 3,
with the multi-structure segmentation outperforming the Freesurfer segmenta-
tions used in the multi-structure registration, and the supervised atlas correc-
tion further improving the results. For all methods performance is better for
the control subjects, with the highest mean DSC being 0.85 and 0.83 for con-
trol and autism subjects respectively. Bottom panel shows representative MRI
slices of an autism subject, with manual and our automated (multi-structure,
atlas-corrected) segmentation outlines. Table 1 compares the amygdala DSCs to
competing methods, and Table 2 summarizes results on the IBSR database.

4 Conclusions and Discussions

As evident in Table 1, performance of our amygdala segmentations compares
very favorably among the current state-of-the-art methods; only the method in
[11], which performs hierarchical parcellation of the brain, reports slightly higher
but comparable numbers. Multiple atlas propagation and fusion is used in [13]
with good results, a technique that can also be applied with the proposed method
to further improve performance at the cost of additional registrations. The best
results for the IBSR database, shown in Table 2, are emphasized in bold, with our
method showing the highest spatial overlap for the majority of structures (lateral
ventricles, caudate, putamen, thalamus, nucleus accumbens, and hippocampus),
and within 0.02 of the highest for the pallidum and amygdala.

Supervised training in this setting, used in both the SCM generation and at-
las correction steps, can be problematic if differences exist between the training
set and the test set, such as manual segmentation protocols, scanner differences,
or pathological differences. For the supervised atlas correction these differences
could lead to degraded performance, since errors in the corrected segmentation
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would correspond directly with final segmentation errors, which is why we chose
to use cross-validation on the test data for this purpose. For the SCM genera-
tion, however, we did use a single training set for both the IBSR and amygdala
segmentation; satisfactory results were obtained likely because the Freesurfer
segmentations had consistent bias or errors for both datasets. We plan to further
study the consistency and applicability of SCMs generated from different train-
ing sets. To conclude, we have proposed a novel two-fold strategy for improving
performance of atlas-based brain segmentation using multi-structure confidence-
weighted registration, and supervised atlas-correction. Results show promise for
improved segmentation of many subcortical structures, including the amygdala,
with performance better than or comparable to the leading current methods.
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Abstract. A new algorithm is presented for the automatic segmentation
and classification of brain tissue from 3D MR scans. It uses discrimina-
tive Random Decision Forest classification and takes into account partial
volume effects. This is combined with correction of intensities for the
MR bias field, in conjunction with a learned model of spatial context,
to achieve accurate voxel-wise classification. Our quantitative validation,
carried out on existing labelled datasets, demonstrates improved results
over the state of the art, especially for the cerebro-spinal fluid class which
is the most difficult to label accurately.

1 Introduction

This paper introduces a new, supervised technique for the classification of 3D
MR scans of the brain. The ultimate goal is to assign a class label to each brain
voxel from the following set: white matter, grey matter and cerebro-spinal fluid.
Such automatic analysis is of practical interest to many clinical applications
related to early detection and treatment of schizophrenia [1], epilepsy [2] and
Alzheimer’s [3]. Automatic segmentation of brain tissue is a challenging prob-
lem, owing to acquisition noise, non-uniformities in the MR magnetic field, the
complex anatomy of the brain, limited resolution and partial volume effects.

In order to address these problems we propose an algorithm in three steps:
1) bias field correction using polynomials of optimal degree; 2) learned models
for automatic tissue classification/segmentation; and 3) partial volume estima-
tion. Model training accounts for much of the accuracy of our technique, and is
utilized as much as possible, not only in the segmentation process, but also dur-
ing bias field correction and partial volume estimation. The tissue classification
step is achieved via randomized decision trees [4,5], an efficient, state-of-the-art
discriminative classification technique.

Previous Work. The substantial existing literature on this topic may be
roughly grouped into the following four different sets:

Clustering algorithms. Representative work in this area includes the use of
K-means [6], mean-shift [7], and expectation-maximization (EM) [8,9,10]. Their
limitation is that the cluster geometry and the number of clusters have to be known,

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 558–565, 2009.
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where parametric forms such as Gaussian or Gaussian mixtures are commonly
assumed but without taking into consideration existing domain knowledge.

Atlas-based approaches. Segmentation is reduced to a template matching prob-
lem, where labels are transferred from a prelabeled atlas to the subject volume
via registration techniques [2,3,11]. However, registration itself is challenging,
especially for the human cortex due to the high variability of the cortical shape
and the location of sulci and gyri across individuals.

Deformable models. Relying on curve propagation, deformable models minimize
a certain energy associated with the curve to partition the image domain, like
active contours [12] and level sets [13,14]. Those techniques typically suffer from
problems with initialization and local minima.

Supervised learning. Surprisingly, supervised learning has received relatively lit-
tle attention in brain tissue segmentation. In [2] the intensity distribution of
each class at every location is modeled as a Gaussian, with spatial information
encoded globally via a probabilistic atlas and locally via an anisotropic non-
stationary Markov random field. This Gaussian assumption, however, is restric-
tive to inter-subject variability and image distortions. The work in [15] learns
a multi-class discriminative appearance model by a probabilistic boosting tree
together with a generative active shape model for each subcortical structure. It
works well for regular subcortical structures, but is not suitable for the brain
tissue segmentation task which involves highly convoluted cortical surfaces.

2 Discriminative Brain Tissue Segmentation

Given the observed MR brain volume I : Ω ⊂ R
3 �→ R

+ our goal is to assign to
each voxel a class label from the following set: white matter (WM), gray matter
(GM), and cerebro-spinal fluid (CSF). This task is formulated as a maximum-a-
posteriori (MAP) classification problem, whose output is the label map L	 :
Ω �→ {CSF, GM, WM} such that

L	 = argmax
L

logP (L|I) = arg max
L

logP (I|L) + logP (L). (1)

Under the simplistic but common assumption that voxel intensities are mutually
independent given their labels, the data likelihood in (1) can be rewritten as

logP (I|L) =
∑
x∈Ω

logP (I(x)|L(x)). (2)

The label prior in (1) can be decomposed into two terms in the Markov Random
Field framework, i.e.

logP (L) =
∑
x∈Ω

logU(L(x)) +
∑
x,y

V (L(x), L(y)), (3)

where U is the unary location prior, and V imposes spatial smoothness between
neighboring labels (not considered yet). The following sections describe details
of how to model P (I(x)|L(x)) as well as U(L(x)). We start by looking at the
likelihood P (I(x)|L(x)) and how it is affected by the magnetic bias field.
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2.1 Bias Field Correction

Owing to the bias field induced by the MR scanner, the observed intensity of
voxels is a corrupted version of the true intensity of the underlying tissue. In
order to model the likelihood P (I(x)|L(x)), we need to recover the true intensity
of each voxel by estimating the bias field and correcting for it.

Let Ī denote the true intensity, b the bias field, and n the random noise. Here
a multiplicative bias with i.i.d. Gaussian noise is assumed, i.e., I(x) = b(x) ·
Ī(x) + n(x). This MR image formation model has been used frequently [16,17]
as it is simple and known to be consistent with the inhomogeneous sensitivity of
the reception coil. Since the bias field is smoothly varying in space, we adopt a
low-order polynomial model: b(x) = λ ·Γ n(x), where λ is the coefficient vector,
n ∈ {0, 1, 2, . . .} is the order of polynomial, and Γ n is the base polynomial
vector. For example, Γ 1(x) = (x, y, 1)T ,Γ 2(x) = (x2, xy, x, y2, y, 1)T . As MR
acquisition is done sequentially, it is reasonable to assume that λ is different
slice by slice. Thus, our bias model holds for every individual slice and Γ n is
applied to (x, y) only (not to the third dimension).

On the other hand, we can assume that the true intensity of each voxel depends
only on the underlying tissue label Ī(x) = μL(x), where μ ∈ {μCSF, μGM, μWM} is the
tissue intensity for label L(x), and have uniform values throughout the volume.
Given the values of n, I and Γ n, if L were known then iterative least squares
fitting could be applied to determine the optimal solution of λ for each slice and
μCSF, μGM, μWM for every volume. In practice, however, a ground-truth labeling
for L is not available but probabilistic tissue labeling may be used to tackle
the problem. Let qCSF(x), qGM(x), qWM(x) denote the probabilities of the voxel x
belonging to each tissue. The expected value of the true intensity in this case is
a weighted sum of all tissue intensities and our intensity model changes to

Ī(x) =
∑

L∈{CSF,GM,WM}
qL(x)μL. (4)

The same iterative fitting procedure can be applied as before. The optimal de-
gree of the polynomial is obtained on the validation set by performing model
selection using T-tests for successive degrees (n = 0, · · · , 4). The Jaccard index
JAC(L, S) = |L∩S| / |L∪S| is used to measure the accuracy of the output label
map L given the manual segmentation S. We obtain P values on WM and GM less
than 5% between n and n− 1 when n ≤ 3, and greater than 5% when n > 3. P
values on CSF are always greater than 5% indicating no statistically significant
difference between degrees. This is because dark CSF regions are insensitive to
multiplicative bias. Thus we choose n = 3 for accuracy.

2.2 Maximum a Posteriori (MAP) Classification

In brain MR images, the (bias-corrected) intensity of a given tissue is approxi-
mately uniform, and the spatial assignment of different tissues is constrained by
the underlying anatomy. Thus, it makes sense to use both intensity and location
features as the basis of our tissue models. In the Bayesian formalism (1) we use
intensity as a likelihood and location as a prior (see Fig. 1).
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Fig. 1. MAP Classification Model: (left) Tissue intensity likelihood. The improved
alignment of the training/testing distributions is an indication of the benefit of bias
field correction (best viewed in color). (right) Probabilistic atlas example. (a) reference
brain segmentation; (b-d) CSF/GM/WM probability maps.

Our intensity models are multi-modal and non-parametric since they take the
form of simple histograms. This overcomes the unimodal limitations of single
Gaussian [11,17] and the inefficiencies of EM-based Gaussian mixtures [8,9,10],
without loss of accuracy. Location information is also exploited by constructing
a probabilistic atlas from our own training set. We randomly select a reference
volume from the training set, and then affinely register all other volumes to the
chosen one. The atlas is obtained by averaging and Gaussian smoothing the label
maps of the registered brain volumes. Our model so far has incorporated intensity
information and location prior. Next we show how to incorporate further features
such as gradient, texture, and context in our discriminative framework.

2.3 Tissue Classification via Random Decision Forests

A random decision forest [4] is a collection of T deterministic decision trees which
differ from each other due to random repartitions of training data. This is known
to aid generalization accuracy — intuitively, where one tree fails the others do
well. Furthermore, a decision forest provides posterior probabilities for labels, as
opposed to hard labellings, by pooling votes across the population of trees.

Training. During training, each point x is associated with a known class label
L(x) = { GM, WM, CSF }, and is pushed through each of the trees starting at the
root. Each tree node applies a binary test of the form: f(x; θ) > τ and sends the
data to one of its two child nodes accordingly. f(·) is a function characterized by
its parameters θ and applied to the voxel x. τ is a threshold. For now it suffices
to say that f computes certain visual features on the point at hand. At training
time the parameters θ, τ of each node and the tree structure are all optimized
by minimizing the data information gain. Randomness in the trees arises from
noise being injected in the selection of the optimal node parameters. During
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Fig. 2. Decision forests filters and results: (left) A shape filter used to provide
context for the point x is computed from the feature box shown. (middle-right)
Classification error — total (black), GM (blue), and WM (green) — as a function of the
tree depth and the number of trees in the forest (best viewed in color).

training the leaf nodes update and store the empirical distributions over classes
Plt(x) (L(x) = c), where lt indexes the leaf node in the tth tree.

Testing. During testing each point x is pushed through each tree until it reaches a
leaf node. The same input point x will end up in different leaf nodes, with different
posterior probabilities. The output of the forest, for the point x is defined simply
as the mean of all such posteriors: P (L(x) = c) =

∑T
t=1 Plt(x) (L(x) = c) / T.

Now, a Maximum Likelihood classification for each voxel is obtained as: c	 =
argmaxc P (L(x) = c). Spatial prior could now be incorporated as before (1) but
a more effective approach is described below.

Context-rich visual features. Here we use “shape filters” similar to the ones used
in [5]; but applied to the 3D volume and without the need for “textonization”.
Fig. 2(left) illustrates these concepts on a 2D slice. For each voxel x a feature box
F of random size and shape is selected at a random displacement from x. The
size of the feature box is selected between 1 and 30 voxels. The feature response is
then defined as f(x;F ) =

∑
q∈F Ci(q) where Ci indicates different “channels”.

In particular, here we make use of the following five image channels: the raw
intensities C1(x) = I(x), the image gradient C2(x) = |∇I(x)|, the atlas-based
probabilities C3(x) = P (L(x)), the intensity likelihood C4(x) = P (I(x)|L(x))
from the trained histograms, and the label posterior C5(x) = P (L(x)|I(x))
output of the MAP classifier from Sect. 2.2. The ability of our features to look
at a large distance from the center pixel x yields context-rich information. As
illustrated in Fig. 2(middle-right), increasing the tree depth or the forest size
tends to decrease the decision forest classification error.

2.4 Modeling Partial Volume Effects

The limited image resolution causes many voxels to contain material from multi-
ple tissues, which is the main reason of misclassification. The goal of this section
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is to locate such partial voxels Ωm ⊂ Ω in the image, as well as estimating the
mixing fraction α : Ωm �→ [0, 1].

Modeling mixed tissue classes. Here we assume that partial voxels contain at
most two different tissue types and we adopt a mixture model to capture the
mixing effect as follows: I(x) = α(x)I1 + (1 − α(x))I2 , where I1, I2 are the
underlying tissue intensities and α the mixing factor. When considering par-
tial volume effects, the tissue classification problem is modified by extending
the set of class labels to the following: { CSF, GM, WM, CSF/GM, GM/WM } (the
transition CSF/WM is ignored here as it occurs rarely in practice [17]). Since par-
tial voxels usually occur at tissue boundaries, we identify them by labelling the
voxels at each side of the boundaries as partial. Then we learn the models for
the CSF/GM and GM/WM mixtures directly, via the same method described before
for pure tissue modeling. This technique proves to work better than modeling
the mixed tissues by mixing the models of the pure tissues (see Fig. 4d,e for
comparison).

Mixing fraction estimation. Using the models described above we can now assign
one of the five class labels to each voxel. Then, we estimate the mixing fraction
α by maximum-likelihood: α	(x) = arg maxα∈[0,1] logP (I(x)|α). Since we con-
servatively consider both sides of the tissue boundaries to be partial voxels, the
built partial volume classifier tends to underestimate pure voxels. Thresholding
the mixing fraction, so that partial voxels with α(x) ≤ δ or α(x) ≥ 1 − δ are
relabeled as pure, marginally improves labelling accuracy. This threshold is also
learned from the validation set, and in practice we found δ = 0.1 to work well.

3 Results and Validation

Our approach is validated on the Internet Brain Segmentation Repository1,
where 20 normal subjects of T1-weighted brain MR images with expert seg-
mentation are available. The volume size is around 256 × 256 × 60, with voxel
resolution 1mm× 1mm× 3mm. We compute voxel-wise classification accuracy
and the associated standard error by running our measurements on different ran-
dom training-validation-testing splits. In each run the forest classifier is employed
for discriminative optimization. Our results are compared to the state-of-the-art
in Fig. 3. We achieve nearly 40% improvement on CSF, 5% on GM, and parity
on WM, compared with the best methods. Note that our results are close to the
“ideal” score obtained by human experts (last row).

Next, we demonstrate how the test paradigm may further be improved by
taking into account partial volume effects. In Fig. 4d we show the confusion
matrix results of partial volume classification, and show that, relative to our
own results of pure tissue classification, error can be reduced if partial voxels
are labelled in datasets. We propose that this is the way brain tissue labelling
algorithms should be evaluated in the future.
1 http://www.cma.mgh.harvard.edu/ibsr/



564 Z. Yi et al.

Method CSF GM WM

Adaptive MAP 0.069 0.564 0.567
Biased MAP 0.071 0.558 0.562
Fuzzy c-means 0.048 0.473 0.567
Maximum-a-posteriori (MAP) 0.071 0.550 0.554
Maximum-likelihood 0.062 0.535 0.551
Tree-Structure k-means 0.049 0.477 0.571
MPM-MAP [11] 0.227 0.662 0.683
BSE/BFC/PVC [17] — 0.595 0.664
Constrained GMM [8] — 0.680 0.660
Spatial-varying GMM [9] — 0.768 0.734
Coupled surface [14] — 0.701 —
FSL [10] — 0.7562 —
SPM [18] — 0.7902 —
MAP with histograms 0.549 ± 0.017 0.814 ± 0.004 0.710 ± 0.005
Decision Forest Classifier 0.614 ± 0.015 0.838 ± 0.006 0.731 ± 0.007

Inter-rater consistency — 0.876 0.882

Fig. 3. Comparison of our approaches with the state of the art. Mean and std.
error of Jaccard indices are obtained from repeated random runs. We are targeting
CSF/GM/WM segmentation only, but note that [17] also classifies the background.

a b

Fig. 4. Segmentation results: (a) Ground-truth with black-gray-white correspond-
ing to CSF-GM-WM; (b) Label map obtained by our approach. (c-e) Confusion matrices
(in %) for tissue classification. (c) without partial volume classification; (d) modeling
partial voxels by direct histogram learning; (e) modeling partial voxels by uniform
mixture of pure voxels. Matrix rows (top-bottom) correspond to ground-truth, while
columns (left-right) are our labelling, both in CSF, GM, WM, CSF/GM, GM/WM order. (d)
yields best results, i.e., maximal overlap averaged on 3 pure tissue classes.

4 Conclusions

We have proposed a learning-based method combining bias field correction, his-
togram tissue likelihood, and atlas based prior, with a decision forest classifier
that uses context, to achieve substantial improvements on tissue labelling of
brain MR images. Performance obtained is now very close to that of expert
practitioners. We also showed that further improvements could be obtained in
classification error performance by taking account of partial volume effect, and
this suggests a modified test paradigm for future studies.
2 Dice index reported by [19], different from Jaccard index we use in Fig. 3. By def-

inition, Dice > Jaccard. Thus for a fair comparison we also present here the mean
Dice indices of our approach: CSF 0.699, GM 0.900, WM 0.831.
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Abstract. In this paper, we study the performance of popular brain at-
rophy estimation algorithms using a simulated gold standard. The avail-
ability of a gold standard facilitates a sound evaluation of the measures
of atrophy estimation, which is otherwise complicated. Firstly, we pro-
pose an approach for the construction of a gold standard. It involves
the simulation of a realistic brain tissue loss based on the estimation
of a topology preserving B-spline based deformation fields. Using this
gold standard, we present an evaluation of three standard brain atro-
phy estimation methods (SIENA, SIENAX and BSI) in the presence of
bias field inhomogeneity and noise. The effect of brain lesion load on the
measured atrophy is also evaluated. Our experiments demonstrate that
SIENA, SIENAX and BSI show a deterioration in their performance in
the presence of bias field inhomogeneity and noise. The observed mean
absolute errors in the measured Percentage of Brain Volume Change
(PBVC) are 0.35% ± 0.38, 2.03% ± 1.46 and 0.91% ± 0.80 for SIENA,
SIENAX and BSI, respectively, for simulated whole brain atrophies in
the range 0 − 1%.

1 Introduction

The last decade has seen the emergence of sophisticated image processing tech-
niques, based on Magnetic Resonance Imaging (MRI) acquisitions, for assessing
the brain volume. The associated ease of use and portability of these methods
has attracted the attention of the medical community in a large way. This has
led to an increasing interest in the use of the brain atrophy measurements as
a reliable index of disease progression since brain atrophy is a common fea-
ture of many neuro-degenerative diseases such as Multiple Sclerosis (MS)[1],
Alzheimer’s disease (AD) and Dementia. Although, the existing approaches for

� We are thankful to Alsace Region and ARSEP for supporting this study. We also
thank Dr. Evan Fletcher (University of California, Davis) for his support on the BSI
software.
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measuring atrophy are sensitive and reproducible, their accuracy and reliability
are affected by a number of factors. For instance, non-destructive biologic factors
such as inflammation, edema, steroid therapy, dehydration, alcohol consumption
and normal aging may contribute to a change in the brain volume. MRI arte-
facts including motion artefacts, sequence variations, bias field inhomogeneity,
noise and others may influence the brain atrophy measurements. Other sources
of error are more method specific and include inaccuracies in registration and
segmentation of images. Since these tools are being increasingly used as a marker
of disease evolution in many pathologies, their validation is a key problem. How-
ever, in the real scenario, the non-availability of the ground truth complicates
the evaluation and comparison of these techniques. In this paper, we address
the problem of creation of a gold standard. We propose a topology preserving
non-rigid registration based framework for simulating brain images with a known
realistic atrophy. Using these simulations as a gold standard, an evaluation of the
performance of three popular atrophy estimation methods (“Structural Image
Evaluation, using Normalization, of Atrophy” (SIENA) [2], for cross-sectional
studies (SIENAX) [3] and “Boundary Shift Integral” (BSI) [4]), on the basis of
their robustness to bias field inhomogeneity and noise is presented. Influence of
brain lesion load on the atrophy measurements is also investigated.

2 Proposed Approach for Atrophy Simulation

Designing methods that simulate realistic atrophy is of great importance for the
evaluation of atrophy measurement techniques, since it is a way of generating
ground truth data. In the literature, several approaches have been proposed for
simulating brain atrophy. In [5], Karacali et al. have proposed a Jacobian-based
method where deformation fields are estimated in order to induce the desired
volume variations in the regions of interest. An additional penalization term is
also considered in order to prevent the corner Jacobians from being negative in
order to ensure that the estimated deformation field preserves topology. However,
the penalization term cannot rigorously guarantee topology preservation and
restricts the simulation of large atrophies in one go. Pieperhoff et al. have recently
presented a similar approach relying on “Local Volume Ratio (LVR)” [6] instead
of the Jacobian. Unfortunately, none of these methods address the problem of
enforcing skull invariance, which is a desirable property for the simulation of
realistic brain atrophy. The bio-mechanical-based approach proposed by Camara
et al. [7] relies on a bio-mechanical model for simulating brain tissue deformation,
using a finite-element approach. Their framework also incorporates the skull
invariance constraint.

Here, we present an alternative to the methods discussed above. The proposed
approach estimates a deformation field that preserves topology so that the Ja-
cobian is at each voxel, as close as possible to the desired local level of atrophy.
Contrary to Karacali et al. [5] who consider the sum of squared differences be-
tween the Jacobian of the transformation and the desired level of atrophy, we
consider the logarithm of the Jacobian so that dilations (1 < J < +∞) and
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contractions (0 < J < 1) have a similar influence on the objective function.
Besides, additional constraints are introduced in order to ensure that the skull
remains invariant by the estimated transformation. The proposed approach is
detailed in the following section.

2.1 Optimization Problem

We consider a B-spline based multi-resolution deformable model (For details
see [8]).Let s

Δ= [x, y, z]t ∈ Ω ⊂ R
3. Let ΩJ ⊂ Ω be the area where the desired

simulated atrophy level J (s) (the value of the Jacobian at each voxel s ∈ ΩJ ) is
user-specified. For estimating the corresponding deformation field u, we consider
the following objective function:

Eu,J,λ =
∫

ΩJ

|log (Ju (s))− log (J (s))|2 ds + λ C

∫
Ω

EReg (u (s)) ds, (1)

where Ju stands for the Jacobian of u, Ereg is a regularization term that ensures
that the estimated transformation is smooth, λ is the weight of the regularization
term and C is a scaling factor computed at the beginning of each scale [9].
Among the many regularization terms proposed in the literature, we choose the
membrane energy. We guarantee exact topology preservation by maintaining the
positivity of the Jacobian in the continuous domain. As opposed to Karcali et.
al, who need an additional term for topology preservation, we directly solve the
following constrained optimization problem.

û = arg min
0<Ju(s)<+∞

Eu,J,λ. (2)

The procedure for solving this optimization problem is quite involved and is
detailed in [8]. We use the Levenberg-Marquardt optimization procedure in order
to improve the convergence rate. In our framework, we invoke the skull invariance
constraint by optimizing those B-spline parameters that do not affect the skull,
while setting the other parameters to zero. Finally, to obtain the warped image,
it is more convenient to consider the backward transformation so that standard
interpolation techniques can be used for the regularly sampled data.

3 Experimental Results

3.1 Simulation of Atrophy

In this section, we study the performance of the proposed atrophy simulation
algorithm. First, we investigate the influence of considering the logarithm of the
Jacobian in the objective function (Log-norm) instead of the standard sum of
squared differences (L2-norm). Fig. 1 highlights the fact that using the L2 norm
leads to nearly the same dispersion of Jacobian values, whatever be the simu-
lated atrophy rate, whereas the Log-norm shows a constant relative dispersion,
which is more consistent. A quantitative analysis of the ability of the proposed
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Fig. 1. Jacobian distributions obtained by simulating uniform (a) atrophy of 50% and
(b) hypertrophy of 25%

Table 1. Influence of considering the skull constraint on the mean and standard devi-
ation of Jacobian values of the simulated deformation fields

Desired Atrophy Without skull constraint With skull constraint
10%(J=0.9) 0.9017 ± 0.0021 0.9032 ± 0.0115
20%(J=0.8) 0.8015 ± 0.0021 0.8019 ± 0.0202
40%(J=0.6) 0.6008 ± 0.0018 0.6025 ± 0.0797
50%(J=0.5) 0.5005 ± 0.0017 0.5140 ± 0.2088

(a) (b) (c)

Fig. 2. Simulation of brain atrophy with an increase in MS lesion load: a) Original
BrainWeb image with moderate lesions (b) Image with 10% of global atrophy and
100% of MS lesion increase (c) Difference between images (a) and (b)

algorithm for simulating the desired atrophy has also been performed (see
Table 1). Simulations have been performed by considering a uniform atrophy
over gray and white matter using the Brainweb1 image. It can be seen that, on
the average, the desired atrophy is well achieved without and with the skull con-
straint. Note that the proposed simulation algorithm can easily achieve very high
atrophy, contrary to the method proposed in [5], which requires the estimation

1 http://www.bic.mni.mcgill.ca/brainweb/

http://www.bic.mni.mcgill.ca/brainweb/
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of a large atrophy in an incremental way. For example, it is possible to simulate
a uniform atrophy of 99.9%(J = 0.001), without the skull constraint, with an
obtained average Jacobian value of 0.00106 ± 0.000716. Such an atrophy rate,
although unrealistic, highlights the ability of the proposed method to produce an
accurate solution for low Jacobian values. The proposed simulation framework
is also versatile and can be used for simulating a more complicated pattern of
atrophy. For instance, it can be used for simulating a global brain atrophy and
a change in a given pathological area such as multiple sclerosis lesion evolution
or tumor growth, simultaneously. In Fig. 2, we present a simulation of 10% of
global brain atrophy and 100% of MS lesion volume increase using an image
with “Moderate” lesion load from the BrainWeb MS database.

3.2 Evaluation of SIENA, SIENAX and BSI

In this paper, we use the SIENA and SIENAX implementations available as
a part of the FMRIB Software Library (FSL) version 4.12. We use the BSI
implementation developed by Imaging of Dementia and Ageing lab, University
of California, Davis3. While the implementations of SIENA and SIENAX are
completely automated, the implementation of BSI requires manual intervention
for obtaining a gray-white matter mask, in order to define the brain boundaries
on which the boundary shift integral is calculated. This problem is automatically
alleviated in our case since the gray-white matter mask of the baseline image is
available (with BrainWeb). We refer the reader to [2], [3] and [4] for a complete
description of SIENA, SIENAX and BSI algorithms, respectively.

Our evaluation framework consists of the simulation of a number of atrophies
(uniform over the brain) on a single normal brain image of BrainWeb. These
simulations are a simplified version of the atrophy that occurs in reality but are
adequate for the purpose of evaluation of the atrophy estimation approaches.
The results are illustrated by simulating brain atrophy ranging between 0-1%
(step size 0.1%) and 1-10% (step size 1%). Although, the brain atrophy range of
0-1% is more relevant to neuro-degenerative pathologies, we also present results
for larger brain volume changes, in order to better assess the accuracy of these
methods. To comprehend the effect of bias field inhomogeneity and noise, we
create three sets of images. The baseline image as well as the atrophied images
are degraded (a) using different intensity non-uniformity (INU) fields (20% INU)
available with the BrainWeb database (b) by adding Gaussian noise to all the
brain scans such that a signal to noise ratio (SNR) of 15dB is achieved (c) bias
field inhomogeneity followed by noise using the same parameters as in (a) and
(b). Fig. 3(a-d) shows the PBVC between any two brain scan pairs, B1 and
B2, such that the simulated atrophy on brain B1 is less than that of B2 (for
the simulated atrophy ranges of 0-1% and 1-10%). Fig. 3 compares the methods
under consideration with respect to the ground truth, for (a) the noise-free case
and for observations degraded with (b) bias field inhomogeneity (c) noise (d)

2 http://www.fmrib.ox.ac.uk/fsl/fsl/list.html
3 http://neuroscience.ucdavis.edu/idealab/software/index.php

http://www.fmrib.ox.ac.uk/fsl/fsl/list.html
http://neuroscience.ucdavis.edu/idealab/software/index.php
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(a) (b)

(c) (d)

Fig. 3. Comparison of absolute errors in the estimated by SIENA, SIENAX and BSI
with the ground truth for (a) noise-free observations and those degraded by (b) bias
field inhomogeneity (c) noise (d) bias field inhomogeneity and noise

both bias field inhomogeneity and noise. In these figures, the absolute error in
the estimated PBVC with reference to the ground truth is shown. Fig. 3(a)
shows that SIENA overestimates the atrophy, while BSI underestimates it for
large atrophy values when no artefact has been added. For low atrophy values
(less than 1%), SIENA, SIENAX and BSI show a similar performance in terms
of the error in PBVC measured with respect to the ground truth. As can be seen
from Fig. 3(d), the introduction of bias field inhomogeneity and noise leads to a
visible increase in the errors for all the three methods. A prominent reason for
this is the incorrect extraction of brain, when using BET, due to the addition of
bias field inhomogeneity, mostly at the brain boundaries. In our observation, the
addition of noise over bias field inhomogeneity leads to a significant change in
the brain extraction as compared to the brain extraction performed when only
bias field inhomogeneity is added (Fig. 3(b)). However, for the observations that
are degraded with Gaussian noise only, we do not observe any gross errors in
the extraction of the brain. Brain extraction is crucial for SIENAX because the
segmentation performed on the brain area is directly related to the calculation
of the brain volume. Although, SIENA uses a combined brain mask from the
two examinations for the evaluation of the brain volume change, it can be seen
that non-brain areas are included in the calculations if they are included in one
of the examinations. This is the reason for the degradation of the performance
of SIENA. In our experiments on BSI, a bias field correction, available with
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Table 2. Summary of results discussed in section 3.2 for the simulated atrophy range
0 − 1%. This table illustrates the mean error in the estimated PBVC (in percentage)
for various artefacts. Note that, for presence of lesions, the error represents the non-
desired change that is observed when comparisons are done using different versions of
the same brain with varying lesion load.

Artefact SIENA SIENAX BSI

Noise-free 0.0615 ± 0.0407 0.0874 ± 0.0759 0.1072 ± 0.0899
Bias Field Inhomogeneity 0.2940 ± 0.4343 0.8420 ± 0.7502 1.0412 ± 0.3827

Noise 0.0292 ± 0.0226 0.0673 ± 0.0433 0.4400 ± 0.1082
Bias Field Inhomogeneity and Noise 0.3492 ± 0.3812 2.0277 ± 1.4622 0.9131 ± 0.7993

Presence of Lesions 0.0941 ± 0.0772 0.2359 ± 0.2089 -

the implementation of BSI, is applied after the registration step. Since the bias
field correction step comes after the brain extraction and registration steps are
performed, the error in these steps possibly propagate to the end. We note that,
for BSI too, brain extraction is an important step since the final result depends
on getting a good mask of the brain. Our experiments also suggest that an
improper extraction of the boundary of the brain leads to a mis-calculation of
the boundary shift integral. Also, the effect of addition of Gaussian noise only
(Fig. 3(c)), does not have a significant effect on the measurements of SIENA and
SIENAX but has an impact on the BSI measurements due to the use of intensity
values directly in the calculation of the boundary shift integral.

To determine the effect of presence of lesions on atrophy, SIENA and SIENAX
algorithms are run between “normal” brain and images with “mild”, “moderate”,
“severe” lesion loads available with BrainWeb. In all these cases, no additional
atrophy is simulated. Hence, it is expected that the atrophy estimated between
these cases is close to zero. The deviations from zero atrophy represent the
change in the estimated atrophy due to the presence of lesions. We observe that
lesions can lead to a significant non-desired change of up to 0.2% when compar-
ing a normal brain with the same brain with lesions using SIENA. SIENAX is
more affected by the presence of lesions when a normal brain is compared with
the same brain with lesions (maximum PBVC is ∼ 0.42%). Since a gray-white
matter mask delineating the brain boundaries is provided to BSI for carrying
out its calculations, the presence of lesions is not expected to have any effect
on atrophy estimation. Hence, BSI is not tested here. Table 2 summarizes the
results corresponding to various sources of error discussed in this section. We
would also like to bring to the knowledge of the reader that Smith et al. [10]
report the overall mean absolute error of SIENA and BSI to be ∼ 0.2% which
differs significantly from the results presented here (See Table 2). Smith et al.
used incremental atrophy summation with first-last differencing for performing
this evaluation [10]. Their calculation of mean absolute error is not based on a
ground truth as is the case for our evaluation framework.
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4 Conclusions

In this paper, we proposed a topology preserving scheme for simulating atro-
phy using a B-spline based deformation model to create a gold standard for the
comparison of atrophy estimation approaches. Additional constraints were intro-
duced in order to ensure that the skull remains invariant in the simulated image
and the estimated transformation is smooth. Our experiments showed that the
proposed simulation algorithm can achieve the desired atrophy with accuracy.
Using the simulated gold standard, we assessed the performance of three freely
available algorithms (SIENA, SIENAX and BSI). Our analysis procedure con-
sisted of simulation of atrophies on a single BrainWeb image in the presence of
bias field inhomogeneity and noise. The experiments showed that, SIENA is the
best performer with respect to the error in the estimated PBVC in the noise-free
case as well as when the images are degraded with bias field inhomogeneity and
noise. Bias field inhomogeneity and noise were responsible for incorrect brain
extraction which considerably affected the accuracy of all the methods. Mean
errors of 0.35%± 0.38, 2.03%± 1.46 and 0.91%± 0.80 were observed in the esti-
mated atrophy by SIENA, SIENAX and BSI, respectively. The observed errors
were also significantly larger as compared to Smith et al. [10] who reported the
overall mean absolute error for SIENA and BSI as ∼ 0.2%. The tests that we
performed also indicated that SIENA and BSI estimated longitudinal atrophy
more accurately than SIENAX in a real scenario, where the images are corrupted
with bias field inhomogeneity and noise. Since SIENAX has been developed for
cross-sectional studies, its results should be cautiously interpreted when used
in longitudinal studies. To conclude, the errors that we observed in our exper-
iments were comparable to the whole brain annual atrophy rates (0.5 − 2.8%)
that have been reported for various pathologies. This highlights the need for the
development of more robust methods capable of measuring atrophy accurately.
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Abstract. We present a novel method for the automatic detection and
segmentation of (sub-)cortical gray matter structures in 3-D magnetic
resonance images of the human brain. Essentially, the method is a top-
down segmentation approach based on the recently introduced concept of
Marginal Space Learning (MSL). We show that MSL naturally decom-
poses the parameter space of anatomy shapes along decreasing levels
of geometrical abstraction into subspaces of increasing dimensionality
by exploiting parameter invariance. At each level of abstraction, i.e., in
each subspace, we build strong discriminative models from annotated
training data, and use these models to narrow the range of possible so-
lutions until a final shape can be inferred. Contextual information is
introduced into the system by representing candidate shape parameters
with high-dimensional vectors of 3-D generalized Haar features and steer-
able features derived from the observed volume intensities. Our system
allows us to detect and segment 8 (sub-)cortical gray matter structures
in T1-weighted 3-D MR brain scans from a variety of different scan-
ners in on average 13.9 sec., which is faster than most of the approaches
in the literature. In order to ensure comparability of the achieved re-
sults and to validate robustness, we evaluate our method on two publicly
available gold standard databases consisting of several T1-weighted 3-D
brain MR scans from different scanners and sites. The proposed method
achieves an accuracy better than most state-of-the-art approaches using
standardized distance and overlap metrics.

1 Introduction

Currently, many scientific questions in neurology, like the revelation of mecha-
nisms affecting generative or degenerative processes in brain development, re-
quire quantitative volumetric analysis of (sub-)cortical gray matter structures
� This work was partially funded by the Health-e-Child project (IST 2004-027749).
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Department of Siemens Corporate Research.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 575–583, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



576 M. Wels et al.

Dynamic

Histogram

Warping

Position-

Orientation

Detection

Shape

Inference

Position

Detection

Full Similarity

Transformation

Detection

MSL 3-D Shape Detection and Inference

Fig. 1. The processing pipeline of the proposed 3-D shape detection and inference
method. Each image (detection and delineation of the left caudate) schematically
represents the input and/or output of individual processing steps. Please view in color.

in large populations of patients and healthy controls. For instance, atrophy in
the presence of Alzheimer’s disease considerably affects morphology of the hip-
pocampus. In addition, 3-D segmentation of various deep gray matter structures
facilitates image-based surgical planning, therapy monitoring, and the generation
of patient-specific geometrical models from imaging data for further processing.
As a result of unclear boundaries, shape complexity, and different anatomical
definitions, precise manual delineation is usually time consuming and user de-
pendent. Moreover, typical artifacts present in MR imaging (Rician noise, par-
tial volume effects, and intra-/inter-scan intensity non-uniformities) challenge
the consistency of manual delineations. Therefore, a system for the automatic
detection and segmentation of (sub-)cortical gray matter structures not only has
the potential to increase segmentation consistency, but also has the capability
of facilitating large-scale neuromorphological studies.

We propose a fully automatic method for the detection and delineation of the
following eight (sub-)cortical gray matter structures: the left and right caudate
nucleus, hippocampus, globus pallidus, and putamen. Our method consists of two
major steps: 1) we standardize the observed MR intensities by non-rigidly aligning
their histogramto a template histogram by means of Dynamic HistogramWarping
(DHW) [1]; and 2) for each (sub-)cortical structure of interest we detect and infer
its position, orientation, scale, and shape in an extended Marginal Space Learning
(MSL) framework [2], which explicitly integrates shape inference into the overall
MSL formulation. The overall system block diagram is depicted in Fig. 1.

In contrast to other methods [3–5] where a partly manually initialized nine pa-
rameter registration is part of the approaches we do not require the input volumes
to be spatially normalized. In some cases [3, 4], the feature pools used for discrimi-
native model generation are enriched with features explicitly encoding normalized
location. In accordance with this observation, the approaches are only evaluated
on spatially normalized data sets from one type of MR scanner that are not pub-
licly available [4, 5]. Nevertheless, Morra et al. [3] report state-of-the-art results on
data sets that have not been subject to spatial normalization. Apart from that, the
mentioned methods make use of machine learning in a similar manner as we do,
but follow a bottom up approach ascending from the lowest level of abstraction,
i.e., the level of individual voxels, to the level of complete anatomical entities.
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Alignment of a probabilistic atlas by means of an affine registration also plays
an important role in further approaches [6, 7]. While sometimes [6] quantitative
evaluation is only carried out on simulated data, the method of Akselrod-Ballin
et al. [7] is trained and evaluated on only one publicly available dataset that
has been subject to a specific preprocessing including intensity standardization.
By generating observation or discriminative models based on intensity values
without explicitly allowing for inter-scan intensity variations [3–5, 7] the resulting
models are at the risk of being over-adapted to specific contrast-characteristics
of the data at hand.

2 Methods

2.1 Combined 3-D Shape Detection and Shape Inference

For combined 3-D rigid anatomy detection and shape inference we use a method
based on the concept of Marginal Space Learning (MSL) [2]. We estimate the
structure of interest’s center c = (c1, c2, c3) ∈ R

3, orientation θ = (θ1, θ2, θ3) ∈
[−π, π] × [−π/2, π/2] × [−π, π] represented as Euler angles in z − x − z con-
vention, scale s = (s1, s2, s3) ∈ { s ∈ R

3 | si > 0, i = 1, 2, 3 }, and shape
X = (x1, . . . ,xn) ∈ R

3×n. The latter consists of canonically sampled 3-D points
on the surface of an object to be segmented. Note that θ is relative to c, s is
relative to c and θ, and X is relative to c, θ, and s. Let V = { 1, 2, . . . , N },
N ∈ N, be a set of indices to image voxels, Y = (yv)v∈V , yv ∈ {−1, 1 }, a bi-
nary segmentation of the image voxels into object and non-object voxels, and
f be a function with Y = f(I,Θ) that provides a binary segmentation of vol-
ume I using segmentation parameters Θ = (c,θ, s,X). Let Z = (zΘ) be a
family of high-dimensional feature vectors extracted from a given input volume
I = (iv)v∈V and associated with different discretized configurations of Θ. In our
context Z includes voxel-wise context encoding 3-D generalized Haar features
[8] to characterize possible object centers and steerable features [2] that are ca-
pable of representing hypothetical orientations and optionally scaling relative to
a given object center or shape surface point. These features were chosen for our
method because of their fast computation and effective representation [2].

We search for the optimal parameter vector

Θ∗ = arg max
Θ

p(y = 1|Θ, I,M (Θ)) = arg max
Θ

p(y = 1|Z,M (Θ)) (1)

maximizing the posterior probability of the presence, i.e., y = 1, of a sought
anatomy given the discriminative model M (Θ) and the features Z extracted
from the input volume I using a certain set of values for the parameters Θ.

Let π(c)(Z), π(c,θ)(Z), π(c,θ,s)(Z), π(c,θ,s,X)(Z) denote the vectors of com-
ponents of Z associated with individual groups of elements (c), (c,θ), (c,θ, s),
and (c,θ, s,X) of the parameter vector Θ. The MSL method avoids exhaustively
searching the high-dimensional parameter space spanned by all the possible Θ by
exploiting the fact that ideally for any discriminative model for center detection
with parameters M (c) working on a restricted amount of possible features
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c∗ = arg max
c

p(y = 1|π(c)(Z),M (c)) (2)

holds, as the object center c is invariant under relative reorientation, relative
rescaling, and relative shape positioning. Similarly, we have

θ∗ = arg max
θ

p(y = 1|π(c∗,θ)(Z),M (c,θ)) (3)

for combined position-orientation detection with model parameters M (c,θ) where
only features π(c∗,θ)(Z) with c = c∗ are considered. This is due to the fact that
position and orientation are invariant under relative rescaling and relative shape
positioning. Analogous considerations yield

s∗ = argmax
s

p(y = 1|π(c∗,θ∗,s)(Z),M (c,θ,s)) (4)

for the object’s scaling, and

X∗ = arg max
X

p(y = 1|π(c∗,θ∗,s∗,X)(Z),M (c,θ,s,x),M (c,θ,s,X)) (5)

for the object’s shape where M (c,θ,s,x) are the parameters of a local shape model
with respect to individual surface points x and parameters M (c,θ,s,X) represent
a global shape model. Equations (2)–(5) naturally establish a chain of discrimina-
tive models exploiting search space parameter invariance for combined 3-D shape
detection and shape inference. It allows us to apply different discriminative models
descending along geometrical abstraction as, in our framework, the object center
c alone is the most abstract and the complete set of parameters Θ is the least
abstract shape representation. Therefore, MSL establishes a hierarchical decom-
position of the search space along decreasing levels of geometrical abstraction with
increasing dimensionality of the considered parameter subspace.

2.2 3-D Shape Detection: Similarity Transformation Estimation

Let Z be the set of annotated image volumes in their transformed feature repre-
sentation as mentioned above. We will refer to Z as the training data. In order to
find the first parts of the optimal parameter vector Θ∗ describing a nine parame-
ter similarity transformation, i.e., c∗, θ∗, and s∗, we have to learn discriminative
models p(y = 1|π(c∗)(Z)), p(y = 1|π(c∗,θ)(Z)), and p(y = 1|π(c∗,θ∗,s)(Z)). Fol-
lowing the concept of MSL [2] we generate a set of positive and negative train-
ing examples C = { (π(c)(Z), y) |Z ∈ Z } to train a probabilistic boosting tree
(PBT) model [9] for position detection. The feature vectors π(c)(Z) consist of 3-D
generalized Haar features [8] encoding voxel context of candidate object centers
based on observed intensity values. Decreasing the level of geometric abstraction
we analogously train a PBT model for combined position-orientation detection
based on an extended set of training examples P = { (π(c,θ)(Z), y) |Z ∈ Z }
where π(c,θ)(Z), associated with (c,θ) and an image volume, is made of steer-
able features [2]. They allow varying orientation and scaling to be encoded in
terms of aligned and scaled intensity sampling patterns. In accordance with this
scheme, steerable features are also used to finally train a PBT for full nine param-
eter similarity transformation detection based on S = { (π(c,θ,s)(Z), y) |Z ∈ Z }
where π(c,θ,s)(Z) is derived from (c,θ, s) and the associated image volume.
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Table 1. Average segmentation accuracy (left and right structures grouped together)
for IBSR 18 of models trained from mutually exclusive training and test data. Except
for the Dice coefficient (2 · TP/(2 · TP + FP + FN) where TP , FP , and FN denote
the number of true positive, false positive, and false negative voxels, respectively) see
[13] on details on the used accuracy metrics.

Structure Overlap Err. Dice Coeff. Volume Diff. Abs. Dist. RMS Dist. Max. Dist.
[%] [%] [%] [mm] [mm] [mm]

Caudate nucleus 32.42 ± 6.14 80.49 ± 4.51 9.57 ± 8.45 0.67 ± 0.17 1.10 ± 0.23 7.76 ± 1.82
Hippocampus 41.96 ± 4.69 73.34 ± 3.73 21.14 ± 17.29 0.91 ± 0.15 1.33 ± 0.21 6.34 ± 1.63
Globus pallidus 39.72 ± 7.05 74.97 ± 5.88 20.97 ± 12.38 0.79 ± 0.24 1.24 ± 0.37 5.53 ± 1.63
Putamen 29.82 ± 5.20 82.37 ± 3.65 13.76 ± 7.59 0.72 ± 0.20 1.15 ± 0.28 6.60 ± 1.85

2.3 3-D Shape Inference under Global Shape Constraints

For the final object shape we further decompose

π(c,θ,s,X)(Z) =
(
π(c,θ,s,xi)(Z)

)
i=1,...,n

where π(c,θ,s,xi)(Z) are the features associated with an image volume and indi-
vidual relatively aligned candidate points (c,θ, s,xi) for the surface of the object
of interest. In order to apply discriminative modeling we assume the xi and corre-
spondingly π(c,θ,s,xi)(Z) to be independently and identically distributed (i.i.d.)
and approximate

X
∗ = arg max

X
p(y = 1|π(c∗,θ∗,s∗,X)(Z), M

(c,θ,s,x)
, M

(c,θ,s,X))

≈ arg max
X

[
n∏

i=1

p(yi = 1|π(c∗,θ∗,s∗,xi)(Z), M(c,θ,s,x))

]
p(X|c∗, θ∗, s∗, M(c,θ,s,X)) (6)

in an iterative manner. The term p(yi = 1|π(c,θ,s,xi)(Z)) describes the probabil-
ity that the relatively aligned point (c,θ, s,xi) is part of the shape to be inferred,
i.e., lies on its surface, and p(X|c∗,θ∗, s∗,M (c,θ,s,X)) is a global shape model
[10]. We estimate p(y = 1|π(c,θ,s,xi)(Z)) with a PBT model [9] using steerable
features [2] trained on X = { (πc,θ,s,xi(Z), y) | i = 1, . . . , n; Z ∈ Z }. An iterative
approach for (6) is suitable as, in practice, X ∈ R

3×n only varies around the
mean shape positioned relatively to the (c∗,θ∗, s∗) detected before at time t = 0
and the previous most likely anatomy shape in each iteration t = 1, . . . , T .

3 Material and Experimental Setting

For training and quantitative evaluation of our system there were four sets of
T1-weighted MRI scans available. The first one is a subset of the “Designed
Database of MR Brain Images of Healthy Volunteers”1 [11] (DDHV) containing
1 The database was collected and made available by the CASILab at the University

of North Carolina, Chapel Hill. The images were distributed by the MIDAS Data
Server at Kitware, Inc. (insight-journal.org/midas). The authors would like to thank
Martin Styner, Clement Vachet, and Paul Pandea for helping to preprocess parts of
the data.
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20 scans. The associated ground-truth annotations were manually recovered from
automatically generated segmentations [12] of the structures of interest. The
second collection of 18 MRI scans was provided by the Center of Morphometric
Analysis at the Massachusetts General Hospital and is publicly available on the
Internet Brain Segmentation Repository2 (IBSR 18). The scans are accompanied
by detailed ground-truth annotations including the (sub-)cortical structures of
interest in this paper.3 A subset4 of the data provided by the NIH MRI Study
of Normal Brain Development5 consisting of 10 pediatric data sets states an-
other collection (NIH) of annotated MR scans used for model generation. They
have been manually annotated by the authors for training purposes. Addition-
ally, we use data provided by the ongoing “3-D Segmentation in the Clinic: A
Grand Challenge” competition6 [13] for training and evaluation of the proposed
method. The collection consists of several volumetric T1-weighted MR brain
scans of varying spatial resolution and size from multiple sources (MICCAI’07
training/testing). The vast majority of data (29 scans) has been provided by
the Psychiatry Neuroimaging Laboratory (PNL) at the Brigham and Women’s
Hospital (BWH), Boston. The other 20 data sets arose from a pediatric study, a
Parkinson’s Disease study, and a test/re-test study carried out at the University
of North Carolina’s (UNC) Neuroimaging Laboratory (NIAL), Chapel Hill. A
predefined evaluation protocol is carried out fully automatically after uploading
the testing fraction of the data to the Cause’07 file server. We refer to Heimann
et al. [13] for details on the used evaluation measures and scoring system.

All the images were re-oriented to a uniform orientation (“RAI”; right-to-
left, anterior-to-posterior, inferior-to-superior) and resampled to isotropic voxel
spacing (1.0×1.0×1.0 mm3) for processing. For increasing the amount of training
data we exploited natural brain symmetry and therefore doubled the size of any
training data set used for model generation by mirroring all the data sets with
respect to the mid-sagittal plane. Throughout all our experiments we ensured
that training and testing data are mutually exclusive: We trained on DDHV,

2 www.cma.mgh.harvard.edu/ibsr
3 We corrected the ground-truth annotations for the left and the right caudate in the

IBSR 18 data set to better meet the protocol applied by the “3-D Segmentation in
the Clinic: A Grand Challenge” competition where the caudate is grouped with the
nucleus accumbens in the delineations [13, 14].

4 The following 10 data sets were used: defaced native 100{2,3,7} V{1,2} t1w r2, de-
faced native 100{1,4,8} V2 t1w r2, and defaced native 1005 V2 t1w r2.

5 The NIH MRI Study of Normal Brain Development is a multi-site, longitudinal study
of typically developing children, from ages newborn through young adulthood, con-
ducted by the Brain Development Cooperative Group and supported by the NICHD,
the NIDA, the NIMH, and the NINDS (Contract #s N01-HD02-3343, N01-MH9-
0002, and N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320). A listing of the
participating sites and a complete listing of the study investigators can be found at
www.bic.mni.mcgill.ca/nihpd/info/participating centers.html. This manuscript re-
flects the views of the authors and may not reflect the opinions or views of the
NIH.

6 www.cause07.org
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Table 2. Average left/right caudate segmentation accuracy for the MICCAI’07 test-
ing data set. The complete results can be found at www.cause07.org (“Segmentation
Team”). As of 03/10/2009 our method ranks number 2 in the overall ranking list.

Cases Overlap Err. Volume Diff. Abs. Dist. RMS Dist. Max. Dist. Total
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

Average UNC Ped 27.31 82.82 7.24 86.70 0.65 76.08 1.29 76.99 10.73 68.44 78.21
Average UNC Eld 34.48 78.31 10.73 81.18 0.73 72.82 1.31 76.59 11.57 65.96 74.97
Average BWH PNL 31.72 80.05 -16.54 70.20 0.65 76.08 1.26 77.56 11.19 67.09 74.20
Average All 31.38 80.27 -5.91 75.92 0.66 75.40 1.27 77.24 11.17 67.14 75.19

NIH, and IBSR 18 1-9 to evaluate on IBSR 18 10-18 and on DDHV, NIH, and
IBSR 18 10-18 to evaluate on IBSR 18 1-9. We trained on DDHV, NIH, IBSR
18, and MICCAI’07 training to evaluate on MICCAI’07 testing.

As pointed out by Heimann et al. [13] there are differences in the annotation
protocols used for annotating the caudate nuclei in data sets originating from
the BWH and the UNC. In the former the “tail” of the caudate is continued
much further dorsally. We therefore decided to detect it as a separate structure
that can be attached to the caudate if required. We did not try to automatically
determine the annotation protocol used from the imaging data itself as this may
lead to over-fitted systems.

As our real discriminative models are not ideal as assumed for theoretical
considerations we keep the top 100 candidates after position detection and the
top 25 candidates after position-orientation detection for further processing steps
in order to make the full similarity transformation detection more robust. For
shape inference we use T = 3 iterations.

In an optimized and parallelized C++ implementation of our segmentation
method it takes on average 13.9 sec. to detect and segment 8 (sub-)cortical
structures in an MRI volume on a Fujitsu Siemens notebook equipped with an
Intel Core 2 Duo CPU (2.20 GHz) and 3 GB of memory. Intensity standard-
ization takes 1–2 sec. Our method is therefore faster than other state-of-the-art
approaches whose timing is 50 sec. for 8 structures [5], 60 sec. for 1 structure
[3], and 8 min. for 8 structures [4].

4 Experimental Results

As can be seen from Table 1 in terms of the Dice coefficient our method achieves
better results (80%,73%,75%,82%) for the segmentation of the caudate nuclei,
hippocampi, globi pallidi, and putamina on the same IBSR 18 data set than
the methods of Akselrod-Ballin et al. [7] (80%, 69%, 74%, 79%) and Gouttard
et al. [12] (76%,67%,71%,78%) except for the caudate nuclei in comparison to
the method of Akselrod-Ballin et al. [7], where we reach a comparable accuracy.
It also reaches a higher score for the caudate nuclei and putamina on IBSR 18
than the method of Bazin and Pham [14] (78%,81%), which does not address
segmentation of the hippocampi and globi pallidi.
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The overall average score in Table 2 shows that for segmenting the caudate
nuclei our method performs better than the methods of Morra et al. [3] (73.38),
Bazin and Pham [14] (64.73) and Tu et al. [4] (59.71). All the mentioned methods
were evaluated on the same MICCAI’07 testing data set.

5 Conclusions

In this paper we integrated shape inference into the overall MSL methodology
from the theoretical point of view. We showed that MSL decomposes the param-
eter space of anatomy shapes along decreasing levels of geometrical abstraction
into subspaces of increasing dimensionality and applied MSL to the difficult
problem of (sub-)cortical gray matter structure detection and shape inference.
In an evaluation on publicly available gold standard databases our method works
equally fast, robust, and accurate at a state-of-the-art level.
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Abstract. Graph Cuts have been shown as a powerful interactive seg-
mentation technique in several medical domains. We propose to automate
the Graph Cuts in order to automatically segment Multiple Sclerosis
(MS) lesions in MRI. We replace the manual interaction with a robust
EM-based approach in order to discriminate between MS lesions and the
Normal Appearing Brain Tissues (NABT). Evaluation is performed in
synthetic and real images showing good agreement between the auto-
matic segmentation and the target segmentation. We compare our al-
gorithm with the state of the art techniques and with several manual
segmentations. An advantage of our algorithm over previously published
ones is the possibility to semi-automatically improve the segmentation
due to the Graph Cuts interactive feature.

1 Introduction

Multiple Sclerosis (MS) is a chronic demyelienating disease that affects the cen-
tral nervous system. Magnetic Resonance Imaging (MRI) has been proven as a
very useful technique to study MS.

Manual segmentation of MS lesions is often performed in clinical trials. How-
ever, it is a lengthy process which shows high intra- and inter-rater variability [1].
Automatic segmentation methods have been developed to deal with these limi-
tations [2,3], but in clinical studies these segmentations are often revised by an
expert and manually edited when necessary.

Graph Cuts is a recently developed technique for interactive segmentation
which has been successfully employed in different medical domains such as organ
segmentation [4], healthy brain MRI [5], and pathological brain MRI [6]. It is
based on both regional and contour information and always reaches the global
minimum of its cost function [4]. The user has to select some seeds in both the
“object” and the “background” in order to perform the segmentation. The result
can be refined interactively by adding new seeds.

� We are thankful to ARSEP (Association pour la Recherche en Sclérose en Plaques)
and UEB (Université Européenne de Bretagne) for funding.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 584–591, 2009.
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In this paper, we propose to automate the Graph Cuts algorithm to segment
MS lesions using several MR sequences. The initialization for Graph Cuts is given
by a Finite Gaussian Mixture Model (FGMM) estimated by robust version of
the Expectation-Maximization (EM) algorithm [7]. An advantage of our method
over other automated methods is the possibility for an expert to easily refine the
segmentation as the original semi-automatic Graph Cuts.

2 Method

In the following sections, we group all the MR sequences to a unique multidi-
mensional image of dimension m equal to the number of sequences. In our case
m = 3: T1-w, T2-w and PD-w. We assume that all the MR sequences of the
same patient are previously registered in the same space, intensity inhomogeneity
correction has been performed and the brain has been extracted.

We explain the general framework of the Graph Cuts, and the choices required
for boundary information (the Spectral Gradient) and for regional information
(an EM-based approach).

2.1 Graph Cuts

The segmentation can be described by a flow graph G = 〈V , E〉 which represents
the image [4]. In the graph G, each voxel of the image corresponds to a node. The
node set V also contains two particular nodes called terminal nodes - also known
as “source” and “sink” - which respectively represents the classes “object” and
“background”. Nodes are connected with undirected edges E .

We define P as the set containing all the nodes p of the brain and N as
the set containing all the connection between two nodes {p, q}. Segmentation is
represented by V, where Vp can be either “object” or “background”. The energy
E(V) is then minimize by the Graph Cuts:

E(V) = α ·
∑
p∈P

Rp(Vp) +
∑

{p,q}∈N
Vp �=Vq

B{p,q} (1)

The regional term Rp(·) expresses how the voxel p fits into given models of the
object and background. In the graph, this relation is expressed by the connection
of all the nodes to the source and sink nodes, called t-links, with weights, W p

SO

and W p
SI respectively.

The boundary term B{p,q} reflects the similarity of the voxels p and q. Neigh-
boring nodes are connected in the graph, n-links, with weightB{p,q}. Their values
are close to zero when the existence of a contour between p and q is very likely
and large otherwise. The coefficient α is used to adjust the importance of the
region and boundary terms.

This graph representation enables us to employ the Boykov-Kolmogorov graph
minimization method [4] which is able to efficiently find the global minimum of
the energy function (1).
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2.2 The Spectral Gradient

The boundary weights B{p,q} are usually computed by an edge detection tech-
nique such as local intensity gradient. In our case, we choose the Spectral Gra-
dient previously employed for multi-sequence MRI brain segmentation [6].

The objective is to consider our three MR sequences as an RGB color image
and use an invariant color-edge detector [6]. This detector is based on a physical
property of color, the spectral intensity e, and its derivatives with respect to the
light wavelength λ, eλ and eλλ, that are simple to compute [8].

For the graph, the detector is discretized, giving the following boundary
term [6]:

B{p,q} = exp
(
− (ε(p)− ε(q))2 + (ελ(p)− ελ(q))2

2σ2

)
· 1
dist(p, q)

(2)

where σ is a smoothing parameter (in our experiments σ = 1), and

ε =
1
e
· ∂e
∂λ

=
eλ

e
and ελ =

∂ε

∂λ
=
e · eλλ − e2λ

e2
(3)

2.3 Automatic Calculation of the Sink and the Source

In semi-automatic frameworks, the weights Rp(B) and Rp(O) for the voxel p are
usually defined this way:

Rp(B) =

⎧⎪⎨
⎪⎩
∞
0
α · − lnP (Ip|O)

Rp(O) =

⎧⎪⎨
⎪⎩

0 if p ∈ B
∞ if p ∈ O
α · − lnP (Ip|B) elsewhere

(4)

The point sets B and O are the seeds of the background and the object respec-
tively. The probability P (Ip|B) reflects how the intensity vector Ip of voxel p fits
into the intensity model estimated from B. Most authors assume seeds follow a
Gaussian distribution[5,6,4] .

Our objective is to eliminate the dependence on the selection of seeds to create
a fully automated method. Therefore we need to remove all the dependencies
to the point sets B and O. We propose to replace P (Ip|B) and P (Ip|O) in (4)
with weights WSI and WSO described below. We keep the rest of (4) the same to
allow posterior interaction of an expert to refine the segmentation if not satisfied
with the automatic one.

Although the nature of the MRI noise is usually Rician [9], brain image inten-
sities in MRI have been successfully modeled as a 3-class Multivariate FGMM
in healthy subjects [10] and in MS patients [2,3]. These three classes correspond
to Cerebrospinal Fluid (CSF), Grey Matter (GM) and White Matter (WM). On
the contrary, MS lesions are usually considered not as a new class but as outliers
from this 3-class NABT model [2,3].



Multiple Sclerosis Lesion Segmentation 587

First, we estimate the NABT model using a robust EM [7] which computes the
trimmed likelihood in order to avoid outliers and has been successfully used in
MS patients [3,11]. This algorithm has a parameter h, the rejection ratio, which
adjusts the number of voxels that are not taken into account in the M-step in
order to be robust to outliers. In our experiments h is fixed to 10% of the voxels,
this value is large enough to avoid errors in estimation due to the MS lesions,
veins, or registration and brain extraction errors.

Once the NABT model is estimated, we compute the Mahalanobis distance
of each voxel p to each class i.

di
Mahalanobis(p) =

√
(p− μi)TΣ−1

i (p− μi). (5)

where μi is the mean vector and Σi is the covariance matrix of the class i.
The Mahalanobis distance follows a χ2

m distribution withm degrees of freedom
when the data follow an m-dimension Gaussian law. This characteristic allows
to obtain the p-value for each voxel, the probability the voxel does not fit into
the model. We only consider the class with the lowest p-value for each voxel.
Voxels with high p-value are more likely to be outliers than the others.

Sink: NABT voxels. Voxels that follow the model should have a weight with
a high value. Therefore we assign WSI = 1.0− p-value

Source: MS lesions. Outliers, voxels with high p-value, are normally MS le-
sions but they can also occur due to veins or registration and skull-stripping
errors. To select MS lesions from other outliers we apply a priori knowledge
about the intensity of the lesions.

MS lesions are usually described as “hyperintense” compared to the WM
in T2-w and PD-w images, we choose a fuzzy logic approach to model this
experts’ knowledge. Figure 2 describes the fuzzy function associated to “hy-
perintense” using the previously computed NABT model information. For
each sequence, T2-w and PD-w, we obtain the fuzzy weights, WPD and WT2.
We merge this information with the p-value using the fuzzy AND operator:

W fuzzy
SO = AND{WPD,WT2, p-value} (6)

One post-processing step is performed after Graph Cuts. As many false positives
occur due to artifacts in the external CSF, all lesions detected neighboring the
brain border are removed from the segmentation.

3 Evaluation

We test our algorithm (GC) in two different situations. At first, we use synthetic
images to evaluate the impact of different levels of noise and inhomogeneity.
Then MR images of ten MS patients are segmented and compared with the
manual segmentation delineated by several experts.

The evaluation measure is the Dice Similarity Coefficient (DSC) [12], widely
employed for image segmentation evaluation. DSC values range from 0.0 to 1.0
where a value higher than 0.7 is usually considered good agreement.
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3.1 Data

Synthetic Images. Brainweb MRI simulator [13] allows the creation of synthetic
MR volumes (T1-w, T2-w and PD) of an MS patient controlling some acquisi-
tion parameters as slice thickness, noise and field inhomogeneity. Three different
phantoms are available with different lesion loads: mild, moderate and severe.

We perform the automatic segmentation varying the noise level (1%, 3%,
5%, 7% and 9%) and the intensity inhomogeneity (0%, 20% and 40%) for the
three available phantoms. The ground truth is available, the evaluation is done
comparing the results of our algorithm with this ground truth using the DSC.
In these synthetic images, no errors due to registration or brain extraction exist,
which means that the total number of outliers will be significantly reduced. For
this reason we set h, the parameter of the robust EM, to 5% instead of 10%.

Real Images. Real images in our experiments consist of MR volumes (T1-
w, T2-w and PD) of 10 patients with MS. All the images undergo the same
preprocessing workflow: intensity inhomogeneity correction [14], intra-subject
multimodal registration [15] and brain extraction [16].

Each patient image is manually segmented by 5 experts. A silver standard is
built considering the consensus of 3 out of 5 experts to define a lesion voxel. Our
algorithm and the EMS software [2] are compared with the silver standard using
DSC. To have an idea of the common agreement among experts we compute
the average inter-rater DSC (IRDSC). For each pair of experts we compute the
DSC and for each patient, all the DSC values are averaged to the IRDSC. The
common agreement is good if IRDSC is above 0.7.

STAPLE algorithm [17] was designed to study the performance of different
raters when the ground truth is not available. The idea is to compute the sen-
sibility and specificity of each rater while estimating the most probable true
segmentation. We use the ITK1 implementation to compute STAPLE among
the 5 raters and our method. We did not include EMS algorithm because it is
also an EM-based approach and it could bias the STAPLE results.

3.2 Results

Synthetic Images. Fig. 1 sums up the results for the three phantoms and vari-
ations in noise and inhomogeneity. The performance of the algorithm decreases
significantly for high levels of noise (7% and 9%) and for low levels (1%), showing
DSC values over 0.7 for 3% and 5%. On the contrary, the intensity inhomogeneity
slightly affects the performance of the segmentation. Mild phantom (left figure)
shows lower DSC scores, this is reasonable because errors affect more the DSC
when the target region is smaller.

Real Images. Results are shown in Table 1 and Figure 4. Globally we conclude
that our algorithm performs a better segmentation than EMS. Our algorithm ob-
tains better scores for 7 out of 10 patients compared to EMS. Patients (3, 4, 6 and

1 http://www.itk.org
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Fig. 1. From left to right: DSC values from mild, moderate and severe phantoms for
different values of noise and inhomogeneity (rf)

Table 1. Total lesion load (TLL), the
inter-rater DSC (IRDSC), the DSC for
EMS software and the DSC for our
method (GC)

TLL(ml) IRDSC EMS GC
Patient 1 33.9 0.77 0.67 0.75
Patient 2 2.8 0.70 0.61 0.75
Patient 3 1.4 0.60 0.42 0.38
Patient 4 1.0 0.61 0.41 0.46
Patient 5 20.0 0.81 0.80 0.86
Patient 6 2.7 0.51 0.48 0.40
Patient 7 6.0 0.69 0.72 0.71
Patient 8 6.2 0.61 0.69 0.72
Patient 9 1.2 0.64 0.35 0.50
Patient 10 47.7 0.81 0.71 0.73
Average 0.68 0.59 0.63

−5 0 5
0

0.5

1

1.5

(X−μ
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Fig. 2. Fuzzy membership functions for:
hypo-intensity, hyper-intensity and iso-
intensity. For each voxel we can assign
its fuzzy value using these functions.

9) with low lesion loads( < 2.7ml) obtain poor scores for both algorithms as well
as low experts agreement (IRDSC < 0.65). This can be partially explain because
DSC decreases more a for small TLL. For the rest of the patients our DSC is always
higher than 0.7 showing a good agreement with the target segmentation.

As described before, STAPLE gives the specificity and sensibility for each
expert as presented in Figure 3. We can observe that the sensibility of our Graph
Cuts algorithm is higher than three experts but with a slightly lower specificity.

4 Discussion

In this paper, we have proposed an automatic algorithm for the MS lesion seg-
mentation for multi-sequence MRI. Experiments with synthetic images have
shown good agreement with the ground truth for all levels of inhomogeneity
and standard levels of noise. For very noisy images, a noise reduction prepro-
cessing step might be necessary. The evaluation in real images demonstrates a
good agreement of our segmentation with a group of experts while shows a better
segmentation than state of the art algorithm EMS.
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Fig. 3. Sensibility (left) and Specificity (right) boxplots for the different experts and
the automatic segmentation. Specificity values are very high because the size of the
lesions is very small compared to the size of the brain. However, small variations of
specificity greatly modifies the DSC value.

Fig. 4. Top, from left to right: T1-w, T2-
w and PD images of patient 8. Bottom,
from left to right: Consensus, EMS and
Graph Cuts segmentations.

Fig. 5. Top, left to right: T1-w, and PD
images of patient 4. Bottom, left to right:
automatic solution and semi-automatic so-
lution (Red : source seed, Green: Graph Cut
solution, Blue: automatic segmentation).

Fully automated methods are often revised by an expert in clinical trial to
verify their validity and edited when necessary. In Figure 5, we can observe an
example of semi-automatic edition of our automatic segmentation. When a lesion
is missed, a user can add a seed, in this case a source seed, and the Graph Cuts
is recomputed in few seconds.
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Abstract. We describe progress towards fully automatic segmentation of the 
hippocampus (HC) and amygdala (AG) in human subjects from MRI data. 
Three methods are described and tested with a set of MRIs from 80 young nor-
mal controls, using manual labeling of the HC and AG as a gold standard. The 
methods include: 1) our ANIMAL atlas-based method that uses non-linear reg-
istration to a pre-labeled non-linear average template (ICBM152). HC and AG 
labels, defined on the template are mapped through the inverse transformation 
to segment these structures on the subject’s MRI; 2) template-based segmenta-
tion, where we select the most similar MRI from the set of 80 labeled datasets 
to use as a template in the standard ANIMAL segmentation scheme; 3) label fu-
sion methods where we combine segmentations from the ‘n’ most similar tem-
plates.  The label fusion technique yields the best results with median kappas of 
0.886 and 0.826 for HC and AG, respectively.  

1   Introduction 

The hippocampus (HC) is a part of the brain located in the medial aspect of the tem-
poral lobe and is part of the limbic system. The HC plays an important role in general 
and spatial memory in humans and animals, integrating external with internal signals 
to form a cohesive and unified spatial and temporal orientation of oneself in the envi-
ronment. HC dysfunction and neurodegeneration has been described in a variety of 
mental diagnoses, including Alzheimer’s disease (AD) [1], Posttraumatic Stress Dis-
order [2], Major Depression [3], Schizophrenia [4, 5], and epilepsy [6]. The amygdala 
(AG) lies adjacent to the HC in the medial temporal lobe, is also part of the limbic 
system, and is most significantly associated with emotional memory and its regula-
tion. Structural variations of the AG are now being discussed as implicated in mental 
diagnoses like Schizophrenia and anxiety disorders, and more and more studies now 
employ volume assessment of the HC and AG from MRI in their protocols [7]. Since 
HC and AG volumes can be important markers of neurodegeneration and can provide 
a useful outcome measure in clinical trials of new therapies for diseases such as AD, 
there is significant interest in developing robust, automated methods for segmenting 
the both the HC and AG. 
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Table 1. Methods survey 

Author Method summary HC kappa 
Hogan JDI;2000,13(2-1):217-8 landmark + fluid reg. 0.75 
Kelemen TMI,1999.18(10):828-39 PCA constrained elastic 

registration 
0.75 (HC+AG 

complex) 
Klemencic JIST,2004,48(2):166-171 Appearance based  0.800 
Fischl Neuron,2002. 33(3):341-55. classification +MRF 0.79-0.86 
Khan NI, 2008;41(3):735-46. LDDMM 0.77 
Morey  NI, Dec 2008; FreeSurfacer 0.82 
Morey NI, Dec 2008; FSL/FIRST 0.79 
Morra NI,2008;43(1):59-68 Auto context model + 

adaboost 
0.835-0.859 

Pohl TMI, 2007;26(9):1201-12 Hierarchical EM 0.808(l)-0.813(r) 
Van der Lijn NI,2008;43(4): 708-20. A priori + graph cuts 0.852(l)-0.864(r) 
Heckemann NI,2006;33(1):115-26 b-spline + label fusion 0.81(l) – 0.83(r) 
Aljabar NI, 2008;43(2):225-35.  b-spline + label fusion 0.84 
Gousias NI, 2008;40(2):672-84 b-spline + label fusion,   0.88 
Chupin NI, 2007;34(3):996-1019 seeding + morphology 

region growing 
0.87 (young) ; 0.86 

(AD subj) 
Barnes NI, 2008;40(4):1655-71 Template library + linear 

reg + threshold 
0.87 (controls); 
0.86 (AD subj) 

JDI=Journal Digital Imaging, NI=NeuroImage, TMI=IEEE Trans Medical Imaging, 
JIST=Journal of Imaging Science and Technology. 

 
Manual segmentation of the HC and AG is considered the gold standard for volu-

metric assessment [8-11]. While it is possible to define a protocol that results in low 
inter- and intra-rater variability, the procedures remain time-consuming (30-60min 
per HC) and thus difficult to apply in studies involving large numbers (100s) of  
subjects. Automatic methods for segmentation require no manual intervention, and 
thus do not suffer from the problems of inter- and intra-observer variability. Most 
model-based automatic segmentation methods use one of (i) deformable models [12], 
(ii) appearance-based models [13, 14] or (iii) atlas-based techniques to identify the 
structure(s) of interest [15-17]. 

Since a model or template derived from a single individual will be biased in some 
way for all subjects to be segmented, Barnes et al. developed an efficient ‘template 
library’ HC segmentation method where the most similar brain from a group of 55 
pre-labeled subjects was selected for the template atlas for registration-based segmen-
tation [18]. Heckemann also developed a segmentation method that took advantage of 
a library of 30 pre-labeled subjects [19]. Instead of selecting the best template, they 
used a spline-based non-linear registration technique [20] with each template to gen-
erate 30 segmentations for a given subject. Label fusion techniques [21] were then 
used to combine the segmentations into a single consistent label set for the subject. 
Since this procedure required considerable computational effort, Aljabar et al. opti-
mized the technique by selecting the ‘n’ most appropriate atlases from the library 
using normalized mutual information [22]. Recently, Chupin et al. reported on an 
ingenious Markovian model region growing procedure that uses morphometric and 
topological constraints with anatomical rules to identify HC-specific landmarks  



594 D.L. Collins and J.C. Pruessner 

segment the HC and AG [23, 24].  At present, the work of Barnes [18], Chupin [23] 
and Gousias [25] yield the best published segmentation results for hippocampus (see 
Table 1 for a methods survey). 

The goal of the current manuscript is to describe our recently developed fully 
automatic segmentation protocol for the HC and AG in human subjects from MRI 
data. The method combines atlas-based segmentation with a template library and label 
fusion. The main contributions are threefold: 1) instead of a b-spline technique, we 
use the publicly available ANIMAL non-linear registration algorithm for the atlas-
based segmentation method [15, 26]; 2) we compare the technique to two other meth-
ods (the standard ANIMAL and a Barnes-like template library technique); and  
3) when validated with manual labels from 80 subjects, the results are better than 
previously published automatic techniques. 

2   Methods 

The T1-weighted (T1w) MRI data (sagittal acquisition, 140-160 contiguous 1mm thick 
slices, TR=18 ms, TE=10 ms, flip angle 30°, rectangular field of view of 256mm SI 
and 204mm AP) used in this study come from a group of 152 young, neurologically 
healthy individuals acquired on a 1.5T Philips Gyroscan in the context of the Interna-
tional Consortium for Brain Mapping (ICBM) project [27]. The local Ethics Commit-
tee approved the study and informed consent was obtained from all participants. Eighty 
subjects (from the 152) were selected to limit the number of manually segmented HC 
and AG and so that the male (n=39) and female (n=41) groups were comparable in age 
(mean age 25.09 ± 4.9 years), handedness and years of education.  

For the three procedures described below, the original T1w MRI data were  
pre-processed. First, each MRI volume was corrected for image intensity non-
uniformity using a method that estimates a multiplicative bias field that maximizes 
the intensity histogram entropy [28].  Next, each dataset was stereotaxically trans-
formed using an affine transformation into the Talairach-like MNI coordinate system 
[29] and resampled onto a 1mm3 isotropic grid using a tri-linear kernel. 

HC and AG and labels were manually defined using the protocol defined in [8] 
where intra-class reliability coefficients (ICC) were reported of 0.900 and 0.925 for 
inter- (4 raters) and intra-rater (5 repeats) reliability, respectively, for the HC and 
0.835 and 0.930 (respectively) for the AG in these 80 young normal controls. 

2.1   Segmentation Procedures 

Three segmentation procedures were employed in the experiments presented below.  
The first is based on the publicly available ANIMAL segmentation method and uses 
an average template [15, 26].  The second uses ANIMAL with the best single subject 
template selected from a template library (like Barnes [18]).  The third uses ANIMAL 
with the best n templates selected from a template library and combines the n segmen-
tations with label fusion.  These three methods are described in greater depth below. 

The ANIMAL technique with an average template. (ANIMAL) [15, 26] is an atlas-
based segmentation method that uses non-linear registration to a pre-labeled average 
template to achieve segmentation (Fig. 1). The template labels are mapped through 
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the inverse of subject-template registration to identify the structures of interest in the 
subject’s MRI. To estimate the required non-linear transformation, the ANIMAL 
algorithm attempts to match image grey-level intensity features in local neighbour-
hoods in a hierarchical fashion by maximizing the cross-correlation of intensities 
between the subject and template images. The procedure begins by estimating the 
deformations required to match blurred versions of the subject and template data. The 
result is a dense deformation field, where a displacement vector is stored at each node 
of the field that best matches the local neighbourhoods. This deformation field is 
subsampled and used as input to the next iteration of the procedure, where the blur-
ring is reduced and the estimation of the deformation field is refined. Labels, defined 
on the template, are mapped though the inverse of the recovered transformation to 
identify the HC and AG on the subject. Since the non-linear registration is imperfect, 
it is possible that CSF voxels might be included in the label set. A simple thresholding 
rule (0.4 * median intensity of HC label) is used to eliminate CSF.  

The ANIMAL technique with a template library (A+best template). Even though 
the average template used by ANIMAL represents the average anatomy, it might not 
be optimal to segment certain individual subjects.  We therefore investigated a second 
method, inspired by the work of Barnes et al. [18]. We used the 80 labeled MRI vol-
umes described above as a template library. In order to achieve segmentation, the best 
template for a given subject is selected from the remaining 79 templates in the data-
base in a leave-one-out fashion. The best template is selected using normalized  
mutual information between the subject to be segmented and each of the potential 
templates. Instead of using only linear transformations like Barnes [18], in our ap-
proach the selected template was used with non-linear registration in the ANIMAL 
segmentation procedure described above. The advantage of this technique is that the 
template that is most similar to the subject is used, and thus the non-linear deforma-
tions (required to match subject-to-template) are minimized, resulting in good seg-
mentation. The computational cost of this method is slightly higher than the ANIMAL 
method since it requires evaluation of the normalized mutual information metric with 
each potential template.  

The ANIMAL technique with a template library and label fusion (A+fusion). One 
of the disadvantages of the method described above is that it is possible that the single 
template selected may not be optimal for segmentation of the given subject and that 
errors in the non-linear estimation between subject and template may result in errors 
in segmentation.  For these reasons, we consider combining multiple segmentations to 
minimize errors and maximize consistency between segmentations. To do so, the best 
n templates for a given subject are selected from the remaining 79 templates in the 
database using normalized mutual information. Each template is then used to produce 
an independent segmentation of the subject using the ANIMAL procedure. The result 
is n different segmentations and the issue becomes how to combine the segmentations 
to achieve a single consistent labeling of the subject. Following the work of Rofhling 
et al. [21], Heckemann et al. [19] and Aljabar et al. [22], we use label fusion. At each 
voxel, a voting strategy is used; the label with the most votes from the n templates is 
assigned to the voxel. To avoid bias, a random selection is used when two or more 
labels tie in the voting scheme.  
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Before applying the label fusion method, the optimum number of templates n must 
be determined. To do so, we applied the technique with n=2..20 and examined the 
graph to see how K and S change with n (Fig. 2).  Since both kappa and similarity 
increase with the number of labels fused, but appear to plateau after n=11, we decided 
to use n=11 for the label fusion procedure. 

The computation cost of this method is much greater than the first two methods. 
Not only is normalized mutual information estimated for each potential template, but 
n non-linear registrations must be computed to achieve the final segmentation. The 
main differences between our work and those cited above are in the choice of non-
linear registration scheme (i.e., ANIMAL vs. b-splines) and in the improved results 
for HC and AG presented below. 

 

  

Fig. 1. Sagittal image of ICBM152 nonlin-
ear average template with model HC (blue) 
+ AG (green) 

Fig. 2. Kappa (kap-) and Similarity (sim-) plot-
ted (lower quartile (0.25), median (0.50), upper 
quartile (0.75)) against the number of templates 
fused 

3   Experiments and Results 

Each of the methods was applied to segment the HC and AG (left and right sides) in 
the set of 80 MRI volumes. Figure 3 shows the segmentation results on 2 subjects. For 
each of the methods, the HC and AG automatic labels were compared to the gold 
standard manual labels using Dice’s Kappa [K = 2 * ( V(M ∩ A) ) / (V(M) + V(A) )]; 
Jaccard Similarity [S = ( V(M ∩ A) ) / (V(M ∪A) )] and Normalized volume differ-
ence [D = 2 * abs (V(M) – V(A) )/(V(M) + V(A) )]; where M is the set of manually 
labeled voxels,  A is the set of automatically labeled voxels, ∩ is the set intersection 
operator, where ∪ is the set union operator, abs(•) is the absolute volume and V(•) is 
the volume operator. K and S take on a value between 0 and 1.0, with 1.0 indicating 
perfect agreement. The values of S are always less than K. D takes on positive values. 
Values closer to 0.0 are better. The relationships between manual and automatic struc-
ture volumes are reported as Pearson’s product-moment correlation (r). Tables 2 & 3 
summarize the quantitative results for HC, and AG, respectively.  
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Table 2. Hippocampus segmentation results (median and inter-quartile range) 

 A + ICBM152 A + best template A + fusion 
K 0.864  (0.844-0.874) 0.837 (0.823-0.849) 0.886 (0.874-0.893) 
S 0. 761 (0.729-0.776) 0.720 (0.670-0.738) 0.796 (0.795-0.808) 
D 5.5% (2.4%-10.1%) 6.5% (3.3%-11.1%) 4.9% (2.7%-8.3%) 
r 0.666 0.757 0.834 

Table 3. Amygdala segmentation results (median and inter-quartile range) 

 A + ICBM152 A + best template A + fusion 
K 0.821 (0.784-0.842) 0.769 (0.736-0.794) 0.826 (0.799-0.856) 
S 0.696 (0.546-0.727) 0.625 (0.582-0.658) 0.703 (0.665-0.748) 
D 9.1% (4.3%-17.4%) 12.2% (5.6%-22.0%) 9.0% (4.6%-15.6%) 
r 0.605 0.405 0.566 

 

 

Fig. 3. Example fusion segmentation results for two subjects. White indicates agreement be-
tween manual and automatic segmentation, red=false positive and green=false negatives. (note: 
HC and AG are segmented separately, but are presented here together for simplicity) left: 
KHC=0.89,0.89; KAG=0.82,0.81;  right: KHC=0.85,0.85; KAG=0.76,0.82.  

Table 4. Volume results 

 HC 
(cc3) 

compared to 
manual 

AG 
(cc3) 

compared to 
manual 

Manual 3.177 - 1.121 - 
A + ICBM152 3.188 p=0.670 1.067 p<0.001 

A + template 3.226 p=0.038 1.178 p=0.001 
A + fusion 3.195 p=0.328 1.144 p=0.092 

Table 4 compares the automatic and manual volumes of the segmented structures. 
The best template method overestimates the true HC volume (p=0.038), while the 
other techniques are unbiased.  The standard ANIMAL technique underestimates the 
true AG volume (p<0.001), while the best template method overestimates its volume 
(p=0.001). The fusion technique is unbiased. 

4   Discussion and Conclusion 

We have presented and compared three methods for automatic segmentation of  
the HC and AG from MRI of the human brain. The procedures use registration of a 
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subject’s MRI to a pre-labeled volume to achieve segmentation. The label fusion 
approach improves on the other two methods because it combines information from 
multiple sources (i.e., multiple templates) to identify the HC and AG on the subjects. 
The fusion of multiple automatic label sets enables the procedure to eliminate incon-
sistent segmentations that may cause errors in the template library approach where 
only one template is used.  

 It is difficult to compare segmentation results between different published meth-
ods.  The quality of the MRI data, the anatomical definition of the structure, the qual-
ity of the manual gold standard, the particular population studied and the different 
metrics reported make it difficult to compare results.  However, with these caveats in 
mind, we have shown that ANIMAL non-linear registration atlas-based segmentation, 
combined with a template library and label fusion can achieve high levels of accuracy 
with a median kappa of 0.887 and similarity of 0.798 for HC (0.826 and 0.796, re-
spectively for AG). These values are as high or higher than other previously published 
automatic techniques in the literature (see Table 1). 

The label fusion technique was demonstrated to be robust and accurate and yields 
better results compared to the previous literature in terms of kappa and similarity 
between manual and automatic labels. In summary, the recent advances in precision 
in fully automated segmentation techniques will allow application in MRI studies 
with large number of subjects which previously were impossible because of the large 
demands in time and human resources. 
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Abstract. The estimation of the noise level in MR images is used to
assess the consistency of statistical analysis or as an input parameter
in some image processing techniques. Most of the existing Rician noise
estimation methods are based on background statistics, and as such are
sensitive to ghosting artifacts. In this paper, a new object-based method
is proposed. This method is based on the adaptation of the Median Abso-
lute Deviation (MAD) estimator in the wavelet domain for Rician noise.
The adaptation for Rician noise is performed by using only the wavelet
coefficients corresponding to the object and by correcting the estimation
with an iterative scheme based on the SNR of the image. A quantita-
tive validation on synthetic phantom with artefacts is presented and a
new validation framework is proposed to perform quantitative validation
on real data. The results show the accuracy and the robustness of the
proposed method.

1 Introduction

In MR image analysis, the estimation of the noise level in an image is a manda-
tory step that must be addressed to assess the quality of the analysis and the
consistency of the image processing technique. The noise variance is also an im-
portant measure for many image processing techniques such as denoising [1, 2]
or registration. Furthermore, procedures that employ statistical analysis tech-
niques, such as functional MR imaging or voxel-based morphometry, often base
their conclusions on assumptions about the underlying noise characteristics. Usu-
ally, the real and imaginary parts of the MR complex raw data are considered
corrupted by white additive Gaussian noise, where the noise variance is assumed
to be the same in both parts (real and imaginary) [3, 4]. By taking the magni-
tude of the complex data, the noise is transformed into Rician noise [3,4,5,6,7].
Conventionally, the Rician noise is i) described by a Rayleigh distribution in the
background [3,4,6,7] (i.e. the signal of air in the background is considered to be
zero), and ii) approximated by Gaussian noise in the foreground when Signal
Noise Ratio (SNR) is high enough (> 3dB [1]). These models for background
and foreground noise distribution have been used in the majority of noise esti-
mation methods [8,6,7]. However, the Rayleigh model of the background can fail
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when ghosting artefacts are present (i.e. non-zero signal) [6], and the Gaussian
approximation of foreground is no longer valid for images with low SNR [6].
Some automatic techniques have been proposed [8, 6, 7]. Usually, these meth-
ods use the histogram of the background and some properties of the Rayleigh
distribution. Recently, a new noise Rician variance estimation method based on
maximum likelihood (ML) estimation from a partial histogram was presented by
Sijbers [6]. More recently, Aja et al. [7] presented a set of new methods for noise
estimation based on local statistics. In this paper, an adaptation of the Median
Absolute Deviation (MAD) estimator in the wavelet domain is proposed for Ri-
cian noise. This robust and efficient estimator has been proposed by Donoho [9]
for Gaussian noise and since has been widely used in image processing. We pro-
pose to adapt this operator for Rician noise by using only the wavelet coefficients
corresponding to the object and then iteratively correcting the MAD estimation
with an analytical scheme based on the SNR of the image [5].

2 Noise in MR Images

As mentioned previously, the distribution of noise can be modeled with a Rician
distribution [3, 4, 6, 10]:

p(m) =
m

σ2
n

exp(−m
2 +A2

2σ2
n

)I0(
Am

σ2
n

). (1)

where σn is the standard deviation of Gaussian noise in the complex domain,
A is the amplitude of the signal without noise, m is the value in the magnitude
image and I0 is the zeroth order modified Bessel function. This model is used
by the majority of the noise estimation methods [8,6,7]. Most of these methods
can be classified as: i) methods that use background areas to estimate the noise
variance and ii) methods that use the image object itself.

– For the background-based methods, where the signal is usually consid-
ered as zero in background (i.e. SNR = 0dB), the Rician distribution is a
Rayleigh distribution [6]:
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Based on the properties of the Rayleigh distribution, the mean m̄b and the
variance σ2

b of the noise in the background can be related to σn:
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√
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The assumption that SNR = 0dB in the background may not be valid in the
presence of ghosting artefacts [6], while the Rayleigh distribution assumption
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can be corrupted by using reconstruction filters [11, 10], by the suppression
of the signal by the scanner [10,11] or by zero-padding in the Fourier domain
[11]. Finally, the noise level in the background may not be representative of
the noise level inside the tissue [10, 11].

– For the object-basedmethodswithhighSNR (i.e. SNR> 3dB) [4,1], the
Rician distribution can be well approximated using a Gaussian distribution:

p(m) ≈ 1
2πσ2

n

exp(− (m2 −
√
A2 + σ2

n)2

2σ2
n

). (5)

This approximation enables us to use all the classical methods proposed for
Gaussian noise estimation. Nevertheless, for low SNR, this approximation is
no longer valid [4, 1, 6].

3 Proposed Method

In order to relax the assumptions performed by background-based methods (i.e.
no signal in the background) and the object-based methods (Gaussian noise
approximation), we propose an adaptation of the MAD estimator in wavelet
domain [9] for Rician noise.

MAD Estimator. By using the usual notation for 3D wavelet decomposition:
LLL denotes the low sub-band containing the feature information whereas LHH,
LHL, LLH, HLL, HLH, HHL and HHH denote the high sub-bands containing
the detailed information. The highest sub-band HHH is essentially composed of
coefficients that correspond to the noise [9]. The fact that the highest sub-band
HHH is mainly composed of the coefficients corresponding to the noise has been
used by Donoho [9] to propose a robust estimation of noise variance. Based on
the MAD estimator, this method enables the estimation of the noise variance in
presence of Gaussian noise:

σ̂ =
median(|yi|)

0.6745
(6)

where yi are the wavelet coefficients of the HHH sub-band and σ̂ the estimation
of noise. As long as the yi coefficients corresponding to the object are considered
and the SNR is high enough, the Gaussian approximation of Rician noise leads
to σ̂n = σ̂.

Rician Adaptation. To obtain an unbiased estimation of σn for all SNR values,
we propose to use the correction procedure introduced by Koay et al [5]. This
analytical correction is based on an iterative estimation of the SNR in presence
of Rician noise. In our case, the estimation σ̂, obtained using the MAD estimator
on the object, is used to initialize the procedure:

σ̂n =
√
σ̂2/ξ(θ) (7)
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where θ is the SNR value and ξ is the correction factor, which is expressed as:

ξ(θ) = 2 + θ2 − π
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where I1 is the first order modified Bessel function. The correction factor is
iteratively applied until convergence of the procedure or when a given number of
iterations t is achieved. The distance |θt−θt−1| can be used as stopping criterion.
The resulting iterative correction scheme can be written as:

θt =

√
ξ(θt−1)

(
1 +

mo

σ̂

)
− 2 (9)

where mo is the mean signal of the object and σ̂ the first estimation from MAD
estimator. The correction factor ξ(θt) from the last iteration is finally used in Eq. 7.

Object Extraction. The first approximation, σ̂n ≈ σ̂, is solely based on the
wavelet coefficients corresponding to the object. To extract the object we take
advantage of the wavelet transform. Since the noise information is mainly con-
tained in the highest sub-bands, the LLL sub-band contains a less noisy version
of the image which can be used to facilitate the segmentation procedure. At the
first level of decomposition, the size of LLL and HHH are identical. Thus, at this
level of decomposition, we proposed to segment the object in the LLL sub-band
and to use the obtained mask to extract the yi coefficients corresponding to
the object in the HHH sub-band. The segmentation is performed using a sim-
ple K-means (k=2) classification. For image with a low level of noise, the MAD
estimation tends to be spoiled since the HHH sub-band is mainly composed of
information corresponding to the high gradient areas (i.e. edges) of the image.
To further increase the accuracy of the estimation at low noise levels, voxels with
the highest local gradient are excluded from the estimation (i.e. removed from
the segmented mask). Accordingly, we eliminate all those voxels whose the local
gradient magnitude is higher than the median local gradient magnitude in the
LLL sub-band.

4 Experiment on Synthetic Data

Materials. To evaluate the different methods, synthetic T1-weighted MR data
with 20% of inhomogeneity from the Brainweb database [12] was corrupted with
different levels of Rician noise (2 to 15%). In this paper, 2% of noise is equivalent
to N (0, ν 2

100 ), where ν is set to 255. As shown in [7], the size of the background
has an impact on the accuracy of the background-based methods. Smaller back-
grounds lead to more difficult estimations. In order to perfrom a fair comparison,
zero padding of the Brainweb volume of 181× 217 × 181 voxels was performed
to obtain a volume of 256× 217× 256 voxels. Moreover, ghosting artefacts were
implemented by using a repeated filtered version of the original image. First, the
image is low-pass filtered with two gaussian kernels of different size (3 × 3 × 3
and 5× 5× 5). Then, the absolute difference of the two filtered images is added
to the original image with a half field of view offset (see Fig. 1, left).
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Fig. 1. Left: Simulated ghosting artefacts on brainweb with 20% inhomogeneity and the
same image with saturation of the contrast to highlight the ghosting artefacts. Right:
Noise regions of interest obtained with automated quality control software tool [13].

Compared Methods. For the experiments, we compared the following
methods:

– the background-based method proposed by Sijbers [6]; denoted as “ML”.
The Sijbers method was applied using a histogram with 1000 bins.

– the two background-based methods based on local statistics proposed in [7];
denoted as LMB for the Local Means in Background and LVB for Local Vari-
ances in Background. The size of the local neighborhoods and the number
of bins were 5× 5× 5 voxels and 1000 bins respectively.

– the object-based method based on local variances proposed in [7]; denoted
as LVO for Local Variances in Object. A local neighborhood of 3 × 3 × 3
voxels was used.

– the classical MAD estimator estimated on the object [9]. The object was
segmented in the wavelet domain without removing high gradient areas.

– the proposed robust MAD for Rician noise estimated on the object and
denoted as RMAD.

Quality Measure. To estimate the accuracy of the different methods, the ratio
between the estimated standard deviation σ̂n and the applied standard deviation
σn is computed for all the levels of noise. Moreover, the Mean Absolute Error
over all the levels of noise is also used. The error for a given level of noise is
computed as:

error = 1− σn

σ̂n
(10)

All the experiments were repeated 10 times, each with a new instantiation of
noise, for each noise level and the average results are presented.

Results. Fig. 2 shows the results on the phantom with inhomogeneity and ghost-
ing artefacts. Compared to the MAD estimator, the ability of the RMAD method
to correctly estimate the higher levels of noise (i.e. where the Gaussian assumption
failed) can be attributed to the SNR based correction factor. Moreover, the RMAD
provided better estimations of the noise at low level by removing the high gradi-
ents before the MAD computation. As expected, the background-based methods
are impacted by the ghosting artefacts. In fact, the assumption of zero signal in
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Fig. 2. Left: ratio of estimated vs. applied noise level, for the all noise levels applied
to the synthetic image, for the 6 techniques compared. Note that RMAD (black line)
estimation is closest to 1.0 for almost all noise levels.

the background is spoiled. All these methods tend to overestimate the noise level,
especially the ML method. The LMB method obtained very good results. Finally,
the RMAD method obtained the best result.

5 Experiments on Clinical Data

Material. The dataset used for the experiment is composed of 23 T1-w MR
volumes of 256× 256× 56 voxels. These data were acquired with a 1.5T Genesis
Signa GE Medical system and an 1 channel head coil. The parameters of the
sequence were: TR = 30ms, TE = 9ms, FOV=250 mm and bandwidth=122 kHz.

Background Extraction. In order to estimate the noise level in the real im-
ages, we used a region-based approach that is similar to the manual selection
procedure usually used in the clinical environment. The noise region of interest
(ROI) used to calculate the noise level was obtained by using the automated
quality control (aQC) software tool described in [13]. Based on the registration
of each subject with a template of ROIs (see Fig. 1, right), the AQc software
provides ROIs associated with noise regions. To determine the noise level, we
used the region anterior to the head which contains less artefacts [13].

Bronze Standard. In our study, we have chosen to use the assumption that the
noise level for a given sequence on the same scanner should be constant. Based
on this idea, the noise regions extracted from the background of MR images are
used to estimated an average level of noise over all the data from a same site. To
estimate this average level of noise, the properties of the second-order moment
of a Rician distribution are used. The Bronze standard can be computed from
the mean of the squared values extracted from backgrounds of all the data d:

σ̂n =

√
M̂2

b

2
, M̂2

b = (m̂2
b(1), ..., m̂2

b(D)) (11)
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Fig. 3. Left: results of the compared methods for all the data. Right: mean absolute
error over all the data.

where m̂2
b(d) is the vector containing the squared value of noise extracted from

the background of data d and M̂2
b is the concatenation of the squared signal

from all the data. Based on the same approach, the estimation of the noise level
for a given data d is obtained with the region-based method by using the mean
of the squared values extracted from the background of d.

Results. Fig. 3 shows the results obtained for site 1. For all the data, RMAD
method provided a consistant estimation of the noise relative to the Bronze stan-
dard (small error) in a robust manner (small variance of error). The stability of
the proposed method leads to a smaller error than the region-based method that
was used to build the bronze standard. As assessed by experiments on synthetic
phantom, the MAD estimator computed on the object tends to underestimate
the noise level whereas the LVO method leads to an overestimation of the noise
level. The LVB method appears to follow the MAD estimation and the RMAD
estimation according to the data under process. The LMB method estimated in
the background is a robust and stable estimator but leads to a slight underesti-
mation. Finally, the ML method provided a good mean absolute error but was
accomplished with a high variability.

6 Conclusion

In this paper, a new method based on the robust MAD estimator for Rician
noise has been proposed and several state-of-the-art methods for Rician noise
estimation in MR image have been compared. Experiments on synthetic data
with simulated inhomogeneity and ghosting artefacts showed the efficienty of the
proposed object-based approach compared to the background-based approaches.
Experiments on real data have shown that the proposed RMAD method obtained
the best result in terms of accuracy and robustness. The background-based meth-
ods had the highest variability except the LMB method which provided a robust
noise estimation. These results show that the background in real data is spoiled
by artefacts, thus violating the assumption of no signal in background. Finally,
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the proposed approach can be applied to situations where no background is
present such as fetal imaging or images where the background is artificially set
to zero by the scanner [10]. Moreover, the proposed approach can be potentially
adapted to work with non stationary noise such as those attributed to parallel
imaging (i.e. GRAPPA or SENSE).
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Abstract. Phase-contrast microscopy is a common approach for studying the 
dynamics of cell behaviors, such as cell migration. Cell segmentation is the ba-
sis of quantitative analysis of the immense cellular images. However, the com-
plicated cell morphological appearance in phase-contrast microscopy images 
challenges the existing segmentation methods. This paper proposes a new cell 
segmentation method for cancer cell migration studies using phase-contrast im-
ages. Instead of segmenting cells directly based on commonly used low-level 
features, e.g. intensity and gradient, we first identify the leading protrusions, a 
high level feature, of cancer cells. Based on the identified cell leading protru-
sions, we introduce a front vector flow guided active contour, which guides the 
initial cell boundaries to the real boundaries. The experimental validation on a 
set of breast cancer cell images shows that the proposed method demonstrates 
fast, stable, and accurate segmentation for breast cancer cells with wide range 
of sizes and shapes. 

1   Introduction 

Cell migration plays pivotal roles in cancer cell scattering, tissue invasion, and metas-
tasis. Metastasis is a major cause of morbidity and mortality in most of cancer patients 
[1]. For breast cancer, five-year relative survival in local invasive breast cancer patients 
is 98.1%, whereas it is only 26% in patients with distant metastases in USA [2]. These 
dismal prognoses can be partly explained by the fact that a large majority of the drugs 
used today to treat cancer are pro-apoptotic, but migrating cells involved in metastases 
are known to show a decreased proliferation rate and are thus less sensitive to such 
chemotherapy. Thus the anti-migration drugs hold great promise for both anti-
metastasis therapy and increasing the efficacy of the existing pro-apoptotic anti-cancer 
drugs. Phase-contrast microscopy is a common tool for study of dynamic behaviors of 
a population of cells under different treatments [3]. However, the complicated cell 
morphological appearance and the low signal to noise ratio (SNR) of the phase-
contrast images, as seen in Figure 1, challenge the existing segmentation methods, new 
segmentation methods are needed. 
                                                           
* Corresponding author. 
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Although a number of cell segmentation methods have been proposed, cell seg-
mentation remains an open problem [4]. For example, thresholding methods [5] can-
not accurately separate cells from background because regions inside cells often have 
similar intensity as the background in the phase-contrast image. Voronoi based meth-
ods can only estimate the rough regions of cells [6]. Watershed methods assume that 
the edges (watersheds) have the maximum intensity (or maximum gradient) between 
two cells [7]; however, it is not always true. Graph cut based methods are robust to 
weak boundaries. Nevertheless, they require closed boundaries [8]. Active contours 
has two kinds of methods: region based [9] and edge based [10]. The region based 
active contours are robust to the initial boundaries and fast, but they always require 
that the intensity of objects is homogenous and different with background [9]. The 
edge based active contours are sensitive to the initial boundaries and a set of parame-
ters. The evolution of contours may stop before reaching the real boundaries or pass 
through the real boundaries, without good initial boundaries or well-tuned parameters. 

The limitation of above methods, which do the segmentation directly based on low-
level features, e.g. intensity and gradient, is that they all assume the edges or regions 
inside objects have simple, distinct features, e.g. large gradient or homogenous intensity. 
In practice, we cannot distinct the real boundaries with other features by assuming clear 
cut gradient or homogenous intensity information. In this paper, we propose to segment 
cancer cells in phase-contrast images by introducing a high-level feature, fronts (leading 
protrusions), as seen in Figure 1. We identify the cell fronts first and then introduce  
the front vector flow to direct the active contours unambiguously to where the real 
boundaries are. We name this method as front vector flow guided active contour.  

2   Methods 

2.1   Problem Description 

We provide two representative phase contrast cell images of living breast cancer cells 
MDA-MB231 in the column-(a) of Figure 1. We can see that 1) the cell centers have 
two distinct regions with lower (dark region) and higher intensity (bright region), 2) the 
leading protrusions of cells is far away from the cell centers and has non-closed arc 
shape, see the ridge-like structures, 3) the regions between the cell centers and leading 
protrusions have similar intensity as the background. The first property enables us to 
detect the cell bodies easily by detecting the two regions, which can be used as the ini-
tial boundaries of cells. However, the second and third properties make the segmenta-
tion very challenging. For example, the evolution of cell boundaries using edge-based 
active contours [10] will stop near the cell centers due to the rapid intensity variation,  
or easily go outside the cells due to the non-closed leading protrusions and the regions 
that have homogenous intensity as the background. To deal with these challenges, we 
proposed the following method of front vector flow guided active contour. 

2.2   Front Vector Flow Guided Active Contour 

The proposed front vector flow guided active contour method consists of the follow-
ing steps: 1) cell center detection, 2) front (leading protrusions) detection, and 3) 
contour evolution following the front vector flow. 
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A. Cell center detection. To detect the cell center, we first detect the dark and bright 
regions inside cells respectively, and then combine the detection results together, as 
seen in Figure 1. In this paper, we make use of the multi-scale representation to detect 
the bright regions [11]. Specifically, we filter the original image using a series of 
Laplacian of Gaussian (LoG) filters with different scales, i.e., the sσ of Gaussians. 
Then the maximum intensity projection (MIP) image of the filtered image is 
generated, and we use a three-class fuzzy c-means clustering [12] method to detect 
the bright regions accurately, as seen in the column-(b) of Figure 1. Since a dark 
region can be viewed as a bright region in the complemented cell image, we can 
detect it using the same method, as seen in the column-(c) of Figure 1. Finally, we 
employ the convex hull operation to obtain the cell center, as seen in the column-(d) 
of Figure 1. 

 

   

  
(a)                            (b)                          (c)                           (d) 

Fig. 1. Two representative MDA-MB231 breast cancer cell images (column-(a)), the MIP 
images of the multi-scale LoG filtered original images for bright region detection (column-(b)), 
the MIP images of the multi-scale LoG filtered complemented images for dark region detection 
(column-(c)), and the cell body detection results (column-(d)). The green, blue and red curves 
imposed on the cell images indicate the boundaries of the detected bright regions, dark regions 
and cell centers respectively. 

B. Front detection. The first stage of cell migration consists of initial cell polariza-
tion caused by localized actin polymerization to form filaments, and this is followed 
by the extension of cytoplasmic protrusions. The quantitative analysis of the cyto-
plasmic protrusion formation, disappearance, and variation is important for studies of 
cell migration. Considering the ridge shape of fronts, we detect the cell fronts using 
the curvilinear structure detectors [13, 14].  

For a 1D ridge profile, ( )f x c=  if | |x b≤ , and ( ) 0f x = otherwise, we can detect 

the center point of ( )f x using the criterion: ( )' , 0k x σ = , and ( )'' , 0k x σ << , where 
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( ) ( ) ( )( )' , , ,k x c g x b g x bσ σ σ σ= + − − , ( ) ( ) ( )( )'' , ' , ' ,k x c g x b g x bσ σ σ σ= + − − , and 

( ),g x σ , ( )' ,g x σ  represent the Gaussian density function and its derivative respec-

tively. For ridge profiles with different width, we can use a series of scales (multi-
scale) to let ( )'' ,k x σ reaches its maximum value. In discrete case, a point nx  is  

labeled as center point, if ( )
( )

*

*

' ,*

'' ,

1 1
[ , ]

2 2
n n

n n

k x

n k x
t

σ
σσ= − × ∈ − , and *| ''( , ) |nk x σ  is  

larger than a given threshold, where ( ){ }* arg min '' ,n nk xσσ σ= .  

It is straightforward to extend the method to 2D space because the cross-section of 
the 2D ridge profile in direction perpendicular to ridge center line is a 1D ridge pro-
file. The eigenvector, ( , )x yn n , which corresponds to the minimum eigen-value, ,x yλ , 

of the Hessian matrix at a given point ( , )x y , indicates the cross-section direction at 

that point. In a 2D discrete case, a point is labeled as a center point if ,| |x yλ is larger 

than a given threshold, and the following equation holds: 

( , ) [ 1/ 2,1/ 2] [ 1/ 2,1/ 2]x ytn tn ∈ − × −  (1)

where 
* *
, ,

* 2 * * 2
, , ,

( ) ( )

( ) 2 ( ) ( )
x x y x y x y y

xx x y x xy x y x y yy x y y

k n k n
t

k n k n n k n

σ σ
σ σ σ

+
= −

+ +
, xk , yk , xxk , xyk  and yyk are 

the normalized partial derivatives of 2D cellular images convolved with 2D Gaussian 
kernels, and ( )*

, ,arg min , ;x y x y x yσσ λ σ= . To remove the false center points, the hys-

teresis thresholding technique is employed, and then a link process links the broken 
center lines together [14]. The detected cell front is represented by a binary image, as 
seen in Figure 2-(e). 

C. Contour evolution following the front vector flow. After obtained the cell 
centers and fronts, we still cannot obtain the accurate cell boundaries because the 
regions that locate between cell centers and the fronts are missed. To obtain the 
accurate boundaries, we propose to evolve the initial cell boundaries (the boundaries 
of the cell centers) to the real boundaries following the front vector flow. 

We calculate the front vector flow as in the following:  

( ) 22 2 2 2ˆ min x y x yu u v v I I dxdyμ= + + + + ∇ − ∇∫∫fvf f f
V

V V , (2)

where, If  represents the detected cell front image; ,I I I
x y

∂ ∂∇ =
∂ ∂f f f  denotes the 

gradient of the detected front image; and ( ) ( ), , ,u x y v x y=V  is the front vector 

flow. Figure 2 illustrates the relationship between the gradient and the front vector 
flow. As we can see, the front vector flow extends the gradient vector to a large re-
gion and converges to the detected front [15], as seen in Figure 2-(b), (c), (f), and (g). 
This motivates us to evolve the initial cell boundaries along with the front vector flow 
to reach the real boundaries. A problem is posed that the front vector flow may attract 
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initial cell boundaries of different cells to one front. To avoid this, we associate each 
front with its corresponding cell uniquely using the convex property (arc shape) of the 
fronts, as seen in Figure 2(d). The red arrow, which is obtained by linking the mid-
points of the front and the chord linking two endpoints of the front points, points to 
the corresponding cell. Thus we can find the corresponding cell along the direction of 
the red arrow, and evolve its initial boundary following the front vector flow of the 
front.  

The contour evolution process along with front vector flow can be easily imple-
mented under the active contour (level set) framework. The mathematical evolution 
equation is as follows. 

( )ˆd

dt
ψ ψ βκ ψ= − ⋅∇ + ∇fvfV , (3) 

whereψ denotes the level set function, κ is the curvature,  and β is the parameter that 

controls the smoothness of the boundary. This equation is straightforward and robust 
because the only parameter β , which controls the smoothness of the contour, will not 

influence the evolution much.  

( ) ( )
2 2

3/22 2

2xx y x xy y x yy

x y

div ψ
ψ

ψ ψ ψ ψ ψ ψ ψ
κ

ψ ψ

∇
∇

− +
= =

+
, (4)

 

 
(a)                            (b)                           (c)                           (d) 

 
(e)                           (f)                            (g)                            (h) 

Fig. 2. An illustration of the front vector flow. (a) Original cell image, (e) detected front image, 
(b) gradient vectors, (c) front vector flow, (f) zoom in image of the green square in (b), (g) 
zoom in image of the green square in (c), (d) the red arrow, which is obtained by linking the 
midpoints of the front and the chord linking two endpoints of the front, points to the corre-
sponding cell center, and (h) the front vector flow was imposed on the original cell image. The 
blue arrows represent the gradient vectors. 
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3   Experiments and Results 

The MDA-MB231 breast cancer cell line was grown in Dulbecco's Modified Eagle's 
Medium (DMEM) containing 10% fetal bovine serum. Cell cultures were maintained 
in a humidified incubator at 37C, with 5% CO2. Images of cells were acquired in 
phase contrast mode of a FluoView™ FV1000 laser scanning confocal microscope 
(Olympus) using a 20x objective. We selected 50 cells and manually segmented them 
as the ground truth. To validate the performance of the proposed front vector flow 
guided (FVF) active contour method, we compared it with two kinds of widely used 
active contours: edge-based geodesic active contour (GAC) [10], region based Chan 
and Vese active contour (CV) [9], and the manually analyzed ground truth. The goal 
of the comparison is merely to show the robustness of the proposed method, which 
can handle the intensity variation and prevent the contour from leaking. GAC and CV 
are two widely used methods, which have been tested in certain phase contrast  
images. Therefore, we chose them for comparison. Both GAC and CV methods  
could be adapted by incorporating the front detection. However, it is not trivial,  
and instead we propose the new method that is straightforward and fast. In this  
validation, the active contour (level set) evolution equation of GAC and CV are  

as: ( ) ( )d
g g c

dt
ψ α ψ κ ψ= ∇ ⋅∇ + + ∇ , ( ) ( ) ( )2 2

1 1 2 2
d

I c I c
dt εψ δ ψ μ κ ν λ λ⎡ ⎤= ⋅ − − − + −⎢ ⎥⎣ ⎦

. 

Table 1 lists the detailed parameters settings of the three methods (GAC, CV, and 
FVF). Figure 3 shows the comparison among GAC, CV, FVF and manual segmenta-
tion results. The boundaries of cell centers, as seen in Figure 1-(d), were used as the 
initial boundaries, and the stopping criterion is setting a maximum iteration number. 
As we can see, the edge leaks outside of cells in the results of GAC due to the non-
closed cell fronts. The CV method works like a threshold method that only separates 
the bright regions from the background and dark regions. Whereas, the proposed FVF 
method delineates the cell boundaries accurately compared with the ground truth. To 
quantitatively analyze the accuracy of the segmentation, we employed following two 
error measures: false positive rate, ( ) /A M MFPR S S S= − , and false negative rate, 

( ) /M A MFNR S S S= − , where MS means the manual segmentation result and 

AS means the automated segmentation results. The average FPRs of GAC, CV and 

FVF are as: 27.8%, 0%, and 7.8%, while the average FNRs are as: 15.6%, 63.5%, and 
6.7%. The results indicate that the propose FVF method demonstrates accurate seg-
mentation results compared with the ground truth, while the GAC and CV results are 
not reliable. The computational complexity is also important for segmentation meth-
ods. In Table 2, we compared the computational complexity of the three methods in 
terms of number of iterations and computational time. We implemented the three 
methods in Matlab (version 2007), and the comparison were did on a standard desk-
top PC (Intel core 2, 1.86 GHz). The CV method is the fastest, and the FVF method 
has similar complexity as the CV method. However, the computational complexity of 
the GAC method increased rapidly. In conclusion, the proposed FVF method is fast, 
stable, and accurate compared with the GAC and CV methods.  
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Table 1. Parameters settings of the GAC, CV and FVF active contours 

 Parameter setting 

GAC 0.05dt = , 1c = , 0.2α =  

CV 0.1dt = , 1 1λ = , 2 1λ = , 0μ = , 65v = −  

FVF 0.1dt = , 1β =  

Table 2. Computational complexity comparison in terms of number of iteration and time 

GAC CV FVF 
 

Img1 Img2 Img1 Img2 Img1 Img2 
# of iteration 400 400 400 400 40 40 

time (seconds) 240 210 11 8 18 11 

 

  

 
(a)                           (b)                           (c)                           (d) 

Fig. 3. Comparison of segmentation results. (a) Segmentation results of GAC, (b) segmentation 
results of CV, (c) segmentation results of FVF, and (d) manual segmentation results. 

4   Discussion and Conclusions 

In this paper, we propose a new method for segmenting breast cancer cell images ob-
tained by phase-contrast microscopy. The segmentation method takes advantage of the 
prior knowledge that the leading protrusion in cancer cells is a distinct high-level feature 
of cell boundaries compared to the commonly used low-level features such as edge 
gradient or cell intensity. Thus we propose to identify the protrusions first, which tell the 
segmentation algorithms clearly where the real boundaries are, and then introduce the 
front vector flow and implement the cell segmentation in the framework of active con-
tour. The initial cell boundaries, which are obtained after the cell center detection, are 
attracted to the real edges following the front vector flow. The proposed method deals 
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with the aforementioned challenges existing in the phase-contrast images well. The 
algorithm is fast, stable, and accurate compared with the manually segmented ground 
truth and is used to segment large amounts of breast cancer cells in the phase-contrast 
images of our high content screening studies. One limitation of the proposed method is 
the requirement of the accurate boundary detection results. It may fail when the noise or 
inaccurate boundary detection results exist. To improve the proposed method, we may 
integrate the edge detection and vector flow into active contour methods.  

Although designed for breast cancer cells in phase contrast images, it is possible to 
generalize the proposed algorithm, including the cell center detection, front detection, 
and contour evolution, to other applications. For example, the center detection and 
front detection can be generalized to the blob and ridge structure detection in other 
biomedical images, e.g. nuclei and neurite images. For the contour evolution, it can be 
customized to other applications where part of boundaries of objects can be identified. 
In the future work, we will extend the proposed segmentation method for tracking live 
cancer cells in phase-contrast image movies. 
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Abstract. Current chemical biology methods for studying spatiotem-
poral correlation between biochemical networks and cell cycle phase
progression in live-cells typically use fluorescence-based imaging of fu-
sion proteins. Stable cell lines expressing fluorescently tagged protein
GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns
characterizing the cell cycle phases, including the progress during the S-
phase. Variable fluorescence patterns, drastic changes in SNR, shape and
position changes and abundance of touching cells require sophisticated
algorithms for reliable automatic segmentation and cell cycle classifica-
tion. We extend the recently proposed graph partitioning active contours
(GPAC) for fluorescence-based nucleus segmentation using regional den-
sity functions and dramatically improve its efficiency, making it scalable
for high content microscopy imaging. We utilize surface shape properties
of GFP-PCNA intensity field to obtain descriptors of foci patterns and
perform automated cell cycle phase classification, and give quantitative
performance by comparing our results to manually labeled data.

1 Introduction

The spatial distribution and temporal dynamics of proteins within living cells
are being quantitatively studied using a variety of microscopy imaging modal-
ities to understand the interaction between sub-cellular processes and cell be-
havior. The current method for live-cell visualization and tracking of proteins is
to use translational fusion with fluorescent proteins. The analysis of cell cycle
dependent changes is only now becoming feasible with the discovery of suitable
markers that allow identification of cell cycle phases in proliferating cells [1].
Current experimental techniques use fusion proteins in combination with fluo-
rescence time-lapse microscopy to mark sub-cellular structures in the nucleus
to identify the cell cycle phase. Several cell cycle labeling approaches are be-
ing pursued including RFP-Ligase for localizing DNA methyltransferase, GFP-
PCNA (proliferating cell nuclear antigen fused to green fluorescent protein)
where PCNA is involved in DNA replication and repair, and YFP-RAD18 to
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c© Springer-Verlag Berlin Heidelberg 2009



618 I. Ersoy et al.

label postreplication repair of damaged DNA or immunostaining these endoge-
nous proteins to characterize all cell cycle phases [1,2,3]. The focus of this paper
is on fluorescent labeling using GFP-PCNA which enables cell cycle phases to
be distinguished by characteristic patterns of GFP-PCNA at different points
of cell cycle: M-phase or mitosis, followed by G1-phase, early, mid and late S-
phases, and G2-phase (Figure 1). GFP-PCNA produces a complex distribution
of foci patterns in different stages of the S-phase, but is fairly homogenous dur-
ing G1- and G2-phases, and very diluted during M-phase. In order to identify
cell cycle phases, individual nuclei need to be detected, segmented and classified.
Cell segmentation, classification and tracking require robust and sophisticated
algorithms in order to deal with noise, shape changes, texture and touching
cells [4, 5, 6, 7, 8]. In this paper we describe a novel technique for fluorescent nu-
clei detection and segmentation using a fast implementation of multi-phase graph
partitioning active contours (fastGPAC). Fluorescent particles corresponding to
the localization of GFP-PCNA have characteristic distributions that we utilize
to train a support vector machine to classify the segmented nuclei into four cell
phases and three sub-phases in S-phase.

2 Methods

2.1 Segmentation Using FastGPAC

To segment HeLa cell nuclei we use level set-based multi-phase fast graph parti-
tioning active contours (FastGPAC) which is our novel efficient implementation
of graph partitioning active contours (GPAC). FastGPAC reduces the O(N4)
computational complexity and memory requirements of the original GPAC algo-
rithm [9,10] to O(N2) computational complexity and O(n×L) constant memory
where N×N is the image size, L is number of histogram bins, and n is the num-
ber of phases. Graph partitioning active contours (GPAC) is introduced in [9,10]
as a new powerful curve evolution framework. GPAC can be implemented using
explicit snake-based or implicit level set-based active contours. Level set-based
implementation where a curve C is represented implicitly via zero-level curve of a
Lipschitz function φ C = {(x, y)|φ(x, y) = 0}, provide advantages such as elimi-
nating the need to reparameterize the curve and automatic handling of topology
changes [11]. The variational cost function that minimizes pairwise dissimilarity
within regions is written as [10]:

EWR =
∫∫

Ω

∫∫
Ω

w(p1, p2)H(φ(p1))H(φ(p2))dp1dp2

+
∫∫

Ω

∫∫
Ω

w(p1, p2)
(
1−H(φ(p1))

)(
1−H(φ(p2))

)
dp1dp2 (1)

where Ω is the whole image domain, w() is a pixel-to-pixel dissimilarity measure,
H is the heaviside function, an indicator function for the points inside Ri(C), and
outside Ro(C) of the curve (H(φ)) and (1−H(φ)) respectively. Curve evolution
equation is obtained with steepest descent minimization. The complete curve
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evolution equation (with regularization term, normalization factors α and β,
and weights λ1,2 and μ) is [10]:

∂φ(p2)
∂t

= δ(φ(p2))
[
λ2β

∫∫
Ω

w(p1, p2)
(
1−H(φ(p1))

)
dp1

−λ1α

∫∫
Ω

w(p1, p2)H(φ(p1))dp1 + μ div(
∇φ(p2)
|∇φ(p2)|

)
]

(2)

which is discretized as:

Δφ(p2)
Δt

= δε(φ(p2))
[
λ2β

∑
p1∈Ro(C)

w(p1, p2)− λ1α
∑

p1∈Ri(C)

w(p1, p2) + μK)
]

(3)

While powerful in terms of region description, heavy computational and memory
requirements prevent GPAC’s direct application to large images. Our FastGPAC
approach reduces both computational and memory requirements of the original
GPAC, without approximations such as dissimilarity computation at block or
superpixel level [9,10], and makes segmentation of large images with GPAC ap-
proach possible. The bottleneck in the original GPAC is the computation of
the 2-D regional (inside and outside) sums in Eq. 3,

∑
p1∈Ro(C) w(p1, p2) and∑

p1∈Ri(C) w(p1, p2). To speed the process in [9], dissimilarities of every image
point to every image point are pre-computed and stored in a N2 × N2 lookup
table W for an N ×N image. But this O(N4) table quickly becomes impracti-
cal for large images (i.e. over a terabyte of memory for a 1024× 1024 grayscale
image). FastGPAC speeds up 2-D regional sum computations by maintaining
two histograms hi and ho for regions Ri(C), Ro(C). When w(p1, p2) does not
incorporate spatial distance between points p1 and p2, w(p1, p2) can be rewrit-
ten as w(p1, p2) ≡ D(F (p1), F (p2)) where F (p) is a feature extracted from the
point p(x, y), and D is a similarity/dissimilarity measure defined on F (i.e. for
w(p1, p2) = |I(p1)− I(p2)|, F (p) is grayscale intensity I(p) and D is L1 metric.)

GPAC Region Sum Theorem. For cases where w(p1, p2) does not incorporate
spatial distance, the 2-D regional sums,

∑
p1∈Rr

w(p1, p2) (for Rr = Ri and
Rr = Ro) can be reduced to 1-D sums independent of the size or shape of the
regions Ri(C) and Ro(C).

∑
p1∈Rr

w(p1, p2) ≡
L−1∑
j=0

hr(j)D(F (p2), j) (4)

where hr is the histogram of the feature F in region Rr, D() is a (dis)similarity
measure, L is number of bins in hr and hr(j) =

∑
p∈Rr∧F (p)=j 1 is the jth bin

of hr corresponding to the number of points p ∈ Rr whose features F (p) are in
jth bin (F (p) ∈ j).
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Proof. This equality is derived by grouping the points p into feature class bins
F (p) ∈ j, and by separating the original sum into two sums as follows:∑

p1∈Rr

w(p1, p2) ≡
∑

p1∈Rr

D(F (p1), F (p2))

=
L−1∑
j=0

∑
p1∈Rr∧F (p1)∈j

(D(F (p2), j)× 1) =
L−1∑
j=0

D(F (p2), j)×
∑

p1∈Rr∧F (p1)∈j

1

︸ ︷︷ ︸
hr(j)

(5)

Using the GPAC region sum theorem, FastGPAC transforms GPAC curve evo-
lution Eq. 3 into:

Δφ(p2)
Δt

= δε(φ(p2))
[
λ2β

L−1∑
j=0

ho(j)D(F (p2), j) − λ1α
L−1∑
j=0

hi(j)D(F (p2), j) + μK
]

= δε(φ(p2))
[L−1∑

j=0

[λ2β ho(j) − λ1α hi(j)]D(F (p2), j) + μK
]

(6)

This transformation reduces N4 pairwise dissimilarity computations (from each
pixel to each pixel) to N22L dissimilarity computations (from each pixel to each
of the L histogram bins) where L is constant and L << N2. In our application,
appearance of the nuclei changes during the different phases of the cell cycle.
Use of two-phase schemes risk false misses, particularly during mitosis when
signal-to-noise ratio drops near to background levels. Due to this, we use 4-
phase segmentation. In [10], GPAC is extended to multi-phase in a way similar
to Vese and Chan’s multi-phase extension [12]. As in the case of 2-phase GPAC,
each sum in the multi-phase GPAC is transformed to its efficient form using the
GPAC regional sum theorem.

2.2 Cell Cycle Phase Classification

In order to classify detected nuclei into one of the six classes (M, G1, S (early,
mid, late) and G2), we utilize the characteristic appearance of GFP-PCNA in
fluorescent nuclei images. As shown in Figure 1, different phases are manifested
by a rich textural information that can be captured by using the histograms of
intensity as well as intensity surface curvature. We do not use 2-D geometric
features of the cells in order to make the feature vector robust to changes in
the shape of nuclei. Our choice of feature vector (64 bins of intensity histogram
and 64 bins of intensity surface curvature histogram) captures the characteristic
texture information of each class without more elaborated feature vector com-
putations such as [13, 14, 7]. Shape-based properties of the intensity surface can
be utilized for blob and ridge analysis [6]. The GFP-PCNA in nucleus produces
spikes and blob-like patterns hence the utilization of blob detection methods
to obtain a texture signature is theoretically sound. Ridges and blobs can be
defined as local extrema of principal curvatures of the instensity surface. Princi-
pal curvatures and directions of a hypersurface L correspond to the eigenvalues
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Fig. 1. GFP-PCNA fluorescence-based patterns during six periods of cell cycle and
corresponding signatures. Left to right: M phase, G1 phase, early, mid, late S phases
and G2 phase. Top to bottom: sample cell image, intensity histogram signature, surface
curvature histogram signature.

κ1 ≥ ... ≥ κn−1 and eigenvectors ξ1 ≥ ... ≥ ξn−1 of the shape operator matrix
on the tangent space W . In 2-D case, W is given as a function of the first and
second fundamental forms. Since computation of principal curvatures is expen-
sive, mean curvature H = 1

2 (κ1 + κ2) = 1
2 trace(W ) is often used to classify

surface patches (H < 0 : peak, ridge, or saddle ridge; H = 0 : flat or minimal
surface; H > 0 : pit, valley, or saddle valley). In generalization of local extrema
for real-valued functions of a vector variable, a point x0 is classified as maximum
if ∇L(x0) = 0 (critical point) and H(L(x0)) is negative definite (all eigenvalues
λi < 0 ) where H is the Hessian matrix:

H =
[

Lxx Lxy

Lxy Lyy

]
(7)

For critical points (∇L(x0) = 0), eigenvalues λi and eigenvectors vi of the Hes-
sian matrix correspond to principal curvatures κi and principal directions ξi
respectively. We utilize the histograms of λ1(H) (|λ1| > |λ2|) and intensity to
obtain a characteristic signature for each cell cycle phase. By binning the in-
tensity and surface curvature histograms into 64 bins we obtain a 128-D feature
vector. Figure 1 shows the average signatures of each class. We train a support
vector machine [15] with a test set of nucleus images for each of the six classes
using these signatures as described in the following section.

3 Experimental Results

Genetically modified human HeLa Kyoto cell lines were generated and validated
to stably express the fused protein green fluorescent protein-tagged proliferating
cell nuclear antigen (GFP-PCNA). The first step involved creating HeLa Ky-
oto lines containing a stably integrated Flp-recombination site (FRT). This was
followed by site-specific integration of a construct containing the human EF1α
promoter to drive expression of the fusion gene, in this case GFP-PCNA, and
a blasticidin resistance marker gene used for selection of the transgenic cells
flanked by FRT sites. This strategy allows the Flp recombinase mediated inte-
gration of DNA into a specific site in the genome and a reliable and homogeneous
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Fig. 2. Sample FastGPAC segmentation results for four sample frames. Top: Original
frames, bottom: Recolored level set masks.

level of the fluorescent protein in every cell. Live cell analysis was performed by
plating the cells on chambered glass coverslips before microscopy. The cham-
bered glass coverslip was mounted onto the microscope stage and maintained in
a humidified atmosphere of 5% CO2 at 37◦C on a microscope incubation system.
For time lapse analysis, images were acquired with a Zeiss LSM 510 Meta laser
scanning confocal microscope using the 488 nm laser line of an Argon ion laser
at low power every 15 minutes. The image sequence has 174 1024×1024 frames.
Figure 2 shows sample segmentation results for four frames using 4-phase level
set FastGPAC method. When the 4-phase segmentation masks are recolored as
in 2nd row (black-red-green-yellow in the order of increasing average phase in-
tensity), some observations on the color scheme can be made i.e. just before
mitosis, nuclei appear as solid red blobs (fluorescent intensity fades), just after
mitosis daughter nuclei appear as red blobs with green centers. Since original
GPAC requires terabyte size memory for 1024× 1024 images, 220× 160 regions
are cropped and segmented for comparison. FastGPAC segments cropped images
in 2.2 CPU seconds, original GPAC spends 415 CPU seconds (189× speedup).
The actual completion time of original GPAC is longer due to extensive memory
swaps. For the classification task, colored masks are binarized into foreground
and background using a rule-based scheme to avoid merging of neighboring nu-
clei. 100 frames are labeled by an expert in the art to provide ground truth for
quantification of the classification performance. A total of 1543 cells are chosen
for training and testing. For each cell, a 128-D feature vector is derived from
the intensity and surface curvature histograms. The feature vectors are used in
5-fold cross validation to obtain five runs for classifier performance training and
testing. Each run of training is also performed in five folds to obtain the best
parameters for SVM. Table 1 shows the average percentage confusion matrices of
the proposed classification approach and of the Wndchrm method in [14] when
applied to our data set for classification of four phases and three sub-phases in
S-phase (columns do not add up to 100% due to rounding). Top 30% of the
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Table 1. Average confusion matrix for 6 classes.
Left: Wndchrm, right: proposed approach.

M G1 SE SM SL G2 M G1 SE SM SL G2
M 90 1 1 0 0 0 95 1 0 0 0 1

G1 6 90 6 3 1 18 5 97 7 7 0 17
SE 1 2 80 12 1 0 0 0 90 16 0 0
SM 0 0 13 65 8 0 0 0 2 69 1 0
SL 0 0 1 20 90 1 0 0 0 9 98 0
G2 3 7 0 0 0 81 0 2 0 0 1 83

Table 2. Average confusion ma-
trix for 4 classes. Left: Wndchrm,
right: proposed approach.

M G1 S G2 M G1 S G2
M 90 1 0 0 95 1 0 1

G1 6 90 3 18 5 97 4 17
S 1 2 97 1 0 0 96 0

G2 3 7 0 81 0 2 0 83

ranked 1025-D feature vector in [14] is used for classification as the best result.
Proposed approach exceeds the accuracy of Wndchrm in all classes. As expected,
separating G1 from G2 without resorting to temporal constraints is a challenge.
Similarly the mid S-phase is highly confused since there are no clear cut bound-
aries between SE-SM and SM-SL. The proposed feature vector provides good
performance in capturing the textural characteristics of the GFP-PCNA in nu-
clei. The computation of our feature vector for 1543 cells takes about 3 minutes,
whereas the running time of Wndchrm on our data set is about 5 hours. The
overall average accuracy of our classification approach is 92.3%, the same of
Wndchrm is 86.4% where (worst case, best case) accuracies are (90.3%, 94.5%)
for our approach and (84.9%, 87.5%) for Wndchrm. Table 2 shows the average
percentage confusion matrices for the 4-phase classification.

4 Conclusions

The proteins of interest in fluorescence-based imaging are involved in basic cel-
lular processes such as DNA repair and replication. PCNA is a key component
of the DNA replication machinery. GFP-PCNA-based cell cycle analysis is more
precise since PCNA is directly linked to the DNA replication, and provides higher
resolution as well as information about the progress of S-phase through patterns
of different sized foci. The imaging noise, lower SNR in some phases, complex
textural patterns, significant shape changes during cell division and large data
volumes require the development of a multiclass region-based segmentation algo-
rithm with topological flexibility. We extended the recently proposed multiphase
GPAC algorithm for fluorescence-based cell nucleus segmentation by incorporat-
ing density functions to capture the variability of regions for reliable and accurate
segmentation. GPAC has not been previously applied to large biomedical seg-
mentation applications due to extensive memory (on the order of terabytes) and
computational requirements for large images. We derive a FastGPAC algorithm
that requires constant memory and is highly scalable for high content screening
time-lapse microscopy images. Preliminary results indicate that the multi-phase
implementation is able to accurately segment nuclei of proliferating cells imaged
for more than 40 hours. We also use a support vector machine to classify seg-
mented nuclei into one of the four phases and three sub-phases. Quantitative
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results show highly accurate cell phase classification using intensity and sur-
face curvature histograms without the need for elaborated feature extraction
schemes that are computationally expensive. Future work includes improving
the confusion of phases and incorporating these results into our multi-object
multi-hypothesis tracker [4] to enforce temporal constraints and provide accu-
rate lineage construction.
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Abstract. Most state-of-the-art algorithms for filament detection in
3–D image-stacks rely on computing the Hessian matrix around indi-
vidual pixels and labeling these pixels according to its eigenvalues. This
approach, while very effective for clean data in which linear structures
are nearly cylindrical, loses its effectiveness in the presence of noisy data
and irregular structures.

In this paper, we show that using steerable filters to create rotationally
invariant features that include higher-order derivatives and training a
classifier based on these features lets us handle such irregular structures.
This can be done reliably and at acceptable computational cost and
yields better results than state-of-the-art methods.

1 Introduction

Most state-of-the-art approaches to filament detection in 3–D image-stacks rely on
computing the Hessian matrix around individual voxels and labeling these voxels
according to its eigenvalues. Some are optimized for ideal tubular structures, while
others use statistical-learning techniques to improve detection results.

In this paper, we will show that the second-order derivatives used to compute
the Hessian matrix do not provide a local description that is powerful enough to
account for the fact that dendrites, such as those depicted by Fig. 1, are far from
being regular tubular structures, which can drastically impact performance. To
effectively account for such irregularities, one must use higher-order derivatives.

To this end, we rely on 3–D steerable filters [1] to create rotationally invariant
features that include derivatives of order 2 to 4 that we use as input to a classifier
trained to recognize voxels belonging to potentially irregular dendrites. Because
the training data encompasses the deviations from the ideal model, the resulting
algorithm has the potential to be more robust than traditional ones and can
be trained to detect not only simple linear-structures but also junctions and
crossings.
� This work was funded in part by the Swiss National Science Foundation.
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(Original) (Frangi) (Second Order) (Fourth Order)

Fig. 1. Original image stack and its segmentation result for a false positive rate of
10−2 for three different methods: Frangi’s non-linear relationship on the eigenvalues
of the hessian [2], our methodology with second order features, and our methodology
with fourth order features. As it will be demonstrated later, the fourth order method
outperforms the other two ones.

Most automated approaches to finding linear structures in image stacks as-
sume them to be locally tubular and model them as generalized cylinders. The
most popular one involves computing the Hessian matrix at individual voxels
by convolution with Gaussian derivatives and relying on the eigenvalues of the
Hessian to classify voxels as filament-like or not [3,2,4]. The Hessians can be
modified to create an oriented filter in the direction of minimum variance, which
should correspond to the direction of any existing filament [5,1]. To find fila-
ments of various widths, these methods perform the computation using a range
of variances for the Gaussian masks and select the most discriminant one. The
fact that intensity changes inside and outside the filaments has also been explic-
itly exploited by locally convolving the image with differential kernels [6], finding
parallel edges [7], and fitting superellipsoids or cylinders to the linear structure
based on its surface integral [8,9].

All these methods, however, assume image regularities that are present in
high-quality images but not necessarily in noisier ones. Furthermore, they often
require careful parameter tuning, which may change from one data-set to the
next. As a result, probabilistic approaches able to learn whether a voxel belongs
to a filament or not have begun to be employed. Instead of assuming the filaments
to be cylinders, they aim at learning their appearance from the data. In [10], the
eigenvalues of the structure tensor, are represented by a mixture model whose
parameters are estimated via E-M. Support Vector Machines that operate on
the Hessian’s eigenvalues have also been used to discriminate between filament
and non-filament voxels [11].

The latter approach [11] is closest to ours in that it also relies on the statistical
learning paradigm. However, its ability to generalize is limited by the fact that
it still relies on the eigenvalues of the Hessian and therefore on second order
derivatives, whereas using higher-order derivatives gives us access to a much
richer descriptor.
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As shown in Fig. 2, our method outperforms one of the very best Hessian-
based methods [2]. Interestingly, this stops being true if we limit it to using only
second-order derivatives as opposed to fourth-order ones and our results actually
become worse. In other words, these higher-order derivatives are required to take
full advantage of the statistical-learning framework that has been advocated
in the literature [10,11]. Furthermore, steerable filters provide a very effective
framework to do this robustly. We view this observation as the main contribution
of the paper.

2 Method

To demonstrate that higher-order derivatives provide better descriptive power
at an acceptable computational cost, we rely on 3–D steerable filters [1] to create
rotationally invariant feature vectors that can be used to classify voxels as being
part of a dendrite or not. In practice, to achieve rotation invariance, we compute
a local orientation and use it to steer the filters and to create the feature vectors
corresponding to a reference orientation. In other words, we rotate the feature
vectors to a reference orientation.

In the remainder of this section, we first recall the basic theory of steerable
filters. We then show how we use them to create feature vectors given a local
orientation estimate. Finally, we discuss how we use these feature vectors to train
the classifier we use at run time to detect filament-like voxels.

2.1 Steerable Filters in 2–D and 3–D

Steerable filters were introduced as an efficient means to compute filters that
can be rotated to any orientation for a small computational cost [12]. In three
dimensions, steerable filter based detection of a feature g in a volume f at a
given orientation and position u = (x, y, z), is formulated as:

r = f(u) ∗ g(Rθ,φu), g(Rθ,φu) =
∑

l

bl(θ, φ)gl(u), (1)

where θ and φ parameterize the orientation of the feature template in spherical
coordinates, Rθ,φ is the 3–D rotation matrix, and r is the response. The func-
tions b(θ, φ) are trigonometric polynomials that interpolate the templates gl(u).
This decomposition decouples the rotation of the filters from the convolution in
Eq. (1), which makes the estimation computationally efficient.

The best known class of such filters, and the ones used in this paper, are Gaus-
sian derivatives and their linear combinations [13]. To preserve the separability
of the resulting kernels, we limit ourselves to diagonal covariance matrices. Let
Gσ denote the isotropic Gaussian kernel of variance σ centered at the origin. Let
Gσ

m,n,p denote it mth derivative with respect to x, nth derivative with respect to
y and pth derivative with respect to z.

∀u ∈ R
3, Gσ(u) =

1
(2πσ2)3/2 exp

(
−‖u‖

2

2σ2

)
, Gσ

m,n,p =
∂m+n+pGσ

∂xm∂yn∂zp
. (2)
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The rotation equations for a filter that is formed by a linear combination of
Gaussian derivatives is:

bm,n,p(θ, φ) =
m∑

i=0

n∑
k=0

p∑
q=0

i∑
j=0

k∑
l=0

m!n!p!(−1)i−j+p−q

(m− i)!(i− j)!j!(n− k)!(k − l)!l!(p− q)!q!

cos(θ)m−i+j+k−l cos(φ)m−i+n−k+q sin(θ)i−j+n−k+l sin(φ)j+l+p−q

am−i+n−k+p−q,i−j+k−l,j+l+q (3)

where am,n,p is the coefficient that multiplies Gσ
m,n,k at the reference orientation.

2.2 Feature Vectors

We take the features vectors to be the convolution of the volume f with the set
of templates Gσ

m,n,p of normalized energy,

vσ(f,u) =
(
f ∗

[
Gσ

1,0,0

E1,0,0
,
Gσ

0,1,0

E0,1,0
,
Gσ

0,0,1

E0,0,1

Gσ
2,0,0

E2,0,0
· · ·

Gσ
0,0,M

E0,0,M

])
(u) , (4)

where Ei,j,k is the energy of the Gσ
i,j,k function. These feature vector are equiv-

alent to a steerable filter, and therefore can be steered to any orientation using
Eq. (3).

2.3 Training and Detection

During a training phase, we use ground truth data for which the orientation
is provided to train an SVM classifier. Then, to classify a voxel at run-time,
we compute the local orientation to rotate the feature vectors to the reference
orientation. Finally, the classifier is used to output the likelihood of the voxel
belonging to the neuron.

The training data consists of quadruplets that include a 3–D location u in an
image stack, two orientation angles θ and φ, and a single bit indicating whether
it is a positive or negative sample. Formally, the training set can be written as

S = {(u1, θ1, φ1, 1), . . . , (uN , θN , φN , 1),
(uN+1, θN+1, φN+1, 0), . . . , (u2N , θ2N , φ2N , 0)} (5)

where the first N quadruplets represent the positive samples and the following
N the negative ones.

The positive samples are taken from ground truth data. Negative samples are
taken from two populations. The first one includes points closer than a given
radius to the dendrites but not belonging to them, the second one are points
taken at random in the whole volume, but not belonging to the neuron. The
local orientation of negative points is given by the same algorithm as the one
used during detection, which in our case is the steerable filters optimized using
Canny criteria for filament detection of [1].
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For each of the training points, the feature vector is computed and rotated
back from its labeled orientation. Let vθ,φ be the feature vector rotated by angles
θ and φ. The set of samples used for training is

V = {(v−θ1,−φ1
1 , 1), . . . , (v−θN ,−φN

N , 1), (v−θN+1,−φN+1
N+1 , 0), . . . , (v−θ2N ,−φ2N

2N , 0)} .
(6)

After training an SVM, the detection score for a voxel u at orientation θ, φ
becomes

Ψ : R
D → R , ψ(u, θ, φ) =

N∑
n=0

an κ
(
vn, v

−θ,−φ(u)
)

+ b , (7)

where κ is the standard Gaussian kernel, the variance ν of which is obtained by
minimizing the error on a validation set.

At run-time, to classify a voxel as belonging to a filament or not, we need
to estimate the orientation of that filament if it exists. In standard Hessian
methods, this is done by computation the eigenvectors of the Hessian matrix.
However, there is no obvious method to do the same using our feature vectors.
To derive the orientations we need, we therefore use a modified linear Hessian
method that relies on second-order steerable filters optimized according to the
Canny criterion [1]. We have found empirically that the orientations it returns
allow us to achieve better performance than when using other methods.

3 Results

In this section, we show that using fourth order steerable features allow us to
detect dendrites more accurately in brightfield microscopy images than second
order methods. We compare our method to both [2], which we believe to be one
of the best Hessian-based methods, and to our own algorithm constrained to use
only second-order derivatives. The ROC curve of Fig. 2 summarizes our findings.

The dataset used for these comparisons consists of two image stacks of neurons
imaged using standard brightfield microscopy and the associated ground truth
data. The first is used for training and validation and the second for testing.
Fig. 1(Original) is a 3–D minimum intensity projection of the test stack. Cross-
sections in the XY and XZ planes are shown in Figs. 3 and 4. In Fig. 4, please
note the cone of shadow cast by the dendrites, which causes problems to second
order filament detectors.

In the remainder of this section, we first describe implementation details of
the training and detection procedures, and offer a more in-depth analysis of our
results.

3.1 Training and Detection

For training we used as positive samples 2500 hand-labeled voxels and their as-
sociated orientations, and 2500 more for validation purposes. In addition, we
collected 1250 negative samples around the neuron and 1250 chosen at random,
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Fig. 2. ROC curve for several methods. The presented method of order four outper-
forms the method of Frangi [2] and our algorithm constrained to second order features.
The improvement is due to the use of fourth order features, which allows us to emcom-
pass a higher frequency signals. Please not the logarithmic scale in the false positive
rate.

(Original) (Frangi) (Second Order) (Fourth Order)

Fig. 3. Detail of one of the images in the stack. We compare our detector using features
of order four and two against that of Frangi [2]. In red we show true positives, in green
false positives and in blue false negatives. The false positive rate is fixed to 10−2. Our
second-order detector fails to detect some filaments and is more sensitive to the shadow
casted by the dendrites. However, our fourth order filter outperforms the second order
Hessian-based method of Frangi. False positives for our method are clustered around
the true dendrite locations, and the true positive rate is incremented from 67.7% to
74.5%.

but not belonging to the dendrites. The orientation of the negative samples is
taken from the output of the orientation predictor [1], using same scale as the
one used to compute the feature vectors. We use the method of [1] to compute
the orientation as it is a more elongated template than the Hessian and provides
a more accurate orientation estimation. During detection, the orientation is es-
timated using the same method as for assigning orientation to negative points.

3.2 Discussion

The ROC curve of Fig. 2 indicates that our fourth order filter outperform the
second order methods over the entire range of false positive rates. This comes
from the fact that fourth order derivatives can encompass higher frequency
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(Original) (Frangi) (Second Order) (Fourth Order)

Fig. 4. Detail of the YZ projection of several filaments in parallel. As in Fig. 3, we
show true positives in red, false positives in green and false negatives in blue. Our
method produces ellipsoids centered in the true filament but bigger in size. This is due
to uncertainties in the training data. Frangi’s method [2] detects the real dendrites ac-
curately but produces many false-positives away from them. Our second order method
responds mainly to the shadow of the dendrite in this cross-section. Please note the
noise in the different images highlighted by the rectangles.

signals. For example, this is what explains that our fourth order method avoids
confusion between the cone of shadow of the signal and the actual dendrite in
the difficult case of Fig. 4.

Our features are linear combinations of SVM kernel functions evaluated at the
support vectors. As we are using Gaussian kernels, these functions are smooth.
By contrast, [2] uses ratios between features. This creates a sharper detection
profile that makes the method more discriminative at low false positive rates
than ours when using only second-order derivatives.

4 Conclusion

In this paper we have presented an approach to detecting dendrites in 3–D image
stacks that outperforms state-of-the-art Hessian based methods in brightfield
image stacks. The performance gain is due to the use of a rich feature set made of
higher-order image derivatives. At the heart of our implementation are steerable
filters that let us rotate the feature vectors to a reference orientation and train
a classifier to recognize which ones correspond to dendrite voxels.

This approach is very generic because, instead of postulating a priori models
for the filaments we are looking for, our algorithm can learn specific appearance
models for each new situation. In future work, we will therefore extend our
approach to other imaging modalities in which the filaments break the perfectly
tubular structure assumption.

References

1. Aguet, F., Jacob, M., Unser, M.: Three-dimensional feature detection using optimal
steerable filters. In: Proceedings of the 2005 IEEE International Conference on
Image Processing (ICIP 2005), Genova, Italy, September 11-14, vol. II, pp. 1158–
1161 (2005)



632 G. González et al.
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Abstract. It is estimated that in 2010 more than 220 million people
will be affected by type 2 diabetes mellitus (T2DM). Early evidence in-
dicates that specific markers for alpha and beta cells in pancreatic islets
of Langerhans can be used for early T2DM diagnosis. Currently, the
analysis of such histological tissues is manually performed by trained
pathologists using a light microscope. To objectify classification results
and to reduce the processing time of histological tissues, an automated
computational pathology framework for segmentation of pancreatic islets
from histopathological fluorescence images is proposed. Due to high vari-
ability in the staining intensities for alpha and beta cells, classical medical
imaging approaches fail in this scenario.

The main contribution of this paper consists of a novel graph-based
segmentation approach based on cell nuclei detection with randomized
tree ensembles. The algorithm is trained via a cross validation scheme on
a ground truth set of islet images manually segmented by 4 expert pathol-
ogists. Test errors obtained from the cross validation procedure demon-
strate that the graph-based computational pathology analysis proposed
is performing competitively to the expert pathologists while outperform-
ing a baseline morphological approach.

1 Introduction

The computational pathology framework presented in this work aims at auto-
mated segmentation of type 2 diabetes mellitus (T2DM) islets. T2DM is a
chronically progressive disease which is characterized by hyperglycaemia, insulin
resistance, and insulin deficiency. Taken together, these factors lead to organ fail-
ure and the increased risk for cardiovascular diseases [1]. It is estimated that by
2010 there will be more than 220 million patients suffering from T2DM [2]. Thus,
the search for diagnostic and treatment of this disease is pushing forward at
tremendous speed not only in academia but in pharmaceutical industry as well.
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Currently, the diagnosis of T2DM includes the measurement of Hemoglobin
(Hb) A1c (normal: 4-6%, metabolic syndrome: 6-7%, T2DM: > 7%) which re-
flects the blood sugar levels [3]. As hyperglycaemia is a marker for the progressed
disease status most of the patients are diagnosed as T2DM when the disease
has already manifested. Therefore, the search for early T2DM and pre-diabetic
markers is of urgent need. From mouse and rat models it is known that the pan-
creatic islets of Langerhans, which consists of beta cells for insulin production,
increase in size to compensate the additional demand for insulin to maintain
normoglycaemic blood levels [4]. The same situation seems to be true in humans
as summarized in [5], hence indicating that pancreatic islet features could be
used as early T2DM markers.

Motivation: New targets for T2DM prediction, prevention, and treatment gen-
erated by the available in vitro and in vivo animal models need to be quantita-
tively analyzed by high-throughput screening and later verified in human tissue.
Therefore a computational pathology approach is necessary to be adopted. The
aim of an automated analysis pipeline is first the detection of cell nuclei and
second the segmentation of human pancreatic islets based on specific staining
for α and β-cells. The robust segmentation of islets is the basis for further quan-
tification of biomarkers regarding T2DM in human patients. Having correctly
isolated the islets, it is possible to extract features (e.g. area of the islet) and
test their ability to differentiate early T2DM patients and control cases.

Automated analysis of fluorescence images of human tissue poses two main
difficulties which are going to be addressed in this work. (i) The 3D structure
of the tissue leads to the problem that cell nuclei are not always perfectly cut
in their maximum dimension producing numerous cutting artifacts. It has to be
noted that this does not happen in applications with cell cultures or on blood
smears for which the large majority of image processing tools in this field is
developed. This problem is addressed in the presented work by training a robust
classifier for object detection in contrary to using morphological or watershed
based approaches. (ii) Variations in the production process of the histological
slices can lead to areas of different thickness within one section. This preprocess-
ing artifact produces not only blurred regions in the image but also illumination
variation which are even worsened by variations in the fluorescent staining pro-
cess. These problems are tackled by first using illumination invariant features for
the classifier, second by employing clustering for the α and β-cell classification
and third by facilitating a graph-based approach for the islet detection.

Tissue Preparation and Imaging: Human pancreatic tissue from either au-
topsies or biopsies were formalin fixed and paraffin embedded. Sections were cut
at a thickness of 2 μm and stored at 4o Celsius till use.

For immunofluorescence, sections were deparaffinized and stained with anti-
bodies specific for α and β-cells. Furthermore DAPI staining (DAKO, Carpen-
teria, CA) was used to label the cell nuclei. Fluorescence pictures were taken
with a resolution of 1376× 1032× 3 pixels and 20x magnification. Raw unedited
material was used in the analysis (Figure 1).
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Fig. 1. Human pancreatic tissue: Primary tissue is taken from either whole pancreas
from autopsies (I: normal pancreas, II: adenocarcinoma, III: spleen)(a) or biopsy re-
sectates. Sections from fixed and embedded tissue blocks are stained with specific
antibodies for β-cells (b), α-cells (c) and DAPI (d). Pictures b-d were taken with a
magnification of 20x.

Problem Formulation: From a computational viewpoint the input to the
pipeline consists of three fluorescence images: (i) DAPI-Channel → ID (staining
specific for cell nuclei detection), (ii) Alpha-Channel → Iα (staining specific for
α-cells) and (iii) Beta-Channel → Iβ (staining specific for β-cells).

The output of the algorithm is the segmented area that the pancreatic islet
of interest occupies. Prior information from expert pathologists is incorporated
in order to guide the search for a meaningful extraction of the islet area. The
domain knowledge can be summarized in two main hypotheses:

H1 : The islets are defined as an area with high density of α and β-cells, with
the α-cells being more specific in specifying the islet area.

H2 : There is only one islet of interest per image. In most of the images additional
structures are observed, such as smaller islets, disrupted islets or outliers due to
staining failures. The main goal is to extract only the dominant islet in each
image while excluding artefacts.

The distinct steps of the computational pathology pipeline are described in
detail in Section 2.

2 Methods

(2.1) Cell Nuclei Detection: Cell nuclei on DAPI stained images, ID, are
detected by following the approach in [6] which showed excellent results on
histopathological tissue with immunohistochemical staining. To generate a set
of positive and negative training patches of size 65×65, a domain expert labeled
two images from different patients. In addition to the selected cell nuclei their
rotated and flipped counterparts were added to the positive training set. The
negative class was down sampled to have a balanced training set. In total 1214
positive and 1214 negative samples were used for training.

For each of these samples a feature vector of length 281 was generated con-
sisting of local binary patterns (LBP) [7] and a histogram of gray scale values.
A great advantage of LBPs for this application is that they are illumination
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invariant, i.e. invariant with respect to monotonic gray scale-changes and there-
fore no gray-scale normalization or histogram equalization is needed.

Based on these features a random forests classifier [8] was learned to differen-
tiate between cell nuclei and background. A random forest classifier consists of a
collection of tree-structured classifiers {h(x, Θk), k = 1, . . .} where {Θk} are inde-
pendent identically distributed random vectors and each tree casts a unit vote for
the most popular class at input x. Random forests posses a number of advantages
over classical boosting approaches to object detection as described in [8] and [6].
One of them is the internal out of bag (OOB) error which provides an unbiased
estimate of the generalization error. For this application it is shown (supplement
Figure 1) that the classifier converges to an OOB error of about 3% after 25 trees.

Finally, to detect the nuclei we classified each pixel of the DAPI test images
to generate an accumulator map with a probability at each pixel for being a cell
nucleus or not. After non maxima suppression the detections within a range of
20 pixels were clustered to one final hit which is approximately the size of an
average nucleus. The output of this step consists of a list of the coordinates of
all detected cell-nuclei, xi ∈ R2, i = 1, . . . , N .

(2.2) Cell Nuclei Classification: The two channels accounting for the stain-
ing of α and β cells, Iα and Iβ respectively, are segmented into background
and staining using k-means clustering (with k = 2 classes) on the intensity his-
tograms. In order to classify each detected nucleus from step (2.1), a neighbor-
hood of 10×10 pixels at the nucleus center is considered. The nucleus is classified
based on a majority voting scheme of the segmented binary pixels in the patch
of each channel Iα, Iβ . If there is strong evidence provided from the segmented
staining of channel Iα (Iβ) then the nucleus is classified as α-cell (β-cell), other-
wise we characterize it as “normal” cell. Thus, tuples of coordinates plus labels
for all detected cells of the previous step are obtained : (xi, yi), yi = {α, β, n}
This approach mimics the workflow of the pathologists by first detecting all cell
nuclei and then classifying them to their respective classes based on the intensity
of the class-specific staining around each nuclei.

(2.3) Graph Construction: Based on the main hypothesisH1, a neighborhood
graph on the identified α and β-cells is constructed, in such a way that clusters
of cells correspond to connected components of the graph. Regions of the image
with high cell density will be represented by a unique connected component in the
graph. This construction is motivated in [9], where theoretical aspects of clustering
with nearest-neighbor (NN) graphs are explored. In general this task can be solved
either by constructing a knn graph or an ε-neighborhood graph. Empirical results
showed that for this specific task of islet detection, the latter graph performed
better, mainly because ε ∈ R+ allows for more flexible structures.

Hence, given the set V of α and β-cells detected in the previous steps the
ε-neighborhood graph G = Geps(V, ε) is constructed, such that two nodes xi,xj
are connected with an edge iff ||xi − xj||2 ≤ ε. The euclidean distance is an
intuitive choice for this problem setting, because it captures the local structure
of cell proximities in the images.
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(2.4) Islet Selection and Segmentation: Given the constructed graph Geps,
clusters of α and β-cells are identified by isolating the connected components
of the graph. Under the hypotheses H1 and H2, the largest cluster corresponds
to the islet of interest. Therefore the largest connected component Gislet of
graph G is extracted, as a first crude approximation of the islet area. This first
approximation depends on the parameter ε of the graph construction, and can
be viewed as the computational equivalent of an expert focusing in the densely
stained regions of the image trying to get a first impression of the islet location.
Furthermore, it acts on the nuclei level and not on the staining intensities, thus
resulting in higher robustness.

Based on the crude estimation of the islet boundaries, an active contour
scheme is employed, in order to refine the detected islet area. The basic idea
in active contours, [10], is to evolve a curve, subject to constraints based on the
given image, in order to detect objects in the image. In the proposed pipeline,
we apply the model described in [11], which does not use an edge-detector to
stop the evolving curve in the boundary, hence does not depend on the gradient
of the image. Furthermore it is shown to be quite effective under the presence of
noise and does not require any preprocessing (e.g. smoothing) of the initial im-
age [11]. As motivated above, we initialize the curve on the convex hull of Gislet

and apply it on the superposition of the two stained channels Iα + Iβ in order
to refine the boundary of the islet. The active contour model used, is governed
by two parameters, (s, r), with s ∈ R+ controlling the smoothness of the active
contour and r ∈ N the number of iterations. The proposed initialization of the
active contour is beneficial in two ways: (i) Active contours schemes are known
to be sensitive in the curve initialization. A meaningful initialization is provided,
tailored to the specific problem and (ii) starting close to the islet boundary also
reduces the computation time needed.

The algorithm outputs a binary mask, Iseg
islet (of the same size as the input

channels), which corresponds to the detected area of the human islet. The whole
pipeline is governed by a tuple of parameters θ = (ε, s, r). Based on this segmen-
tation it is possible to automatically extract all biologically meaningful features
that can be used as predictive markers for early T2DM, e.g. islet area, staining
intensities, fractions of α and β-cells in the islet. Furthermore, the automatically
extracted segmentation results are compared with manually segmented islets
from expert pathologists in order to assess the algorithm performance against
an objective ground truth.

Baseline method: According to our knowledge, there are no published ap-
proaches to the specific problem of pancreatic islet segmentation on histopatho-
logical tissue. The absence of a competing method was partially compensated
by the construction of a baseline morphological approach which also exploits
the prior knowledge on the islet segmentation, captured by hypotheses H1 and
H1. The steps of the baseline method can be summarized as follows: (i) smooth
the input staining I1 = Iα + Iβ using a gaussian filter, (ii) globally threshold
I1 to obtain a coarse segmentation, thus I2 = I1 ≥ t, (iii) remove small holes
by calculating the closing of I2 → I3, (iv) extract the biggest contiguous region
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from I3 and return this as the detected islet Iseg
islet . An alternative version has

an extra step (v) where in addition an active contour is initialized with Iseg
islet as

in step (2.5) of the proposed pipeline. Similarly to the proposed approach the
main parameters form a tuple θ = (t, s, r).

Statistical Evaluation: Given the binary mask of the algorithmic segmen-
tation (Iseg

islet) and the manually segmented islet from the expert pathologist
(Iman

islet ) the cell nuclei agreement between the two masks is calculated. For ex-
ample, TP = #cells ∈ {Iseg

islet ∧ Iman
islet }, FP = #cells ∈ {Iseg

islet ∧ ¬Iman
islet } etc.

From the error counts we extract common evaluation metrics, such as Precision
(P = TP

TP+FP ), Recall (R = TP
TP+FN ) and F-measure (F = 2× P×R

P+R ).

3 Results

The training set consists of 18 triplets of images (three stained channels) corre-
sponding to two patients with T2DM and one control case. Four expert pathol-
ogists independently segmented the islet of interest for each of the images in the
training set. For each one of the 18 training cases we calculated the consensus
over the 4 experts, thus obtaining a consensus ground truth. This enables us
to compare the performance of the algorithm against a “consensus” expert, but
also to estimate the intra-pathologist labeling agreement.
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Fig. 2. (a) F-measure box plots (from left to right: pathologists, proposed algorithm,
baseline with active contours (AC) and baseline without AC). The proposed pipeline
performs comparably to the pathologists in terms of F-measure when compared to the
expert consensus. Furthermore, the test error variance is low. Both baseline methods
fail to achieve consistent segmentations as they perform well in some instances, but
fail to segment properly a large number of cases in each cross validation fold. (b) ROC
curves for parameter ε of the graph construction, keeping s fixed and equal to 0.2 and
setting r equal to 100 (dashed line) and 500 iterations (continuous line).
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A cross validation scheme was employed to compare the algorithmic ap-
proaches to the gold standard, i.e. the consensus of the pathologists. More specif-
ically, a 3-fold cross validation is used, where in each fold the algorithm is trained
on 12 cases (choosing the parameter values that minimize the error) and then
the generalization performance is tested on the other 6 that are left aside as a
validation set. For the pathologists, each one of them is compared against the
consensus segmentations. It has to be noted that since the pathologists’ seg-
mentations are considered as the gold standard, the computational pathology
approaches cannot perform better than the experts. The results are depicted in
Figure 2(a).

Regarding the individual experts’ annotations we observe that they are very
close to the consensus ground truth (with an average F-measure of 0.97) and
exhibit quite low variance. Such a high performance is expected since by con-
struction the ground truth labels are computed by averaging the individual ones.
The proposed algorithm performs comparably to the pathologists (with an av-
erage F-measure of 0.92 across folds) keeping also the variance in a reasonable
range. On the other hand both baseline methods (with and without the active
contour module) are outperformed by the graph-based segmentation in terms of
the F-measure. Furthermore, we observe that the baseline segmentations exhibit
high variance, which indicates also a tendency to generalize poorly to new data.

In Figure 2(b) a specific instance of a ROC curve is plotted to evaluate the
performance of the proposed algorithm with respect to parameter ε which con-
trols the graph construction and thus the initial key step of islet segmentation.
More specifically parameter s, which controls the smoothness of the boundary,
is kept fixed and for two values of parameter r, the number of iterations the
active contour is updated (r = 100, 500), the true positive rate (TPR) is plotted
against the false positive rate (FPR) over a wide range of parameter ε. At a first
glance a complex behavior is observed for the large number of iterations in the
active contour evolution (r = 500). For increasing values of ε, vertical ascents
are observed in the plot where FPR stays the same and TPR increases. Further-
more, for some sequential increases of ε the FPR increases while TPR decreases,
a behavior which is not usually observed in ROC curves. Both phenomena can
be explained if we keep in mind that parameter ε does not directly affect the fi-
nal segmentation, since the active contour based boundary refinement is applied
in between. Increasing ε adds more nodes to the graph, thus increasing the ini-
tialization area. However if the active contour algorithm performs an adequate
number of iterations it will dominate and converge to the islet, hence filtering
out the false positive cells. A more balanced behavior is observed for a smaller
number of iterations, where for increasing values of ε, in most of the times, both
TPR and FPR are increased.

4 Conclusion

The computational pathology system presented in this work is able to, objec-
tively and automatically, estimate the boundaries of human pancreatic islets.
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The whole pipeline is transparent, modular and based on explicit hypotheses
describing the domain knowledge. To the best of our knowledge this is the first
framework that successfully tackles this specific segmentation problem. Cross
validation results indicate that the algorithm performs competitively to human
experts. Having a reliable pipeline to detect and isolate pancreatic islets from
human histological tissue, enables researchers to test specific hypotheses regard-
ing T2DM. We are convinced that the proposed framework can be the basis for
further research regarding T2DM and that it can significantly assist the search
for diagnostic and therapeutic markers.
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Abstract. We consider the problem of segmenting 3D images that contain a
dense collection of spatially correlated objects, such as fluorescent labeled cells in
tissue. Our approach involves an initial modeling phase followed by a data-fitting
segmentation phase. In the first phase, cell shape (membrane bound) is modeled
implicitly using a parametric distribution of correlation function estimates. The
nucleus is modeled for its shape as well as image intensity distribution inspired
from the physics of its image formation. In the second phase, we solve the seg-
mentation problem using a variational level-set strategy with coupled active con-
tours to minimize a novel energy functional. We demonstrate the utility of our
approach on multispectral fluorescence microscopy images.

1 Introduction

Researchers in embryogenesis and cancer rely on automated segmentation of cells to
understand the complex processes of tissue morphogenesis. Cell segmentation involves
uniquely identifying fluorescent marked cells and organelles, such as nuclei, that are
spatially correlated but whose position, number, and geometry must be determined [1].
The problem is complicated by individual variations in intensity, geometry, relative
orientation and overlapping boundaries (Fig. 1).

A new aspect of the segmentation problem relates to fusing information of related
structures present in multiple imaging channels. Current microscopes support high res-
olution imaging of as many as 32 separate channels containing information on uniquely
tagged organelles. High throughput time-lapse imaging coupled with image analysis is
now viewed as a tool to understand embryonic development by tracking every single
cell to its ultimate fate. Therefore, segmentation tools must also be generic tracking
solutions, possibly in a real-time environment coupled to the imaging.

The presence of millions of cells in dynamic imagery calls for the usage of models
to drive the segmentation process. The models may be biologically inspired (packing,
spatial distributions, mixing fractions, etc.), geometrical (shape, size, symmetry), or
based on the physics of image formation (point spread function of the optics) [1]. Volu-
metric representations of objects, such as active contours, provide a natural mechanism
to integrate multiple models elegantly into a segmentation exercise [2, 3].

In this paper, we develop a novel fitting energy functional based on our proposed
geometric and image formation models. By representing a cell as a pair (membrane +
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Fig. 1. Left: A 3D view of the zebrafish hind-brain showing a dense collection of cells. The cell
membranes are marked in red, and nuclei are in green colors. Middle: A zoomed x− y image
plane showing arrangement details of nuclei within membranes. Right: An x− z section showing
poor structural resolution of the membranes along the z-axis.

nucleus) of active contours, we invoke the variational level-set methodology to obtain
segmentations. We also employ spatial data structures to scale our methods to large
datasets of the zebrafish embryogenesis process containing millions of cells. For the
rest of this paper, we describe the proposed theory simultaneously with appropriate
related work for the sake of clarity.

2 Theory and Computational Models

For notational convenience, let Im : Ω → [0,255] and In : Ω → [0,255] denote the
observed membrane and nuclear images. We assume that there are M observed cells
(membrane bound with nucleus). For a cell i, the membrane is defined on ψi ⊂ Ω
and the nucleus is defined on φi ⊆ ψi. The background in Im and In are defined as
ψout = Ω −⋃M

i=1 ψi and φout = Ω −⋃M
i=1 φi respectively. Finally, let Nμ,Σ denote a

Gaussian distribution with mean μ and standard deviation Σ .
Brief Overview: The membrane intensity volume is sampled with 2-point correlation

functions to produce a “correlation” image (Sec. 2.1). This correlation image is modeled
as mixture of 3D spatial Gaussian functions. Additionally, the nucleus is modeled for
its geometric shape as well as its intensity profile. The nucleus is given by a Gaussian
shape function with constant intensity distribution within. An energy function is set up
to fit the observed image data to these models, and its minimization leads to optimal
settings of model parameters.

2.1 Appearance Models

Correlation Functions for cell shape: Membrane data is generated by tagging a flu-
orescent marker to point samples on cell surfaces. During imaging, the point spread
function marks the membranes as thin, wispy foam structures. The data inherently has
a poor SNR, creates bias fields in dense locations, and contains missing foam segments.
Poor optical slicing resolution along the z-axis creates discontinuities in the structure
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(a) (b) (c) (d)

Fig. 2. (a) A thresholded image of the cell membrane showing the pcf sampling at a cell center
(red) and on the periphery (green) of a cell. (b) The corresponding 2-pcf feature image is shown
in the presence of binarization noise. (c) A typical nucleus with oblong shape (blue). (d) Plots of
the intensity profile along a 1D cross-section are shown with a constant intensity and Gaussian
function fits indicated in green and blue, respectively.

thereby preventing the usage of explicit geometric models to fit intensity data. A more
viable option is to implicitly model the 2-point correlation function (2-pcf) of the mem-
brane volume [4]. Note that the membrane structure is located in the catchment basin of
the 2-pcf image whose estimation is first described. Assume the presence of two mate-
rials in the image Im, say, 0 (background) and 1 (membranes) as shown in Fig. 2(a). Any
line segment when placed in the image has its end-points located in four different con-
figurations, namely {(0,0), (0,1), (1,0), (1,1)}. The 2-pcf Pk

i, j : Ω → [0,1] at any point
p ∈ Ω measures the correlation of the end-points of a line segment of given length k
with end-point in configuration (i,j). The following properties hold true: (i) ∑i, j Pk

i, j = 1,

(ii) Pk
01 = Pk

10, (iii) Pk
00 + Pk

01 = f0 and (iv) Pk
10 + Pk

11 = f1, where parameters f0 and f1

represent the volume fractions of the individual phases. The 2-pcfs are computationally
estimated by sampling the neighborhood of a point x ∈ Ω with randomly oriented line
segments of constant length k and noting the frequencies of different configurations. We
are interested in configurations where both end-points lie on the membrane, i.e. (1,1).
In Fig. 2(b), the pcf P4

1,1 is shown as an image. The value of k is chosen to be equal to
the average diameter of cells (4 μm) in this specific case.
Cell model: Let Ci represent the ith cell with attributes of peak intensity ai, location
μi ∈Ω , and its domain Σi. Assuming that 2-pcf values fit a mixture model of Gaussian
cell functions, for p ∈ ψi we write Ci(p) = aiNμi,Σi(p) and 0 elsewhere.

Nucleus shape and distribution: The nucleus has a convex geometric shape contain-
ing a fluorescent marker tagged to DNA proteins (Fig. 2(c)). Ideally, the marker is uni-
formly distributed within. During imaging, the point spread function (PSF, say P) of
the instrument combines light sources from neighboring voxels to produce a blurred
image that is computationally equivalent to a convolution operation I ∗P . The nucleus
boundaries have an intensity gradient while retaining a constant intensity profile well
within (Figs. 2(c)-(d)).

Nucleus model: Suppose g(.) is a thresholded image of the gradient magnitude image
as given in Eq. 1. Let Ni(p) denote the intensity profile of the ith nucleus given by the
piecewise sum of a constant intensity region (ci) with a Gaussian function at boundaries.
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g(p) =

{
1 if |Gσ ∗ I(p)|> Γ ,
0 else.

Ni(p) = g(p)aiNμi,Σi(p)+ (1−g(p))ci (1)

2.2 Variational Level Sets

Related Work: In [5], Mumford and Shah formulated the image segmentation problem
as follows: given an image I, find a contour S which segments the image into non-
overlapping regions. They proposed the following functional:

FMS(u,S) =
∫

Ω (u− I)2d p+
∫

Ω\S |∇u|2d p+ μ |S| (2)

where S is a contour that segments the original image I and u is a piecewise smooth
approximation of I. The first term computes the difference in intensities between u and
I while the second term ensures the smoothness of u everywhere except on the contour
S. The last term is a regularization for selectively obtaining smooth contours of S with a
user-defined weight μ . In practice, it is difficult to minimize this functional since there
are no bounds on shape/topology of the unknown contour S of lower dimension and the
non-convexity of the functional. Later, Chan and Vese [2] proposed an energy that is a
piece-wise constant (PC) approximation of their functional:

FCV (S,c1,c2) = λ1
∫

φin
|I− c0|2d p + λ2

∫
φout

|I− c1|2d p + μ |S| (3)

where φin/φout are regions inside/outside of contour S, and c0 and c1 are two scalar con-
stants that approximate the image intensities. The first two terms are often referred to
as global binary fitting energy terms that seek to separate an image into two regions
of constant image intensities. The last term is a regularization for selectively obtaining
smooth contours. In an orthogonal development, Vese and Chan [6] extended their sin-
gle level-set model to a multiphase model for segmenting multiple objects in images.
This extension is applied in our work as well.

The piecewise smooth (PS) models such as [6] have overcome the difficulties of the
PC models in the presence of smooth intensity variations. These models assume that
the intensity function can be approximated by smooth functions inside and outside the
contours and therefore, can correct intensity inhomogeneities [7]. These models do not
capture spatial intensity distributions that characterize geometric image objects (for e.g.
biological cells), which is of our interest.

Proposed active contour models: Based on our appearance models in Secs. 2.1 and 2.2,
we define the following energy functions:

Fm(S,αm,μm,Σm) = λ1,m ∑M
i=1

∫
ψi
|Ci−Pk

11|2d p + λ2,m
∫

ψout
|P|2d p + μ1,m|S|

Fn(S,αn,μn,Σn,c) = λ1,m ∑M
i=1

∫
φi
|Ni− In|2d p + λ2,m

∫
φout

|In|2d p + μ2,m|S| (4)

where λ ’s, and μ’s are positive user-defined weights and (αm,μm,Σm,c) are vectors of
model parameters for each cell/nuclei. In both equations, the first term is a summation
across all cells that measures the fit of the model to observed data inside the contour.
The second term fits the observed background to 0 outside the contours. Note: The rest
of the analysis will neglect λ ’s, and μ’s (= 1) and consider the case when M = 1.
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(a) (b) (c) (d)

Fig. 3. (a) Rectangular regions of 2× cell diameter placed around cells to optimize calculations
and limit memory usage. (b) Gaussian blob tracking using the CV method. (c) Gaussian blob
tracking using the proposed method. (d) Comparisons of mean intensities (top) and observed
blob sizes (bottom) across 21 time-points. Changes observed in CV method (blue) as compared
to our method (red) during collision.

In level-set methods, a contour S ⊂ Ω is represented by the zero level-set of a Lips-
chitz function φ : Ω → ℜ. Using level-sets and Eq. 1, the above energy functionals are
expanded as:

Fm(φm,αm,μm,Σm) =
∫

Ω
|αmNμm,Σm −Pk

11|2H(φm)d p +
∫

Ω
|P|2H̃(φm)d p

+
∫

Ω
δ (φm)|∇φm|d p + O(φm,φn) (5)

Fn(φn,αn,μn,Σn,c) =
∫

Ω
g|αnNμn,Σn − In|2H(φn)d p +

∫
Ω

(1−g)|c− In|2H(φn)d p

+
∫

Ω
|In|2H̃(φn)d p +

∫
Ω

δ (φn)|∇φn|d p + O(φm,φn) (6)

where H is the Heaviside function, and H̃(.) = 1−H(.). In order to encourage the
nucleus (φn) to remain coupled within the membrane (φm), we add the overlap term
O(φm,φn) = ν

∫
Ω H(φn)H̃(φm)d p to both energies. Note that when the nucleus is fully

within the membrane, this term vanishes and is maximized when it does not over-
lap. We gain considerable synergy by fusing two separate image channels. In order
to ensure the stable evolution of the level-set functions in both energy functions, we
add the distance regularizing term to penalize its deviation from a signed distance
function by Li et al. [8]. The deviation is characterized by the following integral
D(φ) =

∫
Ω

1
2 (|∇φ(p)|−1)2. Since Eq. 5 is a particular case of Eq. 6 when g(.) = 0, we

discuss the latter solution alone. This is a novel feature of our method in that it applies
uniformly to both nuclei as well as membrane segmentation.

Hε(x) =
1
2

(
1 +

2
π

arctan(
x
ε
)
)

δε(x) =
1
π

ε
ε2 + x2

∂φ
∂ t

=−∂F

∂φ
(7)

As in [2], the Heaviside and Delta functions in Eqs. 5-6 are approximated as in Eq. 7.
The minimization of energy is done by a Maximum Expectation procedure. For fixed
parameters (α , μ , Σ , c), we first solve the level-set evolution equation as the gradient
descent equation where ∂F

∂φ is the the first order functional derivative of the energy
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F . Then the minimizing parameters (α , μ , Σ , c) are determined for a given φ . Let
αNμ,Σ (p) = em·ut(p) where p = (x,y,z), m is the coefficient vector, and u(p) is the
trivariate monomial vector of order 2, i.e. u(p) = {xiy jzk; i+ j+k � 2}. The minimiza-
tion of the first term in Eq. 6 leads to a discrete least-squares problem:

m� = argmin
m ∑

p∈Ωin

g(p)
(
ln(I (p))−m ·ut(p)

)2 =
(
Mt ·M

)−1 ·Mt · y (8)

c =
∫

Ω (1−g(p))I(p)Hε (φ (p)) d p∫
Ω (1−g(p))Hε (φ (p)) d p

(9)

where M is a matrix of size 10× n with Mi j = ui(p j) (n is the number of pixels in set
{p ∈ Ωin|g(p) �= 0}); y is a vector of size n with yi = ln(I (pi)). At each iteration in
the level-set evolution, we solve a linear system via a Singular Value Decomposition
to compute the coefficients m�. The constant intensity minimizer c is determined as a
weighted average of pixel intensities as in Eq. 9. The multiphase case (M > 1) is solved
as in [3] where each nucleus/cell is represented by a unique level-set function.

3 Results and Discussion

The proposed method for detecting deformable correlated objects in 3D multichannel
intensity images was quantitatively assessed with both synthetic and real fluorescence
microscopy data. In all our experiments, for the sake of objectivity, we set λi = 1,
μi = 100, Γ = 45, and σ = 3 uniformly across all cells. Our goals are three-fold:

(1) Effectiveness of models: We show superior segmentation accuracies compared to
the multiphase Chan-Vese (CV) algorithm [2,6] that is devoid of any underlying models.
This shows that our models effectively represent underlying structures. First, we track
a pair of isotropic Gaussian blobs (α = 100,Σ = 10 pixel units) over 21 time-points as
they collide (center separation of 15 pixel units at t = 11) and move apart. We show
two time-points when they are closest and farthest apart for the CV and our method
(Figs. 3(b) and (c)). The CV algorithm segments cells until the closest point where the
cell contours do not represent the object shape truly. Our method recognizes the under-
lying Gaussian distribution and effectively fits the parameters even during close contact.
Note that the CV algorithm neglects the Gaussian tails. In Fig. 3(c), we show plots of the
mean intensity and sizes of the objects across time-points. Our algorithm (in blue) re-
spects the underlying Gaussian distribution and shape and hence maintains a consistent
size (larger) and mean (lower) across all time-points. Fig. 4(a) shows a 2D cellular mi-
crostructure constructed by modeling membranes using weighted Voronoi diagrams [9].
The nucleus model consists of randomly oriented and normally varying elliptic shapes
and intensities (150±75). The images (500×500×100) are convolved with an exper-
imentally determined PSF (0.15μm× 0.15μm× 0.75μm) and degraded with Poisson
(μ = pi) and Gaussian noise (0, pi) where pi is the pixel intensity. The CV method re-
sponds to absolute intensity values alone and spreads to neighboring cell regions leading
to their shrinkage (Fig. 4(b)). In Fig. 5, we tabulate the Dice metric computed on nuclei
and membrane segmentations separately for five phantom images (ground-truth) with
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(a) (b) (c) (d)

Fig. 4. (a) Phantom cell constructed from foam models, our proposed nucleus model and noise.
(b) CV segmentation with enlarged cell boundaries. (c) Segmentation with the proposed method
respects underlying intensity and shape distributions. (d) An instance of coupling benefits.

their with increasing noise levels. We apply {0.5,0.75,1,1.5,2} multiplicative factors
to pi for setting the mean and variance in our noise models. The Dice metric on two
segmentations A and B measures the ratio of their intersection (A ∩ B) to their union
(A ∪ B). The result of our method is shown in Fig. 4(c).

Fig. 5 shows the output of our algorithm on zebrafish spinal cells (Fig. 2(a)). These
datasets have pixel dimensions of 1024× 1024× 100, pixel spacings of 0.2× 0.2×
1μm3, file-size of 143MB, and contain 7896 detected cells. The algorithm took 63 min-
utes to execute, excluding the pcf calculations for the membrane channel. We devised a
novel way to validate our result using special staining protocols. While the entire mem-
brane channel was fluorescent tagged, only a few random nuclei (48) were selectively
tagged. This allowed us to segment cells using the membrane channel, and the nuclei
were estimated by setting the nucleo-cytoplasmic ratio to 0.7. In the spinal cells, cells
are mostly spherical with a centric-nucleus. The estimated nuclei were compared with
the scattered nuclei by an expert on the basis of correspondence (42 matches), total
number of cells found, visual inspection, and the volume distributions (not shown) ob-
served. The incorrect matches resulted from boundary cells with partial/broken
membranes and over-segmented large cells.

Fig. 5. Left: A 2D optical slice of zebrafish spinal cells with membranes and a few random nuclei.
Middle: Segmentation of the membranes with estimated nuclei. Right: Dice metric computed on
five phantom datasets for the nuclei and membrane segmentations separately.
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(2) Memory and running time optimization for high-throughput imaging: The per
iteration running time (O(M2|Ω |)) is a linear function of the number of cells (M), image
size (|Ω |) and the number of neighbors to each cell (potentially M). Two level-sets per
cell were evolved on Ω limiting it to ∼ 10− 25 cells in our real datasets. Using ROIs
of twice the cell diameter (of physical size S = 4μm radius as shown in Fig. 3(a)) and
kd-trees to hold ROI centroid locations leads to drastic reductions in peak memory as
well as running time (O(M|S| log(M))). The method was scalable to 7896 detected cells
in Fig. 5. Using the kd-tree for neighbor search led to a 38% speed-up per iteration.

(3) Synergy by coupling: In multichannel data, the coupling mechanism leads to better
segmentations in the presence of noise. In Fig. 4(d), we show a single zoomed instance
where superior segmentations result from using the membrane as well as the nucleus.

4 Summary

In this work, we formulated models that are convenient and intuitive for the practi-
tioner, namely the existence of a spatial intensity distribution correlated with shape and
combined them with cell morphology. We have presented a computationally optimized
framework for cell segmentation using variational active contours. A unique feature of
our method is the synergistic coupling of nuclear and membrane segmentation problems
into a single formulation. We successfully segment 3D + t confocal data on zebrafish
embryogenesis and provide comparisons with a well-known segmentation method.
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Abstract. Optical coherence tomography (OCT) is a non-invasive, depth re-
solved imaging modality that has become a prominent ophthalmic diagnostic
technique. We present an automatic segmentation algorithm to detect intra-retinal
layers in OCT images acquired from rodent models of retinal degeneration. We
adapt Chan–Vese’s energy-minimizing active contours without edges for OCT
images, which suffer from low contrast and are highly corrupted by noise. We
adopt a multi-phase framework with a circular shape prior in order to model the
boundaries of retinal layers and estimate the shape parameters using least squares.
We use a contextual scheme to balance the weight of different terms in the energy
functional. The results from various synthetic experiments and segmentation re-
sults on 20 OCT images from four rats are presented, demonstrating the strength
of our method to detect the desired retinal layers with sufficient accuracy and
average Dice similarity coefficient of 0.85, specifically 0.94 for the the ganglion
cell layer, which is the relevant layer for glaucoma diagnosis.

1 Introduction

Optical coherence tomography (OCT) is a novel non-invasive imaging modality which
provides depth resolved structural information of a sample. The resolution in OCT sys-
tems approaches that of histology; the lateral resolution is typically 10-20μm and the
axial resolution is typically ∼4μm [1].

OCT is a powerful tool for ophthalmic imaging and can be used to visualize the reti-
nal cell layers to detect and monitor a variety of retinal diseases, including degeneration
(thinning) of the retinal nerve cells layers due to glaucoma. OCT can be also adapted
for imaging rodent eyes in order to complement medical research and gene therapy to
combat retinal degeneration [2]. Fig. 1 shows a schematic of a rat’s eye and a typical
OCT depth profile of rodent retinal cell layers acquired in vivo. In this work, we de-
veloped an algorithm to automatically delineate the six retinal layers indicated in the
figure in order to track glaucomatous degeneration.

Manual OCT segmentation is tedious, time-consuming, and suffers from inter- and
intra-rater variability. Automated segmentation, on the other hand, holds the potential
to reduce the time and effort required to delineate the retinal layers and also to provide
repeatable, quantitative results. Several automated approaches have been employed in
OCT segmentation [4,5]. They mostly rely on pixel-level, edge detection algorithms

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 649–656, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. A schematic anatomy of a rat’s eye (right) is shown along with a typical OCT image (left)
presenting a horizontal retinal cross-section with the labels indicating the retinal layers. The red
box on the eye ball corresponds to the region which the image is taken from. The retina is divided
into the inner and outer retina (IR and OR respectively). IR consists of the retinal nerve fiber
layer, the inner ganglion cell layer (GCL), the inner plexiform layer (IPL), and the inner nuclear
layer (INL). OR encompasses the outer plexiform layer (OPL), the outer nuclear layer (ONL),
and the inner (IS) and outer (OS) segment photoreceptor layers [3].

such as the Canny-edge detector. Since OCT images are highly corrupted by speckle
noise, some pre-processing steps are usually performed to reduce the effect of noise.
The de-noising procedure, however, affects the sharpness of the edges which subse-
quently reduces the segmentation performance. Also, the conventional algorithms in
OCT segmentation do not consider the intensity inhomogeneity in the image which can
lead to inaccurate segments and inability to detect all layers. The predominant source of
this artifact is the blood vessels on the topmost retinal layer which absorb light strongly,
reducing the backscattered optical intensity of the underlying retinal tissue.

In this work, we propose a new method based on Chan–Vese active contour with-
out edges [6] to address the segmentation of intra-retinal layers in OCT images. To
the best of our knowledge, we are the first to segment OCT data using a multi-phase,
level-set Mumford–Shah model that incorporates a shape prior based on expert anatom-
ical knowledge of the retinal layers, avoiding the need for training. Our approach has
four main features. First, it can segment all intra-retinal layers due to the multi-phase
property of the algorithm. Second, we incorporate a shape prior term that enables the
algorithm to accurately segment retinal layers, even where the region-based informa-
tion is missing, such as in inhomogeneous regions. Third, our method is region-based
and performs well on noisy OCT images. Finally, our algorithm is robust and avoids the
re-initialization problem that is associated with the level set approach.

To achieve the needed accuracy and robustness for our application, we employ tem-
porally and spatially adaptive (i.e. contextual) weights. We include concentric circles
as a shape prior which mimic the true retinal layer structures and estimate the shape
parameter using least squares. The methodology of our work is described in detail in
Section 2. We apply the algorithm to 20 retinal OCT images acquired for both eyes
of four rats. To evaluate the segmentation method, in Section 3, we measure the simi-
larity between the automated segmentation with the ground truth manual segmentation
using the Dice similarity coefficient (DSC). We conclude this paper in Section 4, with
directions for future work to further automate our approach.
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2 Methods

Our objective is to segment a given OCT image, I : Ω −→ R, defined on the image do-
main, into R disjoint sub-regions which accurately label the retinal layers. The decom-
position of the image I, will be modeled using the level set framework as a set of R−1
signed distance functions (SDFs), φ . Further details of this representation are provided
in Section 2.1. To determine a segmentation, we developed an automatic, variational
algorithm, that minimizes the following specific energy functional:

E(φ) = λIEI(φ)+ λSES(φ)+ λRER(φ) (1)

Each term of the energy functional captures a separate aspect of the problem. EI , in-
corporates region-based information derived from the image. ES incorporates the prior
shape knowledge of the anatomy of retinal layers. ER is a regularizing term which keeps
region boundaries smooth and encourages each φ to be a SDF. Positive valued parame-
ters, λI , λS, and λR, weight the different terms.

2.1 Region-Based Energy Term

The first term of equation (1) follows the work of Chan et al. [6] and encourages each
region of the segmentation to have an approximately constant intensity. The intensity
of the ith sub-region will be approximated by the constant μi, and the spatial extent will
be represented by a characteristic function χi.

EI =
R

∑
i=1

∫
Ω

(I− μi)2χi dxdy (2)

By definition, each characteristic function takes the value 1 inside the region, and 0
outside. Following the approach of Mansouri et al. [7], each χi is represented using the
level set method as a function of R−1 SDFs, φ . Simply, χi is the region inside the zero
contour (zero level set) of the ith SDF, and outside all previous SDFs. The final region,
χR is the region outside the zero contours of all SDFs. Using this partitioning, we guar-
antee unambiguous segmentation of R regions using (R−1) SDFs. The characteristic
function for the ith region is defined as follows, using the Heaviside step function, H,
and delta function, δ [8]:

χi = H(φi)1−δ (R−i)

[
i−1

∏
k=1

(1−H(φk))

]
(3)

2.2 Shape Prior Energy Term

OCT images may not always be piecewise constant. Intensity inhomogeneity may ex-
ist in regions due to the “shadows” of blood vessels on the topmost retinal layer. To
compensate for these intensity inhomogeneities, we incorporated a shape prior term.
Based on prior knowledge of retinal anatomy, a circular shape prior is used to model
the retinal layer boundaries, and assists the algorithm when region-based information is
insufficient to segment a layer accurately. In our model, each circular prior will share a



652 A. Yazdanpanah et al.

common center point, but has a unique radius. The squared distance from a point, (x,y),
to the shape prior constraining the ith boundary, can be defined as:

Di(x,y) = [(x− cx)2 +(y− cy)2− r2
i ]

2 (4)

where (cx,cy) is the common center of the concentric layers, and ri is the radius of the
circular prior of the interface between the ith and the (i+ 1)th layer.

For each SDF φi, a shape constraint encourages the region boundary (the zero con-
tour) to lie on a circle, minimizing the squared distance of the zero contour to the prior.
Consequently, the shape term in the energy functional is:

ES =
R−1

∑
i=1

∫
Ω

Di(x,y)δ (φi(x,y))|∇φi(x,y)| dxdy (5)

The term, δ (φi(x,y))|∇φi(x,y)|, selects out the zero contour of φi. This causes the shape
term to have a non-zero value only on the region boundaries, and the term ES is mini-
mized when φi lies exactly on the circular shape.

The shape parameters, cx, cy and ri for ES are defined using a least square fit, with
φi and μi held fixed. For this purpose, the parameter vector θ = [cx cy τ1 τ2 · · · τR−1]T

(where τi = r2
i − c2

x − c2
y) is estimated such that the error ε in b =Ψθ + ε is minimized,

where b and Ψ are determined by points (x,y) lying on R−1 boundaries.

2.3 Regularization Energy Term

Regularization termswereadded to keep theboundary of thesegmented layers smooth[6],
and φi as a SDF. Smooth boundaries are encouraged by adding a contour length term, and
φi can be kept close to a SDF by adding the penalty term of Chunming et al. [9]:

ER =
R−1

∑
i=1

∫
Ω

δ (φi(x,y))|∇φi(x,y)|+
1
2
(|∇φi(x,y)|−1)2 dxdy (6)

2.4 Minimization of the Energy Functional

By substituting the energy terms defined by (2), (5), and (6) in (1), and re–arranging
slightly, the minimization problem associated with our model is defined as:

inf
μi,φi

E =
∫

Ω

{
λI

R

∑
i=1

[
(I− μi)2χi

]
+

R−1

∑
i=1

[
Ai(x,y)δ (φi)|∇φi|+

1
2
(|∇φi|−1)2

]}
dxdy

(7)
where Ai(x,y) = λR + λSDi(x,y).

To minimize this function, we followed the approach of Chan et al. [6] and performed
an alternating minimization. First, we hold the SDFs fixed, and solve for the unknown
intensities μi:

μi =

∫
Ω

I(x,y)χi dxdy∫
Ω

χi dxdy
(8)
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Next, holding the intensities fixed, we use the Euler–Lagrange equation with respect to
φi, and parameterize the descent direction using an artificial time t:

∂φ j

∂ t
=−λI

R

∑
i=1

(I−μi)2 ∂ χi

∂φ j
+

[
∇A j ·

∇φ j

|∇φ j|
+A j div(

∇φ j

|∇φ j|
)
]

δ (φ j)+�φ j −div(
∇φ j

|∇φ j|
) (9)

where

∂ χi

∂φ j
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−H(φi))1−δ (i− j)δ (φ j)∏i−1
k=1(1−H(φk))1−δ (k− j) i �= R, j ≤ i

−δ (φ j)∏i−1
k=1(1−H(φk))1−δ (k− j) i = R, j ≤ i

0 i �= R,∀ j > i

(10)

Note that in practice, we must use regularized versions of H and δ to obtain a well–
defined descent direction. The regularization of Chan et. al [6] was used:

Hε(z) =
1
2

(
1 +

2
π

arctan
( z

ε

))
, δε(z) =

1
π

ε
ε2 + z2 (11)

2.5 An Adaptive Weighting of Energy Terms

Choosing “good” weights for energy terms in segmentation is an open problem, and
finding the correct tradeoff that results in a desirable segmentation is usually treated
empirically. In this work, we automatically adapt the weights both temporally and spa-
tially, i.e. the weights change with iteration number and along the spatial dimensions.
Intuitively, in early iterations, the region-based term should be more dominant, allow-
ing the curve freedom to evolve toward the boundary of each layer. As the algorithm
progresses, the shape term becomes more important to assist the algorithm when im-
age information is insufficient to segment the image. Therefore, we define λI and λS in
terms of the nth iteration as mentioned in [10]:

λI(n) = λI(1)− n(λI(1)−λI(N))
N

, λS(n) = λS(1)+
λS(N)−λS(1)

cosh[8( nπ
N −1)]

(12)

where N is the total number of iterations.
We also want the shape term to have a greater effect where intensity information is

missing, as in the inhomogeneous regions. Therefore, contextual information must be
utilized. By choosing the weight of the shape term proportional to the inverse of the
image gradient magnitude, we employ a spatially adaptive λS in each iteration. As a
result, the shape term has a higher weight than region-based term, for pixels on weak
edges. This also has the beneficial effect that image pixels with higher gradient (strong
edges) have a stronger influence when solving for shape prior parameters. More plainly,
the least squares fitting of the shape prior parameters is weighted by image gradient.

3 Results

3.1 Data Acquisition

Images used in this study were acquired using a custom spectrometer based Fourier do-
main (FD)OCT system. The FDOCT system operated at a central wavelength of 826nm
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and had an axial resolution of ∼4μm (in air). Non-invasive OCT imaging was per-
formed on four wistar strain albino rats. One eye on each rat underwent an axotomy
procedure (severing the optic nerve), the other eye was maintained as a control in or-
der to monitor retinal degeneration. The axotomy procedure is an accelerated model of
glaucoma and causes the retinal nerve fiber layer to thin as the ganglion cells die. Each
eye was imaged four times over a period of two weeks using OCT. All animal imag-
ing procedures were performed under protocols compliant to the Canadian Council on
Animal Care with the approval of the University Animal Care Committee at SFU.

3.2 Validation

To qualitatively evaluate the performance of our approach, we compared the segmen-
tation resulting from our method and from two other approaches, using the ground
truth manual expert delineations on 20 OCT images. We refer to our method as the ac-
tive contour without edge with shape constraint and contextual weights (ACWOE-SW).
The two other approaches are the classical Chan–Vese’s active contour (ACWOE) and
the ACWOE with shape constraint only (ACWOE-S). For each method, the parameters
were chosen to give the best results. Based on our experience, the initial and final values
for λI and λS were set as follows: λI(1) = 1, λI(N) = 0.5, λS(1) = 0, and λS(N) = 1.
λR was set to 0.1× 2552. For all layers, the initial curve was estimated based on three
points selected close to the interface of each layer. The same initialization was used for
the three methods in all our experiments. Maximum of N = 100 iterations were used
which guaranteed convergence in all our experiments. Fig. 2 shows an example of the
segmented results (red contours) for each method for a typical OCT retinal image along
with the expert ground truth segmentation. As shown, ACWOE-SW detects all 6 in-
terfaces between the retinal layer properly, revealing the performance of this model on
the images with intensity inhomogeneity. Even very thin layers, such as INL and OPL,
which are difficult to distinguish by eye, are segmented by the algorithm. In contrast,
ACWOE failed to segment the IPL, INL, and OPL layers due to the intensity inho-
mogeneity and low contrast of the image. ACWOE-S shows better segmentation than
ACWOE, but it still has poor performance in inhomogeneous regions.

To provide a quantitative evaluation of our approach, we measured the area similar-
ity between the manual and automated segmentation using DSC ∈ [0,1]; more accurate
segmentations correspond to higher DSC values. The average and standard deviation
of DSC for the different retinal layers for all images is summarized for our method

(a) ACWOE-SW (b) ACWOE-S (c) ACWOE (d) Manual

Fig. 2. Segmentation results for an OCT retinal image
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Fig. 3. (a) Segmentation results for different retinal layers. (b) DSC for different noise levels in
the synthetic data; the image intensity is normalized to range from 0 to 1.

(ACWOE-SW) as: GCL+IPL (0.94±0.012), INL (0.74±0.143), OPL (0.82±0.034),
ONL (0.93± 0.018), and IS/OS (0.82± 0.023). Fig. 3(a) provides a quantitative com-
parison between the DSC of ACWOE-SW for the 20 images versus ACWOE-S, and
ACWOE for different retinal layers. Our method is superior to the other approaches for
all the examined layers.

3.3 Noise Tolerance

In order to evaluate the robustness of our algorithm to noise, controlled synthetic retinal
OCT-like images were created with a known ground truth segmentation but corrupted
with varying degrees of additive white Gaussian noise. As shown in Fig. 3(b), the DSC
performance results reveal that adding a shape constraint to the energy functional makes
the algorithm more accurate than standard ACWOE, while remaining robust in the pres-
ence of noise.

4 Discussion and Conclusion

We developed an automatic iterative algorithm to segment low contrast OCT images
of rodent retinal layers. We used a multi-phase framework with a circular shape prior.
We have demonstrated that our approach is able to accurately segment all of the intra-
retinal layers, even given their small size and similar texture. Our approach also shows
an improved performance in regions with intensity inhomogeneity due to the inclusion
of shape prior constraint. We also introduced a contextual scheme to balance the weight
of different terms in the energy functional which makes the algorithm even more robust
when the image information is not sufficient to accurately detect layers. In addition,
ACWOE-SW is more accurate in comparison with other active contours in the presence
of noise. To demonstrate the robustness and performance of the algorithm, we applied
it to both synthetic data and retina images from rats. The experimental results showed
that we could classify the desired retinal layers. However, due to the various applica-
tions of OCT in diagnosis of retina diseases, we need a fully automatic segmentation
algorithm which is more acceptable in clinical applications. Therefore, in future work,
we will make the algorithm independent of the user by eliminating the dependency on
the position of the initial curve by adopting convex functionals. We also need to apply
our algorithm on a larger database from rats and assess the sensitivity of the algorithm
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with respect to the parameters and initial curve. Finally, we plan to expand our algo-
rithm to human OCT images. Migrating our ACWOE-SW method to segment human
retina images will require changing the shape prior to incorporate the foveal pit, but
otherwise is anticipated to provide similarly high accuracy segmentation results.
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Abstract. The lymphatic system is a common route for the spread of cancer and 
the identification of lymph node metastases is a key task during cancer surgery. 
This paper demonstrates the use of optical coherence tomography to construct 
parametric images of lymph nodes. It describes a method to automatically esti-
mate the optical attenuation coefficient of tissue. By mapping the optical  
attenuation coefficient at each location in the scan, it is possible to construct a 
parametric image indicating variations in tissue type. The algorithm is applied 
to ex vivo samples of human axillary lymph nodes and validated against a histo-
logical gold standard. Results are shown illustrating the variation in optical 
properties between cancerous and healthy tissue. 

1   Introduction 

Cancer is the second most common cause of death worldwide, accounting for 12.5% of 
all mortality [1]. During cancer surgery, a critical task is to assess the spread (metasta-
sis) of the cancer. The lymphatic system is a common route for metastasis. It is typically 
assessed by excising lymph nodes near the tumor and performing histo-pathological 
analysis. However, this results in the unnecessary excision of many healthy, uninvolved 
lymph nodes and can result in chronic disruption to the lymphatic system. For example, 
in breast cancer surgery, approximately 26% of patients undergoing local lymph node 
removal (axillary clearance) will suffer lymphedema. 

Optical coherence tomography (OCT) [2] is a high-resolution imaging modality. It 
is conceptually similar to ultrasound, but uses reflections of low-power, near-infrared 
light instead of sound waves. It is capable of imaging tissue with a resolution of ap-
proximately 10 microns, and has the potential to assess lymph node involvement in 
cancer in vivo [3]. However, the signal values in an OCT data set are not determined 
absolutely by the tissue. They are also a function of many imaging and experimental 
parameters, including tissue depth, power and incident angle of the light source, imag-
ing optics, and the effects of overlying tissue, including shadowing and refraction. For 
this reason, it is difficult to differentiate between image features due to the optical 
properties of a particular tissue type, and those due to imaging artifacts. 
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In this paper, we describe a method to differentiate tissues with differing optical 
properties in an OCT scan. Results are presented visually, as a parametric image in 
which intensity indicates the relative optical attenuation coefficient at a particular 
location. To the best of our knowledge, this is the first time that a parameterized OCT 
image has been generated in this manner. We present results from both phantom data, 
and cancerous and non-cancerous human lymph nodes. 

2   Methods 

2.1   Optical Properties of Tissue 

OCT acquires images of tissue structure by detecting the coherence-gated backscat-
tering of near infrared light. However, tissue is an optically turbid media and the sig-
nal attenuates and spreads with increasing depth, limiting the imaging depth of OCT 
to approximately 2-3mm. In OCT image formation, a focused light source is directed 
onto a particular location on the tissue and a depth scan is acquired in the z direction. 
Using terminology borrowed from ultrasound, this one-dimensional scan is referred to 
as an A-scan. A three-dimensional data volume is constructed by acquiring a se-
quence of A-scans at different x,y locations over the area to be scanned. 

Attenuation of the OCT signal can be modeled using Beer’s Law. The signal inten-
sity I(z) at a depth z can be expressed as follows [4]: 

I(z) = I0e
−μzR(z)e−μz = I0e

−2μzR(z)    (1) 

where I0 is the incident intensity, R(z) is the depth-dependent reflectivity, and µ is the 
observed attenuation coefficient of the tissue. The factor of 2 arises because the light 
must both travel into the tissue and return to the detector. The attenuation coefficient 
µ  is affected by both scattering and absorption [5,6], parameterized by the scattering 
coefficient µs and absorption coefficient µa. 

Scattering refers to the lossless redirection of light due to a local change in refrac-
tive index. For example, this may be due to interaction with structures such as cell 
membranes, collagen fibrils or cell nuclei [7]. The angular distribution of scattering 
may be modeled with a Henyey-Greenstein function, parameterized by an anisotropy 
factor g [8]. Let θ be the deviation in angle of light after a scattering event. Then g is 
defined as the expected value of cosθ. A value of g ≈ 1 indicates forward scattering 
events in which light will continue in roughly the same direction. A value of g ≈ 0 
indicates an isotropic scattering function, where the angle of scatter is equally likely 
in all directions. Tissue is typically strongly forward scattering, with values of g in the 
range 0.85 to 0.97 [9]. 

The observed attenuation coefficient µ  may be modeled by the following equation: 

[ ]Gga as μμμ += )(2     (2) 

where: 

n

g m

ega
)1(

1)(
−

−
−=     (3) 
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with m = 0.6651 and n = 0.1555 [10]. The factor a(g) modifies μs to represent the 
effectiveness of scatter in image formation and ranges from 1 at low g, to 0 at g=1. 
For g = 0.97, a(g) ≈ 0.46 and μs is half as effective in preventing photons from reach-
ing the coherence gate. For g = 0.85, a(g) ≈ 0.84. For the 1325 nm central wavelength 
of light used in this report, the ratio of wavelength to scattering particle size in the 
tissue is greater than for visible or shorter near-infrared wavelengths. Hence, the value 
of g is likely to be about 0.4-0.6. Therefore, a(g) is probably greater than 0.95. The 
factor G is the extra photon path length as photons are delivered obliquely toward a 
focus. With the low numerical aperture used in OCT this factor is approximately 
unity. 

For near infrared light in tissue, scattering is the dominant attenuation mechanism 
[11], and the scattering coefficient µs is typically a factor of 10-100 times larger than 
the attenuation coefficient µa [12]. For the 1325 nm wavelength used in the experi-
ments of this report, μa for pure water is 0.149 mm-1. The value of μs for tissues at 
1325 nm is in the 5-10 mm-1 range. Thus, the absorption can be neglected, and since 
G ≈ 1, the equation for attenuation may be approximated by: 

sga μμ )(2≈     (4) 

Assuming that a single A-scan intersects only a single type of tissue, the attenuation 
parameter μ may be used to characterize a tissue. By taking the logarithm of the OCT 
signal values along a single A-scan, μ can be extracted from the slope of the line of 
best fit. We calculate this slope for each x,y location in the data set, deriving a 2D 
map μ(x,y). This μ is then represented visually as a 2D parametric image of the tissue 
in which the μ(x,y) is indicative of tissue type. 

3   Experiment 

Phantom and human ex vivo tissue samples were scanned with a swept-source  
OCT system (Thorlabs, New Jersey, USA) with a central wavelength of 1325nm  
and a spectral bandwidth of 100nm. The transverse resolution was 15µm and axial 
resolution was 12µm in air. 

3.1   Phantom Experiment 

Two imaging phantoms [13] were prepared to mimic the optical properties of tissue. 
Titanium oxide powder (Sigma Aldrich, St. Louis, USA), with an average particle 
size of 5µm, was mixed into a base material of room temperature vulcanizing (RTV) 
silicone (Wacker, Munich, Germany). Different quantities of titanium oxide were 
used to vary the optical properties of the phantoms, with the second phantom contain-
ing three times the concentration of the first. Both phantoms were scanned using OCT 
and the relative attenuation coefficient was estimated by finding the slope of the line 
of best fit to the log intensity values along an A-scan. 

3.2   Human Tissue Experiment 

Three human breast lymph nodes were taken from patients undergoing axillary clear-
ance. Fresh excised lymph tissue was dissected into 2mm slices and a 3D-OCT scan 
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of the fresh tissue was acquired. Each sample underwent subsequent histological 
analysis using Haematoxylin and Eosin (H&E) staining, and revealed the first node to 
be healthy, the second node to contain a well defined cluster of metastasis, and the 
third node to contain diffuse malignant cells intermingled throughout the tissue. 

3.3   Tissue Image Pre-processing 

During OCT scanning of the lymph node samples, the tissue was laid on a glass slide 
and immersed in a small quantity of glycerol to match the refractive index of the glass 
in order to reduce signals from the glass-air-tissue interfaces. However, tissue samples 
typically do not sit flat upon the glass slide, resulting in small glycerol-filled gaps 
between the tissue and glass. Unfortunately, this confounds the process of automati-
cally estimating the attenuation coefficient. In order to characterize the tissue within 
an A-scan, it is necessary to identify where in the A-scan the light enters the tissue. 
Measurements prior to this position are not indicative of the tissue. The position 
within the A-scan will be dependent upon the size of any gap between the glass slide 
and the tissue. Identifying this position manually is impractical for a typical OCT 
acquisition comprising over a million A-scans. 

Simple image processing techniques were utilized to automatically identify the 
point within each A-scan where the light entered the tissue. Note that each A-scan 
comprises a large peak of reflectivity early in the A-scan, corresponding to the change 
in refractive index as the light passes from air into the glass slide. This corresponds to 
a local maximum in the derivative of the intensity of the A-scan and was automati-
cally identified for all A-scans in the acquisition, defining a set of points on the glass 
surface (plus a number of outliers). A 2D plane was robustly fitted to this point set 
and the intersection of the plane with each A-scan was taken as specifying the air-
glass interface. Having extracted the location of the glass slide, the start of the tissue 
was found by averaging A-scan values within a moving window, and identifying the 
location at which the value exceeded a threshold. The attenuation co-efficient was 
then calculated by computing the slope of the line of the best fit for the log of the A-
scan values, from the start of the tissue and extending over an optical path length of 
0.5mm. 

4   Results 

Figure 1 shows representative A-scans from the two phantoms. The log of the reflec-
tivity values are plotted against image depth. The line of best fit is superimposed upon 
each A-scan, and its slope is indicative of the concentration of titanium oxide powder. 
Note that signal attenuation is more gradual in the first phantom (Fig. 1, left) and 
markedly increased in the second (Fig. 1, right) with three times the concentration of 
titanium oxide. Fluctuations in the signals are characteristic of the speckle present in 
OCT, noted to be less in the phantom with a higher concentration of titanium oxide. 

Figures 2-4 show parameterized OCT images of human lymph nodes with corre-
sponding H&E histology. The intensity at each pixel in the parameterized OCT image 
is indicative of the attenuation coefficient for an A-scan that extends perpendicular to 
the image and into the sample, calculated over an optical path length of 0.5mm. Fig. 2  
 



 Mapping Tissue Optical Attenuation to Identify Cancer Using OCT 661 

 

Fig. 1. A-scans from two phantom objects, with line of best fit showing attenuation due to 
scatter. Left: Phantom 1 (low concentration of TiO2 in silicon). Right: Phantom 2 (high concen-
tration of TiO2 in silicon). 

 

Fig. 2. Reactive, normal (uninvolved) axillary lymph node. Left: H&E histology; Right: Pa-
rameterized OCT image. (A, B): Stroma (bright areas). Scale bar = 1mm. 

shows a reactive, benign (i.e., uninvolved) lymph node. The sample comprises pri-
marily of the cortex of the lymph node, bounded by the fibrous stromal tissue of the 
lymph node capsule. Stroma was observed to have a higher attenuation coefficient 
than cortex, presenting as bright areas in the image (labeled A, B). 

Figure 3 shows an involved lymph node, containing a well delineated cluster of 
metastatic malignant cells (labeled A), visible in both the parameterized OCT image 
and histology. The outer cortical regions of the lymph node (labeled B, C) appear as 
dark areas in the parameterized OCT image (low scatter). Lighter areas typically cor-
respond to sinuses extending through the paracortex and medulla of the node.  
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Fig. 3. Involved (malignant) axillary lymph node with well defined deposits of metastatic 
breast cancer. Left: H&E histology; Right: Parameterized OCT image. (A) Metastasis; (B, C): 
Lymph cortex (dark areas). Scale bar = 1mm. 

 

Fig. 4. Involved (malignant) axillary lymph node, with diffuse involvement of the node tissue 
by metastatic breast cancer cells. Left: H&E histology; Right: Parameterized OCT image. (A, 
B): Residual areas of healthy cortex (dark areas). Scale bar = 1mm. 
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Figure 4 shows an involved lymph node in which the metastatic malignant cells are 
distributed in a diffuse fashion within the nodal lymphoid tissue. Rather than forming 
discrete aggregates, the metastatic malignant cells in this example are diffusely inter-
mingled amongst the normal cells native to the lymph node. Malignant areas (i.e., 
those containing the metastatic breast cancer cells) typically have a higher attenuation 
coefficient (light areas) than the residual uninvolved lymph cortex. Two example dark 
areas corresponding to residual cortex are labeled A, B. 

5   Discussion 

The results presented here demonstrate the potential of OCT to differentiate tissue 
types based on estimates of the tissue’s attenuation coefficient. Cancerous areas were 
visibly distinguishable from surrounding non-cancerous tissue. Stroma tissue was 
seen to be highly scattering, in agreement with previously reported results [4]. 

The estimation of such optical properties from OCT presents a useful contrast 
mechanism. Importantly, it removes some of the variability based on the image acquisi-
tion settings. However, the current implementation is based on significant assumptions. 
The technique assumes that each A-scan samples only a single tissue type. In complex 
biological structures, this may not be the case and image segmentation techniques will 
be required to identify regions of homogeneous tissue, such that the attenuation coeffi-
cient of each tissue may be calculated separately. The current implementation also util-
izes signal attenuation as the single parameter for image contrast. Other authors have 
used different techniques to separately estimate the effects of the scattering coefficient 
µs and anisotropy g of scattering [10]. We note that more complex models are possible, 
accounting for the heterogeneity of size, shape, and density of the scatterers in biologi-
cal tissue [14] and speckle noise [15], and may provide more sophisticated quantitative 
measures for tissue differentiation. 

6   Conclusion 

This paper has presented preliminary results for a new form of parameterized OCT 
image, in which the intensity of each pixel is indicative of the tissue’s attenuation 
coefficient across an A-scan. The results demonstrate the potential of such a param-
eterized image to distinguish between cancerous and non-cancerous tissue. Future 
work will utilize segmentation techniques to account for heterogeneity in tissue type 
within individual A-scans. 
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Abstract. A common cause of kidney failure is autosomal dominant
polycystic kidney disease (ADPKD). It is characterized by the growth
of cysts in the kidneys and hence the growth of the entire kidneys with
eventual failure in most cases by age 50. No preventive treatment for
this condition is available. Preclinical drug treatment studies use an in
vivo mouse model of the condition. The analysis of mice imaging data
for such studies typically requires extensive manual interaction, which is
subjective and not reproducible. In this work both untreated and treated
mice have been imaged with a high field, 9.4T , MRI animal scanner and a
reliable algorithm for the automated segmentation of the mouse kidneys
has been developed. The algorithm first detects the region of interest
(ROI) in the image surrounding the kidneys. A parameterized geometric
shape for a kidney is registered to the ROI of each kidney. The registered
shapes are incorporated as priors to the graph cuts algorithm used to
extract the kidneys. The accuracy of the automated segmentation has
been demonstrated by comparing it with a manual segmentation. The
processing results are also consistent with the literature for previous
techniques.

1 Introduction

In autosomal dominant polycystic kidney disease (ADPKD), cysts progressively
enlarge and accumulate fluid as well as possibly blood. The cysts disrupt the
renal parenchyma and increase the total volume of the kidneys significantly. This
eventually leads to end stage renal disease in most cases by age 50. No approved
treatment for this condition is available, although clinical trials are performed
with compounds known to slow its progression [1]. Early stages of ADPKD
are asymptomatic, which has made the assessment of disease progression more
difficult and has also hindered the development of medical treatments. The early
kidney enlargement, however, associated with the disease progression can be
assessed with imaging.
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Preclinical drug treatment studies involve models of ADPKD in mice. The
imaging of mouse kidneys has been performed in vivo primarily with X-ray
micro-CT [2] and MRI [3,4,5]. Typically, the analysis of the images has been
performed with extensive manual annotation [4,5]. This is time consuming due
to the large number of mice involved in preclinical trials, subjective, and not
reproducible. There have been attempts to restrict the manual interaction to
the initialization of an automated segmentation. In CT images axial contours
of kidneys were represented with a deformable model [2]. In MRI the largest
coronal contours of kidneys were represented with splines or as the shortest path
between annotated points [3]. MRI allows the repeated and accurate imaging
of the kidneys without the use of a contrast agent, and thus the possibility
of additional kidney complications. More generally, images of healthy human
kidneys from MRI and CT have been processed with a variety of algorithms
such as level sets [6] and graph cuts [7], often combined with a shape prior. A
sufficiently validated and automated method for the volumetric quantification
of polycystic kidneys from MR images and for the monitoring of treatment has
not been evident in the literature.

In this work mouse models of ADPKD have been imaged with a high resolu-
tion MRI animal scanner. The image region of interest (ROI) surrounding the
kidneys is localized and processed to restore intensity uniformity. Subsequently,
a prior superspheroid shape [8] is registered to the ROI of each kidney. The
registered shape is incorporated into the graph cuts algorithm, which provides
the kidneys [9]. The automated processing has analyzed images of a preclinical
trial for two compounds. The accuracy of the automated segmentation has been
demonstrated by comparing it with a manual one by a medical expert. The pro-
cessing results are also in agreement with those obtained with previous more
interactive or invasive techniques, that these compounds slow the progression of
ADPKD in rodent models [1].

2 Methods

2.1 Mouse Model of ADPKD, Treatment, and Image Acquisition

Twelve female mice bearing the pcy/pcy genotype were used as a model of
ADPKD. All experiments were performed in accordance with the local ani-
mal care commission. The mice were distributed into three groups of four. The
first group was treated with intraperitonial application of 5mg/kg/day of ra-
pamycin. A similar treatment was applied to a second group with vasopressin-2-
receptor antagonist SR121463 (Sanofi-Aventis). Both of these compounds have
been shown to slow the rate of cystogenesis in mice and are currently on clinical
trials [1]. The third group was untreated and was used as control. The imaging
began four weeks after the initiation of the treatment and was repeated every
two weeks for a total of four time points.

The imaging was performed with a 9.4Tesla small bore MRI animal scanner,
Bruker Biospin. The coil was a cylindrical quadrature birdcage resonator with
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an inner diameter of 38mm. To reduce motion artifacts the mice were anes-
thetized and the scan was performed with cardiac gating to also reduce blood
flow artifacts. The acquisition was a fluid-sensitive T2-weighted spin echo RARE
sequence (TR/TEeff/FA : 3000ms/36ms/180◦). The mice were placed horizon-
tally on the x − y plane along the coil axis, y. The field of view was coronal of
30× 30mm2 with a matrix size of 256× 256 and a resolution of 0.12× 0.12mm2.
The slice thickness Δz was 0.5mm without slice spacing. A sufficient number
of slices, on average twenty-five, were included to ensure a complete coverage of
both kidneys. The acquisition provided image I(x) → �, where x = (x, y, z).
The middle coronal slices of four representative images are shown in the left
column of figure 1.

2.2 Localization of the Image Region Surrounding the Kidneys

The images are first processed to extract the foreground. The contribution of
the noise in the background to the histogram H is a Rayleigh distribution R
with low signal to noise ratio [10]. It is fitted with its intensity of maximum
density as well as its full width half maximum and subtracted from the image
histogram to give H−R. The highest intensity, i, for which R(i) > H(i)−R(i)
provides the upper bound of the intensity range of the background. That range
is backprojected to the image and the corresponding voxels are set to zero. The
largest connected component over the remaining non-zero image provides the
foreground If .

The foregroung image in form If,b = (If > 0) provides a binary representation
of the mouse body. The eigenvector e in If,b(x) corresponding to the largest
eigenvalue passes from the spatial mean of If,b, O, along direction (θe, φe), where
θe is the rotation angle on the x− y plane with the x axis, and φe is the rotation
angle with the z axis. The eigenvector e together with vector (0, 0, 1) provide
the midsagittal plane, which lies approximately between the two kidneys. The
image If is also processed with a uniform spherical filter of radius ρ centered on
the midsagittal plane, where ρ is the kidney’s axial radius. The point on that
plane with maximum response is the point between the two kidneys, μ.

The shape of the kidneys is represented geometrically with a superspheroid,
f(x) =

∣∣∣√(x2 + z2)/a2
∣∣∣n+|y/b|n−1 [8]. The shape axis y is initialized parallel to

the eigenvector e, with rotation R(θe, φe). It is also initialized with ρ = a < b to
give a prolate superspheroid elongated along the mouse body axis. The exponent
is set to n = 2.25 to represent the flat anterior and posterior ends of the kidneys
compared to those of a prolate spheroid. The next step is a rough estimation of
the center points of the two kidneys c′s, where s stands for the side that can be
left, c′l, or right, c′r. They are initially set to distance ρ from μ normal to the
midsagittal plane. The location of each is varied to maximize

∑
If (x) in their

interior {x : f(x) < 0}. This is performed with gradient descent and gives an
improved estimate of the kidney centers, cl and cr.

Subsequently, the fit of the prior shape is refined for each kidney by varying
four m = (m1,m2,m3,m4) of the parameters of the geometric shape. The first,
m1, is an overall scale that affects both a and b identically. The second, m2,
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affects the eccentricity b/a along the body axis y. The third, m3, is the z coor-
dinate of the center of the superspheroid. The last, m4, is a rotation of angle θ,
R(θ,0), on the x− y plane around the spatial mean of If,b, O. The superspheroid
instances during registration are given by:

f(x′,m) =

∣∣∣∣∣
√
x′2 + (z′ −m3)2

m2
1a

2

∣∣∣∣∣
n

+
∣∣∣∣ y′

m1m2b

∣∣∣∣
n

− 1, (1)

where n = 2.25, and (x′, y′, z′) = R(θe+m4,φe)(x, y, z). The shape provided by
equation (1) is converted to a binary image, Ishape,m(x) = (f(x,m) < 0). The
union of the spheres centered around cl, and cr, each of radius 4ρ provides
the region of interest, IROI , which is further processed for the extraction of the
kidneys. Some examples of IROI are shown in the second column of figure 1. The
fitting is performed over the ROI of If,b(x) in the side around the midsagittal
plane in which the kidney to be modeled lies, IROI,b,s(x) = If,b(x)× IROI(x)×
Is(x), where × is voxelwise multiplication and s = {l, r}.

The cost function for the shape fitting is the L1 or equivalently the L2 norm of
the difference between the binary shape image Ishape,m and the binary ROI for
each kidney IROI,b,s, minm ‖Ishape,m(x− cs)− IROI,b,s(x)‖1. The minimization
of the cost is performed with gradient descent. The intermediate coronal slices
of the ROI of four representative images and the computed kidney shapes are
shown in the second and third columns of figure 1, respectively.

2.3 Segmentation of the Kidneys from an Image

The region of interest IROI is processed for kidney segmentation. It is denoised
with median filtering and processed to restore intensity uniformity [11]. Subse-
quently, the isotropic self-co-occurrence statistics of radius u in the region of
interest are analyzed with Otsu’s algorithm to obtain an intensity τ . The voxels
in intensity range [0, α1τ ], where 0 < α1 < 1 are set to background seeds and the
voxels in intensity range [α2τ,maxxI(x)], where 1 < α2 are set to foreground
seeds. The classification of the voxels with intensities in the intermediate range
(α1τ, α2τ) is ambiguous. The registered prior kidney shape cancels foreground
seeds for which Ishape,m(x) = 0 and sets their classification to ambiguous.

The ambiguities are resolved locally with the graph cuts algorithm [9]. The im-
age is represented as an undirected and weighted graph G(V , E) [9]. The image
voxels together with two bounding nodes s and t are the nodes V of the graph. A
neighborhood edge {p, q} is included in the graph between the node corresponding
to every voxel p and the node corresponding to voxel q if q ∈ Np, where Np is the
26-connected neighborhood of node p. Boundary edges are established from every
node p to both s and t to give {p, s} and {p, t}. The edges are assigned weights,
which simulate flow capacities [9]. A subset of edges C ∈ E is called an s/t-cut if the
bounding nodes are completely separated in the induced graph GC = (V , E − C).
The bounding node in GC to which a node p remains connected to determines its
classification as foreground if {p, s} ∈ GC and as background if {p, t} ∈ GC . The
cost |C| of a cut is the sum of all edge weights in C. The cut of globally minimum
cost is provided by the equivalent maximum flow solution from s to t.
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(a) Original (b) ROI (c) Prior shape (d) Segmentation (e) Surface

Fig. 1. The processing of four representative images shown along the rows. The middle
coronal slices of the original images are in the left, next to them are the regions of
interest, in the third column are the prior shapes, and in the fourth column are the
segmented kidneys. In the fifth column is a rendering of the segmentation surfaces.

The edge weights are positive. The total weight of neighborhood edge {p, q} ∈
N , VT,pq, is a product of factors that depend on IROI and Ishape. The weight
derived from IROI depends on the intensity difference between adjacent vox-
els V1,pq = exp

(
−(IROI(xp)− IROI(xq))2/σ2

)
, where σ is a fraction β of the

dynamic range, σ = β(maxxIROI (x) −minxIROI (x)). The anisotropic spatial
resolution is represented by factor V2,pq = 1/dpq, where dpq = ||xp − xq||2. The
shape boundary provided by ∇Ishape is smoothed with a Gaussian filter of stan-
dard deviation equal to ρ. Subsequently, its dynamic range is rescaled with γ
and reversed to give Φ(x) = 1 − γ∇Ishape(x) ∗ G(ρ) as well as the shape edge
weight V3,pq = (Φ(xp) + Φ(xq))/2 [12]. The product:

VT,pq = exp
(
− (IROI(xp)− IROI(xq))2

σ2

)(
1
dpq

)(
Φ(xp) + Φ(xq)

2

)
(2)

gives the total weight of edge {p, q} ∈ N .
The weights to the bounding nodes are selected so that the minimum s/t

cut preserves the classification of the seed nodes as well as includes neighbor-
hood edges and thus segments the image. Some representative images and the
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corresponding segmentations are shown in the second and fourth columns of fig-
ure 1, respectively. A surface rendering of the kidney segmentations is shown in
the fifth column of figure 1.

3 Results: Data Analysis and Evaluation

The implementation is in C++ and uses the ITK library [13]. The radius of
the self-co-occurrences was u = 3mm. The intensity range that provided the
background seeds was [0, 0.3τ ] and the intensity range that provided the fore-
ground seeds was [1.2τ,maxxIROI (x)], that is, α1 = 0.3 and α2 = 1.2. A value of
β = 1/32 was used for σ in V1,pq and the value of γ enforced the dynamic range
of V3,pq to be [0.7, 1.0]. These parameters were kept constant for the processing
of all 48 images. Only the axial kidney radius ρ varied with the input image. It
is sufficient to select an approximate value for it by observation.

The automatic segmentations were compared with the region enclosed within
slicewise manual outlinings of the boundaries of the kidneys for thirty images
of both treated and untreated mice out of the total of 48 images analyzed.
The manual outlinings were performed by a medical expert (M.D.), who is a
co-author, blinded to the automated segmentations of the kidney regions. In
the comparison an image is classified as kidney volume correctly detected, TP ,
kidney volume missed by the detection, FN , and volume falsely detected, FP .
These values provide the recall RE = TP

TP+FN , and the precision PR = TP
TP+FP .

A score of 1.0 for recall indicates completeness and a score of 1.0 for precision
indicates exactness. The average and standard deviation of the precision were
PR = 94.1±1.5%, and those of the recall were RE = 94.6±1.8%. In both cases
the high mean values of the criteria and their low standard deviations indicate
a high quality detection.
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Fig. 2. The average automatically extracted volume of both kidneys over the 48 images
as a function of time for the three groups of mice. As expected, the untreated, control,
group in green shows a much greater increase in kidney volume.
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In figure 2 are the average values of the automatically extracted volume of
both kidneys for the 48 images within every group along the number of weeks
after initiation of treatment. As expected, the group of untreated, control, mice
shows a large increase in kidney volume. The mice treated with either compound
show very limited increase in kidney volume. The processing was performed on
an AMD 2GHz CPU. The average and standard deviation of the computation
time were 57 ± 29min. They were dominated by the varying time duration of
the registrations of the prior shape to the two kidneys.

4 Discussion

The spinal cord does not constrain the locations of the kidneys in mice, and thus
their relative distance can vary. The kidneys are also connected to the urinary
tract and are in contact with fat, the liver, and other organs that can have similar
intensities. This necessitates the use of a robust model for mice body anatomy and
for the delineation of the kidney boundaries. This is sufficiently represented with
the localizations and the registrations of the superspheroids and their use as priors
in the graph cuts algorithm. The graph cuts criterion provides segmentations with
tight boundaries and penalizes leaking to neighboring anatomic structures.

A manual outlining of the kidneys was performed for thirty images by a medical
expert. The enclosed region was used for a volume based validation of the detected
kidneys, which demonstrated the high quality of the processing.The surfaces of the
detected regions and the manual outlinings could also be compared with measures
such as the mean surface distance and the Hausdorff distance. The validation could
be repeated with a manual segmentation by a different expert. The parameters of
the algorithm were set to accommodate image characteristics such as contrast to
noise ratio and resolution. Their settings are also a trade-off between computa-
tional requirements and performance. A sensitivity analysis with respect to the
parameters of the algorithm would further demonstrate its robustness.

The processing results are in agreement with the effects established with previ-
ous techniques, that the two compounds prevent cystogenesis in mice [1]. Previous
techniques often involve sacrificing the mice and thus do not allow the monitoring
at multiple time points that MRI permits. Micro-CT as well as some MRI acqui-
sition protocols involve the administration of a contrast agent. These agents can
cause interfering kidney complications, particularly in mice with compromised
kidney function such as those used in this study. The MR acquisitions in this
work were performed without the administration of a contrast agent. The pro-
cessing has been shown to be sufficiently robust to the resulting lower contrast.
The method described can analyze MR images of mice in preclinical trials for
ADPKD in a non-invasive, reliable, reproducible, and automated manner.
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Abstract. We introduce a novel algorithm for actin filament tracking
and elongation measurement. Particle Filters (PF) and Stretching Open
Active Contours (SOAC) work cooperatively to simplify the modeling of
PF in a one-dimensional state space while naturally integrating filament
body constraints to tip estimation. Our algorithm reduces the PF state
spaces to one-dimensional spaces by tracking filament bodies using SOAC
and probabilistically estimating tip locations along the curve length of
SOACs. Experimental evaluation on TIRFM image sequences with very
low SNRs demonstrates the accuracy and robustness of this approach.

1 Introduction

Actin proteins are present in all eukaryotic cells. Their ability to polymerize
into long filaments underlies basic processes of cell life such as cell motility,
cytokinesis during cell division, and endocytosis. The kinetics of polymerization
of individual actin filaments in vitro have been studied extensively using Total
Internal Reflection Fluorescence Microscopy (TIRFM) [1], [2], [3] (Fig. 1(a) and
1(c)). In these experiments, actin filaments are attached to a glass slide by surface
tethers that act as pivot points that can be used as fiducial markers to help
distinguish the elongation of each end [1], [2], [3]. Two basic features of actin
kinetics that can be extracted from TIRFM are (i) the average rate of filament
elongation at each end, and (ii) the fluctuations in the average rate. Both of
these two numbers depend in a unique way on the details of the microscopic
mechanism of monomer addition to the ends of the filament [1], [2].

In [4], we presented the stretching open active contours (SOAC) for filament
segmentation and tracking. This automated method allowed simultaneous mea-
surements of multiple filaments. Related methods have been applied to tracking
microtubule (MT) filaments. Hadjidemetriou et al. [5] minimized an image-based
energy function to segment MTs at each time step using consecutive level sets
method. Saban et al. [6] automatically detected tips in the first frame and then
proceeded to track each tip separately by searching for the closest match in sub-
sequent frames. However, the above methods did not utilize temporal coherency
of the motion or the growth of filaments.
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(a) (b) (c) (d)

Fig. 1. An example of actin filament tracking using the proposed method
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Fig. 2. Problems observed in our previous method [4]: (a) An “over-grown” active
contour because of the low SNR near the tip, and (b) an “under-grown” active contour
because of the intensity gap on filament body. (c) An over-grown active contour covering
both tips of a filament. (Best viewed in color.)

Particle Filter (PF) based methods have also been proposed to track MTs. In
[7], PFs were utilized to track the tips of polymerizing microtubules. In these
images, MTs were labeled by plus-end tracking proteins that associate with the
tips but not with the body of growing MTs. Without using supporting informa-
tion from the MT body, Markov Random Fields were employed to model the
joint transition model of multiple tips; this required that the posterior pdfs of
different tips to be sampled jointly. A limiting factor in this work was that its
high-dimensional state space added complexity to modeling and tracking com-
putation. Kong et al. [8] employed a PF-based method similar to [7] to track MT
tips. In this work, MT tip locations were estimated recursively using PF, and
then MT bodies were segmented using active contours based on the estimations.

Although in [4] filament bodies were tracked accurately, we reported errors on
tip location estimation because of the low SNR of filament tips. In this paper,
we present a novel actin filament tracking algorithm which combines particle
filters (PF) [9] with the stretching open active contours (SOAC) to address this
problem. An example of our tracking results is shown in Fig. 1. By construction,
SOACs stretch along bright ridges in an image. At each time step t, SOACs
stretch along filament bodies and are forced to grow over distances that exceed
the tip locations. Subsequently, particles are spread along each SOAC according
to transition models, which predict the tip “length” (location) at time t+1, given
the states and likelihoods of the particles at time t. Using the image information
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at time t + 1, each particle is associated with a likelihood that the particle
represents the correct tip. The particles’ states and likelihoods are then used to
estimate the posterior pdf describing the probability distribution of tip length
at time t+1. Before tracking, this PF-based method requires the transition and
likelihood models to be properly defined by providing an initial estimate of the
value of the filament elongation rate, to within ∼20% of the actual value.

The main contribution of this paper is that we reduce the state space of
PF to a one dimensional space by implicitly modeling tip “length” as the state
vector of our PF. By construction, tip locations are distributed at SOACs that
grow along filament bodies; thus we only need track the “length” of tips. This
novel framework naturally integrates filament body constraints to tip estimation.
Experimental evaluation and comparison showed accurate and robust tracking
performance of our algorithm.

2 Stretching Open Active Contour Models

In [4], open active contour models were presented to segment actin filaments. Let
r(s) = (x(s), y(s)), s ∈ [0, 1] parametrically represent an open curve. Treating
this curve as an active contour, we seek to minimize its overall energy E, which
consists of internal energy Eint and external energy Eext, i.e., E = Eint+k ·Eext,
where k controls the relative contributions of the internal and external en-
ergy. The internal energy, Eint =

∫ 1
0 (α(s)|rs(s)|2 + β(s)|rss(s)|2)ds, controls

the smoothness of the curve. The external energy, Eext, represents external im-
age constraints and consists of an image term Eimg and an intensity-adaptive
stretching term Estr, i.e., Eext = Eimg + kstr · Estr , where kstr balances the
contributions of Eimg and Estr . The image term Eimg is defined by the Gaus-
sian filtered image, i.e., Eimg = Gσ ∗ I, to make the active contour converge to
filament locations, which correspond to bright ridges in the images. The stretch-
ing term stretches the open active contour along a filament and stops stretching
when its ends meet filament tips. Tip locations are determined by using an
intensity-based criterion.

The main problem of [4] is that, in some very noisy TIRFM image sequences,
the intensity-adaptive stretching term Estr may lead to large errors on tip es-
timation. Low contrast near filament tips may result in active contours “over-
growing” (see Fig. 2(a)), while intensity gaps on filament bodies may lead to
active contours “under-growing” (see Fig. 2(b)). It was difficult to define an
external energy term that copes with both scenarios for all filaments.

Although tips were difficult to be identified by intensity or contrast alone in
noisy images, we observed that the over-grown active contours followed filament
bodies accurately and were able to cover tip locations even when they over grew
(See Fig. 2(c)). This means that we can search for tips along an over-grown ac-
tive contour. Therefore, we propose a new stretching open active contour (SOAC)
model similar to the one proposed in [4] but with a non-intensity-adaptive stretch-
ing term E′

str, which always makes a SOAC grow over distances that exceed the
tip locations:
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∇E′
str(r(s)) =

⎧⎪⎨
⎪⎩

rs(s)
|rs(s)| s = 0,

− rs(s)
|rs(s)| s = 1,
0 otherwise.

(1)

Therefore, the overall energy of a SOAC model is defined by

E = Eint + k ·
∫ 1

0
Eimg(r(s)) + k′str · E′

str(r(s))ds, (2)

where k′str is a constant that controls the stretching force that makes the active
contour always grow over tips. The above SOAC model enables us to reduce
the search space of filament tips to a one-dimensional space (along the SOAC’s
curve length) and naturally adds a continuous body constraint: a tip must be
connected to a filament body.

3 Actin Filament Tracking Using Particle Filters

A SOAC model provides an estimation of filament body and therefore simplifies
the problem of tip tracking to searching for and tracking tip patterns in a one-
dimensional space along the SOAC curve’s length. This is one of the major
advantages when compared with approaches that work in a 4-dimensional space
in [8] and the even higher dimensional space in [7]. To systematically search
along an over-grown SOAC for the optimal tip location, we employ the widely
used Sequential Importance Resampling (SIR) PF [10] to estimate the locations
of both B-end and P-end of a filament.

3.1 Bayesian Tracking Based on Particle Filters

In the PF framework, the state vector of a target at time t, Xt ∈ R
n, is given

by Xt = ft(Xt−1,vt−1), where vt−1 ∈ R
n is an i.i.d. process noise vector, and

ft : R
n ×R

n → R
n is a possibly nonlinear function that is modeled by a known

transition model Pt(Xt|Xt−1). The measurements at time t, Zt, relate to the
state vector by Zt = ht(Xt, nt), where nt is an i.i.d. measurement noise vector,
and ht : R

n × R
n → R

n is a possibly nonlinear function that is modeled by a
known likelihood model Pl(Zt|Xt). It is assumed that the initial posteriori pdf
P (X0|Z0) ≡ P (X0) is available as a priori.

The objective of tracking is then to recursively estimate Xt from measure-
ments. Suppose that P (Xt−1|Z1:t−1) at time t− 1 is available. In principle, the
pdf P (Xt|Z1:t) can be obtained, recursively, in two stages: prediction and update.

Prediction: P (Xt|Z1:t−1) =
∫
Pt(Xt|Xt−1)P (Xt−1|Z1:t−1)dXt−1, (3)

Update: P (Xt|Z1:t) ∝ Pl(Zt|Xt)P (Xt|Z1:t−1). (4)

In the SIR PF algorithm, at each time t, a group ofN particles {X(i)
t−1, w

(i)
t−1}N

i=1 is
propagated from t−1 to characterize P (Xt|Z1:t) using the Monte Carlo principle:
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P (Xt|Z1:t) ≈
∑N

i=1 w
(i)
t δ(Xt − X

(i)
t ). It is usually assumed that P (Xt|Zt) =

P (Xt|Z1:t).
Clearly, three aspects of the PF framework need to be specified:

– The state vector Xt, which models the system in a n-dimensional space;
– The transition model Pt(Xt|Xt−1), which models ft;
– The likelihood model Pl(Zt|Xt), which models ht.

For the state vector in our filament tip tracking problem, as we have sim-
plified tip location estimation to a 1D space using SOAC, we propose to use
the “length” of the tip at time t, St, as the state of our PF, i.e., Xt = St. The
“length” of a tip is defined as the filament length from the tip point to a refer-
ence point along the SOAC representing the filament. Reference points can be
randomly chosen on SOACs during initialization. Tracking the length of a tip is
equivalent to tracking its location on a SOAC.

For the transition model, because we choose tip length as the state vector,
the transition model should describe the change of one tip’s length over time.
Therefore, it can also be interpreted as the tip elongation model. The two ends of
an actin filament, the “barbed” (B-end) and “pointed” (P-end) end, respectively,
grow at distinctively different rates. We model the transition probabilities of B-
end and P-end tips separately. For the transition model of B-ends, we used a
normal density, PBt(Xt|Xt−1) ∼ N (Xt−1 + μb, σ

2
b ), where μb is the average

elongation rate of B-ends. Obviously, the more accurate the estimation of μb is,
the more robust the tracking results are. For P-ends, because they grow much
slower than B-ends, we set PPt(Xt|Xt−1) ∼ N (Xt−1, σ

2
p).

When a SOAC has just been initialized, the B-end and the P-end of the
filament it represents cannot be distinguished. Therefore in the first few frames,
we dispatch half of the particles following the B-end transition model and the
other half following the P-end model. After several tracking steps that take into
account image measurement information, the B-end and P-end of the filament
can be distinguished by comparing the posterior pdfs estimated using B-end and
P-end particles respectively.

For the likelihood model, we use an appearance template based approach.
In particular, we use a 10 × 4 pixel rectangle template containing a mean ap-
pearance image μT and a standard deviation image σT , both computed from
manually selected tip image patches. When a filament A is intersecting another
filament B, the tip of A would be occluded by B’s body. This naturally implies
that any pixel covered by filament B should have low confidence or certainty
when being used to compute the likelihood of the tip of A. Therefore, at each
time t, a confidence map Mt for each filament is created, in which pixels covered
by other filaments are given the value 0.5, and all other pixels are given the value
1. The likelihood model is then defined by

Pl(Zt|Xt) ∝ exp

{
− 1
n

n∑
i=1

Mt(si)
2σT (si)

· |F (Xt)(si)− μT (si)|
}
, (5)

where n is the total number of pixels in the template tip patch, si is its ith
pixel’s coordinates, and F (Xt) and Mt are the image patch and the confidence
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map patch of a tip with state Xt, respectively, after being translated and rotated
to the template tip’s coordinate.

3.2 SOAC Registration and Length Measurement

To perform measurements on the length and elongation rate of a tip, a reference
point on the corresponding filament needs to be specified. However, a TIRFM
image sequence show drift such as translation between contiguous frames [3]. To
recover the same reference point on a filament over time, the converged SOACs in
consecutive frames representing the filament are registered simultaneously using
the Iterative Closest Points (ICP) algorithm [11].

4 The Algorithm

We summarize the proposed filament tracking algorithm as follows. Let rt−1
represent the SOAC active contour tracking the filament at time t − 1. From
the particle sample set {X(i)

t−1, w
(i)
t−1}N

i=1 at time step t−1 characterizing the pdf
P (Xt−1|Zt−1), we can construct a “new” sample-set {X(i)

t , w
(i)
t }N

i=1 approximat-
ing P (Xt|Zt) at time t:

– Initialize rt using rt−1 (Fig. 3(a)). Deform it by minimizing (2) and make
sure both ends of rt grow over the tips of its corresponding filament
(Fig. 3(b)).

– Register rt to rt−1 using the ICP method and recover the reference point
on rt (Fig. 3(c-d)).

– Select a sample X
(i)
t = X

(j)
t−1 with probability w(j)

t−1.
– Predict X(i)

t to approximate P (Xt|Zt−1) according to (3) by sampling from

PBt(Xt|Xt−1 = X
(i)
t ) or PPt(Xt|Xt−1 = X

(i)
t ), (6)

depending on the tip type (B-end or P-end) the particle X
(i)
t represents

(Fig. 3(e)).
– Measure and weight the new particle using the measurement Zt according

to (4) and (5). Then normalize all N particles to estimate P (Xt|Zt):

w
(i)
t = Pl(Zt|Xt = X

(i)
t ), then w

(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

. (7)

– Estimate the mean of P (Xt|Zt) at time t by

E(Xt) ≈
N∑

i=1

w
(i)
t X

(i)
t . (8)

– Cut rt according to E(Xt) to generate rt (Fig. 3(f)).
– Go back to the initialization step for t+ 1.
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Fig. 3. Illustration of the algorithm. (a) A SOAC rt−1 (red) at time t−1, (b) initialize rt

(blue) using rt−1 and deform it by minimizing (2), (c) before registration of rt−1 and rt

(Red ‘*’ denotes the reference point on rt−1), (d) after registration of rt−1 and rt (Blue
‘*’ denotes the recovered reference point on rt), (e) generate new particles (green) along
rt according to P (Xt|Xt−1 = X

(i)
t ), and measure each particle’s likelihood probability

w
(i)
t = P (Zt|Xt = X

(i)
t ), and (f) cut rt according to E(Xt) to generate rt.

5 Application to Experimental Data

5.1 Experimental Image Data

We used two TIRFM image sequences from [2]. In these experiments, polymeriza-
tion of muscle Mg-ADP-actin was monitored in the presence of varying concentra-
tions of inorganic phosphate (Pi) and actin monomers. The pixel size was 0.17 μm.
There were 20 images in sequence I and and 34 images in sequence II. The time
interval between frames was 30 sec in sequence I and 10 sec in sequence II.

5.2 Evaluation and Comparison with the Previous Method [4]

For both sequences, we set α = 0.05, β = 0.1, k = 0.6, and k′str = 0.55. μb

for sequences I and II were set according to average elongation rates of B-ends
measured by a manual method [3]. We set large values to σp and σb to avoid
imposing any strong prior on tip length estimation. For sequence I, μb = 11.2524
mon/sec, σb = 4.5 mon/sec, and σp = 1 mon/sec. For II, μb = 11.5760 mon/sec,
σb = 5 mon/sec, and σp = 2.5 mon/sec. We used 50 particles for each tip and
initialized each SOAC using the segmentation method in [4] to obtain P (X0).

Fig. 4 illustrates 3 examples of our tracking algorithm. Taking advantage of
temporal coherence and filament body constraints, our algorithm tracked fila-
ments accurately and showed robust performance against filament intersection.

We observed that filament bodies were always tracked accurately by our algo-
rithm. Therefore, we evaluated the algorithm by measuring errors on tip location
estimation. We selected 10 and 5 actin filaments from image sequence I and II
respectively to measure tracking errors. For all selected filaments, we manually
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Fig. 4. Three examples of tracking filaments. (1-2) Tracking filaments in sequence I,
and (3) tracking a filament in sequence II.

Table 1. Tip tracking error statistics of selected filaments in both image sequences I
(Fig. 4(1-2)) and II (Fig. 4(3)). (Unit: pixel)

Sequnce Mean Maximum
Standard Number
Deviation of Failures

Proposed Method
I 0.8789 3.5132 0.7211 0 out of 149
II 1.7334 5.8342 1.4946 4 out of 170

Previous Method [4]
I 1.6732 10.2387 1.8776 4 out of 149
II 2.9018 13.8472 2.3870 6 out of 170

labeled their two tips in each frame as ground truth and calculated L2 distances
between the ground truth and our algorithm’s results. We also compared with
tip location errors obtained by a previous method [4], which did not utilize
temporal coherence and used an intensity criterion to determine tip locations.
During the tracking process, when we observed a failure, which means a SOAC
stretched onto a different filament, we reinitialized the SOAC in the next frame
by hand and resumed tracking. Table 1 shows tip tracking error statistics of
our algorithm and of the previous method; our new one-dimensional PF-based
algorithm clearly outperforms the previous method.

6 Conclusion

In this paper, we introduce a novel actin filament tracking algorithm based on
Stretching Open Active Contour (SOAC) models and one-dimensional Particle
Filters (PF). Taking advantage of filament body estimated by the SOAC models,
our method is able to find the tip using PF with a one-dimensional state vector.
Such simplification naturally integrates filament body constraints to guarantee
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continuity between the estimated tip and body. A template based likelihood
model and the stochastic nature of the PF framework also make our algorithm
robust to noise and filament intersections. Experimental evaluation on TIRFM
image sequences with low SNRs and comparison with a previous method demon-
strate the accuracy and robustness of the proposed approach.
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Abstract. Our long term research goal is to develop a fully automated,
image-based diagnostic system for early diagnosis of pulmonary nodules
that may lead to lung cancer. In this paper, we focus on generating new
probabilistic models for the estimated growth rate of the detected lung
nodules from Low Dose Computed Tomography (LDCT). We propose a
new methodology for 3D LDCT data registration which is non-rigid and
involves two steps: (i) global target-to-prototype alignment of one scan
to another using the learned prior appearance model followed by (ii)
local alignment in order to correct for intricate relative deformations.
Visual appearance of these chest images is described using a Markov-
Gibbs random field (MGRF) model with multiple pairwise interaction.
An affine transformation that globally registers a target to a prototype is
estimated by the gradient ascent-based maximization of a special Gibbs
energy function. To handle local deformations, we displace each voxel
of the target over evolving closed equi-spaced surfaces (iso-surfaces) to
closely match the prototype. The evolution of the iso-surfaces is guided
by a speed function in the directions that minimize distances between
the corresponding voxel pairs on the iso-surfaces in both the data sets.
Preliminary results show that the proposed accurate registration could
lead to precise diagnosis and identification of the development of the
detected pulmonary nodules.

1 Introduction

Because lung cancer is the most common cause of cancer deaths, fast and accu-
rate analysis of pulmonary nodules is of major importance for medical computer-
aided diagnostic systems (CAD).

Previous work. Tracking the temporal nodule behavior is a challenging task
because of changes in the patient’s position at each data acquisition, as well
as effects of heart beats and respiration. In order to accurately measure how
the nodules are developing in time, all these motions should be compensated
by registering LDCT data sets taken at different time. Many methods have
been proposed for solving medical image registration problems (see e.g. [1]) and
to exclude the lung motions (see [2]). Moreover, it has been reported that the
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computer-assisted volume measurement is more reliable for small pulmonary
nodules than the measurement by human experts [3]. Therefore, the remaining
principal difficulty in monitoring and evaluating the nodule growth rate is auto-
matic identification (or registration) of corresponding nodules in the follow-up
scans. Registration of the two successive CT scans determines transformation of
one image with respect to the other [4]. Some examples of previous works on
registration of CT lung images are overviewed below.

Most of them exploit corresponding local structural elements (features) in the
images. For the follow-up of small nodules, Brown et al. [5] developed a patient-
specific model with 81% success for 27 nodules. Ko et al. [6] used centroids of
local structures to apply rigid and affine image registration with 96% success for
58 nodules of 10 patients. To account for non-rigid motions and deformations of
the lung, Woods et al. [7] developed an objective function using an anisotropic
smoothness constraint and a continuous mechanical model. Feature points re-
quired by this algorithm are detected and registered as explained in [8], and then
the continuous mechanical model is used to interpolate the image displacement.

2 Lung Motion Correction Models

2.1 Global Alignment

Basic Notation. Let Q = {0, . . . , Q− 1}; R = [(x, y, z) : x = 0, . . . , X − 1; y =
0, . . . , Y − 1; z = 0, . . . , Z − 1], and Rp ⊂ R be a finite set of scalar image sig-
nals (e.g. gray levels), a 3D arithmetic lattice supporting digital LDCT image
data g : R → Q, and an arbitrary-shaped part of the lattice occupied by the
prototype, respectively. Let a finite set N = {(ξ1, η1, ζ1), . . . , (ξn, ηn, ζn)} of the
(x, y, z)-coordinate offsets define neighboring voxels, or neighbors {((x + ξ, y +
η, z + ζ), (x − ξ, y − η, z − ζ)) : (ξ, η, ζ) ∈ N} ∧ Rp interacting with each voxel
(x, y, z) ∈ Rp. The set N yields a 3D neighborhood graph on Rp that specifies
translation invariant pairwise interactions between the voxels with n families
Cξ,η,ζ of second-order cliques cξ,η,ζ(x, y, z) = ((x, y, z), (x + ξ, y + η, z + ζ)).

Interaction strengths are given by a vector VT =
[
VT

ξ,η,ζ : (ξ, η, ζ) ∈ N
]

of po-

tentials VT
ξ,η,ζ =

[
Vξ,η,ζ(q, q′) : (q, q′) ∈ Q2

]
depending on signal co-occurrences;

here T indicates transposition.

Data normalization. To account for possible monotone (order -preserving)
changes of signals (e.g. due to different sensor characteristics), everyLDCTdata set
is equalized using the cumulative empirical probability distribution of its signals.

Markov–Gibbs random field (MGRF) based appearance model. In a
generic MGRF with multiple pairwise interaction, the Gibbs probability P (g) ∝
exp(E(g)) of an object g aligned with the prototype g◦ on Rp is specified
with the Gibbs energy E(g) = |Rp|VTF(g) where FT(g) is the vector of scaled
empirical probability distributions of signal co-occurrences over each clique fam-
ily: FT(g) = [ρξ,η,ζFT

ξ,η,ζ(g) : (ξ, η, ζ) ∈ N ] where ρξ,η,ζ = |Cξ,η,ζ|
|Rp| is the rel-

ative size of the family and Fξ,η,ζ(g) = [fξ,η,ζ(q, q′|g) : (q, q′) ∈ Q2]T; here,



684 A. El-Baz et al.

fξ,η,ζ(q, q′|g) = |Cξ,η,ζ;q,q′ (g)|
|Cξ,η,ζ | are empirical probabilities of signal co-occurrences,

and Cξ,η,ζ;q,q′(g) ⊆ Cξ,η,ζ is a subfamily of the cliques cξ,η,ζ(x, y, z) supporting
the co-occurrence (gx,y,z = q, gx+ξ,y+η,z+ζ = q′) in g. The co-occurrence distri-
butions and the Gibbs energy for the object are determined over Rp, i.e. within
the prototype boundary after an object is affinely aligned with the prototype.
To account for the affine transformation, the initial image is resampled to the
back-projected Rp by interpolation.

Learning the potentials. The MLE of V is proportional in the first ap-
proximation to the scaled centered empirical co-occurrence distributions for the
prototype:

Vξ,η,ζ = λρξ,η,ζ

(
Fξ,η,ζ(g◦)−

1
Q2 U

)
; (ξ, η, ζ) ∈ N (1)

where U is the vector with unit components. The common scaling factor λ is also
computed analytically; it is approximately equal to Q2 if Q" 1 and ρξ,η,ζ ≈ 1
for all (ξ, η, ζ) ∈ N . In our case it can be set to λ = 1 because the registration
uses only relative potential values and energies.

Learning the characteristic neighbors. To find the characteristic neighbor-
hood set N , the relative Gibbs energies Eξ,η,ζ(g◦) = ρξ,η,ζVT

ξ,η,ζFξ,η,ζ(g◦) for
the clique families, i.e. the scaled variances of the corresponding empirical co-
occurrence distributions, are compared for a large number of possible candidates.

To automatically select the characteristic neighbors, we consider an empirical
probability distribution of the energies as a mixture of a large “non-characteristic”
low-energy component and a considerably smaller characteristic high-energy com-
ponent:P (E) = πPlo(E)+(1−π)Phi(E). Both the componentsPlo(E),Phi(E) are
of arbitrary shape and thus are approximated with linear combinations of positive
and negative discrete Gaussians (EM-based algorithms introduced in [9] are used
for both the approximation and the estimation of π). Example of the estimated
characteristic neighbors is shown in Fig. 1.

Appearance-based registration. The desired affine transformation of an ob-
ject g corresponds to a local maximum of its relative energy E(ga) = VTF(ga)

(a) (b) (c)

Fig. 1. The 3D neighborhood system (a) estimated for the lung tissues; its 2D cross sec-
tion in the plane ζ = 0 (b; in white) and its superposition onto the lungs reconstructed
from the LDCT images (c)
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under the learned appearance model [N ,V]. Here, ga is the part of the object
image reduced to Rp by the 3D affine transformation a = [a11, . . . , a34]: x′ =
a11x+a12y+a13z+a14; y′ = a21x+a22y+a23z+a24; z′ = a31x+a32y+a33z+a34.
The initial transformation step is a pure translation with a11 = a22 = a33 = 1;
a12 = a13 = a21 = a23 = a31 = a32 = 0, ensuring the most “energetic” over-
lap between the object and prototype. In other words, the chosen initial position
(a∗14, a

∗
24, a

∗
34) maximizes the Gibbs energy. Then the gradient search for the local

energy maximum closest to the initialization selects all the 12 parameters.
Figures 2(c,d) show the results of the global alignment of two segmented lungs.

It is clear from Fig. 2(d) that the global alignment is not perfect due to local
deformation.

(a) (b) (c) (d) (e) (f)

Fig. 2. 3D global and local registration: (a) reference data, (b) target data, (c) tar-
get data after 3D affine transformation, (d) checkerboard visualization to show the
motion of lung tissues, (e) results of our non-rigid registration, and (f) checkerboard
visualization to show the quality of the proposed local deformation model.

2.2 Local Motion Model

To handle local deformations, we propose to deform the object over evolving
closed equi-spaced surfaces (distance iso-surfaces) so that it closely matches the
prototype. The evolution is guided by an exponential speed function and intends
to minimize distances between corresponding voxel pairs on the iso-surfaces in
both the images. The normalized cross correlation of the Gibbs energy is used
to find correspondences between the iso-surfaces.

Our approach involves the following steps. First, a distance map inside the
object is generated using fast marching level sets [10]. Secondly, the distance
map is used to generate iso-surfaces (Fig. 3(b)). Note that the number of iso-
surfaces is not necessarily the same for both the images and depends on the
accuracy and the speed required by the user. The third step consists in finding
correspondences between the iso-surfaces using the normalized cross correlation
of the Gibbs energy. Finally, the evolution process deforms the iso-surfaces in
the first data set (the target image) to match the iso-surfaces in the second data
set (the prototype).

The following notation is used below for defining the evolution equation:

– bh
g1

= [ph
k : k = 1, . . . ,K] – K control points on a surface h on the reference

data such that pk = (xk, yk, zk) form a circularly connected chain of line
segments (p1,p2), . . . , (pK−1,pK), (pK ,p1);
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– bγ
g2

= [pγ
n : n = 1, . . . , N ] – N control points on a surface γ on the target

data such that pn = (xn, yn, zn) form a circularly connected chain of line
segments (p1,p2), . . . , (pN−1,pN ), (pN ,p1);

– S(ph
k ,p

γ
n) – the Euclidean distance between a point on the surface h in the

image g1 and the corresponding point on the surface γ in the image g2;
– S(pγ

n,p
γ−1
n ) – the Euclidean distance between a point on the surface γ in

the image g1 and the nearest point on the surface γ − 1 in g1, and
– ν(.) – the propagation speed function.

The evolution bτ → bτ+1 of a deformable boundary b in discrete time, τ =
0, 1, . . ., is specified by the system pγ

n,τ+1 = pγ
n,τ + ν(pγ

n,τ )un,τ ; n = 1, . . . , N
of difference equations where ν(pγ

n,τ ) is a propagation speed function for the
control point pγ

n,τ and un,τ is the unit vector along the ray between the two
corresponding points. The propagation speed function

ν(pγ
n,τ ) = min

{
S(ph

k ,p
γ
n,τ ), S(pγ

n,τ ,p
γ−1
n,τ ), S(pγ

n,τ ,p
γ+1
n,τ )

}
satisfies the condition ν(pγ

n,τ ) = 0 if S(ph
k ,p

γ
n,τ ) = 0 and prevents the current

point from cross-passing the closest neighbor surfaces as shown in Fig. 3(a). The
latter restriction is known as the smoothness constraint.

Again, the checkerboard visualization (Fig. 2(d)) of the data set in Fig. 2(a)
and the aligned data set in Fig. 2(c) highlights the effect of the motion of lung
tissues.

(a) (b)

Fig. 3. (a) The proposed evolution scenario and (b) equi-spaced surfaces

3 Experimental Results and Conclusions

The proposed registration models were tested on the clinical datasets collected
from 27 patients. Each patient has five LDCT scans, with the three months
period between each two successive scans. This preliminary clinical database
was collected by the LDCT scan protocol using a multidetector GE Light Speed
Plus scanner with the following scanning parameters: slice thickness of 2.5 mm
reconstructed every 1.5 mm, scanning pitch 1.5, pitch 1 mm, 140 KV, 100 MA,
and F.O.V 36 cm.

After the two volumes at different time instants are registered, the task is to
find out if the nodules are growing or not. For this purpose, the lung nodules
were segmented after registration using our previous approach [11]. Once the
nodules are segmented in the original and the registered image sequences, the



Toward Early Diagnosis of Lung Cancer 687

Table 1. Growth rate statistics for 14 patients with malignant nodules and 13 patients
with benign nodules (p – statistical significance; μ – average rate, %; σ – standard
deviation, %)

With the proposed registration Without the registration
Scanning Malignant Benign Malignant Benign
period μM σM μB σB p μM σM μB σB p

3 months 22 16 0.9 0.7 10−4 5.6 4.8 2.8 1.9 0.1
6 months 49 20 2.9 2.3 10−4 11 6.6 8.4 5.1 0.3
9 months 91 29 4.5 3.8 10−4 24 9.3 17 11 0.1
12 months 140 32 5.4 4.3 10−4 30 11 20 16 0.1

Table 2. Statistical analysis for the growth rate of the detected lung nodules for
fourteen patients who have malignant nodules and thirteen patients who have benign
nodules using ImageChecker commercial CT CAD system

Diameter-based follow up Volume-based follow up
Scanning Malignant Benign Malignant Benign
period μM σM μB σB p μM σM μB σB p

3 months 1.1 0.97 0.71 0.59 0.2229 6.15 3.91 3.67 2.73 0.0631
6 months 1.4 1.13 1.1 1.29 0.5254 11.7 4.37 9.27 4.17 0.1525
9 months 1.8 2.77 1.6 2.51 0.8461 21.9 9.93 16.17 9.97 0.0753
12 months 1.9 2.57 1.71 2.77 0.8548 31.3 12.3 22.21 12.7 0.0705

Table 3. Statistical analysis for the growth rate of the detected lung nodules for
fourteen patients who have malignant nodules and thirteen patients who have benign
nodules using the proposed approach in [12]

Scanning Malignant Benign
period μM σM μB σB p

3 months 9.25 7.5 4.91 2.93 0.0624
6 months 16.1 11.97 9.95 6.91 0.1183
9 months 23.7 16.43 13.87 9.85 0.0737
12 months 45.57 34.87 25.57 15.77 0.0699

volumes of the nodules are calculated using the Δx, Δy, and Δz values from the
scanner (in our case, 0.7, 0.7, and 2.5 mm, respectively).

Our statistical analysis using the unpaired t-test shows that the difference be-
tween the average growth rate of malignant nodules and the average growth rate
of benign nodules found with the proposed approach is statistically significant
(as shown in Table 1). Also, Table 1 shows that no significant difference is found
if the growth rate is measured without the data alignment step.

The advantages of using the proposed CAD system to estimate the growth
rate of the detected lung nodules are highlighted by estimating the growth rate
of the same detected lung nodules with ImageChecker commercial CT CAD sys-
tem. This software provides two methods to monitor the detected lung nodules:
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(a) (b)

(c) (d)

Fig. 4. Estimated probability density functions (probabilistic models) of the relative
growth rates for 14 malignant and 13 benign nodules using our Linear Combination
of Discrete Gaussian (LCDG) model [9]: (a) three months, (b) six months, (c) nine
months, and (d) twelve months.

1) estimating the growth rate based on measuring the changes of the diameter
of the largest cross section in the detected nodules and 2) estimating the growth
rate based on measuring the volumetric changes of the detected nodules. The
estimated growth rate using this CAD system is shown in Table 2. The main
limitation of the ImageChecker CT CAD system is not considering the local
deformation of the lung tissues from breathing and the heart beating. For this
reason, the statistical analysis shown in Table 2 does not demonstrate a signifi-
cant difference between the estimated growth rate of malignant lung nodules and
the estimated growth rate of benign lung nodules, a difference which is detected
by our proposed CAD system. The same limited ability to estimate the growth
rate of the detected lung nodules exists in the most recent published work by
Reeves et al. [12]. The statistical analysis of the estimated growth rates of the
same detected nodules using the proposed approach in [12] is shown in Table 3.
A traditional Bayes classifier based on the analysis of the growth rate of both
benign and malignant nodules for 27 patients diagnosed 14 and 13 patients as
malignant and benign, respectively. For simplicity, this classifier used a multi-
variate Gaussian model of the growth rate with the rates at 3, 6, 9, and 12
months as four discriminant features. The same patients were diagnosed by
biopsy (the ground truth) showing that the classification was 100% correct.
Therefore, the proposed image analysis techniques could be a promising
supplement to the current technologies for diagnosing lung cancer.

We introduced a new approach for registering 3D spiral LDCT images that
combines an initial affine global alignment of one scan (the target) to another
scan (the reference) using the learned prior appearance model and subsequent
local alignments that account for more intricate deformations.



Toward Early Diagnosis of Lung Cancer 689

References

1. Maintz, J., Viergever, M.: A Survey of Medical Image Registration. Journal of
Medical Image Analysis 2, 1–36 (1998)

2. Ko, J., Naidich, D.: Computer-Aided Diagnosis and the Evaluation of Lung Disease.
Journal of Thoracic Imaging 19(3), 136–155 (2004)

3. Kostis, W., Yankelevitz, D., Reeves, A., Fluture, S., Henschke, C.: Small Pul-
monary Nodules: Reproducibility of Three-Dimensional Volumetric Measurement
and Estimation of Time to Follow-Up CT. Radiology 231(2), 446–452 (2004)

4. Horn, B.: Closed-Form Solution of Absolute Orientation using Unit Quaternions.
Journal of the Optical Society of America B 4(4), 629–642 (1987)

5. Brown, M., McNitt-Gray, M., Mankovich, N., Goldin, J., Hiller, J., Wilson, L.,
Aberle, D.: Method for Segmenting Chest CT Image Data using an Anatomical
Model: Preliminary Results. IEEE TMI 16(6), 828–839 (1997)

6. Ko, J., Betke, M.: Chest CT: Automated Nodule Detection and Assessment of
Change over Time-Preliminary Experience. Radiology 218, 267–273 (2001)

7. Woods, K., Fan, L., Chen, C., Wang, Y.: Model Supported Image Registration and
Warping for Change Detection in Computer-Aided Diagnosis. In: Applied Imagery
Pattern Recognition (AIPR) Annual Workshops, Washington DC (2000)

8. Fan, L., Chen, C.: An Integrated Approach to 3D Warping and Registration from
Lung Images. In: Proceedings of SPIE Conf. Developments in X-Ray Tomography
II (July 1999)

9. El-Baz, A., Gimel’farb, G.: EM Based Approximation of Empirical Distributions
with Linear Combinations of Discrete Gaussians. In: Proc. of IEEE International
Conference on Image Processing (ICIP 2007), San Antonio, Texas, USA, September
16–19, vol. IV, pp. 373–376 (2007)

10. Sethian, J.: Fast Marching Level Set Method for Monotonically Advancing Fronts.
Proc. National Academy of Sciences, USA 93, 1591–1595 (1996)

11. El-Baz, A., Farag, A., Gimel’farb, G., Falk, R., Abou El-Ghar, M., Eldiasty, T.:
A Framework for Automatic Segmentation of Lung Nodules from Low Dose Chest
CT Scans. In: Proc. IAPR Int. Conf. on Pattern Recognition (ICPR 2006), Hong
Kong, August 20–24, vol. 3, pp. 611–614 (2006)

12. Reeves, A., Chan, A., Yankelevitz, D., Henschke, C., Kressler, B., Kostis, W.: On
Measuring the Change in Size of Pulmonary Nodules. IEEE TMI 25(4), 435–450
(2006)



Lung Extraction, Lobe Segmentation and Hierarchical
Region Assessment for Quantitative Analysis on High

Resolution Computed Tomography Images�
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Abstract. Regional assessment of lung disease (such as chronic obstructive pul-
monary disease) is a critical component to accurate patient diagnosis. Software
tools than enable such analysis are also important for clinical research studies.
In this work, we present an image segmentation and data representation frame-
work that enables quantitative analysis specific to different lung regions on high
resolution computed tomography (HRCT) datasets. We present an offline, fully
automatic image processing chain that generates airway, vessel, and lung mask
segmentations in which the left and right lung are delineated. We describe a novel
lung lobe segmentation tool that produces reproducible results with minimal user
interaction. A usability study performed across twenty datasets (inspiratory and
expiratory exams including a range of disease states) demonstrates the tool’s abil-
ity to generate results within five to seven minutes on average. We also describe
a data representation scheme that involves compact encoding of label maps such
that both “regions” (such as lung lobes) and “types” (such as emphysematous
parenchyma ) can be simultaneously represented at a given location in the HRCT.

1 Introduction

Regional assessment of lung disease is an important component of both diagnosis and
therapy. Furthermore, localized quantitation of disease can provide insight into under-
lying disease mechanisms, and tools that offer such regional assessment are invaluable
in large epidemiological studies. As an example, chronic obstructive pulmonary disease
(COPD) is projected to be the 3rd leading cause of death worldwide by 2020 [1,2,3].
There are at least two distinct mechanisms of expiratory airflow obstruction in COPD
subjects: emphysematous destruction of the lung parenchyma leading to airway collapse
and intrinsic disease of the small airways [4,5]. The relative burden of airspace and air-
ways disease can vary, however, within a cohort of subjects with similar lung function
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[6], and even regionally within the lungs of an individual [7]. Standard metrics, such as
Forced Expiratory Volume in one second (FEV1), while reproducible and easy to mea-
sure are not necessarily indicative of the cause of airflow obstruction. Because of this,
image based methods are useful for investigating subjects with COPD and helpful to
define more homogeneous subsets of subjects within a cohort with comparable degrees
of airflow obstruction.

Anatomically, the lungs consist of distinct lobes: the left lung is divided into upper
and lower lobes, while the right lung is divied into upper, middle, and lower lobes. Each
lobe has airway, vascular, and lymphatic supplies that are more or less independent of
those supplies to other lobes. Hence, the lobes represent natural anatomic units over
which to compute image-based disease metrics. Fissures (left oblique, right oblique,
and right horizontal) define the boundaries between the lobes and present as 3D surfaces
that have greater attenuation (i.e. are brighter) than the surrounding lung parenchyma in
HRCT datasets. However, advanced disease states (emphysema), atelectasis, and certain
imaging protocols (expiratory acquisitions) can make it extremely difficult to detect the
fissures in certain regions, and the judgment of medical professionals is typically needed
in order to define the location of these structures.

There have been a variety of lobe segmentation and fissure detection approaches
developed to date. [8] uses fuzzy sets to define likely (oblique) fissure locations fol-
lowed by a graph search to select the most probable fissure locations in 2D slices. Their
method requires manual initialization, and results were reported on normal subjects. [9]
first obtain a vessel segmentation from which they derive a distance map. The distance
map, in conjunction with the original image and user interaction, drive watershed seg-
mentation of the lobes. [10] perform lobe segmentation in a similar fashion but use a
segmented airway tree to seed the watershed segmentation in an automatic framework.
[11] generate ridge maps to enhance fissures and then use active open contours to de-
lineate the fissures. Ten patients with pulmonary nodules were tested in their study. Al-
gorithm run times were approximately five minutes and manual correction was needed
in about 2.4% of the fissure regions. [12] use deformable mesh models to segment the
lobes. They report accuracy results of 1 mm to 3 mm on a limited number of test sets.

In order to address segmentation failure modes that can be caused by extreme disease
states, specific imaging protocols, or insufficiently segmented auxiliary structures (ves-
sels or airways), manual interaction is needed. In this paper we present an interactive
lung lobe segmentation scheme that enables fast, easy, and accurate segmentation in
spite of such factors. The segmentation results are incorporated into an overall data rep-
resentation framework that provides a compact way to simultaneously encode both lung
regions (e.g. lobes) and types (e.g. parenchyma states). This representation provides a
convenient way to interrogate the underlying CT data to assist with both diagnosis and
exploratory research. In section 2 the lobe segmentation method and preprocessing steps
are presented. The data representation framework is also explained. In section 3 image
preprocessing and lobe segmentation examples are shown. We also conducted a study
in which two pulmonologists used the lobe segmentation tool to produce segmentations
across twenty HRCT datasets; results of this study are presented. Finally, conclusions
are drawn in section 4.
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2 Methods

In this section we begin by explaining the data representation scheme we use to encode
segmentation results throughout the image processing pipeline. Next, we describe the
image pre-processing steps required for the interactive lobe segmentation tool. Finally,
we describe the lobe segmentation tool itself and discuss its usage and the underlying
segmentation algorithm.

2.1 Label Map Representation

There are two abstract lung components of interest for the purposes of quantitative
analysis: we refer to these as “regions” and “types”. Currently, the regions we extract
include the left upper and lower lobes; the right lower, middle and upper lobes; the left
lung; the right lung; and the whole lung. These regions are naturally represented in a
hierarchical framework, as depicted in the figure below. E.g., the left upper lobe is a
part of the left lung, which is a part of the whole lung. The types currently represented
include airway, vessel, normal parenchyma, and emphysematous parenchyma. The la-
bel maps produced by the segmentation routines (described below) are represented as
16-bit data; the least significant eight bits are used to encode the lung region while
the most significant eight bits encode the lung type. This enables up to 256 regions
and 256 types to be encoded within a single dataset. Extensions to the list of regions
given above could include each lobe’s set of sub-lobes, e.g., while extenstions to the
list of types could include a range of disease states (ground glass parenchyma, reticular
parenchyma, etc.) as well as other basic anatomical types (airway lumen, airway wall,
etc). The table below provides an example numbering scheme. As an example the 16-
bit value corresponding to 00000110 00000100 (a base ten value of 1540) corresponds
to reticular tissue in the right upper lobe while the 16 bit value 00000000 00000010 (a
base ten value of 2) corresponds simply to right lung.

Fig. 1. Lung Region Hierarchy Diagram

2.2 Offline Image Processing

We employ a completely automatic image processing pipeline to generate initial seg-
mentations of regions and types of interest. Prior to segmentation, the HRCT dataset is
pre-processed with a median filter using a 3x3x3 kernel. The lung mask is then segmented
using an approach very similar to that outlined in [13]. Briefly, this involves initial gray
level thresholding using Otsu’s method followed by morphological closing to fill in high
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Table 1. Regions and Types Numbering Scheme

Region 8-Bit Value Type 8-Bit Value
Undefined 0 Undefined 0

Whole Lung 1 Normal Parenchyma 1
Right Lung 2 Airway 2
Left Lung 3 Vessel 3

Right Upper Lobe 4 Emphysematous 4
Right Middle Lobe 5 Ground Glass 5
Right Lower Love 6 Reticular 6
Left Upper Lobe 7 Nodular 7
Left Lower Lobe 8

attenuating areas within the lung field. These high attenuating areas tend mostly to be
pulmonary vessels, so we assign these voxels a type value of “vessel” with the under-
standing that in some cases diseased lung parenchyma (due to edema or fibrosis) may be
labeled vessel as well. We label the data as such in the eventuality that voxels labeled as
“vessel” may be able to initialize more sophisticated vessel segmentation routines, but it
should be emphasized that vessel segmentation is not the current objective.

In order to properly label airways outside the lung field (trachea and main bronchi),
we apply connected component region growing to segment the airways. The patient ori-
entation is obtained from the input DICOM dataset; this allows a search for the trachea
from the correct end of the dataset: axial slices are iteratively considered until a small

Fig. 2. User-defined points along right horizontal
fissure

foreground structure in the center of the
image is detected. Spatial consistency
over several slices ensures that the ob-
ject in question is indeed the trachea and
not a spurious foreground object. Once
this region of the trachea is determined,
an initial threshold and seed location are
selected to initialize the region growing
algorithm. Region growing is repeated it-
eratively, and at each iteration the volume
of the extracted airway tree is computed.
Provided that the change in volume from
one iteration to the next is within a cer-
tain tolerance, iteration continues with
progressively higher threshold values.
The final threshold is the one that lies
at the boundary between acceptable air-
way segmentation and segmentation “ex-
plosion” due to leakage into parenchyma.
To differentiate between airways that lie
within the parenchyma and those that lie outside the lung field, each axial slice is con-
sidered in turn. Connected components is performed to identify regions labeled as lung
and those segmented as airways. If the perimeter of an airway component is surrounded
by at least 75% lung region, that entire component is assigned the region “whole lung”,
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otherwise the assigned region is “undefined”. Following the approach outlined in [13],
minimum cost paths are determined using Dijkstra’s algorithm in order to separate the
left and right lungs. Given the known patient orientation in the image field, the lung
regions are further labeled as “left” and “right”.

2.3 Interactive Lobe Segmentation

We have developed a novel interactive lung lobe segmentation tool that enables a user
to quickly, easily, and accurately generate segmentations of the left upper and lower
lobes and right upper, middle, and lower lobes. This tool has been incorporated as a
plugin for the Slicer3 software application. From the user’s perspective, use of the tool
involves loading the HRCT dataset and corresponding lung label map produced by the
offline image processing pipeline. Next, the user simply scrolls through the HRCT data
and clicks on points along three major fissures: left oblique, right oblique, and right hor-
izontal. Figure 2 gives an example of two user-defined points along the right horizontal
fissure. The dataset shown is an expiratory acquisition, and it is easy to appreciate from
this example how faint fissures can be in such scans. Only a handful of points is neces-
sary in most cases. Once these points have been selected, the segmentation algorithm is
invoked, and the results are displayed for user verification. Additional points may then
be added in areas of misalignment.

The underlying algorithm driving the lobe segmentation method employs thin plate
splines (TPS) [14] to define height surfaces corresponding to the three fissures. The
equation of the height surface is given by

f (x, y) = a1 + a2x + a3y +
n∑

i=1

wiU (|Pi + (x, y)|) (1)

where U(r) = r2 log r is the radial basis function. The coefficient vector, a = (a1, a2,
a3), and the weight vector, w = (w1, . . . , wn) are determined from the n user-defined
points, P , such that the height function’s bending energy, E, is minimized.

E =
∫∫

R2

(
∂2f

∂x2

)2

+
(

∂2f

∂x∂y

)2

+
(

∂2f

∂y2

)2

dxdy (2)

Intuitively, TPS provide an interpolation scheme whereby a minimally curved surface
is defined such that it passes through all the user-selected points. A separate 3D surface
is defined for each of the three fissures. The region of support for the left oblique fissure
is the projection of the left lung region onto the axial plane and similarly for the fissures
in the right lung. Using the height surface equation given above, voxels in the lung field
falling on the surface (within the tolerance of a voxel width) are assigned a type value
of “oblique fissure” or “horizontal fissure” depending on which user defined point set is
being considered. We impose the anatomically-based constraint that the right horizontal
fissure is only defined as such in regions where its height function value is above that of
the right oblique fissure. Connected component region labeling is then used to label the
upper and lower lobes in the left lung from the lung regions that lie above and below
the left oblique fissure, respectively. Similar logic is applied to label the regions in the
right lung. Note that during this region relabeling operation, the types assigned from
the offline processing (airway and vessel) remain unchanged.
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Fig. 4. Region and Type Segmentation. Top row shows example results from the automatic pro-
cessing stage. Bottom row shows lobe segmentation results produced with the interactive lobe
segmentation tool.

3 Results

Figure 4 shows results produced from the automatic processing stage (top row) and the
interactive lobe segmentation tool (bottom row). The image in the upper left depicts

Fig. 3. Airways and Lobe Regions

all regions (left and right lung) and types
(airways and vessels) extracted during this
stage. Vessel and airway types are iso-
lated and displayed in the upper middle
image, and airway type is depicted in the
upper right. It should be emphasized that
the lobe segmentation results (bottom row)
are merged with the output of the offline,
automatic image processing stage, so the
final label map includes regions left up-
per lobe, left lower lobe, right upper lobe,
right middle lobe, right lower lobe; and
types airway, vessel, oblique fissure, and
horizontal fissure.

The utility of the region-type framework
can be illustrated by figure 3 in which the
following region-type pairs are isolated:
(undefined, airway), (left upper lobe, air-
way), (left lower lobe, airway), etc. Alternatively, the user could have isolated all air-
ways in the left lung, or simply the entire segmented airway tree, all with a single label
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map representation. A similar analysis could be performed on the lung parenchyma: by
assigning all voxels below a specified threshold a type value corresponding to “emphy-
sematous parenchyma” [15], interrogation of the dataset for disease localization can be
efficiently performed.

The results of the lobe segmentation tool’s usability study are summarized in table 2.
Twenty datasets were included in the study, and both inspiratory and expiratory ex-
ams were considered. A range of disease states (including severe emphysema) are also
represented.

The two users had slightly different approaches to the tool’s usage. Reader 1 tended
to rely on the tool’s interpolation more: he initially deposited a small number of points,
executed the algorithm, and then added additional points in areas of misalignment. This
was repeated until a satisfactory result was reached. While this approach ultimately
required fewer points per fissure (compared to reader 2), the iterative nature caused
longer overall usage times. (Usage time here is defined as the length of time between
the first clicked point and the final declaration of a satisfactory result). Reader 2 initially
deposited many more points per fissure than reader 1, but this resulted in a better fit
surface at the outset, required fewer fixes, and resulted in shorter usage times overall.
Note that algorithm run time is mainly a function of the HRCT dataset size, and the
dependence on the number of user-defined points is negligible.

Table 2. Lobe Segmentation Results. Cases are numbered and indicated as either inspiratory (i)
or expiratory (e). The first three columns for each reader represent the number of points selected
for the left oblique fissure (LO), the right oblique fissure (RO), and the right horizontal fissure
(RH). Euclidean distances reflect the agreement between the two readers for each of the three
fissures.

Reader 1 Reader 2 Euclidean Distance (mm)
LO RO RH Usage Time (minutes) LO RO RH Usage Time (minutes) LO RO RH Algorithm Time (seconds)

Case 1 (e) 12 8 8 6 10 16 8 7 1.75 ± 2.72 2.58 ± 2.36 4.08 ± 3.69 45
Case 2 (i) 10 13 14 7 10 21 11 7 0.98 ± 0.98 3.60 ± 3.41 2.96 ± 3.75 53
Case 3 (e) 8 24 9 9 26 41 13 10 4.17 ± 5.15 4.35 ± 4.81 2.97 ± 3.39 48
Case 4 (i) 6 18 7 9 20 26 14 5 2.83 ± 2.69 2.68 ± 2.72 2.39 ± 2.15 46
Case 5 (e) 8 13 6 6 13 18 5 3 2.75 ± 2.59 1.10 ± 1.32 0.80 ± 0.70 26
Case 6 (i) 11 15 9 5 14 17 7 5 1.86 ± 1.73 0.85 ± 0.98 4.51 ± 3.93 41
Case 7 (e) 9 16 15 6 13 19 10 4 1.45 ± 1.54 0.81 ± 0.81 6.44 ± 8.15 26
Case 8 (i) 10 15 9 6 18 15 7 5 1.61 ± 1.76 2.19 ± 2.15 1.21 ± 1.14 33
Case 9 (e) 16 22 15 10 8 23 14 4 1.25 ± 1.27 3.74 ± 4.60 2.27 ± 1.90 32
Case 10 (i) 9 13 14 9 16 15 12 4 0.99 ± 1.07 4.01 ± 3.75 4.32 ± 7.73 46
Case 11 (e) 12 20 11 7 17 23 19 4 1.32 ± 1.23 1.29 ± 1.24 0.66 ± 0.81 51
Case 12 (e) 9 12 20 10 17 18 13 4 3.32 ± 3.25 1.69 ± 2.60 3.02 ± 2.73 35
Case 13 (i) 12 31 10 11 19 22 17 3 1.82 ± 1.75 2.21 ± 2.95 7.19 ± 6.41 45
Case 14 (i) 11 16 11 6 13 17 15 7 1.59 ± 1.51 1.23 ± 1.40 4.02 ± 4.91 50
Case 15 (e) 20 12 6 6 13 20 11 4 5.18 ± 7.17 2.43 ± 2.63 2.43 ± 2.22 40
Case 16 (e) 6 17 6 5 11 30 14 8 1.59 ± 1.55 1.88 ± 2.10 13.7 ± 13.8 43
Case 17 (i) 9 20 8 8 10 41 13 8 2.08 ± 2.03 4.21 ± 4.82 2.02 ± 2.00 53
Case 18 (e) 13 15 6 5 13 23 11 5 1.85 ± 1.78 1.24 ± 1.18 4.45 ± 3.68 50
Case 19 (i) 17 17 6 7 29 24 16 6 1.34 ± 1.36 1.72 ± 1.85 1.65 ± 1.41 54
Case 20 (e) 11 24 7 8 22 43 14 12 1.84 ± 1.97 1.37 ± 1.34 19.4 ± 18.67 46

Average 10.95 17.05 9.85 7.3 15.6 23.6 12.2 5.75 2.08 ± 2.26 2.26 ± 2.45 4.52 ± 4.66 43.15

Despite the two approaches used by readers 1 and 2, the overall segmentation results
are in very good agreement across the set of exams. This is reflected by the Euclidean
distances between fissures presented in table 2. Disagreement is most noticable for the
right horizontal fissure. This is not surprising given that minor (horizontal) fissures are
incomplete more often than major (oblique) fissures [16]. In such cases readers have to
make boundary decisions in the near absence of image features.
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4 Conclusion

We have presented a novel lung lobe segmentation tool that requires minimal user input
and enables users to quickly and accurately produce lobe segmentations in spite of se-
vere disease states and imaging protocols that can obscure fissure image signatures. The
tool enables satisfactory results to be produced on HRCT datasets (which can consist of
several hundred slices) in a matter of minutes. We also described a data representation
scheme that provides a flexible framework for regional image quantitation.
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Abstract. The standard approaches to analyzing emphysema in com-
puted tomography (CT) images are visual inspection and the relative
area of voxels below a threshold (RA). The former approach is subjective
and impractical in a large data set and the latter relies on a single thresh-
old and independent voxel information, ignoring any spatial correlation
in intensities. In recent years, supervised learning on texture features has
been investigated as an alternative to these approaches, showing good re-
sults. However, supervised learning requires labeled samples, and these
samples are often obtained via subjective and time consuming visual
scoring done by human experts.

In this work, we investigate the possibility of applying supervised
learning using texture measures on random CT samples where the labels
are based on external, non-CT measures. We are not targeting emphy-
sema directly, instead we focus on learning textural differences that dis-
criminate subjects with chronic obstructive pulmonary disease (COPD)
from healthy smokers, and it is expected that emphysema plays a ma-
jor part in this. The proposed texture based approach achieves an 69%
classification accuracy which is significantly better than RA’s 55%
accuracy.

1 Introduction

The traditional tools for diagnosis of chronic obstructive pulmonary disease
(COPD) are pulmonary function tests (PFT)s. These are cheap and fast to
acquire but suffer from several limitations, including insensitivity to early stages
of COPD and lack of reproducibility [1]. More recently, computed tomography
(CT) imaging has been used for direct measurement of one the components
of the disease, namely emphysema, which is characterized by gradual loss of
lung tissue and appears as low attenuation areas within the lung tissue. There
are two common approaches for assessing emphysema in CT images: visual as-
sessment, including sub-typing of emphysema based on radiological experience
[2], and measures derived from the CT attenuation histogram, with the most
widely used measure being relative area of voxels below a certain threshold
(RA) [2].

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 699–706, 2009.
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RA disregards potentially valuable information in the CT image, such as
spatial relations between voxels. Various alternatives have been suggested for
analyzing emphysema in CT images. One such approach is analysis of bullae
size distribution [3]. Another approach is supervised texture classification where
a classifier is trained on manually annotated regions of interest (ROI)s [4,5,6,7].
The output of a trained classifier can be used for COPD quantification by fusion
of individual ROI posterior probabilities [7].

Supervised learning requires a training set with labeled data which is usually
acquired by manual annotation. However, having human observers manually an-
notating ROIs can be problematic. First of all, it is a subjective process suffering
from inter-observer variability. This problem can partly be addressed by consen-
sus readings of several experts. Another drawback is the time needed for doing
the annotations, and when the data set is large, manual annotation is infea-
sible. Further, analysis will be limited to current knowledge and experience of
experts, and there can be a bias towards typical cases in the annotated data
set. In the emphysema case, this means restricting ourselves to the three known
radiographic subtypes of emphysema [2].

In this work, we explore the possibility of diagnosing COPD in volumetric CT
images of the lung based on texture classification without manual labeling. PFTs
are used to define two subject groups, a healthy and a COPD group, and ROIs
are randomly sampled from these two groups and labeled according to group
membership. A supervised learning framework is applied for learning filters that
are able to separate the two groups. This approach is less committed, objective,
and can potentially uncover new textural patterns, or emphysema subtypes, as
being part of COPD.

Classification is based on the k nearest neighbor (kNN) classifier using dissim-
ilarity between sets of feature histograms as distance, and the features are based
on a rotation invariant, multi-scale Gaussian filter bank [8]. The classification
framework used here is similar to the one used in [6], but with a larger set of
filters and in 3D instead of 2D. The obtained results are compared to RA in the
experiments.

2 Selection of Training Samples

The classification framework relies on a grouping of the CT images into different
subject groups, according to non-CT measures, and a lung segmentation S ob-
tained from each CT image I. ROIs are sampled at random within the lung fields
in the images and assigned labels, ωi, according to subject group membership.
The lung segmentation S is used for two purposes. First of all, it is used for
limiting the random sampling to the lung fields. Secondly, it is used for allowing
only lung parenchyma voxels to contribute to the obtained feature histograms as
described in Section 3. In this work, we use PFTs to group the CT images, and
S is extracted from I using thresholding and morphological smoothing, similar
to [9].
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3 Texture Measures

Each ROI is represented by a set of feature histograms representing distributions
of filter responses computed in the ROI. The filtering is done by normalized
convolution [10] with a binary mask to exclude contribution from larger non-
parenchyma structures, such as the trachea, the main bronchi, and the exterior
of the lung. A rotation invariant, multi-scale Gaussian filter bank [8] comprising
eight basis filters is used.

3.1 Filters

Eight different measures of local image structure are used as base filters: the
Gaussian function Gσ; the three eigenvalues of the Hessian λi,σ , i = 1, 2, 3,
ordered such that |λ1,σ| ≥ |λ2,σ| ≥ |λ3,σ|; gradient magnitude ||∇Gσ ||2 =√
I2
x,σ + I2

y,σ + I2
z,σ, where Ix,σ denotes the partial first order derivative of im-

age I w.r.t. x at scale σ; Laplacian of the Gaussian ∇2Gσ = λ1,σ + λ2,σ + λ3,σ;
Gaussian curvature Kσ = λ1,σλ2,σλ3,σ; and the Frobenius norm of the Hessian

||Hσ||F =
√
λ2

1,σ + λ2
2,σ + λ2

3,σ.
The filtering is performed by normalized convolution [10] with a Gaussian

function

Iσ =
(S(x)I(x)) ∗Gσ(x)

S(x) ∗Gσ(x)
,

where ∗ denotes convolution and segmentation S computed from image I is
used as an indicator function, indication whether voxel x = [x, y, z]T is a lung
parenchyma voxel or not. Derivatives are computed on the filtered images using
finite differences.

3.2 Histogram Estimation

The filter responses are quantized into feature histograms. The bins edges are
derived using adaptive binning [11]. This technique locally adapts the histogram
bin widths to the data set at hand such that each bin contains the same mass
when computing the histogram of all data while disregarding class labels. Only
voxels within a lung segmentation S are used, and the resulting histogram is
normalized to sum to one.

4 Classification

Classification is performed using the kNN classifier with summed histogram
dissimilarity as distance

D(x,y) =
Nf∑
i=1

L(fi(x), fi(y)), (1)
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where Nf is the number of feature histograms, L(·, ·) is a histogram dissimilarity
measure, and fi(x) ∈ R

Nb is the i’th feature histogram with Nb bins estimated
from an ROI centered on x. Two histogram dissimilarity measures L are con-
sidered: L1-norm and L2-norm. The L1-norm and L2-norm are instances of the
p-norm

Lp(H,K) = ||H −K||p =

(
Nb∑
i=1

|Hi −Ki|p
)1/p

,

with p = 1 or p = 2 and where H ∈ R
Nb and K ∈ R

Nb are histograms each with
Nb bins.

The posterior probability of belonging to class ωi given that the current ROI
is centered on voxel x is estimated in the kNN classifier by P (ωi|x) = kωi(x)/k ,
where kωi(x) is the number of nearest neighbors according to (1) belonging to
class ωi obtained from a total of k nearest neighbors.

5 Experiments

5.1 Data

Experiments are conducted using 296 low-dose volumetric CT images (tube volt-
age 140 kV, exposure 40 mAs, slice thickness 1 mm, and in-plane resolution
ranging from 0.72 to 0.78 mm) from 296 different (ex-)smokers enrolled in the
Danish Lung Cancer Screening Trial [12].

Two subjects groups, ωi = {healthy,COPD}, are defined based on the GOLD
criteria [13]. These criteria use two PFTs based measures: expiratory volume in
one second over forced vital capacity (FEV1/FVC), and forced expiratory volume
in one second corrected for age, sex, and height (FEV1%pred). The healthy
group is defined by FEV1%pred ≥ 80 and FEV1/FVC ≥ 0.7. The COPD group
is defined by FEV1%pred < 80% and FEV1/FVC < 0.7, which corresponds
to GOLD stage II or higher [13]. The healthy group contains 144 CT images
and the COPD group contains 152 CT images. For each CT image, 50 cubic
r × r × r ROIs are sampled at random, thus a total of 14800 ROIs are used in
the experiments. A separate set of 10 ROIs per subject is sampled to compute
the adaptive binning described in Section 3.2.

Since PFTs are not very reproducible [1], the grouping is enhanced by ensuring
that the criteria are fulfilled at two time instances; both when the CT images
were acquired and one year after.

5.2 Training and Parameter Selection

There are several parameters to set in the classification system: ROI size r,
number of histogram bins Nb, k in the kNN classifier, histogram dissimilarity
measure L, and which filters, out of the ones described in Section 3.1, to use at
which scales σ. In this work, we use Nb = 3

√
number of voxels in the ROI = r

bins. This ensures that the standard deviation across bins is proportional to
the standard deviation within bins. The best combination of r = {21, 31, 41},
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L = {L1, L2}, and k = {25, 35, 45} is learned using cross-validation, and sequen-
tial forward feature selection (SFS) is used for determining the optimal filter
subset for each combination. The scales of the filters are sampled exponentially
according to σi = 0.6(

√
2)i mm, i = 0, . . . , 6. Together with the original intensity,

this amounts a total of 57 feature histograms considered in the feature selection.
The CT images in the training set are divided into two sets by randomly

placing half the images of each group in each set. The classification system is
trained, and parameters are tuned by using one set as prototypes in the kNN
classifier and by choosing the features and parameter settings that minimize the
classification error on the other set.

5.3 Evaluation

The performance is estimated using 3-fold cross-validation, training the classifier
as described above and applying the best performing kNN classifier, in terms of
validation error, with the training set as prototypes to the test set. The results are
evaluated in three ways. First, by maximum a posteriori classification accuracy
on the ROIs. For the remaining cases, each subject is measured by posterior
fusion: the mean healthy posterior probability is computed across all sampled
ROIs in the subject. The second evaluation is maximum a posteriori classification
accuracy on subject level, and the third is the ability to separate the healthy
group of subjects from the COPD group according to a rank sum test on the
mean healthy posterior.

Since the texture based CT measurements are proposed as an alternative
to RA, we compare the obtained results to RA, computed both on the sampled
ROIs and on whole lungs. The best RA for ROI classification, RAi, is determined
using cross-validation on the same data sets as used when training the kNN
classifier on the range i = [−960,−950, . . . ,−890] HU. Thresholds in this range
are commonly used when measuring emphysema in CT [2]. The best percentage
threshold used for classification based on RA is also determined during this
procedure.

5.4 Results

The filters selected by SFS using the best parameter setting are shown in Table 1.
Three of the filters are selected in two out of three folds. The selected optimal
kNN parameters are r = 41 in all three folds and ordered by fold L = L2, L1, L2
and k = 35, 45, 35. The selected optimal RA parameters are, ordered by fold,
HU threshold = −890,−960,−890 and percentage threshold = 32, 15, 47. ROI
classification accuracies, subject classification accuracies, areas under the re-
ceiver operating characteristic curve (AUC), and p-values for difference between
groups according to a rank sum test are shown in Table 2. RA using -950 HU is
also included for the sake of completeness. kNN achieves significantly higher ROI
and subject classification accuracy than RA, p < 10−4 according to McNemar’s
test. RA is able the pick up an overall group effect but has poor discrimination
ability on a subject level. Figure 1(a) shows receiver operating characteristic
(ROC) curves for the kNN classifier on the ROIs as well as for RA on the whole
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Table 1. Selected filters in kNN in the cross-validation procedure

Fold Selected filters

1 ∇2G0.6, λ2,0.6, λ3,0.6, λ2,0.85, ||∇G2.4||2, λ1,2.4,∇2G3.4, K3.4, ||∇G4.8||2
2 K0.6, G1.2, ||∇G1.2||2, ||∇G4.8||2, K4.8

3 ∇2G0.6, ||H0.6||F , ||∇G1.7||2, λ1,1.7, G2.4, K4.8

Table 2. Classification accuracies, AUCs, and p-values from a rank sum test

Measure ROI accuracy Subject accuracy AUC p-value

kNN 0.58 0.69 0.75 < 10−4

RAlearned (ROIs) 0.53 0.55 - -
RA890 (whole lung) - - 0.58 0.012
RA950 (whole lung) - - 0.59 0.012
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Fig. 1. (a) ROC curves at subject level. The curve for kNN is based on mean healthy
posterior computed for each subject. (b) Scatter plot of mean kNN healthy posterior
versus RA890.

lung field. In the case of kNN, the parameter being varied is the healthy pos-
terior threshold, and in the case of RA, the parameter is the threshold on the
percentage of low attenuation voxels. AUC is clearly larger for the kNN classifier
compared to RA. Figure 1(b) shows the COPD measures obtained by mean kNN
healthy posterior and RA890. The separation between the groups is much better
for kNN as indicated by the classification accuracies and p-values in Table 2.

6 Discussion

The proposed texture based method outperforms RA in all comparisons. The
classification accuracies in Table 2 are significantly higher, both at ROI and at
subject level. When computing RA on the full lung, which is the common way of
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applying RA [2], more information is used than is available to the kNN classifier,
and even in these cases RA performs worse.

The ROI classification accuracies in Table 2 are relatively low when compared
to accuracies reported in the literature [4,5,6,7]. However, it is important to note
that in the cited cases, the ROIs and labels are obtained by manual labeling of
“interesting” areas in CT images. In this work, no manual labeling has been
done, instead the labels were obtained by taking random samples of lung tissue
within the lung fields. We expect the COPD group to also contain samples with
no apparent lung disease pattern in a random sampling setup, hence, the classes
are likely to overlap more when using this approach.

Intensity can be directly related to emphysema since emphysematous re-
gions have lower intensities due to loss of lung tissue, and therefore original
and smoothed intensities are considered important features. Nevertheless, inten-
sity is not selected in the first cross-validation fold, but the Laplacian of the
Gaussian which approximates the zero-order information at a larger scale is se-
lected and may compensate for this. Three filters are selected in two out of three
cross-validation folds: Laplacian of the Gaussian, ∇2G0.6, gradient magnitude,
||G4.8||2, and Gaussian curvature K4.8. ∇2G0.6 can be seen as a blob detector
at low scale, and it may be small low attenuation areas within the lung tissue
that are picked up by this filter. ||G4.8||2 measures large scales edges and K4.8
measures large scale blobs.

Emphysema is not uniformly distributed within the lungs. Paraseptal emphy-
sema is located in the periphery of the lung, and centrilobular emphysema is
predominantly in the upper lobes [2]. It would therefore be interesting to see
whether the COPD related textural differences found in this work are localized
in specific regions of the lungs.

Subjects were grouped using PFTs, and thus the classification system is
trained to imitate diagnosis of COPD based on PFT. As can be seen from
Figure 1(b) and the reported numbers, the learned filters achieve this to some de-
gree. The result is a quantitative measure of COPD which may be more sensitive
and reproducible than PFT. This facilitates study of disease development and
progression in large cohorts such as current lung cancer screening trials, which
may help improve the understanding of pathogenesis of COPD and eventually
lead to improved diagnosis, prognosis, and treatment of individuals.

In summary, we conclude that it is possible to learn COPD sensitive filters in
CT in a less committed, data-driven manner without, the often tedious, manual
annotation of data. A kNN classifier using texture measures based on these filters
is capable of separating healthy subjects from subjects with COPD, when these
are diagnosed based solely on PFTs.
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MICCAI 2008, Part I. LNCS, vol. 5241, pp. 934–941. Springer, Heidelberg (2008)

7. Park, Y.S., Seo, J.B., Kim, N., Chae, E.J., Oh, Y.M., Lee, S.D., Lee, Y., Kang,
S.H.: Texture-based quantification of pulmonary emphysema on high-resolution
computed tomography: Comparison with density-based quantification and correla-
tion with pulmonary function test. Investigative Radiology 43(6), 395–402 (2008)

8. ter Haar Romeny, B.M.: Applications of scale-space theory. In: Gaussian Scale-
Space Theory, pp. 3–19. Kluwer Academic Publishers, Dordrecht (1997)

9. Hu, S., Hoffman, E., Reinhardt, J.: Automatic lung segmentation for accurate
quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20(6),
490–498 (2001)

10. Knutsson, H., Westin, C.F.: Normalized and differential convolution: Methods for
interpolation and filtering of incomplete and uncertain data. In: CVPR, June 1993,
pp. 515–523 (1993)
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Abstract. This paper presents a method for the automated anatomi-
cal labeling of bronchial branches extracted from 3D CT images based
on machine learning and combination optimization. We also show ap-
plications of anatomical labeling on a bronchoscopy guidance system.
This paper performs automated labeling by using machine learning and
combination optimization. The actual procedure consists of four steps:
(a) extraction of tree structures of the bronchus regions extracted from
CT images, (b) construction of AdaBoost classifiers, (c) computation of
candidate names for all branches by using the classifiers, (d) selection of
best combination of anatomical names. We applied the proposed method
to 90 cases of 3D CT datasets. The experimental results showed that the
proposed method can assign correct anatomical names to 86.9% of the
bronchial branches up to the sub-segmental lobe branches. Also, we over-
laid the anatomical names of bronchial branches on real bronchoscopic
views to guide real bronchoscopy.

1 Introduction

A bronchoscope is a flexible endoscope for observing the inside of the bronchus.
A chest physician inserts a bronchoscope into the airway through the mouth
or the nose to perform a diagnosis, a biopsy, or for treatment. However, the
bronchus has a complex tree structure, so physicians easily get disoriented. A
system that can guide physicians is strongly expected to be developed. On the
other hand, a high resolution CT has also become available after the release of a
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multi-detector CT scanner. Such CT and bronchoscopic images can be combined,
it would be possible to assist bronchoscopic procedures. Several research groups
have been working on the development of bronchoscopic navigation systems that
utilize pre-operative CT images as maps. If we can overlay the anatomical names
of branches currently being observed or paths to target locations [1] on real
bronchoscope images, it would be helpful for physicians.

Several research groups have developed automated anatomical labeling pro-
cedures for bronchial tree structures [2,3,4]. Anatomical labeling is performed
by comparing input bronchial tree structures with branching pattern models.
Kitaoka et al. [2] developed a matching algorithm of branching models and in-
put tree structures using a weighted maximum clique search approach. How-
ever, their algorithm does not work well when the tree structures of the input
bronchial branches differ from those of model. To cope with this problem, Mori
et al. [3] developed a method that can handle variations of branching patterns
by introducing multiple branching pattern models. In their method, if we assign
anatomical names to a large number of cases, we must also prepare a large num-
ber of models to obtain accurate results. Ota presented a method for anatomical
labeling based on machine learning [5]. In this method, we considered branch
names as categories of the machine learning. However if a mislabeling occurs at
a branch, the consequent branches are also mislabeled in the previous method
[5]. Such mislabeling often occurs in the right main lobe part of the left lobe
part where many branches show similar features in the method [5].

To solve the above problems, we propose a novel approach for anatomical
labeling by introducing combination optimization. Classifiers that output branch
name candidates with likelihoods are constructed by learning the feature vectors
of the bronchial branch names of the learning datasets. The best combination of
branch names are obtained under anatomical constraint.

2 Method

2.1 Overview

Figure 1 shows the processing flow of our proposed method. We construct classi-
fiers that output bronchial branch name candidates with likelihoods using learn-
ing datasets. A machine learning approach is utilized here. In the anatomical
labeling process, we compute the feature values of bronchial branches extracted
from CT images. Then we compute the bronchial branch name candidates with
the likelihoods for each bronchial branch using the classifiers. Finally, we deter-
mine the anatomical names for each branch by a combination optimization tech-
nique. In both the learning and test (labeling) phases, we extract the bronchus
regions and the bronchial tree structure from the 3D CT images by Kitasaka’s
method [6]. The starting point of the tree structure is the trachea. We represent
the i-th bronchial branch as bi (i = 1, 2, · · · , N . N is the number of bronchial
branches.)

For assisting real bronchoscopy, we overlay the following anatomical names
of the bronchial branches: (a) where a bronchoscope currently exists; (b) child
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Fig. 1. Flowchart of proposed method
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Fig. 2. Ten feature values used in the proposed method

branches of the current branch; and (c) the path to the target point (a set of
anatomical names where an bronchoscope should be visited to reach the target
point.)

2.2 Feature Values Computed at Each Bronchial Branch

We compute the following ten feature values for bi shown in Fig. 2: (1) li: length
of bi, (2) vi: running direction of bi, (3) mi; averaged direction of the running
direction of the child branches of bi, (4) ei: relative coordinate of the end point
of bi against the parent branch of bi, (5) si; running direction of sibling branches
of bi, (6) θc

i : angle between child branches of bi, (7) θG
i : angle between bi and

its grandparent branch, (8) θP
i : angle between bi and its parent branch, (9) θGP

i :
angle between grandparent branch of bi and parent branch of bi, and (10) θT

i :
angle between trachea and bi.

2.3 Learning Phase (Training of Classifiers)

Preparation of Learning Datasets. We prepare learning datasets by comput-
ing the feature values of the bronchial branches extracted from the CT images.
We also manually assign anatomical names to each bronchial branch.
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Fig. 3. Illustration of procedures for anatomical labeling of bronchial branches using
a combinatorial optimization approach: (a) Example for classifying branches in region
II; (b) Example for constructing a combination tree

Construction of Classifiers Using Multi-class AdaBoost. We construct
classifiers that output bronchial branch name candidates with likelihoods. These
classifiers are constructed using a multi-class AdaBoost technique [7]. Thresh-
olding is used as a weak classifier of AdaBoost. We divide the airway tree into
six parts: bronchi of: ((i) central area, (ii) right upper lobe part, (iii) right mid-
dle lobe part, (iv) right lower lobe part, (v) left upper lobe part, and (vi) left
lower lobe part, For each part, classifiers Hα (α = I, · · · ,VI) are constructed and
trained by learning datasets. Part division is performed to reduce the number of
branch name combinations computed in the labeling procedure.

2.4 Test Phase (Anatomical Labeling)

Generation of List of Bronchial Branch Name Candidates. When we
classify bronchial branch bi existing in part α by classifier Hα, the classifier
outputs set (Bα

i ) of pair (Lj) of category (Lj) and the likelihood of category (lj)
for branch bi. This process is formulated as

Bα
i =

{(
Lj

i , l
j
i

)
= Lj

i : j = 1, 2, · · · , Nα

}
= Hα(bi), (1)

where Nα shows the number of categories existing in part α. The above process
is illustrated in Fig. 3(a). In this example, the process generates sets of a pair
of the bronchial branch name candidates (categories) and the likelihoods for all
bronchial branches existing in part II using classifier HII.

Construction of Combination Tree. We generate combination tree T that
enumerates the multiple pairs of a bronchial branch name candidate and its
likelihood as nodes by

T =
{
tji = (Lj

i , l
j
i ) : i = 1, 2, · · · ,Wj , j = 1, 2, · · · , D

}
(2)
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from the processing results of the previous step. The anatomical constraint of
the bronchial tree is considered in the construction of T . Here, we represent
the branch name candidate as Lj

i and its likelihood as lji . Also, we denote the
number of nodes at the j-th depth of T and the depth of T as D.

The actual procedure for constructing combination tree T is explained by Fig.
3(b). First, we construct a combination tree whose root is the origin branch of
each part. In the figure, the root branch is bi=right superior lobar bronchus.
Then we traverse the bronchial tree from bi by depth-first search and add a pair
of bronchial branch name candidate and its likelihood at the same depth of T
as the node. In this process, we eliminate nodes added to the combination tree
using the rule of the branch names between a parent and a child or siblings. For
example, in Fig. 3, bi+2 is a child branch of bi+1, If the branch name candidate
of bi+1 is “RB1 (= Rt. B1)”, bi+2 cannot be labeled “RB2

a”. Hence, we do not
add this node. Similarly, bi+4 is a sibling branch of bi+1. If the branch name
candidate of bi+1 is “RB1”, bi+2 cannot be labeled “RB1+3”. Therefore, we do
not add this node. By considering anatomical constraint, computation time can
be reduced related to the construction of T .

Anatomical Labeling Using Combination Tree. Anatomical labeling is
finally performed by finding path L∗ showing the maximum of the sum of the
likelihoods along with it in T . This process is formulated as

L∗ = arg max
L∈T

(
l1i + l2j + · · ·+ lDk

)
, (3)

where path L =
{
t1i , t

2
j , · · · , tDk

}
is a set of nodes that exists on a path from the

root node to the terminal node.

2.5 Application to Bronchoscope Guidance System

We utilize anatomical labeling results to overlay the anatomical names of a
branch and its child branches currently being observed on the real broncho-
scopic images in the bronchoscopy guidance system. Deguchi’s method [8] was
used to obtain the branch currently being observed. Furthermore, we compute
the insertion path of a bronchoscope by a set of bronchial branch name [3] and
overly it on a real bronchoscopic image. During a real bronchoscopy, the bron-
choscope location is marked on the path overlaid on real bronchoscopic images.
If the bronchoscope deviates off from the pre-planned path, the system shows a
“WRONG WAY” message,

3 Experiments

We applied the proposed method to 90 cases of 3D CT images. The bronchial
regions and branching structures were obtained by Kitasaka’s method and manu-
ally corrected. To train the classifiers, anatomical names were manually assigned.
The number of training data is not sufficient, because there are so many variation
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Table 1. Accuracy of methods in [3], [5] and proposed ones (A) and (B) in each lobe
(TR: trachea, LM: left main bronchus, RM: right main bronchus, RU: right upper, RL:
tight middle and lower, LU: left upper and LL: left lower lobes)

Accuracy of segmental (subsegmental) branch for each part [%]
TR, RB, LB RU RM LU LL TOTAL

Previous [3] 100 73.6 83.5 90.5 76.7 83.5
Previous [5] 100 (100) 86.9 (85.2) 89.6 (81.7) 98.4 (91.6) 87.7 (79.0) 91.3 (84.3)
Proposed (a) 100 (100) 81.8 (78.2) 93.1 (86.2) 98.5 (92.6) 89.8 (81.1) 92.2 (86.9)
Proposed (b) 100 (100) 81.9 (78.9) 85.2 (73.0) 91.1 (77.2) 79.2 (75.1) 85.6 (78.6)

Fig. 4. Application of anatomical labeling in a bronchoscopy guidance system. Cases
of inserting a bronchoscope to (right) correct path and (left) incorrect path.

in bronchial branch names. A branch called LB7 rarely exists. Since the number
of samples belonging to such categories is very small, this affects the learning
of the classifiers, because the feature values obtained from such branches show
sparse distribution in the feature space. Therefore, we organized two experi-
ments: (a) adding 100 pairs of samples to all categories generated by normal
random and (b) no addition of samples. We used the means and the variances of
the feature values of each category as the means and the variances of the normal
random. For both cases, we measured the accuracy of the anatomical labeling for
branches up to the segmental branches and the sub-segmental branches under
the leave-one-out method. For comparison, we also performed the anatomical
labeling procedures described in [3,5]. Table 1 shows the labeling results. Here
accuracy is computed by (the number of branched correctly labeled) / (the total
number of branches)

We utilized the anatomical labeling results in the bronchoscopy guidance sys-
tem. Figure 4 shows examples of such a bronchoscopy guidance system using an
EM tracker. The system shows the bronchial branch names at appropriate po-
sitions on the real bronchoscopic images. Figure 4 (right) shows the case where
a bronchoscope was inserted into the planned branch and (left) is where the
bronchoscope was inserted into the wrong branch.

4 Discussion and Conclusion

This paper presented a method for anatomical labeling using combination op-
timization to precisely assign anatomical names to branches of a large number
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Fig. 6. Examples of results of anatomi-
cal labeling. White lines represent bronchial
branches: (a) previous method [9], and (b)
proposed one. Underlines show mislabeled
branches.

of cases. To confirm the efficacy of the introduction of the machine learning ap-
proach in anatomical labeling, we measured the labeling accuracy by changing
the number of cases. We randomly selected 10 to 90 cases and calculated the
labeling accuracy by the previous method [3] (model-based approach) and the
proposed method (machine learning approach.) The results are shown in Fig. 5.
In the previous method, labeling accuracy became maximum when the number
of cases was 40 and dud not change much for larger cases. In contrast, when we
increase the number of cases in the proposed method, the labeling accuracy also
increased. As stated in Section 1, we expected to improve the labeling accuracy
by such a large number of cases.

Figure 6 shows the labeling results of the method described in [5] and the
proposed methods. In this figure, the underlined branch names show incorrectly
labeled branches. The branch name having the maximum likelihood of a target
branch, which is surrounded by a circle and whose correct name is ‘left inferior
lobar bronchus’ is RB8. Hence, the previous method assigned RB8 to the target
branch, and the branches beyond it are mislabeled. On the other hand, the sum
of the likelihood for labeling the target branch as ‘left inferior lobar bronchus’
is higher than that of RB8, so the proposed method was able to correctly label
it. As shown in Table 1, the proposed method improved labeling accuracy in
most lung part except for RU. Labeling accuracy is significantly improved in
RM and LL regions. If a mislabeling occurs at a branch in the previous method
[5], the consequent branches were also mislabeled. Such mislabeling often oc-
curred in RM and LL regions where many branches show similar features, On
the other hand, the proposed method prevented such mislabeling by combination
optimization.

We can see that the labeling accuracy is improved by adding samples arti-
ficially generated by normal random because some branches (categories), espe-
cially the branches of the right lower and the left lower lobes have a very small
amount of samples. In such case, samples are sparsely distributed in the feature
space. Consequently the learning process is affected. Further investigation for
such cases is needed.
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This paper presented a method for automated anatomical labeling of bronchial
branches extracted from 3D CT images. We applied the proposed method to 90
cases of 3D chest CT images. Labeling accuracy was 86.9% for branches up to the
sub-segmental level. Also, we presented a method to display anatomical names
on real bronchoscopic images. Future work includes evaluation using more cases.
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Abstract. Early detection of Ground Glass Nodule (GGN) in lung
Computed Tomography (CT) images is important for lung cancer prog-
nosis. Due to its indistinct boundaries, manual detection and segmenta-
tion of GGN is labor-intensive and problematic. In this paper, we propose
a novel multi-level learning-based framework for automatic detection and
segmentation of GGN in lung CT images. Our main contributions are:
firstly, a multi-level statistical learning-based approach that seamlessly
integrates segmentation and detection to improve the overall accuracy for
GGN detection (in a subvolume). The classification is done at two levels,
both voxel-level and object-level. The algorithm starts with a three-phase
voxel-level classification step, using volumetric features computed per
voxel to generate a GGN class-conditional probability map. GGN candi-
dates are then extracted from this probability map by integrating prior
knowledge of shape and location, and the GGN object-level classifier is
used to determine the occurrence of the GGN. Secondly, an extensive set
of volumetric features are used to capture the GGN appearance. Finally,
to our best knowledge, the GGN dataset used for experiments is an order
of magnitude larger than previous work. The effectiveness of our method
is demonstrated on a dataset of 1100 subvolumes (100 containing GGNs)
extracted from about 200 subjects.

1 Introduction

Ground Glass Nodule(GGN) is a hazy area of increased attenuation in CT lung
images, often indicative of bronchioloalveolar carcinoma (BAC) [1], that does not
obscure underlying bronchial structures or pulmonary vessels. These faint pul-
monary nodules are reported to have a higher probability of becoming malignant
than solid nodules [1]. Hence early detection [2] and treatment of GGN are im-
portant for improving the prognosis of lung cancer. Furthermore, recent studies
have shown that tracking the growth pattern of GGNs is informative and useful
for quantifying and studying the progress of diseases over time [3]. Therefore, it
is highly desirable to have algorithms that not only detect the GGN but are also
capable of segmenting the GGN with good accuracy. However, due to their indis-
tinct boundaries and similarity to its surrounding structures, consistent labeling
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of GGN at voxel-level is difficult for both computers and radiologists, with high
inter- and intra-person errors [4]. On the other hand, the appearances of GGN
on CT images, such as its shape, pattern and boundary, are very different from
solid nodules. Thus, algorithms developed exclusively for solid nodule segmen-
tation are likely to produce inaccurate results when directly applied to GGN. [5]
addresses a GGN segmentation method using Markov random field representa-
tion and shape analysis based vessel removal method, but no GGN detection was
exploited in this approach. [4] adopts the probability density functions (PDF)
for modeling and segmenting GGN and PDFs are shown to be valid of distin-
guishing GGN and other lung parenchyma. An interactive 2D semi-automatic
segmentation scheme is proposed in [6], which allows measuring the pixel opacity
value of the GGN quantitatively, by constructing a graph Laplacian matrix and
solving a linear equation system. This may be quite labor-intensive for radiol-
ogists to go through slices in order to obtain the final GGN nodule boundaries
and opacity values.

Fig. 1. Flow chart of the proposed approach

In this work, we propose a novel multi-level learning based approach for au-
tomatic segmentation and detection for GGN. Our method is composed of two
parts as shown in Fig. 1: (1) voxel-wise soft labeling/segmentation, and (2)
object-scale image classification/detection. The voxel-level GGN and non-GGN
class labeling and segmentation works as follows: given a candidate sub-volume,
our system will label each voxel with the probability likelihood of whether it
comes from a “healthy” (non-GGN) or “diseased” (GGN) tissue by examining
a 3D sliding window centered at that voxel; this labeled or probability weighted
image can be viewed as a segmentation map of the GGN region in the original
image. After this, the object-level image classification/detection module takes
the label map along with other raw information and then classifies the whole
sub-volume as positive (containing GGN) or negative. Thus only if the whole
sub-volume is classified as positive or “diseased”, we will conclude that detection
has occurred. Although the method is designed for combined segmentation and
detection of GGNs, it can be generalized to other medical imaging problems as
well. The presented multi-level probabilistic aggregation process is partially mo-
tivated by earlier work in natural scene recognition and object detection [7,8].
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The other key aspects of our work is that we use an comprehensive set of features
to capture GGN appearance, and the experimental evaluation is done on a much
larger dataset compared to previous studies. Note that our algorithm works at
a sub-volume level, and it assumes that a candidate generation or interest point
detection algorithm is run on a CT volume to obtain locations (typically hun-
dreds) around which isotropic sub-volumes of fixed size (60×60×60 voxels) are
extracted. This is typical in a computer-aided detection (CAD) system. In this
paper, we focus on detection and segmentation at this sub-volume (SV) level,
which is an integral and important part of the CAD system.

2 Methods

2.1 Voxel-Wise Volumetric Features

Our system computes a comprehensive collection of gray-level and texture fea-
tures from a cubic sub-volume of interest (sVOIs) of size 7×7×7 voxels across
the larger sub-volume (SV). These features are briefly described below:

Gray Level Co-occurrence Matrix (GLCM) [9] is widely used for ana-
lyzing texture of 2D image. The co-occurrence matrix stores the co-occurrence
frequencies of the pairs of gray levels, which are configured by a distance d
and orientation o. Its extension to 3D cases is also practicable, as shown in
[10]. The 3D method directly searches for gray level pairs in 26 directions on
multiple planes to construct the co-occurrence matrix, whereas the 2D method
exploits 8 directions in a single 2D plane. We then extract eight features from
the constructed GLCM, including energy, entropy, correlation, inverse difference
moment, inertia, cluster shade, cluster prominence, and Haralick correlation [9].

Local Binary Pattern (LBP) is an intensity- and rotation-invariant generaliza-
tion of the GLCM method. We employ the volumetric LBP-Top [11] technique, an
extension of the two-dimensional LBP operator, for parenchymal texture analysis
in CT images.

Wavelets are another important and commonly used feature descriptor for tex-
ture analysis, due to their effectiveness in capturing localized spatial and fre-
quency information and multi-resolution characteristics. Here, we extract mean
intensities in the decomposed eight bands using 3D Harr wavelet. Vesselness
and Blobness, computed based on the eigen-analysis of hessian matrix, have also
been employed for vascular or blob-like structure detection or enhancement. We
implement a 3D multi-scale version of Blobness and Vesselness feature extraction
module for handling both bright and dark objects. Note that the Wavelets, Ves-
selness and Blobness depend on their own scales of spatial supporting settings,
and the actual neighborhood may be larger or smaller than the size of 7×7×7.

We also extract two groups of first order gray-level features, composed of (i)
gray level statistics features, including minimum, maximum, mean, standard
deviation, skewness and kurtosis, and (ii) pixel index ratios, including the
ratios of low density pixels within (-1024, -950] Hounsfield unit(HU), medium
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density values within (-950, -765] HU, and medium-high density values within
(-765, -450] HU.

Since the intensity values in the CT scans usually have a large range from -1024
to 1024 HU, texture feature calculation directly on HU values is computationally
intensive and sensitive to noise. Therefore, we preprocess images using the multi-
level thresholding Otsu method [12] to adaptively merge together image regions
with similar gray levels. The resulting image is represented by individual texture
primitives coded by a smaller gray-level domain. All texture-based features are
extracted from this preprocessed image.

2.2 Segmentation by Voxel-Level Labeling

We treat the segmentation of GGN as a probabilistic voxel-level labeling prob-
lem. For each input sub-volume (SV), a total 39 volumetric intensity-texture
features are calculated for each scanned sVOI of size 7×7×7 voxels. Based on
our 3D annotation maps of GGN and Non-GGN, feature vectors are split into
positives and negatives and fed into an off-line learning process to train a proba-
bilistic Gaussian mixture density model, in the lower-dimensional feature space
after supervised dimension reduction. Finally the classifier takes each SV and
produces its corresponding volumetric GGN-class probability map.

For the voxel-level labeling/classification problem, the size of training samples
(as scanned volume of size 7×7×7 voxels) can be really large (greater than
100,000). This requires choosing classifiers with good scalability. We choose linear
discriminant analysis (LDA) along with Gaussian Mixture Models (GMM) as
our classifier, i.e., GMM is used to learn the distribution of the classes in the
LDA projected subspace. For each of the binary GGN and Non-GGN class,
LDA is first exploited to further project the extracted features into a lower
dimension, and GMM consisting of k -Gaussian distributions of different means
and variances are then fit according to the training data, using Expectation-
Minimization with multiple random initialization trials. Note that, the positive
GGN class probability maps (PDM) are sufficient to extract and detect GGNs.
The negative probability map is redundant and discarded. Note that, we perform
model selection to choose the number k of Gaussian functions using the Bayesian
Information criterion (BIC) and value of k is 3 and 5 for positive and negative
class respectively. Other functions, e.g., t-distribution can also be explored, but
we plan to investigate that in future work.

As there are many different types of tissues inside the CT lung image, such
as vessel, airways, and normal parenchymal, the single-layer LDA classifier may
have many false positives originating from this multi-tissue background. To re-
duce these GGN false positives, a multi-phase classification approach is adopted.
It starts with the positive class output probability map from single phase, and
treat it as a new image. This output image contains for each voxel a probability
that it belongs to the structure to be enhanced (GGN). Next, another round
of voxel-level feature extraction/selection and LDA-GMM training process is
conducted using both the original image and the output image from the previ-
ous phase(s). All these intensity-texture features, in the joint image and PDM
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domain, are used to train a new classifier. This process can be iterated many
times, as a simplified “Auto-Context” [13]. The rationale behind this approach is
that the structure to be enhanced will be more distinctive in the (intermediate)
enhanced image than in the original image. Therefore adding features from these
weighed images will result in potentially more discriminative features between
the positive regions and the spurious responses from the previous phase(s).

The multi-phase “Auto-Context” like process not only improves the over-
all performance but can also be used to speed up supervised enhancement by
rejecting well classified training samples from the next phase. A simple classi-
fier (e.g., using very few features) can be used in the first phase(s) to quickly
throw away “easy” voxels and only the more difficult voxels are considered in
the next phase(s). The classification thresholds on normalized probability val-
ues are automatically estimated by setting an operating point on receiver op-
erating characteristic curve (ROC) for high recall and moderate false positive
deduction.

2.3 Object-Level Labeling and Detection

At this stage, the goal is to locate and extract GGN candidates on the computed
3D probability map from the previous voxel-labeling step. The multiscale blob-
ness filtering, with a larger smoothing kernel (than the voxel-level step) is used
to capture the GGN shape. It is applied on each voxel to obtain a volumetric
blobness likelihood map. Then, we multiply the voxel-level probability map with
this blobness shape likelihood map to obtain another probability map which we
refer to as shape-prior refined probability map (SPM). The SPM helps suppress
spurious responses (false positives). The Otsu thresholding method[12] is applied
again for discrete quantitization of SPM. We use connected component labeling
to obtain disjointed objects as GGN candidates. Simple volume size based rules
is used to reduce the number of candidate so that multiple candidates per vol-
ume are kept as the inputs to our object level classifier. We also incorporate the
position prior information into candidate selection procedure.

For training, the manually annotated GGN segmentation is used to assign
labels to the connected component candidates as true or false GGNs. The above-
mentioned candidate generation procedure is also applied on negative volumes
(without GGN) to obtain more negative samples for training. Given that each
GGN candidate is associated with its discrete binary 3D mask, 39 intensity-
texture features (mentioned in Section 2.1), are recomputed within this binary
supporting region. Note that, these features are not computed on the 7×7×7
window as done earlier for the voxel-level classification stage. Many features are
aggregations of local statistics over a spatial neighborhood so that they are size-
scalable. In addition, we also calculate the volume size, the sphericity, and the
mean on the PDM per candidate to form the final feature vector. For simplicity,
we use the same LDA+GMM classifier as in section 2.2 to train GGN/non-GGN
connected component candidate detector.
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3 Results

Data. We collected total 1100 lung CT subvolumes, including 100 positive sam-
ples with GGN and 1000 negative samples without GGN. These subvolumes were
randomly sampled from the outputs of a GGN candidate generator algorithm
(discussed earlier in Section 1), on 153 healthy and 51 diseased patients. All
subvolumes were sampled to produce approximately 0.6mm isotropic voxel res-
olution. GGN masks on randomly selected 60 positive samples were annotated.
The remaining 40 positive subvolumes (with no ground truth of GGN masks)
along with 300 randomly selected negative subvolumes were used only for the
hold-out performance testing of GGN detection at the final classification stage.

Voxel-scale Classification & Labeling. We further splited these 60 positive
subvolumes (with annotatedGGN masks) and other 700 negative volumes into two
parts for training and testing the voxel scale classification. Voxel scale data sam-
ples (as 7×7×7 boxes) were extracted on a 7×7×7 sampling grid, augmented with
manually labeled GGN annotation masks. The training dataset had 40 positive
and 500 negative subvolumes for the three-phase classifier training in section 2.2
(with likelihood ratio testing threshold settings as 0.05, 0.1 and 0.2 respectively for
high recall and moderate false positive reduction). And the remaining subvolumes
were used for testing. Table. 1 showed the voxel-level accuracies for the first phase
classifier, first two phase classifiers, and all three phase classifiers. It was clearly
evident that the further reduction of false positive samples, with increasing classi-
fication phases, substantially improved the overall classification performance. The
ROC curve for the first phase classifier was shown in Fig. 2, with Area Under Curve
(AUC) as 0.9412. We empirically found that the performance is stable with the
sVOI size in a range of 5 to 15 voxels (note that the default value is 7).

To measure the level of agreement between human annotations and the seg-
mented GGN (with Otsu thresholding and connected component), the Jaccard
similarity coefficient (JC ) and the volume similarity (VS ) were exploited. The
JC was defined as:

JC =
X ∩ Y
X ∪ Y (1)

Fig. 2. The top level voxel-level GGN
classification ROC curve

Fig. 3. The object-level classification
ROC curve for GGN detection
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Table 1. The multi-level voxel scale classification accuracy performance

First Phase First Two Phases All Three Phases
GGN Samples 99.82% 96.62% 89.87%
Negative Samples 56.53% 80.86% 92.93%
Overall 65.37% 84.22% 92.28%

(a.1) (a.2) (a.3)

(b.1) (b.2) (b.3)

Fig. 4. Results the voxel-level classification: (a.1) and (b.1) The original CT images,
(a.2) and (b.2) The volumetric probability map produced by voxel-scale classifiers,
(a.3) and (b.3) the rendered segmentation of GGN

where JC measured the degree of overlap between two sets: X and Y and JC=1
when the two sets were totally overlapped. The VS was defined as:

V S = 1− | ||X || − ||Y || |
||X ||+ ||Y || (2)

where VS measured the degree of similarity in the volume size of two sets X and
Y, and the operator ||.|| denoted the volume size of a set. It was equal to one,
when the two sets had equal volumes. We reserved 20 positive GGN subvolumes
for testing these two metrics, and used the remaining 40 positive subvolumes
with all the negative volumes to train the voxel-level classifier. The average JC
coefficient was 0.68, and the average VS was 0.865.

Object-scale Classification & GGN Detection. Fig. 3 showed the object
level GGN classification performance with AUC as 0.914. For the hold-out testing
set, 33 out of 40 GGN subvolumes were correctly detected, with a false negative
rate is about 20%. We believed this result is promising and we planed to explore
more descriptive features and other types of classifiers (e.g., SVM, boosting)
to further investigate this problem. As compared with [4], the most relevant
previous work in which only 10 GGN nodules were used for both training and
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testing, our studied GGN dataset is 10 times larger (i.e., 60 for training and 40
for testing). [6] uses 40 2-D CT image slices from 11 patients. Finally, illustrative
examples of GGN labeling and segmentation were shown in Fig. 4.

4 Conclusion

In this paper, we presented a novel multi-level learning-based approach for au-
tomatic GGN detection that fuses segmentation and detection to improve the
overall accuracy. We exploited a comprehensive set of features to encapsulate
the GGN appearance. Our approach proposed a two-level classification by first
generating a GGN class PDM at a voxel scale, then extracting object scale
descriptors from this PDM, and then finally classifying the existence of GGN
within CT subvolume candidate. The GGN segmentation (soft) mask was a
desired byproduct of our approach. Our method was validated using extensive
evaluations on a much larger GGN dataset than previously reported, of 1100
lung CT subvolumes from about 200 patients.
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Abstract. In many applications of computer-aided detection (CAD) it
is not possible to precisely localize lesions or affected areas in images that
are known to be abnormal. In this paper a novel approach to computer-
aided detection is presented that can deal effectively with such weakly
labeled data. Our approach is based on multi-valued dissimilarity mea-
sures that retain more information about underlying local image features
than single-valued dissimilarities. We show how this approach can be ex-
tended by applying it locally as well as globally, and by merging the local
and global classification results into an overall opinion about the image
to be classified. The framework is applied to the detection of tuberculosis
(TB) in chest radiographs. This is the first study to apply a CAD sys-
tem to a large database of digital chest radiographs obtained from a TB
screening program, including normal cases, suspect cases and cases with
proven TB. The global dissimilarity approach achieved an area under the
ROC curve of 0.81. The combination of local and global classifications
increased this value to 0.83.

1 Introduction

Pulmonary tuberculosis (TB) is a major cause of death and illness worldwide,
with 9.2 million new cases and 1.7 million deaths reported in 2006 [1]. Chest
radiography is increasingly important in the fight against TB, especially because
the rates of sputum-negative TB are rapidly increasing in populations with a high
incidence of HIV/AIDS. On chest radiographs, TB often presents itself through
subtle diffuse textural abnormalities. With the advent of digital radiography,
computer-aided detection (CAD) systems can be developed that could facilitate
mass population TB screening.

However, little research has been done in this area. In [2] texture analysis within
the lung fields was used but this required experts to manually delineate abnormal
areas, in order to train the system to discern normal regions from abnormal. Al-
though such an approach may lead to a powerful CAD system, obtaining manual
delineations of ill-defined diffuse lesions is laborious and likely to produce an un-
reliable ground truth. Our work focuses on classification of weakly labeled images,
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i.e. when the exact locations of abnormalities in training data are unknown and,
therefore, local feature-based classifiers cannot be trained. Our approach circum-
vents the problem of the absence of local ground truth by using the distances, or
dissimilarities, between estimated distributions of local features in the global clas-
sification of images. We estimate these differences per feature and therefore build
a multi-valued dissimilarity-based (MVDB) classification system.

The underlying assumption of the MVDB method is that local feature distri-
butions are sufficiently different for normal and abnormal images. However, this
assumption is not likely to hold for cases with subtle small abnormalities only.
We hypothesize that subdividing the lung fields into smaller parts and applying
the MVDB classification to these parts separately, and subsequently combining
these local opinions, may improve the sensitivity of the method to such abnor-
malities and increase overall classification performance. It should be noted that
obtaining ground truth labels for fixed large lung subdivisions is easier than
obtaining manual delineations of lesions. In this work, we apply the method to
a large database of digital radiographs from a TB screening program. The pro-
posed modification of the MVDB classification is general and applicable to other
image classification tasks that involve local analysis.

2 Methods

2.1 Multi-valued Dissimilarity-Based Classification

Dissimilarity-based classification uses dissimilarity representations of objects in-
stead of traditional feature vectors, that is, objects are represented by their
pairwise comparisons. This is a natural way to describe a class of similar ob-
jects. A pairwise comparison is done by computing a measure of dissimilarity,
or distance, between two objects. In the standard dissimilarity-based classifica-
tion [3], each training object is represented as a vector of distances to a set of
prototype objects. Then, any traditional classifier can be trained on dissimilarity
representations of training objects and applied to the dissimilarity representa-
tion of a new object. This may not be an efficient strategy for classifying objects
characterized by a large set of descriptors, such as numerous local texture fea-
tures, because it reduces the abundance of local information in two objects to
just one dissimilarity value between them.

MVDB classification is built on similar principles but reduces the loss of
information compared to standard dissimilarity-based classification. While the
standard dissimilarity-based method accumulates the distance over all the ob-
ject descriptors, the MVBD method is based on computing a distance for every
descriptor individually.

Let x and y be two objects characterized by n one- or multi-dimensional
descriptors fi, and di = d(fx

i , fy
i ) be the value of dissimilarity between corre-

sponding descriptors of x and y, where d is a dissimilarity measure. Then, a
vector D(x, y) = (d1, . . . , dn) is called the dissimilarity representation of ob-
ject x with respect to object y. To construct a classifier on such representations,
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let us consider a training set T , and a set of prototype objects R of size r, R =
{p1, . . . , pr}, where R ⊆ T . For each x ∈ T , r different representations D(x, pk),
1 ≤ k ≤ r, can be obtained, and consequently r classifiers can be trained on T
using D(x, pk) as input. A test object, subsequently, can be classified r times
using its prototype-bound representations. To obtain a final classification solu-
tion for a test object, the outputs of r classifiers must be combined. Combining
classifiers benefits from complementary information provided by different dis-
similarity representations. In this study we combine the posterior probabilities
resulting from different classifiers with the sum rule:

P (c|x) =
1
r

r∑
k=1

Pk(c|x) , (1)

where P (c|x) is a posterior probability that the object x belongs to a class c,
and Pk(c|x) is a posterior probability yielded by the classifier k.

Figure 1 schematically depicts the steps of the MVDB classification. To apply
this method to an image classification task that involve local texture analysis,
we describe each image by the distributions of its local texture features. These
features are extracted at numerous locations inside the image, and their individ-
ual distributions are estimated by histograms. From the set of training images, r
prototype images are selected, either randomly, or by following a systematic ap-
proach. Since the sum rule, used to combine the results of individual classifiers,
is known to be less sensitive than other combiners to the errors of individual clas-
sifiers [4], we believe, the random selection of prototypes is a reasonable starting
approach. Dissimilarities, computed between corresponding feature histograms
of the image and a prototype, constitute a dissimilarity representation of the
image.

Fig. 1. Flow chart of the MVDB classification. (A) Training phase. (B) Testing phase.
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2.2 Local Classification to Improve Global Results

Sometimes image descriptors, such as the local feature histograms, are too gen-
eralizing. This is true when an object whose presence we want to detect is too
small with respect to the whole image. With the detection of TB, the texture
feature histograms computed over the whole lung fields might not be sensitive
enough to reflect the presence of subtle localized lesions in the lungs. We assume
that the discriminating ability of descriptors will increase if they are computed
over smaller image parts. When it is practical to obtain the ground truth for
training images on a finer scale, e.g. class labels for a fixed image partition, we
propose the following modification of the MVDB classification scheme.

1. Images are partitioned, and the ground truth is obtained for each part.
2. The MVDB scheme is applied to each image part separately, and, optionally,

to the whole images too.
3. The classification results are combined to obtain an overall image solution.

Here, the combination rule might be different from the one in step 5 of the testing
phase of the original scheme. In this paper we use the vote rule for the abnormal
class (c = 1), and compute the posterior probability of the normal class(c = 0)
such as P (c = 0|x) = 1 − P (c = 1|x), where x is the test object. The vote rule
for computing P (c = 1|x) is

P (c|x) = max(P0(c|x),
L

max
l=1

Pl(c|xl)), c = 1 , (2)

where xl, 1 ≤ l ≤ L, are L image subdivisions, Pl is the result of applying
the MVDB classification to xl, and P0 is the result of applying the MVDB
classification to the whole image. The choice for the vote rule for the detection
of abnormal images is intuitive because if any part of the image is abnormal
then the whole image is abnormal. The use of P0 in Eq. 2 is optional and is not
needed if the performances of all regional classifiers are considerably better than
that of the global classifier. It should also be noted that, for a certain region,
only a fraction of abnormal images will have abnormalities in that particular
region. Therefore, a high classification performance on one of the regions is not
enough to obtain an equally high performance after combining. In addition to
improving the image classification performance, the application of the MVDB
to the regions allows one to obtain a prediction on which regions are likely to
contain abnormalities.

3 Experiments

3.1 Materials

All images used in this work were posterior-anterior chest radiographs collected
from a TB screening program among a high risk population. Radiographs were
acquired with mobile digital thorax units (Delft Imaging Systems, the Nether-
lands) developed for cost-effective thorax examination and TB preventive screen-
ing. Images have a resolution of 2048×2048 and 12 bits data depth. Each image
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was read by two radiologists, and a person whose radiograph was considered TB
suspect by one of them or both was contacted to undergo further tests. For a
subset of the cases, positive microbiological culture tests were available and a
definite diagnosis of TB could be established.

We collected all TB suspect and TB proven cases between 2002 and 2005,
and a similar amount of randomly selected normal radiographs, excluding radio-
graphs of children. Before collection, radiographs were anonymized. Normal and
TB suspect images were re-read by a third radiologist, who classified a part of
the cases differently. Re-classified images were excluded from the study. Finally,
our database contained 256 normal radiographs (223 males, 33 females, ages 18–
70 yrs, median age 41), 178 TB suspect radiographs (155 males, 23 females, ages
16–101 yrs, median age 35), and 37 radiographs with microbiologically proven
TB (30 males, 7 females, ages 16–43 yrs, median age 29).

3.2 Local Feature Extraction

For practical considerations, images were downsized to 1024×1024. Prior to fea-
ture extraction, lung fields were automatically segmented from the radiographs
using multi-resolution pixel classification, with settings as given in [5]. In order
to train this segmentation procedure, lung fields were segmented manually from
20 radiographs not used otherwise in this study.

Next, local texture features were extracted from a large number of regions
of interest (ROIs). At first, images were filtered with a multiscale filter bank
of Gaussian derivatives, and subsequently central moments of histograms were
calculated from each ROI in the original and the filtered images. The following
parameters were chosen: Gaussian derivatives of orders 0, 1 and 2 at five scales,
σ = 1, 2, 4, 8, 16 pixels; overlapping circular ROIs with a radius of 32 pixels placed
on a grid with 8×8 pixel spacing inside the lung fields; and four central moments,
namely, the mean, standard deviation, skewness and kurtosis. Before filtering,
pixel values in the lung fields were mirrored outside the lungs symmetrically
with respect to the lung borders in order to prevent contamination of extracted
features due to strong filter responses at the lung border. Two position features
were added that defined x and y coordinates of the ROI centers relative to the
center of the mass of a lung field. In total, 126 features were extracted from each
ROI, and the number of ROIs per image ranged from 1920 to 8680.

3.3 Lung Partitioning

In order to perform the MVDB classification on lung subdivisions, each lung
field was automatically divided into 4 equal-sized regions (see Figure 2). The
regions around hilum (regions 4 and 8) included lung pixels overlapping with a
circle placed at the lungs’ center of mass. The radius of the circle was separately
chosen for the left and right lung, such that the overlap covered one quarter
of the pixels of that lung. The rest of each lung field was horizontally divided
into three equal-sized parts. The third radiologist assessed regions in all the TB
suspect and TB proven images, and assigned a region to class 1 if a TB-related
abnormality was present in the region, or to class 0 otherwise.
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3.4 Classification

Training and test images were randomly selected from the available normal and
TB suspect data, so that the training and test sets each contained 128 normal
and 89 abnormal images. The second test set was formed from the same normal
images as in the first test set and all 37 radiographs with proven TB. We ran-
domly selected 10 normal and 10 abnormal radiographs to serve as prototype
images. For region classification, the same division into training and test sets was
used, but the random selection of prototypes was performed separately for each
region, so that 10 normal and 10 abnormal regions were selected each time. Pro-
totypes were always selected from the training images. Normal prototype regions
were selected from normal training images only. Normal regions from abnormal
images were excluded from the training set during region classifications.

The histograms of each local feature were ob-

1                                                  5

4                                   8

2                                                                          6 

3                                                                            7

Fig. 2. Division of the lung
fields into eight regions

tained by a suitable binning of the range of fea-
ture values, either across the lung fields, or across
a particular region. The range of possible values
of each feature was estimated on prototypes and
split into equal intervals - 128 for the lung fields,
64 for regions. A dissimilarity between two his-
tograms was computed using χ2 statistics as a
dissimilarity measure:

dχ2 (h, k) =
∑

i

(
h(i)−m(i)

)2

m(i)
, (3)

where h = {h(i)} and k = {k(i)} are two corre-
sponding histograms, i is a bin index, and m(i) =

h(i)+k(i)
2 . Dissimilarity representations were classified by the linear discriminant

classifier. Classification was preceded by a principal component analysis (PCA)
retaining 99% of variance to the dissimilarity representation, for the purpose of
dimensionality reduction.

The MVDB method was compared with a straightforward approach where an
image classification was composed of classification of each ROI and subsequent
fusion of ROIs’ posterior probabilities. In this approach, local feature vectors
extracted from ROIs as described in Section 3.2 were used as input of the linear
discriminant classifier preceded by the PCA. The division into training and test
images was the same as for the MVDB experiments. ROIs from training images
got the class labels of lung subdivisions they belonged to. An overall image
decision was obtained by integrating all ROIs’ posterior probabilities using the
95% percentile rule.

4 Results

The classification performance was estimated by means of the area under the
receiver operating characteristic (ROC) curve, Az [6]. Az values for two test sets
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Table 1. The performances of the MVDB classification and fusion, in terms of Az

Test set Lungs Regions Vote rule
1 2 3 4 5 6 7 8

Normal vs. suspect TB 0.81 0.79 0.71 0.85 0.66 0.82 0.81 0.72 0.77 0.83

Normal vs. proven TB 0.70 0.85 0.71 0.95 0.64 0.66 0.43 0.49 0.65 0.74

are presented in Table 1. The first column contains the results of the application
of the MVDB classification to the whole lung fields. In the columns titled “1” to
“8”, Az values for corresponding lung regions (see Figure 2) are listed. The final
classification performance computed after combining global and local posterior
probabilities by voting is given in the last column.

Combining global and local classification decisions slightly improves the over-
all classification performance compared to the results after applying the MVDB
method to the whole lung fields only. To illustrate the gain of using the combina-
tion of local and global classifications, an example of a region with a slight diffuse
abnormality is shown in Figure 3. This region was correctly classified as abnor-
mal by the MVDB method applied locally (posterior probability pc=1 = 0.89),
while an image containing this region was initially misclassified as normal by a
global MVDB classifier (pc=1 = 0.24). After combing global and local results,
the image received a probability of 0.89 of being abnormal.

The straightforward classification approach achieved Az = 0.77 on the first
test set and Az = 0.64 on the second test set. This demonstrates the advantage
of the MVDB method for classification of weakly labeled images.

Fig. 3. An example of a correctly classified abnormal region (white “A” marks a proven
TB lesion). An opposite region in the other lung is normal.

5 Discussion and Conclusions

The results presented in Table 1 demonstrate that the classification performance
on the whole lung fields, as well as the performance of the combining scheme
is considerably better on the first test set than on the second one. This obser-
vation can be explained in two ways. Firstly, the training set did not contain
proven TB cases and so the test set with proven TB cases is expected to perform
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worse. Adding proven TB cases to the training set is expected to improve the
performance of the CAD system. Secondly, there were TB proven images with
extremely subtle abnormalities in our collection. Such images are difficult for
humans and CAD systems to classify.

The other observation is that the local performances vary greatly for both test
sets, from 0.66 to 0.85 on the first set, and from 0.42 to 0.95 on the second set.
Such a variation can happen due to low numbers of abnormal samples for some
regions in a test set (e.g. the second test set contained only 3 abnormal regions
“7” and only 3 abnormal regions “3”). Each misclassification then drastically
influences an Az value for such regions. For some regions, the number of abnormal
samples in the training set was also limited, which in general negatively affected
the MVDB classification performance on such regions. Future work will include
the collection of a much larger data set which we expect to be beneficial for our
combination scheme. In future, we should also investigate whether performing
the selection of prototypes systematically can improve the results of our method,
and how its performance is influenced by the number of prototypes.

In conclusion, we have shown that the multi-valued dissimilarity-based clas-
sification is a practical tool that enables a CAD system to deal with weakly
labeled images. Combining global and local classification decisions has a poten-
tial to improve the overall classification performance. We have been the first
to apply such a scheme to the automated detection of tuberculosis in a large
database of digital chest radiographs.
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Abstract. The presence of injured tissues after myocardial infarction
(MI) creates substrates responsible for fatal arrhythmia; understand-
ing of its arrhythmogenic mechanism requires investigation of the cor-
relation of local abnormality between phenomenal electrical functions
and inherent electrophysiological properties during normal sinus rhythm.
This paper presents a physiological-model-constrained framework for
imaging post-MI electrophysiological substrates from noninvasive body
surface potential measurements. Using a priori knowledge of general
cardiac electrical activity as constraints, it simultaneously reconstruct
transmembrane potential dynamics and tissue excitability inside the 3D
myocardium, with the central goal to localize and investigate the abnor-
mality in these two different electrophysiological quantities. It is applied
to four post-MI patients with quantitative validations by gold standards
and notable improvements over existent results.

1 Introduction

The presence of injured tissues after myocardial infarction (MI) creates sub-
strates responsible for fatal cardiac arrhythmia, such as ventricular tachycardia
(VT) and fibrillation. Personalized imaging of post-MI electrophysiological sub-
strates, particularly the correlation of local abnormality between phenomenal
electrical function and inherent electrophysiological properties [1], is critical for
assessing arrhythmia susceptibility of each individual.

Endocardial catheter mapping of purposely-induced VT measures electrical
conduction on patient’s endocardium; it guides catheter ablation with low suc-
cess rate and risk of sudden death [2]. Substrate voltage mapping is free from
inducing VT because the electroanatomical delineation of arrhythmogenic sub-
strate is based on the characteristics of electrograms recorded on epi- or endo-
cardium during sinus rhythm [2]. Electrical impedance mapping reflects bulk
electrical properties of heart surfaces that vary with the evolution of MI [3]. These
techniques define the extent of substrate on heart surfaces, but do not depict
3D substrate structure or reveal substrate undetectable by surface recordings.
Besides, their spatial resolution is limited by the number of electrodes.
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High-resolution contrast-enhanced MRI noninvasively reveals infarcted tis-
sues with spatially complicated structures and tissue heterogeneity [1]. However,
anatomical scar identified by MRI is not necessarily identical with critical elec-
trophysiological substrates. Besides, contrast-enhanced MRI involves relatively
expensive practice, use of harmful contrast agent such as gadolinium (Gd), and
high false-positive identification because MI is not the only condition leading to
contrast delayed Gd-enhancement [4].

Body surface potential mapping (BSPM) provides standard noninvasive ob-
servations of cardiac electrical activity with relatively simple procedure and
economical equipments. Existing efforts in BSPM-driven cardiac electrophysio-
logical reconstruction, when applied to post-MI substrate imaging, only focus on
cardiac electrical functions. Electrophysiological reconstruction on heart surfaces
assumes the substrate to be homogeneous and defines its extent only on heart
surfaces [5]. Using a spherical infarct model, [6] estimated its location and size
from BSP by deterministic optimization. The predefined infarct shape, however,
does not allow flexible data-driven descriptions of intricate 3D infarct structures.
We have developed a physiological-model-constrained framework that statisti-
cally combines general knowledge and patient’s data for personalized imaging of
volumetric TMP dynamics. It evaluates infarct solely based on abnormality of
estimated TMP dynamics [7].

In this paper, we further develop our framework for noninvasive imaging of
not only the phenomenal electrical function but also the inherent tissue property
of the 3D myocardium for individual subjects. To obtain preliminary knowledge
about local TMP abnormality, volumetric TMP dynamics is firstly estimated
from BSPM data under the constraints of normally-parametrized physiological
models. This initial TMP estimates is used to initialize simultaneous estima-
tion of TMP and tissue excitability using BSPM data; abnormality in the two
estimates is localized for investigation of their correlation and identification of
electrophysiological substrates. Experiments are performed on four post-MI pa-
tients, where infarct location and extent are validated with the gold standard
and compared to existent results on the same data sets.

2 Methodology

2.1 State Space System of Cardiac Electrophysiology

A priori physiological knowledge is used to constrain the reconstruction of
subject-specific volumetric cardiac electrophysiological details. It is modeled on
personalized heart-torso structures, where the volumetric myocardial TMP ac-
tivity model for general spatiotemporal TMP dynamics is developed from [8]:{

∂U
∂t = −M−1KU + kU(U − a)(1−U) −UV
∂V
∂t = −e(V + kU(U− a− 1))

(1)

and TMP-to-BSP model for the mapping of BSP from volumetric TMP by [7]:

Φ = HU (2)
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(a) (b)

Fig. 1. (a) Flow of excitability estimation algorithm at the kth iteration. QωΨ
k

and Rνk :

pre-specified covariance matrices for ωΨ
k and ν. (b) Dual estimator of TMP dynamics

and tissue excitability. T : total number of estimation steps.

where vectors U and V consist of TMP and recovery current on all meshfree
points, and Φ includes BSP from all vertices on the body surface. Matrices M
and K account for intercellular electrical propagation; they encode 3D myocar-
dial structure and its conductive anisotropy. H contains geometrical and conduc-
tivity information in personalized heart-torso structures. Parameters e, k and a
determine TMP shapes, particularly, a represents myocardial tissue excitability
and its increased value corresponds to reduced excitability.

To take into account modeling and data uncertainties (ωk and νk), the phys-
iological system is discretized into stochastic state space representation :

Xk = Fd(Xk−1,Ψk−1) + ωk (3)
Yk = H̃Xk + νk (4)

where Xk =
(
UT

k VT
k

)T and Yk = Φk. Ψ consists of unknown parameter a
from all meshfree points, assumed to be spatially inhomogeneous but temporally
invariant with random disturbance ωΨk

:

Ψk = Ψk−1 + ωΨk
(5)

With increasing severity of injury after MI, temporal TMP shape is characterized
by changes such as progressively reduced potential duration (PD) and delayed
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(a) (b)

Fig. 2. (a) Standard 17-segement division of LV wall (polor map). Segments 1−6 lie in
the basal layer, 7−12 the middle layer, 13−16 the apical layer and 17 the apex. At each
layer, the segment labeling moves from anterior, septal, inferior to lateral part of the
LV. (b) Personalized heart-torso model in case 2, where the ventricles are represented
with 1373 meshfree points and the torso by triangulated body surface with 370 vertices.

activation time (AT ) until the absence of activation in necrotic tissues. This loss
of myocardial viability is also reflected as decreased tissue excitability.

2.2 Dual Estimation of TMP Dynamics and Tissue Excitability

To obtain preliminary approximation of local TMP abnormality without per-
sonalized prior knowledge, TMP dynamics is firstly estimated from BSP under
constraints of normally-parameterized models (1,2) as described in [7]. AT and
PD are calculated from TMP shapes, the order of which are then indexed by nor-
malized iAT and iPD (points with earliest activation and longest TMP duration
are indexed at iAT = 0 and iPD = 0, respectively). Differences of iAT and iPD
between TMP estimates and simulated normal TMPs, dAT and dPD, measure
the abnormality of local TMP dynamics as dComb = (dAT + dPD)/2. Param-
eter a on points with distinctly high value of dComb are assigned with large
value 0.3 for impaired excitability, while the others are valued from 0.14− 0.17
according to TMP heterogeneity across the heart wall. This vector of Ψ0, with
U0 determined by locations of normal earliest ventricular activation, is used to
initialize dual U and Ψ estimation.

Excitability estimator is developed similarly to TMP estimator in [7]. As
described in Fig 1 (a), at each iteration k with previous estimates Ψ̂k−1 and
P̂Ψk−1 , an ensemble set {#k−1,i}2n

i=0 is generated from Ψ̂k−1 and P̂Ψk−1 with n as
the dimension of Ψ̂. It is passed through the system models (1, 2) with previous
TMP estimates Ûk−1 to generate new ensemble sets {UΨ

k|k−1,i}2n
i=0 and {YΨ

k,i}2n
i=0.

They are used to predict statistics of the unknowns, which are then corrected
to final estimates of Ψ̂k and P̂Ψk

using KF update rules. Dual U-Ψ estimator
loosely couples TMP estimator and excitability estimator sequentially in time
(Fig 1 (b)): at iteration k with TMP estimates Ûk−1 and excitability estimates
Ψ̂k−1, excitability estimator utilizes Ûk−1 to update Ψ̂k−1 as described above;
TMP estimator then utilizes the updated Ψ̂k for estimating Ûk and P̂uk

[7].
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(a) Volumetric TMP dynamics simulated with normally-parametrized model.

(b) Imaging of volumetric TMP dynamics using patient’s BSPM data

Fig. 3. Comparison of volumetric TMP imaging results (b) with simulated normal
TMP dynamics (a) in case 2. The color bar encodes normalized TMP values and black
contours represent TMP isochrones. From left to right: 8.0ms, 12.3ms and 16.7ms after
the onset of ventricular activation.

2.3 Substrate Imaging and Quantitative Evaluation

To investigate the correlation of abnormality between TMP dynamics and tis-
sue excitability, we measure TMP abnormality by iAT and iPD of the TMP
estimates as iComb = (iAT + iPD)/2, and similar thresholding method in ini-
tialization is used for distinguishing points with abnormally late AT and short
PD. Abnormal value in tissue excitability directly reflect myocardial inviability,
where increasing severity of injury is represented by a > 0.25 until the total loss
of viability in necrotic tissues with a > 0.5 [8].

For comparisons with gold standard and the existing works, we evaluate the
center and extent of infarcted tissues with abnormal excitability. Using the stan-
dard 17-segment division of LV (Fig 2 (a)) [9], we identify segments containing
infarct substrate and calculate its extent (EP ) by dividing the number of in-
farcted meshfree points by the total number of meshfree points. Substrate cen-
troid (CE) is localized as the segment containing the center of infarcted meshfree
points weighted by excitability estimates. Segment overlap (SO) with gold stan-
dard measures the percentage of correct identification.

3 Experiments

3.1 Experimental Data and Data Processing

MRI and BSP data are collected from 4 post-MI patients (case 1 − 4) [10].
Cardiac MRI of each patient contains 10 slices rom apex to base of the heart,
with 8mm inter-slice spacing and 1.33mm/pixel in-plane resolution. After hand-
tracing epi-/endo-cardial contours and building a smoothed mesh for the heart
surfaces, we drop a could of 1000−2000 meshfree points inside the surface mesh
to represent the 3D heart wall. Myocardial conductive anisotropy is considered
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a b

c d

Fig. 4. Superimposed imaging of local abnormality in TMP dynamics and tissue ex-
citability of the 3D myocardium ((a)-(d): case 1-4). Black contour encircles region of
abnormal TMP functions. Color encodes tissue excitability; higher value represents
lower excitability. Half-transparent visualization is used for better observationl.

by mapping volumetric fiber structures from the mathematical fibrous model in
[11]. The torso is assumed to be an isotropic and homogeneous volume conduc-
tor, described by triangulated body surface with 370 apexes and obtained by
deforming a reference torso model to match patient’s MRI data [12]. Fig 2 (b)
illustrates the personalized heart-torso model in case 2.

BSP is recorded by 123 electrodes with known anatomical locations and in-
terpolated to 370 apexes on the body surface. Complete BSP sequences consist
of a single averaged PQRST complex sampled at 2k Hz, out of which QRST
interval for ventricular electrical activity is selected as framework inputs. It is
interpolated in time and scaled in magnitude to adapt to the discretization step
and normalized TMP value of the TMP activity model (1). There are no avail-
able gold standards of volumetric TMP activity or tissue excitability. Instead,
after examining Gd-enhanced cardiac MRI, cardiologists provid us infarct center
(CE), extent (EP ) and affected segments for 4 cases (Table 1) [10].

3.2 Results

In volumetric TMP imaging results of case 2 (Fig 3 (b)), septal-inferior part of
basal-middle LV exhibits distinct conduction delay compared to normal TMP
dynamics simulated in the patient’s heart (Fig 3 (a)). Fig 4 (b) illustrates the
superimposed TMP and excitability abnormality, where the region of abnormal
TMP functions is encircled with black contours and the color encodes tissue
excitability. Fig 4 (a), (c) and (d) list results for case 1, 3 and 4, respectively:
infarct collects in septal-anterior part of basal LV and septal part of middle LV
in case 1, the inferior part of basal-middle LV and lateral part of middle-apical
LV in case 3, and in anterior-basal, septal-middle LV in case 4. These results
are in accordance with gold standards. Similar to the observations in [1], while
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Table 1. Comparison of MI evaluation results with gold standards (Ref). Definition
of the evaluation parameters is explained in the text.

case 1 case 2 case 3 case 4
Ref Results Ref Results Ref Results Ref Results

EP 31% 17% 30% 20% 52% 30% 15% 11%
CE 8 9 3/4/9/10 9 10/11 11 15 9
SO N/A 97% N/A 100% N/A 100% N/A 100%

segments 1-3,8-9 1-3,8-9 3,4,9,10 3,4,9,10 3-5,9-12 5,10-12 1,9-11 1,9
13-15 13-15,17 15-16 16 15,17

Table 2. Comparison of MI evaluation with existent results. EPD and CED are the
difference between those as estimated and as determined from gold standards.

Current results Previous results Mneimneh Dawoud Farina
case 3 case 4 case 3 case 3 case 4 case 3 case 4 case 3 case 4

EPD 22% 4% 24% 25% 2% 17% 26% 43% 14%
CED 0 1 0 0 1 1 2 1 1
SO 100% 100% 90% 90% 25% 56% 30% 40% 17%

abnormal electrical functions occurs within infarct zone, border zone exhibits
normal electrical functions. The extent of injured tissues, therefore, is not the
only measure for myocardial arrhythmia susceptibility. It is the distribution of
tissue heterogeneity and the direction of electrical activation that work in concert
to provoke arrhythmia.

Table 1 compares gold standards with our quantitative evaluation of infarct
based on tissue excitability. In case 1, we correctly identify all infarcted seg-
ments but overestimate the infarct extent down to the apex (false positive at
segment 17) and localize CE 1 segment away from gold standards. In case 2, we
precisely identify the 4 infarcted segments and correctly localize CE. In case 3,
we correctly localizes CE and highlights 5 out of 9 infarcted segments, underes-
timating the infarct extent in inferior LV. Among the two separate infarct mass
in case 4, our results only identify the anterior-basal part and a small portion in
inferior-middle LV. In summary, the presented framework provides close local-
ization of CE and identifies substrate with high precision SO (low false positive
identifications). Because calculation of EP may differ between gold standards
and our approach, the reason for its discrepancies remains unclear.

Table 2 compares the current results with our previous MI evaluation which
solely depends on volumetric TMP estimates [7], as well as existent results of case
3 and 4 obtained using case 1 and 2 for training. In brief, Dawoud et al solved
the problem by epicardial potential imaging from BSP [5], Farina et al estimated
the site and size of spherical infarct models [6], and Mneimneh et al produced
the best results using simple ECG signal analysis [13]. In both cases, our results
are comparable to the best results and substantially improved over the other two
reconstruction results. Note that our framework has not required any training. In
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the future, proper training is a possible strategy for improving its performance.
Compared to our previous work [7], simultaneous estimation of volumetric TMP
dynamics and tissue excitability improves the accuracy of infarct identification
(improved EP and SO).

4 Conclusions

Our framework enables investigation of the correlation between electrical func-
tions and tissue property inside specific subject’s heart; it helps assessing the
arrhythmia susceptibility of individual subjects. Future works will analyze the
pathophysiological implications of the current substrate imaging results and
the extension to a wider category of pathologies. Since cardiac electrical con-
duction depends on both the active membrane properties of cardiac cells (e.g.,
excitability) and passive properties determined by myocardial architectural fea-
tures (e.g., conductivity), future studies will investigate whether it is possible,
and if so, how to separately estimate post-MI excitability and conductivity using
BSPM data.
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Abstract. In this paper we first discuss the technical challenges preventing an 
automated analysis of cardiac perfusion MR images and subsequently present a 
fully unsupervised workflow to address the problems. The proposed solution 
consists of key-frame detection, consecutive motion compensation, surface coil 
inhomogeneity correction using proton density images and robust generation of 
pixel-wise perfusion parameter maps. The entire processing chain has been im-
plemented on clinical MR systems to achieve unsupervised inline analysis of 
perfusion MRI. Validation results are reported for 260 perfusion time series, 
demonstrating feasibility of the approach. 

1   Introduction 

Myocardial first pass perfusion magnetic resonance imaging (MRI) has proven its clini-
cal significance in the diagnosis of known and suspected ischemic heart disease, particu-
larly in combination with cardiac delayed enhancement imaging [1]. However, the 
clinical routine to evaluate myocardial perfusion still relies on radionuclide imaging, 
such as Single Photon-Emission Computed Tomography (SPECT).  

Despite many advantages over radionuclide techniques, MR perfusion imaging is 
still not widely used in clinical routine. Certain technical challenges prevent this tech-
nique to be added to the clinical workflow. Among them is complex cardiac motion 
caused by respiration, irregular heart rates, and imperfect cardiac gating. Due to these 
factors, a motion compensation procedure has to be applied prior to computing the 
myocardial signal intensity (SI) curves (Fig. 1) on a pixel-by-pixel basis. Another 
imperfection is B1-field inhomogeneity caused by non-uniform characteristics of  
the receiver coils. While qualitative visual reading is often not compromised by this 
effect [2], inhomogeneity can result in errors of quantitative or semi-quantitative 
analysis [1], which aims to estimate perfusion parameters, such as up-slope (SLOPE), 
area-under-curve (AUC) or myocardial blood flow.  

The long and labor-intensive analysis process is also an important barrier to clinical 
utilization of MR stress perfusion imaging. Typically, clinical assessment requires suffi-
cient coverage of the left ventricle (LV), while, due to the limited imaging efficiency of 

                                                           
* Corresponding author. 
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current MR scanners, a typical MR perfusion 
sequence acquires several two-dimensional 
(2D) images to approximate the coverage of 
LV. A minimum of three short-axis slices 
covering the basal, mid-ventricular, and 
apical portions of the LV is recommended 
[3]. To maintain sufficient temporal resolu-
tion during the first-pass of the contrast bo-
lus, each slice should be imaged every one to 
two heart beats for a total duration of ap-
proximately 60s. As a result, a typical perfu-
sion study can produce ~250 images. To 
generate signal time-intensity curves in order 
to estimate perfusion parameters, manual 
delineation of the endo- and epicardium is 
required due to cardiac motion. This process 
is time-consuming, and can be even worse in 
patients who are unable to hold their breath and require the data acquisition to be  
performed in a free breathing fashion. 

To overcome these challenges, various image processing approaches are being in-
vestigated, mainly focusing on motion compensation of myocardium, including rigid-
body image registration [4], ICA (independent component analysis) based correction 
[5], active contour [6] and active shape models [7]. However, few of these studies 
have yet obtained widespread usage and even fewer efforts were made so far to auto-
mate more comprehensive perfusion analysis workflows. Therefore, we propose an 
unsupervised perfusion analysis system, consisting of key-frame detection, consecu-
tive motion compensation (MOCO), surface coil inhomogeneity correction (SCC) 
using proton density images, an Expectation-maximization (EM) algorithm, and ro-
bust parameter map generation. To maximize the clinical applicability, the proposed 
solution does not rely on assumptions about myocardial anatomy; therefore it can 
cope with different slice positions (basal, mid-ventricular and apical). Also, the proc-
essing pipeline can handle three widely used MR perfusion sequences including Tur-
boFLASH (Turbo Fast Low Angle Shot), TrueFISP (True Fast Imaging with Steady 
state Precession), and GRE-EPI (Gradient Echo type Echo Planar Imaging). Finally, 
to provide clinicians with access to the proposed techniques, the algorithms are im-
plemented within the Image Calculation Environment (ICE) as an inline processing 
chain on Siemens MR system. 

2   Methods 

2.1   Sequence Design 

A flexible MR perfusion pulse sequence was implemented and tested on two clinical 
1.5T scanners (Siemens MAGNETOM Espree and Avanto). The sequence supports 
different acquisition techniques, such as TurboFLASH, TrueFISP, and GRE-EPI 
hybrid. In order to enable a fully integrated inhomogeneity correction, the pulse  

Fig. 1. Signal intensity curve and perfusion 
parameters. For each pixel the signal-time 
curve is analyzed and parameters like 
upslope (SLOPE), time-to-peak (TTP), 
peak time (PT) and area-under-curve 
(AUC, area under the curve between foot 
and peak) can be calculated. tf and tp are 
foot time and peak time. 
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sequence was modified 
to first acquire a small 
number (e.g. 2) of proton 
density (PD) weighted 
images before the start of 
the conventional first 
pass perfusion acquisi-
tion (Fig. 2). The slice 
prescription for the PD 
and perfusion images is 
identical. With the ap-
proximation that the proton density across the myocardial anatomy is constant [1],  
the intensity changes of PD images can be positively related to local surface coil  
sensitivity. 

2.2   Key-Frame Detection  

The first step of the proposed workflow aims at detecting a key-frame for a perfusion 
series. This key-frame will be defined as the reference image, and relative motion 
between other phases and this reference image will be corrected. To improve the 
motion compensation, this key-frame should be a frame in which the myocardium has 
good contrast compared to the blood pool and surrounding tissues. We propose a key-
frame selection approach which is based on the observation that during the contrast 
uptake the image intensity in regions where the contrast bolus enters will have higher 
standard deviation (SD) along the time dimension. As the first step, the standard de-
viation image for the perfusion series is computed. Although inconsistent myocardial 
motion can degrade the sharpness of myocardium, the contrast between myocardium 
and surrounding tissues in the SD image is found to be consistently noticeable. This 
observation holds true for the described perfusion MR pulse sequences. The next step 
is to select a frame having similar contrast as the SD image. For this purpose, the 
cross correlation ratios (CC) between every phase in the perfusion series and the SD 
image are computed. During the passing of contrast bolus, the CC ratio continues to 
increase and reaches its peak around the time point where the myocardium blood 
perfusion is maximized. We therefore pick the phase corresponding to the maximal 
CC ratio as the key-frame.  

2.3   Consecutive Motion Compensation 

We have found that the registration is more robust if two slices to be aligned  
have similar contrast. Therefore, a consecutive motion compensation strategy is de-
veloped to improve the performance of registration. As shown in Fig. 3, motion com-
pensation starts from the key-frame and its direct neighbors (previous and next). After 
the first registration is finished, the next image is registered to its warped neighbor 
that has been transformed into the key-frame coordinate system. The complete series 
is corrected by consecutively performing multiple 2D-2D registrations between tem-
porally adjacent slices. Considering the temporal resolution of perfusion studies is 
usually one to two heart beats, adjacent frames consistently show similar contrast, 
even during the first pass of contrast agents. 

0 10 20 30 40 50 60 70 80
40

42

44

46

48

50

52

54

(b) (a)

Fig. 2. (a) Example proton density image acquired before the 
normal perfusion acquisition. (b) Intensity profile across the 
heart region (yellow line). The intensity bias can be clearly 
observed.
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A fast variational non-rigid registration 
algorithm [8] is applied as the working-
engine of perfusion motion compensation. 
This approach can be considered as an 
extension of the classic optical flow 
method. In this framework, a dense de-
formation field is estimated as the solution 
to a calculus of variation problem, which  
is solved by performing a compositional 
update step corresponding to a transport 
equation. The regularization is added by 
low-pass filtering the gradient images 
which are in turn used as velocity field to 
drive the transport equation. To speedup 
the convergence and avoid local minima, 
a multi-scale image pyramid is created. 
We selected the local cross correlation as 
the image similarity measure, as its ex-
plicit derivative can be more efficiently 
calculated than mutual information and still general enough to cope with intensity 
fluctuation and imaging noise between two adjacent perfusion frames. 

2.4   Surface Coil Inhomogeneity Correction 

To correct the variation in intensity due to the surface coil sensitivities, the proton 
density (PD) images are first registered to the key-frame. All motion compensated PD 
images are then averaged to improve the signal-to-noise ratio (SNR). To estimate the 
inhomogeneity field from the averaged PD images, we propose an algorithm to inter-
leave tissue classification and bias estimation using Expectation-Maximization (EM) 
algorithm and B-Spline Free Form Deformation (BFFD).  

The EM algorithm [9] consists of an expectation step (E-step) which performs the 
classification and a maximization step (M-step) which updates the parameter estima-
tion. Assuming a Gaussian distribution and given initial parameters, the algorithm 
iteratively maximizes the data likelihood and updates the tissue classification. In the 
context of PD image based bias correction, we decided based on experimental evi-
dence to classify PD images into three classes: background (BG), tissue with low 
intensity (TL) and tissue with high intensity (TH) because the contrast level in PD 
images is not sufficient to delineate specific tissue classes and the purpose here is not 
to get a detailed segmentation. We found this three-class assumption is robust for 
separating the regions of background and lung from organ tissues. To improve the 
accuracy of inhomogeneity estimation, all background pixels are then excluded from 
further computations. 

We assume a multiplicative bias field. For a pixel i , its measured intensity is ix . 

Defining the bias field at location i  as ib , the unbiased signal ir  can be estimated by 

iii brx ⋅= . Using the notation ( )ii xx log~ = , the image formation model can become 

additive iii brx
~~~ += . Then corresponding mean and sigma become kμ~  and kσ~ . 

Fig. 3. An illustration of consecutive motion 
compensation. Motion compensation starts 
from the key-frame and its direct neighbors. 
Every image is aligned to its transformed 
previous neighbor. In this scheme, registra-
tion is performed between two perfusion 
phases with similar contrast. 
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A B-Spline Free-Form Deformation is applied to approximate the bias field. In  
this representation, a dense 2D bias field is parameterized at a sparse control  
point lattice. Define the field-of-view (FOV) of the PD image as follows: 

( ){ }YyXxyxS ≤≤≤≤=Ω 0,0,  and sφ  denotes a grid of control points p,qφ  with the 

grid spacing being 
yx ΔΔ × . This spacing between adjacent control points is uniform 

for each coordinate direction. The 2D tensor of uniform 1D cubic B-splines is used to 
represent the spatial-variant bias ratio 

ib
~ : 

( ) ( ) nm,qp
m n

nmilocal φvBuBb ++
= =
∑∑=

3

0

3

0

)
~

(T           (1) 

Where ( )yx,  is the coordinate of pixel i , and ⎣ ⎦ 1/ −= xΔxp , ⎣ ⎦ 1/ −= yΔyq , 

⎣ ⎦xx ΔxΔxu // −= , and ⎣ ⎦yy ΔyΔyv // −= . 
mB  represents the m-th basis function of 

the B-spline. The basis functions of cubic B-splines have limited support. Therefore 
changing a control point in the grid affects only a 4×4 region around that control 
point.  

Unlike the formula in [11] where a polynomial with infinite support is used to ap-
proximate the bias field, we choose not to explicitly optimize the control point value 
during M-step, because it leads to solving a linear system for every pixel in the image 
due to the local support of B-Spline. To find the optimal control point value, we esti-
mate a ‘bias-free’ image, similar to [11]: 
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where )(~ m
ir denotes the estimated real signal at pixel location i  for iteration m. Then 

the bias for this iteration can be estimated as ( ))()()( ~~~ m
i

m
i

m
i rxapproxb −= . ( )⋅approx is the 

FFD approximation step, which calculates the optimal control point value )(
,

~ m
jiφ (a 

detailed formula can be found in [10]).  Given the estimated bias field, the corrected 
signal can be updated as )()()1( ~~~ m

i
m

i
m bxx

i
−=+ . Once the iteration converges or a maxi-

mum number of iterations is reached, the final bias field and corrected PD image are 
calculated by an exponential operator. As an illustration, Fig. 4 shows the estimated 
multiplicative bias field and corrected intensity profile for the PD image in Fig. 2. 
 

 
Fig. 4. Estimated (a) bias field and (b) corrected intensity profile (b) for Fig. 2. This bias field is 
used to correct the entire perfusion time series. 
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Fig. 5. An illustration of multi-scale perfusion parameter estimation. Although the pixel-wise 
time-intensity curve shows drastic fluctuation due to imaging noise, the multi-scale strategy is 
able to detect the first uptake of contrast bolus. Left: a perfusion time series with clear perfu-
sion deficit; Right: the SI curve for a selected point (marked by the green cross) and detected 
contrast uptake.  

2.5   Perfusion Parametric Map Generation 

The final step of the proposed workflow is to calculate perfusion parameter maps. 
Instead of computing perfusion parameters for every myocardial segment, we devel-
oped a robust map generation algorithm based on the scale-space theory, which esti-
mates perfusion parameters for each pixel in the image. Given a SI curve ( )ts , a series 
of smoothed curves ( )tsi  are generated by convolution with Gaussian kernels 

( ) ( ) ( )tgtsts ii ∗= , where ( )tgi  is a Gaussian function with the variance being 
Nii K,1, =σ  and Njiji <=<<< 0,σσ . Similarly the first-order derivative ( )tsi′  can 

be computed by convolution with the derivative of the Gaussian kernel. As no seg-
ment averaging is performed, the pixel-wise intensity curve ( )ts  can be quite noisy 
(Fig. 5). To obtain a robust detection of first pass contrast bolus uptake, only the sta-
ble features that consistently appear across the whole scale space are kept. As the first 
step, all local maxima and zero-crossings of gradient ( )ts1′  are found as curve feature 
points. For each feature point, its appearance across all scales is checked using the 
concept of non-maximum suppression. The stable maximum with largest gradient is 
picked as the time-point corresponding to maximal up-slope. The foot time 

ft  is 
defined by the 20% of the maximal gradient, while the peak time 

pt is determined by 
the first stable zero-crossing point after the maximal up-slope, corresponding to the 
maximal intensity of first bolus uptake. Once the bolus uptake region is found, a 
weighted least-square fit is applied to this part of time-intensity curve and the optimal 
up-slope is estimated. The weight for intensity point t  is defined as its gradient mag-
nitude computed from ( )tsi′ . A scatter interpolation strategy is finally applied to fill 
the ‘holes’ which often appear on the noisy background where the algorithm can not 
find enough stable features across the scale space.  

3   Results and Discussion 

Validation was performed on anonymized data from 40 subjects (3 institutions), with 
a total of 260 perfusion series. Three different MR perfusion imaging sequences (74 
TurboFLASH, 12 TrueFISP, and 174 GRE-EPI) were used in these scans. All scans 
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were performed with a minimum of three slice 
positions (basal, mid-ventricular and apical) and 2 
PD images were acquired before the perfusion 
acquisition. We visually reviewed all datasets and 
classified them into two categories (no significant 
motion and with significant motion) according to 
the maximal motion magnitude presented in the 
series. Significant motion was not found in 92 
series (35%) while the other 168 series (65%) 
clearly require motion compensation. 

The proposed analysis workflow was applied to all series and outputs of every 
processing step were inspected. For the key-frame detection, we found that the de-
tected frames consistently showed good contrast between blood pool and myocar-
dium. Fig. 6 shows the distribution of the key-frames, which is defined as the ratio 
between the index of key-frame and the length of the corresponding perfusion series. 
The mean of the key-frame ratio is 19.044.0 ± .  

As demonstrated in Fig. 7 where an 
example of MR perfusion motion com-
pensation is givxen, the jitter motion of 
myocardium was largely eliminated for 
those cases with significant motion. For 
cases where hearts remain stationary, we 
found no discernible errors were intro-
duced by the algorithm. To quantitatively 
verify the motion compensation, we se-
lected 30 series with significant motion 
(In-plane resolution: 4.2~4.1  mm2), 
covering all pulse sequences and slice 
positions. The quantitative evaluation was 
performed by manually delineating the 
left ventricle and myocardium. For every 
selected series, two single 2D frames 
were picked. One is the detected key-frame and the other frame was chosen when the 
myocardium motion was clearly discernible. Four statistical measures are computed to 
give a comprehensive quantification: a) TA-I (the relative motion of the left ventricle 
center point along the Anterior-Inferior direction); b) TS-L (the same motion along the 
Septal-Lateral direction); c) Dice ratio (the myocardium overlap ratio); d) MBE (the 
myocardium boundary errors, defined as the minimal distances between myocardium 
contours (endo and epi) extracted from the template and the registered slice). Table 1 
summarizes the results, showing noticeable improvement after motion compensation. 

Table 1. The quantitative measures of motion compensation 

TA-I  [mm] TS-L  [mm] Dice ratio MBE [mm]  
 original moco original moco original moco original moco 

Mean 3.97 1.39 6.68 1.12 0.56 0.87 3.84    1.29 
STD 3.26 1.03 4.69 0.83 0.20 0.04 3.19    1.24 

   moco: motion compensation. 

Fig 7. Motion compensation of a free-
breathing series. First row: TrueFISP 2D slice 
overlaid with myocardium contour of key-
frame and the intensity-time profile. Second 
row: the same slice after motion compensation 
and the corrected intensity-time profile.  
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The inhomogeneity correction fields estimated from the PD images were applied to 
the entire perfusion series to correct for the bias introduced by the surface coils. Vis-
ual inspection showed the reduction of intensity inhomogeneity that was consistently 
discernible throughout the datasets. To quantitatively verify the effects of bias correc-
tion, we selected the first frame of the perfusion acquisition and measured the  
 

intensity profile across the heart. We then fit a straight line to the data and estimated 
the absolute slope (AS) with and without bias correction. Because saturation recovery 
or inversion recovery pulses are normally applied to null the pre-contrast blood and 
tissue in the perfusion imaging, the intensity profile of the first phase often shows bias 
through the heart. For a group of 20 randomly selected series from the whole data 
cohort, the mean AS was originally 13.017.0 ±  and reduced to 07.006.0 ±  after the 
bias correction (Paired t-test, P<0.005, 95% CI: 0.05-0.18), which is consistent with 
our visual impression. 

As the final step, four parameter maps 
(SLOPE, TTP, PT and AUC) were calcu-
lated for every test case. We found that the 
detection of bolus uptake was highly robust, 
which was verified by manually sampling 
the SI curves from blood pool and myocar-
dium and comparing to the automated re-
sults. As an example, for patients without 
clear perfusion deficits, the maps show 
uniform myocardium, while real perfusion 
deficits can be clearly visualized (Fig. 8). 

To make the proposed techniques accessi-
ble to clinicians, all processing steps were 
implemented within the Image Calculation 
Environment (ICE) of Siemens MRI sys-
tems. The inline perfusion analysis starts 
immediately after the reconstruction of MR 
signals. Original time series, corrected time series, and derived parameter maps are stored 
in the image database after processing. The entire processing chain was implemented to 
support concurrent calculation via simultaneous multi-threading. The processing time for 
a perfusion study with three series is typically less than 1min. The proposed system is 
under the clinical evaluation currently taken at four institutes (Langone Medical Centre, 
University of New York; Laboratory of Cardiac Energetics, National Institute of Health; 
University Medical Centre of Ohio State, Department of Cardiology, HELIOS-Klinikum 
Berlin-Buch). Among the overall positive feedback, clinicians strongly favor the robust-
ness of proposed motion compensation, as many patients were scanned in the free/ 
shallow breathing fashion.  
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Abstract. There are four main problems that limit application of pattern recog-
nition techniques for recognition of abnormal cardiac left ventricle (LV) wall 
motion: 1) Normalization of the LV's size, shape, intensity level and position; 
2) defining a spatial correspondence between phases and subjects; 3) extracting 
features; 4) and discriminating abnormal from normal wall motion. Solving 
these four problems is required for application of pattern recognition techniques 
to classify the normal and abnormal LV wall motion. In this work, we introduce 
a normalization scheme to solve the first and second problems. With this 
scheme, LVs are normalized to the same position, size, and intensity level.  
Using the normalized images, we proposed an intra-segment classification crite-
rion based on a correlation measure to solve the third and fourth problems. Ap-
plication of the method to recognition of abnormal cardiac MR LV wall motion 
showed promising results. 

1   Introduction 

Currently, diagnosis of abnormal left ventricle (LV) wall motion is generally based on 
visual inspection of the 4D (3D× temporal) dynamic cardiac magnetic resonance cine 
images. Studies have shown that this method may be inaccurate, time consuming and 
suffer from high inter-observer variability [1]. Therefore, methods of computer aided 
recognition of abnormal LV wall motion will clinically significant. Earlier literature 
[1,2,3,4] on recognition of abnormal LV wall motion are generally based on end-
diastolic (ED) and end-systolic (ES) phases' wall thickening and motion information. 
Goals of this work are to introduce a novel application of pattern recognition tech-
niques for computer aided recognition of abnormal LV wall motion. Unlike previous 
approaches, it utilizes the wall thickness and motion information from all cardiac 
phases.  

There are four main problems that limit application of pattern recognition tech-
niques to the problem of detecting abnormal LV wall motion. First, the LV's size, 
shape, intensity level and position require normalization. A subject’s LV changes size, 
shape, intensity level and position throughout the cardiac cycle. And there is additional 
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inter-subject variation. Second, it is important to determine a spatial correspondence 
between phases and subjects. The LV wall motion features can be extracted only after 
defining this correspondence. The third problem is feature extraction that is sensitive to 
wall motion but not sensitive to the following factors: thickness variation of the myo-
cardium across subjects, as well as the size and position variation of the papillary mus-
cles and endocardial trabeculations across phases and subjects. The final problem is 
discrimination of normal and abnormal wall motion and selection of a classification 
criterion. Without solving these four problems, it is difficult to use pattern recognition 
techniques to detect and classify LV wall motion.  

In this work, we introduce a normalization scheme so that the LV from each slice 
is normalized to polar coordinates with a fixed size, intensity level and position. Be-
cause cardiac motion is a complex combination of wall thickening, circumferential 
shortening and longitudinal ventricular shortening, determining pixel-based spatial 
registration phases and subjects is difficult and complicated by the requirement of 
retaining information about abnormal wall motion. This problem is simplified by 
establishing segment correspondence instead, and this appropriately matches clinical 
wall motion scoring practice[5,6]. In the feature extraction stage, we propose an intra-
segment correlation to measure each segment's wall motion relative to normal values. 
Training data is used to determine the correlation measure criterion for discrimination 
of abnormal wall motion.  

2   Left Ventricle Normalization  

There are four steps in the normalization scheme: reference points localization, spatial 
normalization, intensity normalization, and labeling of segments. It is assumed  
that epicardial contours are available, for example after application of the automated 
segmentation algorithm described in the previous works [9-13]. 

 

  

Fig. 1. AHA 17 myocardial segments Fig. 2. Diagram of spatial normalization 

Reference Points Localization. Because of the diversity of patients' body positions 
in the scanner and different heart positions in the thorax, we have to normalize differ-
ent heart positions to the same. In this work, we used the AHA 17 segment reference 
[5, 6] (Refer to Fig.1). In which, the heart is divided into four parts cutting across the 
long axis of the LV: basal, mid-cavity, apical and apex. The basal and mid-cavity 
short axis slices are each divided radially into 6 segments, whereas the apical slice has 
4 segments, and the 17th segment is the apex. According to the AHA 17 segment 
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model, either junction between the right ventricular wall and the interventricular sep-
tum of the basal (and mid-cavity) slice on the ED phase can be used as reference point 
to identify different segments. In this work, the anterior end of the interventricular 
septum is used as the reference point. (Point L  in Fig. 3a and 3e). For each subject, 
there are two sub-steps to locate the reference points of each phase: 

Step1. Mark reference point L  at the selected basal (or midcavity) slice's ED phase.  
Step2. Calculate reference point of each phase (excluding ED). Given L  and centroid 

O of the epicardium contour, we have the angle to the reference point L on the 

epicardium, XOL∠  (Fig. 2a). For a given slice stslice  and XOL∠  and stO , we 

can get the reference point stL  of stslice  with the assumption that 

XOLLXO stst ∠=∠ (Note: The slice at level s and phase t is defined as stslice  

Ss ...,2,1= , Tt ,...,2,1= , where S  and T  are the maximum slice and phase 

numbers respectively. stO  is the centroid of the plotted epicardial contour of 

stslice ).  

Given reference points stL  of each subject, and combined with the ‘spatial normaliza-

tion’ step, heart positions of different subjects can be localized. 

 
Fig. 3. Examples of the normalization procedure for a normal subject (a-d) and an abnormal 
wall motion patient (e-h). In a and e, the darker circular band is the myocardium, and the whiter 
pool is blood.  In a and e, L is the reference point and O is the centroid of the LV. In e and h, 
the two black arrows point to the abnormal segment. 

Spatial Normalization. An essential feature of the LV is the approximately radial wall 
motion and circular epicardial boundary, therefore the analysis is simplified by map-
ping the pixel intensities from Cartesian (x, y) to polar coordinates. In addition, the 
proposed mapping described below normalizes the size and shape of the myocardium 
by normalizing the length of each radial line from the LV centre to the epicardium.  
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This normalizes the images spatially for both intra- and inter-subject comparisons. For 

stslice of each subject, there are five steps: 

Step 0.  Set stststst LQLXOcol =∠== ,,1 θ . col is defined as the output image column 

index. 
Step 1.  Plot line segment ststQO  from stO   to stQ .  

Step 2.  Interpolate the pixel intensity values along line segment ststQO  to P  points. 

Put the result in the thcol column of output image with P  rows. 
Step 3.  Set θθθ Δ+=  along the counterclockwise direction. Update stQ (on the LV 

epicardium boundary) by constraint θ=∠ ststQXO . Set 1+= colcol . 

Step 4.  Repeat step1 and step3, until stQ  equals stL (initial point). 

After these steps, stslice  has been normalized to a  colP ×  rectangular image. See  

Fig. 3b and 3f for examples, with θΔ =1°, and P =60. The result is a 36060×  image. 
By means of this spatial normalization, LVs of different subjects were normalized to 
the same position, since for all of the resultant images the left edge represents the line 
from the LV centre to the reference point L, the row represents the radial distance 
(normalized by the distance to the epicardium for that radial line) and the column is 
the counterclockwise polar angle. 

Intensity Normalization. In order to normalize the intensity differences across slices, 
phases, subjects and scanners, each pixel has its intensity set to σμ /)( −x , where, x  

is the original intensity value, μ  and σ  are respectively the mean and the standard 

deviation of the rectangular image. (See Fig.3c and 3g.)  

Segments Labeling. According to the AHA segment model (Fig.1), the basal seg-
ments 1 to 6 correspond to the blocks found by dividing evenly the rectangular image 
along the vertical direction, as labeled in Fig. 3d and 3h. The mid-cavity segments 7 
to 12 have the same partitions as segments 1 to 6. The apical segments 13 to 16 corre-
spond to the 1st - 4th rectangular block by dividing evenly the rectangular image along 
the vertical direction (Refer to [5]).  

3   Intra-segment Correlation Based Classification 

In the cardiac cycle, there are different phases alternating in a natural order, for in-
stance, from systole to diastole. Motion patterns of the normal segment should be devi-
ate away from motion patterns of the abnormal segment. For a specific segment, if we 
concatenate the normalized segment images of all the phases in column manner, we get 
a spatial-temporal segment image (e.g. Fig.4a, c). Comparing the motion pattern of the 
segment for normal (Fig. 4a) and abnormal cases (Fig. 4c), we found that from phase 4 
to phase 18, the normal segment contracts more than the abnormal segment. For the 
normalized segment image of each phase ),,2,1( Ttt L= , a column vector tU is calcu-

lated by averaging the vertical line intensity profile across θ  angles of the segment 
(refer to Fig.2b). Subsequently the correlation coefficients tCC  between EDU  and 
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),,2,1( TtU t L=  can be calculated to measure the motion pattern along all the t  

phases. ( ED  refers to the end diastolic phase, with ED  =1 in Fig.4.) Fig. 4d shows the 
correlation coefficients of both normal and abnormal segments. This demonstrates that 
the contraction is greater (correlation is lower) in a normal segment than an abnormal 
segment from phase 4 to 18. Therefore, the tCC  of the abnormal segment has a motion 

pattern that deviates from the normal segment's ),,2,1( TtCCt L= . Accordingly, the tCC  

measure can be use to discriminate the normal and abnormal segments, with a classifi-
cation criterion derived from the training data. When a new patient is encountered,  
for each segment, the following steps summarized the recognition process: 1. LV nor-
malization; 2. Calculate ),,2,1( TtUt L= ; 3. Calculate ),,2,1( TtCCt L= ; 4. Classify to 

normal or abnormal based on a predefined classification criterion. 

 

 

 

Fig. 4. Segment images from different phases concatenated in column from normal a) and 
abnormal c) subjects. b) U, intensity profiles of column image averaged across segment θ of the 
normal (green) and abnormal (red) segment. d) Intra-segment correlation coefficients of the 
normal and abnormal segment. 

4   Experiments and Results 

4.1   Data 

For this study, the MRI of 17 patients were analyzed (2 female, 15 male, age: 64.8 
± 9.5). Cine Fiesta MR short axis (SAX) images were obtained with a 1.5T GE  
Signa MRI. All the images were obtained during 10-15 s breath-holds with a temporal 
resolution of 20 cardiac phases. Six to 12 SAX images were obtained from the  
atrioventricular ring to the apex (thickness=8mm, gap=8mm, FOV=320mm × 320mm, 
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matrix=256 × 256). For all subjects, a single basal slice was selected for this prelimi-
nary study, and 12/17 patients had regional abnormal wall motion for the basal slice 
by expert visual assessment.  Before normalization, contour points were placed manu-
ally with spline interpolation to plot the epicardial boundary. From the epicardial 
boundary the centroid of the LV is calculated. For each subject, in the LV segmenta-
tion step, the first input landmark point at the ED phase is recorded as reference point 
L . In this work, the anterior end of the interventricular septum was used as the refer-
ence point. In the spatial normalization step θΔ  was set to 1o and P  was set to 60, 
resulting in a 36060×  rectangular image in polar coordinates. 

4.2   Experiments and Results 

In order to determine a classification criterion for each segment, we calculated the 
)20,,2,1( L=tCCt  averaged across all subjects with the same assessment (normal or 

abnormal wall motion). Fig 5 shows plots of the averaged )20,,2,1( L=tCCt for indi-

vidual segments, demonstrating that the minimum value of the averaged normal tCC  

falls between phase 6 and 10 and is always smaller than the minimum of the averaged 
abnormal tCC . Accordingly, for segment 1-6, the classification criterion is defined  

as: If )6,,2,1()10,,7,6)(min( LL =<= segmentTtCC segmentt , segment  is classified as 

normal. Otherwise, the segment is classified as abnormal.  

 

Fig. 5. Correlation coefficients. Each graph illustrates the wall motion of a segment as meas-
ured by the correlation CCt between the phase t and end diastolic phase. 

Table 1. Sensitivity, specificity and accuracy of segments 1-6  

Segment  
1 2 3 4 5 6 

Sensitivity 80% 85.7% 100% 75.0% 85.7% 100% 
Specificity  91.7% 100% 90.9% 84.6% 90% 66.7% 
Accuracy 88.2% 94.1% 94.1% 82.4% 88.2% 70.6% 
Recognition time ( 410− s) 1.4 1.7 1.7 1.1 1.1 1.8 
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Table 2. Comparison with manual and other computer aided method 

 Manual method in [1] computer aided Method in [1] Proposed method 

Mean Sensitivity 80% 84% 87.1%(27/31) 
Mean Specificity  76% 77% 85.9%(61/71) 
Mean Accuracy 77% 79% 86.3%(88/102) 

The performance of the proposed classification method was calculated on a per 
segment basis, where the expert reader’s visual assessment served as ground truth. 
Segment classification results were used to calculate the sensitivity, specificity and 
accuracy, with a total of 17x6=102 segments (Table 1). Table 1 also shows that the 
computational time for recognition (normalization and discrimination) is approxi-

mately 410− second per segment on consumer hardware (2× 2.8GHz Quad-core Intel 
Xeon Mac Pro, Apple) with non-optimized Matlab code (Mathworks). In Table 2, the 
performance of the proposed method was also evaluated by comparisons with previ-
ous work in [1]. These preliminary results are better than the manual and computer 
aided methods described in [1] as measured by sensitivity, specificity and accuracy.  

5   Discussions and Conclusions 

With the normalization scheme, LV images of different positions, sizes, shapes and 
intensity levels are normalized to myocardium coordinates with the same position, 
size, and intensity level, providing a foundation for pattern recognition of wall mo-
tion. Spatial correspondence is established for segments rather than pixels in this 
work. Although this does not provide for pixel-wise analysis of cardiac motion of 
non-rigid registration techniques [7], it is suitable for automated recognition of re-
gional LV wall motion because the wall motion assessment required clinically is 
based on the AHA segment model [5,6]. This partially solves the second problem 
proposed in the introduction.  In order to solve the third and fourth problems, for each 
segment, an intra-subject correlation measure was proposed. Since the correlation 
coefficients are calculated with an intra-segment manner, the variability of myocardial 
thickness between subjects and the papillary muscles, trabeculations' size and position 
will not be an issue. 

Although the mean specificity and accuracy were relatively low for clinical use, as 
a preliminary attempt to use the pattern recognition method for assessment of  
regional LV wall motion, the results are still promising. Further improvements are 
desirable, including: 1) combining with automated or semi-automated methods to 
segment the LV; 2) training with mid-cavity and apical slices where papillary muscles 
are present; 3) a larger set of subjects, with separate training and validation sets; 4) 
more efficient methods of classification (e.g. support vector machine [8]). While a 
simple classification criterion was used in this work, the results are still promising due 
to the effectiveness of the normalization and feature extraction scheme. 

Compared with the previous work on regional LV wall motion analysis methods  
[1, 2, 3, 4], main characteristics of the proposed method can be summarized as: 1) 
Segmentation of the endocardium is not required. Analyzing the radial profile in LV 
coordinates has been shown to be sufficient for detecting wall motion abnormalities  
in this patient study data set.  2) This method finds an appropriate balance between 
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complexity and simplicity. A pixel-wise estimate of wall motion adds complexity of 
analysis and the detailed motion is not required for clinical assessment.  An accurate 
location of the reference point to demarcate segments of each phase is difficult. There-
fore, the proposed reference point location scheme was utilized, although it will lead to 
slight segment location errors due to the LV twisting and ventricular torsion. 3) The 
complete information from all phases and segments is utilized to determine a wall 
motion estimate comparable to the standard manual wall motion scores. 4) This 
method is a novel application of pattern recognition techniques to LV motion analysis. 

In summary, a scheme has been proposed for abnormal LV wall motion detection 
by the techniques of pattern recognition. By the proposed LV normalization method, 
the LVs with different shapes, positions, sizes and intensity levels are normalized to 
rectangular images with same position, size and intensity level. This normalization 
scheme is a crucial bridge for the further applications of pattern recognition method to 
LV motion analysis. Following the normalization, an intra-segment correlation based 
classifier was used for recognition of segments with abnormal regional LV wall mo-
tion. The results demonstrate a promising method for recognition of abnormal LV 
wall motion that deserves more extensive validation. 
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Abstract. In this paper, we propose a complete framework for the au-
tomatic detection and quantification of abnormal heart motion patterns
using Statistical Atlases of Motion built from healthy populations. The
method is illustrated on CRT patients with identified cardiac dyssyn-
chrony and abnormal septal motion on 2D ultrasound (US) sequences.
The use of the 2D US modality guarantees that the temporal resolution of
the image sequences is high enough to work under a small displacements
hypothesis. Under this assumption, the computed displacement fields
can be directly considered as cardiac velocities. Comparison of subjects
acquired with different spatiotemporal resolutions implies the reorienta-
tion and temporal normalization of velocity fields in a common space of
coordinates. Statistics are then performed on the reoriented vector fields.
Results show the ability of the method to correctly detect abnormal mo-
tion patterns and quantify their distance to normality. The use of local
p-values for quantifying abnormal motion patterns is believed to be a
promising strategy for computing new markers of cardiac dyssynchrony
for better characterizing CRT candidates.

1 Introduction

Cardiac Resynchronization Therapy (CRT) has been shown to efficiently restore
the coordination and relaxation among cardiac chambers, leading to better sur-
vival in patients with advanced heart failure and evidence of ventricular conduc-
tion delays [1]. The main clinical challenge for CRT is currently the understanding
of physiological mechanisms involved behind positive or negative response. Re-
cently, a promising way of finding non-responders for CRT was presented in [2],
who proposed a classification of patients into classes of dyssynchronypatterns, and
evaluated the response of each of these groups. This analysis attempts to relate the
patient to a population with a known electrical or mechanical dyssynchrony de-
fect that is expected to be effectively corrected by CRT. In this perspective, the
computation of distances from a new subject to well identified groups of patients
is a novel strategy for improving CRT response rate.

Recent research in computational anatomy has lead to the design and evalua-
tion of statistical tools that synthesize the average anatomy within a population
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as well as the statistical deviation from this average. Recent works used non-rigid
registration techniques to build Statistical Atlases of Motion of the heart from
magnetic resonance image sequences [3], in which the displacement fields reflect
the movement of anatomical structures. The use of 4D transformation models
was presented in [4] for motion tracking over sequences of images. Registration
is performed between frames at time points ti and t0 (i �= 0). Such a strategy
can provide large displacements, which in an atlas perspective would require to
perform statistics on the tangent space of diffeomorphisms, using the methods
described in [5]. In addition, representing the motion in reference to the first
frame does not take advantage of the strong correlation between consecutive
frames, and introduces a lot of redundancy between time steps for statistical
computations.

A diffeomorphic registration scheme using paths between pairs of consecutive
frames was recently presented in [6] for the synchronization of 4D time-series
of cardiac images, and allows spatially consistent comparison of the suppos-
edly temporally aligned sequences. One drawback of this technique is the fact
that the computed transformations are only available at the discrete timepoints
where the frames of the sequences are defined. Combining pairwise matching
terms with the computation of diffeomorphic paths [7] allows to follow the evo-
lution of a shape over a 2D+t sequence, and therefore to track the anatomy
over the continuous timescale. However, this method still needs spatio-temporal
synchronization steps to apply it for atlas construction from various sequences,
and needs to prove its feasability when applied to real ultrasound (US) data.

In this paper we propose a complete and flexible pipeline for the construc-
tion of atlases of motion from sequences of US images, and illustrate its use
for clinically-oriented quantitative comparison. We take advantage of registra-
tion between pairs of consecutive frames to work under a small displacements
hypothesis. Our strategy is motivated by the fact that low correlation exists
between time-distant frames for the US modality, and by the good temporal
resolution of the 2D US modality. While existing atlases of motion are based
on displacement fields, we prefer velocities, directly related to cardiac function.
Working with small displacements allows easier definition of velocities over the
whole continuous timescale, and direct computation of classical statistics on
these velocities, once they have been brought to the same spatio-temporal sys-
tem of coordinates. The structure provided by the atlas is then used for chosen
pathology comparison to a healthy population, in the context of looking for CRT
responders. We apply the method to the characterization of one mechanism re-
lated to Left Ventricle (LV) dyssynchrony, namely Septal Flash (SF), a quick
inward/outward movement of the septum with respect to the LV, which occurs
during the electrical activation of the heart chambers. We chose to work with
2D+t US modality as it is the only one used in clinical practice with sufficient
temporal resolution to accurately identify fast septal motion patterns. However,
the concepts developed in this paper could readily be applied to 3D+t once
the required temporal resolution is accessible in standard clinical acquisition
protocols.
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2 Computation of Cardiac Velocities

2.1 Intra-sequence Registration

In the following we will denote S = {S(t1), ..., S(ti), ..., S(tN )} the temporal
series of 2D images for one given patient,which contains N images taken at
time-points ti. To track the anatomy along cardiac cycles, pairwise registration
between consecutive frames provides an optimal sequence of transformations
ϕti,ti+1 : x �→ x′ for each series, which map any point of image S(ti,x) to its
corresponding point in the following frame S(ti+1,x

′). Our non-rigid registra-
tion uses the Free-Form Deformation (FFD) method [8], which is made multi-
resolution to improve its robustness to the position and spacing of control points.
We used spacings of successively 26, 13 and 6.5 mm, and mutual information as
matching term.

2.2 Small Displacements Hypothesis and Definition of Velocities

If the displacements are small, the logarithm [5] of a transformation log
(
ϕti,ti+1

)
can be approximated at the first order by its corresponding displacement field
ϕti,ti+1 − Id. Velocities are directly obtained at the discrete time-points where
the data is defined using

∀i (ti+1 − ti) · v(ti, .) = log
(
ϕti,ti+1

)
≈

(
ϕti,ti+1 − Id

)
(1)

and assumed to be stationary between consecutive time-points ti and ti+1, which
means that:

v(t, ϕ̂ti,t(x)) = v(ti,x) (2)

where ti is the closest time-point that precedes t at which the series S is defined.
Equation 2 means that trajectories are linearly interpolated to provide ϕ̂ti,t(x),
the position at time t of the anatomical point that was at x at time ti. Orientation
and invertibility are preserved at any point (t,x), as the log-exponential does
with large displacements.

In our ti → ti+1 registration approach, we can reasonably assume that the
displacements are small. Such a choice is encouraged by the good temporal res-
olution of the 2D US modality. We validated this assumption by comparing
the computed displacement fields and the logarithm of their relative transfor-
mations, using D(ϕ1,ϕ2) = 1

card(Ω) ·
∑

xj∈Ω
|ϕ2◦ϕ−1

1 −Id|
|ϕ1−Id| (xj) as normalized

dissimilarity measure between two transformations ϕ1 and ϕ2, where Ω is the
image domain. We previoulsy ensured these transformations are diffeomorphic,
that-is-to-say they are invertible, smooth and with smooth inverse so that the
logarithm can be computed. The results of this experiment are summarized in
Fig.1, which presents the comparison of ϕ and log ϕ + Id for all the frames
of one series containing three cycles. To get a range of comparison, this exper-
iment is also done for a 0 → ti registration strategy, which works with larger
displacements, and for a SF patient.
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Fig. 1. Left: distribution of the dissimilarity measure Dsmall over the set of frames (red
and blue: healthy volunteer, all the frames, ti → ti+1 and 0 → ti approaches, green: SF
patient, frames where SF occurs). Average over all the frames is in dashed line, and
summed up in the table on the right. Table also contains Dacc for the assessment of
logarithm computations accuracy.

2.3 Drift Correction

Drift artifacts from registration between pairs of consecutive frames are solved
by applying for each cycle a correction involving a linear-in-time scaling of the
transformation between frames which begin consecutive cycles, ϕTj ,Tj+1 , where
Tj is the time-point starting cycle j. This transformation aims at correcting
probe motion during the acquisition, and adds robustness towards out-of-plane
motion, as the assumption ϕTj ,Tj+1 = Id generally made in other works [4] is
not verified in our database of 2D US sequences.

3 Statistics on Cardiac Velocities

3.1 Pre-processing Steps

For each patient, the registration steps provide velocities on which statistics can
be computed directly. They should first be brought into the same system of
spatio-temporal coordinates. In the following we use k index to refer to sample
patient k, and we index variable names accordingly.

Temporal Normalization. On each sequence, two control points related to
the cardiac cycle phases are identified on the corresponding Electrocardiogram
(ECG) and then mapped to a normalized timescale: the onset of QRS complex,
using ECG tools from GE EchoPac software, and aortic valve closure, observed in
left-parasternal long-axis images and located on ECG for the apical 4-chamber
view we use by ECG correspondence. This step will be automated in further
work. Between the control points temporal data is then adjusted linearly to
match the new timescale. Similar synchronization methods [9] also identified a
set of control points over each sequence of MR images, but used image similarity.
We preferred to rely on ECG information, as for US images the identification of
these points using image data can be biased by respiratory or probe motion. In
addition, the use of physiological events as temporal landmarks is believed to be
more extendable to handle pathological subjects.
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Spatial Reorientation. Velocities vk(t,x) are initially defined in the system of
coordinates of patient k, but should be reoriented to be embedded in a reference
system of coordinates before computing any statistics. We chose arbitrarily one
series with good image quality as the reference. We first compute the transforma-
tion φk→ref (t,x) which maps estimated images of patient k and reference ref at
time t, using FFD. We ensured that the computed transformation is invertible
by checking that its jacobian has a positive determinant. Using notations of Sec-
tion 2.2, an image S is simply estimated at time t from the image at the closest
preceding time-point ti, with Ŝ(t, .) = ϕ̂ti,t(S(ti, .)). Reorientation of velocity
fields vk is then achieved at every point (t,x) using a push-forward action on
vector fields [10]:

Pφ(v) = Dφ ·
(
v ◦ φ−1) (3)

where v = vk, φ = φk→ref and D the jacobian operator. We use the same
computations for the inverse as in [5].

3.2 Statistical Computations

Once these pre-processing steps have been achieved, statistics can be directly
computed on velocities. We first compute their average and variance to char-
acterize the atlas population. Considering K different sample series

{
Sk| k =

1...K
}
, we obtain at any desired point (t,x) the average v = 1

K

∑K
k=1 vk and

the covariance matrix Σv = 1
K−1V

t · V from the set of velocities vk. Here
Vt =

[
(v1−v)|...|(vK −v)

]
is the 2×K matrix whose columns are the centered

velocity samples at (t,x), and t is the matrix transposition operator.
The atlas is then used for the comparison of the velocities of a given patient

to the population used for its construction, through the computation at every
desired point (t,x) of statistical indexes assessing abnormality. We chose as index
the p-value obtained from Hotelling’s t-square statistic [11]:

t2 = α (v − v)t ·Σ−1
v · (v − v)

where α = K/(K + 1), v is the velocity to compare to the atlas, and v and Σv

are the average and the covariance matrix computed for the population atlas.

Healthy SF

(pixels) δinter δintra Δtrack δinter δintra Δtrack

1. Basal inferoseptal 2.21 1.90 1.57 1.29 2.43 1.73

2. Mid inferoseptal 2.51 3.58 3.84 0.41 1.84 1.26

3. Apical septal 1.66 3.97 5.11 0.70 2.03 2.67

4. Apical 0.97 2.17 2.76 0.77 2.72 1.67

Average 1.84 2.91 3.32 0.79 2.26 1.83

Fig. 2. Comparison between automatic and manual tracking: inter- and intra-operator
standard deviation (δinter and δintra), and distance between automatically and manu-
ally tracked points (Δtrack).
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4 Experiments on 2D US Sequences

We acquired 2D+t echocardiographic sequences in an apical 4-chamber view for
two populations of patients, using a GE Vivid 7 machine. The atlas population
was made up of 21 healthy volunteers. The second population included 4 CRT
patients with visually assessed SF. The choice of the apical 4-chamber view is
lead by the fact that it is the one used in clinical routine for the assessment of the
inward/outward movement of the septum related to SF. Physiological differences
between patients constrain the acquisition parameters, that will differ in terms
of temporal resolution and image quality. For the atlas population, we acquired
images with optimized resolution, that corresponds in average to a frame rate
of 60 frames/s and a pixel size of 0.15 × 0.15 mm2. For constraints related to
the therapy, such settings were not reproducible for SF patients, acquired at a
similar spatial resolution but at a lower frame rate (30 frames/s).

4.1 Atlas Construction

We first evaluated the quality of our intra-sequence registration by comparing it
to manual landmarking. Three observers tracked 4 points along the septum that
correspond to basal-inferoseptal, mid-inferoseptal, apical-septal and apical levels.
Measurements were repeated 10 times for each point, and selection was done over
one cycle of one healthy volunteer and one SF patient. Then each landmark was
automatically tracked, starting from its average position in the first frame. Fig.2
presents the average in time of inter- and intra- observer variability, and compares
it to the distance between automatically and manually tracked points. Automatic
and manual tracking show comparable precision over all the selected points.

In order to check the efficiency of the synchronization scheme described in
Section 3.1, we acquired 4 sequences for the same patient and checked that the
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and the 4 SF patients.

estimated velocities overlap after the synchronization. These sequences contain
3 whole cycles, and are made of 204, 189, 209 and 218 frames, respectively, with
varying orientation of the probe. Good repeatability is observed between the
curves, using

√
Tr(Σv) as variability measure (Fig.3).

4.2 Septal Flash Assessment

We built the atlas ofmotionusing the whole set of synchronizedhealthy volunteers,
and then compared velocity fields for the atlas and the 4 SF patients as described
in Section 3.2. The comparison is shown at mid-inferoseptal level, where the fast
inward/outward motion of the septum takes place (Fig.4). Velocity and p-value
profiles are plotted for one SF patient to see when SF occurs relatively to the ECG.
Low p-value means high degree of abnormality. From both plots we can notice a
very large abnormal inward velocity when the septum is activated, which is almost
immediately followed by a fast outward motion at the time when the infero-lateral
wall contracts. Box plots in the middle and the recapitulative table on the right
compare p-values for the 4 SF patients and p-values for the atlas population, which
were obtained using leave-one-out cross-validation. On SF patient 3 abnormality
is hard to assess, due to the poor image quality of the sequence and the limited
magnitude of the SF. On all the other three SF patients, p-value enables efficient
assessment of abnormality for the SF pattern.

5 Conclusion

In this paper, we proposed to apply atlas quantification techniques to charac-
terize the septal flash mechanism, which proved its interest for understanding
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response to CRT. We proposed a complete framework for the construction of
an atlas that represents motion in a standard spatio-temporal system of coordi-
nates and compared cardiac velocities between CRT patients and a population
of healthy subjects. Our experimental results demonstrated the ability of the
atlas to assess local motion abnormalities in time and space. Our pipeline could
easily be extended to strain measurements for a more advanced characterization
of the mechanisms conditioning response to CRT.
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Abstract. The anatomy, function and hemodynamics of the aortic and
mitral valves are known to be strongly interconnected. An integrated
quantitative and visual assessment of the aortic-mitral coupling may
have an impact on patient evaluation, planning and guidance of min-
imal invasive procedures. In this paper, we propose a novel model-driven
method for functional and morphological characterization of the entire
aortic-mitral apparatus. A holistic physiological model is hierarchically
defined to represent the anatomy and motion of the two left heart valves.
Robust learning-based algorithms are applied to estimate the patient-
specific spatial-temporal parameters from four-dimensional TEE and CT
data. The piecewise affine location of the valves is initially determined
over the whole cardiac cycle using an incremental search performed in
marginal spaces. Consequently, efficient spectrum detection in the tra-
jectory space is applied to estimate the cyclic motion of the articulated
model. Finally, the full personalized surface model of the aortic-mitral
coupling is constructed using statistical shape models and local spatial-
temporal refinement. Experiments performed on 65 4D TEE and 69 4D
CT sequences demonstrated an average accuracy of 1.45mm and speed
of 60 seconds for the proposed approach. Initial clinical validation on
model-based and expert measurement showed the precision to be in the
range of the inter-user variability. To the best of our knowledge this is
the first time a complete model of the aortic-mitral coupling estimated
from TEE and CT data is proposed.

1 Introduction

Aortic and mitral valves are the most commonly diseased valves, cumulating in
64 percent and 14 percent, respectively of the valvular heart disease case. The
coupling of the aortic and mitral valvular annuli through fibrous tissue is evi-
dent and leads to strong functional and hemodynamical interdependency. Recent
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studies and findings demand that the dynamics and morphologies of the aortic
and mitral valve must be considered simultaneously [1,2]. Reciprocal changes of
the aortic and mitral annular areas have been reported and it was concluded,
that the fibrous aortic-mitral continuity acts as an anchor for the valves. To-
gether with the muscular portions of either annuli and their contraction during
their reciprocal motion, it facilitates the opening and closing of the other valve
during systole and diastole respectively [3]. Various findings and facts related to
interventions on both valves emphasize the notion of their coupling. In transapi-
cal aortic valve replacement, the prosthese’s stent must not be placed too far
downwards into the directions of the left ventricle, as it would impair the mi-
tral anterior leaflet’s mobility [4]. Moreover another recent study pointed out,
that mitral regurgitation can be positively affected by aortic valve replacement
[5]. Understanding the dynamics and morphology of the aortic-mitral valvular
apparatus is important as a base for diagnosis and treatment decisions, optimal
design of prostheses and intervention outcome improvement.

Recently, personalized valve models have attracted great attention and are
expected to significantly advance the management of patients with valve heart
disease. To date, separate approaches were reported for modeling of both valves
[6,7]. Veronesi et al.[3] reported a method, where both annuli were segmented
with manual initialization and quantified. Up to now the full joint morphology
and dynamics of both valves at the same time have not been studied due to the
lack of suitable methods and tools.

In this paper we propose a new model driven approach for quantitative and
visual assessment of the aortic-mitral complex, which models all relevant anatom-
ical structures of both valves. For the first time a complete personalized model
of the aortic-mitral coupling, non-invasively derived from 4D Computed Tomog-
raphy (CT) and 4D Transoesophageal Echocardiography (TEE) acquisitions,
accurately represents the valves’ morphology and function. The personalized pa-
rameter estimation from input image sequences is performed efficiently using a
robust and hierarchical learning-based algorithm. Our approach enables for in-
tegrated quantification, and has the potential to fuel research on mixed valve
disease, cardiac pathophysiology and interventional procedures.

2 Physiological Modeling of the Aortic-Mitral Coupling

We propose a physiological model of the complete aortic-mitral apparatus capa-
ble to capture complex morphological, dynamic and pathological variations. The
valves are coupled by a fibrous tissue [1] and work in synchrony [3,2] to regulate
the blood flow in the left heart. The central anatomical structures are: aortic
root and leaflets along with mitral anterior and posterior leaflets. To efficiently
handle the anatomical complexity, the model representation and corresponding
parameterization is constructed hierarchically and includes: a global piecewise
affine model, a non-rigid articulated model and a full surface model.

The time dependent global position (cx, cy, cz, t), orientation (αx, αy, αz , t)
and scale (sx, sy, sz, t), are defined for each valve individually and illustrated as
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Fig. 1. Physiological model of the aortic-mitral coupling. Left: Non-rigid articulated
model including the following landmarks: aortic and mitral commissures (green), aortic
and mitral tips (blue), aortic hinges and mitral triagones (magenta) and coronary ostia
(cyan). Right: Full surface model: aortic root (blue), aortic leaflets (green), anterior
(light-blue) and posterior (light green) mitral leaflets.

bounding boxes in Fig. 1. Positions are given by the valve’s barycenters, while
scales are chosen to comprise the entire underlying anatomy. The long axes
are defined by the normal vectors to the aortic-commissural plane and mitral-
trigonal plane, while short axes point from the barycenters to the LR-commissure
and mitral posteroannular midpoint, respectively.

The aortic and mitral valves execute a rapid opening-closing movement, which
follows a complex and synchronized motion pattern. Normalized by the global
parameters, the non-rigid motion is represented through an articulated model.
It consists of 18 joints, which are relevant anatomical landmarks (see Fig. 1
Left). Each joint j is parameterized through the corresponding trajectory aj ,
given by the concatenation of the spatial coordinates, aj(t) ∈ R

3, over time
t = 0, · · · , n− 1:

aj = [aj(0),aj(1), · · · ,aj(t), · · · ,aj(n− 1)] (1)

The highest abstraction layer models the 3D surfaces of the anatomical struc-
tures: aortic root, left/right/none coronary leaflets for the aortic valve, and an-
terior/posterior leaflets for the mitral valve (see Fig. 1 Right). The aortic root
connects the ascending aorta to the left ventricle outflow tract and is modeled as
a cylindrical surface constrained by the hinges, coronary ostia and aortic com-
missures. Attached to the root are the three aortic leaflets, delineated by the
corresponding tip, hinge and commissures, and modeled as paraboloids. The an-
terior and posterior leaflets of the mitral valve separate hemodynamically the
left ventricle from the left atrium. The aortic mitral curtain, which anatomically
links the two valves, ends into the left and right fibrous trigones. These, together
with the mitral-commissures and corresponding tip are fixing the anterior leaflet.
The posterior leaflet, divided into three scallops, is located between the mitral
commissures, middle triagone and its corresponding tip. The saddled shaped
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mitral annulus is modeled implicitly by the upper margins of the mitral leaflets.
For each structure k, all surfaces Ck(u, v, t) are parameterized by spatial co-
ordinates u,v and time t and represented by Non uniform rational B-splines
(NURBS) [8]. The temporal parameter t extends the standard NURBS surface
equation by applying the tensor product, and is used to capture the temporal
variation over the cardiac cycle. The surface model is anchored to the articu-
lated model introduced above and is constraint by anatomically-driven boundary
condition to form a full 4D physiological aortic-mitral model.

3 Robust Estimation of Personalized Model

The model parameters introduced in section 2 are estimated from 4D patient
specific data to obtain a personalized representation of the aortic-mitral appara-
tus. To maximize efficiency and comply with the hierarchical model definition,
the estimation algorithm is based on robust learning methods and is divided in
three stages: Global Localization and Motion Estimation, Trajectory Spectrum
Learning and Dynamic Surface Model Fitting.

GlobalLocalizationandMotionEstimation. Theglobal locationandmotion
is representedby the 3D+t affine parameters (cx, cy, cz, αx, αy, αz, sx, sy, sz, t), for
each valve. These are estimated by combining anatomy detectors trained using the
Marginal Space Learning (MSL) framework [9] with a variant of the Random Sam-
ple Consensus (RANSAC) [10]. MSL provides an efficient way of learning high di-
mensional models and fast online search by operating in subspaces of increasing
dimensionality. Anatomical classifiers are sequentially learned on the subspaces:
position, position + orientation and position + orientation + scale. The proba-
bilistic boosting tree (PBT) [11], in combination with Haar and Steerable Features
[9], is applied for training. The RANSAC estimator is employed to obtain a robust
and time consistent global motion. Several high-probable hypotheses are obtained
for each frame by scanning the trained MSL-based affine estimator over the input
image sequence. Assuming a constant global motion, the candidate hypotheses are
sequentially sampled as the currentmotion model parameters and the best fit from
each frame is considered when computing the robust quality measure. The final in-
lier selection is givenby the model with the maximum number of hypotheseswithin
the pre-specified tolerance σ = 7mm, measured usign the L1 norm.

Trajectory Spectrum Learning. We propose a novel algorithm to estimate
the non-rigid motion of the articulated model by performing learning and opti-
mization in trajectory spectrum spaces [12]. The trajectory of each joint aj in
(1) can be represented by its corresponding discrete Fourier transform (DFT)
coefficients:

sj(f) =
n−1∑
t=0

aj(t)e
−j2πtf

n (2)

where sj(f) is the frequency spectrum of the x, y, or z components of the
trajectory aj(t), and f = 0, 1, · · · , n− 1. Consequently, the objective to find the
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trajectory aj , with the maximum posterior probability for a series of volumes I
can be express as:

arg maxaj p(aj|I) = arg maxsj p(sj |I) = arg maxsj

p(sj(0), · · · , sj(n− 1)|I(0), · · · , I(n− 1)) (3)

As the original search space is high dimensional, the learning and optimization
is performed efficiently in orthogonal subspace with increased dimensionality
spanned by the DFT bases functions. This incremental approach initially cap-
tures coarse level motion and gradually refines high-frequent deformations as
the search space dimension increases. Starting with the initial space of the DC
(sj(0)), we iteratively add frequency components sj(f) and learn the poste-
rior probability in each subsequent subspace until reaching the dimensionality
of the original space, n− 1. At a certain stage i, the subspace includes the spec-
trum component sj(0), . . . , sj(i) and the conditional probability is modeled by
a trained detector Di:

p(sj(i)|sj(0), . . . , sj(i− 1)) = Di(sj(0), . . . , sj(i)) (4)

For each subspace, the detectors Di are trained on positive and negative tra-
jectories extracted from the training set, using the probabilistic boosting tree
(PBT) algorithm in conjunction with steerable features [9].

The detection starts with a zero-spectrum and estimates incrementally the
amplitude and phase of each DFT component sj(f). At a certain stage i, high
probability hypothesis are determined and preserved by Di. Subsequently, the
dimensionality of the search subspace is extended to i + 1 with the spectrum
component sj(i + 1) and the detection is repeated using Di+1. The algorithm
stops when the original space is reached and outputs the optimal trajectory spec-
trum (sj(0), · · · , sj(n − 1)). The location and motion of the model is obtained
by reconstructed the trajectory aj of each joint j applying the inverse DFT
transformation 1. The spectrum representation and corresponding decomposi-
tion enable efficient motion learning and optimization as the number of tested
hypotheses during detection is significantly reduced by at least on magnitude.

Dynamic Surface Model Fitting. The full surface model is initialized by
fitting the mean shape, learned from the training set, to the estimated articu-
lated model from the previous section. Boundary detectors, trained using PBT
and steerable features, deform locally the surfaces to obtain proper object de-
lineation [9]. The resulting surfaces are projected on the corresponding shape
space to impose the geometric smoothness constraint. The PCA-based shape
model, which contains 80 modes, is computed from point correspondences main-
tained by model re-sampling within anatomical local coordinates (Sec. 2). To
enhance temporal smoothness, a learned motion prior, combined with optical

1 The non-rigid motion trajectories are reconstructed from the real coefficients of the
DFT, while optimization runs in the complex space, considering both amplitude
(real) and phase (imaginary)
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Fig. 2. Examples of the personalized model in TEE (Top) and CT (Bottom)

flow estimation, is applied to predict the propagated surfaces based on the pre-
vious frames [13]. The above procedure is repeated for each volume in the image
sequences, in both forward and backward directions, to obtain a personalized
dynamic surface model of the entire aortic-mitral apparatus.

4 Results

The proposed method for personalized aortic-mitral modeling was evaluated on
69 4D CT (690 volumes) and 65 4D TEE (1516 volumes) studies. The data set
contains healthy as well as valves affected by various diseases, such as stenosis,
regurgitation, prolapse and annular dilation. Both CT and TEE scans were ac-
quired using heterogeneous protocols with various sizes and resolutions. Each
study is associated with a manual performed annotation, which represents the
ground-truth. This was obtained and refined together with clinical experts while
gradually improving the semi-automated annotation system. Performance is re-
ported on three-fold cross validation experiments.

The accuracy of the algorithm for the three estimation stages is presented in
Table 1. Global location and motion parameters were estimated on low-resolution
(3mm) images, with errors measured from the Euclidean distance of the bound-
ing boxes’ corner points between ground-truth and detected results. The accu-
racy of the non-rigid articulated model estimator is computed from the average
Euclidean distance over all aortic and mitral joints. Performance for the full sur-
face estimator is measured by the point-to-mesh distance. We obtain an average
accuracy of 1.45 mm with a total computation time of 60 seconds for the per-
sonalized aortic-mitral coupling model (see Fig.2). The obtained system-error is
compared to the inter-user variability in an experiment involving a randomly
selected subset of 10 TEE sequences and models placed manually by 3 expert
users. The barycentric distance and angle between the aortic and mitral valve
were measured from the model in end-diastole and end-systole. Fig. 3 demon-
strates that the system-error relative to the mean measurements of all experts
lies for 90% of the cases within the 80% user-variability confidence interval.
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Table 1. Errors for each detection stage in TEE (Left) and CT (Right)

(mm) Mean Std. Median 80% Mean Std. Median 80%
Global Affine Parameters 6.95 4.12 5.96 8.72 8.09 3.32 7.57 10.4

Non-Rigid Articulated Model 3.78 1.55 3.43 4.85 2.93 1.36 2.59 3.38
Full Surface Model 1.54 1.17 1.16 1.78 1.36 0.93 1.30 1.53

Fig. 3. System error compared to the inter-user variability. The sorted system error
(blue bars) and the 80% (light blue area) and 90% (yellow) confidence intervals of the
user variability determined from the standard deviation.

Table 2. Left: System-precision for various dimensions of the aortic-mitral coupling.
Right: Bland-Altman plots for the aortic and mitral valves area.

Mean STD
VAJ (cm) 0.137 0.017
SV (cm) 0.166 0.043

STJ (cm) 0.098 0.029
AC (cm) 0.846 0.3

APD (cm) 0.325 0.219
AL-PM-D(cm) 0.509 0.37

The inter-modality consistency of the model-based quantification was demon-
strated on studies of patients which underwent both imaging investigations,
TEE and cardiac CT. A strong correlation, r=0.98, p<0.0001 and 0.97-0.99
confidence intervals, was obtained on standard measurements (aortic valve area,
inter-commissural distances and root diameters at the sinotubular, ventricular-
arterial junction and ventricular-arterial junction), derived from the personalized
model in four different CT/TEE exams.

We demonstrated the quantitative capabilities of our approach by comparing
model driven to expert measurements. Table 2 presents the system-precision for
various dimensions of the aortic-mitral coupling: Diameters of the ventricular-
arterial junction (VAJ), sinus of valsalva (SV) and sinotubular junction (SJ),
aortic valve area (AV area), mitral valve area (MV area), mitral annular cir-
cumference (AC) , anteroposterior diameter (APD), anterolateral-posteromedial
diameter (AL-PM-D). The mean interannular angle and interannular centroid
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Fig. 4. Measurements obtained before (dotted lines) and after (solid lines) mitral an-
nuloplasty. Left: Aortic (blue) and Mitral (red) valvular area. Right: Aortic (blue)
and Mitral (red) annular area.

distance were 137.0±12.2 and 26.5±4.2, respectively compared to 136.2±12.6
and 25.0±3.2 reported in the literature [3]. Automatic, model-based quantifica-
tion has the potential to advance patient evaluation, intervention planning and
guidance.

Pre- and post-operative modeling for a patient who underwent mitral annulo-
plasty revealed the substantial effect on the aortic valve (not targeted during the
procedure), confirming observations from [1,2,3]. The aortic and mitral valvular
areas over the cardiac cycle are illustrated in Fig. 4 Left, which clearly shows the
mitral-regurgitation cured after the intervention. The synchronous annuli defor-
mation and indirect operation effects on the aortic morphology and dynamics
are illustrated in Fig. 4 Right.

5 Discussion

Latest clinical research confirmed that the morphology, function and
hemodynamic-activity of the aortic and mitral valves are strongly intercon-
nected. In this paper, we introduced the first personalized model of the entire
aortic-mitral apparatus derived from 4D TEE and 4D CT data. The full anatomy
and dynamics are represented through a physiological-driven hierarchical model.
From input volume sequences, we estimate the personalized parameters of the
non-rigid motion and surface model by applying a robust an efficient machine
learning algorithm. The presented approach enables for efficient and integrated
quantification of the aortic-mitral complex. Extensive experiments performed on
a large heterogeneous data set demonstrated the precision of 1.45mm and speed
of 60 seconds for the proposed approach. Furthermore, clinical validation showed
a strong inter-modality and inter-subject correlation for a comprehensive set of
model-based measurements. The proposed method has the potential to signifi-
cantly advance the joint examination, procedure planning and prosthetic valve
design for both, aortic and mitral valves.
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Abstract. Detection of stent struts imaged in vivo by optical coherence
tomography (OCT) after percutaneous coronary interventions (PCI) and
quantification of in-stent neointimal hyperplasia (NIH) are important.
In this paper, we present a new computational method to facilitate the
physician in this endeavor to assess and compare new (drug-eluting)
stents. We developed a new algorithm for stent strut detection and uti-
lized splines to reconstruct the lumen and stent boundaries which provide
automatic measurements of NIH thickness, lumen and stent area. Our
original approach is based on the detection of stent struts unique charac-
teristics: bright reflection and shadow behind. Furthermore, we present
for the first time to our knowledge a rotation correction method applied
across OCT cross-section images for 3D reconstruction and visualiza-
tion of reconstructed lumen and stent boundaries for further analysis in
the longitudinal dimension of the coronary artery. Our experiments over
OCT cross-sections taken from 7 patients presenting varying degrees of
NIH after PCI illustrate a good agreement between the computer method
and expert evaluations: Bland-Altmann analysis revealed a mean differ-
ence for lumen cross-section area of 0.11 ± 0.70mm2 and for the stent
cross-section area of 0.10 ± 1.28mm2.

1 Introduction

Optical Coherence Tomography (OCT) is a recent modality, which measures the
intensity of back-reflected infrared light instead of acoustical waves using an in-
terferometer since the speed of light is much faster than that of sound [1]. OCT
was found useful as an intravascular imaging technique, and compared to IVUS
in several works [2,3]. The biggest advantage of OCT is its high resolution, on the
order of 15 microns spatially, but at the cost of a decreased penetration depth
of 1mm to 2mm. Both in vitro and in vivo studies [2,4] have shown that the
resolution of OCT can differentiate between typical constituents of atheroscle-
rotic plaques, such as lipid, calcium, and fibrous tissue better than IVUS [5],
and can also resolve the thin fibrous cap that is thought to be responsible for
plaque vulnerability[6].
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Although Drug Eluting Stents (DES) suppress NeoIntimal Hyperplasia (NIH)
strongly, in-stent restenosis after DES implantation still occurs [7]. Studies have
shown that nonuniform circumferential stent strut distribution affects local drug
concentration [8]. Number and distribution of the stent struts might also affect
the magnitude of NIH after stent implantation in human coronary arteries [9].
Therefore, tracking of stent position/malapposition and neointimal tissue growth
after stent implantation is clinically important.

To our knowledge, besides studies of stents by IVUS, there are no studies of strut
distribution analysis on intracoronary OCT pullbacks to assist in the assessment
of the degree of restenosis. The objective of this study was three-fold: (i) to explore
the usability and performance of automatic computer methods to help with stent
strut analysis in varying degrees of NIH scenarios; (ii) to compare the computer
analysis with expert analysis to correlate the results in OCT images; (iii) to carry
the 2D OCT pullback analysis to longitudinal dimension in 3D.

2 Method

OCT Imaging Protocol. Automated pullbacks at 1 mm/s were conventionally
performed using a M2 OCT Imaging System (LightLab Imaging, Inc., Westford,
MA, USA) running at a frame rate of 15.6/sec and a dedicated fibre-optic imag-
ing wire (ImageWireTM, LightLab Imaging Inc., Westford, MA, USA). Tempo-
rary blood clearance was obtained with a proximal occlusion balloon inflated to
between 0.5-0.7 atm, while simultaneously flushing physiological saline through
the distal lumen of the balloon catheter at a rate of 0.5ml/s. Images have an
axial resolution of about 15 microns. In vivo OCT pullbacks were recorded as
rectangular images of 200x752 pixels (200 angles with 752 samples each on each
ray). These rectangular images were processed by our method and displayed
after scan-conversion in a standard viewing format.

Study Population. Seven pullbacks performed in previously stented coronary
segments of seven patients presenting varying degrees of NIH were the test cases
of our automated methods.

2.1 OCT Pullback Image Analysis

Our approach consists of four different main parts: (i) preprocessing OCT cross-
section images; (ii) initializing and propagating a spline inside the lumen region;
(iii) detection of struts and reconstruction of the stent boundary; (iv) registration
between consecutive OCT images for 3D reconstruction, and measurements for
assessment of in-stent restenosis.

Preprocessing. It can be observed in a typical OCT image that brighter pixel
groups represent vessel wall, plaque, and stent struts (Fig. 1). To enhance the
desired information in the image, a 50 percentile of the histogram is selected as
a threshold, and the image is thresholded followed by a median and a Gaussian
filter to enhance and smooth the regions with struts and their shadows around
the lumen (Fig 1-b and c).
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Fig. 1. (a) OCT display image; (b) Thresholded image; (c) Denoised image

(a) (b) (c)

Fig. 2. (a)Ray shooting in prefiltered image; (b) Initial spline on ray intersection points;
(c) Spline evolution and segmented lumen region

Lumen Segmentation. We developed a new and problem specific method for
segmentation of the lumen region on an OCT cross-section image and creation
of a band or a region of interest (ROI) in the arterial wall behind the lumen
boundary, which facilitates stent strut detection. Particularly, strut shadows in
this ROI are essential clues utilized in our algorithm. To segment the lumen
region, we utilized a Catmull-Rom spline, which has four polynomial blending
functions and whose control points are exactly on the spline contour. The inter-
action and initialization of this cubic hermite spline are practically well-suited to
our problem for correction of the lumen contour and stent splines, if necessary.

Spline Initialization and Propagation. For detection of the ROI, i.e. the
inner and outer boundaries of the observable bright band in the OCT image,
we utilize two splines, and initialize the spline control points by shooting rays
on the rectangular domain“denoised image” from the center coordinates of the
display image to every angle, and analyzing the thickness of the ROI region in
the arterial wall (Fig. 2-a). Two Catmull-Rom splines are constructed to separate
strut and shadow zone of image. The control points are initialized at the inner
side of the ROI (Fig. 2-b), and the spline propagates towards the lumen border
and stops on the desired boundaries via an edge-based active contour framework
as exemplified in Fig. 2-c.
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Fig. 3. (a) The ROIwith start and end points for energy calculations; (b)Detected struts;
Examples of strut detection, lumen and stent boundary reconstruction in 3 different sce-
narios: (c) NIH absent; (d) minimum amount of NIH; (e) moderate amount of NIH

Shadow and Strut Detection. One important observation is that the OCT
cross-section images which contain stent struts, generally include shadows be-
hind the struts. Analyzing the angular intensity energy distribution in the ROI
provides clues to these shadows. To build such an energy map, rays from the im-
age center are extended and the intersection points of these rays and the splines
are computed. Interpolation of these two intersection coordinates (Fig. 3-a) and
summation of corresponding image intensity values define the energy on a ray.
Energy distribution over all the rays are analyzed: falling and rising of energy
on these rays indicates the presence and absence of strut shadows. A second
analysis over the detected shadow rays is carried out between the two splines to
detect the exact strut positions over the original image. A strut on a shadow ray
is the maximum bright intensity pixel group and mostly negative deep gradient
vectors follow such a group (Fig. 3-b). The stent boundary is reconstructed by
fitting another Catmull-Rom spline to the detected struts.

For different NIH scenarios, we designed two modes of our system: (i) the
new stent implants and minimum NIH cases; (ii) mild to severe NIH cases. The
shadow and strut detection then differs w.r.t. the interpolation of the angular
energy calculation: either starts from first spline to the middle range of the ROI,
or from the middle of the ROI towards the outer field, respectively. Thus the
search range varies and the strut detection threshold parameters are heuristically
determined and fixed for both modes (mode 1: 30% energy fall, 45% energy rise;
mode 2: 45% energy fall, 35% energy rise) for all the experiments. A simple
mode picking operation changes these parameters in the application. Examples
are shown in Fig. 3 for strut detection, lumen and stent boundary reconstruction
in three different scenarios: (c) virtually no NIH; (d) minimum amount of NIH;
(e) moderate amount of NIH.

Calibration. Calibration of the OCT images was based on the known physical
dimension of the imaging sheath (0.0019”) inside which the fibre-optic rotates
and that is visualized as a small circle in the middle of the display image and as
a line on the rectangular image.

2.2 3D Reconstruction in the Longitudinal Dimension

During a pullback, as the catheter moves inside the arteries in-vivo, it inevitably
translates and rotates and causes a misalignment between the two recorded
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Fig. 4. Rotation estimation: Middle column: source image; Right top: reference image;
Right bottom: rotated source image with the estimated rotation=-5.21 degrees; Left:
fitted plane to phase ρ

consecutive cross-section images. Moreover, the catheter may go back and forth
as the heart dilates and compresses. The result is a pulsatile and jagged lon-
gitudinal geometry of the vessel wall (see Fig 6-a). For an accurate 3D vessel
geometry and longitudinal analysis, these catheter effects should be corrected.
We address two of the cross-sectional catheter motion. The first is the transla-
tion of the catheter in the lumen due to varying vessel curvature. We account for
this by aligning the OCT cross-section images w.r.t. their lumen border center
of mass.

To address the rotation of the catheter during pullback, we estimated rotation
between subsequent frames via a spectral correlation analysis method inspired
by [10], where the translation on a rectangular image, which corresponds to a
rotation on the display image, is calculated as follows: Let I be the rectangular
image and It is the translated version of I with a 2D translation t = (t1, t2).
The ratio between the Fourier transforms of the image I and It: k(w1, w2) =
F (It)/F (I).e−j<w ,t>, can be used to extract the phase: ρ(w ) = 〈w , t 〉 = w1 ∗
t1 +w2 ∗ t2, where w = (w1, w2) denotes the 2D frequency vector. The idea then
is to estimate the amount of shift using the phase defined over the 2D frequency
space by fitting a plane to the ρ function: Aw1+Bw2+Cρ = D. Here a translation
between the two images in either the horizontal or the vertical direction can
be detected over the plane aligned with one of the frequency axis w1 or w2.
Practically, a least-squares estimator is used via a singular value decomposition.
In the OCT rectangular images, the calculated slope B of the plane represents
the estimated rotation value in radians (whereas D=0). In Fig. 4 an example is
shown for rotation estimation between two subsequent OCT frames.

After the 2D registration, we reconstruct the 3D geometry of the stent and
lumen borders by building triangular meshes over the stack of 2D rotated splines.
On top of these, we render the stent struts approximated by a thin ellipsoid
geometry. Our future goal here is to obtain 3D models of stent meshes, however,
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for the current work, we accounted for the lack of a mesh model by a filtering to
eliminate struts that violate certain distance conditions away from the neighbor
strut on adjacent frames. A transparent stent tube model is deformed to fit
detected struts as will be depicted in the Results.

3 Results and Discussions

3.1 Assessment of Strut Distribution

39 OCT cross-sections from 7 pullbacks of 7 patients presenting varying degrees
of NIH are selected. Manual strut detection is carried out by the expert in
two ways: (i) via manual tracing using the reviewing software provided by the
OCT manufacturer (LightLab Imaging, MA, USA), called as LL software here
and taken as the gold standard; (ii) using our system with correction over the
automatic results (the extracted splines can be corrected, stent struts can be
added, removed or marked), abbreviated as the SF (Stent Follow-up) system.
The two manual analysis (LL and SF) are compared with the automatic detection
(ASF: Automatic Stent Follow-up) over this image set.

Figure 5 depicts a diagram for the measurements carried out in our
experiments for the strut assessment. First, we count the total number
of detected struts in each cross-section image. The percentage of correctly
detected struts is set to 1 − normalized error, where the normalized er-
ror = |#struts marked by the physician−#struts detected by our algorithm| /
|#struts marked by the physician|. Another parameter measured is the maxi-
mum angle between adjacent stent struts. As reported by Takebayashi et al. [9],
this measurement correlates with the NIH thickness in IVUS-based studies. NIH
thickness was also evaluated looking at the lumen cross-sectional area (L-CSA),
the stent cross-sectional area (S-CSA), minimum, maximum, and average dis-
tance between the lumen boundary and the stent. Finally, stent eccentricity was
calculated as the minimum divided by the maximum stent diameter.

Table 1 presents measurements of the lumen and the stent CSAs, and the num-
ber of stent struts with a comparison between the automatic detection (ASF),
the expert’s adjustment of the automatic results (SF), and the expert’s manual
measurements using the LightLab software (LL). Table 2 presents the rest of
the measurements: the maximum inter-strut angle, the minimum, average, and
maximum distances between the stent and the lumen borders, and the stent
eccentricity, which were not available from the LL software.

Very good agreements were found between the computer methods and the
expert evaluations for lumen CSA (mean difference following Bland-Altmann
=0.11± 0.70mm2; r2 = 0.98, p < 0.0001) and the stent CSA (mean difference=
0.10± 1.28mm2; r2 = 0.85, p < 0.0001). The average number of detected struts
was 10.4 ± 2.9 per cross-section when the expert identified 10.5 ± 2.8 (r2 =
0.78, p < 0.0001), with an overall accuracy in strut detection of 91 ± 11%. For
the given patient dataset: lumen CSA was on the average 6.05±1.87mm2, stent
CSA was 6.26 ± 1.63mm2, maximum angle between struts was on the average
85.96±54.23o, maximum, average, and minimum distance between the stent and
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Fig. 5. Schematic of struts and related measurements calculated for stent follow-up
analysis, adapted from [9]. Maximum interstrut angle, LA (lumen cross-sectional area:
L-CSA), IH (=Stent CSA - L-CSA), distances between the lumen and the stent contours
(here c is depicted: the maximum distance=thickness of the NIH).

Table 1. Strut assessment measurements compared among the expert manual detec-
tion with two different systems and the automatic detection. Values are mean ± std.
ASF: Autodetection, SF: Expert manual adjustment, LL: Expert manual measurement.

ASF SF LL

Lumen CSA, mm2 5.78±1.76 6.09±1.85 6.05±1.87
Stent CSA, mm2 6.59±1.91 6.33±1.66 6.26±1.63
Stent struts, n normalized to (0,1) 0.91±0.11 1.00±0.00 1.00±0.00

Table 2. Other strut assessment measurements compared between the expert manual
detection and the automatic detection with our system. Values are mean ± std.

ASF SF

Max angle btw stent struts, ◦ 75.09±26.63 85.96±54.23
Max distance btw stent and lumen border, mm 0.31±0.15 0.18±0.13
Avg distance btw stent and lumen border, mm 0.14±0.07 0.08±0.06
Min distance btw stent and lumen border, mm 0.02±0.04 0.01±0.02
Stent eccentricity 0.75±0.11 0.80±0.08

the lumen were 0.18±0.13mm, 0.08±0.06mm, and 0.01±0.02mm, respectively,
and stent eccentricity was 0.80± 0.08.

Due to possible hindering of shadows by severe NIH, strut detection and
stent boundary reconstruction becomes more challenging and more prone to
errors than that of the lumen. This difficulty caused a lower match between
the automatic and manual computations based on the stent boundary such as
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Fig. 6. Longitudinal cut view: (a) original; (b) center and rotation aligned pullback

Fig. 7. Examples of 3D Reconstruction of the lumen boundary (red surface), the stent
boundary (yellow surface depicted on the left) and the stent struts represented as gray
ellipsoids. Green transparent mesh on the right represents the vessel wall.

the maximum distance calculation between the stent and the lumen border as
observed in Table 2. Our work is ongoing for further improvements on such
struts, which were missed with the shadow detection.

3.2 3D Reconstruction

The performance of the 2D OCT registration method (Sec 2.2) is validated on syn-
thetic images: a binary ellipse image is generated and rotated with a known value
to generate a second ellipse image, then the spectral correlation method is used
to estimate the amount of rotation. The results were ≈ 98.5% accurate for up to
rotations of 0.8 radians. The proposed method has been applied to OCT pullbacks



784 S. Gurmeric et al.

to account for catheter cross-sectional motion. Fig. 6 depicts a longitudinal view
from the original pullback (a), the center and rotation aligned pullback (b), where
the reduced jaggedness in the lumen boundaries can be observed.

Next, a 3D visualization is shown in Fig. 7 for the reconstructed lumen surface,
and stent struts as a surface rendering. The mesh pattern of the stent is visible
and presents a possibility of examining the 3D position of the stent w.r.t. the
lumen boundary. We are currently working on including a 3D mesh model of the
original stent for 3D stent analysis.

4 Conclusions

We presented a new spline-based segmentation for both the lumen and the stent
boundaries, and an energy map based automatic stent strut detection algorithm
in OCT pullbacks, to assist in the problem of strut distribution assessment. Our
experimental results demonstrated that our algorithm works reasonably well on
the segmentation of target boundaries in OCT images, and detected stent struts
and their trailing shadows. A strut distribution analysis was carried out and
a number of measures important for stent implant follow-up and monitoring
of the neointimal tissue growth over struts were calculated. An extension to
a 3D/longitudinal analysis is also illustrated. Part of our ongoing and future
studies include extension of the spline segmentation to 3D, and using previously
constructed models of stent meshes.

The conclusion from our study is that our new methods appear to offer a
robust and reliable automated analysis of OCT pullbacks of coronary stented
segments that might assist physicians in evaluating in-stent restenosis after PCI
and study the vascular response of new stents and eluted drugs. A large-scale
evaluation of OCT pullback stent analysis will be necessary to further corre-
late the degree of NIH and circumferential stent strut distribution, as suggested
previously by IVUS [9].
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Abstract. We study the problem of classifying mild Alzheimer’s disease (AD)
subjects from healthy individuals (controls) using multi-modal image data, to fa-
cilitate early identification of AD related pathologies. Several recent papers have
demonstrated that such classification is possible with MR or PET images, using
machine learning methods such as SVM and boosting. These algorithms learn the
classifier using one type of image data. However, AD is not well characterized by
one imaging modality alone, and analysis is typically performed using several
image types – each measuring a different type of structural/functional character-
istic. This paper explores the AD classification problem using multiple modali-
ties simultaneously. The difficulty here is to assess the relevance of each modality
(which cannot be assumed a priori), as well as to optimize the classifier. To tackle
this problem, we utilize and adapt a recently developed idea called Multi-Kernel
learning (MKL). Briefly, each imaging modality spawns one (or more kernels)
and we simultaneously solve for the kernel weights and a maximum margin clas-
sifier. To make the model robust, we propose strategies to suppress the influence
of a small subset of outliers on the classifier – this yields an alternative mini-
mization based algorithm for robust MKL. We present promising multi-modal
classification experiments on a large dataset of images from the ADNI project.

1 Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder affecting over 5 million peo-
ple in the United States, and is a leading cause of dementia worldwide. An emphasis
in recent AD research, especially in the context of early diagnosis, has been placed on
identifying markers of the disease (such as structural/functional changes in brain re-
gions) using imaging data (e.g., MR, FDG-PET). Large scale studies such as the ADNI
project [1] are collecting imaging data and associated clinical biomarkers in an effort
to facilitate the development and evaluation of new approaches, and the identification
of new imaging biomarkers. These advances are expected to yield important insights
into the progression patterns of AD. One aspect of the ADNI project in particular is
the acquisition and analysis of multi-modal imaging data: this includes Magnetic Res-
onance (MR), 18fluorodeoxyglucose-Positron Emission Tomography (FDG-PET), and
Pittsburgh Compound B (PIB) PET image scans of the participants. The rationale is that
because different modalities reveal different aspects of the underlying neuropathology,
information from one modality adds to the diagnosis based on the other. For exam-
ple, a patient may show only slight hippocampal atrophy in the MR images, but the
FDG-PET image may reveal increased hypometabolism in medial-temporal and pari-
etal regions (which is more suggestive of AD). Our objective here is to design machine
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learning algorithms which are (by design) cognizant of such multimodal imaging data,
and “learn” the patterns differentiating controls from AD or MCI subjects using multi-
ple modalities simultaneously: for predicting cognitive decline, or for identifying early
symptoms of AD pathology.

The analysis of imaging data, in AD and aging research, has traditionally been ap-
proached by manual indication of brain regions suspected to be related to AD neurode-
generation, and performing statistical analysis to determine if group means (in those
regions) are different [2]. Another approach is to automatically identify the discrim-
inative regions using Voxel-based Morphometry (VBM) [3]. However, the diagnostic
potential of group analysis is somewhat limited, usually by the degree of overlap in
the group distributions. Therefore, a significant emphasis is being placed on determin-
ing and exploiting the predictive value of imaging-based biomarkers for diagnosis at
the level of individual subjects. In this direction, a number of groups are exploring the
applicability of machine learning ideas to this important problem. For instance, in [4],
Support Vector Machines (SVM) were used to perform classification of structural MR
scans after nominal feature selection. This procedure gave good classification accuracy
on the Baltimore Longitudinal data set (BLSA). Recently [5] also used linear SVMs to
classify AD cases from other types of dementia using whole brain MR images. High
accuracy was obtained on confirmed AD patients and slightly less where post-mortem
diagnosis was unavailable. Vemuri et al. showed promising evaluations on another data
set, obtaining 88-90% accuracy [6], (also using linear SVMs). The authors of [7] pro-
posed an augmented form of Linear Program Boosting (LP Boosting) which takes into
account spatial characteristics of medical images, also reporting good accuracy on the
ADNI data set. Observe that all of these methods have specifically focused on using a
single imaging modality (e.g., MR or PET) for classification. One way to adapt such
algorithms to make use of multiple imaging modalities (or additional clinical/cognitive
data) is to “concatenate” the set of images for each subject into one feature vector. Not
only does this increase the dimensionality of the distribution significantly, but it also
requires finding a suitable “normalization” of each modality (to preserve its informa-
tion content). Otherwise, features derived from one image type may easily overwhelm
features from the other.

Contributions. The key contributions of this paper are (A) We propose an efficient
multi-modal learning framework for AD classification based on multi-kernel learning
(MKL). We cast the data from each imaging modality as one (or more) kernels, and
solve for the support vectors (to maximize the margin) and the relative weights (impor-
tance) of each kernel; (B) To account for outliers (possibly misdiagnosed cases), the
algorithm also incorporates a robustness parameter to identify such examples, and dis-
count their effect on the classifier. This is tackled via alternative minimization; (C) We
report the first set of multi-modal experimental results using robust-MKL learning on
the ADNI dataset.

2 Preliminaries

We briefly review the underlying model for Support Vector Machines, before discussing
the MKL setting and our construction. The SVM framework relies on the assumption
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that the concept (or classifier) we seek to learn (between two classes of examples) is well
separated by a gap or margin in a certain feature space, and the algorithm can minimize
the test error of a decision boundary by maximizing the width of the margin in the set
of training examples provided. The decision boundary or separating hyper-plane, is
parameterized by a weight vector w and offset (or bias) b. The classifier decides the
possible class label for an unlabeled example x by calculating the inner product 〈w,x〉,
and evaluating whether it is greater or less than b. SVMs operate on the principle that we
must not only place examples on the correct side of the decision hyper-plane, but each
example must also be far from the hyper-plane. In this case, the width of the margin
is proportional to 1

||w||2 , see [8]. When choosing among two (or more) such decision
boundaries (where both correctly classify all training data), the one with a smaller �2-
norm maximizes the margin and yields better accuracy. The SVM primal problem and
corresponding dual problem are given as:

(primal)

min
w,ξ

||w||
2

+ C
∑

i

ξi (1)

s.t. yiw
T xi + ξi ≥ 1 ∀i

ξi ≥ 0 ∀i

(dual)

max
α

∑
i

αi −
∑
i,j

αiαjyiyj xT
i xj︸ ︷︷ ︸

kernel

(2)

s.t. 0 ≤ αi ≤ C ∀i∑
i

yiαi = 0 ∀i

2.1 Multi-kernel Learning

We first introduce Multi-kernel learning (MKL) [9], and then explain why it serves
as a good basic formalization for our problem. In the next section, we will outline
the main extensions. To motivate MKL, notice that in the dual of the SVM model (2),
the dot product is replaced with a kernel function which expresses similarity among the
the different data examples. This substitution offers a number of advantages, see [8].
Nonetheless, choosing the right kernel matrix for a given problem may not be straight-
forward, and typically requires adjustments. An attractive alternative is to represent
each subset of features (e.g., each imaging modality) using its own kernel matrix and
then seek an optimal combination of these kernels to form a single kernel matrix – one
with the desirable properties of a good kernel (e.g., separable, maximizes the margin)
for the complete data (i.e., all modalities). The process of choosing a set of coefficients,
or sub-kernel weights, which are used to combine the candidate kernels into a single
one, K̂ while simultaneously optimizing the expected test error is called Multi-Kernel
Learning (MKL). The problem is formulated as follows.

min
wk,ξ,β,b

(∑
k

βk||wk||2
)2

+ C
N∑
i

ξi (3)

subject to yi

(∑
k

βkwk
T φk(xi) + b

)
+ ξ1 ≥ 1 ∀i

∑
k

βk = 1

Here, the coefficients βk are the sub-kernel weights. Notice that the squared �1-norm
penalty on the individual sub-kernel weights combined with the �2-norm penalty on the
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weights in each individual view leads to sparsity among different kernels, but not among
weights in each individual view [9]. In our AD classification problem, we use the set
of images from each imaging modality to spawn a set of kernels. In other words, the
distribution of the MR images of the set of subjects may give one (or a set of kernels).
The same process is repeated for other types of images as well as any other form of de-
mographic, clinical, or cognitive data available. The optimization problem then reduces
to finding their weights (importance) while simultaneously maximizing the margin for
the training data. The K̂ hence calculated is the combination of all available kernels.

3 Algorithm

3.1 Outlier Ablation

In addition to finding the optimal combination of kernels, we must also identify and
suppress the influence of one or more mislabeled subjects (examples) on the classi-
fier. This is important in the AD classification problem because of: (1) Co-morbidity:
In some cases, AD is coincident with other neurodegenerative diseases such as Lewy
bodies; (2) While the image data may suggest signs of pathology characteristic of AD,
these usually precede cognitive decline. As a result, the subject may be cognitively nor-
mal (and labeled as control). To ensure that the algorithm is robust for this problem and
other applications, we would like to identify such outliers within the model. In order to
do this, one option within the SVM setting is to replace the regular loss function with
the “robust” hinge loss function which differs only in that the “penalty” is capped at 1.

robust-hinge(w, x, y) = min(1, (1−ywT x)+), where yi ∈ {+1,−1} are the class labels. (4)

This means that once an example falls on the wrong side of the classifier there is no
additional increase in penalty. To address the non-convexity of (4) the authors in [10]
replaced the usual hinge loss function with the η−hinge loss function, which uses a
discount variable ηi for each example. That is,

η-hinge(w, x, y) = η(1 − ywT x)+ + (1 − η), 0 ≤ η ≤ 1 (5)

The result in [10] shows that η-hinge loss has the same optimum and value as robust-
hinge loss. Our proposed model makes use of such a parameter to serve as both an
outlier indicator and also to adjust the influence of this example on the classifier in the
MKL setting. We present our optimization model next.

min
η

min
w,ξi,ηi,k

∑
k ||wk||2 + C

∑
i ξi −D

∑
i,k ηi,k (6)

s.t. yi(
∑

k ηi,kwk
Tφk(x)) + ξi ≥ 1 ∀i

0 ≤ ηi,k ≤ 1 ∀i, k, ξi ≥ 0 ∀i,

Here, wk is the set of weights for the kernel k, ξi is the slack for example i (similar to
SVMs), and ηi,k is the discount on example i’s influence on training classification in
view k (described in detail below).

Justification. Notice that η introduces a discount for every example’s influence on the
classifier in each kernel. This is balanced by the positive reward for making η as large as
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possible. Therefore, an example which is badly characterized in some kernels can still
be used effectively in other kernels where it is more accurately characterized. In this
way, the proposed model performs automated outlier suppression in the MKL setting.

3.2 Alternative Minimization

We note that while (6) accurately expresses our problem, efficiently optimizing the ob-
jective function is rather difficult. To address this problem, we “relax” this formulation
by treating the discount coefficients η fixed at each iteration. The value is iteratively
updated according to the following expression.

ηi,k =

(
yi

∑
j αjyjKk(xi, xj)

)
−∣∣∣∑i′,j′ (yi′αj′yj′Kk(xi′ , xj′))−

∣∣∣ + 1 (7)

Here, the denominator represents a normalization over all examples within a single ker-
nel. This is necessary because different kernels have different variances, which must be
accounted for (since we are combining kernels). Subsequent to setting the η variables,
(6) can be solved to optimality, and η is again updated in the next iteration.

4 Experimental Results

In this section, we evaluate our multi-modal learning framework on image scans from
the ADNI dataset. The Alzheimer’s disease neuroimaging initiative (ADNI) [1] is a
landmark research study sponsored by the National Institutes of Health, to determine
whether brain imaging can help predict onset and monitor progression of Alzheimer’s
disease. The study is ongoing and will cover a total of 800 patients (200 healthy con-
trols, 400 MCI individuals, and 200 mild AD patients). For our evaluations, we used
MR and PET scans of 159 patients (77 AD, 82 controls) from this dataset. The data
also provides a diagnosis for each subject based on clinical evaluations, this was used
for training the classifier, and for calculating the accuracy of the system.

To evaluate our algorithm, we adopted a two fold approach. First, we measured the
goodness of this approach w.r.t. to outlier detection, especially with respect to its effect
on unseen test examples. In order to do this, we analyzed the variation in the kernel
matrices as a response to outlier identification and suppression. Second, we evaluated
the efficacy of the multi-kernel framework (with outlier detection) as a classification
system, w.r.t. its accuracy using ROC curves. We discuss our experiments next.

4.1 Evaluation of Outlier Detection

Here, we evaluate the usefulness of outlier detection in the classification model. Recall
that an ideal input to any maximum margin classifier is a dataset where each class is
separated from the other by a large margin. Since the MKL setup optimizes a collection
of kernels, it is important to understand how a large margin in a data set translates to
values in a kernel. To demonstrate this effect, we show two toy examples in Fig. 1. The
first distribution is a setting where the classes are well separated (Fig. 1(a)): we see that
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(a) (b) (c) (d)

Fig. 1. Toy Example: (a) Well separated classes, (b) Kernel for well separated classes, (c) Over-
lapping Classes (d) Kernel for overlapping classes

the corresponding kernel matrix in Fig. 1(b) shows two distinct regions with high values
(in green) for the two classes, where as the region pertaining to inter-class similarities
shows no signal (in blue). In the second case (Fig. 1(c)), the classes are overlapping,
which is also reflected in the kernel matrix being noisier as shown in Fig. 1(d).

A similar effect can be observed in the kernels of our dataset as a response to outlier
detection. Fig. 2 shows how outlier detection improves the signal quality in the kernel
matrices. Fig. 2 (a) and (c) display the uncorrected train and test kernel matrices cre-
ated simply by summing-up the set of individual kernel matrices. Fig. 2 (b) and (d) show
the corresponding outlier-ablated train and test kernels. For visualization, the dataset is
re-ordered with respect to groups before kernel creation, so that the kernel shows con-
tiguous blocks (similar to Fig. 1). In 2 (a), we see vertical and horizontal lines of lighter
color in the interclass region of the kernel, corresponding to outlier subjects who have
a stronger resemblance to the opposite class. This effect is mitigated to a significant
extent with outlier detection in Fig. 2 (b). Next, we analyze the effect of outlier ablation
on unseen test items. For this, the test kernel is constructed with the training examples
as rows and test examples as columns. In the kernel for the uncorrected case in Fig. 2
(c), the vertical lines correspond to unseen outlier subjects, whereas the horizontal lines
are attenuated, indicating that in presence of training data, the non-outlier subjects have
sharper contrast (causing an improved confidence in classification). Finally, the test ker-
nel (after outlier detection) shown in Fig. 2 (d) shows a stronger within-class signal, and
does not attempt to correctly classify the outliers, thereby discounting their effect on the
decision boundary as desired (recall hinge loss from (4)).

4.2 Efficacy of Multi-kernel Framework

ROC curves and accuracy results. First, we evaluate the classification accuracy of our
robust multi-kernel learning framework for single modality classification, using MR and
FDG scans individually as well as both these modalities in a combined setting. We used
a set of eight kernels each (linear and Gaussian with varying values of σ) for MR and
FDG PET: 16 in all. Feature selection was performed using a simple voxel-wise t-test,
and thresholding based on the p-values. We performed 10-fold cross-validation, and re-
port the average of various error measures such as accuracy, sensitivity, and sensitivity
(average over 25 runs). Our results are summarized in Table 3. As expected, we can
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Fig. 2. (a) Sum of base kernel matrices on training examples. (b) Robust-MKL kernel matrix
between training examples. Note that the two classes are clearly visible, and the vertical and
horizontal lines corresponding to outliers are attenuated. (c) Sum of base kernel matrices on test
examples. (d) Robust-MKL kernel matrix between test examples. Notice that while there are ver-
tical lines corresponding to outlier test examples, the horizontal lines remain largely attenuated.

Method Accuracy Sensitivity Specificity AUC
robust-MKL

MR
75.27% 63.06% 81.86% 0.8248

robust-MKL
FDG

79.36% 78.61% 78.94% 0.839

robust-MKL
(multimodal) 81.00% 78.52% 81.76% 0.885

Fig. 3. ROC curves and Accuracy results for the single modal and multimodal classification using
robust MKL

clearly see that the robust multi-modal framework with MR and FDG PET data out-
performs the accuracy obtained using only one imaging modality (even when we use
multiple kernels with each image type). The area under the curve (AUC) for the pro-
posed algorithm is 0.885 suggesting that it is an effective method for AD classification.
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Fig. 4. (Top) Classifier weights for gray-matter probability images shown overlaid on a template.
(Bottom) Classifier weights for FDG-PET images shown overlaid on a template. The images (left)
show the discriminative regions as a mosaic. The images (right) are provided for 3-D localization.

Interpretation of discriminative brain regions. We evaluated the relative importance
of various brain regions selected by the algorithm, and whether these regions are consis-
tent with clinically accepted distributions of AD pathology. The classifier weights cho-
sen by our algorithm are weights on different voxels, and therefore can be interpreted
as distributions of weights on the brain regions. Fig. 4 shows the calculated weights
for Gray Matter Probability (GMP) and FDG-PET images. For GMP, we see the hip-
pocampus and hippocampal gyri are featured prominently, along with middle temporal
regions. For FDG-PET, we see the posterior cingulate cortex and parietal lobules bilat-
erally are featured prominently. We find these results encouraging because the selected
regions are all known to be affected in AD patients [11,12].

5 Conclusions

We have proposed a robust MKL framework for multi-modal AD classification. By
framing each unique modality as one (or more) kernels, the scheme learns the kernel
weights as well as a maximum margin classifier. Our framework also offers robustness
to outliers, with the capability of automatically detecting them and partly discounting
their influence on the decision boundary. Various sophisticated feature selection algo-
rithms can be also be used as in [6] (discriminative image voxels) to further improve
the accuracy of the model. Finally, rather than ad-hoc feature concatenation to make use
of additional clinical and demographic data (if available), our algorithm allows an easy
and intuitive incorporation – simply by constructing another kernel for such features.
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Abstract. We present a novel technique for creating template-free prob-
abilistic maps of the cytoarchitectonic areas using a groupwise registra-
tion. We use the technique to transform 10 human post-mortem structural
MR data sets, together with their corresponding cytoarchitectonic infor-
mation, to a common space. We have targeted the cytoarchitectonically
defined subregions of the primary auditory cortex. Thanks to the template-
free groupwise registration, the created maps are not macroanatomically
biased towards a specific geometry/topology. The advantage of the group-
wise versus pairwise registration in avoiding such anatomical bias is better
revealed in studies with small number of subjects and a high degree of vari-
ability among the individuals such as the post-mortem data. A leave-one-
out cross-validationmethodwasused to compare the sensitivity, specificity
and positive predictive value of the proposed and published maps. We ob-
serve a significant improvement in localization of cytoarchitectonically de-
fined subregions in primary auditory cortex using the proposed maps. The
proposed maps can be tailored to any subject space by registering the sub-
ject image to the average of the groupwise-registered post-mortem images.

1 Introduction

Functional neuroimaging group studies usually involve a “normalization” step, in
which brain image data from every subject are transformed to a common standard
space. Such normalization compensates, at least in part, for the macroanatomical
differences (sulci and gyri patterns) among individual brains within the group,
with the expected consequence that the overlap of functional activation among
subjects will be increased. However, function is determined more by the cyto-,
myelo-, and connectional architecture of the brain [1,2], than by the configura-
tion of gyri and sulci, and these microanatomical characteristics do not necessar-
ily align with macroanatomy [3]. Recent progress in human brain mapping has

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 795–802, 2009.
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Fig. 1. Highlighted regions depicts Te1.0 (blue), Te1.1 (green), and Te1.2 (red) cytoar-
chitectonic subregions of the primary auditory cortex in a post-mortem brain

enabled observer-independent analysis of the cytoarchitecture of the cortex [4].
Integration of this detailed knowledge of microanatomy with functional observa-
tions seems a promising way forward for understanding the principles underlying
functional organization in the brain [5]. A lack of information about intersubject
microanatomical variability has been a major challenge in this endeavor. A com-
mon solution, given that microanatomical details are not easily obtainable from
MR images, is the use of probabilistic maps of cytoarchitectonic data, derived from
a number of post-mortem data sets registered to a standard stereotaxic space. To
create a probability map, the structure of interest is first labeled in a group of in-
dividuals. Then, all the labeled volumes are transformed to a common space and
overlapped to find the union of the labeled regions. Probability maps allow statis-
tical assessment of the location of a particular region in any image that is being
transformed to the spatial frame of the map. Moreover, they provide a way to pre-
dict the position of a functional activation focus and provide a method for analyz-
ing data in an anatomically informed way (i.e., region-of-interest-based analysis).

Maps of the motor and somatosensory cortices, auditory cortex, visual cortex,
Broca’s region and others have already been published [1,6] based on extensive
and painstaking analysis of 10 post-mortem human brains (Juelich/Dusseldorf
data sets). A list of available maps is given in [7]. In primary auditory cor-
tex, Morosan and colleagues [8] developed maps of three subregions: Te1.0,
Te1.1, and Te1.2, which all overlap with the anteriormost gyrus of Heschl (HG).
Figure 1 shows the cross-sectional views for a post-mortem brain with the cor-
responding cytoarchitectonic labels of the three subregions. Morosan utilized an
affine registration to transform the cytoarchitectonic labels to MNI space; how-
ever, due to intersubject anatomical variability of HG among the brains, the gen-
erated probability maps are diffuse, with large overlaps between maps of adjacent
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regions. Recently, Bailey et al. [9] proposed deformable registration of these three
cytoarchitectonic data sets in order to create maps tailored to particular individ-
uals. In that method, the cytoarchitectonic subregions are locally warped to the
gyrus of Heschl in the subject brain. However, this technique requires manual
segmentation of HG in the subject image which is time consuming, subjective,
and requires anatomical expertise. Furthermore, entirely new probability maps
must be generated for each new brain image. The method proposed here is com-
pletely automatic, and the probability map created can then be warped to the
space of any other brain image.

In this work, we present a new approach for creating cytoarchitectonic prob-
abilistic maps for microanatomical subregions that can also be customized for a
specific subject space. The proposed technique utilizes a groupwise deformable
registration [10] to warp the 10 post-mortem brains as well as the corresponding
cytoarchitectonic information to a common space (i.e., group space). The group-
wise registration has the advantage of avoiding the anatomical bias introduced by
choosing a specific template in typical pairwise registration frameworks.The effect
of the template bias in the resulting probability maps becomes even more dramatic
when using a small group of subjects (such as the post-mortem brains) as the re-
sulting maps necessarily give high probabilities where the anatomy is similar to the
template and low probabilities elsewhere. On the other hand, in a groupwise regis-
tration, every brain in the study is given equal probability of presence in the final
map. The constructed probability maps using the proposed method can be further
tailored to the anatomy of an individual subject by using a deformable registration
between the average of the warped post-mortem data and the subject image.

We evaluate and compare the quality of the proposed probability maps using
a leave-one-out (LOO) method [11]. Maps were created based on nine data sets,
and used to ‘diagnose’ the auditory subregion in the excluded data set. True
positive, false positive, false negative, and true negative voxels were measured,
and the sensitivity, specificity and positive predictive value (PPV) of the maps
were calculated. The same measures were calculated between the published maps
and the labeled regions in the post-mortem brains, with the necessary difference
that the published maps (created from all 10 data sets) also comprise the data
that was used to evaluate them. Note that this biases our results away from our
prediction (that the new maps are better). Repeated-measures ANOVAs were
conducted on each of the diagnostic measures. The proposed maps yielded sig-
nificantly higher PPV and specificity compared to the published maps, whereas
the two map types did not differ in sensitivity. Furthermore, the overlap between
probability maps for adjacent subareas was analyzed and compared between the
proposed and published maps. There was significantly less overlap between every
pair of maps created by the proposed method compared to the published maps.

2 Materials and Methods

Figure 2 demonstrates an overview of the proposed approach. As shown in the
figure, the procedure consists of two major parts: (a) creating probabilistic maps
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Fig. 2. Overview of the proposed approach for creating customized cytoarchitectonic
probability maps for primary auditory cortex subregions: Te1.0, Te1.1, and Te1.2

in the group space; and (b) customizing the constructed maps for a specific
subject brain. Both input data and the created outputs are in MNI space.

The 10 post-mortem human brains used in this study are from previously
published work [6]: serial coronal brain sections stained for cell bodies were
quantitatively analyzed. An observer-independent method was used to determine
the areal border for each subregion. Results were digitized and mapped onto
high-resolution structural MR images of the same post-mortem brains, creating
three-dimensional labeled volumes of cytoarchitectonic regions. These areas are
called Te1.0, Te1.1, and Te1.2, and all overlap somewhat with Heschl’s gyrus.
The post-mortem data was intensity-bias corrected using BrainSuite2 software1

to achieve intensity matching among the regions with similar tissue type.

2.1 Cytoarchitectonic Probabilistic Map in Group Space

The post-mortem MR images were concurrently registered to a common space
using implicit reference-based group (IRG) registration [10]. IRG is a recently
developed groupwise registration technique that jointly estimates transformation
from each image in the group to a “hidden” reference by optimizing the intensity
difference of each pair of the deformed images. The intensity-bias correction
step applied to the post-mortem data guarantees intensity matching between
corresponding voxels of all images within the group. The cost function includes
a similarity cost and a regularization constraint, defined as:

C = Csimilarity + Creg (1)

where
Csimilarity =

∑
i,j

∫
‖(Ii(hiR(x))− Ij(hjR(x)))‖2dx (2)

1 BrainSuite2: http://brainsuite.usc.edu/
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Ii represents the ith image in the group and hiR(x) is the transformation from
image Ii to the implicit reference. Creg is a small deformation linear-elastic con-
straint [12] to penalize transformations with large and unsmooth distortion. The
transformed images converge to the implicit reference during the IRG registra-
tion eliminating the bias associated with selecting a specific reference image.
The algorithm assumes a small deformation linear elastic model and uses the
Fourier series to parameterize the deformation field. A spatial and frequency
multi-resolution procedure is used to estimate the full resolution transforma-
tions to avoid local minima. Next, the resulting deformation fields are used to
transform the corresponding cytoarchitectural labels to the same group space.
A probability map was constructed by averaging the 10 warped subregions.

In order to customize the generated probability maps for a specific subject,
one can use a deformable registration such as the normalization tool provided in
SPM2 to transform the subject to the space of the average post-mortem brain or
vice versa. When conducting a group study, it is recommended that the group
average image be registered to the groupwise averaged post-mortem image.

2.2 Evaluation Framework

Leave-One-Out Cross-Validation. The constructed probability maps as well
as the post-mortem data were transformed to MNI space using the SPM soft-
ware for validation. The quality of the proposed probability maps was evaluated
using a leave-one-out method at two different thresholds: 20%, and 60% (for the
published maps) and 22.2% and 66.67% (for the proposed maps). All combina-
tions of nine out of 10 (10 cases) were used to create probability maps for three
subregions of Te1.0, Te1.1, and Te1.2 using the proposed method. The created
maps were then used to ‘diagnose’ each subregion in the excluded brain, and
true positive (TP), false positive (FP), true negative (TN) and false negative
(FN) voxels were calculated. Labeled voxels from the excluded brain that were
correctly identified by the probability map are TP voxels. Labeled voxels that
were not identified in the excluded brain are FN, and unlabeled voxels that were
incorrectly classified as the target subregion by the probability map are FP. Fi-
nally, unlabeled voxels that are correctly identified by the probability map are
TN. We measure the quality of the maps based on sensitivity (Sn), specificity
(Sp) and positive predictive value (PPV):

Sn =
TP

TP + FN
, Sp =

TN

TN + FP
, PPV =

TP

TP + FP
(3)

The published maps were also used to evaluate the same post-mortem data;
however, the published maps were evaluated on the same data that was used to
constitute the maps. MANOVAs were used to identify significant differences on
these measures between the two types of maps.

Between-Map Overlap. Any single voxel can only belong to one subregion.
To the extent that voxels are shared between two adjacent Te1 maps and are
2 Statistical Parametric Mapping: Wellcome Department of Cognitive Neurology, UK.
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Fig. 3. Comparing cytoarchitectonic probability maps generated using the proposed
method and the previously published maps [8], superimposed on Colin27 brain

assigned high probabilities by both maps, the maps do not segregate the re-
gions well. We evaluate the two methods for such between-map overlap (i.e.,
Te1.0/Te1.1, Te1.0/Te1.2, and Te1.1/Te1.2).

3 Results and Discussion

Figure 3 gives cross-sectional views of both the proposed and previously published
probability maps for Te1.0, Te1.1, and Te1.2 subregions overlaid on Colin27 [13]
brain image. White and black colors correspond to the highest and the lowest
probabilities, respectively. As can be seen, the proposed probability maps are sig-
nificantly denser in terms of the spatial expansion and more focused on Heschl’s
gyrus. Both proposed and published probability maps are more diffuse in the right
hemisphere than left.

Sensitivity, specificity, and positive predictive values were calculated for both
proposed and published maps. We consider left and right hemispheres sepa-
rately. Four-factor MANOVAs (method: proposed vs. published; subregions of
Te1: Te1.0, Te1.1, and Te1.2; hemisphere: left or right; threshold value: 2 levels)
were conducted on each of the three diagnostic measures followed by post-hoc
pairwise comparisons to identify significant differences. PPV (F(1,9)=113.442,
p < 0.05) and specificity (F(1,9)=298.542, p < 0.05) were significantly higher
for the proposed than the published maps; however, sensitivity did not differ;
see Table 1. Significant difference in PPV despite no significant difference in
sensitivity implies that the proposed maps are more conservative in labeling the
cytoarchitecture in brain compared to published maps.
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Table 1. Mean±std of the sensitivity, specificity and PPV values of the 10 test cases
for both types of maps

Method
Sensitivity Specificity PPV
(mean±std) (mean±std) (mean±std)

proposed 23.8 ± 1.1% 96.8 ± 0.3% 73.4 ± 2.1%
published 24.2 ± 1.4% 84.8 ± 0.6% 30.4 ± 3.6%

Table 2. Total percentage of the overlapping voxels and the critical voxels in every
pair of the overlapping maps given for both methods

Overlapping
Method

Overlap Critical
Maps Percentage Voxels

Te1.0/Te1.1
Proposed 0.1% 0.0%
Published 1.4% 21.0%

Te1.0/Te1.2
Proposed 0.6% 3.0%
Published 1.0% 20.0%

Next, the percentage of the overlap between maps of adjacent subareas was
calculated and compared between the proposed and published maps. All maps
were thresholded at 40%, assuming overlap at lesser probabilities could arise for
voxels on the edges of the maps. We define an overlapping voxel as “critical”
if the probability value for both maps exceeds 50%. As can be observed from
Table 2, there is a higher probability of overlapping voxels in the published
maps exceeding this critical value compared to our proposed maps. Nonadjacent
regions (Te1.1 and Te1.2) did not overlap in either map type.

4 Conclusions

The presented work demonstrates a novel approach for creating template-free
customizable cytoarchitectonic probabilistic maps for Te1 subregions of the hu-
man primary auditory cortex. In anatomical/functional studies of the brain with
a small number of subjects (such as the post-mortem data set), pairwise match-
ing introduces a large bias factor in the registration results due to the high degree
of intersubject morphological variability among the individuals. The template-
free strategy of registration avoids such bias by simultaneous registration of all
brains towards a virtual reference image that is iteratively updated. The pro-
posed method of cytoarchitectonic probability map construction takes advantage
of a novel groupwise registration to transform the labeled post-mortem data into
a common space in a template-free fashion. The presented approach can be ap-
plied to any other area of the brain for which the corresponding cytoarchitectonic
data is available from post-mortem subjects. For the Juelich data set, this in-
cludes motor cortex, somatomotor cortex, visual cortex, Broca’s area and others.
The proposed approach enables accurate and reliable testing of the hypothesis
of architectonic-functional relationships in cognitive neuroscience.
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These probability maps, after the data from a functional neuroimaging (e.g.,
fMRI) subject has been registered to them, can be used to conduct a ROI-based
statistical analysis by using them as weighted filters on the functional data.
Such method of ROI-based functional analysis would allow for more precise and
focused functional differentiation of small, adjacent subregions in the brain.
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Abstract. A novel computer-aided diagnosis system of nuclear cataract
via ranking is firstly proposed in this paper. The grade of nuclear cataract
in a slit-lamp image is predicted based on its neighboring labeled images
in a ranked images list, which is achieved using an optimal ranking func-
tion. A new ranking evaluation measure is proposed for learning the
optimal ranking function via direct optimization. Our system has been
tested by a large dataset composed of 1000 slit-lamp images from 1000
different cases. Both experimental results and comparison with several
state-of-the-art methods indicate the superiority of our system.

1 Introduction

Cataract, the clouding or opacity of normally clear human lens, is the leading
cause of blindness globally. Based on locations of opacity, age-related cataracts
can be categorized into three types: posterior sub-capsular cataract, cortical
cataract and nuclear cataract, among which nuclear cataract (cataract formed
in the nucleus) is the most common type [1]. In clinical diagnosis, a reasonable
grade of nuclear cataract is often assigned by trained ophthalmologists to each
slit-lamp image by comparing its opacity severity with a set of standard photos
[2]. This grading scheme is often subjective (inter-observer agreement is only
around 65% [2]) and time-consuming. Recently, there are research efforts to-
wards automatic diagnosis of nuclear cataract to improve its grading objectivity
and save workload [3], [4]. In [3], intensities on visual axis were used as features
and linear regression was applied to grade nuclear cataract. In [4], more diverse
features and advanced technique (support vector machine (svm) regression) were
adopted. Both systems aim to output a final grade, but they offer little help to
train junior ophthalmologists. One of the most important means to gain skills
in clinics is practice and learning from similar cases.

In this paper, we, computer scientists and clinicians working closely together,
propose a novel computer-aided diagnosis (CAD) system, which firstly regards
nuclear cataract grading as a ranking task. The flowchart of our system is shown
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Fig. 1. Flowchart of our system Fig. 2. Diagram of feature extraction
scheme

in Fig. 1. Given a slit-lamp image to grade, ranking aims to sort the slit-lamp
image together with other slit-lamp images, whose grades are known, to form
a ranked images list according to their nuclear cataract severity measured by
a ranking function. Grade of the slit-lamp image is then predicted using its
neighboring images in the ranked list. In order to achieve an optimal ranking
function for ranking these images, we incorporate the “learning to rank” tech-
nique [5], in which we propose a new ranking evaluation measure that can be
directly optimized for learning ranking functions. This is different from many
other traditional “learning to rank” methods, which adopt various complicated
approaches, such as adaptive boosting [6], [7] or svm [8], to learn ranking func-
tions, based on traditional ranking evaluation measures [9]. Our contribution lies
in three aspects: (1) We firstly propose a novel CAD system that grades nuclear
cataract in slit-lamp images via ranking using local features; (2) We propose a
new ranking evaluation measure, and incorporate “learning to rank” technique
to learn an optimal ranking function via direct optimization based on the new
measure; (3) Our system has been tested by a large dataset composed of 1000
slit-lamp images from 1000 different cases. Experimental results have been com-
pared with ones achieved from several state-of-the-art methods and evaluated
with clinical ground truth.

2 Methodology

2.1 Local Feature Extraction from Slit-Lamp Images

Robust feature extraction is essential for any medical imaging application. Here
we apply a model-based method to detect the anatomical contour of lens, and
then, we extract local discriminative feature from detected regions following
previously published clinical works [2], [10]. The whole process is illustrated
in Fig. 2. The foreground of lens image is segmented by thresholding 20% -
30% brightest pixels in the grey image. Horizontal profile clustering and vertical
profile clustering are employed to estimate lens structure as an ellipse, which
is based on the largest cluster and used as the initialization of detected lens



A CAD System of Nuclear Cataract via Ranking 805

Table 1. Description of feature extracted from each slit-lamp image

Feature Number Description
1 mean intensity inside the lens contour

2 - 4 color information on posterior reflex in HSI color space
5 mean intensity within the central part of lens
6 intensity ratio between anterior lentil and posterior lentil

contour. After that, a modified active shape model (ASM) [11] is employed to
further evolve the contour to better match the lens. Based on the lens structure
detected by ASM, a 6-dimensional local feature vector is selected and extracted
from each slit-lamp image. The specification of feature vector is described in
Table 1.

2.2 Surrogate-NDCG and Ranking Function Learning

In this section, we aim to sort slit-lamp images to form a ranked images list
according to their nuclear cataract severity. We incorporate the “learning to
rank” technique here, to learn an optimal ranking function, which is used to
rank images. In order to learn the function, we propose a new ranking evaluation
measure, named surrogate-NDCG (Normalized Discounted Cumulative Gain),
which can be directly optimized for learning ranking functions.

NDCG is a traditional position-based ranking evaluation measure, which can
handle multiple-level relevance judgements [9]. It was chosen here because nu-
clear cataract grades annotated by ophthalmologists in our application are also
multiple ordinal values. The definition of NDCG is as follows [9]:

NDCG = N−1
n ×DCG = N−1

n

∑
x∈χ

2r(x) − 1
log2(1 + π(x))

(1)

where, x is a slit-lamp image and χ is the set of images to be ranked; r(x) and
π(x) are the grade and position of image x in the ranked images list sorted by
decreasing nuclear cataract severity, respectively; Nn is a normalization term de-
noting the maximum of DCG, which can be achieved when all images are sorted
in a perfect order of decreasing severity. Unfortunately, optimization cannot be
directly applied on NDCG for learning ranking functions, since the measure it-
self is neither continuous nor differentiable in terms of discrete position π(x).
Hence, many traditional state-of-the-art “learning to rank” methods [6], [7], [8]
incorporate complicated techniques for learning ranking functions with indirect
optimization based on NDCG.

To solve the problem, we first approximate position π(x) as follows:

π(x) = 1 +
∑

y =x,y∈χ

1{sxy < 0}, sxy = sx − sy = f(θ, x̂)− f(θ, ŷ) (2)

where, sx is the score of slit-lamp image x computed from ranking function
f(θ, x̂), which is of a linear form (f(θ, x̂) = θx̂) in this work; θ and x̂ are param-
eters of f(θ, x̂) to learn and extracted feature of image x, respectively. 1{sxy < 0}
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is an indictor function, whose value is positive when sxy < 0 and negative oth-
erwise. Hence, when the score of image x is smaller than y’s (sxy = sx−sy < 0),
1{sxy < 0} becomes positive and π(x) becomes larger, which matches the fact
that images with lighter symptom (represented by smaller score sx) should be
ranked in the rear of a ranked images list (larger position π(x)) in a descending
order of nuclear cataract severity.

Furthermore, we overcome the step characteristics of indictor function 1{sxy

< 0} by approximating it via a continuous hyperbolic tangent function. In this
way, we can achieve a new continuous approximated position π̂(x):

π̂(x) = 1 +
∑

y =x,y∈χ

1{sxy < 0} � 1 +
∑

y =x,y∈χ

exp(−2αsxy)− 1
exp(−2αsxy) + 1

(3)

where, α > 0 is a scaling constant. Hence, our new continuous and differentiable
ranking evaluation measure surrogate-NDCG ( ̂NDCG) can be achieved:

̂NDCG = N−1
n

∑
x∈χ

2r(x) − 1
log2(1 + π̂(x))

(4)

Our method to directly optimize ̂NDCG for learning ranking functions is listed
in Table 2. The key step is to compute gradient of ̂NDCG with respect to θ
($ ̂NDCG(θ)) in step 6. After applying the chain rule, the gradient is as follows:

$ ̂NDCG(θ) =
∂ ̂NDCG

∂θ
= N−1

n

∑
x∈χ

∂ 2r(x)−1
log2(1+π̂(x))

∂π̂(x)
· ∂π̂(x)

∂θ

= N−1
n

∑
x∈χ

(
− 2r(x) − 1

(log2(1 + π̂(x)))2
· 1
(1 + π̂(x))ln2

)
·

( ∑
y =x,y∈χ

−4α · exp
(
− 2α

(
f(θ, x̂)− f(θ, ŷ)

))
[
exp

(
− 2α

(
f(θ, x̂)− f(θ, ŷ)

))
+ 1

]2 ·
(∂f(θ, x̂)

∂θ
− ∂f(θ, ŷ)

∂θ

))
(5)

Detailed derivation is omitted here. The formula of step 7 in Table 2 shows
the actual implementation of maximizing NDCG by minimizing the negative of
it. For inputs in Table 2, we also apply a series of n positive scaling constants
{α1, . . . , αn} as candidates of α in Equation 3. Therefore, (n× T ) ranking func-
tions f(θ, x̂) can be learned as outputs from Table 2. In a following validation
step, NDCG value (Equation 1) of each outputted ranking function is calculated
from its ranked images list, which is achieved by applying the specified ranking
function to rank validation images. The one with the highest NDCG value will
be chosen as the optimal ranking function fopt(θ, x̂).

2.3 Automatic Diagnosis of Nuclear Cataract

Using the optimal ranking function fopt(θ, x̂) achieved from section 2.2, a slit-
lamp image x to grade can be sorted together with other slit-lamp images with
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Table 2. Learning ranking functions via direct optimization on ̂NDCG

Inputs 1. m training sets of slit-lamp images x and their grades r(x)
2. Iteration times: T
3. Learning rate: η
4. n scaling constants candidates {α1, . . . , αn}

Algorithm
1. For α ∈ {α1, . . ., αn}
2. Initialize parameters θ of ranking function f(θ, x̂) as θ0

3. For t = 1 to T
4. Set θ = θt−1

5. For i = 1 to m, apply gradient descent approach:
6. Feed (x, r(x)) to Equation 5 for computing � ̂NDCG(θ)
7. Update parameter θ = θ − η · � ̂NDCG(θ)
8. End for 5
9. Set θt = θ
10. End for 3
11. End for 1

Outputs (n × T ) learned ranking functions f(θ, x̂) with (n × T ) learned θ

known grades, to form a ranked images list in the order of nuclear cataract
severity. After that, grade gxi of the slit-lamp image x located at position i in
the ranked images list can be predicted by using both scores computed from
ranking function fopt(θ, x̂) and grades gxi−1 and gxi+1 of its neighboring images
in the ranked images list as follows:

gxi =

⎧⎪⎪⎨
⎪⎪⎩
gxi+1 if gxi+1 = gxi−1

gxi+1 +
sxi

−sxi+1
sxi−1−sxi+1

× (gxi−1 − gxi+1) if gxi−1 > gxi+1

gxi−1 +
sxi−1−sxi

sxi−1−sxi+1
× (gxi+1 − gxi−1) if gxi−1 < gxi+1

(6)

3 Experiments and Discussion

3.1 Data Description

Our CAD system has been tested by a large dataset composed of 1000 slit-
lamp images from 1000 different cases including both normal and pathological
conditions achieved from a population-based study, the Singapore Malay Eye
Study (SiMES) [12]. All images were captured using a Topcon DC-1 digital slit-
lamp camera with FD-21 flash attachment. The slit-lamp images were saved as
24-bit color images with the size of 2048 × 1536 pixels. Clinical ground truth
were provided by ophthalmologists using Wisconsin cataract grading system [2].

3.2 Ranking Experiments and Statistical Analysis

After feature extraction, the 1000 images are divided into 5 subsets for five-
fold cross validation; there are 3 training sets, 1 validation set and 1 test-
ing set respectively. We empirically set m = 30, T = 200, η = 0.01 and
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(a) ranking results by our method (b) ranking results by RankBoost

(c) ranking results by AdaRank (d) ranking results by RankingSVM

Fig. 3. An example of ranking the same 20 slit-lamp images (ranking errors are high-
lighted in red within brackets; the clinical ground truth is 4: 1st-6th images; 3: 7th-11th

images; 2: 12th-19th images; 1: 20th image)

α ∈ {0.1, 0.2, 0.5, 1, 1.5, 2, 2.5, 5, 7, 10} as inputs in Table 2. There are three
state-of-the-art “learning to rank” methods for ranking comparison, including
RankBoost [6], AdaRank [7] and RankingSVM [8]. Related parameters setting
are equivalent to ours. For these three methods, 4 subsets beside the testing
set were used for training as there were no validations included. An example
of ranking the same 20 testing images is shown in Fig. 3. The number below
each image is its clinical ground truth. In this testing set, 4 represents the
severest symptom of nuclear cataract, while 1 is the lightest. It can be seen
that our method achieved the best ranking performance (only 2 ranking errors)
among all methods (RankBoost: 16 errors; AdaRank: 9 errors; RankingSVM: 4
errors).

To evaluate our method quantitatively, we utilized ranking evaluation measure
NDCG (Equation 1), and results are listed in Table 3.2. We can easily see that
RankingSVM and our method achieve better performance than RankBoost and
AdaRank, although comparison between RankingSVM and our method is not
clear. Thus, a statistical test is conducted to further discern which method is
superior from statistical point of view. After performing one-way analysis of
variance (ANOVA), the p-value is nearly 0, which casts serious doubts on the
null hypothesis that RankingSVM and our method share the same NDCG means.
Hence, a series of post-hoc multiple comparison tests are applied and partial
results are listed in Table 3.2. The estimated NDCG mean of our method is
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Table 3. NDCG of all methods on five-fold cross validation test (mean±variance)

Fold Our Method RankBoost AdaRank RankingSVM
1 0.9770±0.0013 0.8068±0.0046 0.9078±0.0028 0.9769±0.0013
2 0.9693±0.0018 0.8077±0.0033 0.9105±0.0026 0.9597±0.0022
3 0.9169±0.0028 0.7421±0.0110 0.8779±0.0081 0.9206±0.0038
4 0.9729±0.0009 0.8075±0.0051 0.9523±0.0011 0.9714±0.0014
5 0.9396±0.0025 0.7536±0.0064 0.9064±0.0049 0.9410±0.0019

Table 4. Multiple comparison test results of our method against other methods

Method I Method II Estimated Mean Diff. (I-II) 95% Confidence Int.
Our Method RankBoost 0.1708 [0.1401, 0.2016]
Our Method AdaRank 0.0454 [0.0147, 0.0762]
Our Method RankingSVM 0.0017 [-0.0291, 0.0325]

0.0017 higher, and a 95% confidence interval is [-0.0291, 0.0325], which shows
that for less than 50% cases (about 44.8% if the confidence interval is uniformly
distributed), RankingSVM performs better. For the majority, ours is superior.

3.3 Nuclear Cataract Grading from Ranking

To evaluate automatic diagnosis performance of our CAD system, we used the
same 1000 slit-lamp images dataset for grading test. Grades in our system are
computed from Equation 6 based on ranking results achieved from section 3.2.
The mean error between predicted grades of our system and ophthalmologists’
clinical ground truth is only 0.541. The grading accuracy measuring grading
errors within one integer grade (clinically important) is 91.4%. Experimental
results show that our CAD system is promising in grading nuclear cataract of
slit-lamp images from a large dataset.

4 Conclusion

A novel computer-aided diagnosis (CAD) system of nuclear cataract via ranking
is firstly proposed in this paper. Grade of a slit-lamp image is predicted using
its neighboring images in a ranked images list, which is achieved using a learned
ranking function via direct optimization based on a new proposed ranking eval-
uation measure. Our system has been tested by a large images dataset composed
of 1000 slit-lamp images from 1000 different cases. Results show that our system
performs better than several state-of-the-art methods. Our system can also be
utilized as a training tool for junior clinicians to learn diagnostic decision from
similar images (neighboring images in the ranked images list), which have al-
ready been diagnosed by senior clinicians. It can be used in research to analyze
difference diagnosis with similar symptoms as well.
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Abstract. Segmentation of the femur and pelvis from 3D data is pre-
requisite of patient specific planning and simulation for hip surgery. Sep-
aration of the femoral head and acetabulum is one of main difficulties in
the diseased hip joint due to deformed shapes and extreme narrowness
of the joint space. In this paper, we develop a hierarchical multi-object
statistical shape model representing joint structure for automated seg-
mentation of the diseased hip from 3D CT images. In order to represent
shape variations as well as pose variations of the femur against the pelvis,
both shape and pose variations are embedded in a combined pelvis and
femur statistical shape model (SSM). Further, the whole combined SSM
is divided into individual pelvis and femur SSMs and a partial combined
SSM only including the acetabulum and proximal femur. The partial
combined SSM maintains the consistency of the two bones by imposing
the constraint that the shapes of the overlapped portions of the individ-
ual and partial combined SSMs are identical. The experimental results
show that segmentation and separation accuracy of the femur and pelvis
was improved using the proposed method compared with independent
use of the pelvis and femur SSMs.

1 Introduction

Segmentation of the femur and pelvis from 3D images is an important pre-
processing of patient specific planning and simulation for hip surgery. Although
healthy hips are relatively easy to be segmented, osteoarthrosis of the hip mainly
caused by congenital hip dysplasia needs to be dealt with for clinical applica-
tion such as preoperative planning for total hip arthroplasty (THA). In the 3D
images of patients with the above described disease, bone deformation and joint
space narrowing are highly severe, and the boundaries of the femur and pelvis
around the joint space are quite difficult to be identified. While 2D X-ray images
are typically used for preoperative planning of THA, 3D analysis is quite useful
to deal with such highly deformed hips. In the current segmentation methods,
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manual interactions are involved to determine the boundaries around the joint
space. Our aim is to automate segmentation of 3D images of deformed hips due
to the disease described above.

Automated segmentation of the pelvic bone from 3D images using a statistical
shape model (SSM) was reported [1]. For the diseased hip, however, segmentation
accuracy is insufficient around the joint space due to lack of boundary informa-
tion. Some previous works embed spatial relationships between multiple adjacent
objects such as the femur and pelvis into SSMs [2][3]. Frangi et al. constructed
a SSM of multiple objects by regarding combined multiple objects as one single
shape [2]. Yang et al. explicitly modeled the relations between adjacent objects
[3]. These methods deal with the relations among whole objects and suitable for
stable segmentation of multiple objects due to high specificity of shape represen-
tation. In case of the hip joint, the pelvis and femur have close relations locally
around the joint space, and thus modeling whole-object relations is inefficient
with respect to accuracy of shape representation. To overcome this issue, Okada
et al. addressed the problem of embedding local spatial relations into SSMs [4].
However, these methods do not deal with intra-patient variability of the spatial
relations such as pose variations in joint motion.

In this paper, we propose a method for embedding pose variations of joint
motion of the diseased hip into multi-object SSMs and its application to auto-
mated segmentation from 3D images. We construct a hierarchical SSM of the
hip, in which Frangi’s method is firstly applied to construct a combined pelvis-
femur SSM of the whole hip, and then Okada’s method is utilized to enforce
the constraint of local spatial relations around the joint space on individual fe-
mur and pelvis SSMs. We aim at stable and accurate segmentation especially
around the joint space by applying a coarse-fine strategy using the hierarchical
hip SSM.

2 Methods

Figure 1 shows coronal views and 3D renderings of CT images of normal and
diseased hips. In the normal hip, which is the non-diseased side of a patient data,
it is observable in the image that the femoral head and acetabulum are separated
by the joint space. In the diseased hip, however, the femoral head is highly
deformed and it is difficult to identify the joint space only using local image
features. In addition, the shape deformation due to osteoarthrosis of the hip
shows a characteristic tendency as the disease progresses. Therefore, anatomical
prior information is essential in order to determine the boundaries appropriately.

Anatomical prior information is typically embedded in a SSM. However, the
pelvis and femur are interrelated in the hip joint and their spatial relations are
changeable under the constraints of the range of motion. Since the pose of the
femur against the pelvis is unknown in CT image, not only their shape variations
but also the pose variations between them need to be incorporated into statistical
modeling. In the following, the detailed methods of the statistical modeling and
its use for segmentation are described.
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(a) (b)

Fig. 1. Coronal views and 3D renderings of CT images of normal and diseased hips. (a)
Coronal views. Left: normal hip. Right: diseased hip. (b) 3D renderings. Left: normal
hip. Middle: mildly diseased hip. Right: severely diseased hip.

2.1 Statistical Modeling of Pose and Shape Variations

We assume that a sufficient number of the surface models of the pelvis and
femur of different patients are available, which are constructed from manually
segmented regions in the training CT datasets and represented in the pelvis and
femur coordinate systems, respectively, defined based on anatomical landmarks.
Further, we assume that inter-patient non-rigid registration is performed among
the surface models [5].

In order to embed the pose variations into SSMs, possible pose variations are
simulationally generated for each patient dataset. Although the hip joint is well-
approximated by a spherical joint if it is healthy, sphere approximation is often
inappropriate for the diseased hip joint as shown in Fig. 1(b). We assume that
the joint space region, which is defined as a region between the acetabular and
femoral boundaries manually traced from CT images, consists of the acetabular
and femoral cartilages. Further, we assume that the thickness distribution of
the femoral cartilage is uniform while the acetabular cartilage is not. The latter
assumption is based on Zoroofi’s observation that the acetabular cartilage is
mainly damaged in the diseased hip, which was obtained through quantitative
MR image analysis [6]. In order to generate possible poses for the diseased case
based on the assumptions, we define the distance map of the joint space on
the acetabular surface as the distribution of the distance from each point on
acetabular surface to the nearest point of the femoral head surface. We regard
the distance map in the pose at the CT image acquisition as the template. To
generate possible poses of the femur against the pelvis, translation tj is estimated
for each of systematically generated arbitrary rotations, Rj, so that the calculated
distance map is as close as possible to that of the template using the following
equation:

tj = argmintC(t; Rj) = argmint

N∑
k=1

{
d(pk, F )− d(pk,RjF + t)

}2 (1)

where d(x, Y ) denotes the distance from point x to surface Y , pk is each point on
the acetabular surface, F is the femoral head surface, and Rj is each generated
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(a) (b) (c)
Fig. 2. Training dataset and two characteristic modes of the constructed combined
pelvis and femur SSM. (a) Generated poses of the femur against the pelvis. (b) First
mode of SSM. (c) Forth mode of SSM.

rotation matrix. The center of gravity of the femoral head is used for the center
of rotation. The femur is rotated along the three axes based on the anatomi-
cal coordinate system (e.g., flexion and extension). C(t; Rj) is minimized using
Levenberg-Marquardt method.

For each patient data, n poses (tj ,Rj) (j = 1, · · · , n) of the femur against
the pelvis are generated. Figure 2(a) shows examples of poses generated from
one patient data. Given m patient data, principal component analysis is applied
for n × m training datasets to construct the combined pelvis and femur SSM
where both the shape and pose variations are embedded. Figure 2(b) shows the
first mode that represents main variations of both femur pose and pelvis shape.
Figure 2(c) shows the fourth mode that mainly represents typical deformation
of osteoarthrosis of the hip caused by hip dysplasia.

2.2 Hierarchical Multi-organ SSM of the Hip Joint

Specificity and generality are often regarded as criteria of shape representation.
The former is related to the ability of representing only a specific category of
shapes while the latter is the ability of representing any shapes in the category.
The combined SSM is considered to be advantageous on specificity compared
with independent pelvis and femur SSMs because it represents only consistent
spatial relations of the acetabular and femoral head shapes while inconsistent
relations can be accepted especially around the joint space by using the inde-
pendent SSMs. On the other hand, the independent SSMs are advantageous on
generality because more shape variations can be represented by independent use
of them.

In order to take the both advantages, a hierarchical multi-organ SSM is con-
structed, which has the combined SSM at the upper level of hierarchy and the
independent SSMs are at the lower level (Fig. 3). In order to embed constraints
for maintaining the consistency into the independent SSMs, a partial combined
SSM of the acetabulum and proximal femur is constructed using the method
described in subsection 2.1 so that pose variations of the acetabulum and proxi-
mal femur are embedded. The partial combined SSM is utilized so as to enforce
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(a) (b) (c)

Fig. 3. Hierarchical division of the hip joint shape for hierarchical statistical shape
model. (a) Upper level. (b) Lower level. (c) Partial combined SSM of the acetabulum
and proximal femur.

the consistency constraint that the shape variations of independent pelvis and
femur SSMs are consistent with those of the partial combined SSM. By enforcing
the consistency constraint, it is expected that specificity only around the joint
space is improved while generality of the independent SSMs for other parts is
still maintained.

Let sp and sf be shape parameter vectors in SSMs of the pelvis and femur,
respectively. Let Sp(sp) and Sf (sf ) be polygon surfaces of the pelvis and femur
SSMs generated by sp and sf , respectively. Let sjs and S′

js(sjs) be the shape
parameter vector and the generated surface of the combined partial SSM, and
let S′

a(sjs) and S′
pf (sjs) be the surfaces, which are included in S′

js(sjs), corre-
sponding to the acetabulum and proximal femur, respectively. Let Sa(sp) and
Spf (sf ) be the surfaces, included in Sp(sp) and Sf (sf ), corresponding to S′

a(sjs)
and S′

pf (sjs), respectively. The consistency constraints are realized by adding
the term Cc(sp, sf , sjs) given by

Cc(sp, sf , sjs) = d (Sa(sp), S′
a(sjs))

2 + d
(
Spf (sf ), S′

pf (sjs)
)2 (2)

to the cost function for segmentation, shape recovery, and so on, where d(S1, S2)
denotes average distance between corresponding nodes in polygon surfaces S1
and S2. Using this term, the femur and pelvis surfaces generated from the inde-
pendent pelvis and femur SSMs are constrained by consistent joint space surfaces
generated using the combined partial acetabulum and proximal femur SSM.

2.3 Coarse-Fine Segmentation Procedure

Using the hierarchical SSM, coarse-fine segmentation is performed. Four anatom-
ical landmark points are manually specified in CT images to determine the pelvis
coordinate system. After this manual specification, fully-automated segmentation
is performed as described below.

Firstly, initialization is performed. The combined SSM is fitted to the bound-
ary edge points of roughly segmented bone regions extracted using simple thresh-
olding of CT images in order to obtain initial parameter setting for subsequent
segmentation processes. Let s be the shape parameter vector of SSM, E be a
set of edge points to be fitted to SSM surface defined by s, and CD(s, E) be a
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cost function defined based on the average distance between the SSM surface
generated with s and edge points E. SSM fitting is performed by obtaining s
which minimizes CD(s, E).

Secondly, segmentation by SSM fitting is performed at the upper level. Edge
detection is performed based on intensity profile analysis along perpendicular
direction at each surface point of previously estimated SSM, and SSM fitting
to the detected edges are repeated for a fixed number of times. And then, the
final result of the upper hierarchical level, that is, fitting result to the combined
pelvis and femur SSM, is inherited to the lower level as its initial conditions.

Finally, segmentation by SSM fitting is performed at the lower level. Simul-
taneous fitting of pelvis and femur SSMs is performed under the consistency
constraint, which is realized by adding the term described in subsection 2.2
(Equation (2)) to the cost function, which is given by

C(sp, sf , sjs) = CD(sp, Ep) + CD(sf , Ef ) + λCc(sp, sf , sjs) (3)

where λ is a weight parameter for the consistency constraint. Similarly to the
previous step, this fitting process is repeated for a fixed number of times.

3 Results

We used 22 CT datasets of female patients of osteoarthrosis of the hip caused
by hip dysplasia. Any CT datasets did not include hip implants. By utilizing the
mirror-transformed contralateral side, 44 hemi-hips were used for construction
of SSMs of the hemi-pelvis and femur. Typically, one side was non-diseased,
that is, normal, or mildly diseased compared with the other side. Therefore, the
datasets included normal hips to some extent.

In addition to the standard pose in CT imaging, six additional poses of the femur
were generated. That is, seven poses were used for one hemi-hip dataset. ±10 de-
grees rotations around each of the three axeswere generated andappropriate trans-
lationswere estimated for each rotationusingEquation (1). 308(= 7×44) datasets,
which involve both shape and pose variations, were used for SSM
construction.

In order to construct the combined partial SSM, the acetabulum and proxi-
mal femur regions were defined as regions within 50 mm from the approximated
femoral head center in the reference data used for inter-patient nonrigid regis-
tration. Using 44 hemi-hips, leave-two-out cross validations were performed to
evaluate segmentation accuracy. The reason of using leave-gtwoh-out method
was because two hemi-hips of the same patient used for accuracy evaluation
should not be used for SSM construction. We tested several parameter values
for the weight of the consistency constraint, and λ = 0.01 was selected.

Table 1 shows accuracy evaluation results of one conventional method, that is,
the independent pelvis and femur SSMs, and two proposed methods, that is, the
combined pelvis and femur SSM, and the hierarchical hip joint SSM. Manually
traced boundaries were used for the gold standard, and the average distance
between estimated and gold standard boundaries was used for an error measure.
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Table 1. Evaluation results of segmentation accuracy. Averages of 44 datasets of aver-
age distance [mm] are shown in each SSM. The result of the proposed method around
the joint space is shown as bold fonts.

Region of evaluation Whole hip shape Around joint space
Independent pelvis and femur SSMs 1.26 mm 2.26 mm

Combined pelvis and femur SSM 1.51 mm 2.00 mm
Hierarchical SSM 1.20 mm 1.78 mm

(a) (b) (c)

Fig. 4. Results of an illustrative case. (a) Conventional independent pelvis and femur
SSMs. (b) Combined pelvis and femur SSM. (c) Hierarchical SSM. Red and green con-
tours are estimated regions of pelvis and femur, respectively. Yellow and cyan contours
are gold standards.

To evaluate the effectiveness of proposed method, we measured the accuracy
around the joint space in addition to the whole pelvis and femur shapes. When
we used the conventional method, additional manual specification in the CT
images was necessary to determine the femur coordinate system. Around the
joint space, the error was significantly reduced using the hierarchical SSM (1.78
mm) and slightly reduced using the combined SSM (2.00 mm) compared with
the conventional method (2.26 mm). The accuracy was improved (more than 0.3
mm) in 23 cases, worse (more than 0.3 mm) in 2 cases, and not changed largely
(within 0.3 mm difference) in 19 cases out of 44 cases by using the hierarchical
SSM in spite that additional manual specifications for the femur coordinate
system setting was necessary in the conventional method.

Figure 4 shows coronal views of a typical case. Similar to this figure, it was
confirmed that the consistency constraint effectively worked to maintain the
consistency between the acetabulum and femoral head boundaries in most cases.

4 Discussion and Conclusions

We have described a method for modeling statistical prior information of the
diseased hip joint structure and its use for automated segmentation from 3D CT
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images. In order to deal with unknown pose between the pelvis and femur, not
only shape variations but also pose variations of the two bones are embedded into
a SSM to construct the combined pelvis and femur SSM, which is further hierar-
chically decomposed into the individual pelvis and femur SSMs and a combined
acetabulum and proximal femur SSM. The amount of error reduction for the
proposed SSMs (21% reduction) was compareble to that of previously published
related method [4] in a similar situation (24% reduction). We validated that the
consistency constraint enforced by the combined acetabular and proximal femur
SSM is effective to maintain specific relationships between the acetabulum and
femoral head while more accurate shape representation of the whole pelvis and
femur becomes possible.The performance of the proposed method depends on
the training datasets. Only two cases in which the conventional method sig-
nificantly outperformed the proposed one in the error measure were those with
highly severe deformation (although it is more precise to say that the both meth-
ods failed). It is considered that the training datasets did not cover these cases.
Excepting few highly severe cases for which training datasets were supposed to
be insufficient, however, accuracy improvement was larger for cases with mod-
erate deformation (0.64-mm improvement) than non-diseased cases (0.49-mm
improvement). Therefore, the proposed method was more effective for diseased
cases. As future direction, the proposed hierarchical SSM is potentially applicable
to other joint structures if the range of motion of the joint can be appropriately
modeled.
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Abstract. The assessment of anomalies in the scoliotic spine using Mag-
netic Resonance Imaging (MRI) is an essential task during the planning
phase of a patient’s treatment and operations. Due to the pathologic
bending of the spine, this is an extremely time consuming process as an
orthogonal view onto every vertebra is required. In this article we present
a system for computer-aided assessment (CAA) of anomalies in 3-D MRI
images of the spine relying on curved planar reformations (CPR). We in-
troduce all necessary steps, from the pre-processing of the data to the
visualization component. As the core part of the framework is based on a
segmentation of the spinal cord we focus on this. The proposed segmen-
tation method is an iterative process. In every iteration the segmentation
is updated by an energy based scheme derived from Markov random field
(MRF) theory. We evaluate the segmentation results on public available
clinical relevant 3-D MRI data sets of scoliosis patients. In order to assess
the quality of the segmentation we use the angle between automatically
computed planes through the vertebra and planes estimated by medical
experts. This results in a mean angle difference of less than six degrees.

1 Introduction

MRI is being used increasingly to investigate children with scoliosis. Although
there may be a hereditary component to true idiopathic scoliosis, the condition
has no known cause and is not associated with dysraphism. However, in the infan-
tile and juvenile age group the incidence of spinal cord anomalies like tethered
cord, syringomyelia, Chiari malformations, diastematomyelia and meningocele
/ myelomeningocele ranges from 17.6 to 26% [1,2]. Furthermore there can be
structural changes of the vertebral bodies like wedge vertebra or hemivertebra.
As MRI can visualize all these abnomalities it can be extremely important in
the pre-operative planning of scoliosis. Failure to detect abnormalities of the
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neuraxis prior to treatment of scoliosis, particularly with instrumentation that
lengthens the spine, can have serious neurological consequences.

With the introduction of 3-D spin echo sequences (SPACE, Siemens, Erlangen,
Germany) MRI of the scoliotic spine can be acquired with only two sequences
(upper spine and lower spine). However, due to the extreme bending of the
vertebral column in all three axes the manual assessment of the spine is a very
time consuming process. In some cases it is even impossible for the radiologist
to analyze pathological changes within the spine manually. Furthermore, it can
be very difficult to specify the anatomic localization of the viewed vertebra.

In this article we introduce a framework for CAA of the spine. We show that
it is possible to statistically model the spinal channel and cord. Using this model
we perform a segmentation of the spinal channel and cord. Upon this we build an
application that enables the physician to assess the scoliotic spine nearly as fast
and precise than a non-scoliotic spine which should improve the pre-operative
work-up of this young patient group.

Most state-of-the-art methods for the localization of the spine in tomographic
images do a segmentation of the vertebra (e.g. [3]). In general, these approaches
use assumptions about the spinal appearance that are not fulfilled in data sets
of scoliosis patients. Particulary the shape of the scoliotic spine is altered con-
siderably. Thus, all assumptions concerning the typical ”s” shape and with that
the orientation of the vertebra are no longer valid. Additionally, the shape of the
vertebra can vary in a wider range than in the non-scoliotic case. Two typical
examples of spinal images of scoliosis patients are shown in Figure 1. Addi-
tionally, there are a few methods for segmentation of the spinal cord [4,5]. The
computation of the centerline presented in this article does not depend on any
prior information about the shape of the spine nor on the shape of the vertebra.
Further on, it is not restricted to the used MRI protocol but can be adapted to
other modalities in a straight forward manner. The only requirement is that the
spinal channel or the spinal cord are visible within the images.

2 Method

The system for the CAA of spine anomalies can be separated into four parts
pre-processing of the data sets, the segmentation of the spinal channel/cord, the
labeling of the vertebra and finally the visualization of the data.

2.1 Pre-processing

Our experiments show that it is enough to use the following standard state-
of-the-art pre-processing methods. In order to be able to directly use signal
intensities additional to structural components within the images, we apply Ho-
momorphic Unsharp Masking (HUM). This compensates the influence of coil
inhomogeneities during the acquisition of the 3-D MRI images. The kernel size
used was about 30 mm [6]. Sequentially, we use a signal intensity standardiza-
tion approach to correct inter-scan intensity variations within the data sets. The
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Fig. 1. Coronar slices from two 3-D MRI spine images showing typical scoliotic spines

method used is based on the non-rigid alignment of image histograms [7]. Fi-
nally, a median filter is applied to the data sets to reduce noise present in the
images. All these methods can be applied during the segmentation step on a
per voxel basis. Thus, only voxels that are required for the segmentation of the
spinal channel/cord are processed. This yields a reduced computational cost.

2.2 Segmentation Method

The proposed method for the segmentation of the spinal channel and cord is an
iterative process. The basic idea is that in each iteration step the segmentation
is propagated with respect to the minimization of an energy function. This func-
tion is based on local signal intensities as well as local structural information like
image gradients and the distance to the current approximation of the spinal cen-
terline. The spatial coherence is statistically modeled by posteriori probabilities
that can easily be formulated as Gibbs distributions.

Initialization Step. For the initialization of the presented method the radiol-
ogist has to set a seed point within the spinal channel. From this seed point an
adaptive region growing is started. The upper and lower intensity boundary of
the segmentation is increased/decreased by one in each growing step until a de-
fined number of voxels N0 is contained within the segmented region. Afterwards
we apply morphologic closing to the initial segmentation S0 to fill potential
holes due to signal intensity variations within the images. Heuristics show that
N0 = 300 is enough. All segmentation Si are binary images with a value of one
for voxels within the segmented region and zero as background value.

Iteration Step. First, in every iteration i the centerline ci is approximated
using the segmented region Si−1 from the previous iteration. The estimation of
ci is done by thinning the segmentation Si−1 using the method presented by Lee
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in [8] and a sequential polynomial least-squares approximation of the x−, y−
and z− component of the skeleton voxels. In general a polynomial degree of four
to six is sufficient.

The second phase in every iteration i is the minimization of the energy func-
tion U given the previous segmentation Si−1 and the parametric centerline ci.
The objective function is derived from MRF theory [9]. The optimal solution is
defined by the maximum of the probability function P (Si) = Z−1 exp (−U(Si))
with Z being a normalization constant, U(Si) =

∑
x V (sx|Si) being the ob-

jective energy function and sx being the state of the voxel x. There are two
different states: occupied (sx = 1) if the voxel is part of the spinal channel/cord
and free (sx = 0) otherwise. Using Si−1 as initialization we assume that we
are within the area of attraction of the correct minimum [10]. For this reason a
local gradient descent strategy can be used for optimization. Si is set to Si−1
initially. Then for all voxels x neighboring Si the energy for the occupied state
e1 and the energy for the free state e0 is computed. If e1 < e0 the voxel x is
added to the segmented area in Si. This is repeated until no more voxels change
from state free to occupied. First this is done for the segmentation of the spinal
channel. This segmentation is then used as initialization for the segmentation of
the spinal cord.

The potential V (sx|Si) is composed by the following four parts. The first part
of the potential is called smoothness prior as it controls the homogeneity of the
segmentation result. It can be formulated as

Vs(sx|Si) = 1.0− 1
|Nx|

∑
{x′∈Nx|sx′=sx}

1 (1)

with Nx being the neighborhood of x and | · | the cardinality. This means that
Vs(sx|Si) is zero if all voxels in the neighborhood of x have the state sx. If all
neighboring voxels have a different state than sx the potential is one.

The second one uses knowledge about the intensity range of the spinal channel
and cord. The intensities are modeled by normal distributions N(μc, σ

2
c ) and

N(μo, σ
2
o) with μc and σc being the parameters of the spinal channel and μo, σo

of the cord respectively. Thus, the resulting intensity potential Vv of a voxel x
can be formulated as

Vv(sx|Si) = (−1)sx+1 (
|I(x)− μ{c,o}| − 2σ{c,o}

)
/(2σ{c,o}) (2)

where I is the MRI volume of the spine. For sx = 1 the potential has the
minimum -1 if I(x) = μ{c,o}, it is zero if I(x) = μ{c,o} ± 2σ{c,o} and positive
if the signal intensity differs more than 2σ{c,o} from μ{c,o}. If the voxel’s state
is sx = 0, the maximum is 1 and falls down linearly to −∞. Consequently,
voxels having an intensity between μ{c,o}± σ{c,o} are preferred to be within the
segmentation; voxels with intensities that differ more than σ{c,o} from the mean
μ{c,o} tend to belong to the background.

The third part of the potential utilizes the relative position of the voxel to the
current centerline estimation ci. With dc(x) being the Euclidean distance from
the voxel x to the centerline ci the potential Vc can be written as
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Fig. 2. The left image shows a 12 mm thick MIP in the spinal region including the
computed centerline through the vertebra (white line). The data set shown is pre-
processed. This centerline is used to compute the boundary positions of the vertebra.
In the righthand plot the signal intensities along the centerline are shown. Additionally
the estimated boundaries of the vertebra are illustrated (dotted lines). The computed
threshold was θ = 70.3.

Vc(sx|Si) = (−1)sx+1(dc(x)− r)/r (3)

where r/2 is the average radius of the spinal channel/cord. As a result Vc(sx =
1|Si) < Vc(sx = 0|Si) for voxels that are closer than r/2 to the approximated
center line ci and Vc(sx = 1|Si) > Vc(sx = 0|Si) if the distance is larger.
The minimal value of Vc for the occupied state is -1; the maximal value of the
potential for sx = 0 is 1.

Finally, the last part of the potential uses the scalar product between the
propagation direction of the segmentation and the gradient of the image inten-
sities. As propagation direction we use the gradient of the segmentation image
Si at the voxel x. Thus, the potential can be defined as

Vg(sx|Si) = (−1)sx(1− |(∇I(x))T∇Si(x)|/m) (4)

where m is the maximal tolerable magnitude of the gradient. If the gradients are
aligned parallel or anti-parallel or if the image gradient is zero, the potential for
sx = 1 has its minimal value -1 and its maximal value 1 for sx = 0.

2.3 Labeling of the Vertebra and Visualization

In order to label the vertebra within the images, we compute an intensity profile p
on the ventral side of the estimated centerline. Then we apply a threshold θ to the
computed profile p. From this an initial guess about the positions of the vertebra
is computed. Finally, this guess is refined using the average distances between
the vertebra. The profile as well as the estimated boundaries of the vertebra are
illustrated in Figure 2. As there is no slice where the whole centerline through
the vertebra can be seen we use a 12 mm thick Maximum Intensity Projection
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(MIP) to be able to cover the whole spine in the illustration. The original slice
thickness was 1 mm.

For the visualization, the computed centerline is approximated by splines.
Using the parametric approximation we can compute MPRs that are orthogonal
to the backbone for every position of the spinal channel/cord. An illustration of
the presentation of the MPRs is shown in Figure 3.

3 Results

Data Sets. All data sets were acquired during clinical routine. In total we used
20 3-D MRI SPACE data sets from the spine including ten volumes showing the
upper spine and ten data sets covering the lower spine. All images were acquired
with a repetition time of TR = 1000ms and an echo time of TE = 130ms.
The volumes had a isotropic in-plane resolution between 0.8 mm× 0.8 mm and
1.3 mm× 1.3 mm and a slice thickness of 1 mm. The image matrix had a size
of 384 × 384. Every scan consists of 60 up to 160 slices. All used data sets are
publicly available at our homepage1.

Evaluation Method. The whole processing chain was implemented in C++
and integrated into the ITK Framework (http://www.itk.org). For a better pre-
sentation of the results and to increase the usability for radiologists everything
was integrated into the medical visualization platform InSpace3D. The experi-
ments were performed on a 2.00 GHz Intel Core2 CPU with 2 GB RAM. The
whole processing chain took about 5-20s depending on the size and the bending
of the backbone.

The focus of this work is an easy-to-use framework for CAA of anomalies
in the scoliotic spine. For this reason it is important that radiologists have an
orthogonal view onto every vertebra. Thus, we use the following quality measure
for evaluation. First, for every vertebra v within the images, a medical expert
defines a ground truth plane with normal ng

v. Then, the corresponding planes
with normal na

v are computed using the proposed segmentation method. In
order to measure the distance between the corresponding planes we use the
angle

dv = arccos |(ng
v)T · na

v| (5)

between the normal vectors. The range of dv is [0◦, . . . , 90◦]. If both planes are
aligned perfectly parallel or anti-parallel the angle between the normal vectors
is dv = 0 degree. If, on the other hand, the corresponding planes are orthogonal,
dv = 90. The quality q of the proposed segmentation method is computed by

q =
1
V

V∑
i=1

di (6)

with V being the number of ground truth planes. It reflects the mean angular
deviation of the ground truth to the automatically computed planes.
1 http://www5.informatik.uni-erlangen.de/˜spine/
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Fig. 3. The figure shows the presentation of the computed MPRs. The upper two
images show the sagittal plane and the coronal plane respectively. The second row
shows the plane orthogonal to the spinal cord. Finally, the result of the segmentation
of the spinal cord is presented in a 3-D view (lower right).

Evaluation Results. In total planes through V = 181 different vertebra were
defined by the radiologist. Using the proposed quality measure for our segmen-
tation method yielded a mean distance of q = 5.74◦ with a standard deviation
of σq = 6.13◦. The minimal deviation was 0.42◦ and the maximal deviation was
20.15 degrees (lower spine: μl = 6.98◦, σl = 7.69, minl = 0.83◦, maxl = 20.15◦,
upper spine: μu = 5.14◦, σu = 5.22, minu = 0.42◦, maxu = 17.19◦). If it is as-
sumed that an average vertebra has a size of about 30× 30× 20mm3 this means
that there is a distance between the two planes of less than 2mm at the border
of an average vertebra.

Additionally, a second radiologist defined V = 61 planes through vertebra that
were also labeled by the first radiologist. These planes were used to compute the
inter-observer variability of both radiologists. This resulted in a mean angular
deviation of qo = 2.94◦ (σqo = 1.99◦, min = 0.48◦, max = 9.38◦).

The results show that the proposed algorithm works very reliable for the
upper spine. Especially in the lower lumbar area and the pelvic region the results
get slightly worse. The reason for this is that the medulla ends in this region
and separate nerve cords are left. Thus, there is a higher probability that the
segmentation follows these cords away from the backbone. In clinical routine this
is not a big problem, as these regions are irrelevant for diagnostics in general.
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4 Discussion and Conclusion

We presented a novel approach for the segmentation of the spinal cord based
on MRF theory. The segmentation is used to compute planes orthogonal to the
vertebra column for CAA of anomalies in the scoliotic spine. The advantage of
our method is that we do not use any segmentation of the vertebra itself or in-
formation about their relative positioning. Thus, even an extreme bending of the
spine or pathologic changes of the vertebra structure can be compensated easily.
Further on, the method presented works on 3-D volumes and is not restricted
to a good visible coverage of the spine in a single slice. Additionally, no training
step is required. Thus, the method can easily adapt if the acquisition protocol
changes or other modalities like CT are used.

The proposed framework enables the radiologist to easily assess anomalies in
the scoliotic spine. The errors in orientation observed are small enough for clinical
usage. Furthermore, the majority of false centerline estimations occurs in the
pelvic region of the spine that is only of little diagnostic interest. The observed
errors can further be reduced by post-processing like a rough segmentation of
the vertebra using the approximated centerline to improve their pose estimation.
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Abstract. We present a novel method for globally optimal surface seg-
mentation of multiple mutually interacting objects, incorporating both
edge and shape knowledge in a 3-D graph-theoretic approach. Hard sur-
face interacting constraints are enforced in the interacting regions, pre-
serving the geometric relationship of those partially interacting surfaces.
The soft smoothness a priori shape compliance is introduced into the
energy functional to provide shape guidance. The globally optimal sur-
faces can be simultaneously achieved by solving a maximum flow prob-
lem based on an arc-weighted graph representation. Representing the
segmentation problem in an arc-weighted graph, one can incorporate a
wider spectrum of constraints into the formulation, thus increasing seg-
mentation accuracy and robustness in volumetric image data. To the best
of our knowledge, our method is the first attempt to introduce the arc-
weighted graph representation into the graph-searching approach for si-
multaneous segmentation of multiple partially interacting objects, which
admits a globally optimal solution in a low-order polynomial time. Our
new approach was applied to the simultaneous surface detection of blad-
der and prostate. The result was quite encouraging in spite of the low
saliency of the bladder and prostate in CT images.

1 Introduction

In the United States, prostate cancer is one of the most common cancers in
men, accounting for about 25% of all newly diagnosed cases [1]. Precise tar-
get delineation is critical for a successful 3-D radiotherapy treatment planning
for prostate cancer treatment. Automatic segmentation techniques are urgently
needed due to large amounts of 3-D image data that require increased time for
manually contouring.
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The segmentation of pelvic structure is of particularly difficulty. It involves
soft tissues that present a large variability in shape and size. Those soft tissues
also have similar intensity and have seriously mutual influence in position and
shape. Many attempts have been tried in this area, such as registration approach
(e.g. [2]), implicit and explicit models (e.g. [3,4,5]), and bayesian formulation
(e.g. [6]). None of these methods can produce a globally optimal solution with
respect to a task-specific objective function. Freedman et al. [7] developed an
interactive approach based on graph cut method [8]. Their method incorporat-
ing soft shape prior allows for a global optimum. However, it focuses on only
single object (bladder) segmentation and is at least non-trivial to incorporate
mutually interacting surface constraints to simultaneously segment multiple ob-
ject surfaces. We are thus motivated to propose a novel method incorporating
both edge and shape information for globally optimal segmentation of bladder
and prostate.

Our work is a non-trivial extension of the framework proposed by Wu et
al. [9] and Li et al. [10]. Instead of only employing node weights in the graph to
represent the desired segmentation properties, we propose in this paper an arc-
weighted graph representation, which utilizes the weights of both graph nodes
and arcs to incorporate a wider spectrum of constraints, e.g., the soft smooth-
ness a priori shape compliance presented in this paper and other prior shape
knowledge. Hard surface interacting constraints are enforced in interacting re-
gions to preserve geometric relationships between partially interacting boundary
surfaces of prostate and bladder. Soft smoothness shape compliance is further
employed to incorporate shape information. Two mutually interacting optimal
surfaces are then computed by solving a maximum flow problem.

Yin et al. [11] have developed a framework based on the graph-searching ap-
proach for knee-joint segmentation of bones and cartilages. Their work yet was
still limited to using the node-weighted graph representation. Li et al. [12] adopted
the arc-weighted graph representation to incorporate the elliptic shape model
priors and smoothness penalty for simultaneous delineation multiple surfaces
of a single object. Most recently, graph-cut based segmentation methods have
attracted a lot of attention. One of the most influential work is Boykov and
Funka-Lea’s interactive segmentation algorithm for d-D images based on mini-
mum s-t cuts [8], which is topologically flexible and shares some elegance with
the level set methods. However, incorporating a priori shapes and simultane-
ous detection of mutually interacting surfaces into the Boykov framework and
any other previous graph-based methods is at least non-trivial. Also, unlike the
graph cut method, our proposed method requires less/no human interaction.

2 Optimal Segmentation of Multiple Mutually
Interacting Objects Incorporating Both Edge and
Shape Knowledge

To present our method in a comprehensible manner, in this section we con-
sider the task of detecting a terrain-like surface representing the boundary of a
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3-D object in a volumetric image. Note that the simpler principles used for this
illustration are directly applicable to arbitrarily-irregularly meshed surfaces. We
introduce a soft smoothness a priori shape compliance term into the energy
function using an arc-weighted graph model to substantially extended the graph-
searching framework [9,10]. The extension makes it possible to incorporate a
wider spectrum of constraints.

2.1 Problem Formulation

Consider a volumetric image I(X,Y, Z) of sizeX×Y ×Z. For each (x, y) pair, the
voxel subset {I(x, y, z)|0 ≤ z < Z} forms a column parallel to the z-axis, denoted
by Col(x, y). Each column has a set of neighborhoods for a certain neighbor
setting, e.g., four-neighbor relationship [10]. The surface of particularly interest
in I, denoted S(x, y), is the terrain-like surface which intersects with exactly
one voxel of each column of voxels parallel to the z-axis. A surface is considered
feasible if it satisfies certain smoothness constraints. Specifically, if I(x1, y1, z1)
and I(x2, y2, z2) are two voxels on the surface from neighboring columns in the
x-direction, then |z1− z2| ≤ Δx, where Δx is a specified smoothness parameter.
Similar constraints exist for neighboring columns in the y-direction.

Let Γ = [0..X−1]× [0..Y −1] denote the grid domain of image I. We enforce
a surface interacting constraints for each pair of the sought surfaces Si and Sj

in mutually interacting region Rij ⊆ Γ , on which both Si and Sj are interacting
each other. For any (x, y) ∈ Rij , if I(x, y, z) ∈ Si and I(x, y, z′) ∈ Sj , then we
have δl

ij ≤ z′ − z ≤ δu
ij , where δl

ij ≥ 0 and δu
ij ≥ 0 are two specified surface

interacting constraints. An edge-based cost ci(x, y, z) is assigned to each voxel
I(x, y, z) for each target surface Si, which is inversely related to the likelihood
that the desired surface contains the voxel. Yet utilizing only image edge informa-
tion may not be sufficient. To make full use of priori information and incorporate
a wider spectrum of constraints, we introduce into the objective function a soft
smoothness a priori shape compliance energy term Esmooth(S) for surface S,
with Esmooth(S) =

∫
Γ
φ(∇S), where φ is a smoothness penalty function. Assume

that N is a given neighborhood system on Γ . For any p(x, y) ∈ Γ , let S(p)
denote the z-coordinate of the voxel I(x, y, z) on S. Then, the discrete form of
a priori shape compliance smoothness energy Esmooth(S) can be expressed as
Σ(p,q)∈N fp,q(|S(p) − S(q)|), where fp,q is a non-decreasing function associated
with two neighboring columns of p and q that penalizes the shape changes of S
on p and q. Then our enhanced optimal surface detection (EOSD) problem
seeks an optimal set S of λ surfaces in I such that (1) each individual surface
satisfies hard smoothness constraints; (2) each pair of surfaces satisfies surface
interacting constraints; and (3) the cost α(S) induced by S, with the form

α(S) =
λ∑

i=1

∑
Ii(x,y,z)∈Si

ci(x, y, z) +
λ∑

i=1

∑
(p,q)∈N

f (i)
p,q(|Si(p)− Si(q)|) (1)

is minimized. In this paper, we focus on the linear smoothness penalty functions,
i.e., fp,q(h) = a · h + b (a and b are a constant, h = 0, 1, 2, ...) between two
neighboring columns Col(p) and Col(q).
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(a) (b) (c)

Fig. 1. Graph construction for mutually interacting objects. An example 2-D slice
from a 3-D image is presented. (a) Intra-column arcs (yellow arrows) and inter-column
arcs(green arrows). The hard smoothness parameter is set 1. (b) Inter-surface arcs (blue
and red arrows) on the interacting region. For visualization, the slice on the interacting
region is duplicated and visualized in two separated slices. The distance between two
surfaces ranges from δl

ij = 1 to δu
ij = 2. (c) Incorporating a linear smoothness penalty.

The feasible surface S cuts the arcs with a total weight of 2a on the neighboring
columns Col(p) and Col(q), which measures the smoothness shape compliance term
of α(S) for the two neighboring columns. Green arrow shows the hard smoothness
constraints (inter-column arcs) with parameter 2.

2.2 The Arc-Weighted Graph Representation for Incorporating A
Priori Shape Knowledge

In the original graph-searching model [9,10], only the node weights in a graph
was used to represent the desired segmentation properties, e.g., edge-based im-
age costs. To incorporate a prior shape knowledge, we utilize the weights of both
graph nodes and arcs (directed graph edges) to represent the desired segmenta-
tion properties. The basic idea is to reduce the EOSD problem to the minimum
s-excess problem [9]. A directed graph G containing λ node-disjoint subgraphs
{Gi = (Vi, Ei) : i = 1, 2, ..., λ} is defined, in which every node Vi(x, y, z) ∈ Vi

represents exactly one voxel I(x, y, z). Both intra-column arcs and inter-column
arcs are added to ensure the monotonicity of the target surfaces and the hard
smoothness constraints (Fig.1(a)), as described in [10]. To enforce the surface in-
teracting constraints between any two sought surfaces Si and Sj on the given mu-
tually interacting region Rij , the inter-surface arcs with +∞ weights are added
(Fig.1(b)). Suppose for the two sought surfaces Si and Sj , the prior knowledge
puts Si below Sj and the distance between Si and Sj ranges from δl

ij to δu
ij . A

directed arc is put from each node Vj(x, y, z) with (x, y) ∈ Rij and z < Z − δl
ij

to node Vi(x, y, z+ δl
ij) in Gi. This ensures that if voxel I(x, y, z) lies on surface

Sj , then the voxel I(x, y, z′) on Si must be no “lower” than voxel I(x, y, z+ δl
ij)

(i.e., z′ ≥ z + δl
ij). On the other hand, each node Vi(x, y, z) with (x, y) ∈ Rij

and z ≥ δl
ij has an arc to Vj(x, y, z′) with z′ = max{0, z − δu

ij}, making sure
that if I(x, y, z) is on Si, then the voxel of Col(x, y) on Sj must be no “lower”
than voxel I(x, y, z′). To incorporate the linear smoothness penalty, for any two
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neighboring columns Col(p) and Col(q) with p = (x, y) and q = (x′, y′), node
Vi(x, y, z) has one arc to node Vi(x′, y′, z) as well as one arc from Vi(x′, y′, z)
to Vi(x, y, z), each with an arc-weight of a for all z = 1, ..., Z − 1. If a feasible
surface Si intersects columns Col(p) and Col(q) at Si(p) and Si(q), respectively,
a total weight of a · (|Si(p) − Si(q)|) contributes to the corresponding cut in
G, which is equivalent to the soft smoothness penalty f

(i)
p,q(|Si(p) − Si(q)|) for

the minimization problem while considering that b is a constant for any feasible
surface Si (Fig.1(c)). Thus, the linear smoothness penalty is incorporated.

The weight of each node in the graph is set as described in [10]. With this
constructed graph G, an optimal cut C∗ = (A∗, Ā∗) (A∗ ∪ Ā∗ = V ) in G min-
imizing the total weight of nodes in A∗ plus the total arc weight of C∗ defines
an optimal set S∗ of λ surfaces in I minimizing the objective function α(S∗).
Note that C∗ can be computed efficiently using the maximum flow algorithm in
a low-order polynomial time [9]. The optimal λ surfaces can then be recovered
by computing the upper envelope of the optimal cut C∗.

3 Simultaneous Surface Detection of Bladder and
Prostate

In this section, we apply our optimal graph searching method developed in
Section 2 for simultaneous segmentation of bladder and prostate in 3-D CT
images. Our approach mainly consists of two stages: (a) Pre-segmentation of the
objects of interest. An approximation of target surfaces can be obtained, which
gives useful information about the topological structures of the target objects.
(b) Accurate delineation using graph optimization based on the pre-segmented
surface mesh. The use of surface mesh allows our method to readily incorporate
shape priors and the known topology.

3.1 Pre-segmentation of Bladder and Prostate

A 3-D geodesic active contour method [13] was conducted for pre-segmentation
of the bladder. Three user-defined points were required as an initial input. The
prostate shows a much better coherency in shape than bladder. Hence we com-
puted the mean shape of the prostate from the training set of eight 3-D manual
segmentation. Then an approximate bounding box of interest for prostate is
interactively defined and the obtained mean shape was roughly fitted into the
never-before seen CT images using rigid transformations as the pre-segmentation
result. Note that the pre-segmentation results only serve to provide a basic topo-
logical structure information, thus we do not require accurate segmentation at
this stage. The statement was proved in the following experiments. Overlap-
ping between pre-segmented prostate and bladder is also allowed, which can be
resolved in the graph optimization step.

3.2 Graph Construction and Optimization

From pre-segmentation results, two triangulated meshes were generated using
isosurfacing algorithm (e.g., marching cubes) to specify neighboring relations
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among voxels on sought surfaces. As described in Section 2.2, to utilize our
arc-weighted graph representation for mutually interacting surface detection, a
one-to-one correspondence between two surface meshes needed to be computed
on “interacting regions”, which were defined according to the distance between
two pre-segmented surfaces. Note that prostate and bladder are always almost
attached to each other or with a very small distance away. Thus we simply pro-
jected the pre-segmented prostate surface mesh on the interacting region to the
mesh of the pre-segmented bladder boundary surface. Then we use the projected
mesh patch to replace the original bladder surface mesh on the interacting region.
Thus, a one-to-one mesh correspondence on interacting region was established
since two new meshes on that area have exactly the same topological structure.

For each vertex of the two triangulated meshes, a vector of voxels (columns)
was created. The number of nodes on each column depends on the required res-
olution. For columns outside the interacting region, the normal at each mesh
vertex was used as the column (sampling) direction. For each mesh vertex on
the interacting region, a column of voxels that captures both prostate and blad-
der boundaries, was computed along the average normal of the pre-segmented
prostate mesh for enforcing the surface interacting constrains between the blad-
der and prostate boundaries.

A weighted directed graph G was then constructed as in Section 2.2. To incor-
porate the shape priori knowledge, we employed a linear soft smoothness penalty
fp,q(h) = a · h+ b (h = 0, 1, 2, ...) between two neighboring columns Col(p) and
Col(q), where a and b are constant parameters. In our experiments, we set a = 5
and b = 0 according to the experimental results on the training set.

Cost function design plays an important role for successful surface detec-
tion. In our segmentation, the gradient-based cost function was employed for
edge-based costs. The negative magnitude of the gradient of the image I was
computed at each voxel as cedge = |∇I|.

Observe that intensities of bladder and prostate are generally higher than
surrounding tissues. A Sobel kernel was used to favor a bright-to-dark transition.

4 Experiments and Results

21 3-D CT images from different patients with prostate cancer were employed
for validation. No contrast agent was filled. 8 datasets were randomly selected as
the training set to build a shape model of prostate. Segmentation experiments
were carried out on the remaining 13 datasets. The resolution of image ranges
from 0.98× 0.98× 3.00 mm3 to 1.60× 1.60× 3.00 mm3.

The computed results were compared with the expert tracing outlines. We
employed the methods similiar to those used in [3] for the quantitative mea-
sures, which include the following: (1) The probability of detection υd, calculated
as the fraction of the expert-defined target object that was contained by our
computed result; (2) The probability of false alarm υfa, calculated as the frac-
tion of our computed target object that lies outside the expert-defined result;
and (3) The unsigned surface distance error sd, computed as the distance be-
tween the expert-defined surface and our computed surface, which was expressed
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Table 1. Overall quantitative results for the bladder-prostate segmentation

With soft smoothness Without soft smoothness
υd υfa sd(mm) υd υfa sd(mm)

Bladder 0.958 0.115 1.04±1.00 0.958 0.120 1.09±1.02
Prostate 0.852 0.136 1.38±1.08 0.800 0.122 1.48±1.17

(a) (b) (c)

Fig. 2. The bladder (yellow) and prostate (blue) segmentation results. (a) Transverse
view. (b) Coronal view. (c) Sagittal view.

(a) (b)

Fig. 3. Comparison of simultaneous bladder-prostate segmentation. (a) Linear
smoothness penalty used. (b) No soft smoothness penalty. Identical hard smoothness
constraints and cost functions were used.

as mean±standard deviation. To test the effectiveness of using soft smoothness
a priori shape compliance energy, experiments were conducted for all image
datasets with and without using the soft-smoothness term.

The result is shown in Table. 1. Our approach generally produced a high-
quality segmentation (i.e., υd near 0.9, υfa near 0.1), which is similar to the
inter-expert variability as reported in [5,14]. By using the soft smoothness term,
segmentation results for prostate were obviously improved in 9 out of 13 datasets.
The improvement for bladder was relatively small.

Illustrative results of our experiments are shown in Fig. 2(a)-(c) for three
views. From all views, our surface interacting constraints work quite well with
no overlapping of prostate and bladder on the interacting region. Fig. 3 shows the
comparison of simultaneous bladder-prostate segmentation segmentation results
with and without soft smoothness term, exhibiting expected improvement.

A nature question is that how sensitive the final segmentation is to pre-
segmentation result. To answer this question, two different experiments were
conducted. First, pre-segmentation results of bladder and prostate were per-
turbed by 2 voxels separately in each of the in-plane directions, resulting in 12
pre-segmented results for each dataset. Second, pre-segmentation results were
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scaled up by a factor of 1.1 and scaled down by 0.9 for the bladder and the
prostate separately, resulting in 4 more pre-segmentions for each dataset. The
experiments were done on one randomly chosen dataset. For all 16 perturbed
and scaled pre-segmentations, the final segmentations remain successful, and the
mean unsigned surface distance error was 1.10 mm for bladder and 1.13 mm for
prostate, which are comparable to the original results: 1.09 mm for bladder and
1.07 mm for prostate.

5 Discussion and Conclusion

In this paper, we introduce a novel graph-searching method using an arc-weighted
graph representation for simultaneous segmentation of bladder and prostate. Our
method provides a general framework for simultaneous segmentation of multiple
partially interacting surfaces belonging to multiple objects in an optimal fashion
with respect to a task-specific objective function. The arc-weighted graph repre-
sentation allows an easy incorporation of a wider spectrum of constraints while uti-
lizing weighted combinations of edge- and shape-based costs. 13 3-D CT datasets
were employed for validation. The result is quite impressive considering the diffi-
culty of the segmentation for pelvic structures.

References

1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Murray, T., Thun, M.J.: Cancer statistics.
Lancet 353, 267–272 (2008)

2. Malsch, U., Thieke, C., Bendl, R.: Fast elastic registration for adaptive radiother-
apy. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191,
pp. 612–619. Springer, Heidelberg (2006)

3. Freedman, D., Radke, R.J., Zhang, T., Jeong, Y., Lovelock, D.M., Chen, G.T.Y.:
Model-based segmentation of medical imagery by matching distributions. IEEE
Trans. Medical Imaging 24(3) (2005)

4. Dam, E., Fletcher, P.T., Pizer, S.M., Tracton, G., Rosenman, J.: Prostate shape
modeling based on principal geodesic analysis bootstrapping. In: Barillot, C.,
Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 1008–1016.
Springer, Heidelberg (2004)

5. Costa, M.J., Delingette, H., Novellas, S., Ayache, N.: Automatic segmentation
of bladder and prostate using coupled 3D deformable models. In: Ayache, N.,
Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 252–260.
Springer, Heidelberg (2007)

6. Rousson, M., Khamene, A., Diallo, M.H., Celi, J.C., Sauer, F.: Constrained surface
evolutions for prostate and bladder segmentation in CT images. In: Liu, Y., Jiang,
T.-Z., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 251–260. Springer,
Heidelberg (2005)

7. Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape
priors. In: CVPR 2005, vol. 1, pp. 755–762 (2005)

8. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int.
Journal of Computer Vision 70(2), 109–131 (2006)



Optimal Graph Search Segmentation Using Arc-Weighted Graph 835

9. Wu, X., Chen, D.Z.: Optimal net surface problems with applications. In: Widmayer,
P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, p. 1029. Springer, Heidelberg (2002)

10. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volu-
metric images - a graph-theoretic approach. IEEE Trans. Pattern Anal. Machine
Intell. 28(1), 119–134 (2006)

11. Yin, Y., Zhang, X., Sonka, M.: Optimal multi-object multi-surface graph search
segmentation: full-joint cartilage delineation in 3D. In: MIUA 2008, pp. 104–108
(2008)

12. Li, K., Jolly, M.P.: Simultaneous detection of multiple elastic surfaces with appli-
cation to tumor segmentation in CT images. In: SPIE 2008, vol. 6914 (2008)

13. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International jour-
nal on computer vision 22, 61–97 (1997)

14. Fiorino, C., Reni, M., Bolognesi, A., Cattaneo, G.M., Calandrino, R.: Intra- and
inter- observer variability in contouring prostate and seminal vesicles: Implications
for conformal treatment planning. Radiotherapy Oncol. 47(3), 285–292 (1998)



Automated Calibration for Computerized
Analysis of Prostate Lesions Using

Pharmacokinetic Magnetic Resonance Images�

Pieter C. Vos, Thomas Hambrock, Jelle O. Barenstz, and Henkjan J. Huisman

Department of Radiology, University Medical Centre Nijmegen, Netherlands
p.vos@rad.umcn.nl

Abstract. The feasibility of an automated calibration method for es-
timating the arterial input function when calculating pharmacokinetic
parameters from Dynamic Contrast Enhanced MRI is shown. In a pre-
vious study [1], it was demonstrated that the computer aided diag-
noses (CADx) system performs optimal when per patient calibration was
used, but required manual annotation of reference tissue. In this study we
propose a fully automated segmentation method that tackles this limita-
tion and tested the method with our CADx system when discriminating
prostate cancer from benign areas in the peripheral zone.

A method was developed to automatically segment normal peripheral
zone tissue (PZ). Context based segmentation using the Otsu histogram
based threshold selection method and by Hessian based blob detection,
was developed to automatically select PZ as reference tissue for the per
patient calibration.

In 38 consecutive patients carcinoma, benign and normal tissue were
annotated on MR images by a radiologist and a researcher using whole
mount step-section histopathology as standard of reference. A feature
set comprising pharmacokinetic parameters was computed for each ROI
and used to train a support vector machine (SVM) as classifier.

In total 42 malignant, 29 benign and 37 normal regions were anno-
tated. The diagnostic accuracy obtained for differentiating malignant
from benign lesions using a conventional general patient plasma profile
showed an accuracy of 0.65 (0.54-0.76). Using the automated segmen-
tation per patient calibration method the diagnostic value improved to
0.80 (0.71-0.88), whereas the manual segmentation per patient calibra-
tion showed a diagnostic performance of 0.80 (0.70-0.90).

These results show that an automated per-patient calibration is fea-
sible, a significant better discriminating performance compared to the
conventional fixed calibration was obtained and the diagnostic accuracy
is similar to using manual per-patient calibration.

1 Introduction

Several studies have indicated that multimodal MRI increases the prostate can-
cer (PCa) localization accuracy of the radiologist. The accuracy is, however,
� This work was funded by grant KUN 2004-3141 of the Dutch Cancer Society.
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dependent on the experience of the radiologist [2,3,4]. To help improve the di-
agnostic accuracy of the (unexperienced) radiologist, we are investigating the
possible additional value of CADx. Previously [1], the feasibility was demon-
strated of an in-house developed CADx system that calculates the malignancy
likelihood of a given suspicious area in the peripheral zone of the prostate using
T1-w DCE-MRI at 1.5T. Discrimination of malignant and benign regions was
performed using a SVM as classifier that was trained with features extracted
from quantitative pharmacokinetic (PK) maps as well as T1 estimates. The
study showed that a diagnostic accuracy of 0.83 (0.75-0.92) was obtained by a
standalone CADx, which is comparable to an expert radiologist performance.

Pharmacokinetic (PK) DCE-MRI could further improve PCa differentiation
by reducing inter patient and inter MR scanner fluctuations compared to con-
ventional DCE-MRI. PK tissue parameters are estimated by fitting a tracer
physiologic compartment model to the observed DCE-MRI data that is driven
by a plasma profile. Various techniques for estimating plasma profiles exist. Quite
some PK estimators do not include per patient calibration, but use a general
patient plasma profile (fixed calibration) [5,6]. Huisman et al. [7] demonstrated
that the plasma profile varies per patient and thus, fixed calibration can cause
fluctuation among patient when estimating the PK parameters. In [8], it was
shown that the CADx system performs significantly better using per patient
calibration instead of fixed calibration. The presented method was, however, de-
pendent on manual annotation of healthy tissue before a malignancy likelihood
could be calculated. This study addresses that limitation by presenting a more
objective and automated calibration method and investigates its effect on the
diagnostic accuracy of the CADx system.

The purpose of this study was to investigate the feasibility of a CADx system
capable of objectively discriminating PCa from non-malignant disorders located
in the peripheral zone of the prostate using an automated per patient calibration
method.

2 Method

2.1 Pharmacokinetic Modeling

Analysis of DCE-MRI data requires knowledge of the concentration of the con-
trast agent in the blood plasma. Without calibration (or fixed calibration), inter-
patient plasma profile variability causes fluctuations in PK estimates, which are
not related to the tissue condition. When using a power injector the most likely
cause of differences in plasma curves are differences in body weight (total dis-
tributional volume), heart rate, vascular condition. Removing the plasma shape
can be regarded as a form of patient calibration whereas fixed calibration uses
a fixed plasma function over all patients.

The parametric model for analyzing contrast agent concentration time curves
in DCE-MRI is the two compartment model of Tofts et al. [9]. The observed
concentration-time curve can be expressed as:

Cv(t) = h(t; t0, Ve,K
trans,Washout)⊗ Cp(t), (1)
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where Cv(.) denotes the observed tracer concentration, h(.) the tissue impulse
response, Cp(t) the plasma input function and t0,Ve,Ktrans,Washout are param-
eters from the model. The reference tissue method estimates the plasma input
function by:

Ĉp(t) = Cref,v(t)/href,v(t), (2)

where Cref,v(.) represents the observed plasma profile for tissue v and href,v(.)
a reference plasma profile for tissue v based on literature. The reference tissue
method is considered to be a robust technique [10].

2.2 Automated Per Patient Calibration

In a previous study [8], it was demonstrated that using PZ as reference tissue
gave good results for estimating PK parameters. In this study a method was
developed to auto segment PZ. The method is divided into two stages. First,
the location of the prostate is detected using a blob detection method. In the
second stage, this location is further refined to segment a PZ region.

(a) DCE of the prostate area. (b) DCE of the bladder area.

Fig. 1. Rational for modeling an early and large enhancing blob in the pelvic area

Automated Localization of the Prostate. The prostate can be modelled
as a large enhancing area (or blob) in the pelvis. Figure 1(a) demonstrates this
model where the prostate can easily be detected by a human observer. Large
and strong enhancements can be observed in the transition zone of the prostate
making it suitable for detection. First experimental results showed however, that
this assumption is not only true for the prostate. Because the acquisition time
for the DCE-MRI can be rather long (3 min), contrast agent also arrives in the
bladder, resulting in a comparably large enhancing blob, as demonstrated in
figure 1(b). The prostate model is therefore extended by including the arrival
time of the contrast agent (t0 of Cv(t)). Otsu’s automatic threshold selection
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method from gray-level histograms ([11]) is used to segment early enhancing
structures in the relative enhancement image V (x):

VO (x) =
{
V (x) , t0(x) < thOtsu

0 (3)

A common approach to detect blobs is to consider the Taylor expansion of VO

at multiscale for a given neighborhood of pixel x [12],

VO (x + δx, σ) ≈ VO(x, σ) + δxT∇σ + δxTHσδx, (4)

where ∇σ and Hσ are the gradient vector and Hessian vector of an image at
scale σ. Here, VO is convolved using derivatives of Gaussians:

δ

δx
VO(x, σ) = σVO(x)

δ

δx
G(x, σ). (5)

Next, from Hσ eigenvalues λσ,k are computed, corresponding the the k-th nor-
malized vector ûσ,k and analyzed to determine the likelihood of a pixel x be-
longing to a blob. This analysis is based on the following likelihood function (for
bright blob, dark background):

P (x, σ) = |λ1(x)||λ2(x)||λ3(x)|, (6)

that is, all three eigen values should be large to represent a blob. A multiscale
approach is adopted after which the maximum response is selected:

P (x) = max
σmin≤σ≤σmax

P (x, σ). (7)

The center location of the prostate xpc containing the highest probability is then
selected by xpc = argmaxx P (x). In figure 2(a) a probability map is shown that
is used for the prostate detection.

Automated Segmentation of Normal Peripheral Zone Tissue. In the
second stage of the method, a context based segmentation is performed to extract
normal peripheral zone tissue. The method is based on the model that the PZ is
mainly dorsal located of xpc. Thus, we define a box-mask below xpc with height,
width and depth set to σ to mask VO. Here, σ corresponds with the size of the
prostate and is the scale at which P (xpc) was found by the blob detector:

S(xpc) = argmax
σ

(P (xpc, σ) (8)

Figure 2(b) demonstrates this model. Simple thresholding of extrema and re-
moval of sharp edges using a gradient magnitude filter can now be applied to
the box-mask which results in the segmentation of normal peripheral zone tissue,
as demonstrated in figures 2(c) and 2(d).
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(a) S(xpc) (b) Model of PZ (c) Strong gradient
removal

(d) Extrema thresh-
olding

Fig. 2. Example case of context based segmentation of normal peripheral zone tissue

2.3 CADx Performance Evaluation

The features Ktrans, Ve and Washout were computed and used to train a SVM
as classifier [9]. The features were combined into a single malignancy likelihood
estimate using the SVM. The output of the classifier was used as a measure of
likelihood of malignancy. The discriminating performance of the CADx system
was estimated by means of the area under the receiver operator characteristics
(ROC) curve (AUC). The prospective performance of the lesion analysis with
per patient and fixed calibration were estimated by means of leave-one-patient-
out (LOPO) cross validation. LOPO avoids training and testing on the same
data and to emphasize the prospective value, one whole patient case was drawn
from the set. The LOPO involves training on all but one case, estimating the
likelihood of that left-out case, and repeating the procedure until each case has
been tested individually. The bootstrap technique was used to compute 95% con-
fidence intervals for the AUC and significance level for the paired difference [13].

2.4 Experiment

The study set consisted of 38 consecutive patients that were selected between
January 2007 and October 2008. These patients had biopsy-proven PCa and un-
derwent dynamic contrast-enhanced MR imaging at 3.0T, complementary to the
routine staging MR imaging examination of the prostate. Patients were included
in the study only if they were candidates for radical retropubic prostatectomy
within 6 weeks after MR imaging. The study was approved by the institutional
review board, and informed consent was obtained from all patients prior to MR
imaging. Exclusion criteria were: previous hormonal therapy, lymph nodes pos-
itive for metastases at frozen section analysis, contraindications to MR imaging
(e.g., cardiac pacemakers, intracranial clips), contraindications to endorectal coil
insertion (e.g., anorectal surgery, inflammatory bowel disease).

Images were acquired with a 3.0T whole body MR scanner (TrioTim, Siemens
Medical Solutions, Erlangen, Germany). A pelvic phased-array as well as a
balloon-mounted disposable endorectal surface coil (MedRad®, Pittsburgh, PA,
USA) inserted and inflated with approximately 80 cm3 of Perfluorocarbon
(FOMBLIN LC08), were used for receiving. The machine body coil was used for
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RF transmitting. An amount of 1 mg of glucagon (Glucagon®, Novo Nordisk,
Bagsvaerd, Denmark)) was administered directly before the MRI scan, to all
patients to reduce peristaltic bowel movement during the examination.

High-spatial-resolution T2-weighted fast spin-echo imaging in the axial, sagit-
tal and coronal planes, covering the prostate and seminal vesicles, was performed.
3D T1-weighted spoiled gradient echo images were acquired before and during an
intravenous bolus injection of paramagnetic gadolinium chelate (0.1 mmol/kg,
gadopentetate, Magnevist®; Schering, Berlin, Germany) using a power injector
(Spectris, Medrad®, Pittsburgh, PA, US) with an injection rate of 2.5 ml/second
followed by a 15 ml saline flush for 300 sec every 3 seconds. Fitting the DCE-MRI
is decribed elsewhere [14].

Whole-mount step-section histology tumor maps were used as ground truth
for annotating PCa (with a relevant diameter of at least 5mm), non-malignant
suspicious enhancing (NS) and normal (N) regions on T2-w images for all pa-
tients in consensus by two readers.

3 Results

One patient case was excluded because the DCE examination had failed. In
total 42 malignant regions were annoted in the peripheral zone. The number
of NS regions annotated in the peripheral zone was 29. The number of normal
peripheral zone regions was 38.

The effect of the per patient calibration on the diagnostic performance was
first evaluated by pairwise scatterplots of PK parameters of the lesions. It is
noticeable in figure 3(a) that without calibration the clusters overlap more than
the clusters in figure 3(c) where manual calibration is included. Figure 3(b) shows
similar results for automatic patient calibration. Furthermore, the N and NS
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Fig. 3. Pairwise scatterplots of 2 kinetic parameters, Washout versus Ktrans, for the
whole database with squares representing NS regions, spheres as malignant regions
and triangles as N regions for the different calibration methods used. The ellipsoids
summarize the three clusters by fitting a bivariate normal distribution and displaying
the outline at 2 times standard deviation radius. It is noticeable that the clusters
overlap one another when fixed calibration is used, whereas manual and automated
per patient calibration demonstrate a noticeable clustering of features.



842 P.C. Vos et al.

Fig. 4. ROC curves showing the discriminating performance of the CADx system using
the different calibration methods fixed, automated per patient and manual per patient
calibration

clusters have a smaller covariance when patient calibration is used. An effect on
the diagnostic performance can therefore be expected. The different distributions
demonstrate the strong effect of the chosen calibration method.

The performance of discriminating malignant lesions from NS areas with fixed,
manual and automatic calibration is demonstrated in the ROC curves shown in
figure 3. Here, the focus is on the characterization of NS and malignant regions,
because it is more challenging and clinically relevant. The diagnostic accuracy
was 0.65 (95% confidence intervals = 0.54-0.76)) when fixed calibration was
used. The diagnostic accuracy improved significantly for both manual per pa-
tient calibration, Az=0.80 (0.70-0.90), as for automated per patient calibration,
Az=0.80 (0.71-0.88). The marginal difference between the automated and man-
ual calibration means that they perform similar, which was the intended goal.

4 Conclusion

In this study, we have demonstrated the feasibility of an automated calibration
methodforestimatingthearterial inputfunctionwhencalculatingpharmacokinetic
parameters from DCE-MRI. The results show a significant better discriminating
performance (Az=0.80 (0.71-0.88)) compared to the conventional fixedcalibration.
The performance is similar to using the manual per patient calibration.
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Abstract. The major challenge with classifying high dimensional
biomedical data is in identifying the appropriate feature representation
to (a) overcome the curse of dimensionality, and (b) facilitate separation
between the data classes. Another challenge is to integrate information
from two disparate modalities, possibly existing in different dimensional
spaces, for improved classification. In this paper, we present a novel data
representation, integration and classification scheme, Spectral Embed-
ding based Probabilistic boosting Tree (ScEPTre), which incorporates
Spectral Embedding (SE) for data representation and integration and a
Probabilistic Boosting Tree classifier for data classification. SE provides
an alternate representation of the data by non-linearly transforming high
dimensional data into a low dimensional embedding space such that the
relative adjacencies between objects are preserved. We demonstrate the
utility of ScEPTre to classify and integrate Magnetic Resonance (MR)
Spectroscopy (MRS) and Imaging (MRI) data for prostate cancer de-
tection. Area under the receiver operating Curve (AUC) obtained via
randomized cross validation on 15 prostate MRI-MRS studies suggests
that (a) ScEPTre on MRS significantly outperforms a Haar wavelets
based classifier, (b) integration of MRI-MRS via ScEPTre performs sig-
nificantly better compared to using MRI and MRS alone, and (c) data
integration via ScEPTre yields superior classification results compared
to combining decisions from individual classifiers (or modalities).

1 Introduction

Biomedical data such as gene expression, dynamic contrast enhanced Magnetic
resonance Imaging (MRI) and Spectroscopy (MRS) suffer from the curse of di-
mensionality owing to the presence of large redundant, non-discriminative fea-
tures within a relatively small sample space. A major challenge is to identify
� Work made possible via grants from Coulter Foundation (WHCF 4-29368), New
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appropriate feature representation methods and thus facilitate accurate classifi-
cation. The default data representation choice for spectral and signal classifica-
tion has been wavelets [1] or Principal Component Analysis (PCA) which is a
linear dimensionality reduction method.

It has been shown previously that PCA fails to capture the inherent non-linear
structure of high dimensional biomedical data [2]. For such cases, non linear DR
methods such as Spectral Embedding (SE) [3] are more appropriate, since they
reduce data dimensionality by assuming a non-linear relationship between high
dimensional data samples. The objective behind SE is to non-linearly map ob-
jects c, d ∈ C that are adjacent in the M dimensional ambient space (F (c),F (d))
to adjacent locations in the low dimensional embedding (S (c),S (d)), where
S(c),S (d) represent the β-dimensional dominant Eigen vectors corresponding
to c, d (β << M). Such non-linear mapping captures the inherent structure of
the high dimensional data manifold such that object proximity and local geome-
tries are preserved in the reduced Eigen space. These methods can also employ a
wide range of similarity kernels and hence can be applied to representing diverse
data including imaging, spectral, and omics.

With the wide array of multi-scale, multi-functional, multi-modal data now
available for disease characterization, one of the challenges in integrated dis-
ease diagnostics is to homogeneously represent the different data streams (eg.
imaging, spectroscopy, omics) to enable data fusion and classification. For ex-
ample, consider the difficulties in fusing T2-weighted (w) MRI data (structural
information) with MRS data (metabolic information) which involves combining
scalar MR image intensity information with a high dimensional metabolic vector
from the same spatial location. Data-fusion algorithms are classified broadly as
data level integration and decision level integration [4]. At data level integration,
original features (FA(c)) and (FB(c)) from two disparate modalities A and B
are combined either via vector concatenation FAB(c) = [FA(c),FB(c)] or some
sort of averaging. In decision level integration, individual classifications (hA) and
(hB) from each modality A,B are combined. Decision level integration strate-
gies however tend to implicitly treat the data channels as independent and may
result in sub optimal fusion and classification.

2 Novel Contributions of This Work

In this paper, we present an integrated data representation, fusion and classifi-
cation scheme, Spectral Embedding based Probabilisitic Boosting Tree (ScEP-
Tre), that enables (a) homogeneous representation of multiple, disparate, high
dimensional biomedical data modalities in a reduced dimensional space, and (b)
fusion of disparate features from heterogeneous modalities of differing dimen-
sionalities to obtain improved classification. Data representation and fusion in
ScEPTre is performed using Spectral Embedding (SE), while the Probabilistic
Boosting Tree (PBT) algorithm is used for classification. The PBT classifier
generates a tree structure by recursively training each node of the tree using
AdaBoost such that each node is a strong classifier [5]. PBT has the advantage
of computing discriminative probabilities where hard decisions cannot be made.
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In this work, we demonstrate the applicability of ScEPTre to first automat-
ically represent and classify prostate MRS and MRI individually, followed by
the data fusion of the two modalities for prostate cancer (CaP) detection. We
also demonstrate that ScEPTre on MRS for CaP detection significantly outper-
forms classification via wavelets, the traditional method of data representation
for spectral data. The contributions of this work are:

• A novel data representation scheme (ScEPTre) which enables data fusion
and classification by first homogeneously representing heterogeneous data
with different dimensionality within the spectrally embedded space.

• ScEPTre is shown to perform better in terms of representing high dimen-
sional spectral data compared to the wavelet representation and yields better
classification compared to decision level integration.

3 Methodological Description of ScEPTre

3.1 Spectral Embedding of High Dimensional Biomedical Data

The aim of Spectral Embedding [3] is to find an embedding vector SSE(ci),
∀ci ∈ C, i ∈ {1, . . . , |C|}, such that the relative ordering of the distances be-
tween objects in high dimensional space is maximally preserved in the lower
dimensional space. Thus, if locations ci, cj ∈ C, i, j ∈ {1, . . . , |C|}, are ad-
jacent in the high dimensional feature space F (ci),F (cj) respectively, then
||SSE(ci) − SSE(cj)||2 should be small, where ||.||2 represents the Euclidean
norm. This will only be true if the distances between all ci, cj ∈ C are preserved
in the low dimensional mapping of the data. To compute the optimal embedding,
we first define adjacency matrix WSE ∈ �|C|×|C| as

WSE(i, j) = e−||F(ci)−F(cj)||2 , ∀ci, cj ∈ C, i, j ∈ {1, . . . , |C|} . (1)

SSE(ci) is then obtained from the maximization of the function:

E(XSE) = 2γ × trace

[
XSE(D −WSE)XT

SE

XSEDXT
SE

]
, (2)

where XSE =
[
SSE(c1);SSE(c2); . . . ;SSE(cn)

]
, n = |C| and γ = |C| − 1. Addi-

tionally, D is a diagonal matrix where ∀c ∈ C, the diagonal element is defined as
D(i, i) =

∑
j WSE(i, j). The embedding space is defined by the Eigenvectors cor-

responding to the smallest m Eigenvalues of (D−WSE) XSE = λDXSE. The ma-
trix XSE ∈ �|C|×β of the first β Eigenvectors is constructed, and ∀ci ∈ C,SSE(ci)
is defined as row i of XSE.

3.2 Multi-modal Data Fusion in the Embedding Space

In [4], it has been suggested that data level integration can be achieved by ag-
gregating features from two disparate sources (F 1(c) and F 2(c)) into a single
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feature vector E(c) before classification. While this may be a reasonable strategy
when |F 1(c)|=|F 2(c)|, it may not be optimal when the feature vectors are of very
different dimensionalities. ScEPTre enables data fusion between different dimen-
sional feature vectors F 1(c), F 2(c) by first independently spectrally embedding
them (|SSE

1 (c)| = |SSE
2 (c)|) so that the combined feature vector [S1(c),S 2(c)]

can then be used for classification.

3.3 PBT Classifier

The PBT algorithm [5] is a combination of the Adaboost and decision trees
classifiers. It iteratively generates a tree structure of length L in the training stage
where each node of the tree is boosted with T weak classifiers. The hierarchical
tree is obtained by dividing new samples in two subsets of F̃Right and F̃Left

and recursively training the left and right sub-trees using Adaboost. To solve for
overfitting, error parameter ε is introduced such that samples falling in the range
[12 − ε, 1

2 + ε] are assigned to both subtrees with probabilities (F (c), p(1|c)) →
F̃Right(c) and (F (c), p(0|c)) → F̃Left(c), where the function p(Y |c) represents
the posterior class conditional probability of c belonging to class Y ∈ {0, 1}. The
algorithm stops when misclassification error hits a pre-defined threshold θ.

During testing, the conditional probability of the sample is calculated at each
node based on the learned hierarchical tree. The discriminative model is obtained
at the top of the tree by combining the probabilities associated with probabil-
ity propagation of the sample at various nodes yielding a posterior conditional
probability value p(1|c), p(0|c) ∈ [0, 1], for each sample c as belonging to one of
the two classes.

4 ScEPTre for Prostate Cancer Detection Using
Integrated MR Imaging and Spectroscopy

4.1 Notation and Data Description

A total of 15 1.5 Tesla (T) T2-w MRI and corresponding MRS studies were
obtained prior to radical prostatectomy from University of California, San Fran-
cisco. We represent the 3D prostate T2-w scene by Ĉ = (Ĉ, f̂), where Ĉ is a
3D grid of voxels ĉ ∈ Ĉ and f̂(ĉ) is a function that assigns an intensity value
to every ĉ ∈ Ĉ. We also define a spectral scene C = (C,F ) where C is a 3D
grid of MRS metavoxels, c ∈ C and F is a spectral vector associated with each
c ∈ C. Note that multiple voxels are present within the region Rcd between any
two adjacent metavoxels c, d ∈ C. For the sake of convenience we represent Rcd

as R(c), where ĉ ∈ R(c). Figure 1(a) shows a MRS spectral grid superposed on
a T2-w MRI slice with expert annotated class labels Y (c) ∈ {1, 2, 3, 4, 5} based
on a clinical standardized 5-point scale [6] which classifies each spectra as def-
initely benign (1), probably benign (2), equivocal (3), probably cancer (4) and
definitely cancer (5). In this work, all spectra labeled (4, 5) were assumed to be
CaP and all spectra labeled as (1, 2) were assumed as benign. The 15 studies
comprised 1331 class 1, 2 and 407 class 4, 5 spectra.
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Fig. 1. (a) MRS metavoxels c ∈ C superposed on the corresponding T2-w MRI sec-
tion. Representative spectra from (b) class 2 (probably benign) and (c) class 4 (prob-
ably CaP) are shown. Note that classifying such similar looking spectra manually is a
challenging, error prone, and laborious task for radiologists.

4.2 Feature Extraction of MRI and MRS

(a) Feature Extraction from MRS. Instead of extracting features derived
from MRS spectral peaks, we consider the spectra in its totality. Thus, each
c ∈ C, F (c) = [fα(c)|α ∈ {1, ...U}] represents the MR spectral vector, reflecting
the frequency component of each of the U metabolites.

(b) Feature Extraction from MRI. 38 texture features scenes were extracted
motivated by previous demonstration of their utility in discriminating between
the CaP and non-CaP classes [7]. We calculated the feature scenes Ĝu = (Ĉ, f̂u)
for each Ĉ by applying the feature operators Φu, u ∈ {1, . . . , 38} within a local
neighborhood associated with every ĉ ∈ Ĉ. Hence f̂u(ĉ) is the feature value asso-
ciated with feature operator Φu at voxel ĉ. 13 gradient, 12 first order statistical
and 13 Haralick features were extracted at each ĉ ∈ Ĉ. We define a T2-w MRI
texture feature vector for each metavoxel c ∈ C by taking the average of the fea-
ture values within the corresponding metavoxel as gu(c) = 1

|R(c)|
∑

ĉ∈R(c)

[
f̂u(ĉ)

]
where |R(c)| represents the cardinality of the set of voxels contained in the space
between any 2 adjacent meta-voxels. The corresponding feature vector is then
given as G(c) = [gu(c)|u ∈ {1, . . . , 38}], ∀c ∈ C.

4.3 Data Representation, Fusion, and Classification via ScEPTre

(a) Data Representation. For each c ∈ C, G(c), F (c) is reduced to β dimen-
sional feature vectors ST2 and SMRS , corresponding to the spectrally embedded
T2-w and MRS vectors [8].

(b) Data Fusion. Owing to the physical and dimensional differences in the
MRS and T2-w MRI features, the MRS-MRI meta-classifier is created in the
joint T2-w MRI and MRS embedding space where the physicality of the object
features has been removed. A direct concatenation of the T2-w MRI and MRS
embedding coordinates can be obtained as ST2MRS = [ST2(c),SMRS(c)]. The
concatenated feature vector ST2MRS(c) is then used for classification.
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(c) Classification. PBT generates a posterior conditional probability for CaP,
p(wT | Sφ), φ ∈ {T 2,MRS, T 2MRS} for each spectral location c ∈ C, based on
the embedding vector Sφ(c), where wT represents CaP class (4, 5 spectra). We
define hφ,ρ(c) as the binary prediction result at each threshold ρ ∈ [0, 1] such
that hφ,ρ(c) = 1 when p(wT |Sφ) ≥ ρ, 0 otherwise.

PBT was trained using θ = 0.45 and ε = 0.4 as suggested in [5]. Five weak
classifiers were used to train each node of PBT using AdaBoost for length L = 5.
Since samples for each class (1, 2 and 4, 5) were not equally distributed within the
dataset, the number of training samples (Π ∈ {100, 200, 300}) from each class
was varied to evaluate the classifier with respect to training and the remaining
were used for testing. A randomized cross validation strategy comprising 25
runs was used to evaluate PBT performance for each set of training data (Π ∈
{100, 200, 300}). For each training set, Receiver Operating Characteristic (ROC)
curves were computed and mean μAUC and standard deviation σAUC of area
under curve (AUC) were computed over 25 runs. The experiments were repeated
for different numbers of embedding dimensions (β ∈ {5, 10, 15}).

5 Results and Discussion

Figure 2(a) shows average ROC curves obtained for hT2, hMRS , and hT2MRS

across 25 runs of randomized cross validation for β = 10 using 300 training
samples from each class (1, 2 and 4, 5). The highest AUC value corresponds to
the classifier hT2MRS(shown in black), while the lowest is for hT2 (shown in red).
Figure 2(b) shows average ROC curves obtained from hT2MRS and ĥT2MRS for
β = 10 using 300 training samples from each class across 25 cross validation
runs. AUC and accuracy values for hT2, hMRS , and hT2MRS averaged over 25
cross validation runs are summarized in Table 1 with corresponding standard
deviations for β = {5, 10, 15}. Our quantitative evaluation demonstrate that
CaP classification obtained via ScEPTre employing multi-modal integration of
MRI-MRS outperforms classification obtained via, (a) wavelets, (b) MRI, MRS
alone, and (c) decision level integration of MRI-MRS.

5.1 MRS via ScEPTre and Wavelet Based PBT Classification

Discrete wavelet transform (DWT) based representation of MRS was compared
against the spectral embedding representation. DWT transforms a M dimen-
sional spectral signal F (c) into a feature vector SWT (c) containing M wavelet
coefficients using a set of basis functions. Each wavelet coefficient is calculated
by taking the dot product of spectral vector F (c) with one of the N basis func-
tions, derived from the mother wavelet by a series of translations and dilations.
The top m of M largest wavelet coefficients were used for classification with the
PBT to distinguish between cancer (4, 5) and benign spectra (1, 2). Different
values of N ∈ {3, 4, 5, 6, 7, 8, 9} were employed in the spectral representation.
Quantitative results indicate that ScEPTre on MRS performs better compared
to a wavelet-based PBT classifier, both in terms of accuracy and AUC. ScEP-
Tre using hMRS results in μAUC=0.8743 (β = 10, Π = 300) compared to hWT

(N = 7, Π = 300) which yields μAUC = 0.7725.
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Fig. 2. Average ROC curves across 300 training samples over 25 cross validation runs
for classifiers (a) hT2, hMRS , hT2MRS , and (b) hT2MRS , ĥT2MRS . The best perfor-
mance in both (a) and (b) corresponds to the classifier (shown in black) based on data
level integration of structural and metabolic data (hT2MRS).

Table 1. Table shows the μAUC , σAUC and accuracy results for 300 training samples
from each class using ScEPTre on hT2, hMRS , hT2MRS respectively, for β ∈ {5, 10, 15}

β Accuracy AUC
hT2 hMRS hT2MRS hT2 hMRS hT2MRS

5 56.53 ± 5.53 65.35 ± 4.5 67.62 ± 3.5 65.13 ± 3.13 76.32 ± 1.87 75.82 ± 2.09
10 67.72±3.42 79.44±3.33 79.51±2.54 73.27±2.36 86.17±1.91 87.43±1.41

15 71.12± 4.47 81.52 ± 2.53 83.64 ± 2.61 73.89 ± 1.73 87.49 ± 1.49 90.27 ± 1.52

5.2 ScEPTre Based MRI-MRS Meta-classification Compared to
MRI/MRS Alone

As is apparent from Figure 2 and Table 1, MRI-MRS data fusion (hT2MRS)
using ScEPTre significantly outperformed classification obtained by both T2-w
MRI (hT2) and MRS (hMRS) individually.

5.3 Data Level Integration vs. Decision Level Integration

The higher AUC values for hT2MRS compared to ĥT2MRS suggests that data
level integration is superior to decision level classification. Paired student t-tests
were also conducted for AUC at the operating point of the average ROC curves,
with the null hypothesis being no improvement in performance of hT2MRS when
compared to the other 3 classifiers (hT2, hMRS , ĥT2MRS). Significantly superior
performance (p < 0.05) was observed for hT2MRS suggesting that integrating
structural textural features and metabolic information at the data-level offers
the most optimal results for CaP detection.

6 Concluding Remarks and Future Directions

In this paper, we presented ScEPTre, an integrated data representation, inte-
gration and classification scheme which is capable of (a) accurately representing
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high dimensional biomedical data, (b) integrating two heterogeneous multi-
modal datasets embedded in different dimensionalities, and (c) yielding superior
data-level integration compared to decision level combination. Data representa-
tion was employed using spectral embedding, a non-linear dimensionality reduc-
tion scheme which extracts meaningful class relationships embedded in the data.
Data integration in ScEPTre is then performed by concatenating Eigen feature
vectors obtained from the different modalities, subsequently classified via a Prob-
abilistic Boosting Tree. In this work we presented the application of ScEPTre
for representation, integration and classification of MRS and MRI for prostate
cancer detection. Results show that ScEPTre on MRS significantly outperforms
a classifier that uses wavelets to represent the MRS data. We also demonstrated
that integration of MRI-MRS using ScEPTre performs better than both MRI
and MRS alone, and ScEPTre based data fusion is superior to decision level
integration from a classification perspective.
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Abstract. We propose to use the sparseness property of the gradient
probability distribution to estimate the intensity nonuniformity in med-
ical images, resulting in two novel automatic methods: a non-parametric
method and a parametric method. Our methods are easy to implement
because they both solve an iteratively re-weighted least squares problem.
They are remarkably accurate as shown by our experiments on images
of different imaged objects and from different imaging modalities.

1 Introduction

Intensity nonuniformity is an artifact in medical images, perceived as a smooth
variation of intensities across the image. It is also referred to as intensity inhomo-
geneity, shading or bias field. This artifact can be produced by different imaging
modalities, such as magnetic resonance (MR) imaging, computer tomography
(CT), X-ray, ultrasound, and transmission electron microscopy (TEM), etc. Al-
though intensity inhomogeneity may not be noticeable to human observer, it can
degrade many medical image analysis methods like segmentation, registration,
and feature extraction, etc.

There exist different kinds of methods to correct the intensity nonuniformity in
medical images. In the recent detailed review [1], they are classified into filtering
based methods to remove image contents unrelated to the nonuniformity, surface
fitting based methods based on the intensities of major tissues or the image
gradients [2], segmentation based methods performed by iterating on the two
processes of image segmentation and bias field’s fitting [3,4], and image intensity
histogram based methods through maximizing the high frequency of the image
intensity distribution or minimizing the image entropy [5,6], etc.

In this paper, we propose to apply the sparseness property of the gradient
probability distribution in medical images to the automatic estimation of the bias
field. The sparse distribution is typically characterized by a high kurtosis and
two heavy tails. From this prior knowledge, we obtain a non-parametric method
and a parametric method. The two methods are simple to implement. They both
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work by solving an iteratively re-weighted least squares (IRLS) problem. In each
iteration, only a linear equations system needs to be solved. The two novel
methods are also remarkably accurate, as shown by our results on simulated and
real MR brain images, real CT lung images, and real TEM rabbit retina images.

2 Sparseness of Image Gradient Distribution

Recent research has shown that images of real-world scenes obey a sparse proba-
bility distribution in their gradients [7,8]. This sparseness property is extremely
robust and characterized with a high kurtosis and two heavy tails in the gra-
dient distribution. It stems from the assumption on the image that adjacent
pixels have similar intensities unless separated by edges, i.e. the widely known
piecewise constancy property of image.

This sparse distribution can be modeled with different ways, e.g. the
exponential function [8], as expressed below

p(x) = e−|x|α (1)

where the parameter α < 1 and can be fit from the gradient histogram.
We compute the image gradient histogram with the optimal bin size computed

by the method in [9], and then use it to fit α in Eq. (1) with the maximum
likelihood [10].

3 Methods

We use this sparseness property of gradient distribution in medical images to
estimate the bias field in order to correct the intensity nonuniformity. To be
concise, we provide the explanations of the 2D image case. However, the modi-
fications to the 3D volume are straightforward.

3.1 Problem Definition

Considering the noise free case, a given 2D medical image Z is the product of
the intensity nonuniformity free image I and a bias field B, as expressed below

Z(i, j) = I(i, j)B(i, j), (2)

where (i, j) index pixel in the image, and if M and N represent the total numbers
of rows and columns, respectively, we have 1 ≤ i ≤M and 1 ≤ j ≤ N .

In the process of correcting the intensity nonuniformity, our goal is to estimate
B in Eq. (2) for each pixel. This is a classic ill-posed problem because the number
of unknowns (I and B) is twice the number of equations. To make it solvable,
we need to add constraints on both I and B.

Instead of computing B directly, we solve for its logarithm as in [8]. Let
Z = lnZ, I = ln I, and B = lnB. Then, we have

Z(i, j) = I(i, j) + B(i, j). (3)
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We denote the gradients of Z, I, and B for each pixel (i, j) by ψZ(i, j), ψI(i, j),
and ψB(i, j), respectively. Then,

ψZ(i, j) = ψI(i, j) + ψB(i, j). (4)

Given an image Z with the intensity nonuniformity, we find a maximum a pos-
teriori (MAP) solution to B. Using Bayes’ rule, this amounts to solving the
optimization problem

B = arg max
B

P (B|Z) ∝ arg max
B

P (Z|B)P (B). (5)

Different specifications of P (Z|B) and P (B) in Eq. (5) may lead to different
algorithms to solve the bias field B. The conditional probability P (Z|B) can be
determined by some prior knowledge on the nonuniformity free image I = Z−B,
while P (B) can be set from some prior information on the field B.

To compute P (Z|B), we impose the sparseness prior of the image gradient
distribution explained in Eq. (1) on I as below

P (Z|B) = P
(
ψI) = e−|ψ

I|α , α < 1. (6)

From Eq. (4), we have

ψI(i, j) = ψZ(i, j)− ψB(i, j) . (7)

Substituting Eq. (7) into Eq. (6), yields

P (Z|B) = e−
∑

(i,j)|ψZ (i,j)−ψB(i,j)|α . (8)

To determine P (B), there are basically two ways: non-parametric method and
parametric method. Non-parametric method does not assume any model on B
and estimate for each pixel while enforcing spatially local smoothness. P (B)
can be expressed explicitly by B values based on the smoothness constraints.
Parametric method represents B with some model functions and estimate the
parameters of the model. P (B) is represented by the parameters of the model
through enforcing some prior constraints on the model, or is eliminated when no
prior constraint is necessary in the model.

3.2 Non-parametric Method

We impose a smoothness prior over B:

P (B) = e−λs

∑
(i,j)

(
Bxx(i,j)2+Byy(i,j)2

)
, (9)

where λs is a parameter (e.g. 0.8) determining how smooth the resulting B will
be, and Bxx(i, j) and Byy(i, j) are the second order derivatives at pixel (i, j)
along the horizontal direction and vertical direction, respectively.
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MRI image Weight

Fig. 1. Computed weights (Eq. (13)) in the non-parametric method after the 3rd it-
eration of the IRLS algorithm, shown by color coding with the spectrum in the color
bar (right).

The maximization of Eq. (5) becomes the the minimization of the below object
function

O =
∑
(i,j)

∣∣ψZ(i, j)− ψB(i, j)
∣∣α + λs

⎛
⎝∑

(i,j)

Bxx(i, j)2 +
∑
(i,j)

Byy(i, j)2

⎞
⎠ . (10)

The minimization of Eq. (10) does not have a closed-form solution because the
exponent α in the first term is less than one as mentioned in Eq. (1). To solve
it, most nonlinear optimization techniques [11] can be directly applied, however,
they would be very time-consuming and easy to be trapped into a local minimum
considering the large number of unknowns in Eq. (10) (it equals to the number of
pixels). In order to get a good solution in less time to this minimization problem,
we employ the iteratively re-weighted least squares (IRLS) technique [12,8]. IRLS
poses the optimization as a sequence of standard least squares problems, each
using a weight factor based on the solution of the previous iteration. Specifically,
at the kth iteration, the energy function using the new weight can be written as

O =
∑
(i,j)

wk(i, j)
(
ψZ(i, j)− ψB(i, j)

)2
+ λs

⎛
⎝∑

(i,j)

Bxx(i, j)2 +
∑
(i,j)

Byy(i, j)2

⎞
⎠ ,

(11)
where weight wk(i, j) is computed in terms of the optimal Bk−1 from the last
iteration as

wk(i, j) = e−S1(1 − e−S2),
S1 =

∣∣ψZ(i, j)− ψBk−1(i, j)
∣∣, S2 = α (S1)

α−1 (12)

It is easy to see that minimizing O in Eq. (11) is to make the gradient of B
equal to the gradient of Z at each pixel while enforcing spatially local smoothness
on B. However, it is well known that this kind of problem has no unique solution
because adding a constant value on B will not influence O value. To tackle it,
we add another constraint as shown in the new object function below

O =
∑

(i,j) wk(i, j)
(
ψZ(i, j)− ψB(i, j)

)2

+ λs

(∑
(i,j) Bxx(i, j)2 +

∑
(i,j) Byy(i, j)2

)
+ ε

∑
(i,j) B(i, j)2,

(13)
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where ε is a very small value, e.g. 0.00001. This constraint makes B as small as
possible (i.e. B as close to 1 as possible), leading B to a unique solution.

The object function in Eq. (13) is a standard least-squares problem. We
can always obtain a closed-form optimal solution by solving a linear equations
system. Details of the solution can be found in the supplementary file.

In our experiments, we initialize B(i, j) = 0 (i.e.B(i, j) = 1) for all pixels (i, j),
and find that it suffices to iterate three or four times to obtain satisfactory results.
We also observed that the re-computed weights at each iteration k are higher at
pixels whose gradients in Z are more similar to the ones in the estimated Bk−1.
Thus, the solution is biased towards smoother regionswhose gradients are relatively
smaller. Fig. 1 shows the weights recovered at the final iteration for an MR image.

3.3 Parametric Method

Different models are suitable to represent the nonuniformity field B, considering
its smoothly changing property, like the cubic B-splines [5], thin-plate splines,
and the the bivariate polynomial, etc. We choose the bivariate polynomial for
its efficiency shown by [2], for which the model in degree D (e.g. 4) is

B(i, j) =
D∑

t=0

t∑
l=0

at−l,lx
t−l
(i,j)y

l
(i,j) (14)

where {at−l,l} are parameters determining the polynomial, and x(i,j) and y(i,j)
are the values of pixel (i, j) on the x-axis and y-axis, respectively. Note that the
number of elements in {at−l,l} is (D + 1)(D + 2)/2.

We apply the IRLS scheme used in the non-parametric method to estimating
model parameters in the parametric method. Considering the fact that the model
in Eq. (14) already incorporates the spatial smoothness on B, the smoothness
constraints on B values can be eliminated. The object function in each iteration
of the IRLS is then written as

O =
∑
(i,j)

wk(i, j)
(
ψZ(i, j)− ψB(i, j)

)2
+ ε

D∑
t=0

t∑
l=0

a2
t−l,l (15)

where we add the regularization on {at−l,l} in order to get a unique solution as
explained in Eq. (13), and the weights wk(i, j) are computed with Eq. (12).

The object function in Eq. (15) is also a standard least-squares problem rela-
tive to {at−l,l}, and its minimization also has a closed-form solution by solving a
linear equations system. It can be seen from the fact that gradient on B is linear
to {at−l,l}. More details of the solution can be found in the supplementary file.
In our experiments, we initialize {at−l,l} to zero, and it suffices for three or four
times to obtain satisfactory results.

The proposed non-parametric and parametric methods are both easy to imple-
ment and run fast. The two methods iterate only three or four times on solving
a weighted least square problem with the IRLS technique. The weighted least
square problem is solved by resolving a linear equations system for which the
solution can be represented by some operations of matrices. We note that the
operations of sparse matrices are needed for solving Eq. (13).
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Different Noise Levels Different Nonuniformity (NU) Levels

Fig. 2. The statistics of Root Mean Squared Error (RMSE) in estimation of the bias
field in the simulated MR brain data sets at different levels of noise and nonuniformity

4 Results

To implement our algorithms, the matrix operations in Eq. (13) were performed
with the TAUCS 1, a library of sparse linear solvers.

We provide both quantitative evaluations with simulated data sets and visual
evaluations with real data sets on our algorithms. For all experiments, we use
α = 0.71 in the sparse distribution model (Eq. (1)), that was estimated from
84 MR human brain images and 45 CT human lung images. These images were
chosen to be free of the intensity nonuniformity guaranteed by visual inspections.
In addition, we run our algorithms on a lower resolution image down-sampled
from the given image and then reconstruct the resulting bias field to the original
size by interpolation, as in [5]. In the experiments, the gradients along the two
axis for 2D image and the three axes for 3D volume are all used.

4.1 Quantitative Evaluation

We test our algorithms on the 3D MR volumes obtained from the BrainWeb
Simulated Brain Database2, for which the ground truth of the bias field is known.
The Root Mean Squared Error (RMSE) between the estimation and the ground
truth is computed. The results of our algorithms are compared with the widely
used N3 [5], AFCM [3], and EM based method [4].

The simulated data sets are obtained with the following settings: T1, T2 and
PD modalities, slice thickness of 1 mm, 0%, 3% and 7% noise levels, and 20% and
40% intensity nonuniformity levels. As a preprocessing, the extra-cranial tissues
were removed from all 3D volumes according to the ground-truth memberships
of the tissues provided on the BrainWeb website. In order to get data sets with
more severer intensity nonuniformity effects, we constructed the 60% intensity
nonuniformity level by linearly scaling the range values of the ground truth to
0.70 ... 1.30 as explained on the website, and then enforcing it on the volumes
download with the different noise levels and with 0% intensity nonuniformity.
1 http://www.tau.ac.il/ stoledo/taucs/
2 http://www.bic.mni.mcgill.ca/brainweb/
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Original image Corrected image Bias field image Profile

Fig. 3. Corrections of the bias field by our non-parametric method on one MR brain
image (up), one TEM image (middle) from rabbit retina, and one CT lung image
(down). The profiles are drawn on a horizontal line of the image.

Before computing the RMSE statistics, the multiplicative factor [5] is removed
from the resulting bias field by minimizing the mean square distance between
the result and the ground truth. Therefore, only the shape differences account
for the errors.

We found that the chosen methods all perform very similarly on different
imaging modalities. Therefore, we averaged the RMSE statistics over the three
modalities. From the results shown in Fig. 2, we can see that our methods can
improve the estimation accuracies relative to the standard methods. Moreover,
our methods seem more robust to noise. Compared between the two new meth-
ods, the parametric method resists noise better but may produce larger errors
when the nonuniformity is very severer. It is because a severer bias field may go
beyond the representation ability of the model in Eq. (14).

4.2 Visual Evaluation

We also run our algorithms on real data: 9 MR brain volumes, 2 TEM images
from the rabbit retina, and 5 CT lung volumes, for which the intensity nonuni-
formity artifacts can be visually perceived. Due to the lacking of the ground
truth of the bias fields, we evaluate the results by visual inspections through
observing the intensity profile on selected lines.
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We found that both of our two new methods can efficiently correct the bias
field in images from different modalities and of different imaged objects, resulting
in flatter profiles. We put some results by the non-parametric method in Fig. 3.

5 Conclusion and Future Work

Based on the sparseness of the gradient distribution in medical images, we
proposed a non-parametric approach and a parametric approach for the au-
tomatic correction of the intensity nonuniformity. They are easy to implement
and remarkably accurate. Similar strategy has already been used successfully
vignetting correction in [8].

Considering the fact that the sparseness property can be treated as a robust
prior knowledge of an ideal image or even an ideal deformation field, our paper
may also inspire several more works following the line of using this property in
medical image inpainting, image segmentation, and image registration.
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work via grants EB006266, DA022807 and NS045839.
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Abstract. In this paper we propose a method for the weakly supervised
learning of sparse appearance models from medical image data based on
Markov random fields (MRF). The models are learnt from a single an-
notated example and additional training samples without annotations.
The approach formulates the model learning as solving a set of MRFs.
Both the model training and the resulting model are able to cope with
complex and repetitive structures. The weakly supervised model learn-
ing yields sparse MRF appearance models that perform equally well as
those trained with manual annotations, thereby eliminating the need for
tedious manual training supervision. Evaluation results are reported for
hand radiographs and cardiac MRI slices.

1 Introduction

The reliable, fast segmentation of anatomical structures is a central issue in med-
ical image analysis. It has been tackled by a number of powerful approaches.
Among them are Active Shape Models / Active Appearance Models [1], Ac-
tive Feature Models [2], Graph-Cuts [3], Active Contours [4], or Level-Set ap-
proaches [5]. There are two main open issues with the current approaches in
model based localization and segmentation: 1. The usually limited capture range
of model search, that requires some sort of initialization, making application spe-
cific heuristics necessary, and 2. the learning of the model, which is only possible
with a substantial amount of user supervision. This is of particular importance
for medical data, which exhibits ambiguous appearance and complex structure.
In this paper we propose an approach that tackles both of these points by
formulating the learning of a model in a discrete optimization framework.

The approach proposed in this paper is related to two lines of previous work 1)
Group-wise registration approaches: in [6] the authors establish a mapping on a
� This work has been supported by the Austrian National Bank Fond project Com-

puter Based Quantification of Osteoporosis and Bone Alignment, MU Vienna, TU
Graz.
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(a) (b) (c)

Fig. 1. (a) Example of an annotation consisting of M manually selected interest points
used for model building. (b) Examples of the SAM hand model match on the hand
data sets. (c) Match of a SAM model trained on heart MRs on a test image. Each
model node has been assigned to an interest point in the target image such that the
overall MRF confidence for the match is maximized.

spherical reference manifold, [7] which employes piece-wise affine deformations to
map the entire data, [8] which uses congealing to obtain a model of appearance
variation from a set of images, or [9] where correspondences between sets of
interest points in a population of examples are obtained. 2) Work that integrates
discrete optimization for the analysis of image populations: in [10] MRFs are
used as an efficient way of encoding deformations for the registration of pairs
of images, in [11] Sparse MRF Appearance Models (SAMs) localize objects and
structures in images with shape and appearance models based on MRFs. They
use a sparse representation of the object category consisting of a statistical model
of local appearance descriptors and localize geometry. The information encoded
in the model and the results of the search image analysis are used to construct
an MRF whose solution represents the optimal mapping of the model to the
image, i. e. the best localization.

The contribution of this paper is a method that learns a sparse model of shape
and appearance based on Markov random fields in a weakly supervised fashion.
Instead of relying on the tedious, and potentially in-accurate annotation of the
entire training data, only a single instance is annotated, to define the structure of
interest. Based on this initial annotation the algorithm extends the model to the
remaining training examples by iteratively including high confidence matches in
the emerging model which is encoded as an MRF. The method results in a model
quality equivalent to manually constructed sparse MRF appearance models, as is
shown in Sec. 4. We report results for two medical data sets employing combined
GVFpoints [11] and Harris corners as well interest points based on superpixels [12].
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The paper is structured as follows: In Sec. 2 we outline the weakly supervised
learning approach building on Sparse MRF Appearance Models. Sec. 3 discusses
how to employ interest point detectors based on superpixels in the SAM frame-
work. In Sec. 4 we present the experimental evaluation of our approach, followed
by conclusion and outlook in Sec. 5.

2 Model Learning by Discrete Optimization

The learning method is based on modeling the shape and appearance variation of
an object population and encoding the model’s relation to an image in an MRF.
The MRF’s solution represents the optimal mapping of a model to an image, i. e.
the best localization. During the learning phase such MRFs are solved repeatedly,
optimizing the set of landmark correspondences across the images, while at the
same time converging to a final model which optimally captures the properties of
the entire training set. The appearance of the training examples is captured by
local descriptors. The model consists of a set of landmarks, each associated with
a model point descriptor Dm, and a set of edges connecting these landmarks.
The edges hold the geometry information in the form of Gaussian distributions
of model edge lengths (la, lσa ) and model angles (βa1, βa2, β

σ
a1, β

σ
a2) as well as

appearance descriptors Ea.

Shape and Appearance Model Matching by MRFs. The costs of matching
of a model to an example image are encoded in the confidence function

C(S) =
∑

m=1...M

C(m,S(m)) +
∑

a=1...A

E(a,S(a)), (1)

which consists of unary terms C describing the M model landmarks similarities,
binary terms E capturing the similarities of the A model edges to the target
edges. To estimate C and V a set of interest points {p1, . . . ,pN} is extracted
from the image with the corresponding local appearance descriptor. The MRF’s
solution, the so called labeling S maximising C, assigns each model node m to
an interest point t in the target image.

The quality of a (model pointm, target point t)-match cm,t equals the negative
distance between the local target descriptor Dt and the model point descriptor
Dm: cm,t = −‖Dt − Dm‖. All mutual distances between model and potential
target correspondences are computed, resulting in C ∈ R

M×N encoding the
label qualities for each of the nodes. The qualities of the AN2 edges in the
model constitute E ∈ R

A×N2
. The quality of an edge e between two labels ni, nj

in E(a, e) = ea
conf is computed by comparing its length le and relative angles βe1,

βe2 with the corresponding (circular) Gaussian distributions of the model edge
length (la, lσa ) and model angles (βa1, βa2, βσ

a1, βσ
a2). The confidence for the edge’s

appearance equals the negative distance between the edge descriptor and the
model edge descriptor Ea. Each of the confidences is then normalized by operator
n(.) to a maximum of 0 and a median of -1 (Eqs. 2,5,6). The overall confidence
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of edge e representing the model edge a is finally set to the minimum of the
confidences for length, angles and descriptor, thus removing unlikely candidates:

ea
lengthConf = n

(
e−(le−la)2

/(2∗lσa
2) − 1

)
(2)

ea
angleConf1 = e−(βe1−βa1)

2
/(2∗βσ

a1
2) (3)

ea
angleConf2 = e−(βe2−βa2)

2
/(2∗βσ

a2
2) (4)

ea
angleConf = n

(
min(ea

angleConf1, e
a
angleConf2)− 1

)
(5)

ea
descriptorConf = n

(
−‖Ee −Ea‖

)
(6)

ea
conf = min(ea

lengthConf , e
a
angleConf , e

a
descriptorConf) (7)

Weakly Supervised Learning of the Model

Given the sparse appearance model estimate EJk defined by the landmarks from
labeling 〈Si|i ∈ Jk〉, initially derived from the manually annotated image J1 =
{j∗}, we can assign a confidence Ci(EJk) for the matching of the model estimate
to the training images i /∈ Jk and thus to the corresponding target interest point
(labelings Si). For the initial variances of the model’s distributions lower bounds
are used.

Based on the configuration of the landmarks we can check for the validity
of the resulting labeling, allowing for the exclusion of outliers, i. e. the labelings
have to conform to the model topology and the selected labels have to be unique.

Given a set of valid model confidences Ci(EJk) and corresponding labelings
Si the labeling

S∗
i = argmin

Si

Ci(EJk) (8)

is added to the model set Jk to compute a new model estimate EJk+1 with Jk+1 =
Jk∪i.This newmodel estimate is againused to compute labelings for the remaining
training images until J comprises all training images for which valid matches can
be computed, resulting in the final model estimate E∗. This model is then evaluated
by leave-one-out cross-validation on the whole data set (Sec. 4).

3 Capturing Local Appearance

In this work we employ local descriptors to capture the appearance of the exam-
ples during learning. For this various approaches exist, of which we investigate
two: In [11] gradient vector flow was utilized to detect interest points (GVF-
points), and describe their local appearance. The second method is based on
super-pixels and can be employed for data where GVFpoints are not well suited
and an even distribution of interest points is crucial.
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(a) (b)

(c) (d)

Fig. 2. (a) Illustration of the angle and length statistics learnt for a sparse appearance
model node in relation to its neighbors. GVFpoints (b) point and (c) edge descrip-
tors extracted from the GVF field. (d) Example of the watershed superpixels and the
resulting interest points (centroids) for the cardiac MR data set.

1. Local Descriptors from GVF and descriptors are located at the approxi-
mate centers of homogeneous regions, thus representing rotationally oder mirror
symmetric structures like the cross-sections of human organs and skeletal struc-
tures. Around each interest point patches are extracted from the vector field
according to their orientation as depicted in Fig. 2. To enhance the specificity of
local cliques of interest points, GVFpoints can be combined with complementary
information like the one derived from a Harris corner detector (Fig.1).

2. Local Descriptors from Superpixels Locally operating interest point de-
tectors face considerable problems when confronted with medical imaging data
obtained by MR or X-rays. Besides low contrast and strong noise, these im-
ages can be often characterized by a dominance of irregular, semi-local image
structures. In such a setting, local intensities no longer provide stable cues for
identifying discriminative features.

Recently [12] proposed Laplacian of Gaussians-based (LoG, i.e., mean curva-
ture) watershed regions in the context of multi-scale image over-segmentation.
The application of this technique leads to a complete segmentation into regu-
larly shaped, spatially evenly distributed semi-local interest regions as shown
in Fig.2 (d). Note that the watersheds approximate true region boundaries very
well. Also, the method is able to pick out important image structures of differ-
ent sizes. Given an image I, the LoG at position x is defined as ∇2I(x, t) =
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Fig. 3. Result histograms for the pixel distances of result landmarks to ground truth
landmarks for the two datasets

Ixx(x, t) + Iyy(x, t), where Ixx and Ixx denote the second-order partial deriva-
tives at Gaussian blurring scale t. The LoG produces strong negative/positive re-
sponses for bright/dark blob and ridge-like structures. Using this, interest points
are extracted as follows: 1) Detection of spatial extrema (seed points) in the LoG
response. Discard low contrast extrema with small minimum absolute difference
to adjacent pixels. 2) Segment the image into regions assigned to positive or
negative mean curvature. This is achieved by applying the watershed to the neg-
ative absolute Laplacian −|∇2I(x, t)| using the seeds from 1. 3) Interest points
are obtained as centroids of all pixels within a region. This is insensitive to small
shape variations of the regions. In practice we found a dense representation of
the image to give the best registration results. Due to the very moderate scale
variations in our data, scale adaption was not necessary. We simply extract in-
terest points at several predefined scales retaining the one with ≈ 800 interest
points.

4 Experiments

The proposed approach was evaluated on 2 medical data sets1: 1) For a set of 12
hand radiographs (300× 450pixels) 39 landmarks were used consisting of both
GVFpoints and interest points derived from a Harris corner detector. 2) 14 Slices
1 The implementation is available from the author’s website:
http://www.cir.meduniwien.ac.at/donner-software/
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Fig. 4. Boxplot depicting the results of the leave-one-out cross-validation for different
models. For each model, a different image from the training set was used as annotated
start image. Note how the model’s performance does not depend on the start image.

from cardiac MRs [13] with a resolution of 256x256 pixels were used together
with superpixel points (Fig. 1) with 18 interest points selected. This data set is
very challenging to conventional interest point detectors due to low contrasts,
very weak gradients and large variations throughout the set, impeding a single
parameter set to yield reasonable interest points. In contrast, the super pixel
based interest points proved to give reliable and descriptive locations, performing
equally well on all images in the data set. The number of superpixels was ≈ 800
for the heart data set while the total number of interest points for the hand data
amounted to ≈ 1000.

For each data set, the SAMs were run with in a leave-one-out cross valida-
tion framework a) using the manual annotations of all T training images to
construct the sparse appearance model and b) by employing the weakly super-
vised model learning approach starting from a single, manual annotation of a
randomly selected image and constructing the final model as outlined in Sec. 2.
c) Additionally, the influence of which image was annotated was investigated.

To measure the accuracy of the method, ground truth annotations (centers of
the fingers joints, inner and outer boundary of the left ventricle) were warped
between all possible n(n − 1) image pairs according to the diffeomorphic fields
imposed by the SAM matching results on the two images. The residual pixel dis-
tances between the warped landmarks to the fixed ground truth were recorded.
This measure illustrates the ability of the models to capture the intrinsic struc-
ture of the data and the success of the SAMs to yield an accurate match.

Results. The results for the experiments a) and b) are displayed in Fig. 3(a-
d). Subfigures (a) and (b) allow to compare the performance of the manual
model vs. the semi-automatic approach on the hand data set, while (c,d) show
the results for the cardiac MR data set. The mean/median / max values for
the hand models (a) 3.77 / 2.80 / 27.22 and (b) 4.15 / 3.03 / 25.70 demonstrate
the equivalent model matching capacity of both approaches. For heart MRs,
(c) 6.01 / 5.71 / 22.2 and (d) 5.98 / 5.70 / 19.54 consistently show an equal or
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better performance of the semi-automatic approach, resulting in less outliers.
Fig. 4 shows that the proposed model learning approach is insensitive to the
choice of the single annotated bootstrap image. This provides a high degree of
robustness for practical applications. The results clearly indicate the power of
the proposed weakly supervised model learning approach for SAMs to overcome
the need for the manual annotation of the whole training set. The runtimes for
the proposed approach are about 1 hour / 3 hrs for the heart / hand data sets
for the model learning phase, and around 10-20sec for a single localization.

5 Conclusion and Outlook

We present an approach for the weakly supervised learning of sparse appearance
models based on MRFs. The method requires only a single annotation, and learns
a model that represents appearance and geometric behavior from an training
population. The method is closely related to SAMs, but yields models without
the need for supervised training. It has the potential to solve the localization
requirements present in many state-of-the-art image analysis approaches, being
especially well suited for medical applications exhibiting complex and ambigu-
ous structures that make manual annotation, and standard local optimization
approaches, unfeasible. Together with super pixel based local descriptors this
forms the prerequisite for building 3D SAMs for widespread application, as the
shape annotation of 3D data is far more demanding and currently prohibits the
wide adoption of model based approaches in this domain.
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Abstract. The measure of lumen volume on radial arteries can be used
to evaluate the vessel response to different vasodilators. In this paper,
we present a framework for automatic lumen segmentation in longitudi-
nal cut images of radial artery from Intravascular ultrasound sequences.
The segmentation is tackled as a classification problem where the con-
textual information is exploited by means of Conditional Random Fields
(CRFs). A multi-class classification framework is proposed, and inference
is achieved by combining binary CRFs according to the Error-Correcting-
Output-Code technique. The results are validated against manually seg-
mented sequences. Finally, the method is compared with other state-of-
the-art classifiers.

1 Introduction

In order to evaluate the effects of drugs and vasodilators administration, the
morphological alteration of the artery must be analyzed after the drug treat-
ment. The most indicative parameter that can be used to evaluate the drug
effectiveness is the change of lumen volume. Intravascular Ultrasound (IVUS) is
an imaging technique that allows to explore both arterial vessel morphology and
composition; as such, it is suitable to perform the required measurement.

Most of the proposed approaches for automatic lumen segmentation devolve
upon active contour models the organization and interpolation of image features
belonging to the vessel border. Ad-hoc solutions, statistical and probabilistic
models including a-priori knowledge of the vessel geometry are also considered. In
[1,2] the gray level probability density function of the vessel structures, following
Rayleigh distribution, is used. In [3] a cost function over the edge image of the
vessel is defined, to perform a graph search based approach in which each pixel
is a node, determining the border as the minimum cost path. In [4] a shape
space is constructed from statistical analysis of morphology on training data and
borders are constrained to a smooth closed geometry. In [5] the lumen detection
is achieved by classifying blood areas using Adaboost.

The appearance of the lumen morphology in IVUS images is often corrupted,
mainly due to the effect of the guide of the catheter and calcifications in the

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 869–876, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c) (d)

Fig. 1. Short-axis IVUS image (a). Examples of corrupted areas in IVUS longitudinal
cuts: presence of outer arteries or veins (b), bifurcations and texture distortions (c),
calcifications and lack of continuity in vessel structure (d).

vessel wall. Furthermore, the presence of bifurcations or outer vessels, apparently
identical to the lumen area, can lead to an erroneous segmentation, especially
when the border appearance is subtle (see Fig. 1). Some of the existing automatic
lumen detectors cope with these problems by including a-priori knowledge or
spatial constrains related to the geometrical morphology of the vessel; other
methods perform a pre-emptive detection of calcifications, bifurcations or guide
effects, in order to predict where a correction on vessel geometry has to be
applied.

The method proposed in this paper is intended to overcome the need of ad-hoc
corrections or case-specific knowledge by formulating the segmentation process
as a classification problem, exploiting the contextual information over the vessel
geometry. The contextual information helps the inference in ambiguous cases by
exploiting the relationships among connected image points. To exploit this, we
propose to apply Conditional Random Fields (CRFs) [6], a discriminative graph-
ical model that estimates an a-posteriori probability function by considering the
observation of each node in the graph and both predictions and observations of
nodes in its neighborhood. The use of a CRF model as basic classifier allows to
design a framework in which different classes, together with their spatial rela-
tionship, can be learnt from a set of labeled examples. In order to differentiate
the lumen area from the rest of the vessel structure, usually corrupted by the
phenomena discussed above, we design a multi-class model where lumen, vessel
interfaces and outer tissue are represented as separate classes in a supervised
learning framework. The multi-class definition of the problem is here solved by
means of the Error-Correcting-Output-Code (ECOC) [7] technique. Finally, the
whole lumen structure detected by the ECOC Random Field (ECOC-RF) is
delineated by an active contour model.

Summarizing, the novelty of the proposed methodology consists in defining
the lumen detection and segmentation as a multi-class classification problem
using an ECOC-based supervised framework. Moreover, in order to cope with
the ambiguity of local image configuration, we take profit of the image context by
using CRF as a classifier able to make inference basing on local image features
and neighborhood relationships. Finally, the vessel region is regularized by a
deformable model.
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2 Methodology

2.1 Classes Definition

Looking at the longitudinal cut, different structures can be observed: blood re-
gion, interfaces and the outer part of the vessel. The class defined as interfaces
actually consists in the intima, typically identified by a transition from the darker
blood texture to a brighter area, and media-adventitia interfaces, characterized
by a dark band separating the internal vessel membrane from the outer tissue.
Given the different appearance of these interfaces as well as the fact that they
can be visible only in some regions of the image, we split the interface class into
two sub-classes. Since even the manual segmentation of interfaces is difficult, the
sub-classes definition (border1 and border2) is based on a k-means unsupervised
classifier [8]. The unsupervised clustering is solely used to define the two sub-
classes before the training process. Therefore, a 4 classes classification problem
is defined.

2.2 Features Extraction for Conditional Random Fields

CRFs as binary classifier requires a graphical representation G = (S, E) (lattice)
of the input data, where S is the set of nodes, corresponding to each block of
the lattice and E indicates edges, corresponding to the interconnections among
nodes. In this case, the lattice is constructed by dividing the longitudinal cut
into squared blocks of fixed size W . Features are first extracted from the whole
image, then a feature vector xi is assigned to each node Si ⊂ S by considering the
median value of each feature in the block. The feature selection process proposed
in [5] has been used to select, among a wide set of texture descriptors, the most
discriminant features for the proposed problem, resulting in Gabor filters [9],
Local Binary Patterns [10], Sobel filter in the x̂ direction, mean value, standard
deviation and the ratio among these two values on the grey-levels of the image,
computed by a sliding windows of size H . Finally, the First Order Absolute
Moment (FOAM) of the grey levels [11] is also used. FOAM is an operator that
computes a vector always pointing towards the strongest gray-level discontinuity
and assuming magnitude close to zero when applied to the discontinuity itself.
Features extraction process results in a 10-dimensional observation vector.

2.3 Conditional Random Fields

Once the graph has been constructed, the observation vector xi ∈ X and the
label yi ∈ Y = {−1,+1} can be assigned to each node Si. The probability func-
tion modeled by CRFs for a given binary classification problem can be estimated
as:

P (y|x, θ) =
1

Z(x)
exp(

∑
i∈S

A(yi,x, θS) +
∑
i∈S

∑
j∈Ni

I(yi, yj,x, θE)),

where A is the association potential, modeling the relationship among the obser-
vation x from an image region (node) with the label y for the region, while I is
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the interaction potential, modeling the relationship among different nodes. Ni is
the neighborhood of the node Si and θ = {θS ∪ θE} is a parameters vector that
has to be estimated; Z(x) is an observation-dependent normalization function.
A typical estimation of the parameter vector is given by θ∗ = argmaxθP (y|x, θ).

2.4 Error Correcting Output Code

The presented CRF is able to model a conditional probability for a binary
classification problem, while 4 classes are foreseen in our approach. Error Cor-
recting Output Code [7] is a technique that combines N binary classifiers to
solve a K-classes classification problem. For each class a particular codeword
ck = {1, 0,−1}1×N is obtained (k = 1, ...,K). Based on a chosen coding strat-
egy, a matrix M is designed, in which each column represents a binary classifier
(dichotomy) and each row represents a class. A value 1 in position M(k, j) means
that the jth dichotomy classifies an unknown example as belonging to the class
k, a value -1 means that the it belongs to the class q �= k and a 0 value means
that we do not care about classification result, regarding class k. Therefore, to
classify an unknown example, the distance between the obtained codeword and
each row mk of the matrix M is computed: the inferred class will be the value k
reporting the minimum distance. The number of classifier, using the one-versus-
one coding technique is K(K − 1)/2. In a 4 classes problem, 6 binary classifiers
must be trained (see Fig. 2).

Fig. 2. Error-Correcting-Output-Codes matrix used in a 4 classes (rows) classification
problem using 6 binary classifiers (columns) with one-vs-one coding technique. A white
box represents a 1 value, a grey box represents a 0 value and a black box a -1 value.
Br1,2 = border1,2, Bl = blood, Ot = outer tissue.

2.5 ECOC Random Fields for Automatic Lumen Detection

Given the graphical representation of the input images, following [12] we de-
fine the node features vector hi = [1,xi] and the edge feature vector hij =
[1, | xi − xj |], where xi and xj are the observations for the nodes Si and Sj ,
respectively. Since the classes border1 and border2 result from an unsupervised
clustering process, no spatial relationships is expected. For this reason, the dis-
crimination among these two classes is devolved upon an AdaBoost classifier
[13] trained with examples defined by the k-means unsupervised classifier. Con-
ditional Random Fields are instead trained to learn spatial dependencies on
the other binary problems. Following [12,14], potential functions are defined as
A (yi,x) = exp(yiθ

T
Nhi) and I(yi, yj ,x) = exp(yiyjθ

T
Ehij).
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The training process basically consists in estimating θ∗ = argmaxθP (y|x, θ)
or, equivalently θ∗ = argminθL(θ), where L(θ) is the negative Log-posterior of
the parameters given the data and the labels (see [12] for details); θN is initialized
by logistic regression, while θE is empirically initialized to a constant value 0.1.

The inference on the whole graph is performed by Loopy Belief Propagation
[15] for each binary CRF model, thus generating, together with the result pro-
vided by AdaBoost, a 6 elements codeword. The definition of different areas
of the image is achieved by decoding the codeword using Attenuated Euclidean
Distance [16]. Lumen regions are thus defined and inference for each node is
implicitly related to the contextual information of the neighborhood.

In order to achieve the final lumen segmentation, an active contour model is
applied on the vessel structure provided by the ECOC-RF classification, using
a gravity map as external energy function [17]. This step is necessary in order
to regularize the prediction by filtering some spurious points and, most impor-
tantly, by including long term interactions among classified regions. In this way,
the local estimation, assumed to be robust due to the exploited contextual in-
formation, is constrained by nodes in the neighborhood and by farther nodes
as well. It is worth to note that, differently from classical proposed approach,
the active contour model is here applied on a higher information level, i.e. the
segmentation obtained by the classification rather than the grey level informa-
tion provided by the image. In our case the role of the active model consists in
interpreting the results proposed by the multi-class classification rather than to
infer a solution.

3 Validation and Results

A wide set of IVUS images sequences from radial arteries have been acquired at
the University Hospital “German Trias i Pujol” (Badalona, Spain); 5 study cases,
presenting the more challenging segmentation have been selected, consisting in 10
sequences. Since the amount of data and the vessel structures variety in a single
sequence is large, the used data set is highly representative. Longitudinal cuts
have been extracted from each sequence and lumen area has been segmented
by two experts; areas in which both segmentations agreed have been consid-
ered as ground truth. Textural features described in section 2.2 are extracted
using the following parameters: (W,H) = (5,100) px, (σgabor , φgabor , Fgabor) =
{(12.7205, 0.0442, 0); (6.3602, 0.0442, 0); (3.1801, 0.3536, 3π/4); (1.5901, 0.3536, 3π/4)},
(RLBP , PLBP ) = (4,32) and (σ1F OAM = σ3F OAM ) = 15 px. We follow the Leave-
One-Patient-Out cross-validation technique. At each fold, manual and auto-
matic segmentation are compared and the error in lumen area detection is
computed. For each point x of the border delimiting the lumen area, the er-
ror ΔB(x) = mB(x) − aB(x) is computed; mB(x) and aB(x) are the man-
ual and automatic border detection, respectively. Evaluated parameters are:
max|ΔB(x)|, mean value and the standard deviation of ΔB(x). Furthermore,
contiguous patches corresponding to 1.5 sec of observations (� 0.8 mm) have
been considered in each sequence and lumen area in both manual and automatic
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Fig. 3. Manual vs Automatic lumen area measurement, in mm2, for the classifiers
considered in the comparison. The straight line fitting points is also indicated.

segmentation have been computed (Fig. 3). The correlation coefficient ρ between
the automatically predicted area and the ground truth area is also computed (see
Table 1).

Given the classification-based nature of the proposed method, a comparison
with other state-of-the-art classifiers is straightforward. For this reason, we also
classified the lumen region by using AdaBoost [13] and Support Vector Machine
(SVM) [18] binary classifiers in the blood-vs-outer tissue problem. Furthermore, a
single binary CRF model for the same binary problem has been considered in the
comparison. AdaBoost classifier has been trained with up to 50 Decision Stumps
while the SVMlight1 implementation with RBF kernel has been used for SVM (γ
and C have been tuned according to [19]). CRF has been trained by Stochastic
Gradient Descent [12] (batch size = 6, η = 10−6). Table 1 reports the performance
parameters for the considered methods. Figure 4 shows some examples of lumen
detection in the critical cases achieved by the ECOC-RF proposed method.

1 http://svmlight.joachims.org/
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Table 1. Results of compared methods

ΔB (|mean| ± std) max(|ΔB|) ρ

AdaBoost 0.32 ± 0.32 mm 1.3 mm 0.54
SVM 0.40 ± 0.33 mm 1.3 mm 0.49
CRF 0.08 ± 0.41 mm 0.8 mm 0.31

ECOC-RF 0.08 ± 0.24 mm 1.0 mm 0.77

Fig. 4. ECOC-RF lumen segmentation results on the challenging examples of Fig. 1

4 Discussions and Conclusions

The proposed ECOC-RF method outperforms the other considered approaches
(see Table 1). We can observe that a single CRF achieves a mean segmenta-
tion error lower than AdaBoost and SVM, although attaining a higher standard
deviation. ECOC-RF solves this problem, thanks to the strength given by the
multi-class definition. Moreover, a high correlation among computed lumen ar-
eas and ground truth is exhibited. It is worth to note that the clouds of point in
the ECOC-RF case (see Fig. 3) is more compact and close to fitting straight line,
thus showing much higher correlation between manual and automatic measure-
ments in the proposed method respect to other strategies. The comparison with
AdaBoost and SVM shows the benefits of exploiting contextual information in
discriminative approaches while the comparison with a binary CRF justifies the
use of a multi-class framework.

A novel method for automatic lumen detection based on multi-class classifica-
tion on IVUS images has been presented integrating in the same framework CRF,
ECOCs and deformable models. The contextual information on longitudinal cut
images has been used, together with a long term regularization, in order to solve
problems due to the corruption in the vessel appearance. The comparison with
other state-of-the-art methods clearly shows the superiority of a discriminant
multi-class contextual model, resulting in the most accurate segmentation.

Radial artery volume computation can be easily performed by means of the
proposed method, allowing to study the effect of different drugs administra-
tion. The promising results on the contextual-based classification of arterial
vessel suggest to deeply investigate its applicability to IVUS image analysis.
The proposed methodology could also be applied to coronary artery lumen seg-
mentation and can represent the basis for accurate assessment of vessel border
properties.
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Abstract. This paper presents a new technique of coronary digital sub-
traction angiography which separates layers of moving background
structures from dynamic fluoroscopic sequences of the heart and ob-
tains moving layers of coronary arteries. A Bayeisan framework combines
dense motion estimation, uncertainty propagation and statistical fusion
to achieve reliable background layer estimation and motion compensa-
tion for coronary sequences. Encouraging results have been achieved on
clinically acquired coronary sequences, where the proposed method con-
siderably improves the visibility and perceptibility of coronary arteries
undergoing breathing and cardiac movements. Perceptibility improve-
ment is significant especially for very thin vessels. Clinical benefit is
expected in the context of obese patients and deep angulation, as well
as in the reduction of contrast dose in normal size patients.

1 Introduction

Digital subtraction angiography (DSA) is a fluoroscopy technique to clearly vi-
sualize blood vessels by subtracting a pre-contrast image called mask from later
images once the contrast medium has been introduced. In this work, we intro-
duce a new technique called coronary DSA (cDSA) to better visualize coronary
vessels in 2D dynamic fluoroscopic sequences of the heart. Using a small number
of pre-contrast masks, cDSA produces sequences of dynamic coronary arteries
by separating and subtracting sequences of moving background layers. cDSA is
an important technique with broad applications in image guided cardiovascu-
lar intervention. Fig. 1 shows two applications of cDSA. First, the separation
of background and coronary layers enables the function of fade-in and fade-out
of the dynamic background structures, thus giving clinicians more options in
displaying the coronary arteries in motion during cardiac interventions or for
diagnosis purpose. Second, with the coronary layer extracted from fluoroscopic
sequences, we are able to virtually enhance the contrast medium for improved
visibility and perceptibility of coronary arteries, which brings clinical benefits in
the context of obese patients and deep angulation.
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Fig. 1. cDSA applications. From left to right: original image, two images with fading
background layer, coronary layer, coronary enhanced image.

A main challenge for cDSA is to deal with complex motion caused by cardiac,
breathing and patient table movements. In cardiac fluoroscopic sequences, both
static bone tissues and tissues undergoing a mixture of cardiac and respiratory
movements can be seen in transparency. Existing techniques of motion correction
[4] remain largely insufficient in dealing with such complex motion. Related work
has been reported in dealing with transparent motion [1,2,5,6]. In [7], a technique
based on non-parametric motion estimation has been proposed, where a dense
motion field is used for motion correction between a mask and a contrast image,
and learning-based method is used to facilitate motion estimation.

We present a Bayesian framework for tracking the moving layer of dynamic
background structures to achieve coronary subtraction in cardiac fluoroscopic
sequences. Dense motion estimation between mask images and a contrast image
are used to predict the background layer of the contrast image, and predictions
from multiple masks are statistically fused to obtain the final estimation of the
background layer. Compared to the method in [7] which selects one mask im-
age for motion compensation, the Bayesian framework improves the accuracy
of background layer estimation through uncertainty propagation and statistical
fusion of motion compensation from multiple masks.

2 Method

In X-ray imaging, the intensity of the energy flux undergoes exponential attenu-
ation through layers of tissues, resulting in multiplicative transparency [4]. With
logarithmic postprocessing, fluoroscopic images are represented by an additive
model consisting of multiple layers. In cDSA, only two layers are considered to
simplify the problem, a coronary layer defined as the transparent layer containing
coronary arteries filled with contrast medium, and a background layer defined
as the transparent layer containing background structures. Denote It(x), IC,t(x)
and IB,t(x) as the contrast-filled frame, its coronary layer and background layer
at time t respectively, where x is the pixel location. The additive layer compo-
sition model is expressed as It(x) = IC,t(x) + IB,t(x). The goal is to remove the
background layer to obtain the layer of coronary arteries while both layers are
undergoing cardiac, respiratory and other types of movements. The proposed
Bayesian framework is illustrated in Fig. 2. First, prior to contrast injection, a
small number of images are acquired at different cardiac and breathing phases
to serve as static masks for background estimation. Second, once the contrast
medium has been introduced, motion estimation is performed between each mask
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Fig. 2. Bayesian framework of dynamic layer separation

and a contrast image, and the resulting motion field is used to predict the back-
ground layer of the contrast image. Predictions from multiple masks are fused
statistically to obtain a final estimate of the background layer. At last, the coro-
nary layer is estimated by subtracting the background estimate from the contrast
image. In processing a fluoroscopic sequence, layer estimates obtained from pre-
vious frames are also used as dynamic masks to predict the background layer
of a current frame. In this framework, we assume that the C-arm remains still.
New masks have to be reacquired for cDSA when change of angulation occurs.

2.1 Background Motion Estimation

We use the non-parametric approach introduced in [7] to estimate the mo-
tion between a mask image Im and a contrast image It(x). First, a technique
of learning-based vessel segment detection is applied to the contrast image to
roughly separate the image areas of vessels from the region of background struc-
tures and to exclude most of the vessel areas from motion estimation. Second,
the Lucas-Kanade-Fusion algorithm is applied to estimate a dense motion field
v(x) between the mask image and the background region of the contrast image.
The algorithm combines the Lucas-Kanade algorithm which iteratively estimates
incremental motion and the covariance-based filtering technique to retain spatial
smoothness and consistency of the motion field. For every pixel x, the algorithm
computes an estimate of the displacement vector v̂(x) locally. In addition, the
algorithm also estimates its covariance C(v̂(x)) to characterize the uncertainty
in the motion estimation. In homogeneous image areas with lack of textures or
areas with vessel pixels excluded from motion calculation, the motion estimates
tend to be unreliable and their covariance matrices have large eigenvalues.

2.2 Background Layer Prediction with Uncertainty Propagation

Given the motion estimation v̂(x) and its covariance C(v̂(x)), the probability
distribution of the motion vector v(x) can be approximated as a Gaussian dis-
tribution with mean v̂(x) and covariance C(v̂(x)).
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v(x) ∼ N(v̂(x), C(v̂(x))); E[v(x)] = v̂(x), Cov[v(x)] = C(v̂(x)) (1)

Pixel values in the background layer IB,t(x) are predicted from the mask image.

IB,t(x) = Im(x + v(x)) (2)

In contrast to the method in [7] which only takes into account the mean of
the motion estimates, we incorporate second order statistics and derive the pre-
diction probability density functions (PDFs) of pixel values in the background
layer p(IB,t(x)|Im). In general, the transformation function Im(x + v(x)) is a
nonlinear function of v(x) and techniques such as linearization and unscented
transformation [3] are required to parameterize the means and covariances of the
probability distribution. Due to the computational complexity of the unscented
transformation, we choose to linearize the transformation function as follows.

Im(x + v(x)) ≈ Im(x + v̂(x)) +$T Im(x + v̂(x))[v(x) − v̂(x)]
$Im(x + v̂(x)) = [∂xIm(x + v̂(x)), ∂yIm(x + v̂(x))]T (3)

where $Im(x + v̂(x)) denotes the gradient vector of the transformed image
Im(x + v̂(x)). The mean and variance of IB,t(x) (2) are approximated as

E[IB,t(x)|Im] = Im(x + v̂)
V ar[IB,t(x)|Im] = $T Im(x + v̂(x)) · C(v̂(x)) · $Im(x + v̂(x)) (4)

Through linearization of the transformation function, the uncertainties in motion
estimation are propagated to the prediction of background pixel values. The
prediction PDF is approximated by a Gaussian distribution.

p(IB,t(x)|Im) = N(IB,t(x);E[IB,t(x)|Im], V ar[IB,t(x)|Im]) (5)

2.3 Statistical Fusion with Multiple Mask Images

In cardiac interventional procedures, sequences of fluoroscopic images showing
cardiovascular structures in motion are acquired to provide real-time image guid-
ance. Multiple image frames are often captured before a contrast medium flows
into coronary arteries. These pre-contrast frames capture the background layer
from different cardiac and respiratory phases and are used as static mask images.
To deal with large image motion caused by deep breathing, we also include the
estimated background layers from previous contrast frames as dynamic mask
images.

Denote {Im,i(x) : i = 1, · · · , ns} as the static mask images acquired at time
t1, · · · , tns , and {ID,k(x) = IB,t−k(x) : k = 1, · · · , nd} as the dynamic mask
images coming from the estimated background layers of frames t− 1, · · · , t−nd.
Through motion estimation and uncertainty propagation, we obtain multiple
prediction PDFs of the background layer.

p(IB,t(x)|Im,ti) = N(IB,t(x);mt,ti(x), σ2
t,ti

(x)) (i = 0, · · · , ns)
p(IB,t(x)|ID,k) = N(IB,t(x);mt,t−k(x), σ2

t,t−k(x)) (k = 1, · · · , nd)
(6)
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where mt,ti(x) = E[IB,t(x)|Im,i], σ2
t,ti

(x) = Cov[IB,t(x)|Im,i], mt,t−k(x) =
E[IB,t(x)|ID,k ], σ2

t,t−k(x) = Cov[IB,t(x)|ID,k] are the estimated mean and co-
variance of background pixel values. Fusing multiple estimates of the background
layer, we obtain the linear minimum-mean-square-error (MMSE) estimate as

ÎB,t(x) =

ns∑
i=0

σ−2
t,ti

(x)mt,ti(x) +
nd∑

k=1
σ−2

t,t−k(x)mt,t−k(x)

ns∑
i=0

σ−2
t,ti

(x) +
nd∑

k=1
σ−2

t,t−k(x)
(7)

and the estimation of coronary layer is obtained through subtraction

ÎC,t(x) = It(x) − ÎB,t(x) (8)

With the background layer separated from the coronary layer, it is straightfor-
ward to fade out the background layer or to enhance the coronary layer by layer
composition.

αC ÎC,t + αB ÎB,t (αC ≥ 1, 0 ≤ αB ≤ 1) (9)

To fade out the background layer, we set αC = 1 and decrease αB. To virtually
enhance the contrast, we set αB = 1 and increase αC .

3 Experimental Results

Fluoroscopic sequences of 30 patients acquired during cardiovascular interven-
tion have been used to evaluate the proposed cDSA method. The sequences were
acquired on Angiographic C-arm systems (AXIOM Artis, Siemens Medical So-
lution) from different rotational angles and included cases of patients holding
breath, deep breathing as well as table movements. Since the proposed cDSA
technique was planned at the end of the imaging chain for general use cases,
the test sequences were not selected particularly by disease phenotypes. Never-
theless, they contain cases of stenosis, lesions and stent placement. Each image
frame has either 512×512 pixels or 1024×1024 pixels, and the pixel size is either
0.17mm or 0.28mm. Frames at the beginning of each sequence and before the
contrast medium starts to flush into the coronaries are sampled to define static
mask images used in processing the following frames. The number of mask im-
ages ranges from 3 to 9 frames in each sequence, and they are uniformly sampled
from half to one cardiac cycle. There are between 18 to 150 frames per sequence
showing intra-coronary flow of the contrast medium, and in total there are 1829
such frames used to compute performance metrics. All testing frames are scaled
to 8-bit images with gray values between 0 and 255.

To evaluate the performance of the background layer estimation, we computed
the mean squared error (MSE) of the background estimation in each frame, i.e.
the mean squared difference between estimated background pixels and the ac-
tual background pixels of a testing frame It in the background region Ωt of the
frame, MSE = 1

|Ωt|
∑

x∈Ωt

||ÎB,t(x)−It(x)||2. The histogram of the MSE over 1829
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Fig. 3. Performance metrics. (a) Histogram of MSEs over 1829 testing frames. (b) JM
distances measured in the original images, images with faded background layers and
images with enhanced coronary layers. (c) A test frame. (d) Annotated vessel pixels
(in white) and (e) Background pixels (in white) used to compute JM distance.

testing frames is shown in Fig. 3-1. MSEs of the 50th, 60th, 70th, 80th and 90th
percentiles are 11.77, 16.02, 18.07, 21.34 and 24.40 respectively, which corre-
sponds to 3.43, 4.00, 4.25, 4.62 and 4.94 of gray value difference. The mean MSE
is 13.06 and the standard deviation is 10.00. To evaluate how cDSA improves
the visibility conditions around coronary arteries, we use Jeffries-Matusita (JM)
distance to measure the difference in the gray values between coronary arteries
and surrounding background areas. In each testing sequence, we manually anno-
tated coronary arteries in a contrast-filled frame. The distribution of pixel values
in the areas occupied by coronary vessels (Fig. 3-(d)) was computed as pC . The
distribution of the gray values of background pixels in the areas surrounding
coronary vessels (Fig. 3-(e)) was computed as pB. The JM distance is defined as
JM(pC , pB) = [

∫
z(

√
pC(z)−

√
pB(z))2]1/2. The JM distance measures how well

the two gray value distributions are separated from each other. It is bounded
between 0 and

√
2. Higher values of the JM distance is related to better visi-

bility conditions around coronary arteries. The JM distances measured on the
original images, the coronary layers, the images with faded background layers

Table 1. Mean, median and standard deviation (std) of JM distances over original
images, coronary layers, images with faded background layers, images with enhanced
coronary layers

cDSA mean median std
original (αC = αB = 1) 0.3845 0.4262 0.1366

coronary layer (αC = 1, αB = 0) 0.7170 0.7289 0.2244
faded background (αC = 1, αB = 0.5) 0.5239 0.5604 0.1865
enhanced coronary (αC = 2, αB = 1) 0.5271 0.5706 0.1869
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JM=0.5097 MSE=11.96 JM=1.1109 JM=0.4015 JM=0.4024

JM=0.5124 MSE=15.38 JM=0.6572 JM=0.6139 JM=0.6180

JM=0.2640 MSE=17.66 JM=0.7428 JM=0.4210 JM=0.4221

JM=0.4786 MSE=27.65 JM=1.0577 JM=0.7795 JM=0.7807

JM=0.5715 MSE=17.93 JM=0.7693 JM=0.7833 JM=0.7904

Fig. 4. cDSA results. Column 1: original images; column 2: background layer estima-
tion; column3: coronary layer estimation; column 4: images with faded background;
column5: images with enhanced coronary layers. Last row from left to right: original
image and coronary enhanced image with white boxes enclosing thin vessels, zoom in
on patches of thin vessels from original image and coronary enhanced image.

and the images with enhanced coronary layers are plotted in Fig. 3-(b). Their
mean, median and standard deviation are further compared in Table 1.The JM
distances measured on the coronary layers are consistently higher compared to
the JM distances measured on the original images. In 90% of the cases, the JM
distances are improved by both fading out the background layers and enhancing
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the coronary layers, suggesting improved visibility conditions achieved by cDSA.
Fig. 4 shows several image results of layer separation, fade-out of background
layers and enhancement of coronary layers. The visibility and perceptibility of
the coronary arteries is considerably improved through enhancing coronary lay-
ers. In particular, thin vessels are made more visible by the cDSA method. We
have also observed that the use of dynamic masks compensates table motion
considerably due to the fact that image motion between adjacent frames is small
even though over time the accumulated image motion can be large.

4 Discussion

We have presented a novel method for coronary digital subtraction angiography
in 2D dynamic fluoroscopic sequences. Through dense motion estimation and
statistical fusion, a Bayesian framework is proposed to estimate the moving layers
of background structures in cardiac fluoroscopic sequences and to obtain the layer
of coronary arteries through subtraction. Using this method to separate coronary
layers from background structures, we are able to fade out the background layer
or virtually enhance the contrast by enhancing the coronary layers to improve
the image quality. Encouraging results have been obtained in terms of visibility
and perceptibility improvement of coronary vessels and thin vessels in particular.
The clinical benefits are expected for cardiac intervention in the context of obese
patients and deep angulation. In addition, the ability of coronary enhancement
also allows for the reduction of the contrast medium used in normal size patients.
Our future study includes the evaluation of cDSA on cases involving diluted
contrast medium.
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Abstract. Intravascular ultrasound (IVUS) is a catheter-based medical imaging
technique that produces cross-sectional images of blood vessels and is particu-
larly useful for studying atherosclerosis. In this paper, we present a novel method
for segmentation of the luminal border on IVUS images using the radio frequency
(RF) raw signal based on a scattering model and an inversion scheme. The scat-
tering model is based on a random distribution of point scatterers in the vessel.
The per-scatterer signal uses a differential backscatter cross-section coefficient
(DBC) that depends on the tissue type. Segmentation requires two inversions: a
calibration inversion and a reconstruction inversion. In the calibration step, we
use a single manually segmented frame and then solve an inverse problem to re-
cover the DBC for the lumen and vessel wall (κl and κw , respectively) and the
width of the impulse signal σ. In the reconstruction step, we use the parameters
from the calibration step to solve a new inverse problem: for each angle Θi of
the IVUS data, we reconstruct the lumen-vessel wall interface. We evaluated our
method using three 40MHz IVUS sequences by comparing with manual segmen-
tations. Our preliminary results indicate that it is possible to segment the luminal
border by solving an inverse problem using the IVUS RF raw signal with the
scatterer model.

1 Introduction

Intravascular ultrasound (IVUS) is an invasive catheter imaging technique capable of
providing high-resolution, cross-sectional images of the interior of human blood ves-
sels. The IVUS catheter consists of a solid-state or mechanically-rotated transducer
that emits ultrasound pulses and receives acoustic echoes (i.e., A-line) at a discrete set
of angles (commonly 240 to 360). The envelopes of the received signals are computed,
log-compressed, and then geometrically transformed to obtain the disc-shaped B-mode
IVUS image.

Segmentation of IVUS images refers to the delineation of the lumen/intima and me-
dia/adventita borders. This process is necessary for assessing the vessel and plaque
characteristics. Given that IVUS sequences may be hundreds to thousands of frames
long, manual segmentation of a complete sequence is prohibitively time-consuming.
Thus, methods for automatic segmentation of IVUS images are needed.

Contributions. In this paper, we present a novel method for segmentation of the luminal
border on IVUS data. using the radio frequency (RF) raw signal based on a scattering
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model and an inversion scheme. The main contribution of this work is a method for the
segmentation that relies on a physics-based modeling of the IVUS signal instead of the
IVUS B-mode images as in previous approaches. We evaluated our method using three
40MHz IVUS sequences by comparing the automatic segmentation result with manual
segmentation. Our preliminary results indicate that it is possible to segment the luminal
border by solving an inverse problem using the IVUS RF raw signal with a scatterer
model.

Limitations. The model we present is quite simplistic both in the scattering approx-
imation and in the spatial distribution of the scatterers. This is especially true in the
lumen border. Also, shadow artifacts and side branches can create problems in the
reconstruction.

Related work. Previous approaches for IVUS data analysis can be divided into two
classes: image processing-based analysis and physics-based analysis. For the first class,
the majority of methods relate to segmentation of the different layers of the vessel. Most
reported successful approaches are based on contour detection by the minimization of a
cost function. Recent proposed methods include those by Unal et al. [1] based on active
shape models, Mendizabal-Ruiz et al. [2] using a probabilistic approach, Downe et al.
[3] based on a 3-D graph search, and Papadogiorgaki et al. [4] based on wavelets. The
input to all of the previous IVUS segmentation methods is the gray scale B-mode image.
The limitation of these methods is a consequence of the fact that the appearance of the
B-mode image depends on the characteristic of the IVUS system and the parameters
used for the B-mode transformation. Thus, no segmentation method is guaranteed to
perform correctly on IVUS images from different systems.

The second class of method relates to tissue classification from IVUS data. Although
there are methods that work with the B-mode image [5,6], the most successful ap-
proaches are those focused on the characterization of atherosclerotic plaque composi-
tion by analysis of the ultrasound RF signal. Nair et al. [7] proposed a method known
as “virtual histology” (IVUS-VH). Kawasaki et al. [8] proposed another method of tis-
sue classification using the integrated backscatter (IB) parameter. O’Malley et al. and
Katouzian et al. [9,10] explored methods for blood characterization. Mendizabal-Ruiz
et al. [11] presented a method for the identification of contrast agent. However, none of
these methods is designed for segmentation of the lumen/intima or media/adventitia.

2 Methods

For modeling the reflected IVUS signal, we chose to use the model employed by Ros-
ales et al. [12]. This model assumes that the IVUS signal can be obtained from a phys-
ical model based on the transmission and reflection of ultrasound waves that radially
penetrate the arterial structure. Since the wavelength produced by IVUS transducers is
very large in comparison to the dimension of the structures of the vessel, this model
assumes that structures can be modeled as a finite set of point scatterers with an associ-
ated differential backscattering cross-section coefficient (DBC). Although the signal in
the transducer comes from a three-dimensional distribution of scatterers, in this paper
we process the A-line scans independently and we consider two-dimensional distribu-
tions of scatterers. Consider an ultrasound pulse P0 emitted at time t0 with speed c



An Inverse Scattering Algorithm for the Segmentation of the Luminal Border 887

(a) (b) (c)

Fig. 1. (a) Scatterers interacting with the ultrasound beam on IVUS. (b) Raw real and modeled
IVUS signals for a single angle. (c) Positive envelope of real and modeled IVUS signals for a
single angle.

from the IVUS transducer with coordinates (r0, θ0), and that interacts at time ti with
a scatterer located at a position (ri, θi) with a DBC of κ(ri, θi) (Fig. 1(a)). The re-
flected pulse Pi is a replica of the transmitted sound pulse P0 that will return to the
transducer at time (ti − t0) and will be out of phase with respect to P0 by 2ri

c , where
c is the speed of sound in the medium. The ultrasound beam will interact with scatter-
ers along its radial direction along an angular window given by ΔΘ = sin−1(1.22 λ

D )
(Fig. 1(a)), where λ = c

f is the wavelength, f is the transducer frequency and D is
the transducer diameter. Assuming Born approximation scattering, we use the princi-
ple of superposition to represent the total scattered wave as a sum of reflections from
individual point scatterers [13]. Then, using this model, the ultrasound reflected signal
for each transducer’s angular position Θk at time t for a finite set of N scatterers with
coordinates (ri, θi) where θi ∈ {Θk − ΔΘ

2 , Θk + ΔΘ
2 } and DBC κ(ri, θi) is given by:

ŝ(t, Θk) = C
∑N

i=1
κ(ri,θi) exp (−μri)

ri
exp

(
−(t− 2ri

c )2

2σ2

)
sin

(
ωt− 2ri

c

)
,where μ is the

attenuation coefficient, C defines the transducer constant parameters, and ω = 2πf is
the angular velocity of the impulse function with width σ.

Recovering of the impulse signal width and the DBCs: The width of the impulse signal
σ is a parameter that depends on the characteristics of the particular IVUS transducer
employed. However, since this parameter is not allays available, it is necessary to re-
cover it from the IVUS data. Fontaine et al. [13,14] attempted to recover the scattering
characteristics of blood, however, there is no consensus in the literature on the DBC val-
ues for blood. As we are mostly interested in reconstructing the lumen-wall interface,
we use a two-step procedure that first calibrates scattering parameters and then inverts
for the interface. We can therefore ignore the transducer-constant parameter C, since
this is a constant and will only affect the scale of the resulting values. Additionally, we
normalize the signal using the number of scatterers. Our modeled signal, then, is given

by: Ŝ(t, Θk) = 1
N

∑N
i=1

κ(ri,θi) exp (−μri)
ri

exp
(

−(t− 2ri
c )2

2σ2

)
sin

(
ωt− 2ri

c

)
.

Specifically, our segmentation method requires two inversion steps: a calibration in-
version (Algorithm 1) and a reconstruction inversion (Algorithm 2). Both steps employ
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the following assumptions: 1) there are only two layers within the vessel: lumen and
vessel wall; 2) scatterers within the same layer will have the same DBC coefficient;
3) the attenuation coefficient μ is constant along the radial direction; and 4) the real
IVUS signal can be approximated by a stochastic minimization process (Monte Carlo
approach) on which we take random samples of the scatterers’ positions.

If we know the radial position ρk of the lumen border for a particular angle Θk from
a manual segmentation, we can compute the width of the impulse signal σ and the
DBCs for lumen κl and wall κw by the minimization of the difference between the real
IVUS signal S(t, Θk) and the signal computed with our model Ŝ(t, Θk, σ, κ

l, κw). A
significant difficulty is that we cannot treat the distribution of scatterers in a determinis-
tic fashion. The scatterers’ positions are the result of a spatial stochastic point process.
Therefore, the minimization of the differences of the signals should be approached in
a stochastic sense. There are many alternative methodologies for that purpose (e.g.,
stochastic optimization, Bayesian methods). In this paper, we consider the optimal pa-
rameter values as functions of the scatterer locations. Then, for each angle k we gener-
ate ξ samplings of scatterers’ positions and minimize sum of the errors between the real
IVUS signal and each of the ξ modeled signals. Specifically, we solve the problem:

min
σk,κl

k,κw
k

1
2

∑
t

ξ∑
i=1

(E(t, Θk)− Êi(t, Θk, σ, κ
l, κw))2 , (1)

where E(t, Θk) and Êi(t, Θk, σ, κ
l, κw) are the positive envelopes for the real and the

modeled signals, respectively. Finally, we compute the median for each of the resulting
parameters.

Segmentation: The radial position ρk of the lumen border for each angle Θk can be
recovered in a similar way. We use the parameters computed on the first inversion and
we find ρk by the minimization of the sum of differences between the real IVUS signal
S(t, Θk) and the signals computed with our model Ŝi(t, Θk, ρk) for each sampling ξ.
Specifically, we solve:

min
ρk

1
2

∑
t

ξ∑
i=1

(E(t, Θk)− Êi(t, Θk, ρk))2 . (2)

The sampling of the scatterers’ positions is done by dividing the vessel into P par-
titions, and on each partition we place a number of scatterers NP in random positions
using a uniform distribution. The number of scatterers NP for each partition is deter-
mined by the area occupied by the partition and the density βα (number of scatterers by
unit area) corresponding to the layer α on which the partition is present.

The resulting curve might not be smooth due to noise. Moreover, artifacts (guidewire
and shadows) and side branches may generate invalid points (outliers with respect to
the curve points). Since we expect the number of invalid points to be small (these ar-
tifacts are present in small sections of the curve), we remove these outliers by apply-
ing clustering on the resulting curve points and eliminating the points corresponding
to the smallest cluster. Finally, in order to constrain the curve to be smooth, we use
an L1-minimization method combined with spectral smoothing [15] that also adds the
property of periodicity to the curve.
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Algorithm 1. Calibration step

Require: IVUS raw signal and manual segmentation of a single frame, initial point
x = {κl

0, κ
w
0 σ0}, attenuation coefficient μ, scatterer densities for lumen and wall (βl and

βw, respectively), angular window ΔΘ, number of partitions NP , and number of scatterers
sampling ξ1.

1: Extract information about the IVUS data (i.e., frequency of the transducer f , sampling fre-
quency fs, maximum radius Rm and number of angles Nθ).

2: Obtain the radius of the lumen ρi for all angles Θi from the manual segmentation.
3: for i=1 to Nθ do
4: for j=1 to ξ1 do
5: Place random point scatterers within the P partitions of the lumen and wall area using

the corresponding densities βl and βw.
6: end for
7: Compute the DBC for the lumen and wall scatterers (κl

i and κw
i ) and the width of the

impulse signal σi by solving Eq. (1).
8: end for
9: Compute the median of the values obtained from each angle κ̂l, κ̂w, and σ̂.

10: return κ̂l, κ̂w, and σ̂.

3 Results

We tested our method on 90 frames corresponding to three 40MHz IVUS sequences ob-
tained from different rabbits’ aortas. In order to be consistent with our first assumption,
we ignored the section of the IVUS signal corresponding to the sheathing transducer
(ringdown artifact). For the catheter used to acquired the data (Boston Scientific), the
diameter of the transducer was approximately 0.9 mm, while the angular window that
we used for generating results was ΔΘ = 2.9◦. Since our goal was to recover the lu-
men boundary, we used the typical attenuation coefficient for blood (i.e., 0.02 np/cm
at 1MHz) [16]. For our data frequency (40MHz), the attenuation coefficient μ corre-
sponded to 0.8 np/cm. The minimization was done using a simplex method. We used
the voxel approach to create random scatterers [17]. Since in our experiments we had a
radial resolution of δr = c/f = 0.04 mm, we set the voxel size to V = 16 · 10−4 mm2.
Experiments on syntectic data indicated that the exact value for the densities was not a
determinant for the performance of our model provided βl ≤ βw (assuming a smaller
density on lumen). Moreover, we chose the density values βl = 219 and βw = 636
according to the ratio of densities that we could expect on these tissues based on typical
values for RBCs and epithelial cells [18]. The density used for the segmentation step
was arbitrarily set constant to βs = 1000 for all the partitions P . The numbers of scat-
terer position samplings ξ used for parameter recovering and lumen segmentation were
ξ1 = 20 and ξ2 = 10, respectively.

The computed parameters (κ̂l, κ̂w, σ̂) for the first sequence were (1.19 · 10−9, 3.54 ·
10−9, 6.33·10−8), for the second sequence were (1.28·10−9, 2.77·10−9, 6.94·10−8) and
for the third sequence were (1.03 ·10−9, 2.84 ·10−9, 5.29 ·10−8). Figures 1 (b,c) depict
an example of a real IVUS signal and the adjusted signal using our model respectively.
Figure 2 depicts examples of segmentation results. The segmentation results on the 90
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Algorithm 2. Reconstruction step

Require: IVUS raw signal of the frame to be segmented, initial point x = {ρo}, attenuation
coefficient μ, scatterer density βs, angular window ΔΘ, DBC coefficients for lumen and
wall (κl and κw, respectively), width of the impulse signal σ, number of partitions NP , and
number of sampling ξ2.

1: Extract the information about IVUS data (i.e., frequency of the transducer f , sampling fre-
quency fs, Number of angles Nθ , maximum radius Rm).

2: for i=1 to Nθ do
3: for j=1 to ξ2 do
4: Place random point scatterers within the P partitions along the radius using the corre-

sponding density βP .
5: end for
6: Find the lumen border ρ̂i by solving Eq. (2).
7: end for
8: return ρ̂.

Fig. 2. Examples of segmentation results

frames were evaluated by comparing the agreement between areas corresponding to
lumen on each frame by our method (A) with manual segmentations from two expert
observers (O1 and O2). The mean Dice similarity coefficient was s = 90.27. In addition,
we performed linear regression and Bland-Altman analysis, for which we report the
inter-observer and automatic mean biases (mean area difference) and variabilities. The
coefficient of determination (R2, where R is the linear correlation) for area differences
between O1 and O2 (O1,O2) was R2=0.98, and R2=0.93 and R2=0.93 for (A,O1) and
(A,O2), respectively. The bias of the area differences for (O1,O2) was (1.80 ± 0.93) ·
105 mm2, for (A,O1) the bias was (−5.80 ± 3.16) · 105 mm2, and for (A,O2) was
(−3.99± 2.71) · 105 mm2. Figure 3 depicts the results of this analysis.

4 Discussion

The IVUS RF signal may vary between different systems and even between different
sequences, since a different IVUS catheter is used every time. However, due the fact
that we calibrate our method for each sequence using a one-frame manual segmenta-
tion on the parameter’s recovery step, our method can overcome this limitation. The
model we use is quite simplistic both in the scattering approximation and in the spatial
distribution of the scatterers. This is especially true in the lumen border resulting in a



An Inverse Scattering Algorithm for the Segmentation of the Luminal Border 891

(a) (b) (c)

(d) (e) (f)

Fig. 3. Linear regression plot (a-c) and Bland-Altman plot (d-f) for O1 vs O2 (a,d), A vs. O1 (b,e)
and A vs. O2 (c,f). Each point correspond to one of the 90 segmented frames.

under-segmentation by our method. Another limitation of our method relates to do with
the time required to solve the inverse problems that limits the possibility of using the
method on real time.

5 Conclusion

We have presented a novel method for segmentation of the luminal border on IVUS
using a physics-based approach as opposed to an image-analysis based approach. To
the best of our knowledge, this is the first method that segments IVUS images using the
RF signal instead of B-mode images. Our preliminary results indicate that is possible
to segment the luminal border by solving an inverse problem using the IVUS RF raw
signal with a scatterer model. Future work includes the inclusion of additional layers,
alternate methods for placing the scatterers, and comparison with image-based IVUS
segmentation methods.
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Abstract. Real-time 3-dimensional echocardiography (RT3DE) permits the 
acquisition and visualization of the beating heart in 3D. Despite a number of 
efforts to automate the left ventricle (LV) delineation from RT3DE images, this 
remains a challenging problem due to the poor nature of the acquired images 
usually containing missing anatomical information and high speckle noise. 
Recently, there have been efforts to improve image quality and anatomical 
definition by acquiring multiple single-view RT3DE images with small probe 
movements and fusing them together after alignment. In this work, we evaluate 
the quality of the multiview fused images using an image-driven semi-
automatic LV segmentation method. The segmentation method is based on an 
edge-driven level set framework, where the edges are extracted using a local-
phase inspired feature detector for low-contrast echocardiography boundaries. 
This totally image-driven segmentation method is applied for the evaluation of 
end-diastolic (ED) and end-systolic (ES) single-view and multiview fused 
images. Experiments were conducted on 17 cases and the results show that 
multiview fused images have better image segmentation quality, but large 
failures were observed on ED (88.2%) and ES (58.8%) single-view images. 

1   Introduction and Literature 

Echocardiography provides a simple, real-time, low-cost, and completely harmless 
way to assess the cardiac function. It is now possible to capture the 3D volume 
sequences of the heart by acquiring real-time 3-dimensional echocardiography 
(RT3DE) images using a matrix-array ultrasound transducer. Although it has been 
shown that RT3DE improves reproducibility in comparison to 2D echocardiography 
[1], it has still not been adopted for routine clinical use for cardiac function analysis. 
It is expected that reliable and robust automatic methods for left ventricle (LV) 
endocardial surface extraction will aid the uptake of RT3DE in the clinics. 
                                                           
* Kashif Rajpoot is funded by a PhD scholarship from Higher Education Commission, Pakistan. 
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Cardiac segmentation from RT3DE images is an active area of research and a 
variety of solutions have been proposed. The major LV segmentation methods for 
RT3DE images fall into 3 broad categories: edge-driven, region-driven and prior-
model driven. In the edge-driven approaches [2,3], a snake-like deformable model [4] 
is attracted towards the boundary edges usually detected from intensity-gradient based 
edge detectors. In the region-driven approaches [5,6], image intensities for the LV 
blood-cavity and myocardium tissue are modeled using a statistical distribution. On 
the other hand, prior-model driven methods [7,8] construct a statistical model of 
shape and/or appearance from a training set of RT3DE volumes and use this model to 
guide LV segmentation. However, it is very difficult to capture the true shape 
variability of the heart due to its complex nature. Furthermore, it is very challenging 
to represent the different pathologies in the statistical model. In contrast, both the 
edge- and region-driven approaches are purely image-driven techniques and they are 
fully dependent upon the image quality and the anatomical information in the image. 
This may imply that the segmentation method will be unsuccessful on poor- or 
average-quality images, due to the problems caused by speckle, missing anatomical 
boundaries, limited field-of-view (FOV) and intensity dropout (see Fig. 1(b)-(e)). 
Moreover, quite often a close initialization of the surface is needed in the edge-driven 
approaches either via registration [2] or manual landmark selection [3]. 

There have been recent efforts to improve RT3DE image quality by image fusion 
[9] or compounding [10]. This involves acquiring multiple single-view RT3DE 
images from different probe positions over the chest cavity and following a 2-step 
approach to ( ) register and ( ) combine them together. Recently, we have developed 
a wavelet-based multiview RT3DE image fusion method [11] that showed 
improvements in the signal-to-noise ratio, contrast, and anatomical information. It can 
also extend the FOV thus permitting a complete 3D coverage of large hearts. 

In this work, we use the multiview RT3DE fused images for LV endocardial 
surface extraction. For this purpose, we introduce an edge-driven level set [4] based 
LV segmentation framework while the edges are derived from a local-phase inspired 
feature detector [12] designed for low-contrast echocardiography images. The key 
contribution of the paper is to objectively assess the quality of multiview fused 
images against single-view images for automated segmentation. 

The paper begins with the details of RT3DE image fusion and the proposed 
segmentation approach in Section  2. Experimental results and their validation are 
presented in Section 3. The paper finishes with concluding remarks in Section  4. 

2   Methods 

2.1  Multiview RT DE Image Fusion 

We give a brief description of the multiview RT3DE image fusion process here; full 
details can be found in [11]. The standard single-view RT3DE images are acquired from 
different transducer positions from the apical view acoustic window (see Fig. 1(a)). The 
first full-volume image sequence (1) is acquired by placing the transducer probe near the 
LV apex. Two more full-volume sequences (2,3) are acquired by translating the probe 
from the apex towards the lateral wall of the LV by approximately 1cm and 2cm, 
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respectively. Another full-volume sequence (4) is acquired by translating the probe from 
the apex towards the interventricular septum by approximately 1cm. Finally, two more 
volume sequences (5,6) are captured by moving the probe one intercostal space above 
and below the first probe position. In some cases, more than one volume was acquired 
from the same probe position by a slight angular tilt of the probe. 

The acquired multiple single-view images are then aligned using a multiresolution 
rigid registration algorithm using normalized cross-correlation as a similarity measure 
and the Powell method as the optimization technique. The first full volume acquired 
near the apical position is used as the reference volume for registration. Once the 
image correspondence has been established, the aligned images are then combined 
together in a way that aims at preserving the salient structures [11]. A wavelet 
analysis technique is used to decompose each single-view image into its low- and 
high-frequency components. The fusion is then performed in the wavelet domain, 
treating the low- and high-frequency wavelet coefficients differently. It was shown in 
[11] that the fusion improves the anatomical information (measured as the number of 
relevant features detected in an image) by about 16%. Fig. 1(b)-(f) show example 
results of image fusion on 2D image slices. 

 

Fig. . Single-view image acquisition and example 2D image results of multiview RT3DE 
fusion. (a) Image acquisition protocol (probe locations indicated 1 to 6 over chest), (b)-(e) 2D 
slices from aligned single-view volumes – arrows indicate the missing anatomical information, 
(f) fused image – arrows depict the filled-in anatomical information due to fusion. 

2.2   LV Segmentation 

The LV segmentation problem is posed as a deformable surface evolution model [4]: ,  (1)

where ,  is the surface at time  parameterized by ,  is the image based 
force and  is the surface regularization force. Following the level set 
(LS) methods based derivation of Casselles et al. [4], a higher-dimensional implicit 

(a) (b) (c)

(d) (e) (f) 
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surface embedding function  can be introduced and surface evolution (1) becomes 
the solution of a partial differential equation (PDE): .  (2) 

where the first term on the right is a balloon force (controlling the growth or 
shrinkage of the LS), the second term is  a curvature-based smoothness term, and the 
last term is the advection term controlling the attachment of the deformable model to 
the image edges. In (2), α,  and  are the weights for the balloon force, the curvature 
force  and the advection force, respectively. Here,  is an edge-indicator function 
that decreases monotonically with the gradient magnitude of the image  [13]: 

,           1 ⁄  (3) 

where  denotes convolution of image I with a Gaussian kernel of variance ,  
is the edge contrast parameter, and  is the edge exponent parameter. 

For echocardiography, the intensity-gradient based edge-indicator function  of 
(3) is not the best option due to the highly noisy nature of these images. Instead, we 
adapted the local-phase inspired 3D feature asymmetry ( ) measure [12]. This 
feature detector is designed for detecting step-like edges (i.e., asymmetric endocardial 
borders) from low-contrast and noisy echocardiography images. For the computation 
of the edge-indicator function, we substitute  with  in (3): 

 

thus our LS surface evolution PDE becomes: .  (4)

To solve (4), we used the Yushkevich et al. implementation of LS methods [13]. 

2.3   Post-processing of LV Surface 

The level set based LV endocardial surface extraction method described in the 
previous section is purely edge-driven. The process works by initializing a sphere 
inside the LV cavity and allowing it to expand under the influence of balloon force 
until stopped by the edges. However, there are many false features in the cavity: for 
example, the edges due to the papillary muscle or the apical region (see Fig. 2(a)). 
This is a cause of problems in the extraction of the true endocardial surface. We 
therefore perform a post-processing operation on the LS segmentation. The post-
processing steps are described in the following. 

1. Apex point selection. The apex region is a difficult region for an edge-driven 
endocardial segmentation method because of its very complex shape and lack of 
boundary definition. Post-segmentation, the middle slice apical 4-chamber plane is 
presented to the user for manual selection of a point near the apex using a single 
mouse click. A small sphere is generated at this location having a radius of 3-
voxels (see Fig. 2(b)), which aids the operation of the next step. 
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2. Surface fitting. The LS segmented surface is not smooth because of the papillary 
muscles and the trabeculae near the endocardium. We perform a hypersurface 
fitting (tessellation-based linear interpolation) to the LS segmented surface, which 
now includes the sphere at the apex location from last step (see Fig. 2(c)). 

3. Surface smoothness. Commonly, the clinicians expect the endocardial surface to be 
a smooth surface delineating the endocardium. For this purpose, we perform a 
Gaussian-smoothing step to smooth the endocardial surface (see Fig. 2(d)). 

 

 

Fig. . Post-processing operations shown on a 2D end-diastolic slice. Red circle inside the LV 
cavity is the initial contour placed automatically. (a) LS segmentation (arrows indicate the 
problematic regions), (b) apex adjustment (arrow indicates the placement of sphere), (c) 
segmentation after surface fitting, and (d) smoothed final segmentation. 

3   Experimental Results 

3.1   Data and Experimental Setup 

Volumetric images (17 cases) were obtained from healthy young subjects using the 
Philips iE33 scanner (Philips Medical Systems, Andover, USA) with a matrix-array 
transducer (3-5 MHz), acquiring a full-volume sequence by ECG-gating over 4 heart-
beats. The usual spatial dimensions are 224x208x208 voxels. For each case, 3 to 8 
single-view images were acquired and fused using the wavelet fusion (see  2.1). To 
assess the fused image for automatic quantification, the LV segmentation method (see 
 2.2) was applied to the fused image and one single-view image (the reference volume 
as in  2.1). For almost all of the subjects, the reference single-view image was of better 
quality (in terms of anatomical information) than the other single-view images. 

End-diastolic (ED) and end-systolic (ES) frames for each dataset were identified 
by an expert cardiologist. The segmentation method was applied to the ED and ES 
phases of both fused and reference single-view images. The segmentation was 
initialized automatically as a sphere of 10-voxels radius at the centre of the image. 
The automatic initialization in this way was inside the LV cavity for all the cases 
except for two ED images, in which case manual initialization was needed. The 
successful convergence (the ability to reach near the LV endocardial border) of the 
segmentation method was quantified and the clear failures of the method were 
visually classified according to the possible causes: ( ) LV cavity speckle noise, ( ) 
boundary leakage due to insufficient boundary information at the endocardial border, 
and ( ) both leakage and noise. To validate the successful segmentation cases, the 
fused images were also manually segmented by an expert cardiologist using 

(a) (b) (c) (dd)
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commercial software (CardioView, TomTec, Germany) to obtain measurements for 
ED volume (EDV), ES volume (ESV), and ejection fraction (EF). LV trabeculations 
and papillary muscles were included within the LV cavity. In addition, magnetic 
resonance images (MRI) from all the cases were acquired for reference and the EDV, 
ESV, and EF measurements were calculated by an expert cardiologist. 

3.2   Results 

Fig. 3 shows example segmentation results on both single-view and fused images, 
demonstrating the lack of sufficient information in the single-view images for a 
successful segmentation. On the other hand, the same segmentation method works 
successfully on a fused image. Table 1 summarizes the segmentation failures for 
single-view images, while there were no failures on the fused images. For single-view 
images, the algorithm failed in most cases at both end-diastole (88.2%) and end-
systole (58.8%). There were fewer failures at ES because the myocardium is thicker 
during this phase, providing better boundary definition further demonstrated by only 30% failures at ES due to leakage or leakage and noise compared to 60% failures at 
ED. The absolute difference in EDV, ESV, and EF measurements is given in Table 2. 
The RT3DE EDV and ESV are underestimated compared to MRI, which has been 
reported before [1]. The EDV differences with automatic RT3DE (55.9 23.1) and 
manual RT3DE (64.5 19.9) in comparison to MRI are considerably underestimated, 
probably due to large MRI EDVs (205.8 19.7) because the scanned subjects were 
young athletes having large hearts. However, the clinically important EF measure is 
within the known reproducibility range [1] (see Table 2). Fig. 4 presents Bland-Altman 
analysis demonstrating that there is a good statistical agreement between the automatic 
and manual RT3DE and MRI measurements. 

Table . Failure of segmentation on single-view images (17 datasets) and its quantification. 
There were no failures on multiview fused images. 

 End-diastolic phase End-systolic phase 
Total Failure . %   ( ) . %   ( ) 

Cavity noise 40% (6) 70% (7) 
Boundary leakage 13% (2) 20% (2) 

Leakage + noise 47% (7) 10%   (1) 

Table 2. Absolute differences in quantification of EDV, ESV, and EF (17 datasets). AEcho – 
Automatic measurements. MEcho – Manual measurements. MRI – MRI measurements. The 
differences are given as average  standard deviation. 

 AEcho vs. MEcho MEcho vs. MRI AEcho vs. MRI 
EDV (mL) 14.6 6.9 64.5 19.9 55.9 23.1 
ESV (mL) 9.1 6.2 20.0 9.7 18.0 11.5 

EF (%) 5.9 4.9 5.0 7.0 8.3 4.9 
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Fig. 3. Segmentation results on orthogonal planes. Red – automatic initialization. Green – edge-
indicator features. Yellow – segmentation result. SAX – Short-axis plane. A 2Ch – Apical 2-
chamber plane. A4Ch – Apical 4-chamber plane. Arrows indicate failure of the segmentation 
due to leakage. No post-processing was performed on the single-view image due to failure. 

 

Fig. 4. Bland-Altman analysis of EDV (mL), ESV (mL), and EF (%). Average difference and 95% confidence interval are displayed as solid and dashed lines, respectively. 
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4   Conclusions 

This work introduced an edge-driven LS segmentation method while using local-
phase derived edges as the driving force. The segmentation method was then applied 
for the evaluation of multiview fused RT3DE images against the conventional single-
view RT3DE images. The experiments indicate that a relatively simple segmentation 
method does much better on the multiview fused than in single-view images. 
Moreover, the clinical measures derived from automatic segmentation results on fused 
images are very close to manually computed measures. The results thus demonstrate 
that the fused images are better suited for automated segmentation because of 
improved anatomical definition and noise reduction due to fusion. 
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Abstract. We present a discrete kernel density matching energy for segmenting
the left ventricle cavity in cardiac magnetic resonance sequences. The energy and
its graph cut optimization based on an original first-order approximation of the
Bhattacharyya measure have not been proposed previously, and yield competi-
tive results in nearly real-time. The algorithm seeks a region within each frame
by optimization of two priors, one geometric (distance-based) and the other pho-
tometric, each measuring a distribution similarity between the region and a model
learned from the first frame. Based on global rather than pixelwise information,
the proposed algorithm does not require complex training and optimization with
respect to geometric transformations. Unlike related active contour methods, it
does not compute iterative updates of computationally expensive kernel densities.
Furthermore, the proposed first-order analysis can be used for other intractable
energies and, therefore, can lead to segmentation algorithms which share the flex-
ibility of active contours and computational advantages of graph cuts. Quantita-
tive evaluations over 2280 images acquired from 20 subjects demonstrated that
the results correlate well with independent manual segmentations by an expert.

1 Introduction

Accurate segmentation of the left ventricle (LV) cavity in magnetic resonance (MR)
sequences is very important for complete diagnosis of cardiovascular diseases [1], [3].
Manual segmentation of all images is prohibitively time-consuming. Therefore, auto-
matic or semi-automatic algorithms are highly desired. Albeit an impressive research
effort has been devoted to the LV [1]–[15], current methods are still not sufficiently
fast and flexible for routine clinical use, mainly because of the difficulties inherent to
MR cardiac images [4]. Existing methods are based, among others, on active contours
[1]–[3], [5]–[11], active appearance/shape models [12], [14], and registration [15]. Gen-
erally, the problem is stated as an energy optimization. In this connection, optimization
of active contour functionals has been the most prevalent and flexible choice in the
literature because it allows introducing a wide range of photometric and geometric1

constraints on the solution [1]–[3], [5]–[11]. Generally, these constraints reference a
sum over the target region or its boundary of pixelwise correspondences between the

1 Geometric constraints reference object shape, position, and size.
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image and geometric/photometric models learned from a training set. Pixelwise pho-
tometric information cannot distinguish connected cardiac regions having almost the
same photometric profile [1]–[3], for instance the papillary muscles within the cavity
and the myocardium (cf. the examples in Fig. 1). Therefore, most of existing methods
bias the solution towards a finite set of shapes learned a priori. Although very effective
in some cases, training-based algorithms may have difficulty in capturing the substan-
tial subject variations in a clinical context [1], [3], [4]. The ensuing results are bounded
to the characteristics, variability, and mathematical description of the training set. For
instance, a pathological case outside the set of learned shapes may not be recovered, and
photometric models have to be updated for new acquisition protocols and sequences.

To relax dependence on a statistical training, the studies in [1]–[3] investigated active
contour optimization of intensity matching criteria, given a user-provided segmentation
of one frame. In [3], the authors propose to maintain a constant photometric environ-
ment in the vicinity of the cavity boundary propagated over the sequence. Based on a
global similarity measure between distributions, the method in [1], [2] maintains over a
cardiac sequence a constant overlap between the intensity distributions of the cavity and
myocardium, which led to promising results for mid-cavity images. Based only on the
current data, these methods allow more flexibility in clinical use, although at the price
of a user initialization. Furthermore, in the context of general-purpose methods, recent
studies have shown that the use of global distribution-matching measures outperforms
standard segmentation techniques based on pixelwise information, and is less sensitive
to inaccuracies in estimating the models [16]–[18]. As such, it can relax the need of
complex training. Unfortunately, optimization of a global measure with respect to seg-
mentation is NP-hard [21], and the problem has been commonly addressed with active
contours [1], [2], [16]–[18], which lead to computationally intensive algorithms. Along
with an incremental contour evolution, the methods in [1], [2], [16]–[18] require a large
number of updates of computationally onerous integrals, namely, the distributions of
the regions defined by the contour at each iteration and the corresponding measures.
Active contour methods rely on stepwise gradient descent. As a result, the algorithms
are notoriously slow, converge to a local minimum, and depend on the choice of an ap-
proximating numerical scheme of contour evolution and the corresponding parameters.

This study investigates a discrete distribution-matching energy defined over a binary
labeling, based on the Bhattacharyya kernel, and containing two priors, one geomet-
ric (distance-based) and the other photometric, each measuring a distribution similarity
between the target region and a model. The ensuing problem is NP-hard, and the en-
ergy does not afford an analytical form amenable to graph cut optimization. To address
efficiently the problem, we propose an original first-order approximation of the Bhat-
tacharyya measure by introducing an auxiliary labeling, thereby computing a global
graph cut optimum in nearly real-time. Unlike active contours, the algorithm does not
compute iterative integral updates. It requires only a graph cut. The energy removes
the need of a training, and prevents the papillary muscles from being included in the
myocardium. Based on a distance distribution, the geometric prior handles intrinsically
variations of the LV without biasing the solution towards a finite set of shapes, and
relaxes optimization over geometric transformations. Furthermore, the proposed first-
order analysis can be used for other intractable energies and, therefore, can lead to
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segmentation algorithms which share the flexibility of active contours and computa-
tional advantages of graph cuts. Evaluations and comparisons with [1] demonstrated
that the proposed method brings improvements in accuracy and computational
efficiency.

2 Formulation

Consider a MR cardiac sequence containing N image functions2 In
p = In(p) : P ⊂

N → I, n ∈ [1..N ], with P the positional array and I the space of photometric
variables. Our purpose is to automatically detect the cavity of the heart in each frame
n ∈ [2..N ] (cf. Fig. 1). For n ∈ [2..N ], we state the problem as the minimization of a
discrete cost function with respect to a binary variable (labeling), Ln(p) : P → {0, 1},
which defines a variable partition of P : the heart cavity Cn corresponding to region
{p ∈ P/Ln(p) = 1} and its complement, the background Bn corresponding to region
{p ∈ P/Ln(p) = 0}. The optimal labeling is sought by minimizing an original energy
designed to address the problems related to cardiac MR images and containing two ker-
nel density matching terms, an intensity matching term and a distance matching term.
To introduce our energy, we first consider the following definitions for any labeling
L : P → {0, 1}, any image I : P → I, and any space of variables I.
• PI

L,I is the kernel density estimate (KDE) of the distribution of image data I
within region RL = {p ∈ P/L(p) = 1}

∀i ∈ I, PI
L,I(i) =

∑
p∈RL K(i− Ip)

AL
, with K(y) =

1√
2πσ2

exp−
y2

2σ2 , (1)

AL is the number of pixels within RL: AL =
∑

RL 1, and σ is the width of the
Gaussian kernel. Note that choosingK equal to the Dirac function yields the histogram.
• B(f, g) is the Bhattacharyya coefficient3 measuring the amount of overlap (sim-

ilarity) between two distributions f and g: B(f, g) =
∑

i∈I
√
f(i)g(i).

We assume that a segmentation of frame I1, i.e., a labeling L1 defining a partition
{C1,B1}, is given. Using this prior information from the first frame in the current data,
the intensity/geometry model distributions of the cavity are learned, and embedded in
the following distribution matching constraints to segment subsequent frames.

Intensity matching term. Given the learned model distribution of intensity, which we
denote MI = PI

L1,I1 , the purpose of this term is to find for each subsequent frame

In a region Cn whose intensity distribution most closely matches MI . To this end, we
minimizes the following intensity matching function with respect to L:

BI(L, In) = −B(PI
L,In ,MI) = −

∑
i∈I

√
PI

L,In(i)MI(i) (2)

Distance matching term. The purpose of this term is to constrain the segmentation
with prior geometric information (shape, scale, and position of the cavity) obtained

2 The number of frames N is typically equal to 20 or 25.
3 Note that the values of B are always in [0, 1], where 0 indicates that there is no overlap, and 1

indicates a perfect match between the distributions.
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from the learning frame. Let c be the centroid of cavity C1 in the learning frame and
D(p) = ‖p−c‖

ND
: P → D a distance image measuring at each point p ∈ P the nor-

malized distance between p and c, with D the space of distance variables and ND a
normalization constant. Let MD = PD

L1,D the model distribution of distances within
the cavity in the learning frame. We propose to find a region Cn whose distance distri-
bution most closely matches MD by minimizing:

BD(L,D) = −B(PD
L,D,M

D) = −
∑
d∈D

√
PD

L,D(d)MD(d) (3)

Note that this geometric prior is invariant to rotation, and embeds implicitly uncertain-
ties with respect to scale via the kernel width σ in (1). The higher σ, the more scale
variations allowed. In our experiments, σ = 2 was sufficient to handle effectively vari-
ations in the scale of the cavity (cf. the examples in Fig. 1). The proposed geometric
prior relaxes (1) complex learning/modeling of geometric characteristics and the need
of a training set and (2) explicit optimization with respect to geometric transformations.

The proposed energy function. We propose to minimize an energy containing the
intensity/distance matching terms and a regularization term for smooth segmentation
boundaries. For each n ∈ [2..N ], the algorithm computes the optimal labeling Ln

opt

minimizing the following discrete cost function over all L : P → {0, 1}:

F(L, In) = BI(L, In)︸ ︷︷ ︸
Intensity Matching

+ BD(L,D)︸ ︷︷ ︸
Geometry Matching

+ λS(L)︸ ︷︷ ︸
Smoothness

(4)

where S(L) is related to the length of the partition boundary given by [22]:

S(L) =
∑

{p,q}∈N

1
‖p− q‖δL(p) =L(q), with δx =y =

{
1 if x �= y
0 if x = y

(5)

and N is a neighborhood system containing all unordered pairs {p, q} of neighboring
elements of P . λ is a positive constant that balances the relative contribution of S.

Global and efficient graph cut optimization. Optimization of the distribution match-
ing functions in F(L, In) is not directly amenable to graph cut computation. It is an
NP-hard problem. Furthermore, gradient-based optimization procedures are compu-
tationally very expensive and difficult to apply. To solve this problem efficiently, we
propose a first-order approximation of the Bhattacharyya measures in F(L, In) by in-
troducing an auxiliary 4 labeling which corresponds to an arbitrary, fixed partition. For
any labeling L, we rewrite the intensity matching term minus a constant as follows:

BI(L, In)− BI(La, In)︸ ︷︷ ︸
Constant

≈
∑
p∈P

δBI
p,La,L

︸ ︷︷ ︸
V ariations of BI

≈ −1
2

∑
p∈P

∑
i∈I

√
MI(i)

PI
La,In(i)

δPI
p,La,L(i),

(6)

4 Note that La is an arbitrary fixed labeling which can be obtained from a given segmentation
of the first frame.
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where δBI
p,La,L (respectively δPI

p,La,L(i)) is the elementary variation of BI(La, In)
(respectively PI

La,In(i)) that corresponds to changing the label of pixel p from La(p)
to L(p). Elementary variation δBI

p,La,L is computed in the rightmost approximation of
(6) with the first-order expansion of the Bhattacharyya measure BI(L, In). Now we
compute elementary variations δPI

p,La,L(i), i ∈ I, using the expression of the kernel
density estimate in (1), which yields after some algebraic manipulations:

δPI
p,La,L(i) =

⎧⎨
⎩ δLa(p) =1

K(i−In
p )−PI

La,In(i)
ALa+1 if L(p) = 1

δLa(p) =0
PI

La,In (i)−K(i−In
p )

ALa−1 if L(p) = 0
(7)

where δx =y given by (5). Finally, using (7) in (6) and after some manipulations, the
intensity matching term reads as the sum of unary penalties plus a constant:

BI(L, In) ≈ constant+
∑
p∈P

bI
p,In(L(p)), (8)

with bI
p,I given, for any image I : P → I and any space of variables I, by

bI
p,I(1) =

δLa(p) =1

2(ALa + 1)

(
BI(La, I)−

∑
i∈I

K(i− Ip)

√
MI(i)
PI

La,I(i)

)

bI
p,I(0) =

δLa(p) =0

2(ALa − 1)

(∑
i∈I

K(i− Ip)

√
MI(i)

PI
La,I(i),

− BI(La, I)

)
(9)

Using a similar computation for the distance matching term, adopting the same nota-
tion in (9) for distance image D, and ignoring the constants, our problem reduces to
optimizing the following sum of unary and pairwise (submodular) penalties:

Lopt = arg min
L:P→{0,1}

∑
p∈P

{bI
p,In(L(p)) + bD

p,D(L(p))} + λS(L) (10)

In combinatorial optimization, a global optimum of the sum of unary and pairwise (sub-
modular) penalties can be computed efficiently in low-order polynomial time by solving
an equivalent max-flow problem [20]. In our case, it suffices to build a weighted graph
G = 〈N,E〉, where N is the set of nodes and E the set of edges connecting these nodes.
N contains a node for each pixel p ∈ P and two additional terminal nodes, one repre-
senting the foreground region (i.e., the cavity), denoted TF, and the other representing
the background, denoted TB. Let wp,q be the weight of the edge connecting neighbor-
ing pixels {p, q} in N , and {wp,TF ,wp,TB} the weights of the edges connecting each
pixel p to each of the terminals. By setting the edge weights as follows:

wp,TF = bI
p,In(0) + bD

p,D(0); wp,TB = bI
p,In(1) + bD

p,D(1); wp,q =
λ

‖p− q‖ ,

we compute, using the max-flow algorithm of Boykov and Kolmogorov [20], a mini-
mum cut Cn

opt of G, i.e., a subset of edges in E whose removal divides the graph into
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two disconnected subgraphs, each containing a terminal node, and whose sum of edge
weights is minimal. This minimum cut, which assigns each node (pixel) p in P to one
of the two terminals, induces an optimal labeling Ln

opt (Ln
opt(p) = 1 if p is connected

to TF and Ln
opt(p) = 0 if p is connected to TB), which minimizes globally the approx-

imation in (10) and, therefore, the proposed energy function.

3 Experimental Evaluations and Comparisons

We applied the method to 120 short axis cardiac cine MR sequences acquired from
20 subjects: a total of 2280 images including apical, mid-cavity and basal slices were
automatically segmented, and the results were compared to independent manual seg-
mentations by an expert. Using the same datasets, we compared the accuracy and com-
putational load/time of the proposed method with the recent LV segmentation in [1].
Similar to [1], the proposed method relaxes the need of a training, and model dis-
tributions were learned from a user-provided segmentation of the first frame in each
sequence. The regularization and kernel width parameters were unchanged for all the
datasets: λ is fixed equal to 0.15, and kernel width σ is set equal to 2 for distance dis-
tributions, and equal to 10 for intensity distributions. In Fig. 1, we give a representative
sample of the results for 2 subjects. Although it uses information from only one frame
in the current data, the method handles implicitly variations in the scale/shape of the

Subject 1, a sample of the results with mid-cavity (1st row) and apical (2nd row) frames

Subject 2, a sample of the results with mid-cavity (1st row) and basal (2nd row) frames

Fig. 1. A representative sample of the results for 2 subjects
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Table 1. Dice metrics (DM expressed as mean ± standard deviation) and Reliability function
(R(d) = Pr(DM > d)). The higher the DM and R, the better the performance.

Performance measure DM R(0.80) R(0.85) R(0.90)
Proposed method 0.91 ± 0.04 0.97 0.93 0.80

Method in [1] 0.88 ± 0.09 0.89 0.85 0.72

Table 2. Computation time (CPU) and number of kernel density estimations (KDEs) for the
proposed method and the curve evolution method in [1]

Computation time/load Average CPU/frame Average CPU/subject Nb of KDEs/frame
Proposed method 0.08 sec 9.62 secs 1

Method in [1] 4.33 secs 494.45 secs 300

cavity and prevents the papillary muscles from being included erroneously in the my-
ocardium. Therefore, its relaxes the need of complex training and optimization over
geometric transformations.

Dice metric. We evaluated the Dice Metric (DM ) commonly used to measure the simi-
larity (overlap) between manual and automatic segmentations [1], [6], [7]. Let Va, Vm
and Vam be the volumes5 of, respectively, the automatically segmented cavity, the cor-
responding hand-labeled cavity, and the intersection between them. DM is given by6:
DM = 2Vam

Va+Vm
. The proposed method yielded a DM equal to 0.91 ± 0.04 for all

the data analyzed ( DM is expressed as mean ± standard deviation). Table 1 reports
DM statistics for the proposed method and [1]. Using the same data, the method in
[1] yielded a DM equal to 0.88± 0.09. Fig. 2 (a) depicts the DM for a representative
sample of the analyzed volumes. The proposed method led to a significant improvement
in average accuracy. Note that an average DM higher than 0.80 indicates an excellent
agreement with manual segmentations [7], and an average DM higher than 0.90 is,
generally, difficult to obtain because the small structure of the cavity at the apex de-
creases significantly the DM [6]. For instance, the study in [6] reports a DM equal to
0.81± 0.16 whereas the authors in [7] report a DM equal to 0.88± 0.06.

Reliability. we examined quantitatively and comparatively the reliability of the algo-
rithm by evaluating the reliability function–i.e., the complementary cumulative distri-
bution function (ccdf)–of the obtained Dice metrics, defined for each d ∈ [0, 1] as the
probability of obtaining DM higher than d over all volumes: R(d) = Pr(DM >
d) =(number of volumes segmented with DM higher than d)/(total number of vol-
umes). R(d) measures how reliable the algorithm in yielding accuracy d. For the pro-
posed method and [1], we report in Table 1 the reliability of different accuracy levels
(d = 0.80, d = 0.85, d = 0.90), and plot R as a function of d in Fig. 2 (c). Our algo-
rithm led to a higher reliability curve and 8% improvement in reliabilities. For instance,
we obtained R(0.80) = 0.97, i.e, an excellent agreement (DM > 0.80) in 97% of the
cases, whereas the method in [1] achieved 89% of the cases with a similar accuracy.

5 The volume is measured by the sum of areas of the cavity region in 6 segmented images.
6 DM is always in [0, 1]. DM equal to 1 indicates a perfect match between segmentations.
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(a) Dice metric (DM ) (b) Correlation: r = 0.9779 (c) Reliability

Fig. 2. Comparisons of manual and automatic segmentations of 2280 images (380 volumes) ac-
quired from 20 subjects. (a) Dice metric (DM ) in a representative sample of the tested volumes
for the proposed method and [1]. (b) Automatic volumes versus manual volumes for the proposed
method: the obtained correlation coefficient is r = 0.9779. (c) Reliability (R(d) = Pr(DM >
d)) for the proposed method and [1]. The proposed method led to a higher reliability curve.

Correlation coefficient. The proposed method yielded a high correlation between man-
ual and automatic segmentations: r = 0.9779. The linear regression plot, displayed in
Fig. 2 (b) with the identity line, illustrates this correlation.

Computation time/load. Although based on distribution measures, the algorithm led
to nearly real-time segmentation. Running on a 2 GHz machine, it needs 0.08 sec to
process a frame (12.5 images/sec). Table 2 reports the computation time/load for the
proposed method and [1]. The proposed approximation leads to a significant decrease
in computation load because it requires only a joint kernel density estimation (KDE)
and graph cut, whereas the curve evolution in [1] requires approximately 300 KDEs.
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14. Zambal, S., Hladůvka, J., Bühler, K.: Improving segmentation of the left ventricle using a
two-component statistical model. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI
2006. LNCS, vol. 4190, pp. 151–158. Springer, Heidelberg (2006)

15. Zhuang, X., Rhode, K.S., Arridge, S.R., Razavi, R., Hill, D.L.G., Hawkes, D.J., Ourselin,
S.: An atlas-based segmentation propagation framework using locally affine registration –
application to automatic whole heart segmentation. In: Metaxas, D., Axel, L., Fichtinger, G.,
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Abstract. This paper describes a system to automatically segment the
left ventricle in all slices and all phases of cardiac cine magnetic reso-
nance datasets. After localizing the left ventricle blood pool using mo-
tion, thresholding and clustering, slices are segmented sequentially. For
each slice, deformable registration is used to align all the phases, candi-
dates contours are recovered in the average image using shortest paths,
and a minimal surface is built to generate the final contours. The ad-
vantage of our method is that the resulting contours follow the edges
in each phase and are consistent over time. We demonstrate using 19
patient examples that the results are very good. The RMS distance be-
tween ground truth and our segmentation is only 1.6 pixels (2.7 mm)
and the Dice coefficient is 0.89.

1 Introduction

Cardiovascular disease is now the largest cause of death in the modern world and
is an important health concern. Physicians use non invasive technologies such as
magnetic resonance (MR) imaging to observe the behavior of the heart and more
specifically the left ventricle (LV). They want to quantify important measures such
as blood pool volume over time, myocardial mass, ejection fraction, cardiac out-
put, peak ejection rate, filling rate, myocardial thickening, which can all be com-
puted with an outline of the LV. Manual outlining in all images is very cumbersome
however and most physicians limit it to the end-diastolic (ED) and end-systolic
(ES) phases, which is enough to calculate ejection fraction, but not enough to es-
timate some of the other quantities. This paper proposes a system to automatically
segment the LV in all slices and all phases of a cardiac MR cine study.

MR cine consists of 4D (3D+T) data and the segmentation of all the images
can be tackled in various ways. Some researchers have attempted 4D segmenta-
tion [1]. We believe however that this approach is not feasible, since it is very
difficult to build a model that is general enough to cover all possible shapes and
dynamics of the LV and a model-free approach would not be constrained enough.
The opposite approach of segmenting each image individually [2] results in little
cohesion between images and unsmooth contours over time. The intermediate
approach used very often of segmenting the LV in one phase on all slices [3,4]

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 910–918, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c)

Fig. 1. Gray level analysis: (a) Original histograms; (b) Polar image and multiseeded
fuzzy connectedness region labeling; (c) Final histograms

can be quite difficult. When a model is used, it needs to be carefully trained
for all possible LV shapes and all possible MR acquisition protocols. Conversely,
image-base techniques tend to be ad-hoc. We have chosen instead to segment all
phases in one slice and propagate the segmentation between slices. This method
can take advantage of the strong temporal correlation between phases to segment
individual slices. For temporal propagation, researchers have proposed using a
dynamic model of the LV [5,6] while other methods incorporate a tracking com-
ponent into the recovery for process [7,8]. We use deformable registration to align
all phases and generate an average image for segmentation. We use minimal sur-
faces to enforce consistency between phases so that contours follow image edges
in each phase and are smooth over time.

We will describe the different steps of the algorithm and demonstrate on 19
patient datasets that the segmented contours are very close to manually defined
ground truth contours.

2 Left Ventricle Segmentation

The proposed algorithm is divided into the following steps: 1) Heart and left ven-
tricle blood pool detection; 2) Polar space transformation; 3) Gray scale analysis;
4) Segmentation of the first slice, which comprises of deformable registration to
align all the phases, segmentation of the average temporal image and minimal
surface segmentation of all phases; and 5) Segmentation of the other slices. We
will describe each of these steps in more details in the next sections.

2.1 Heart and Left Ventricle Blood Pool Detection

For the detection of the heart and the LV blood pool, we use the method pro-
posed by Jolly [9]. It uses the first harmonic of the Fourier transform in each
slice to detect the beating heart. Then, blood-like connected components are
extracted using Otsu thresholding and characterized by their shape, temporal
behavior, position, etc. Finally, isoperimetric clustering is used to group con-
nected components between slices and form the LV blood pool. This process
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does not generate a blood pool region on all slices, nor does it handle the pap-
illary muscles correctly in the blood pool region, but it is a good starting point
for the rest of our algorithm.

2.2 Polar Space Transformation

We have chosen to work in polar space for multiple reasons. First, the contours
to be recovered are roughly circular. Second, the segmentation will be performed
using a shortest path algorithm which is well known to be biased toward small
contours in Cartesian space. In polar space however, all contours have the same
size since they start on one side of the image and end on the other, so there
is no bias on the length of the contour. Finally, the images in Cartesian space
are around 256× 256 while in polar space, they are around 50× 90 making the
processing much faster. The center and maximum radius of the polar space are
calculated from the blood pool estimates.

2.3 Gray Level Analysis

Because no two MR acquisitions are the same, it is important to determine the
gray level properties of the images in the current dataset. We use the multiseeded
fuzzy connectedness approach proposed in [10] to build histograms for the lungs,
myocardium and blood pool distributions. The process is illustrated in Fig. 1.
Approximate histograms are built using the blood pool regions recovered in
Section 2.1, the pixels in a small ring around those regions, and a larger region
(largely consisting of lung pixels). The pixels in the center of the main peaks
in those histograms are used as seeds for the multiseeded fuzzy connectedness
algorithm which groups pixels into homogeneous regions (roughly corresponding
to blood, myocardium and lungs). The final histograms are built from these
regions.

3 Segmentation of the First Slice

The first slice in the dataset (the most basal slice) intersects with the valve
plane. This makes it difficult to segment and often, the LV cannot be detected
by the first step in Section 2.1. Consequently, we first segment the first slice on
which an LV blood pool was detected. It is usually a clean slice, below the valve
plane, without many papillary muscles inside the blood pool. It is a very good
candidate to start the segmentation process.

3.1 Deformable Registration

To segment a slice, we first register all the phases in the slice and generate
an average image. To calculate the deformation field between two phases, a
variational non-rigid registration algorithm [11] is applied. This approach can
be viewed as an extension of the classical optical flow method in which a dense
deformation field is estimated as the solution to a calculus of variations problem
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Fig. 2. Strategy to capture the large deformations between pairs of phases (especially
ED and ES) during registration in polar space

where the cost function is defined as the sum of an image similarity measure
(local cross correlation ratio) and regularization terms.

The registration algorithm is applied to the polar images because the contours
will be recovered in polar space and the intrinsic motion of the myocardium is
mostly radial [12]. To account for the fact that, in polar space, the pixels in
the first column of the image are neighbors of the pixels in the last column
of the image, we use the tiling boundary condition on the images to calculate
derivatives.

Due to the large myocardial contraction during the R-R intervals and the
finite capture range of non-rigid registration, a simple registration from the ED
phase often fails to fully recover the myocardium deformation in other phases
(especially the ES phase). We propose the strategy illustrated in Fig. 2 to over-
come this limitation. After a phase is selected as the reference image, the next
phase is first registered to this reference. Then, the second registration is initial-
ized with the deformation field from the first registration, which is equivalent to
first transforming the second phase to the reference coordinate system using a
partially accurate deformation field and then running the registration between
those to recover the remaining deformation.

3.2 Segmentation in the Average Temporal Image

The endocardium and epicardium contours are recovered independently in the
average image using a shortest path algorithm for which the main difficulty is to
define the cost function. In this case, the strong gradient between the papillary
muscles and the blood should be avoided as the contour should stay behind the
papillary muscles. Also, the gradient which might be stronger between the lungs
and the fat than between the myocardium and the fat is not a good indicator of
the epicardium.

Since it is impossible to design the best cost function that will work in all
possible cases, we have chosen to use multiple cost functions to recover mul-
tiple contour candidates as illustrated in Fig. 3. First, the phases are aligned
separately to the ED and ES phases and averaged to produce the ED and ES
average images IED(x) and IES(x). Then, for each average image, we compute
two different myocardium probabilities: a) the distribution probabilityMH(x) is
the response of the myocardium histogram to the pixels in the average image; b)



914 M.-P. Jolly et al.

Fig. 3. Segmentation of the average images to generate multiple candidate contours

the label probability ML(x) is the average of the label images Lp(x) produced
by the multiseeded fuzzy connectedness algorithm. Finally, gradient images are
computed in the following way. For the endocardium, gendo(x) is the gradient of
M(x) where gradients in the wrong direction are eliminated because the prob-
ability is expected to be bright inside the myocardium. Also pixel transitions in
L(x) from myocardium below to non myocardium above are highlighted. For the
epicardium, gepi(x) is the sum of the gradient of M(x) and the gradient of I(x).
Again, gradients in the wrong direction are eliminated and pixel transitions in
L(x) from blood (lung) below to non blood (non lung) above are highlighted.

The endocardium is recovered first using the gradient cost function defined as
G(x) = 1

|g(x)|2+ε . Then, for the epicardium, three criteria are minimized, namely
the gradient cost function, the number of pixels between the two contours not la-
beled asmyocardium inL(x), and the variation in the thickness of themyocardium.
We use Dijkstra’s algorithm to recover the shortest path. All the pixels in the left-
most column in the image are initialized as starting points on the path and as soon
as a path reaches a pixel in the rightmost column, the algorithm terminates. The
contours generated by the shortest path algorithm using the two different proba-
bility images for the two average images are transfered back to all the phases using
the corresponding deformation fields to obtain four different candidate contours
per phase. These contours are then combined using a minimal surface algorithm.

3.3 Minimal Surface Segmentation of All Phases

The minimal surface algorithm was developed by Grady [13] to extend the short-
est path algorithm to 3D. This extension of the shortest path algorithm accepts
one or more closed 2D contours as input and produces the global minimal surface,
with respect to the cost function, having these 2D contours as its boundary.

The cost function is defined as follows for each phase p. It is important to fol-
low the edges of the current frame, so the directed gradient images gendo

p (x) and
gepi

p (x) of the probability imagesMH
p (x) andML

p (x) for the current phase and the
gradient cost function Gp(x) = 1

|gp(x)|2+ε are computed as described earlier.
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Fig. 4. Segmentation of the first slice (cropped for better viewing)

Then, pixels on the candidate contours are retained based on how likely there
are of belonging to the final contour. For the endocardium, since we want the
contour to stay behind the papillary muscles, the most promissing pixels are
farther from the center of the contour. In polar coordinates, these pixels have a
larger row position. Let i(x) be the row position of pixel x and let i1(x) (resp.
i2(x)) be the row position of the top most (resp. bottom most) contour in the
same column as pixel x. The likelihood of a pixel on a candidate contour is de-
fined as F endo

p (x) = α(i(x) − i1(x)) + β. The situation is more complicated for
the epicardium because there are many missing and spurious edges. Once the
endocardium has been recovered, we determine the average thickness T of the
myocardium using all epicardium candidates in that phase. The likelihood of a
pixel on a candidate contour is defined as F epi

p (x) = ‖i(x) − (iendo(x) + T )‖.
In addition, if there are no good edges for the epicardium in a particular area,
the pixels T away from the endocardium become good candidate by setting
F epi

p (iendo(x) + T, j) = 0. The distance map from these candidate pixels is com-
puted and multiplied to the gradient cost functions to generate the final cost
function for the minimal surface algorithm.

To initialize the contours for the minimal surface algorithm, we apply Di-
jkstra’s algorithm in the ED phase to generate a 2D contour. The 3D volume
consists of all phases with the ED phase as the first phase and ED phase added
again as the last phase. This way, the algorithm is initialized with two contours
and the minimal surface is generated between them. In order to not bias the
algorithm with the initial contour, we apply a second pass where the initial con-
tour is the ES contour from the first pass and the 3D volume goes from the
ES phase to the ES phase. Once the contours have been segmented, they are
converted back to Cartesian space. Fig. 4 shows an example of the segmentation
in the first slice.

4 Segmentation of the Other Slices

The segmentation of the other slices is very similar. The slices are propagated
in both directions from the first slice to the apex and to the base. To begin, we
apply the deformable registration to align the ED and ES phases of the current
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Fig. 5. Segmentation in mid-ventricle slices (cropped for better viewing): automatic
contours are shown brighter and ground truth contours are shown dimmer

slice to the previous slice. The contours in the ED and ES phases from the
previous slice are transferred to the current slice by applying the deformation
field to define shape priors. When the candidate contours are recovered using
the shortest path algorithms in the ED and ES average images, the distance
maps around the prior contours are combined with the gradient cost functions
as follows:

Ĝendo
k (x) = Gendo

k (x)(Dendo
k (x) + 1)

Ĝepi
k (x) = Gepi

k (x)(Depi
k (x) + 1) k = ED,ES.

Finally, the candidate contours (including the prior contours) are combined using
the minimal surface algorithm. Segmentation examples are shown in Fig. 5 where
automatic contours are shown in bright while ground truths are dimmer.

5 Experiments

To evaluate the performance of the algorithm, we have collected 19 patient
datasets from 4 different clinical sites. Two experts manually outlined the en-
docardium and epicardium in the ED and ES phases for all the datasets. They
worked together to produce a single contour set that was agreed upon. We ran
our fully automatic algorithm and generated the segmentation contours. The
algorithm is quite fast, it takes 1 minute to segment an average dataset with 200
images (0.3 s per image) on a dual core laptop (2.33GHz and 2GB RAM).

The contours were compared in the following way. To compute the distance
between two contours, we first sample the contours so that their vertices are
one pixel apart. For each vertex on each contour, we compute the distance to
the closest point (not necessarily a vertex) on the other contour. We then plot
the cumulative histogram of these distances for all patients (all vertices on all
contours) and compute the root mean square (RMS) of these distances. We also
compute the average Dice coefficient. Fig. 7 shows the summary of results for all
contours, the endocardium and epicardium contours, the most basal slices, the
most apical slices, and the mid-ventricular slices. The cumulative histograms are
to be read in the following way: a point (x, y) on the curve says that x% of all
distances are below y pixels (pixel sizes for the 19 datasets varied between 1.32
and 2.47 mm).
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Fig. 6. Segmentation results in the most basal and most apical slices

RMS RMS Dice
(pixels) (mm)

overall 1.61 2.70 0.89
endocardium 1.48 2.48 0.88
epicardium 1.74 2.91 0.91
basal slices 1.65 2.76 0.92
apical slices 2.36 3.92 0.78
mid slices 1.34 2.24 0.93

Pixel sizes: 1.32 - 2.47 mm

Fig. 7. Distance between ground truth and automatic contours (the RMS distance
should be small, the Dice coefficient should be large), a point (x, y) in the graph
indicates that x% of all distances are below y

The curves show that the error is around 1 pixel (≈ 2 mm) half of the time and
around 2 pixels (≈ 4 mm) 80% of the time. There are very few large errors which
means that they occur in a few places and can easily be manually edited. We
observe that there is not much difference between endocardium and epicardium:
the algorithm recovers both contours equally well. The algorithm performs well
in the basal slices, but the error is much larger in the apical slices, and it can be
seen in the graph in Fig. 7 that the largest 10% of the distances are significantly
lower when those slices are ignored. Actually, very few people in the literature
have considered such slices as the ones seen in Fig. 6 where the outflow tract can
be seen in the base and the LV blood pool moves in and out of the slice between
ED and ES (no ground truth was defined on the ES phases of those slices) and
where the endocardium is very small in the apical slices.

6 Conclusions

We have proposed a fully automatic system to segment the left ventricle my-
ocardium from cine MR images. The method combines deformable registration,
shortest paths, and minimal surfaces. We demonstrated on 19 datasets that the
results look very good and the errors are small enough that the system can be
used in clinical settings. In the future, we would like to combine this short axis
segmentation with a long axis segmentation (similar to [4]) as it will help in
resolving the more difficult cases in the basal and apical slices.
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Abstract. We propose a method for the segmentation of medical images based
on a novel parameterization of prior shape knowledge and a search scheme based
on classifying local appearance. The method uses diffusion wavelets to capture
arbitrary and continuous interdependencies in the training data and uses them
for an efficient shape model. The lack of classic visual consistency in complex
medical imaging data, is tackled by a manifold learning approach handling op-
timal high-dimensional local features by Gentle Boosting. Appearance saliency
is encoded in the model and segmentation is performed through the extraction
and classification of the corresponding features in a new data set, as well as a
diffusion wavelet based shape model constraint. Our framework supports hier-
archies both in the model and the search space, can encode complex geometric
and photometric dependencies of the structure of interest, and can deal with ar-
bitrary topologies. Promising results are reported for heart CT data sets, proving
the impact of the soft parameterization, and the efficiency of our approach.

1 Introduction

Data acquired by medical imaging modalities has a level of richness that needs com-
puter based methods to extract relevant information in a consistent and efficient manner.
The automatic and accurate delineation of the left ventricle (LV) is a prominent exam-
ple for a critical component of computer-assisted cardiac diagnosis. Information with
respect to the ejection fraction, the wall motion, and the valve behavior can be very
useful toward predicting and avoiding myocardial infarction. Existing segmentation ap-
proaches include the use of a shortest path algorithm along with shape matching which
was considered in [1],or an alternative shape representation using level set functions
was proposed in [2].

These methods depend heavily on the accuracy of the inter-subject registration for
group comparison and the parameterization of the shape. A promising line of research
considering wavelets for the representation of shapes was initiated in [3] by build hier-
archical active shape models of 2-D anatomical objects using 1-D wavelets, which are
then used for shape based image segmentation. A further extension was proposed in [4]
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where spherical wavelets are used to characterize shape variation in a local fashion in
the space and frequency domain.

Two crucial components of image model based methods are the parameterization of
the shape manifold, and the capturing and representation of the appearance in the train-
ing and search data. The model based segmentation approach proposed in this paper
accounts for the systematic behavior of shape variation and image support in anatom-
ical structures, with a parameterization that goes beyond pre-defined reference mani-
folds. For the parameterization of complex structures it is worthwhile to not rely on
a reference manifold with an a priori topology, but to learn the appropriate topology
from the training data. For this we have to determine the intrinsic topology of a shape
for which multiple examples are available, and have to encode this information in the
shape model, to use it in the representation and during segmentation.

We propose a method that integrates local voxel classification and global search mod-
els. We model and parameterize shape variation of structures with arbitrary topology,
by using diffusion wavelet shape models [5] to represent the shape variation with a
learnt parameterization based on mutual distance. The approach deals with complex
and soft connectivity properties of objects by encoding their interdependencies with a
diffusion kernel [6]. The topology is learned from the training data instead of using a
priori choices like e.g., a sphere and represents the shape variation by means of diffu-
sion wavelets [7]. A detailed explanation of diffusion wavelet shape models, including
variants of the parameterization can be found in [8].

During search this model is used together with a GentleBoost classifier [9] trained
on the local appearance of the individual landmarks describing the anatomical structure.
The method obtains an accurate delineation of partially visible surfaces and complex
texture, that cannot be achieved with registration based methods. The shape represen-
tation is based on a finite set of landmarks, that can be repeatedly identified and exhibit
significant differentiation to the background on different examples of the anatomical
structure, and more particularly for CT cardiac volumes. During the search the hierar-
chical diffusion wavelet shape model [8] is fitted to new data based on local appearance
captured by the classifier. Related approaches combining local features with standard
shape models are [10], or [11]. The method computes a local feature vector for every
voxel and maps it via a GentleBoost classifier [9] to a probability that the voxel belongs
to a specific landmark in the object. The classifier is trained from the training data set
segmentations. The probabilistic output is constrained by the shape model. The map-
ping onto the diffusion wavelet coefficient space ensures valid results with regard to the
training data. The result of this procedure is a probability for each voxel regarding its
match to the structure to be segmented, conditioned on both local and global informa-
tion. We report results on CT left heart ventricle data sets, that illustrate the impact of
the soft parameterization, as well as the global classifier based search.

2 Hierarchical Shape Model Building

We model the shape variation observed in the training data by means of diffusion
wavelets. Wavelets represent a robust mathematical tool for hierarchically decomposing
functions into different frequency components. We refer the reader to [12] for complete
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Fig. 1. Scheme of Diffusion Wavelet Coefficient Process

description of the theory. The major advantage of wavelets is the compact support of
basis functions on one hand, and on the inherently hierarchical representation based
on multi-resolution modeling of processes at different spatial and temporal scales. The
diffusion wavelet technique introduced by [7] associates multi-scale representation of
training data as well as the topological information captured by means of a diffusion
kernel [6]. Diffusion wavelets enable local as well as global variation detection, which
makes it useful and suitable for our application.

For the modeling of the variation, we consider the heart volumes as a finite set of land-
marks. Starting from m landmark positions, Hi = 〈xi

1,x
i
2, . . .x

i
m, 〉, are known in n

training volume images V1,V2, . . . ,VN . Our data comprisesH = {H1,H2, ..,HN},
where xi

j ∈ R
d, and we refer to Hi ∈ R

dm a shape. Since we are only interested
in the non-rigid deformation, all anatomical shapes are aligned by Procrustes analysis,
which produces the series of examples Hp

i , from which we compute the mean shape
H̄p (Fig. 1). Once registered, the shapes are used through their deviation Si from the
mean shape, Si = Hp

i − H̄p, where H̄p represents the volumes mean shape.
We now specify a topology over the set of landmarks. For this we use a hierarchical

geometric graph framework introduced in [6]. It applies the concept of diffusion to cap-
ture mutual relations between nodes in a Markov chain, and derives the global structure
of a shape. In our case, this structure is the neighborhood relation between landmarks
of the shape, that determines the domain upon which the wavelet representation is built.
Diffusion maps grant a canonical representation of high-dimensional data. By this we
are able to represent spatial relations as well as the data behavior. The structure is en-
coded in a diffusion operator Δ ∈ R

m×m. Combining those two diffusion approaches
leads us to a prior knowledge of global and local training population variation [8]. The
diffusion operator Δ is built on the set of points embedded in a metric space utiliz-
ing their mutual distance in the mean shape, and reflects all pairwise relations between
individual points in the shape set.

After defining the diffusion operator Δ, we build the according diffusion wavelet
tree. For this we apply general multi resolution construction for efficiently computing,
representing and compressing Δ2j , for j > 0. The latter are dyadic powers of Δ, and
we use them as dilation operators to move from one level to the next, which is a simple
way of compressing high orders of the diffusion operator. The process of constructing
the diffusion wavelet, the tree and the coefficients is described in detail in [7].
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Once the tree is built based on the diffusion operator, we can compute the diffusion
wavelet coefficientsΩ for each shape Si, so thatΩSi = Ψ−1Si, where Ψ represents the
diffusion wavelet tree. Hence we can rebuild our shape as Hp

i = H̄p + ΨΩSi .
Now we move to a representation scale by scale, in order to construct a model of

the variation at each level for all the population training. We gather the low frequency
information in the coarser level, while localized variations will be detected through high
level coefficients in the multi scale representation. We define Ωlevelj at every scale j,
with (1 ≤ j ≤ K), such as Ωlevelj =

{
ΩSi/level=j

}
i=1...N

. Afterward we perform
principle component analysis (PCA) for the coefficients of all scales.

The eigenspace resulting from this PCA will be referred as {Λ,Σ}, where more pre-
cisely will haveΣ = {σj}j=1...K , and the corresponding eigenvaluesΛ = {λj}j=1...K
of the covariance matrix of the diffusion wavelets coefficients at each level j, and the ac-
cording coefficientsΩlevel

∗
j that represent each training shape in this coordinate system.

Hence in each level the coefficients would be expressed such as:

Ωlevelj = Ω̄levelj + σj

(
σ′

j .Ωlevel
∗
j

)
(1)

Finally we can activate the shape reconstruction process: (1) we compute the diffu-
sion wavelet coefficients ΩSiRec in each level,(2) we remodel the shape based on the
diffusion wavelet tree, and get the reconstructed shape: Υ p

i = H̄p + ΨΩSiRec.

3 Segmentation Based on Image Information and the Model Prior

The segmentation of the LV is challenging mostly due to the similar visual properties
with the other chambers of the heart cavity, as well as the presence of papillary muscles.
The use of edge-driven terms with regional statistics along either with deformable con-
tours or active shape and appearance models. In the first case, computational complexity
is an issue and the proper handling of papillary muscles is problematic. In the second
case, one has to deal with either the linearity of the sub-space or the fact that building
appearance modes requires appearance normalization and too many samples. We adopt
recent developments in machine learning that explores the use of weak classifiers and
arbitrary image features. In the context of the heart muscle, our feature space involves
the (i) gradient phase and magnitude, (ii) structure tensor plus their (iii) curvature [13]
and (v) the responses to Gabor filters with different phases and orientations.

3.1 Learning a Classifier for Appearance Modeling

Starting from this feature space, we apply Gentle Adaboost [9] to obtain a local ap-
pearance prior for the search in new data. The boosting process aims to build a strong
classifier by combining a number of weak classifiers, which need only be better than
chance. For this we call upon a sequential learning process: at each iteration, we add
a weak classifier. It is the basic learning algorithm introduces by Viola, Jones in [14].
Our classification problem evolves as a two class training set that can be represented as:
S = {(xi, yi)}l

i=1 ⊂ R
N× {−1,+1}.

Given these classifiers, we use them to locate landmarks during the segmentation
process. The classifiers detect landmarks present on the ventricle muscle wall against
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Fig. 2. Scheme of the appearance model: Based on local features, and a classifier we can assign
each position in the volume an evidence value for landmarks presence. This results in a set of
hypotheses for landmark positions, that are verified by the shape model constraint.

background. This is a very different strategy in comparison to standard search methods
[15]. The main search strategy is: extract features from the volume, for each landmark
obtain a few candidate positions with a very strong classifier response, fit the DW model
to these candidates, and determine the candidate configuration with the highest plausi-
bility with regard to the shape prior. After continue with the local search at the current
landmark estimates constraint by the DW model. During the shape model fitting we
check which candidates have the highest plausibility with the trained DW model.

In Fig. 2 the scheme of the model search is depicted. For each landmark the search
volume V is projected into a hypothesis space VH

i that reflects the evidence for the
landmark presence for each point in the volume. This results in a position hypothesis x̂i

for each landmark. The set of landmark hypotheses 〈x̂1, . . . , x̂n〉 is tested with the dif-
fusion wavelet shape model, resulting in a position prediction for each landmark. These
predictions are used to generate new hypotheses based on the local image support VH′

i

and the shape model. The hypothesis space is the classifier response on each position
in the volume. During the progressing search we just consider the neighborhood of the
current landmark location estimate during the last iteration.

3.2 The Segmentation Algorithm

Let us summarize the learning and search concepts introduced in this paper. The method
consists of a training phase and an execution step. First, the shape model and parame-
terization, and the local classifiers for the appearance representation are learnt. During
search they are used to locate and segment structures in new image data.

Learning: During the training both geometry and appearance of the structure of
interest are learned.

– Given n examples of the structure of interest location and the corresponding
images, we represent the shape variability through diffusion wavelets.

– Using the same examples, we compute the selected feature images for each
training example for different resolutions. For each landmark, at each reso-
lution, we construct a set of training samples containing local features and
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(a) (b) (c)

Fig. 3. Reconstructed surfaces for Heart CT data using projected wavelet coefficients on PCA
eigenspace, representing 99% of the total variance at finest level. The surfaces are showing the
±3sqrt(λi) from left to right. Figure is dedicated to the sagital view.

corresponding labels which indicate if the position is the landmark location or
the background, i.e., whether it is on the ventricle wall or on the background.
Let’s note here that background voxels are chosen randomly in the volume
except the particular landmark positions for training.

– To train for the fine local differentiation we take into consideration only the
neighborhood of every landmark candidate in each training image. We train a
classifier for each landmark and retain only the ones with solid performance or
wide-margins between the different classes.

Segmentation: Using both geometric and appearance priors and the corresponding
feature space in the image we perform the structure delineation as follows: the
process is initiated with the mean shape, and proceeds in an iterative manner,

– Perform a local search for the most probable landmark positions using the
trained classifiers

– Constrain the solution using the diffusion wavelet coefficient constraints, and
repeats the previous search steps until convergence.

This results in landmark location estimates in the search image, that are based on the
appearance, and the shape constrained learned during the training phase.

4 Experimental Validation

To assess the performance of our approach, we consider a data set that includes 25
CT volumes of the heart, with an approximate voxel spacing of 1.5 mm, for which 90
anatomical standard of reference landmarks, and a set of 1451 control points for the
left ventricle was available, in addition to the ground truth segmentation from experts
concerning the diastole as well as the systole.

We have run our algorithm in a leave-one-out cross validation fashion. For the dif-
fusion wavelet building part, we obtain 9 diffusion wavelet levels of decomposition for
the shape prior. As for the initialization of our framework, we used the mean shape
displaced by a random translation of 30 mm.

To evaluate the efficiency of our method, we computed two error measures: (i) the
Hausdorff distance revealing the maximum error between the standard of reference and
our model reconstruction, as well as (ii) mean distance error of the detected landmarks.
In Fig.4.a, one can see that the Hausdorff distance error decreases with an increasing
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(a) (b) (c)

Fig. 4. Multiscale Diffusion Wavelets Reconstruction. (a) Hausdorff Error Distance (in voxel) of
reconstructed heart at each diffusion scale for all data in the training set. (b) Data, green: ground
truth segmentation, red: reconstruction result for finest scale and (c) coarsest wavelet scale.

(a) (b)

Fig. 5. Model search result for Heart muscle. Ground truth in green, in red: search results. (a)
standard Gaussian search approach, and (b) method presented in this paper.

number of diffusion wavelet levels used for reconstruction. When we consider the mean
reconstruction error over all data, we reach a distance of 2.2313 voxel in the image for
the finest level, while as for the coarsest level we obtain 2.7073 voxel. The comparison
of detection results for different numbers of levels used during reconstruction can be
seen in Fig.4. Note that diffusion wavelets have been shown to outperform standard
Gaussian models in terms of search error in [5] on muscle MRI data.

During the search validation experiments, we consider a multi-resolution approach
for each landmark patch which goes from 5*5 pixels to 20*20 pixels in 4 steps. We
obtain 200 landmarks candidates, for 15 training hearts and 10 testing examples. Ex-
periments were carried out using Gentle Adaboost, which is adequate to deal with a
large number of negative examples as well as the rather limited size of our training set.

In the quantitative assessment of the search/segmentation algorithm explained in
Sec.3, we obtain a lowest error of 4.72 voxel between ground truth and relative seg-
mented volume. In a typical segmentation scenario, the method takes approximately
68 seconds in average through non-optimized code implemented in Matlab 7.5, on a
2GHz DELL Duo Computer with 2Gb RAM. One should note here that we are work-
ing toward search in very large data sets, while searching for small complex structures,
thus the efficiency of gradient descent of ASM is limited. In an ideal case one would
combine the trade off between the reconstruction accuracy and the classification error
to choose the best candidate for the search segmentation.
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5 Conclusion

In this paper we propose a 3D hierarchical shape prior segmentation framework based
on diffusion wavelets and local appearance classifiers. The diffusion wavelets are able
to represent subtle inter-dependencies in the training data, by clustering coefficients,
and representing the topology of the structure by a diffusion kernel, instead of a fixed
pre-defined manifold. The conjunction of the diffusion wavelet constraint with a search
method based on a GentleBoost classifier leads to an effective segmentation scheme. It
can deal with ambiguous appearance and complex structures. Future work will focus on
extensive evaluation, and the integration of efficient optimization techniques in addition
to the studied priors to obtain a more flexible and powerful paradigm for representing
shapes of arbitrary topologies, and the search in large data sets.
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Abstract. Semi-automatic segmentation of the myocardium in 3D echo-
graphic images may substantially support clinical diagnosis of heart dis-
ease. Particularly in children with congenital heart disease, segmentation
should be based on the echo features solely since a priori knowledge on
the shape of the heart cannot be used. Segmentation of echocardiographic
images is challenging because of the poor echogenicity contrast between
blood and the myocardium in some regions and the inherent speckle
noise from randomly backscattered echoes. Phase information present in
the radio frequency (rf) ultrasound data might yield useful, additional
features in these regions. A semi-3D technique was used to determine
maximum temporal cross-correlation values locally from the rf data. To
segment the endocardial surface, maximum cross-correlation values were
used as additional external force in a deformable model approach and
were tested against and combined with adaptive filtered, demodulated
rf data. The method was tested on full volume images (Philips, iE33)
of four healthy children and evaluated by comparison with contours ob-
tained from manual segmentation.

1 Introduction

Three-dimensional (3D) segmentation of the endocardial surface could be a help-
ful tool for clinical assessment of 3D echocardiographic images. Segmentation
may not only serve as an important tool for assessment of cardiac output and
other functional parameters but also as a preprocessing step for tissue charac-
terization, strain imaging and diagnosis of congenital deformities. Since manual
segmentation of the left ventricle in 3D ultrasound image sequences is time-
consuming and is subject to inter-expert variability, (semi-) automatic segmen-
tation techniques are required (see [1] for an overview). The influence of speckle
noise and the poor contrast in echogenicity between the blood and the heart
wall in regions where the muscle fibers are mainly parallel to the propagation
direction of the ultrasound beam, impose strong demands on the segmentation
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algorithm. Automatic segmentation purely based on differences in echogenicity
will be problematic in these low echogenicity regions as the contrast between
blood and myocardial tissue is absent. Therefore, a technique using temporal
information might be beneficial.

Segmentation techniques using shape and appearance models of the left ventri-
cle have been described [2] to overcome these segmentation problems. However, in
children with congenital deformities of the heart, inclusion of a priori knowledge
about the average shape of the left ventricle will lead to erroneous segmentation
results. The addition of temporal information by using cross-correlation tech-
niques might facilitate segmentation in these problematic low contrast regions.
Few segmentation methods use the rich phase information available in the radio
frequency (rf) signal [3], [4], [5]. Yan et al.[6] propose the use of maximum cor-
relation coefficients obtained from a phase sensitive speckle tracking method for
segmentation of the left ventricle.

This study builds on the work of Yan et al. [6] and Nillesen et al. [7] using
a combination of maximum cross-correlation values and adaptive mean squares
(AMS) filter values as external forces of a gradient-based deformable simplex
mesh model. The cross-correlation values were obtained from a semi-3D coarse-
to-fine displacement algorithm (developed for strain estimation). This combined
method was compared with segmentation results using correlation or AMS values
as an external force separately. All results were evaluated by comparing them
with manual segmentation.

2 Materials and Methods

Echocardiographic image sequences of the left ventricle were obtained in four
healthy children. Echographic imaging was approved by the local ethics commit-
tee and parents gave their informed consent for using the data. Transthoracic
full volume image sequences (ECG-gated, volume rate ≈50 Hz) were obtained in
long/short axis views. Rf-data were acquired directly after receive beam-forming
using an iE33 ultrasound system (Philips Medical Systems, Bothell, WA, USA),
equipped with an rf-interface and a pediatric X7-2 matrix array transducer (2-7
MHz). Rf-data were sampled at 16 MHz and transmitted to an external hard
disk. The data were band pass filtered (FIR least squares filter [2-5 MHz]) to
prevent disturbance by clutter and noise from frequencies outside the frequency
band of the transducer. For constructing echograms, the data were amplitude
demodulated using the Hilbert transform method.

2.1 Temporal Cross-Correlation of the Radio Frequency Signal

As velocity of the blood flow is expected to be higher than velocity of the sur-
rounding myocardial tissue, rf-signals will correlate less for fast moving blood
than for myocardial tissue. Temporal correlations might thus be used as a feature
for distinguishing between blood and the heart muscle. For 3D strain imaging
purposes, the cross-correlation function (CCF) of 2D windows of rf-data was
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calculated [8], [9] using two subsequent full volumes. The peak of the cross-
correlation function reveals the displacement of a 2D segment of rf-data in the
next time frame in 2D space. A 2D coarse-to-fine displacement estimation algo-
rithm was expanded into an iterative semi-3D approach. 2D reference windows
of 50 x 5 (axial x lateral) samples within the axial-azimuth plane were matched
with a search area of 150 x 11 samples in the next frame. Both the CCF and the
axial and lateral displacements were estimated. Next, the axial displacements
were used as an offset to estimate axial and elevational displacements and the
CCF in the axial-elevational plane. Hence, the displacements in three orthogonal
directions in 3D space were assessed. This semi-3D approach was preferred over
a full-3D approach since the iterative 2D cross-correlation calculation imposed
a lower computational load and no significant difference in performance and
precision was found between both methods [9]. The maximum cross-correlation
(MCC) values were found for each window. Window overlap in the axial direc-
tion was 75%, resulting in a cross-correlation image of 147 x 62 x 56 samples.
This corresponds to a pixel resolution of 600μm in the axial direction.

2.2 3D Adaptive Filtering

Besides the maximum cross-correlation values, adaptive filtering was used as a
more conventional method to optimize the distinction between blood and my-
ocardium. 3D Adaptive Mean Squares filtering of the amplitude demodulated
data was applied in the spatial domain. The 3D filter kernel size was related to
image speckle size and contained approximately 5 x 2 x 2 (axial x lateral x eleva-
tional) speckles. The AMS filter incorporates knowledge about speckle statistics
of blood and myocardium in an adaptive manner: homogeneous regions are fil-
tered strongly, i.e. speckle noise is reduced, whereas in inhomogeneous regions the
degree of filtering is low, such that transitions between blood and myocardium
are preserved. The AMS filter has been proven to be effective for segmentation
of echocardiographic images when using gradient based deformable models [7].

2.3 Deformable Model

A deformable simplex mesh model [10] was used for segmentation of the left ventri-
cle. In thismodel, each vertex of themesh pi = (xi, yi, zi) is displaced in an iterative
manner according to the discrete approximation of the Newtonian law of motion:

pi+1 = pi + αFint + Fext (1)

Fext is an external force derived from the image data that steers the simplex mesh
onto boundary structures. In this study, Fext consisted of an adaptive filtering
based component and the newly defined maximum cross-correlation component:

Fext = βFgradAMS + δFgradMCC + κFspeedAMS + λFspeedMCC (2)

Both AMS and MCC images were used to compute gradient and speed forces (see
[11],[12] for a general description of gradient and speed forces). Fint is a regular-
ization force and controls the smoothness of the surface [10]. Weighting factors
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Fig. 1. Short (upper panel) and long (lower panel) axis views from a full volume dataset
for the two external force types of the deformable model. Left: demodulated rf-data.
Middle: data after adaptive filtering. Right: maximum cross correlation values.

α, β, δ, κ and λ were used to balance the different forces. Whereas adaptive filter-
ing and computation of the cross-correlationwas performed by processing the data
along the scan-lines, computation of the external and internal forces, as well as the
deformation of the simplex mesh was performed on the data in scan-converted (i.e.,
sector) format. Initialization of the mesh was done by interactive placement of a
small spherical mesh in the center of the left ventricle.

Fig. 1 shows long and short axis views from a full volume dataset for the
two external force types of the model. In this figure, the original demodulated
rf-data, the data after adaptive filtering and the cross-correlation image are
shown. Image data were visualized in scan-converted format, in order to obtain
realistic anatomical views.

2.4 Evaluation

The method was evaluated by comparing left ventricular cavity contours as
obtained from the segmentation method with contours obtained from manual
segmentation. Papillary muscles were excluded from the left ventricular cavity.
Contours were extracted from the 3D volume segmented by the deformable model
and compared to manual segmentation for long axis (LAX) view and three short
axis (SAX) cross sections (at base, mid and apical level). Three different force
types were compared: using AMS force only (original model, β �= 0, κ �= 0, δ =
λ = 0), using cross-correlation force only (β = κ = 0, δ �= 0, λ �= 0), and the
combined model (β = κ = δ = λ �= 0). The mismatch ratio based on the Dice
coefficient was computed for all three force types to the express dissimilarity
between manual (Ref) and automatic segmentation (Seg):

MismatchDice = 1− 2(Ref ∩ Seg)
(Ref + Seg)

(3)
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3 Results

3D segmentation of the left ventricle was performed in four full volume images
obtained from four healthy children (6, 7, 8 and 9 years old) in the end sys-
tolic phase of the heart cycle. For each dataset, the three different force types
(AMS, MCC and a combination of both AMS and MCC) were tested using the
deformable model. For each dataset, the same initial position of the mesh in the
center of the left ventricle was used for all three segmentation methods.

Fig. 1 illustrates that the contrast between blood and the myocardium is
higher for the cross-correlation values than for the adaptive filtered data. Also
endocardial regions with low echogenicity seem to have better contrast between
blood and myocardium in the correlation image. Fig. 2 shows the effect of the
maximum cross-correlation on the segmentation results. In this figure, segmen-
tations of the endocardial surface in the long axis view (LAX) and three short
axis views (SAX base, mid and apex) are given for an illustrative example. It can
be clearly seen that for this dataset, segmentation exclusively based on the AMS
data leads to overestimation of the dimension of the ventricular cavity at the
apical side of the long axis view (compare mismatch ratios in Table 1, column 2,
LAX). Segmentation solely based on maximum cross-correlation leads to incor-
rect segmentation and underestimation of the endocardial dimension, see middle
panel. Combination of AMS and cross-correlation force (lower panel) improves

Fig. 2. Segmentation results for three settings of the deformable model for one dataset.
Long and short axis views overlaid with contours of the segmented endocardial sur-
face using AMS (upper), maximum cross correlation (MCC) (middle) and an equally
weighed combination of AMS and MCC force (lower).
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Table 1. Mismatch ratios for segmentation by adaptive mean squares (AMS), maxi-
mum cross-correlation (MCC) and AMS/MCC combined methods. Long axis (LAX)
view and short axis (SAX) view images for the data set of Fig. 2.

Mismatch LAX SAX SAX SAX
ratios Base Mid Apex

AMS 0.23 0.25 0.23 0.13
MCC 0.22 0.14 0.16 0.27
AMS & MCC 0.12 0.14 0.15 0.12

Table 2. Average mismatch ratios (n = 4) for segmentation by adaptive mean squares
(AMS), maximum cross-correlation (MCC) and AMS/MCC combined methods for long
axis (LAX) view and short axis (SAX) view images

Average LAX SAX SAX SAX
mismatch Base Mid Apex
ratios

AMS 0.18 0.16 0.22 0.15
MCC 0.17 0.14 0.17 0.26
AMS & MCC 0.11 0.12 0.14 0.13

the segmentation and results in correct dimensions of the left ventricle. Also in
the short axis views, combination of AMS and cross-correlation results in better
segmentation of the endocardial surface. Corresponding mismatch ratios for this
dataset (see Table 1) revealed that the segmentation results improved (i.e., the
mismatch ratio decreased) when the cross-correlation force was added to the
AMS force. Using the cross-correlation force on its own resulted in underesti-
mation of the endocardial surface, whereas a segmentation that only used the
AMS filtered data resulted in crossing boundaries in the low contrast regions.
Table 2 summarizes the mismatch ratios for the four different views (LAX, SAX
base, mid and apex), averaged over all four datasets. According to this table,
the combination of AMS and MCC force yielded the most accurate segmentation
results for all views.

To demonstrate the effect of the MCC force, the gray levels of manually drawn
myocardial and blood pool regions were compared for AMS and MCC values.
Figure 3 compares AMS against MCC values for myocardial regions with high
and low echogenicity (apical), and a blood pool region, respectively It can be
seen from this figure that the AMS force is highly distinctive in the case of blood
vs. myocardial tissue with high echogenicity. However, for low contrast regions
of the heart muscle, for example near the apex, blood and myocardium can no
longer be classified by using the AMS values, whereas in this case, MCC still
can be used to distinguish blood form myocardial tissue.
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Fig. 3. Comparison between AMS (horizontal axis) and MCC (vertical axis) values
for high and low contrast myocardial regions vs. blood pool region. Manually drawn
regions are shown in the echogram (bottom right).

4 Discussion and Conclusion

In this study, we developed a method that enables segmentation of anatomi-
cal structures in the heart of children by incorporating temporal information
in the model. According to these preliminary results, maximum temporal cross-
correlation values, based on the rf-signal, have additional value for the segmen-
tation of cardiac tissue. Since correlation can still be high in areas with low
echogenicity, inclusion of this parameter in the deformable simplex model as an
extra feature facilitates segmentation in regions where contrast between blood
pool and endocardial border is too low to perform gray-level based segmen-
tation. This is illustrated by the proper segmentation of the apical region in
Fig. 2. The complimentary character of the MCC and AMS is demonstrated in
Fig. 3. In high quality images (without low contrast regions), the AMS force al-
ready yielded adequate segmentation results and the cross-correlation force did
have no additional value as indicated by the mismatch ratios for AMS and the
combination of MCC and AMS in the apical short axis view (Table 1).

A deformable model that only uses the cross-correlation force underestimated
the blood pool region. This is most likely caused by the larger windows used
in the computation of correlation values and because of the blood close to the
heart wall ’adhering’ to the moving heart muscle, leading to a higher correlation
value, i.e., lower MCC contrast, in blood regions close to the endocardial border.

Presently, the method has been tested in the end-systolic phase where deforma-
tion of the heart is small, because with the current echo systems, the frame rate of
full volume imaging is still limited in terms of the accuracy of cross-correlationval-
ues throughout the entire cardiac cycle. For example, the cross-correlation based
model could be used in the end-systolic and end-diastolic phase as a more robust
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initialization for segmentation of the other frames in the cardiac cycle. In future,
the method will be extended to more frames during the cardiac cycle.

Acknowledgments. This work is supported by the Dutch Technology Founda-
tion (STW), project 06466 and Philips Medical Systems. The authors would like
to thank Bob Rijk for his assistance with the echographic image acquisitions.
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Abstract. Ultrasound contrast imaging is increasingly used to analyze
blood perfusion in cases of ischemic or cancerous diseases. Among other
imaging methods, the diminution harmonic imaging (DHI), which mod-
ells the diminution of contrast agent due to ultrasound pulses, is the most
promising because of its speed. However, the current imaging quality of
DHI is insufficient for reliable diagnoses.

In this paper, we extend the mathematical DHI model to include
the part of the intensity signal which is due to tissue reflections and
other effects not based on the contrast agent and its concentration in
the blood. We show in a phantom experiment with available perfusion
ground truth the vast improvements in accuracy of the new model. Our
findings also strongly support the theory of a linear relationship between
the perfusion speed and the determined perfusion coefficient, which is a
large step towards quantitative perfusion measurements.

1 Introduction

Ultrasound (US) perfusion analysis with ultrasound contrast agents (UCA) is
a growing field. Its applications cover all major areas in the body, e.g. heart,
liver, or brain [1,2]. Due to the use of ultrasound it has several advantages over
the use of CT/MRI–based methods, for instance reduced time and cost, and the
applicability to critically ill patients as a bedside method. However, the imaging
quality is not yet on the level accustomed by CT or MRI.

The most widely used imaging method is based on analyzing the kinetics
of a UCA bolus. Studies have shown its diagnostic significance [3]. Its main
drawback however is its long duration, which also makes it prone to movement
artifacts [4]. Other methods are based on continuous UCA infusion, such as the
diminution method. It uses high-power US pulses to destroy a substantial part
of the contrast agent with each pulse. A steady state is reached after a couple of
pulses, in which every pulse destroys as much UCA as is washed in during the
interframe interval. Instead of covering a whole bolus, which takes up to 60 s,
the DHI method acquires only 6–10 images at an interframe interval of 150–
1000 ms. The first approach to model the DHI method and extract perfusion-
related parameters appeared in [5], where the model was fitted to the data by
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Fig. 1. First (left) and last (right) image of an exemplary transcranial DHI sequence

least squares methods. An improvement was made by [6] to be able to directly
calculate the parameters and avoid the time-consuming fitting process. Other
approaches tried to determine the perfusion in a general way, independent of
the actual UCA concentration and insonation pattern used [7]. However, they
do not seem to have found wide acceptance.

This paper is organized as follows: Section 2 explains the DHI method in detail
and presents our model extensions and their implications. In Section 3, the results
of a phantom study are shown to prove the higher accuracy of the new model.
Finally, in Section 4 the results are discussed and conclusions are drawn.

2 Methods

2.1 Diminution Harmonic Imaging

To improve the SNR, ultrasound harmonic imaging makes use of the fact that
the ultrasound attenuation varies over frequency. The use of UCA amplifies this
effect. UCA consist mainly of gas-filled microbubbles that nonlinearly scatter
ultrasound and hence improve harmonic imaging. Depending on the US pulse
energy, the microbubbles are even destroyed, which also generates a nonlinear
echo. While the US pulse is sent with a center frequency of 1.8MHz, the probe
records also harmonic frequencies which are mainly due to contrast agent. Since
contrast agent can only be found in the blood circulation, this procedure is well
suited for perfusion imaging. Analyzing a varying contrast agent concentration
in an US image sequence provides information about the actual perfusion in the
imaging plane.

The DHI method is based on continuous contrast agent infusion leading to a
constant UCA concentration in the blood. A series of US pulses reduces the UCA
concentration, since microbubbles are destroyed due to the high sound pressure
using this method. After approximately 5 pulses, the UCA concentration ap-
proaches an equilibrium, in which an US pulse destroys as much contrast agent
as is flowing into the image plane during one interpulse interval. Fig. 1 shows
the first and last image from an exemplary DHI sequence (in this case from the
brain). The intensity decrease is clearly shown although in some high blood flow
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velocity regions, like the posterior cerebral artery, the intensity almost did not
change.

2.2 Mathematical Model

Our model is specific to the DHI process, which we consider special even among
ultrasound perfusion analysis models. As opposed to many other perfusion anal-
ysis approaches, the DHI process directly depends on the insonation pattern.
Hence, the measurement itself drastically influences the measured process.

As shown in Fig. 1, in some regions the image intensity does not change very
much or decreases only to a certain level. This is due to the fact that the US
system receives not only UCA echos but also tissue signals. Although quite obvi-
ous, this baseline intensity Ib was to our knowledge not yet modelled explicitly.
Instead, its incorporation with the model was considered unnecessary [5].

Furthermore, the UCA concentration is modelled while only the image in-
tensity I(n) is observable. Although considered the most critical precondition,
past publications did not make an assumption on the relationship between UCA
concentration and image intensity, but used the intensity values directly. Due to
equally distributed UCA and unchanged acoustic power and insonation plane,
the remaining fraction of UCA d is assumed to be constant. Hence, a linear
relationship between the UCA concentration C(n) and the UCA-dependent im-
age intensity Ic(n) can be assumed, which is supported by our experimental
results:

I(n) := Ic(n) + Ib (1)
Ic(n) := k · C(n) (2)

where n is the index for an insonation pulse, since the process can only be
observed at discrete intervals. Three factors influence the UCA concentration
C(n) in the insonation plane: blood wash-in, wash-out, and UCA destruction by
US pulses. Hence, it can be modelled as the following function in the sampled
tissue/blood volume:

C(n + 1) = C(1) · (1 − e−p·Δt
)

︸ ︷︷ ︸
Inflow

+ C(n) · d︸︷︷︸
Destruction

· e−p·Δt︸ ︷︷ ︸
Outflow

. (3)

Here, Δt denotes the time between two pulses, d gives the amount of contrast
agent that is not destructed by the pulse (0 ≤ d ≤ 1), and p is the perfusion
coefficient so that e−p∗dt is the fraction of blood that is exchanged. Since the
acquisition time is below 2 seconds, p is assumed to be constant. The process is
illustrated in Fig. 2. To calculate the concentration in the nth step directly, the
following closed form exists:

C(n) = C(1) ·
(

xn−1 + y · xn−1 − 1
x − 1

)
, with (4)

x = d · e−p·Δt and y = 1 − e−p·Δt.
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Fig. 2. Illustration of the DHI process with observed and actual concentration

The state of equilibrium between inflow, outflow and destruction that is even-
tually reached results in a constant intensity I∞:

I∞ := lim
n→∞ I(n)

(1)
= lim

n→∞ Ic(n) + Ib
(2)
= lim

n→∞ k · C(n) + Ib

(4)
= k · C(1)

[
lim

n→∞xn−1 + lim
n→∞ y · xn−1 − 1

x − 1

]
+ Ib

p>0
= Ic(1) · −y

x − 1
+ Ib = Ic(1) · e−p·Δt − 1

d · e−p·Δt − 1
+ Ib.

(5)

Equation 5 shows that the relation between Ic(n) and C(n) does not have to
be explicitly calculated. After solving equation 5 for p we have:

p =
1

Δt
ln

Ic∞d − Ic(1)
Ic∞ − Ic(1)

with Ic∞ := lim
n→∞ Ic(n)

(1)
=

1
Δt

ln
I∞d − I(1) + Ib(1 − d)

I∞ − I(1)

(6)

In this equation, I(1) and I∞ can be taken from the US image series. The
baseline intensity Ib and the destruction coefficient d are still missing. For this,
we develop the following limit:

Ln := lim
Δt→0

I(n + 1) − Ib

I(n) − Ib
lim

Δt→0

Ic(n + 1)
Ic(n)

= lim
Δt→0

kC(1)
[
xn + y xn−1

x−1

]
kC(1)

[
xn−1 + y xn−1−1

x−1

] =
dn

dn−1 = d

(7)
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Since equation 7 is valid for all n, we can equalize two arbitrary Ln to solve
this equation for Ib. We select n = 1 and n = 2 since at these frames flow effects
are relatively small while the absolute destruction value is largest:

L1 = L2

I(2) − Ib

I(1) − Ib
=

I(3) − Ib

I(2) − Ib

Ib =
I(2)2 − I(3)I(1)

2I(2) − I(3) − I(1)

(8)

Finally, we can obtain all values from the US image series and calculate Ib.
Using equation 7, we obtain d also. To correct for possible errors due to image
noise, we set Ib to the highest value (255 with 8 bit grayscale images) when the
denominator in equation 8 is zero and also constrain Ib to the minimum of the
time-intensity-curve.

3 Results

To validate our new method, we performed experiments with a flow phantom as
well as examinations on humans to determine the brain perfusion.

3.1 Phantom Experiments

We designed a simple open-circuit flow model with a dialysis cartridge as a
capillary phantom. The cartridge consisted of 9000 capillaries with an internal
diameter of 200 μm. The fluid (nondegassed water at 22 ◦C) was driven by a
programmable pump, which was connected to a roller pump head, providing
continuous nonpulsatile flow at defined flow volumes. To avoid flotation of the
UCA in the capillary-free entry section of the cartridge, it was fixed in a vertical
position. The UCA was applied using a perfusion pump.

Fig. 3. Placement of the ROI (left) and exemplary time-intensity-curve (right) for the
phantom experiment
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Fig. 4. Existing (left) and new (right) perfusion coefficient plotted over the known
perfusion velocity

Using a custom-made probe holder, the US probe was held in place at an
insonation angle of 90◦ to the phantom, providing a cross-sectional view. Har-
monic imaging was performed with a SONOS 5500 US system (Philips Medical
Systems, Best, The Netherlands) and a 1.8–3.6 MHz sector transducer (S4 probe,
Philips) in the conventional harmonic imaging mode (T-INT, insonation at 1.8
MHz, receiver tuned to 3.6 MHz). The mechanical index (MI) was 1.6. Gain and
transmit power settings were kept constant during the session. Standardized
insonation conditions were provided by an acoustic stand-off.

Five flow velocities (0.25, 0.5, 1, 1.5, and 2 mm/s) were investigated at five
frame rates (1, 1.33, 2, 4 and 6.67 Hz). The rapid, destructive US sequences were
followed by three pulses at 0.25 Hz to allow replenishment of intact microbubbles
into the insonation plane. To assess the repeatability of the measurements, each
combination was repeated 6 times during one single session.

To exclude attenuation phenomena that occur in deeper regions of the flow
model, we analyzed contrast data of a rectangular region of interest (ROI), which
was placed at a distance of 30 mm from the probe. Fig. 3 shows the placement
of the ROI as well as an exemplary time-intensity curve of one sequence.

The obtained images were used to calculate p in the ROI according to the
model given in [6] and for our new method. Since in the phantom experiment
we have the perfusion ground truth available, we put the calculated p values
in relation to the known perfusion velocities. The most impressive results are
shown in Fig. 4. It is clearly visible that the new perfusion coefficient correlates
highly to the perfusion velocity which is not the case for the existing model.

The appearance of the new perfusion coefficient also strongly supports the
theory of a linear relationship. Fitting a line onto the obtained values of p gives

P = 3.47 · p + 0.44 (9)

with P being the known perfusion velocity.

3.2 Brain Perfusion

Among applications of perfusion analysis, determining brain perfusion with tran-
scranial sonography is considered most challenging, since US images suffer from
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Fig. 5. Visualizations of the perfusion coefficient for a healthy subject (left) and a
patient suffering from an ischemic stroke (right)

a low SNR due to the high impedance of the skull. When acquiring a DHI se-
quence, the penetration depth of the ultrasound beam is set to 10 cm. Thus,
two sequences are necessary to cover the diencephalic imaging plane from both
hemispheres of a patient.

Fig. 5 shows two visualizations of the perfusion coefficient for two different
subjects. Both sequences have been acquired in an axial imaging plane with the
US probe at the temporal acoustic bone window at a frame rate of 6.67 Hz. Values
of p were calculated with the new method and visualized as gray-level images.
The most interesting part of the brain regarding pathological brain perfusion
is close to the skull, i.e. close to the top in the US frame, because (a) most
perfusion deficits occur in this area and (b) the lower part of the US image area
increasingly suffers from the UCA attenuation or shadowing effect and hence
can be ignored in the further analysis.

The images may be difficult to grasp, but in comparison it becomes evident that
a large region to the top of the right image, i.e. at the cortex of the ischemic stroke
patient, has a perfusion coefficient value of zero. That means this region is not per-
fused at all which was also confirmed by an MRI examination of this patient.

This visualization is of course only semi-quantitative and does not incorporate
the findings from Section 3.1. A fully quantitative mapping using the relationship
given in equation 9 is not feasible, since many influencing factors hinder the
comparison of the phantom experiment with the human examination.

4 Discussion and Conclusions

Compared to currently used diagnostic procedures the presented method features
fast and inexpensive perfusion analysis by means of ultrasound image sequences.
An examination can be performed directly at the patient’s bedside under mini-
mal strain for the patient. Especially noteworthy is the short examination time
of the DHI method compared to other US imaging methods. Besides further
stress reduction for the patient it helps in providing stable insonation conditions
and thus makes it the most promising method among its competitors.

Our model extension greatly enhances prediction accuracy for the perfusion
coefficient and supports the theory of a linear relation to the underlying perfusion
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as shown in the in vitro experiments. Most interesting is the fact that the stan-
dard deviation of the perfusion coefficient is smaller the lower the perfusion is.
These regions of malperfused, i.e. ischemic, tissue are of high diagnostic interest
and a high accuracy is especially important.

Although setup to mimic human microcirculation conditions, transfering the
findings of the in vitro to the in vivo case is still a challenging task, since many
factors influence the relationship determined in equation 9. Besides imaging pa-
rameters, such as mechanical index, UCA-related parameters have to be consid-
ered, i.e. the type of UCA, its concentration etc. Furthermore, patient-related
paramters exist, like the accessibility of the acoustic bone window. However, our
findings are a great step towards fully quantitative perfusion analysis of micro-
circulation with ultrasound. Still, comprehensive phantom studies are needed to
provide a basis to cover all parameter combinations.

To summarize, our method is very promising. The ultrasound-based diminu-
tion harmonic imaging method provides a fast and inexpensive alternative among
different modalities for microcirculation evaluation. Because of the general ap-
proach it is not restricted to cerebral microcirculation and can be applied to
every organ that is reachable by ultrasound.
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Abstract. New techniques for more accurate segmentation of a 3D cere-
brovascular system from phase contrast (PC) magnetic resonance angiog-
raphy (MRA) data are proposed. In this paper, we describe PC–MRA
images and desired maps of regions by a joint Markov-Gibbs random
field model (MGRF) of independent image signals and interdependent
region labels but focus on most accurate model identification. To better
specify region borders, each empirical distribution of signals is precisely
approximated by a Linear Combination of Discrete Gaussians (LCDG)
with positive and negative components. We modified the conventional
Expectation-Maximization (EM) algorithm to deal with the LCDG. The
initial segmentation based on the LCDG-models is then iteratively re-
fined using a MGRF model with analytically estimated potentials. Exper-
iments with both the phantoms and real data sets confirm high accuracy
of the proposed approach.

1 Introduction

Accurate cerebrovascular segmentation using non-invasive MRA is a valuable
tool for early diagnostics and timely treatment of intracranial vascular diseases.
Among three common MRA techniques, such as time-of-flight MRA (TOF–
MRA), phase contrast angiography (PCA), and contrast enhanced MRA (CE-
MRA), only TOF–MRA and PCA use flowing blood as an inherent contrast
medium, while for CE-MRA a contrasting substance has to be injected into the
circulatory system. Our work is motivated by the wide use of PCA and TOF–
MRA in clinical practice.

Today’s most popular techniques for segmenting blood vessels from MRA
data can be roughly classified in two categories: deformable models and statisti-
cal methods. The former iteratively adjust an initial boundary surface to blood
vessels by optimizing an energy function that depends on image gradient and sur-
face smoothness [1]. Topologically adaptable surfaces make classical deformable
models more efficient in segmenting intracranial vasculature [2]. Geodesic active
contours implemented with level set techniques offer flexible topological adapt-
ability to segment MRA images [3] including more efficient adaptation to local

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 943–950, 2009.
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geometric structures represented e.g. by tensor eigenvalues [4]. Fast segmentation
of blood vessel surfaces is obtained by inflating a 3D balloon with fast marching
methods [5]. In [6] they used a marked point-based segmentation algorithm to
extract the coronary tree from 2D X-ray angiography.

The latter extract the vascular tree automatically, but their accuracy de-
pends on underlying probability models. The MRA images are multi-modal in
the sense that particular modes of the marginal probability distribution of sig-
nals are associated with regions-of-interest. To the best of our knowledge, the
only adaptive statistical approaches for extracting blood vessels from the MRA
data were proposed by Noble and her group [7,8]. The marginal distribution is
modeled with a mixture of two Gaussian and one uniform or Rician components
for the stationary CSF and bones, brain tissues, and arteries, respectively. The
uniform component presumes the blood flow is strictly laminar. In [9] they pre-
sented a segmentation algorithm to extract the vascular system from TOF–MRA
images. Their approach is based on using a mixture of Gaussian and Rayleigh
distributions to approximate the normalized histogram of TOF-MRA images.

2 Joint Markov-Gibbs Model of PC–MRA Images

Let R = {(i, j, z) : 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ z ≤ Z} denote a finite arithmetic
grid supporting grayscale PC–MRA images g : R → Q and their region maps
m : R → X. Here, Q = {0, . . . , Q − 1} and X = {1, . . . , X} are the sets of gray
levels and region labels, respectively, where Q is the number of gray levels and
X is the number of image classes. The MGRF model of images to segment is
given by a joint probability distribution of PC–MRA images and desired region
maps P (g,m) = P (m)P (g|m). Here, P (m) is an unconditional distribution of
maps and P (g|m) is a conditional distribution of images, given a map. The
Bayesian MAP estimate of the map, given the image g, m∗ = argmaxm L(g,m)
maximizes the log-likelihood function:

L(g,m) = log P (g|m) + log P (m) (1)

2.1 Spatial Interaction Model of PC–MRA Images

Generic Markov-Gibbs model of region maps that accounts for only pairwise in-
teractions between each region label and its neighbors has generally an arbitrary
interaction structure and arbitrary Gibbs potentials identified from
image data. For simplicity, we restrict the interactions to the nearest voxels
(26-neighborhood) and assume, by symmetry considerations, that the interac-
tions are independent of relative region orientation, are the same for all classes,
and depend only on intra- or inter-region position of each voxel pair (i.e. whether
the labels are equal or not). Under these restrictions, the model is similar to the
conventional auto-binomial ones and differs only in that the potentials are not
related to a predefined function and have analytical estimates. The symmetric
label interactions are three-fold: the closest horizontal-vertical-diagonal in the
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current slice (hvdc), the closest horizontal-vertical-diagonal in the upper slice
(hvdu), and the closest horizontal-vertical-diagonal in the lower slice (hvdl). The
potentials of each type are bi-valued because only coincidence or difference of
the labels are taken into account. Let Va = {Va(x, χ) = Va,eq if x = χ and
Va(x, χ) = Va,ne if x �= χ: x, χ ∈ X} denote bi-valued Gibbs potentials describ-
ing symmetric pairwise interactions of type a ∈ A = {hvdc, hvdu, hvdl} between
the region labels. Let Nhvdc = {(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0)}, Nhvdu =
{(0, 0, 1), (−1,−1, 1), (−1, 1, 1), (1,−1, 1), (1, 1, 1)}, and Nhvdl = {(0, 0,−1), (−1,
−1,−1), (−1, 1,−1), (1,−1,−1), (1, 1,−1)} be subsets of inter-voxel offsets for
the 26-neighborhood system. Then the Gibbs probability distribution of region
maps is:

P (m) ∝ exp

⎛
⎝ ∑

(i,j,z)∈R

∑
a∈A

∑
(ξ,η,ζ)∈Na

Va(mi,j,z, mi+ξ,j+η,z+ζ)

⎞
⎠ (2)

To identify the MGRF model described in Eq. (2), we have to estimate the
Gibbs Potentials V. In this paper we introduce a new analytical maximum like-
lihood estimation for the Gibbs potentials.

Va,eq =
X2

X − 1

(
f ′

a(m) − 1
X

)
and Va,ne =

X2

X − 1

(
f ′′

a (m) − 1 +
1
X

)
(3)

where f ′
a(m) and f ′′

a (m) denote the relative frequency of the equal and non-equal
pairs of the labels in all the equivalent voxel pairs {((i, j, z), (i+ ξ, j + η, z + ζ)) :
(i, j, z) ∈ R.; (i + ξ, j + η, z + ζ) ∈ R; (ξ, η, ζ) ∈ Na}, respectively.

2.2 Intensity Model of PC–MRA Images

Let q; q ∈ Q = {0, 1, . . . , Q − 1}, denote the Q-ary gray level. The discrete
Gaussian is defined as the probability distribution Ψθ = (ψ(q|θ) : q ∈ Q) on Q
such that ψ(q|θ) = Φθ(q+0.5)−Φθ(q−0.5) for q = 1, . . . , Q−2, ψ(0|θ) = Φθ(0.5),
ψ(Q − 1|θ) = 1 − Φθ(Q − 1.5) where Φθ(q) is the cumulative Gaussian function
with a shorthand notation θ = (μ, σ2) for its mean, μ, and variance, σ2.

We assume the number K of dominant modes, i.e. regions or classes of interest
in a given PC–MRA images, is already known. In contrast to a conventional mix-
ture of Gaussians and/or other simple distributions, one per region, we closely
approximate the empirical gray level distribution for PC–MRA images with an
LCDG having Cp positive and Cn negative components such that Cp ≥ K:

pw,Θ(q) =
Cp∑
r=1

wp,rψ(q|θp,r) −
Cn∑
l=1

wn,lψ(q|θn,l) (4)

under the obvious restrictions on the weights w = [wp,., wn,.]: all the weights are
non-negative and

Cp∑
r=1

wp,r −
Cn∑
l=1

wn,l = 1 (5)
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To identify the LCDG-model including the numbers of its positive and negative
components, we modify the EM algorithm to deal with the LCDG.

First, the numbers Cp − K, Cn and parameters w, Θ (weights, means, and
variances) of the positive and negative Discrete Gaussian (DG) components are
estimated with a sequential EM-based initializing algorithm. The goal is to pro-
duce a close initial LCDG-approximation of the empirical distribution.

Sequential EM-based Initialization. Sequential EM-based initialization
forms an LCDG-approximation of a given empirical marginal gray level dis-
tribution using the conventional EM-algorithm [10] adapted to the DGs. At the
first stage, the empirical distribution is represented with a mixture of K posi-
tive DGs, each dominant mode being roughly approximated with a single DG.
At the second stage, deviations of the empirical distribution from the dominant
K-component mixture are modeled with other, “subordinate” components of
the LCDG. The resulting initial LCDG has K dominant weights, say, wp,1, . . . ,
wp,K such that

∑K
r=1 wp,r = 1, and a number of subordinate weights of smaller

values such that
∑Cp

r=K+1 wp,r −
∑Cn

l=1 wn,l = 0.

Modified EM Algorithm for LCDG. Modified EM algorithm for LCDG
maximizes the log-likelihood of the empirical data by the model parameters
assuming statistically independent signals:

L(w,Θ) =
∑
q∈Q

f(q) log pw,Θ(q) (6)

A local maximum of the log-likelihood in Eq. (6) is given with the EM process
extending the one in [10] onto alternating signs of the components. Let p

[m]
w,Θ(q) =∑Cp

r=1 w
[m]
p,r ψ(q|θ[m]

p,r )−∑Cn
l=1 w

[m]
n,l ψ(q|θ[m]

n,l ) denote the current LCDG at iteration
m. Relative contributions of each signal q ∈ Q to each positive and negative DG
at iteration m are specified by the respective conditional weights

π[m]
p (r|q) =

w
[m]
p,r ψ(q|θ[m]

p,r )

p
[m]
w,Θ(q)

; π[m]
n (l|q) =

w
[m]
n,l ψ(q|θ[m]

n,l )

p
[m]
w,Θ(q)

(7)

such that the following constraints hold:

Cp∑
r=1

π[m]
p (r|q) −

Cn∑
l=1

π[m]
n (l|q) = 1; q = 0, . . . , Q − 1 (8)

The following two steps iterate until the log-likelihood changes become small:

E– step[m+1]: Find the weights of Eq. (7) under the fixed parameters w[m],
Θ[m] from the previous iteration m, and

M– step[m+1]: Find conditional MLEs w[m+1], Θ[m+1] by maximizing L(w,Θ)
under the fixed weights of Eq. (7).
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Considerations closely similar to those in [10] show this process converges to a
local log-likelihood maximum. Let the log-likelihood of Eq. (6) be rewritten in
the equivalent form with the constraints of Eq. (8) as unit factors:

L(w[m],Θ[m]) =
Q∑

q=0

f(q)
[ Cp∑

r=1

π[m]
p (r|q) log p[m](q) −

Cn∑
l=1

π[m]
n (l|q) log p[m](q)

]

Let the terms log p[m](q) in the first and second brackets be replaced with the
equal terms log w

[m]
p,r + log ψ(q|θ[m]

p,r )− log π
[m]
p (r|q) and log w

[m]
n,l + log ψ(q|θ[m]

n,l )−
log π

[m]
n (l|q), respectively, which follow from Eq. (7). At the E-step, the condi-

tional Lagrange maximization of the log-likelihood of Eq. (9) under the Q restric-
tions of Eq. (8) results just in the weights π

[m+1]
p (r|q) and π

[m+1]
n (l|q) of Eq. (7)

for all r = 1, . . . , Cp; l = 1, . . . , Cn and q ∈ Q. At the M-step, the DG weights
w

[m+1]
p,r =

∑
q∈Q f(q)π[m+1]

p (r|q) and w
[m+1]
n,l =

∑
q∈Q f(q)π[m+1]

n (l|q) follow from
the conditional Lagrange maximization of the log-likelihood in Eq. (9) under the
restriction of Eq. (5) and the fixed conditional weights of Eq. (7). Under these lat-
ter, the conventional MLEs of the parameters of each DG stem from maximizing
the log-likelihood after each difference of the cumulative Gaussians is replaced
with its close approximation with the Gaussian density (below “c” stands for
“p” or “n”, respectively):

μ
[m+1]
c,r = 1

w
[m+1]
c,r

∑
q∈Q

q · f(q)π[m+1]
c (r|q)

(σ[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑
q∈Q

(
q − μ

[m+1]
c,i

)2
· f(q)π[m+1]

c (r|q)

This modified EM-algorithm is valid until the weights w are strictly positive.
The iterations should be terminated when the log-likelihood of Eq. (6) does not
change or begins to decrease due to accumulation of rounding errors.

The final mixed LCDG-model pC(q) is partitioned into the K LCDG-submodels
P[k] = [p(q|k) : q ∈ Q], one per class k = 1, . . . , K, by associating the subordinate
DGs with the dominant terms so that the misclassification rate is minimal.

3 Experimental Results

Experiments were conducted with the PC–MRA images acquired with the Picker
1.5T Edge MRI scanner having spatial resolution of 0.86 × 0.86 × 1.0 mm. The
size of each 3D data set is 256× 256× 123. The PC–MRA images contain three
classes (K = 3), namely, darker bones and fat, brain tissues, and brighter blood
vessels. A typical PC–MRA slice, its empirical marginal gray level distribution
f(q), and the initial 3-component Gaussian dominant mixture p3(q) are shown
in Fig. 1.

Figure 2 presents the final LCDG-model after refining the initial one with the
modified EM-algorithm and shows successive changes of the log-likelihood at
the refinement iterations. The final LCDG-models of each class are obtained with
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Table 1. Minimum εn, maximum εx,
and mean ε̄ segmentation errors, and
standard deviations σ of errors on the
geometrical 3D PC–MRA phantoms for
our (OA) as well as for four other
segmentation algorithms using iterative
thresholding (IT) [11], gradient based
(DMG) [12] or gradient vector flow based
(GVF) [13] deformable models, and
Chung segmentation approach (C) [8]

OA IT DMG GVF C
εn,% 0.07 3.89 8.9 1.97 0.1
εx,% 1.87 31.7 19.1 11.1 12.1
ε̄,% 0.49 15.7 9.8 4.87 6.2
σ,% 0.81 7.01 2.99 1.79 0.93
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Fig. 1. Typical PC–MRA scan slice (a)
and deviations between the empirical
distribution f(q) and the dominant 3-
component mixture p3(q) (b)
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Fig. 2. Final 3-class LCDG-model overlaying the empirical density (a), the log-
likelihood dynamics (b) for the refining EM-iterations, the refined model components
(c), and the class LCDG-models (d)
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Fig. 3. Segmentation results obtained by the proposed approach

the best separation thresholds t1 = 14 and t2 = 73. The first 47 refining iterations
increase the log-likelihood from −5.5 to −4.27. It is clear from Fig. 2(a) that the
LCDG helped us to better approximate the tails of the empirical density as well
as its main body. Better approximation will lead to good initial segmentation.

The region map obtained first with only the class LCDG-models is further
refined using the iterative segmentation algorithm. Changes in the likelihood
L(g,m) become very small after 9 iterations. For this map the initial estimated
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parameters are Va,eq = −Va,ne = 1.71, and the final estimated parameters are
Va,eq = −Va,ne = 2.13. The final region map produced with these parameters us-
ing the Metropolis voxelwise relaxation is shown in Fig. 3(a). More segmentation
results are shown in Figs 3(b,c).

4 Validation and Conclusions

It is very difficult to get accurate manually segmented complete vasculare trees
to validate our algorithm. To quantitatively evaluate its performance, we created
three wooden 3D phantoms in Fig. 4 with geometrical shapes similar to blood ves-
sels. They mimic bifurcations and zero and high curvature existing in any vascu-
lar system, and their changing radii simulate both large and small blood vessels.
The scanned phantoms were manually segmented to obtain the ground truth. The
blood vessel and non-vessel signals for each phantom were generated according to
the class distributions p(q|1), p(q|2), and p(q|3) in Fig. 2(d) using the inverse map-
ping methods. The resulting phantom’s histograms are similar to that in Fig. 2(a).

The total segmentation error is evaluated by a percentage of erroneous vox-
els with respect to the overall number of voxels in the manually segmented 3D
phantom. Figure 4 shows the segmentation of the three phantoms using our ap-
proach. Table 1 gives error statistics for 440 synthetic slices segmented in the
phantoms with proposed approach and compares them to four other known seg-
mentation algorithms. The statistical analysis using a two tailed t-test shows
that there is a significant difference (P < 10−4) between the error generated
by our segmentation approach and the error generated by the other four algo-
rithms that are cited in Table 1 which highlight the advantages of the proposed
approach. Figure 4 compares the results of our segmentation approach and the
Chung-Noble’s segmentation approach, the errors being in terms of the number

Phantoms Our Approach Chung Segmentation Approach [8]

“Cylinder”
Error 0.18% Error 2.12%

“Spiral”
Error 1.34% Error 4.01%

“Tree”
Error 0.31% Error 3.14%

Fig. 4. Segmentation of 3D phantoms. Error shown in green.
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of wrong (i.e. missed or extra) voxels relative to the total voxel number in the
manually segmented 3D phantoms. In total, our approach produces 0.18-1.34%
erroneous voxels comparing to 2.12-4.01% for the Chung-Noble’s approach on
the synthetic PC-MRA data.

We presented a new stochastic approach to find blood vessels in multi-modal
PC–MRA images. The LCDG-model accurately approximates the empirical
marginal gray level distribution yielding the high quality segmentation. The accu-
racy of our approach is validated using a specially designed 3D geometrical phan-
tom. LCDG-model ensures fast convergence of the model refinement with the
modified EM algorithm. Also, we introduced a new analytical method for accu-
rate estimation of 3D auto-binomial MGRF model. The proposed approach is not
limited only for PC–MRA but also is suitable for segmenting TOF–MRA and CTA
medical images. The latter were not included in the paper because of the space lim-
itations, but, the algorithm’s code, sample data and segmentation results for the
TOF–MRA, PC–MRA, and CTA images will be provided in our web site.
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Abstract. We describe a method for atlas-based segmentation of struc-
tural MRI for calculation of magnetic fieldmaps. CT data sets are used to
construct a probabilistic atlas of the head and corresponding MR is used to
train a classifier that segments soft tissue, air, and bone. Subject-specific
fieldmaps are computed from the segmentations using a perturbation field
model. Previous work has shown that distortion in echo-planar images can
be corrected using predicted fieldmaps. We obtain results that agree well
with acquired fieldmaps: 90% of voxel shifts from predicted fieldmaps show
subvoxel disagreement with those computed from acquired fieldmaps. In
addition, our fieldmap predictions show statistically significant
improvement following inclusion of the atlas.

1 Introduction

Echo-planar imaging (EPI) is the standard pulse sequence employed in functional
magnetic resonance imaging (FMRI) and diffusion tensor imaging (DTI) studies
due to its high temporal resolution. In order to extract meaningful information
from EPI data, scientists and clinicians typically register low resolution EPI data
to high resolution anatomical images. A major problem in achieving accurate
registration is the inherent distortion of EPI data due to B0 field inhomogeneity.

Field inhomogeneity results in distortion because the MR image reconstruc-
tion assumes a one to one relation between spatial location and the frequency
produced by known linear gradient fields. In practice, hardware constraints result
in inhomogenities in the main field as high as several hundred parts per million
(ppm). This can be corrected to within several ppm using shims [1]. Intrinsic
magnetic susceptibility of biological materials causes additional perturbations in
the field. In neuroimaging studies, soft tissue and bone have similar susceptibili-
ties of (χt ≈ −9.1×10−6) [2] and (χb ≈ −11.4×10−6) [3] respectively, but differ
significantly from the susceptibility of air (χa ≈ 0.4 × 10−6) [2]. This results
in large perturbations around the air-filled sinuses and subsequent distortion of
EPI data in the frontal and temporal lobes of the brain.
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To correct for this, MR systems contain a set of room-temperature shims
that are wound to produce fields based on the first and second order spheri-
cal harmonics [1]. Imperfect shimming and higher-order perturbations, however,
result in residual subject-specific inhomogeneity, and subsequent distortion of
the acquired images. Several techniques have been developed to correct for ge-
ometric distortion, the majority of which rely on the acquisition of magnetic
fieldmaps [4,5,6]. A fieldmap provides a direct measure of the B0 inhomogene-
ity at each point in the image. In EPI, the geometric distortion is a voxel-wise
translation restricted predominantly to the phase-encode direction, which can
be computed directly from the fieldmap. Fieldmap techniques, however, have
several limitations. First, they require additional scan time, which may be dif-
ficult to accomodate in clinical settings as well as in DTI studies where many
directions need to be acquired in the same session. Second, fieldmaps suffer from
low signal-to-noise ratios (SNR) at tissue/air boundaries, which can reduce their
reliability in areas where the distortion is most severe. Acquisition of a single
fieldmap may also be invalid for unwarping EPI data if there are significant ef-
fects due to motion or respiration in the timeseries. Finally, fieldmaps are not
available in many retrospective studies.

Given these limitations, there have been several efforts to predict fieldmaps
from tissue/air susceptibility distributions of the anatomy using magnetic field
models [7,8,2]. Jenkinson et al. showed that the perturbing field can be pre-
dicted with high accuracy when CT data of the subject is used to obtain a
tissue/air segmentation. Since whole-head CT is rarely available, Koch et al.
proposed using registered CT from a reference subject to obtain the tissue/air
susceptibility model. Both methods were limited by requiring CT to distinguish
air from bone, which have similar intensities in structural MR but significant
differences in magnetic susceptibility. Second, these models cannot account for
the shim fields present in the scanner that partially compensate for B0 inhomo-
geneity during EPI acquisition. Without this additional information, applying
the fieldmaps for distortion correction is not possible. In [7] it was shown that
tissue/air susceptibility models could be derived from structural MRI by using
an intensity-based classifier trained with CT. It was also shown that registration
of the EPI and structural MR could be used to search over the unknown shim
parameters allowing distortion correction of the EPI that agrees well with results
obtained using acquired fieldmaps.

Variability in structural MR acquisitions, however, may limit the efficacy of
an intensity-based classifier in cases where the MR intensity properties differ
significantly from those of the training data. In [7], CT data sets with MR ac-
quired on the same scanner as the subjects of interest could be used to train the
classifier, but this may not be possible in many cases. Limited anatomical infor-
mation below the brain may also prevent accurate estimation of the perturbing
field. Therefore, obtaining more reliable susceptibility models from structural
MR is critical for retrospective unwarping of EPI data sets that lack acquired
fieldmaps. While previous results predicting fieldmaps from structural MR have
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shown good agreement with acquired fieldmaps, we hypothesized that improved
segmentation methods would result in even greater accuracy.

In this paper we describe a method for using anatomical information from a set
of 22 whole-head CT data sets to achieve improved, subject-specific segmentation
of structural MR. In this approach a tissue/air atlas is constructed from the
CT data to obtain priors on the probability of tissue or air at each location
in the anatomy. The corresponding structural MR is used to train a classifier
that segments the MR of the subject of interest and this is used as input to
a first order perturbation field model to compute a subject-specific fieldmap.
The method is evaluated by comparison of predicted fieldmaps and acquired
fieldmaps. In addition, the MR classifier can be used to obtain probabilistic
bone segmentations from structural MR that show promising agreement with
segmented CT.

2 Methods

2.1 Atlas Construction

Automatic segmentation of neuroanatomical structures often relies on the use
of probabilistic atlases [9,10,11,12,13]. These atlases are usually constructed by
co-registering collections of manual segmentations or other training data. The
atlas functions as a spatial prior to represent anatomical variability within a
population and compensate for missing information in structural MR images [13].
Although atlas-based methods have typically been applied to the segmentation
of brain structures, in this work, we construct a probabilistic tissue/air atlas from
22 CT data sets. By incorporating spatial information into the MR segmentation,
we expect improved tissue/air classification in regions where bone is often mis-
labeled as air.

We obtained 22 datasets consisting of CT and MRI from 3 sources: the pub-
licly available Retrospective Image Registration Evaluation (RIRE) database
(17 neurosurgery patients), the Radiology department at Brigham and Women’s
Hospital (BWH) (4 neurosurgery patients) and the Zubal head phantom (1
subject) [14]. In the RIRE data, each CT image has 27 to 34 slices, 4 mm
thick, matrix=512x512, voxel size=0.65x0.65mm. The T1-weighted MRI was
acquired on a Siemens SP 1.5 Tesla scanner. MRI for 8 of the 17 subjects
has 20 to 26 axial slices, 4 mm thick, no gap, matrix=256x256, voxel size=
1.25x1.25mm, TE/TR=15/650ms. T1-weighted MP-RAGE for the other 9 sub-
jects had TE/TR=4/10ms, matrix=128x256x256 and FOV=160x250x250mm.
In the BWH dataset, the CT spanned 36 slices with 512x512 in-plane voxels of
size 0.46x0.46x4.8mm. 3D-SPGR MRI of these patients was obtained: slice thick-
ness=1mm, TE/TR=3/8ms, matrix=512x512, voxel size=0.5x0.5x1mm. The
Zubal data consists of CT of the head and neck: 1.2mm isotropic voxels spanning
230 slices with 256x256 in-plane voxels, and T1-weighted MRI with 90 slices of
thickness 0.2cm, matrix=256x256, and 25.6x25.6cm in-plane resolution.

For each subject, the CT data was registered to its corresponding MR using 6
degrees of freedom (DOF) and mutual information as the cost function. The MR
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was registered to standard space using the MNI152T1 atlas as the reference, 12
DOF and normalized correlation ratio. These transformations were then applied
to the co-registered CT. All registrations were carried out using FLIRT [15,16].
Tissue/air labels were obtained by thresholding the CT data in standard space.

The wide variation in the field of view of the CT data results in highly varying
amounts of data at each voxel; in particular only the zubal phantom includes ob-
servations in the neck. Probabilistic atlases are frequently constructed by count-
ing the number of occurrences of each tissue class at each voxel and normalizing
the result to obtain a probability distribution. In the two class situation, this
corresponds to ML estimation of the parameter of a binomial distribution, i.e.,
if k ∼ Binomial(n, p), then, the ML estimate of p given observed k is p̂ = k/n.

In the case of only one trial (n = 1), or one observation at a given voxel,
this will lead to estimates of p that are zero or one, which may be unreasonably
certain (i.e. when used as prior probability on tissue class in segmentation, these
values would dominate any amount of data in these voxels). One way to avoid
this effect, is to put a prior on p; a natural choice is the beta distribution, which
is conjugate to the binomial: p ∼ Beta(α, β). (The special case of α = β = 1
corresponds to a flat prior and Laplace’s rule of succession). We have chosen
to use α = β = ε = 0.05, and in this case, the posterior expected value of the
parameter is p̄ = k+ε

n+2ε , which avoids, by ε, the probability zero and one cases
mentioned above. In addition to the tissue/air atlas, a probabilistic atlas of bone
was obtained by segmenting bone from CT data and applying the same binomial
model and conjugate prior. This was applied to segment bone from MR, which
may be useful in other applications such as calculation of attenuation maps for
absorption correction in PET or dose calculation in radiotherapy planning.

2.2 Atlas-Based Segmentation

Structural MR was segmented using an MR classifier that incorporates spatially
dependent prior information from the probabilistic atlas and MR intensity infor-
mation (from the subject of interest) to obtain a subject-specific susceptibility
model. The classifier was trained using the CT/MR training data described in
section 2.1, but applied to segment MR data acquired at a separate site. The
accuracy of the segmentations was evaluated by comparing fieldmaps predicted
from the atlas-based segmenter to acquired fieldmaps. The fieldmaps were also
compared to those predicted using intensity information alone (ie. a spatially
constant prior).

We obtained T1-weighted MRI and fieldmaps of 5 subjects previously acquired
at Massachusetts General Hospital on a 3T Siemens TimTrio scanner as part of
the FBIRN multi-center FMRI study. The MP-RAGE spanned 160 slices, with
thickness=1.2mm,matrix=256x256, voxel size=0.86x0.86mm,andTE/TR=2.94/
2300ms.Thegradient echofieldmapshad30 slices, thickness=5mm,matrix=64x64,
voxel size=3.44x3.44mm, TE1/TE2/TR=3.03/5.49/500ms.

Rigid (6 DOF) registration of the T1 data to the fieldmap magnitude image
was carried out using FLIRT [15] so the predicted fieldmaps would be in the
same space as the acquired fieldmaps for validation. The MNI152T1 reference
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image was registered to the fieldmap magnitude image using 12 DOF and the
resulting transformation was applied to the atlas-based probability maps.

The prior probabilities of tissue, P (T | Xn), and air, P (T C | Xn), at each voxel
were obtained from the co-registered atlas. For each of the 22 T1 images in the
training data, the MR was scaled according to the parameter that minimized
the Kullback-Leibler Distance to the MR of the subject of interest. The data
that showed the minimal distance to the subject of interest was used to compute
the likelihood terms, P (Ii | T ) and P (Ii | T C), using tissue/air labels from the
corresponding CT. The posterior probability of tissue was computed and applied
to segment the MR of the subject of interest. Intensity-based segmentation using
spatially stationary priors computed from normalized intensity histograms of the
training data was also carried out for comparison to the atlas-based approach.

Bone segmentations were obtained in similar fashion and evaluated using a
‘leave-one-out’ framework in which one CT was withheld as ground truth and
the remaining CT data sets were used to construct the probabilistic bone atlas.
A non-linear direct search was performed to solve for the thresholds that max-
imized the similarity of the estimated bone segmentations to the ground truth
segmentation. The similarity was quantified using the dice score, where a value
of 0 indicates the volumes have no overlapping voxels and a value of 1 indicates
they are exactly the same.

2.3 Fieldmap Estimation

Fieldmaps are predicted from the atlas and intensity-based segmentations using
the perturbation field model described in [2]. In this model, a first order perturba-
tion solution of Maxwell’s equations is calculated from a tissue/air susceptibility
model, where each pixel takes continuous values between 0 (air) and 1 (tissue).
For a single voxel, with the B0 field along z, the predicted field is given by:
F (x) =

(
∂2G
∂z2

)
∗ (χ1B

(0)
z ), where G(x) = (4πr)−1, r =‖ x ‖=

√
x2 + y2 + z2,

B
(0)
z is the field strength, and χ1 = 1 is the susceptibility value of the voxel.

Due to the linearity of the perturbing field solution, the total field is given by:
B

(1)
z (x) =

∑
x′ χ1(x′)F (x − x′) where x′ are the source points (locations of the

voxel centers) and x is the field point where the field is evaluated.
Current field modeling techniques, including the one described in [2], do not

account for the shim fields that reduce the B0 inhomogeneity prior to fieldmap
acquisition. Therefore, in order to compare an estimated fieldmap to an acquired
one, the shim fields must added to the predicted fieldmaps. This is done by mod-
eling the shim fields using the set of first and second order spherical harmonic
basis functions. In addition, a global scaling of the predicted fieldmap must be
estimated since the model assumes the magnetic susceptibility throughout the
brain, (χt ≈ −9.1 × 10−6) [2], is constant, but this may not be accurate near
bone interfaces where both partial volume effects and mis-estimation of segmen-
tation values are most likely to occur. Furthermore, the perturbing fieldmaps are
calculated assuming a perfectly homogeneous B0 field, which cannot be achieved
in practice due to constraints on the hardware. The fieldmap scaling and shim
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(a) (b) (c)

Fig. 1. Results of the Segmentation. The T1 MR for a representative subject is shown
in (a). The tissue probability map computed using the intensity classifier (b) shows mis-
classification of voxels outside the sinus region where intensities are low in MR. Using
the atlas-based classifier significantly reduces these errors while adequately resolving
much of the subject-specific sinus anatomy (c).

parameters, θ, can be obtained by least squares fitting to the acquired fieldmap:
θ̂ = argmin

θ

[B − Aθ]2 where A =
[
B̂,S1,S2, ...,S8

]
. The column vectors B,

B̂, and Si, represent the acquired fieldmap, predicted fieldmap, and shim basis
functions, respectively. Once these coefficients are known, the predicted fieldmap
with shim, B̂s = Aθ̂, can be compared to the acquired fieldmap.

3 Experimental Results

Results of atlas-based segmentation of structural MR is shown in Fig. 1. Fig. 1a
shows T1 of the sinus region. Fig. 1b shows the limitations of using the intensity
classifier to segment the MR. While it produces reasonable results for many of
the voxels in the sinuses, voxels outside this region which are clearly soft tissue or
bone are mislabeled with values close to zero. In contrast, using the atlas-based
segmenter (as shown in Fig. 1c) achieves similar results for the highly variable
subject-specific anatomy within the sinus region, while producing fewer errors
in the surrounding area. The intensity and atlas-based segmentations were used
as input to the perturbation field model to obtain predicted fieldmaps. The
scaling and shim parameters were fit from the acquired fieldmaps as described
in section 2.3. The shim fields could then be added to the predicted fieldmaps
for comparison to the acquired fieldmaps as shown in Fig. 2. The first column of
Fig. 2 shows fieldmaps computed from the intensity-based segmentations, which
show significant differences relative to the acquired fieldmaps shown for each
subject in column 3. These are especially noticable in areas that have lower
signal in MR, such as in the ventricles and major sulci. Fieldmap results from
the atlas-based segmentations are shown in the second column of Fig. 2 and
show improved agreement with acquired fieldmaps. Quantitative analysis of the
absolute error in the B0 field between these images is given in the table in Fig. 2.
Since the bandwidth/pixel for the EPI data acquired in this study is 22.3 Hz, 90%
of the voxels in the atlas-based fieldmaps show subvoxel error. The mean of these
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Difference in Field (Hz) Mean P80 P85 P90 P95 P99
Subject 1 8.8 12.2 15.0 19.8 31.0 69.1
Subject 2 8.2 11.7 14.2 18.3 27.4 59.8
Subject 3 8.4 12.3 15.1 19.3 27.6 54.6
Subject 4 9.0 12.7 15.7 20.3 30.2 72.6
Subject 5 6.5 8.8 11.0 14.8 22.9 50.1

Koch et al. 12.5 — — 23.5 — —
μintensity 10.0 14.1 17.5 23.2 34.9 74.8

μatlas 8.2 11.5 14.2 18.5 27.8 61.2
p-values 0.0080 0.0087 0.0081 0.0079 0.0093 0.0106

Fig. 2. Results of the Fieldmap Estimation. Predicted and acquired fieldmaps for sub-
jects 1-5 are shown in rows 1-5 respectively. Fieldmaps predicted using the intensity
classifier (column 1) show significant differences relative to the acquired fieldmaps
(column 3), while those computed from the atlas-based segmentation show improved
agreement (column 2). The absolute difference between the acquired fieldmaps and
the atlas-based fieldmaps are given for each subject in the table above. 90% of voxels
show differences that are less than 22.3 Hz, the bandwidth/pixel for the FBIRN EPI
data. Results reported by Koch et al. [8] for a single subject are shown, as well as
mean statistics across all five subjects for both the intensity classifier and atlas-based
classifier. The atlas-based classifier performs better than the Koch and intensity-based
methods and the improvement over the intensity method is statistically significant (all
p-values < 0.05 for left-sided paired t-test). The scale of the fieldmaps is ±100 Hz.
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(a) (b) (c)

Fig. 3. Results of the Bone Segmentation. Segmentation of bone using the intensity
classifier (b) results in significant errors when compared with CT (a), while the atlas-
based classifier (c) shows good overall agreement.

statistics across all five subjects is also shown for both the intensity and atlas-
based classifiers. The intensity classifier shows a slight improvement over the
results reported by Koch et al [8] for a single subject. The atlas-based classifier
out performs both the intensity and Koch methods. Paired t-tests comparing
the means of the intensity and atlas-based results shows this improvement is
statistically significant (all p-values < 0.05). Results of the segmentation of bone
from structural MR for a representative subject is shown in Fig. 3. The CT
shown in Fig. 3a can be easily thresholded to segment bone from air and soft
tissue. Fig. 3b and Fig. 3c show the results of using the intensity and atlas-
based classifiers, respectively. While the intensity classifier has some success in
segmenting MR into tissue/air classes, it is much less effective in segmenting
bone (Fig. 3b). Inspection of the the atlas-based segmentation (Fig. 3c), however,
shows good general agreement with the CT, with a dice score of 0.780 for this
subject.
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Abstract. Prostate segmentation from trans-rectal transverse B-mode
ultrasound images is required for radiation treatment of prostate cancer.
Manual segmentation is a time-consuming task, the results of which are
dependent on image quality and physicians’ experience. This paper in-
troduces a semi-automatic 3D method based on super-ellipsoidal shapes.
It produces a 3D segmentation in less than 15 seconds using a warped,
tapered ellipsoid fit to the prostate. A study of patient images shows
good performance and repeatability. This method is currently in clinical
use at the Vancouver Cancer Center where it has become the standard
segmentation procedure for low dose-rate brachytherapy treatment.

1 Introduction

Low dose rate (LDR) prostate brachytherapy is a common radiation treatment
for early stage prostate cancer. It consists of the permanent implant of 40-100
small radioactive seeds into the prostate with the aim of delivering a sufficiently
high radiation dose to the cancerous tissue, while maintaining a tolerable dose
to the urethra and rectum. Possible side effects of this procedure include urinary
incontinence and erectile dysfunction which are mainly related to inaccurate
delivery of the seeds caused by inaccurate visualization of the prostate pre-
operatively and intra-operatively.

In a typical pre-operative trans-rectal volume study, a series of 9-14 parallel
trans-rectal ultrasound (TRUS) images, from the base to the apex, are collected.
These images are then manually segmented to create a 3D model of the prostate,
which is used to generate a treatment plan. In typical TRUS images, the prostate
is the largest and its boundary is the most discernible in the mid-gland section.
Approaching the base and the apex, the boundary almost disappears into the
background. Segmentation of these two regions is mainly based on experience
and by looking at the mid-portion of the gland, which gives a hint of how far
the prostate extends axially. Manual segmentation often requires 5-10 minutes
and, in addition to image quality, it greatly relies upon the experience and pecu-
liar habits of the clinician. Therefore, a suitable (semi-)automatic segmentation
algorithm can result in less variable contours generated in less time.
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Many (semi-)automatic prostate segmentation methods on ultrasound im-
ages have been proposed during the last few years [1]. Some methods are based
on image enhancement or edge detection techniques such as [2,3,4]. However,
methods which rely solely on image information are sensitive to image qual-
ity and noise level. Additional information about the shape of the prostate can
increase robustness to noise and reduce segmentation time. Deformable mod-
els have been widely used for medical image segmentation [5,6,7,8,9] and are
generally more successful than the former methods. Fitting ellipses, ellipsoids,
super-ellipses, and deformable ellipses or using them for initialization have been
relatively attractive approaches for prostate segmentation due to the shape of
the gland [10,11,12,13,14].

To the best of our knowledge, there have been no other reports of a 3D (semi)
automatic prostate segmentation method reliable enough and fast enough for
effective replacement of standard manual segmentation in clinical use. While the
extensive study of [12] showed good segmentation results, the method presented
is limited to 2D. Previous 3D methods [15,16] are time consuming (> 2 minutes)
or require significant user intervention [11]. Our use of an a priori shape allows
prostate segmentation in poorly visible regions and therefore can be used in
standard clinical practice, thus enabling a more complete validation study than
presented with other 3D methods.

In this paper, we propose a method that generates the 3D volume of the
prostate based on a combination of the physician’s experience, edge detection
and prior knowledge of the prostate’s shape. The method introduced in [14] has
been extended to account for the tapered 3D shape of the prostate. Furthermore,
we introduce a novel validation method based on different regions of the gland.
This method enables a critical evaluation of prostate segmentation algorithms
based on their importance in treatment planning.

2 Methods

2.1 Algorithm

Based on the prostate’s shape and considering the effect of the TRUS probe
pressure on the gland, we found a warped and tapered ellipsoid with tapering
in three axes suitable as the final 3D volume of the prostate. This can be con-
structed from 2D warped and tapered ellipses generated from each image slice.
However, fitting such shapes for each slice can be time-consuming. A solution to
this problem is to un-warp and un-taper all images in a pre-processing step that
makes the prostate shape approximately ellipsoidal. Un-warping is carried out
to remove the posterior concavity of the prostate formed due to TRUS pressure
on the gland. Transversal un-tapering is then applied leaving a simple convex
ellipse fitting problem for each image. Finally an axially tapered ellipsoid or an
‘egg shape’ with an elliptical cross-section is fitted to the 2D contours and the
results are inversely warped and tapered to match the actual prostate shape.
Details of the algorithm are as follows.
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Fig. 1. (a) Initial points, (b) Un-warped mid-gland with initial tapered ellipse fit, (c)
Un-tapered, un-warped image with edge detection and ellipse fit, (d) propagation from
mid-gland to the remaining slices, (e) tapered ellipsoid

Initialization: The segmentation algorithm is initialized with the user selecting
the mid-gland, apex, and base slices. The base and apex are the extreme slices
in which the prostate can be seen, superiorly and inferiorly, and the mid-gland
slice usually contains the largest and most visible section of the gland. The
“slices” used for segmentation throughout the algorithm will be from base+1 to
apex−1. On the mid-gland slice, the user selects p1 the TRUS probe center and
six boundary points which are (Fig.1(a)): p2-lowest posterior lateral, p3-extreme
right, p4-medial posterior, p5-medial anterior, p6 (p7)- intersection of the mid-
perpendicular line between p2 and p3 (p3 and p5) with the boundary. The aim is
to extract the most information from the image while keeping the variability of
the initialization low by directing the user to specific regions (superior, lateral,
inferior) and using guiding lines.

Un-warping: Based on the selected points, the mid-gland image and initial
points are un-warped [13] to reduce the deformation caused by the TRUS probe,
using rnew = r−rsin(θ)exp(−r2/2σ2) where r is the current distance of an image
pixel on a radial line starting from the probe center with angle θ ( θ = 90◦ being
the medial line) and rnew is the distance of the re-located pixel. According to this
sinusoidally weighted Gaussian function, the maximum deformation is achieved
when θ = 90◦ and is reduced as the distance to the center of the probe increases.
The amount of radial stretch is determined by σ which is calculated using the
three initial points p1, p2,and p4 for θ = 90o.

Un-tapering: To the un-warped initial points, a tapered ellipse is fitted by solv-
ing the following problem using the Levenberg-Marquardt optimization method
with the goal of obtaining the parameters P = (x0, y0, ax, ay, t1):
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with −1 ≤ t1 ≤ 1 being the tapering parameter (t1 = 0 for ellipse), [x0, y0] the
center of the shape, ax and ay the radii along the x and y axes, and [xi, yi] the
coordinates of the N boundary points on the mid-gland image. N is determined
by the initial points and their reflections about the mid-sagittal plane (Fig.1(b)).

IMMPDA edge detection in mid-gland: The resulting tapered ellipse is used
to guide the IMMPDA edge detection algorithm [17] by setting limits on how far
from the initial contour the edge detection can search. In order to improve the ta-
pered ellipse fitting, the resulting edge points are once again fed to the Levenberg-
Marquardt algorithm. The tapering value of this contour, t1, is used to ‘un-taper’
the ultrasound images. We assume that the prostate is most tapered at the mid-
gland and the tapering linearly reduces to zero towards the base and the apex.
Thus, only one tapering parameter is computed for the entire set of transverse
prostate images. Using the negative of the tapering value for each slice, all the im-
ages along with the initial points are un-tapered. The combination of un-warping
and un-tapering of the images creates images in which the prostate is approxi-
mately elliptical in shape, thus simplifying the problem to the convex problem of
fitting an ellipse. An ellipse can be fitted to data points by solving a generalized
eigenvector problem. Fig.1(c) shows the un-warped and un-tapered mid-gland im-
age along with the IMMPDA edge detection result and final fitted ellipse.

Contour propagation and IMMPDA detection in remaining slices: In
order to find the prostate boundary in the rest of the slices, two semi-ellipsoids
are first fitted (again using the generalized eigenvector problem): one to the mid-
gland contour and the intersection of a line passing the center of the mid-gland
contour and parallel to the TRUS with slice base − 1, and the second to the
mid-gland contour and the intersection of the same line with slice apex + 1.
The intersection of the two semi-ellipsoids with each of the slices creates initial
contours for the delineation of the remaining slices (Fig.1(d)). The IMMPDA
edge detection algorithm is applied to each image and the detected edge points
are used to fit the final 3D shape. Two semi-ellipsoids instead of one ellipsoid
are used because the mid-gland slice is usually closer to the base, thus giving a
better initial approximation for the remaining contours.

3D Tapered ellipsoid fit: A tapered ellipsoid is fitted as a final 3D shape
to the slice contours obtained (Fig.1(e)). This is no longer a convex problem,
and we solve it using the Levenberg-Marquardt algorithm. The following op-
timization problem is solved in order to find the tapered ellipsoid parameters
P = (x0, y0, z0, ax, ay, az, t2, t3):
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Fig. 2. Final contours on the TRUS B-mode images and the final 3D shape compared
with manual segmentation (thin lines)

where ax, ay, az are the radii along the axes, [x0, y0, z0] is the position of the
center of the volume, t2 and t3 are respective x and y tapering values in the
direction of the ultrasound probe axis and [xi, yi, zi] are the coordinates of M
boundary points segmented in the image slices.

The 3D volume fitting is the most time consuming part of the algorithm. To
aid the optimization algorithm, an ellipsoid is initially fitted to the data cloud
consisting of the ellipse contours of all slices. Since this is a convex problem,
the one and only minimum is found almost instantly. The derived center of the
ellipsoid and the axes are used along with the two tapering parameters, initially
set to 0.05 assuming slight tapering of the prostate towards the apex, as initial
values for the optimization algorithm in Eq.2.

Volume re-slicing, tapering and warping: The final volume is sliced, and the
resulting contours are inversely tapered and warped. Fig.2 shows the resulting
contours in the TRUS B-mode images and a comparison of the final 3D volume
generated by the algorithm with the manual contours created by a physician.

2.2 Evaluation

The current algorithm for prostate segmentation is now been used by therapists
at the Vancouver Cancer Center, where approximately 300 patients per year are
treated. Before treatment planning, radiation oncologists observe and modify
the resulting contours, if needed. To evaluate this algorithm we have carried
out three comparison studies between 3D shapes generated from: (i) pre- and
post-modified semi-automatic contours, (ii) original and repeated pre-modified
semi-automatic contours and finally (iii) manually segmented contours and pre-
modified semi-automatic contours.
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%
I II III

Base Mid Apex Base Mid Apex Base Mid Apex
Ant. -5.2 +4.9 +9.0 8.8 5.0 7.5 -10.2 +7.5 +10.7
Lat. -4.9 +4.6 +10.3 4.4 2.8 5.2 - 6.9 +4.9 -9.2
Post -7.6 -4.0 -11.9 4.4 2.3 5.2 +9.1 +5.6 +11.4
Total +5.67 4.10 +7.01

Fig. 3. Percentage of volume errors for each sector. I: pre- vs. post modified semi-auto,
II: original vs. repeated semi-auto, III: semi-auto vs. manual.

In all three studies, the 3D prostate shape has been divided into nine sectors
(Fig.3). Division in the transverse plane produces three anterior, posterior and
lateral regions and axial division results in the apex, base and mid regions. The
reason for such a division is to best represent the critical regions involved in
the treatment. For example, the boundary of the mid-posterior region should be
accurately identified to avoid rectal complications.

For each sector, the percentage of volume error, Verr , is calculated. This value
is the percentage of the non-overlapping volume of two 3D shapes, as defined in
comparison studies (i), (ii) and (iii), to the sum of their volumes. Additionally,
the percentage of total volume difference, Vdiff , is also reported. This is (VA −
VB)/VB ×100, with VA and VB being the pre- and post-modified (study (i)) and
pre-modified and manual volumes (study (iii)), respectively.

Comparison between the pre- and post-modified semi-automatic contours can
give a measure of how satisfied the physicians are with the results of the algo-
rithm. This is done on 22 sets of prostate images with an average of 10 images per
case. To evaluate the repeatability of the algorithm, 10 of the 22 cases were ran-
domly selected for repeated segmentation. The repeated contours are compared
with the pre-modified contours using the same nine-sector analysis.

One can argue that seeing the semi-automatic contours may bias the physi-
cian’s judgment of where the prostate boundary actually is. To determine the
extent to which the a priori shapes generated by the algorithm may cause such
bias, 11 cases were segmented both manually (by an expert) and by our algo-
rithm (by a volunteer trained by an expert).

The Mean Absolute Distance (MAD), and Maximum Difference (MAXD)
were also calculated for the mid-gland slices in studies (i) and (iii) as measures
of the 2D contouring ability of the algorithm. The former(latter) is the aver-
age(maximum value) of the absolute radial distance between the two contours
to be compared. Finally, a B-mode/MRI volume comparison is carried out.

3 Results

The average normalized volume error for the nine sectors can be seen in the
following tables (Fig.3). Column I shows Verr between semi-automatic contours
and their modified versions for the 22 cases. The positive(negative) signs indicate
that the sector is smaller (larger) in the modified version. Vdiff is 0.61±7.7 (%)
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and the average MAD/MAXD for the mid-gland slice is 0.66±0.5/2.06±1.59
(mm) in which 4 of the 22 cases did not need any modification in the mid-
gland slice. In order to study the repeatability of the algorithm, 10 of these
cases were randomly selected and segmented by a different user two weeks after
initial segmentation, the results of which are seen in column II. Finally, Verr

between semi-automatic contours and manual contours of the 11 cases is shown
in column III. In this case, a positive(negative) sign means that the manual
sector is smaller (larger). The percentage volume errors are mainly of the order
of the pre- and post-modified comparison, which implies that the physician is
not significantly biased by the semi-auto contours. Vdiff is 1.8±5.1 (%) and the
MAD/MAXD for the mid-gland slice is 1.25±0.38/3.17±0.73 (mm). Comparison
of pre- and post-modified semi-automatic contours with manual MRI contours
of 8 patient prostates showed a Vdiff of 13.1±7.5 (%) between pre-modified and
MRI contours. Interestingly, this value is 8.6±5.3 (%) for post-modified and MRI
contours (in both cases the MRI volume usually being smaller). This suggests
that even the modified contours used for treatment planning create a larger
volume than that seen in MRI.

The duration from the moment the initial points are selected until the 3D
shape is generated is 14.36±1.39s (max.17s) on a standard PC.

4 Conclusion and Discussion

We have presented a fast algorithm for semi-automatic segmentation of the
prostate. The algorithm is presently in clinical use (to date plans for 90 pa-
tients were generated) and provides an initial segmentation to radiation oncolo-
gists performing brachytherapy. It was shown that only small modifications are
required to the initial segmentations, specifically in the mid region of the gland.

It is important to note that the physicians definition of segmentation may not
necessarily be what the actual boundaries of the prostate are in B-mode images.
Contouring is also affected by how the treatment is planned and carried out.
This can be seen in the comparison with MR images which are well known for
providing better visibility of the gland. Our results showed that even segmenta-
tion results of B-mode images approved for planning have larger volumes than
those created from MRI.

A major advantage of this algorithm is that it produces smooth and symmetric
contours, in a manner that is physician independent and repeatable. These are
suitable for treatment planning and desired by physicians. The algorithm is fast
enough to be used in pre-planning. It requires some additional code optimization
for intra-operative planning.
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Abstract. Due to the complexity of the dental models in semantics of
both shape and form, a fully automated method for the separation of
the lower and upper teeth is unsuitable while manual segmentation re-
quires painstakingly user interventions. In this paper, we present a novel
interactive method to segment the upper and lower teeth. The process is
performed on 3D triangular mesh of the skull and consists of four main
steps: reconstruction of 3D model from teeth CT images, curvature esti-
mation, interactive segmentation path planning using the shortest path
finding algorithm, and performing actual geometric cut on 3D models
using a graph cut algorithm. The accuracy and efficiency of our method
were experimentally validated via comparisons with ground truth (man-
ual segmentation) as well as the state of art interactive mesh segmen-
tation algorithms. We show the presented scheme can dramatically save
manual effort for users while retaining an acceptable quality (with an
averaged 0.29 mm discrepancy from the ideal segmentation).

1 Introduction

Computed tomography (CT) images are commonly used in cranio-maxillofacial
(CMF) surgery, orthodontics and dentistry. It is especially true when cone-beam
CT (CBCT) scanners are introduced. CBCT scanners have much lower radiation
than medical spiral CT scanners while the thickness of each slice is much thinner
(0.125mm-0.4mm per slice thickness). CBCT scanners are now extensively used
in dental offices to replace the plain cephalometric and panoramic radiographic
machines. One of the main interests in CMF surgery and orthodontics is the
teeth. In order to quantify the deformity accurately, a CT scan is usually com-
pleted when the maxillary (upper) and mandibular (lower) teeth are in centric
occlusion (peak and valley on the teeth bite down tightly). This brings us a
major problem: the separation of the maxillary and mandibular teeth. Due to
the irregular 3D geometry of the teeth, they are usually segmented manually by
drawing the maxillary and mandibular teeth on each cross-sectional slice. It is
time consuming and difficult to segment the peaks of one jaw and the valleys of
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Fig. 1. Schematic view of this interactive approach for the lower and upper teeth
segmentation

the opposite jaw on a single slice. It becomes even more difficult if the scatterings
(artifacts) are present due to dental restoration and orthodontic braces.

The popularized scheme of current 3D mesh segmentation approaches is to ex-
tract and optimize certain application-specific mesh features. One common issue
of these automated mesh segmentation approaches is that users cannot control
or refine the process if the approaches fail to produce plausible segmentation
results on complicated geometric models. Many semi-automatic mesh segmenta-
tion algorithms [1,2,3,4,5] were attempted for the purpose of mesh segmentation.
Researchers have also developed teeth-specific segmentation techniques to sepa-
rate individual teeth from a teeth dataset [6,7]. These approaches assume that
the upper and lower 3D teeth can be perfectly separated by a plane. Neverthe-
less, it is nontrivial to extend these methods for the separation of complicated
geometrical models such as the maxillary and mandibular teeth in this work.

In this paper, we present a novel interactive technique for segmenting the
upper and lower teeth with limited user interventions. First, we reconstruct a
3D triangular mesh model from the acquired teeth CT images. Then, we compute
the curvatures of the triangular mesh such that they are more sensitive in the
vertical direction than in the horizontal direction. Then, through minimized user
interventions such as selecting several control points, we construct a cost function
and search for the optimal segmentation path on the mesh. Finally, the graph
cut algorithm [8] is employed for handle the remaining isolated sticky parts.
Figure 1 shows the schematic view of our approach.

2 Our Approach

2.1 3D Teeth Model Reconstruction

The CT image data of patients’ craniofacial skeleton were acquired while the
patients were on a centric occlusion. The CT scans were completed using a
standard scanning algorithm: a resolution of 512 × 512 at 0.625-1.25 mm slice
thickness, 25cm or lesser field-of-view (FOV), 0◦ gantry tilt, and 1:1 pitch. Then,
we use the open-source OsiriX imaging software (http://www.osirix-viewer.com)
to reconstruct their corresponding 3D triangular mesh from the CT images. We
remove triangles distant from the teeth to reduce unnecessary computations.
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Fig. 2. Illustration of how the curvature of P is computed

2.2 Curvature Estimation

Based on the observation that the upper and lower teeth are expected to be
segmented along an approximate horizontal direction, we compute the curvature
of each vertex of a 3D teeth model such that it is more sensitive to the vertical
direction while less sensitive to other directions. In this process, we use a pre-
defined up vector and then calculate the curvature KP for each vertex P as the
averaged normal vector difference between the normal at the vertex P and the
normals of P ’s neighboring triangles as follows:

KP =

∑
i∈nbhd(P )

(
arccos(−→np · −→u ) − arccos(−→Ni · −→u )

) sign(−→u ·−→vpi)

|−→vpi|
|nbhd(P )| (1)

Here nbhd(P ) is the set of P ’s neighboring triangles, −→np is the normal vector of
P , −→Ni is the normal vector of a neighboring triangle Fi, −→u is the pre-defined
up vector, −→vpi is the vector from P to the centroid of Fi, the sign function
sign(−→u · −→vpi) determines the vertical direction of −→vpi. Eq. 1 incorporates the
orientation into the curvature estimation in the following way: angles between
normal vectors and the up vector are extracted, then, the sign function is used
to determine the concaveness of a neighboring triangle. Finally, we weighted
average the estimated curvatures of all neighboring triangles, and the weights
are inversely proportional to the distance to the center of the triangle (vpi).

The above estimated curvatures can be used to determine the convex or con-
cave property of the mesh vertices (Figure 2). Vertices with positive curvatures
are called convex vertices; otherwise they are concave ones. In this work, we want
the segmentation path to travel through the concave area of the mesh by simply
thresholding the convex vertices. Note that since the acquired CT slices are in

Fig. 3. Original teeth model (left), visualization of Gaussian curvatures (middle) and
visualization of the curvatures by our approach (right)
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the XY plane, we generally specify the up vector as the Z+ direction. We also
compared our curvature estimation scheme with the widely-used Gaussian cur-
vature estimation algorithm [9]. As shown in Figure 3, the curvatures computed
by our approach better separate the concave crevices in the horizontal direction
(i.e., potential segmentation path area, shown as blue color in Figure 3) on the
3D teeth model than the Gaussian curvatures [9] where low curvature crevices
are distributed everywhere.

2.3 Interactive Segmentation Path Planning

Because the upper and lower teeth are irregularly intertwined each other, an au-
tomatic method that fully depends on the curvature guidance would not always
produce plausible segmentation. Thus, our approach allows users to select several
control points on the model to guide the segmentation planning. Our approach
computes an optimal segmentation path that travels through low curvature ar-
eas while satisfying the user-specified control points. During this process, users
can interactively add or change the control points, and the corresponding seg-
mentation paths will be updated in real-time.

We employ the Dijkstra shortest path algorithm [10] to find the optimal seg-
mentation path between two control points. This algorithm takes two control
points as the source and the destination and then minimizes the overall cost. A
cost function C between two neighboring vertices i and j is defined as follows:

C(i, j) =
d(i, j)

|Ki| + |Kj | (2)

Where d(i, j) is the Euclidean distance between vertex i and vertex j, Ki and
Kj are the computed curvatures for vertices i and j, respectively (Eq. 1).

If the searched shortest path only consists of existing vertices on the 3D
model, then it highly depends on the given mesh topology and may not be
smooth. To alleviate this problem, many mesh segmentation methods perform a
model subdivision (refinement) after an initial cut [5,4,3]. However, due to the
lack of user controls on the mesh refinement process, the segmentation path on
the refined mesh might measurably deviate from the original computed path,
even though it may appear smoother. Mitchell et al. [11] tackle this problem by
partitioning an edge into intervals so that the exact segmentation computation
can be performed. The computational complexity of this algorithm is O(n2 log n)

Fig. 4. Results of interactive segmentation path planning (model #1). Selected control
points are shown as blue points and the searched segmentation paths are red curves.
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Fig. 5. The searched shortest segmentation path on a mesh without edge-partition
(left), on the subdivision mesh (middle), and the mesh with our even edge-partition
scheme (right)

in the worst case where n is the number of vertices on the mesh, which is not
efficient for practical interactive applications.

In this work, to achieve a trade-off between algorithm efficiency and accuracy,
we use a simple while efficient partition strategy that divides an edge into a min-
imum number of equal intervals and each of them has a user-defined minimum
length dmin. The curvatures of interval ends are linearly interpolated based on
the two end points of the corresponding mesh edge, and we further assume only
if two interval-ends belong to the same triangle, then these two points have a
cost value; otherwise infinity. The computational complexity of our algorithm
is O(n log n) where n is the number of vertices on the mesh. Figure 4 shows
the searched optimal segmentation path from the outside/inside views. Users se-
lected 3 control points in the front side and 2 points inside the mouth. All these
control points are illustrated as blue points. In this dataset, there is no gap be-
tween the upper and lower teeth, thus our approach can compute a continuous
segmentation path surrounding the mesh. Although the distance between two
selected control points is relatively large, our algorithm is able to compute a
plausible segmentation path with the aid of the estimated curvatures.

We also compared our approach (mesh with even edge-partition) with the
original mesh (without edge-partition) and the subdivision mesh. As shown in
Figure 5, the shortest path computed from the mesh with even edge-partition is
smoother than the other two cases. It is noteworthy that the segmentation path
on the subdivision mesh has more vertices than that on the mesh with even
edge-partition, which means more computation time. Furthermore, the shortest
segmentation path computed from the subdivision mesh is still more rougher
than the path on the mesh with our even edge-partition scheme.

2.4 Graph Cut on Teeth Models

After major segmentationpaths are computed through the above interactive inter-
face, certain isolated sticky parts may remain to be separated. We automatically
segment the remaining sticky parts by applying the graph cut algorithm [8]. This
algorithm works on a flow network with multi sources and sinks where nodes are
mesh triangles and edges are mesh edges. The sources are triangles on top of the
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Fig. 6. Segmentation results by our approach: Green curves are the segmentation paths
solved by the graph cut, and the semi-transparent yellow region is the upper teeth

mouth and sinks are triangles on the bottom. In this process, if a triangle is inter-
sected with the above searched major segmentation paths (Section 2.3), then the
capacities of all the edges of this triangle are set to zero; the capacities of other
network edges are set to the length of corresponding mesh edges.

Figure 6 shows the segmentation results after the interactive segmentation path
planning and the automated graph cut process are applied to a number of 3D teeth
models. Due to the dental braces, many holes as well as rings and loops exist on the
models. Despite of their model complexity, the combination of interactive segmen-
tation planning (light red curves) and automated graph cut (bold green curves) is
able to plausibly separate the upper and lower teeth. Note that we employ the
graph cut not to improve the accuracy but to complete the segmentation, and
the interactive segmentation path planning step generates the majority of the cut
paths and then the graph cut fills the missing parts in the paths.

3 Results and Evaluation

We performed two experiments including ground truth validation and compar-
isons between our approach and two of the state of art mesh segmentation algo-
rithms to validate the effectiveness of our approach.

3.1 Ground Truth Validation

In order to quantify the segmentation quality by our approach, we performed
the following ground truth validation experiment on two datasets: a single cut
(not a loop) from the leftmost to the rightmost of a teeth model, the ground
truth segmentation was generated by manually selecting hundreds of segments
on the mesh (219 segments for model #1 and 128 segments for model #3), and
our semi-automatic approach generated the segmentation path based on several
user-specified control points (3 control points for model #1, 5 control points for
model #3). We projected these two segmentation paths onto Z-axis to measure
their discrepancies, because Z-axis projection maximally shows the trajectory
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Fig. 7. Ground truth comparison of two segmentation paths (blue for the ground-truth,
red for our approach) in the Z-axis projection

Fig. 8. Segmentation comparison of model #1 between our approach (red) and the
other two approaches (blue and green)

difference. Figure 7 shows the Z-coordinates of the two validations. Their maxi-
mum errors are 1.57 mm (model #1) and 1.67mm (model #3), and the average
errors are 0.28 mm (model #1) and 0.30mm (model #3), respectively.

3.2 Comparisons with State of the Art

We also compared our approach with two state of the art interactive mesh seg-
mentation algorithms [4,5]. Figure 8 shows the comparison results. As shown in
this figure, our approach significantly outperformed the other two approaches.
Note that the segmentation method proposed by Ji et al. [4] is able to generate
smooth segmentation paths due to its refinement algorithm if the teeth only
touch in small parts, but it failed to handle this complicated teeth model. In
this case, its region growing scheme is uncontrollable with a small number of
seeds. Therefore, it requires users to manually select a large number of seeds.

4 Discussion and Conclusions

In this paper we present an effective interactive technique for the upper and
lower teeth segmentation. Through numerous experiments on acquired teeth CT
datasets, we found that our approach is fast (e.g., tens of times faster than man-
ual approaches) and it required minimized user interventions such as selecting
several control points to guide the algorithm process. We also compared our
approach with two current interactive mesh segmentation algorithms and found
that our approach significantly outperformed them on segmenting complicated
teeth models.
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Fig. 9. Metal artifacts on the acquired 2D teeth CT images significantly affect the
accuracy of segmentation by our approach

One major limitation of current approach is that when serious artifacts exist in
2D teeth CT images, our approach might fail to produce plausible segmentation
results. For example, due to the strong metal artifacts of dental implant in the ac-
quired teeth CT images and thus 3D teeth models, the segmentation accuracy of
our approach would be significantly affected (Fig. 9). In the future, we plan to ex-
plore effective and automated algorithms to postprocess the acquired 2D teeth CT
images and incorporate CT image segmentation with 3D geometric segmentation.
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Enforcing Monotonic Temporal Evolution in Dry Eye
Images�
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Abstract. We address the problem of identifying dry areas in the tear film as
part of a diagnostic tool for dry-eye syndrome. The requirement is to identify
and measure the growth of the dry regions to provide a time-evolving map of de-
grees of dryness. We segment dry regions using a multi-label graph-cut algorithm
on the 3D spatio-temporal volume of frames from a video sequence. To capture
the fact that dryness increases over the time of the sequence, we use a time-
asymmetric cost function that enforces a constraint that the dryness of each pixel
monotonically increases. We demonstrate how this increases our estimation’s reli-
ability and robustness. We tested the method on a set of videos and suggest further
research using a similar approach.

1 Introduction

The pre-ocular tear film in humans does not remain stable for long periods of time [1].
When blinking is prevented, the tear film ruptures and dry spots appear over the cornea.
This phenomenon is known as Dry Eye Syndrome [2]. The Fluorescein Break Up Time
(FBUT) test was designed by Norn [3] to detect dryness. A small amount of fluorescein
is instilled in the patient’s eye. Then, the tear film is viewed with the help of a yellow
filter in front of a slit-lamp (see Fig. 1). A video of the front of the eye is recorded
between two consecutive blinks. As time passes after the blink, dark areas form on the
iris, indicating the lack of fluorescence and the rupture of the tear film. The degree of
blackness of these areas is related to the degree of thinning of the tear film. When a
dark area of a certain size first appears on the iris, the time elapsed since the blink is
recorded as the Break Up time (BUT). If the eyes are kept open, the area of the break
will increase in size and breaks may appear in new areas over the cornea. This is the
most commonly used test by clinicians to evaluate dry eyes [4].

In this paper, we present a graph-cut approach for automatic detection of dryness.
We transform the video (after alignment) into a spatio-temporal 3D volume, so a rela-
tionship between successive images is defined. The 3D image volume is modeled as a
3-dimensional multi-label Markov Random Field (MRF) in which the label assigned to
each pixel represents the degree of dryness. A graph-cut approach benefits from lesser
sensitivity to spatial noise and misalignment of the eye images. In addition, we intro-
duce the idea of enforcing temporal monotonicity. This reflects the condition that dry
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G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 976–984, 2009.
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Fig. 1. A sequence of images showing how dryness forms over the iris. The first image is imme-
diately after a blink and then the images are every 4 seconds. The intensity of regions over the
iris is related to dryness: the darker the area, the drier it is.

spots on the iris can only become darker (dryer) in temporally successive images as
seen in Fig. 1. To enforce the increasing dryness condition, we define asymmetric edge
weights in the temporal direction, specifying an infinite (or very large) cost to assigning
decreasing labels to a pixel in consecutive frames. The associated energy minimization
problem is solved using the alpha expansion algorithm [5].

Previous Work. Assessment of dry-eye was reported by us in [6], but in that work we
did not use any sort of spatial or temporal constraints. We compare the new results with
our previous method.

There has been some work on 3-dimensional segmentation using graph-cuts. Re-
cently Bokyov et al. [7] described a global N-D graph-cut segmentation approach that
can be used to segment the kidney from a 3D MRI. They are interested in identify-
ing three regions of the kidney and conduct three independent binary segmentations
sequentially. However, they do not segment all three regions simultaneously using a
multi-label approach. Another example for an application that uses 3D volume binary
graph-cuts is for the segmentation of brain tumors [8].

Asymmetric cost functions have not seen widespread use. For example, when em-
ployed for spatial geometric constraints [9], alpha-expansion was not able to find a good
solution. In [10], the authors use an asymmetric cost to segment multiple surfaces in 3D
CT images. Even though the surfaces are segmented simultaneously, they use a binary
label set (and not a multi-label approach). To our knowledge, asymmetry has not been
used before to enforce temporal constraints within volumetric images.

Motivated by the recent report of the international dry eye workshop (DEWS) [2],
we apply the monotonic constraint to the dry eye problem. The report notes the lack of
gold standard for diagnosis of dry eye and the need for more robust methods.

2 Formulation of the Problem

We formulate our problem as a second-order MRF. In this approach, each variable i
must be assigned a label xi from the set of labels L = {0, 1, 2, . . . , �}. The most prob-
able labeling x� minimizes the associated energy function:

E(x) =
∑
i∈P

Ei(xi) +
∑

(i,j)∈N
Eij(xi, xj). (1)

Here, P is the set of pixels in the image and N is the set of pairs of pixels defined over
the standard four-connectedness neighborhood.
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The unary terms Ei are application dependent, and we employ a dryness measure
similar to [6]. The pairwise terms Eij enforce an a priori model. In our application, we
expect the labels of neighboring pixels to be the same (or at least quite similar). How-
ever, large changes are also possible at edges. Therefore, we employ a function based on
the truncated linear distance (see Fig. 3(a)), which encourages local smoothness, while
limiting the cost of large changes to a threshold T :

Eij(xi, xj) = λmin(|xi − xj |, T ). (2)

The alpha-expansion algorithm [5] can minimize functions of the form (2) as they obey
the triangle inequality [5,11]. Although an optimal solution is not guaranteed, in prac-
tice the method performs quite well.

2.1 3D Graph Construction

Graph-cut minimization is not limited to 2D and is easily extended to 3D applications.
The main advantage of a 3D approach to segmenting individual 2D slices is that the
relationship between pixels at consecutive slices is considered. Moreover, it allows one
to incorporate monotonic constraints (described in the next section) between slices,
which would have been impossible otherwise.

Extending the 2D approach to 3D is based on redefining the neighborhood used in
the pairwise term. While in the case of MRI segmentation, it is fairly clear what the
individual slices are, we offer an approach based on spatial and temporal progression.
Even though the image modality is 2D in the case of the FBUT test, it can be perceived
as a 3D approach to capture the global relationship between image frames. Denoting
image t in a video of length n + 1 as It, each image is considered as a horizontal slice
in the 3D graph (or MRF), creating a graph based on spatial and temporal changes.
Therefore slice number 0 in the graph is the image immediately after the blink and slice
n is the last image in the sequence. Every other slice is related to the time passed since
the blink. The construction of the graph is based on a 6-connectedness neighborhood
N , and an example of a 3D MRF showing the 6-connectedness neighborhood is de-
picted in Fig. 2. Each voxel in the MRF (x, y, t), t = {0, . . . n} is connected to its
four immediate neighbors in the same image and to the corresponding pixel (x, y) in
the previous and next frames: (x, y, t− 1) and (x, y, t + 1). Another way to look at the
neighborhood of a voxel is: N = {left, right, up, down, next, previous}. The energy
function is still built only from quadratic terms, as each voxel can be seen as being part
of a maximum of 6 pairwise cliques. Each voxel is now also dependent on two voxels
which are temporally different. This allows the addition of time based constraints. De-
noting the set of pixels of frame t by Pt, the new set of pixels is now defined over the
whole image sequence: P = P0∪ . . .∪Pn. The hidden nodes of the MRF are the labels
assigned to each voxel from the set L.

2.2 Monotonic Constraint

Multi-label problems usually have an inherent meaning to the ordering of the labels. In
the case of the FBUT test, the labels represent the estimated thickness of the tear film.
The labeling 0 represents no thinning of the tear film and the final label � corresponds
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Fig. 2. Explaining the 3D MRF. The x and y axis are the image planes; the t plane is the temporal
plane. A pixel It(x, y) (or the voxel (x,y,t)) is the pixel (x,y) in the t-th image after the blink. The
figure shows the 6-connectedness approach (by the red arrows), where a pixel is connected to its
4 immediate neighbors in the same plane and to two pixels corresponding to the same location at
times t − 1 and t + 1. Each voxel in the MRF can be assigned any label from the set L.

to a complete absence of fluid, or a break-up of the tear film. Other labels depict the
different degrees of thinning of the tear film. Again, we expect the labels to change
gradually, so we employ a distance metric for the pairwise cost in the temporal axis:

fij(xi, xj) = γ|xi − xj |. (3)

As long as the patient does not blink, the thickness of the tear film can not increase
between consecutive images. Formally, the label xj of a particular pixel at time tj must
be less than the corresponding label xi of the same pixel at time ti = tj +1. We enforce
this monotonic dryness condition directly into the pairwise energy term:

Eij(xi, xj) =
{∞ if ti = tj + 1 and xi < xj

fij(|xi − xj |) otherwise.
(4)

We use the truncated linear term of (2) when i and j are a spatial pair (ti = tj), and the
monotonic function of (4) when they are a temporal pair (ti = tj + 1).

The monotonic function (4) sets an infinite cost to any labeling x where a pair of
labels (xi, xj) for a particular pixel at times tj and ti = tj + 1 decreases — i.e.,
xi < xj . Although we associate an infinite cost for violating monotonicity, in general,
a finite cost can be employed.

Fig. 3 shows two examples of pairwise functions which can be minimized using
alpha-expansion. Part (a) is a cost function based on (2). The maximum penalty for
assigning different labels is bounded by T . Part (b) is a cost function based on (4). If the
change of labels is negative, the cost is infinity; Otherwise, the penalty is linear and not
truncated. When xi = xj the function is assigned 0, however it is not mandatory. In our
algorithm, we use the first function for spatially neighboring voxels as a large change
between labels should happen at edges. The second function is used for temporally
neighboring pixels, where changes in labels (dryness) are usually gradual.
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The inclusion of a monotonic constraint makes the pairwise terms asymmetric: the
cost of changing from label α to β can be different from changing from β to α, or
mathematically Eij(α, β) �= Eij(β, α). Alpha-expansion requires the cost function to
be metric, however this definition [5] does not include symmetry.

(a) (b)

Fig. 3. The spatial (a) and temporal (b) pairwise functions. (a) Neighboring pixels within the
same frame are encouraged to have the same label, unless the difference is quite big. In this case,
medium and large differences are penalized equally. (b) Temporally, labels must not decrease as
time progresses. Moreover, the increase (if any) should not be too large.

3 Application to Detect Dryness

The 2D segmentation approach [6] first detects the iris in each of the video frames. The
images are aligned, such that the iris is located roughly at the same location in each
image. The segmentation of the dry areas is based on analyzing the aligned video. A
cost function examines differences in intensities for each of the pixels in the iris between
the first and last images in the video. A dryness image is created, where each pixel is
assigned an intensity value which is proportional to its degree of dryness and is denoted
by Ĩ(x, y). However, the degree of dryness is also computed at each individual slice,
and we denote this pixel value by Ĩ(x, y, t).

This approach produces good segmentation results and is very fast. Nevertheless, it
has a few disadvantages:

1. Small errors in the alignment can completely bias the dryness result for a pixel.
2. The spatial relationships between neighboring pixels in the 2D image are not used.
3. There is no use of the knowledge regarding the temporal change.

3.1 Advantages of the 3D Approach

Given the aligned video created by the 2D segmentation approach, it is possible to
incorporate the ideas discussed so far to improve the segmentation results. Instead of
looking at individual pixels, and examining every single 2D image for the Break Up
Time (BUT), we add the following assumptions:

1. Smoothness constraint - If a pixel becomes dry, it is likely that its neighbors also
show a similar degree of dryness.
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2. Using temporal knowledge - The video is considered as a 3D volume where each
2D frame is a slice in the 3D image. Segmenting the 3D volume takes into consid-
eration the relationship between the pixel’s values at all times.

3. Monotonicity constraint - Temporally, pixels should only become darker, as the
amount of fluid in the tear film decreases as time passes. If a pixel becomes brighter
it is probably caused by an error in the alignment process or because of shifting of
the fluorescein after the blink and not related to the actual dryness.

3.2 Applying the Technique

We show now how the described approach can be easily adopted to the dryness problem.
Given the aligned video created in the 2D approach, it is used to create a 3D graph based
on temporal changes (see Sec. 2.1). The region of interest in each image is defined as
only the pixels belonging to the iris. This region should not be image dependent as after
the alignment the iris is resized to the same size at the same location.

The number of labels needed for segmenting dryness depends on the importance of
distinguishing between the different degrees of thinning of the tear film. A reasonable
choice is to use a set of 9 labels: L = {0, 1, . . . , 8}. This number of labels generally
produces suitably precise segmentations of the tear film.

The unary term is defined using the value Ĩ(x, y, t) computed in [6] for every pixel
for every image t = {0, . . . n}. When using a multi-label algorithm, a value has to be
assigned for each label Ei(xi), xi ∈ L. The value Ĩ can be associated with the expected
label x�

i for each pixel. For example, the intensity range of Ĩ can be divided into |L|
equally spaced bins, where each bin is associated with a label. The unary term is then
defined as a function h proportional to the difference from the expected label:

Ei(xi) = [h(xi − x�
i )]

2. (5)

The pairwise term uses linear distance metrics in both the spatial (2) and temporal (4)
directions with parameters λ and γ manually tuned to 1. The spatial term is truncated,
since large label discontinuities are expected as break-up areas can be local in shape.
In the temporal domain, large discontinuities are not expected, so the regular linear dis-
tance metric is appropriate. The value of γ is related to the rate of temporally changing
labels and can be tuned according to the number of slices in the 3D MRF. The clinical
definition of tear film in the FBUT test states that the thickness of the tear film can not
increase with time, thus directly encoding a monotonic restriction into (4).

This finalizes the creation of the graph and it is solved using graph-cuts. The labeling
for each voxel is its degree of dryness at the time. The labeling of the voxels at time n
can be seen as a similar output to the dryness image computed by the 2D approach.

4 Results

To test our method, we used a database of 22 videos with a varying length (4-24 sec-
onds), all having a break of the tear film. Fig. 4(a) shows the result for the sequence
in Fig. 1. The brightest areas correspond to areas of maximum thinning. The top slice
is the final segmentation result. The t-axis shows the progress of dryness through time.
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(a) (b) (c)

Fig. 4. The top slice shows the final segmentation result. The brighter the colors the more severe
the dryness. The t-axis is the temporal axis (not to scale). The 3D view demonstrates how the
dryness progresses at specific spatial locations. The monotonic constraint enforces pixels to have
non-decreasing intensity. (a) Dryness image of the sequence from Fig. 1 (rotated counterclock-
wise for clarity). (b) A sequence where the dryness is mainly in the central and superior parts
(rotated clockwise). (c) Temporal progress of the voxel highlighted by x in (b).

It can be seen how the monotonic constraint enforces the voxels to have only a non-
decreasing intensity and that some of the voxels start showing dryness at a later stage
but progress faster. Fig. 4(b) shows a similar cut for a different sequence where the
dryness mainly develops in the central and superior areas. The area of dryness in the
superior part is quite thin, but the smoothness constraint ensures it is a connected area.

In order to show the contribution of the monotonic constraint, we examined the
average number of label changes between every two consecutive slices:

C = 1/|Pi|
∑
x∈Pi

t=n−1∑
t=0

|xt+1
i − xt

i|. (6)

We denote the label of pixel i at time t by xt
i . When using the monotonic constraint,

the upper bound for C is defined by the max number of labels: C ≤ �. Applying (6) to
both methods on all 22 videos, we received an average of 0.906 and 0.523 for the 2D
approach and 3D approach respectively. Clearly the new approach is much more robust
and smooth. We note that in a few videos, most of the image pixels have no thinning
of the tear film at all, so the change of labels is focused in a small number of pixels.
Therefore, the difference in C between the approaches is quite meaningful, as in the
2D approach, individual pixels mainly near the eyelids or the iris’s borders, had up to
68(!) label changes and a maximum of 8 when using the monotonic 3D approach. Fig.
5(a) shows another segmentation result using our approach. Parts (b) & (c) are temporal
cuts, where the y-axis in these images is progression through time. Notice how near the
left end side the monotonic constraint creates a smooth transition between labels with
no fluctuations while there is a lot of noise in the other approach.

We asked a clinician to measure the BUT in each of the videos. We then automati-
cally computed the BUT using [6] and then using the new method, considering a break
of a pixel when it is assigned the highest label in L. The average difference between
the clinician’s BUT and the approaches was 2.4s and 2.34s for the old and new method
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(b)

(c)
(a)

Fig. 5. Example of an x-t cut. (a) Segmentation result using the new approach. An x-t cut (not to
scale) at the location of the line in (a) using the (b) 2D approach. (c) 3D approach. The y-axis in
(b) & (c) shows temporal progress from bottom to top.

respectively. Considering the high inter-observer variance, these results are on the ac-
ceptable range. However, the new method detected small break areas in 2 videos that
were not discovered before. This is due to the tendency of our approach to reduce the
number of incorrectly segmented pixels. Thus, the result is less sensitive to outliers
allowing the use of a lower threshold for computing the BUT (see [6]).

5 Conclusion and Further Research

In this paper, we demonstrated how an asymmetric graph-cuts approach, can be used
to segment dryness. The inclusion of a temporally monotonic constraint improves the
robustness of the results and reduces the sensitivity to outliers.

The approach presented in this paper can be extended to other medical applications.
For instance in segmentation of OCT images of the retina, ordering of the different
retinal layers may be enforced using spatially monotonic constraints. In fluoroscopic
imaging involving perfusion of contrast agents, temporally monotonic increase and
subsequent decrease of intensity may be enforced using an extension of these meth-
ods. Finally, spatial relationships and geometric properties such as convexity may be
modeled using MRFs with asymmetric edge labels.
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Part I. LNCS, vol. 5241, pp. 67–75. Springer, Heidelberg (2008)

9. Winn, J., Shotton, J.: The layout consistent random field for recognizing and segmenting
partially occluded objects 1, 37–44 (2006)

10. Kang, L., Xiaodong, W., Chen, D., Sonka, M.: Optimal surface segmentation in volumetric
images: A graph-theoretic approach. IEEE Trans. on PAMI 28(1) (2006)

11. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE
Trans. PAMI 26(2), 147–159 (2004)



G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II,  LNCS 5762, pp. 985–992, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Ultrafast Localization of the Optic Disc Using 
Dimensionality Reduction of the Search Space 

Ahmed Essam Mahfouz and Ahmed S. Fahmy 

Center for Informatics Science (CIS), Nile University (NU), Cairo, Egypt 

Abstract. Optic Disc (OD) localization is an important pre-processing step that 
significantly simplifies subsequent segmentation of the OD and other retinal 
structures. Current OD localization techniques suffer from impractically-high 
computation times (few minutes/image). In this work, we present an ultrafast 
technique that requires less than a second to localize the OD. The technique is 
based on reducing the dimensionality of the search space by projecting the  
2D image feature space onto two orthogonal (x- and y-) axes. This results in 
two 1D signals that can be used to determine the x- and y- coordinates of the 
OD. Image features such as retinal vessels orientation and the OD brightness 
and shape are used in the current method. Four publicly-available databases, in-
cluding STARE and DRIVE, were used to evaluate the proposed technique. The 
OD was successfully located in 330 images out of 340 images (97%) with an 
average computation time of 0.65 seconds. 

1   Introduction 

The risk of visual disabilities and blindness due to retinal diseases, whether primary 
or secondary to other diseases such as diabetes mellitus, could be greatly minimized 
by early diagnosis. An ophthalmologist needs to examine a large number of retina 
images to diagnose each patient; therefore, there is a significant need to develop com-
puter-assisted diagnostic (CAD) tools for retina image analysis. The first step in any 
retina analysis system is to localize the optic disc (OD) [1]. The detected OD location 
can serve as a seed for OD segmentation, locating other structures such as the fovea 
[2], classifying left and right eyes in fovea-centered images, and/or a landmark to 
compensate large translations between retina images before applying any registration 
algorithm [1]. Although the OD has well defined features, developing fast and robust 
methods to automatically locate the OD is not an easy task due to retinal pathologies 
that alter the appearance of the OD significantly. 

Several OD localization methods are available in literature. These methods can be 
classified into two main categories, appearance-based methods and model-based meth-
ods [3]. Appearance-based methods identify the location of the OD as the location of the 
brightest round object within the retina image. These methods include techniques such 
as simple threshold, highest average variation, and Principle Component Analysis 
(PCA) [4]. Although these methods are simple, they fail to correctly localize the OD in 
diseased retina images where the pathologies have similar properties to the OD. 
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Model-based methods depend on analyzing the retinal vessels structure. All the 
currently available techniques segment the retinal vessels as a starting step. These 
methods incorporate techniques such as geometrical models [1], template matching 
[5], and convergence of vasculature [6]. Although they have relatively high accuracy, 
they are computationally very expensive. For example, the geometrical model-based 
method described in [1] achieves a success rate of 97.5% in STARE database with a 
computation time of 2 minutes per image. In [2], a new OD localization method based 
on vasculature convergence has been described. The method achieves an accuracy of 
98.77% in STARE database with a computation time of 3.5 minutes per image.  

In this work, a novel ultrafast technique for OD localization is proposed. The 
method is based on converting the search space from a one 2D space (image space) to 
two 1D spaces (two 1D signals). The dimensionality reduction of the search space is 
achieved by projecting certain image features onto two perpendicular axes (horizontal 
and vertical), resulting in a significant reduction of computation time. Geometric  
and appearance features of the OD and the vasculature structure have been incorpo-
rated into the technique to correctly identify the location of the OD. Evaluation of the 
proposed method using four publicly available databases showed that it achieves an 
accuracy of 97% with an average computation time of 0.65 seconds. 

2   Theory and Methods 

2.1   Dimensionality Reduction and Image Features 

Searching for the OD location in a 2D space (image space) renders any localization algo-
rithm highly expensive in terms of computational time. The idea of the proposed method 
is to significantly enhance the speed of the algorithm by converting the 2D localization 
problem into two 1D localization problems, i.e. search space dimensionality reduction. 
This reduction is achieved by projecting certain features of the retina image onto two 
orthogonal axes (horizontal and vertical). The resulting two 1D signals are then used to 
determine the horizontal and vertical coordinates of the OD location. The key factor 
needed for the success of the dimensionality reduction step is to determine the set of 
features that, when projected on either axes, produce a meaningful signal that can be used 
to localize the OD. A possible meaningful horizontal/vertical signal is a signal whose 
maximum value location indicates the horizontal/vertical location of the OD. 

In this work, two features are selected to create the two 1D projection signals. The 
first, and most fundamental, feature is based on the simple observation that the central 
retinal artery and vein emerge from the OD mainly in the vertical direction and then 
branch into two main horizontal branches, see fig. 1(a). This retinal vascular structure 
would suggest that a vertical window (with height equal to image height and a proper 
width) would always be dominated by vertical edges (vertical vessels) when centered 
at the OD, location 1 in fig. 1(a). Although the window may contain vertical edges at 
other locations, e.g. small vascular branches and lesions at location 2 in fig. 1(a), it will 
always be populated by strong horizontal edges, i.e. the edges of the two main horizon-
tal branches of the retinal vessels. Therefore, the integration of the difference between 
the vertical and horizontal edges, over a region represented by this window, can be 
taken as a scoring index of the horizontal location of the OD. The directionality of the 
retinal vessels is described by the direction of their corresponding edges in the vertical 
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and horizontal edge maps of the retina image. The simple gradient operator [1 0 -1] 
and its transpose are used to produce the vertical and horizontal edge maps of the retina 
image, respectively. 

The second feature that is used in this work is based on the fact that the OD is usu-
ally a bright region. That is, the projection of the intensity values inside the window 
(which has height and width equal to the OD diameter) has a maximum value at the 
location of the OD. The following two sections will show the details of projecting 
these features to reduce the dimensionality of the localization problem. 

 

Fig. 1. (a) A retina image, from STARE database, showing the sliding window at two different 
locations, sliding direction and projection direction. (b) Plot of the 1D signal resulting from 
projecting the image features onto the horizontal axis (Hprojection). 

2.2   Horizontal Localization of the OD 

Consider a sliding window whose width and height are equal to double the thickness of 
a main retinal vessel and the image height, respectively. Let this window scan a retinal 
image from left to right and project the image features within this window onto a hori-
zontal axis to form a 1D signal. For simplicity, assume that the only image features of 
interest are the image's horizontal and vertical edges. Fig. 1(a) shows an example of a 
retina image with the sliding window placed at two different locations (1 & 2). When 
the window is located over the OD (location 1), it encloses a large number of vertical 
edges and almost no horizontal edges. Also at location 1, the projection of pixels' in-
tensity within the window returns a minimum value, i.e. the window contains a large 
number of vessels represented by low intensity pixels. At any other location in the 
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image (location 2), the window may enclose a large number of vertical edges, but it 
will always contain a large number of horizontal edges (representing the main horizon-
tal branches of the retinal vessels).  

Fig. 1(b) shows the 1D signal resulting from projecting the two features described 
above on the horizontal axis. Notice that the horizontal location of the optic disc is 
easily identified as the location of the maximum peak of the 1D signal. 

2.3   Vertical Localization of the OD 

To determine the vertical location of the OD, the image features are projected onto a 
vertical axis. A vertically sliding window, centered at the pre-determined horizontal 
location, is defined to scan the image from top to bottom. The height and width of the 
window are equal to the diameter of the OD. Fig. 2(a) shows an example of a retinal 
image with the sliding window centered at the pre-determined horizontal location. 
When the sliding window is located over the OD, it encloses a large number of both 
vertical and horizontal edges. Also over the OD, the projection of pixels' intensity 
within the window returns a maximum value (the window contains a maximum num-
ber of bright pixels). At any other location along the vertical line defining the pre-
determined horizontal location of the OD, the window encloses fewer edges and less 
bright pixels. Fig. 2(b) shows the 1D signal resulting from projecting the features 
described above on the vertical axis. Notice that the vertical location of the optic disc 
is easily identified as the location of the maximum peak of the 1D signal. 

 

Fig. 2. (a) A retina image, from STARE database, showing the vertically sliding window, slid-
ing direction and projection direction. (b) Plot of the 1D signal resulting from projecting the 
image features onto the vertical axis (Vprojection). 

It is worth noting that the areas outside the camera aperture (circular region) are 
excluded using a binary mask generated by thresholding the red component of the 
image based on the method described in [7]. 

2.4   Algorithm 

STEP 1: Get image features 
1. Get an image of horizontal edges (EH) and an image of vertical edges (EV) 
2. Calculate: EdgeDiff = | EV | - |EH|; where |.| is the absolute operator 
3. Calculate: EdgeSum = |EH| + |EV|  
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STEP 2: Projection on the horizontal axis 
1. Define WHRZ as a rectangular window of size (image height, 2×main vessel 

width) and centered at a horizontal location x.  
2. Slide the window WHRZ over the image from left to right and for each x,  

- Calculate: FHRZ = sum of EdgeDiff inside the window 
- Calculate: GHRZ = sum of pixels’ intensities inside the window 
- Calculate: the ratio Hprojection(x) = FHRZ / GHRZ 

3. The horizontal location of the optic disc (cand_H) is the location of the 
maximum value in Hprojection 

 
STEP 3: Projection on the vertical axis 

1. Define WVER as a rectangular window of size (OD diameter, OD diameter) 
and centered cand_H.  

2. Slide the window WVER over the image from top to bottom and for each verti-
cal location y,  

- Calculate: FVER = sum of EdgeSum inside the window 
- Calculate: GVER = sum of pixels’ intensity inside the window  
- Calculate the value Vprojection= FVER ×   GVER  

3. The vertical location of the optic disc (cand_V) is the location of the maxi-
mum value in Vprojection 

2.5   Improving the Technique Robustness 

In some cases, the 1D signal resulting from projecting the image features on the hori-
zontal axis (Hprojection) has multiple peaks that are close in their values (not a single 
prominent peak). These peaks result from various situations: (1) when the small verti-
cal branches of the vessels are represented by strong edges and, at the same time, the 
OD region in the image is blurred, (2) when the image contains some artifacts. In 
order to improve the robustness of the proposed technique, a candidate list containing 
the locations of the two maximum peaks (cand_H1 & cand_H2) in Hprojection is con-
structed. At each horizontal location, the vertical location is determined as described 
in section 2.3, which results in two possible candidate locations of the OD. 

To determine which one is the correct location of the OD, the geometric properties 
of the bright regions around these candidates are examined. A basic assumption in 
this process is that if we center a vertical window at the true location of the OD, it 
would contain a compact bright region with eccentricity close to unity. The eccentric-
ity is defined as the ratio of the object’s major axis length to the object’s minor axis 
length [8] and is used to measure the object's roundness, with the eccentricity of a 
circle equaling one. The vertical window's size is not critical and can be assumed a 
rectangle of dimensions: image height × OD diameter. A scoring index is defined for 
each candidate and is weighed by the eccentricity as follows. The brightest 3.5% 
pixels within the window are selected. If there is a bright object at the candidate OD 
location, the eccentricity of this object is calculated and the scoring index of this loca-
tion, equal to Hprojection(cand_H1), is multiplied by the eccentricity of this object. If 
there is no object present at the candidate location, the eccentricity is set to be 0.1 and 
the scoring index of this location is multiplied by this eccentricity. 
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3   Results 

Four publicly available databases were used to evaluate the accuracy and the compu-
tation time of the proposed technique. The four databases are: (1) STARE database 
(605 ×  700 pixels) [9], (2) DRIVE database (565 ×  584 pixels) [10], (3) Standard 
Diabetic Retinopathy Database 'Calibration Level 0' (DIARETDB0) (1500 ×  1152 
pixels) [11] and (4) Standard Diabetic Retinopathy Database 'Calibration Level 1' 
(DIARETDB1) (1500 ×  1152 pixels) [11]. Accuracy and computation time results of 
evaluating the proposed method using these databases are summarized in Table 1. 
Number of images in each database is also included. 

 

Fig. 3. Success and failure cases in 6 images selected from Stare database. (a) - (e) show suc-
cessful OD localization samples. (f) shows a sample of failure in OD localization. The white 
‘X’ indicates the location of the OD as detected by the proposed method. 

The detected location of the OD is considered correct if it falls within 60 pixels of 
a manually identified OD center, as proposed by A. Hoover et al. in [6], M. Foracchia 
et al. in [1] and A. Youssif et al. in [2]. The center of the OD is manually identified as 
the point from which all the retinal vessels emerge.  

The proposed method achieved a total accuracy of 97% when tested using the four 
databases, i.e. the OD was correctly located in 330 images out of the 340 images 
tested. The OD was correctly located in 75 images out of STARE’s 81 images 
(92.6%) in 0.46 seconds per image with an average error of 14 pixels and a standard 
deviation (STD) of 15 pixels. In addition, the OD was correctly located in all the  
40 images of DRIVE (100%) taking an average of 0.32 seconds per image with an 
average error of 11 pixels and a STD of 11 pixels. 
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Table 1. Accuracy and computation time of the proposed OD localization technique 

Database (1) (2) (3) (4) Total 

Number of Images 81 40 130 89 340 

Success 75 40 128 87 330 

Accuracy 92.6% 100% 98.5% 97.8% 97% 

Computation Time 0.46 sec. 0.32 sec. 0.98 sec. 0.98 sec. - 

4   Discussion 

Fig. 3(a)-(e) show samples of successful localization results when applying the pro-
posed method to selected images from STARE database. The technique of vasculature 
convergence [6] failed to locate the OD correctly in the first three images, while the 
method in [2] failed to correctly locate the OD in the 4th image. The OD was correctly 
located in the 4th image by selecting the 2nd peak instead of the first one using the 
method described in section 2.5. The geometrical model-based technique [1] failed to 
locate the OD in the 5th image. Fig 3(f) shows an example of an image in which the 
proposed method failed to locate the OD because it is partially hidden. Both methods 
described in [1, 6] also failed to locate the OD in this image. 

The proposed method reduces the dimensionality of the search space from a 2D 
space (image space) of order n×m to two 1D spaces (two 1D signals) of order n+m, 
with n and m being the image dimensions. This dimensionality reduction is achieved 
through the projection of certain image features onto two orthogonal axes (horizontal 
and vertical). Two features are selected. The first one is the structure of the retinal 
vessels. The second feature is the intensity profile of the OD.  

In order to increase the accuracy of the proposed method, two candidate locations 
of the OD are identified and additional scoring of these candidates is done by incorpo-
rating the OD geometry (represented by the eccentricity) into the technique. By inves-
tigating these two candidate locations instead of one location only, the total accuracy 
of the technique increased from 93.8% to 97%. As shown in fig. 3, even in the pres-
ence of retinal pathologies and/or image artifacts, the selected features were unique to 
the OD and thus allowed proper localization with relatively high accuracy. 

The most computationally demanding operation is convoluting the image with the 
3×1 gradient mask used to get the edges. This operation is negligible if compared to 
the initial step of extracting the retinal vessels, which is required in all model-based 
techniques. The latter is usually achieved by applying a 2D matched filter (typically 
10×15 mask) with several orientations (typically at 12 different angles) [12]. 

5   Conclusion 

A new method for OD localization in retinal fundus images is presented. The method 
is based on reducing the dimensionality of the search space; that is, decomposing the 
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2D problem into two 1D problems by projecting certain image features onto two per-
pendicular axes. The proposed method achieves accurate results in a significantly 
short computation time relative to currently available techniques. 
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Abstract. Conformal radiotherapy planning needs accurate delineations
of the critical structures. Atlas-based segmentation has been shown to be
very efficient to delineate brain structures. It would therefore be very in-
teresting to develop an atlas for the head and neck region where 7 % of the
cancers arise. However, the construction of an atlas in this region is very
difficult due to the high variability of the anatomies. This can generate
segmentation errors and over-segmented structures in the atlas. To over-
come this drawback, we present an alternative method to build a template
locally adapted to the patient’s anatomy. This is done first by selecting in
a database the images that are the most similar to the patient on prede-
fined regions of interest, using on a distance between transformations. The
first major contribution is that we do not compute every patient-to-image
registration to find the most similar image, but only the registration of
the patient towards an average image. This method is therefore computa-
tionally very efficient. The second major contribution is a novel method
to use the selected images and the predefined regions to build a “Franken-
stein’s creature” for segmentation. We present a qualitative and quantita-
tive comparison between the proposed method and a classical atlas-based
segmentation method. This evaluation is performed on a subset of 58 pa-
tients among a database of 105 head and neck CT images and shows a great
improvement of the specificity of the results.

1 Introduction

Conformal radiotherapy allows to precisely target the tumor while keeping an
acceptable level of irradiation on neighboring critical structures. This however
requires to accurately locate the tumor and the organs at risk in order to deter-
mine the best characteristics of the irradiation beams. This delineation task is
usually done manually and is therefore very long and not reproducible.

To solve this problem, atlas-based segmentation has been shown to produce
accurate and automatic segmentations of the brain [1], allowing to take into ac-
count easily the relative positions of the structures. The construction of an atlas
for other regions such as the head and neck region, where 7 % of the cancers
arise, is therefore of great interest [2,3]. Methods have been presented for the
construction of an unbiased average model from an image dataset such as [4,5].
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We presented in [6] a method to build a symmetric atlas from a database of
images manually delineated following the guidelines in [7]. However, anatomi-
cal variability is very high in the head and neck region. An average atlas may
therefore be very different from the patient, leading to registration discrepancies.
Moreover, this variability may cause the mean contours to be too large in the
atlas yielding over-segmentations.

To overcome these drawbacks, methods have been presented towards the cre-
ation of atlases whose anatomy is adapted to the patient [8,9]. First, Blezek et
al. [8] presented an interesting approach to cluster a database into several at-
lases representing homogeneous sub-populations. However, the selection of the
most adequate atlas with respect to a given patient is not addressed. Another
method [9] has been introduced to select the most similar images to the patient
by comparing a similarity measure between each database image and the pa-
tient. This method is however computationally expensive, requiring to register
all the database images on the patient. Moreover, a local comparison of the im-
ages is more adapted in our case, as our database consists of manually delineated
patients who present pathologies that may corrupt a global comparison.

In this paper, we present the development of an atlas locally adapted to the
patient to get more precise delineations than with an average atlas. To this end,
we first present a new and efficient method to select the most similar images to
the patient on predefined regions. Each most similar sample is defined as the one
that needs the smallest local deformations to be registered on the patient. These
images are then combined into a template image, as an analogy to Frankenstein’s
creature [10], and used for segmentation.

We first present our approach to select the image that is the most similar to
the patient P to delineate on a given region. We then focus on the combination
of the local templates selected into one single template for delineation. Finally,
we show qualitative and quantitative results on a database of 105 head and neck
CT images, showing a great improvement of the specificity of the results.

2 Method

In this section, we present an efficient method to compute a template that is
similar to the patient P on predefined regions Rl, based on the following steps:

– Construction of an average atlas M from the database images (pre-computed)
– Non linear registration of the patient P to delineate on M
– Selection of the most similar image Ĩl for each local region Rl

– Computation of the anatomy M̃ and segmentations from the set of Ĩl

2.1 Selection of the Locally Most Similar Images to a Patient

For each region of interest Rl, we select the most similar image among our
database to the patient to delineate. It is defined as the one that is the “less”
deformed to be non linearly registered on the patient. We denote by TB←A the
transformation linking two images A and B, so that B can be resampled on A (i.e.
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A ≈ B◦TB←A). The selection for a given region Rl is then based on a comparison
of the non linear transformations TIj←P to bring each image Ij of the database
on P , i.e. the most similar image is defined as: Ĩl = argminIj

dRl
(Ij , P ) =

argminIj
dRl

(TIj←P , Id), where dRl
will be defined later on. However, this type

of comparison is computationally very expensive as it requires to perform all
the registrations between P and the images Ij for each patient to segment. To
perform an efficient selection, we therefore use an intermediate image: an average
atlas M pre-computed from the database using [6].

From the average atlas construction, we obtain for each image Ij an affine
transformation AIj←M and a non linear transformation TIj←M bringing it on
the average image M . Moreover, when registering P on M , another non linear
transformation TP←M is computed. The key hypothesis is then to assume that
TIj←P can be approximated by TIj←M ◦ T−1

P←M . This hypothesis presents many
advantages. First, the regions of interest Rl can be defined once and for all on
the atlas image M . Moreover, this can be done very easily thanks to the average
segmentations available on the atlas. Also, the similarity between P and Ij ,
dRl

(TIj←P , Id), can be approximated using the following equation:

dRl
(TIj←M ◦ T−1

P←M , Id) =
∑

i∈Rl◦T−1
P←M

‖ log (TIj←M ◦ T−1
P←M )(i)‖ (1)

where i corresponds to the voxels of the dense transformation and dRl
is the Log-

Euclidean distance on diffeomorphisms [11] between the identity transformation
and TIj←M ◦ T−1

P←M . Using our hypothesis, we need to perform only one non
linear registration between M and P to select the locally most similar images Ĩl

for all regions Rl, therefore reducing drastically the computation time.

2.2 Piecewise Most Similar Atlas Construction

We now focus on the computation of a template for segmentation from the
selected images Ĩl and the regions Rl. This template, similar to the Frankenstein’s
creature [10], is built by iterating over the following steps to combine the images:

– Registration of the images Ĩl on the average image at iteration k : M̃k

– Compute the new average image Mk+1, based on the regions Rl,k

– Compute an average transformation T̄k from the transformations TĨl←M̃k

– Apply T̄−1
k to Mk+1 to get the new reference M̃k+1 = Mk+1 ◦ T̄−1

k
– Update the regions of interest by applying T̄−1

k to Rl,k : Rl,k+1 = Rl,k ◦ T̄−1
k

This algorithm can be seen as an extension of [4] to the construction of an
atlas where images have spatially varying weights, depending on the regions Rl.
In contrast, Guimond et al. consider implicitly that all images have equal and
spatially constant weights (1/N for each image if N images are averaged). The
final step is then to associate a set of segmentations to this anatomy. This is done
by transforming the manual segmentations of the image Ĩl present in the region
Rl onto M̃ , using the transformations obtained in the construction process, and
ensuring that no overlap exists between the final structures.
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Average Image Computation. To compute Mk+1 from the images Ĩl reg-
istered on M̃k, we first need to define the spatial extensions of each region at
iteration k : Rl,k. This will allow to use, on each Rl,k, only the corresponding Ĩl

and to interpolate between the regions. The weight functions w̄l,k(x) are com-
puted in three steps: locally erode the regions Rl,k using the method presented
in [12] to ensure a minimal distance between them, compute the inverse of the
minimal distance to each Rl,k: wl,k(x) = 1/(1 + αdist(x, Rl,k)), and normalize
the wl,k(x): w̄l,k(x) = wl,k(x)/

∑L
l=1 wl,k(x).

The images Ĩl are then aligned onto M̃k, first globally resulting in affine
transformations AĨl←M̃k

, and then non linearly producing dense transforma-
tions TĨl←M̃k

. These transformations and the w̄l,k(x) are then used to compute
Mk+1:

Mk+1(x) =
L∑

l=1

w̄l,k(x)
(
Ĩl ◦ AĨl←M̃k

◦ TĨl←M̃k

)
(x) (2)

Residual Deformation Computation. Similarly to [4], the next step consists
in averaging the TĨl←M̃k

into a transformation T̄k and apply its inverse to Mk+1

to get the new reference M̃k+1 = Mk+1 ◦ T̄−1
k . However, we are averaging trans-

formations using spatially variable weights w̄l,k(x). To take this into account
and ensure that T̄k is a diffeomorphism, we introduce a generalization of the
Log-Euclidean (LE) polyaffine transformation to diffeomorphisms, as suggested
in [13]. The polydiffeomorphism construction is based on the LE framework for
diffeomorphisms [11], allowing to compute operations easily while staying on
the manifold of diffeomorphisms. T̄k is then built by integrating between time
0 : x(0) = x and time 1 : x(1) = T̄k(x) the following Ordinary Differen-
tial Equation (ODE): ẋ =

∑N
l=1 w̄l,k(x) log

(
T

(k)
Ĩl←M̃k

)
(x). Similarly to the LE

polyaffine framework, T̄k and T̄−1
k are expressed respectively as the exponential

of the right hand side of the ODE, and the exponential of its opposite.

3 Evaluation Methodology

To evaluate our method, we have used a database of 105 CT images of patients
delineated for head and neck radiotherapy following the guidelines provided in
[7]. Segmented structures included 12 structures: lymph nodes II, III and IV,
parotids and sub-mandibular glands on each side as well as the spinal cord and
the brainstem. On this database, we have repeated a Leave-One-Out approach,
each time picking out one patient from the dataset of images. The average atlas is
then built from the remaining images. We used this framework to compare two
segmentation methods: the average atlas-based segmentation, and the locally
most similar image based segmentation. The Frankenstein’s creature was built
by defining on the average atlas a region of interest for each structure. This gives
a total of 12 selected images, combined together into a single composite patient.
This image is then registered on the left-out patient to get its segmentation.
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The results were then compared to the manual delineations of the left-out
patient using two voxel-based overlap measures: sensitivity (rate of true detection
of the structure) and specificity (rate of true detection of the background). As
they were delineated for radiotherapy, some structures were not available. We
have therefore used the Leave-One-Out evaluation on a subset of 58 patients
which had 8 or more manual delineations. Finally, the separation between some
structures (lymph nodes, brainstem and spinal cord) are made on an arbitrary
axial plane, based on possibly moving anatomical landmarks. This may lead
to errors in the separations of the automatic segmentations and artificially low
quality measures for all methods. We addressed this by evaluating together the
brainstem and spinal cord, and by grouping the lymph nodes on each side.

4 Results

4.1 Qualitative Evaluation

We first present in Fig. 1 the visual comparison of the average atlas and lo-
cally most similar image for one patient. This example illustrates very well that
the average atlas anatomy may be significantly different from the patient after a
global registration. This may result in registration discrepancies and in erroneous
segmentations. This is particularly visible in the lymph nodes areas (see axes in
the images) where the patient is much more corpulent than the atlas. The com-
posite patient is much closer visually to the patient. The deformations between
these two images will therefore be easier to recover and this will contribute to
minimize the registration errors.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of Computed Piecewise Most Similar Image. Comparison between the
patient image (a), (d) ; the average atlas (b), (e) and the locally most similar image
(c), (f). All images are globally registered on the patient’s image.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Qualitative atlas and piecewise most similar image based segmentation results.
Comparison between the manual segmentations (a), (d) ; the atlas-based segmentations
(b), (e) and the piecewise most similar image segmentations (c), (f).

We then present in Fig. 2 the qualitative evaluation of the segmentation
results, using the Leave-One-Out framework. This figure first shows that the
atlas-based segmentations (images (b,e)) are overly large when compared to the
manual ones. This is due to the inter-expert segmentation variabilities when cre-
ating the average segmentations, resulting in overly large segmentations in the
atlas itself. This over-segmentation almost disappears using our approach. Only
a single manual segmentation is indeed used for each structure, leading to more
accurate segmentations, particularly on the lymph nodes areas. Finally, there
are still differences in some regions (see arrow in image (f)). These differences
are due to the local specificities of the selected manual segmentation, induced
by the inter-expert segmentation variability.

4.2 Quantitative Evaluation

We finally present in this section the quantitative evaluation of the results us-
ing the Leave-One-Out framework described in section 3. We present in Table 1
the average quantitative results (sensitivity and specificity) computed using the
Leave-One-Out framework on 58 patients. We also indicate the number of struc-
tures on which each average was performed. The patients in the database were
indeed not totally segmented manually and we therefore computed the quanti-
tative values for the available structures.

This table shows an important improvement of the specificity measure in the
locally most similar method with respect to classical atlas-based segmentation.
This confirms the observations made in the qualitative results as this measure
increases as the over-segmentation of the structures with respect to the manual
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Table 1. Quantitative Segmentation Results Comparison. Sensitivities (Sens.), speci-
ficities (Spec.) and their standard deviations for atlas-based and locally most similar
image (Frankenstein) based segmentation (see text).

Atlas Frankenstein Patients
Sens. ± StD Spec. ± StD Sens. ± StD Spec. ± StD

Lymph Nodes (L) 0.930 ± 0.051 0.607 ± 0.070 0.692 ± 0.097 0.813 ± 0.072 53
Lymph Nodes (R) 0.923 ± 0.045 0.630 ± 0.078 0.675 ± 0.113 0.832 ± 0.074 46
Spinal Cord 0.938 ± 0.044 0.730 ± 0.065 0.773 ± 0.093 0.867 ± 0.079 47
Left Parotid 0.885 ± 0.072 0.691 ± 0.089 0.700 ± 0.172 0.813 ± 0.074 22
Right Parotid 0.879 ± 0.085 0.703 ± 0.078 0.684 ± 0.107 0.856 ± 0.050 19

segmentations decreases. However, the sensitivity is lower in the locally most
similar case. This is mainly due to the inter-expert segmentation variabilities
illustrated in Fig. 2. Nevertheless, these results are very promising and show
that the locally most similar image allows to obtain an atlas whose anatomy is
close to the patient to delineate and to remove the over-segmentation.

5 Conclusion

We have presented a new method to select, up to an affine transformation, the
locally most similar images associated to regions of interest predefined on a pre-
computed average atlas. This is based on the use of a Log-Euclidean distance
between transformations obtained through atlas construction and the transfor-
mation to register the patient on the atlas. As the atlas is pre-computed, the
selection method is very efficient, requiring only one non linear registration. We
have then associated to this selection a novel framework to build from these im-
ages a composite patient to be used as a template for the patient segmentation.

This method was validated by comparing it to atlas-based segmentation on
a subset of 58 CT images among a database of 105 head and neck patients.
The segmentations are not over-segmented anymore using our approach. This
is seen both on qualitative and quantitative results (specificity). This method
has a great interest and could also be applied to many other regions where large
variabilities may be seen in the patients anatomies, such as the abdomen region.

We have seen in our experiments that the sensitivity results are corrupted
by a large intra- and inter-expert segmentation variability. It is also partially
responsible for the overly large segmentations in the average atlas. In the future,
we aim at studying further this segmentation variability by computing locally,
in the average atlas reference frame, the changes of each delineation, for example
using the Staple algorithm [14]. This would be of great interest to reduce the
variability influence on the segmentation process.

Finally, we will study in the future other selection criterions, such as intensity
based comparisons between the images, and compare their performance on the
selection of the locally most similar image. We will also study how to combine
these different criterions to obtain a very robust selection criterion.
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Abstract. The paper presents the automated segmentation of spleen and liver 
from contrast-enhanced CT images of normal and hepato/splenomegaly popula-
tions. The method used 4 steps: (i) a mean organ model was registered to the 
patient CT; (ii) the first estimates of the organs were improved by a geodesic 
active contour; (iii) the contrast enhancements of liver and spleen were esti-
mated to adjust to patient image characteristics, and an adaptive convolution re-
fined the segmentations; (iv) lastly, a normalized probabilistic atlas corrected 
for shape and location for the precise computation of each organ’s volume and 
height (mid-hepatic liver height and cephalocaudal spleen height). Results from 
test data demonstrated the method's ability to accurately segment the spleen 
(RMS error = 1.09mm; DICE/Tanimoto overlaps = 95.2/91) and liver (RMS er-
ror = 2.3mm, and DICE/Tanimoto overlaps = 96.2/92.7). The correlations (R2) 
with clinical/manual height measurements were 0.97 and 0.93 for the spleen 
and liver respectively. 

1   Introduction 

We are working towards using the fully automated segmentation of the spleen and liver 
as a volumetric diagnostic tool. It had been noted that the 3D shape and size variability 
of liver and spleen can be an indication of disorders [3,21]. The implementation of a 
fully automated segmentation allows the radiologist and other health professionals for 
an easy and convenient access to organ measurements, while avoiding time-consuming 
manual measurements or biased diagnosis based on 2D projection images [2]. We 
propose a method to segment the liver/spleen independent of morphological changes 
due to disease and/or normal anatomical variability. 

In clinical practice, the liver size is estimated by height measurements at the mid-
hepatic line; similarly, the spleen height is measured as the cephalocaudal height. 
Liver height, for instance, does not fully characterize the morphology of the liver, 
such as accounting for an enlarged left lobe. Spleen measurements suffer from similar 
shortcomings. Alternatively, studies have relied on the liver/spleen volume computed 
by multiplying the calculated slice area from manual segmentations by the slice 
thickness. [8]. 

A variety of automated and interactive methods to segment the liver have been 
proposed. A technique based on statistical analysis and dimensionality reduction from 
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sparse information models was presented in [5]. In [4] a shape-guided deformable 
model was introduced using an evolutionary algorithm, but unacceptable segmenta-
tions were omitted in the analysis. Most recently, active contours using gradient vec-
tor flow were used to address both liver and hepatic tumor segmentation [12], while a 
hierarchical statistical atlas was employed in [13]. These methods suffer from either 
heavy manual initialization or present significant segmentation errors. 

In 2007, a liver segmentation competition from computed tomography (CT) data 
was held [6]. Amongst the automated techniques, most notably a combination of 
shape-constrained statistical deformable models based on a heuristic intensity model 
had the best performance amongst automated methods [10] with slight under-
segmentation of the liver. Region growing was used in [16] with good results, but the 
technique was sensitive to liver abnormalities. A semantic formulation of knowledge 
and context was presented in [17], but the segmentation overlap was only 84%.  

Despite the abundance of research on liver segmentation, there are few studies fo-
cusing on the spleen. However, the segmentation of abdominal multi-organs, includ-
ing the liver and spleen, has been addressed, but with limited accuracy. In [19,22] a 
priori probabilistic data were used in combination with measures of relationship and 
hierarchy between organs and manual landmarks. On a different note, multi-
dimensional data from contrast-enhanced CT were employed in [9,11,18], applying 
variational Bayesian mixture and tissue homogeneity constraints.  

We propose a method that involves a combination of appearance, enhancement, 
and shape and location statistics to segment both the spleen and liver. For the coarse 
estimation of organs, mean models from an atlas of both liver and spleen are aligned 
to the patient contrast-enhanced CT image. The estimation is improved by a geodesic 
active contour. Subsequently, the patient specific contrast-enhancement characteris-
tics are estimated and passed to an adaptive convolution. Only homogenous tissue 
areas that satisfy the enhancement constraints are labeled as liver/spleen. Lastly, 
shape and location information from the normalized probabilistic atlas are utilized to 
provide an accurate representation of each organ’s morphology.  

2   Methods and Materials 

2.1   Data and Statistical Information 

192 abdominal CT scans of patients from a mixed population were used; 52 normal 
livers, 43 normal spleens, 94 splenomegaly (enlarged spleen) and 40 hepatomegaly 
(enlarged liver) cases. Patients were injected with 130ml of Isovue-300 and images 
acquired at portal venous phase using fixed delays or bolus-tracking [7]. Data were 
collected on LightSpeed Ultra and QX/I (GE Healthcare), and Brilliance64 (Philips 
Healthcare) scanners. Image resolution ranged from 0.62 to 0.82 mm in the axial view 
with a slice thickness from 1 to 5 mm. The livers and spleens were manually 
segmented in 14 training and 20 testing CT scans, while their heights (mid-hepatic 
liver height and cephalocaudal spleen height) were manually measured in all data. 

For additional tests, we used 20 more contrast-enhanced CT scans with manual 
segmentations of the liver downloadable from www.sliver07.isi.uu.nl, addressed as 
MICCAI data in the paper. These CT data were used for the MICCAI 2007 liver 
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segmentation competition and were acquired in transversel plane with pixel spacing 
between 0.55 and 0.80 mm and inter-slice distance between 1 and 5 mm. Contrast-
enhanced images corresponded to mainly pathological cases and were acquired on a 
variety of scanners from different manufacturers. 

A probabilistic atlas A was constructed from 10 random CT sets (not included in 
the training or testing data) after manually segmenting the liver and spleen in each 
image. Organ locations were normalized to an anatomical landmark (xiphoid). A 
random image from the set was used as reference R and all other images registered to 
it. We conserved morphological variability by using a size-preserving affine registra-
tion. Restricting the degrees of freedom in the transformation (no shear), the organ 
shape bias from the reference data is minimized. Preserving the size of organs and 
normalizing their position to that of the xiphoid, we obtain abdominal location nor-
malization with no bias toward the reference size and location. Finally, organs were 
translated in the atlas to the location of the average normalized centroid. 

2.2   Registration and Segmentation 

From the construction of A, a mean model A  was extracted for each organ. Then the 
patient CT (I) was smoothed with anisotropic diffusion [14] and the result is Is. First, 
an affine registration between R and I was perfomed. The resulting spatial 
normalization was then applied to both A and A , which became Aa and aA . The 
affine registration was based on normalized mutual information M [20], where 
p(I, aA ) is the joint probability distribution of images I and aA , and p(I) and p( aA ) 
their marginal distributions.  
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Next, a more flexible registration of aA was required to compensate for the residual 
deformation, resulting in 

rA . We employed the non-linear registration algorithm 

based on B-splines [15]. B-splines allow to locally control the deformation T and a 
compromise between the similarity provided by M and smoothing S was searched. 
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To account for possibly missing parts of spleen and liver, a geodesic active contour 
(GAC) [1] was implemented to correct the organ boundaries based on contrast-
enhanced image intensities. To initialize the model, 

rA was input as zero-level into a 

GAC Ig. The edge features Ie were computed from the sigmoid of the gradient of Is. 
The weights w1, w2 and w3 control respectively the speed c, curvature k and attraction 
to edges. In our experimental setup, w1, w2 and w3 were set to 1, 0.2 and 1 respectively. 
Parameters α and β of the image sigmoid were 10 and 8 respectively. 
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2.3   Estimation of Enhancement and Shape Correction 

A common difficulty in processing contrast-enhanced CT data is the estimation of the 
optimal time for image acquisition. In practice, fixed delays or bolus-tracking tech-
niques [7] are used to approximate the portal venous phase and can yield a different 
enhancement and appearance of organs. Hence, variations in an organ’s enhancement 
are common and vary between late-arterial and late-portal venous phases. As both the 
liver and spleen enhance homogeneously at portal venous phase, we estimated the 
level of enhancement of these organs to reject volumes that were erroneously cap-
tured by the GAC. First, the masks of liver and spleen provided by the GAC segmen-
tation are used to computed the mean (μj) and standard deviation (σj) of the organs 
(j=1,2 for liver and spleen). Then outliers are rejected to compute

jj
jI σμ 2max += , and 

jj
jI σμ 2min −=  to account for each organ enhancement.  

jImax
and jImin are input to an adaptive erosion filter that is applied to Ig. Thus only 

regions for which all their voxels in the erosion element E satisfy the intensity criteria 
are labeled as organs of interest. L represents the labeled image and lj the labels. L is 
then dilated to account for the convolution with E. Finally, the normalized Aa (see 
Section 2.2) is used to correct the shape of the liver/spleen in L. Aa resulted from 
applying an affine transformation (no shear) to the probabilistic atlas constructed with 
restricted degrees of freedom (preserving the shape).  S is the image of the segmented 
liver and spleen.  
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The volume overlap (VO) of the automatically segmented livers and spleens with the 
manual segmentations, and Dice coefficient (DC) were calculated. 
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To correlate with clinical evaluations of liver performed by linear measurements of 
organ height, the mid-hepatic line (MHL) was approximated at the half-distance be-
tween the mid-point of the spine and the outer surface of the liver. Then the maximum 
liver height along the sagittal plane at the location of MHL was computed. The spleen 
cephalocaudal height was calculated as the Euclidean distance between the top and 
bottom sagittal slices containing the spleen. 
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3   Results 

Quantitative results from applying our method to the segmentation of liver and spleen 
are presented in Table 1. We present DC and VO overlaps next to volume estimation 
error (VER), height estimation error (HER), root mean square error (RMSE) and 
average surface distance (ASD). Training cases were of low resolution, while test 
cases of higher resolution: 5mm and 1mm slice thickness respectively. We compared 
results on training data at incremental steps of the algorithm. Results on testing the 
algorithm on the MICCAI liver data are also provided in Table 1. The segmentation 
score was 69, comparable to that of 68 of the competition winner, after using the 
evaluation tools provided by the competition organizers [6]. Note that our score was 
obtained on different cases provided by the organizers for training, as we did not have 
access to the test data used in [6]. Table 1 further presents inter-observer variability 
for the segmentation of liver and spleen.  

Table 1. Statistics for the liver and spleen segmentation results from training and test data. 
Results at incremental steps of the algorithm are presented for training data: “Atlas”- after non-
rigid registration with the probabilistic atlas; ‘EE’ after enhancement estimation correction; 
‘Shape’ after employing the shape and location correction. Columns present the Dice 
coefficient (DC), volume overlap (VO), volume estimation error (VER), height estimation error 
(HER), root mean square error (RMSE) and average surface distance (ASD).   

 DC 
(%) 

VO 
(%) 

VER (%) HER (%) RMSE 
(mm) 

ASD (mm) 

Training Liver ‘Atlas’ 90.9±3.7 83.6 ± 6  14.9±9.6 12.2±13.2 4.4±2.1 2.6±1.2 
Training Liver ‘EE” 94.3±1.5 89.3±2.6 3.3±3.7 3.7±3.7 3.8±1.8 1.7±0.8 
Training Liver ‘Shape’ 94.5±0.8 90 ± 1 2 ± 2.1 3.4±3.1 2.9±0.5 1.5±0.3 
Test Liver 96.2±0.6 92.7±1.1 2.2±2.1 4.5±6.6 2.3±0.5 1.2±0.2 
MICCAI Liver 95.9±0.9 92±1.8 2.9±2.3 4.3±4.6 2.9±1 1.4±0.5 
Training Spleen ‘Atlas’ 87.5±4.8 78±7.5 13.6±10 9.7±9.2 2.9±1.2 1.6±0.7 
Training Spleen ‘EE” 91±2 83.5±3.3 6.6±5.3 3.5±3.4 2.1±0.5 1±0.2 
Training Spleen ‘Shape’ 90.6±2.1 83±3.5 5.5±4.9 3.5±5.1 2.1±0.6 1.3±0.8 
Test Spleen  95.2±1.4 91±2.6 3.3±2.7 1.7±0.7 1.1±0.3 0.7±0.1 
Inter-observer Liver 96.4 92.3 1.25 3.9 1.7 0.7 
Inter-observer Spleen 96 92.4 2.26 1.67 0.9 0.38 

 
Figure 1 shows a typical example of liver and spleen segmentation from a test case 

on 2D axial slices of the 3D CT data. Figure 2 illustrates another example of segmen-
tation in 3D along with the segmentation errors between manual and automated seg-
mentation. Finally, automated volumetric and linear 3D measurements were obtained 
for an additional 168 clinical cases: 19 had normal spleens, 29 had normal livers, 
while 94 had splenomegaly and 40 cases had hepatomegaly. The height correlations 
(R2) between the automatically segmented spleens and livers and the manual linear 
measurements obtained in clinical practice were 0.97 and 0.93 for spleen and liver 
respectively, as shown in Figure 3.  
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Fig. 1. A typical example of liver (blue) and spleen (green) automatically segmented from a test 
case on 2D axial views of the 3D CT data. Note the good separation from the heart; parts of the 
inferior vena cava (IVC) are incorporated in the liver when contrast enhancement is low. 

 
Fig. 2. 3D volume renderings of the segmented liver and spleen; (a) is a posterior view and (b) 
an anterior view. The liver ground truth is shown in blue with automated segmentation errors 
overlaid in white; likewise, the spleen ground truth is green and errors are in yellow.  

 
Fig. 3. The correlations (R2) between automatically generated (CAD) organ height and the 
manual measurements obtained in clinical practice; (a) shows correlated liver heights at the 
mid-hepatic line (MHL) from mixed normal and hepatomegaly cases; (b) presents correlated 
spleen cephalocaudal heights from mixed normal and splenomegaly cases. 

IVC IVC 

a b

a b
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4   Discussion 

The proposed method involves a combination of appearance, shape and location sta-
tistics to automatically segment livers and spleens from clinical contrast-enhanced CT 
data of mixed populations with normal and abnormal organs. Data from various insti-
tutions and scanners were employed. The patient specific contrast-enhancement char-
acteristics were estimated and input into an adaptive convolution that labeled only 
homogenous tissue areas that satisfy the enhancement constraints of the liver/spleen. 
Additionally, shape and location information from the normalized probabilistic atlas 
were utilized to improve the accuracy of the segmentation. Results demonstrated the 
ability of the technique to segment normal and abnormal spleens with a precision 
close to the inter-observer variability and errors close to the voxel size. 

The method avoided the inclusion of heart volumes in the segmentation of the 
liver. Although the inferior vena cava was not incorporated in the liver in the majority 
of cases, parts of the vein may be errouneously segmented in the mid-cephalocaudal 
liver region, especially when contrast enhancement was low. Also note that the 
MICCAI data included pathological cases, which made the segmentation of the liver 
(including the pathologies) more difficult. As expected, segmentation results were 
more accurate on data with high spatial resolution.  

We found that using shape information from a normalized probabilistic atlas 
changed/improved significantly (p<0.05) only the liver volume estimations (see Table 1). 
This may be explained partly by the small sample of cases used to construct the atlas. But 
the improvement brought by the adaptive convolution using enhancement estimation and 
adjusting the parameters to patient specific information was significant for all metrics 
used in Table 1 (p<0.04) in comparison to atlas-based segmentation. 

Future work will investigate the use of volumetric measurements to establish more 
robust diagnosis criteria for the detection of hepato/splenomegaly, and will address 
additional challenges from a variety of abdominal pathologies. We anticipate to have 
our method used in routine clinical investigations in the near future. 
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Abstract. Computer aided detection (CAD) of colonic polyps in com-
puted tomographic colonography has tremendously impacted colorectal
cancer diagnosis using 3D medical imaging. It is a prerequisite for all
CAD systems to extract the air-distended colon segments from 3D ab-
domen computed tomography scans. In this paper, we present a two-level
statistical approach of first separating colon segments from small intes-
tine, stomach and other extra-colonic parts by classification on a new
geometric feature set; then evaluating the overall performance confidence
using distance and geometry statistics over patients. The proposed
method is fully automatic and validated using both the classification
results in the first level and its numerical impacts on false positive re-
duction of extra-colonic findings in a CAD system. It shows superior
performance than the state-of-art knowledge or anatomy based colon
segmentation algorithms [1,2,3].

1 Introduction

Colon cancer is the second leading deadly cancer for western population. Early
detection and removal of colonic polyps is the critical step which helps to de-
crease the risk of colon cancer and improve survival. Computed tomographic
colonography (CTC) or virtual colonoscopy has been widely used for detecting
colorectal neoplasms via 3D computed tomography (CT) abdomen scans of the
cleansed and air-distended colon. In the last decade, many computer aided detec-
tion and diagnosis systems [4,5,6,7] have been proposed and actively studied to
improve the performance and reliability of human radiologists as second readers.

For any CAD system, the first processing is to identify all cleansed and air-
distended colon segments, for detecting colonic polyps as next step, in 3D ab-
domen CT scans. Knowledge or anatomy based colon segmentation algorithms
are described in past literature [1,2,3]. A two-step method is proposed, including
“anatomy-based extraction” to find and remove non-digestive components, such
as outer-air, bones and lung; and “colon-based analysis” to segment out extra-
colonic parts (e.g., small bowel and stomach) by region growing from a seed in
colon rectum. Removing extra-colonic lumen fragments is our main focus since
non-digestive components are more isolated and can often be reliably excluded.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 1009–1016, 2009.
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By considering the potential presence of partially or completely collapsed colon
regions, multiple colon seeds [1,2] are needed to cover the decent portion of true
colon volume. Numerous heuristic rules and thresholding parameters, e.g., when
to stop region growing, how many seed points needed and how many slides apart
to look for the next seed, are necessary to generate the final results. In [3], a
centerline chaining based colon segmentation method is described. However the
essential drawbacks of rule-based methods (as above) remains and the colon link-
ing scheme [3] is only valid for well-distended or slightly collapsed colon cases.

In this paper, we present a two-level approach for colon segmentation. First all
air segments (after pre-segmentation) are classified as either colon components or
extra-colonic parts (small intestine, stomach and others) by statistical modeling
on novel geometry feature sets per segment. Then we evaluate the overall segmen-
tation quality using a new colon “daisy-chaining” tracking algorithm integrated
with distance and geometry statistics over patients, which handles moderately or
poorly distended colon significantly better than previous methods. The proposed
method is validated using both the classification results in the first level and its
numerical impact on false positive reduction of extra-colonic findings in a CAD
system. It shows the superior performance than previous heuristic knowledge or
anatomy based colon segmentation algorithms [1,2,3], on a 166 volume dataset.
The remainder of this paper is organized as follows. Section 2 gives the details of
the materials used and our taken approach. Experimental results and analysis are
reported in section 3. Lastly, section 4 concludes the paper and directs future work.

2 Materials and Methods

An accurate segmentation of a specific organ (e.g., colon) is a very crucial part
of a CAD system. Only if the organ can be accurately segmented it is possible
to perform a reliable and thorough examination of that organ. A case of under-
segmentation can lose important parts of an organ which may lead to miss poten-
tial lesions whereas an over-segmentation may generate avoidable false positives
in areas outside of the organ. Our colon segmentation approach is composed of
three steps: intensity-appearance based initial segmentation, independent colon
component classification (level 1) and anatomical colon tracking (level 2).

Colon Pre-segmentation: Datasets of 166 prone and supine CT volumes from
92 patients, obtained from four hospitals and scanned using both Siemens and
GE machines under different imaging protocols, are used to conduct our study.
For pre-segmentation stage, a pixelwise thresholding is first performed on the
entire volume based on a predefined air Hounsfield (HU) value (e.g., −800 HU).
Pixels are then labeled as foreground (air) and background (non-air). Afterwards,
adjacent foreground pixels are merged as fragments or components by running a
standard connected component scheme. This step identifies all air-filled regions
within the body and can often contain parts other than the colon, such as stom-
ach, lung, small intestine and other random noises. Colon pre-segmentation is a
general purpose process and handled similarly by other systems, thought more
complicated thresholding and merging rules can be adopted in [1,5].



A Two-Level Approach Towards Semantic Colon Segmentation 1011

2.1 Colon Fragment Classification

Annotation & Data: We design and implement a user interface for marking each
individual fragment after initial segmentation of potential colon areas. Each
segmented component is labeled as one of the five anatomical categories: colon,
small intestine, mixed (of colon and small intestine through opened ileo-cecal
valve which happens in low frequency), stomach or lung, and noise. Since mixed
class contains partial colon volume, both colon and mixed categories are treated
as positive class. The rest of the categories are considered negative. It results
165 positive samples and 1665 negative samples in the training dataset of 110
volumes. There are 89 positives and 836 negatives based on a unseen testing
dataset with 56 CT scans. Around 40% volumes have collapsed colon segments.

Feature Extraction: The success of colon and non-colon classification relies on
discriminative features. In this paper, we explore a set of geometric (+ spatial)
features, including volume, length, area, volume-length ratio and area-length
ratio. For each potential colon component from pre-segmentation, the volume
refers its total volume; the length is an estimation of the length computed by
the shortest-pathalgorithm [8]; and the area means its surface area. The volume-
length ratio and area-length ratio are the ratios of volume to length and area to
length. We denote this as four feature set F4. Additionally, the normalized cen-
troid position in 3D volume coordinates of each fragment can also be integrated
as F7 where positions are normalized in the range of [0, 1] (i.e., bounded by the
extreme positions of initial segmented components).

Classification: Support vector machine (SVM) has been proven as an effective
approach for classification. In particular, 1-norm SVM [9] can be used to con-
struct classifiers and select important features simultaneously. The 1-norm SVM
determines classifiers by minimizing a regularized training error λP (·) +

∑
i ξi

where ξ is a hinge loss occurred on the i-th training example and the regulariza-
tion term P (·) is a 1-norm penalty on the weight vector of the linear classifier.
The 1-norm SVM can be formulated as a linear program (LP) which, in gen-
eral, can be solved efficiently by existing optimization tools. The classification
accuracy is cost sensitive to the size or volume measurements of the segmented
regions, in the context of colon segmentation task. It is treated as a more severe
error if a large segmented volume (i.e., retaining more potential polyp candi-
dates) is misclassified than a small region is missed. Hence we revise 1-norm
SVM to associate the hinge loss occurred on each classification instance with a
weight, ie. the volume size of the example. At last, we optimize the following
problem to construct the classifier {w, b}

minw,b λ||w||1 +
∑

i νiξi

s.t.yi(wT x + b) ≥ ξi, ξi ≥ 0.
(1)

where x ∈ F4 or F7. Given the trained linear classifier, receiver operating
characteristic (ROC) curves can be drawn by thresholding the classifier output
(wT x + b) ≥ τ at different operating points τ . The volume fragments classified
as positive colon class by setting high detection rate >= 99% will be used for
the next level processing.
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2.2 Colon Fragment Tracing

Given the fragments as classified as colon by the previous step, we attempt
to provide a global interpretation by incorporating anatomic colon structure
and performing a “Daisy-chaining” colon fragments tracing. Algorithm 1 de-
scribes the processing details, and Figure 1 shows an illustrative example where a
complete colon is composed of five collapsed segments.

foreach Colon CT Volume i do
Identify the rectum Ri and the corresponding component S(Ri);
Identify the cecum Ci and the corresponding component S(Ci);
if Ri == true and Ci == true then

if S(Ri) == S(Ci) then
return component S(Ri) or S(Ci), exit;

end
while True do

Mark the rectum component S(Ri) the first colon fragment;
Search the component Sj from unidentified colon segments that is
“closest” (with distance D) to the lastly merged colon fragment;
if D <= T then

merge Sj with the already known colon fragments;
if Sj == S(Ci) then

return all current colon segments, exit;
end

end
if D > T or Sj == false then

return all current colon segments, exit;
end

end

end

end
Algorithm 1. Colon “Daisy-chaining” Tracking Algorithm

Rectum and cecum are important landmarks as they describe the course of
the entire colon, and they can be reliably located (100% for rectum; ≥ 85% for
cecum) via fusing the direct detection of themselves and other more extinctive
landmarks on vertebrae and hip bones. In Algorithm 1, if there is no detection
of cecum, all cecum relevant checking will be omitted. After colon tracking, a
geodesic distance checking between rectum and cecum is used to reject cecum
mislocation. The distance threshold T is calibrated using the distance statistics
obtained from all valid collapsed colon connections of 110 training volumes.
The mean distance is 29.78mm with standard deviation as 15.06mm and we
set T = 60mm for all following evaluations. Other richer descriptive geometry
features (e.g., gradient orientations and curvatures on tubular shortest-paths)
can be employed and are under study. Overall, > 92% volumes complete “Daisy-
chaining” colon tracking and further remove more false positives. A probabilistic
fusing formulation of fragment connectness modeling and verification, other than
simple thresholding, can also be investigated in future work.
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Fig. 1. This shows a colon (as maximum intensity projection image) that is broken
into several pieces. The symbols “X” and “O” denote the start and end point of a
component. The numbers indicate points belonging to the same component. In this
example, the rectum component is #100 and the detected rectum landmark is close
to “X100”. The cecum component is #32. The complete colon consists of #100, #67,
#19, #26, and #32 by our tracking scheme. Component #33 does not belong to the
colon.

3 Experimental Results

In this section, we describe both the evaluation of colon segmentation using 1-
norm SVM [9] as a single classification issue, and its integration and effectiveness
on removing extra-colonic findings (ECR) in a CAD system.

Colon Segmentation Evaluation: We first analyze the performance charac-
teristics of our classification based colon segmentation module. We demonstrate
two types of ROC curves using per count or volume (mm3) as measurement
metrics, i.e., how many fragments (or how much volume) are correctly or incor-
rectly classified, which are plotted in Fig. 3. Our ECR module enables to remove
> 90% or higher extra-colonic volumes (mm3), at the detection rate of 99.5%,
for training or testing dataset respectively. In [2], 83.2% ∼ 92.8% colon volumes
can be semi-automatically segmented or partially segmented. Manual seed place-
ment is required in 16.8% CT scans. [1] detects 98% of the visible colonic walls,
and approximately 50% of the extra-colonic components are removed, using 88
volumes. [3] reports sensitivity of 96% for colon volume and it is unclear, to what
degree collapsed colons can be handled, in a smaller dataset of total 38 scans.
An illustrative example of the MIP (Maximum Intensity Projection) image of
a 3D colon volume, before and after ECR colon segmentation, is also shown in
Fig. 2.
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(a) Before ECR (b) After ECR

Fig. 2. An illustrative example of showing the MIP (Maximum Intensity Projection)
image of a 3D colon volume before and after ECR colon segmentation

ECR Impacts on CAD False Positive Reduction: We assign each true and
false polyp candidate with the classification score (wT x + b), obtained by the
colon fragment which contains itself. The empirical probability density functions
(PDF) of positive (true) and negative (false) polyp candidates are plotted for
both training and testing CT datasets in Fig. 4. It is clear that the blue peaks
around [0,−5] of FP distribution can be removed without significantly affecting
the detection rate of true positives in red1.

In another validation setting, we analyze and manually label 236 total false
positive (FP) candidates, as the final outputs of our CAD system, after polyp
classification but without applying ECR. 89 of them are verified as extra-colonic
FPs and the rest are colonic. Our ECR colon segmentation (as a post-filter
module) further removes 80 FP candidates where only 3 of them are actually
colonic and 77 are true extra-colonic findings. It results in sensitivity of 77/89 =
86.5% and specificity as (147−3)/147 = 98%, which conforms the high detection
rate setting in section 2. For true positive analysis, there is a very minimal but
non-zero risk of losing polyps because of ECR colon removing, but we have
not seen such cases in our extensive CAD pipeline study (out of 166 volumes
used to build ECR). Finally, though our whole colon segmentation subsystem is
trained using 110 tagged colon CT scans processed after electronic cleansing, it
generalizes well and achieves similar performance on the clean-prep colon cases
based on our further study.
1 The kernel density estimation based PDF fitting smooths and slightly skews both

distribution curves in Fig. 4. The minimum ECR score for positive polyp candidates
is −2.1652. When ECR is used as pre-filtering for our colon CAD system, the total
candidate number per volume drops from > 200 to 142, without missing any true
polyp candidate.
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(a) ROC per Count (b) ROC per mm3 Volume

Fig. 3. ROC curves for colon fragment (air-filled connected component) classification
using norm-1 SVM. (a) is measured as per fragment count, (b) is measured using
absolute mm3 volume. Red curves are for training and blue for testing.

Fig. 4. The plot of ECR scores of positive/negative polyp candidates for both training
(Top) and testing (Bottom) CT datasets, as outputs of the linear 1-norm SVM classifier
on F4

4 Discussion

In this paper, we present a fully automatic, statistical based colon segmenta-
tion approach. After a generic pre-segmentation, it first classifies all air-filled
fragments as binary colon or non-colon classes using continuous 1-norm SVM
classifier on newly explored geometric features. Then a colon fragment track-
ing algorithm is employed to measure the overall colon segmentation confidence
using anatomic information. The proposed method is validated using both the
classification results on colon segmentation and its numerical impact on false
positive reduction of extra-colonic findings in a CAD system. It shows superior
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performance than previous knowledge or anatomy based colon segmentation
work [1,2,3], using different but larger datasets.

The colon segmentation problem benefits from the general statistical mod-
els learned from a population, but it can also be considered as a binary test-
ing/decision task of colon or non-colon components per volume case. In future
work, the ideal colon classification process should be performed by considering
all component information in one volume as a set, to make an optimal binary
cut. Pairwise affinity based graph partitioning algorithm [10] can be employed
as an alternative solution. Besides exploring more descriptive features for colon
structure topology model (as in section 2.2), We also intend to address the
model adaptation issue for groupwise or personalized colon segmentation using
self-normalized tests [11], which can be capable of applying and adapting the
trained model to datasets from different races (e.g., from Caucasian to Asian).
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Abstract. The aim of the work is to provide a fully automatic method
of segmenting vertebrae in spinal radiographs. This is of clinical relevance
to the diagnosis of osteoporosis by vertebral fracture assessment, and to
grading incident fractures in clinical trials. We use a parts based model
of small vertebral patches (e.g. corners). Many potential candidates are
found in a global search using multi-resolution normalised correlation.
The ambiguity in the possible solution is resolved by applying a graph-
ical model of the connections between parts, and applying geometric
constraints. The resulting graph optimisation problem is solved using
loopy belief propagation.

The minimum cost solution is used to initialise a second phase of active
appearance model search. The method is applied to a clinical data set
of computed radiography images of lumbar spines. The accuracy of this
fully automatic method is assessed by comparing the results to a gold
standard of manual annotation by expert radiologists.

1 Introduction

The accurate identification of prevalent vertebral fractures is clinically important
in the diagnosis of osteoporosis. However there is no precise definition of exactly
what constitutes a vertebral fracture, though a variety of methods of describing
such fractures have been developed [1]. These include semi-quantitative methods,
requiring some subjective judgement by an expert radiologist; and fully quanti-
tative morphometric methods. The latter require the manual annotation of six
(or more) points on each vertebra. The manual marking is time consuming, and
such methods are lacking in specificity. More sophisticated classification meth-
ods based on statistical models have been reported in [2,3], but these require an
accurate segmentation method. Active appearance models [4] (AAM) have been
used to segment dual energy X-ray absorptiometry (DXA) images in [5], but the
method required a manual initialisation on the centre of each vertebra. Also in
clinical practise the use of spinal radiographs is still the gold standard, despite
the increasing use of DXA. Radiographs are more challenging as the fan beam
� We are thankful to the UK Arthritis Research Council for funding.
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used in conventional radiography can lead to parallax errors and apparent scale
changes. Some success in automatically locating vertebrae in lumbar radiographs
has been reported in [6].

In this work we apply an AAM-based approach similar to [5] to computed
radiography images of the lumbar spine. In applications such as large clinical
drug trials, it is desirable to eliminate the manual initialisation of the AAM
used in [5]. This paper describes a two-phase approach. First a global search is
conducted using a set of feature detectors combined with a graph model of their
pair-wise geometry. This is then used to initialise a set of AAMs which provide
a more detailed segmentation.

A potential problem in the case of the spine is that many vertebrae have a
similar appearance. A natural approach is thus to use a parts+geometry model
[7,8] as is widely used in the object recognition literature [9]. This work is partly
inspired by that of Donner et al.[10], who demonstrate that sparse local models,
together with a network of inter-part relationships, can be very useful for locating
structures in medical images.

The novelty of the work lies in: a) the combined use of the parts+geometry
model with an AAM search, thus providing a fully automatic segmentation
method for vertebrae; b) substantial evaluation on a clinical and challenging
dataset of spinal radiographs.

2 Methods

2.1 Multi-resolution Patch Models

We first describe the components of the models of parts and geometry used for
initial vertebrae location. Given a set of training images in which a particular
region has been annotated, we can construct a statistical model of the region.
Firstly gross brightness and contrast variation are removed by normalising each
pixel using the locally smoothed mean and variance, derived by exponential
smoothing with a 50% response radius of 4mm. We then use a simple oriented
rectangle, centred on a point, with the axis direction and scales defined by other
annotated points (see figure 1).

We search new images using this model by running normalised correlation at
a range of positions, orientations and scales in an exhaustive search. To reduce
the combinatorial complexity, we perform a multi-resolution search. The coarser
resolution models sub-sample smoothed versions of the image, thus covering the
same image region with a reduced number of pixels. A fully exhaustive search
for local optima is performed only at the coarsest scale to get a set of plausible
candidates. Then smaller regions around these candidates are searched, to refine
each candidate at the finer resolutions. Only the best candidate is retained when
multiple candidate patches overlap. This coarse-to-fine approach usually results
in between 10-40 candidates.

We used 6 patches (parts) for each lumbar vertebra: the four corners, a patch
on the curved inferior junction of the vertebra with the pedicle; and a wide
patch across the spine aligned with the lower pedicle. Note the latter two can
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Fig. 1. Mean normalised patches with arc links

overlap somewhat. We chose corner features as they tend to be more distinc-
tive in appearance than other edges. Also the middle of the vertebral endplates
tend to have a much more variable appearance due to both parallax tilting (a
“bean-can” appearance), and collapse due to fracture. It is doubtful whether
normalised correlation of whole vertebral edges would be reliable due to the in-
trinsic variability of appearance, whereas the corners tend to be more stable in
appearance. The curvature of the pedicle join also has a distinctive appearance,
and sections of the spine are typically the brightest thing in the image, and so
give coarse lateral positional clues.

The node cost of each candidate patch is assigned using a normalised mean
absolute deviation from the training set mean patch. For each patch pixel vector
g with mean μg and standard deviation σg (over the patch), we compute the
normalised vector of pixels v, where v = g−μg

max(σg,σmin)
1.

The mean of each normalised patch is calculated over the training set, to
provide a set of patch means v̄. For ease of subscript notation we consider one
such patch form. A candidate v(k) in image j is assigned a cost Cjk thus by
summing over the absolute deviations from the mean of each of n pixels, with
the normalisation factors {σ̂} evaluated over the training set of N images:

Cjk =
n∑

i=1

|v(k)
ji − v̄i|

σ̂i
, σ̂i =

1
N

N∑
j=1

|vji − v̄i| (1)

Finally the actual cost assigned is further normalised as
cjk = Cjk

α where alpha is the standard deviation of {Cj}, j ∈ {1 . . .N} over
the training set. Note that this normalisation step ensures that the distribution of
1 Where σmin is a lower-bound, to avoid ill-conditioned behaviour in flat regions.
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c (over correctly aligned patches) has approximately unit variance. This ensures
a compatible scale for the node and arc costs in the subsequent graph model.

2.2 Geometric Relationships

There are many responses for each part, some of them being duplicated over the
similar-looking vertebrae. To resolve the ambiguity, we use a geometric model
containing multiple nodes (one per part), together with a model of the pair-
wise geometrical relationships between them. This is a widely used technique
[7,8,10]. We can then use graph algorithms to locate the optimal solution for the
combination of feature response candidates and pairwise geometry. The set of
vertebral corner and spine features we used form a natural grid with arc set E
(see figure 1).

Geometric Constraints. Each candidate response for part r has a central
reference point pr, a scale sr and an orientation θr. The geometric constraints
between parts r and q can be represented in the cost function frq(pr, sr, θr,pq,
sq, θq). In general this could be based on a joint probability density function of
the parameters.

To allow for the varying scale and orientation between patch candidates, we
use similarity transforms. Let the similarity transformation T (x : d, s, θ) apply
to x a scaling of s, a rotation of θ, followed by a translation of d. The corrected
relative position of a candidate for patch q is obtained by mapping the position of
pq into the co-ordinate frame defined by a candidate for r using trq = T−1(pq :
pr, sr, θr).

We compute the 2D mean and variances of the relative position defined by
the positional components of trq (pq) across a training set. We then use the
Mahalanabis distance for the cost function frq. The node cost cr(kr) of candidate
kr is obtained as for the {cjk} above, but we now drop the image subscript j

and use an explicit parts subscript r. The final selection of optimal solution k̃
from the set of candidate patches {Prk} is given by finding the minimum sum
of node and arc costs:

k̃ = argmink

{ R∑
r=1

cr(kr) +
∑

(r,q)∈E

frq(kr, kq)
}

(2)

We trivially convert this to a maximisation problem and use a loopy belief prop-
agation algorithm [11]2 to solve for the optimal candidate vector k̃. Note the
“loopy” nature of the grid topology means that this is not guaranteed to con-
verge to the true global optimum.

2.3 Data

We obtained anonymised computed radiography (CR) lumbar images from a
local hospital, from patients having had spinal radiography over the previous
2 The max-product variant, equivalent to max-sum with log probabilities.
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12 months, and with the approval of the local ethics committee. We selected a
training subset of 135 images, particularly including those images with evidence
of vertebral fracture, to try and ensure a sufficient training of the AAM shape
models to cope with fractured cases.

The images were manually annotated using an in-house tool by an experienced
radiologist. Each vertebral contour uses 60 points around the vertebral body
with 8 further points around the pedicles. The endplate rims were modelled
using a quasi-elliptical shape to cope with the dual-edge appearance induced by
projective tilting.

2.4 Active Appearance Models

The linked AAM approach of [5] was used to fit a sequence of three AAMs
composed of overlapping vertebral triplets covering the spine from L4 up to
T12. Note that L5 is not normally used in vertebral fracture assessment as it is
very rare for L5 to suffer osteoporotic fracture. The AAM combination algorithm
also uses a global shape model of the entire spine, but this is used to guide the
initialisation of later sub-models in the fitting sequence (given the earlier sub-
model solutions). T12 was included to form the uppermost L1-centred triplet.

As there is little useful information inside the vertebral body we used profile
gradient samplers for the AAM texture model, as was used on DXA data [5],
with a non-linear renormalisation using a sigmoidal function tuned to the mean
absolute gradient. We used a 4-level multi-resolution pyramid search to extend
the convergence zone.

3 Experiments

3.1 Feature Detection

A train/test split was performed by picking out 10 images in turn from the
CR data. The patch correlators were trained on the remaining CR data, and
similarly the means and variances of the relative patch poses were calculated
in order to construct relative position functions for the arc costs. The patch
correlation followed by graph optimisation was then run on the respective test
subsets.

There is a fundamental ambiguity in determining the vertebral levels. This
was worsened by the fact that our modelling does not yet include L5, as L5 is not
normally assessed for osteoporosis. We therefore cropped the images at 20 mm
below L4, which tends to include about half of L5. Because the lumbar images
typically include several thoracic vertebrae (e.g. up to T10), we found that the
optimal solution is frequently displaced by one vertebal level (i.e. L3 appears to
be L4 etc). Even such cases represent a kind of success, as the feature detectors
are still locating vertebrae. So we classified each image detection result into
three catagories: successful, level-displaced, and unsuccessful. Successful cases
require at least 3 lumbar centres to be located within 10mm of the true centre
(i.e. about half a vertebral height), so the putative centre is normally inside the



1022 M.G. Roberts et al.

Fig. 2. Successful automatic initialisations. Crosses mark the estimated vertebral cen-
tres, other smaller 3-sided markers are drawn around located feature points. Note the
L1 wedge fractures in the images ii) and iii).

Fig. 3. Unsuccessful automatic initialisations, a)-c) (left first): a) vertebral level dis-
placed upwards by one; b) the middle two vertebra are also compressed into one (edge
confusion); c) Completely failure due to scoliosis and anterior calcification

correct vertebra. A level-displaced case is similar but with the levels shifted by
one vertebrae; and a failure case is all others. Only successful cases were subject
to the secondary stage of AAM search.

3.2 AAM Search

We used a similar train/test cycle of miss-10-out to run the AAM searches. We
then took the centre of the 4 lumbar vertebral corner patches and used these
vertebral centres to initialise the next phase of AAM search, using a global shape
model of T12-L4 (plus vertebral centres). Note that shape constraints are applied
in the usual AAM manner, so this initialisation will tend to smooth out outliers.
Point-to-line errors were calculated of the converged AAM positions with respect
to the gold-standard radiologist manually placed points.
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Table 1. Number of Images / (Percentage) for which vertebrae location algorithm
succeeds

Successful Level-Shifted Failures
98 (73%) 27 (20%) 10 (7%)

Table 2. Search error statistics (point-to-line) for AAM

Vertebra Search Error Statistic
Status Mean Median 75%-ile 95%-ile %ge errors

(mm) (mm) mm mm >2mm
Normal 0.93 0.53 0.98 1.68 7.3%
Fractured 2.27 1.16 2.44 5.50 30.6%

4 Results

Figure 2 shows three examples of the located features (and vertebral centres),
while Figure 3 shows a level-shifted result and two failures.

Table 1 gives the numbers of successful, level-displaced (by one vertebral
level), and unsuccessful phase 1 localisations. It can be seen that the ambi-
guity of vertebral levels is a problem, but only 7% of images result in outright
failure. The mean central point error of the successful cases was 3.6mm.

Table 2 gives point-to-line accuracy results from the phase 2 AAM segmenta-
tion given the automatic (“successful” only cases) initialisations. These results
are decomposed into points within normal or fractured vertebrae. Data are given
for the mean, median, 75th and 95th percentiles; and the percentage of point er-
rors in excess of 2mm, which can be viewed as a point failure threshold. The
overall mean error was 1.06mm.

5 Discussion and Conclusions

Although there is some degree of failure of the automatic initialisation process,
the algorithm sucessfully locates a plausible set of vertebrae in over 90% of cases.
The fundamental ambiguity of vertebral levels is a problem (20% level-shifted),
but we hope that by more fully modelling L5 and the upper sacrum we will be
able to better resolve this ambiguity. We may have to extend the algorithm to
include optional thoracic vertebra (e.g. up to T10), and thus deal with potentially
missing structure. In some applications it may be possible for the level issue to
be resolved by manual pre-cropping of the images. The use of more sophisticated
feature representations of the images to reduce spurious feature detections is also
under investigation.

Successful cases give adequate accuracy for a secondary phase of detailed AAM
segmentation. The overall mean AAM accuracy of 1.06mm is comparable to
results on DXA [5], and other methods for lumbar vertebrae (e.g. [6], mean error
1.4mm). Good accuracy is obtained for normal (unfractured) vertebrae, but there
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is a higher point failure rate and more skewed errors for fractured vertebrae. If
severe fractures 3 are excluded, then the mean error over the remaining fractured
vertebrae reduces to 1.7mm (median 0.94mm); whereas for severe (grade 3)
fractures it is 3.9mm. This deterioration may be partly due to undertraining
of the shape models for the more severe fractures, a problem which should be
resolved by more training examples.

A parts+geometry model trained on vertebral patches with a grid topology
successfully located a sequence of vertebrae in 93% of images. However issues
remain over the ambiguity of vertebral level. In successful cases this vertebral
detection method provides adequate initialisation for an accurate AAM segmen-
tation, but further AAM training on severe fractures is needed.
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Abstract. Potential sanitary effects related to electromagnetic fields
exposure raise public concerns, especially for fetuses during pregnancy.
Human fetus exposure can only be assessed through simulated dosimetry
studies, performed on anthropomorphic models of pregnant women. In
this paper, we propose a new methodology to generate a set of detailed
utero-fetal unit (UFU) 3D models during the first and third trimesters
of pregnancy, based on segmented 3D ultrasound and MRI data. UFU
models are built using recent geometry processing methods derived from
mesh-based computer graphics techniques and embedded in a synthetic
woman body. Nine pregnant woman models have been generated using
this approach and validated by obstetricians, for anatomical accuracy
and representativeness.

1 Introduction

Several organizations and institutes like the World Health Organization or the
Mobile Manufacturers Forum, have pointed out the need for studies of inter-
actions between electromagnetic fields and biological tissues. For this purpose,
experiments performed in vivo on animals and in vitro at the cellular level are
complemented by simulated dosimetry studies. These studies require rasterized
computational body models in order to simulate the electromagnetic field and
derive the energy absorption at each point of the model.

With the advent of fast whole body acquisition imaging protocols, voxel-based
models are nowadays built using segmented medical data acquired on volunteers.
Numerous adult and children voxel-based models are available [1], which have
enabled extensive dosimetric studies. In 2006, the World Health Organization des-
ignated studies aiming at assessing fetal exposure during pregnancy as a new pri-
ority. Since gathering whole body medical data on a pregnant woman is unethical,
hybrid models were built by merging stylized models with organs built with sur-
face equations, voxel-based models and/or synthetic models from the computer
graphics community. Only few works modeled pregnant women at different stages
of pregnancy. However, detail and realism of the UFU models remained limited in
these models, and did not allow precise fetal exposure assessment. Stylized mod-
els were used in [2], which are inherently simplified anatomical representations.
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A detailed set of models of pregnant women was already proposed in [3], but was
limited by the fact that the fetus models contained a realistic but coarse skeleton
extracted from a CT scan, scaled and combined with different synthetic envelopes
not generated from medical data. Moreover, only a limited set of fetal tissues were
distinguished (including soft tissues, skeleton, brain). The set of models proposed
in [4] was the only one built using medical images, but UFU models at different
gestational ages were obtained by scaling a single model extracted from MRI data
obtained at 35 weeks of amenorrhea (WA). This transformation seems inappropri-
ate as fetal limbs and organs do not develop at the same moment nor grow linearly.
Therefore, there is still a need for more complex models.

In this paper, we propose to fill this gap by building a set of pregnant woman
models, embedding detailed and realistic UFU models. Realism is ensured by
the use of medical images, obtained with two modalities used in routine preg-
nancy follow up: 3D ultrasound (3DUS) during the first trimester and magnetic
resonance imaging (MRI) during the second and third trimesters. Detailed seg-
mentations, validated by expert physicians, are then processed using several
point-based graphics tools, in particular the MLS operator, which have recently
emerged as efficient and robust techniques in digital geometry processing. We in-
troduce their use in medical imaging by meshing smooth surfaces sampled from
medical volume data. This mesh representation preserves smoothness during the
discretization of the UFU anatomy on the Cartesian grid used for dosimetric sim-
ulations, which is crucial as surface singularities induce bias in the simulation
results. UFU models are merged with a synthetic woman model, overlapping the
maternal bulk extracted from the images and under control of obstetricians.

The originality of this work is three-fold: an emerging problematic is ad-
dressed; an extensive database of images acquired with state-of-the-art modali-
ties used in obstetrics has been gathered (Section 2); recent geometry processing
methods derived from mesh-based computer graphics techniques are used to
provide a smooth representation of the UFU anatomical structures (Section 3).
Preliminary results and future works are presented in Section 4.

2 Images Database and Utero-Fetal Unit Segmentation

3DUS Image Data. With the collaboration of obstetricians from the Port-
Royal and Beaujon hospitals (Paris, France), we obtained eighteen 3DUS im-
ages between 8 and 14 WA. These images have a submillimetric and isotropic
resolution (typically 0.6 × 0.6 × 0.6 mm3) and contain the whole UFU. First,
voxels are classified into two classes, the amniotic fluid on the one hand, and
the fetal and maternal tissues on the other hand. This is performed using the
method described in [5], where statistical distributions of voxel intensities within
each class are exploited in a deformable model segmentation framework. Then,
the fetus is manually disconnected from the uterine wall and from the umbilical
cord. Finally, the placenta and the endometrium are identified.

MRI Image Data. In collaboration with pediatric radiologists from the Cochin-
St Vincent de Paul hospital (Paris, France), a database of twenty-two routine
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Fig. 1. 3DUS (a) and MRI (c) images at 13 and 34 WA, with corresponding segmen-
tation results (b) and (d)

MRI exams has been gathered, of fetuses between 26 and 35 WA. Images were ac-
quired using the Balanced Steady State Free Precession sequence, which enables
to acquire volumes encompassing the UFU in less than thirty seconds. Thus, im-
ages free from fetal motion related artifacts can be obtained, guaranteeing three
dimensional consistency of the UFU anatomical structures. Moreover, intensities
in fluids are strikingly higher than in fetal soft tissues and high contrasts enable
easy delineation of the fetus and its anatomy [6]. The typical images resolu-
tion is 1 × 1 × 4 mm3. First, maternal tissues, uterine wall, placenta, amniotic
fluid, umbilical cord and fetus are segmented using semi-automatic segmentation
tools. Then, fetal anatomy is refined by segmenting the brain, cerebrospinal fluid,
spine, eyes, lungs, heart, stomach and urinary bladder. The overall segmentation
is time consuming and automated approaches are currently being developed. Ac-
curate results have already been obtained for eyes, brain [7], cerebrospinal fluid
and spine automated segmentation. Typical 3DUS and MRI data images are
shown in Figure 1, together with the corresponding segmentation results, which
were individually validated by obstetricians.

3 Utero-Fetal Unit and Pregnant Woman Modeling

3.1 Surface Reconstruction

For dosimetry studies, Finite Difference Time Domain method is frequently used
for numerical simulations on a spatial grid, with labeled anthropomorphic models
which need to be smooth to avoid simulation bias on singularities. Naive direct
meshing approaches generate “steps” effects (see Figure 2) in the surface models,
especially when MRI images with anisotropic resolution are considered. In this
section, we describe a method for generating a high quality triangle mesh from
a presegmented volume of interest (see Figure 2). We adopt a generic approach
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Fig. 2. Illustration on a fetus body of the proposed surface reconstruction (left) versus
direct meshing from image segmentation (right)

by first extracting an unorganized set of points from the volume data and then
generating a mesh by sampling a smooth surface which approximates this point
set. The entire process is performed in a few seconds.

The mesh reconstruction algorithm is composed of three main steps, detailed
below (see Figure 3 for an illustration). With this algorithm, a mesh of arbitrary
resolution can be extracted from an arbitrary sparse point set. Consequently,
the system allows producing dense enough surface sampling to enable both ac-
curate subsequent deformations of the objects and robust rasterization within
the original volume domain. Point-Normal Sampling. In addition to the po-
sition pi of a point sample, the algorithm requires a surface normal estimate ni

at this point, in order to generate a mesh M from the point-normal sampling
PN = {{p0,n0}, ...{pm,nm}}. We compute an approximate normal vector at
each point by using a Principal Component Analysis [8] in 3D space. More pre-
cisely, the normal is given as ui, the eigen vector associated with the smallest
eigen value of the covariance matrix of the k-nearest-neighborhood of pi. In
practice, the anisotropic nature of the original sampling induces a rather large
value for k, usually k ∈ [50, 120], and we use a kD-Tree data structure [9] to
efficiently compute the k-neighborhood queries.

In our case, the sign of the normal can be resolved using additional information
available from the volume data: the vector ai, from the surface point pi to
the corresponding point on a dilated volume boundary, always points from the
surface to the outside of the object. Thus, we get

ni =
ni

||ni|| with ni =
{

ui if ui · ai > 0
−ui otherwise .

Note that ni is only an estimate, with a smoothness controlled by k. To increase
the quality of this estimate for later stages of the reconstruction pipeline, the
normals are re-estimated after each major processing step in this algorithm.

MLS Operator. The Moving Least Square (or MLS) projection operator [10,11]
is a scattered data approximation method intensively used in geometry process-
ing. We make use of it for both filtering and meshing steps, as it provides a simple
and powerful tool for the sparse sampling PN extracted from volume data. We
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Fig. 3. Illustration on a fetus body of the reconstruction pipeline

consider a variation of a recent simplification of the MLS operator [12]. Let
consider q ∈ R

3. The MLS operator is defined as:

MLSPN

: R
3 → R

3,q → Π∞(q)

It is based on the orthogonal projection Π(q) of q onto a weighted least square
plane Hq = {c(q), n(q)}: Π(q) = q− < q − c(q).n(q) > n(q) where

c(q) =
∑

i ω(||q − pi||)pi∑
i ω(||q− pi||) and n(q) =

∑
i ω(||q − pi||)ni

||∑i ω(||q − pi||)ni||
define a weighted combination over a local neighborhood of surface point sam-
ples near q with {pi,ni} ∈ PN . For efficiency reasons, we use Wendland’s [13]
compactly supported, piecewise polynomial function as the weighting kernel:

ω(t) =
{

(1 − t
h )4(4t

h + 1) if 0 ≤ t ≤ h
0 if t > h

,

where h controls the size of the support (i.e. smoothness). By applying itera-
tively this projection procedure, we define Πi+1(q) = Π(Πi(q)) and generate a
sequence of points {q, Π(q), ..., Πi(q), ...} which — considering q in the vicinity
of PN [14] — converges toward a stationary point Π∞(q). The set of points in
R

3 which are stationary by this MLS projection of PN is called the point set sur-
face (or PSS) [15] of PN . This procedure converges very quickly in the vicinity
of PN . In practice, we bound the number of iterations to 5 and the precision to
a user-defined value, i.e. ||Πi+1(q) − Πi(q)|| < ε. Note that ω(t) has a compact
support, which allows us to consider only a small and local set of neighbors in
PN . Again, a kD-Tree is used to query them in logarithmic time. Filtering.
The manual segmentation may often lead to inaccurate volume boundary and
unwanted samples in PN . Consequently, we need to filter PN prior to the mesh
generation stage. In practice, this filtering boils down to smooth PN and remove
its outliers, which are samples located far away from the estimated surface. The
former can be addressed by applying the MLS projection on every sample of PN ,
using h to control the low-pass filtering effect (i.e. PN is projected onto the PSS
it defines). We address the later problem using an iterative classification inspired
from the method of Bradley et al. [16]: we compute the Plane Fit Criterion pro-
posed by Weyrich et al. [17], remove the detected outliers and restart with a
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Fig. 4. Pregnant woman modeling: original trunk of the synthetic woman (left), de-
formed trunk (center) and final model (right)

quadratically decreasing bound until a user-defined threshold. Our experiments
show that the number of iterations can be fixed to 3. Mesh Generation. We
finally generate the mesh M from PN using two distinct approaches:

– in most cases, we use the implicit form of the PSS:

fPN

: R
3 → R,q → n(q)�(q − c(q))

to define a scalar field with zero set — fPN

(q) = 0 — corresponding to a
smooth surface approximating PN . We contour it by feeding the extended
marching cube algorithm [18] with fPN

(i.e.,fPN

is evaluated at marching
cube grid vertices).

– in some cases, exhibiting large missing surface regions in the sampling ob-
tained from volume data, we use the Poisson Reconstruction algorithm, as
proposed by Kazhdan et al. [19]. We use their code, publicly available.

As a result, we obtain a triangle mesh M sampling at arbitrary precision (con-
trolled by the marching cube grid size) a smooth surface defined from the input
boundary samples extracted from volume data. Surface meshes for all segmented
objects in Figure 1 have been generated with our method. These mesh models
can then be used for further interactive skinning, deformation and visualization.

3.2 Pregnant Woman Modeling

No segmented woman model is freely available and an approach similar to [4] has
been adopted. Pregnant women models are built by inserting UFU models into a
synthetic woman model, Victoria, distributed by DAZ studio (www.daz3d.com).
UFU models generated using ultrasound data are registered rigidly into Victoria.
Those models correspond to early pregnancy stages. Consequently, Victoria’s
body is not altered, as the abdominal morphology of a pregnant woman is not
modified at such stages by the growing UFU, given its small volume.

However, a different insertion process has to be considered when models gen-
erated from MRI data are inserted (see Figure 4). First, UFU and the maternal
bulk models are positioned by rigidly registering the pubis. Then, a realistic in-
clination is defined. Finally, Victoria’s thigh and trunk are morphed using free
form deformations to fit the maternal bulk. The final pregnant woman model is
obtained by removing the maternal bulk. Positioning and morphing operations
were supervised by experienced obstetricians.
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Fig. 5. Pregnant women models at 13 WA (left two images) and 35 WA (right three
images), generated using US3D and MRI data, respectively

4 Preliminary Results and Future Works

Nine pregnant woman models have been generated using the method presented
in this paper: four from 3DUS images (8, 9, 10 and 13 WA) and five from MRI
images (30, 32, 32, 33 and 35 WA). Models at 13 and 35 WA are shown in
Figure 5. All models were anatomically validated by obstetricians and pediatric
physicians, and will be shared with other researchers in a near future. Prelimi-
nary dosimetry studies on models derived from MRI have been performed and
results show that fetal position and morphology have a direct influence on fe-
tal exposure [20], demonstrating the importance of considering multiple models
with similar gestational ages.

Future works include the computation of additional models, especially for the
second pregnancy trimester. During this period, 3DUS cannot be used due to
limited field of view and MRI images quality is often altered by fetal motion
related artifacts. However, an artifact free MRI volume was recently obtained
at 26 WA and the corresponding model is currently under construction. A fetus
model has also been articulated, to be morphed into different anatomical posi-
tion. This enables the study of the posing influence on dosimetry. Finally, this
model can be used as a tool for segmentation. Indeed, registering this model on
fetal landmark points (e.g. joints cartilage) in a new image dataset to initialize
a graphcut segmentation provided promising results in preliminary experiments
for the fetal envelope segmentation.
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Abstract. Segmentation of anatomical objects is always a fundamen-
tal task for various clinical applications. Although many automatic seg-
mentation methods have been designed to segment specific anatomical
objects in a given imaging modality, a more generic solution that is di-
rectly applicable to different imaging modalities and different deformable
surfaces is desired, if attainable. In this paper, we propose such a frame-
work, which learns from examples the spatially adaptive appearance and
shape of a 3D surface (either open or closed). The application to a new
object/surface in a new modality requires only the annotation of train-
ing examples. Key contributions of our method include: (1) an automatic
clustering and learning algorithm to capture the spatial distribution of
appearance similarities/variations on the 3D surface. More specifically,
the model vertices are hierarchically clustered into a set of anatomical
primitives (sub-surfaces) using both geometric and appearance features.
The appearance characteristics of each learned anatomical primitive are
then captured through a cascaded boosting learning method. (2) To ef-
fectively incorporate non-Gaussian shape priors, we cluster the train-
ing shapes in order to build multiple statistical shape models. (3) To
our best knowledge, this is the first time the same segmentation algo-
rithm has been directly employed in two very diverse applications: a.
Liver segmentation (closed surface) in PET-CT, in which CT has very
low-resolution and low-contrast; b. Distal femur (condyle) surface (open
surface) segmentation in MRI.

1 Introduction

In recent decades, automatic/semi-automatic algorithms for the delineation of
anatomical structures has become more and more important in assisting and
automating specific radiological tasks. Hence, it is not surprising that there have
been multitude of algorithms developed in recent years, each tailored towards a
particular anatomical structure and imaging modality, typically with a few key
parameters to tweak for the algorithm to work. In spite of the availability of all
these algorithms [1][2][3][4], generally, it is not easy to make these algorithms to
work on another structure/organ and/or imaging modality.

To that end, in this paper, we propose a learning-based hierarchical de-
formable model to segment various organs (or structures) from different medi-
cal imaging modalities. Compared to the existing methods in the “deformable
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model” family, our method has three hallmarks. First, the boundary appearance
is hierarchically modeled and learned in a spatially adaptive way. More specifi-
cally, the vertices of the deformable model are hierarchically clustered based on
both the geometric and appearance similarity. Boundary characteristics of each
cluster is then captured by training a boundary detector using a cascade boosting
method, finally providing a hierarchically learned model for deformation. Sec-
ond, shape priors are modeled by multiple statistical shape models built upon
clustered shape instances. Since each cluster of shape instances represents one of
the distribution modes in the shape space, multiple statistical shape models are
able to provide more “specific” refinement to the deformable model. Third, and
finally we demonstrate the efficacy of our algorithm (without changing any pa-
rameters), on two different anatomical structures (liver and distal end of femur)
in two contrasting imaging modalities (PET-CT and MR).

2 Related Work

a

b c

d

e

Fig. 1. An example of liver CT im-
ages. Arrows a-e point to boundaries
between liver and rib, lung, heart,
abdomen and colon that show het-
erogenous appearance.

Deformable model is a vigorously studied
model-based approach in the area of med-
ical image segmentation. The widely recog-
nized potency of deformable models comes
from their ability to segment anatomic struc-
tures by exploiting constraints derived from
the image data (bottom-up) together with
prior knowledge about these structures (top-
down). The deformation process is usu-
ally formulated as an optimization problem
whose objective function consists of exter-
nal (image) term and internal (shape) term.
While internal energy is designed to preserve
the geometric characteristics of the organ
under study, the external energy is defined
to move the model toward organ bound-
aries. Traditional external energy term usu-
ally comes from edge information [5], e.g.,
image gradient. In recent years, more effort has been invested on the integration
of other image features, e.g., local regional information [1][2] and texture models
[3]. By combining different image features as the external energy, deformable
model achieves tremendous success in various clinical practices. However, as
these external energy terms are usually designed for specific imaging modality
and organ, they lack scalability to different medical imaging modalities. Ma-
chine learning technologies have opened the door for a more generic external
energy design. By using learning-based methods, boundary characteristics can
be learned from training data [6][7]. In other words, the “design” of external
energy becomes data driven and extensible to different imaging modalities. A
potential problem is that the boundary characteristics of organs can seldom be
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learned by a single classifier due to heterogenous characteristics along organ
boundaries (c.f. Fig 1). To address this problem, a “divide-and-conquer” strat-
egy is desired. More specifically, the deformable model should be decomposed
into a set of sub-surfaces with relatively similar boundary characteristics.

Moreover, by hierarchically decomposing the deformable model into a set of
deformation units, the speed and the robustness of segmentation can be highly
improved [8]. However, the hierarchical structure was designed heuristically in
[8]. Hence, a more principled way to generate the hierarchical structure, as
presented in this work, would be highly desirable.

3 Method

3.1 Overview

In our study, we aim to develop a deformable model that is extensible to different
imaging modalities. To achieve this purpose, we propose a learning-based hierar-
chicalmodel, which is purely data-driven.Given a set ofmanually segmented train-
ing data, the hierarchical structure of the deformable model is constructed through
an iterative clustering and feature selection method. As shown in Fig. 3, every
node of the hierarchical structure represents a sub-surface of the deformablemodel.
For each primitive sub-surface, i.e., leaf nodes in the hierarchical tree, a bound-
ary detector is learned using a cascade boosting method. The ensemble of these
learned boundary detectors actually capture the appearance characteristics of a
specific organ in a specific imaging modality. Their responses guide the deformable
model to the desired organ boundary. In addition to the hierarchicalmodel and the
boundary detectors, a set of statistical shape models are built upon clustered shape
instances in the learning stage. These shape priors will be used to constrain the
deformable model at run-time. The diagram of our method is shown in Fig 2.

Image Data +  
Manual GT 

Segmentation

Clustering

Feature 
Selection + 
Learning

Hierarchical 
Model + Learned 

Detector

New Image

Clustered Shape 
Statistics

Model 
Initialization

Hierarchical 
Iterative 

Deformation

Final 
Segmentation

Online System

Learning Stage (Offline)

Fig. 2. Flowchart of the learning-based hierarchical model showing both the offline
learning and the online testing system
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Fig. 3. Hierarchical structure of the deformable model. Color patches depict the sub-
surfaces (Hj

i ) at jth hierarchical level comprised of vertices in the ith cluster.

Model Description. Our deformable model is represented by a triangle mesh:
S ≡ (V, T ), where V = {vi|i = 1, . . . , N} denotes the vertices of the surface and
T = {tj|j = 1, . . . , M} denotes the triangles defined by vertices. Mathemati-
cally, the segmentation problem is formulated as the minimization of an energy
function defined as:

E(S) = Eext(S) + Eint(S) =
N∑

i=1

Eext(vi) + Eint(S) (1)

where Eext and Eint are the image (external) energy term and shape (internal)
energy term. A hierarchical deformation strategy is employed to solve this high
dimensional optimization problem (Refer [6] for details). Due to page limits, we
will focus on the energy terms in the remainder of this paper.

3.2 Hierarchical Model with Learning-Based Boundary Detectors

Our external energy is defined by the responses of a set (or ensemble) of boundary
detectors built upon the hierarchical deformable model. The following steps are
used to generate the hierarchial model and the boundary detectors.

Affinity Propagation Clustering. “Affinity propagation” method [9] is em-
ployed to cluster vertices. Affinity propagation method models each data point as
a node in a network. During the clustering process, real-valued messages are re-
cursively exchanged between data points until a high quality set of exemplars and
corresponding clusters emerge. Compared to other clustering methods, affinity
propagation considers each data point as a potential cluster center and gradually
generate clusters. Therefore, the solution is not sensitive to bad initialization and
hard decision.

In our study, it is important to design an appropriate similarity between
vertices since it determines the clustering results of affinity propagation. We put
two constraints on the clustered vertices. First, to facilitate the characterization
of heterogenous boundary, vertices in the same cluster should have relatively
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similar image features. Second, the hierarchical deformable model requires the
vertices within a cluster to be proximal to each other on the surface. In this way,
the cluster center can be treated as a “driving vertex” and drive its neighborhood
in the deformation process. To achieve these two purposes, the similarity between
vertices is defined as follows.

s(vi, vj) = 1 − (1/K)
K∑

k=1

[αG(vk
i , vk

j ) + (1 − α)C(F(vk
i ),F(vk

j ))] (2)

Here, K is the number of training subjects, vk
i denotes the ith vertex of

the kth subject. G(vk
i , vk

j ) denotes the geodesic distance between vk
i and vk

j .
C(F(vk

i ),F(vk
j )) denotes the Euclidean distance between image feature vectors

calculated at vk
i and vk

j .

Iterative Feature Selection/Clustering. To construct the hierarchical struc-
ture of the deformable model, vertices are recursively clustered. Assume Hj

i is
the ith cluster at the jth hierarchical level, vertices belonging to Hj

i are further
clustered to a set of sub-clusters {Hj+1

k , k = 1, . . . , Ni}:

Hj
i =

iNi⋃
k=i1

Hj+1
k and

iNi⋂
k=i1

Hj+1
k = ∅ (3)

The remaining problem is the selection of appropriate F(.) in Eq. 2. This is actu-
ally an “egg-and-chicken” problem. On one hand, to achieve the desired clusters,
we need to know the distinctive feature sets for boundary description. On the
other hand, distinctive features for local boundary can be obtained only after
we have the vertices cluster. To address this problem, we propose an iterative
clustering and feature selection method.

For the first level of cluster, we use intensity profile along normal of the vertices
as F(.). After that, assume Hj

i = {vl}, we use Adaboost method to select the
features that are most powerful to distinguish {vl} from the points along their
normal directions, both inside and outside of the surface. The selected feature
set are used as F(.) in Eq. 2 to further cluster {vl} to a set of sub-clusters
{Hj+1

k , k = i1, . . . , iNi}. Feature selection and clustering are iteratively executed
until boundary characteristics within a cluster becomes learnable.

Learn Boundary Detectors. For each primitive cluster, i.e., the leaf node
of the hierarchical tree, a boundary detector is learned to characterize local
boundary. In principle, we follow the idea of [10] to use an extensively redundant
feature pool and a cascade Adaboost method to learn a boundary detector. Given
an image I, F(x; I) denotes the redundant feature vector of x. (In practice, we use
2D, 3D or 4D Haar-like features depends on the dimensionality of different image
modalities.) In run-time system, each learned classifier generates a boundary
probability map P (x|I). Hence, the external energy term in Eq. 1 is defined as:

Eext(vi) = 1 − P (vi|I) = 1 − C�vi
(F(vi; I)) (4)

where �vi is the cluster index of vi and C�. defines the corresponding classifier.
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3.3 Multiple Statistical Atlas Built on Clustered Shape Instances

In the well-known active shape model [11], shape prior is modeled by a statistical
model built upon the whole population of shape instances. However, the assump-
tion that the shape instances follow a mono-Gaussian distribution in the shape
space might not always hold for some organs. An effective solution is to build sub-
population models [12]. Inspired by this idea, we build multiple shape models upon
clustered shape instances. Given a set of training shapes, they are firstly clustered
according to pair-wise shape similarity, which is defined by the Euclidean distance
between shape vectors. A set of statistical models are then built on each clusters,
respectively. In the run time, the deformable model is constrained by the most
similar statistical shape model. More specifically, the deformed model is mapped
to the eigen-spaces of each shape cluster, respectively. The shape statistical model
that gives the most compact description is selected to refine the deformed model.
Hence, the internal energy of Eq. 1 is formulated as:

Eint(S) = 1 − max
i

e(−S−Si)T Ξi(−S−Si) (5)

where Si and Ξi denote the average shape and the covariance matrix of the ith
shape cluster, respectively.

4 Results

Liver segmentation in wholebody PET-CT. Wholebody PET-CT provides
fused morphological and functional information, which benefits cancer diagnosis

Hierarchical 
Level 1

Hierarchical 
Level 2

Fig. 4. 3D rendering of the hierarchical struc-
ture of a liver model. Color patches denote the
vertices belonging to the same cluster. Left:
Anterior View. Right: Posterior view.

and therapy evaluation. As the
standardized uptake value of liver
is usually higher than surround-
ing tissues, it is desired to seg-
ment liver from PET-CT for an
organ-specific PET-CT interpreta-
tion. In this study, the learning-
based hierarchial model was trained
by 20 wholebody PET-CT scans
with manually delineated liver sur-
faces. (To jointly exploit CT-PET
information, 4D Haar-like filters are
used for feature extractor.[13]) As
shown in Fig. 4, the generated
model has two hierarchical levels
with 8 and 25 vertices clusters, re-
spectively. The automatic segmen-
tation results on 30 testing dataset
(PET: 5 × 5 × 5mm; CT: 1.3 × 1.3 × 5mm) are compared with manually
delineated organ surfaces (see Fig. 5). Accuracy measurements include me-
dian distance between surfaces, average distance between surfaces, volume dif-
ference and volume overlap difference. In Table 1, we compare our proposed



Cross Modality Deformable Segmentation Using Hierarchical Clustering 1039

Table 1. Quantitative comparison of learning based methods on PET-CT liver
segmentation

Med Surf. Dist.(voxel) Avg Surf. Dist (voxel) Vol. Diff. (%) Overlap Diff. (%)
Method1 0.84 1.01 3.13 7.61
Method2 1.27 1.61 5.16 12.1

method (Method1 ) with Method2, which is a learning-based deformable model
with heuristically designed hierarchical structure. More specifically, in Method2
the hierarchical structure is determined by clustering neighboring vertices,
based only on geodesic information1. Therefore, the spatially clustered vertices
in Method2 might have larger appearance variation, which is difficult to learn.
Hence, Method2 shows inferior performance.

Distal femur condyle surface segmentation in MR T1 image. The mor-
phological shape and geometry of the condyle surface is not only important for

C SA

Liver 
CT

Liver 
PET

C SAKnee 
MR

C SA

Fig. 5. Comparison of manual and automatic segmen-
tation. Blue/yellow and red/blue contours denote the
automatic and manual segmentation, respectively.

understanding the kine-
matic function of the knee,
but also has clinical sig-
nificance in areas of to-
tal knee arthroplasty and
anterior cruciate ligament
reconstruction [14]. The
automatic segmentation of
condyle surface is useful to
knee disease diagnosis and
therapy planning. We ap-
ply the same method on
the segmentation of distal
femur MR T1 images. As
shown in Fig. 5, the auto-
matic segmentation is very
close to manual segmen-
tation. Tested on 21 knee
MR images (T1, 1.953 ×
1.953 × 2mm), the average
distance between manually
the automatically delin-
eated surfaces is 1.87mm
(in sub-voxel precision).2

1 Note that Method2 only differs from Method1 in the way their hierarchical structures
are built.

2 As the distal femur surface is an open surface, we cannot provide the volume error
in this experiment.
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Importantly, for both liver PET-CT and femur distal surface segmentation,
we use exactly same parameters. The accurate results shows that our method is
transparent to different imaging modalities and different organs.

5 Conclusion

In this paper, we proposed a learning-based hierarchical deformable model for
automatically segmenting anatomic structures across different imaging modal-
ities. The boundary appearance of the anatomical structure is hierarchically
modeled through an iterative clustering and learning framework. In addition,
the non-gaussian shape variations of these anatomical structures are modeled
through multiple statistical shape models, built upon clustered shape instances.
The algorithm does not require tweaking of any parameters and the only in-
put required by the algorithm is the image data along with the corresponding
annotations. Experimental results on two different structures (liver and distal
femur) demonstrated the potential of this method in dealing with segmentation
problems in contrasting image modalities.
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Abstract. An innovative 3D multi-branch tubular structure and centerline ex-
traction method is proposed in this paper. In contrast to classical minimal path
techniques that can only detect a single curve between two pre-defined initial
points, this method propagates outward from only one initial seed point to detect
3D multi-branch tubular surfaces and centerlines simultaneously. First, instead of
only representing the trajectory of a tubular structure as a 3D curve, the surface
of the entire structure is represented as a 4D curve along which every point repre-
sents a 3D sphere inside the tubular structure. Then, from any given sphere inside
the tubular structure, a novel 4D iterative key point searching scheme is applied,
in which the minimal action map and the Euclidean length map are calculated
with a 4D freezing fast marching evolution. A set of 4D key points is obtained
during the front propagation process. Finally, by sliding back from each key point
to the previous one via the minimal action map until all the key points are visited,
we are able to fully obtain global minimizing multi-branch tubular surfaces. An
additional immediate benefit of this method is a natural notion of a multi-branch
tube’s “central curve” by taking only the first three spatial coordinates of the de-
tected 4D multi-branch curve. Experimental results on 2D/3D medical vascular
images illustrate the benefits of this method.

1 Introduction

Image segmentation is often the first task for solving problems in the fields of im-
age processing and computer vision. In medical imaging, the extraction of vascular
objects such as coronary arteries and retinal blood vessels, has attracted the atten-
tion of more and more researchers [1, 2]. Numerous segmentation methods have been
proposed that depend upon organ structures, imaging modalities, application domains,
user-interaction requirements, and so on [3].

Centerline extraction methods have been proposed to extract only the centerline (or
skeleton) of a tubular object, thereby requiring further processing to obtain the 3D sur-
face or shape. By assuming a centerline corresponded to a minimal cost path, some
methods have been designed based on path finding procedures [4, 5, 6, 7, 8, 9, 10]. Spe-
cially, Deschamps and Cohen [11] simplified the problem of generating centerlines into
the problem of finding minimal paths [12] by utilizing fast marching schemes [13]. The
minimal path approach [12] has several advantages such as finding global minimizers,
fast computation, ease of implementation, and powerful incorporation of user input.
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Unfortunately, despite these numerous advantages, traditional minimal path techniques
exhibit some disadvantages both in general and in the particular application of vessel
segmentation [14]. First, follow-up vessel boundary extraction is by no means straight
forward, even in 2D where the longitudinal cross-sectional boundary of a vessel is com-
pletely described by two curves on either side of the detected trajectory. Second, the
detected interior trajectory does not always yield remain central to the vessel. Third,
in 3D (just as in 2D), traditional purely spatial minimal path techniques can be used
only for curve extraction, whereas vessels and other tubular structures, despite sharing
some characteristics with curves, are in fact surfaces. Finally, only a single branch can
be detected for each pair of initializing seed points. Multiple initialization pairs would
be required in order to detect multi-branch structures.

As an improvement, Li and Yezzi [14] proposed a 4D minimal path technique to
extract full 3D tubular surfaces and their centerlines simultaneously. They represented
the surface of a tubular structure as the envelope of a one-parameter family (curve)
of spheres with different centers (three coordinates) and different radii (fourth coordi-
nate). So the 3D surface extraction problem is translated into the problem of finding
a 4D curve which encodes this family of 3D spheres. As such, the tubular surface and
its centerline can be detected simultaneously in this one-dimension-higher 4D space.
However, in their method, the user input is still a pair of initial points (or spheres), and
thus only a single branch can be detected for each pair of initializations. This disadvan-
tage significantly limits its application to most vessels which have complex branching
topologies such as the coronary arteries and abdominal aorta.

In this paper, we propose an innovative 3D multi-branch tubular structure and cen-
terline extraction method with all the merits of minimal path techniques while further
limiting the required user-interaction to a single initial point. By modeling the surface
as a 4D trajectory as in [14], a set of branching 3D tubular surfaces and their centerlines
are simultaneously detected with a guarantee that the centerline curves also connect at
branch points. By starting with a single 4D point (i.e. a single sphere inside the 3D
vessel or other tubular structure) a novel scheme is applied to find a set of 4D iterative
key points along an optimal 4D path which is free to branch whenever it is energetically
favorable. Then, by sliding back from each key point to the previous one along the mini-
mal action map until all the key points are visited, we obtain the final global minimizing
multi-branch 4D trajectory from which we may directly construct the branching tubular
3D surface along with its 3D “central curve”, both of which are guaranteed to exhibit
the exact same branching topology. Experimental results on 2D/3D medical vascular
images illustrate the benefits of this method.

2 Multi-branch Tubular Structure Extraction

When only a single initial starting point is provided by the user, detecting an opti-
mal branching trajectory using minimal cost path searching schemes is dependent upon
finding one or more appropriate destination points on the desired path. Furthermore,
in order to detect multi-branch structures, at least one destination point along each in-
dividual branch should be found. We may then slide back from each destination point
toward the starting point to obtain the multi-branch tubular structure. Here, we propose
a 4D key point searching scheme to carry out these tasks.
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Fig. 1. The entire multi-branch structure extraction is reduced to finding structures between all
adjacent key point pairs. The 4D path length D between each key point pair is equal to dstep. For
easier visualization, the same concept is illustrated here using circles instead of spheres.

2.1 4D Key Point Searching Scheme

Motivated by the 4D minimal path technique [14], we first represent the entire vessel
as a 4D curve, where each 4D point represents a 3D sphere (three coordinates for the
center point and one for the radius). The 3D surface extraction problem is translated
into the problem of finding a 4D curve which encodes this family of 3D spheres.

For detecting multi-branch tubular structures, the new 4D iterative key point search-
ing scheme is proposed and illustrated in Fig. 1. The energy minimization model is

E(Ĉ) =
∫

Ω

{ω + P (Ĉ(c(s), r(s)))}ds =
∫

Ω

P̃ (Ĉ)ds, (1)

where s represents the arc-length parameter over an interval Ω, c(s) represents the lo-
cation of a point in the original image domain ΩI either in R

2
[
c(s) = (x(s), y(s))

]
or in R

3
[
c(s) = (x(s), y(s), z(s))

]
, r(s) ∈ [0, rmax] represents the radius of a cir-

cle/sphere centered at c(s) (rmax is the largest allowed thickness of the vessel to be
captured), Ĉ(c(s), r(s)) ∈ ΩI represents a multi-branch “path” composed by a family
of circles/spheres in ΩI , E(Ĉ) represents the energy which is the integral of P̃ along
Ĉ(c(s), r(s)), P is the potential that enhances the boundary of the vascular tree, ω is a
real positive constant, and P̃ = P + w. We call ΩIr = ΩI × [0, rmax].

Alternatively, as shown in Fig. 1, energy E along the entire structure can be treated
as the summation of energy Ek along a path Ĉk between every two adjacent key points
p̂k0 (as the starting point)and p̂k (as the ending point),

E(Ĉ) =
N∑

k=1

Ek(Ĉk) =
N∑

k=1

(
∫

Ω

P̃k(Ĉk)ds). (2)

where Pk may be different for finding different minimal cost path Ck . It is well known
that an appropriate P̃k with lower values near the optimal path will cause fronts starting
from the initial point p̂k0 to propagate faster along the desired minimal path. Here we
define an additional item: the distance step dstep. We choose the first reached point at
which a front starting from the initial point p̂0 travels dstep, and we labeled it as key
point p̂1. We then trace back the optimal minimal path between it and p̂0. The next key
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point p̂2 will be the first reached point at which a front, starting simultaneously from
p̂0 and p̂1, travels the distance dstep. This will become the destination point for the
minimal path segment Ĉ2. Repeating this process, the new key point p̂k is always the
first reached point at which a front, starting simultaneously from points p̂0 to p̂(k−1),
travels the distance dstep. In this way, the front may propagate to different branches
of the tubular structure, and key points along different branches may be obtained. The
process stops when no new key point can be found, which is guaranteed by freezing fast
marching schemes and will be discussed later.

To find each minimal path segment Ĉk (minimizing the energy Ek) between key
point pairs p̂k0 and p̂k (the starting point p̂k0 may be any one of the points p̂0 to p̂(k−1)),
the 4D minimal path technique [14] is applied. At any 4D point p̂ ∈ ΩIr , we define the
minimal action map Uk(p̂) as the minimal energy integrated along any possible path
between the starting point p̂k0 and the point p̂,

Uk(p̂) = inf
Ap̂k0

,p̂

{
∫

Ω

P̃k(Ĉ(c(s), r(s)))ds} = inf
Ap̂k0

,p̂

{Ek(Ĉ)}, (3)

where Ap̂k0 ,p̂ is defined as the set of all paths between p̂k0 and p̂. So, from the ending
point p̂k, the minimal path between p̂k0 and p̂k can be deduced by calculating Uk(p̂k)
and then sliding back from p̂k along the action map Uk to p̂k0 via gradient descent.
Uk(p̂) can be computed by solving the Eikonal equation,

||∇Uk|| = P̃k(p̂) with Uk(p̂k0) = 0, p̂ ∈ ΩIr , (4)

using the fast marching algorithm [13]. 3D (or 4D) fast marching schemes are utilized
to solve the Eikonal equations and calculate the action maps for 2D (or 3D) spheres
respectively. The 3D vessel structure is then obtained as the envelope of the family of
spheres traversed along this 4D curve. Also because all the spheres on the detected
minimal path are tangential to the boundary of the tubular structure, the union of their
center points describes the central path (medial axis) of the tubular structure.

In order to find appropriate key points and also reduce the computational cost, we
would like to limit the front propagation within the long tubular structure. A freezing
fast marching method proposed in [15] is utilized to stop the propagation of these fronts
when they reach the structure boundary. Obviously, we would like to freeze points at the
“tail” of the front, especially when it reaches the actual boundary of tubular shape, and
keep the points at the “head” of the front propagating further. To be able to distinguish
points at the “head” from those at the “tail”, the path lengths Dk(p̂) from the starting
point p̂k0 to any other point p̂ should be computed. Dk(p̂) is the Euclidean distance
traveled by the front from the starting point p̂k0 to any other point p̂. When Dk(p̂) is
smaller than the current maximum path length dmax (initial dmax = 0),

Dk(p̂) < max((dmax − d̃), 0) with d̃ > 0, (5)

point p̂ is frozen by setting the speed to 0, where d̃ is a pre-defined threshold value.
Eq. 5 ensures that no point is frozen till one point on the front has traveled at least the
Euclidean distance d̃, which enables the front to stay inside the long and thin structure.
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The distance threshold d̃ is a parameter which should be larger than the expected maxi-
mum branch segment of the object, otherwise the algorithm will wrongly freeze points
prematurely within incomplete branches. An appropriate d̃ should be chosen based on
different image qualities, vessel structures, noise levels, and so on. Instead of calculat-
ing Dk after extracting the minimal path according to gradient descent, we may solve
Dk locally using the same neighbors involved for solving Uk in Eq. 4,{ ||∇Uk|| = P̃k with U(p̂k0) = 0

||∇Dk|| = 1 with D(p̂k0) = 0.
(6)

Second, since key point p̂k, k ∈ {1, ..., N} is the first reached point at which a front,
starting simultaneously from multiple points p̂0 to p̂(k−1), travels the distance dstep, the

optimal minimal cost path Ĉk should connect p̂k to the appropriate previous key point
p̂k0 , k0 ∈ {0, ..., (k − 1)}. Here we separate the back tracking process into each new
key point searching step to avoid false connections. Each time when we obtain a new
key point p̂k, we slide back right away from p̂k according to the gradient descent on
the minimal action map until reaching any point in the group of points p̂0 to p̂(k−1)and

obtaining the minimal path Ĉk. Parameter dstep also defines the accuracy and compu-
tational cost of the method. If it is big, it decreases the computational cost of tracking
the connectivity of the fronts. However, it misses branches shorter than dstep.

Furthermore, if the detected tubular structure only has one branch, the 4D iterative
process can be simplified to the following process. First, an initial point p̂0 should be
chosen at the end of the tubular structure in order to detect the whole structure. Sim-
ilarly, if the front starting from p̂0 will travel at least the distance N × dstep, the first
reached points when the front travels the distance n × dstep, n ∈ {1, . . . , N} are cho-
sen as the labeled key points p̂n. The 4D minimal path between the initial point p̂0 and
the last iterative key point p̂N can be easily deduced by sliding back from point p̂N to
its previous point p̂(N−1) along the action map via gradient descent until reaching the
initial point p̂0. For single branch detection, we may use this simplified process with an
initial point located at one end of the tubular structure.

2.2 Potentials

The potential P̃k is designed as a measurement which incorporates the full set of image
values within the sphere surrounding the corresponding image point. Any sphere sp in
the image domain ΩI is defined as a point p̂ in ΩIr , sp = (p, r), where p is the center
point and r is the radius. The entire sphere should lie inside the desired object and be
as big as possible (so that it is tangential to the object boundary). Such spheres should
exhibit lower values of P̃k compared to smaller spheres which lie inside the desired
object or to any sphere which lies outside (fully or partially) the desired object.

For any image point p with gray value I(p) in an image I , we define the mean
intensity value μ(sp) and variance σ2(sp) for the sphere sp = (p, r) as

μ(sp) =

∫
B(p,r) I(p̃)dp̃∫

B(p,r) dp̃
, σ2(sp) =

∫
B(p,r)(I(p̃) − μ(sp))2dp̃∫

B(p,r) dp̃
, (7)
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where B(p, r) represents the ball of radius r centered at p. We propose an example
potential

P̃k(p̂) = P̃k(sp) = 1/(w + λ1(|μ(sp2) − μ(sp)|2) + λ2(|σ2(sp2) − σ2(sp)|2)), (8)

where μ(sp2) and σ2(sp2) represent the mean and the variance for the sphere sp2 =
(p, 2r), ω is a real positive constant to control the smoothness of the obtained path, λ1
and λ2 are two real positive weights for the mean difference and variance difference
between the detected sphere and a bigger sphere which has the same center point but
twice the radius. These parameters should be selected based on the size and interior
information of detected vessels, image noise levels, etc.

The potential shown in Eq. 8 considers the mean and variance differences between
the detected sphere and the bigger sphere which shares the same center point with the
detected sphere but has a bigger radius. It is irrelevant to k. If a sphere’s radius is larger
or smaller than the width of the tubular structure, the mean and variance differences
between this sphere and the bigger sphere will decrease, and the related potential P̃k

will increase. This potential gives smallest values on spheres when they are exactly with
center on centerline and the radii are as half as the width of the detected vessel. Also,
this region based potential does not consider the difference between the current sphere
and the starting sphere which therefore helps to avoid accumulation of detection errors
along the fast gradient descent.

3 Experimental Results and Analysis

In this section, we demonstrate our approach on various 2D and 3D real images. For
each test, users need to specify the center location and radius of the starting point,
the potential, and the largest allowed radius of the tubular object. Users also need to
specify the parameters dmax, d̃, and dstep for the 4D freezing fast marching scheme.
Furthermore, all the results shown in this paper were processed on the original image
data (i.e. no pre-processing steps were applied beforehand).

Fig. 2. Vessel segmentation for an angiogram 2D projection image based on the proposed method
(upper row) versus the 4D minimal path method [14] (lower row). The initial point is shown with
the red cross. Panels from left to right show the initial point and the detected iterative key points,
the detected multi-branch centerlines, and the detected vessel surfaces.
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Fig. 3. Segmentation results via the proposed method on another 2D projection angiogram image.
Panels from left to right show the initial point and the detected iterative key points and the detected
vessel surfaces.

(a) (b) (c)

Fig. 4. 3D segmentation results shown for two out of five real 3D CTA data sets, plus comparisons
for all five sets between the proposed method versus the 4D minimal path method [14] in terms
of overlap with an expert’s manual segmentations

Be begin in Fig. 2 with a 2D segmentation result for a noisy 2D projection angiogram
image. We set rmax = 15, rinitial = 9, dmax = 0, d̃ = 100, and dstep = 50 for the
test. The initial point is located in the middle of the vessel structure. The potential is
defined by Eq. 8 with ω = 10, λ1 = 10, and λ2 = 10. The result shows that by
utilizing our 4D iterative key point scheme, multiple branches can be detected only
with one initial point. For comparison, we also present the segmentation result on the
same image based on the 4D minimal path method [14] which requires two input points
instead of one and is incapable of branching. Fig. 3 shows an additional segmentation
result with our algorithm on another 2D MRA projection image. In Fig. 4, we test the
iterative key point scheme on two 3D CTA datasets of the coronary artery. The potential
is defined by Eq. 8 with ω = 10, λ1 = 10, and λ2 = 10. In these two tests, the initial
points are located at the top of the left coronary artery.

Also, we show the comparison between the results obtained from our method (which
required only one initial seed point per experiment) and the 4D minimal path method in
[14] (which required 5 initial seed points per experiment in order to separately detect each
branch). The comparison was done via overlap with manually aquired segmentations for
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the five 3D clinical CTA coronary datasets. No preprocessing was applied to the date for
any of these experiments. Overlap Metric, OM = 2 · NB∩NR

NB+NR
, is applied to evaluate the

detection accuracy, in which NR and NB are the number of reference ground truth voxels
and the number of the detected voxels. For this comparison, we cropped a small region
in which the vessel structures were detected by both our method and 4D minimal path
method. The comparison illustrates that the proposed method can receive better results
as the 4D minimal path technique with far less initial input demanded from the user.

4 Conclusions

In this paper, we proposed an innovative approach to extract multi-branch tubular struc-
tures using minimal user input. First, a novel 4D iterative key point searching method
is proposed and utilized to detect multi-branch tubular structures with only one initial
point. In contrast to standard minimal path techniques which require two initial points
and can only detect one single branch between them, this new approach may propagate
a tubular surface from only an initial seed point and detect 3D multi-branch surfaces
and their centerlines simultaneously. Second, the freezing fast marching method is ex-
tended to 4D to reduce the computational cost of the iterative key point search. Finally,
the designed potential, which is recalculated each time that a new key point is obtained,
can avoid the path difference accumulation along a long tubular structure. It is a novel
design and can be implemented easily in the iterative key point searching procedure.
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Abstract. Model-based image segmentation requires prior information
about the appearance of a structure in the image. Instead of relying on
Principal Component Analysis such as in Statistical Appearance Models,
we propose a method based on a regional clustering of intensity profiles
that does not rely on an accurate pointwise registration. Our method
is built upon the Expectation-Maximization algorithm with regularized
covariance matrices and includes spatial regularization. The number of
appearance regions is determined by a novel model order selection crite-
rion. The prior is described on a reference mesh where each vertex has a
probability to belong to several intensity profile classes.

1 Introduction

Intensity profiles were among the first image representations used to describe
appearance for segmentation purposes. Cootes used intensity profiles to build
Statistical Appearance Models [1]. They are sampled in training images and
both mean profile and its principal modes of variation are extracted for each
landmark. Intensity and gradient profiles were used to optimize image forces of
deformable models [2]. The idea was to better discriminate organ contours in
images by comparing intensity profiles, using two generic models and checking
the similarity variation with the normalized cross-correlation. A thorough study
on intensity profiles can be found in [3].

Several issues may be raised with statistical appearance methods based on
Principal Component Analysis (PCA). First, they require an accurate point-
wise registration as the statistical analysis of appearance is performed at each
point. Defining homologous points for 3D structures is difficult and therefore
registering those points accurately is still considered challenging. A second lim-
itation common to most appearance models (e.g. Active Appearance Models)
is that they are monomodal, i.e. they rely on the hypothesis that the proba-
bility density function is well described by a single Gaussian distribution. This
hypothesis is often violated by the presence of pathologies but also by the fact
that shape is not necessarily correlated with appearance (see for instance livers
of Fig. 2 where top regions corresponding to the lungs vary in size). Instead of
having one mode with large covariance, it is preferable for image segmentation
or image detection purposes to have several modes with lower covariance.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 1051–1058, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we describe how to build a Multimodal Prior Appearance Model
from a training set of P meshes. Intensity profile classes are estimated for each
mesh and not for each point (i.e. without the need for any registration). Reg-
istration between subjects is only used to estimate the posterior probabilities
on a reference mesh. Furthermore, the proposed method is fully automated and
one single threshold J controls the number of classes. Finally, we introduce new
regularization strategies of covariance matrices in the Expectation-Maximization
algorithm (EM) and the OSI index to determine the optimal number of classes.

2 Building Multimodal Prior Appearance Models

2.1 Principles

In Fig. 1, we overview our automated method to create a Multimodal Prior
Appearance Model. The input is a set of P meshes Mp corresponding to the
segmentation of the same structure in different images. The meshes may have
different number of vertices, or even different topologies. At each vertex i of
Mp, we extract M regularly sampled intensities to build an intensity profile
of dimension M along the normal direction, noted xp

i . This profile can extend
inward, outward or both sides, depending on the application. Note that inten-
sity profiles act as feature vectors that could be replaced by any other local or
global features such as isophote curvature, texture descriptors, oriented filters,
etc. Changing the feature vector would only change the regularization of the
covariance matrices (section 2.2).

For each mesh, we propose to automatically cluster the profiles using an EM
classification. The number of classes, a hyperparameter, is selected in an auto-
matic fashion through a model order selection based on a new criterion (sec-
tion 2.3). Classification is improved by performing spatial regularization of the
posterior probabilities (section 2.4). The creation of the prior is done in two
steps. First, all intensity profile classes from the P subjects are compared and
classes corresponding to the same tissues are possibly merged. Finally, all P
meshes are registered to the same reference mesh M� and a unique prior model
is created. Each vertex i of M� is given a probability γ̃m

i to belong to a reference
class m (section 2.5).

Fig. 1. Proposed pipeline for Multimodal Prior Appearance Model construction
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2.2 EM Classification of Intensity Profiles

The classification for a given mesh Mp is formulated in the context of a proba-
bility density estimation using Gaussian Mixture Models. The approach is semi-
parametric because the number of classes Kp is an unknown parameter. In the
remainder, intensity profile class is denoted by mode and we write μp

k, Σp
k, πp

k

and pγk
i for the mean, covariance matrix, mixing coefficient and posterior prob-

abilities of class k from mesh Mp.

Initialization. EM is initialized with the Fuzzy C-Means algorithm (FCM).
After convergence, FCM cluster centers and data membership values are used to
initialize the EM mode means μp

k, posterior probabilities pγk
i , mixing coefficients

πp
k and covariance matrices Σp

k. FCM are themselves initialized with random
cluster centers.

Coping with Missing Data. Since segmented structures may be close to the
image boundaries, profiles are likely to be incomplete. In order to use those
incomplete profiles in the classification, a valid dimension range Mi ≤ M is
determined for each profile i. In the E-step, the term exp((xp

i )T (Σp
k)−1(xp

i )) is
only computed for the valid dimension range and multiplied by M/Mi. In the
M-step, the mode means and covariance matrices are normalized by the total
number of valid values for each index u of the profile (1 ≤ u ≤ M). FCM have
also been extended in similar fashion to cope with incomplete data.

Covariance Matrix Regularization. The EM log-likelihood maximization
may lead to local maxima or degeneracy. For profiles of dimension M (typi-
cally M ≈ 10), degeneracy of covariance matrices Σp

k may occur due to the
coarse sampling (typically N ≈ 4000) of this high dimensional space. We pro-
pose 3 distinct methods to regularize Σp

k based on a regularization parameter
h (0 ≤ h ≤ 1). The first one is based on Spectral Regularization. The covari-
ance matrix is diagonalized Σp

k = PΛPT and the h lowest eigenvalues are set
to 1% of the highest eigenvalue, thus leading to a new diagonal matrix Λ̂h.
The inverse is then computed as h(Σp

k)−1 = PΛ̂−1
h PT . This can be seen as

performing PCA and filtering the matrix by discarding high frequencies. In
a second approach, Diagonal Regularization, the covariance matrix is regular-
ized towards a diagonal matrix controlled by parameter h. The u, v element of
matrix hΣp

k : h(Σp
k)u,v = (1 − h)(Σp

k)u,v + h δu,v (Σp
k)u,v (δu,v is the Kro-

necker symbol). The higher h, the more diagonal dominant the covariance ma-
trix. This approach has been used in climate modeling to cope with missing

Fig. 2. EM classification of outward profiles performed on 4 livers and 2 tibias
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values [4]. The last approach, Constant Regularization, regularizes the covari-
ance matrix towards a constant matrix Id tr(Σp

k)/M controlled by parameter
h : h(Σp

k) = (1 − h) (Σp
k) + h Id tr(Σp

k)/M . With a high value of h, the co-
variance matrix converges towards a diagonal matrix with the same variance.
The choice of a covariance matrix regularization method depends on the nature
of the data. We have tested the three methods on profiles and we found that
Diagonal or Constant Regularization method with h = 0.9 leads to the most
intuitive classification results.

2.3 Model Order Selection

The objective of model order selection is to find the number of modes that best
represents the data without any under or overfitting. To this end, we propose to
estimate a criterion measuring the quality of EM classification for a given num-
ber of modes K. We then keep the number of modes Kopt that maximizes (or
minimizes) that criterion. Several criteria based on information theory have been
proposed in the literature such as the Akaike Information Criterion (AIC) and
the second-order AIC (AICc). The often preferred EM criterion is the Bayesian
Information Criterion (BIC) [5]. We also investigated FCM criteria such as clus-
ter validity indices [6] and the Fuzzy Vector Quantization [7].

In addition, we propose a new non parametric model order selection criterion
called Overlap Separation Index (OSI) inspired by Kim et al. [6]. This crite-
rion is solely based on the posterior probabilities pγk

i and penalizes the overlap
between modes while encouraging their separation. More precisely, the crite-
rion is computed as OSI = C1

C2
. The first term C1 sums the amount of overlap

2 pγs
i /(pγr

i +p γs
i ) between the best two modes r and s for profile i (i.e. modes

with the highest pγk
i ). The second term C2 is the minimum separation between

any pair of modes. The separation between pair of modes r and s is computed
as the sum of 2 pγs

i /(pγr
i +p γs

i ) for all profile i being classified to mode r and
2 pγr

i /(pγr
i +p γs

i ) for all profile i being classified to mode s.
Table 1 shows the performance of the different model order selection criteria

with varying regularization methods (spectral method has been discarded here).
The number of modes being tested varies between 2 and 10, which takes around
15 minutes for a mesh with few thousand points. For outward profiles, the ex-
pected number of modes is at least 3 (air, bones, soft tissue) while for inward
profiles 2 modes are expected (parenchyma and non-parenchyma). Based on Ta-
ble 1 and further analysis on 6 other liver meshes, we found that OSI criterion

Table 1. Selection of the optimal number of EM modes for outward and inward profiles

Outward profiles Inward profiles
Regularization h OSI FVQ AIC AICc BIC OSI FVQ AIC AICc BIC

Diagonal 0.9 4 2 3 3 2 2 2 4 4 2
Diagonal 1.0 3 2 3 3 2 2 2 4 4 2
Constant 0.9 4 2 5 5 2 2 2 6 6 2
Constant 1.0 3 2 3 3 2 2 2 5 5 2
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gave the most consistent results with a limited sensitivity to regularization meth-
ods and h parameter.

2.4 Spatial Regularization

EM does not take into account the neighborhood information of profiles. This
leads to non smooth posterior probability maps pγk

i , which impairs the fusion of
appearance regions. To account for the connectivity between profiles, we use the
Neighborhood EM algorithm (NEM) [8] since it nicely extends EM and leads to
efficient computation (compared to Markov Random Field). NEM is an alternate
optimization of the L functional :

L(pγk
i , πp

k, μp
k,Σp

k) = L(pγk
i , πp

k, μp
k,Σp

k) + β

K∑
k=1

N∑
i=1

N∑
j=1

pγk
i

pγk
j vij (1)

L(pγk
i , πp

k, μp
k,Σp

k) =
K∑

k=1

N∑
i=1

pγk
i log(πp

kG(xp
i |μp

k,Σp
k)) −

K∑
k=1

N∑
i=1

pγk
i log(pγk

i )

where G(xp
i |μp

k,Σp
k)) is the Gaussian probability density function.

The former term L leads to the classical EM [9] while the latter is a spatial
regularization term controlled by β. The neighborhood parameter vij sets the
amount of smoothing and is non-zero only if profile i is neighbor to profile j.
L functional is minimized with an alternate optimization leading to a modified
E-step where the posterior probabilities are iteratively estimated until a fixed
point value is reached [8]. In our setup, profiles are extracted from 2-simplex
meshes for which each vertex has only 3 neighbors [10]. Thus, vij has only three
non-zero values, which substantially speeds-up the computation. In practice, less
than 5 iterations are necessary to obtain stable posterior probabilities.

As neighborhood parameter vij , we choose the correlation coefficient between
neighboring profiles i and j. With this choice, the spatial regularization of pos-
terior probabilities is stronger between similar neighboring profiles, similarly to
anisotropic diffusion in image processing. This prevents the blurring of tissue
modes that would have occurred with a constant vij value.

The choice of the β parameter is an important issue and we set this parameter
automatically by using an heuristic proposed by Dang [11]. It consists in using

Fig. 3. L w.r.t β (left), liver before (middle) and after (right) NEM regularization
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NEM with increasing values of β, and then detecting the β value above which
the log-likelihood L sharply decreases (see left of Fig. 3). Indeed, too much
spatial regularization leads to a significantly worse profile classification captured
by the L functional. The proposed approach is a fully automatic way to spatially
regularize posterior probabilities.

2.5 Fusion of Modes from P Meshes

The objective of this section is to merge the modes from the profile classifica-
tion performed on P meshes into a single Multimodal Prior Appearance Model.
This is done in two steps. The first step consists in comparing and merging the
appearance regions extracted on the same structure for P different subjects.
Profiles of each mesh Mp have been classified and lead to Kp modes (Kp may
vary among meshes, e.g. due to the occurrence of pathologies). In order to have a
meaningful comparison, an intensity normalization is required (e.g. to cope with
the different nature or settings of the imaging systems). This may be done by
histogram normalization or many other approaches proposed in the literature.
With CT images, we found best not to perform any normalization.

In order to merge similar regions, we measure the similarity between any pair
of modes (μp

k,Σp
k), (μq

l ,Σ
q
l ) for p �= q by using the Jaccard index (ratio of the

intersection of two sets over their union) of the region spanned by the mean
and standard deviation μp

k ± √
σp

k where σp
k is the diagonal of the covariance

matrix (see Fig. 4). A threshold J between 0 and 1 is used to decide whether two
modes k and l are equivalent. Thus, we create a graph where nodes represent the
modes and arcs link the modes found to be equivalent. The number of connected
components of this graph is the number of independent modes K. For connected
components with only one node (i.e. without equivalence), modes are directly
included in the prior with a new index m. For connected components having
r equivalent nodes, we compute the mean of the new mode as the weighted
sum of profile means μp

r with the weight
∑p

i γr
i while covariance matrices are

recomputed. This computation leads to K independent modes (μ̃m, Σ̃m) and an
equivalence table η(p, m) establishing the new index m of mode k.

An alternative to this first step could be to perform an EM classification of all
profiles for all P subjects with model order selection to find the optimal number
of modes. This approach would lead to a more time consuming task, which would
need to be performed each time a new dataset is added. Instead, we prefer to
achieve a separate clustering of each dataset followed by a merging of all modes.
Another advantage of our approach is that it is not biased by the variation of
mesh resolution between datasets.

The second step provides a geometric embedding for the independent modes.
To this end, we register non-rigidly all P meshes Mp towards the same refer-
ence shape with a coarse-to-fine deformable surface approach where each mesh is
registered towards a binary image with globally-constrained deformations [10].
After defining a reference mesh M� on the reference shape, each posterior prob-
ability pγk

i is resampled on M� using a closest point approach. Finally, for each
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Fig. 4. Left: μp
k (solid lines) and

√
σp

k (dashed lines) of 2 modes (asterisk and square)
after EM classification of profiles (σp

k is the diagonal of Σp
k). Right: Similarity between

pairs of modes defined as the ratio of the intersection (dark gray) over the union (light
gray) of their variance surface.

vertex i of M�, we compute the posterior probability γ̃m
i by summing and nor-

malizing the posterior probabilities associated to each mode : γ̃
η(p,m)
i + = pγm

i .
In practice, this approach leads to sparse probabilities where only a few modes
have non-zero posterior probabilities (as opposed to performing an E-step based
on the mode means and covariances).

3 Results

We tested our method on 7 livers segmented from CT images and 4 tibias
(cropped at knee level) segmented from MR images (see Fig. 2). For both struc-
tures, outward profiles (10 samples extracted every mm) were generated from
meshes with ≈ 4000 vertices. As said before, EM classification using Diagonal
or Constant Regularization with h = 0.9 leads to the most intuitive results. The
optimal number of modes were estimated with the OSI criterion. NEM was
launched ≈ 10 times to find the optimal β (see left of Fig. 3). For the livers,
an initial total number of 24 modes leads to 14 new modes after the merging of
profiles with J = 0.6. With a lower J = 0.5, the number of modes goes down to

Fig. 5. Multimodal Prior Appearance Model for the livers (1) and tibias (2). For both
structures, plot of the new mode means (a) and the new classification (b).
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6, thus providing a simple way to taylor the complexity of the prior. For tibias,
an initial total number of 11 modes leads to 6 new modes with J = 0.5. For
both structures, the Multimodal Prior Appearance Model has been built from
these new modes (see Fig. 5).

4 Conclusion

We propose in this paper a method that builds a Multimodal Prior Appearance
Model from the regional clustering of intensity profiles. The main advantage of our
approach is that modes are built without requiring an accurate pointwise regis-
tration. Another advantage is that a meaningful prior may be built with very few
datasets (in fact one dataset suffices), which makes it well suited for a bootstrap-
ping strategy. Furthermore, the prior is multimodal therefore able to cope with
large variation of appearances including pathologies. We have also introduced the
OSI index and included spatial anisotropic regularization of EM classification.
Future work will focus on the use of this prior in image segmentation.

Acknowledgments. This work is supported by the EU Marie Curie project
3D Anatomical Human (MRTN-CT-2006-035763).
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3D Medical Image Segmentation by
Multiple-Surface Active Volume Models

Tian Shen and Xiaolei Huang
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Abstract. In this paper, we propose Multiple-Surface Active Volume
Models (MSAVM) to extract 3D objects from volumetric medical images.
Being able to incorporate spatial constraints among multiple objects,
MSAVM is more robust and accurate than the original Active Volume
Models [1]. The main novelty in MSAVM is that it has two surface-
distance based functions to adaptively adjust the weights of contribution
from the image-based region information and from spatial constraints
among multiple interacting surfaces. These two functions help MSAVM
not only overcome local minima but also avoid leakage. Because of the
implicit representation of AVM, the spatial information can be calculated
based on the model’s signed distance transform map with very low extra
computational cost. The MSAVM thus has the efficiency of the original
3D AVM but produces more accurate results. 3D segmentation results,
validation and comparison are presented for experiments on volumetric
medical images.

1 Introduction

Object boundary extraction is an important task in medical image analysis. A
large variety of 2D algorithms have been proposed over the last few decades. 3D
volumetric medical images are usually analyzed as a sequence of 2D image slices
[2] due to concerns over the exponential increase in computational cost in 3D.

PDE-based segmentation methods became popular after Kass et al. proposed
the Snakes [3]. Because local image gradient constraints in Snakes make the
model sensitive to initialization and noise, Xu et al. proposed Gradient Vector
Flow(GVF) [4], which increases the attraction range of the original Snakes. Re-
gion analysis strategies [2] have also been incorporated in PDE-based models
to improve robustness to noise. Another class of deformable models is level set
based geometric models [5]. This approach evolves the model based on the the-
ory of curve evolution, with speed function specifically designed to incorporate
image gradient information. Because level set models are topologically free and
can be easily used in any dimension, they are widely used in tubular structure
and 3D cortex segmentation tasks.

In noisy medical images, statistical modeling approaches such as ASM [6] and
AAM [7] are adopted by adding constraints learned offline. Integrating high-level
prior knowledge, these models deform in ways constrained by the training data
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c© Springer-Verlag Berlin Heidelberg 2009



1060 T. Shen and X. Huang

and thus are often more robust in image interpretation. However, training data
collection and landmark annotation are laborious in building statistical models,
especially in 3D.

In many medical image applications, we are interested in extracting bound-
aries of several surfaces that are coupled in such a way that their relative po-
sitions are known and the distances between them are within a specific range.
Clearly, integrating this high-level spatial constraint into the segmentation model
will further improve accuracy and robustness. A 2D method [8] segments left ven-
tricular Epi- and Endocardial borders using coupled active contours but needs
a precise manual initialization. In 3D, Zeng et al. [9] incorporated spatial con-
straints about gray matter and white matter into the level set framework which
greatly improved cortex segmentation accuracy. In [10], a graph-theoretic ap-
proach detects multiple interacting surfaces by transforming the problem into
computing a minimum s-t cut. Deformation of multiple surfaces in [11] has in-
tersurface proximity constraints which allow each surface to guide other surfaces
into place. All of the three 3D methods [9,10,11] require manually specifying the
expected thickness between surfaces as model-based constraint.

Active volume models (AVM) were recently proposed [1] to segment 3D ob-
jects directly from volumetric medical image dataset. Compared with active con-
tours and ASM/AAM, the AVM is a “self-contained” generative object model
that does not require off-line training. In this paper, we propose the Multiple-
Surface AVMs to segment coupled medical objects simultaneously. Instead of set-
ting up a fixed distance constraint during initialization, multiple-surface AVMs
dynamically update the distance constraint between the interacting surfaces
based on current model surfaces’ spatial inter-relations. Integrating the distance
constraint strategy with other energy terms based on image gradient and region
information, 3D MSAVMs are more robust to initial positions and yield more
accurate segmentation results.

2 Methodology

2.1 Review of 3D AVM and Boundary Prediction Module

An AVM is a deformable solid that minimizes internal and external energy. The
internal constraint ensures the model has smooth boundary surface. The ex-
ternal constraints come from image data, prior, and/or user-defined features.
Different from most of deformable models, one of the novel features of AVM is
its unsupervised adaptive object boundary prediction scheme. The model alter-
nates between two operations: deform according to the current object bound-
ary prediction, and predict according to current appearance statistics of the
model. Next we introduce the 3D AVM model representation and its boundary
prediction module.

3D AVM [1] adopts a polyhedron mesh as the model representation which
places vertices regularly on the model. More specifically, a 3D AVM is considered
as an elastic solid and defined as a finite element triangulation Λ, which can be
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tetrahedron, octahedron or icosahedron. Using the finite element method (FEM),
the internal energy function can be written compactly as:

Eint =
1
2

∫
Λ

(Bv)T D(Bv)dΛ (1)

where B is the differential operator for the model vertices v and D is the stress
matrix (or constitutive matrix).

External constraints from any sources can be accounted by probabilistic in-
tegration. Suppose we have n independent constraints from image information.
Each constraint corresponds to a probabilistic boundary prediction module, and
it generates a confidence-rated probability map to indicate the likelihood of a
pixel being +1 (object class), or -1 (non object class). The feature used in the kth
constraint is fk, L(x) denotes the label of a pixel x. AVM combines the multiple
independent modules and applies the Bayes rule to evaluate the final confidence
rate:

Pr(L(x)|f1, f2, ..., fn) = (Pr(f1, f2, ..., fn|L(x))Pr(L(x))/(Pr(f1 , f2, ..., fn))
∝ Pr(f1|L(x))Pr(f2|L(x))...P r(fn|L(x))Pr(L(x))

(2)
For each independent module, the probability Pr(fk|L(x)) is estimated based

on the AVM’s current statistics about feature fk as well as the overall feature
statistics in the image [1]. Once the posterior probabilities Pr(L(x)|f1, f2, ..., fn)
are estimated, we apply the Bayesian decision rule to obtain a binary map PB

whose foreground represents the Region of Interest(ROI). That is, PB(x) = 1
(object pixel) if Pr(L(x) = +1|f1, f2, ..., fn) ≥ Pr(L(x) = −1|f1, f2, ..., fn), ,
and PB(x) = 0 otherwise. Let signed distance transform of the ROI shape be
ΦR. Combining ΦR and ΦM , a region-based external energy term is defined as:

ER =
∫

Λ

ER(v)dΛ =
∫

Λ

ΦM (v)ΦR(v)dΛ (3)

The multiplicative term provides two-way balloon forces that deform the model
toward the predicted ROI boundary.

The external energy of AVM also consists of a gradient term Eg = −|∇I|2.
Putting together internal and external energy terms, the overall energy function
for AVM is defined as:

E = Eint + Eext = Eint + (Eg + kreg · ER) (4)

where kreg is a constant that balances the contributions of the gradient term
and the region term.

2.2 Multiple-Surface Active Volume Models

Due to limitations in medical imaging techniques, in some regions of an image,
there may not be enough information (e.g. contrast) that can be derived from the
image to clearly distinguish an object boundary or surface. Therefore, a single



1062 T. Shen and X. Huang

surface based deformable model may stop at local minima or leak to converge to
an outer boundary. When spatial constraints between multiple surfaces are avail-
able, such information can help deform all interacting surfaces simultaneously
with better accuracy, in a multiple surface based model framework.

The Multiple-Surface AVM we propose is initialized as several AVMs inside
an outer AVM. Let i, j be the surface indices, the mean Euclidean distance value
of the ith surface, Mi, from other surfaces is defined as:

disti =

∫
Λ distvdΛ∫

Λ
dΛ

, where distv = {d|d = min(|ΦMj (v)|), ∀j, j �= i} (5)

ΦMj is the signed distance transform of the jth surface, Mj .
To deform the multiple surfaces simultaneously with adaptive spatial con-

straints, we construct two distance-related Gaussian Mixtures (GM) functions
to modulate the external force at each vertex. For a vertex v on the ith surface,
its minimum distance value to all other surfaces distv can be calculated based
on Eq. (5). Then the GM distance functions at this vertex are defined in Eq. 6
and illustrated in Figure 1.

gD(distv) = (1 + α) − e−(distv−disti)2/2σ2
1 − αe−(distv−disti)2/2σ2

2

gR(distv) = e−(distv−disti)2/2σ2
1 + αe−(distv−disti)2/2σ2

2
(6)

where α ∈ (0, 1) is the GM weighting parameter, σ1 and σ2 (σ1 < σ2) are the
standard deviations of the two Gaussians.

Then the overall energy function of MSAVM is defined as:

E = Eint +
∫

Λ

(Eg(v) + gR(distv) · ER(v) + gD(distv) · Edistv ) (7)

where Edistv = distv is the energy term enforcing the distance constraint.
According to gR(distv) and gD(distv) (Fig. 1(a-b)), if distv is close to the

surface’s mean distance (from other surfaces), disti, then the region term ER(v)
makes more contribution toward the surface’s local deformation near v; con-
versely, if distv is far away from disti, which means the local surface near the
vertex may be stuck at local minima or have a leakage, the distance constraint,
Edistv , is given more power to deform the surface and guide it into place.

Different from the distance constraint function in [9], which only works well in
the case of brain segmentation since the cortical layer has a nearly constant thick-
ness, MSAVM adopts the above gR(dist) and gD(dist) functions to adaptively
balance the contributions of region term and spatial constraint term. MSAVM
thus has broader applications. It not only can be used for brain segmentation,
but also has very good performance in extracting ventricles from heart and lungs
from the thorax even though distances between these coupled ventricular surfaces
vary greatly. Figure 1c and 1d show two segmentation results by distance-color
(DC) mapping the spatial distance information into color space.

Instead of setting the spatial constraint manually or empirically, we update
dist based on the spatial relationship among current model surfaces. After get-
ting dist, we shift gR(dist) and gD(dist) functions accordingly to make sure
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dist dist
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(dist)

dist dist
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(dist)

(a) (b) (c) (d) (e)

Fig. 1. (a)(b) Functions to balance the contributions of region term and spatial con-
straint term, (c)DC mapping of brain gray matter segmentation; the range for distance
between Gray and white matters is 2∼15 voxels, (d)DC mapping of heart segmentation;
the distance range is 2∼25 voxels, (e)the color bar used to map the spatial information.

the new dist still corresponds to the extrema of these functions. This unsu-
pervised learning strategy, both for multiple surface spatial constraint and for
region appearance statistics, allows MSAVM to have flexible initialization and
fast convergence.

2.3 The Model’s Deformation

Minimization of the MSAVM’s energy function can be achieved by solving several
independent linear systems. For the ith surface,

A3D · Vi = LVi ; (8)

where A3D is the stiffness matrix derived from Eq. 1. Vi is the vector of vertices
on the ith surface. LVi is the corresponding external force vector. Using the finite
differences method [12], we adopt the following steps to deform the MSAVM to
match the desired object surfaces.

1. Initialize the MSAVM, stiffness matrix A3D and dist for each surface.
2. For each surface, compute ΦM based on the current model; predict R and

compute ΦR; and update dist based on Eq. (5) and shift gR(distv) and
gD(distv) according to dist.

3. Deform MSAVM according to Eq. 8.
4. Adaptively decrease the degree of surface stiffness/smoothness.
5. Repeat steps 2-4 until convergence.

3 Experimental Results

We applied MSAVM to segmenting various organ surfaces in volumetric medical
images. First, we put the model into a thorax CT stack to segment the lungs.
The model was initialized as one outer ellipsoid around the thorax and two inside
ellipsoids whose long axes are perpendicular to the axial image plane. Figure 2
shows the 3D DC mapping images during deformation. A 2D coronal projection
view is also included in 2f to show the initial model and converged result.
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(1)

(2)

(a) (b) (c) (d) (e) (f)

Fig. 2. DC mapping of lung surfaces segmentation using MSAVM, the distance range
is 3-45 voxels. (1)(a)-(e)deformation progress of inner surfaces, (2)(a)-(e)outer surface;
(a)Initial model after (b)3, (c)9, (d)21, (e)26(converged result) iterations; (1)(f)initial
model in a 2D slice, (2)(f)converged result in a 2D slice.

Then we experimented with the model on segmenting heart surfaces in a
cardiac CT stack. The MSAVM model is initialized as three ellipsoids: one for
epicardial surface of the myocardium, one for endocardial surface of the left
ventrile, and a third one for endocardial surface of the right ventricle. Some
boundary condition is also specified so that the model does not deform beyond
the top and bottom slices. Figure 3 and Figure 4 show the deformation steps of
the heart from two 3D viewpoints. 2D sagittal and coronal projection views are
also provided in Figure 3f and Figure 4f. Due to intensity inhomogeneity caused
by papillary muscles inside the left ventricle, it would be difficult for a single
surface deformable model to reach the desired boundary without supervised
learning priors. However, deforming according to the on-line predicted object
boundary with spatial constraints, MSAVM can overcome the inhomogeneity
problem and extract accurately the multiple cardiac surfaces.

Table 1 shows the running times and quantitative evaluation of sensitivity
(P), specificity (Q) and dice similarity coefficient (DSC) on a PC worksta-
tion with Intel Duo Core 3GHz E6850 processor. Compared with the 3D AVM

(1)

(2)

(a) (b) (c) (d) (e) (f)

Fig. 3. DC mapping of heart segmentation using MSAVM viewed from the right,
the distance range is 2-25 voxels, (1)(a)-(e)deformation progress of inner surfaces,
(2)(a)-(e)DC mapping for outer surface; (a)Initial model after (b)3, (c)9, (d)21,
(e)27(converged result) iterations; (1)(f)initial model in a 2D slice, (2)(f)converged
result in a 2D slice
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(1)

(2)

(a) (b) (c) (d) (e) (f)

Fig. 4. DC mapping of heart segmentation using MSAVM viewed from the left, the
distance range is 2-25 voxels, (1)(a)-(e)deformation progress of inner surfaces, (2)(a)-
(e)outer surface; (a)Initial model after (b)3, (c)9, (d)21, (e)27(converged result) itera-
tions; (1)(f)initial model in a 2D slice, (2)(f)converged result in a 2D slice

Table 1. Quantitative evaluation and performance comparison

MSAVM 3D AVM
P Q DSC Iterations Time P Q DSC Iterations Time

Lung in Fig. 2 95.5 99.8 96.2 26 870s 92.3 99.8 94.6 33 1000s
Heart in Fig. 3 92.0 99.0 92.2 27 1535s 90.7 98.9 91.1 39 2023s

without spatial constraint, MSAVM improved segmentation results in all the
cases. Even though MSAVM needs extra time to calculate the spatial distances
among surfaces, it has faster convergence so MSAVM is actually faster than 3D
AVM.

To demonstrate the MSAVM more clearly, we put a set of 2D axial projection
slices from a case of 3D heart segmentation in Figure 5, and compare them with
the converged result of original 3D AVM using the same initialization in Figure
5f. Due to intensity inhomogeneity inside the inner surfaces and obscure bound-
ary of the outer surface, original 3D AVM either leaks to the outer-most (e.g.
outer surface) or stops at local minima (e.g. left ventricle). However, deforming
under the spatial constraints, MSAVM can avoid such leakage and overcome the
local minima to find the desired object boundary.

(a) (b) (c) (d) (e) (f)

Fig. 5. Heart segmentation progress in a 2D slice projection. (a)Initial MSAVM, af-
ter (b)9, (c)15, (d)21, (e)29(converged result) iterations, (f)converged result of three
separate AVMs after 36 iterations.
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4 Discussions and Conclusion

In this paper, we proposed Multiple-Surface Active Volume Models to segment
3D objects in volumetric medical images. Combining high-level spatial informa-
tion with predicted ROI region, MSAVM achieves better performance than the
original 3D AVM. Because of the implicit representation of AVM, the spatial
distance constraints can be obtained with very low extra computational cost. In
fact, MSAVM reduces the running time when compared to AVM. Due to the
local smoothness of simplex-mesh, it is still hard for the model to reach some
tip locations (e.g., top-right tip of the right ventricle in figure 5). As future work
we plan to address this problem by reparameterizing the model near tips since
vertices in these areas tend to be sparser than those distributed on the main
body.
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Abstract. Our main focus is the registration and visualization of a
pre-built 3D model from preoperative images to the camera view of a
minimally invasive surgery (MIS). Accurate estimation of soft-tissue de-
formations is key to the success of such a registration. This paper
proposes an explicit statistical model to represent global non-rigid defor-
mations. The deformation model built from a reference object is cloned
to a target object to guide the registration of the pre-built model, which
completes the deformed target object when only a part of the object is
naturally visible in the camera view. The registered target model is then
used to estimate deformations of its substructures. Our method requires
a small number of landmarks to be reconstructed from the camera view.
The registration is driven by a small set of parameters, making it suitable
for real-time visualization.

1 Introduction

The distinct advantage of minimally invasive surgery (MIS) is that it induces
less trauma to patients. Preoperative images reveal important substructures of
target objects, which are unfortunately not visible under a laparoscopic camera
view. Incorporating preoperative images into MIS is thus focused by many re-
searchers. Among different approaches, reconstructing 3D points from a camera
video sequence and registering a pre-built 3D model to the reconstructed 3D
points has the strength of converting the 3D-to-2D registration to a 3D-to-3D
registration.

Devernay et al. proposed a 5 step method for augmented reality of cardiac
MIS [1]. [2] uses stereo images to reconstruct dense depth cues of surgical scenes.
[3] fused stereo depth cues with monocular depth cues based on surface shading.
Stereo based methods in general require repeatable tracking of a large number of
feature points in order to reconstruct a dense set of surface points. Structure from
motion (SFM) method is also adapted to MIS, and Hu et al. used a Competitive

� We thank the Medical Image Display & Analysis Group (MIDAG) at UNC-Chapel
Hill for providing the kidney data and source codes. This work was done with support
from U.S. Army grant W81XWH-06-1-0761.
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Evolutionary Agent-based (CEA) method to deal with the missing data problem
in SFM [4].

Statistical models of deformations and motions have also been proposed. In
[5], a statistical deformation model is built from simulated finite element model
(FEM) deformations of the prostate. However, proper tissue property parameters
are difficult to determine for FEM simulations. [6] explicitly included material
properties in their FEM simulations and built a statistical motion model to guide
the deformation estimation of the prostate. [7] proposed an explicit 1D motion
model to represent and compensate the motion of the mitral valve annulus.

Our driving clinical applications are laparoscopic cryoablation and laparo-
scopic partial nephrectomy on small renal tumors. 3D visualization of a kidney
and its tumor is expected to increase the positioning accuracy of the tumor.
Furthermore, surgical plans based on the same preoperative scans, from which
the 3D model is built, can be visualized in real time to improve the precision of
needle insertion for cryoablation or of incision site and depth for partial nephrec-
tomy. The challenge is that there are always non-rigid intra-object deformations
between the kidney in the CT scans and the kidney during an MIS. This paper
proposes an explicit global deformation model, which is statistically built from
a reference object and its deformed shapes. Furthermore, training data to learn
a deformation model is sometimes difficult to acquire. Therefore, we propose to
clone a learned deformation model to a new target object to guide the regis-
tration of the target object into the camera view, based on a small number of
landmarks reconstructed from a camera video sequence.

Next section details our proposed method by its main steps. Section 3 de-
scribes the evaluation of the proposed method and shows the results. Section 4
concludes the paper with discussions.

2 Method

Our method takes a 5-step process shown as follows and detailed in the following
subsections.

1. Build a statistical deformation model from a reference object and its de-
formed shapes;

2. Build a 3D model of a target object from the pre-operative computed-
tomography (CT) scans;

3. Capture a video sequence of the exposed target object with a calibrated
laparoscopic camera, and reconstruct 3D landmarks of the target object
using the SFM method;

4. Clone the statistical deformation model to the target object model to register
the target model to the reconstructed 3D landmarks;

5. Apply the deformation of the registered target object to its substructures.

2.1 A Statistical Deformation Model

The discrete m-rep [8] is chosen as the shape model because of its unique property
of modeling and parameterizing both the surface and the interior volume of
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an object. A discrete m-rep M consists of a quad-mesh of nM medial atoms
{mi, i = 1, 2, ..., nM}. Each internal atom mi has a hub position pi, two spokes
S+1,−1

i with a radius ri and direction U+1,−1
i . Atoms at the edge of the quad-

mesh are treated differently. For simplicity, all medial atoms are considered the
same in this paper.

To learn a statistical deformation model based on m-reps, a series of deformed
shapes of a reference object are captured either by a set of CT scans or by a
series 3D reconstructed meshes. This paper uses the latter. An m-rep is fitted to
each mesh to form a training set of m-reps. Principal geodesic analysis (PGA) [9]
is applied to the training set of m-reps to form a statistical deformation model,
given as a Frechét mean M, the first nPGA principal geodesic directions vj , j =
1, 2, ..., nPGA, representing more than 95% of the total deformation variations,
and the corresponding variances λj of the principal geodesic directions.

Now given a set of principal geodesic components cj ∈ R, j = 1, 2, ..., nPGA,
a deformed reference object MPGA can be reconstructed from M and a tangent
vector

∑nP GA

j=1 cjvj via the exponential map [9]. The deformation between MPGA

and M can be represented by the residue between the two m-reps [10], which is
defined as the set of residues between all corresponding atom pairs (mPGA,i,mi).

Each medial atom is an element of a Riemannian symmetric space G = R
3 ×

R
+ × S2 × S2. The following operator defines the difference between a pair of

atoms (mPGA,i,mi):

mPGA,i � mi = (pPGA,i − pi,
rPGA,i

ri
,RS+1

PGA,i
(S

+1
i ),RS−1

PGA,i
(S

−1
i )) (1)

where for any w = (w1, w2, w3) ∈ S2, Rw ∈ SO(3) is the rotation around the
axis passing the origin (0, 0, 0) and (w2,−w1, 0) with the rotation angle being
the geodesic distance between a chosen point p0 = (0, 0, 1) and w on the unit
sphere. Let Δmi = mPGA,i � mi. Δmi is also an element of G, and it is called
the residue of mPGA,i to mi, which records the deformation of mPGA,i relative
to mi’s coordinates.

The residue, i.e., the deformation, between a pair of atoms can then be cloned
to a new atom via an operator ⊕:

mi ⊕ Δmi = (pi + Δpi, riΔ̇ri,R−1
S+1

i

(ΔS+1
i ),R−1

S−1
i

(ΔS−1
i )) (2)

where R−1
w ∈ SO(3) is the inverse rotation of Rw.

Based on operators � and ⊕, the residue ΔM between two m-reps MPGA

and M and the deformation cloning of ΔM to a target m-rep Mt are defined as
follows:

ΔM = MPGA � M = {Δmi, i = 1, 2, ..., nM}, (3)
Mdeformed,t = Mt ⊕ ΔM = {mt,i ⊕ Δmi, i = 1, 2, ..., nM}. (4)

ΔM is the explicit statistical deformation model learned from the reference
object, which is a function of the principal geodesic components {cj}.
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2.2 A Pre-built 3D Model for the Target Object

The 3D m-rep model Mt is built from a manual segmentation of pre-operative
CT scans of the target object by experts, and an m-rep is fitted into the seg-
mentation using the binary fitting method described in [11]. An automatic
segmentation tool will be highly desirable for this step.

2.3 Reconstruction of 3D Landmarks

Using the structure from motion (SFM) method, a dense set of object surface
points Lall = {lk, k = 1, 2, ..., NLall

} are reconstructed from a laparoscopic video
sequence of the target object. A small subset of Lall are identified as a set of 6 to
9 anatomical landmarks L = {lk, k = 1, 2, ..., nL}. At the same time, an initial
correspondence is established between the set of landmarks L and a set of surface
points on the m-rep Mt. This correspondence will, however, be automatically
updated in the registration step whenever necessary, via the iterative closest
point (ICP) method [12].

In order to get a robust reconstruction of the landmarks, fiducial markers can
be used because of the small size of the landmark set. Although this step is not
the main focus of this paper, the accuracy of the 3D reconstruction is crucial to
the consequent steps. The effect of reconstruction errors on the registration step
are evaluated in section 3.

2.4 Model Registration via Deformation Cloning

By cloning ΔM to a target m-rep Mt, we transfer the deformation learned from
the reference object to the target object. As a result, we have a specific deforma-
tion model for the target object. An alignment step is required to properly clone
a deformation to the target object. The alignment is described first, followed by
a full description of the registration step.

Alignment step: in order to properly apply a deformation residue ΔM({cj})
to Mt, Mt must be aligned to the mean reference object M via a similar-
ity transformation Tsim = {psim ∈ R

3, rsim ∈ R
+,Rsim ∈ SO(3)}: Tsim =

argminT dis2
geodesic(T(Mt),M), where dis2

geodesic(M1,M2) is the squared
geodesic distance between two m-reps M1 and M2 [9].

Let Maligned
t = Tsim(Mt). A deformed target object with cloned deformation

ΔM is defined as Mdeformed,t = Maligned
t ⊕ ΔM

rsim
, where rsim is the scaling factor

in Tsim, and where ΔM
rsim

= {Δmi

rsim
}. Δmi

rsim
means each Δpi ∈ mi is replaced by

Δpi

rsim
because the translation component in an m-rep atom deformation is scale-

dependent, but the scaling and rotational components are scale-independent.
Mdeformed,t is then registered (fitted) to the set of reconstructed landmarks

L = {lk k = 1, 2, ..., nL}. For each lk, there is a corresponding surface point
fk on the implied surface of Mt. The fitting is implemented by minimizing an
objective function:

M′
t = arg min

Trigid,Mdeformed,t

F (Trigid(Mdeformed,t({cj, j = 1, 2, ..., nPGA}))) (5)
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where F (M′
t) has three components as F (M′

t) = t1Ffit(M′
t) + t2Fmaha(M′

t) +
(1 − t1 − t2)Fleg(M′

t), with t1, t2, and t1 + t2 ∈ (0, 1) as two tuning parameters:
Ffit = ΣnL

k=1(
dis(fk(M′

t),lk)
rmean

)2 measures the fitting quality of the model to the set
of landmarks by the Euclidean distance function dis and the geometric mean of
the radii of all medial atoms rmean; Fmaha = ΣnPGA

i=1 ( cj

λj
)2 is the squared Maha-

lanobis distance between the current m-rep M′
t and the m-rep Maligned

t with-
out deformations, penalizing big deformations of M′

t; Fleg = Σi=1nMfleg(m′
t,i),

where m′
t,i is a medial atom in M′

t, and where fleg is the illegality penalty term
defined by equation (12) in [11]. This component penalizes shape illegalities,
such as creasing or folding.

The overall algorithm is shown as follows:

1. Initialize {cj} to {0}, and calculate an initial alignment Trigid to minimize
F (Maligned

t );
2. Optimize F (M′

t) over {cj} and Trigid via the conjugate gradient method
until the objective function converges. Because of the compactness of the
deformation model, nPGA is usually smaller than 5, and the optimization
usually converges within 30-40 sub-steps;

3. If Ffit(M′
t) is bigger than an empirically set threshold ε, an iteration of ICP

is used to re-establish the correspondence between M′
t and the landmark set

L, and go back to step 2.

Step 3 is often not necessary if the initial correspondence between the small
set of reconstructed landmarks L and the target m-rep is good. For majority of
the testing cases, to be shown in next section, one iteration of the optimization
of the objective function F (M′

t) is sufficient. However, by updating an initial
correspondence that is of poor quality, the overall algorithm is more robust to
correspondence errors.

2.5 Deformation Propagation to Substructures

The target models before and after the registration are used to imply a deforma-
tion field for the interior and the adjacent exterior volume of the target object.
The deformation field is propagated to the substructure volume, voxel by voxel.
Because of the enforced legality of the deformed M′ by the component Fleg , the
volumetric legalities of both the models, before and after the registration, are
guaranteed. Therefore, the implied deformation field is guaranteed to be legal.
Next section evaluates the proposed method.

3 Result

In order to evaluate the proposed method, a set of kidney models with syn-
thetic deformations is generated. Synthetic data provide the ground truth to
better evaluate our method. Also, the impact of reconstruction errors by the
SFM method is studied. One set of in vivo data is also used to test our method.
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The rationale of using synthetic deformations is that the types of deformations
a kidney undergoes during an MIS can be well described and modeled by experi-
enced surgeons so it is a reasonable approximation to population deformations.
However, our method can be applied to dynamic CT or range data sets to learn
arguably more realistic organ deformations.

3.1 Generating Synthetic Testing Data

There are two parts of data generations:

– Generation of the statistical deformation models: 20 kidney m-reps Mkid,i,
i ∈ [1, 20] from different patients are used. A series of simulated deforma-
tions are applied to each kidney m-rep. Each kidney m-rep and its deformed
shapes are used to build a statistical deformation model ΔMkid,i({cj}) of
the reference m-rep Mkid,i. Each statistical deformation model is then used
to guide the registration of all the other 19 kidneys. In total there are 20×19
registration results. A tumor m-rep is also added to each kidney m-rep.

– Generation of video sequences for SFM reconstructions: a diffeomorphic de-
formation, independent from the deformations used to generate the statis-
tical deformation models, is applied to the m-rep implied surface meshes of
the kidney and tumor.

A kidney texture image, stitched from an in vivo video, is used as the
texture for each deformed kidney mesh Meshkid,i. Using the parameters
of a calibrated Stryker laparoscope, a series of 15 images Ii are generated
at the resolution of 640 × 480 to cover about half of each kidney surface,
assuming no deformations among these image frames. A set of 100 surface
points are randomly selected as the ground truth reconstructed surface points
Ltruth,all,i. 6 to 9 landmarks of anatomical significance are selected from each
mesh as the set Ltruth,i. Initial correspondence between Ltruth,i and the m-
rep Mi is also automatically established.

3.2 Experimental Results from Synthetic Data

Guided by the statistical deformation model learned from the reference kidney
Mi ∈ [1, 20], each m-rep Mj , j �= i was registered into its video sequence Ij to
acquire the registered m-rep M′

i,j . Each M′
j,i was compared to the ground truth

landmark points Ltruth,j to calculate the average point-to-point distance (APD),
and M′

j,i was also compared to each ground truth mesh Meshkid,j to calculate
the average surface distance (ASD) Each M′

j,i was then used to estimate and
apply propagation deformations to its tumor model. The deformed tumor model
was compared to the ground truth tumor mesh Meshtumor,j to calculate the
ASD. A deformation model and 3 testing kidney models are shown in figure 1.

All the experimentswere conductedwithdifferent levels ofGaussiannoise added
to the reconstructed surface points Lall,j : the standard deviations are 1, 3, and 5
voxels. The size of 1 voxel is approximately 0.78mm. The average experimental
results are shown in table 1. The deformation propagation errors of the tumor are
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Fig. 1. Left: 3 main modes of a deformation model: each row shows one mode from
−λ, 0, to λ; Right: 3 testing kidney m-reps, from left to right: the original target
kidney m-rep Mi (in red), the ground truth surface mesh of the kidney and tumor (in
blue) reconstructed from warped object volume, and the registered m-rep M′ with the
deformation applied to its attached tumor model

Table 1. All units are in voxels, with the size of 0.78mm, except the number of
iterations

STD Kidney Kidney Tumor Avg. Number Kidney Avg. ASD
of Noise Avg. APD Avg. ASD Avg. ASD of Iterations Without ICP

1 0.57 ± 0.88 0.75 ± 0.65 1.38 ± 0.69 1.36 ± 0.53 1.14 ± 0.78
3 2.24 ± 1.35 2.59 ± 0.95 3.25 ± 1.06 3.00 ± 0.87 3.76 ± 2.03
5 3.27 ± 1.45 3.41 ± 1.30 4.19 ± 1.41 5.81 ± 1.54 6.82 ± 3.44

bigger than the registration errors of kidneys, which is expected. As the noise level
for the reconstruction error increases, the registration errors increase too, but at
a slower pace. At a lower noise level, most registrations only require 1 iteration of
optimization. However, the ICP step is necessary to keep the registration robust as
the noise increases. The last column shows that the registration results deteriorate
rapidly without the ICP to correct a poor initial correspondence.

3.3 Results from a Set of in vivo Data

A CT scan of 1mm× 1mm× 3mm was used to build the initial m-rep model for
the target kidney. Because of the lack of enough training data, the deformation
model built from the synthetic data was used to guide the registration of the
m-rep to the video sequence. There is no ground truth surface mesh available. A
dense set of 200 surface points were reconstructed from the video sequence and
were used in the registration. The average distance between the surface points
to the implied boundary surface of the registered m-rep is 2.65mm.

4 Discussion

Our method has the advantages as follows: the registration via deformation
cloning uses a statistical deformation model learned from often very limited
training data, and the registration completes the deformed target object; only
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a small number of reconstructed landmarks are required as long as a good cor-
respondence between the landmark set and the target model is established; the
registered deformations of the target object can be used to estimate deformations
to important substructures.

We are working on live animal experiments to further validate our method.
One challenging but rewarding extension of our method is to combine and apply
multiple deformation models to a new target object.
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Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241,
pp. 737–744. Springer, Heidelberg (2008)

7. Yuen, S.G., Kesner, S.B., Vasilyev, N.V., Nido, P.J.D., Howe, R.D.: 3D ultrasound-
guided motion compensation system for beating heart mitral valve repair. In:
Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I.
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Abstract. Segmentation of medical images is commonly formulated as
a supervised learning problem, where manually labeled training data are
summarized using a parametric atlas. Summarizing the data alleviates
the computational burden at the expense of possibly losing valuable in-
formation on inter-subject variability. This paper presents a novel frame-
work for Supervised Nonparametric Image Parcellation (SNIP). SNIP
models the intensity and label images as samples of a joint distribution
estimated from the training data in a non-parametric fashion. By capi-
talizing on recently developed fast and robust pairwise image alignment
tools, SNIP employs the entire training data to segment a new image via
Expectation Maximization. The use of multiple registrations increases
robustness to occasional registration failures. We report experiments on
39 volumetric brain MRI scans with manual labels for the white matter,
cortex and subcortical structures. SNIP yields better segmentation than
state-of-the-art algorithms in multiple regions of interest.

1 Introduction

Image segmentation in medical imaging aims to partition images into various re-
gions of interest (ROIs), such as anatomical structures. Except in cases where the
ROIs are distinguishable based on intensity information alone, prior information
is typically needed in the form of manually labeled data. A common approach is
to summarize the training data with a parametric model, usually referred to as
an atlas [1,2,3,4,5]. Atlases aid segmentation by introducing a global coordinate
system that restricts the number of possible structures occurring at a particular
position and may encode the appearance of anatomical structures.

Atlas-based segmentation relies on the alignment of a new image to the atlas
coordinate frame. Conventional methods utilize off-the-shelf inter-subject regis-
tration tools as pre-processing before segmentation [6,7,3]. Because the quality
of registration can be improved with better segmentation and vice versa, several
approaches have been proposed to unify the two problems [8,4,5].

An alternative strategy is to employ the entire training data set. Such an ap-
proach can exploit recently-developed fast and accurate, pairwise nonlinear reg-
istration algorithms, e.g. [9,10]. The label fusion (propagation) method [11,12]
transfers the labels of training images to a test image after pairwise registration.

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 1075–1083, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The segmentation labels of the test image are then estimated via majority vot-
ing. This method yields improved segmentation, since errors in the registration
procedures are averaged out. A recent extension of label fusion [11] uses a subset
of the training data, consisting of the subjects most similar to the test subject.
Yet, segmentation is still performed via majority voting, where each relevant
training subject has the same weight. Isgum et al. propose an ad-hoc method
that uses local and soft weighting within the label-fusion framework [13].

In this paper, we develop a supervised nonparametric image parcellation
(SNIP) framework conceptually similar to label fusion [12] and its extensions
[11,13]. In contrast to these methods, we adopt a Bayesian approach, where seg-
mentation is inferred via the Maximum A Posteriori (MAP) principle and the joint
label and intensity image distribution is estimated in a nonparametric fashion.
The transformations between the test image and each training image are modeled
as nuisance random variables and marginalized using standard Bayesian approxi-
mations. Marginalization accounts for the uncertainty in registration, commonly
ignored in the literature (see [14,15] for notable exceptions). The resulting op-
timization is efficiently solved using Expectation Maximization. Unlike [12], the
similarity between a warped training image and test image plays an important
role: more similar training images are weighted more in segmentation.

The soft weighting of training subjects was recently used for shape regres-
sion [16], where the weights were a function of age difference between the sub-
jects. The proposed SNIP framework is also related to STAPLE [17], which fuses
multiple segmentations of a single subject. In contrast, SNIP handles multiple
subjects and accounts for inter-subject registration.

We report experiments on 39 brain MRI scans that have corresponding man-
ual labels, including the cortex, white matter, and sub-cortical structures. We
demonstrate that SNIP compares favorably to state-of-the-art segmentation al-
gorithms in multiple regions of interest.

2 Theory

Let {Ii} be N training images with corresponding label maps {Li}, i = 1, . . . , N .
We assume the label maps take discrete values that indicate the label identity
at each spatial location. Let I : Ω �→ R denote a new, previously unseen test
image defined on a discrete grid Ω ⊂ R

3. One common approach to estimate its
label map L̂ is via MAP estimation:

L̂ = argmax
L

p(L|I, {Li, Ii}) = argmax
L

p(L, I |{Li, Ii}), (1)

where p(L, I|{Li, Ii}) denotes the joint probability of the label map L and
image I given the training data. Rather than using a parametric model for
p(L, I|{Li, Ii}), we employ a non-parametric estimate:

p(L, I|{Li, Ii}) =
1
N

N∑
i=1

p(L, I|Li, Ii). (2)
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Li Ii
Φi

L I
Fig. 1. Generative model for (L, I) given the template (Li, Ii). Φi is the mapping
from the image coordinates to the template coordinates. Squares indicate non-random
parameters, while circles indicate random variables. Shaded variables are observed.

Eq. (2) can be viewed as a kernel density (Parzen window) estimate of the un-
derlying distribution, or equivalently, a mixture distribution. p(L, I|Li, Ii) is the
probability of (L, I), given that the new subject was generated from training
subject i. Let Φi : Ω �→ R

3 denote the unknown transformation that maps a
test image grid point to a location in the training image i. Fig. 1 illustrates the
generative model for p(L, I|Li, Ii), which assumes that the image I and label L
are conditionally independent if the transformation Φi is observed. This yields:

p(L, I|Li, Ii) = p(I|Li, Ii)p(L|I, Li, Ii)

= p(I|Ii)
∫

Φi

p(L|Φi, Li, Ii)p(Φi|I, Li, Ii)dΦi

≈ p(I|Ii)
∫

Φi

p(L|Φi, Li, Ii)δ(Φi − Φ∗
i )dΦi

= p(I|Ii)p(L|Φ∗
i , Li), (3)

where we used the standard mode approximation for the integral and

Φ∗
i � argmax

Φ
p(Φi|I, Li, Ii) = argmax

Φ
p(I|Φ, Ii)p(Φ), (4)

is the most likely transformation between test image I and training image Ii.
Substituting Eqs. (2) and (3) into Eq. (1) yields

L̂ = argmax
L

N∑
i=1

p(I |Ii)p(L|Φ∗
i , Li). (5)

The objective function in Eq. (5) can be viewed as a mixture distribution,
where the label likelihood terms p(L|Φ∗

i , Li) are the mixture components and
the image likelihood terms p(I|Ii) – which encode the similarity between the
test image I and training image Ii – are the mixing coefficients. This optimiza-
tion problem can be solved efficiently using Expectation Maximization (EM). In
the next section, we instantiate the model and present the corresponding EM
algorithm.
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3 Model Instantiation

In our current implementation, we assume the image likelihood is a spatially
independent Gaussian with a stationary variance σ2:

p(I |Ii, Φi) =
∏
x∈Ω

1√
2πσ2

exp
[
− 1

2σ2
(I (x) − Ii (Φi (x)))2

]
. (6)

We model the label likelihoods as a product of independent multinomials:

p(L|Li, Φi) =
∏
x∈Ω

πLi(L(x);Φi(x)), (7)

where πLi(l; Φi(x)) encodes the probability of observing label l at grid location
x ∈ Ω of the test image, given that the test image is generated by training
image i and Φi is the mapping from the coordinates of the image to those of the
training image i. We compute πLi(·; Φi(x)) by applying the transformation Φi

to the vector image πLi(·; x) where each voxel is assigned a length-L probability
vector, with one indicating the manual label, and zero elsewhere. Non-grid values
are obtained via trilinear interpolation.

Using the one-parameter subgroup of diffeomorphism, we parameterize a warp
Φ with a smooth, stationary velocity field v : R

3 �→ R
3 via an ODE [9]: ∂Φ(x,t)

∂t =
v(Φ(x, t)) and initial condition Φ(x, 0) = x. The deformation Φ(x) = exp(v)(x)
can be computed efficiently using scaling and squaring and inverted by using the
negative of the velocity field: Φ−1 = exp(−v) [18].

We impose an elastic-like regularization on the stationary velocity field:

p(Φ = exp(v)) =
1

Zλ
exp

⎡
⎣−λ

∑
y∈Ω

∑
j,k=1,2,3

(
∂2

∂x2
j

vk(x)

∣∣∣∣
x=y

)2

⎤
⎦ , (8)

where λ > 0 is the warp stiffness parameter, Zλ is a partition function that
depends only on λ, and sub-scripts denote coordinates (dimensions). A higher
warp stiffness parameter yields more rigid warps.

3.1 Efficient Pairwise Registration

To evaluate the joint probability in Eq. (3), we need to compute Φ∗
i defined in

Eq. (4). Using Eqs. (6) and (8), we can rewrite Eq. (4) as

v̂i = argmin
v

∑
y∈Ω

⎡
⎣(I(y) − Ii(exp(v)(y)))2 + 2λσ2

∑
j,k=1,2,3

(
∂2

∂x2
j

vk(x)

∣∣∣∣
x=y

)2

⎤
⎦ , (9)

where Φ∗
i = exp(v̂i). To solve Eq. (9), we use the bidirectional log-domain

Demons framework [10], which decouples the optimization of the first and sec-
ond terms by introducing an auxiliary transformation. The update warp is first
computed using the Gauss-Newton method. The regularization is achieved by
smoothing the updated warp parameters. The smoothing kernel corresponding
to Eq. (8) can be approximated with a Gaussian: K(x) ∝ exp(−α

∑
i=1,2,3 x2

i ),
where α = γ

8λσ2 and γ > 0 controls the step size of the Gauss-Newton step.
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3.2 The Image Likelihood

The image likelihood p(I|Ii) is needed to evaluate the joint probability in Eq. (3).
We expand p(I|Ii) using the generative model in Fig. 1 and approximate the
resulting integral using Laplace’s method [19]:

p(I |Ii) =
∫

Φ

p(I |Φ, Ii)p(Φ)dΦ ≈ p(I |Φ∗
i , Ii)p(Φ∗

i )
√

(2π)3|Ω|/ detH, (10)

where Φ∗
i is defined in Eq. (4) and computed in the previous section. det denotes

matrixdeterminant,H is theHessianmatrixwith entries−∂2 log[p(I|Φ,Ii)p(Φ)]
∂vj(x)∂vk(y) |Φ=Φ∗

i
,

for all x, y ∈ Ω ⊂ R
3 and j, k = {1, 2, 3}, and |Ω| is the number of voxels.

We approximate the determinant of the Hessian by ignoring the second deriva-
tive terms and interactions between neighboring voxels, cf.[15]:

detH ∝
∏
x∈Ω

det
(
∇Ii(exp(v)(x))(∇Ii(exp(v)(x)))T +

9
2
λσ2Id3×3

)
, (11)

where ∇Ii(exp(v)(x)) is the 3 × 1 gradient of the warped training image Ii and
Id3×3 is the 3 × 3 identity matrix.

3.3 Segmentation via EM

With our model instantiation, the solution of Eq. (5) cannot be found in closed
form, since a mixture of factorized distributions is not factorized. Yet, an efficient
solution to this MAP formulation can be obtained via Expectation Maximization
(EM). The derivation of the EM algorithm is straightforward. Here, we present a
summary. The E-step updates the weights associated with each training image:

m
(n)
i ∝ p(I |Ii)

∏
x∈Ω

πLi(L̂
(n−1)(x); Φ∗

i (x)), (12)

where L̂(n−1)(x) is the segmentation estimate of the test image from the previous
iteration and the weights sum to 1,

∑
i m

(n)
i = 1. The M-step updates the

segmentation estimate through the following maximization:

L̂(n)(x) = argmax
L(x)

N∑
i=1

m
(n)
i log (πLi(L(x);Φ∗

i (x))) . (13)

The M-step in Eq. (13) performs an independent optimization at each voxel x ∈
Ω. Each of these optimizations simply entails determining the mode of a length L
vector, where L is the number of labels. The EM algorithm is initialized with
m

(1)
i ∝ p(I|Ii) and iterates between Equations (13) and (12), until convergence.

4 Experiments

We validate SNIP with 39 T1-weighted brain MRI scans of dimensions 256×256×
256, 1mm isotropic. Each MRI was manually delineated by an expert anatomist
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into left and right White Matter (WM), Cerebral Cortex (CT), Lateral Ventri-
cle (LV), Hippocampus (HP), Thalamus (TH), Caudate (CA), Putamen (PU),
Pallidum (PA) and Amygdala (AM). We use volume overlap with manual labels,
as measured by the Dice score [20], to quantify segmentation quality. The Dice
score ranges from 0 to 1, with higher values indicating improved segmentation.

4.1 Setting Parameters through Training

SNIP has three independent parameters: (a) the image intensity variance σ2 in
Eq. (6), (b) the warp stiffness parameter λ in Eq. (8), and (c) the step size γ in the
registration algorithm in Section 3.1. In particular, the registration component
of SNIP is completely determined by γ and α = γ

8λσ2 , while the segmentation
component is determined by σ2 and λ.

Nine subjects were used to determine the optimal values of these parameters.
First, 20 random pairs of these nine subjects were registered for a range of values
of γ and α. Registration quality was assessed by the amount of pairwise label
overlap and used to select the optimal (γ∗, α∗) pair.

We used the optimal (γ∗, α∗) pair to register all 72 ordered pairs of the 9
training subjects. We performed nine leave-one-out segmentations using these
alignments with different pairs of σ2 and λ that satisfy the relationship λσ2 =
γ∗
8λ∗ . The pair that yielded the best segmentation results was deemed optimal
and used in validation on the remaining 30 subjects.

4.2 Benchmarks

First, we consider our implementation of the Label Fusion algorithm [12]. We
use the pairwise registrations obtained with (γ∗, α∗) to transfer the labels to the
training subject via nearest-neighbor interpolation. Segmentation is then com-
puted through majority voting at each voxel. In the second benchmark, we use
the label probability maps, where each training image voxel has a length-L vec-
tor, with one for the entry corresponding to the manual label, and zero otherwise.
Segmentation for each voxel is determined to be the label corresponding to the
mode of the label probability obtained by averaging the warped label probability
maps, computed using the pairwise registrations and trilinear interpolation. We
call this method Probabilistic Label Fusion.

4.3 Results

We report results for the 30 subjects not included in the group used for setting
the algorithm parameters γ, σ, α. For each test subject, we treat the remaining
subjects as training data. We note that the results from the two hemispheres are
very similar and report results averaged across two hemispheres.

Fig. 2 shows box-plots of Dice scores for the two benchmarks and SNIP. These
results indicate that SNIP outperforms the two benchmarks in all structures,
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Fig. 2. Boxplots of Dice scores for Label Fusion (red), Probabilistic Label Fusion
(green) and SNIP (blue). Medians are indicated by horizontal bars. Boxes indicate
the lower and upper quartiles and vertical lines extend to 1.5 inter-quartile spacing.

Table 1. Comparison with FreeSurfer [1] and FreeSurfer Atlas Renormalization [2]

HP TH CA PU PA AM
SNIP 0.81 ± 0.07 0.84 ± 0.03 0.84 ± 0.04 0.89 ± 0.03 0.83 ± 0.04 0.80 ± 0.05
FS [1] 0.79 ± 0.09 0.88 ± 0.02 0.79 ± 0.10 0.81 ± 0.07 0.71 ± 0.09 0.71 ± 0.12

FSAR [2] 0.82 ± 0.04 0.88 ± 0.02 0.84 ± 0.05 0.85 ± 0.04 0.76 ± 0.06 0.75 ± 0.07

except the thalamus. The improvement is particularly significant in the White
Matter, Cortex, Lateral Ventricle and Hippocampus. Between the two bench-
marks, the performance of Probabilistic Label Fusion is consistently higher than
that of Label Fusion. We note, however, that the results we report for SNIP are
in the same ball-park as the ones reported for Label Fusion [12], and thus higher
than what we achieve with our Label Fusion implementation. This might be due
to differences in the data and/or registration algorithm. Specifically, normalized
mutual information (NMI) was used as the registration cost function in [12].
Entropy-based measures such as NMI are known to yield more robust alignment
results. We leave a careful analysis of this issue and an extension of SNIP that
utilizes entropy-based similarity measures to future work.

Segmentation results for six subcortical structures were reported by two other
state-of-the art atlas-based segmentation methods: FreeSurfer (FS) [1] and the
FreeSurfer Atlas Renormalization (FSAR) technique [2]. Table 1 lists the average
and s.t.d. of the dice scores reported in [1,2]. These results suggest that SNIP’s
performance is better for 3 ROIs (PU, PA, AM), equivalent for two ROIs (CA,
HP) and worse for one ROI (TH).

The computational complexity of SNIP grows linearly with the number of
training subjects. With the 39 training images we tested on, the segmentation
procedure of each test subject took about 30 hours of CPU time on a modern
computer. This run-time can be significantly reduced by solving the registrations
in parallel. In comparison, Freesurfer took 10 hours and our Label Fusion im-
plementation took 24 hours. Managing large training datasets within the SNIP
framework is an important open question that we leave to future research.
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5 Conclusion

This paper presents SNIP, a novel segmentation framework that adopts a non-
parametric Bayesian approach to segmentation. By leveraging fast and robust
nonrigid registration algorithms, SNIP exploits the entire training set, rather
than a summary of it. In contrast to Label Fusion [12], similarities between
the test image and training images play a central role in the segmentation.
Our experiments indicate that SNIP promises to improve the performance of
Label Fusion and compares favorably against other state-of-the-art atlas based
segmentation methods in several regions of interest. One particularly promising
future direction is to incorporate an entropy-based similarity measure into the
computation of the image likelihood and pairwise registrations.
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Abstract. The present paper proposes a novel methodology to mon-
itor sleep apnea through thermal imaging. First, the nostril region is
segmented and it is tracked over time via a network of cooperating prob-
abilistic trackers. Then, the mean thermal signal of the nostril region,
carrying the breathing information, is analyzed through wavelet decom-
position. The experimental set included 22 subjects (12 men and 10
women). The sleep-disordered incidents were detected by both thermal
and standard polysomnographic methodologies. The high accuracy con-
firms the validity of the proposed approach, and brings non-obtrusive
clinical monitoring of sleep disorders within reach.

1 Introduction

Sleep apnea is a respiratory disorder in which the breath stops repetitively during
sleep. It can occur hundreds of times during a single night and each breath
pause takes more than ten seconds. Sleep apnea is a common disorder and its
prevalence can be as high as 30% among middle aged adults. It is associated with
the development of high blood pressure and other cardiovascular diseases, and
may lead to metabolic, organic, central nervous system, and endocrine ailments
[1]. Therefore, there is a strong need for unobtrusive breathing measurement
methods, where lengthy sleep studies with the minimum amount of discomfort
are required.

Various contact modalities have been developed to assess the likelihood of
apnea that capitalize on different aspects of the breathing phenomenon.
Polysomnography (PSG) is themost reliable diagnosticmethod for the detection of
sleep apnea syndrome. It is a multi-channel wired signal acquisition system which
typically records ECG, nasal airflow, abdominal and thoracic movements, and
blood oxygen saturation SpO2. The sensor probes and cables are uncomfortable
for a patient under monitoring. They may interfere with the usual sleep pattern of
the patient and influence the results of the test.

Human breathing consists of expiration and inspiration phases. The expired
air has higher temperature than the inspired air due to heat exchange in the
lungs and respiratory passageways [2]. This thermal nature of breath around
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the nostril area creates an opportunity for a thermal measurement. Thermal
infrared imaging is a passive contact-free modality. The sensing element itself
can be viewed as a 2D array of contact-free thermistors, and therefore has a
principle of operation similar to the nasal thermistor probe in PSG.

In this paper, we introduce a novel thermal imaging method to detect sleep
apnea in the clinical sleep lab. It is based on automatic tracking/localization of
the nasal region and wavelet analysis. The sleep apnea events were automati-
cally detected from the onset of higher energy at lower frequency wavelets. In
Section 2, we describe the tracking and localization algorithms as well as the
wavelet-based detection method. We discuss the experimental setup in Section
3.1 and present the experimental results in Section 3.2. Section 4 concludes the
paper.

2 Methodology

To measure the breathing function in thermal video we need to track the motion
of subject, localize the measurement region, and analyze the extracted signal.
We address each of these issues in detail in the following subsections.

2.1 Tracking

We chose the coalitional tracking algorithm [3] to track facial tissue during
breath measurements. It optimizes multi-tracker interaction via game theory.
The coalitional tracking method was developed to address the conflicting goals
of generality and accuracy that arise in the context of thermo-physiological mea-
surements on the face. Thermal imaging is functional imaging that depicts an
evolving physiological process. The dynamic nature of thermal imaging poses
a modeling challenge to tracking. Particle filter trackers [4] overcome this chal-
lenge because they are general and adapt well to changes. The accuracy of these
trackers peaks when the real estate they cover is neither too large nor too small.
By optimizing the behavior of a spatially distributed cluster of particle filter
trackers (coalition), one gains in accuracy without sacrificing adaptability.

We use a coalition grid composed of four particle filter trackers. The grid
outline is drawn interactively by a click and drag operation on the first frame.

Fig. 1. (a) Thermal snapshot of a subject’s face. (b) Initialization of coalitional tracker
(TROI). (c) Thermal color map.
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It encompasses comfortably the nostril region without any stricter specification.
The grid outline constitutes the Tracking Region of Interest (TROI) - see white
rectangle in Figure 1. The localization algorithm (see Section 2.2) operates within
TROI and determines more rigorously the nostril region of measurement.

2.2 Localization

The source of thermal signal is the nostrils where we select the Measurement
Region of Interest (MROI) for breathing. This region features both spatial and
temporal variances. First, the shape of the nostril region is different for different
individuals. Thermal imaging is a functional imaging modality that records the
changing image physiology. In the case of breathing, thermal imagery registers
the temperature fluctuation between the inspiration and expiration phases. This,
however, increases the segmentation difficulty, as the shape of nostrils varies
temporally due to the varying thermal signature of inspiration and expiration.

Figure 2 shows how within TROI the nostrils are separated from the rest of the
facial tissue due to colder boundaries formed by cartilage. This feature can help
to localize MROI. The contrast at the boundary of the nose is quite strong not
only in thermal imagery but also in visual imagery, for different reasons. The nose
is a distinct 3D feature in an otherwise 2D facial surface and forms strong edges
at the seams. Due to similar nose boundary properties, we can leverage some
of the work performed in the visual spectrum for thermal imaging purposes.
Specifically, Brunelli and Poggio [5] showed that the horizontal gradients are
useful in detecting the left and right visual boundaries of nose, whereas vertical
gradients can detect the nose base. Kotropoulos and Pitas [6] demonstrated
that the vertical and horizontal projection profiles of human nose are obtained
by summing-up visual pixel intensities row-wise and column-wise, respectively.
We have used elements of these approaches transplanted in the thermal infrared
domain.

Let I(x, y) be the original thermal image and EX(x, y) and EY (x, y) be
the edge images after applying the Sobel edge detectors. We perform integral

Fig. 2. Temporal variance of nostril region in thermal imagery during breathing. (a)
Inspiration phase. (b) Transition phase. (c) Expiration phase. (d) Thermal color map.
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Fig. 3. MROI based on mean nose edges and anthropometric estimates

projections on the edge images to extract the outer edges of nostrils. The vertical
and horizontal integral projections are:

Pv(x) =
ym∑

y=y1

EX(x, y), (1)

Ph(y) =
xn∑

x=x1

EY (x, y). (2)

The left- and right-most peaks of Pv(x) yield the left and right outer nostril
edges correspondingly. The maximum of Ph(y) yields the base edge.

The MROI selection varies from frame to frame. Some projections are weak
and the locations vary as well. We use a time window of 4 − 5 sec to compute
the mean vertical and horizontal projections. Such window is representative of
the full spatio-temporal evolution, as it covers both expiration and inspiration
phases.

Based on anthropometric knowledge [7], the distance between left and right
alares is about 30 mm and the distance between subnasale and columella is
about 10 mm. Therefore, we estimate the nostril’s height H as one third of its
base edge segment W , which is delineated by the left and right outer nostril
edges. Thus, we construct the MROI W × H (see Figure 3). We compute the
mean temperature within MROI in every frame. This produces a quasi-periodic
thermal signal along the timeline, which is indicative of the breathing function.

2.3 Wavelet Analysis

We perform wavelet analysis on the imaged thermal signal to detect the incidents
of sleep apnea. Wavelet is the appropriate analysis tool as breathing is a non-
stationary process.

The thermal video sampling rate fluctuates. A constant sampling rate is nec-
essary for optimal results in wavelet decomposition. We choose the re-sampling
rate of the thermal signal as 10 fps.

We normalize and perform wavelet analysis on sliding segments (windows) of
the re-sampled thermal signal. As the sliding window travels along the evolving
timeline of the re-sampled and normalized signal, we compute a series of wavelet
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energy coefficients. This renders apnea incident detection real time. The details
of each algorithmic step are as follows:

Normalization. We define as S(t), t ∈ {0, · · · , N}, the re-sampled breathing
signal. We normalize the signal amplitude as follows:

S′(t) =
S(t) − μ

σ
, (3)

where μ and σ are the mean and standard deviation of S(t) respectively. The
normalization transforms signal S(t) to S′(t) with mean μ′ = 0 and standard
deviation σ′ = 1.

Wavelet Transform. We perform Continuous Wavelet Transformation (CWT)
on the resampled and normalized thermal signal:

ΨΨ
S′(τ, s) =

1√|s|

∫
S′(t)ψ(

t − τ

s
)dt, (4)

where ψ is the ‘mother wavelet’, τ represents the translation parameter, while
s denotes the scale at which the signal is examined. We use the Mexican Hat
(MH) as the mother wavelet.

Wavelet Energy. CWT allows analysis at all scales, hence, facilitating the
extraction of the signal component of interest (i.e., breathing and apnea). We
assume that the wavelet energy at scale si corresponding to the wavelet coeffi-
cients WTi(t) is:

Pi =
∑

|WTi(t)|2. (5)

We define Pn and Po the wavelet energies of normal and obstructive breathing
respectively. In normal breathing, Pn is larger than Po. However, Po increases
at low frequency (higher scale) during sleep apnea incidents. Hence, we choose
to monitor Po for detection of sleep apnea events.

3 Experiments

3.1 Experimental Setup

The center-piece of the imaging system we used in our experiments is a FLIR
SC6000 Mid-Wave Infra-Red (MWIR) camera with an Indium Antimonite (InSb)
detector operating in the range 3−5 μm [8]. The camera has a focal plane array
(FPA) with maximum resolution of 640×512 pixels. The sensitivity is 0.025◦ C.
The camera is outfitted with a MWIR 100 mm lens f/2.3, Si : Ge, bayonet
mount from FLIR Systems [8]. The MWIR camera was calibrated with a two-
point calibration at 28◦ C and 38◦ C, which are the end points of a typical
temperature distribution on a human face.

The experiments took place in a climate controlled room according to an ap-
proved protocol by the Institutional Review Board of the University of Texas
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Health Science Center. Subjects, lying in a comfortable bed, were positioned
10 ft away from the imaging system. The subjects were fitted with standard
polysomnography (PSG) to ground-truth the imaging measurements. We
recorded approximately one-hour long thermal clips (and the corresponding PSG
signals) for each of the twenty-two subjects (twelve men, ten women). The age
range was 24 to 66 years and the Body Mass Index (BMI) 19.71 to 45.57 kg/m2.
The control group included twelve subjects who had no history of obstructive
sleep apnea. The pathological group had ten subjects with clinical diagnosis of
obstructive sleep apnea. The ground-truth apnea events were detected by clinical
specialists and reviewed by clinical doctors.

3.2 Results

The thermal signal produced in the vicinity of the nasal area is detectable when
subjects are at sleep and can be recovered in pristine form with the help of
the tracker. The interweaved inspiration and expiration phases produce periodic
breathing signals. Figure 4 depicts a breathing signal from a patient suffering
from obstructive sleep apnea. We report the presence of apnea (events) in 30 sec
epochs, following established standards for clinical diagnosis. The computerized
method features redundant epochs that overlap consecutive epochs by a half
epoch. Therefore, we can detect the apnea event in Epochi+3, in the example
shown in Figure 4. This event may be missed if only the consecutive epochs
Epochi+2 and Epochi+4 are considered.

Fig. 4. Analysis of thermal breathing signals with overlapped epochs

We compute the wavelet energy from the thermal breathing curves. Apnea
incidents are detected when Po drops at the frequency of 6 cpm. In Figure 5, the
spikes represent the epochs with apnea incidents. The wavelet energy threshold
corresponding to the chosen Po threshold is 2000 - it is computed from the
simulated signal (similar to Epochi+3 in Figure 4).

Professional sleep medicine specialists manually scored the sleep events from
PSG. Physicians certified in the specialty of Sleep Medicine reviewed scoring
of apneas and finalized the interpretation of PSG. the apnea reports. The de-
tected apnea events based on the computerized method are nearly the same as
in the clinical report. The main difference is that the scoring process has been
automated.
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Fig. 5. Energy Po for all the epochs

Table 1. Performance

Group PSG Event TP TN FP FN Accuracy Precision Recall
Control 22 19 2553 92 3 96.44 86.36 96.52
Pathological 145 132 1337 123 13 91.53 91.03 91.58
Overall 167 151 3890 215 16 94.59 90.42 94.76

We evaluated the measurement accuracy with three performance indicators:
Accuracy, precision, and recall. Table 1 compares the results of true positive
(TP), true negative (TN), false positive (FP), and false negative (FN) from both
the control and pathological groups. Overall, the doctors reported 167 apnea
events from PSG - 151 of these were detected by thermal imaging. There were
16 ‘false negative’ cases. Most inconsistencies arose from ‘false positive’. Such
faults mainly resulted from tracking failures, when the tracker was misdirected
to the background and away from the periodic effect of breathing. This resulted
in a flat signal, which resembled an apnea event. The accuracy, precision, and
recall were 94.59%, 90.42%, and 94.76%, respectively. The high performance
proves that the thermal imaging method is promising in detecting incidents of
sleep apnea. Besides the contact-free benefits, thermal imaging analysis could
also assist in automating the diagnosis of sleep apnea.

4 Discussion and Conclusion

The current mean edge localization algorithm has been designed to deal with
front views only. When the subject is on lateral posture (subject #3 and #21),
we need to manually select the MROI. A pose estimation enhancement may
fix this problem in the future. In case where both the nasal and oral areas are
blocked by the blanket no measurement is feasible. Fortunately, such incidents
happen rarely and do no last very long.

In general, the imaging method accurately recorded incidents of sleep ap-
nea concomitantly with the standard detection instrument. Where the imaging
method really shines is the highly automated and totally unobtrusive nature of
its operation and the potential for improved post-processing, following the devel-
opment of improved algorithms. By contrast, the subject needs to be outfitted
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with obtrusive sensors and cables in traditional PSG. The discomfort caused by
such a monitoring method may interfere with the sleep routine of the subject,
thus, biasing the experiment. This imaging method may be especially beneficial
in pediatric patients or in patients with facial trauma.

In this paper, for the first time we have described a new methodology based
on passive imaging to detect sleep apnea in clinical studies. The present method
can automatically localize the nasal region. After applying Wavelet Transform,
the method detects sleep apnea events based on the onset of high energy at low
frequency wavelets. The sensing system can operate as a computer peripheral,
which opens the way for home-based sleep monitoring in the future.
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Abstract. Accurate tracking of facial tissue in thermal infrared imag-
ing is challenging because it is affected not only by positional but also
physiological (functional) changes. This article presents a particle filter
tracker driven by a probabilistic template function with both spatial and
temporal smoothing components, which is capable of adapting to abrupt
positional and physiological changes. The method was tested on tracking
facial regions of subjects under varying physiological and environmental
conditions in 12 thermal clips. It demonstrated robustness and accuracy,
outperforming other strategies. This new method promises improved per-
formance in a host of biomedical applications that involve physiological
measurements on the face, like unobtrusive sleep studies.

1 Introduction

In the last few years, facial tracking in the thermal infrared spectrum received in-
creasing attention. Initially, applications in surveillance and face recognition were
the driving force, where thermal imaging has the distinct advantage of being im-
pervious to lighting conditions [1][2]. Later, physiological variables, like vital signs,
proved measurable in this modality [3][4][5][6], which gave rise to applications in
Human-Computer Interaction [7], Medicine [8], and Psychology [9]. The degree of
success of such measurements depends on a tracking method that can reliably fol-
low the tissue of interest over time. For example, in sleep studies, if the tracker mo-
mentarily loses the nasal region of interest (see Figure 1), the generated breathing
signal is far from accurate, which affects the ensuing analysis. Thus, the
specification of a facial tracker in thermal infrared needs to be quite stringent.

The proposed method uses a particle-filter tracker, which is driven by a
template-based objective function. The choice has to do with the peculiarities of
thermal imaging and the needs of the targeted applications. Model-based track-
ing [10] is not very appealing in facial thermal imaging, because the modality
images function not structure. Consequently, one is difficult to construct reliable
shape-driven models.

To give an example and drive the point home, imagine that a tracker con-
structed out of deformable models is assigned to track the nose of a subject in
thermal infrared imagery. Under normal conditions, the nose is colder than the
surrounding tissue due to convection from nasal air flow. This translates to a
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Fig. 1. (a)The initial frame with the rectangular ROI centered on the nostrils. (b) &
(d) When the tracker works well, the generated breathing signal is good. (c) When
the tracker loses the ROI, the generated breathing signal is far from accurate. (e)
Tracker-generated compared with ground-truth breathing signal.

Fig. 2. Nose (a) in
shape (b) out of
shape

characteristic thermal shape similar to the one appearing in
visual (structural) images (see Figure 2 (a)). At some point,
an irritant reaches the subject’s nostrils, there is an allergic
reaction that blocks air flow in the nostrils and breathing
continues mainly through the mouth. Because there is no air
flow convection anymore, the temperature over the nasal tis-
sue rises and the nostrils blend with the surrounding tissue
in the imagery (see Figure 2 (b)). The nose is functionally
‘gone’ and so its characteristic thermal signature. In such
cases where stochastic physiological changes affect thermal
emission, a model tracker may encounter significant diffi-

culties. Also, many of the targeted applications are in medicine and HCI. This
necessitates a computationally ‘light’ tracker for real-time performance and with
no training requirements, as the scenario variability is overwhelming.

Particle filtering is a general mechanism, free of strong modeling, which can
accommodate very efficiently the predict-update loop. Assume that the update
operation in this loop is realized through a template algorithm, capable of dealing
with changes due to motion and thermal emission. The combination can poten-
tially produce a fast, flexible, and accurate tracker, fullfiling the specifications
of the application domain.

1.1 Previous Work

The literature in particle-filter tracking and templates is vast and well-known.
This section focuses on a few representative methods that have been used as
comparative yardsticks in the experimental part. It is by no means an exhaustive
literature account.

In [11], Jepson at al. proposed a statistical appearance template, which
weighted pixels with stable behavior heavier than pixels with less stable one. Ap-
pearance modeling is a powerful template mechanism, but has two weak points:
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It does not cope well with sudden change and saturates after a long tracking
period (needs re-starting). Both are problematic in the context of thermal facial
imaging because: (a) Physiology can produce abrupt changes (e.g., perspiration)
and the head sudden moves. (b) Medical (e.g., sleep studies) or psychological
observations sometimes last hours.

In the thermal imaging domain, Dowdall et al. [12] proposed a network of
particle-filter trackers driven by a deterministic template function. Each tem-
plate pixel was updated or not, based on whether the respective difference ex-
ceeded or not a predetermined threshold. Such a Zero-One approach (i.e., either
do not or do update a pixel) could not handle well abrupt orientation and/or
physiology changes. It was also plagued by the drifting problem, due to its rigid
nature.

The present paper describes a particle filter tracking method driven by a novel
probabilistic template mechanism. This mechanism is based on the Matte algo-
rithm, which was originally developed for segmentation purposes [13]. To the
best of our knowledge, it is the first time that it is adopted for tracking pur-
poses. The strong point of Matte for the problem at hand is that is based on pixel
dependence (spatial smoothness). Indeed, there is spatial smoothness in thermo-
physiological imagery of the face. Muscular areas are relatively homogeneous and
so are vascular areas. This is in contrast to the pixel independence assumption
of appearance modeling, which is not realistic here. The authors have also in-
troduced a temporal smoothness assumption, by modifying the Matte formula
accordingly. This assumption holds true for appropriately small time windows
and reduces oscillation.

The rest of the paper is organized as follows: Section 2 describes the method-
ology. In section 3, the experimental results demonstrate the relative advantage
of the method with respect to other plausible approaches. Finally, section 4
concludes the paper.

2 Methodology

The particle filter tracker features 80 particles and performs a single iteration
per frame. It is driven by a semi-stochastic optimization method. Initially, the
method selects the most stable and unstable pixels in the ROI. These pixels
constitute the seeds for the Matte computation step. The criteria for extracting
maximally stable and unstable pixels are met, when pixel-wise intensity differ-
ences of the current frame from the template exceed predetermined thresholds.
We used λ1 = 5 and λ2 = 20 as threshold values. Sensitivity analysis proved
that the method is not very sensitive to these thresholds as far as the values do
not get very close.

To compute the Matte of the current ROI, one assumes that the intensity of
each pixel is a convex combination of a stable and an unstable map:

Ii = αiSi + (1 − αi)Ui (1)

where, Ii is the intensity of the ith pixel of the current ROI, αi is the Matte value
of the ith pixel and S, U refer to the stable and unstable maps respectively. The
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parameters on the right hand side of Eq. (1) are unknown and the goal is to solve
for αi. The composite Eq. (1) is similar to the one appearing in [13] and various
methods to solve for αi have been proposed. In the present paper, the authors
introduce a novel cost function with both spatial and temporal smoothing terms:

αi,t = argmin
a,b

∑
j∈I

(
∑
i∈ωj

(αi,t − ajIi − bj)2

+εa2
j + (αi,t − αi,t−1)2)

(2)

where, aj = 1/(Sj −Uj), bj = Uj/(Sj −Uj), ω is a small image window (usually
3 × 3), and ε is a small constant used for numerical stability.

The more unstable the pixels are, the more aggressive updating they need.
The estimated Matte values indicate the necessary degree of updating for each
pixel. More precisely, the pixel of the updated template at time t, will arise as
a weighted sum of the previous template T

(t−1)
i , which was estimated at time

t − 1, and the ROI pixel I
(t)
i from the current frame at time t; the weight αi is

being determined by the Matte value:

T
(t)
i = αiT

(t−1)
i + (1 − αi)I

(t)
i . (3)

One can deduce from Eq. (3) that for a stable seed the template value will
not change (since αi = 1), while for an unstable seed the template value will
update to the corresponding pixel in the current ROI (since αi = 0). Given the
computed Matte, the new template will not only update the unstable seeds and
reserve the stable seeds, but will also proportionally update their surrounding
pixels based on the Matte values.

3 Experimental Results

For the purpose of testing the Spatio-Temporal Matte (STM) template update
method in the context of particle filter tracking, the authors used 12 thermal
clips from 11 subjects. The clips were generated as part of a clinical study on
breathing [8] and a stress study related to lie detection [9], per the approval
of the appropriate institutional review boards; they were kindly released to the
authors. The set included clips that had at minimum ∼ 6, 500 and at maximum
∼ 49, 500 frames. The targeted facial areas included the nostrils, where vital
physiological function is resident, or the periorbital, supraorbital, or maxillary
where sympathetic activation is manifested.

The STM particle filter tracker is compared with the Zero-One particle fil-
ter tracker reported in [12] and the OAM template tracker reported in [11]. The
Zero-One method uses a deterministic objective function to drive a particle-filter
tracking loop. OAM is a probabilistic template tracker, but without spatial and
temporal smoothness assumptions. Thus, they offer complementary opportuni-
ties to compare the effectiveness of STM’s three main features: probabilistic
nature, spatial smoothness, and temporal smoothness.
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The trackers optimize three state variables, which serve as ROI descriptors.
These are (x, y) for translation and φ for rotation on the image plane. The
templates in all three trackers are formed out of normalized thermal values. All
three tracking methods achieved real-time(>25fps) performance on a PentiumIV
4-core computer, with 4G memory. The particle filter tracker of the Zero-One
method featured identical parameterization with that of STM. For every subject,
all three trackers were tasked to track a selected facial tissue (ROI) from the
exact same initial frame.

3.1 Qualitative Results

In thermal image tracking of the face, there are two major factors that affect the
tracker’s performance: Subject’s motion and physiological changes. The first one
alters the ROI location, while the second affects the spatial distribution of pixel
values within the ROI. The data set features subjects that were experiencing
small/large changes in the position and/or the physiology of the ROI. Based
on the above, the following grouping was adopted: (1) Scenario 1: Large posi-
tional and small physiological changes. (2) Senario2: Small positional and large
physiological changes. (3) Scenario 3: Large positional and large physiological
changes.

Figure 3(a) shows a case representative of the first scenario. The video clip
shows a subject that has abruptly turned his head, producing large positional
change. Large positional change should not be interpreted here as in a surveil-
lance context, where a person walks around. In a biometric or biomedical con-
text, such as this, ROI motion is caused by head rotation. Although, in world
coordinates this motion may be a few centimeters, in image plane coordinates
spans almost the length of the image plane because the face covers the entire
field of view. Even more important, the accuracy requirements are very strict, as
a positional error of just a couple of pixels may invalidate the biomedical mea-
surements. As the figure shows, STM copes well with the abrupt appearance
changes due to motion. OAM adapts to the change at frame # 7868, but fails

(a) Scenario 1. (b) Scenario 2.

Fig. 3. Tracking examples from scenarios 1 and 2
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when the subject snaps back his head at frame # 7970. The Zero-One method
cannot adapt to change and fails outright at # frame 7868.

Figure 3(b) shows a case representative of the second scenario. The subject
was under stress during a critical interview. As a result his physiology changed
dramatically after 2 min into the process. STM copes well with the thermo-
physiological change. OAM adapts to the physiological change at frame # 2859,
but saturates after a few more thousands of frames and has already stalled at
frame # 4095. The Zero-One method fails altogether.

3.2 Quantitative Results

To quantify how well each tracker performed, one needs to have the ground-
truth location of the ROI and compare the tracker’s ROI with the ground-truth
ROI through the timeline. In medical imaging, the ground-truth data are usually
obtained by manually segmenting the ROI in each frame. But with thousands
of frames in the data set, manual ground-truthing was not practical. Instead,
each of the three trackers were used to generate tracking results. The results
were examined and where each tracker appeared to have failed, it was manually
repositioned and tracking was initiated again from that point onward, to correct
the error. At the end, ground-truth trackers were formed as the means of the
individual corrected trackers.

Tracking performance correlates to the Euclidean distance and angular differ-
ence between the ground-truth ROI and the ROI that each of the three compet-
ing strategies produces. The closer these are, the better.

The 12 clips of the data set, when partitioned according to the three scenarios
given above, they provide 7, 2, and 3 clips per scenario respectively. Figure 4(a)
shows a graphical representation of the distribution of translational (Euclidean)
errors for all subjects categorized by scenario. As the plot indicates, the STM ap-
proach outperformed the other two template update strategies in all scenarios.The
OAM method has distinct difficulty with large combined positional-physiological
changes, while the Zero-One with large positional changes. Figure 4(b) shows a
graphical representation of the distribution of rotational errors for all

(a) Positional Box-Plot. (b) Rotational Box-Plot.

Fig. 4. The box-plots of the positional and rotational error distributions for all three
methods and subjects categorized by scenario
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subjects categorized by scenario. STM still outperforms the others across the spec-
trum, but the relative error magnitude increased with respect to the translational
error.

3.3 Benefit of Temporal Smoothing

To specify the beneficial effect of temporal smoothing, a simulation was run
where a thermal nasal region was translated only in the x direction, while the
y direction and angle of rotation φ were kept constant. The region featured
semi-periodic fluctuation in temperature akin to the effect of breathing. This
region was tracked first with a particle filter tracker driven by the classical Matte
formula with spatial smoothing only. Then, it was tracked with the same particle
filter tracker but driven by STM, that is, the modified Matte formula with both
spatial and temporal smoothing. The trajectory results in Figure 5 demonstrate
the fault oscillation introduced in the y and rotational dimensions by the classical
Matte method.

Fig. 5. Comparative trajectory results of Matte vs STM for controlled simulation ex-
periment

4 Conclusions

This paper presents a new probabilistic template update method that when drives
a particle filter tracker is capable of producing sophisticated tracking behavior in
thermal facial imaging. Specifically, the method can cope with both large posi-
tional and physiological changes, something that other methods from the thermal
or visual domain fail to do. The power of the method appears to stem from the
spatial and temporal smoothness components of the template that capture well
natural thermophysiological characteristics. The new approach was tested on a
data set consisting of 12 thermal clips, thousands of frames each, featuring a vari-
ety of conditions that naturally occur in practice. The method promises improved
performance in a number of biomedical applications, where unobtrusive physio-
logical measurements on the face are preferred (e.g., sleep studies).
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Nintendo Surgeons Defy Stress,” and a research contract from the Defense
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Abstract. This paper shows that adding 3D depth information to RGB
colour images improves segmentation of pigmented and non-pigmented
skin lesion. A region-based active contour segmentation approach us-
ing a statistical model based on the level-set framework is presented.
We consider what kinds of properties (e.g., colour, depth, texture) are
most discriminative. The experiments show that our proposed method
integrating chromatic and geometric information produces segmentation
results for pigmented lesions close to dermatologists and more consistent
and accurate results for non-pigmented lesions.

1 Introduction

Segmentation is the first step of computer-based skin lesion diagnosis and its im-
portance is twofold. First, the lesion boundary provides important information
for accurate diagnosis. Second, the extraction of other clinical features criti-
cally depends on the accuracy of the boundary [1]. Due to reasons such as low
contrast between the lesion and its background, artifact inference, etc., seg-
mentation is a very challenging task. In recent years, many methods have been
proposed for lesion boundary detection. Classic algorithms such as histogram
thresholding, region-growing, k-means are widely used to segment lesions into
homogeneous regions based on their intensity values. Xu et al. [2] introduced a
semi-automatric method based on thresholding. Experiment results showed an
average error that was about the same as that obtained by experts. Iyatomi
et al. [3] proposed a dermatologist-like lesion region extraction algorithm that
combined both pixel-based and region-based methods and introduced a region-
growing approach which aimed to bring the extraction results closer to those
determined by dermatologists. More recently, optimization based segmentation
methods, especially active contours, have been applied to segment lesion im-
ages and have become more popular as they can produce decent results [4,5].
Tang presented a skin cancer segmentation algorithm using a multi-directional
gradient vector flow snake [6]. The performance of their algorithm is close to
human segmentation. Yuan et al. [7] proposed a novel multi-modal skin lesion
segmentation method based on region fusion and narrow band energy graph
partitioning. Comparisons showed that their method outperformed the state of
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the art methods with a mean error rate of 12.41% for XLM (oil immersion
and cross-polarizaion mode of epiluminescence microscopy (ELM)) images and
12.28% for TLM (side-transillumination mode of ELM) images. They only used
intensity features and an extension to incorporate colour and texture features
was considered as future work. Unfortunately, most of these methods are devel-
oped for dermoscopy images and focus on pigmented melanocytic lesions (e.g.,
distinguishing melanoma from benign naevi). They are not suitable for the non-
pigmented lesions, including two other important skin cancers BCC (Basal Cell
Carcinoma) and SCC (Squamous Cell Carcinoma) for which early and correct
diagnosis is also of great importance. They are included in our work.

Fig. 1. The univariate density models of the lesion region on the green channel. The
top-left shows the corresponding lesion - a SCC with dried exudate (The lesion region
is identified with the black curve).

In this paper, we present a region-based active contour segmentation approach
and apply it to both pigmented and non-pigmented lesion data including 2D con-
ventional colour data and 3D topological (depth) data, which correlates strongly
with human visual assessment of lesion surface appearance. The skin lesion data
in this research is collected with a non-contact instantaneous dense stereopho-
tometry system (equipped with ring flash for consistent lighting and a Macbeth
colour chart), which outputs both dense 3D point cloud data and 1:1 aligned
colour images [8]. An example of the image data is shown in Fig. 1 and Fig. 2(e)

For the level-set formulation of active contour segmentation, partitioning a
given image is achieved by minimizing appropriate energy functions. Partial
differential equations are used to drive the contours, which are implicitly rep-
resented as the (zero) level line of some embedding function, to evolve in the
direction of a negative energy gradient [9]. Chan et al. proposed a region-based
segmentation model using the Mumford-Shah functional [10]. Our method is
inspired by another region-based level set segmentation using Bayesian infer-
ence [9]. It partitions the image domain by progressively fitting statistical models
to the properties in each of a set of regions. The probabilistic formulation of the
segmentation problem considers segmentation as a process of finding an optimal
partition P (Ω) of the image domain by maximizing the a posteriori probability
p(P (Ω)|I) for a given image I, integrating a regularity constraint.
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2 Method

For active contour segmentation, an initial contour is needed as a first step of
segmentation. We use a semi-automatic strategy, in which the initial contour is
drawn roughly by hand. The level-set segmentation framework is used to refine
this initial contour according to the regional information of the lesions.

For binary segmentation, the level-set formulation [9] is expressed as

E(φ) =
∫

φ∈Ω

−H(φ) log p1(f) − (1 − H(φ)) log p2(f) + ν|∇H(φ)|dφ. (1)

H(φ) denotes the heaviside step function, p1/p2 are the pdfs inside/outside the
contour. The first two terms in (1) model the areas inside and outside the contour
while the last term represents the length of the separating contour. Considering
the associated Euler-Lagrange equation for φ, the minimization of the energy
functional by a gradient descent of the embedding function φ is [11]:

∂φ

∂t
= −∂E(φ)

∂φ
= δ(φ)

(
νdiv(

∇φ

|∇φ| ) + log
p2(f(x))
p1(f(x))

)
. (2)

δ(φ) has value 1 at the lesion boundary and 0 elsewhere.
In the following, the two questions concerning the above function are ad-

dressed: 1) how to chose a probabilistic model to fit the density distribution of
properties and 2) which features or properties f(x) should be used.

2.1 Distributions

Parametric density functions p(f(x)|θ) are used to model distributions. For a
particular choice of parametric density, parameters θ modeling the distribution
depend on the associated regions and update with the evolution of the contour.

Gaussian Mixture Model Extension. Lesion regions usually do not have a
homogeneous content, especially for BCC and SCC (this is also the case for
the background normal skin region because of hairs and skin markings). Hence,
the density distribution of a property may have multiple peaks. This implies
that the commonly used single multivariate Gaussian or Poisson model might
not fit the data well. A multivariate Gaussian mixture model developed using an
expectation-maximization(EM) algorithm was the final selected representation,
shown in Fig. 1. The initial cluster parameters of components are determined by
k-means algorithm. The number of the clusters are determined by optimization
which chooses the largest average silhouette of the data (typically K = 2 to 3
for lesion region and K = 1 to 2 for skin region). The final evolution equation is

∂φ

∂t
= δ(φ)

(
νdiv(

∇φ

|∇φ| ) + log
pmixSkin(f(x)|μ1, Σ1, . . . , μK , ΣK)

pmixLesion(f(x)|μ1, Σ1, . . . , μK , ΣK)

)
. (3)

2.2 Image Properties

One central question is which properties characterize lesions and distinguish
them from the background skin?
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Colour. Colour is the most direct and critical property for dermatologists to as-
sess and diagnose skin lesions, but which colour space or colour elements should be
used? Here, the colour representation of lesions combines the results from different
channels of different colour spaces. It includes 1) the Saturation of HSV , 2) a∗ of
CIE Lab, 3) the normalized blue of RGB as lesions are often more prominent in
this channel [1] and 4) the Hue of HSV . Hence, each image position is associated
with a colour-valued feature vector, as f(x) = (Isaturation, Ia∗, Iblue, Ihue)T . As
shown in Fig. 2, the lesion area, especially the right part which is similar to sur-
rounding skin is enhanced compared with the conventional RGB representation.

Relative depth. Lesion surface appearance attributes can be grouped into two
major categories - chromatic and geometric attributes. The former has been ex-
tensively used. Little research has been done on geometric (or depth) properties
to lesion segmentation. Our stereo imaging system obtains depth information as
well as colour. We extract the relative depth Idepth between the current pixel
and a quadric surface fitted to the background [8] to account for local surface
shape, shown in Fig. 2(e). The texture of the depth data is also used.

Texture. Texture is an important property for lesion diagnosis, since it differs
among different lesion types, as well as different locations of skin (e.g., lesion and
healthy skin). We assign a local texture signature to each image location. A well
known local representation is the gradient structure tensor which has good prop-
erties for texture discrimination and is widely used to represent texture [9]. It is a
matrix of first partial derivatives. For an intensity image, the structure tensor is

expressed as J =
(

I2
x1 Ix1Ix2

Ix1Ix2 I2
x2

)
. The associated texture properties at each im-

age location can be represented as f(x) = (J1, J2, J3) =
(

I2
x1

|∇I| ,
2Ix1Ix2
|∇I| ,

I2
x2

|∇I|
)T

.

The first derivatives (Ix1 and Ix2) of an image are not rotationally invariant. To
compensate, we adopted the steerable Gaussian filter proposed in [12] to calcu-
late the directional derivative Ix1 oriented at angle α with respect to the x-axis
and Ix2 at degree α + 90o. α starts at 0o degrees and increases by 15o until
90o. The texture property at each image location is the average. Next, we sum
the tensors of the individual channels. An adaptive anisotropic diffusion method
is applied to smooth homogeneous regions while inhibiting diffusion in highly
textured regions: ∂J

∂t = div[c(|∇J |)∇J ], J(t = 0) = J0.
We adopted the diffusion conductance proposed by Perona and Malik [13] as

c(x) = exp
(
− x2

P 2

)
. c varies as a function of the texture properties. It is small

where the gradient of the property image is large, resulting in lower diffusion
near the textured locations like boundaries [14]. Two modifications are applied
to improve the performance of the diffusion filter. First, the property image is
smoothed by a Gaussian filter with parameter σ decreasing at each iterations.
Second, we compute P adaptively as a function of time - higher at beginning and
lower gradually. The time duration for the evolution of the diffusion function is
determined experimentally as 20 iterations. The diffused structure tensor images
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Colour properties of the lesion in Fig 1. (a) Saturation, (b) a∗, (c) Blue, (d)

Hue, (e) Stretched depth, (f)-(h)colour coded tensor elements I2
x1

|∇I| ,
2Ix1Ix2

|∇I| and I2
x2

|∇I| .

are given in Fig. 2 (f), (g), (h). The textural difference can be seen between the
lesion and its surrounding skin. The final property vector with colour, depth and
texture properties is

f(x) =

(
Isaturation, Ia∗, Iblue, Ihue, Idepth,

M∑
i=1

I2
ix1

|∇Ii| ,
M∑
i=1

Iix1Iix2

|∇Ii| ,
M∑
i=1

I2
ix2

|∇Ii|

)T

,

(4)
where M is the number of colour and depth images. Here, M = 5.

3 Results

To reduce the influence of artifacts like hair and intrinsic cutaneous features
(e.g., blood vessels, skin lines), image smoothing using 5 × 5 mean filtering is
applied. After segmentation, post processing included hole filling, small segment
deletion and local region growing.

The 20 test images used in our comparison are randomly selected from our le-
sion data-base, including 2 SCC, 4 ML (Melanocytic nevus), 7 BCC, 1 AK (Ac-
tinic Keratosis) and 6 SK (Seborrhoeic Keratosis). Seven of them are pigmented

Fig. 3. The 20 test images and our segmentation results
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lesions; while the other 13 are non-pigmented. These images are shown in Fig. 3
along with our segmentation results and corresponding lesion types. Manual seg-
mentations given by 8 dermatologists from the Dermatology department of Ed-
inburgh University are used for performance evaluation. A standard tumour area
(STA) is defined as the region selected by four or more dermatologists.

The standard deviation (SD) of the area of manual segmentations is calcu-
lated for each lesion image and the value is normalized by the corresponding
STA. There are big variations between dermatologists. The average SD over
our 20 test images is 20.69%. There is more variation in clinical opinion of le-
sion boundaries for non-pigmented lesions (SD = 24.09%) than pigmented ones
(SD = 9.74%).

To evaluate computer-based segmentations, we used the popular segmentation
evaluation criteria XOR measure (or Error rate) defined as:

XOR =
Area(AB

⊕
MB)

Area(AB + MB)
× 100%, (5)

where AB and MB are the binary images obtained by computer and the refer-
ence segmentation (STA), respectively.

⊕
denotes exclusive-OR and gives the

pixels for which AB and MB disagree; + means union.
Based on this quantitative metric, we performed a comparison study of our

method using different properties and the results are summarized as:

1. Our colour combination performed the best (average error rate of 11.14%)
compared to the commonly used CIE Lab colour space (11.71%).

2. Integrating colour and depth information reduces the error rate from 11.14%
to 10.74%. Similarly, the colour structure tensor results are reduced from
10.80% to 9.68% by being extended with depth as shown in Fig. 4.

Fig. 4. Segmentation comparison. The associated lesions are shown in Fig. 3. Red
◦ identifies non-pigmented lesions, black ∗ identifies pigmented lesions. Colour uses
components 1-4 of f(x), ColDepth uses 1-5, STcol uses 1-4, 6-8, STcoldepth uses 1-8.

We compared our method to both manual segmentations and a popular seg-
mentation method [10] using the Mumford-Shah functional (MS method). The
results are summarized in Table 1. The error rate of individual dermatologists
and its variation is calculated. Our method produces very close segmentation to
the dermatologists on pigmented lesions and more consistent segmentations on
most non-pigmented lesions. This improvement can be explained as the integra-
tion of depth information which cannot be visualized by dermatologists from 2D
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Table 1. Average segmentation error rates and their standard deviations

Error Rate %(XOR) Dermatologists MS [10] Our method
Overall 11.37(8.22) 15.42(8.67) 9.68(5.90)

Pigmented 6.39(3.09) 10.46(7.9) 6.8(5.08)
Non-pigmented 14.05(6.13) 18.10(8.11) 11.23(5.89)

colour images as well as complicated texture associated with depth information.
Fig. 5 shows contours obtained using different segmentation methods of several
non-pigmented lesions (e.g., case 6, where the error rate improves significantly
by integration depth and texture information, see Fig. 4).

It is hard to directly compare our approach to other algorithms because most
other algorithms are designed for 1) other input modalities (e.g., dermoscopy) and
2) only melanocytic lesions. We did evaluate the Skin Cancer Segmentation soft-
ware package [2], which is based on colour differences between the lesion and the
surrounding skin and the thresholding algorithm (here called the DT method). Of
our 20 test images, 12 failed totally, because the lesions did not have significant
pigmentation. We only compared the segmentation performance on the remaining
8. Some results are shown in Fig. 5. (We tried to obtain the best performance by
tuning of the DT method’s 6 parameters.) Over the 8 usable lesions, our method
provides a smaller average error rate ( 5.50% versus 12.46%) and for some cases,
the error rate difference is significant (7.43% versus 34.75% in Fig. 5 (a)).

(a) (b) (c)

Fig. 5. The contours (cases 1, 6, 7 in Fig. 4) obtained by the dermatologists, MS [10],
DT [2] methods and our methods based on colour (col) or colour and depth structure
tensor (STcoldepth) properties

4 Conclusion and Further Work

A region-based probabilistic segmentation formulation using a statistical model
within the level-set framework is applied to isolate lesions from their background.
A multivariate gaussian mixture model is considered to be the best way to model
the density distribution of properties. Upon comparison, we conclude that both
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depth and texture properties help to improve the segmentation result by reducing
error rate from 15.42%±8.67% to 9.68%±5.90%. Our method integrating colour,
depth and texture information produces the best results compared to those by
the MS method [10], the DT method [2] and dermatologists.

There are several potential improvements and follow-up work to be consid-
ered: 1) In addition to the structure tensor, other texture features should be
considered. 2) Better colour representation of lesion images is needed as well as
better preprocessing to reduce the influence of artifacts such as specular reflec-
tions. 3) We have not implemented weight selection between different kinds of
properties (i.e., colour, depth and texture) and just treat them equally.
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Abstract. We present a method for automatically segmenting skin le-
sions by initializing the random walker algorithm with seed points whose
properties, such as colour and texture, have been learnt via a training
set. We leverage the speed and robustness of the random walker algo-
rithm and augment it into a fully automatic method by using super-
vised statistical pattern recognition techniques. We validate our results
by comparing the resulting segmentations to the manual segmentations
of an expert over 120 cases, including 100 cases which are categorized
as difficult (i.e.: low contrast, heavily occluded, etc.). We achieve an F-
measure of 0.95 when segmenting easy cases, and an F-measure of 0.85
when segmenting difficult cases.

1 Introduction

The segmentation of skin lesions is a crucial step in the process of automati-
cally diagnosing melanoma. Inaccurate segmentations will affect all downstream
processes such as feature extraction, feature selection and even the final diag-
nosis. Accurate segmentations are especially crucial for features that measure
properties of the lesion border. Additionally, a recent study found that all com-
mercially available automated systems evaluated had difficulty segmenting when
the contrast between the lesion and skin was low[1]. We seek to improve skin
lesion segmentations by employing supervised techniques to automatically ini-
tialize the random walker (RW) algorithm[2], which has been shown useful for
interactive segmentations where boundaries are not clearly defined.

2 Previous Work

2.1 Skin Lesion Segmentation

The closest related work in skin lesion segmentation is by Celebi et. al.[3]. They
reduce a dermoscopic image to 20 distinct colour groups, and assign labels to

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 1108–1115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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pixels based on the group to which they belong. They then define a metric,
the J-value, which measures the spatial separation or isolation of each group.
The J-value is derived from the separability criterion used by Fisher in Linear
Discriminant Analysis[4]. Next, they define a localized J-value for a specific pixel
by computing the metric over a neighbourhood around the pixel. By varying the
neighbourhood size, they create several of these J-images. Multiscale methods
are used to combine the images into a final segmentation. By creating a class
map via color reduction, and employing various neighbourhood sizes they are
incorporating, on some levels, textural information into their segmentation. In
a follow-up study [5] Celebi et. al. apply their segmentation method to a set of
dermoscopic images. Images are excluded if 1) the entire lesion is not visible, 2)
the image contains too much occluding hair or 3) there is insufficient contrast
between the lesion and surrounding skin. In total, 596 images are segmented, 32
of which are deemed to be unsatisfactory.

As will be seen in section 3, our method employs two of these concepts from
[3]: the use of textural information in segmentation and the use of Fisher’s sep-
arability criterion. Our application of these concepts, however, is substantially
different.

2.2 Random Walker

The RW algorithm[2] is a general purpose, interactive, multi-label segmentation
technique where a user labels the image with ‘seed points’ which denote the
ground truth label for that pixel. Then, for an arbitrary pixel, the probability of
a random walker reaching a seed of a specific label (before reaching seeds of any
other label) is computed. However, the RW algorithm is sensitive to the exact
placement of seeds and to the number of seeds placed[6]. While the RW algorithm
is fast, intuitive and robust, it has been determined that a large number of seed
points (up to 50% of the image) is required to reproduce a segmentation with
only minor differences[6].

We have adopted the RW method described above into a novel framework, to
automatically segment skin lesions from dermoscopic images.

3 Method

In this paper we present an approach to leverage the advantages of RW for
automatic skin lesion segmentation. We initialize the RW algorithm automati-
cally with seed points generated by ‘learning’ (by means of a training set) the
difference between the properties of ‘skin lesion pixels’ and ‘healthy skin pixels’.

3.1 Supervised Probabilistic Segmentation

We begin with a set of 120 expertly segmented dermoscopic images taken from
atlases[7][8]. Each pixel is assigned either the label ‘inside’ (l1) or ‘outside’ (l2)
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based on the ground truth segmentation. In this stage we aim to learn the dif-
ference between these two groups. Images are converted to L*a*b* space, and
each channel is filtered with a set of Gaussian and Laplacian of Gaussian fil-
ters. Let m denote the number of filters employed. Pixels are then represented
as a 1 × 3m vector since each filter is applied to each of the 3 image chan-
nels. Linear Discriminant Analysis (LDA)[4] is then used to determine the linear
combination of filters that best discriminate ‘inside’ and ‘outside’ pixels. LDA is
similar to Principal Component Analysis (PCA), but where PCA is an unsuper-
vised technique that reduces dimensionality while maintaining variance, LDA is
a supervised technique that reduces dimensionality while maintaining class sep-
arability. This is achieved through an eigenvalue decomposition of an 3m × 3m
scatter matrix, which represents the separability of the classes with respect to
each filter. Since this is a 2-class problem, we consider only the principle eigen-
vector. This eigenvector results in a linear combination of the filtersets for each
image channel. Since the filterset employed is a series of low-pass (Gaussian)
and high-pass (Laplacian of Gaussian) filters, the resulting ‘eigenfilters’ can be
interpreted as either a high, low, or multiple-band-pass filters. We are therefore
not only learning the colour difference between these two groups of pixels, but
also the difference in the spatial variation of colours. This process is illustrated
in Figure 1.

Fig. 1. Learning the difference between pixels inside and outside the segmentation.
a)-d): Some filters from the filterset applied to each channel of each image. The fil-
terset consists of Gaussian filters (a,b) and Laplacian of Gaussian filters (c,d) and the
‘eigenfilters’ as a result of LDA for the L*, a* and b* channels respectively (e,f,g).

Next, the response of the pixel groups (‘inside’ and ‘outside’) along this eigen-
vector are modeled as Gaussian distributions

P (p|li) =
1

σ
√

2π
exp

(
− (x − μ)2

2σ2

)
(1)
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We create probability maps for unseen images by filtering the image with the
resulting eigenfilters from LDA, and for each pixel p, assigning it a normalized
probability that the pixel is inside the lesion

P =
P (p|l1)

P (p|l1) + P (p|l2) (2)

The creation of a probability map is illustrated in Figure 2

(a) (b) (c)

Fig. 2. The creation of a supervised probabilistic segmentation. a) The original dermo-
scopic image b) The image’s response to the ‘eigenfilter’ from Figure 1 c) The resulting
probability map by applying equation 2. Note the high response to the photodamaged
skin to the right of the lesion. This is due to the fact that this pattern (known as a
pigment network) usually occurs within lesions.

3.2 Initializing the Random Walker Algorithm

The original RW algorithm is an interactive segmentation which requires the
user to place seed points. In our proposed automatic RW approach, there is
no user interaction and the object and the background seeds are automatically
determined from the probability map generated in section 3.1. To generate seed
points, two thresholds must be determined. Let TS represent the skin threshold
and TL represent the lesion threshold. Once these thresholds are determined,
an arbitrary number of seeds can be automatically generated as long as the
thresholding constraints are satisfied. Let P (p) represent the probability a pixel
p is a part of the lesion, as determined by equation 2. A pixel is a candidate for
a background seed if P (p) < TS . Similarly, a pixel is a candidate for an object
seed if P (p) > TL.

TodetermineTS andTL,weanalyze thehistogramof theprobabilitymap (shown
in Figure 3(b),(f)). We fit a Gaussian Mixture Model to the histogram and extract
the dominant Gaussians that represent the skin and lesion[9]. Let μS and μL rep-
resent the means of the ‘skin’ and ‘lesion’ Gaussians respectively. Similarly, let σS

and σL represent the variances. Thresholds are then determined by:

TS = μS + 3σS (3)

TL = μL − 3σL (4)
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Now, let F (x) represent the cumulative histogram of the probability map. We
then define two metrics αH and βH , using the subscript H (‘histogram’) to
differentiate from the β parameter of the RW algorithm:

αH =
F (TL) − F (TS)

F (TS)
(5)

βH =
F (TL) − F (TS)
F (1) − F (TL)

(6)

Low values for both αH and βH imply an easy to segment, high contrast
image, as shown in Figure 3(a)-(d). The area shaded red in Figure 3(b) denotes
the amount of pixels for which a label cannot be determined with certainty.

If however, either αH , βH or both are above a certain threshold, then the
contrast between the lesion and skin is poor, and the segmentation is more
difficult. Empirically, this threshold has been defined as 2.0. If α is above 2.0
then we define a new skin threshold T ′

S as the median of the uncertainty range
(the range between TS and TL). Similarly, if β is above 2.0 we define T ′

L as the
median of the uncertainty range. If both α and β are above 2.0, we take the
larger value to determine which threshold to shift. This threshold adaptation
is illustrated in Figure 3(e)-(h). Initially αH and βH are computed in Figure
3(e). The amount of uncertain pixels is large (grey and red shaded are) which
is reflected in the high value βH = 7.88. Since βH > 2.00, we define T ′

L = 0.42,
which reduces the uncertain region (red) considerably.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Automatically initializing the RW algorithm. First row: A high contrast, easy
to segment image. a) The initial image. b) The histogram of the image’s probability
map as generated by section 3.1. The blue area denotes candidate seed pixels (αH =
1.27, βH = 1.74, TS = 0.10, TL = 0.85). c) Seed pixels randomly selected. d) The
resulting segmentation. Second row: A difficult low-contrast lesion with occluding hair.
The original parameters (αH = 0.77, βH = 7.88, TS = 0.18, TL = 0.97) indicate its
difficulty since, βH > 2.0. T ′

L is therefore set to 0.42 (reducing the uncertainty area to
the red shaded region).
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After determining the thresholds for the skin (TS or T ′
S) and the lesion (TL

or T ′
L) pixels, seed points can now be chosen according to these thresholding

constraints. We randomly choose 3% of pixels as seeds. Since spatial filtering
methods are inaccurate near image borders (as can be seen in Figure 2(b) we
impose an additional constraint and do not consider pixels in proximity to the
image border as seed point candidates.

After placing seeds in the areas of high certainty, RW segments the image.
RW gracefully handles the uncertain area in the probability map along the lesion
border. We initialize the RW graph edge weights using a Gaussian function of
the image intensity as Grady does[2]. The Gaussian width in this function, which
we denote as βRW , is a free parameter that determines the degree to which two
intensities are considered similar. Throughout this paper, this parameter has
been fixed at 30. Finally, after applying the RW algorithm, the segmentations
undergo morphological post-processing to fill holes and break isthmuses.

4 Results

We tested our method on a dataset of images taken from [7] and [8]. We begin
by selecting 100 images that pose a challenge to segmentation methods, and call
this imageset ‘challenging’. These represent images that are often excluded from
other studies[3]. An image is considered challenging if one or more of the following
conditions is met: 1) the contrast between the skin and lesion is low, 2) there is
significant occlusion by either oil or hair, 3) the entire lesion is not visible, 4) the
lesion contains variegated colours or 5) the lesion border is not clearly defined.
Next, we select 20 images that do not meet any of the above conditions, and
call this imageset ‘simple’. We merge these two imagesets, calling the resulting
imageset ‘whole’. Finally, we create an imageset to measure the intraobserver
agreement of our expert. We randomly select 10 images from the ‘challenging’
imageset. These images undergo a random rotation of 90, 180 or 270 degrees, and
some are randomly inverted along the X and/or Y axes. This is done to reduce
the likelihood that the dermatologist would recognize the duplicate image while
performing the segmentation task. We call this imageset ‘intra’.

Probability maps for all images are generated as described in section 3.1 using
ten-fold cross validation. Seeds are placed automatically as described in section
3.2. The results are summarized in Table 1. We also compare our results to the
Otsu thresholding method[10] and measure the intra-observer variability of the
expert. Segmentations obtained from our modified random walker algorithm, the
Otsu method and the dermatologist are denoted as ‘MRW’, ‘Otsu’ and ‘Derm’
respectively. For all comparisons we compute precision, recall, F-measure[11],
and border error[12].

As can be seen in Table 1, while the Otsu method consistently achieves a
higher precision, its recall is much worse. This implies that the Otsu method
consistently underestimates the lesion border, labeling many pixels as ‘skin’ that
ought to be labeled as ‘lesion’. When examining the more comprehensive met-
rics such as F-measure or border error, it is apparent that our modified random
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Table 1. Comparing the results of our modified random walker segmentation algorithm
(MRW) to that of Otsu’s thresholding method[10] (Otsu), and a dermatologist’s manual
segmentation which acts as ground truth (Derm). Comparisons are performed over
simple and challenging imagesets taken from [7] and [8]. See Section 4 for a description
of these imagesets.

Comparison Imageset n Precision Recall F-measure Mean BE Std BE

MRW vs. Derm simple 20 0.96 0.95 0.95 0.079 0.024
MRW vs. Derm challenging 100 0.83 0.90 0.85 0.31 0.19
MRW vs. Derm whole 120 0.87 0.92 0.88 0.24 0.18
Otsu vs. Derm simple 20 0.99 0.86 0.91 0.15 0.083
Otsu vs. Derm challenging 100 0.88 0.68 0.71 0.44 0.40
Otsu vs. Derm whole 120 0.91 0.74 0.78 0.34 0.36
Derm vs. Derm intra 10 0.95 0.91 0.93 0.085 0.036

(a) (b) (c)

(d) (e) (f)

Fig. 4. Sample segmentation results for our method (denoted in black) compared to
ground truth (denoted in green). a) A typical, easy to segment lesion. b) A lesion with
variegated colours. c) An example of the entire lesion not being visible. Also, the lesion
border is unclear in the bottom right hand side. d) A low contrast lesion. e) A lesion
occluded significantly by hair. f) A difficult case where our method fails.

walker outperforms Otsu’s method. The poorer F-measure and border error re-
sults for the Otsu method on the challenging imagest indicates its degree of
difficulty. This is also born out by the results of the intra-observer agreement of
the expert dermatologist on the ‘intra’ imageset.

Figure 4 shows sample results of the segmentations obtained from our method
(denoted in black) as well as the ground truth segmentation (denoted in green)
for a variety of lesions, including several difficult lesions.

5 Conclusion

We have developed a fully automatic method for segmenting unseen skin lesions
by leveraging knowledge extracted from expert ground truth, and the random
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walker algorithm. Our method uses colour as well as texture to perform the
segmentation and adapts itself to handle difficult, low-contrast images. Clinically,
this is the first step towards an automated skin lesion diagnosis system. Future
work will refine the method, and validate it on a larger dataset.
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Jäger, Florian II-819
Jagersand, Martin II-531
Jahanshad, Neda II-498
Jahn, Jasper I-459
Jain, Ameet K. I-59
Janka, Rolf II-819
Janowczyk, Andrew I-230
Jayender, Jagadeesan I-1
Jenkinson, Mark I-705, II-951
Jezzard, Peter II-514
Ji, Songbai I-795, II-308
Ji, Yongnan I-984
Jiang, Di I-51
Jiang, Tianzi I-911
John, Matthias I-9
Johnson, Sterling II-786
Johnsrude, Ingrid S. II-795
Joldes, Grand Roman II-300
Jolly, Marie-Pierre II-910
Joshi, Sarang I-305

Kabus, Sven I-747
Kadir, Timor I-771, II-34
Kadoury, Samuel II-92
Kagiyama, Yoshiyuki I-532
Kainmueller, Dagmar II-76
Kaiser, Hans-Jürgen I-607
Kakadiaris, Ioannis A. II-885
Kane, Gavin I-402
Kang, Jin I-108
Kao, Chris I-557
Kapusta, Livia II-927
Kauffmann, Claude I-475

Kazhdan, Michael II-100
Keil, Andreas II-389
Keller, Merlin II-450
Kellman, Peter II-741
Keriven, Renaud II-482
Kerrien, Erwan I-377
Khamene, Ali I-9, I-828, II-381
Khan, Ali R. I-713, II-549
Khudanpur, Sanjeev I-426
Kier, Christian II-935
Kikinis, Ron II-690
Kim, Kio I-289
Kim, Peter T. II-158
Kim, Sung I-43
Kindlmann, Gordon I-345
King, Martin D. II-150
Kirchberg, Klaus J. II-68
Kitasaka, Takayuki II-707
Kleemann, Markus II-356
Klein, Stefan I-369, I-853
Klinder, Tobias I-747
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Lorenz, Christine H. II-741

Lorenz, Cristian I-747
Lovat, Laurence B. I-491
Lu, Le II-715, II-1009
Lu, Yingli II-750
Lurz, Philipp I-214
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