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Abstract. This paper addresses automatic skill assessment in robotic
minimally invasive surgery. Hidden Markov models (HMMs) are devel-
oped for individual surgical gestures (or surgemes) that comprise a typi-
cal bench-top surgical training task. It is known that such HMMs can be
used to recognize and segment surgemes in previously unseen trials [I].
Here, the topology of each surgeme HMM is designed in a data-driven
manner, mixing trials from multiple surgeons with varying skill levels,
resulting in HMM states that model skill-specific sub-gestures. The se-
quence of HMM states visited while performing a surgeme are therefore
indicative of the surgeon’s skill level. This expectation is confirmed by the
average edit distance between the state-level “transcripts” of the same
surgeme performed by two surgeons with different expertise levels. Some
surgemes are further shown to be more indicative of skill than others.

1 Automatic Skill Assessment in Robotic Surgery

Robotic minimally invasive surgery (RMIS) has experienced rapid development
and growth over the past decade, and the da Vinci robotic surgery system has
emerged as the leader in RMIS [2]. Training for RMIS has often been cited
as challenging, even for experienced surgeons [3]. One approach to overcome
this challenge is develop techniques for automatic assessment of surgical skills
during the performance of benchmark tasks, such as suturing or knot-tying, that
simulate live tasks used for clinical skill evaluation [4]. This paper presents such
techniques based on gesture recognition using hidden Markov models (HMMs).

RMIS is uniquely amenable to automatic skill assessment. The robot func-
tions as a measurement tool for dexterous motion. As part of its run-time sys-
tem, the da Vinci exposes an application programming interface (API) which
provides accurate and detailed kinematic motion measurements, including the
surgeon console “master” manipulators and all patient-side tools. We use these
measurements to recognize individual surgical gestures [1]. Using both surgeon-
and patient-side kinematics may seem redundant. But since one may carry some
information that the other doesn’t, (e.g intended v/s actual tool motion ), we
use both, and apply data-driven dimensionality reduction techniques to remove
such redundancies.
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Dosis et al [5] have used hidden Markov models to model hand manipulations
and to classify simple surgical tasks. Richards et al [6] have demonstrated that
force/torque signatures may be used in RMIS for two-way skill classification.
Rosen et al [7] have used HMMs to model tool-tissue interactions in laparo-
scopic surgery; a seperate HMM for each skill level was trained using a pool of
surgeons, and a statistical distance between these HMMs was shown to correlate
well with the learning curve of these trainee surgeons. In these and other reported
efforts, the automatic assessment is for entire trials, while the work presented
here assesses finer grained segments, namely individual surgical gestures.

Lin et al [§] have used linear discriminant analysis (LDA) to project the high-
dimensional kinematic measurements from the da Vinci API to three or four
dimensions, and used a Bayes’ classifier to segment surgical gestures from the
low-dimensional signal. Reiley et al [I] replace their Bayes classifier with a 3-
state left-to-right HMM for each gesture, and demonstrate improved accuracy
on unseen users. The work presented here improves upon [I] by performing LDA
to discriminate between the kinematical signal of sub-gestures — modeled by
individual HMM states — rather than between the signal of entire gestures.

The distinguishing contribution of this work is the application of the HMM
methodology to gesture-specific skill assessment. A data-driven algorithm is used
to design the HMM topology for each gesture. As a consequence, in addition to
automatic detection and segmentation of surgical gestures, one is able to compare
individual gestures of expert, intermediate and novice surgeons in a quantitative
manner. For instance, some gestures in a suturing task, such as navigating a nee-
dle through the tissue, are demonstrated to be more indicative of expertise than
others, such as pulling the thread. Such fine grained assessment can ultimately
lead to better automatic surgical assessment and training methods.

This paper is organized as follows. We begin in Section 2] with a background
review of the suturing task and the use of HMMSs for gesture recognition and
segmentation. We then describe the two technical novelties in the use of HMMs,
namely state-specific LDA and data-derived HMM topologies, in Section [3 This
leads to improved gesture recognition accuracies. In Section [ we demonstrate
how paths through the HMM state space are indicative of the expertise with
which the gesture has been performed, leading to the main contribution of the
paper: a framework for automatic, gesture-level surgical skill assessment.

2 Surgical Gesture Recognition Using HMMs

2.1 The Surgeme Recognition Experimental Setup

Kinematic Data Recordings: We recorded the kinematic measurements from 2
expert, 3 intermediate and 3 novice surgeons performing a bench-top suturing
task—four stitches along a line—on the teleoperated da Vinci surgical system.
The average duration of a trial is 2 minutes, and the video and kinematic data are
recorded at 30 frames per second. The kinematic measurements include position,
velocity, etc. from both the surgeon- and patient-side manipulators for a total
of 78 motion variables. We use {y:,t = 1,2,...,T} to denote the sequence of
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kinematic measurements for a trial, with y; € R7 and T = 3400. A total of 30
trials were recorded, roughly four from each of the eight surgeons.

Manual Labeling of Surgemes: Each trial was manually segmented into seman-
tically “atomic” gestures, based on the eleven-symbol vocabulary proposed by
[1]. Following their terminology, we will call each gesture a surgeme. Typical
surgemes include, for instance, (i) positioning the needle for insertion with the
right hand, (ii) inserting the needle through the tissue till it comes out where
desired, (iii) reaching for the needle-tip with the left hand, (iv) pulling the su-
ture with the left hand, etc. We use {oy;;,7 = 1,2,...,k} to denote the surgeme
label-sequence of a trial, with op; € {1,...,11} and k ~ 20, and [b;, e;] the begin-
and end-time of o, 1 < b; <e; <T.Notethat by =1, b;41 =e;+1, e =T.

The Surgeme Recognition Task: Given a partition of the 30 trials into training
and test trials, the surgeme recognition task is to automatically assign to each
trial in the test partition a surgeme transcript {oyp;,7 = 1,2,.. .,l%} and time-
marks [l;i,éi]. Trials in the training partition are used to train the HMMs, as
described below. We report results with three different training/test partitions.

Setup I: Of the 30 trials, 8 have some minor errors by the surgeons during su-
turing. These are excluded altogether in Setup I. Leave-one-out cross-validation
is carried out with the remaining 22 trials, so that each trial is once in the test
partition. The test results of all 22 folds (22 trials) are aggregated.

Setup II: The training partition in Setup II comprises the 22 “good” trials,
while the test partition comprises only the 8 “imperfect” trials.

Setup III: User-disjoint partitions of the 30 trials are created in Setup III.
An eight-fold cross validation akin to Setup I is carried out, except that in each
fold, all the trials of 1 surgeon are in the test partition and all trials of the
remaining 7 surgeons are in training. Test results of all 30 trials are aggregated.

Setup I is relatively the easiest, with 22 good test trials and the surgeon of each
test trial seen in training. Setup II is harder, with seen surgeons but with test
trials that have some visible errors, a situation not dissimilar from recognition
of slightly disfluent speech. Setup II is most similar to the multiple-user results
in [1l Table 3], with which we make direct comparisons. Setup III is the hardest,
because all trials of the test surgeon have also been removed from training.

Recognition accuracy is measured as the fraction of kinematic frames that are
assigned the correct surgeme label by an automatic system. Formally,

T
1
Accuracy of test trial {y1,...,yr} = T Z]I (or = 6¢), (1)
t=1

where o; = op;) for all ¢ € [b, e;] and 6; = 6y, for all t € [Bh é;]. This measures
the goodness of both the labels and the segmentation proposed by {6+}.

2.2 HMM-Based Surgeme Recognition

Dimensionality Reduction: Before surgeme recognition, the 78-dimensional kine-
matic data are reduced to d <« 78 dimensions via LDA [9]. Specifically, each
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block of 2p + 1 frames in the training partition is converted into a data-label
pair ([y, - v vf v - wi,)T, o1), and a d x 78(2p + 1) projection ma-
trix A is computed that maximizes the ratio of between- and within-surgeme
scatter of the projected data z; = A[ytT_p oyl ytTﬂjT. Typically, p = 5 and
d is 3 to 10. The {z;} are used everywhere subsequently, instead of {y;}.

Surgeme Modeling: The likelihood of the kinematic signal {z:,t = b;,...,e;} of
a surgeme op;] = o is modeled via a HMM as

Poonseowe) = S0 S o 30 T plsilsoN@is g 20, (2)

Sb; €Sy Sb;+1 €Sy Se; €S, t=b;

where S, denotes the hidden states of the model for surgeme o, p(s|s’) are the
transition probabilities between these states, and N(-; us, Xs) is a multivariate
Gaussian density with mean us and covariance X associated with state s € S, .

Parameter Estimation: Kinematic data from all training samples of a surgeme o
are modeled by the same HMM (with states S, ), and each surgeme is modeled
by a different HMM. Model parameters are chosen to maximize the likelihood
(@) of the training data {x;} via the standard Baum-Welch algorithm [10].

Surgeme Recognition: A surgeme (HMM) is permitted to be followed by any other
surgeme during recognition, and the Viterbi algorithm [I0] is used to find the
sequence {8; € |JSo,t =1,...,T} of HMM states with the highest a posteriori
likelihood given a test trial {x;}. The surgeme sequence {dy;,7 = 1,2,..., k} and
time-marks [Z)i, é;] are a byproduct of the Viterbi algorithm.

3 Improved Dimensionality Reduction and Modeling

3.1 Linear Discriminant Analysis Based on HMM States

The primary purpose of LDA is to reduce the dimensionality of {y;} without
losing information necessary to discriminate between gestures o;. Note, however,
that each surgeme is modeled by a HMM with several states s € S,, each of
which models a sub-gesture—called a dexeme to connote small dextrous motions.
It is natural, therefore, to investigate whether it is better to perform LDA to
discriminate between dexemes rather than entire surgemes. An immediate hurdle
we face is that the manual segmentation of {y;} is only up to surgemes, and
not at the finer resolution of dexemes. But the HMM formalism provides a
workaround.

Using the d-dimensional training data {z;} derived from surgeme-level LDA,
we first estimate surgeme HMMs as described above, and use the Viterbi algo-
rithm to obtain a forced alignment of {x,} with the states of the surgeme HMMs.
This results in a dexeme-level segmentation of each surgeme. We use the result-
ing dexeme label §; of each block [y}lp R TR VTR TE IR ytTﬂ,]T to compute a
new projection matrix A and use that for all subsequent experiments.
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The dexeme-level LDA is better able to preserve information that distin-
guishes temporal sub-gestures of a single gesture, as well as stylistic variations
between samples of the same gesture, as will be demonstrated in Section

3.2 Data-Derived HMM Topologies

In the work of [I], and in our initial work here, we used a 3-state left-to-right
HMM to model each gesture. However, each gesture has not only temporally
distinct sub-gestures—which would be well modeled by states of a left-to-right
HMM-—but also contezrtual variability in sub-gestures. Some of the latter vari-
ability is due to the skill level of the surgeon, some due to the dynamics of a
previous or subsequent gesture, while some depends on where in the suturing
task (e.g. on the first or fourth stitch) the gesture is being performed. We inves-
tigate induction of an optimal HMM topology directly from the data to model
such variability.

Formally, we wish to find the topology of a surgeme HMM that maximizes
the likelihood (@) of the training data {z;}. Finding the optimal HMM topology,
however, is computationally intractable: given n = |S,|, one must find, separately
for every n-vertex directed graph, the HMM parameters that maximize (2]).

In Speech recognition, HMM topologies are derived for capturing context-
dependent (allophonic) variations of phonemes using greedy algorithms. We ap-
ply one such algorithm by Varadarajan et al [11], called the modified successive
state splitting (SSS) algorithm, to our problem. We begin with a single-state
HMM for each surgeme, and iteratively estimate the HMM parameters and in-
crement the number of HMM states via SSS .

Data-derived HMM topologies yield accurate models for surgeme recognition,
and also capture sub-gesture patterns indicative of skill, as shown in Section [l

3.3 Surgeme Recognition and Segmentation Results

We performed surgeme recognition experiments with the training/test partitions
described in Section

We first estimated a 1-state HMM per surgeme. In this case, there is no differ-
ence between surgeme-level and dexeme-level LDA. The 70% to 74% accuracy
for Setup II reported in Table [l (a)| may therefore be directly compared with the
results of [I], who report accuracies of 64% to 72%.

Next, we estimated a 3-state left-to-right HMM for each surgeme. With
surgeme-level LDA, [I] report accuracies of 72% to 77%. In comparison, the
dexeme-level LDA provides up to 86% accuracy, as shown in Table We
also see from Table that maximum accuracy is achieved when the number
of dimensions d is between 9 and 17 indicating the need for more dimensions to
differentiate between the finer grained motions represented by dexemes.

Modeling a surgeme as a temporal sequence of 3 dexemes (left-to-right HMM
states) is better than a single-state HMM, but still ad hoc. Determining the HMM
topology from data permits modeling both temporally distinct sub-gestures and
contextual variability of gestures, as discussed in Section Therefore, we use
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Table 1. Surgeme Recognition Accuracies with Dexeme-level LDA
(a) A 1-state HMM per Surgeme
LDA d Setup I Setup II Setup III
3 5% 75% 58%
5 81% 2% 69%
7 81% 70% 72%
(b) A 3-state HMM per Surgeme (¢) Data-derived HMM Topology
LDA d Setup I Setup II Setup IIT LDA d Setup I Setup II Setup IIT

3 79% 70% 73% 3 69% 67% 64%
5 82% 6% 73% 4 73% 73% 70%
7 82% 83% 81% 10 83% 82% 73%
9 82%  86% 78% 15 86% 82% 1%
17 87%  83% 81% 20 87% 83% 70%

the SSS algorithm to evolve a 6-state HMM for each gesture. Table shows
recognition results for the different setups. The recognition accuracies remain high
for Setup I and II using data-derived HMMs. The maximum recognition accuracy
is obtained when the number of dimensions d is 20, indicating the need for more
dimensions needed to differentiate between the larger number of dexemes. We also
note that the accuracies drop considerably for Setup III. We conjecture that in
addition to expertise-dependent dexemes, the data-derived HMMs may also be
modeling user-specific dexemes. This leads to improved recognition when a new
trial of a seen user is presented, but also to some overfitting to seen users.

The optimal LDA dimension is empirically seen to be proportional to the
number of classes: 5 for 1-state HMMs (discriminating 8 surgemes), 9-17 for
3-state HMMSs (24 dexemes), and 15-20 for data-derived HMMs (48 dexemes).

4 Surgeme-Level Skills Revealed in Dexeme-Sequences

To illustrate how data-derived HMM topologies encode dexterity information,
consider Figure [II which shows a 5-state HMM derived via the SSS algorithm
for surgeme #3 corresponding to the act of “inserting needle through the tissue.”.
Training samples of surgeme #3 were aligned with this 5-state HMM, and the
state-level time marks were used to isolate individual dexemes corresponding to
the HMM states a, b, ¢, d and e € S3.

We studied the endoscope video to understand what the segments that align
with each dexeme (HMM state) represent, and observed the following

Dexemes a, b and c¢: They all constitutes rotating of the right hand patient-side
wrist to drive the needle from the entry- to the exit.

Dexeme ¢ versus a and b: All examples that aligned to ¢ were from novice sur-
geons. Examining the videos revealed that ¢ corresponds to a sub-gesture where
the novice hesitates/retracts while pushing the needle to the exit point. In most
cases, c¢ is followed by a or b, in which the trainee surgeon eventually performs

! Video corresponding to these dexemes is available at
www.clsp. jhu.edu/~balakris/MICCAI2009/
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the task (inserting the needle till it exits) correctly. States a and b appear to be
indistinguishable, except for some stylistic differences.

Dexzeme d: It represents the left arm reach-
ing for the exiting needle. Often, when the
left arm is already positioned near the exit
point, this gesture is omitted. This explains
the transitions from states a and b directly to
state e.

Dexeme e: It represents firmly gripping the
needle with the left arm.

These observations reinforce the claim that Fig.1l. The Data-derived HMM
SSS provides a means for automatically in- for n =5 States for Gesture #3
ducing meaningful units for modeling dexter-
ous motion. While not demonstrated here, it may be applied to entire trials,
automatically discovering and modeling gestures without requiring any manual
labeling!

4.1 Measuring Expertise by Aligning Dexeme-Transcripts

To compare how dissimilar two instances of a surgeme are, we compute an edit
distance between their dexeme transcripts as described below.

Let {z},t = b;,...,&} and {22,t = b;,...,&;} denote two automatically seg-
mented and labeled realizations of the surgeme o, i.e. ;) = 7[5 = 0. We use
the Viterbi alignment of {x}} with the states S, of the surgeme HMM to obtain
the sequence {3}, t = b;, ..., é;}, and similarly {52,t = b;,...,¢;} from {a?}. We
then obtain the sequence of HMM states visited by {z}} (resp. {z7}) by simply
compacting each run of state labels. In other words, we ignore how many con-
secutive frames are aligned with a state, counting them collectively as one “visit”
to the state. Let {§[1i]7i =1,...,k'} and {§[2j]7j =1,...,k%} denote the dexeme
transcripts of the two gestures generated in this manner.

We then align {5} and {s?;} using Levenshtein distance, and each element
in the two sequences is marked as matched if it is aligned with the an identical
element in the other sequence. Inserted, deleted and (both sides of a pair of) mis-
matched symbols are marked as mismatched. The similarity of the realizations
oy and ;) is defined as the number of matched dexemes divided by '+ k2 A
similarity of 1 corresponds to identical dexeme sequences: k* = k2 and é[li] = 3[%]
for each ¢. Otherwise similarity ranges between 0 and 1.

We calculate the average edit distance between realizations of o drawn from
different expertise levels for the four most frequent gestures: o = 2, 3,4 and 6.

Note from Tables [2(a)l [2(b)| and [2(c)| that some surgemes (e.g. #2 : “posi-
tioning the needle at the entry point” or #3 : “inserting the needle through the
tissue”) show low expert-novice similarity compared to expert-expert, indicating
the need for skillful execution. In comparison, surgeme #6 (pulling the suture)
in Table exhibits significant similarity even between experts and novices.

The correlation between expertise level and edit distance is clearly evident.
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Table 2. Dexeme Similarity of Surgemes Performed with Different Skill Levels

(a) Similarities in Surgeme #2 (b) Similarities in Surgeme #3
Expert Inter. Novice Expert Inter. Novice

Expert 0.65 0.55 0.55 Expert 0.69 0.60 0.53

Intermediate 0.55 0.50 0.53 Intermediate 0.60 0.51 0.50

Novice 0.55 0.53 0.46 Novice 0.53 0.50 0.50

(c) Similarities in Surgeme #4 (d) Similarities in Surgeme #6
Expert Inter. Novice Expert Inter. Novice

Expert 0.71 0.57 0.54 Expert 0.74 0.69 0.68

Intermediate 0.57 0.58 0.58 Intermediate 0.69 0.65 0.67

Novice 0.54 0.58 0.51 Novice 0.68 0.67 0.61

5 Concluding Remarks and Potential Applications

We have demonstrated the utility of sub-gesture-level LDA in improving dimen-
sionality reduction for HMM-based gesture recognition. We have also shown that
data-derived HMMs automatically discover and model skill-specific sub-gestures,
leading to a natural metric (dexeme edit distance) for comparing surgical ges-
tures for skill assessment. Since the dexemes are data-derived, such comparison
may be feasible even if the manual labeling of surgemes is very coarse grained
or absent. Finally, dexeme edit distance based alignment may be transferred to
synchronize the surgical video, opening up immense possibilities for training.
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